3 % Copyright 2008 Taco Hoekwater.
5 % This program is free software: you can redistribute it and/or modify
6 % it under the terms of the GNU General Public License as published by
7 % the Free Software Foundation, either version 2 of the License, or
8 % (at your option) any later version.
10 % This program is distributed in the hope that it will be useful,
11 % but WITHOUT ANY WARRANTY; without even the implied warranty of
12 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 % GNU General Public License for more details.
15 % You should have received a copy of the GNU General Public License
16 % along with this program. If not, see <http://www.gnu.org/licenses/>.
18 % TeX is a trademark of the American Mathematical Society.
19 % METAFONT is a trademark of Addison-Wesley Publishing Company.
20 % PostScript is a trademark of Adobe Systems Incorporated.
22 % Here is TeX material that gets inserted after \input webmac
23 \def\hang{\hangindent 3em\noindent\ignorespaces}
24 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
26 \def\psqrt#1{\sqrt{\mathstrut#1}}
28 \def\pct!{{\char`\%}} % percent sign in ordinary text
29 \font\tenlogo=logo10 % font used for the METAFONT logo
31 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
32 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
33 \def\[#1]{\ignorespaces} % left over from pascal web
34 \def\<#1>{$\langle#1\rangle$}
35 \def\section{\mathhexbox278}
36 \let\swap=\leftrightarrow
37 \def\round{\mathop{\rm round}\nolimits}
38 \mathchardef\vbv="026A % synonym for `\|'
39 \def\vb{\relax\ifmmode\vbv\else$\vbv$\fi}
41 \def\(#1){} % this is used to make section names sort themselves better
42 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
49 This is \MP\ by John Hobby, a graphics-language processor based on D. E. Knuth's \MF.
51 Much of the original Pascal version of this program was copied with
52 permission from MF.web Version 1.9. It interprets a language very
53 similar to D.E. Knuth's METAFONT, but with changes designed to make it
54 more suitable for PostScript output.
56 The main purpose of the following program is to explain the algorithms of \MP\
57 as clearly as possible. However, the program has been written so that it
58 can be tuned to run efficiently in a wide variety of operating environments
59 by making comparatively few changes. Such flexibility is possible because
60 the documentation that follows is written in the \.{WEB} language, which is
61 at a higher level than C.
63 A large piece of software like \MP\ has inherent complexity that cannot
64 be reduced below a certain level of difficulty, although each individual
65 part is fairly simple by itself. The \.{WEB} language is intended to make
66 the algorithms as readable as possible, by reflecting the way the
67 individual program pieces fit together and by providing the
68 cross-references that connect different parts. Detailed comments about
69 what is going on, and about why things were done in certain ways, have
70 been liberally sprinkled throughout the program. These comments explain
71 features of the implementation, but they rarely attempt to explain the
72 \MP\ language itself, since the reader is supposed to be familiar with
73 {\sl The {\logos METAFONT\/}book} as well as the manual
75 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
76 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
77 AT\AM T Bell Laboratories.
79 @ The present implementation is a preliminary version, but the possibilities
80 for new features are limited by the desire to remain as nearly compatible
81 with \MF\ as possible.
83 On the other hand, the \.{WEB} description can be extended without changing
84 the core of the program, and it has been designed so that such
85 extensions are not extremely difficult to make.
86 The |banner| string defined here should be changed whenever \MP\
87 undergoes any modifications, so that it will be clear which version of
88 \MP\ might be the guilty party when a problem arises.
90 @^system dependencies@>
92 @d default_banner "This is MetaPost, Version 1.091" /* printed when \MP\ starts */
97 #define metapost_version "1.091"
98 #define metapost_magic (('M'*256) + 'P')*65536 + 1091
99 #define metapost_old_magic (('M'*256) + 'P')*65536 + 1080
101 @ The external library header for \MP\ is |mplib.h|. It contains a
102 few typedefs and the header defintions for the externally used
105 The most important of the typedefs is the definition of the structure
106 |MP_options|, that acts as a small, configurable front-end to the fairly
107 large |MP_instance| structure.
110 typedef struct MP_instance * MP;
112 typedef struct MP_options {
115 @<Exported function headers@>
117 @ The internal header file is much longer: it not only lists the complete
118 |MP_instance|, but also a lot of functions that have to be available to
119 the \ps\ backend, that is defined in a separate \.{WEB} file.
121 The variables from |MP_options| are included inside the |MP_instance|
126 typedef struct psout_data_struct * psout_data;
134 @<Types in the outer block@>
135 @<Constants in the outer block@>
136 # ifndef LIBAVL_ALLOCATOR
137 # define LIBAVL_ALLOCATOR
138 struct libavl_allocator {
139 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
140 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
143 typedef struct MP_instance {
147 @<Internal library declarations@>
157 #include <unistd.h> /* for access() */
159 #include <time.h> /* for struct tm \& co */
161 #include "mplibps.h" /* external header */
162 #include "mpmp.h" /* internal header */
163 #include "mppsout.h" /* internal header */
164 extern font_number mp_read_font_info (MP mp, char *fname); /* tfmin.w */
167 @<Basic printing procedures@>
168 @<Error handling procedures@>
170 @ Here are the functions that set up the \MP\ instance.
173 MP_options *mp_options (void);
174 MP mp_initialize (MP_options *opt);
177 MP_options *mp_options (void) {
179 size_t l = sizeof(MP_options);
183 opt->ini_version = true;
188 @ @<Internal library declarations@>=
189 @<Declare subroutines for parsing file names@>
191 @ The whole instance structure is initialized with zeroes,
192 this greatly reduces the number of statements needed in
193 the |Allocate or initialize variables| block.
195 @d set_callback_option(A) do { mp->A = mp_##A;
196 if (opt->A!=NULL) mp->A = opt->A;
200 static MP mp_do_new (jmp_buf *buf) {
201 MP mp = malloc(sizeof(MP_instance));
206 memset(mp,0,sizeof(MP_instance));
212 static void mp_free (MP mp) {
213 int k; /* loop variable */
214 @<Dealloc variables@>
215 if (mp->noninteractive) {
216 @<Finish non-interactive use@>;
223 static void mp_do_initialize ( MP mp) {
224 @<Local variables for initialization@>
225 @<Set initial values of key variables@>
228 @ This procedure gets things started properly.
230 MP mp_initialize (MP_options *opt) {
232 jmp_buf *buf = malloc(sizeof(jmp_buf));
233 if (buf == NULL || setjmp(*buf) != 0)
238 mp->userdata=opt->userdata;
239 @<Set |ini_version|@>;
240 mp->noninteractive=opt->noninteractive;
241 set_callback_option(find_file);
242 set_callback_option(open_file);
243 set_callback_option(read_ascii_file);
244 set_callback_option(read_binary_file);
245 set_callback_option(close_file);
246 set_callback_option(eof_file);
247 set_callback_option(flush_file);
248 set_callback_option(write_ascii_file);
249 set_callback_option(write_binary_file);
250 set_callback_option(shipout_backend);
251 if (opt->banner && *(opt->banner)) {
252 mp->banner = xstrdup(opt->banner);
254 mp->banner = xstrdup(default_banner);
256 if (opt->command_line && *(opt->command_line))
257 mp->command_line = xstrdup(opt->command_line);
258 if (mp->noninteractive) {
259 @<Prepare function pointers for non-interactive use@>;
261 /* open the terminal for output */
263 @<Find constant sizes@>;
264 @<Allocate or initialize variables@>
265 mp_reallocate_memory(mp,mp->mem_max);
266 mp_reallocate_paths(mp,1000);
267 mp_reallocate_fonts(mp,8);
268 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
269 @<Check the ``constant'' values...@>;
272 mp_snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
273 "---case %i",(int)mp->bad);
274 do_fprintf(mp->err_out,(char *)ss);
278 mp_do_initialize(mp); /* erase preloaded mem */
279 if (mp->ini_version) {
280 @<Run inimpost commands@>;
282 if (!mp->noninteractive) {
283 @<Initialize the output routines@>;
284 @<Get the first line of input and prepare to start@>;
285 @<Initializations after first line is read@>;
287 mp->history=mp_spotless;
292 @ @<Initializations after first line is read@>=
294 mp_init_map_file(mp, mp->troff_mode);
295 mp->history=mp_spotless; /* ready to go! */
296 if (mp->troff_mode) {
297 mp->internal[mp_gtroffmode]=unity;
298 mp->internal[mp_prologues]=unity;
300 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
301 mp->cur_sym=mp->start_sym; mp_back_input(mp);
304 @ @<Exported function headers@>=
305 extern MP_options *mp_options (void);
306 extern MP mp_initialize (MP_options *opt) ;
307 extern int mp_status(MP mp);
308 extern void *mp_userdata(MP mp);
311 int mp_status(MP mp) { return mp->history; }
314 void *mp_userdata(MP mp) { return mp->userdata; }
316 @ The overall \MP\ program begins with the heading just shown, after which
317 comes a bunch of procedure declarations and function declarations.
318 Finally we will get to the main program, which begins with the
319 comment `|start_here|'. If you want to skip down to the
320 main program now, you can look up `|start_here|' in the index.
321 But the author suggests that the best way to understand this program
322 is to follow pretty much the order of \MP's components as they appear in the
323 \.{WEB} description you are now reading, since the present ordering is
324 intended to combine the advantages of the ``bottom up'' and ``top down''
325 approaches to the problem of understanding a somewhat complicated system.
327 @ Some of the code below is intended to be used only when diagnosing the
328 strange behavior that sometimes occurs when \MP\ is being installed or
329 when system wizards are fooling around with \MP\ without quite knowing
330 what they are doing. Such code will not normally be compiled; it is
331 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
333 @ This program has two important variations: (1) There is a long and slow
334 version called \.{INIMP}, which does the extra calculations needed to
336 initialize \MP's internal tables; and (2)~there is a shorter and faster
337 production version, which cuts the initialization to a bare minimum.
339 Which is which is decided at runtime.
341 @ The following parameters can be changed at compile time to extend or
342 reduce \MP's capacity. They may have different values in \.{INIMP} and
343 in production versions of \MP.
345 @^system dependencies@>
348 #define file_name_size 255 /* file names shouldn't be longer than this */
349 #define bistack_size 1500 /* size of stack for bisection algorithms;
350 should probably be left at this value */
352 @ Like the preceding parameters, the following quantities can be changed
353 to extend or reduce \MP's capacity. But if they are changed,
354 it is necessary to rerun the initialization program \.{INIMP}
356 to generate new tables for the production \MP\ program.
357 One can't simply make helter-skelter changes to the following constants,
358 since certain rather complex initialization
359 numbers are computed from them.
362 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
363 int pool_size; /* maximum number of characters in strings, including all
364 error messages and help texts, and the names of all identifiers */
365 int mem_max; /* greatest index in \MP's internal |mem| array;
366 must be strictly less than |max_halfword|;
367 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
368 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
369 must not be greater than |mem_max| */
370 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
372 @ @<Option variables@>=
373 int error_line; /* width of context lines on terminal error messages */
374 int half_error_line; /* width of first lines of contexts in terminal
375 error messages; should be between 30 and |error_line-15| */
376 int max_print_line; /* width of longest text lines output; should be at least 60 */
377 unsigned hash_size; /* maximum number of symbolic tokens,
378 must be less than |max_halfword-3*param_size| */
379 int param_size; /* maximum number of simultaneous macro parameters */
380 int max_in_open; /* maximum number of input files and error insertions that
381 can be going on simultaneously */
382 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
383 void *userdata; /* this allows the calling application to setup local */
384 char *banner; /* the banner that is printed to the screen and log */
386 @ @<Dealloc variables@>=
390 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
395 set_value(mp->error_line,opt->error_line,79);
396 set_value(mp->half_error_line,opt->half_error_line,50);
397 if (mp->half_error_line>mp->error_line-15 )
398 mp->half_error_line = mp->error_line-15;
399 set_value(mp->max_print_line,opt->max_print_line,100);
401 @ In case somebody has inadvertently made bad settings of the ``constants,''
402 \MP\ checks them using a global variable called |bad|.
404 This is the second of many sections of \MP\ where global variables are
408 integer bad; /* is some ``constant'' wrong? */
410 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
411 or something similar. (We can't do that until |max_halfword| has been defined.)
413 In case you are wondering about the non-consequtive values of |bad|: some
414 of the things that used to be WEB constants are now runtime variables
415 with checking at assignment time.
417 @<Check the ``constant'' values for consistency@>=
419 if ( mp->mem_top<=1100 ) mp->bad=4;
421 @ Some |goto| labels are used by the following definitions. The label
422 `|restart|' is occasionally used at the very beginning of a procedure; and
423 the label `|reswitch|' is occasionally used just prior to a |case|
424 statement in which some cases change the conditions and we wish to branch
425 to the newly applicable case. Loops that are set up with the |loop|
426 construction defined below are commonly exited by going to `|done|' or to
427 `|found|' or to `|not_found|', and they are sometimes repeated by going to
428 `|continue|'. If two or more parts of a subroutine start differently but
429 end up the same, the shared code may be gathered together at
432 @ Here are some macros for common programming idioms.
434 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
435 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
436 @d negate(A) (A)=-(A) /* change the sign of a variable */
437 @d double(A) (A)=(A)+(A)
439 @d do_nothing /* empty statement */
441 @* \[2] The character set.
442 In order to make \MP\ readily portable to a wide variety of
443 computers, all of its input text is converted to an internal eight-bit
444 code that includes standard ASCII, the ``American Standard Code for
445 Information Interchange.'' This conversion is done immediately when each
446 character is read in. Conversely, characters are converted from ASCII to
447 the user's external representation just before they are output to a
451 Such an internal code is relevant to users of \MP\ only with respect to
452 the \&{char} and \&{ASCII} operations, and the comparison of strings.
454 @ Characters of text that have been converted to \MP's internal form
455 are said to be of type |ASCII_code|, which is a subrange of the integers.
458 typedef unsigned char ASCII_code; /* eight-bit numbers */
460 @ The present specification of \MP\ has been written under the assumption
461 that the character set contains at least the letters and symbols associated
462 with ASCII codes 040 through 0176; all of these characters are now
463 available on most computer terminals.
466 typedef unsigned char text_char; /* the data type of characters in text files */
468 @ @<Local variables for init...@>=
471 @ The \MP\ processor converts between ASCII code and
472 the user's external character set by means of arrays |xord| and |xchr|
473 that are analogous to Pascal's |ord| and |chr| functions.
476 #define xchr(A) mp->xchr[(A)]
477 #define xord(A) mp->xord[(A)]
480 ASCII_code xord[256]; /* specifies conversion of input characters */
481 text_char xchr[256]; /* specifies conversion of output characters */
483 @ The core system assumes all 8-bit is acceptable. If it is not,
484 a change file has to alter the below section.
485 @^system dependencies@>
487 Additionally, people with extended character sets can
488 assign codes arbitrarily, giving an |xchr| equivalent to whatever
489 characters the users of \MP\ are allowed to have in their input files.
490 Appropriate changes to \MP's |char_class| table should then be made.
491 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
492 codes, called the |char_class|.) Such changes make portability of programs
493 more difficult, so they should be introduced cautiously if at all.
494 @^character set dependencies@>
495 @^system dependencies@>
498 for (i=0;i<=0377;i++) { xchr(i)=(text_char)i; }
500 @ The following system-independent code makes the |xord| array contain a
501 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
502 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
503 |j| or more; hence, standard ASCII code numbers will be used instead of
504 codes below 040 in case there is a coincidence.
507 for (i=0;i<=255;i++) {
510 for (i=0200;i<=0377;i++) { xord(xchr(i))=(ASCII_code)i;}
511 for (i=0;i<=0176;i++) { xord(xchr(i))=(ASCII_code)i;}
513 @* \[3] Input and output.
514 The bane of portability is the fact that different operating systems treat
515 input and output quite differently, perhaps because computer scientists
516 have not given sufficient attention to this problem. People have felt somehow
517 that input and output are not part of ``real'' programming. Well, it is true
518 that some kinds of programming are more fun than others. With existing
519 input/output conventions being so diverse and so messy, the only sources of
520 joy in such parts of the code are the rare occasions when one can find a
521 way to make the program a little less bad than it might have been. We have
522 two choices, either to attack I/O now and get it over with, or to postpone
523 I/O until near the end. Neither prospect is very attractive, so let's
526 The basic operations we need to do are (1)~inputting and outputting of
527 text, to or from a file or the user's terminal; (2)~inputting and
528 outputting of eight-bit bytes, to or from a file; (3)~instructing the
529 operating system to initiate (``open'') or to terminate (``close'') input or
530 output from a specified file; (4)~testing whether the end of an input
531 file has been reached; (5)~display of bits on the user's screen.
532 The bit-display operation will be discussed in a later section; we shall
533 deal here only with more traditional kinds of I/O.
535 @ Finding files happens in a slightly roundabout fashion: the \MP\
536 instance object contains a field that holds a function pointer that finds a
537 file, and returns its name, or NULL. For this, it receives three
538 parameters: the non-qualified name |fname|, the intended |fopen|
539 operation type |fmode|, and the type of the file |ftype|.
541 The file types that are passed on in |ftype| can be used to
542 differentiate file searches if a library like kpathsea is used,
543 the fopen mode is passed along for the same reason.
546 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
548 @ @<Exported types@>=
550 mp_filetype_terminal = 0, /* the terminal */
551 mp_filetype_error, /* the terminal */
552 mp_filetype_program , /* \MP\ language input */
553 mp_filetype_log, /* the log file */
554 mp_filetype_postscript, /* the postscript output */
555 mp_filetype_memfile, /* memory dumps */
556 mp_filetype_metrics, /* TeX font metric files */
557 mp_filetype_fontmap, /* PostScript font mapping files */
558 mp_filetype_font, /* PostScript type1 font programs */
559 mp_filetype_encoding, /* PostScript font encoding files */
560 mp_filetype_text /* first text file for readfrom and writeto primitives */
562 typedef char *(*mp_file_finder)(MP, const char *, const char *, int);
563 typedef void *(*mp_file_opener)(MP, const char *, const char *, int);
564 typedef char *(*mp_file_reader)(MP, void *, size_t *);
565 typedef void (*mp_binfile_reader)(MP, void *, void **, size_t *);
566 typedef void (*mp_file_closer)(MP, void *);
567 typedef int (*mp_file_eoftest)(MP, void *);
568 typedef void (*mp_file_flush)(MP, void *);
569 typedef void (*mp_file_writer)(MP, void *, const char *);
570 typedef void (*mp_binfile_writer)(MP, void *, void *, size_t);
572 @ @<Option variables@>=
573 mp_file_finder find_file;
574 mp_file_opener open_file;
575 mp_file_reader read_ascii_file;
576 mp_binfile_reader read_binary_file;
577 mp_file_closer close_file;
578 mp_file_eoftest eof_file;
579 mp_file_flush flush_file;
580 mp_file_writer write_ascii_file;
581 mp_binfile_writer write_binary_file;
583 @ The default function for finding files is |mp_find_file|. It is
584 pretty stupid: it will only find files in the current directory.
586 This function may disappear altogether, it is currently only
587 used for the default font map file.
590 static char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) {
592 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
593 return mp_strdup(fname);
598 @ Because |mp_find_file| is used so early, it has to be in the helpers
602 static char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) ;
603 static void *mp_open_file (MP mp , const char *fname, const char *fmode, int ftype) ;
604 static char *mp_read_ascii_file (MP mp, void *f, size_t *size) ;
605 static void mp_read_binary_file (MP mp, void *f, void **d, size_t *size) ;
606 static void mp_close_file (MP mp, void *f) ;
607 static int mp_eof_file (MP mp, void *f) ;
608 static void mp_flush_file (MP mp, void *f) ;
609 static void mp_write_ascii_file (MP mp, void *f, const char *s) ;
610 static void mp_write_binary_file (MP mp, void *f, void *s, size_t t) ;
612 @ The function to open files can now be very short.
615 void *mp_open_file(MP mp, const char *fname, const char *fmode, int ftype) {
618 realmode[0] = *fmode;
621 if (ftype==mp_filetype_terminal) {
622 return (fmode[0] == 'r' ? stdin : stdout);
623 } else if (ftype==mp_filetype_error) {
625 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
626 return (void *)fopen(fname, realmode);
631 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
634 char name_of_file[file_name_size+1]; /* the name of a system file */
635 int name_length;/* this many characters are actually
636 relevant in |name_of_file| (the rest are blank) */
638 @ @<Option variables@>=
639 int print_found_names; /* configuration parameter */
641 @ If this parameter is true, the terminal and log will report the found
642 file names for input files instead of the requested ones.
643 It is off by default because it creates an extra filename lookup.
645 @<Allocate or initialize ...@>=
646 mp->print_found_names = (opt->print_found_names>0 ? true : false);
648 @ \MP's file-opening procedures return |false| if no file identified by
649 |name_of_file| could be opened.
651 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
652 It is not used for opening a mem file for read, because that file name
656 if (mp->print_found_names) {
657 char *s = (mp->find_file)(mp,mp->name_of_file,A,ftype);
659 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
660 strncpy(mp->name_of_file,s,file_name_size);
666 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
669 return (*f ? true : false)
672 static boolean mp_a_open_in (MP mp, void **f, int ftype) {
673 /* open a text file for input */
677 boolean mp_w_open_in (MP mp, void **f) {
678 /* open a word file for input */
679 *f = (mp->open_file)(mp,mp->name_of_file,"r",mp_filetype_memfile);
680 return (*f ? true : false);
683 static boolean mp_a_open_out (MP mp, void **f, int ftype) {
684 /* open a text file for output */
688 static boolean mp_b_open_out (MP mp, void **f, int ftype) {
689 /* open a binary file for output */
693 boolean mp_w_open_out (MP mp, void **f) {
694 /* open a word file for output */
695 int ftype = mp_filetype_memfile;
699 @ @<Internal library ...@>=
700 boolean mp_w_open_out (MP mp, void **f);
703 static char *mp_read_ascii_file (MP mp, void *ff, size_t *size) {
705 size_t len = 0, lim = 128;
707 FILE *f = (FILE *)ff;
709 (void) mp; /* for -Wunused */
716 if (s==NULL) return NULL;
717 while (c!=EOF && c!='\n' && c!='\r') {
719 s =realloc(s, (lim+(lim>>2)));
720 if (s==NULL) return NULL;
728 if (c!=EOF && c!='\n')
737 void mp_write_ascii_file (MP mp, void *f, const char *s) {
745 void mp_read_binary_file (MP mp, void *f, void **data, size_t *size) {
749 len = fread(*data,1,*size,(FILE *)f);
754 void mp_write_binary_file (MP mp, void *f, void *s, size_t size) {
757 (void)fwrite(s,size,1,(FILE *)f);
762 void mp_close_file (MP mp, void *f) {
769 int mp_eof_file (MP mp, void *f) {
772 return feof((FILE *)f);
778 void mp_flush_file (MP mp, void *f) {
784 @ Input from text files is read one line at a time, using a routine called
785 |input_ln|. This function is defined in terms of global variables called
786 |buffer|, |first|, and |last| that will be described in detail later; for
787 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
788 values, and that |first| and |last| are indices into this array
789 representing the beginning and ending of a line of text.
792 size_t buf_size; /* maximum number of characters simultaneously present in
793 current lines of open files */
794 ASCII_code *buffer; /* lines of characters being read */
795 size_t first; /* the first unused position in |buffer| */
796 size_t last; /* end of the line just input to |buffer| */
797 size_t max_buf_stack; /* largest index used in |buffer| */
799 @ @<Allocate or initialize ...@>=
801 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
803 @ @<Dealloc variables@>=
807 static void mp_reallocate_buffer(MP mp, size_t l) {
809 if (l>max_halfword) {
810 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
812 buffer = xmalloc((l+1),sizeof(ASCII_code));
813 memcpy(buffer,mp->buffer,(mp->buf_size+1));
815 mp->buffer = buffer ;
819 @ The |input_ln| function brings the next line of input from the specified
820 field into available positions of the buffer array and returns the value
821 |true|, unless the file has already been entirely read, in which case it
822 returns |false| and sets |last:=first|. In general, the |ASCII_code|
823 numbers that represent the next line of the file are input into
824 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
825 global variable |last| is set equal to |first| plus the length of the
826 line. Trailing blanks are removed from the line; thus, either |last=first|
827 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
830 The variable |max_buf_stack|, which is used to keep track of how large
831 the |buf_size| parameter must be to accommodate the present job, is
832 also kept up to date by |input_ln|.
835 static boolean mp_input_ln (MP mp, void *f ) {
836 /* inputs the next line or returns |false| */
839 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
840 s = (mp->read_ascii_file)(mp,f, &size);
844 mp->last = mp->first+size;
845 if ( mp->last>=mp->max_buf_stack ) {
846 mp->max_buf_stack=mp->last+1;
847 while ( mp->max_buf_stack>=mp->buf_size ) {
848 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
851 memcpy((mp->buffer+mp->first),s,size);
852 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
858 @ The user's terminal acts essentially like other files of text, except
859 that it is used both for input and for output. When the terminal is
860 considered an input file, the file variable is called |term_in|, and when it
861 is considered an output file the file variable is |term_out|.
862 @^system dependencies@>
865 void * term_in; /* the terminal as an input file */
866 void * term_out; /* the terminal as an output file */
867 void * err_out; /* the terminal as an output file */
869 @ Here is how to open the terminal files. In the default configuration,
870 nothing happens except that the command line (if there is one) is copied
871 to the input buffer. The variable |command_line| will be filled by the
872 |main| procedure. The copying can not be done earlier in the program
873 logic because in the |INI| version, the |buffer| is also used for primitive
876 @d t_open_out do {/* open the terminal for text output */
877 mp->term_out = (mp->open_file)(mp,"terminal", "w", mp_filetype_terminal);
878 mp->err_out = (mp->open_file)(mp,"error", "w", mp_filetype_error);
880 @d t_open_in do { /* open the terminal for text input */
881 mp->term_in = (mp->open_file)(mp,"terminal", "r", mp_filetype_terminal);
882 if (mp->command_line!=NULL) {
883 mp->last = strlen(mp->command_line);
884 strncpy((char *)mp->buffer,mp->command_line,mp->last);
885 xfree(mp->command_line);
891 @<Option variables@>=
894 @ Sometimes it is necessary to synchronize the input/output mixture that
895 happens on the user's terminal, and three system-dependent
896 procedures are used for this
897 purpose. The first of these, |update_terminal|, is called when we want
898 to make sure that everything we have output to the terminal so far has
899 actually left the computer's internal buffers and been sent.
900 The second, |clear_terminal|, is called when we wish to cancel any
901 input that the user may have typed ahead (since we are about to
902 issue an unexpected error message). The third, |wake_up_terminal|,
903 is supposed to revive the terminal if the user has disabled it by
904 some instruction to the operating system. The following macros show how
905 these operations can be specified:
906 @^system dependencies@>
909 #define update_terminal (mp->flush_file)(mp,mp->term_out) /* empty the terminal output buffer */
910 #define clear_terminal do_nothing /* clear the terminal input buffer */
911 #define wake_up_terminal (mp->flush_file)(mp,mp->term_out)
912 /* cancel the user's cancellation of output */
914 @ We need a special routine to read the first line of \MP\ input from
915 the user's terminal. This line is different because it is read before we
916 have opened the transcript file; there is sort of a ``chicken and
917 egg'' problem here. If the user types `\.{input cmr10}' on the first
918 line, or if some macro invoked by that line does such an \.{input},
919 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
920 commands are performed during the first line of terminal input, the transcript
921 file will acquire its default name `\.{mpout.log}'. (The transcript file
922 will not contain error messages generated by the first line before the
923 first \.{input} command.)
925 The first line is even more special. It's nice to let the user start
926 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
927 such a case, \MP\ will operate as if the first line of input were
928 `\.{cmr10}', i.e., the first line will consist of the remainder of the
929 command line, after the part that invoked \MP.
931 @ Different systems have different ways to get started. But regardless of
932 what conventions are adopted, the routine that initializes the terminal
933 should satisfy the following specifications:
935 \yskip\textindent{1)}It should open file |term_in| for input from the
936 terminal. (The file |term_out| will already be open for output to the
939 \textindent{2)}If the user has given a command line, this line should be
940 considered the first line of terminal input. Otherwise the
941 user should be prompted with `\.{**}', and the first line of input
942 should be whatever is typed in response.
944 \textindent{3)}The first line of input, which might or might not be a
945 command line, should appear in locations |first| to |last-1| of the
948 \textindent{4)}The global variable |loc| should be set so that the
949 character to be read next by \MP\ is in |buffer[loc]|. This
950 character should not be blank, and we should have |loc<last|.
952 \yskip\noindent(It may be necessary to prompt the user several times
953 before a non-blank line comes in. The prompt is `\.{**}' instead of the
954 later `\.*' because the meaning is slightly different: `\.{input}' need
955 not be typed immediately after~`\.{**}'.)
957 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
960 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
963 loc = 0; mp->first = 0;
967 if (!mp->noninteractive) {
968 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
971 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
972 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
973 @.End of file on the terminal@>
976 loc=(halfword)mp->first;
977 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
979 if ( loc<(int)mp->last ) {
980 return true; /* return unless the line was all blank */
982 if (!mp->noninteractive) {
983 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
989 static boolean mp_init_terminal (MP mp) ;
992 @* \[4] String handling.
993 Symbolic token names and diagnostic messages are variable-length strings
994 of eight-bit characters. Many strings \MP\ uses are simply literals
995 in the compiled source, like the error messages and the names of the
996 internal parameters. Other strings are used or defined from the \MP\ input
997 language, and these have to be interned.
999 \MP\ uses strings more extensively than \MF\ does, but the necessary
1000 operations can still be handled with a fairly simple data structure.
1001 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
1002 of the strings, and the array |str_start| contains indices of the starting
1003 points of each string. Strings are referred to by integer numbers, so that
1004 string number |s| comprises the characters |str_pool[j]| for
1005 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
1006 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
1007 location. The first string number not currently in use is |str_ptr|
1008 and |next_str[str_ptr]| begins a list of free string numbers. String
1009 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
1010 string currently being constructed.
1012 String numbers 0 to 255 are reserved for strings that correspond to single
1013 ASCII characters. This is in accordance with the conventions of \.{WEB},
1015 which converts single-character strings into the ASCII code number of the
1016 single character involved, while it converts other strings into integers
1017 and builds a string pool file. Thus, when the string constant \.{"."} appears
1018 in the program below, \.{WEB} converts it into the integer 46, which is the
1019 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1020 into some integer greater than~255. String number 46 will presumably be the
1021 single character `\..'\thinspace; but some ASCII codes have no standard visible
1022 representation, and \MP\ may need to be able to print an arbitrary
1023 ASCII character, so the first 256 strings are used to specify exactly what
1024 should be printed for each of the 256 possibilities.
1027 typedef int pool_pointer; /* for variables that point into |str_pool| */
1028 typedef int str_number; /* for variables that point into |str_start| */
1031 ASCII_code *str_pool; /* the characters */
1032 pool_pointer *str_start; /* the starting pointers */
1033 str_number *next_str; /* for linking strings in order */
1034 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1035 str_number str_ptr; /* number of the current string being created */
1036 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1037 str_number init_str_use; /* the initial number of strings in use */
1038 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1039 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1041 @ @<Allocate or initialize ...@>=
1042 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1043 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1044 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1046 @ @<Dealloc variables@>=
1047 xfree(mp->str_pool);
1048 xfree(mp->str_start);
1049 xfree(mp->next_str);
1051 @ Most printing is done from |char *|s, but sometimes not. Here are
1052 functions that convert an internal string into a |char *| for use
1053 by the printing routines, and vice versa.
1055 @d str(A) mp_str(mp,A)
1056 @d rts(A) mp_rts(mp,A)
1060 int mp_xstrcmp (const char *a, const char *b);
1061 char * mp_str (MP mp, str_number s);
1064 static str_number mp_rts (MP mp, const char *s);
1065 static str_number mp_make_string (MP mp);
1068 int mp_xstrcmp (const char *a, const char *b) {
1069 if (a==NULL && b==NULL)
1078 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1079 very good: it does not handle nesting over more than one level.
1082 char * mp_str (MP mp, str_number ss) {
1085 if (ss==mp->str_ptr) {
1088 len = (size_t)length(ss);
1089 s = xmalloc(len+1,sizeof(char));
1090 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1095 str_number mp_rts (MP mp, const char *s) {
1096 int r; /* the new string */
1097 int old; /* a possible string in progress */
1101 } else if (strlen(s)==1) {
1105 str_room((integer)strlen(s));
1106 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1107 old = mp_make_string(mp);
1112 r = mp_make_string(mp);
1114 str_room(length(old));
1115 while (i<length(old)) {
1116 append_char((mp->str_start[old]+i));
1118 mp_flush_string(mp,old);
1124 @ Except for |strs_used_up|, the following string statistics are only
1125 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1129 integer strs_used_up; /* strings in use or unused but not reclaimed */
1130 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1131 integer strs_in_use; /* total number of strings actually in use */
1132 integer max_pl_used; /* maximum |pool_in_use| so far */
1133 integer max_strs_used; /* maximum |strs_in_use| so far */
1135 @ Several of the elementary string operations are performed using \.{WEB}
1136 macros instead of functions, because many of the
1137 operations are done quite frequently and we want to avoid the
1138 overhead of procedure calls. For example, here is
1139 a simple macro that computes the length of a string.
1142 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string \# */
1143 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1145 @ The length of the current string is called |cur_length|. If we decide that
1146 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1147 |cur_length| becomes zero.
1149 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1150 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1152 @ Strings are created by appending character codes to |str_pool|.
1153 The |append_char| macro, defined here, does not check to see if the
1154 value of |pool_ptr| has gotten too high; this test is supposed to be
1155 made before |append_char| is used.
1157 To test if there is room to append |l| more characters to |str_pool|,
1158 we shall write |str_room(l)|, which tries to make sure there is enough room
1159 by compacting the string pool if necessary. If this does not work,
1160 |do_compaction| aborts \MP\ and gives an apologetic error message.
1162 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1163 { mp->str_pool[mp->pool_ptr]=(ASCII_code)(A); incr(mp->pool_ptr);
1165 @d str_room(A) /* make sure that the pool hasn't overflowed */
1166 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1167 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1168 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1171 @ The following routine is similar to |str_room(1)| but it uses the
1172 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1173 string space is exhausted.
1176 static void mp_unit_str_room (MP mp);
1179 void mp_unit_str_room (MP mp) {
1180 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1181 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1184 @ \MP's string expressions are implemented in a brute-force way: Every
1185 new string or substring that is needed is simply copied into the string pool.
1186 Space is eventually reclaimed by a procedure called |do_compaction| with
1187 the aid of a simple system system of reference counts.
1188 @^reference counts@>
1190 The number of references to string number |s| will be |str_ref[s]|. The
1191 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1192 positive number of references; such strings will never be recycled. If
1193 a string is ever referred to more than 126 times, simultaneously, we
1194 put it in this category. Hence a single byte suffices to store each |str_ref|.
1196 @d max_str_ref 127 /* ``infinite'' number of references */
1197 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]); }
1202 @ @<Allocate or initialize ...@>=
1203 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1205 @ @<Dealloc variables@>=
1208 @ Here's what we do when a string reference disappears:
1210 @d delete_str_ref(A) {
1211 if ( mp->str_ref[(A)]<max_str_ref ) {
1212 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1213 else mp_flush_string(mp, (A));
1218 static void mp_flush_string (MP mp,str_number s) ;
1220 @ We can't flush the first set of static strings at all, so there
1221 is no point in trying
1224 void mp_flush_string (MP mp,str_number s) {
1226 mp->pool_in_use=mp->pool_in_use-length(s);
1227 decr(mp->strs_in_use);
1228 if ( mp->next_str[s]!=mp->str_ptr ) {
1232 decr(mp->strs_used_up);
1234 mp->pool_ptr=mp->str_start[mp->str_ptr];
1238 @ C literals cannot be simply added, they need to be set so they can't
1241 @d intern(A) mp_intern(mp,(A))
1244 str_number mp_intern (MP mp, const char *s) {
1247 mp->str_ref[r] = max_str_ref;
1252 static str_number mp_intern (MP mp, const char *s);
1255 @ Once a sequence of characters has been appended to |str_pool|, it
1256 officially becomes a string when the function |make_string| is called.
1257 This function returns the identification number of the new string as its
1260 When getting the next unused string number from the linked list, we pretend
1262 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1263 are linked sequentially even though the |next_str| entries have not been
1264 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1265 |do_compaction| is responsible for making sure of this.
1268 static str_number mp_make_string (MP mp);
1271 str_number mp_make_string (MP mp) { /* current string enters the pool */
1272 str_number s; /* the new string */
1275 mp->str_ptr=mp->next_str[s];
1276 if ( mp->str_ptr>mp->max_str_ptr ) {
1277 if ( mp->str_ptr==mp->max_strings ) {
1279 mp_do_compaction(mp, 0);
1282 mp->max_str_ptr=mp->str_ptr;
1283 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1287 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1288 incr(mp->strs_used_up);
1289 incr(mp->strs_in_use);
1290 mp->pool_in_use=mp->pool_in_use+length(s);
1291 if ( mp->pool_in_use>mp->max_pl_used )
1292 mp->max_pl_used=mp->pool_in_use;
1293 if ( mp->strs_in_use>mp->max_strs_used )
1294 mp->max_strs_used=mp->strs_in_use;
1298 @ The most interesting string operation is string pool compaction. The idea
1299 is to recover unused space in the |str_pool| array by recopying the strings
1300 to close the gaps created when some strings become unused. All string
1301 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1302 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1303 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1304 with |needed=mp->pool_size| supresses all overflow tests.
1306 The compaction process starts with |last_fixed_str| because all lower numbered
1307 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1310 str_number last_fixed_str; /* last permanently allocated string */
1311 str_number fixed_str_use; /* number of permanently allocated strings */
1313 @ @<Internal library ...@>=
1314 void mp_do_compaction (MP mp, pool_pointer needed) ;
1317 void mp_do_compaction (MP mp, pool_pointer needed) {
1318 str_number str_use; /* a count of strings in use */
1319 str_number r,s,t; /* strings being manipulated */
1320 pool_pointer p,q; /* destination and source for copying string characters */
1321 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1322 r=mp->last_fixed_str;
1325 while ( s!=mp->str_ptr ) {
1326 while ( mp->str_ref[s]==0 ) {
1327 @<Advance |s| and add the old |s| to the list of free string numbers;
1328 then |break| if |s=str_ptr|@>;
1330 r=s; s=mp->next_str[s];
1332 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1333 after the end of the string@>;
1336 @<Move the current string back so that it starts at |p|@>;
1337 if ( needed<mp->pool_size ) {
1338 @<Make sure that there is room for another string with |needed| characters@>;
1340 @<Account for the compaction and make sure the statistics agree with the
1342 mp->strs_used_up=str_use;
1345 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1346 t=mp->next_str[mp->last_fixed_str];
1347 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1348 incr(mp->fixed_str_use);
1349 mp->last_fixed_str=t;
1352 str_use=mp->fixed_str_use
1354 @ Because of the way |flush_string| has been written, it should never be
1355 necessary to |break| here. The extra line of code seems worthwhile to
1356 preserve the generality of |do_compaction|.
1358 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1363 mp->next_str[t]=mp->next_str[mp->str_ptr];
1364 mp->next_str[mp->str_ptr]=t;
1365 if ( s==mp->str_ptr ) goto DONE;
1368 @ The string currently starts at |str_start[r]| and ends just before
1369 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1370 to locate the next string.
1372 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1375 while ( q<mp->str_start[s] ) {
1376 mp->str_pool[p]=mp->str_pool[q];
1380 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1381 we do this, anything between them should be moved.
1383 @ @<Move the current string back so that it starts at |p|@>=
1384 q=mp->str_start[mp->str_ptr];
1385 mp->str_start[mp->str_ptr]=p;
1386 while ( q<mp->pool_ptr ) {
1387 mp->str_pool[p]=mp->str_pool[q];
1392 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1394 @<Make sure that there is room for another string with |needed| char...@>=
1395 if ( str_use>=mp->max_strings-1 )
1396 mp_reallocate_strings (mp,str_use);
1397 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1398 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1399 mp->max_pool_ptr=mp->pool_ptr+needed;
1402 @ @<Internal library ...@>=
1403 void mp_reallocate_strings (MP mp, str_number str_use) ;
1404 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1407 void mp_reallocate_strings (MP mp, str_number str_use) {
1408 while ( str_use>=mp->max_strings-1 ) {
1409 int l = mp->max_strings + (mp->max_strings/4);
1410 XREALLOC (mp->str_ref, l, int);
1411 XREALLOC (mp->str_start, l, pool_pointer);
1412 XREALLOC (mp->next_str, l, str_number);
1413 mp->max_strings = l;
1416 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1417 while ( needed>mp->pool_size ) {
1418 int l = mp->pool_size + (mp->pool_size/4);
1419 XREALLOC (mp->str_pool, l, ASCII_code);
1424 @ @<Account for the compaction and make sure the statistics agree with...@>=
1425 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1426 mp_confusion(mp, "string");
1427 @:this can't happen string}{\quad string@>
1428 incr(mp->pact_count);
1429 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1430 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1432 @ A few more global variables are needed to keep track of statistics when
1433 |stat| $\ldots$ |tats| blocks are not commented out.
1436 integer pact_count; /* number of string pool compactions so far */
1437 integer pact_chars; /* total number of characters moved during compactions */
1438 integer pact_strs; /* total number of strings moved during compactions */
1440 @ @<Initialize compaction statistics@>=
1445 @ The following subroutine compares string |s| with another string of the
1446 same length that appears in |buffer| starting at position |k|;
1447 the result is |true| if and only if the strings are equal.
1450 static boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1451 /* test equality of strings */
1452 pool_pointer j; /* running index */
1454 while ( j<str_stop(s) ) {
1455 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1461 @ Here is a similar routine, but it compares two strings in the string pool,
1462 and it does not assume that they have the same length. If the first string
1463 is lexicographically greater than, less than, or equal to the second,
1464 the result is respectively positive, negative, or zero.
1467 static integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1468 /* test equality of strings */
1469 pool_pointer j,k; /* running indices */
1470 integer ls,lt; /* lengths */
1471 integer l; /* length remaining to test */
1472 ls=length(s); lt=length(t);
1473 if ( ls<=lt ) l=ls; else l=lt;
1474 j=mp->str_start[s]; k=mp->str_start[t];
1476 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1477 return (mp->str_pool[j]-mp->str_pool[k]);
1484 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1485 and |str_ptr| are computed by the \.{INIMP} program, based in part
1486 on the information that \.{WEB} has output while processing \MP.
1491 void mp_get_strings_started (MP mp) {
1492 /* initializes the string pool,
1493 but returns |false| if something goes wrong */
1494 int k; /* small indices or counters */
1495 str_number g; /* a new string */
1496 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1499 mp->pool_in_use=0; mp->strs_in_use=0;
1500 mp->max_pl_used=0; mp->max_strs_used=0;
1501 @<Initialize compaction statistics@>;
1503 @<Make the first 256 strings@>;
1504 g=mp_make_string(mp); /* string 256 == "" */
1505 mp->str_ref[g]=max_str_ref;
1506 mp->last_fixed_str=mp->str_ptr-1;
1507 mp->fixed_str_use=mp->str_ptr;
1512 static void mp_get_strings_started (MP mp);
1514 @ The first 256 strings will consist of a single character only.
1516 @<Make the first 256...@>=
1517 for (k=0;k<=255;k++) {
1519 g=mp_make_string(mp);
1520 mp->str_ref[g]=max_str_ref;
1523 @ The first 128 strings will contain 95 standard ASCII characters, and the
1524 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1525 unless a system-dependent change is made here. Installations that have
1526 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1527 would like string 032 to be printed as the single character 032 instead
1528 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1529 even people with an extended character set will want to represent string
1530 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1531 to produce visible strings instead of tabs or line-feeds or carriage-returns
1532 or bell-rings or characters that are treated anomalously in text files.
1534 The boolean expression defined here should be |true| unless \MP\ internal
1535 code number~|k| corresponds to a non-troublesome visible symbol in the
1536 local character set.
1537 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1538 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1540 @^character set dependencies@>
1541 @^system dependencies@>
1543 @<Character |k| cannot be printed@>=
1546 @* \[5] On-line and off-line printing.
1547 Messages that are sent to a user's terminal and to the transcript-log file
1548 are produced by several `|print|' procedures. These procedures will
1549 direct their output to a variety of places, based on the setting of
1550 the global variable |selector|, which has the following possible
1554 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1557 \hang |log_only|, prints only on the transcript file.
1559 \hang |term_only|, prints only on the terminal.
1561 \hang |no_print|, doesn't print at all. This is used only in rare cases
1562 before the transcript file is open.
1564 \hang |pseudo|, puts output into a cyclic buffer that is used
1565 by the |show_context| routine; when we get to that routine we shall discuss
1566 the reasoning behind this curious mode.
1568 \hang |new_string|, appends the output to the current string in the
1571 \hang |>=write_file| prints on one of the files used for the \&{write}
1572 @:write_}{\&{write} primitive@>
1576 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1577 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1578 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1579 relations are not used when |selector| could be |pseudo|, or |new_string|.
1580 We need not check for unprintable characters when |selector<pseudo|.
1582 Three additional global variables, |tally|, |term_offset| and |file_offset|
1583 record the number of characters that have been printed
1584 since they were most recently cleared to zero. We use |tally| to record
1585 the length of (possibly very long) stretches of printing; |term_offset|,
1586 and |file_offset|, on the other hand, keep track of how many
1587 characters have appeared so far on the current line that has been output
1588 to the terminal, the transcript file, or the \ps\ output file, respectively.
1590 @d new_string 0 /* printing is deflected to the string pool */
1591 @d pseudo 2 /* special |selector| setting for |show_context| */
1592 @d no_print 3 /* |selector| setting that makes data disappear */
1593 @d term_only 4 /* printing is destined for the terminal only */
1594 @d log_only 5 /* printing is destined for the transcript file only */
1595 @d term_and_log 6 /* normal |selector| setting */
1596 @d write_file 7 /* first write file selector */
1599 void * log_file; /* transcript of \MP\ session */
1600 void * ps_file; /* the generic font output goes here */
1601 unsigned int selector; /* where to print a message */
1602 unsigned char dig[23]; /* digits in a number, for rounding */
1603 integer tally; /* the number of characters recently printed */
1604 unsigned int term_offset;
1605 /* the number of characters on the current terminal line */
1606 unsigned int file_offset;
1607 /* the number of characters on the current file line */
1608 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1609 integer trick_count; /* threshold for pseudoprinting, explained later */
1610 integer first_count; /* another variable for pseudoprinting */
1612 @ @<Allocate or initialize ...@>=
1613 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1615 @ @<Dealloc variables@>=
1616 xfree(mp->trick_buf);
1618 @ @<Initialize the output routines@>=
1619 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1621 @ Macro abbreviations for output to the terminal and to the log file are
1622 defined here for convenience. Some systems need special conventions
1623 for terminal output, and it is possible to adhere to those conventions
1624 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1625 @^system dependencies@>
1628 #define do_fprintf(f,b) (mp->write_ascii_file)(mp,f,b)
1629 #define wterm(A) do_fprintf(mp->term_out,(A))
1630 #define wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]='\0'; wterm((char *)ss);}
1631 #define wterm_cr do_fprintf(mp->term_out,"\n")
1632 #define wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1633 #define wlog(A) do_fprintf(mp->log_file,(A))
1634 #define wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]='\0'; wlog((char *)ss);}
1635 #define wlog_cr do_fprintf(mp->log_file, "\n")
1636 #define wlog_ln(A) { wlog_cr; do_fprintf(mp->log_file,(A)); }
1639 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1640 use an array |wr_file| that will be declared later.
1642 @d mp_print_text(A) mp_print_str(mp,text((A)))
1644 @<Internal library ...@>=
1645 void mp_print (MP mp, const char *s);
1646 void mp_print_ln (MP mp);
1647 void mp_print_visible_char (MP mp, ASCII_code s);
1648 void mp_print_char (MP mp, ASCII_code k);
1649 void mp_print_str (MP mp, str_number s);
1650 void mp_print_nl (MP mp, const char *s);
1651 void mp_print_two (MP mp,scaled x, scaled y) ;
1652 void mp_print_scaled (MP mp,scaled s);
1654 @ @<Basic print...@>=
1655 void mp_print_ln (MP mp) { /* prints an end-of-line */
1656 switch (mp->selector) {
1659 mp->term_offset=0; mp->file_offset=0;
1662 wlog_cr; mp->file_offset=0;
1665 wterm_cr; mp->term_offset=0;
1672 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1674 } /* note that |tally| is not affected */
1676 @ The |print_visible_char| procedure sends one character to the desired
1677 destination, using the |xchr| array to map it into an external character
1678 compatible with |input_ln|. (It assumes that it is always called with
1679 a visible ASCII character.) All printing comes through |print_ln| or
1680 |print_char|, which ultimately calls |print_visible_char|, hence these
1681 routines are the ones that limit lines to at most |max_print_line| characters.
1682 But we must make an exception for the \ps\ output file since it is not safe
1683 to cut up lines arbitrarily in \ps.
1685 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1686 |do_compaction| and |do_compaction| can call the error routines. Actually,
1687 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1689 @<Basic printing...@>=
1690 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1691 switch (mp->selector) {
1693 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1694 incr(mp->term_offset); incr(mp->file_offset);
1695 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1696 wterm_cr; mp->term_offset=0;
1698 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1699 wlog_cr; mp->file_offset=0;
1703 wlog_chr(xchr(s)); incr(mp->file_offset);
1704 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1707 wterm_chr(xchr(s)); incr(mp->term_offset);
1708 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1713 if ( mp->tally<mp->trick_count )
1714 mp->trick_buf[mp->tally % mp->error_line]=s;
1717 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1718 mp_unit_str_room(mp);
1719 if ( mp->pool_ptr>=mp->pool_size )
1720 goto DONE; /* drop characters if string space is full */
1725 { text_char ss[2]; ss[0] = xchr(s); ss[1]=0;
1726 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1733 @ The |print_char| procedure sends one character to the desired destination.
1734 File names and string expressions might contain |ASCII_code| values that
1735 can't be printed using |print_visible_char|. These characters will be
1736 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1737 (This procedure assumes that it is safe to bypass all checks for unprintable
1738 characters when |selector| is in the range |0..max_write_files-1|.
1739 The user might want to write unprintable characters.
1741 @<Basic printing...@>=
1742 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1743 if ( mp->selector<pseudo || mp->selector>=write_file) {
1744 mp_print_visible_char(mp, k);
1745 } else if ( @<Character |k| cannot be printed@> ) {
1748 mp_print_visible_char(mp, k+0100);
1749 } else if ( k<0200 ) {
1750 mp_print_visible_char(mp, k-0100);
1752 int l; /* small index or counter */
1754 mp_print_visible_char(mp, xord(l<10 ? l+'0' : l-10+'a'));
1756 mp_print_visible_char(mp, xord(l<10 ? l+'0' : l-10+'a'));
1759 mp_print_visible_char(mp, k);
1763 @ An entire string is output by calling |print|. Note that if we are outputting
1764 the single standard ASCII character \.c, we could call |print("c")|, since
1765 |"c"=99| is the number of a single-character string, as explained above. But
1766 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1767 routine when it knows that this is safe. (The present implementation
1768 assumes that it is always safe to print a visible ASCII character.)
1769 @^system dependencies@>
1772 static void mp_do_print (MP mp, const char *ss, size_t len) { /* prints string |s| */
1775 mp_print_char(mp, xord((int)ss[j])); j++;
1781 void mp_print (MP mp, const char *ss) {
1782 if (ss==NULL) return;
1783 mp_do_print(mp, ss,strlen(ss));
1785 void mp_print_str (MP mp, str_number s) {
1786 pool_pointer j; /* current character code position */
1787 if ( (s<0)||(s>mp->max_str_ptr) ) {
1788 mp_do_print(mp,"???",3); /* this can't happen */
1792 mp_do_print(mp, (char *)(mp->str_pool+j), (size_t)(str_stop(s)-j));
1796 @ Here is the very first thing that \MP\ prints: a headline that identifies
1797 the version number and base name. The |term_offset| variable is temporarily
1798 incorrect, but the discrepancy is not serious since we assume that the banner
1799 and mem identifier together will occupy at most |max_print_line|
1800 character positions.
1802 @<Initialize the output...@>=
1804 if (mp->mem_ident!=NULL)
1805 mp_print(mp,mp->mem_ident);
1809 @ The procedure |print_nl| is like |print|, but it makes sure that the
1810 string appears at the beginning of a new line.
1813 void mp_print_nl (MP mp, const char *s) { /* prints string |s| at beginning of line */
1814 switch(mp->selector) {
1816 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1819 if ( mp->file_offset>0 ) mp_print_ln(mp);
1822 if ( mp->term_offset>0 ) mp_print_ln(mp);
1828 } /* there are no other cases */
1832 @ The following procedure, which prints out the decimal representation of a
1833 given integer |n|, assumes that all integers fit nicely into a |int|.
1834 @^system dependencies@>
1837 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1839 mp_snprintf(s,12,"%d", (int)n);
1843 @ @<Internal library ...@>=
1844 void mp_print_int (MP mp,integer n);
1846 @ \MP\ also makes use of a trivial procedure to print two digits. The
1847 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1850 static void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1852 mp_print_char(mp, xord('0'+(n / 10)));
1853 mp_print_char(mp, xord('0'+(n % 10)));
1858 static void mp_print_dd (MP mp,integer n);
1860 @ Here is a procedure that asks the user to type a line of input,
1861 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1862 The input is placed into locations |first| through |last-1| of the
1863 |buffer| array, and echoed on the transcript file if appropriate.
1865 This procedure is never called when |interaction<mp_scroll_mode|.
1867 @d prompt_input(A) do {
1868 if (!mp->noninteractive) {
1869 wake_up_terminal; mp_print(mp, (A));
1872 } while (0) /* prints a string and gets a line of input */
1875 void mp_term_input (MP mp) { /* gets a line from the terminal */
1876 size_t k; /* index into |buffer| */
1877 if (mp->noninteractive) {
1878 if (!mp_input_ln(mp, mp->term_in ))
1879 longjmp(*(mp->jump_buf),1); /* chunk finished */
1880 mp->buffer[mp->last]=xord('%');
1882 update_terminal; /* Now the user sees the prompt for sure */
1883 if (!mp_input_ln(mp, mp->term_in )) {
1884 mp_fatal_error(mp, "End of file on the terminal!");
1885 @.End of file on the terminal@>
1887 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1888 decr(mp->selector); /* prepare to echo the input */
1889 if ( mp->last!=mp->first ) {
1890 for (k=mp->first;k<=mp->last-1;k++) {
1891 mp_print_char(mp, mp->buffer[k]);
1895 mp->buffer[mp->last]=xord('%');
1896 incr(mp->selector); /* restore previous status */
1900 @* \[6] Reporting errors.
1901 When something anomalous is detected, \MP\ typically does something like this:
1902 $$\vbox{\halign{#\hfil\cr
1903 |print_err("Something anomalous has been detected");|\cr
1904 |help3("This is the first line of my offer to help.")|\cr
1905 |("This is the second line. I'm trying to")|\cr
1906 |("explain the best way for you to proceed.");|\cr
1908 A two-line help message would be given using |help2|, etc.; these informal
1909 helps should use simple vocabulary that complements the words used in the
1910 official error message that was printed. (Outside the U.S.A., the help
1911 messages should preferably be translated into the local vernacular. Each
1912 line of help is at most 60 characters long, in the present implementation,
1913 so that |max_print_line| will not be exceeded.)
1915 The |print_err| procedure supplies a `\.!' before the official message,
1916 and makes sure that the terminal is awake if a stop is going to occur.
1917 The |error| procedure supplies a `\..' after the official message, then it
1918 shows the location of the error; and if |interaction=error_stop_mode|,
1919 it also enters into a dialog with the user, during which time the help
1920 message may be printed.
1921 @^system dependencies@>
1923 @ The global variable |interaction| has four settings, representing increasing
1924 amounts of user interaction:
1927 enum mp_interaction_mode {
1928 mp_unspecified_mode=0, /* extra value for command-line switch */
1929 mp_batch_mode, /* omits all stops and omits terminal output */
1930 mp_nonstop_mode, /* omits all stops */
1931 mp_scroll_mode, /* omits error stops */
1932 mp_error_stop_mode /* stops at every opportunity to interact */
1935 @ @<Option variables@>=
1936 int interaction; /* current level of interaction */
1937 int noninteractive; /* do we have a terminal? */
1939 @ Set it here so it can be overwritten by the commandline
1941 @<Allocate or initialize ...@>=
1942 mp->interaction=opt->interaction;
1943 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1944 mp->interaction=mp_error_stop_mode;
1945 if (mp->interaction<mp_unspecified_mode)
1946 mp->interaction=mp_batch_mode;
1950 @d print_err(A) mp_print_err(mp,(A))
1953 void mp_print_err(MP mp, const char * A);
1956 void mp_print_err(MP mp, const char * A) {
1957 if ( mp->interaction==mp_error_stop_mode )
1959 mp_print_nl(mp, "! ");
1965 @ \MP\ is careful not to call |error| when the print |selector| setting
1966 might be unusual. The only possible values of |selector| at the time of
1969 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1970 and |log_file| not yet open);
1972 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1974 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1976 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1978 @<Initialize the print |selector| based on |interaction|@>=
1979 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1981 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1982 routine is active when |error| is called; this ensures that |get_next|
1983 will never be called recursively.
1986 The global variable |history| records the worst level of error that
1987 has been detected. It has four possible values: |spotless|, |warning_issued|,
1988 |error_message_issued|, and |fatal_error_stop|.
1990 Another global variable, |error_count|, is increased by one when an
1991 |error| occurs without an interactive dialog, and it is reset to zero at
1992 the end of every statement. If |error_count| reaches 100, \MP\ decides
1993 that there is no point in continuing further.
1996 enum mp_history_state {
1997 mp_spotless=0, /* |history| value when nothing has been amiss yet */
1998 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
1999 mp_error_message_issued, /* |history| value when |error| has been called */
2000 mp_fatal_error_stop, /* |history| value when termination was premature */
2001 mp_system_error_stop /* |history| value when termination was due to disaster */
2005 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2006 int history; /* has the source input been clean so far? */
2007 int error_count; /* the number of scrolled errors since the last statement ended */
2009 @ The value of |history| is initially |fatal_error_stop|, but it will
2010 be changed to |spotless| if \MP\ survives the initialization process.
2012 @<Allocate or ...@>=
2013 mp->deletions_allowed=true; /* |history| is initialized elsewhere */
2015 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2016 error procedures near the beginning of the program. But the error procedures
2017 in turn use some other procedures, which need to be declared |forward|
2018 before we get to |error| itself.
2020 It is possible for |error| to be called recursively if some error arises
2021 when |get_next| is being used to delete a token, and/or if some fatal error
2022 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2024 is never more than two levels deep.
2027 static void mp_get_next (MP mp);
2028 static void mp_term_input (MP mp);
2029 static void mp_show_context (MP mp);
2030 static void mp_begin_file_reading (MP mp);
2031 static void mp_open_log_file (MP mp);
2032 static void mp_clear_for_error_prompt (MP mp);
2035 void mp_normalize_selector (MP mp);
2037 @ Individual lines of help are recorded in the array |help_line|, which
2038 contains entries in positions |0..(help_ptr-1)|. They should be printed
2039 in reverse order, i.e., with |help_line[0]| appearing last.
2041 @d hlp1(A) mp->help_line[0]=A; }
2042 @d hlp2(A,B) mp->help_line[1]=A; hlp1(B)
2043 @d hlp3(A,B,C) mp->help_line[2]=A; hlp2(B,C)
2044 @d hlp4(A,B,C,D) mp->help_line[3]=A; hlp3(B,C,D)
2045 @d hlp5(A,B,C,D,E) mp->help_line[4]=A; hlp4(B,C,D,E)
2046 @d hlp6(A,B,C,D,E,F) mp->help_line[5]=A; hlp5(B,C,D,E,F)
2047 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2048 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2049 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2050 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2051 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2052 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2053 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2056 const char * help_line[6]; /* helps for the next |error| */
2057 unsigned int help_ptr; /* the number of help lines present */
2058 boolean use_err_help; /* should the |err_help| string be shown? */
2059 str_number err_help; /* a string set up by \&{errhelp} */
2060 str_number filename_template; /* a string set up by \&{filenametemplate} */
2062 @ @<Allocate or ...@>=
2063 mp->use_err_help=false;
2065 @ The |jump_out| procedure just cuts across all active procedure levels and
2066 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2067 whole program. It is used when there is no recovery from a particular error.
2069 The program uses a |jump_buf| to handle this, this is initialized at three
2070 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2071 of |mp_run|. Those are the only library enty points.
2073 @^system dependencies@>
2078 @ If the array of internals is still |NULL| when |jump_out| is called, a
2079 crash occured during initialization, and it is not safe to run the normal
2083 static void mp_jump_out (MP mp) {
2084 if (mp->internal!=NULL && mp->history < mp_system_error_stop)
2085 mp_close_files_and_terminate(mp);
2086 longjmp(*(mp->jump_buf),1);
2089 @ Here now is the general |error| routine.
2092 void mp_error (MP mp) { /* completes the job of error reporting */
2093 ASCII_code c; /* what the user types */
2094 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2095 pool_pointer j; /* character position being printed */
2096 if ( mp->history<mp_error_message_issued )
2097 mp->history=mp_error_message_issued;
2098 mp_print_char(mp, xord('.')); mp_show_context(mp);
2099 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2100 @<Get user's advice and |return|@>;
2102 incr(mp->error_count);
2103 if ( mp->error_count==100 ) {
2104 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2105 @.That makes 100 errors...@>
2106 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2108 @<Put help message on the transcript file@>;
2110 void mp_warn (MP mp, const char *msg) {
2111 unsigned saved_selector = mp->selector;
2112 mp_normalize_selector(mp);
2113 mp_print_nl(mp,"Warning: ");
2116 mp->selector = saved_selector;
2119 @ @<Exported function ...@>=
2120 extern void mp_error (MP mp);
2121 extern void mp_warn (MP mp, const char *msg);
2124 @ @<Get user's advice...@>=
2127 mp_clear_for_error_prompt(mp); prompt_input("? ");
2129 if ( mp->last==mp->first ) return;
2130 c=mp->buffer[mp->first];
2131 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2132 @<Interpret code |c| and |return| if done@>;
2135 @ It is desirable to provide an `\.E' option here that gives the user
2136 an easy way to return from \MP\ to the system editor, with the offending
2137 line ready to be edited. But such an extension requires some system
2138 wizardry, so the present implementation simply types out the name of the
2140 edited and the relevant line number.
2141 @^system dependencies@>
2144 typedef void (*mp_editor_cmd)(MP, char *, int);
2146 @ @<Option variables@>=
2147 mp_editor_cmd run_editor;
2149 @ @<Allocate or initialize ...@>=
2150 set_callback_option(run_editor);
2153 static void mp_run_editor (MP mp, char *fname, int fline);
2156 void mp_run_editor (MP mp, char *fname, int fline) {
2157 char *s = xmalloc(256,1);
2158 mp_snprintf(s, 256,"You want to edit file %s at line %d\n", fname, fline);
2160 @.You want to edit file x@>
2164 There is a secret `\.D' option available when the debugging routines haven't
2168 @<Interpret code |c| and |return| if done@>=
2170 case '0': case '1': case '2': case '3': case '4':
2171 case '5': case '6': case '7': case '8': case '9':
2172 if ( mp->deletions_allowed ) {
2173 @<Delete |c-"0"| tokens and |continue|@>;
2177 if ( mp->file_ptr>0 ){
2178 mp->interaction=mp_scroll_mode;
2179 mp_close_files_and_terminate(mp);
2180 (mp->run_editor)(mp,
2181 str(mp->input_stack[mp->file_ptr].name_field),
2187 @<Print the help information and |continue|@>;
2190 @<Introduce new material from the terminal and |return|@>;
2192 case 'Q': case 'R': case 'S':
2193 @<Change the interaction level and |return|@>;
2196 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2201 @<Print the menu of available options@>
2203 @ @<Print the menu...@>=
2205 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2206 @.Type <return> to proceed...@>
2207 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2208 mp_print_nl(mp, "I to insert something, ");
2209 if ( mp->file_ptr>0 )
2210 mp_print(mp, "E to edit your file,");
2211 if ( mp->deletions_allowed )
2212 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2213 mp_print_nl(mp, "H for help, X to quit.");
2216 @ Here the author of \MP\ apologizes for making use of the numerical
2217 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2218 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2219 @^Knuth, Donald Ervin@>
2221 @<Change the interaction...@>=
2223 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2224 mp_print(mp, "OK, entering ");
2226 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2227 case 'R': mp_print(mp, "nonstopmode"); break;
2228 case 'S': mp_print(mp, "scrollmode"); break;
2229 } /* there are no other cases */
2230 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2233 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2234 contain the material inserted by the user; otherwise another prompt will
2235 be given. In order to understand this part of the program fully, you need
2236 to be familiar with \MP's input stacks.
2238 @<Introduce new material...@>=
2240 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2241 if ( mp->last>mp->first+1 ) {
2242 loc=(halfword)(mp->first+1); mp->buffer[mp->first]=xord(' ');
2244 prompt_input("insert>"); loc=(halfword)mp->first;
2247 mp->first=mp->last+1; mp->cur_input.limit_field=(halfword)mp->last; return;
2250 @ We allow deletion of up to 99 tokens at a time.
2252 @<Delete |c-"0"| tokens...@>=
2254 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2255 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2256 c=xord(c*10+mp->buffer[mp->first+1]-'0'*11);
2260 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2261 @<Decrease the string reference count, if the current token is a string@>;
2264 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2265 help2("I have just deleted some text, as you asked.",
2266 "You can now delete more, or insert, or whatever.");
2267 mp_show_context(mp);
2271 @ @<Print the help info...@>=
2273 if ( mp->use_err_help ) {
2274 @<Print the string |err_help|, possibly on several lines@>;
2275 mp->use_err_help=false;
2277 if ( mp->help_ptr==0 ) {
2278 help2("Sorry, I don't know how to help in this situation.",
2279 "Maybe you should try asking a human?");
2282 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2283 } while (mp->help_ptr!=0);
2285 help4("Sorry, I already gave what help I could...",
2286 "Maybe you should try asking a human?",
2287 "An error might have occurred before I noticed any problems.",
2288 "``If all else fails, read the instructions.''");
2292 @ @<Print the string |err_help|, possibly on several lines@>=
2293 j=mp->str_start[mp->err_help];
2294 while ( j<str_stop(mp->err_help) ) {
2295 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2296 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2297 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2298 else { j++; mp_print_char(mp, xord('%')); };
2302 @ @<Put help message on the transcript file@>=
2303 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2304 if ( mp->use_err_help ) {
2305 mp_print_nl(mp, "");
2306 @<Print the string |err_help|, possibly on several lines@>;
2308 while ( mp->help_ptr>0 ){
2309 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2313 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2316 @ In anomalous cases, the print selector might be in an unknown state;
2317 the following subroutine is called to fix things just enough to keep
2318 running a bit longer.
2321 void mp_normalize_selector (MP mp) {
2322 if ( mp->log_opened ) mp->selector=term_and_log;
2323 else mp->selector=term_only;
2324 if ( mp->job_name==NULL) mp_open_log_file(mp);
2325 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2328 @ The following procedure prints \MP's last words before dying.
2330 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2331 mp->interaction=mp_scroll_mode; /* no more interaction */
2332 if ( mp->log_opened ) mp_error(mp);
2333 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2337 void mp_fatal_error (MP mp, const char *s) { /* prints |s|, and that's it */
2338 mp_normalize_selector(mp);
2339 print_err("Emergency stop"); help1(s); succumb;
2343 @ @<Exported function ...@>=
2344 extern void mp_fatal_error (MP mp, const char *s);
2347 @ Here is the most dreaded error message.
2350 void mp_overflow (MP mp, const char *s, integer n) { /* stop due to finiteness */
2352 mp_normalize_selector(mp);
2353 mp_snprintf(msg, 256, "MetaPost capacity exceeded, sorry [%s=%d]",s,(int)n);
2354 @.MetaPost capacity exceeded ...@>
2356 help2("If you really absolutely need more capacity,",
2357 "you can ask a wizard to enlarge me.");
2361 @ @<Internal library declarations@>=
2362 void mp_overflow (MP mp, const char *s, integer n);
2364 @ The program might sometime run completely amok, at which point there is
2365 no choice but to stop. If no previous error has been detected, that's bad
2366 news; a message is printed that is really intended for the \MP\
2367 maintenance person instead of the user (unless the user has been
2368 particularly diabolical). The index entries for `this can't happen' may
2369 help to pinpoint the problem.
2372 @<Internal library ...@>=
2373 void mp_confusion (MP mp, const char *s);
2375 @ Consistency check violated; |s| tells where.
2377 void mp_confusion (MP mp, const char *s) {
2379 mp_normalize_selector(mp);
2380 if ( mp->history<mp_error_message_issued ) {
2381 mp_snprintf(msg, 256, "This can't happen (%s)",s);
2382 @.This can't happen@>
2384 help1("I'm broken. Please show this to someone who can fix can fix");
2386 print_err("I can\'t go on meeting you like this");
2387 @.I can't go on...@>
2388 help2("One of your faux pas seems to have wounded me deeply...",
2389 "in fact, I'm barely conscious. Please fix it and try again.");
2394 @ Users occasionally want to interrupt \MP\ while it's running.
2395 If the runtime system allows this, one can implement
2396 a routine that sets the global variable |interrupt| to some nonzero value
2397 when such an interrupt is signaled. Otherwise there is probably at least
2398 a way to make |interrupt| nonzero using the C debugger.
2399 @^system dependencies@>
2402 @d check_interrupt { if ( mp->interrupt!=0 )
2403 mp_pause_for_instructions(mp); }
2406 integer interrupt; /* should \MP\ pause for instructions? */
2407 boolean OK_to_interrupt; /* should interrupts be observed? */
2408 integer run_state; /* are we processing input ?*/
2409 boolean finished; /* set true by |close_files_and_terminate| */
2411 @ @<Allocate or ...@>=
2412 mp->OK_to_interrupt=true;
2415 @ When an interrupt has been detected, the program goes into its
2416 highest interaction level and lets the user have the full flexibility of
2417 the |error| routine. \MP\ checks for interrupts only at times when it is
2421 static void mp_pause_for_instructions (MP mp) {
2422 if ( mp->OK_to_interrupt ) {
2423 mp->interaction=mp_error_stop_mode;
2424 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2426 print_err("Interruption");
2429 "Try to insert some instructions for me (e.g.,`I show x'),",
2430 "unless you just want to quit by typing `X'.");
2431 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2436 @ Many of \MP's error messages state that a missing token has been
2437 inserted behind the scenes. We can save string space and program space
2438 by putting this common code into a subroutine.
2441 static void mp_missing_err (MP mp, const char *s) {
2443 mp_snprintf(msg, 256, "Missing `%s' has been inserted", s);
2444 @.Missing...inserted@>
2448 @* \[7] Arithmetic with scaled numbers.
2449 The principal computations performed by \MP\ are done entirely in terms of
2450 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2451 program can be carried out in exactly the same way on a wide variety of
2452 computers, including some small ones.
2455 But C does not rigidly define the |/| operation in the case of negative
2456 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2457 computers and |-n| on others (is this true ?). There are two principal
2458 types of arithmetic: ``translation-preserving,'' in which the identity
2459 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2460 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2461 different results, although the differences should be negligible when the
2462 language is being used properly. The \TeX\ processor has been defined
2463 carefully so that both varieties of arithmetic will produce identical
2464 output, but it would be too inefficient to constrain \MP\ in a similar way.
2466 @d el_gordo 0x7fffffff /* $2^{31}-1$, the largest value that \MP\ likes */
2469 @ One of \MP's most common operations is the calculation of
2470 $\lfloor{a+b\over2}\rfloor$,
2471 the midpoint of two given integers |a| and~|b|. The most decent way to do
2472 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2473 to calculate `|(a+b)>>1|'.
2475 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2476 in this program. If \MP\ is being implemented with languages that permit
2477 binary shifting, the |half| macro should be changed to make this operation
2478 as efficient as possible. Since some systems have shift operators that can
2479 only be trusted to work on positive numbers, there is also a macro |halfp|
2480 that is used only when the quantity being halved is known to be positive
2483 @d half(A) ((A) / 2)
2484 @d halfp(A) (integer)((unsigned)(A) >> 1)
2486 @ A single computation might use several subroutine calls, and it is
2487 desirable to avoid producing multiple error messages in case of arithmetic
2488 overflow. So the routines below set the global variable |arith_error| to |true|
2489 instead of reporting errors directly to the user.
2490 @^overflow in arithmetic@>
2493 boolean arith_error; /* has arithmetic overflow occurred recently? */
2495 @ @<Allocate or ...@>=
2496 mp->arith_error=false;
2498 @ At crucial points the program will say |check_arith|, to test if
2499 an arithmetic error has been detected.
2501 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2504 static void mp_clear_arith (MP mp) {
2505 print_err("Arithmetic overflow");
2506 @.Arithmetic overflow@>
2507 help4("Uh, oh. A little while ago one of the quantities that I was",
2508 "computing got too large, so I'm afraid your answers will be",
2509 "somewhat askew. You'll probably have to adopt different",
2510 "tactics next time. But I shall try to carry on anyway.");
2512 mp->arith_error=false;
2515 @ Addition is not always checked to make sure that it doesn't overflow,
2516 but in places where overflow isn't too unlikely the |slow_add| routine
2519 @c static integer mp_slow_add (MP mp,integer x, integer y) {
2521 if ( y<=el_gordo-x ) {
2524 mp->arith_error=true;
2527 } else if ( -y<=el_gordo+x ) {
2530 mp->arith_error=true;
2535 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2536 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2537 positions from the right end of a binary computer word.
2539 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2540 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2541 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2542 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2543 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2544 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2547 typedef integer scaled; /* this type is used for scaled integers */
2549 @ The following function is used to create a scaled integer from a given decimal
2550 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2551 given in |dig[i]|, and the calculation produces a correctly rounded result.
2554 static scaled mp_round_decimals (MP mp,quarterword k) {
2555 /* converts a decimal fraction */
2556 unsigned a = 0; /* the accumulator */
2558 a=(a+mp->dig[k]*two) / 10;
2560 return (scaled)halfp(a+1);
2563 @ Conversely, here is a procedure analogous to |print_int|. If the output
2564 of this procedure is subsequently read by \MP\ and converted by the
2565 |round_decimals| routine above, it turns out that the original value will
2566 be reproduced exactly. A decimal point is printed only if the value is
2567 not an integer. If there is more than one way to print the result with
2568 the optimum number of digits following the decimal point, the closest
2569 possible value is given.
2571 The invariant relation in the \&{repeat} loop is that a sequence of
2572 decimal digits yet to be printed will yield the original number if and only if
2573 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2574 We can stop if and only if $f=0$ satisfies this condition; the loop will
2575 terminate before $s$ can possibly become zero.
2577 @<Basic printing...@>=
2578 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2579 scaled delta; /* amount of allowable inaccuracy */
2581 mp_print_char(mp, xord('-'));
2582 negate(s); /* print the sign, if negative */
2584 mp_print_int(mp, s / unity); /* print the integer part */
2588 mp_print_char(mp, xord('.'));
2591 s=s+0100000-(delta / 2); /* round the final digit */
2592 mp_print_char(mp, xord('0'+(s / unity)));
2599 @ We often want to print two scaled quantities in parentheses,
2600 separated by a comma.
2602 @<Basic printing...@>=
2603 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2604 mp_print_char(mp, xord('('));
2605 mp_print_scaled(mp, x);
2606 mp_print_char(mp, xord(','));
2607 mp_print_scaled(mp, y);
2608 mp_print_char(mp, xord(')'));
2611 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2612 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2613 arithmetic with 28~significant bits of precision. A |fraction| denotes
2614 a scaled integer whose binary point is assumed to be 28 bit positions
2617 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2618 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2619 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2620 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2621 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2624 typedef integer fraction; /* this type is used for scaled fractions */
2626 @ In fact, the two sorts of scaling discussed above aren't quite
2627 sufficient; \MP\ has yet another, used internally to keep track of angles
2628 in units of $2^{-20}$ degrees.
2630 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2631 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2632 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2633 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2636 typedef integer angle; /* this type is used for scaled angles */
2638 @ The |make_fraction| routine produces the |fraction| equivalent of
2639 |p/q|, given integers |p| and~|q|; it computes the integer
2640 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2641 positive. If |p| and |q| are both of the same scaled type |t|,
2642 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2643 and it's also possible to use the subroutine ``backwards,'' using
2644 the relation |make_fraction(t,fraction)=t| between scaled types.
2646 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2647 sets |arith_error:=true|. Most of \MP's internal computations have
2648 been designed to avoid this sort of error.
2650 If this subroutine were programmed in assembly language on a typical
2651 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2652 double-precision product can often be input to a fixed-point division
2653 instruction. But when we are restricted to int-eger arithmetic it
2654 is necessary either to resort to multiple-precision maneuvering
2655 or to use a simple but slow iteration. The multiple-precision technique
2656 would be about three times faster than the code adopted here, but it
2657 would be comparatively long and tricky, involving about sixteen
2658 additional multiplications and divisions.
2660 This operation is part of \MP's ``inner loop''; indeed, it will
2661 consume nearly 10\pct! of the running time (exclusive of input and output)
2662 if the code below is left unchanged. A machine-dependent recoding
2663 will therefore make \MP\ run faster. The present implementation
2664 is highly portable, but slow; it avoids multiplication and division
2665 except in the initial stage. System wizards should be careful to
2666 replace it with a routine that is guaranteed to produce identical
2667 results in all cases.
2668 @^system dependencies@>
2670 As noted below, a few more routines should also be replaced by machine-dependent
2671 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2672 such changes aren't advisable; simplicity and robustness are
2673 preferable to trickery, unless the cost is too high.
2676 @<Internal library declarations@>=
2677 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2680 static fraction mp_make_fraction (MP mp,integer p, integer q);
2682 @ If FIXPT is not defined, we need these preprocessor values
2684 @d TWEXP31 2147483648.0
2685 @d TWEXP28 268435456.0
2687 @d TWEXP_16 (1.0/65536.0)
2688 @d TWEXP_28 (1.0/268435456.0)
2692 fraction mp_make_fraction (MP mp,integer p, integer q) {
2694 if ( q==0 ) mp_confusion(mp, "/");
2695 @:this can't happen /}{\quad \./@>
2698 integer f; /* the fraction bits, with a leading 1 bit */
2699 integer n; /* the integer part of $\vert p/q\vert$ */
2700 boolean negative = false; /* should the result be negated? */
2702 negate(p); negative=true;
2705 negate(q); negative = ! negative;
2709 mp->arith_error=true;
2710 i= ( negative ? -el_gordo : el_gordo);
2712 n=(n-1)*fraction_one;
2713 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2714 i = (negative ? (-(f+n)) : (f+n));
2720 d = TWEXP28 * (double)p /(double)q;
2723 if (d>=TWEXP31) {mp->arith_error=true; return el_gordo;}
2725 if (d==(double)i && ( ((q>0 ? -q : q)&077777)
2726 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2729 if (d<= -TWEXP31) {mp->arith_error=true; return -el_gordo;}
2731 if (d==(double)i && ( ((q>0 ? q : -q)&077777)
2732 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2739 @ The |repeat| loop here preserves the following invariant relations
2740 between |f|, |p|, and~|q|:
2741 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2742 $p_0$ is the original value of~$p$.
2744 Notice that the computation specifies
2745 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2746 Let us hope that optimizing compilers do not miss this point; a
2747 special variable |be_careful| is used to emphasize the necessary
2748 order of computation. Optimizing compilers should keep |be_careful|
2749 in a register, not store it in memory.
2752 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2754 integer be_careful; /* disables certain compiler optimizations */
2757 be_careful=p-q; p=be_careful+p;
2763 } while (f<fraction_one);
2765 if ( be_careful+p>=0 ) incr(f);
2768 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2769 given integer~|q| by a fraction~|f|. When the operands are positive, it
2770 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2773 This routine is even more ``inner loopy'' than |make_fraction|;
2774 the present implementation consumes almost 20\pct! of \MP's computation
2775 time during typical jobs, so a machine-language substitute is advisable.
2776 @^inner loop@> @^system dependencies@>
2778 @<Internal library declarations@>=
2779 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2783 integer mp_take_fraction (MP mp,integer q, fraction f) {
2784 integer p; /* the fraction so far */
2785 boolean negative; /* should the result be negated? */
2786 integer n; /* additional multiple of $q$ */
2787 integer be_careful; /* disables certain compiler optimizations */
2788 @<Reduce to the case that |f>=0| and |q>=0|@>;
2789 if ( f<fraction_one ) {
2792 n=f / fraction_one; f=f % fraction_one;
2793 if ( q<=el_gordo / n ) {
2796 mp->arith_error=true; n=el_gordo;
2800 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2801 be_careful=n-el_gordo;
2802 if ( be_careful+p>0 ){
2803 mp->arith_error=true; n=el_gordo-p;
2810 integer mp_take_fraction (MP mp,integer p, fraction q) {
2813 d = (double)p * (double)q * TWEXP_28;
2817 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2818 mp->arith_error = true;
2822 if (d==(double)i && (((p&077777)*(q&077777))&040000)!=0) --i;
2826 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2827 mp->arith_error = true;
2831 if (d==(double)i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2837 @ @<Reduce to the case that |f>=0| and |q>=0|@>=
2841 negate( f); negative=true;
2844 negate(q); negative=! negative;
2847 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2848 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2849 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2852 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2853 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2854 if ( q<fraction_four ) {
2856 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2861 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2867 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2868 analogous to |take_fraction| but with a different scaling.
2869 Given positive operands, |take_scaled|
2870 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2872 Once again it is a good idea to use a machine-language replacement if
2873 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2874 when the Computer Modern fonts are being generated.
2879 integer mp_take_scaled (MP mp,integer q, scaled f) {
2880 integer p; /* the fraction so far */
2881 boolean negative; /* should the result be negated? */
2882 integer n; /* additional multiple of $q$ */
2883 integer be_careful; /* disables certain compiler optimizations */
2884 @<Reduce to the case that |f>=0| and |q>=0|@>;
2888 n=f / unity; f=f % unity;
2889 if ( q<=el_gordo / n ) {
2892 mp->arith_error=true; n=el_gordo;
2896 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2897 be_careful=n-el_gordo;
2898 if ( be_careful+p>0 ) {
2899 mp->arith_error=true; n=el_gordo-p;
2901 return ( negative ?(-(n+p)) :(n+p));
2903 integer mp_take_scaled (MP mp,integer p, scaled q) {
2906 d = (double)p * (double)q * TWEXP_16;
2910 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2911 mp->arith_error = true;
2915 if (d==(double)i && (((p&077777)*(q&077777))&040000)!=0) --i;
2919 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2920 mp->arith_error = true;
2924 if (d==(double)i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2930 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2931 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2933 if ( q<fraction_four ) {
2935 p = (odd(f) ? halfp(p+q) : halfp(p));
2940 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2945 @ For completeness, there's also |make_scaled|, which computes a
2946 quotient as a |scaled| number instead of as a |fraction|.
2947 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2948 operands are positive. \ (This procedure is not used especially often,
2949 so it is not part of \MP's inner loop.)
2951 @<Internal library ...@>=
2952 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2955 scaled mp_make_scaled (MP mp,integer p, integer q) {
2957 if ( q==0 ) mp_confusion(mp, "/");
2958 @:this can't happen /}{\quad \./@>
2961 integer f; /* the fraction bits, with a leading 1 bit */
2962 integer n; /* the integer part of $\vert p/q\vert$ */
2963 boolean negative; /* should the result be negated? */
2964 integer be_careful; /* disables certain compiler optimizations */
2965 if ( p>=0 ) negative=false;
2966 else { negate(p); negative=true; };
2968 negate(q); negative=! negative;
2972 mp->arith_error=true;
2973 return (negative ? (-el_gordo) : el_gordo);
2976 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2977 i = (negative ? (-(f+n)) :(f+n));
2981 d = TWEXP16 * (double)p /(double)q;
2984 if (d>=TWEXP31) {mp->arith_error=true; return el_gordo;}
2986 if (d==(double)i && ( ((q>0 ? -q : q)&077777)
2987 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2990 if (d<= -TWEXP31) {mp->arith_error=true; return -el_gordo;}
2992 if (d==(double)i && ( ((q>0 ? q : -q)&077777)
2993 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3000 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3003 be_careful=p-q; p=be_careful+p;
3004 if ( p>=0 ) f=f+f+1;
3005 else { f+=f; p=p+q; };
3008 if ( be_careful+p>=0 ) incr(f)
3010 @ Here is a typical example of how the routines above can be used.
3011 It computes the function
3012 $${1\over3\tau}f(\theta,\phi)=
3013 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3014 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3015 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3016 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3017 fudge factor for placing the first control point of a curve that starts
3018 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3019 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3021 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3022 (It's a sum of eight terms whose absolute values can be bounded using
3023 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3024 is positive; and since the tension $\tau$ is constrained to be at least
3025 $3\over4$, the numerator is less than $16\over3$. The denominator is
3026 nonnegative and at most~6. Hence the fixed-point calculations below
3027 are guaranteed to stay within the bounds of a 32-bit computer word.
3029 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3030 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3031 $\sin\phi$, and $\cos\phi$, respectively.
3034 static fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3035 fraction cf, scaled t) {
3036 integer acc,num,denom; /* registers for intermediate calculations */
3037 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3038 acc=mp_take_fraction(mp, acc,ct-cf);
3039 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3040 /* $2^{28}\sqrt2\approx379625062.497$ */
3041 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3042 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3043 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3044 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3045 /* |make_scaled(fraction,scaled)=fraction| */
3046 if ( num / 4>=denom )
3047 return fraction_four;
3049 return mp_make_fraction(mp, num, denom);
3052 @ The following somewhat different subroutine tests rigorously if $ab$ is
3053 greater than, equal to, or less than~$cd$,
3054 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3055 The result is $+1$, 0, or~$-1$ in the three respective cases.
3057 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3060 static integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3061 integer q,r; /* temporary registers */
3062 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3064 q = a / d; r = c / b;
3066 return ( q>r ? 1 : -1);
3067 q = a % d; r = c % b;
3070 if ( q==0 ) return -1;
3072 } /* now |a>d>0| and |c>b>0| */
3075 @ @<Reduce to the case that |a...@>=
3076 if ( a<0 ) { negate(a); negate(b); };
3077 if ( c<0 ) { negate(c); negate(d); };
3080 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3084 return ( a==0 ? 0 : -1);
3085 q=a; a=c; c=q; q=-b; b=-d; d=q;
3086 } else if ( b<=0 ) {
3087 if ( b<0 ) if ( a>0 ) return -1;
3088 return (c==0 ? 0 : -1);
3091 @ We conclude this set of elementary routines with some simple rounding
3092 and truncation operations.
3094 @<Internal library declarations@>=
3095 #define mp_floor_scaled(M,i) ((i)&(-65536))
3096 #define mp_round_unscaled(M,i) (((i/32768)+1)/2)
3097 #define mp_round_fraction(M,i) (((i/2048)+1)/2)
3100 @* \[8] Algebraic and transcendental functions.
3101 \MP\ computes all of the necessary special functions from scratch, without
3102 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3104 @ To get the square root of a |scaled| number |x|, we want to calculate
3105 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3106 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3107 determines $s$ by an iterative method that maintains the invariant
3108 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3109 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3110 might, however, be zero at the start of the first iteration.
3113 static scaled mp_square_rt (MP mp,scaled x) ;
3116 scaled mp_square_rt (MP mp,scaled x) {
3117 quarterword k; /* iteration control counter */
3118 integer y; /* register for intermediate calculations */
3119 unsigned q; /* register for intermediate calculations */
3121 @<Handle square root of zero or negative argument@>;
3124 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3127 if ( x<fraction_four ) y=0;
3128 else { x=x-fraction_four; y=1; };
3130 @<Decrease |k| by 1, maintaining the invariant
3131 relations between |x|, |y|, and~|q|@>;
3133 return (scaled)(halfp(q));
3137 @ @<Handle square root of zero...@>=
3140 print_err("Square root of ");
3141 @.Square root...replaced by 0@>
3142 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3143 help2("Since I don't take square roots of negative numbers,",
3144 "I'm zeroing this one. Proceed, with fingers crossed.");
3150 @ @<Decrease |k| by 1, maintaining...@>=
3152 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3153 x=x-fraction_four; y++;
3155 x+=x; y=y+y-q; q+=q;
3156 if ( x>=fraction_four ) { x=x-fraction_four; y++; };
3157 if ( y>(int)q ){ y=y-q; q=q+2; }
3158 else if ( y<=0 ) { q=q-2; y=y+q; };
3161 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3162 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3163 @^Moler, Cleve Barry@>
3164 @^Morrison, Donald Ross@>
3165 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3166 in such a way that their Pythagorean sum remains invariant, while the
3167 smaller argument decreases.
3169 @<Internal library ...@>=
3170 integer mp_pyth_add (MP mp,integer a, integer b);
3174 integer mp_pyth_add (MP mp,integer a, integer b) {
3175 fraction r; /* register used to transform |a| and |b| */
3176 boolean big; /* is the result dangerously near $2^{31}$? */
3178 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3180 if ( a<fraction_two ) {
3183 a=a / 4; b=b / 4; big=true;
3184 }; /* we reduced the precision to avoid arithmetic overflow */
3185 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3187 if ( a<fraction_two ) {
3190 mp->arith_error=true; a=el_gordo;
3197 @ The key idea here is to reflect the vector $(a,b)$ about the
3198 line through $(a,b/2)$.
3200 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3202 r=mp_make_fraction(mp, b,a);
3203 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3205 r=mp_make_fraction(mp, r,fraction_four+r);
3206 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3210 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3211 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3214 static integer mp_pyth_sub (MP mp,integer a, integer b) {
3215 fraction r; /* register used to transform |a| and |b| */
3216 boolean big; /* is the input dangerously near $2^{31}$? */
3219 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3221 if ( a<fraction_four ) {
3224 a=(integer)halfp(a); b=(integer)halfp(b); big=true;
3226 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3227 if ( big ) double(a);
3232 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3234 r=mp_make_fraction(mp, b,a);
3235 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3237 r=mp_make_fraction(mp, r,fraction_four-r);
3238 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3241 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3244 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3245 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3246 mp_print(mp, " has been replaced by 0");
3248 help2("Since I don't take square roots of negative numbers,",
3249 "I'm zeroing this one. Proceed, with fingers crossed.");
3255 @ The subroutines for logarithm and exponential involve two tables.
3256 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3257 a bit more calculation, which the author claims to have done correctly:
3258 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3259 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3262 @d two_to_the(A) (1<<(unsigned)(A))
3265 static const integer spec_log[29] = { 0, /* special logarithms */
3266 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3267 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3268 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3270 @ @<Local variables for initialization@>=
3271 integer k; /* all-purpose loop index */
3274 @ Here is the routine that calculates $2^8$ times the natural logarithm
3275 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3276 when |x| is a given positive integer.
3278 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3279 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3280 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3281 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3282 during the calculation, and sixteen auxiliary bits to extend |y| are
3283 kept in~|z| during the initial argument reduction. (We add
3284 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3285 not become negative; also, the actual amount subtracted from~|y| is~96,
3286 not~100, because we want to add~4 for rounding before the final division by~8.)
3289 static scaled mp_m_log (MP mp,scaled x) {
3290 integer y,z; /* auxiliary registers */
3291 integer k; /* iteration counter */
3293 @<Handle non-positive logarithm@>;
3295 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3296 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3297 while ( x<fraction_four ) {
3298 double(x); y-=93032639; z-=48782;
3299 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3300 y=y+(z / unity); k=2;
3301 while ( x>fraction_four+4 ) {
3302 @<Increase |k| until |x| can be multiplied by a
3303 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3309 @ @<Increase |k| until |x| can...@>=
3311 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3312 while ( x<fraction_four+z ) { z=halfp(z+1); k++; };
3313 y+=spec_log[k]; x-=z;
3316 @ @<Handle non-positive logarithm@>=
3318 print_err("Logarithm of ");
3319 @.Logarithm...replaced by 0@>
3320 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3321 help2("Since I don't take logs of non-positive numbers,",
3322 "I'm zeroing this one. Proceed, with fingers crossed.");
3327 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3328 when |x| is |scaled|. The result is an integer approximation to
3329 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3332 static scaled mp_m_exp (MP mp,scaled x) {
3333 quarterword k; /* loop control index */
3334 integer y,z; /* auxiliary registers */
3335 if ( x>174436200 ) {
3336 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3337 mp->arith_error=true;
3339 } else if ( x<-197694359 ) {
3340 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3344 z=-8*x; y=04000000; /* $y=2^{20}$ */
3346 if ( x<=127919879 ) {
3348 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3350 z=8*(174436200-x); /* |z| is always nonnegative */
3354 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3356 return ((y+8) / 16);
3362 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3363 to multiplying |y| by $1-2^{-k}$.
3365 A subtle point (which had to be checked) was that if $x=127919879$, the
3366 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3367 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3368 and by~16 when |k=27|.
3370 @<Multiply |y| by...@>=
3373 while ( z>=spec_log[k] ) {
3375 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3380 @ The trigonometric subroutines use an auxiliary table such that
3381 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3382 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3385 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3386 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3387 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3389 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3390 returns the |angle| whose tangent points in the direction $(x,y)$.
3391 This subroutine first determines the correct octant, then solves the
3392 problem for |0<=y<=x|, then converts the result appropriately to
3393 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3394 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3395 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3397 The octants are represented in a ``Gray code,'' since that turns out
3398 to be computationally simplest.
3404 @d second_octant (first_octant+switch_x_and_y)
3405 @d third_octant (first_octant+switch_x_and_y+negate_x)
3406 @d fourth_octant (first_octant+negate_x)
3407 @d fifth_octant (first_octant+negate_x+negate_y)
3408 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3409 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3410 @d eighth_octant (first_octant+negate_y)
3413 static angle mp_n_arg (MP mp,integer x, integer y) {
3414 angle z; /* auxiliary register */
3415 integer t; /* temporary storage */
3416 quarterword k; /* loop counter */
3417 int octant; /* octant code */
3419 octant=first_octant;
3421 negate(x); octant=first_octant+negate_x;
3424 negate(y); octant=octant+negate_y;
3427 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3430 @<Handle undefined arg@>;
3432 @<Set variable |z| to the arg of $(x,y)$@>;
3433 @<Return an appropriate answer based on |z| and |octant|@>;
3437 @ @<Handle undefined arg@>=
3439 print_err("angle(0,0) is taken as zero");
3440 @.angle(0,0)...zero@>
3441 help2("The `angle' between two identical points is undefined.",
3442 "I'm zeroing this one. Proceed, with fingers crossed.");
3447 @ @<Return an appropriate answer...@>=
3449 case first_octant: return z;
3450 case second_octant: return (ninety_deg-z);
3451 case third_octant: return (ninety_deg+z);
3452 case fourth_octant: return (one_eighty_deg-z);
3453 case fifth_octant: return (z-one_eighty_deg);
3454 case sixth_octant: return (-z-ninety_deg);
3455 case seventh_octant: return (z-ninety_deg);
3456 case eighth_octant: return (-z);
3457 }; /* there are no other cases */
3460 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3461 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3464 @<Set variable |z| to the arg...@>=
3465 while ( x>=fraction_two ) {
3466 x=halfp(x); y=halfp(y);
3470 while ( x<fraction_one ) {
3473 @<Increase |z| to the arg of $(x,y)$@>;
3476 @ During the calculations of this section, variables |x| and~|y|
3477 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3478 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3479 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3480 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3481 coordinates whose angle has decreased by~$\phi$; in the special case
3482 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3483 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3484 @^Meggitt, John E.@>
3485 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3487 The initial value of |x| will be multiplied by at most
3488 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3489 there is no chance of integer overflow.
3491 @<Increase |z|...@>=
3496 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3501 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3504 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3505 and cosine of that angle. The results of this routine are
3506 stored in global integer variables |n_sin| and |n_cos|.
3509 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3511 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3512 the purpose of |n_sin_cos(z)| is to set
3513 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3514 for some rather large number~|r|. The maximum of |x| and |y|
3515 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3516 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3519 static void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3521 quarterword k; /* loop control variable */
3522 int q; /* specifies the quadrant */
3523 fraction r; /* magnitude of |(x,y)| */
3524 integer x,y,t; /* temporary registers */
3525 while ( z<0 ) z=z+three_sixty_deg;
3526 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3527 q=z / forty_five_deg; z=z % forty_five_deg;
3528 x=fraction_one; y=x;
3529 if ( ! odd(q) ) z=forty_five_deg-z;
3530 @<Subtract angle |z| from |(x,y)|@>;
3531 @<Convert |(x,y)| to the octant determined by~|q|@>;
3532 r=mp_pyth_add(mp, x,y);
3533 mp->n_cos=mp_make_fraction(mp, x,r);
3534 mp->n_sin=mp_make_fraction(mp, y,r);
3537 @ In this case the octants are numbered sequentially.
3539 @<Convert |(x,...@>=
3542 case 1: t=x; x=y; y=t; break;
3543 case 2: t=x; x=-y; y=t; break;
3544 case 3: negate(x); break;
3545 case 4: negate(x); negate(y); break;
3546 case 5: t=x; x=-y; y=-t; break;
3547 case 6: t=x; x=y; y=-t; break;
3548 case 7: negate(y); break;
3549 } /* there are no other cases */
3551 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3552 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3553 that this loop is guaranteed to terminate before the (nonexistent) value
3554 |spec_atan[27]| would be required.
3556 @<Subtract angle |z|...@>=
3559 if ( z>=spec_atan[k] ) {
3560 z=z-spec_atan[k]; t=x;
3561 x=t+y / two_to_the(k);
3562 y=y-t / two_to_the(k);
3566 if ( y<0 ) y=0 /* this precaution may never be needed */
3568 @ And now let's complete our collection of numeric utility routines
3569 by considering random number generation.
3570 \MP\ generates pseudo-random numbers with the additive scheme recommended
3571 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3572 results are random fractions between 0 and |fraction_one-1|, inclusive.
3574 There's an auxiliary array |randoms| that contains 55 pseudo-random
3575 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3576 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3577 The global variable |j_random| tells which element has most recently
3579 The global variable |random_seed| was introduced in version 0.9,
3580 for the sole reason of stressing the fact that the initial value of the
3581 random seed is system-dependant. The initialization code below will initialize
3582 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3583 is not good enough on modern fast machines that are capable of running
3584 multiple MetaPost processes within the same second.
3585 @^system dependencies@>
3588 fraction randoms[55]; /* the last 55 random values generated */
3589 int j_random; /* the number of unused |randoms| */
3591 @ @<Option variables@>=
3592 int random_seed; /* the default random seed */
3594 @ @<Allocate or initialize ...@>=
3595 mp->random_seed = (scaled)opt->random_seed;
3597 @ To consume a random fraction, the program below will say `|next_random|'
3598 and then it will fetch |randoms[j_random]|.
3600 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3601 else decr(mp->j_random); }
3604 static void mp_new_randoms (MP mp) {
3605 int k; /* index into |randoms| */
3606 fraction x; /* accumulator */
3607 for (k=0;k<=23;k++) {
3608 x=mp->randoms[k]-mp->randoms[k+31];
3609 if ( x<0 ) x=x+fraction_one;
3612 for (k=24;k<= 54;k++){
3613 x=mp->randoms[k]-mp->randoms[k-24];
3614 if ( x<0 ) x=x+fraction_one;
3621 static void mp_init_randoms (MP mp,scaled seed);
3623 @ To initialize the |randoms| table, we call the following routine.
3626 void mp_init_randoms (MP mp,scaled seed) {
3627 fraction j,jj,k; /* more or less random integers */
3628 int i; /* index into |randoms| */
3630 while ( j>=fraction_one ) j=halfp(j);
3632 for (i=0;i<=54;i++ ){
3634 if ( k<0 ) k=k+fraction_one;
3635 mp->randoms[(i*21)% 55]=j;
3639 mp_new_randoms(mp); /* ``warm up'' the array */
3642 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3643 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3645 Note that the call of |take_fraction| will produce the values 0 and~|x|
3646 with about half the probability that it will produce any other particular
3647 values between 0 and~|x|, because it rounds its answers.
3650 static scaled mp_unif_rand (MP mp,scaled x) {
3651 scaled y; /* trial value */
3652 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3653 if ( y==abs(x) ) return 0;
3654 else if ( x>0 ) return y;
3658 @ Finally, a normal deviate with mean zero and unit standard deviation
3659 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3660 {\sl The Art of Computer Programming\/}).
3663 static scaled mp_norm_rand (MP mp) {
3664 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3668 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3669 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3670 next_random; u=mp->randoms[mp->j_random];
3671 } while (abs(x)>=u);
3672 x=mp_make_fraction(mp, x,u);
3673 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3674 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3678 @* \[9] Packed data.
3679 In order to make efficient use of storage space, \MP\ bases its major data
3680 structures on a |memory_word|, which contains either a (signed) integer,
3681 possibly scaled, or a small number of fields that are one half or one
3682 quarter of the size used for storing integers.
3684 If |x| is a variable of type |memory_word|, it contains up to four
3685 fields that can be referred to as follows:
3686 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3687 |x|&.|int|&(an |integer|)\cr
3688 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3689 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3690 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3692 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3693 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3694 This is somewhat cumbersome to write, and not very readable either, but
3695 macros will be used to make the notation shorter and more transparent.
3696 The code below gives a formal definition of |memory_word| and
3697 its subsidiary types, using packed variant records. \MP\ makes no
3698 assumptions about the relative positions of the fields within a word.
3700 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3701 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3703 @ Here are the inequalities that the quarterword and halfword values
3704 must satisfy (or rather, the inequalities that they mustn't satisfy):
3706 @<Check the ``constant''...@>=
3707 if (mp->ini_version) {
3708 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3710 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3712 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3713 if ( mp->max_strings>max_halfword ) mp->bad=13;
3715 @ The macros |qi| and |qo| are used for input to and output
3716 from quarterwords. These are legacy macros.
3717 @^system dependencies@>
3719 @d qo(A) (A) /* to read eight bits from a quarterword */
3720 @d qi(A) (quarterword)(A) /* to store eight bits in a quarterword */
3722 @ The reader should study the following definitions closely:
3723 @^system dependencies@>
3725 @d sc cint /* |scaled| data is equivalent to |integer| */
3728 typedef short quarterword; /* 1/4 of a word */
3729 typedef int halfword; /* 1/2 of a word */
3734 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3741 quarterword B2, B3, B0, B1;
3756 @ When debugging, we may want to print a |memory_word| without knowing
3757 what type it is; so we print it in all modes.
3761 void mp_print_word (MP mp,memory_word w) {
3762 /* prints |w| in all ways */
3763 mp_print_int(mp, w.cint); mp_print_char(mp, xord(' '));
3764 mp_print_scaled(mp, w.sc); mp_print_char(mp, xord(' '));
3765 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3766 mp_print_int(mp, w.hh.lh); mp_print_char(mp, xord('='));
3767 mp_print_int(mp, w.hh.b0); mp_print_char(mp, xord(':'));
3768 mp_print_int(mp, w.hh.b1); mp_print_char(mp, xord(';'));
3769 mp_print_int(mp, w.hh.rh); mp_print_char(mp, xord(' '));
3770 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, xord(':'));
3771 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, xord(':'));
3772 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, xord(':'));
3773 mp_print_int(mp, w.qqqq.b3);
3777 @* \[10] Dynamic memory allocation.
3779 The \MP\ system does nearly all of its own memory allocation, so that it
3780 can readily be transported into environments that do not have automatic
3781 facilities for strings, garbage collection, etc., and so that it can be in
3782 control of what error messages the user receives. The dynamic storage
3783 requirements of \MP\ are handled by providing a large array |mem| in
3784 which consecutive blocks of words are used as nodes by the \MP\ routines.
3786 Pointer variables are indices into this array, or into another array
3787 called |eqtb| that will be explained later. A pointer variable might
3788 also be a special flag that lies outside the bounds of |mem|, so we
3789 allow pointers to assume any |halfword| value. The minimum memory
3790 index represents a null pointer.
3792 @d null 0 /* the null pointer */
3793 @d mp_void (null+1) /* a null pointer different from |null| */
3797 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3799 @ The |mem| array is divided into two regions that are allocated separately,
3800 but the dividing line between these two regions is not fixed; they grow
3801 together until finding their ``natural'' size in a particular job.
3802 Locations less than or equal to |lo_mem_max| are used for storing
3803 variable-length records consisting of two or more words each. This region
3804 is maintained using an algorithm similar to the one described in exercise
3805 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3806 appears in the allocated nodes; the program is responsible for knowing the
3807 relevant size when a node is freed. Locations greater than or equal to
3808 |hi_mem_min| are used for storing one-word records; a conventional
3809 \.{AVAIL} stack is used for allocation in this region.
3811 Locations of |mem| between |0| and |mem_top| may be dumped as part
3812 of preloaded mem files, by the \.{INIMP} preprocessor.
3814 Production versions of \MP\ may extend the memory at the top end in order to
3815 provide more space; these locations, between |mem_top| and |mem_max|,
3816 are always used for single-word nodes.
3818 The key pointers that govern |mem| allocation have a prescribed order:
3819 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3822 memory_word *mem; /* the big dynamic storage area */
3823 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3824 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3828 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3829 @d xrealloc(P,A,B) mp_xrealloc(mp,P,(size_t)A,B)
3830 @d xmalloc(A,B) mp_xmalloc(mp,(size_t)A,B)
3831 @d xstrdup(A) mp_xstrdup(mp,A)
3832 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3834 @<Declare helpers@>=
3835 extern char *mp_strdup(const char *p) ;
3836 extern void mp_xfree ( @= /*@@only@@*/ /*@@out@@*/ /*@@null@@*/ @> void *x);
3837 extern @= /*@@only@@*/ @> void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3838 extern @= /*@@only@@*/ @> void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3839 extern @= /*@@only@@*/ @> char *mp_xstrdup(MP mp, const char *s);
3840 extern void mp_do_snprintf(char *str, int size, const char *fmt, ...);
3842 @ The |max_size_test| guards against overflow, on the assumption that
3843 |size_t| is at least 31bits wide.
3845 @d max_size_test 0x7FFFFFFF
3848 char *mp_strdup(const char *p) {
3851 if (p==NULL) return NULL;
3853 r = malloc (l*sizeof(char)+1);
3856 return memcpy (r,p,(l+1));
3858 void mp_xfree (void *x) {
3859 if (x!=NULL) free(x);
3861 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3863 if ((max_size_test/size)<nmem) {
3864 do_fprintf(mp->err_out,"Memory size overflow!\n");
3865 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3867 w = realloc (p,(nmem*size));
3869 do_fprintf(mp->err_out,"Out of memory!\n");
3870 mp->history =mp_system_error_stop; mp_jump_out(mp);
3874 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3876 if ((max_size_test/size)<nmem) {
3877 do_fprintf(mp->err_out,"Memory size overflow!\n");
3878 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3880 w = malloc (nmem*size);
3882 do_fprintf(mp->err_out,"Out of memory!\n");
3883 mp->history =mp_system_error_stop; mp_jump_out(mp);
3887 char *mp_xstrdup(MP mp, const char *s) {
3893 do_fprintf(mp->err_out,"Out of memory!\n");
3894 mp->history =mp_system_error_stop; mp_jump_out(mp);
3899 @ @<Internal library declarations@>=
3900 #ifdef HAVE_SNPRINTF
3901 #define mp_snprintf (void)snprintf
3903 #define mp_snprintf mp_do_snprintf
3906 @ This internal version is rather stupid, but good enough for its purpose.
3909 static char *mp_itoa (int i) {
3912 unsigned v = (unsigned)abs(i);
3913 memset(res,0,32*sizeof(char));
3915 char d = (char)(v % 10);
3917 res[idx--] = (char)d + '0';
3919 res[idx--] = (char)v + '0';
3923 return mp_strdup((res+idx+1));
3925 static char *mp_utoa (unsigned v) {
3928 memset(res,0,32*sizeof(char));
3930 char d = (char)(v % 10);
3932 res[idx--] = d + '0';
3934 res[idx--] = (char)v + '0';
3935 return mp_strdup((res+idx+1));
3937 void mp_do_snprintf (char *str, int size, const char *format, ...) {
3941 va_start(ap, format);
3943 for (fmt=format;*fmt!='\0';fmt++) {
3949 char *s = va_arg(ap, char *);
3952 if (size-->0) res++;
3959 char *s = mp_itoa(va_arg(ap, int));
3963 if (size-->0) res++;
3970 char *s = mp_utoa(va_arg(ap, unsigned));
3974 if (size-->0) res++;
3981 if (size-->0) res++;
3985 if (size-->0) res++;
3987 if (size-->0) res++;
3992 if (size-->0) res++;
4000 @<Allocate or initialize ...@>=
4001 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
4002 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
4004 @ @<Dealloc variables@>=
4007 @ Users who wish to study the memory requirements of particular applications can
4008 can use optional special features that keep track of current and
4009 maximum memory usage. When code between the delimiters |stat| $\ldots$
4010 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
4011 report these statistics when |mp_tracing_stats| is positive.
4014 integer var_used; integer dyn_used; /* how much memory is in use */
4016 @ Let's consider the one-word memory region first, since it's the
4017 simplest. The pointer variable |mem_end| holds the highest-numbered location
4018 of |mem| that has ever been used. The free locations of |mem| that
4019 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
4020 |two_halves|, and we write |info(p)| and |mp_link(p)| for the |lh|
4021 and |rh| fields of |mem[p]| when it is of this type. The single-word
4022 free locations form a linked list
4023 $$|avail|,\;\hbox{|mp_link(avail)|},\;\hbox{|mp_link(mp_link(avail))|},\;\ldots$$
4024 terminated by |null|.
4027 #define mp_link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
4028 #define mp_info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
4031 pointer avail; /* head of the list of available one-word nodes */
4032 pointer mem_end; /* the last one-word node used in |mem| */
4034 @ If one-word memory is exhausted, it might mean that the user has forgotten
4035 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
4036 later that try to help pinpoint the trouble.
4038 @ The function |get_avail| returns a pointer to a new one-word node whose
4039 |link| field is null. However, \MP\ will halt if there is no more room left.
4043 static pointer mp_get_avail (MP mp) { /* single-word node allocation */
4044 pointer p; /* the new node being got */
4045 p=mp->avail; /* get top location in the |avail| stack */
4047 mp->avail=mp_link(mp->avail); /* and pop it off */
4048 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4049 incr(mp->mem_end); p=mp->mem_end;
4051 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4052 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4053 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4054 mp_overflow(mp, "main memory size",mp->mem_max);
4055 /* quit; all one-word nodes are busy */
4056 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4059 mp_link(p)=null; /* provide an oft-desired initialization of the new node */
4060 incr(mp->dyn_used);/* maintain statistics */
4064 @ Conversely, a one-word node is recycled by calling |free_avail|.
4066 @d free_avail(A) /* single-word node liberation */
4067 { mp_link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4069 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4070 overhead at the expense of extra programming. This macro is used in
4071 the places that would otherwise account for the most calls of |get_avail|.
4074 @d fast_get_avail(A) {
4075 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4076 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4077 else { mp->avail=mp_link((A)); mp_link((A))=null; incr(mp->dyn_used); }
4080 @ The available-space list that keeps track of the variable-size portion
4081 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4082 pointed to by the roving pointer |rover|.
4084 Each empty node has size 2 or more; the first word contains the special
4085 value |max_halfword| in its |link| field and the size in its |info| field;
4086 the second word contains the two pointers for double linking.
4088 Each nonempty node also has size 2 or more. Its first word is of type
4089 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4090 Otherwise there is complete flexibility with respect to the contents
4091 of its other fields and its other words.
4093 (We require |mem_max<max_halfword| because terrible things can happen
4094 when |max_halfword| appears in the |link| field of a nonempty node.)
4096 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4097 @d is_empty(A) (mp_link((A))==empty_flag) /* tests for empty node */
4100 #define node_size mp_info /* the size field in empty variable-size nodes */
4101 #define lmp_link(A) mp_info((A)+1) /* left link in doubly-linked list of empty nodes */
4102 #define rmp_link(A) mp_link((A)+1) /* right link in doubly-linked list of empty nodes */
4105 pointer rover; /* points to some node in the list of empties */
4107 @ A call to |get_node| with argument |s| returns a pointer to a new node
4108 of size~|s|, which must be 2~or more. The |link| field of the first word
4109 of this new node is set to null. An overflow stop occurs if no suitable
4112 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4113 areas and returns the value |max_halfword|.
4115 @<Internal library declarations@>=
4116 pointer mp_get_node (MP mp,integer s) ;
4119 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4120 pointer p; /* the node currently under inspection */
4121 pointer q; /* the node physically after node |p| */
4122 integer r; /* the newly allocated node, or a candidate for this honor */
4123 integer t,tt; /* temporary registers */
4126 p=mp->rover; /* start at some free node in the ring */
4128 @<Try to allocate within node |p| and its physical successors,
4129 and |goto found| if allocation was possible@>;
4130 if (rmp_link(p)==null || (rmp_link(p)==p && p!=mp->rover)) {
4131 print_err("Free list garbled");
4132 help3("I found an entry in the list of free nodes that links",
4133 "badly. I will try to ignore the broken link, but something",
4134 "is seriously amiss. It is wise to warn the maintainers.")
4136 rmp_link(p)=mp->rover;
4138 p=rmp_link(p); /* move to the next node in the ring */
4139 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4140 if ( s==010000000000 ) {
4141 return max_halfword;
4143 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4144 if ( mp->lo_mem_max+2<=max_halfword ) {
4145 @<Grow more variable-size memory and |goto restart|@>;
4148 mp_overflow(mp, "main memory size",mp->mem_max);
4149 /* sorry, nothing satisfactory is left */
4150 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4152 mp_link(r)=null; /* this node is now nonempty */
4153 mp->var_used+=s; /* maintain usage statistics */
4157 @ The lower part of |mem| grows by 1000 words at a time, unless
4158 we are very close to going under. When it grows, we simply link
4159 a new node into the available-space list. This method of controlled
4160 growth helps to keep the |mem| usage consecutive when \MP\ is
4161 implemented on ``virtual memory'' systems.
4164 @<Grow more variable-size memory and |goto restart|@>=
4166 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4167 t=mp->lo_mem_max+1000;
4169 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4170 /* |lo_mem_max+2<=t<hi_mem_min| */
4172 if ( t>max_halfword ) t=max_halfword;
4173 p=lmp_link(mp->rover); q=mp->lo_mem_max; rmp_link(p)=q; lmp_link(mp->rover)=q;
4174 rmp_link(q)=mp->rover; lmp_link(q)=p; mp_link(q)=empty_flag;
4175 node_size(q)=t-mp->lo_mem_max;
4176 mp->lo_mem_max=t; mp_link(mp->lo_mem_max)=null; mp_info(mp->lo_mem_max)=null;
4181 @ @<Try to allocate...@>=
4182 q=p+node_size(p); /* find the physical successor */
4183 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4184 t=rmp_link(q); tt=lmp_link(q);
4186 if ( q==mp->rover ) mp->rover=t;
4187 lmp_link(t)=tt; rmp_link(tt)=t;
4192 @<Allocate from the top of node |p| and |goto found|@>;
4195 if ( rmp_link(p)!=p ) {
4196 @<Allocate entire node |p| and |goto found|@>;
4199 node_size(p)=q-p /* reset the size in case it grew */
4201 @ @<Allocate from the top...@>=
4203 node_size(p)=r-p; /* store the remaining size */
4204 mp->rover=p; /* start searching here next time */
4208 @ Here we delete node |p| from the ring, and let |rover| rove around.
4210 @<Allocate entire...@>=
4212 mp->rover=rmp_link(p); t=lmp_link(p);
4213 lmp_link(mp->rover)=t; rmp_link(t)=mp->rover;
4217 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4218 the operation |free_node(p,s)| will make its words available, by inserting
4219 |p| as a new empty node just before where |rover| now points.
4221 @<Internal library declarations@>=
4222 void mp_free_node (MP mp, pointer p, halfword s) ;
4225 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4227 pointer q; /* |lmp_link(rover)| */
4228 node_size(p)=s; mp_link(p)=empty_flag;
4230 q=lmp_link(mp->rover); lmp_link(p)=q; rmp_link(p)=mp->rover; /* set both links */
4231 lmp_link(mp->rover)=p; rmp_link(q)=p; /* insert |p| into the ring */
4232 mp->var_used-=s; /* maintain statistics */
4235 @* \[11] Memory layout.
4236 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4237 more efficient than dynamic allocation when we can get away with it. For
4238 example, locations |0| to |1| are always used to store a
4239 two-word dummy token whose second word is zero.
4240 The following macro definitions accomplish the static allocation by giving
4241 symbolic names to the fixed positions. Static variable-size nodes appear
4242 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4243 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4245 @d sentinel mp->mem_top /* end of sorted lists */
4246 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4247 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4250 #define spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4251 #define null_dash (2) /* the first two words are reserved for a null value */
4252 #define dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4253 #define zero_val (dep_head+2) /* two words for a permanently zero value */
4254 #define temp_val (zero_val+2) /* two words for a temporary value node */
4255 #define end_attr temp_val /* we use |end_attr+2| only */
4256 #define inf_val (end_attr+2) /* and |inf_val+1| only */
4257 #define bad_vardef (inf_val+2) /* two words for \&{vardef} error recovery */
4258 #define lo_mem_stat_max (bad_vardef+1) /* largest statically
4259 allocated word in the variable-size |mem| */
4260 #define hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4261 the one-word |mem| */
4263 @ The following code gets the dynamic part of |mem| off to a good start,
4264 when \MP\ is initializing itself the slow way.
4266 @<Initialize table entries (done by \.{INIMP} only)@>=
4267 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4268 mp_link(mp->rover)=empty_flag;
4269 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4270 lmp_link(mp->rover)=mp->rover; rmp_link(mp->rover)=mp->rover;
4271 mp->lo_mem_max=mp->rover+1000;
4272 mp_link(mp->lo_mem_max)=null; mp_info(mp->lo_mem_max)=null;
4273 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4274 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4276 mp->avail=null; mp->mem_end=mp->mem_top;
4277 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4278 mp->var_used=lo_mem_stat_max+1;
4279 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4281 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4282 nodes that starts at a given position, until coming to |sentinel| or a
4283 pointer that is not in the one-word region. Another procedure,
4284 |flush_node_list|, frees an entire linked list of one-word and two-word
4285 nodes, until coming to a |null| pointer.
4289 static void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4290 pointer q,r; /* list traversers */
4291 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4296 if ( r<mp->hi_mem_min ) break;
4297 } while (r!=sentinel);
4298 /* now |q| is the last node on the list */
4299 mp_link(q)=mp->avail; mp->avail=p;
4303 static void mp_flush_node_list (MP mp,pointer p) {
4304 pointer q; /* the node being recycled */
4307 if ( q<mp->hi_mem_min )
4308 mp_free_node(mp, q,2);
4314 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4315 For example, some pointers might be wrong, or some ``dead'' nodes might not
4316 have been freed when the last reference to them disappeared. Procedures
4317 |check_mem| and |search_mem| are available to help diagnose such
4318 problems. These procedures make use of two arrays called |free| and
4319 |was_free| that are present only if \MP's debugging routines have
4320 been included. (You may want to decrease the size of |mem| while you
4324 Because |boolean|s are typedef-d as ints, it is better to use
4325 unsigned chars here.
4328 unsigned char *free; /* free cells */
4329 unsigned char *was_free; /* previously free cells */
4330 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4331 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4332 boolean panicking; /* do we want to check memory constantly? */
4334 @ @<Allocate or initialize ...@>=
4335 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4336 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4338 @ @<Dealloc variables@>=
4340 xfree(mp->was_free);
4342 @ @<Allocate or ...@>=
4343 mp->was_hi_min=mp->mem_max;
4344 mp->panicking=false;
4347 static void mp_reallocate_memory(MP mp, int l) ;
4350 static void mp_reallocate_memory(MP mp, int l) {
4351 XREALLOC(mp->free, l, unsigned char);
4352 XREALLOC(mp->was_free, l, unsigned char);
4354 int newarea = l-mp->mem_max;
4355 XREALLOC(mp->mem, l, memory_word);
4356 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4358 XREALLOC(mp->mem, l, memory_word);
4359 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4362 if (mp->ini_version)
4368 @ Procedure |check_mem| makes sure that the available space lists of
4369 |mem| are well formed, and it optionally prints out all locations
4370 that are reserved now but were free the last time this procedure was called.
4373 void mp_check_mem (MP mp,boolean print_locs ) {
4374 pointer p,q,r; /* current locations of interest in |mem| */
4375 boolean clobbered; /* is something amiss? */
4376 for (p=0;p<=mp->lo_mem_max;p++) {
4377 mp->free[p]=false; /* you can probably do this faster */
4379 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4380 mp->free[p]=false; /* ditto */
4382 @<Check single-word |avail| list@>;
4383 @<Check variable-size |avail| list@>;
4384 @<Check flags of unavailable nodes@>;
4385 @<Check the list of linear dependencies@>;
4387 @<Print newly busy locations@>;
4389 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4390 mp->was_mem_end=mp->mem_end;
4391 mp->was_lo_max=mp->lo_mem_max;
4392 mp->was_hi_min=mp->hi_mem_min;
4395 @ @<Check single-word...@>=
4396 p=mp->avail; q=null; clobbered=false;
4398 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4399 else if ( mp->free[p] ) clobbered=true;
4401 mp_print_nl(mp, "AVAIL list clobbered at ");
4402 @.AVAIL list clobbered...@>
4403 mp_print_int(mp, q); break;
4405 mp->free[p]=true; q=p; p=mp_link(q);
4408 @ @<Check variable-size...@>=
4409 p=mp->rover; q=null; clobbered=false;
4411 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4412 else if ( (rmp_link(p)>=mp->lo_mem_max)||(rmp_link(p)<0) ) clobbered=true;
4413 else if ( !(is_empty(p))||(node_size(p)<2)||
4414 (p+node_size(p)>mp->lo_mem_max)|| (lmp_link(rmp_link(p))!=p) ) clobbered=true;
4416 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4417 @.Double-AVAIL list clobbered...@>
4418 mp_print_int(mp, q); break;
4420 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4421 if ( mp->free[q] ) {
4422 mp_print_nl(mp, "Doubly free location at ");
4423 @.Doubly free location...@>
4424 mp_print_int(mp, q); break;
4429 } while (p!=mp->rover)
4432 @ @<Check flags...@>=
4434 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4435 if ( is_empty(p) ) {
4436 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4439 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) p++;
4440 while ( (p<=mp->lo_mem_max) && mp->free[p] ) p++;
4443 @ @<Print newly busy...@>=
4445 @<Do intialization required before printing new busy locations@>;
4446 mp_print_nl(mp, "New busy locs:");
4448 for (p=0;p<= mp->lo_mem_max;p++ ) {
4449 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4450 @<Indicate that |p| is a new busy location@>;
4453 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4454 if ( ! mp->free[p] &&
4455 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4456 @<Indicate that |p| is a new busy location@>;
4459 @<Finish printing new busy locations@>;
4462 @ There might be many new busy locations so we are careful to print contiguous
4463 blocks compactly. During this operation |q| is the last new busy location and
4464 |r| is the start of the block containing |q|.
4466 @<Indicate that |p| is a new busy location@>=
4470 mp_print(mp, ".."); mp_print_int(mp, q);
4472 mp_print_char(mp, xord(' ')); mp_print_int(mp, p);
4478 @ @<Do intialization required before printing new busy locations@>=
4479 q=mp->mem_max; r=mp->mem_max
4481 @ @<Finish printing new busy locations@>=
4483 mp_print(mp, ".."); mp_print_int(mp, q);
4486 @ The |search_mem| procedure attempts to answer the question ``Who points
4487 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4488 that might not be of type |two_halves|. Strictly speaking, this is
4489 undefined, and it can lead to ``false drops'' (words that seem to
4490 point to |p| purely by coincidence). But for debugging purposes, we want
4491 to rule out the places that do {\sl not\/} point to |p|, so a few false
4492 drops are tolerable.
4495 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4496 integer q; /* current position being searched */
4497 for (q=0;q<=mp->lo_mem_max;q++) {
4498 if ( mp_link(q)==p ){
4499 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4501 if ( mp_info(q)==p ) {
4502 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4505 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4506 if ( mp_link(q)==p ) {
4507 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4509 if ( mp_info(q)==p ) {
4510 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, xord(')'));
4513 @<Search |eqtb| for equivalents equal to |p|@>;
4516 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4517 available space list. The list is probably very short at such times, so a
4518 simple insertion sort is used. The smallest available location will be
4519 pointed to by |rover|, the next-smallest by |rmp_link(rover)|, etc.
4521 @<Internal library ...@>=
4522 void mp_sort_avail (MP mp);
4525 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4527 pointer p,q,r; /* indices into |mem| */
4528 pointer old_rover; /* initial |rover| setting */
4529 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4530 p=rmp_link(mp->rover); rmp_link(mp->rover)=max_halfword; old_rover=mp->rover;
4531 while ( p!=old_rover ) {
4532 @<Sort |p| into the list starting at |rover|
4533 and advance |p| to |rmp_link(p)|@>;
4536 while ( rmp_link(p)!=max_halfword ) {
4537 lmp_link(rmp_link(p))=p; p=rmp_link(p);
4539 rmp_link(p)=mp->rover; lmp_link(mp->rover)=p;
4542 @ The following |while| loop is guaranteed to
4543 terminate, since the list that starts at
4544 |rover| ends with |max_halfword| during the sorting procedure.
4547 if ( p<mp->rover ) {
4548 q=p; p=rmp_link(q); rmp_link(q)=mp->rover; mp->rover=q;
4551 while ( rmp_link(q)<p ) q=rmp_link(q);
4552 r=rmp_link(p); rmp_link(p)=rmp_link(q); rmp_link(q)=p; p=r;
4556 @* \[12] The command codes.
4557 Before we can go much further, we need to define symbolic names for the internal
4558 code numbers that represent the various commands obeyed by \MP. These codes
4559 are somewhat arbitrary, but not completely so. For example,
4560 some codes have been made adjacent so that |case| statements in the
4561 program need not consider cases that are widely spaced, or so that |case|
4562 statements can be replaced by |if| statements. A command can begin an
4563 expression if and only if its code lies between |min_primary_command| and
4564 |max_primary_command|, inclusive. The first token of a statement that doesn't
4565 begin with an expression has a command code between |min_command| and
4566 |max_statement_command|, inclusive. Anything less than |min_command| is
4567 eliminated during macro expansions, and anything no more than |max_pre_command|
4568 is eliminated when expanding \TeX\ material. Ranges such as
4569 |min_secondary_command..max_secondary_command| are used when parsing
4570 expressions, but the relative ordering within such a range is generally not
4573 The ordering of the highest-numbered commands
4574 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4575 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4576 for the smallest two commands. The ordering is also important in the ranges
4577 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4579 At any rate, here is the list, for future reference.
4581 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4582 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4583 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4584 @d max_pre_command mpx_break
4585 @d if_test 4 /* conditional text (\&{if}) */
4586 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}) */
4587 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4588 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4589 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4590 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4591 @d relax 10 /* do nothing (\.{\char`\\}) */
4592 @d scan_tokens 11 /* put a string into the input buffer */
4593 @d expand_after 12 /* look ahead one token */
4594 @d defined_macro 13 /* a macro defined by the user */
4595 @d min_command (defined_macro+1)
4596 @d save_command 14 /* save a list of tokens (\&{save}) */
4597 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4598 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4599 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4600 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4601 @d ship_out_command 19 /* output a character (\&{shipout}) */
4602 @d add_to_command 20 /* add to edges (\&{addto}) */
4603 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4604 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4605 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4606 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4607 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4608 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4609 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4610 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4611 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4612 @d special_command 30 /* output special info (\&{special})
4613 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4614 @d write_command 31 /* write text to a file (\&{write}) */
4615 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc.) */
4616 @d max_statement_command type_name
4617 @d min_primary_command type_name
4618 @d left_delimiter 33 /* the left delimiter of a matching pair */
4619 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4620 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4621 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4622 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4623 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4624 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4625 @d capsule_token 40 /* a value that has been put into a token list */
4626 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4627 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4628 @d min_suffix_token internal_quantity
4629 @d tag_token 43 /* a symbolic token without a primitive meaning */
4630 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4631 @d max_suffix_token numeric_token
4632 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4633 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4634 @d min_tertiary_command plus_or_minus
4635 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4636 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4637 @d max_tertiary_command tertiary_binary
4638 @d left_brace 48 /* the operator `\.{\char`\{}' */
4639 @d min_expression_command left_brace
4640 @d path_join 49 /* the operator `\.{..}' */
4641 @d ampersand 50 /* the operator `\.\&' */
4642 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4643 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4644 @d equals 53 /* the operator `\.=' */
4645 @d max_expression_command equals
4646 @d and_command 54 /* the operator `\&{and}' */
4647 @d min_secondary_command and_command
4648 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4649 @d slash 56 /* the operator `\./' */
4650 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4651 @d max_secondary_command secondary_binary
4652 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4653 @d controls 59 /* specify control points explicitly (\&{controls}) */
4654 @d tension 60 /* specify tension between knots (\&{tension}) */
4655 @d at_least 61 /* bounded tension value (\&{atleast}) */
4656 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4657 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4658 @d right_delimiter 64 /* the right delimiter of a matching pair */
4659 @d left_bracket 65 /* the operator `\.[' */
4660 @d right_bracket 66 /* the operator `\.]' */
4661 @d right_brace 67 /* the operator `\.{\char`\}}' */
4662 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4664 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4665 @d of_token 70 /* the operator `\&{of}' */
4666 @d to_token 71 /* the operator `\&{to}' */
4667 @d step_token 72 /* the operator `\&{step}' */
4668 @d until_token 73 /* the operator `\&{until}' */
4669 @d within_token 74 /* the operator `\&{within}' */
4670 @d lig_kern_token 75
4671 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}', etc. */
4672 @d assignment 76 /* the operator `\.{:=}' */
4673 @d skip_to 77 /* the operation `\&{skipto}' */
4674 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4675 @d double_colon 79 /* the operator `\.{::}' */
4676 @d colon 80 /* the operator `\.:' */
4678 @d comma 81 /* the operator `\.,', must be |colon+1| */
4679 @d end_of_statement (mp->cur_cmd>comma)
4680 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4681 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4682 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4683 @d max_command_code stop
4684 @d outer_tag (max_command_code+1) /* protection code added to command code */
4687 typedef int command_code;
4689 @ Variables and capsules in \MP\ have a variety of ``types,''
4690 distinguished by the code numbers defined here. These numbers are also
4691 not completely arbitrary. Things that get expanded must have types
4692 |>mp_independent|; a type remaining after expansion is numeric if and only if
4693 its code number is at least |numeric_type|; objects containing numeric
4694 parts must have types between |transform_type| and |pair_type|;
4695 all other types must be smaller than |transform_type|; and among the types
4696 that are not unknown or vacuous, the smallest two must be |boolean_type|
4697 and |string_type| in that order.
4699 @d undefined 0 /* no type has been declared */
4700 @d unknown_tag 1 /* this constant is added to certain type codes below */
4701 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4702 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4705 enum mp_variable_type {
4706 mp_vacuous=1, /* no expression was present */
4707 mp_boolean_type, /* \&{boolean} with a known value */
4709 mp_string_type, /* \&{string} with a known value */
4711 mp_pen_type, /* \&{pen} with a known value */
4713 mp_path_type, /* \&{path} with a known value */
4715 mp_picture_type, /* \&{picture} with a known value */
4717 mp_transform_type, /* \&{transform} variable or capsule */
4718 mp_color_type, /* \&{color} variable or capsule */
4719 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4720 mp_pair_type, /* \&{pair} variable or capsule */
4721 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4722 mp_known, /* \&{numeric} with a known value */
4723 mp_dependent, /* a linear combination with |fraction| coefficients */
4724 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4725 mp_independent, /* \&{numeric} with unknown value */
4726 mp_token_list, /* variable name or suffix argument or text argument */
4727 mp_structured, /* variable with subscripts and attributes */
4728 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4729 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4733 static void mp_print_type (MP mp,quarterword t) ;
4735 @ @<Basic printing procedures@>=
4736 void mp_print_type (MP mp,quarterword t) {
4738 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4739 case mp_boolean_type:mp_print(mp, "boolean"); break;
4740 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4741 case mp_string_type:mp_print(mp, "string"); break;
4742 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4743 case mp_pen_type:mp_print(mp, "pen"); break;
4744 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4745 case mp_path_type:mp_print(mp, "path"); break;
4746 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4747 case mp_picture_type:mp_print(mp, "picture"); break;
4748 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4749 case mp_transform_type:mp_print(mp, "transform"); break;
4750 case mp_color_type:mp_print(mp, "color"); break;
4751 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4752 case mp_pair_type:mp_print(mp, "pair"); break;
4753 case mp_known:mp_print(mp, "known numeric"); break;
4754 case mp_dependent:mp_print(mp, "dependent"); break;
4755 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4756 case mp_numeric_type:mp_print(mp, "numeric"); break;
4757 case mp_independent:mp_print(mp, "independent"); break;
4758 case mp_token_list:mp_print(mp, "token list"); break;
4759 case mp_structured:mp_print(mp, "mp_structured"); break;
4760 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4761 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4762 default: mp_print(mp, "undefined"); break;
4766 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4767 as well as a |type|. The possibilities for |name_type| are defined
4768 here; they will be explained in more detail later.
4771 enum mp_name_types {
4772 mp_root=0, /* |name_type| at the top level of a variable */
4773 mp_saved_root, /* same, when the variable has been saved */
4774 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4775 mp_subscr, /* |name_type| in a subscript node */
4776 mp_attr, /* |name_type| in an attribute node */
4777 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4778 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4779 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4780 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4781 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4782 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4783 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4784 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4785 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4786 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4787 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4788 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4789 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4790 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4791 mp_capsule, /* |name_type| in stashed-away subexpressions */
4792 mp_token /* |name_type| in a numeric token or string token */
4795 @ Primitive operations that produce values have a secondary identification
4796 code in addition to their command code; it's something like genera and species.
4797 For example, `\.*' has the command code |primary_binary|, and its
4798 secondary identification is |times|. The secondary codes start at 30 so that
4799 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4800 are used as operators as well as type identifications. The relative values
4801 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4802 and |filled_op..bounded_op|. The restrictions are that
4803 |and_op-false_code=or_op-true_code|, that the ordering of
4804 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4805 and the ordering of |filled_op..bounded_op| must match that of the code
4806 values they test for.
4808 @d true_code 30 /* operation code for \.{true} */
4809 @d false_code 31 /* operation code for \.{false} */
4810 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4811 @d null_pen_code 33 /* operation code for \.{nullpen} */
4812 @d job_name_op 34 /* operation code for \.{jobname} */
4813 @d read_string_op 35 /* operation code for \.{readstring} */
4814 @d pen_circle 36 /* operation code for \.{pencircle} */
4815 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4816 @d read_from_op 38 /* operation code for \.{readfrom} */
4817 @d close_from_op 39 /* operation code for \.{closefrom} */
4818 @d odd_op 40 /* operation code for \.{odd} */
4819 @d known_op 41 /* operation code for \.{known} */
4820 @d unknown_op 42 /* operation code for \.{unknown} */
4821 @d not_op 43 /* operation code for \.{not} */
4822 @d decimal 44 /* operation code for \.{decimal} */
4823 @d reverse 45 /* operation code for \.{reverse} */
4824 @d make_path_op 46 /* operation code for \.{makepath} */
4825 @d make_pen_op 47 /* operation code for \.{makepen} */
4826 @d oct_op 48 /* operation code for \.{oct} */
4827 @d hex_op 49 /* operation code for \.{hex} */
4828 @d ASCII_op 50 /* operation code for \.{ASCII} */
4829 @d char_op 51 /* operation code for \.{char} */
4830 @d length_op 52 /* operation code for \.{length} */
4831 @d turning_op 53 /* operation code for \.{turningnumber} */
4832 @d color_model_part 54 /* operation code for \.{colormodel} */
4833 @d x_part 55 /* operation code for \.{xpart} */
4834 @d y_part 56 /* operation code for \.{ypart} */
4835 @d xx_part 57 /* operation code for \.{xxpart} */
4836 @d xy_part 58 /* operation code for \.{xypart} */
4837 @d yx_part 59 /* operation code for \.{yxpart} */
4838 @d yy_part 60 /* operation code for \.{yypart} */
4839 @d red_part 61 /* operation code for \.{redpart} */
4840 @d green_part 62 /* operation code for \.{greenpart} */
4841 @d blue_part 63 /* operation code for \.{bluepart} */
4842 @d cyan_part 64 /* operation code for \.{cyanpart} */
4843 @d magenta_part 65 /* operation code for \.{magentapart} */
4844 @d yellow_part 66 /* operation code for \.{yellowpart} */
4845 @d black_part 67 /* operation code for \.{blackpart} */
4846 @d grey_part 68 /* operation code for \.{greypart} */
4847 @d font_part 69 /* operation code for \.{fontpart} */
4848 @d text_part 70 /* operation code for \.{textpart} */
4849 @d path_part 71 /* operation code for \.{pathpart} */
4850 @d pen_part 72 /* operation code for \.{penpart} */
4851 @d dash_part 73 /* operation code for \.{dashpart} */
4852 @d sqrt_op 74 /* operation code for \.{sqrt} */
4853 @d mp_m_exp_op 75 /* operation code for \.{mexp} */
4854 @d mp_m_log_op 76 /* operation code for \.{mlog} */
4855 @d sin_d_op 77 /* operation code for \.{sind} */
4856 @d cos_d_op 78 /* operation code for \.{cosd} */
4857 @d floor_op 79 /* operation code for \.{floor} */
4858 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4859 @d char_exists_op 81 /* operation code for \.{charexists} */
4860 @d font_size 82 /* operation code for \.{fontsize} */
4861 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4862 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4863 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4864 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4865 @d arc_length 87 /* operation code for \.{arclength} */
4866 @d angle_op 88 /* operation code for \.{angle} */
4867 @d cycle_op 89 /* operation code for \.{cycle} */
4868 @d filled_op 90 /* operation code for \.{filled} */
4869 @d stroked_op 91 /* operation code for \.{stroked} */
4870 @d textual_op 92 /* operation code for \.{textual} */
4871 @d clipped_op 93 /* operation code for \.{clipped} */
4872 @d bounded_op 94 /* operation code for \.{bounded} */
4873 @d plus 95 /* operation code for \.+ */
4874 @d minus 96 /* operation code for \.- */
4875 @d times 97 /* operation code for \.* */
4876 @d over 98 /* operation code for \./ */
4877 @d pythag_add 99 /* operation code for \.{++} */
4878 @d pythag_sub 100 /* operation code for \.{+-+} */
4879 @d or_op 101 /* operation code for \.{or} */
4880 @d and_op 102 /* operation code for \.{and} */
4881 @d less_than 103 /* operation code for \.< */
4882 @d less_or_equal 104 /* operation code for \.{<=} */
4883 @d greater_than 105 /* operation code for \.> */
4884 @d greater_or_equal 106 /* operation code for \.{>=} */
4885 @d equal_to 107 /* operation code for \.= */
4886 @d unequal_to 108 /* operation code for \.{<>} */
4887 @d concatenate 109 /* operation code for \.\& */
4888 @d rotated_by 110 /* operation code for \.{rotated} */
4889 @d slanted_by 111 /* operation code for \.{slanted} */
4890 @d scaled_by 112 /* operation code for \.{scaled} */
4891 @d shifted_by 113 /* operation code for \.{shifted} */
4892 @d transformed_by 114 /* operation code for \.{transformed} */
4893 @d x_scaled 115 /* operation code for \.{xscaled} */
4894 @d y_scaled 116 /* operation code for \.{yscaled} */
4895 @d z_scaled 117 /* operation code for \.{zscaled} */
4896 @d in_font 118 /* operation code for \.{infont} */
4897 @d intersect 119 /* operation code for \.{intersectiontimes} */
4898 @d double_dot 120 /* operation code for improper \.{..} */
4899 @d substring_of 121 /* operation code for \.{substring} */
4900 @d min_of substring_of
4901 @d subpath_of 122 /* operation code for \.{subpath} */
4902 @d direction_time_of 123 /* operation code for \.{directiontime} */
4903 @d point_of 124 /* operation code for \.{point} */
4904 @d precontrol_of 125 /* operation code for \.{precontrol} */
4905 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4906 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4907 @d arc_time_of 128 /* operation code for \.{arctime} */
4908 @d mp_version 129 /* operation code for \.{mpversion} */
4909 @d envelope_of 130 /* operation code for \.{envelope} */
4911 @c static void mp_print_op (MP mp,quarterword c) {
4912 if (c<=mp_numeric_type ) {
4913 mp_print_type(mp, c);
4916 case true_code:mp_print(mp, "true"); break;
4917 case false_code:mp_print(mp, "false"); break;
4918 case null_picture_code:mp_print(mp, "nullpicture"); break;
4919 case null_pen_code:mp_print(mp, "nullpen"); break;
4920 case job_name_op:mp_print(mp, "jobname"); break;
4921 case read_string_op:mp_print(mp, "readstring"); break;
4922 case pen_circle:mp_print(mp, "pencircle"); break;
4923 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4924 case read_from_op:mp_print(mp, "readfrom"); break;
4925 case close_from_op:mp_print(mp, "closefrom"); break;
4926 case odd_op:mp_print(mp, "odd"); break;
4927 case known_op:mp_print(mp, "known"); break;
4928 case unknown_op:mp_print(mp, "unknown"); break;
4929 case not_op:mp_print(mp, "not"); break;
4930 case decimal:mp_print(mp, "decimal"); break;
4931 case reverse:mp_print(mp, "reverse"); break;
4932 case make_path_op:mp_print(mp, "makepath"); break;
4933 case make_pen_op:mp_print(mp, "makepen"); break;
4934 case oct_op:mp_print(mp, "oct"); break;
4935 case hex_op:mp_print(mp, "hex"); break;
4936 case ASCII_op:mp_print(mp, "ASCII"); break;
4937 case char_op:mp_print(mp, "char"); break;
4938 case length_op:mp_print(mp, "length"); break;
4939 case turning_op:mp_print(mp, "turningnumber"); break;
4940 case x_part:mp_print(mp, "xpart"); break;
4941 case y_part:mp_print(mp, "ypart"); break;
4942 case xx_part:mp_print(mp, "xxpart"); break;
4943 case xy_part:mp_print(mp, "xypart"); break;
4944 case yx_part:mp_print(mp, "yxpart"); break;
4945 case yy_part:mp_print(mp, "yypart"); break;
4946 case red_part:mp_print(mp, "redpart"); break;
4947 case green_part:mp_print(mp, "greenpart"); break;
4948 case blue_part:mp_print(mp, "bluepart"); break;
4949 case cyan_part:mp_print(mp, "cyanpart"); break;
4950 case magenta_part:mp_print(mp, "magentapart"); break;
4951 case yellow_part:mp_print(mp, "yellowpart"); break;
4952 case black_part:mp_print(mp, "blackpart"); break;
4953 case grey_part:mp_print(mp, "greypart"); break;
4954 case color_model_part:mp_print(mp, "colormodel"); break;
4955 case font_part:mp_print(mp, "fontpart"); break;
4956 case text_part:mp_print(mp, "textpart"); break;
4957 case path_part:mp_print(mp, "pathpart"); break;
4958 case pen_part:mp_print(mp, "penpart"); break;
4959 case dash_part:mp_print(mp, "dashpart"); break;
4960 case sqrt_op:mp_print(mp, "sqrt"); break;
4961 case mp_m_exp_op:mp_print(mp, "mexp"); break;
4962 case mp_m_log_op:mp_print(mp, "mlog"); break;
4963 case sin_d_op:mp_print(mp, "sind"); break;
4964 case cos_d_op:mp_print(mp, "cosd"); break;
4965 case floor_op:mp_print(mp, "floor"); break;
4966 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4967 case char_exists_op:mp_print(mp, "charexists"); break;
4968 case font_size:mp_print(mp, "fontsize"); break;
4969 case ll_corner_op:mp_print(mp, "llcorner"); break;
4970 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4971 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4972 case ur_corner_op:mp_print(mp, "urcorner"); break;
4973 case arc_length:mp_print(mp, "arclength"); break;
4974 case angle_op:mp_print(mp, "angle"); break;
4975 case cycle_op:mp_print(mp, "cycle"); break;
4976 case filled_op:mp_print(mp, "filled"); break;
4977 case stroked_op:mp_print(mp, "stroked"); break;
4978 case textual_op:mp_print(mp, "textual"); break;
4979 case clipped_op:mp_print(mp, "clipped"); break;
4980 case bounded_op:mp_print(mp, "bounded"); break;
4981 case plus:mp_print_char(mp, xord('+')); break;
4982 case minus:mp_print_char(mp, xord('-')); break;
4983 case times:mp_print_char(mp, xord('*')); break;
4984 case over:mp_print_char(mp, xord('/')); break;
4985 case pythag_add:mp_print(mp, "++"); break;
4986 case pythag_sub:mp_print(mp, "+-+"); break;
4987 case or_op:mp_print(mp, "or"); break;
4988 case and_op:mp_print(mp, "and"); break;
4989 case less_than:mp_print_char(mp, xord('<')); break;
4990 case less_or_equal:mp_print(mp, "<="); break;
4991 case greater_than:mp_print_char(mp, xord('>')); break;
4992 case greater_or_equal:mp_print(mp, ">="); break;
4993 case equal_to:mp_print_char(mp, xord('=')); break;
4994 case unequal_to:mp_print(mp, "<>"); break;
4995 case concatenate:mp_print(mp, "&"); break;
4996 case rotated_by:mp_print(mp, "rotated"); break;
4997 case slanted_by:mp_print(mp, "slanted"); break;
4998 case scaled_by:mp_print(mp, "scaled"); break;
4999 case shifted_by:mp_print(mp, "shifted"); break;
5000 case transformed_by:mp_print(mp, "transformed"); break;
5001 case x_scaled:mp_print(mp, "xscaled"); break;
5002 case y_scaled:mp_print(mp, "yscaled"); break;
5003 case z_scaled:mp_print(mp, "zscaled"); break;
5004 case in_font:mp_print(mp, "infont"); break;
5005 case intersect:mp_print(mp, "intersectiontimes"); break;
5006 case substring_of:mp_print(mp, "substring"); break;
5007 case subpath_of:mp_print(mp, "subpath"); break;
5008 case direction_time_of:mp_print(mp, "directiontime"); break;
5009 case point_of:mp_print(mp, "point"); break;
5010 case precontrol_of:mp_print(mp, "precontrol"); break;
5011 case postcontrol_of:mp_print(mp, "postcontrol"); break;
5012 case pen_offset_of:mp_print(mp, "penoffset"); break;
5013 case arc_time_of:mp_print(mp, "arctime"); break;
5014 case mp_version:mp_print(mp, "mpversion"); break;
5015 case envelope_of:mp_print(mp, "envelope"); break;
5016 default: mp_print(mp, ".."); break;
5021 @ \MP\ also has a bunch of internal parameters that a user might want to
5022 fuss with. Every such parameter has an identifying code number, defined here.
5025 enum mp_given_internal {
5026 mp_tracing_titles=1, /* show titles online when they appear */
5027 mp_tracing_equations, /* show each variable when it becomes known */
5028 mp_tracing_capsules, /* show capsules too */
5029 mp_tracing_choices, /* show the control points chosen for paths */
5030 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
5031 mp_tracing_commands, /* show commands and operations before they are performed */
5032 mp_tracing_restores, /* show when a variable or internal is restored */
5033 mp_tracing_macros, /* show macros before they are expanded */
5034 mp_tracing_output, /* show digitized edges as they are output */
5035 mp_tracing_stats, /* show memory usage at end of job */
5036 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
5037 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
5038 mp_year, /* the current year (e.g., 1984) */
5039 mp_month, /* the current month (e.g., 3 $\equiv$ March) */
5040 mp_day, /* the current day of the month */
5041 mp_time, /* the number of minutes past midnight when this job started */
5042 mp_char_code, /* the number of the next character to be output */
5043 mp_char_ext, /* the extension code of the next character to be output */
5044 mp_char_wd, /* the width of the next character to be output */
5045 mp_char_ht, /* the height of the next character to be output */
5046 mp_char_dp, /* the depth of the next character to be output */
5047 mp_char_ic, /* the italic correction of the next character to be output */
5048 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5049 mp_pausing, /* positive to display lines on the terminal before they are read */
5050 mp_showstopping, /* positive to stop after each \&{show} command */
5051 mp_fontmaking, /* positive if font metric output is to be produced */
5052 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5053 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5054 mp_miterlimit, /* controls miter length as in \ps */
5055 mp_warning_check, /* controls error message when variable value is large */
5056 mp_boundary_char, /* the right boundary character for ligatures */
5057 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5058 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5059 mp_default_color_model, /* the default color model for unspecified items */
5060 mp_restore_clip_color,
5061 mp_procset, /* wether or not create PostScript command shortcuts */
5062 mp_gtroffmode /* whether the user specified |-troff| on the command line */
5067 @d max_given_internal mp_gtroffmode
5070 scaled *internal; /* the values of internal quantities */
5071 char **int_name; /* their names */
5072 int int_ptr; /* the maximum internal quantity defined so far */
5073 int max_internal; /* current maximum number of internal quantities */
5075 @ @<Option variables@>=
5078 @ @<Allocate or initialize ...@>=
5079 mp->max_internal=2*max_given_internal;
5080 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5081 memset(mp->internal,0,(mp->max_internal+1)* sizeof(scaled));
5082 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5083 memset(mp->int_name,0,(mp->max_internal+1) * sizeof(char *));
5084 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5086 @ @<Exported function ...@>=
5087 int mp_troff_mode(MP mp);
5090 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5092 @ @<Set initial ...@>=
5093 mp->int_ptr=max_given_internal;
5095 @ The symbolic names for internal quantities are put into \MP's hash table
5096 by using a routine called |primitive|, which will be defined later. Let us
5097 enter them now, so that we don't have to list all those names again
5100 @<Put each of \MP's primitives into the hash table@>=
5101 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5102 @:tracingtitles_}{\&{tracingtitles} primitive@>
5103 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5104 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5105 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5106 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5107 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5108 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5109 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5110 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5111 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5112 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5113 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5114 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5115 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5116 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5117 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5118 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5119 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5120 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5121 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5122 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5123 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5124 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5125 mp_primitive(mp, "year",internal_quantity,mp_year);
5126 @:mp_year_}{\&{year} primitive@>
5127 mp_primitive(mp, "month",internal_quantity,mp_month);
5128 @:mp_month_}{\&{month} primitive@>
5129 mp_primitive(mp, "day",internal_quantity,mp_day);
5130 @:mp_day_}{\&{day} primitive@>
5131 mp_primitive(mp, "time",internal_quantity,mp_time);
5132 @:time_}{\&{time} primitive@>
5133 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5134 @:mp_char_code_}{\&{charcode} primitive@>
5135 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5136 @:mp_char_ext_}{\&{charext} primitive@>
5137 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5138 @:mp_char_wd_}{\&{charwd} primitive@>
5139 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5140 @:mp_char_ht_}{\&{charht} primitive@>
5141 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5142 @:mp_char_dp_}{\&{chardp} primitive@>
5143 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5144 @:mp_char_ic_}{\&{charic} primitive@>
5145 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5146 @:mp_design_size_}{\&{designsize} primitive@>
5147 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5148 @:mp_pausing_}{\&{pausing} primitive@>
5149 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5150 @:mp_showstopping_}{\&{showstopping} primitive@>
5151 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5152 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5153 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5154 @:mp_linejoin_}{\&{linejoin} primitive@>
5155 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5156 @:mp_linecap_}{\&{linecap} primitive@>
5157 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5158 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5159 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5160 @:mp_warning_check_}{\&{warningcheck} primitive@>
5161 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5162 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5163 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5164 @:mp_prologues_}{\&{prologues} primitive@>
5165 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5166 @:mp_true_corners_}{\&{truecorners} primitive@>
5167 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5168 @:mp_procset_}{\&{mpprocset} primitive@>
5169 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5170 @:troffmode_}{\&{troffmode} primitive@>
5171 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5172 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5173 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5174 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5176 @ Colors can be specified in four color models. In the special
5177 case of |no_model|, MetaPost does not output any color operator to
5178 the postscript output.
5180 Note: these values are passed directly on to |with_option|. This only
5181 works because the other possible values passed to |with_option| are
5182 8 and 10 respectively (from |with_pen| and |with_picture|).
5184 There is a first state, that is only used for |gs_colormodel|. It flags
5185 the fact that there has not been any kind of color specification by
5186 the user so far in the game.
5189 enum mp_color_model {
5194 mp_uninitialized_model=9
5198 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5199 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5200 mp->internal[mp_restore_clip_color]=unity;
5202 @ Well, we do have to list the names one more time, for use in symbolic
5205 @<Initialize table...@>=
5206 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5207 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5208 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5209 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5210 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5211 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5212 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5213 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5214 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5215 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5216 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5217 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5218 mp->int_name[mp_year]=xstrdup("year");
5219 mp->int_name[mp_month]=xstrdup("month");
5220 mp->int_name[mp_day]=xstrdup("day");
5221 mp->int_name[mp_time]=xstrdup("time");
5222 mp->int_name[mp_char_code]=xstrdup("charcode");
5223 mp->int_name[mp_char_ext]=xstrdup("charext");
5224 mp->int_name[mp_char_wd]=xstrdup("charwd");
5225 mp->int_name[mp_char_ht]=xstrdup("charht");
5226 mp->int_name[mp_char_dp]=xstrdup("chardp");
5227 mp->int_name[mp_char_ic]=xstrdup("charic");
5228 mp->int_name[mp_design_size]=xstrdup("designsize");
5229 mp->int_name[mp_pausing]=xstrdup("pausing");
5230 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5231 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5232 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5233 mp->int_name[mp_linecap]=xstrdup("linecap");
5234 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5235 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5236 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5237 mp->int_name[mp_prologues]=xstrdup("prologues");
5238 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5239 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5240 mp->int_name[mp_procset]=xstrdup("mpprocset");
5241 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5242 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5244 @ The following procedure, which is called just before \MP\ initializes its
5245 input and output, establishes the initial values of the date and time.
5246 @^system dependencies@>
5248 Note that the values are |scaled| integers. Hence \MP\ can no longer
5249 be used after the year 32767.
5252 static void mp_fix_date_and_time (MP mp) {
5253 time_t aclock = time ((time_t *) 0);
5254 struct tm *tmptr = localtime (&aclock);
5255 mp->internal[mp_time]=
5256 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5257 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5258 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5259 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5263 static void mp_fix_date_and_time (MP mp) ;
5265 @ \MP\ is occasionally supposed to print diagnostic information that
5266 goes only into the transcript file, unless |mp_tracing_online| is positive.
5267 Now that we have defined |mp_tracing_online| we can define
5268 two routines that adjust the destination of print commands:
5271 static void mp_begin_diagnostic (MP mp) ;
5272 static void mp_end_diagnostic (MP mp,boolean blank_line);
5273 static void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) ;
5275 @ @<Basic printing...@>=
5276 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5277 mp->old_setting=mp->selector;
5278 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5280 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5284 void mp_end_diagnostic (MP mp,boolean blank_line) {
5285 /* restore proper conditions after tracing */
5286 mp_print_nl(mp, "");
5287 if ( blank_line ) mp_print_ln(mp);
5288 mp->selector=mp->old_setting;
5294 unsigned int old_setting;
5296 @ We will occasionally use |begin_diagnostic| in connection with line-number
5297 printing, as follows. (The parameter |s| is typically |"Path"| or
5298 |"Cycle spec"|, etc.)
5300 @<Basic printing...@>=
5301 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) {
5302 mp_begin_diagnostic(mp);
5303 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5304 mp_print(mp, " at line ");
5305 mp_print_int(mp, mp_true_line(mp));
5306 mp_print(mp, t); mp_print_char(mp, xord(':'));
5309 @ The 256 |ASCII_code| characters are grouped into classes by means of
5310 the |char_class| table. Individual class numbers have no semantic
5311 or syntactic significance, except in a few instances defined here.
5312 There's also |max_class|, which can be used as a basis for additional
5313 class numbers in nonstandard extensions of \MP.
5315 @d digit_class 0 /* the class number of \.{0123456789} */
5316 @d period_class 1 /* the class number of `\..' */
5317 @d space_class 2 /* the class number of spaces and nonstandard characters */
5318 @d percent_class 3 /* the class number of `\.\%' */
5319 @d string_class 4 /* the class number of `\."' */
5320 @d right_paren_class 8 /* the class number of `\.)' */
5321 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5322 @d letter_class 9 /* letters and the underline character */
5323 @d left_bracket_class 17 /* `\.[' */
5324 @d right_bracket_class 18 /* `\.]' */
5325 @d invalid_class 20 /* bad character in the input */
5326 @d max_class 20 /* the largest class number */
5329 int char_class[256]; /* the class numbers */
5331 @ If changes are made to accommodate non-ASCII character sets, they should
5332 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5333 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5334 @^system dependencies@>
5336 @<Set initial ...@>=
5337 for (k='0';k<='9';k++)
5338 mp->char_class[k]=digit_class;
5339 mp->char_class['.']=period_class;
5340 mp->char_class[' ']=space_class;
5341 mp->char_class['%']=percent_class;
5342 mp->char_class['"']=string_class;
5343 mp->char_class[',']=5;
5344 mp->char_class[';']=6;
5345 mp->char_class['(']=7;
5346 mp->char_class[')']=right_paren_class;
5347 for (k='A';k<= 'Z';k++ )
5348 mp->char_class[k]=letter_class;
5349 for (k='a';k<='z';k++)
5350 mp->char_class[k]=letter_class;
5351 mp->char_class['_']=letter_class;
5352 mp->char_class['<']=10;
5353 mp->char_class['=']=10;
5354 mp->char_class['>']=10;
5355 mp->char_class[':']=10;
5356 mp->char_class['|']=10;
5357 mp->char_class['`']=11;
5358 mp->char_class['\'']=11;
5359 mp->char_class['+']=12;
5360 mp->char_class['-']=12;
5361 mp->char_class['/']=13;
5362 mp->char_class['*']=13;
5363 mp->char_class['\\']=13;
5364 mp->char_class['!']=14;
5365 mp->char_class['?']=14;
5366 mp->char_class['#']=15;
5367 mp->char_class['&']=15;
5368 mp->char_class['@@']=15;
5369 mp->char_class['$']=15;
5370 mp->char_class['^']=16;
5371 mp->char_class['~']=16;
5372 mp->char_class['[']=left_bracket_class;
5373 mp->char_class[']']=right_bracket_class;
5374 mp->char_class['{']=19;
5375 mp->char_class['}']=19;
5377 mp->char_class[k]=invalid_class;
5378 mp->char_class['\t']=space_class;
5379 mp->char_class['\f']=space_class;
5380 for (k=127;k<=255;k++)
5381 mp->char_class[k]=invalid_class;
5383 @* \[13] The hash table.
5384 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5385 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5386 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5387 table, it is never removed.
5389 The actual sequence of characters forming a symbolic token is
5390 stored in the |str_pool| array together with all the other strings. An
5391 auxiliary array |hash| consists of items with two halfword fields per
5392 word. The first of these, called |mp_next(p)|, points to the next identifier
5393 belonging to the same coalesced list as the identifier corresponding to~|p|;
5394 and the other, called |text(p)|, points to the |str_start| entry for
5395 |p|'s identifier. If position~|p| of the hash table is empty, we have
5396 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5397 hash list, we have |mp_next(p)=0|.
5399 An auxiliary pointer variable called |hash_used| is maintained in such a
5400 way that all locations |p>=hash_used| are nonempty. The global variable
5401 |st_count| tells how many symbolic tokens have been defined, if statistics
5404 The first 256 locations of |hash| are reserved for symbols of length one.
5406 There's a parallel array called |eqtb| that contains the current equivalent
5407 values of each symbolic token. The entries of this array consist of
5408 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5409 piece of information that qualifies the |eq_type|).
5411 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5412 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5413 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5416 #define mp_next(A) mp->hash[(A)].lh /* link for coalesced lists */
5417 #define text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5418 #define hash_base 257 /* hashing actually starts here */
5421 pointer hash_used; /* allocation pointer for |hash| */
5422 integer st_count; /* total number of known identifiers */
5424 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5425 since they are used in error recovery.
5428 #define hash_top (integer)(hash_base+mp->hash_size) /* the first location of the frozen area */
5429 #define frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5430 #define frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5431 #define frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5432 #define frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5433 #define frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5434 #define frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5435 #define frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5436 #define frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5437 #define frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5438 #define frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5439 #define frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5440 #define frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5441 #define frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5442 #define frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5443 #define frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5444 #define hash_end (integer)(hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5448 two_halves *hash; /* the hash table */
5449 two_halves *eqtb; /* the equivalents */
5451 @ @<Allocate or initialize ...@>=
5452 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5453 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5455 @ @<Dealloc variables@>=
5460 mp_next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5461 for (k=2;k<=hash_end;k++) {
5462 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5465 @ @<Initialize table entries...@>=
5466 mp->hash_used=frozen_inaccessible; /* nothing is used */
5468 text(frozen_bad_vardef)=intern("a bad variable");
5469 text(frozen_etex)=intern("etex");
5470 text(frozen_mpx_break)=intern("mpxbreak");
5471 text(frozen_fi)=intern("fi");
5472 text(frozen_end_group)=intern("endgroup");
5473 text(frozen_end_def)=intern("enddef");
5474 text(frozen_end_for)=intern("endfor");
5475 text(frozen_semicolon)=intern(";");
5476 text(frozen_colon)=intern(":");
5477 text(frozen_slash)=intern("/");
5478 text(frozen_left_bracket)=intern("[");
5479 text(frozen_right_delimiter)=intern(")");
5480 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5481 eq_type(frozen_right_delimiter)=right_delimiter;
5483 @ @<Check the ``constant'' values...@>=
5484 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5486 @ Here is the subroutine that searches the hash table for an identifier
5487 that matches a given string of length~|l| appearing in |buffer[j..
5488 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5489 will always be found, and the corresponding hash table address
5493 static pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5494 integer h; /* hash code */
5495 pointer p; /* index in |hash| array */
5496 pointer k; /* index in |buffer| array */
5498 @<Treat special case of length 1 and |break|@>;
5500 @<Compute the hash code |h|@>;
5501 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5503 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5505 if ( mp_next(p)==0 ) {
5506 @<Insert a new symbolic token after |p|, then
5507 make |p| point to it and |break|@>;
5514 @ @<Treat special case of length 1...@>=
5515 p=mp->buffer[j]+1; text(p)=p-1; return p;
5518 @ @<Insert a new symbolic...@>=
5523 mp_overflow(mp, "hash size",(integer)mp->hash_size);
5524 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5525 decr(mp->hash_used);
5526 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5527 mp_next(p)=mp->hash_used;
5531 for (k=j;k<=j+l-1;k++) {
5532 append_char(mp->buffer[k]);
5534 text(p)=mp_make_string(mp);
5535 mp->str_ref[text(p)]=max_str_ref;
5541 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5542 should be a prime number. The theory of hashing tells us to expect fewer
5543 than two table probes, on the average, when the search is successful.
5544 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5545 @^Vitter, Jeffrey Scott@>
5547 @<Compute the hash code |h|@>=
5549 for (k=j+1;k<=j+l-1;k++){
5550 h=h+h+mp->buffer[k];
5551 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5554 @ @<Search |eqtb| for equivalents equal to |p|@>=
5555 for (q=1;q<=hash_end;q++) {
5556 if ( equiv(q)==p ) {
5557 mp_print_nl(mp, "EQUIV(");
5558 mp_print_int(mp, q);
5559 mp_print_char(mp, xord(')'));
5563 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5564 table, together with their command code (which will be the |eq_type|)
5565 and an operand (which will be the |equiv|). The |primitive| procedure
5566 does this, in a way that no \MP\ user can. The global value |cur_sym|
5567 contains the new |eqtb| pointer after |primitive| has acted.
5570 static void mp_primitive (MP mp, const char *ss, halfword c, halfword o) {
5571 pool_pointer k; /* index into |str_pool| */
5572 quarterword j; /* index into |buffer| */
5573 quarterword l; /* length of the string */
5576 k=mp->str_start[s]; l=str_stop(s)-k;
5577 /* we will move |s| into the (empty) |buffer| */
5578 for (j=0;j<=l-1;j++) {
5579 mp->buffer[j]=mp->str_pool[k+j];
5581 mp->cur_sym=mp_id_lookup(mp, 0,l);
5582 if ( s>=256 ) { /* we don't want to have the string twice */
5583 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5585 eq_type(mp->cur_sym)=c;
5586 equiv(mp->cur_sym)=o;
5590 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5591 by their |eq_type| alone. These primitives are loaded into the hash table
5594 @<Put each of \MP's primitives into the hash table@>=
5595 mp_primitive(mp, "..",path_join,0);
5596 @:.._}{\.{..} primitive@>
5597 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5598 @:[ }{\.{[} primitive@>
5599 mp_primitive(mp, "]",right_bracket,0);
5600 @:] }{\.{]} primitive@>
5601 mp_primitive(mp, "}",right_brace,0);
5602 @:]]}{\.{\char`\}} primitive@>
5603 mp_primitive(mp, "{",left_brace,0);
5604 @:][}{\.{\char`\{} primitive@>
5605 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5606 @:: }{\.{:} primitive@>
5607 mp_primitive(mp, "::",double_colon,0);
5608 @::: }{\.{::} primitive@>
5609 mp_primitive(mp, "||:",bchar_label,0);
5610 @:::: }{\.{\char'174\char'174:} primitive@>
5611 mp_primitive(mp, ":=",assignment,0);
5612 @::=_}{\.{:=} primitive@>
5613 mp_primitive(mp, ",",comma,0);
5614 @:, }{\., primitive@>
5615 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5616 @:; }{\.; primitive@>
5617 mp_primitive(mp, "\\",relax,0);
5618 @:]]\\}{\.{\char`\\} primitive@>
5620 mp_primitive(mp, "addto",add_to_command,0);
5621 @:add_to_}{\&{addto} primitive@>
5622 mp_primitive(mp, "atleast",at_least,0);
5623 @:at_least_}{\&{atleast} primitive@>
5624 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5625 @:begin_group_}{\&{begingroup} primitive@>
5626 mp_primitive(mp, "controls",controls,0);
5627 @:controls_}{\&{controls} primitive@>
5628 mp_primitive(mp, "curl",curl_command,0);
5629 @:curl_}{\&{curl} primitive@>
5630 mp_primitive(mp, "delimiters",delimiters,0);
5631 @:delimiters_}{\&{delimiters} primitive@>
5632 mp_primitive(mp, "endgroup",end_group,0);
5633 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5634 @:endgroup_}{\&{endgroup} primitive@>
5635 mp_primitive(mp, "everyjob",every_job_command,0);
5636 @:every_job_}{\&{everyjob} primitive@>
5637 mp_primitive(mp, "exitif",exit_test,0);
5638 @:exit_if_}{\&{exitif} primitive@>
5639 mp_primitive(mp, "expandafter",expand_after,0);
5640 @:expand_after_}{\&{expandafter} primitive@>
5641 mp_primitive(mp, "interim",interim_command,0);
5642 @:interim_}{\&{interim} primitive@>
5643 mp_primitive(mp, "let",let_command,0);
5644 @:let_}{\&{let} primitive@>
5645 mp_primitive(mp, "newinternal",new_internal,0);
5646 @:new_internal_}{\&{newinternal} primitive@>
5647 mp_primitive(mp, "of",of_token,0);
5648 @:of_}{\&{of} primitive@>
5649 mp_primitive(mp, "randomseed",mp_random_seed,0);
5650 @:mp_random_seed_}{\&{randomseed} primitive@>
5651 mp_primitive(mp, "save",save_command,0);
5652 @:save_}{\&{save} primitive@>
5653 mp_primitive(mp, "scantokens",scan_tokens,0);
5654 @:scan_tokens_}{\&{scantokens} primitive@>
5655 mp_primitive(mp, "shipout",ship_out_command,0);
5656 @:ship_out_}{\&{shipout} primitive@>
5657 mp_primitive(mp, "skipto",skip_to,0);
5658 @:skip_to_}{\&{skipto} primitive@>
5659 mp_primitive(mp, "special",special_command,0);
5660 @:special}{\&{special} primitive@>
5661 mp_primitive(mp, "fontmapfile",special_command,1);
5662 @:fontmapfile}{\&{fontmapfile} primitive@>
5663 mp_primitive(mp, "fontmapline",special_command,2);
5664 @:fontmapline}{\&{fontmapline} primitive@>
5665 mp_primitive(mp, "step",step_token,0);
5666 @:step_}{\&{step} primitive@>
5667 mp_primitive(mp, "str",str_op,0);
5668 @:str_}{\&{str} primitive@>
5669 mp_primitive(mp, "tension",tension,0);
5670 @:tension_}{\&{tension} primitive@>
5671 mp_primitive(mp, "to",to_token,0);
5672 @:to_}{\&{to} primitive@>
5673 mp_primitive(mp, "until",until_token,0);
5674 @:until_}{\&{until} primitive@>
5675 mp_primitive(mp, "within",within_token,0);
5676 @:within_}{\&{within} primitive@>
5677 mp_primitive(mp, "write",write_command,0);
5678 @:write_}{\&{write} primitive@>
5680 @ Each primitive has a corresponding inverse, so that it is possible to
5681 display the cryptic numeric contents of |eqtb| in symbolic form.
5682 Every call of |primitive| in this program is therefore accompanied by some
5683 straightforward code that forms part of the |print_cmd_mod| routine
5686 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5687 case add_to_command:mp_print(mp, "addto"); break;
5688 case assignment:mp_print(mp, ":="); break;
5689 case at_least:mp_print(mp, "atleast"); break;
5690 case bchar_label:mp_print(mp, "||:"); break;
5691 case begin_group:mp_print(mp, "begingroup"); break;
5692 case colon:mp_print(mp, ":"); break;
5693 case comma:mp_print(mp, ","); break;
5694 case controls:mp_print(mp, "controls"); break;
5695 case curl_command:mp_print(mp, "curl"); break;
5696 case delimiters:mp_print(mp, "delimiters"); break;
5697 case double_colon:mp_print(mp, "::"); break;
5698 case end_group:mp_print(mp, "endgroup"); break;
5699 case every_job_command:mp_print(mp, "everyjob"); break;
5700 case exit_test:mp_print(mp, "exitif"); break;
5701 case expand_after:mp_print(mp, "expandafter"); break;
5702 case interim_command:mp_print(mp, "interim"); break;
5703 case left_brace:mp_print(mp, "{"); break;
5704 case left_bracket:mp_print(mp, "["); break;
5705 case let_command:mp_print(mp, "let"); break;
5706 case new_internal:mp_print(mp, "newinternal"); break;
5707 case of_token:mp_print(mp, "of"); break;
5708 case path_join:mp_print(mp, ".."); break;
5709 case mp_random_seed:mp_print(mp, "randomseed"); break;
5710 case relax:mp_print_char(mp, xord('\\')); break;
5711 case right_brace:mp_print_char(mp, xord('}')); break;
5712 case right_bracket:mp_print_char(mp, xord(']')); break;
5713 case save_command:mp_print(mp, "save"); break;
5714 case scan_tokens:mp_print(mp, "scantokens"); break;
5715 case semicolon:mp_print_char(mp, xord(';')); break;
5716 case ship_out_command:mp_print(mp, "shipout"); break;
5717 case skip_to:mp_print(mp, "skipto"); break;
5718 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5719 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5720 mp_print(mp, "special"); break;
5721 case step_token:mp_print(mp, "step"); break;
5722 case str_op:mp_print(mp, "str"); break;
5723 case tension:mp_print(mp, "tension"); break;
5724 case to_token:mp_print(mp, "to"); break;
5725 case until_token:mp_print(mp, "until"); break;
5726 case within_token:mp_print(mp, "within"); break;
5727 case write_command:mp_print(mp, "write"); break;
5729 @ We will deal with the other primitives later, at some point in the program
5730 where their |eq_type| and |equiv| values are more meaningful. For example,
5731 the primitives for macro definitions will be loaded when we consider the
5732 routines that define macros.
5733 It is easy to find where each particular
5734 primitive was treated by looking in the index at the end; for example, the
5735 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5737 @* \[14] Token lists.
5738 A \MP\ token is either symbolic or numeric or a string, or it denotes
5739 a macro parameter or capsule; so there are five corresponding ways to encode it
5741 internally: (1)~A symbolic token whose hash code is~|p|
5742 is represented by the number |p|, in the |info| field of a single-word
5743 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5744 represented in a two-word node of~|mem|; the |type| field is |known|,
5745 the |name_type| field is |token|, and the |value| field holds~|v|.
5746 The fact that this token appears in a two-word node rather than a
5747 one-word node is, of course, clear from the node address.
5748 (3)~A string token is also represented in a two-word node; the |type|
5749 field is |mp_string_type|, the |name_type| field is |token|, and the
5750 |value| field holds the corresponding |str_number|. (4)~Capsules have
5751 |name_type=capsule|, and their |type| and |value| fields represent
5752 arbitrary values (in ways to be explained later). (5)~Macro parameters
5753 are like symbolic tokens in that they appear in |info| fields of
5754 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5755 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5756 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5757 Actual values of these parameters are kept in a separate stack, as we will
5758 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5759 of course, chosen so that there will be no confusion between symbolic
5760 tokens and parameters of various types.
5763 the `\\{type}' field of a node has nothing to do with ``type'' in a
5764 printer's sense. It's curious that the same word is used in such different ways.
5766 @d mp_type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5767 @d mp_name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5768 @d token_node_size 2 /* the number of words in a large token node */
5769 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5770 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5771 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5772 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5773 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5775 @<Check the ``constant''...@>=
5776 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5778 @ We have set aside a two word node beginning at |null| so that we can have
5779 |value(null)=0|. We will make use of this coincidence later.
5781 @<Initialize table entries...@>=
5782 mp_link(null)=null; value(null)=0;
5784 @ A numeric token is created by the following trivial routine.
5787 static pointer mp_new_num_tok (MP mp,scaled v) {
5788 pointer p; /* the new node */
5789 p=mp_get_node(mp, token_node_size); value(p)=v;
5790 mp_type(p)=mp_known; mp_name_type(p)=mp_token;
5794 @ A token list is a singly linked list of nodes in |mem|, where
5795 each node contains a token and a link. Here's a subroutine that gets rid
5796 of a token list when it is no longer needed.
5798 @c static void mp_flush_token_list (MP mp,pointer p) {
5799 pointer q; /* the node being recycled */
5802 if ( q>=mp->hi_mem_min ) {
5805 switch (mp_type(q)) {
5806 case mp_vacuous: case mp_boolean_type: case mp_known:
5808 case mp_string_type:
5809 delete_str_ref(value(q));
5811 case unknown_types: case mp_pen_type: case mp_path_type:
5812 case mp_picture_type: case mp_pair_type: case mp_color_type:
5813 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5814 case mp_proto_dependent: case mp_independent:
5815 mp_recycle_value(mp,q);
5817 default: mp_confusion(mp, "token");
5818 @:this can't happen token}{\quad token@>
5820 mp_free_node(mp, q,token_node_size);
5825 @ The procedure |show_token_list|, which prints a symbolic form of
5826 the token list that starts at a given node |p|, illustrates these
5827 conventions. The token list being displayed should not begin with a reference
5828 count. However, the procedure is intended to be fairly robust, so that if the
5829 memory links are awry or if |p| is not really a pointer to a token list,
5830 almost nothing catastrophic can happen.
5832 An additional parameter |q| is also given; this parameter is either null
5833 or it points to a node in the token list where a certain magic computation
5834 takes place that will be explained later. (Basically, |q| is non-null when
5835 we are printing the two-line context information at the time of an error
5836 message; |q| marks the place corresponding to where the second line
5839 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5840 of printing exceeds a given limit~|l|; the length of printing upon entry is
5841 assumed to be a given amount called |null_tally|. (Note that
5842 |show_token_list| sometimes uses itself recursively to print
5843 variable names within a capsule.)
5846 Unusual entries are printed in the form of all-caps tokens
5847 preceded by a space, e.g., `\.{\char`\ BAD}'.
5850 static void mp_show_token_list (MP mp, integer p, integer q, integer l,
5851 integer null_tally) ;
5854 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5855 integer null_tally) {
5856 quarterword class,c; /* the |char_class| of previous and new tokens */
5857 integer r,v; /* temporary registers */
5858 class=percent_class;
5859 mp->tally=null_tally;
5860 while ( (p!=null) && (mp->tally<l) ) {
5862 @<Do magic computation@>;
5863 @<Display token |p| and set |c| to its class;
5864 but |return| if there are problems@>;
5865 class=c; p=mp_link(p);
5868 mp_print(mp, " ETC.");
5873 @ @<Display token |p| and set |c| to its class...@>=
5874 c=letter_class; /* the default */
5875 if ( (p<0)||(p>mp->mem_end) ) {
5876 mp_print(mp, " CLOBBERED"); return;
5879 if ( p<mp->hi_mem_min ) {
5880 @<Display two-word token@>;
5883 if ( r>=expr_base ) {
5884 @<Display a parameter token@>;
5888 @<Display a collective subscript@>
5890 mp_print(mp, " IMPOSSIBLE");
5895 if ( (r<0)||(r>mp->max_str_ptr) ) {
5896 mp_print(mp, " NONEXISTENT");
5899 @<Print string |r| as a symbolic token
5900 and set |c| to its class@>;
5906 @ @<Display two-word token@>=
5907 if ( mp_name_type(p)==mp_token ) {
5908 if ( mp_type(p)==mp_known ) {
5909 @<Display a numeric token@>;
5910 } else if ( mp_type(p)!=mp_string_type ) {
5911 mp_print(mp, " BAD");
5914 mp_print_char(mp, xord('"')); mp_print_str(mp, value(p)); mp_print_char(mp, xord('"'));
5917 } else if ((mp_name_type(p)!=mp_capsule)||(mp_type(p)<mp_vacuous)||(mp_type(p)>mp_independent) ) {
5918 mp_print(mp, " BAD");
5920 mp_print_capsule(mp,p); c=right_paren_class;
5923 @ @<Display a numeric token@>=
5924 if ( class==digit_class )
5925 mp_print_char(mp, xord(' '));
5928 if ( class==left_bracket_class )
5929 mp_print_char(mp, xord(' '));
5930 mp_print_char(mp, xord('[')); mp_print_scaled(mp, v); mp_print_char(mp, xord(']'));
5931 c=right_bracket_class;
5933 mp_print_scaled(mp, v); c=digit_class;
5937 @ Strictly speaking, a genuine token will never have |mp_info(p)=0|.
5938 But we will see later (in the |print_variable_name| routine) that
5939 it is convenient to let |mp_info(p)=0| stand for `\.{[]}'.
5941 @<Display a collective subscript@>=
5943 if ( class==left_bracket_class )
5944 mp_print_char(mp, xord(' '));
5945 mp_print(mp, "[]"); c=right_bracket_class;
5948 @ @<Display a parameter token@>=
5950 if ( r<suffix_base ) {
5951 mp_print(mp, "(EXPR"); r=r-(expr_base);
5953 } else if ( r<text_base ) {
5954 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5957 mp_print(mp, "(TEXT"); r=r-(text_base);
5960 mp_print_int(mp, r); mp_print_char(mp, xord(')')); c=right_paren_class;
5964 @ @<Print string |r| as a symbolic token...@>=
5966 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5969 case letter_class:mp_print_char(mp, xord('.')); break;
5970 case isolated_classes: break;
5971 default: mp_print_char(mp, xord(' ')); break;
5974 mp_print_str(mp, r);
5978 static void mp_print_capsule (MP mp, pointer p);
5980 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5981 void mp_print_capsule (MP mp, pointer p) {
5982 mp_print_char(mp, xord('(')); mp_print_exp(mp,p,0); mp_print_char(mp, xord(')'));
5985 @ Macro definitions are kept in \MP's memory in the form of token lists
5986 that have a few extra one-word nodes at the beginning.
5988 The first node contains a reference count that is used to tell when the
5989 list is no longer needed. To emphasize the fact that a reference count is
5990 present, we shall refer to the |info| field of this special node as the
5992 @^reference counts@>
5994 The next node or nodes after the reference count serve to describe the
5995 formal parameters. They consist of zero or more parameter tokens followed
5996 by a code for the type of macro.
5998 @d ref_count mp_info
5999 /* reference count preceding a macro definition or picture header */
6000 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
6001 @d general_macro 0 /* preface to a macro defined with a parameter list */
6002 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
6003 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
6004 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
6005 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
6006 @d of_macro 5 /* preface to a macro with
6007 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
6008 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
6009 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
6012 static void mp_delete_mac_ref (MP mp,pointer p) {
6013 /* |p| points to the reference count of a macro list that is
6014 losing one reference */
6015 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
6016 else decr(ref_count(p));
6019 @ The following subroutine displays a macro, given a pointer to its
6023 static void mp_show_macro (MP mp, pointer p, integer q, integer l) {
6024 pointer r; /* temporary storage */
6025 p=mp_link(p); /* bypass the reference count */
6026 while ( mp_info(p)>text_macro ){
6027 r=mp_link(p); mp_link(p)=null;
6028 mp_show_token_list(mp, p,null,l,0); mp_link(p)=r; p=r;
6029 if ( l>0 ) l=l-mp->tally; else return;
6030 } /* control printing of `\.{ETC.}' */
6033 switch(mp_info(p)) {
6034 case general_macro:mp_print(mp, "->"); break;
6036 case primary_macro: case secondary_macro: case tertiary_macro:
6037 mp_print_char(mp, xord('<'));
6038 mp_print_cmd_mod(mp, param_type,mp_info(p));
6039 mp_print(mp, ">->");
6041 case expr_macro:mp_print(mp, "<expr>->"); break;
6042 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
6043 case suffix_macro:mp_print(mp, "<suffix>->"); break;
6044 case text_macro:mp_print(mp, "<text>->"); break;
6045 } /* there are no other cases */
6046 mp_show_token_list(mp, mp_link(p),q,l-mp->tally,0);
6049 @* \[15] Data structures for variables.
6050 The variables of \MP\ programs can be simple, like `\.x', or they can
6051 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6052 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6053 example, `\.{boolean} \.{x[]a.b}'. It's time for us to study how such
6054 things are represented inside of the computer.
6056 Each variable value occupies two consecutive words, either in a two-word
6057 node called a value node, or as a two-word subfield of a larger node. One
6058 of those two words is called the |value| field; it is an integer,
6059 containing either a |scaled| numeric value or the representation of some
6060 other type of quantity. (It might also be subdivided into halfwords, in
6061 which case it is referred to by other names instead of |value|.) The other
6062 word is broken into subfields called |type|, |name_type|, and |link|. The
6063 |type| field is a quarterword that specifies the variable's type, and
6064 |name_type| is a quarterword from which \MP\ can reconstruct the
6065 variable's name (sometimes by using the |link| field as well). Thus, only
6066 1.25 words are actually devoted to the value itself; the other
6067 three-quarters of a word are overhead, but they aren't wasted because they
6068 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6070 In this section we shall be concerned only with the structural aspects of
6071 variables, not their values. Later parts of the program will change the
6072 |type| and |value| fields, but we shall treat those fields as black boxes
6073 whose contents should not be touched.
6075 However, if the |type| field is |mp_structured|, there is no |value| field,
6076 and the second word is broken into two pointer fields called |attr_head|
6077 and |subscr_head|. Those fields point to additional nodes that
6078 contain structural information, as we shall see.
6080 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6081 @d attr_head(A) mp_info(subscr_head_loc((A))) /* pointer to attribute info */
6082 @d subscr_head(A) mp_link(subscr_head_loc((A))) /* pointer to subscript info */
6083 @d value_node_size 2 /* the number of words in a value node */
6085 @ An attribute node is three words long. Two of these words contain |type|
6086 and |value| fields as described above, and the third word contains
6087 additional information: There is an |attr_loc| field, which contains the
6088 hash address of the token that names this attribute; and there's also a
6089 |parent| field, which points to the value node of |mp_structured| type at the
6090 next higher level (i.e., at the level to which this attribute is
6091 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6092 |link| field points to the next attribute with the same parent; these are
6093 arranged in increasing order, so that |attr_loc(mp_link(p))>attr_loc(p)|. The
6094 final attribute node links to the constant |end_attr|, whose |attr_loc|
6095 field is greater than any legal hash address. The |attr_head| in the
6096 parent points to a node whose |name_type| is |mp_structured_root|; this
6097 node represents the null attribute, i.e., the variable that is relevant
6098 when no attributes are attached to the parent. The |attr_head| node
6099 has the fields of either
6100 a value node, a subscript node, or an attribute node, depending on what
6101 the parent would be if it were not structured; but the subscript and
6102 attribute fields are ignored, so it effectively contains only the data of
6103 a value node. The |link| field in this special node points to an attribute
6104 node whose |attr_loc| field is zero; the latter node represents a collective
6105 subscript `\.{[]}' attached to the parent, and its |link| field points to
6106 the first non-special attribute node (or to |end_attr| if there are none).
6108 A subscript node likewise occupies three words, with |type| and |value| fields
6109 plus extra information; its |name_type| is |subscr|. In this case the
6110 third word is called the |subscript| field, which is a |scaled| integer.
6111 The |link| field points to the subscript node with the next larger
6112 subscript, if any; otherwise the |link| points to the attribute node
6113 for collective subscripts at this level. We have seen that the latter node
6114 contains an upward pointer, so that the parent can be deduced.
6116 The |name_type| in a parent-less value node is |root|, and the |link|
6117 is the hash address of the token that names this value.
6119 In other words, variables have a hierarchical structure that includes
6120 enough threads running around so that the program is able to move easily
6121 between siblings, parents, and children. An example should be helpful:
6122 (The reader is advised to draw a picture while reading the following
6123 description, since that will help to firm up the ideas.)
6124 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6125 and `\.{x20b}' have been mentioned in a user's program, where
6126 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6127 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6128 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6129 node with |mp_name_type(p)=root| and |mp_link(p)=h(x)|. We have |type(p)=mp_structured|,
6130 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6131 node and |r| to a subscript node. (Are you still following this? Use
6132 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6133 |type(q)| and |value(q)|; furthermore
6134 |mp_name_type(q)=mp_structured_root| and |mp_link(q)=q1|, where |q1| points
6135 to an attribute node representing `\.{x[]}'. Thus |mp_name_type(q1)=attr|,
6136 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6137 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6138 |qq| is a three-word ``attribute-as-value'' node with |type(qq)=numeric_type|
6139 (assuming that \.{x5} is numeric, because |qq| represents `\.{x[]}'
6140 with no further attributes), |mp_name_type(qq)=structured_root|,
6141 |attr_loc(qq)=0|, |parent(qq)=p|, and
6142 |mp_link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6143 an attribute node representing `\.{x[][]}', which has never yet
6144 occurred; its |type| field is |undefined|, and its |value| field is
6145 undefined. We have |mp_name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6146 |parent(qq1)=q1|, and |mp_link(qq1)=qq2|. Since |qq2| represents
6147 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6148 |parent(qq2)=q1|, |mp_name_type(qq2)=attr|, |mp_link(qq2)=end_attr|.
6149 (Maybe colored lines will help untangle your picture.)
6150 Node |r| is a subscript node with |type| and |value|
6151 representing `\.{x5}'; |mp_name_type(r)=subscr|, |subscript(r)=5.0|,
6152 and |mp_link(r)=r1| is another subscript node. To complete the picture,
6153 see if you can guess what |mp_link(r1)| is; give up? It's~|q1|.
6154 Furthermore |subscript(r1)=20.0|, |mp_name_type(r1)=subscr|,
6155 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6156 and we finish things off with three more nodes
6157 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6158 with a larger sheet of paper.) The value of variable \.{x20b}
6159 appears in node~|qqq2|, as you can well imagine.
6161 If the example in the previous paragraph doesn't make things crystal
6162 clear, a glance at some of the simpler subroutines below will reveal how
6163 things work out in practice.
6165 The only really unusual thing about these conventions is the use of
6166 collective subscript attributes. The idea is to avoid repeating a lot of
6167 type information when many elements of an array are identical macros
6168 (for which distinct values need not be stored) or when they don't have
6169 all of the possible attributes. Branches of the structure below collective
6170 subscript attributes do not carry actual values except for macro identifiers;
6171 branches of the structure below subscript nodes do not carry significant
6172 information in their collective subscript attributes.
6174 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6175 @d attr_loc(A) mp_info(attr_loc_loc((A))) /* hash address of this attribute */
6176 @d parent(A) mp_link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6177 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6178 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6179 @d attr_node_size 3 /* the number of words in an attribute node */
6180 @d subscr_node_size 3 /* the number of words in a subscript node */
6181 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6183 @<Initialize table...@>=
6184 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6186 @ Variables of type \&{pair} will have values that point to four-word
6187 nodes containing two numeric values. The first of these values has
6188 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6189 the |link| in the first points back to the node whose |value| points
6190 to this four-word node.
6192 Variables of type \&{transform} are similar, but in this case their
6193 |value| points to a 12-word node containing six values, identified by
6194 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6195 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6196 Finally, variables of type \&{color} have 3~values in 6~words
6197 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6199 When an entire structured variable is saved, the |root| indication
6200 is temporarily replaced by |saved_root|.
6202 Some variables have no name; they just are used for temporary storage
6203 while expressions are being evaluated. We call them {\sl capsules}.
6205 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6206 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6207 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6208 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6209 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6210 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6211 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6212 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6213 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6214 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6215 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6216 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6217 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6218 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6220 @d pair_node_size 4 /* the number of words in a pair node */
6221 @d transform_node_size 12 /* the number of words in a transform node */
6222 @d color_node_size 6 /* the number of words in a color node */
6223 @d cmykcolor_node_size 8 /* the number of words in a color node */
6226 quarterword big_node_size[mp_pair_type+1];
6227 quarterword sector0[mp_pair_type+1];
6228 quarterword sector_offset[mp_black_part_sector+1];
6230 @ The |sector0| array gives for each big node type, |name_type| values
6231 for its first subfield; the |sector_offset| array gives for each
6232 |name_type| value, the offset from the first subfield in words;
6233 and the |big_node_size| array gives the size in words for each type of
6237 mp->big_node_size[mp_transform_type]=transform_node_size;
6238 mp->big_node_size[mp_pair_type]=pair_node_size;
6239 mp->big_node_size[mp_color_type]=color_node_size;
6240 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6241 mp->sector0[mp_transform_type]=mp_x_part_sector;
6242 mp->sector0[mp_pair_type]=mp_x_part_sector;
6243 mp->sector0[mp_color_type]=mp_red_part_sector;
6244 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6245 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6246 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6248 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6249 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6251 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6252 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6255 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6256 procedure call |init_big_node(p)| will allocate a pair or transform node
6257 for~|p|. The individual parts of such nodes are initially of type
6261 static void mp_init_big_node (MP mp,pointer p) {
6262 pointer q; /* the new node */
6263 quarterword s; /* its size */
6264 s=mp->big_node_size[mp_type(p)]; q=mp_get_node(mp, s);
6267 @<Make variable |q+s| newly independent@>;
6268 mp_name_type(q+s)=halfp(s)+mp->sector0[mp_type(p)];
6271 mp_link(q)=p; value(p)=q;
6274 @ The |id_transform| function creates a capsule for the
6275 identity transformation.
6278 static pointer mp_id_transform (MP mp) {
6279 pointer p,q,r; /* list manipulation registers */
6280 p=mp_get_node(mp, value_node_size); mp_type(p)=mp_transform_type;
6281 mp_name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6282 r=q+transform_node_size;
6285 mp_type(r)=mp_known; value(r)=0;
6287 value(xx_part_loc(q))=unity;
6288 value(yy_part_loc(q))=unity;
6292 @ Tokens are of type |tag_token| when they first appear, but they point
6293 to |null| until they are first used as the root of a variable.
6294 The following subroutine establishes the root node on such grand occasions.
6297 static void mp_new_root (MP mp,pointer x) {
6298 pointer p; /* the new node */
6299 p=mp_get_node(mp, value_node_size); mp_type(p)=undefined; mp_name_type(p)=mp_root;
6300 mp_link(p)=x; equiv(x)=p;
6303 @ These conventions for variable representation are illustrated by the
6304 |print_variable_name| routine, which displays the full name of a
6305 variable given only a pointer to its two-word value packet.
6308 static void mp_print_variable_name (MP mp, pointer p);
6311 void mp_print_variable_name (MP mp, pointer p) {
6312 pointer q; /* a token list that will name the variable's suffix */
6313 pointer r; /* temporary for token list creation */
6314 while ( mp_name_type(p)>=mp_x_part_sector ) {
6315 @<Preface the output with a part specifier; |return| in the
6316 case of a capsule@>;
6319 while ( mp_name_type(p)>mp_saved_root ) {
6320 @<Ascend one level, pushing a token onto list |q|
6321 and replacing |p| by its parent@>;
6323 r=mp_get_avail(mp); mp_info(r)=mp_link(p); mp_link(r)=q;
6324 if ( mp_name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6326 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6327 mp_flush_token_list(mp, r);
6330 @ @<Ascend one level, pushing a token onto list |q|...@>=
6332 if ( mp_name_type(p)==mp_subscr ) {
6333 r=mp_new_num_tok(mp, subscript(p));
6336 } while (mp_name_type(p)!=mp_attr);
6337 } else if ( mp_name_type(p)==mp_structured_root ) {
6338 p=mp_link(p); goto FOUND;
6340 if ( mp_name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6341 @:this can't happen var}{\quad var@>
6342 r=mp_get_avail(mp); mp_info(r)=attr_loc(p);
6349 @ @<Preface the output with a part specifier...@>=
6350 { switch (mp_name_type(p)) {
6351 case mp_x_part_sector: mp_print_char(mp, xord('x')); break;
6352 case mp_y_part_sector: mp_print_char(mp, xord('y')); break;
6353 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6354 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6355 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6356 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6357 case mp_red_part_sector: mp_print(mp, "red"); break;
6358 case mp_green_part_sector: mp_print(mp, "green"); break;
6359 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6360 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6361 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6362 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6363 case mp_black_part_sector: mp_print(mp, "black"); break;
6364 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6366 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6369 } /* there are no other cases */
6370 mp_print(mp, "part ");
6371 p=mp_link(p-mp->sector_offset[mp_name_type(p)]);
6374 @ The |interesting| function returns |true| if a given variable is not
6375 in a capsule, or if the user wants to trace capsules.
6378 static boolean mp_interesting (MP mp,pointer p) {
6379 quarterword t; /* a |name_type| */
6380 if ( mp->internal[mp_tracing_capsules]>0 ) {
6384 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6385 t=mp_name_type(mp_link(p-mp->sector_offset[t]));
6386 return (t!=mp_capsule);
6390 @ Now here is a subroutine that converts an unstructured type into an
6391 equivalent structured type, by inserting a |mp_structured| node that is
6392 capable of growing. This operation is done only when |mp_name_type(p)=root|,
6393 |subscr|, or |attr|.
6395 The procedure returns a pointer to the new node that has taken node~|p|'s
6396 place in the structure. Node~|p| itself does not move, nor are its
6397 |value| or |type| fields changed in any way.
6400 static pointer mp_new_structure (MP mp,pointer p) {
6401 pointer q,r=0; /* list manipulation registers */
6402 switch (mp_name_type(p)) {
6404 q=mp_link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6407 @<Link a new subscript node |r| in place of node |p|@>;
6410 @<Link a new attribute node |r| in place of node |p|@>;
6413 mp_confusion(mp, "struct");
6414 @:this can't happen struct}{\quad struct@>
6417 mp_link(r)=mp_link(p); mp_type(r)=mp_structured; mp_name_type(r)=mp_name_type(p);
6418 attr_head(r)=p; mp_name_type(p)=mp_structured_root;
6419 q=mp_get_node(mp, attr_node_size); mp_link(p)=q; subscr_head(r)=q;
6420 parent(q)=r; mp_type(q)=undefined; mp_name_type(q)=mp_attr; mp_link(q)=end_attr;
6421 attr_loc(q)=collective_subscript;
6425 @ @<Link a new subscript node |r| in place of node |p|@>=
6430 } while (mp_name_type(q)!=mp_attr);
6431 q=parent(q); r=subscr_head_loc(q); /* |mp_link(r)=subscr_head(q)| */
6435 r=mp_get_node(mp, subscr_node_size);
6436 mp_link(q)=r; subscript(r)=subscript(p);
6439 @ If the attribute is |collective_subscript|, there are two pointers to
6440 node~|p|, so we must change both of them.
6442 @<Link a new attribute node |r| in place of node |p|@>=
6444 q=parent(p); r=attr_head(q);
6448 r=mp_get_node(mp, attr_node_size); mp_link(q)=r;
6449 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6450 if ( attr_loc(p)==collective_subscript ) {
6451 q=subscr_head_loc(parent(p));
6452 while ( mp_link(q)!=p ) q=mp_link(q);
6457 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6458 list of suffixes; it returns a pointer to the corresponding two-word
6459 value. For example, if |t| points to token \.x followed by a numeric
6460 token containing the value~7, |find_variable| finds where the value of
6461 \.{x7} is stored in memory. This may seem a simple task, and it
6462 usually is, except when \.{x7} has never been referenced before.
6463 Indeed, \.x may never have even been subscripted before; complexities
6464 arise with respect to updating the collective subscript information.
6466 If a macro type is detected anywhere along path~|t|, or if the first
6467 item on |t| isn't a |tag_token|, the value |null| is returned.
6468 Otherwise |p| will be a non-null pointer to a node such that
6469 |undefined<type(p)<mp_structured|.
6471 @d abort_find { return null; }
6474 static pointer mp_find_variable (MP mp,pointer t) {
6475 pointer p,q,r,s; /* nodes in the ``value'' line */
6476 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6477 integer n; /* subscript or attribute */
6478 memory_word save_word; /* temporary storage for a word of |mem| */
6480 p=mp_info(t); t=mp_link(t);
6481 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6482 if ( equiv(p)==null ) mp_new_root(mp, p);
6485 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6486 if ( t<mp->hi_mem_min ) {
6487 @<Descend one level for the subscript |value(t)|@>
6489 @<Descend one level for the attribute |mp_info(t)|@>;
6493 if ( mp_type(pp)>=mp_structured ) {
6494 if ( mp_type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6496 if ( mp_type(p)==mp_structured ) p=attr_head(p);
6497 if ( mp_type(p)==undefined ) {
6498 if ( mp_type(pp)==undefined ) { mp_type(pp)=mp_numeric_type; value(pp)=null; };
6499 mp_type(p)=mp_type(pp); value(p)=null;
6504 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6505 |pp|~stays in the collective line while |p|~goes through actual subscript
6508 @<Make sure that both nodes |p| and |pp|...@>=
6509 if ( mp_type(pp)!=mp_structured ) {
6510 if ( mp_type(pp)>mp_structured ) abort_find;
6511 ss=mp_new_structure(mp, pp);
6514 }; /* now |type(pp)=mp_structured| */
6515 if ( mp_type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6516 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6518 @ We want this part of the program to be reasonably fast, in case there are
6520 lots of subscripts at the same level of the data structure. Therefore
6521 we store an ``infinite'' value in the word that appears at the end of the
6522 subscript list, even though that word isn't part of a subscript node.
6524 @<Descend one level for the subscript |value(t)|@>=
6527 pp=mp_link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6528 q=mp_link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6529 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |mp_link(s)=subscr_head(p)| */
6532 } while (n>subscript(s));
6533 if ( n==subscript(s) ) {
6536 p=mp_get_node(mp, subscr_node_size); mp_link(r)=p; mp_link(p)=s;
6537 subscript(p)=n; mp_name_type(p)=mp_subscr; mp_type(p)=undefined;
6539 mp->mem[subscript_loc(q)]=save_word;
6542 @ @<Descend one level for the attribute |mp_info(t)|@>=
6547 rr=ss; ss=mp_link(ss);
6548 } while (n>attr_loc(ss));
6549 if ( n<attr_loc(ss) ) {
6550 qq=mp_get_node(mp, attr_node_size); mp_link(rr)=qq; mp_link(qq)=ss;
6551 attr_loc(qq)=n; mp_name_type(qq)=mp_attr; mp_type(qq)=undefined;
6552 parent(qq)=pp; ss=qq;
6557 pp=ss; s=attr_head(p);
6560 } while (n>attr_loc(s));
6561 if ( n==attr_loc(s) ) {
6564 q=mp_get_node(mp, attr_node_size); mp_link(r)=q; mp_link(q)=s;
6565 attr_loc(q)=n; mp_name_type(q)=mp_attr; mp_type(q)=undefined;
6571 @ Variables lose their former values when they appear in a type declaration,
6572 or when they are defined to be macros or \&{let} equal to something else.
6573 A subroutine will be defined later that recycles the storage associated
6574 with any particular |type| or |value|; our goal now is to study a higher
6575 level process called |flush_variable|, which selectively frees parts of a
6578 This routine has some complexity because of examples such as
6579 `\hbox{\tt numeric x[]a[]b}'
6580 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6581 `\hbox{\tt vardef x[]a[]=...}'
6582 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6583 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6584 to handle such examples is to use recursion; so that's what we~do.
6587 Parameter |p| points to the root information of the variable;
6588 parameter |t| points to a list of one-word nodes that represent
6589 suffixes, with |info=collective_subscript| for subscripts.
6592 static void mp_flush_cur_exp (MP mp,scaled v) ;
6595 static void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6596 pointer q,r; /* list manipulation */
6597 halfword n; /* attribute to match */
6599 if ( mp_type(p)!=mp_structured ) return;
6600 n=mp_info(t); t=mp_link(t);
6601 if ( n==collective_subscript ) {
6602 r=subscr_head_loc(p); q=mp_link(r); /* |q=subscr_head(p)| */
6603 while ( mp_name_type(q)==mp_subscr ){
6604 mp_flush_variable(mp, q,t,discard_suffixes);
6606 if ( mp_type(q)==mp_structured ) r=q;
6607 else { mp_link(r)=mp_link(q); mp_free_node(mp, q,subscr_node_size); }
6617 } while (attr_loc(p)<n);
6618 if ( attr_loc(p)!=n ) return;
6620 if ( discard_suffixes ) {
6621 mp_flush_below_variable(mp, p);
6623 if ( mp_type(p)==mp_structured ) p=attr_head(p);
6624 mp_recycle_value(mp, p);
6628 @ The next procedure is simpler; it wipes out everything but |p| itself,
6629 which becomes undefined.
6632 static void mp_flush_below_variable (MP mp, pointer p);
6635 void mp_flush_below_variable (MP mp,pointer p) {
6636 pointer q,r; /* list manipulation registers */
6637 if ( mp_type(p)!=mp_structured ) {
6638 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6641 while ( mp_name_type(q)==mp_subscr ) {
6642 mp_flush_below_variable(mp, q); r=q; q=mp_link(q);
6643 mp_free_node(mp, r,subscr_node_size);
6645 r=attr_head(p); q=mp_link(r); mp_recycle_value(mp, r);
6646 if ( mp_name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6647 else mp_free_node(mp, r,subscr_node_size);
6648 /* we assume that |subscr_node_size=attr_node_size| */
6650 mp_flush_below_variable(mp, q); r=q; q=mp_link(q); mp_free_node(mp, r,attr_node_size);
6651 } while (q!=end_attr);
6652 mp_type(p)=undefined;
6656 @ Just before assigning a new value to a variable, we will recycle the
6657 old value and make the old value undefined. The |und_type| routine
6658 determines what type of undefined value should be given, based on
6659 the current type before recycling.
6662 static quarterword mp_und_type (MP mp,pointer p) {
6663 switch (mp_type(p)) {
6664 case undefined: case mp_vacuous:
6666 case mp_boolean_type: case mp_unknown_boolean:
6667 return mp_unknown_boolean;
6668 case mp_string_type: case mp_unknown_string:
6669 return mp_unknown_string;
6670 case mp_pen_type: case mp_unknown_pen:
6671 return mp_unknown_pen;
6672 case mp_path_type: case mp_unknown_path:
6673 return mp_unknown_path;
6674 case mp_picture_type: case mp_unknown_picture:
6675 return mp_unknown_picture;
6676 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6677 case mp_pair_type: case mp_numeric_type:
6679 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6680 return mp_numeric_type;
6681 } /* there are no other cases */
6685 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6686 of a symbolic token. It must remove any variable structure or macro
6687 definition that is currently attached to that symbol. If the |saving|
6688 parameter is true, a subsidiary structure is saved instead of destroyed.
6691 static void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6692 pointer q; /* |equiv(p)| */
6694 switch (eq_type(p) % outer_tag) {
6696 case secondary_primary_macro:
6697 case tertiary_secondary_macro:
6698 case expression_tertiary_macro:
6699 if ( ! saving ) mp_delete_mac_ref(mp, q);
6704 mp_name_type(q)=mp_saved_root;
6706 mp_flush_below_variable(mp, q);
6707 mp_free_node(mp,q,value_node_size);
6714 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6717 @* \[16] Saving and restoring equivalents.
6718 The nested structure given by \&{begingroup} and \&{endgroup}
6719 allows |eqtb| entries to be saved and restored, so that temporary changes
6720 can be made without difficulty. When the user requests a current value to
6721 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6722 \&{endgroup} ultimately causes the old values to be removed from the save
6723 stack and put back in their former places.
6725 The save stack is a linked list containing three kinds of entries,
6726 distinguished by their |info| fields. If |p| points to a saved item,
6730 |mp_info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6731 such an item to the save stack and each \&{endgroup} cuts back the stack
6732 until the most recent such entry has been removed.
6735 |mp_info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6736 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6740 |mp_info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6741 integer to be restored to internal parameter number~|q|. Such entries
6742 are generated by \&{interim} commands.
6745 The global variable |save_ptr| points to the top item on the save stack.
6747 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6748 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6749 @d save_boundary_item(A) { (A)=mp_get_avail(mp); mp_info((A))=0;
6750 mp_link((A))=mp->save_ptr; mp->save_ptr=(A);
6754 pointer save_ptr; /* the most recently saved item */
6756 @ @<Set init...@>=mp->save_ptr=null;
6758 @ The |save_variable| routine is given a hash address |q|; it salts this
6759 address in the save stack, together with its current equivalent,
6760 then makes token~|q| behave as though it were brand new.
6762 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6763 things from the stack when the program is not inside a group, so there's
6764 no point in wasting the space.
6767 static void mp_save_variable (MP mp,pointer q) {
6768 pointer p; /* temporary register */
6769 if ( mp->save_ptr!=null ){
6770 p=mp_get_node(mp, save_node_size); mp_info(p)=q; mp_link(p)=mp->save_ptr;
6771 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6773 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6776 @ Similarly, |save_internal| is given the location |q| of an internal
6777 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6781 static void mp_save_internal (MP mp,halfword q) {
6782 pointer p; /* new item for the save stack */
6783 if ( mp->save_ptr!=null ){
6784 p=mp_get_node(mp, save_node_size); mp_info(p)=hash_end+q;
6785 mp_link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6789 @ At the end of a group, the |unsave| routine restores all of the saved
6790 equivalents in reverse order. This routine will be called only when there
6791 is at least one boundary item on the save stack.
6794 static void mp_unsave (MP mp) {
6795 pointer q; /* index to saved item */
6796 pointer p; /* temporary register */
6797 while ( mp_info(mp->save_ptr)!=0 ) {
6798 q=mp_info(mp->save_ptr);
6800 if ( mp->internal[mp_tracing_restores]>0 ) {
6801 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6802 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, xord('='));
6803 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, xord('}'));
6804 mp_end_diagnostic(mp, false);
6806 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6808 if ( mp->internal[mp_tracing_restores]>0 ) {
6809 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6810 mp_print_text(q); mp_print_char(mp, xord('}'));
6811 mp_end_diagnostic(mp, false);
6813 mp_clear_symbol(mp, q,false);
6814 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6815 if ( eq_type(q) % outer_tag==tag_token ) {
6817 if ( p!=null ) mp_name_type(p)=mp_root;
6820 p=mp_link(mp->save_ptr);
6821 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6823 p=mp_link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6826 @* \[17] Data structures for paths.
6827 When a \MP\ user specifies a path, \MP\ will create a list of knots
6828 and control points for the associated cubic spline curves. If the
6829 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6830 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6831 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6832 @:Bezier}{B\'ezier, Pierre Etienne@>
6833 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6834 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6837 There is a 8-word node for each knot $z_k$, containing one word of
6838 control information and six words for the |x| and |y| coordinates of
6839 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6840 |mp_left_type| and |mp_right_type| fields, which each occupy a quarter of
6841 the first word in the node; they specify properties of the curve as it
6842 enters and leaves the knot. There's also a halfword |link| field,
6843 which points to the following knot, and a final supplementary word (of
6844 which only a quarter is used).
6846 If the path is a closed contour, knots 0 and |n| are identical;
6847 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6848 is not closed, the |mp_left_type| of knot~0 and the |mp_right_type| of knot~|n|
6849 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6850 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6852 @d mp_left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6853 @d mp_right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6854 @d mp_x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6855 @d mp_y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6856 @d mp_left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6857 @d mp_left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6858 @d mp_right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6859 @d mp_right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6860 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6861 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6862 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6863 @d left_coord(A) mp->mem[(A)+2].sc
6864 /* coordinate of previous control point given |x_loc| or |y_loc| */
6865 @d right_coord(A) mp->mem[(A)+4].sc
6866 /* coordinate of next control point given |x_loc| or |y_loc| */
6867 @d knot_node_size 8 /* number of words in a knot node */
6871 mp_endpoint=0, /* |mp_left_type| at path beginning and |mp_right_type| at path end */
6872 mp_explicit, /* |mp_left_type| or |mp_right_type| when control points are known */
6873 mp_given, /* |mp_left_type| or |mp_right_type| when a direction is given */
6874 mp_curl, /* |mp_left_type| or |mp_right_type| when a curl is desired */
6875 mp_open, /* |mp_left_type| or |mp_right_type| when \MP\ should choose the direction */
6879 @ Before the B\'ezier control points have been calculated, the memory
6880 space they will ultimately occupy is taken up by information that can be
6881 used to compute them. There are four cases:
6884 \textindent{$\bullet$} If |mp_right_type=mp_open|, the curve should leave
6885 the knot in the same direction it entered; \MP\ will figure out a
6889 \textindent{$\bullet$} If |mp_right_type=mp_curl|, the curve should leave the
6890 knot in a direction depending on the angle at which it enters the next
6891 knot and on the curl parameter stored in |right_curl|.
6894 \textindent{$\bullet$} If |mp_right_type=mp_given|, the curve should leave the
6895 knot in a nonzero direction stored as an |angle| in |right_given|.
6898 \textindent{$\bullet$} If |mp_right_type=mp_explicit|, the B\'ezier control
6899 point for leaving this knot has already been computed; it is in the
6900 |mp_right_x| and |mp_right_y| fields.
6903 The rules for |mp_left_type| are similar, but they refer to the curve entering
6904 the knot, and to \\{left} fields instead of \\{right} fields.
6906 Non-|explicit| control points will be chosen based on ``tension'' parameters
6907 in the |left_tension| and |right_tension| fields. The
6908 `\&{atleast}' option is represented by negative tension values.
6909 @:at_least_}{\&{atleast} primitive@>
6911 For example, the \MP\ path specification
6912 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6914 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6916 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6917 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6918 |mp_left_type|&\\{left} info&|mp_x_coord,mp_y_coord|&|mp_right_type|&\\{right} info\cr
6920 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6921 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6922 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6923 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6924 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6925 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6926 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6927 Of course, this example is more complicated than anything a normal user
6930 These types must satisfy certain restrictions because of the form of \MP's
6932 (i)~|open| type never appears in the same node together with |endpoint|,
6934 (ii)~The |mp_right_type| of a node is |explicit| if and only if the
6935 |mp_left_type| of the following node is |explicit|.
6936 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6938 @d left_curl mp_left_x /* curl information when entering this knot */
6939 @d left_given mp_left_x /* given direction when entering this knot */
6940 @d left_tension mp_left_y /* tension information when entering this knot */
6941 @d right_curl mp_right_x /* curl information when leaving this knot */
6942 @d right_given mp_right_x /* given direction when leaving this knot */
6943 @d right_tension mp_right_y /* tension information when leaving this knot */
6945 @ Knots can be user-supplied, or they can be created by program code,
6946 like the |split_cubic| function, or |copy_path|. The distinction is
6947 needed for the cleanup routine that runs after |split_cubic|, because
6948 it should only delete knots it has previously inserted, and never
6949 anything that was user-supplied. In order to be able to differentiate
6950 one knot from another, we will set |originator(p):=mp_metapost_user| when
6951 it appeared in the actual metapost program, and
6952 |originator(p):=mp_program_code| in all other cases.
6954 @d mp_originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6957 enum mp_knot_originator {
6958 mp_program_code=0, /* not created by a user */
6959 mp_metapost_user /* created by a user */
6962 @ Here is a routine that prints a given knot list
6963 in symbolic form. It illustrates the conventions discussed above,
6964 and checks for anomalies that might arise while \MP\ is being debugged.
6967 static void mp_pr_path (MP mp,pointer h);
6970 void mp_pr_path (MP mp,pointer h) {
6971 pointer p,q; /* for list traversal */
6975 if ( (p==null)||(q==null) ) {
6976 mp_print_nl(mp, "???"); return; /* this won't happen */
6979 @<Print information for adjacent knots |p| and |q|@>;
6982 if ( (p!=h)||(mp_left_type(h)!=mp_endpoint) ) {
6983 @<Print two dots, followed by |given| or |curl| if present@>;
6986 if ( mp_left_type(h)!=mp_endpoint )
6987 mp_print(mp, "cycle");
6990 @ @<Print information for adjacent knots...@>=
6991 mp_print_two(mp, mp_x_coord(p),mp_y_coord(p));
6992 switch (mp_right_type(p)) {
6994 if ( mp_left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6996 if ( (mp_left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
7000 @<Print control points between |p| and |q|, then |goto done1|@>;
7003 @<Print information for a curve that begins |open|@>;
7007 @<Print information for a curve that begins |curl| or |given|@>;
7010 mp_print(mp, "???"); /* can't happen */
7014 if ( mp_left_type(q)<=mp_explicit ) {
7015 mp_print(mp, "..control?"); /* can't happen */
7017 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
7018 @<Print tension between |p| and |q|@>;
7021 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
7022 were |scaled|, the magnitude of a |given| direction vector will be~4096.
7024 @<Print two dots...@>=
7026 mp_print_nl(mp, " ..");
7027 if ( mp_left_type(p)==mp_given ) {
7028 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, xord('{'));
7029 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, xord(','));
7030 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, xord('}'));
7031 } else if ( mp_left_type(p)==mp_curl ){
7032 mp_print(mp, "{curl ");
7033 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, xord('}'));
7037 @ @<Print tension between |p| and |q|@>=
7039 mp_print(mp, "..tension ");
7040 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
7041 mp_print_scaled(mp, abs(right_tension(p)));
7042 if ( right_tension(p)!=left_tension(q) ){
7043 mp_print(mp, " and ");
7044 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
7045 mp_print_scaled(mp, abs(left_tension(q)));
7049 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7051 mp_print(mp, "..controls ");
7052 mp_print_two(mp, mp_right_x(p),mp_right_y(p));
7053 mp_print(mp, " and ");
7054 if ( mp_left_type(q)!=mp_explicit ) {
7055 mp_print(mp, "??"); /* can't happen */
7058 mp_print_two(mp, mp_left_x(q),mp_left_y(q));
7063 @ @<Print information for a curve that begins |open|@>=
7064 if ( (mp_left_type(p)!=mp_explicit)&&(mp_left_type(p)!=mp_open) ) {
7065 mp_print(mp, "{open?}"); /* can't happen */
7069 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7070 \MP's default curl is present.
7072 @<Print information for a curve that begins |curl|...@>=
7074 if ( mp_left_type(p)==mp_open )
7075 mp_print(mp, "??"); /* can't happen */
7077 if ( mp_right_type(p)==mp_curl ) {
7078 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7080 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, xord('{'));
7081 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, xord(','));
7082 mp_print_scaled(mp, mp->n_sin);
7084 mp_print_char(mp, xord('}'));
7087 @ It is convenient to have another version of |pr_path| that prints the path
7088 as a diagnostic message.
7091 static void mp_print_path (MP mp,pointer h, const char *s, boolean nuline) ;
7094 void mp_print_path (MP mp,pointer h, const char *s, boolean nuline) {
7095 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7098 mp_end_diagnostic(mp, true);
7101 @ If we want to duplicate a knot node, we can say |copy_knot|:
7104 static pointer mp_copy_knot (MP mp,pointer p) {
7105 pointer q; /* the copy */
7106 int k; /* runs through the words of a knot node */
7107 q=mp_get_node(mp, knot_node_size);
7108 for (k=0;k<knot_node_size;k++) {
7109 mp->mem[q+k]=mp->mem[p+k];
7111 mp_originator(q)=mp_originator(p);
7115 @ The |copy_path| routine makes a clone of a given path.
7118 static pointer mp_copy_path (MP mp, pointer p) {
7119 pointer q,pp,qq; /* for list manipulation */
7120 q=mp_copy_knot(mp, p);
7121 qq=q; pp=mp_link(p);
7123 mp_link(qq)=mp_copy_knot(mp, pp);
7132 @ Just before |ship_out|, knot lists are exported for printing.
7134 The |gr_XXXX| macros are defined in |mppsout.h|.
7137 static mp_knot *mp_export_knot (MP mp,pointer p) {
7138 mp_knot *q; /* the copy */
7141 q = xmalloc(1, sizeof (mp_knot));
7142 memset(q,0,sizeof (mp_knot));
7143 gr_left_type(q) = (unsigned short)mp_left_type(p);
7144 gr_right_type(q) = (unsigned short)mp_right_type(p);
7145 gr_x_coord(q) = mp_x_coord(p);
7146 gr_y_coord(q) = mp_y_coord(p);
7147 gr_left_x(q) = mp_left_x(p);
7148 gr_left_y(q) = mp_left_y(p);
7149 gr_right_x(q) = mp_right_x(p);
7150 gr_right_y(q) = mp_right_y(p);
7151 gr_originator(q) = (unsigned char)mp_originator(p);
7155 @ The |export_knot_list| routine therefore also makes a clone
7159 static mp_knot *mp_export_knot_list (MP mp, pointer p) {
7160 mp_knot *q, *qq; /* for list manipulation */
7161 pointer pp; /* for list manipulation */
7164 q=mp_export_knot(mp, p);
7165 qq=q; pp=mp_link(p);
7167 gr_next_knot(qq)=mp_export_knot(mp, pp);
7168 qq=gr_next_knot(qq);
7176 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7177 returns a pointer to the first node of the copy, if the path is a cycle,
7178 but to the final node of a non-cyclic copy. The global
7179 variable |path_tail| will point to the final node of the original path;
7180 this trick makes it easier to implement `\&{doublepath}'.
7182 All node types are assumed to be |endpoint| or |explicit| only.
7185 static pointer mp_htap_ypoc (MP mp,pointer p) {
7186 pointer q,pp,qq,rr; /* for list manipulation */
7187 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7190 mp_right_type(qq)=mp_left_type(pp); mp_left_type(qq)=mp_right_type(pp);
7191 mp_x_coord(qq)=mp_x_coord(pp); mp_y_coord(qq)=mp_y_coord(pp);
7192 mp_right_x(qq)=mp_left_x(pp); mp_right_y(qq)=mp_left_y(pp);
7193 mp_left_x(qq)=mp_right_x(pp); mp_left_y(qq)=mp_right_y(pp);
7194 mp_originator(qq)=mp_originator(pp);
7195 if ( mp_link(pp)==p ) {
7196 mp_link(q)=qq; mp->path_tail=pp; return q;
7198 rr=mp_get_node(mp, knot_node_size); mp_link(rr)=qq; qq=rr; pp=mp_link(pp);
7203 pointer path_tail; /* the node that links to the beginning of a path */
7205 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7206 calling the following subroutine.
7209 static void mp_toss_knot_list (MP mp,pointer p) ;
7212 void mp_toss_knot_list (MP mp,pointer p) {
7213 pointer q; /* the node being freed */
7214 pointer r; /* the next node */
7218 mp_free_node(mp, q,knot_node_size); q=r;
7222 @* \[18] Choosing control points.
7223 Now we must actually delve into one of \MP's more difficult routines,
7224 the |make_choices| procedure that chooses angles and control points for
7225 the splines of a curve when the user has not specified them explicitly.
7226 The parameter to |make_choices| points to a list of knots and
7227 path information, as described above.
7229 A path decomposes into independent segments at ``breakpoint'' knots,
7230 which are knots whose left and right angles are both prespecified in
7231 some way (i.e., their |mp_left_type| and |mp_right_type| aren't both open).
7234 static void mp_make_choices (MP mp,pointer knots) {
7235 pointer h; /* the first breakpoint */
7236 pointer p,q; /* consecutive breakpoints being processed */
7237 @<Other local variables for |make_choices|@>;
7238 check_arith; /* make sure that |arith_error=false| */
7239 if ( mp->internal[mp_tracing_choices]>0 )
7240 mp_print_path(mp, knots,", before choices",true);
7241 @<If consecutive knots are equal, join them explicitly@>;
7242 @<Find the first breakpoint, |h|, on the path;
7243 insert an artificial breakpoint if the path is an unbroken cycle@>;
7246 @<Fill in the control points between |p| and the next breakpoint,
7247 then advance |p| to that breakpoint@>;
7249 if ( mp->internal[mp_tracing_choices]>0 )
7250 mp_print_path(mp, knots,", after choices",true);
7251 if ( mp->arith_error ) {
7252 @<Report an unexpected problem during the choice-making@>;
7256 @ @<Report an unexpected problem during the choice...@>=
7258 print_err("Some number got too big");
7259 @.Some number got too big@>
7260 help2("The path that I just computed is out of range.",
7261 "So it will probably look funny. Proceed, for a laugh.");
7262 mp_put_get_error(mp); mp->arith_error=false;
7265 @ Two knots in a row with the same coordinates will always be joined
7266 by an explicit ``curve'' whose control points are identical with the
7269 @<If consecutive knots are equal, join them explicitly@>=
7273 if ( mp_x_coord(p)==mp_x_coord(q) &&
7274 mp_y_coord(p)==mp_y_coord(q) && mp_right_type(p)>mp_explicit ) {
7275 mp_right_type(p)=mp_explicit;
7276 if ( mp_left_type(p)==mp_open ) {
7277 mp_left_type(p)=mp_curl; left_curl(p)=unity;
7279 mp_left_type(q)=mp_explicit;
7280 if ( mp_right_type(q)==mp_open ) {
7281 mp_right_type(q)=mp_curl; right_curl(q)=unity;
7283 mp_right_x(p)=mp_x_coord(p); mp_left_x(q)=mp_x_coord(p);
7284 mp_right_y(p)=mp_y_coord(p); mp_left_y(q)=mp_y_coord(p);
7289 @ If there are no breakpoints, it is necessary to compute the direction
7290 angles around an entire cycle. In this case the |mp_left_type| of the first
7291 node is temporarily changed to |end_cycle|.
7293 @<Find the first breakpoint, |h|, on the path...@>=
7296 if ( mp_left_type(h)!=mp_open ) break;
7297 if ( mp_right_type(h)!=mp_open ) break;
7300 mp_left_type(h)=mp_end_cycle; break;
7304 @ If |mp_right_type(p)<given| and |q=mp_link(p)|, we must have
7305 |mp_right_type(p)=mp_left_type(q)=mp_explicit| or |endpoint|.
7307 @<Fill in the control points between |p| and the next breakpoint...@>=
7309 if ( mp_right_type(p)>=mp_given ) {
7310 while ( (mp_left_type(q)==mp_open)&&(mp_right_type(q)==mp_open) ) q=mp_link(q);
7311 @<Fill in the control information between
7312 consecutive breakpoints |p| and |q|@>;
7313 } else if ( mp_right_type(p)==mp_endpoint ) {
7314 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7318 @ This step makes it possible to transform an explicitly computed path without
7319 checking the |mp_left_type| and |mp_right_type| fields.
7321 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7323 mp_right_x(p)=mp_x_coord(p); mp_right_y(p)=mp_y_coord(p);
7324 mp_left_x(q)=mp_x_coord(q); mp_left_y(q)=mp_y_coord(q);
7327 @ Before we can go further into the way choices are made, we need to
7328 consider the underlying theory. The basic ideas implemented in |make_choices|
7329 are due to John Hobby, who introduced the notion of ``mock curvature''
7330 @^Hobby, John Douglas@>
7331 at a knot. Angles are chosen so that they preserve mock curvature when
7332 a knot is passed, and this has been found to produce excellent results.
7334 It is convenient to introduce some notations that simplify the necessary
7335 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7336 between knots |k| and |k+1|; and let
7337 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7338 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7339 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7340 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7341 $$\eqalign{z_k^+&=z_k+
7342 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7344 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7345 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7346 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7347 corresponding ``offset angles.'' These angles satisfy the condition
7348 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7349 whenever the curve leaves an intermediate knot~|k| in the direction that
7352 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7353 the curve at its beginning and ending points. This means that
7354 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7355 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7356 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7357 z\k^-,z\k^{\phantom+};t)$
7360 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7361 \qquad{\rm and}\qquad
7362 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7363 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7365 approximation to this true curvature that arises in the limit for
7366 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7367 The standard velocity function satisfies
7368 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7369 hence the mock curvatures are respectively
7370 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7371 \qquad{\rm and}\qquad
7372 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7374 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7375 determines $\phi_k$ when $\theta_k$ is known, so the task of
7376 angle selection is essentially to choose appropriate values for each
7377 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7378 from $(**)$, we obtain a system of linear equations of the form
7379 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7381 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7382 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7383 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7384 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7385 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7386 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7387 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7388 hence they have a unique solution. Moreover, in most cases the tensions
7389 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7390 solution numerically stable, and there is an exponential damping
7391 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7392 a factor of~$O(2^{-j})$.
7394 @ However, we still must consider the angles at the starting and ending
7395 knots of a non-cyclic path. These angles might be given explicitly, or
7396 they might be specified implicitly in terms of an amount of ``curl.''
7398 Let's assume that angles need to be determined for a non-cyclic path
7399 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7400 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7401 have been given for $0<k<n$, and it will be convenient to introduce
7402 equations of the same form for $k=0$ and $k=n$, where
7403 $$A_0=B_0=C_n=D_n=0.$$
7404 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7405 define $C_0=1$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7406 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7407 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7408 mock curvature at $z_1$; i.e.,
7409 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7410 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7411 This equation simplifies to
7412 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7413 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7414 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7415 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7416 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7417 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7418 hence the linear equations remain nonsingular.
7420 Similar considerations apply at the right end, when the final angle $\phi_n$
7421 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7422 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7424 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7425 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7426 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7428 When |make_choices| chooses angles, it must compute the coefficients of
7429 these linear equations, then solve the equations. To compute the coefficients,
7430 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7431 When the equations are solved, the chosen directions $\theta_k$ are put
7432 back into the form of control points by essentially computing sines and
7435 @ OK, we are ready to make the hard choices of |make_choices|.
7436 Most of the work is relegated to an auxiliary procedure
7437 called |solve_choices|, which has been introduced to keep
7438 |make_choices| from being extremely long.
7440 @<Fill in the control information between...@>=
7441 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7442 set $n$ to the length of the path@>;
7443 @<Remove |open| types at the breakpoints@>;
7444 mp_solve_choices(mp, p,q,n)
7446 @ It's convenient to precompute quantities that will be needed several
7447 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7448 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7449 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7450 and $z\k-z_k$ will be stored in |psi[k]|.
7453 int path_size; /* maximum number of knots between breakpoints of a path */
7456 scaled *delta; /* knot differences */
7457 angle *psi; /* turning angles */
7459 @ @<Dealloc variables@>=
7465 @ @<Other local variables for |make_choices|@>=
7466 int k,n; /* current and final knot numbers */
7467 pointer s,t; /* registers for list traversal */
7468 scaled delx,dely; /* directions where |open| meets |explicit| */
7469 fraction sine,cosine; /* trig functions of various angles */
7471 @ @<Calculate the turning angles...@>=
7474 k=0; s=p; n=mp->path_size;
7477 mp->delta_x[k]=mp_x_coord(t)-mp_x_coord(s);
7478 mp->delta_y[k]=mp_y_coord(t)-mp_y_coord(s);
7479 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7481 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7482 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7483 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7484 mp_take_fraction(mp, mp->delta_y[k],sine),
7485 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7486 mp_take_fraction(mp, mp->delta_x[k],sine));
7489 if ( k==mp->path_size ) {
7490 mp_reallocate_paths(mp, mp->path_size+(mp->path_size/4));
7491 goto RESTART; /* retry, loop size has changed */
7494 } while (!((k>=n)&&(mp_left_type(s)!=mp_end_cycle)));
7495 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7498 @ When we get to this point of the code, |mp_right_type(p)| is either
7499 |given| or |curl| or |open|. If it is |open|, we must have
7500 |mp_left_type(p)=mp_end_cycle| or |mp_left_type(p)=mp_explicit|. In the latter
7501 case, the |open| type is converted to |given|; however, if the
7502 velocity coming into this knot is zero, the |open| type is
7503 converted to a |curl|, since we don't know the incoming direction.
7505 Similarly, |mp_left_type(q)| is either |given| or |curl| or |open| or
7506 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7508 @<Remove |open| types at the breakpoints@>=
7509 if ( mp_left_type(q)==mp_open ) {
7510 delx=mp_right_x(q)-mp_x_coord(q); dely=mp_right_y(q)-mp_y_coord(q);
7511 if ( (delx==0)&&(dely==0) ) {
7512 mp_left_type(q)=mp_curl; left_curl(q)=unity;
7514 mp_left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7517 if ( (mp_right_type(p)==mp_open)&&(mp_left_type(p)==mp_explicit) ) {
7518 delx=mp_x_coord(p)-mp_left_x(p); dely=mp_y_coord(p)-mp_left_y(p);
7519 if ( (delx==0)&&(dely==0) ) {
7520 mp_right_type(p)=mp_curl; right_curl(p)=unity;
7522 mp_right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7526 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7527 and exactly one of the breakpoints involves a curl. The simplest case occurs
7528 when |n=1| and there is a curl at both breakpoints; then we simply draw
7531 But before coding up the simple cases, we might as well face the general case,
7532 since we must deal with it sooner or later, and since the general case
7533 is likely to give some insight into the way simple cases can be handled best.
7535 When there is no cycle, the linear equations to be solved form a tridiagonal
7536 system, and we can apply the standard technique of Gaussian elimination
7537 to convert that system to a sequence of equations of the form
7538 $$\theta_0+u_0\theta_1=v_0,\quad
7539 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7540 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7542 It is possible to do this diagonalization while generating the equations.
7543 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7544 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7546 The procedure is slightly more complex when there is a cycle, but the
7547 basic idea will be nearly the same. In the cyclic case the right-hand
7548 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7549 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7550 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7551 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7552 eliminate the $w$'s from the system, after which the solution can be
7555 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7556 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7557 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7558 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7561 angle *theta; /* values of $\theta_k$ */
7562 fraction *uu; /* values of $u_k$ */
7563 angle *vv; /* values of $v_k$ */
7564 fraction *ww; /* values of $w_k$ */
7566 @ @<Dealloc variables@>=
7573 static void mp_reallocate_paths (MP mp, int l);
7576 void mp_reallocate_paths (MP mp, int l) {
7577 XREALLOC (mp->delta_x, l, scaled);
7578 XREALLOC (mp->delta_y, l, scaled);
7579 XREALLOC (mp->delta, l, scaled);
7580 XREALLOC (mp->psi, l, angle);
7581 XREALLOC (mp->theta, l, angle);
7582 XREALLOC (mp->uu, l, fraction);
7583 XREALLOC (mp->vv, l, angle);
7584 XREALLOC (mp->ww, l, fraction);
7588 @ Our immediate problem is to get the ball rolling by setting up the
7589 first equation or by realizing that no equations are needed, and to fit
7590 this initialization into a framework suitable for the overall computation.
7593 static void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) ;
7596 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7597 int k; /* current knot number */
7598 pointer r,s,t; /* registers for list traversal */
7599 @<Other local variables for |solve_choices|@>;
7604 @<Get the linear equations started; or |return|
7605 with the control points in place, if linear equations
7608 switch (mp_left_type(s)) {
7609 case mp_end_cycle: case mp_open:
7610 @<Set up equation to match mock curvatures
7611 at $z_k$; then |goto found| with $\theta_n$
7612 adjusted to equal $\theta_0$, if a cycle has ended@>;
7615 @<Set up equation for a curl at $\theta_n$
7619 @<Calculate the given value of $\theta_n$
7622 } /* there are no other cases */
7627 @<Finish choosing angles and assigning control points@>;
7630 @ On the first time through the loop, we have |k=0| and |r| is not yet
7631 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7633 @<Get the linear equations started...@>=
7634 switch (mp_right_type(s)) {
7636 if ( mp_left_type(t)==mp_given ) {
7637 @<Reduce to simple case of two givens and |return|@>
7639 @<Set up the equation for a given value of $\theta_0$@>;
7643 if ( mp_left_type(t)==mp_curl ) {
7644 @<Reduce to simple case of straight line and |return|@>
7646 @<Set up the equation for a curl at $\theta_0$@>;
7650 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7651 /* this begins a cycle */
7653 } /* there are no other cases */
7655 @ The general equation that specifies equality of mock curvature at $z_k$ is
7656 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7657 as derived above. We want to combine this with the already-derived equation
7658 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7660 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7662 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7663 -A_kw_{k-1}\theta_0$$
7664 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7665 fixed-point arithmetic, avoiding the chance of overflow while retaining
7668 The calculations will be performed in several registers that
7669 provide temporary storage for intermediate quantities.
7671 @<Other local variables for |solve_choices|@>=
7672 fraction aa,bb,cc,ff,acc; /* temporary registers */
7673 scaled dd,ee; /* likewise, but |scaled| */
7674 scaled lt,rt; /* tension values */
7676 @ @<Set up equation to match mock curvatures...@>=
7677 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7678 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7679 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7680 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7681 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7682 @<Calculate the values of $v_k$ and $w_k$@>;
7683 if ( mp_left_type(s)==mp_end_cycle ) {
7684 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7688 @ Since tension values are never less than 3/4, the values |aa| and
7689 |bb| computed here are never more than 4/5.
7691 @<Calculate the values $\\{aa}=...@>=
7692 if ( abs(right_tension(r))==unity) {
7693 aa=fraction_half; dd=2*mp->delta[k];
7695 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7696 dd=mp_take_fraction(mp, mp->delta[k],
7697 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7699 if ( abs(left_tension(t))==unity ){
7700 bb=fraction_half; ee=2*mp->delta[k-1];
7702 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7703 ee=mp_take_fraction(mp, mp->delta[k-1],
7704 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7706 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7708 @ The ratio to be calculated in this step can be written in the form
7709 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7710 \\{cc}\cdot\\{dd},$$
7711 because of the quantities just calculated. The values of |dd| and |ee|
7712 will not be needed after this step has been performed.
7714 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7715 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7716 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7718 ff=mp_make_fraction(mp, lt,rt);
7719 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7720 dd=mp_take_fraction(mp, dd,ff);
7722 ff=mp_make_fraction(mp, rt,lt);
7723 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7724 ee=mp_take_fraction(mp, ee,ff);
7727 ff=mp_make_fraction(mp, ee,ee+dd)
7729 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7730 equation was specified by a curl. In that case we must use a special
7731 method of computation to prevent overflow.
7733 Fortunately, the calculations turn out to be even simpler in this ``hard''
7734 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7735 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7737 @<Calculate the values of $v_k$ and $w_k$@>=
7738 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7739 if ( mp_right_type(r)==mp_curl ) {
7741 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7743 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7744 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7745 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7746 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7747 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7748 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7749 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7752 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7753 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7754 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7755 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7758 The idea in the following code is to observe that
7759 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7760 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7761 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7762 so we can solve for $\theta_n=\theta_0$.
7764 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7766 aa=0; bb=fraction_one; /* we have |k=n| */
7769 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7770 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7771 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7772 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7773 mp->theta[n]=aa; mp->vv[0]=aa;
7774 for (k=1;k<=n-1;k++) {
7775 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7780 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7781 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7783 @<Calculate the given value of $\theta_n$...@>=
7785 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7786 reduce_angle(mp->theta[n]);
7790 @ @<Set up the equation for a given value of $\theta_0$@>=
7792 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7793 reduce_angle(mp->vv[0]);
7794 mp->uu[0]=0; mp->ww[0]=0;
7797 @ @<Set up the equation for a curl at $\theta_0$@>=
7798 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7799 if ( (rt==unity)&&(lt==unity) )
7800 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7802 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7803 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7806 @ @<Set up equation for a curl at $\theta_n$...@>=
7807 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7808 if ( (rt==unity)&&(lt==unity) )
7809 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7811 ff=mp_curl_ratio(mp, cc,lt,rt);
7812 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7813 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7817 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7818 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7819 a somewhat tedious program to calculate
7820 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7821 \alpha^3\gamma+(3-\beta)\beta^2},$$
7822 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7823 is necessary only if the curl and tension are both large.)
7824 The values of $\alpha$ and $\beta$ will be at most~4/3.
7827 static fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7831 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7833 fraction alpha,beta,num,denom,ff; /* registers */
7834 alpha=mp_make_fraction(mp, unity,a_tension);
7835 beta=mp_make_fraction(mp, unity,b_tension);
7836 if ( alpha<=beta ) {
7837 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7838 gamma=mp_take_fraction(mp, gamma,ff);
7839 beta=beta / 010000; /* convert |fraction| to |scaled| */
7840 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7841 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7843 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7844 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7845 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7846 /* $1365\approx 2^{12}/3$ */
7847 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7849 if ( num>=denom+denom+denom+denom ) return fraction_four;
7850 else return mp_make_fraction(mp, num,denom);
7853 @ We're in the home stretch now.
7855 @<Finish choosing angles and assigning control points@>=
7856 for (k=n-1;k>=0;k--) {
7857 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7862 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7863 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7864 mp_set_controls(mp, s,t,k);
7868 @ The |set_controls| routine actually puts the control points into
7869 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7870 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7871 $\cos\phi$ needed in this calculation.
7877 fraction cf; /* sines and cosines */
7880 static void mp_set_controls (MP mp,pointer p, pointer q, integer k);
7883 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7884 fraction rr,ss; /* velocities, divided by thrice the tension */
7885 scaled lt,rt; /* tensions */
7886 fraction sine; /* $\sin(\theta+\phi)$ */
7887 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7888 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7889 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7890 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7891 @<Decrease the velocities,
7892 if necessary, to stay inside the bounding triangle@>;
7894 mp_right_x(p)=mp_x_coord(p)+mp_take_fraction(mp,
7895 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7896 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7897 mp_right_y(p)=mp_y_coord(p)+mp_take_fraction(mp,
7898 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7899 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7900 mp_left_x(q)=mp_x_coord(q)-mp_take_fraction(mp,
7901 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7902 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7903 mp_left_y(q)=mp_y_coord(q)-mp_take_fraction(mp,
7904 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7905 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7906 mp_right_type(p)=mp_explicit; mp_left_type(q)=mp_explicit;
7909 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7910 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7911 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7912 there is no ``bounding triangle.''
7914 @<Decrease the velocities, if necessary...@>=
7915 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7916 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7917 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7919 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7920 if ( right_tension(p)<0 )
7921 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7922 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7923 if ( left_tension(q)<0 )
7924 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7925 ss=mp_make_fraction(mp, abs(mp->st),sine);
7929 @ Only the simple cases remain to be handled.
7931 @<Reduce to simple case of two givens and |return|@>=
7933 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7934 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7935 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7936 mp_set_controls(mp, p,q,0); return;
7939 @ @<Reduce to simple case of straight line and |return|@>=
7941 mp_right_type(p)=mp_explicit; mp_left_type(q)=mp_explicit;
7942 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7944 if ( mp->delta_x[0]>=0 ) mp_right_x(p)=mp_x_coord(p)+((mp->delta_x[0]+1) / 3);
7945 else mp_right_x(p)=mp_x_coord(p)+((mp->delta_x[0]-1) / 3);
7946 if ( mp->delta_y[0]>=0 ) mp_right_y(p)=mp_y_coord(p)+((mp->delta_y[0]+1) / 3);
7947 else mp_right_y(p)=mp_y_coord(p)+((mp->delta_y[0]-1) / 3);
7949 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7950 mp_right_x(p)=mp_x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7951 mp_right_y(p)=mp_y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7954 if ( mp->delta_x[0]>=0 ) mp_left_x(q)=mp_x_coord(q)-((mp->delta_x[0]+1) / 3);
7955 else mp_left_x(q)=mp_x_coord(q)-((mp->delta_x[0]-1) / 3);
7956 if ( mp->delta_y[0]>=0 ) mp_left_y(q)=mp_y_coord(q)-((mp->delta_y[0]+1) / 3);
7957 else mp_left_y(q)=mp_y_coord(q)-((mp->delta_y[0]-1) / 3);
7959 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7960 mp_left_x(q)=mp_x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7961 mp_left_y(q)=mp_y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7966 @* \[19] Measuring paths.
7967 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7968 allow the user to measure the bounding box of anything that can go into a
7969 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7970 by just finding the bounding box of the knots and the control points. We
7971 need a more accurate version of the bounding box, but we can still use the
7972 easy estimate to save time by focusing on the interesting parts of the path.
7974 @ Computing an accurate bounding box involves a theme that will come up again
7975 and again. Given a Bernshte{\u\i}n polynomial
7976 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7977 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7978 we can conveniently bisect its range as follows:
7981 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7984 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7985 |0<=k<n-j|, for |0<=j<n|.
7989 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7990 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7991 This formula gives us the coefficients of polynomials to use over the ranges
7992 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7994 @ Now here's a subroutine that's handy for all sorts of path computations:
7995 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7996 returns the unique |fraction| value |t| between 0 and~1 at which
7997 $B(a,b,c;t)$ changes from positive to negative, or returns
7998 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7999 is already negative at |t=0|), |crossing_point| returns the value zero.
8001 @d no_crossing { return (fraction_one+1); }
8002 @d one_crossing { return fraction_one; }
8003 @d zero_crossing { return 0; }
8004 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
8006 @c static fraction mp_do_crossing_point (integer a, integer b, integer c) {
8007 integer d; /* recursive counter */
8008 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
8009 if ( a<0 ) zero_crossing;
8012 if ( c>0 ) { no_crossing; }
8013 else if ( (a==0)&&(b==0) ) { no_crossing;}
8014 else { one_crossing; }
8016 if ( a==0 ) zero_crossing;
8017 } else if ( a==0 ) {
8018 if ( b<=0 ) zero_crossing;
8020 @<Use bisection to find the crossing point, if one exists@>;
8023 @ The general bisection method is quite simple when $n=2$, hence
8024 |crossing_point| does not take much time. At each stage in the
8025 recursion we have a subinterval defined by |l| and~|j| such that
8026 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
8027 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
8029 It is convenient for purposes of calculation to combine the values
8030 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
8031 of bisection then corresponds simply to doubling $d$ and possibly
8032 adding~1. Furthermore it proves to be convenient to modify
8033 our previous conventions for bisection slightly, maintaining the
8034 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
8035 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
8036 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
8038 The following code maintains the invariant relations
8039 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
8040 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
8041 it has been constructed in such a way that no arithmetic overflow
8042 will occur if the inputs satisfy
8043 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8045 @<Use bisection to find the crossing point...@>=
8046 d=1; x0=a; x1=a-b; x2=b-c;
8057 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8061 } while (d<fraction_one);
8062 return (d-fraction_one)
8064 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8065 a cubic corresponding to the |fraction| value~|t|.
8067 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8068 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8070 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8072 @c static scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8073 scaled x1,x2,x3; /* intermediate values */
8074 x1=t_of_the_way(knot_coord(p),right_coord(p));
8075 x2=t_of_the_way(right_coord(p),left_coord(q));
8076 x3=t_of_the_way(left_coord(q),knot_coord(q));
8077 x1=t_of_the_way(x1,x2);
8078 x2=t_of_the_way(x2,x3);
8079 return t_of_the_way(x1,x2);
8082 @ The actual bounding box information is stored in global variables.
8083 Since it is convenient to address the $x$ and $y$ information
8084 separately, we define arrays indexed by |x_code..y_code| and use
8085 macros to give them more convenient names.
8089 mp_x_code=0, /* index for |minx| and |maxx| */
8090 mp_y_code /* index for |miny| and |maxy| */
8094 @d mp_minx mp->bbmin[mp_x_code]
8095 @d mp_maxx mp->bbmax[mp_x_code]
8096 @d mp_miny mp->bbmin[mp_y_code]
8097 @d mp_maxy mp->bbmax[mp_y_code]
8100 scaled bbmin[mp_y_code+1];
8101 scaled bbmax[mp_y_code+1];
8102 /* the result of procedures that compute bounding box information */
8104 @ Now we're ready for the key part of the bounding box computation.
8105 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8106 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8107 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8109 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8110 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8111 The |c| parameter is |x_code| or |y_code|.
8113 @c static void mp_bound_cubic (MP mp,pointer p, pointer q, quarterword c) {
8114 boolean wavy; /* whether we need to look for extremes */
8115 scaled del1,del2,del3,del,dmax; /* proportional to the control
8116 points of a quadratic derived from a cubic */
8117 fraction t,tt; /* where a quadratic crosses zero */
8118 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8120 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8121 @<Check the control points against the bounding box and set |wavy:=true|
8122 if any of them lie outside@>;
8124 del1=right_coord(p)-knot_coord(p);
8125 del2=left_coord(q)-right_coord(p);
8126 del3=knot_coord(q)-left_coord(q);
8127 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8128 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8130 negate(del1); negate(del2); negate(del3);
8132 t=mp_crossing_point(mp, del1,del2,del3);
8133 if ( t<fraction_one ) {
8134 @<Test the extremes of the cubic against the bounding box@>;
8139 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8140 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8141 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8143 @ @<Check the control points against the bounding box and set...@>=
8145 if ( mp->bbmin[c]<=right_coord(p) )
8146 if ( right_coord(p)<=mp->bbmax[c] )
8147 if ( mp->bbmin[c]<=left_coord(q) )
8148 if ( left_coord(q)<=mp->bbmax[c] )
8151 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8152 section. We just set |del=0| in that case.
8154 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8155 if ( del1!=0 ) del=del1;
8156 else if ( del2!=0 ) del=del2;
8160 if ( abs(del2)>dmax ) dmax=abs(del2);
8161 if ( abs(del3)>dmax ) dmax=abs(del3);
8162 while ( dmax<fraction_half ) {
8163 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8167 @ Since |crossing_point| has tried to choose |t| so that
8168 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8169 slope, the value of |del2| computed below should not be positive.
8170 But rounding error could make it slightly positive in which case we
8171 must cut it to zero to avoid confusion.
8173 @<Test the extremes of the cubic against the bounding box@>=
8175 x=mp_eval_cubic(mp, p,q,t);
8176 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8177 del2=t_of_the_way(del2,del3);
8178 /* now |0,del2,del3| represent the derivative on the remaining interval */
8179 if ( del2>0 ) del2=0;
8180 tt=mp_crossing_point(mp, 0,-del2,-del3);
8181 if ( tt<fraction_one ) {
8182 @<Test the second extreme against the bounding box@>;
8186 @ @<Test the second extreme against the bounding box@>=
8188 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8189 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8192 @ Finding the bounding box of a path is basically a matter of applying
8193 |bound_cubic| twice for each pair of adjacent knots.
8195 @c static void mp_path_bbox (MP mp,pointer h) {
8196 pointer p,q; /* a pair of adjacent knots */
8197 mp_minx=mp_x_coord(h); mp_miny=mp_y_coord(h);
8198 mp_maxx=mp_minx; mp_maxy=mp_miny;
8201 if ( mp_right_type(p)==mp_endpoint ) return;
8203 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8204 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8209 @ Another important way to measure a path is to find its arc length. This
8210 is best done by using the general bisection algorithm to subdivide the path
8211 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8214 Since the arc length is the integral with respect to time of the magnitude of
8215 the velocity, it is natural to use Simpson's rule for the approximation.
8217 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8218 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8219 for the arc length of a path of length~1. For a cubic spline
8220 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8221 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8223 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8225 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8226 is the result of the bisection algorithm.
8228 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8229 This could be done via the theoretical error bound for Simpson's rule,
8231 but this is impractical because it requires an estimate of the fourth
8232 derivative of the quantity being integrated. It is much easier to just perform
8233 a bisection step and see how much the arc length estimate changes. Since the
8234 error for Simpson's rule is proportional to the fourth power of the sample
8235 spacing, the remaining error is typically about $1\over16$ of the amount of
8236 the change. We say ``typically'' because the error has a pseudo-random behavior
8237 that could cause the two estimates to agree when each contain large errors.
8239 To protect against disasters such as undetected cusps, the bisection process
8240 should always continue until all the $dz_i$ vectors belong to a single
8241 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8242 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8243 If such a spline happens to produce an erroneous arc length estimate that
8244 is little changed by bisection, the amount of the error is likely to be fairly
8245 small. We will try to arrange things so that freak accidents of this type do
8246 not destroy the inverse relationship between the \&{arclength} and
8247 \&{arctime} operations.
8248 @:arclength_}{\&{arclength} primitive@>
8249 @:arctime_}{\&{arctime} primitive@>
8251 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8253 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8254 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8255 returns the time when the arc length reaches |a_goal| if there is such a time.
8256 Thus the return value is either an arc length less than |a_goal| or, if the
8257 arc length would be at least |a_goal|, it returns a time value decreased by
8258 |two|. This allows the caller to use the sign of the result to distinguish
8259 between arc lengths and time values. On certain types of overflow, it is
8260 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8261 Otherwise, the result is always less than |a_goal|.
8263 Rather than halving the control point coordinates on each recursive call to
8264 |arc_test|, it is better to keep them proportional to velocity on the original
8265 curve and halve the results instead. This means that recursive calls can
8266 potentially use larger error tolerances in their arc length estimates. How
8267 much larger depends on to what extent the errors behave as though they are
8268 independent of each other. To save computing time, we use optimistic assumptions
8269 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8272 In addition to the tolerance parameter, |arc_test| should also have parameters
8273 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8274 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8275 and they are needed in different instances of |arc_test|.
8278 static scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8279 scaled dx2, scaled dy2, scaled v0, scaled v02,
8280 scaled v2, scaled a_goal, scaled tol) {
8281 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8282 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8284 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8285 scaled arc; /* best arc length estimate before recursion */
8286 @<Other local variables in |arc_test|@>;
8287 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8289 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8290 set |arc_test| and |return|@>;
8291 @<Test if the control points are confined to one quadrant or rotating them
8292 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8293 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8294 if ( arc < a_goal ) {
8297 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8298 that time minus |two|@>;
8301 @<Use one or two recursive calls to compute the |arc_test| function@>;
8305 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8306 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8307 |make_fraction| in this inner loop.
8310 @<Use one or two recursive calls to compute the |arc_test| function@>=
8312 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8313 large as possible@>;
8314 tol = tol + halfp(tol);
8315 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8316 halfp(v02), a_new, tol);
8318 return (-halfp(two-a));
8320 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8321 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8322 halfp(v02), v022, v2, a_new, tol);
8324 return (-halfp(-b) - half_unit);
8326 return (a + half(b-a));
8330 @ @<Other local variables in |arc_test|@>=
8331 scaled a,b; /* results of recursive calls */
8332 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8334 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8335 a_aux = el_gordo - a_goal;
8336 if ( a_goal > a_aux ) {
8337 a_aux = a_goal - a_aux;
8340 a_new = a_goal + a_goal;
8344 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8345 to force the additions and subtractions to be done in an order that avoids
8348 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8351 a_new = a_new + a_aux;
8354 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8355 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8356 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8357 this bound. Note that recursive calls will maintain this invariant.
8359 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8360 dx01 = half(dx0 + dx1);
8361 dx12 = half(dx1 + dx2);
8362 dx02 = half(dx01 + dx12);
8363 dy01 = half(dy0 + dy1);
8364 dy12 = half(dy1 + dy2);
8365 dy02 = half(dy01 + dy12)
8367 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8368 |a_goal=el_gordo| is guaranteed to yield the arc length.
8370 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8371 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8372 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8374 arc1 = v002 + half(halfp(v0+tmp) - v002);
8375 arc = v022 + half(halfp(v2+tmp) - v022);
8376 if ( (arc < el_gordo-arc1) ) {
8379 mp->arith_error = true;
8380 if ( a_goal==el_gordo ) return (el_gordo);
8384 @ @<Other local variables in |arc_test|@>=
8385 scaled tmp, tmp2; /* all purpose temporary registers */
8386 scaled arc1; /* arc length estimate for the first half */
8388 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8389 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8390 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8392 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8393 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8395 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8396 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8398 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8399 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8402 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8404 it is appropriate to use the same approximation to decide when the integral
8405 reaches the intermediate value |a_goal|. At this point
8407 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8408 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8409 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8410 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8411 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8415 $$ {\vb\dot B(t)\vb\over 3} \approx
8416 \cases{B\left(\hbox{|v0|},
8417 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8418 {1\over 2}\hbox{|v02|}; 2t \right)&
8419 if $t\le{1\over 2}$\cr
8420 B\left({1\over 2}\hbox{|v02|},
8421 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8422 \hbox{|v2|}; 2t-1 \right)&
8423 if $t\ge{1\over 2}$.\cr}
8426 We can integrate $\vb\dot B(t)\vb$ by using
8427 $$\int 3B(a,b,c;\tau)\,dt =
8428 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8431 This construction allows us to find the time when the arc length reaches
8432 |a_goal| by solving a cubic equation of the form
8433 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8434 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8435 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8436 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8437 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8438 $\tau$ given $a$, $b$, $c$, and $x$.
8440 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8442 tmp = (v02 + 2) / 4;
8443 if ( a_goal<=arc1 ) {
8446 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8449 return ((half_unit - two) +
8450 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8454 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8455 $$ B(0, a, a+b, a+b+c; t) = x. $$
8456 This routine is based on |crossing_point| but is simplified by the
8457 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8458 If rounding error causes this condition to be violated slightly, we just ignore
8459 it and proceed with binary search. This finds a time when the function value
8460 reaches |x| and the slope is positive.
8463 static scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) ;
8466 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8467 scaled ab, bc, ac; /* bisection results */
8468 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8469 integer xx; /* temporary for updating |x| */
8470 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8471 @:this can't happen rising?}{\quad rising?@>
8474 } else if ( x >= a+b+c ) {
8478 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8482 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8483 xx = x - a - ab - ac;
8484 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8485 else { x = x + xx; a=ac; b=bc; t = t+1; };
8486 } while (t < unity);
8491 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8496 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8498 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8499 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8506 @ It is convenient to have a simpler interface to |arc_test| that requires no
8507 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8508 length less than |fraction_four|.
8510 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8512 @c static scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8513 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8514 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8515 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8516 v0 = mp_pyth_add(mp, dx0,dy0);
8517 v1 = mp_pyth_add(mp, dx1,dy1);
8518 v2 = mp_pyth_add(mp, dx2,dy2);
8519 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8520 mp->arith_error = true;
8521 if ( a_goal==el_gordo ) return el_gordo;
8524 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8525 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8526 v0, v02, v2, a_goal, arc_tol));
8530 @ Now it is easy to find the arc length of an entire path.
8532 @c static scaled mp_get_arc_length (MP mp,pointer h) {
8533 pointer p,q; /* for traversing the path */
8534 scaled a,a_tot; /* current and total arc lengths */
8537 while ( mp_right_type(p)!=mp_endpoint ){
8539 a = mp_do_arc_test(mp, mp_right_x(p)-mp_x_coord(p), mp_right_y(p)-mp_y_coord(p),
8540 mp_left_x(q)-mp_right_x(p), mp_left_y(q)-mp_right_y(p),
8541 mp_x_coord(q)-mp_left_x(q), mp_y_coord(q)-mp_left_y(q), el_gordo);
8542 a_tot = mp_slow_add(mp, a, a_tot);
8543 if ( q==h ) break; else p=q;
8549 @ The inverse operation of finding the time on a path~|h| when the arc length
8550 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8551 is required to handle very large times or negative times on cyclic paths. For
8552 non-cyclic paths, |arc0| values that are negative or too large cause
8553 |get_arc_time| to return 0 or the length of path~|h|.
8555 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8556 time value greater than the length of the path. Since it could be much greater,
8557 we must be prepared to compute the arc length of path~|h| and divide this into
8558 |arc0| to find how many multiples of the length of path~|h| to add.
8560 @c static scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8561 pointer p,q; /* for traversing the path */
8562 scaled t_tot; /* accumulator for the result */
8563 scaled t; /* the result of |do_arc_test| */
8564 scaled arc; /* portion of |arc0| not used up so far */
8565 integer n; /* number of extra times to go around the cycle */
8567 @<Deal with a negative |arc0| value and |return|@>;
8569 if ( arc0==el_gordo ) decr(arc0);
8573 while ( (mp_right_type(p)!=mp_endpoint) && (arc>0) ) {
8575 t = mp_do_arc_test(mp, mp_right_x(p)-mp_x_coord(p), mp_right_y(p)-mp_y_coord(p),
8576 mp_left_x(q)-mp_right_x(p), mp_left_y(q)-mp_right_y(p),
8577 mp_x_coord(q)-mp_left_x(q), mp_y_coord(q)-mp_left_y(q), arc);
8578 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8580 @<Update |t_tot| and |arc| to avoid going around the cyclic
8581 path too many times but set |arith_error:=true| and |goto done| on
8590 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8591 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8592 else { t_tot = t_tot + unity; arc = arc - t; }
8594 @ @<Deal with a negative |arc0| value and |return|@>=
8596 if ( mp_left_type(h)==mp_endpoint ) {
8599 p = mp_htap_ypoc(mp, h);
8600 t_tot = -mp_get_arc_time(mp, p, -arc0);
8601 mp_toss_knot_list(mp, p);
8607 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8609 n = arc / (arc0 - arc);
8610 arc = arc - n*(arc0 - arc);
8611 if ( t_tot > (el_gordo / (n+1)) ) {
8614 t_tot = (n + 1)*t_tot;
8617 @* \[20] Data structures for pens.
8618 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8619 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8620 @:stroke}{\&{stroke} command@>
8621 converted into an area fill as described in the next part of this program.
8622 The mathematics behind this process is based on simple aspects of the theory
8623 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8624 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8625 Foundations of Computer Science {\bf 24} (1983), 100--111].
8627 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8628 @:makepen_}{\&{makepen} primitive@>
8629 This path representation is almost sufficient for our purposes except that
8630 a pen path should always be a convex polygon with the vertices in
8631 counter-clockwise order.
8632 Since we will need to scan pen polygons both forward and backward, a pen
8633 should be represented as a doubly linked ring of knot nodes. There is
8634 room for the extra back pointer because we do not need the
8635 |mp_left_type| or |mp_right_type| fields. In fact, we don't need the |mp_left_x|,
8636 |mp_left_y|, |mp_right_x|, or |mp_right_y| fields either but we leave these alone
8637 so that certain procedures can operate on both pens and paths. In particular,
8638 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8641 /* this replaces the |mp_left_type| and |mp_right_type| fields in a pen knot */
8643 @ The |make_pen| procedure turns a path into a pen by initializing
8644 the |knil| pointers and making sure the knots form a convex polygon.
8645 Thus each cubic in the given path becomes a straight line and the control
8646 points are ignored. If the path is not cyclic, the ends are connected by a
8649 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8652 static pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8653 pointer p,q; /* two consecutive knots */
8660 h=mp_convex_hull(mp, h);
8661 @<Make sure |h| isn't confused with an elliptical pen@>;
8666 @ The only information required about an elliptical pen is the overall
8667 transformation that has been applied to the original \&{pencircle}.
8668 @:pencircle_}{\&{pencircle} primitive@>
8669 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8670 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8671 knot node and transformed as if it were a path.
8673 @d pen_is_elliptical(A) ((A)==mp_link((A)))
8676 static pointer mp_get_pen_circle (MP mp,scaled diam) {
8677 pointer h; /* the knot node to return */
8678 h=mp_get_node(mp, knot_node_size);
8679 mp_link(h)=h; knil(h)=h;
8680 mp_originator(h)=mp_program_code;
8681 mp_x_coord(h)=0; mp_y_coord(h)=0;
8682 mp_left_x(h)=diam; mp_left_y(h)=0;
8683 mp_right_x(h)=0; mp_right_y(h)=diam;
8687 @ If the polygon being returned by |make_pen| has only one vertex, it will
8688 be interpreted as an elliptical pen. This is no problem since a degenerate
8689 polygon can equally well be thought of as a degenerate ellipse. We need only
8690 initialize the |mp_left_x|, |mp_left_y|, |mp_right_x|, and |mp_right_y| fields.
8692 @<Make sure |h| isn't confused with an elliptical pen@>=
8693 if ( pen_is_elliptical( h) ){
8694 mp_left_x(h)=mp_x_coord(h); mp_left_y(h)=mp_y_coord(h);
8695 mp_right_x(h)=mp_x_coord(h); mp_right_y(h)=mp_y_coord(h);
8698 @ Printing a polygonal pen is very much like printing a path
8701 static void mp_pr_pen (MP mp,pointer h) ;
8704 void mp_pr_pen (MP mp,pointer h) {
8705 pointer p,q; /* for list traversal */
8706 if ( pen_is_elliptical(h) ) {
8707 @<Print the elliptical pen |h|@>;
8711 mp_print_two(mp, mp_x_coord(p),mp_y_coord(p));
8712 mp_print_nl(mp, " .. ");
8713 @<Advance |p| making sure the links are OK and |return| if there is
8716 mp_print(mp, "cycle");
8720 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8722 if ( (q==null) || (knil(q)!=p) ) {
8723 mp_print_nl(mp, "???"); return; /* this won't happen */
8728 @ @<Print the elliptical pen |h|@>=
8730 mp_print(mp, "pencircle transformed (");
8731 mp_print_scaled(mp, mp_x_coord(h));
8732 mp_print_char(mp, xord(','));
8733 mp_print_scaled(mp, mp_y_coord(h));
8734 mp_print_char(mp, xord(','));
8735 mp_print_scaled(mp, mp_left_x(h)-mp_x_coord(h));
8736 mp_print_char(mp, xord(','));
8737 mp_print_scaled(mp, mp_right_x(h)-mp_x_coord(h));
8738 mp_print_char(mp, xord(','));
8739 mp_print_scaled(mp, mp_left_y(h)-mp_y_coord(h));
8740 mp_print_char(mp, xord(','));
8741 mp_print_scaled(mp, mp_right_y(h)-mp_y_coord(h));
8742 mp_print_char(mp, xord(')'));
8745 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8749 static void mp_print_pen (MP mp,pointer h, const char *s, boolean nuline) ;
8752 void mp_print_pen (MP mp,pointer h, const char *s, boolean nuline) {
8753 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8756 mp_end_diagnostic(mp, true);
8759 @ Making a polygonal pen into a path involves restoring the |mp_left_type| and
8760 |mp_right_type| fields and setting the control points so as to make a polygonal
8764 static void mp_make_path (MP mp,pointer h) {
8765 pointer p; /* for traversing the knot list */
8766 quarterword k; /* a loop counter */
8767 @<Other local variables in |make_path|@>;
8768 if ( pen_is_elliptical(h) ) {
8769 @<Make the elliptical pen |h| into a path@>;
8773 mp_left_type(p)=mp_explicit;
8774 mp_right_type(p)=mp_explicit;
8775 @<copy the coordinates of knot |p| into its control points@>;
8781 @ @<copy the coordinates of knot |p| into its control points@>=
8782 mp_left_x(p)=mp_x_coord(p);
8783 mp_left_y(p)=mp_y_coord(p);
8784 mp_right_x(p)=mp_x_coord(p);
8785 mp_right_y(p)=mp_y_coord(p)
8787 @ We need an eight knot path to get a good approximation to an ellipse.
8789 @<Make the elliptical pen |h| into a path@>=
8791 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8793 for (k=0;k<=7;k++ ) {
8794 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8795 transforming it appropriately@>;
8796 if ( k==7 ) mp_link(p)=h; else mp_link(p)=mp_get_node(mp, knot_node_size);
8801 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8802 center_x=mp_x_coord(h);
8803 center_y=mp_y_coord(h);
8804 width_x=mp_left_x(h)-center_x;
8805 width_y=mp_left_y(h)-center_y;
8806 height_x=mp_right_x(h)-center_x;
8807 height_y=mp_right_y(h)-center_y
8809 @ @<Other local variables in |make_path|@>=
8810 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8811 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8812 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8813 scaled dx,dy; /* the vector from knot |p| to its right control point */
8815 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8817 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8818 find the point $k/8$ of the way around the circle and the direction vector
8821 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8823 mp_x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8824 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8825 mp_y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8826 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8827 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8828 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8829 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8830 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8831 mp_right_x(p)=mp_x_coord(p)+dx;
8832 mp_right_y(p)=mp_y_coord(p)+dy;
8833 mp_left_x(p)=mp_x_coord(p)-dx;
8834 mp_left_y(p)=mp_y_coord(p)-dy;
8835 mp_left_type(p)=mp_explicit;
8836 mp_right_type(p)=mp_explicit;
8837 mp_originator(p)=mp_program_code
8840 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8841 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8843 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8844 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8845 function for $\theta=\phi=22.5^\circ$. This comes out to be
8846 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8847 \approx 0.132608244919772.
8851 mp->half_cos[0]=fraction_half;
8852 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8854 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8855 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8857 for (k=3;k<= 4;k++ ) {
8858 mp->half_cos[k]=-mp->half_cos[4-k];
8859 mp->d_cos[k]=-mp->d_cos[4-k];
8861 for (k=5;k<= 7;k++ ) {
8862 mp->half_cos[k]=mp->half_cos[8-k];
8863 mp->d_cos[k]=mp->d_cos[8-k];
8866 @ The |convex_hull| function forces a pen polygon to be convex when it is
8867 returned by |make_pen| and after any subsequent transformation where rounding
8868 error might allow the convexity to be lost.
8869 The convex hull algorithm used here is described by F.~P. Preparata and
8870 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8873 static pointer mp_convex_hull (MP mp,pointer h);
8876 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8877 pointer l,r; /* the leftmost and rightmost knots */
8878 pointer p,q; /* knots being scanned */
8879 pointer s; /* the starting point for an upcoming scan */
8880 scaled dx,dy; /* a temporary pointer */
8881 if ( pen_is_elliptical(h) ) {
8884 @<Set |l| to the leftmost knot in polygon~|h|@>;
8885 @<Set |r| to the rightmost knot in polygon~|h|@>;
8888 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8889 move them past~|r|@>;
8890 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8891 move them past~|l|@>;
8892 @<Sort the path from |l| to |r| by increasing $x$@>;
8893 @<Sort the path from |r| to |l| by decreasing $x$@>;
8895 if ( l!=mp_link(l) ) {
8896 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8902 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8904 @<Set |l| to the leftmost knot in polygon~|h|@>=
8908 if ( mp_x_coord(p)<=mp_x_coord(l) )
8909 if ( (mp_x_coord(p)<mp_x_coord(l)) || (mp_y_coord(p)<mp_y_coord(l)) )
8914 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8918 if ( mp_x_coord(p)>=mp_x_coord(r) )
8919 if ( (mp_x_coord(p)>mp_x_coord(r)) || (mp_y_coord(p)>mp_y_coord(r)) )
8924 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8925 dx=mp_x_coord(r)-mp_x_coord(l);
8926 dy=mp_y_coord(r)-mp_y_coord(l);
8930 if ( mp_ab_vs_cd(mp, dx,mp_y_coord(p)-mp_y_coord(l),dy,mp_x_coord(p)-mp_x_coord(l))>0 )
8931 mp_move_knot(mp, p, r);
8935 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8939 static void mp_move_knot (MP mp,pointer p, pointer q) ;
8942 void mp_move_knot (MP mp,pointer p, pointer q) {
8943 mp_link(knil(p))=mp_link(p);
8944 knil(mp_link(p))=knil(p);
8946 mp_link(p)=mp_link(q);
8951 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8955 if ( mp_ab_vs_cd(mp, dx,mp_y_coord(p)-mp_y_coord(l),dy,mp_x_coord(p)-mp_x_coord(l))<0 )
8956 mp_move_knot(mp, p,l);
8960 @ The list is likely to be in order already so we just do linear insertions.
8961 Secondary comparisons on $y$ ensure that the sort is consistent with the
8962 choice of |l| and |r|.
8964 @<Sort the path from |l| to |r| by increasing $x$@>=
8968 while ( mp_x_coord(q)>mp_x_coord(p) ) q=knil(q);
8969 while ( mp_x_coord(q)==mp_x_coord(p) ) {
8970 if ( mp_y_coord(q)>mp_y_coord(p) ) q=knil(q); else break;
8972 if ( q==knil(p) ) p=mp_link(p);
8973 else { p=mp_link(p); mp_move_knot(mp, knil(p),q); };
8976 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8980 while ( mp_x_coord(q)<mp_x_coord(p) ) q=knil(q);
8981 while ( mp_x_coord(q)==mp_x_coord(p) ) {
8982 if ( mp_y_coord(q)<mp_y_coord(p) ) q=knil(q); else break;
8984 if ( q==knil(p) ) p=mp_link(p);
8985 else { p=mp_link(p); mp_move_knot(mp, knil(p),q); };
8988 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8989 at knot |q|. There usually will be a left turn so we streamline the case
8990 where the |then| clause is not executed.
8992 @<Do a Gramm scan and remove vertices where there...@>=
8996 dx=mp_x_coord(q)-mp_x_coord(p);
8997 dy=mp_y_coord(q)-mp_y_coord(p);
9001 if ( mp_ab_vs_cd(mp, dx,mp_y_coord(q)-mp_y_coord(p),dy,mp_x_coord(q)-mp_x_coord(p))<=0 ) {
9002 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
9007 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
9010 mp_free_node(mp, p,knot_node_size);
9011 mp_link(s)=q; knil(q)=s;
9013 else { p=knil(s); q=s; };
9016 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
9017 offset associated with the given direction |(x,y)|. If two different offsets
9018 apply, it chooses one of them.
9021 static void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
9022 pointer p,q; /* consecutive knots */
9024 /* the transformation matrix for an elliptical pen */
9025 fraction xx,yy; /* untransformed offset for an elliptical pen */
9026 fraction d; /* a temporary register */
9027 if ( pen_is_elliptical(h) ) {
9028 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
9033 } while (!(mp_ab_vs_cd(mp, mp_x_coord(q)-mp_x_coord(p),y, mp_y_coord(q)-mp_y_coord(p),x)>=0));
9036 } while (!(mp_ab_vs_cd(mp, mp_x_coord(q)-mp_x_coord(p),y, mp_y_coord(q)-mp_y_coord(p),x)<=0));
9037 mp->cur_x=mp_x_coord(p);
9038 mp->cur_y=mp_y_coord(p);
9044 scaled cur_y; /* all-purpose return value registers */
9046 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9047 if ( (x==0) && (y==0) ) {
9048 mp->cur_x=mp_x_coord(h); mp->cur_y=mp_y_coord(h);
9050 @<Find the non-constant part of the transformation for |h|@>;
9051 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9054 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9055 untransformed version of |(x,y)|@>;
9056 mp->cur_x=mp_x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9057 mp->cur_y=mp_y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9060 @ @<Find the non-constant part of the transformation for |h|@>=
9061 wx=mp_left_x(h)-mp_x_coord(h);
9062 wy=mp_left_y(h)-mp_y_coord(h);
9063 hx=mp_right_x(h)-mp_x_coord(h);
9064 hy=mp_right_y(h)-mp_y_coord(h)
9066 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9067 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9068 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9069 d=mp_pyth_add(mp, xx,yy);
9071 xx=half(mp_make_fraction(mp, xx,d));
9072 yy=half(mp_make_fraction(mp, yy,d));
9075 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9076 But we can handle that case by just calling |find_offset| twice. The answer
9077 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9080 static void mp_pen_bbox (MP mp,pointer h) {
9081 pointer p; /* for scanning the knot list */
9082 if ( pen_is_elliptical(h) ) {
9083 @<Find the bounding box of an elliptical pen@>;
9085 mp_minx=mp_x_coord(h); mp_maxx=mp_minx;
9086 mp_miny=mp_y_coord(h); mp_maxy=mp_miny;
9089 if ( mp_x_coord(p)<mp_minx ) mp_minx=mp_x_coord(p);
9090 if ( mp_y_coord(p)<mp_miny ) mp_miny=mp_y_coord(p);
9091 if ( mp_x_coord(p)>mp_maxx ) mp_maxx=mp_x_coord(p);
9092 if ( mp_y_coord(p)>mp_maxy ) mp_maxy=mp_y_coord(p);
9098 @ @<Find the bounding box of an elliptical pen@>=
9100 mp_find_offset(mp, 0,fraction_one,h);
9102 mp_minx=2*mp_x_coord(h)-mp->cur_x;
9103 mp_find_offset(mp, -fraction_one,0,h);
9105 mp_miny=2*mp_y_coord(h)-mp->cur_y;
9108 @* \[21] Edge structures.
9109 Now we come to \MP's internal scheme for representing pictures.
9110 The representation is very different from \MF's edge structures
9111 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9112 images. However, the basic idea is somewhat similar in that shapes
9113 are represented via their boundaries.
9115 The main purpose of edge structures is to keep track of graphical objects
9116 until it is time to translate them into \ps. Since \MP\ does not need to
9117 know anything about an edge structure other than how to translate it into
9118 \ps\ and how to find its bounding box, edge structures can be just linked
9119 lists of graphical objects. \MP\ has no easy way to determine whether
9120 two such objects overlap, but it suffices to draw the first one first and
9121 let the second one overwrite it if necessary.
9124 enum mp_graphical_object_code {
9125 @<Graphical object codes@>
9129 @ Let's consider the types of graphical objects one at a time.
9130 First of all, a filled contour is represented by a eight-word node. The first
9131 word contains |type| and |link| fields, and the next six words contain a
9132 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9133 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9134 give the relevant information.
9136 @d mp_path_p(A) mp_link((A)+1)
9137 /* a pointer to the path that needs filling */
9138 @d mp_pen_p(A) mp_info((A)+1)
9139 /* a pointer to the pen to fill or stroke with */
9140 @d mp_color_model(A) mp_type((A)+2) /* the color model */
9141 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9142 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9143 @d obj_grey_loc obj_red_loc /* the location for the color */
9144 @d red_val(A) mp->mem[(A)+3].sc
9145 /* the red component of the color in the range $0\ldots1$ */
9148 @d green_val(A) mp->mem[(A)+4].sc
9149 /* the green component of the color in the range $0\ldots1$ */
9150 @d magenta_val green_val
9151 @d blue_val(A) mp->mem[(A)+5].sc
9152 /* the blue component of the color in the range $0\ldots1$ */
9153 @d yellow_val blue_val
9154 @d black_val(A) mp->mem[(A)+6].sc
9155 /* the blue component of the color in the range $0\ldots1$ */
9156 @d ljoin_val(A) mp_name_type((A)) /* the value of \&{linejoin} */
9157 @:mp_linejoin_}{\&{linejoin} primitive@>
9158 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9159 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9160 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9161 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9162 @d mp_pre_script(A) mp->mem[(A)+8].hh.lh
9163 @d mp_post_script(A) mp->mem[(A)+8].hh.rh
9166 @ @<Graphical object codes@>=
9170 static pointer mp_new_fill_node (MP mp,pointer p) {
9171 /* make a fill node for cyclic path |p| and color black */
9172 pointer t; /* the new node */
9173 t=mp_get_node(mp, fill_node_size);
9174 mp_type(t)=mp_fill_code;
9176 mp_pen_p(t)=null; /* |null| means don't use a pen */
9181 mp_color_model(t)=mp_uninitialized_model;
9182 mp_pre_script(t)=null;
9183 mp_post_script(t)=null;
9184 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9188 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9189 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9190 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9191 else ljoin_val(t)=0;
9192 if ( mp->internal[mp_miterlimit]<unity )
9193 miterlim_val(t)=unity;
9195 miterlim_val(t)=mp->internal[mp_miterlimit]
9197 @ A stroked path is represented by an eight-word node that is like a filled
9198 contour node except that it contains the current \&{linecap} value, a scale
9199 factor for the dash pattern, and a pointer that is non-null if the stroke
9200 is to be dashed. The purpose of the scale factor is to allow a picture to
9201 be transformed without touching the picture that |dash_p| points to.
9203 @d mp_dash_p(A) mp_link((A)+9)
9204 /* a pointer to the edge structure that gives the dash pattern */
9205 @d lcap_val(A) mp_type((A)+9)
9206 /* the value of \&{linecap} */
9207 @:mp_linecap_}{\&{linecap} primitive@>
9208 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9209 @d stroked_node_size 11
9211 @ @<Graphical object codes@>=
9215 static pointer mp_new_stroked_node (MP mp,pointer p) {
9216 /* make a stroked node for path |p| with |mp_pen_p(p)| temporarily |null| */
9217 pointer t; /* the new node */
9218 t=mp_get_node(mp, stroked_node_size);
9219 mp_type(t)=mp_stroked_code;
9220 mp_path_p(t)=p; mp_pen_p(t)=null;
9222 dash_scale(t)=unity;
9227 mp_color_model(t)=mp_uninitialized_model;
9228 mp_pre_script(t)=null;
9229 mp_post_script(t)=null;
9230 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9231 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9232 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9237 @ When a dashed line is computed in a transformed coordinate system, the dash
9238 lengths get scaled like the pen shape and we need to compensate for this. Since
9239 there is no unique scale factor for an arbitrary transformation, we use the
9240 the square root of the determinant. The properties of the determinant make it
9241 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9242 except for the initialization of the scale factor |s|. The factor of 64 is
9243 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9244 to counteract the effect of |take_fraction|.
9247 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9248 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9249 unsigned s; /* amount by which the result of |square_rt| needs to be scaled */
9250 @<Initialize |maxabs|@>;
9252 while ( (maxabs<fraction_one) && (s>1) ){
9253 a+=a; b+=b; c+=c; d+=d;
9254 maxabs+=maxabs; s=(unsigned)(halfp(s));
9256 return (scaled)(s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c))));
9259 static scaled mp_get_pen_scale (MP mp,pointer p) {
9260 return mp_sqrt_det(mp,
9261 mp_left_x(p)-mp_x_coord(p), mp_right_x(p)-mp_x_coord(p),
9262 mp_left_y(p)-mp_y_coord(p), mp_right_y(p)-mp_y_coord(p));
9266 static scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9269 @ @<Initialize |maxabs|@>=
9271 if ( abs(b)>maxabs ) maxabs=abs(b);
9272 if ( abs(c)>maxabs ) maxabs=abs(c);
9273 if ( abs(d)>maxabs ) maxabs=abs(d)
9275 @ When a picture contains text, this is represented by a fourteen-word node
9276 where the color information and |type| and |link| fields are augmented by
9277 additional fields that describe the text and how it is transformed.
9278 The |path_p| and |mp_pen_p| pointers are replaced by a number that identifies
9279 the font and a string number that gives the text to be displayed.
9280 The |width|, |height|, and |depth| fields
9281 give the dimensions of the text at its design size, and the remaining six
9282 words give a transformation to be applied to the text. The |new_text_node|
9283 function initializes everything to default values so that the text comes out
9284 black with its reference point at the origin.
9286 @d mp_text_p(A) mp_link((A)+1) /* a string pointer for the text to display */
9287 @d mp_font_n(A) mp_info((A)+1) /* the font number */
9288 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9289 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9290 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9291 @d text_tx_loc(A) ((A)+11)
9292 /* the first of six locations for transformation parameters */
9293 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9294 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9295 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9296 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9297 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9298 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9299 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9300 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9301 @d text_node_size 17
9303 @ @<Graphical object codes@>=
9307 static pointer mp_new_text_node (MP mp,char *f,str_number s) {
9308 /* make a text node for font |f| and text string |s| */
9309 pointer t; /* the new node */
9310 t=mp_get_node(mp, text_node_size);
9311 mp_type(t)=mp_text_code;
9313 mp_font_n(t)=(halfword)mp_find_font(mp, f); /* this identifies the font */
9318 mp_color_model(t)=mp_uninitialized_model;
9319 mp_pre_script(t)=null;
9320 mp_post_script(t)=null;
9321 tx_val(t)=0; ty_val(t)=0;
9322 txx_val(t)=unity; txy_val(t)=0;
9323 tyx_val(t)=0; tyy_val(t)=unity;
9324 mp_set_text_box(mp, t); /* this finds the bounding box */
9328 @ The last two types of graphical objects that can occur in an edge structure
9329 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9330 @:set_bounds_}{\&{setbounds} primitive@>
9331 to implement because we must keep track of exactly what is being clipped or
9332 bounded when pictures get merged together. For this reason, each clipping or
9333 \&{setbounds} operation is represented by a pair of nodes: first comes a
9334 two-word node whose |path_p| gives the relevant path, then there is the list
9335 of objects to clip or bound followed by a two-word node whose second word is
9338 Using at least two words for each graphical object node allows them all to be
9339 allocated and deallocated similarly with a global array |gr_object_size| to
9340 give the size in words for each object type.
9342 @d start_clip_size 2
9343 @d start_bounds_size 2
9344 @d stop_clip_size 2 /* the second word is not used here */
9345 @d stop_bounds_size 2 /* the second word is not used here */
9347 @d stop_type(A) ((A)+2)
9348 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9349 @d has_color(A) (mp_type((A))<mp_start_clip_code)
9350 /* does a graphical object have color fields? */
9351 @d has_pen(A) (mp_type((A))<mp_text_code)
9352 /* does a graphical object have a |mp_pen_p| field? */
9353 @d is_start_or_stop(A) (mp_type((A))>=mp_start_clip_code)
9354 @d is_stop(A) (mp_type((A))>=mp_stop_clip_code)
9356 @ @<Graphical object codes@>=
9357 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9358 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9359 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9360 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9363 static pointer mp_new_bounds_node (MP mp,pointer p, quarterword c) {
9364 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9365 pointer t; /* the new node */
9366 t=mp_get_node(mp, mp->gr_object_size[c]);
9372 @ We need an array to keep track of the sizes of graphical objects.
9375 quarterword gr_object_size[mp_stop_bounds_code+1];
9378 mp->gr_object_size[mp_fill_code]=fill_node_size;
9379 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9380 mp->gr_object_size[mp_text_code]=text_node_size;
9381 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9382 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9383 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9384 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9386 @ All the essential information in an edge structure is encoded as a linked list
9387 of graphical objects as we have just seen, but it is helpful to add some
9388 redundant information. A single edge structure might be used as a dash pattern
9389 many times, and it would be nice to avoid scanning the same structure
9390 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9391 has a header that gives a list of dashes in a sorted order designed for rapid
9392 translation into \ps.
9394 Each dash is represented by a three-word node containing the initial and final
9395 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9396 the dash node with the next higher $x$-coordinates and the final link points
9397 to a special location called |null_dash|. (There should be no overlap between
9398 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9399 the period of repetition, this needs to be stored in the edge header along
9400 with a pointer to the list of dash nodes.
9402 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9403 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9405 @d dash_list mp_link
9406 /* in an edge header this points to the first dash node */
9407 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9409 @ It is also convenient for an edge header to contain the bounding
9410 box information needed by the \&{llcorner} and \&{urcorner} operators
9411 so that this does not have to be recomputed unnecessarily. This is done by
9412 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9413 how far the bounding box computation has gotten. Thus if the user asks for
9414 the bounding box and then adds some more text to the picture before asking
9415 for more bounding box information, the second computation need only look at
9416 the additional text.
9418 When the bounding box has not been computed, the |bblast| pointer points
9419 to a dummy link at the head of the graphical object list while the |minx_val|
9420 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9421 fields contain |-el_gordo|.
9423 Since the bounding box of pictures containing objects of type
9424 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9425 @:mp_true_corners_}{\&{truecorners} primitive@>
9426 data might not be valid for all values of this parameter. Hence, the |bbtype|
9427 field is needed to keep track of this.
9429 @d minx_val(A) mp->mem[(A)+2].sc
9430 @d miny_val(A) mp->mem[(A)+3].sc
9431 @d maxx_val(A) mp->mem[(A)+4].sc
9432 @d maxy_val(A) mp->mem[(A)+5].sc
9433 @d bblast(A) mp_link((A)+6) /* last item considered in bounding box computation */
9434 @d bbtype(A) mp_info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9435 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9437 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9439 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9441 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9444 static void mp_init_bbox (MP mp,pointer h) {
9445 /* Initialize the bounding box information in edge structure |h| */
9446 bblast(h)=dummy_loc(h);
9447 bbtype(h)=no_bounds;
9448 minx_val(h)=el_gordo;
9449 miny_val(h)=el_gordo;
9450 maxx_val(h)=-el_gordo;
9451 maxy_val(h)=-el_gordo;
9454 @ The only other entries in an edge header are a reference count in the first
9455 word and a pointer to the tail of the object list in the last word.
9457 @d obj_tail(A) mp_info((A)+7) /* points to the last entry in the object list */
9458 @d edge_header_size 8
9461 static void mp_init_edges (MP mp,pointer h) {
9462 /* initialize an edge header to null values */
9463 dash_list(h)=null_dash;
9464 obj_tail(h)=dummy_loc(h);
9465 mp_link(dummy_loc(h))=null;
9467 mp_init_bbox(mp, h);
9470 @ Here is how edge structures are deleted. The process can be recursive because
9471 of the need to dereference edge structures that are used as dash patterns.
9474 @d add_edge_ref(A) incr(ref_count(A))
9475 @d delete_edge_ref(A) {
9476 if ( ref_count((A))==null )
9477 mp_toss_edges(mp, A);
9483 static void mp_flush_dash_list (MP mp,pointer h);
9484 static pointer mp_toss_gr_object (MP mp,pointer p) ;
9485 static void mp_toss_edges (MP mp,pointer h) ;
9487 @ @c void mp_toss_edges (MP mp,pointer h) {
9488 pointer p,q; /* pointers that scan the list being recycled */
9489 pointer r; /* an edge structure that object |p| refers to */
9490 mp_flush_dash_list(mp, h);
9491 q=mp_link(dummy_loc(h));
9492 while ( (q!=null) ) {
9494 r=mp_toss_gr_object(mp, p);
9495 if ( r!=null ) delete_edge_ref(r);
9497 mp_free_node(mp, h,edge_header_size);
9499 void mp_flush_dash_list (MP mp,pointer h) {
9500 pointer p,q; /* pointers that scan the list being recycled */
9502 while ( q!=null_dash ) {
9504 mp_free_node(mp, p,dash_node_size);
9506 dash_list(h)=null_dash;
9508 pointer mp_toss_gr_object (MP mp,pointer p) {
9509 /* returns an edge structure that needs to be dereferenced */
9510 pointer e; /* the edge structure to return */
9512 @<Prepare to recycle graphical object |p|@>;
9513 mp_free_node(mp, p,mp->gr_object_size[mp_type(p)]);
9517 @ @<Prepare to recycle graphical object |p|@>=
9518 switch (mp_type(p)) {
9520 mp_toss_knot_list(mp, mp_path_p(p));
9521 if ( mp_pen_p(p)!=null ) mp_toss_knot_list(mp, mp_pen_p(p));
9522 if ( mp_pre_script(p)!=null ) delete_str_ref(mp_pre_script(p));
9523 if ( mp_post_script(p)!=null ) delete_str_ref(mp_post_script(p));
9525 case mp_stroked_code:
9526 mp_toss_knot_list(mp, mp_path_p(p));
9527 if ( mp_pen_p(p)!=null ) mp_toss_knot_list(mp, mp_pen_p(p));
9528 if ( mp_pre_script(p)!=null ) delete_str_ref(mp_pre_script(p));
9529 if ( mp_post_script(p)!=null ) delete_str_ref(mp_post_script(p));
9533 delete_str_ref(mp_text_p(p));
9534 if ( mp_pre_script(p)!=null ) delete_str_ref(mp_pre_script(p));
9535 if ( mp_post_script(p)!=null ) delete_str_ref(mp_post_script(p));
9537 case mp_start_clip_code:
9538 case mp_start_bounds_code:
9539 mp_toss_knot_list(mp, mp_path_p(p));
9541 case mp_stop_clip_code:
9542 case mp_stop_bounds_code:
9544 } /* there are no other cases */
9546 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9547 to be done before making a significant change to an edge structure. Much of
9548 the work is done in a separate routine |copy_objects| that copies a list of
9549 graphical objects into a new edge header.
9552 static pointer mp_private_edges (MP mp,pointer h) {
9553 /* make a private copy of the edge structure headed by |h| */
9554 pointer hh; /* the edge header for the new copy */
9555 pointer p,pp; /* pointers for copying the dash list */
9556 if ( ref_count(h)==null ) {
9560 hh=mp_copy_objects(mp, mp_link(dummy_loc(h)),null);
9561 @<Copy the dash list from |h| to |hh|@>;
9562 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9563 point into the new object list@>;
9568 @ Here we use the fact that |dash_list(hh)=mp_link(hh)|.
9569 @^data structure assumptions@>
9571 @<Copy the dash list from |h| to |hh|@>=
9572 pp=hh; p=dash_list(h);
9573 while ( (p!=null_dash) ) {
9574 mp_link(pp)=mp_get_node(mp, dash_node_size);
9576 start_x(pp)=start_x(p);
9577 stop_x(pp)=stop_x(p);
9580 mp_link(pp)=null_dash;
9581 dash_y(hh)=dash_y(h)
9584 @ |h| is an edge structure
9587 static mp_dash_object *mp_export_dashes (MP mp, pointer q, scaled *w) {
9590 scaled scf; /* scale factor */
9594 if (h==null || dash_list(h)==null_dash)
9597 scf=mp_get_pen_scale(mp, mp_pen_p(q));
9599 if (*w==0) scf = dash_scale(q); else return NULL;
9601 scf=mp_make_scaled(mp, *w,scf);
9602 scf=mp_take_scaled(mp, scf,dash_scale(q));
9605 d = xmalloc(1,sizeof(mp_dash_object));
9606 start_x(null_dash)=start_x(p)+dash_y(h);
9607 while (p != null_dash) {
9608 dashes = xrealloc(dashes, (num_dashes+2), sizeof(scaled));
9609 dashes[(num_dashes-1)] =
9610 mp_take_scaled(mp,(stop_x(p)-start_x(p)),scf);
9611 dashes[(num_dashes)] =
9612 mp_take_scaled(mp,(start_x(mp_link(p))-stop_x(p)),scf);
9613 dashes[(num_dashes+1)] = -1; /* terminus */
9618 d->offset = mp_take_scaled(mp,mp_dash_offset(mp, h),scf);
9624 @ @<Copy the bounding box information from |h| to |hh|...@>=
9625 minx_val(hh)=minx_val(h);
9626 miny_val(hh)=miny_val(h);
9627 maxx_val(hh)=maxx_val(h);
9628 maxy_val(hh)=maxy_val(h);
9629 bbtype(hh)=bbtype(h);
9630 p=dummy_loc(h); pp=dummy_loc(hh);
9631 while ((p!=bblast(h)) ) {
9632 if ( p==null ) mp_confusion(mp, "bblast");
9633 @:this can't happen bblast}{\quad bblast@>
9634 p=mp_link(p); pp=mp_link(pp);
9638 @ Here is the promised routine for copying graphical objects into a new edge
9639 structure. It starts copying at object~|p| and stops just before object~|q|.
9640 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9641 structure requires further initialization by |init_bbox|.
9644 static pointer mp_copy_objects (MP mp, pointer p, pointer q);
9647 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9648 pointer hh; /* the new edge header */
9649 pointer pp; /* the last newly copied object */
9650 quarterword k; /* temporary register */
9651 hh=mp_get_node(mp, edge_header_size);
9652 dash_list(hh)=null_dash;
9656 @<Make |mp_link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9663 @ @<Make |mp_link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9664 { k=mp->gr_object_size[mp_type(p)];
9665 mp_link(pp)=mp_get_node(mp, k);
9667 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9668 @<Fix anything in graphical object |pp| that should differ from the
9669 corresponding field in |p|@>;
9673 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9674 switch (mp_type(p)) {
9675 case mp_start_clip_code:
9676 case mp_start_bounds_code:
9677 mp_path_p(pp)=mp_copy_path(mp, mp_path_p(p));
9680 mp_path_p(pp)=mp_copy_path(mp, mp_path_p(p));
9681 if ( mp_pre_script(p)!=null ) add_str_ref(mp_pre_script(p));
9682 if ( mp_post_script(p)!=null ) add_str_ref(mp_post_script(p));
9683 if ( mp_pen_p(p)!=null ) mp_pen_p(pp)=copy_pen(mp_pen_p(p));
9685 case mp_stroked_code:
9686 if ( mp_pre_script(p)!=null ) add_str_ref(mp_pre_script(p));
9687 if ( mp_post_script(p)!=null ) add_str_ref(mp_post_script(p));
9688 mp_path_p(pp)=mp_copy_path(mp, mp_path_p(p));
9689 mp_pen_p(pp)=copy_pen(mp_pen_p(p));
9690 if ( mp_dash_p(p)!=null ) add_edge_ref(mp_dash_p(pp));
9693 if ( mp_pre_script(p)!=null ) add_str_ref(mp_pre_script(p));
9694 if ( mp_post_script(p)!=null ) add_str_ref(mp_post_script(p));
9695 add_str_ref(mp_text_p(pp));
9697 case mp_stop_clip_code:
9698 case mp_stop_bounds_code:
9700 } /* there are no other cases */
9702 @ Here is one way to find an acceptable value for the second argument to
9703 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9704 skips past one picture component, where a ``picture component'' is a single
9705 graphical object, or a start bounds or start clip object and everything up
9706 through the matching stop bounds or stop clip object. The macro version avoids
9707 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9708 unless |p| points to a stop bounds or stop clip node, in which case it executes
9711 @d skip_component(A)
9712 if ( ! is_start_or_stop((A)) ) (A)=mp_link((A));
9713 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9717 static pointer mp_skip_1component (MP mp,pointer p) {
9718 integer lev; /* current nesting level */
9721 if ( is_start_or_stop(p) ) {
9722 if ( is_stop(p) ) decr(lev); else incr(lev);
9729 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9732 static void mp_print_edges (MP mp,pointer h, const char *s, boolean nuline) ;
9735 void mp_print_edges (MP mp,pointer h, const char *s, boolean nuline) {
9736 pointer p; /* a graphical object to be printed */
9737 pointer hh,pp; /* temporary pointers */
9738 scaled scf; /* a scale factor for the dash pattern */
9739 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9740 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9742 while ( mp_link(p)!=null ) {
9745 switch (mp_type(p)) {
9746 @<Cases for printing graphical object node |p|@>;
9748 mp_print(mp, "[unknown object type!]");
9752 mp_print_nl(mp, "End edges");
9753 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9755 mp_end_diagnostic(mp, true);
9758 @ @<Cases for printing graphical object node |p|@>=
9760 mp_print(mp, "Filled contour ");
9761 mp_print_obj_color(mp, p);
9762 mp_print_char(mp, xord(':')); mp_print_ln(mp);
9763 mp_pr_path(mp, mp_path_p(p)); mp_print_ln(mp);
9764 if ( (mp_pen_p(p)!=null) ) {
9765 @<Print join type for graphical object |p|@>;
9766 mp_print(mp, " with pen"); mp_print_ln(mp);
9767 mp_pr_pen(mp, mp_pen_p(p));
9771 @ @<Print join type for graphical object |p|@>=
9772 switch (ljoin_val(p)) {
9774 mp_print(mp, "mitered joins limited ");
9775 mp_print_scaled(mp, miterlim_val(p));
9778 mp_print(mp, "round joins");
9781 mp_print(mp, "beveled joins");
9784 mp_print(mp, "?? joins");
9789 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9791 @<Print join and cap types for stroked node |p|@>=
9792 switch (lcap_val(p)) {
9793 case 0:mp_print(mp, "butt"); break;
9794 case 1:mp_print(mp, "round"); break;
9795 case 2:mp_print(mp, "square"); break;
9796 default: mp_print(mp, "??"); break;
9799 mp_print(mp, " ends, ");
9800 @<Print join type for graphical object |p|@>
9802 @ Here is a routine that prints the color of a graphical object if it isn't
9803 black (the default color).
9806 static void mp_print_obj_color (MP mp,pointer p) ;
9809 void mp_print_obj_color (MP mp,pointer p) {
9810 if ( mp_color_model(p)==mp_grey_model ) {
9811 if ( grey_val(p)>0 ) {
9812 mp_print(mp, "greyed ");
9813 mp_print_compact_node(mp, obj_grey_loc(p),1);
9815 } else if ( mp_color_model(p)==mp_cmyk_model ) {
9816 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9817 (yellow_val(p)>0) || (black_val(p)>0) ) {
9818 mp_print(mp, "processcolored ");
9819 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9821 } else if ( mp_color_model(p)==mp_rgb_model ) {
9822 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9823 mp_print(mp, "colored ");
9824 mp_print_compact_node(mp, obj_red_loc(p),3);
9829 @ We also need a procedure for printing consecutive scaled values as if they
9830 were a known big node.
9833 static void mp_print_compact_node (MP mp,pointer p, quarterword k) ;
9836 void mp_print_compact_node (MP mp,pointer p, quarterword k) {
9837 pointer q; /* last location to print */
9839 mp_print_char(mp, xord('('));
9841 mp_print_scaled(mp, mp->mem[p].sc);
9842 if ( p<q ) mp_print_char(mp, xord(','));
9845 mp_print_char(mp, xord(')'));
9848 @ @<Cases for printing graphical object node |p|@>=
9849 case mp_stroked_code:
9850 mp_print(mp, "Filled pen stroke ");
9851 mp_print_obj_color(mp, p);
9852 mp_print_char(mp, xord(':')); mp_print_ln(mp);
9853 mp_pr_path(mp, mp_path_p(p));
9854 if ( mp_dash_p(p)!=null ) {
9855 mp_print_nl(mp, "dashed (");
9856 @<Finish printing the dash pattern that |p| refers to@>;
9859 @<Print join and cap types for stroked node |p|@>;
9860 mp_print(mp, " with pen"); mp_print_ln(mp);
9861 if ( mp_pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9863 else mp_pr_pen(mp, mp_pen_p(p));
9866 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9867 when it is not known to define a suitable dash pattern. This is disallowed
9868 here because the |mp_dash_p| field should never point to such an edge header.
9869 Note that memory is allocated for |start_x(null_dash)| and we are free to
9870 give it any convenient value.
9872 @<Finish printing the dash pattern that |p| refers to@>=
9873 ok_to_dash=pen_is_elliptical(mp_pen_p(p));
9874 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9877 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9878 mp_print(mp, " ??");
9879 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9880 while ( pp!=null_dash ) {
9881 mp_print(mp, "on ");
9882 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9883 mp_print(mp, " off ");
9884 mp_print_scaled(mp, mp_take_scaled(mp, start_x(mp_link(pp))-stop_x(pp),scf));
9886 if ( pp!=null_dash ) mp_print_char(mp, xord(' '));
9888 mp_print(mp, ") shifted ");
9889 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9890 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9894 static scaled mp_dash_offset (MP mp,pointer h) ;
9897 scaled mp_dash_offset (MP mp,pointer h) {
9898 scaled x; /* the answer */
9899 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9900 @:this can't happen dash0}{\quad dash0@>
9901 if ( dash_y(h)==0 ) {
9904 x=-(start_x(dash_list(h)) % dash_y(h));
9905 if ( x<0 ) x=x+dash_y(h);
9910 @ @<Cases for printing graphical object node |p|@>=
9912 mp_print_char(mp, xord('"')); mp_print_str(mp,mp_text_p(p));
9913 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[mp_font_n(p)]);
9914 mp_print_char(mp, xord('"')); mp_print_ln(mp);
9915 mp_print_obj_color(mp, p);
9916 mp_print(mp, "transformed ");
9917 mp_print_compact_node(mp, text_tx_loc(p),6);
9920 @ @<Cases for printing graphical object node |p|@>=
9921 case mp_start_clip_code:
9922 mp_print(mp, "clipping path:");
9924 mp_pr_path(mp, mp_path_p(p));
9926 case mp_stop_clip_code:
9927 mp_print(mp, "stop clipping");
9930 @ @<Cases for printing graphical object node |p|@>=
9931 case mp_start_bounds_code:
9932 mp_print(mp, "setbounds path:");
9934 mp_pr_path(mp, mp_path_p(p));
9936 case mp_stop_bounds_code:
9937 mp_print(mp, "end of setbounds");
9940 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9941 subroutine that scans an edge structure and tries to interpret it as a dash
9942 pattern. This can only be done when there are no filled regions or clipping
9943 paths and all the pen strokes have the same color. The first step is to let
9944 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9945 project all the pen stroke paths onto the line $y=y_0$ and require that there
9946 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9947 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9948 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9951 static pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9952 pointer p; /* this scans the stroked nodes in the object list */
9953 pointer p0; /* if not |null| this points to the first stroked node */
9954 pointer pp,qq,rr; /* pointers into |mp_path_p(p)| */
9955 pointer d,dd; /* pointers used to create the dash list */
9957 @<Other local variables in |make_dashes|@>;
9958 y0=0; /* the initial $y$ coordinate */
9959 if ( dash_list(h)!=null_dash )
9962 p=mp_link(dummy_loc(h));
9964 if ( mp_type(p)!=mp_stroked_code ) {
9965 @<Compain that the edge structure contains a node of the wrong type
9966 and |goto not_found|@>;
9969 if ( p0==null ){ p0=p; y0=mp_y_coord(pp); };
9970 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9971 or |goto not_found| if there is an error@>;
9972 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9975 if ( dash_list(h)==null_dash )
9976 goto NOT_FOUND; /* No error message */
9977 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9978 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9981 @<Flush the dash list, recycle |h| and return |null|@>;
9984 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9986 print_err("Picture is too complicated to use as a dash pattern");
9987 help3("When you say `dashed p', picture p should not contain any",
9988 "text, filled regions, or clipping paths. This time it did",
9989 "so I'll just make it a solid line instead.");
9990 mp_put_get_error(mp);
9994 @ A similar error occurs when monotonicity fails.
9997 static void mp_x_retrace_error (MP mp) ;
10000 void mp_x_retrace_error (MP mp) {
10001 print_err("Picture is too complicated to use as a dash pattern");
10002 help3("When you say `dashed p', every path in p should be monotone",
10003 "in x and there must be no overlapping. This failed",
10004 "so I'll just make it a solid line instead.");
10005 mp_put_get_error(mp);
10008 @ We stash |p| in |mp_info(d)| if |mp_dash_p(p)<>0| so that subsequent processing can
10009 handle the case where the pen stroke |p| is itself dashed.
10011 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
10012 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
10015 if ( mp_link(pp)!=pp ) {
10017 qq=rr; rr=mp_link(rr);
10018 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
10019 if there is a problem@>;
10020 } while (mp_right_type(rr)!=mp_endpoint);
10022 d=mp_get_node(mp, dash_node_size);
10023 if ( mp_dash_p(p)==0 ) mp_info(d)=0; else mp_info(d)=p;
10024 if ( mp_x_coord(pp)<mp_x_coord(rr) ) {
10025 start_x(d)=mp_x_coord(pp);
10026 stop_x(d)=mp_x_coord(rr);
10028 start_x(d)=mp_x_coord(rr);
10029 stop_x(d)=mp_x_coord(pp);
10032 @ We also need to check for the case where the segment from |qq| to |rr| is
10033 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
10035 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
10040 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
10041 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
10042 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
10043 mp_x_retrace_error(mp); goto NOT_FOUND;
10047 if ( (mp_x_coord(pp)>x0) || (x0>x3) ) {
10048 if ( (mp_x_coord(pp)<x0) || (x0<x3) ) {
10049 mp_x_retrace_error(mp); goto NOT_FOUND;
10053 @ @<Other local variables in |make_dashes|@>=
10054 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
10056 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
10057 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
10058 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
10059 print_err("Picture is too complicated to use as a dash pattern");
10060 help3("When you say `dashed p', everything in picture p should",
10061 "be the same color. I can\'t handle your color changes",
10062 "so I'll just make it a solid line instead.");
10063 mp_put_get_error(mp);
10067 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10068 start_x(null_dash)=stop_x(d);
10069 dd=h; /* this makes |mp_link(dd)=dash_list(h)| */
10070 while ( start_x(mp_link(dd))<stop_x(d) )
10073 if ( (stop_x(dd)>start_x(d)) )
10074 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10076 mp_link(d)=mp_link(dd);
10079 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10081 while ( (mp_link(d)!=null_dash) )
10084 dash_y(h)=stop_x(d)-start_x(dd);
10085 if ( abs(y0)>dash_y(h) ) {
10087 } else if ( d!=dd ) {
10088 dash_list(h)=mp_link(dd);
10089 stop_x(d)=stop_x(dd)+dash_y(h);
10090 mp_free_node(mp, dd,dash_node_size);
10093 @ We get here when the argument is a null picture or when there is an error.
10094 Recovering from an error involves making |dash_list(h)| empty to indicate
10095 that |h| is not known to be a valid dash pattern. We also dereference |h|
10096 since it is not being used for the return value.
10098 @<Flush the dash list, recycle |h| and return |null|@>=
10099 mp_flush_dash_list(mp, h);
10100 delete_edge_ref(h);
10103 @ Having carefully saved the dashed stroked nodes in the
10104 corresponding dash nodes, we must be prepared to break up these dashes into
10107 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10108 d=h; /* now |mp_link(d)=dash_list(h)| */
10109 while ( mp_link(d)!=null_dash ) {
10110 ds=mp_info(mp_link(d));
10115 hsf=dash_scale(ds);
10116 if ( (hh==null) ) mp_confusion(mp, "dash1");
10117 @:this can't happen dash0}{\quad dash1@>
10118 if ( dash_y(hh)==0 ) {
10121 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10122 @:this can't happen dash0}{\quad dash1@>
10123 @<Replace |mp_link(d)| by a dashed version as determined by edge header
10124 |hh| and scale factor |ds|@>;
10129 @ @<Other local variables in |make_dashes|@>=
10130 pointer dln; /* |mp_link(d)| */
10131 pointer hh; /* an edge header that tells how to break up |dln| */
10132 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10133 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10134 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10136 @ @<Replace |mp_link(d)| by a dashed version as determined by edge header...@>=
10139 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10140 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10141 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10142 +mp_take_scaled(mp, hsf,dash_y(hh));
10143 stop_x(null_dash)=start_x(null_dash);
10144 @<Advance |dd| until finding the first dash that overlaps |dln| when
10145 offset by |xoff|@>;
10146 while ( start_x(dln)<=stop_x(dln) ) {
10147 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10148 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10151 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10153 mp_link(d)=mp_link(dln);
10154 mp_free_node(mp, dln,dash_node_size)
10156 @ The name of this module is a bit of a lie because we just find the
10157 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10158 overlap possible. It could be that the unoffset version of dash |dln| falls
10159 in the gap between |dd| and its predecessor.
10161 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10162 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10166 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10167 if ( dd==null_dash ) {
10169 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10172 @ At this point we already know that
10173 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10175 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10176 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10177 mp_link(d)=mp_get_node(mp, dash_node_size);
10180 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10181 start_x(d)=start_x(dln);
10183 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10184 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10185 stop_x(d)=stop_x(dln);
10187 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10190 @ The next major task is to update the bounding box information in an edge
10191 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10192 header's bounding box to accommodate the box computed by |path_bbox| or
10193 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10196 @c static void mp_adjust_bbox (MP mp,pointer h) {
10197 if ( mp_minx<minx_val(h) ) minx_val(h)=mp_minx;
10198 if ( mp_miny<miny_val(h) ) miny_val(h)=mp_miny;
10199 if ( mp_maxx>maxx_val(h) ) maxx_val(h)=mp_maxx;
10200 if ( mp_maxy>maxy_val(h) ) maxy_val(h)=mp_maxy;
10203 @ Here is a special routine for updating the bounding box information in
10204 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10205 that is to be stroked with the pen~|pp|.
10207 @c static void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10208 pointer q; /* a knot node adjacent to knot |p| */
10209 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10210 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10211 scaled z; /* a coordinate being tested against the bounding box */
10212 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10213 integer i; /* a loop counter */
10214 if ( mp_right_type(p)!=mp_endpoint ) {
10217 @<Make |(dx,dy)| the final direction for the path segment from
10218 |q| to~|p|; set~|d|@>;
10219 d=mp_pyth_add(mp, dx,dy);
10221 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10222 for (i=1;i<= 2;i++) {
10223 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10224 update the bounding box to accommodate it@>;
10228 if ( mp_right_type(p)==mp_endpoint ) {
10231 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10237 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10238 if ( q==mp_link(p) ) {
10239 dx=mp_x_coord(p)-mp_right_x(p);
10240 dy=mp_y_coord(p)-mp_right_y(p);
10241 if ( (dx==0)&&(dy==0) ) {
10242 dx=mp_x_coord(p)-mp_left_x(q);
10243 dy=mp_y_coord(p)-mp_left_y(q);
10246 dx=mp_x_coord(p)-mp_left_x(p);
10247 dy=mp_y_coord(p)-mp_left_y(p);
10248 if ( (dx==0)&&(dy==0) ) {
10249 dx=mp_x_coord(p)-mp_right_x(q);
10250 dy=mp_y_coord(p)-mp_right_y(q);
10253 dx=mp_x_coord(p)-mp_x_coord(q);
10254 dy=mp_y_coord(p)-mp_y_coord(q)
10256 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10257 dx=mp_make_fraction(mp, dx,d);
10258 dy=mp_make_fraction(mp, dy,d);
10259 mp_find_offset(mp, -dy,dx,pp);
10260 xx=mp->cur_x; yy=mp->cur_y
10262 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10263 mp_find_offset(mp, dx,dy,pp);
10264 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10265 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10266 mp_confusion(mp, "box_ends");
10267 @:this can't happen box ends}{\quad\\{box\_ends}@>
10268 z=mp_x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10269 if ( z<minx_val(h) ) minx_val(h)=z;
10270 if ( z>maxx_val(h) ) maxx_val(h)=z;
10271 z=mp_y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10272 if ( z<miny_val(h) ) miny_val(h)=z;
10273 if ( z>maxy_val(h) ) maxy_val(h)=z
10275 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10279 } while (mp_right_type(p)!=mp_endpoint)
10281 @ The major difficulty in finding the bounding box of an edge structure is the
10282 effect of clipping paths. We treat them conservatively by only clipping to the
10283 clipping path's bounding box, but this still
10284 requires recursive calls to |set_bbox| in order to find the bounding box of
10286 the objects to be clipped. Such calls are distinguished by the fact that the
10287 boolean parameter |top_level| is false.
10290 void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10291 pointer p; /* a graphical object being considered */
10292 scaled sminx,sminy,smaxx,smaxy;
10293 /* for saving the bounding box during recursive calls */
10294 scaled x0,x1,y0,y1; /* temporary registers */
10295 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10296 @<Wipe out any existing bounding box information if |bbtype(h)| is
10297 incompatible with |internal[mp_true_corners]|@>;
10298 while ( mp_link(bblast(h))!=null ) {
10299 p=mp_link(bblast(h));
10301 switch (mp_type(p)) {
10302 case mp_stop_clip_code:
10303 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10304 @:this can't happen bbox}{\quad bbox@>
10306 @<Other cases for updating the bounding box based on the type of object |p|@>;
10307 } /* all cases are enumerated above */
10309 if ( ! top_level ) mp_confusion(mp, "bbox");
10312 @ @<Declarations@>=
10313 static void mp_set_bbox (MP mp,pointer h, boolean top_level);
10315 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10316 switch (bbtype(h)) {
10320 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10323 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10325 } /* there are no other cases */
10327 @ @<Other cases for updating the bounding box...@>=
10329 mp_path_bbox(mp, mp_path_p(p));
10330 if ( mp_pen_p(p)!=null ) {
10331 x0=mp_minx; y0=mp_miny;
10332 x1=mp_maxx; y1=mp_maxy;
10333 mp_pen_bbox(mp, mp_pen_p(p));
10334 mp_minx=mp_minx+x0;
10335 mp_miny=mp_miny+y0;
10336 mp_maxx=mp_maxx+x1;
10337 mp_maxy=mp_maxy+y1;
10339 mp_adjust_bbox(mp, h);
10342 @ @<Other cases for updating the bounding box...@>=
10343 case mp_start_bounds_code:
10344 if ( mp->internal[mp_true_corners]>0 ) {
10345 bbtype(h)=bounds_unset;
10347 bbtype(h)=bounds_set;
10348 mp_path_bbox(mp, mp_path_p(p));
10349 mp_adjust_bbox(mp, h);
10350 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10354 case mp_stop_bounds_code:
10355 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10356 @:this can't happen bbox2}{\quad bbox2@>
10359 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10362 if ( mp_link(p)==null ) mp_confusion(mp, "bbox2");
10363 @:this can't happen bbox2}{\quad bbox2@>
10365 if ( mp_type(p)==mp_start_bounds_code ) incr(lev);
10366 else if ( mp_type(p)==mp_stop_bounds_code ) decr(lev);
10370 @ It saves a lot of grief here to be slightly conservative and not account for
10371 omitted parts of dashed lines. We also don't worry about the material omitted
10372 when using butt end caps. The basic computation is for round end caps and
10373 |box_ends| augments it for square end caps.
10375 @<Other cases for updating the bounding box...@>=
10376 case mp_stroked_code:
10377 mp_path_bbox(mp, mp_path_p(p));
10378 x0=mp_minx; y0=mp_miny;
10379 x1=mp_maxx; y1=mp_maxy;
10380 mp_pen_bbox(mp, mp_pen_p(p));
10381 mp_minx=mp_minx+x0;
10382 mp_miny=mp_miny+y0;
10383 mp_maxx=mp_maxx+x1;
10384 mp_maxy=mp_maxy+y1;
10385 mp_adjust_bbox(mp, h);
10386 if ( (mp_left_type(mp_path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10387 mp_box_ends(mp, mp_path_p(p), mp_pen_p(p), h);
10390 @ The height width and depth information stored in a text node determines a
10391 rectangle that needs to be transformed according to the transformation
10392 parameters stored in the text node.
10394 @<Other cases for updating the bounding box...@>=
10396 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10397 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10398 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10401 if ( y0<y1 ) { mp_minx=mp_minx+y0; mp_maxx=mp_maxx+y1; }
10402 else { mp_minx=mp_minx+y1; mp_maxx=mp_maxx+y0; }
10403 if ( x1<0 ) mp_minx=mp_minx+x1; else mp_maxx=mp_maxx+x1;
10404 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10405 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10406 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10409 if ( y0<y1 ) { mp_miny=mp_miny+y0; mp_maxy=mp_maxy+y1; }
10410 else { mp_miny=mp_miny+y1; mp_maxy=mp_maxy+y0; }
10411 if ( x1<0 ) mp_miny=mp_miny+x1; else mp_maxy=mp_maxy+x1;
10412 mp_adjust_bbox(mp, h);
10415 @ This case involves a recursive call that advances |bblast(h)| to the node of
10416 type |mp_stop_clip_code| that matches |p|.
10418 @<Other cases for updating the bounding box...@>=
10419 case mp_start_clip_code:
10420 mp_path_bbox(mp, mp_path_p(p));
10421 x0=mp_minx; y0=mp_miny;
10422 x1=mp_maxx; y1=mp_maxy;
10423 sminx=minx_val(h); sminy=miny_val(h);
10424 smaxx=maxx_val(h); smaxy=maxy_val(h);
10425 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10426 starting at |mp_link(p)|@>;
10427 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10429 mp_minx=sminx; mp_miny=sminy;
10430 mp_maxx=smaxx; mp_maxy=smaxy;
10431 mp_adjust_bbox(mp, h);
10434 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10435 minx_val(h)=el_gordo;
10436 miny_val(h)=el_gordo;
10437 maxx_val(h)=-el_gordo;
10438 maxy_val(h)=-el_gordo;
10439 mp_set_bbox(mp, h,false)
10441 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10442 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10443 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10444 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10445 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10447 @* \[22] Finding an envelope.
10448 When \MP\ has a path and a polygonal pen, it needs to express the desired
10449 shape in terms of things \ps\ can understand. The present task is to compute
10450 a new path that describes the region to be filled. It is convenient to
10451 define this as a two step process where the first step is determining what
10452 offset to use for each segment of the path.
10454 @ Given a pointer |c| to a cyclic path,
10455 and a pointer~|h| to the first knot of a pen polygon,
10456 the |offset_prep| routine changes the path into cubics that are
10457 associated with particular pen offsets. Thus if the cubic between |p|
10458 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10459 has offset |l| then |mp_info(q)=zero_off+l-k|. (The constant |zero_off| is added
10460 to because |l-k| could be negative.)
10462 After overwriting the type information with offset differences, we no longer
10463 have a true path so we refer to the knot list returned by |offset_prep| as an
10466 Since an envelope spec only determines relative changes in pen offsets,
10467 |offset_prep| sets a global variable |spec_offset| to the relative change from
10468 |h| to the first offset.
10470 @d zero_off 16384 /* added to offset changes to make them positive */
10473 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10476 static pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10477 halfword n; /* the number of vertices in the pen polygon */
10478 pointer c0,p,q,q0,r,w, ww; /* for list manipulation */
10479 integer k_needed; /* amount to be added to |mp_info(p)| when it is computed */
10480 pointer w0; /* a pointer to pen offset to use just before |p| */
10481 scaled dxin,dyin; /* the direction into knot |p| */
10482 integer turn_amt; /* change in pen offsets for the current cubic */
10483 @<Other local variables for |offset_prep|@>;
10485 @<Initialize the pen size~|n|@>;
10486 @<Initialize the incoming direction and pen offset at |c|@>;
10487 p=c; c0=c; k_needed=0;
10490 @<Split the cubic between |p| and |q|, if necessary, into cubics
10491 associated with single offsets, after which |q| should
10492 point to the end of the final such cubic@>;
10494 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10495 might have been introduced by the splitting process@>;
10497 @<Fix the offset change in |mp_info(c)| and set |c| to the return value of
10502 @ We shall want to keep track of where certain knots on the cyclic path
10503 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10504 knot nodes because some nodes are deleted while removing dead cubics. Thus
10505 |offset_prep| updates the following pointers
10509 pointer spec_p2; /* pointers to distinguished knots */
10512 mp->spec_p1=null; mp->spec_p2=null;
10514 @ @<Initialize the pen size~|n|@>=
10521 @ Since the true incoming direction isn't known yet, we just pick a direction
10522 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10525 @<Initialize the incoming direction and pen offset at |c|@>=
10526 dxin=mp_x_coord(mp_link(h))-mp_x_coord(knil(h));
10527 dyin=mp_y_coord(mp_link(h))-mp_y_coord(knil(h));
10528 if ( (dxin==0)&&(dyin==0) ) {
10529 dxin=mp_y_coord(knil(h))-mp_y_coord(h);
10530 dyin=mp_x_coord(h)-mp_x_coord(knil(h));
10534 @ We must be careful not to remove the only cubic in a cycle.
10536 But we must also be careful for another reason. If the user-supplied
10537 path starts with a set of degenerate cubics, the target node |q| can
10538 be collapsed to the initial node |p| which might be the same as the
10539 initial node |c| of the curve. This would cause the |offset_prep| routine
10540 to bail out too early, causing distress later on. (See for example
10541 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10544 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10548 if ( mp_x_coord(p)==mp_right_x(p) && mp_y_coord(p)==mp_right_y(p) &&
10549 mp_x_coord(p)==mp_left_x(r) && mp_y_coord(p)==mp_left_y(r) &&
10550 mp_x_coord(p)==mp_x_coord(r) && mp_y_coord(p)==mp_y_coord(r) &&
10552 @<Remove the cubic following |p| and update the data structures
10553 to merge |r| into |p|@>;
10557 /* Check if we removed too much */
10558 if ((q!=q0)&&(q!=c||c==c0))
10561 @ @<Remove the cubic following |p| and update the data structures...@>=
10562 { k_needed=mp_info(p)-zero_off;
10566 mp_info(p)=k_needed+mp_info(r);
10569 if ( r==c ) { mp_info(p)=mp_info(c); c=p; };
10570 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10571 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10572 r=p; mp_remove_cubic(mp, p);
10575 @ Not setting the |info| field of the newly created knot allows the splitting
10576 routine to work for paths.
10579 static void mp_split_cubic (MP mp,pointer p, fraction t) ;
10582 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10583 scaled v; /* an intermediate value */
10584 pointer q,r; /* for list manipulation */
10585 q=mp_link(p); r=mp_get_node(mp, knot_node_size); mp_link(p)=r; mp_link(r)=q;
10586 mp_originator(r)=mp_program_code;
10587 mp_left_type(r)=mp_explicit; mp_right_type(r)=mp_explicit;
10588 v=t_of_the_way(mp_right_x(p),mp_left_x(q));
10589 mp_right_x(p)=t_of_the_way(mp_x_coord(p),mp_right_x(p));
10590 mp_left_x(q)=t_of_the_way(mp_left_x(q),mp_x_coord(q));
10591 mp_left_x(r)=t_of_the_way(mp_right_x(p),v);
10592 mp_right_x(r)=t_of_the_way(v,mp_left_x(q));
10593 mp_x_coord(r)=t_of_the_way(mp_left_x(r),mp_right_x(r));
10594 v=t_of_the_way(mp_right_y(p),mp_left_y(q));
10595 mp_right_y(p)=t_of_the_way(mp_y_coord(p),mp_right_y(p));
10596 mp_left_y(q)=t_of_the_way(mp_left_y(q),mp_y_coord(q));
10597 mp_left_y(r)=t_of_the_way(mp_right_y(p),v);
10598 mp_right_y(r)=t_of_the_way(v,mp_left_y(q));
10599 mp_y_coord(r)=t_of_the_way(mp_left_y(r),mp_right_y(r));
10602 @ This does not set |mp_info(p)| or |mp_right_type(p)|.
10605 static void mp_remove_cubic (MP mp,pointer p) ;
10608 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10609 pointer q; /* the node that disappears */
10610 q=mp_link(p); mp_link(p)=mp_link(q);
10611 mp_right_x(p)=mp_right_x(q); mp_right_y(p)=mp_right_y(q);
10612 mp_free_node(mp, q,knot_node_size);
10615 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10616 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10617 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10618 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10619 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10620 When listed by increasing $k$, these directions occur in counter-clockwise
10621 order so that $d_k\preceq d\k$ for all~$k$.
10622 The goal of |offset_prep| is to find an offset index~|k| to associate with
10623 each cubic, such that the direction $d(t)$ of the cubic satisfies
10624 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10625 We may have to split a cubic into many pieces before each
10626 piece corresponds to a unique offset.
10628 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10629 mp_info(p)=zero_off+k_needed;
10631 @<Prepare for derivative computations;
10632 |goto not_found| if the current cubic is dead@>;
10633 @<Find the initial direction |(dx,dy)|@>;
10634 @<Update |mp_info(p)| and find the offset $w_k$ such that
10635 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10636 the direction change at |p|@>;
10637 @<Find the final direction |(dxin,dyin)|@>;
10638 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10639 @<Complete the offset splitting process@>;
10640 w0=mp_pen_walk(mp, w0,turn_amt)
10642 @ @<Declarations@>=
10643 static pointer mp_pen_walk (MP mp,pointer w, integer k) ;
10646 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10647 /* walk |k| steps around a pen from |w| */
10648 while ( k>0 ) { w=mp_link(w); decr(k); };
10649 while ( k<0 ) { w=knil(w); incr(k); };
10653 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10654 calculated from the quadratic polynomials
10655 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10656 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10657 Since we may be calculating directions from several cubics
10658 split from the current one, it is desirable to do these calculations
10659 without losing too much precision. ``Scaled up'' values of the
10660 derivatives, which will be less tainted by accumulated errors than
10661 derivatives found from the cubics themselves, are maintained in
10662 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10663 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10664 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10666 @<Other local variables for |offset_prep|@>=
10667 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10668 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10669 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10670 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10671 integer max_coef; /* used while scaling */
10672 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10673 fraction t; /* where the derivative passes through zero */
10674 fraction s; /* a temporary value */
10676 @ @<Prepare for derivative computations...@>=
10677 x0=mp_right_x(p)-mp_x_coord(p);
10678 x2=mp_x_coord(q)-mp_left_x(q);
10679 x1=mp_left_x(q)-mp_right_x(p);
10680 y0=mp_right_y(p)-mp_y_coord(p); y2=mp_y_coord(q)-mp_left_y(q);
10681 y1=mp_left_y(q)-mp_right_y(p);
10683 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10684 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10685 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10686 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10687 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10688 if ( max_coef==0 ) goto NOT_FOUND;
10689 while ( max_coef<fraction_half ) {
10691 double(x0); double(x1); double(x2);
10692 double(y0); double(y1); double(y2);
10695 @ Let us first solve a special case of the problem: Suppose we
10696 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10697 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10698 $d(0)\succ d_{k-1}$.
10699 Then, in a sense, we're halfway done, since one of the two relations
10700 in $(*)$ is satisfied, and the other couldn't be satisfied for
10701 any other value of~|k|.
10703 Actually, the conditions can be relaxed somewhat since a relation such as
10704 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10705 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10706 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10707 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10708 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10709 counterclockwise direction.
10711 The |fin_offset_prep| subroutine solves the stated subproblem.
10712 It has a parameter called |rise| that is |1| in
10713 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10714 the derivative of the cubic following |p|.
10715 The |w| parameter should point to offset~$w_k$ and |mp_info(p)| should already
10716 be set properly. The |turn_amt| parameter gives the absolute value of the
10717 overall net change in pen offsets.
10720 static void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10721 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10722 integer rise, integer turn_amt) ;
10725 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10726 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10727 integer rise, integer turn_amt) {
10728 pointer ww; /* for list manipulation */
10729 scaled du,dv; /* for slope calculation */
10730 integer t0,t1,t2; /* test coefficients */
10731 fraction t; /* place where the derivative passes a critical slope */
10732 fraction s; /* slope or reciprocal slope */
10733 integer v; /* intermediate value for updating |x0..y2| */
10734 pointer q; /* original |mp_link(p)| */
10737 if ( rise>0 ) ww=mp_link(w); /* a pointer to $w\k$ */
10738 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10739 @<Compute test coefficients |(t0,t1,t2)|
10740 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10741 t=mp_crossing_point(mp, t0,t1,t2);
10742 if ( t>=fraction_one ) {
10743 if ( turn_amt>0 ) t=fraction_one; else return;
10745 @<Split the cubic at $t$,
10746 and split off another cubic if the derivative crosses back@>;
10751 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10752 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10753 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10756 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10757 du=mp_x_coord(ww)-mp_x_coord(w); dv=mp_y_coord(ww)-mp_y_coord(w);
10758 if ( abs(du)>=abs(dv) ) {
10759 s=mp_make_fraction(mp, dv,du);
10760 t0=mp_take_fraction(mp, x0,s)-y0;
10761 t1=mp_take_fraction(mp, x1,s)-y1;
10762 t2=mp_take_fraction(mp, x2,s)-y2;
10763 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10765 s=mp_make_fraction(mp, du,dv);
10766 t0=x0-mp_take_fraction(mp, y0,s);
10767 t1=x1-mp_take_fraction(mp, y1,s);
10768 t2=x2-mp_take_fraction(mp, y2,s);
10769 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10771 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10773 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10774 $(*)$, and it might cross again and return towards $s_{k-1}$ or $s_k$,
10775 respectively, yielding another solution of $(*)$.
10777 @<Split the cubic at $t$, and split off another...@>=
10779 mp_split_cubic(mp, p,t); p=mp_link(p); mp_info(p)=zero_off+rise;
10781 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10782 x0=t_of_the_way(v,x1);
10783 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10784 y0=t_of_the_way(v,y1);
10785 if ( turn_amt<0 ) {
10786 t1=t_of_the_way(t1,t2);
10787 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10788 t=mp_crossing_point(mp, 0,-t1,-t2);
10789 if ( t>fraction_one ) t=fraction_one;
10791 if ( (t==fraction_one)&&(mp_link(p)!=q) ) {
10792 mp_info(mp_link(p))=mp_info(mp_link(p))-rise;
10794 mp_split_cubic(mp, p,t); mp_info(mp_link(p))=zero_off-rise;
10795 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10796 x2=t_of_the_way(x1,v);
10797 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10798 y2=t_of_the_way(y1,v);
10803 @ Now we must consider the general problem of |offset_prep|, when
10804 nothing is known about a given cubic. We start by finding its
10805 direction in the vicinity of |t=0|.
10807 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10808 has not yet introduced any more numerical errors. Thus we can compute
10809 the true initial direction for the given cubic, even if it is almost
10812 @<Find the initial direction |(dx,dy)|@>=
10814 if ( dx==0 && dy==0 ) {
10816 if ( dx==0 && dy==0 ) {
10820 if ( p==c ) { dx0=dx; dy0=dy; }
10822 @ @<Find the final direction |(dxin,dyin)|@>=
10824 if ( dxin==0 && dyin==0 ) {
10826 if ( dxin==0 && dyin==0 ) {
10831 @ The next step is to bracket the initial direction between consecutive
10832 edges of the pen polygon. We must be careful to turn clockwise only if
10833 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10834 counter-clockwise in order to make \&{doublepath} envelopes come out
10835 @:double_path_}{\&{doublepath} primitive@>
10836 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10838 @<Update |mp_info(p)| and find the offset $w_k$ such that...@>=
10839 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10840 w=mp_pen_walk(mp, w0, turn_amt);
10842 mp_info(p)=mp_info(p)+turn_amt
10844 @ Decide how many pen offsets to go away from |w| in order to find the offset
10845 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10846 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10847 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10849 If the pen polygon has only two edges, they could both be parallel
10850 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10851 such edge in order to avoid an infinite loop.
10854 static integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10855 scaled dy, boolean ccw);
10858 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10859 scaled dy, boolean ccw) {
10860 pointer ww; /* a neighbor of knot~|w| */
10861 integer s; /* turn amount so far */
10862 integer t; /* |ab_vs_cd| result */
10867 t=mp_ab_vs_cd(mp, dy,(mp_x_coord(ww)-mp_x_coord(w)),
10868 dx,(mp_y_coord(ww)-mp_y_coord(w)));
10871 w=ww; ww=mp_link(ww);
10875 while ( mp_ab_vs_cd(mp, dy,(mp_x_coord(w)-mp_x_coord(ww)),
10876 dx,(mp_y_coord(w)-mp_y_coord(ww))) < 0) {
10884 @ When we're all done, the final offset is |w0| and the final curve direction
10885 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10886 can correct |mp_info(c)| which was erroneously based on an incoming offset
10889 @d fix_by(A) mp_info(c)=mp_info(c)+(A)
10891 @<Fix the offset change in |mp_info(c)| and set |c| to the return value of...@>=
10892 mp->spec_offset=mp_info(c)-zero_off;
10893 if ( mp_link(c)==c ) {
10894 mp_info(c)=zero_off+n;
10897 while ( w0!=h ) { fix_by(1); w0=mp_link(w0); };
10898 while ( mp_info(c)<=zero_off-n ) fix_by(n);
10899 while ( mp_info(c)>zero_off ) fix_by(-n);
10900 if ( (mp_info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10903 @ Finally we want to reduce the general problem to situations that
10904 |fin_offset_prep| can handle. We split the cubic into at most three parts
10905 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10907 @<Complete the offset splitting process@>=
10909 @<Compute test coeff...@>;
10910 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10911 |t:=fraction_one+1|@>;
10912 if ( t>fraction_one ) {
10913 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10915 mp_split_cubic(mp, p,t); r=mp_link(p);
10916 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10917 x2a=t_of_the_way(x1a,x1);
10918 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10919 y2a=t_of_the_way(y1a,y1);
10920 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10921 mp_info(r)=zero_off-1;
10922 if ( turn_amt>=0 ) {
10923 t1=t_of_the_way(t1,t2);
10925 t=mp_crossing_point(mp, 0,-t1,-t2);
10926 if ( t>fraction_one ) t=fraction_one;
10927 @<Split off another rising cubic for |fin_offset_prep|@>;
10928 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10930 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10934 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10935 mp_split_cubic(mp, r,t); mp_info(mp_link(r))=zero_off+1;
10936 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10937 x0a=t_of_the_way(x1,x1a);
10938 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10939 y0a=t_of_the_way(y1,y1a);
10940 mp_fin_offset_prep(mp, mp_link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10943 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10944 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10945 need to decide whether the directions are parallel or antiparallel. We
10946 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10947 should be avoided when the value of |turn_amt| already determines the
10948 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10949 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10950 crossing and the first crossing cannot be antiparallel.
10952 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10953 t=mp_crossing_point(mp, t0,t1,t2);
10954 if ( turn_amt>=0 ) {
10958 u0=t_of_the_way(x0,x1);
10959 u1=t_of_the_way(x1,x2);
10960 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10961 v0=t_of_the_way(y0,y1);
10962 v1=t_of_the_way(y1,y2);
10963 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10964 if ( ss<0 ) t=fraction_one+1;
10966 } else if ( t>fraction_one ) {
10970 @ @<Other local variables for |offset_prep|@>=
10971 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10972 integer ss = 0; /* the part of the dot product computed so far */
10973 int d_sign; /* sign of overall change in direction for this cubic */
10975 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10976 problem to decide which way it loops around but that's OK as long we're
10977 consistent. To make \&{doublepath} envelopes work properly, reversing
10978 the path should always change the sign of |turn_amt|.
10980 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10981 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10983 @<Check rotation direction based on node position@>
10987 if ( dy>0 ) d_sign=1; else d_sign=-1;
10989 if ( dx>0 ) d_sign=1; else d_sign=-1;
10992 @<Make |ss| negative if and only if the total change in direction is
10993 more than $180^\circ$@>;
10994 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10995 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10997 @ We check rotation direction by looking at the vector connecting the current
10998 node with the next. If its angle with incoming and outgoing tangents has the
10999 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
11000 Otherwise we proceed to the cusp code.
11002 @<Check rotation direction based on node position@>=
11003 u0=mp_x_coord(q)-mp_x_coord(p);
11004 u1=mp_y_coord(q)-mp_y_coord(p);
11005 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
11006 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
11008 @ In order to be invariant under path reversal, the result of this computation
11009 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
11010 then swapped with |(x2,y2)|. We make use of the identities
11011 |take_fraction(-a,-b)=take_fraction(a,b)| and
11012 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
11014 @<Make |ss| negative if and only if the total change in direction is...@>=
11015 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
11016 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
11017 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
11019 t=mp_crossing_point(mp, t0,t1,-t0);
11020 u0=t_of_the_way(x0,x1);
11021 u1=t_of_the_way(x1,x2);
11022 v0=t_of_the_way(y0,y1);
11023 v1=t_of_the_way(y1,y2);
11025 t=mp_crossing_point(mp, -t0,t1,t0);
11026 u0=t_of_the_way(x2,x1);
11027 u1=t_of_the_way(x1,x0);
11028 v0=t_of_the_way(y2,y1);
11029 v1=t_of_the_way(y1,y0);
11031 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
11032 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
11034 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
11035 that the |cur_pen| has not been walked around to the first offset.
11038 static void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, const char *s) {
11039 pointer p,q; /* list traversal */
11040 pointer w; /* the current pen offset */
11041 mp_print_diagnostic(mp, "Envelope spec",s,true);
11042 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
11044 mp_print_two(mp, mp_x_coord(cur_spec),mp_y_coord(cur_spec));
11045 mp_print(mp, " % beginning with offset ");
11046 mp_print_two(mp, mp_x_coord(w),mp_y_coord(w));
11050 @<Print the cubic between |p| and |q|@>;
11052 if ((p==cur_spec) || (mp_info(p)!=zero_off))
11055 if ( mp_info(p)!=zero_off ) {
11056 @<Update |w| as indicated by |mp_info(p)| and print an explanation@>;
11058 } while (p!=cur_spec);
11059 mp_print_nl(mp, " & cycle");
11060 mp_end_diagnostic(mp, true);
11063 @ @<Update |w| as indicated by |mp_info(p)| and print an explanation@>=
11065 w=mp_pen_walk(mp, w, (mp_info(p)-zero_off));
11066 mp_print(mp, " % ");
11067 if ( mp_info(p)>zero_off ) mp_print(mp, "counter");
11068 mp_print(mp, "clockwise to offset ");
11069 mp_print_two(mp, mp_x_coord(w),mp_y_coord(w));
11072 @ @<Print the cubic between |p| and |q|@>=
11074 mp_print_nl(mp, " ..controls ");
11075 mp_print_two(mp, mp_right_x(p),mp_right_y(p));
11076 mp_print(mp, " and ");
11077 mp_print_two(mp, mp_left_x(q),mp_left_y(q));
11078 mp_print_nl(mp, " ..");
11079 mp_print_two(mp, mp_x_coord(q),mp_y_coord(q));
11082 @ Once we have an envelope spec, the remaining task to construct the actual
11083 envelope by offsetting each cubic as determined by the |info| fields in
11084 the knots. First we use |offset_prep| to convert the |c| into an envelope
11085 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11088 The |ljoin| and |miterlim| parameters control the treatment of points where the
11089 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11090 The endpoints are easily located because |c| is given in undoubled form
11091 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11092 track of the endpoints and treat them like very sharp corners.
11093 Butt end caps are treated like beveled joins; round end caps are treated like
11094 round joins; and square end caps are achieved by setting |join_type:=3|.
11096 None of these parameters apply to inside joins where the convolution tracing
11097 has retrograde lines. In such cases we use a simple connect-the-endpoints
11098 approach that is achieved by setting |join_type:=2|.
11101 static pointer mp_make_envelope (MP mp,pointer c, pointer h, quarterword ljoin,
11102 quarterword lcap, scaled miterlim) {
11103 pointer p,q,r,q0; /* for manipulating the path */
11104 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11105 pointer w,w0; /* the pen knot for the current offset */
11106 scaled qx,qy; /* unshifted coordinates of |q| */
11107 halfword k,k0; /* controls pen edge insertion */
11108 @<Other local variables for |make_envelope|@>;
11109 dxin=0; dyin=0; dxout=0; dyout=0;
11110 mp->spec_p1=null; mp->spec_p2=null;
11111 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11112 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11113 the initial offset@>;
11117 q=mp_link(p); q0=q;
11118 qx=mp_x_coord(q); qy=mp_y_coord(q);
11121 if ( k!=zero_off ) {
11122 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11124 @<Add offset |w| to the cubic from |p| to |q|@>;
11125 while ( k!=zero_off ) {
11126 @<Step |w| and move |k| one step closer to |zero_off|@>;
11127 if ( (join_type==1)||(k==zero_off) )
11128 q=mp_insert_knot(mp, q,qx+mp_x_coord(w),qy+mp_y_coord(w));
11130 if ( q!=mp_link(p) ) {
11131 @<Set |p=mp_link(p)| and add knots between |p| and |q| as
11132 required by |join_type|@>;
11139 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11140 c=mp_offset_prep(mp, c,h);
11141 if ( mp->internal[mp_tracing_specs]>0 )
11142 mp_print_spec(mp, c,h,"");
11143 h=mp_pen_walk(mp, h,mp->spec_offset)
11145 @ Mitered and squared-off joins depend on path directions that are difficult to
11146 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11147 have degenerate cubics only if the entire cycle collapses to a single
11148 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11149 envelope degenerate as well.
11151 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11152 if ( k<zero_off ) {
11155 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11156 else if ( lcap==2 ) join_type=3;
11157 else join_type=2-lcap;
11158 if ( (join_type==0)||(join_type==3) ) {
11159 @<Set the incoming and outgoing directions at |q|; in case of
11160 degeneracy set |join_type:=2|@>;
11161 if ( join_type==0 ) {
11162 @<If |miterlim| is less than the secant of half the angle at |q|
11163 then set |join_type:=2|@>;
11168 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11170 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11171 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11173 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11176 @ @<Other local variables for |make_envelope|@>=
11177 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11178 scaled tmp; /* a temporary value */
11180 @ The coordinates of |p| have already been shifted unless |p| is the first
11181 knot in which case they get shifted at the very end.
11183 @<Add offset |w| to the cubic from |p| to |q|@>=
11184 mp_right_x(p)=mp_right_x(p)+mp_x_coord(w);
11185 mp_right_y(p)=mp_right_y(p)+mp_y_coord(w);
11186 mp_left_x(q)=mp_left_x(q)+mp_x_coord(w);
11187 mp_left_y(q)=mp_left_y(q)+mp_y_coord(w);
11188 mp_x_coord(q)=mp_x_coord(q)+mp_x_coord(w);
11189 mp_y_coord(q)=mp_y_coord(q)+mp_y_coord(w);
11190 mp_left_type(q)=mp_explicit;
11191 mp_right_type(q)=mp_explicit
11193 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11194 if ( k>zero_off ){ w=mp_link(w); decr(k); }
11195 else { w=knil(w); incr(k); }
11197 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11198 the |mp_right_x| and |mp_right_y| fields of |r| are set from |q|. This is done in
11199 case the cubic containing these control points is ``yet to be examined.''
11202 static pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y);
11205 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11206 /* returns the inserted knot */
11207 pointer r; /* the new knot */
11208 r=mp_get_node(mp, knot_node_size);
11209 mp_link(r)=mp_link(q); mp_link(q)=r;
11210 mp_right_x(r)=mp_right_x(q);
11211 mp_right_y(r)=mp_right_y(q);
11214 mp_right_x(q)=mp_x_coord(q);
11215 mp_right_y(q)=mp_y_coord(q);
11216 mp_left_x(r)=mp_x_coord(r);
11217 mp_left_y(r)=mp_y_coord(r);
11218 mp_left_type(r)=mp_explicit;
11219 mp_right_type(r)=mp_explicit;
11220 mp_originator(r)=mp_program_code;
11224 @ After setting |p:=mp_link(p)|, either |join_type=1| or |q=mp_link(p)|.
11226 @<Set |p=mp_link(p)| and add knots between |p| and |q| as...@>=
11229 if ( (join_type==0)||(join_type==3) ) {
11230 if ( join_type==0 ) {
11231 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11233 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11237 mp_right_x(r)=mp_x_coord(r);
11238 mp_right_y(r)=mp_y_coord(r);
11243 @ For very small angles, adding a knot is unnecessary and would cause numerical
11244 problems, so we just set |r:=null| in that case.
11246 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11248 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11249 if ( abs(det)<26844 ) {
11250 r=null; /* sine $<10^{-4}$ */
11252 tmp=mp_take_fraction(mp, mp_x_coord(q)-mp_x_coord(p),dyout)-
11253 mp_take_fraction(mp, mp_y_coord(q)-mp_y_coord(p),dxout);
11254 tmp=mp_make_fraction(mp, tmp,det);
11255 r=mp_insert_knot(mp, p,mp_x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11256 mp_y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11260 @ @<Other local variables for |make_envelope|@>=
11261 fraction det; /* a determinant used for mitered join calculations */
11263 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11265 ht_x=mp_y_coord(w)-mp_y_coord(w0);
11266 ht_y=mp_x_coord(w0)-mp_x_coord(w);
11267 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11268 ht_x+=ht_x; ht_y+=ht_y;
11270 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11271 product with |(ht_x,ht_y)|@>;
11272 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11273 mp_take_fraction(mp, dyin,ht_y));
11274 r=mp_insert_knot(mp, p,mp_x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11275 mp_y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11276 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11277 mp_take_fraction(mp, dyout,ht_y));
11278 r=mp_insert_knot(mp, r,mp_x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11279 mp_y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11282 @ @<Other local variables for |make_envelope|@>=
11283 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11284 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11285 halfword kk; /* keeps track of the pen vertices being scanned */
11286 pointer ww; /* the pen vertex being tested */
11288 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11289 from zero to |max_ht|.
11291 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11296 @<Step |ww| and move |kk| one step closer to |k0|@>;
11297 if ( kk==k0 ) break;
11298 tmp=mp_take_fraction(mp, (mp_x_coord(ww)-mp_x_coord(w0)),ht_x)+
11299 mp_take_fraction(mp, (mp_y_coord(ww)-mp_y_coord(w0)),ht_y);
11300 if ( tmp>max_ht ) max_ht=tmp;
11304 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11305 if ( kk>k0 ) { ww=mp_link(ww); decr(kk); }
11306 else { ww=knil(ww); incr(kk); }
11308 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11309 if ( mp_left_type(c)==mp_endpoint ) {
11310 mp->spec_p1=mp_htap_ypoc(mp, c);
11311 mp->spec_p2=mp->path_tail;
11312 mp_originator(mp->spec_p1)=mp_program_code;
11313 mp_link(mp->spec_p2)=mp_link(mp->spec_p1);
11314 mp_link(mp->spec_p1)=c;
11315 mp_remove_cubic(mp, mp->spec_p1);
11317 if ( c!=mp_link(c) ) {
11318 mp_originator(mp->spec_p2)=mp_program_code;
11319 mp_remove_cubic(mp, mp->spec_p2);
11321 @<Make |c| look like a cycle of length one@>;
11325 @ @<Make |c| look like a cycle of length one@>=
11327 mp_left_type(c)=mp_explicit; mp_right_type(c)=mp_explicit;
11328 mp_left_x(c)=mp_x_coord(c); mp_left_y(c)=mp_y_coord(c);
11329 mp_right_x(c)=mp_x_coord(c); mp_right_y(c)=mp_y_coord(c);
11332 @ In degenerate situations we might have to look at the knot preceding~|q|.
11333 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11335 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11336 dxin=mp_x_coord(q)-mp_left_x(q);
11337 dyin=mp_y_coord(q)-mp_left_y(q);
11338 if ( (dxin==0)&&(dyin==0) ) {
11339 dxin=mp_x_coord(q)-mp_right_x(p);
11340 dyin=mp_y_coord(q)-mp_right_y(p);
11341 if ( (dxin==0)&&(dyin==0) ) {
11342 dxin=mp_x_coord(q)-mp_x_coord(p);
11343 dyin=mp_y_coord(q)-mp_y_coord(p);
11344 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11345 dxin=dxin+mp_x_coord(w);
11346 dyin=dyin+mp_y_coord(w);
11350 tmp=mp_pyth_add(mp, dxin,dyin);
11354 dxin=mp_make_fraction(mp, dxin,tmp);
11355 dyin=mp_make_fraction(mp, dyin,tmp);
11356 @<Set the outgoing direction at |q|@>;
11359 @ If |q=c| then the coordinates of |r| and the control points between |q|
11360 and~|r| have already been offset by |h|.
11362 @<Set the outgoing direction at |q|@>=
11363 dxout=mp_right_x(q)-mp_x_coord(q);
11364 dyout=mp_right_y(q)-mp_y_coord(q);
11365 if ( (dxout==0)&&(dyout==0) ) {
11367 dxout=mp_left_x(r)-mp_x_coord(q);
11368 dyout=mp_left_y(r)-mp_y_coord(q);
11369 if ( (dxout==0)&&(dyout==0) ) {
11370 dxout=mp_x_coord(r)-mp_x_coord(q);
11371 dyout=mp_y_coord(r)-mp_y_coord(q);
11375 dxout=dxout-mp_x_coord(h);
11376 dyout=dyout-mp_y_coord(h);
11378 tmp=mp_pyth_add(mp, dxout,dyout);
11379 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11380 @:this can't happen degerate spec}{\quad degenerate spec@>
11381 dxout=mp_make_fraction(mp, dxout,tmp);
11382 dyout=mp_make_fraction(mp, dyout,tmp)
11384 @* \[23] Direction and intersection times.
11385 A path of length $n$ is defined parametrically by functions $x(t)$ and
11386 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11387 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11388 we shall consider operations that determine special times associated with
11389 given paths: the first time that a path travels in a given direction, and
11390 a pair of times at which two paths cross each other.
11392 @ Let's start with the easier task. The function |find_direction_time| is
11393 given a direction |(x,y)| and a path starting at~|h|. If the path never
11394 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11395 it will be nonnegative.
11397 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11398 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11399 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11400 assumed to match any given direction at time~|t|.
11402 The routine solves this problem in nondegenerate cases by rotating the path
11403 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11404 to find when a given path first travels ``due east.''
11407 static scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11408 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11409 pointer p,q; /* for list traversal */
11410 scaled n; /* the direction time at knot |p| */
11411 scaled tt; /* the direction time within a cubic */
11412 @<Other local variables for |find_direction_time|@>;
11413 @<Normalize the given direction for better accuracy;
11414 but |return| with zero result if it's zero@>;
11417 if ( mp_right_type(p)==mp_endpoint ) break;
11419 @<Rotate the cubic between |p| and |q|; then
11420 |goto found| if the rotated cubic travels due east at some time |tt|;
11421 but |break| if an entire cyclic path has been traversed@>;
11429 @ @<Normalize the given direction for better accuracy...@>=
11430 if ( abs(x)<abs(y) ) {
11431 x=mp_make_fraction(mp, x,abs(y));
11432 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11433 } else if ( x==0 ) {
11436 y=mp_make_fraction(mp, y,abs(x));
11437 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11440 @ Since we're interested in the tangent directions, we work with the
11441 derivative $${1\over3}B'(x_0,x_1,x_2,x_3;t)=
11442 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11443 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11444 in order to achieve better accuracy.
11446 The given path may turn abruptly at a knot, and it might pass the critical
11447 tangent direction at such a time. Therefore we remember the direction |phi|
11448 in which the previous rotated cubic was traveling. (The value of |phi| will be
11449 undefined on the first cubic, i.e., when |n=0|.)
11451 @<Rotate the cubic between |p| and |q|; then...@>=
11453 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11454 points of the rotated derivatives@>;
11455 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11457 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11460 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11461 @<Exit to |found| if the curve whose derivatives are specified by
11462 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11464 @ @<Other local variables for |find_direction_time|@>=
11465 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11466 angle theta,phi; /* angles of exit and entry at a knot */
11467 fraction t; /* temp storage */
11469 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11470 x1=mp_right_x(p)-mp_x_coord(p); x2=mp_left_x(q)-mp_right_x(p);
11471 x3=mp_x_coord(q)-mp_left_x(q);
11472 y1=mp_right_y(p)-mp_y_coord(p); y2=mp_left_y(q)-mp_right_y(p);
11473 y3=mp_y_coord(q)-mp_left_y(q);
11475 if ( abs(x2)>max ) max=abs(x2);
11476 if ( abs(x3)>max ) max=abs(x3);
11477 if ( abs(y1)>max ) max=abs(y1);
11478 if ( abs(y2)>max ) max=abs(y2);
11479 if ( abs(y3)>max ) max=abs(y3);
11480 if ( max==0 ) goto FOUND;
11481 while ( max<fraction_half ){
11482 max+=max; x1+=x1; x2+=x2; x3+=x3;
11483 y1+=y1; y2+=y2; y3+=y3;
11485 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11486 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11487 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11488 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11489 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11490 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11492 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11493 theta=mp_n_arg(mp, x1,y1);
11494 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11495 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11497 @ In this step we want to use the |crossing_point| routine to find the
11498 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11499 Several complications arise: If the quadratic equation has a double root,
11500 the curve never crosses zero, and |crossing_point| will find nothing;
11501 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11502 equation has simple roots, or only one root, we may have to negate it
11503 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11504 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11507 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11508 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11509 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11510 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11511 either |goto found| or |goto done|@>;
11514 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11515 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11517 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11518 $B(x_1,x_2,x_3;t)\ge0$@>;
11521 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11522 two roots, because we know that it isn't identically zero.
11524 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11525 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11526 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11527 subject to rounding errors. Yet this code optimistically tries to
11528 do the right thing.
11530 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11532 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11533 t=mp_crossing_point(mp, y1,y2,y3);
11534 if ( t>fraction_one ) goto DONE;
11535 y2=t_of_the_way(y2,y3);
11536 x1=t_of_the_way(x1,x2);
11537 x2=t_of_the_way(x2,x3);
11538 x1=t_of_the_way(x1,x2);
11539 if ( x1>=0 ) we_found_it;
11541 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11542 if ( t>fraction_one ) goto DONE;
11543 x1=t_of_the_way(x1,x2);
11544 x2=t_of_the_way(x2,x3);
11545 if ( t_of_the_way(x1,x2)>=0 ) {
11546 t=t_of_the_way(tt,fraction_one); we_found_it;
11549 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11550 either |goto found| or |goto done|@>=
11552 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11553 t=mp_make_fraction(mp, y1,y1-y2);
11554 x1=t_of_the_way(x1,x2);
11555 x2=t_of_the_way(x2,x3);
11556 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11557 } else if ( y3==0 ) {
11559 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11560 } else if ( x3>=0 ) {
11561 tt=unity; goto FOUND;
11567 @ At this point we know that the derivative of |y(t)| is identically zero,
11568 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11571 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11573 t=mp_crossing_point(mp, -x1,-x2,-x3);
11574 if ( t<=fraction_one ) we_found_it;
11575 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11576 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11580 @ The intersection of two cubics can be found by an interesting variant
11581 of the general bisection scheme described in the introduction to
11583 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11584 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11585 if an intersection exists. First we find the smallest rectangle that
11586 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11587 the smallest rectangle that encloses
11588 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11589 But if the rectangles do overlap, we bisect the intervals, getting
11590 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11591 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11592 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11593 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11594 levels of bisection we will have determined the intersection times $t_1$
11595 and~$t_2$ to $l$~bits of accuracy.
11597 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11598 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11599 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11600 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11601 to determine when the enclosing rectangles overlap. Here's why:
11602 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11603 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11604 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11605 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11606 overlap if and only if $u\submin\L x\submax$ and
11607 $x\submin\L u\submax$. Letting
11608 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11609 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11610 we have $2^lu\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11612 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11613 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11614 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11615 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11616 because of the overlap condition; i.e., we know that $X\submin$,
11617 $X\submax$, and their relatives are bounded, hence $X\submax-
11618 U\submin$ and $X\submin-U\submax$ are bounded.
11620 @ Incidentally, if the given cubics intersect more than once, the process
11621 just sketched will not necessarily find the lexicographically smallest pair
11622 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11623 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11624 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11625 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11626 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11627 Shuffled order agrees with lexicographic order if all pairs of solutions
11628 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11629 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11630 and the bisection algorithm would be substantially less efficient if it were
11631 constrained by lexicographic order.
11633 For example, suppose that an overlap has been found for $l=3$ and
11634 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11635 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11636 Then there is probably an intersection in one of the subintervals
11637 $(.1011,.011x)$; but lexicographic order would require us to explore
11638 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11639 want to store all of the subdivision data for the second path, so the
11640 subdivisions would have to be regenerated many times. Such inefficiencies
11641 would be associated with every `1' in the binary representation of~$t_1$.
11643 @ The subdivision process introduces rounding errors, hence we need to
11644 make a more liberal test for overlap. It is not hard to show that the
11645 computed values of $U_i$ differ from the truth by at most~$l$, on
11646 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11647 If $\beta$ is an upper bound on the absolute error in the computed
11648 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11649 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11650 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11652 More accuracy is obtained if we try the algorithm first with |tol=0|;
11653 the more liberal tolerance is used only if an exact approach fails.
11654 It is convenient to do this double-take by letting `3' in the preceding
11655 paragraph be a parameter, which is first 0, then 3.
11658 unsigned int tol_step; /* either 0 or 3, usually */
11660 @ We shall use an explicit stack to implement the recursive bisection
11661 method described above. The |bisect_stack| array will contain numerous 5-word
11662 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11663 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11665 The following macros define the allocation of stack positions to
11666 the quantities needed for bisection-intersection.
11668 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11669 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11670 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11671 @d stack_min(A) mp->bisect_stack[(A)+3]
11672 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11673 @d stack_max(A) mp->bisect_stack[(A)+4]
11674 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11675 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11677 @d u_packet(A) ((A)-5)
11678 @d v_packet(A) ((A)-10)
11679 @d x_packet(A) ((A)-15)
11680 @d y_packet(A) ((A)-20)
11681 @d l_packets (mp->bisect_ptr-int_packets)
11682 @d r_packets mp->bisect_ptr
11683 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11684 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11685 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11686 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11687 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11688 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11689 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11690 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11692 @d u1l stack_1(ul_packet) /* $U'_1$ */
11693 @d u2l stack_2(ul_packet) /* $U'_2$ */
11694 @d u3l stack_3(ul_packet) /* $U'_3$ */
11695 @d v1l stack_1(vl_packet) /* $V'_1$ */
11696 @d v2l stack_2(vl_packet) /* $V'_2$ */
11697 @d v3l stack_3(vl_packet) /* $V'_3$ */
11698 @d x1l stack_1(xl_packet) /* $X'_1$ */
11699 @d x2l stack_2(xl_packet) /* $X'_2$ */
11700 @d x3l stack_3(xl_packet) /* $X'_3$ */
11701 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11702 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11703 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11704 @d u1r stack_1(ur_packet) /* $U''_1$ */
11705 @d u2r stack_2(ur_packet) /* $U''_2$ */
11706 @d u3r stack_3(ur_packet) /* $U''_3$ */
11707 @d v1r stack_1(vr_packet) /* $V''_1$ */
11708 @d v2r stack_2(vr_packet) /* $V''_2$ */
11709 @d v3r stack_3(vr_packet) /* $V''_3$ */
11710 @d x1r stack_1(xr_packet) /* $X''_1$ */
11711 @d x2r stack_2(xr_packet) /* $X''_2$ */
11712 @d x3r stack_3(xr_packet) /* $X''_3$ */
11713 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11714 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11715 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11717 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11718 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11719 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11720 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11721 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11722 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11725 integer *bisect_stack;
11726 integer bisect_ptr;
11728 @ @<Allocate or initialize ...@>=
11729 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11731 @ @<Dealloc variables@>=
11732 xfree(mp->bisect_stack);
11734 @ @<Check the ``constant''...@>=
11735 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11737 @ Computation of the min and max is a tedious but fairly fast sequence of
11738 instructions; exactly four comparisons are made in each branch.
11741 if ( stack_1((A))<0 ) {
11742 if ( stack_3((A))>=0 ) {
11743 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11744 else stack_min((A))=stack_1((A));
11745 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11746 if ( stack_max((A))<0 ) stack_max((A))=0;
11748 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11749 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11750 stack_max((A))=stack_1((A))+stack_2((A));
11751 if ( stack_max((A))<0 ) stack_max((A))=0;
11753 } else if ( stack_3((A))<=0 ) {
11754 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11755 else stack_max((A))=stack_1((A));
11756 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11757 if ( stack_min((A))>0 ) stack_min((A))=0;
11759 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11760 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11761 stack_min((A))=stack_1((A))+stack_2((A));
11762 if ( stack_min((A))>0 ) stack_min((A))=0;
11765 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11766 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11767 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11768 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11769 plus the |scaled| values of $t_1$ and~$t_2$.
11771 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11772 finds no intersection. The routine gives up and gives an approximate answer
11773 if it has backtracked
11774 more than 5000 times (otherwise there are cases where several minutes
11775 of fruitless computation would be possible).
11777 @d max_patience 5000
11780 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11781 integer time_to_go; /* this many backtracks before giving up */
11782 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11784 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11785 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,mp_link(p))|
11786 and |(pp,mp_link(pp))|, respectively.
11789 static void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11790 pointer q,qq; /* |mp_link(p)|, |mp_link(pp)| */
11791 mp->time_to_go=max_patience; mp->max_t=2;
11792 @<Initialize for intersections at level zero@>;
11795 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11796 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11797 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11798 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11800 if ( mp->cur_t>=mp->max_t ){
11801 if ( mp->max_t==two ) { /* we've done 17 bisections */
11802 mp->cur_t=halfp(mp->cur_t+1);
11803 mp->cur_tt=halfp(mp->cur_tt+1);
11806 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11808 @<Subdivide for a new level of intersection@>;
11811 if ( mp->time_to_go>0 ) {
11812 decr(mp->time_to_go);
11814 while ( mp->appr_t<unity ) {
11815 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11817 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11819 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11823 @ The following variables are global, although they are used only by
11824 |cubic_intersection|, because it is necessary on some machines to
11825 split |cubic_intersection| up into two procedures.
11828 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11829 integer tol; /* bound on the uncertainty in the overlap test */
11831 integer xy; /* pointers to the current packets of interest */
11832 integer three_l; /* |tol_step| times the bisection level */
11833 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11835 @ We shall assume that the coordinates are sufficiently non-extreme that
11836 integer overflow will not occur.
11837 @^overflow in arithmetic@>
11839 @<Initialize for intersections at level zero@>=
11840 q=mp_link(p); qq=mp_link(pp); mp->bisect_ptr=int_packets;
11841 u1r=mp_right_x(p)-mp_x_coord(p); u2r=mp_left_x(q)-mp_right_x(p);
11842 u3r=mp_x_coord(q)-mp_left_x(q); set_min_max(ur_packet);
11843 v1r=mp_right_y(p)-mp_y_coord(p); v2r=mp_left_y(q)-mp_right_y(p);
11844 v3r=mp_y_coord(q)-mp_left_y(q); set_min_max(vr_packet);
11845 x1r=mp_right_x(pp)-mp_x_coord(pp); x2r=mp_left_x(qq)-mp_right_x(pp);
11846 x3r=mp_x_coord(qq)-mp_left_x(qq); set_min_max(xr_packet);
11847 y1r=mp_right_y(pp)-mp_y_coord(pp); y2r=mp_left_y(qq)-mp_right_y(pp);
11848 y3r=mp_y_coord(qq)-mp_left_y(qq); set_min_max(yr_packet);
11849 mp->delx=mp_x_coord(p)-mp_x_coord(pp); mp->dely=mp_y_coord(p)-mp_y_coord(pp);
11850 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11851 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11853 @ @<Subdivide for a new level of intersection@>=
11854 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11855 stack_uv=mp->uv; stack_xy=mp->xy;
11856 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11857 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11858 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11859 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11860 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11861 u3l=half(u2l+u2r); u1r=u3l;
11862 set_min_max(ul_packet); set_min_max(ur_packet);
11863 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11864 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11865 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11866 v3l=half(v2l+v2r); v1r=v3l;
11867 set_min_max(vl_packet); set_min_max(vr_packet);
11868 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11869 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11870 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11871 x3l=half(x2l+x2r); x1r=x3l;
11872 set_min_max(xl_packet); set_min_max(xr_packet);
11873 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11874 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11875 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11876 y3l=half(y2l+y2r); y1r=y3l;
11877 set_min_max(yl_packet); set_min_max(yr_packet);
11878 mp->uv=l_packets; mp->xy=l_packets;
11879 mp->delx+=mp->delx; mp->dely+=mp->dely;
11880 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11881 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11883 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11885 if ( odd(mp->cur_tt) ) {
11886 if ( odd(mp->cur_t) ) {
11887 @<Descend to the previous level and |goto not_found|@>;
11890 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11891 +stack_3(u_packet(mp->uv));
11892 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11893 +stack_3(v_packet(mp->uv));
11894 mp->uv=mp->uv+int_packets; /* switch from |l_packets| to |r_packets| */
11895 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11896 /* switch from |r_packets| to |l_packets| */
11897 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11898 +stack_3(x_packet(mp->xy));
11899 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11900 +stack_3(y_packet(mp->xy));
11903 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11904 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11905 -stack_3(x_packet(mp->xy));
11906 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11907 -stack_3(y_packet(mp->xy));
11908 mp->xy=mp->xy+int_packets; /* switch from |l_packets| to |r_packets| */
11911 @ @<Descend to the previous level...@>=
11913 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11914 if ( mp->cur_t==0 ) return;
11915 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11916 mp->three_l=mp->three_l-mp->tol_step;
11917 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11918 mp->uv=stack_uv; mp->xy=stack_xy;
11922 @ The |path_intersection| procedure is much simpler.
11923 It invokes |cubic_intersection| in lexicographic order until finding a
11924 pair of cubics that intersect. The final intersection times are placed in
11925 |cur_t| and~|cur_tt|.
11928 static void mp_path_intersection (MP mp,pointer h, pointer hh) {
11929 pointer p,pp; /* link registers that traverse the given paths */
11930 integer n,nn; /* integer parts of intersection times, minus |unity| */
11931 @<Change one-point paths into dead cycles@>;
11936 if ( mp_right_type(p)!=mp_endpoint ) {
11939 if ( mp_right_type(pp)!=mp_endpoint ) {
11940 mp_cubic_intersection(mp, p,pp);
11941 if ( mp->cur_t>0 ) {
11942 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11946 nn=nn+unity; pp=mp_link(pp);
11949 n=n+unity; p=mp_link(p);
11951 mp->tol_step=mp->tol_step+3;
11952 } while (mp->tol_step<=3);
11953 mp->cur_t=-unity; mp->cur_tt=-unity;
11956 @ @<Change one-point paths...@>=
11957 if ( mp_right_type(h)==mp_endpoint ) {
11958 mp_right_x(h)=mp_x_coord(h); mp_left_x(h)=mp_x_coord(h);
11959 mp_right_y(h)=mp_y_coord(h); mp_left_y(h)=mp_y_coord(h); mp_right_type(h)=mp_explicit;
11961 if ( mp_right_type(hh)==mp_endpoint ) {
11962 mp_right_x(hh)=mp_x_coord(hh); mp_left_x(hh)=mp_x_coord(hh);
11963 mp_right_y(hh)=mp_y_coord(hh); mp_left_y(hh)=mp_y_coord(hh); mp_right_type(hh)=mp_explicit;
11966 @* \[24] Dynamic linear equations.
11967 \MP\ users define variables implicitly by stating equations that should be
11968 satisfied; the computer is supposed to be smart enough to solve those equations.
11969 And indeed, the computer tries valiantly to do so, by distinguishing five
11970 different types of numeric values:
11973 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11974 of the variable whose address is~|p|.
11977 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11978 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11979 as a |scaled| number plus a sum of independent variables with |fraction|
11983 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11984 number'' reflecting the time this variable was first used in an equation;
11985 also |0<=m<64|, and each dependent variable
11986 that refers to this one is actually referring to the future value of
11987 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11988 scaling are sometimes needed to keep the coefficients in dependency lists
11989 from getting too large. The value of~|m| will always be even.)
11992 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11993 equation before, but it has been explicitly declared to be numeric.
11996 |type(p)=undefined| means that variable |p| hasn't appeared before.
11998 \smallskip\noindent
11999 We have actually discussed these five types in the reverse order of their
12000 history during a computation: Once |known|, a variable never again
12001 becomes |dependent|; once |dependent|, it almost never again becomes
12002 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
12003 and once |mp_numeric_type|, it never again becomes |undefined| (except
12004 of course when the user specifically decides to scrap the old value
12005 and start again). A backward step may, however, take place: Sometimes
12006 a |dependent| variable becomes |mp_independent| again, when one of the
12007 independent variables it depends on is reverting to |undefined|.
12010 The next patch detects overflow of independent-variable serial
12011 numbers. Diagnosed and patched by Thorsten Dahlheimer.
12013 @d s_scale 64 /* the serial numbers are multiplied by this factor */
12014 @d new_indep(A) /* create a new independent variable */
12015 { if ( mp->serial_no>el_gordo-s_scale )
12016 mp_fatal_error(mp, "variable instance identifiers exhausted");
12017 mp_type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
12018 value((A))=mp->serial_no;
12022 integer serial_no; /* the most recent serial number, times |s_scale| */
12024 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
12026 @ But how are dependency lists represented? It's simple: The linear combination
12027 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
12028 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
12029 @t$\alpha_1$@>| (which is a |fraction|); |mp_info(q)| points to the location
12030 of $\alpha_1$; and |mp_link(p)| points to the dependency list
12031 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
12032 then |value(q)=@t$\beta$@>| (which is |scaled|) and |mp_info(q)=null|.
12033 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
12034 they appear in decreasing order of their |value| fields (i.e., of
12035 their serial numbers). \ (It is convenient to use decreasing order,
12036 since |value(null)=0|. If the independent variables were not sorted by
12037 serial number but by some other criterion, such as their location in |mem|,
12038 the equation-solving mechanism would be too system-dependent, because
12039 the ordering can affect the computed results.)
12041 The |link| field in the node that contains the constant term $\beta$ is
12042 called the {\sl final link\/} of the dependency list. \MP\ maintains
12043 a doubly-linked master list of all dependency lists, in terms of a permanently
12045 in |mem| called |dep_head|. If there are no dependencies, we have
12046 |mp_link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
12047 otherwise |mp_link(dep_head)| points to the first dependent variable, say~|p|,
12048 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
12049 points to its dependency list. If the final link of that dependency list
12050 occurs in location~|q|, then |mp_link(q)| points to the next dependent
12051 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
12053 @d dep_list(A) mp_link(value_loc((A)))
12054 /* half of the |value| field in a |dependent| variable */
12055 @d prev_dep(A) mp_info(value_loc((A)))
12056 /* the other half; makes a doubly linked list */
12057 @d dep_node_size 2 /* the number of words per dependency node */
12059 @<Initialize table entries...@>= mp->serial_no=0;
12060 mp_link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
12061 mp_info(dep_head)=null; dep_list(dep_head)=null;
12063 @ Actually the description above contains a little white lie. There's
12064 another kind of variable called |mp_proto_dependent|, which is
12065 just like a |dependent| one except that the $\alpha$ coefficients
12066 in its dependency list are |scaled| instead of being fractions.
12067 Proto-dependency lists are mixed with dependency lists in the
12068 nodes reachable from |dep_head|.
12070 @ Here is a procedure that prints a dependency list in symbolic form.
12071 The second parameter should be either |dependent| or |mp_proto_dependent|,
12072 to indicate the scaling of the coefficients.
12075 static void mp_print_dependency (MP mp,pointer p, quarterword t);
12078 void mp_print_dependency (MP mp,pointer p, quarterword t) {
12079 integer v; /* a coefficient */
12080 pointer pp,q; /* for list manipulation */
12083 v=abs(value(p)); q=mp_info(p);
12084 if ( q==null ) { /* the constant term */
12085 if ( (v!=0)||(p==pp) ) {
12086 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, xord('+'));
12087 mp_print_scaled(mp, value(p));
12091 @<Print the coefficient, unless it's $\pm1.0$@>;
12092 if ( mp_type(q)!=mp_independent ) mp_confusion(mp, "dep");
12093 @:this can't happen dep}{\quad dep@>
12094 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12095 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12100 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12101 if ( value(p)<0 ) mp_print_char(mp, xord('-'));
12102 else if ( p!=pp ) mp_print_char(mp, xord('+'));
12103 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12104 if ( v!=unity ) mp_print_scaled(mp, v)
12106 @ The maximum absolute value of a coefficient in a given dependency list
12107 is returned by the following simple function.
12110 static fraction mp_max_coef (MP mp,pointer p) {
12111 fraction x; /* the maximum so far */
12113 while ( mp_info(p)!=null ) {
12114 if ( abs(value(p))>x ) x=abs(value(p));
12120 @ One of the main operations needed on dependency lists is to add a multiple
12121 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12122 to dependency lists and |f| is a fraction.
12124 If the coefficient of any independent variable becomes |coef_bound| or
12125 more, in absolute value, this procedure changes the type of that variable
12126 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12127 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12128 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12129 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12130 2.3723$, the safer value 7/3 is taken as the threshold.)
12132 The changes mentioned in the preceding paragraph are actually done only if
12133 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12134 it is |false| only when \MP\ is making a dependency list that will soon
12135 be equated to zero.
12137 Several procedures that act on dependency lists, including |p_plus_fq|,
12138 set the global variable |dep_final| to the final (constant term) node of
12139 the dependency list that they produce.
12141 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12142 @d independent_needing_fix 0
12145 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12146 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12147 pointer dep_final; /* location of the constant term and final link */
12150 mp->fix_needed=false; mp->watch_coefs=true;
12152 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12153 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12154 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12155 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12157 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12159 The final link of the dependency list or proto-dependency list returned
12160 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12161 constant term of the result will be located in the same |mem| location
12162 as the original constant term of~|p|.
12164 Coefficients of the result are assumed to be zero if they are less than
12165 a certain threshold. This compensates for inevitable rounding errors,
12166 and tends to make more variables `|known|'. The threshold is approximately
12167 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12168 proto-dependencies.
12170 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12171 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12172 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12173 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12176 static pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12177 pointer q, quarterword t, quarterword tt) ;
12180 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12181 pointer q, quarterword t, quarterword tt) {
12182 pointer pp,qq; /* |mp_info(p)| and |mp_info(q)|, respectively */
12183 pointer r,s; /* for list manipulation */
12184 integer threshold; /* defines a neighborhood of zero */
12185 integer v; /* temporary register */
12186 if ( t==mp_dependent ) threshold=fraction_threshold;
12187 else threshold=scaled_threshold;
12188 r=temp_head; pp=mp_info(p); qq=mp_info(q);
12194 @<Contribute a term from |p|, plus |f| times the
12195 corresponding term from |q|@>
12197 } else if ( value(pp)<value(qq) ) {
12198 @<Contribute a term from |q|, multiplied by~|f|@>
12200 mp_link(r)=p; r=p; p=mp_link(p); pp=mp_info(p);
12203 if ( t==mp_dependent )
12204 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12206 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12207 mp_link(r)=p; mp->dep_final=p;
12208 return mp_link(temp_head);
12211 @ @<Contribute a term from |p|, plus |f|...@>=
12213 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12214 else v=value(p)+mp_take_scaled(mp, f,value(q));
12215 value(p)=v; s=p; p=mp_link(p);
12216 if ( abs(v)<threshold ) {
12217 mp_free_node(mp, s,dep_node_size);
12219 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12220 mp_type(qq)=independent_needing_fix; mp->fix_needed=true;
12224 pp=mp_info(p); q=mp_link(q); qq=mp_info(q);
12227 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12229 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12230 else v=mp_take_scaled(mp, f,value(q));
12231 if ( abs(v)>halfp(threshold) ) {
12232 s=mp_get_node(mp, dep_node_size); mp_info(s)=qq; value(s)=v;
12233 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12234 mp_type(qq)=independent_needing_fix; mp->fix_needed=true;
12238 q=mp_link(q); qq=mp_info(q);
12241 @ It is convenient to have another subroutine for the special case
12242 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12243 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12246 static pointer mp_p_plus_q (MP mp,pointer p, pointer q, quarterword t) {
12247 pointer pp,qq; /* |mp_info(p)| and |mp_info(q)|, respectively */
12248 pointer r,s; /* for list manipulation */
12249 integer threshold; /* defines a neighborhood of zero */
12250 integer v; /* temporary register */
12251 if ( t==mp_dependent ) threshold=fraction_threshold;
12252 else threshold=scaled_threshold;
12253 r=temp_head; pp=mp_info(p); qq=mp_info(q);
12259 @<Contribute a term from |p|, plus the
12260 corresponding term from |q|@>
12263 if ( value(pp)<value(qq) ) {
12264 s=mp_get_node(mp, dep_node_size); mp_info(s)=qq; value(s)=value(q);
12265 q=mp_link(q); qq=mp_info(q); mp_link(r)=s; r=s;
12267 mp_link(r)=p; r=p; p=mp_link(p); pp=mp_info(p);
12271 value(p)=mp_slow_add(mp, value(p),value(q));
12272 mp_link(r)=p; mp->dep_final=p;
12273 return mp_link(temp_head);
12276 @ @<Contribute a term from |p|, plus the...@>=
12278 v=value(p)+value(q);
12279 value(p)=v; s=p; p=mp_link(p); pp=mp_info(p);
12280 if ( abs(v)<threshold ) {
12281 mp_free_node(mp, s,dep_node_size);
12283 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12284 mp_type(qq)=independent_needing_fix; mp->fix_needed=true;
12288 q=mp_link(q); qq=mp_info(q);
12291 @ A somewhat simpler routine will multiply a dependency list
12292 by a given constant~|v|. The constant is either a |fraction| less than
12293 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12294 convert a dependency list to a proto-dependency list.
12295 Parameters |t0| and |t1| are the list types before and after;
12296 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12297 and |v_is_scaled=true|.
12300 static pointer mp_p_times_v (MP mp,pointer p, integer v, quarterword t0,
12301 quarterword t1, boolean v_is_scaled) {
12302 pointer r,s; /* for list manipulation */
12303 integer w; /* tentative coefficient */
12305 boolean scaling_down;
12306 if ( t0!=t1 ) scaling_down=true; else scaling_down=(!v_is_scaled);
12307 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12308 else threshold=half_scaled_threshold;
12310 while ( mp_info(p)!=null ) {
12311 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12312 else w=mp_take_scaled(mp, v,value(p));
12313 if ( abs(w)<=threshold ) {
12314 s=mp_link(p); mp_free_node(mp, p,dep_node_size); p=s;
12316 if ( abs(w)>=coef_bound ) {
12317 mp->fix_needed=true; mp_type(mp_info(p))=independent_needing_fix;
12319 mp_link(r)=p; r=p; value(p)=w; p=mp_link(p);
12323 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12324 else value(p)=mp_take_fraction(mp, value(p),v);
12325 return mp_link(temp_head);
12328 @ Similarly, we sometimes need to divide a dependency list
12329 by a given |scaled| constant.
12332 static pointer mp_p_over_v (MP mp,pointer p, scaled v, quarterword
12333 t0, quarterword t1) ;
12336 pointer mp_p_over_v (MP mp,pointer p, scaled v, quarterword
12337 t0, quarterword t1) {
12338 pointer r,s; /* for list manipulation */
12339 integer w; /* tentative coefficient */
12341 boolean scaling_down;
12342 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12343 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12344 else threshold=half_scaled_threshold;
12346 while ( mp_info( p)!=null ) {
12347 if ( scaling_down ) {
12348 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12349 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12351 w=mp_make_scaled(mp, value(p),v);
12353 if ( abs(w)<=threshold ) {
12354 s=mp_link(p); mp_free_node(mp, p,dep_node_size); p=s;
12356 if ( abs(w)>=coef_bound ) {
12357 mp->fix_needed=true; mp_type(mp_info(p))=independent_needing_fix;
12359 mp_link(r)=p; r=p; value(p)=w; p=mp_link(p);
12362 mp_link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12363 return mp_link(temp_head);
12366 @ Here's another utility routine for dependency lists. When an independent
12367 variable becomes dependent, we want to remove it from all existing
12368 dependencies. The |p_with_x_becoming_q| function computes the
12369 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12371 This procedure has basically the same calling conventions as |p_plus_fq|:
12372 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12373 final link are inherited from~|p|; and the fourth parameter tells whether
12374 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12375 is not altered if |x| does not occur in list~|p|.
12378 static pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12379 pointer x, pointer q, quarterword t) {
12380 pointer r,s; /* for list manipulation */
12381 integer v; /* coefficient of |x| */
12382 integer sx; /* serial number of |x| */
12383 s=p; r=temp_head; sx=value(x);
12384 while ( value(mp_info(s))>sx ) { r=s; s=mp_link(s); };
12385 if ( mp_info(s)!=x ) {
12388 mp_link(temp_head)=p; mp_link(r)=mp_link(s); v=value(s);
12389 mp_free_node(mp, s,dep_node_size);
12390 return mp_p_plus_fq(mp, mp_link(temp_head),v,q,t,mp_dependent);
12394 @ Here's a simple procedure that reports an error when a variable
12395 has just received a known value that's out of the required range.
12398 static void mp_val_too_big (MP mp,scaled x) ;
12400 @ @c void mp_val_too_big (MP mp,scaled x) {
12401 if ( mp->internal[mp_warning_check]>0 ) {
12402 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, xord(')'));
12403 @.Value is too large@>
12404 help4("The equation I just processed has given some variable",
12405 "a value of 4096 or more. Continue and I'll try to cope",
12406 "with that big value; but it might be dangerous.",
12407 "(Set warningcheck:=0 to suppress this message.)");
12412 @ When a dependent variable becomes known, the following routine
12413 removes its dependency list. Here |p| points to the variable, and
12414 |q| points to the dependency list (which is one node long).
12417 static void mp_make_known (MP mp,pointer p, pointer q) ;
12419 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12420 int t; /* the previous type */
12421 prev_dep(mp_link(q))=prev_dep(p);
12422 mp_link(prev_dep(p))=mp_link(q); t=mp_type(p);
12423 mp_type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12424 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12425 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12426 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12427 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12428 mp_print_variable_name(mp, p);
12429 mp_print_char(mp, xord('=')); mp_print_scaled(mp, value(p));
12430 mp_end_diagnostic(mp, false);
12432 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12433 mp->cur_type=mp_known; mp->cur_exp=value(p);
12434 mp_free_node(mp, p,value_node_size);
12438 @ The |fix_dependencies| routine is called into action when |fix_needed|
12439 has been triggered. The program keeps a list~|s| of independent variables
12440 whose coefficients must be divided by~4.
12442 In unusual cases, this fixup process might reduce one or more coefficients
12443 to zero, so that a variable will become known more or less by default.
12446 static void mp_fix_dependencies (MP mp);
12449 static void mp_fix_dependencies (MP mp) {
12450 pointer p,q,r,s,t; /* list manipulation registers */
12451 pointer x; /* an independent variable */
12452 r=mp_link(dep_head); s=null;
12453 while ( r!=dep_head ){
12455 @<Run through the dependency list for variable |t|, fixing
12456 all nodes, and ending with final link~|q|@>;
12458 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12460 while ( s!=null ) {
12461 p=mp_link(s); x=mp_info(s); free_avail(s); s=p;
12462 mp_type(x)=mp_independent; value(x)=value(x)+2;
12464 mp->fix_needed=false;
12467 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12469 @<Run through the dependency list for variable |t|...@>=
12470 r=value_loc(t); /* |mp_link(r)=dep_list(t)| */
12472 q=mp_link(r); x=mp_info(q);
12473 if ( x==null ) break;
12474 if ( mp_type(x)<=independent_being_fixed ) {
12475 if ( mp_type(x)<independent_being_fixed ) {
12476 p=mp_get_avail(mp); mp_link(p)=s; s=p;
12477 mp_info(s)=x; mp_type(x)=independent_being_fixed;
12479 value(q)=value(q) / 4;
12480 if ( value(q)==0 ) {
12481 mp_link(r)=mp_link(q); mp_free_node(mp, q,dep_node_size); q=r;
12488 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12489 linking it into the list of all known dependencies. We assume that
12490 |dep_final| points to the final node of list~|p|.
12493 static void mp_new_dep (MP mp,pointer q, pointer p) {
12494 pointer r; /* what used to be the first dependency */
12495 dep_list(q)=p; prev_dep(q)=dep_head;
12496 r=mp_link(dep_head); mp_link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12497 mp_link(dep_head)=q;
12500 @ Here is one of the ways a dependency list gets started.
12501 The |const_dependency| routine produces a list that has nothing but
12504 @c static pointer mp_const_dependency (MP mp, scaled v) {
12505 mp->dep_final=mp_get_node(mp, dep_node_size);
12506 value(mp->dep_final)=v; mp_info(mp->dep_final)=null;
12507 return mp->dep_final;
12510 @ And here's a more interesting way to start a dependency list from scratch:
12511 The parameter to |single_dependency| is the location of an
12512 independent variable~|x|, and the result is the simple dependency list
12515 In the unlikely event that the given independent variable has been doubled so
12516 often that we can't refer to it with a nonzero coefficient,
12517 |single_dependency| returns the simple list `0'. This case can be
12518 recognized by testing that the returned list pointer is equal to
12522 static pointer mp_single_dependency (MP mp,pointer p) {
12523 pointer q; /* the new dependency list */
12524 integer m; /* the number of doublings */
12525 m=value(p) % s_scale;
12527 return mp_const_dependency(mp, 0);
12529 q=mp_get_node(mp, dep_node_size);
12530 value(q)=(integer)two_to_the(28-m); mp_info(q)=p;
12531 mp_link(q)=mp_const_dependency(mp, 0);
12536 @ We sometimes need to make an exact copy of a dependency list.
12539 static pointer mp_copy_dep_list (MP mp,pointer p) {
12540 pointer q; /* the new dependency list */
12541 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12543 mp_info(mp->dep_final)=mp_info(p); value(mp->dep_final)=value(p);
12544 if ( mp_info(mp->dep_final)==null ) break;
12545 mp_link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12546 mp->dep_final=mp_link(mp->dep_final); p=mp_link(p);
12551 @ But how do variables normally become known? Ah, now we get to the heart of the
12552 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12553 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12554 appears. It equates this list to zero, by choosing an independent variable
12555 with the largest coefficient and making it dependent on the others. The
12556 newly dependent variable is eliminated from all current dependencies,
12557 thereby possibly making other dependent variables known.
12559 The given list |p| is, of course, totally destroyed by all this processing.
12562 static void mp_linear_eq (MP mp, pointer p, quarterword t) {
12563 pointer q,r,s; /* for link manipulation */
12564 pointer x; /* the variable that loses its independence */
12565 integer n; /* the number of times |x| had been halved */
12566 integer v; /* the coefficient of |x| in list |p| */
12567 pointer prev_r; /* lags one step behind |r| */
12568 pointer final_node; /* the constant term of the new dependency list */
12569 integer w; /* a tentative coefficient */
12570 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12571 x=mp_info(q); n=value(x) % s_scale;
12572 @<Divide list |p| by |-v|, removing node |q|@>;
12573 if ( mp->internal[mp_tracing_equations]>0 ) {
12574 @<Display the new dependency@>;
12576 @<Simplify all existing dependencies by substituting for |x|@>;
12577 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12578 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12581 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12582 q=p; r=mp_link(p); v=value(q);
12583 while ( mp_info(r)!=null ) {
12584 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12588 @ Here we want to change the coefficients from |scaled| to |fraction|,
12589 except in the constant term. In the common case of a trivial equation
12590 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12592 @<Divide list |p| by |-v|, removing node |q|@>=
12593 s=temp_head; mp_link(s)=p; r=p;
12596 mp_link(s)=mp_link(r); mp_free_node(mp, r,dep_node_size);
12598 w=mp_make_fraction(mp, value(r),v);
12599 if ( abs(w)<=half_fraction_threshold ) {
12600 mp_link(s)=mp_link(r); mp_free_node(mp, r,dep_node_size);
12606 } while (mp_info(r)!=null);
12607 if ( t==mp_proto_dependent ) {
12608 value(r)=-mp_make_scaled(mp, value(r),v);
12609 } else if ( v!=-fraction_one ) {
12610 value(r)=-mp_make_fraction(mp, value(r),v);
12612 final_node=r; p=mp_link(temp_head)
12614 @ @<Display the new dependency@>=
12615 if ( mp_interesting(mp, x) ) {
12616 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12617 mp_print_variable_name(mp, x);
12618 @:]]]\#\#_}{\.{\#\#}@>
12620 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12621 mp_print_char(mp, xord('=')); mp_print_dependency(mp, p,mp_dependent);
12622 mp_end_diagnostic(mp, false);
12625 @ @<Simplify all existing dependencies by substituting for |x|@>=
12626 prev_r=dep_head; r=mp_link(dep_head);
12627 while ( r!=dep_head ) {
12628 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,mp_type(r));
12629 if ( mp_info(q)==null ) {
12630 mp_make_known(mp, r,q);
12633 do { q=mp_link(q); } while (mp_info(q)!=null);
12639 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12640 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12641 if ( mp_info(p)==null ) {
12642 mp_type(x)=mp_known;
12644 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12645 mp_free_node(mp, p,dep_node_size);
12646 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12647 mp->cur_exp=value(x); mp->cur_type=mp_known;
12648 mp_free_node(mp, x,value_node_size);
12651 mp_type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12652 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12655 @ @<Divide list |p| by $2^n$@>=
12657 s=temp_head; mp_link(temp_head)=p; r=p;
12660 else w=value(r) / two_to_the(n);
12661 if ( (abs(w)<=half_fraction_threshold)&&(mp_info(r)!=null) ) {
12662 mp_link(s)=mp_link(r);
12663 mp_free_node(mp, r,dep_node_size);
12668 } while (mp_info(s)!=null);
12669 p=mp_link(temp_head);
12672 @ The |check_mem| procedure, which is used only when \MP\ is being
12673 debugged, makes sure that the current dependency lists are well formed.
12675 @<Check the list of linear dependencies@>=
12676 q=dep_head; p=mp_link(q);
12677 while ( p!=dep_head ) {
12678 if ( prev_dep(p)!=q ) {
12679 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12684 r=mp_info(p); q=p; p=mp_link(q);
12685 if ( r==null ) break;
12686 if ( value(mp_info(p))>=value(r) ) {
12687 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12688 @.Out of order...@>
12693 @* \[25] Dynamic nonlinear equations.
12694 Variables of numeric type are maintained by the general scheme of
12695 independent, dependent, and known values that we have just studied;
12696 and the components of pair and transform variables are handled in the
12697 same way. But \MP\ also has five other types of values: \&{boolean},
12698 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12700 Equations are allowed between nonlinear quantities, but only in a
12701 simple form. Two variables that haven't yet been assigned values are
12702 either equal to each other, or they're not.
12704 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12705 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12706 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12707 |null| (which means that no other variables are equivalent to this one), or
12708 it points to another variable of the same undefined type. The pointers in the
12709 latter case form a cycle of nodes, which we shall call a ``ring.''
12710 Rings of undefined variables may include capsules, which arise as
12711 intermediate results within expressions or as \&{expr} parameters to macros.
12713 When one member of a ring receives a value, the same value is given to
12714 all the other members. In the case of paths and pictures, this implies
12715 making separate copies of a potentially large data structure; users should
12716 restrain their enthusiasm for such generality, unless they have lots and
12717 lots of memory space.
12719 @ The following procedure is called when a capsule node is being
12720 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12723 static pointer mp_new_ring_entry (MP mp,pointer p) {
12724 pointer q; /* the new capsule node */
12725 q=mp_get_node(mp, value_node_size); mp_name_type(q)=mp_capsule;
12726 mp_type(q)=mp_type(p);
12727 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12732 @ Conversely, we might delete a capsule or a variable before it becomes known.
12733 The following procedure simply detaches a quantity from its ring,
12734 without recycling the storage.
12737 static void mp_ring_delete (MP mp,pointer p);
12740 void mp_ring_delete (MP mp,pointer p) {
12743 if ( q!=null ) if ( q!=p ){
12744 while ( value(q)!=p ) q=value(q);
12749 @ Eventually there might be an equation that assigns values to all of the
12750 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12751 propagation of values.
12753 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12754 value, it will soon be recycled.
12757 static void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12758 quarterword t; /* the type of ring |p| */
12759 pointer q,r; /* link manipulation registers */
12760 t=mp_type(p)-unknown_tag; q=value(p);
12761 if ( flush_p ) mp_type(p)=mp_vacuous; else p=q;
12763 r=value(q); mp_type(q)=t;
12765 case mp_boolean_type: value(q)=v; break;
12766 case mp_string_type: value(q)=v; add_str_ref(v); break;
12767 case mp_pen_type: value(q)=copy_pen(v); break;
12768 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12769 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12770 } /* there ain't no more cases */
12775 @ If two members of rings are equated, and if they have the same type,
12776 the |ring_merge| procedure is called on to make them equivalent.
12779 static void mp_ring_merge (MP mp,pointer p, pointer q) {
12780 pointer r; /* traverses one list */
12784 @<Exclaim about a redundant equation@>;
12789 r=value(p); value(p)=value(q); value(q)=r;
12792 @ @<Exclaim about a redundant equation@>=
12794 print_err("Redundant equation");
12795 @.Redundant equation@>
12796 help2("I already knew that this equation was true.",
12797 "But perhaps no harm has been done; let's continue.");
12798 mp_put_get_error(mp);
12801 @* \[26] Introduction to the syntactic routines.
12802 Let's pause a moment now and try to look at the Big Picture.
12803 The \MP\ program consists of three main parts: syntactic routines,
12804 semantic routines, and output routines. The chief purpose of the
12805 syntactic routines is to deliver the user's input to the semantic routines,
12806 while parsing expressions and locating operators and operands. The
12807 semantic routines act as an interpreter responding to these operators,
12808 which may be regarded as commands. And the output routines are
12809 periodically called on to produce compact font descriptions that can be
12810 used for typesetting or for making interim proof drawings. We have
12811 discussed the basic data structures and many of the details of semantic
12812 operations, so we are good and ready to plunge into the part of \MP\ that
12813 actually controls the activities.
12815 Our current goal is to come to grips with the |get_next| procedure,
12816 which is the keystone of \MP's input mechanism. Each call of |get_next|
12817 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12818 representing the next input token.
12819 $$\vbox{\halign{#\hfil\cr
12820 \hbox{|cur_cmd| denotes a command code from the long list of codes
12822 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12823 \hbox{|cur_sym| is the hash address of the symbolic token that was
12825 \hbox{\qquad or zero in the case of a numeric or string
12826 or capsule token.}\cr}}$$
12827 Underlying this external behavior of |get_next| is all the machinery
12828 necessary to convert from character files to tokens. At a given time we
12829 may be only partially finished with the reading of several files (for
12830 which \&{input} was specified), and partially finished with the expansion
12831 of some user-defined macros and/or some macro parameters, and partially
12832 finished reading some text that the user has inserted online,
12833 and so on. When reading a character file, the characters must be
12834 converted to tokens; comments and blank spaces must
12835 be removed, numeric and string tokens must be evaluated.
12837 To handle these situations, which might all be present simultaneously,
12838 \MP\ uses various stacks that hold information about the incomplete
12839 activities, and there is a finite state control for each level of the
12840 input mechanism. These stacks record the current state of an implicitly
12841 recursive process, but the |get_next| procedure is not recursive.
12844 integer cur_cmd; /* current command set by |get_next| */
12845 integer cur_mod; /* operand of current command */
12846 halfword cur_sym; /* hash address of current symbol */
12848 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12849 command code and its modifier.
12850 It consists of a rather tedious sequence of print
12851 commands, and most of it is essentially an inverse to the |primitive|
12852 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12853 all of this procedure appears elsewhere in the program, together with the
12854 corresponding |primitive| calls.
12857 static void mp_print_cmd_mod (MP mp,integer c, integer m) ;
12860 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12862 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12863 default: mp_print(mp, "[unknown command code!]"); break;
12867 @ Here is a procedure that displays a given command in braces, in the
12868 user's transcript file.
12870 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12873 static void mp_show_cmd_mod (MP mp,integer c, integer m) {
12874 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12875 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, xord('}'));
12876 mp_end_diagnostic(mp, false);
12879 @* \[27] Input stacks and states.
12880 The state of \MP's input mechanism appears in the input stack, whose
12881 entries are records with five fields, called |index|, |start|, |loc|,
12882 |limit|, and |name|. The top element of this stack is maintained in a
12883 global variable for which no subscripting needs to be done; the other
12884 elements of the stack appear in an array. Hence the stack is declared thus:
12888 quarterword index_field;
12889 halfword start_field, loc_field, limit_field, name_field;
12893 in_state_record *input_stack;
12894 integer input_ptr; /* first unused location of |input_stack| */
12895 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12896 in_state_record cur_input; /* the ``top'' input state */
12897 int stack_size; /* maximum number of simultaneous input sources */
12899 @ @<Allocate or initialize ...@>=
12900 mp->stack_size = 300;
12901 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12903 @ @<Dealloc variables@>=
12904 xfree(mp->input_stack);
12906 @ We've already defined the special variable |loc==cur_input.loc_field|
12907 in our discussion of basic input-output routines. The other components of
12908 |cur_input| are defined in the same way:
12910 @d iindex mp->cur_input.index_field /* reference for buffer information */
12911 @d start mp->cur_input.start_field /* starting position in |buffer| */
12912 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12913 @d name mp->cur_input.name_field /* name of the current file */
12915 @ Let's look more closely now at the five control variables
12916 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12917 assuming that \MP\ is reading a line of characters that have been input
12918 from some file or from the user's terminal. There is an array called
12919 |buffer| that acts as a stack of all lines of characters that are
12920 currently being read from files, including all lines on subsidiary
12921 levels of the input stack that are not yet completed. \MP\ will return to
12922 the other lines when it is finished with the present input file.
12924 (Incidentally, on a machine with byte-oriented addressing, it would be
12925 appropriate to combine |buffer| with the |str_pool| array,
12926 letting the buffer entries grow downward from the top of the string pool
12927 and checking that these two tables don't bump into each other.)
12929 The line we are currently working on begins in position |start| of the
12930 buffer; the next character we are about to read is |buffer[loc]|; and
12931 |limit| is the location of the last character present. We always have
12932 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12933 that the end of a line is easily sensed.
12935 The |name| variable is a string number that designates the name of
12936 the current file, if we are reading an ordinary text file. Special codes
12937 |is_term..max_spec_src| indicate other sources of input text.
12939 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12940 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12941 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12942 @d max_spec_src is_scantok
12944 @ Additional information about the current line is available via the
12945 |index| variable, which counts how many lines of characters are present
12946 in the buffer below the current level. We have |index=0| when reading
12947 from the terminal and prompting the user for each line; then if the user types,
12948 e.g., `\.{input figs}', we will have |index=1| while reading
12949 the file \.{figs.mp}. However, it does not follow that |index| is the
12950 same as the input stack pointer, since many of the levels on the input
12951 stack may come from token lists and some |index| values may correspond
12952 to \.{MPX} files that are not currently on the stack.
12954 The global variable |in_open| is equal to the highest |index| value counting
12955 \.{MPX} files but excluding token-list input levels. Thus, the number of
12956 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12957 when we are not reading a token list.
12959 If we are not currently reading from the terminal,
12960 we are reading from the file variable |input_file[index]|. We use
12961 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12962 and |cur_file| as an abbreviation for |input_file[index]|.
12964 When \MP\ is not reading from the terminal, the global variable |line| contains
12965 the line number in the current file, for use in error messages. More precisely,
12966 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12967 the line number for each file in the |input_file| array.
12969 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12970 array so that the name doesn't get lost when the file is temporarily removed
12971 from the input stack.
12972 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12973 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12974 Since this is not an \.{MPX} file, we have
12975 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12976 This |name| field is set to |finished| when |input_file[k]| is completely
12979 If more information about the input state is needed, it can be
12980 included in small arrays like those shown here. For example,
12981 the current page or segment number in the input file might be put
12982 into a variable |page|, that is really a macro for the current entry
12983 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12984 by analogy with |line_stack|.
12985 @^system dependencies@>
12987 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12988 @d cur_file mp->input_file[iindex] /* the current |void *| variable */
12989 @d line mp->line_stack[iindex] /* current line number in the current source file */
12990 @d in_name mp->iname_stack[iindex] /* a string used to construct \.{MPX} file names */
12991 @d in_area mp->iarea_stack[iindex] /* another string for naming \.{MPX} files */
12992 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12993 @d mpx_reading (mp->mpx_name[iindex]>absent)
12994 /* when reading a file, is it an \.{MPX} file? */
12996 /* |name_field| value when the corresponding \.{MPX} file is finished */
12999 integer in_open; /* the number of lines in the buffer, less one */
13000 unsigned int open_parens; /* the number of open text files */
13001 void * *input_file ;
13002 integer *line_stack ; /* the line number for each file */
13003 char * *iname_stack; /* used for naming \.{MPX} files */
13004 char * *iarea_stack; /* used for naming \.{MPX} files */
13005 halfword*mpx_name ;
13007 @ @<Allocate or ...@>=
13008 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
13009 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
13010 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
13011 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
13012 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
13015 for (k=0;k<=mp->max_in_open;k++) {
13016 mp->iname_stack[k] =NULL;
13017 mp->iarea_stack[k] =NULL;
13021 @ @<Dealloc variables@>=
13024 for (l=0;l<=mp->max_in_open;l++) {
13025 xfree(mp->iname_stack[l]);
13026 xfree(mp->iarea_stack[l]);
13029 xfree(mp->input_file);
13030 xfree(mp->line_stack);
13031 xfree(mp->iname_stack);
13032 xfree(mp->iarea_stack);
13033 xfree(mp->mpx_name);
13036 @ However, all this discussion about input state really applies only to the
13037 case that we are inputting from a file. There is another important case,
13038 namely when we are currently getting input from a token list. In this case
13039 |iindex>max_in_open|, and the conventions about the other state variables
13042 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
13043 the node that will be read next. If |loc=null|, the token list has been
13046 \yskip\hang|start| points to the first node of the token list; this node
13047 may or may not contain a reference count, depending on the type of token
13050 \yskip\hang|token_type|, which takes the place of |iindex| in the
13051 discussion above, is a code number that explains what kind of token list
13054 \yskip\hang|name| points to the |eqtb| address of the control sequence
13055 being expanded, if the current token list is a macro not defined by
13056 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
13057 can be deduced by looking at their first two parameters.
13059 \yskip\hang|param_start|, which takes the place of |limit|, tells where
13060 the parameters of the current macro or loop text begin in the |param_stack|.
13062 \yskip\noindent The |token_type| can take several values, depending on
13063 where the current token list came from:
13066 \indent|forever_text|, if the token list being scanned is the body of
13067 a \&{forever} loop;
13069 \indent|loop_text|, if the token list being scanned is the body of
13070 a \&{for} or \&{forsuffixes} loop;
13072 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
13074 \indent|backed_up|, if the token list being scanned has been inserted as
13075 `to be read again'.
13077 \indent|inserted|, if the token list being scanned has been inserted as
13078 part of error recovery;
13080 \indent|macro|, if the expansion of a user-defined symbolic token is being
13084 The token list begins with a reference count if and only if |token_type=
13086 @^reference counts@>
13088 @d token_type iindex /* type of current token list */
13089 @d token_state (iindex>(int)mp->max_in_open) /* are we scanning a token list? */
13090 @d file_state (iindex<=(int)mp->max_in_open) /* are we scanning a file line? */
13091 @d param_start limit /* base of macro parameters in |param_stack| */
13092 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
13093 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
13094 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
13095 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
13096 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
13097 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
13099 @ The |param_stack| is an auxiliary array used to hold pointers to the token
13100 lists for parameters at the current level and subsidiary levels of input.
13101 This stack grows at a different rate from the others.
13104 pointer *param_stack; /* token list pointers for parameters */
13105 integer param_ptr; /* first unused entry in |param_stack| */
13106 integer max_param_stack; /* largest value of |param_ptr| */
13108 @ @<Allocate or initialize ...@>=
13109 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13111 @ @<Dealloc variables@>=
13112 xfree(mp->param_stack);
13114 @ Notice that the |line| isn't valid when |token_state| is true because it
13115 depends on |iindex|. If we really need to know the line number for the
13116 topmost file in the iindex stack we use the following function. If a page
13117 number or other information is needed, this routine should be modified to
13118 compute it as well.
13119 @^system dependencies@>
13122 static integer mp_true_line (MP mp) ;
13125 integer mp_true_line (MP mp) {
13126 int k; /* an index into the input stack */
13127 if ( file_state && (name>max_spec_src) ) {
13132 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13133 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13136 return (k>0 ? mp->line_stack[(k-1)] : 0 );
13140 @ Thus, the ``current input state'' can be very complicated indeed; there
13141 can be many levels and each level can arise in a variety of ways. The
13142 |show_context| procedure, which is used by \MP's error-reporting routine to
13143 print out the current input state on all levels down to the most recent
13144 line of characters from an input file, illustrates most of these conventions.
13145 The global variable |file_ptr| contains the lowest level that was
13146 displayed by this procedure.
13149 integer file_ptr; /* shallowest level shown by |show_context| */
13151 @ The status at each level is indicated by printing two lines, where the first
13152 line indicates what was read so far and the second line shows what remains
13153 to be read. The context is cropped, if necessary, so that the first line
13154 contains at most |half_error_line| characters, and the second contains
13155 at most |error_line|. Non-current input levels whose |token_type| is
13156 `|backed_up|' are shown only if they have not been fully read.
13158 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13159 unsigned old_setting; /* saved |selector| setting */
13160 @<Local variables for formatting calculations@>
13161 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13162 /* store current state */
13164 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13165 @<Display the current context@>;
13167 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13168 decr(mp->file_ptr);
13170 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13173 @ @<Display the current context@>=
13174 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13175 (token_type!=backed_up) || (loc!=null) ) {
13176 /* we omit backed-up token lists that have already been read */
13177 mp->tally=0; /* get ready to count characters */
13178 old_setting=mp->selector;
13179 if ( file_state ) {
13180 @<Print location of current line@>;
13181 @<Pseudoprint the line@>;
13183 @<Print type of token list@>;
13184 @<Pseudoprint the token list@>;
13186 mp->selector=old_setting; /* stop pseudoprinting */
13187 @<Print two lines using the tricky pseudoprinted information@>;
13190 @ This routine should be changed, if necessary, to give the best possible
13191 indication of where the current line resides in the input file.
13192 For example, on some systems it is best to print both a page and line number.
13193 @^system dependencies@>
13195 @<Print location of current line@>=
13196 if ( name>max_spec_src ) {
13197 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13198 } else if ( terminal_input ) {
13199 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13200 else mp_print_nl(mp, "<insert>");
13201 } else if ( name==is_scantok ) {
13202 mp_print_nl(mp, "<scantokens>");
13204 mp_print_nl(mp, "<read>");
13206 mp_print_char(mp, xord(' '))
13208 @ Can't use case statement here because the |token_type| is not
13209 a constant expression.
13211 @<Print type of token list@>=
13213 if(token_type==forever_text) {
13214 mp_print_nl(mp, "<forever> ");
13215 } else if (token_type==loop_text) {
13216 @<Print the current loop value@>;
13217 } else if (token_type==parameter) {
13218 mp_print_nl(mp, "<argument> ");
13219 } else if (token_type==backed_up) {
13220 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13221 else mp_print_nl(mp, "<to be read again> ");
13222 } else if (token_type==inserted) {
13223 mp_print_nl(mp, "<inserted text> ");
13224 } else if (token_type==macro) {
13226 if ( name!=null ) mp_print_text(name);
13227 else @<Print the name of a \&{vardef}'d macro@>;
13228 mp_print(mp, "->");
13230 mp_print_nl(mp, "?");/* this should never happen */
13235 @ The parameter that corresponds to a loop text is either a token list
13236 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13237 We'll discuss capsules later; for now, all we need to know is that
13238 the |link| field in a capsule parameter is |void| and that
13239 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13241 @<Print the current loop value@>=
13242 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13244 if ( mp_link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13245 else mp_show_token_list(mp, p,null,20,mp->tally);
13247 mp_print(mp, ")> ");
13250 @ The first two parameters of a macro defined by \&{vardef} will be token
13251 lists representing the macro's prefix and ``at point.'' By putting these
13252 together, we get the macro's full name.
13254 @<Print the name of a \&{vardef}'d macro@>=
13255 { p=mp->param_stack[param_start];
13257 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13260 while ( mp_link(q)!=null ) q=mp_link(q);
13261 mp_link(q)=mp->param_stack[param_start+1];
13262 mp_show_token_list(mp, p,null,20,mp->tally);
13267 @ Now it is necessary to explain a little trick. We don't want to store a long
13268 string that corresponds to a token list, because that string might take up
13269 lots of memory; and we are printing during a time when an error message is
13270 being given, so we dare not do anything that might overflow one of \MP's
13271 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13272 that stores characters into a buffer of length |error_line|, where character
13273 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13274 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13275 |tally:=0| and |trick_count:=1000000|; then when we reach the
13276 point where transition from line 1 to line 2 should occur, we
13277 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13278 tally+1+error_line-half_error_line)|. At the end of the
13279 pseudoprinting, the values of |first_count|, |tally|, and
13280 |trick_count| give us all the information we need to print the two lines,
13281 and all of the necessary text is in |trick_buf|.
13283 Namely, let |l| be the length of the descriptive information that appears
13284 on the first line. The length of the context information gathered for that
13285 line is |k=first_count|, and the length of the context information
13286 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13287 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13288 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13289 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13290 and print `\.{...}' followed by
13291 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13292 where subscripts of |trick_buf| are circular modulo |error_line|. The
13293 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13294 unless |n+m>error_line|; in the latter case, further cropping is done.
13295 This is easier to program than to explain.
13297 @<Local variables for formatting...@>=
13298 int i; /* index into |buffer| */
13299 integer l; /* length of descriptive information on line 1 */
13300 integer m; /* context information gathered for line 2 */
13301 int n; /* length of line 1 */
13302 integer p; /* starting or ending place in |trick_buf| */
13303 integer q; /* temporary index */
13305 @ The following code tells the print routines to gather
13306 the desired information.
13308 @d begin_pseudoprint {
13309 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13310 mp->trick_count=1000000;
13312 @d set_trick_count {
13313 mp->first_count=mp->tally;
13314 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13315 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13318 @ And the following code uses the information after it has been gathered.
13320 @<Print two lines using the tricky pseudoprinted information@>=
13321 if ( mp->trick_count==1000000 ) set_trick_count;
13322 /* |set_trick_count| must be performed */
13323 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13324 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13325 if ( l+mp->first_count<=mp->half_error_line ) {
13326 p=0; n=l+mp->first_count;
13328 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13329 n=mp->half_error_line;
13331 for (q=p;q<=mp->first_count-1;q++) {
13332 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13335 for (q=1;q<=n;q++) {
13336 mp_print_char(mp, xord(' ')); /* print |n| spaces to begin line~2 */
13338 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13339 else p=mp->first_count+(mp->error_line-n-3);
13340 for (q=mp->first_count;q<=p-1;q++) {
13341 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13343 if ( m+n>mp->error_line ) mp_print(mp, "...")
13345 @ But the trick is distracting us from our current goal, which is to
13346 understand the input state. So let's concentrate on the data structures that
13347 are being pseudoprinted as we finish up the |show_context| procedure.
13349 @<Pseudoprint the line@>=
13352 for (i=start;i<=limit-1;i++) {
13353 if ( i==loc ) set_trick_count;
13354 mp_print_str(mp, mp->buffer[i]);
13358 @ @<Pseudoprint the token list@>=
13360 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13361 else mp_show_macro(mp, start,loc,100000)
13363 @ Here is the missing piece of |show_token_list| that is activated when the
13364 token beginning line~2 is about to be shown:
13366 @<Do magic computation@>=set_trick_count
13368 @* \[28] Maintaining the input stacks.
13369 The following subroutines change the input status in commonly needed ways.
13371 First comes |push_input|, which stores the current state and creates a
13372 new level (having, initially, the same properties as the old).
13374 @d push_input { /* enter a new input level, save the old */
13375 if ( mp->input_ptr>mp->max_in_stack ) {
13376 mp->max_in_stack=mp->input_ptr;
13377 if ( mp->input_ptr==mp->stack_size ) {
13378 int l = (mp->stack_size+(mp->stack_size/4));
13379 XREALLOC(mp->input_stack, l, in_state_record);
13380 mp->stack_size = l;
13383 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13384 incr(mp->input_ptr);
13387 @ And of course what goes up must come down.
13389 @d pop_input { /* leave an input level, re-enter the old */
13390 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13393 @ Here is a procedure that starts a new level of token-list input, given
13394 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13395 set |name|, reset~|loc|, and increase the macro's reference count.
13397 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13400 static void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13401 push_input; start=p; token_type=t;
13402 param_start=mp->param_ptr; loc=p;
13405 @ When a token list has been fully scanned, the following computations
13406 should be done as we leave that level of input.
13410 static void mp_end_token_list (MP mp) { /* leave a token-list input level */
13411 pointer p; /* temporary register */
13412 if ( token_type>=backed_up ) { /* token list to be deleted */
13413 if ( token_type<=inserted ) {
13414 mp_flush_token_list(mp, start); goto DONE;
13416 mp_delete_mac_ref(mp, start); /* update reference count */
13419 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13420 decr(mp->param_ptr);
13421 p=mp->param_stack[mp->param_ptr];
13423 if ( mp_link(p)==mp_void ) { /* it's an \&{expr} parameter */
13424 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13426 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13431 pop_input; check_interrupt;
13434 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13435 token by the |cur_tok| routine.
13438 @c @<Declare the procedure called |make_exp_copy|@>
13439 static pointer mp_cur_tok (MP mp) {
13440 pointer p; /* a new token node */
13441 quarterword save_type; /* |cur_type| to be restored */
13442 integer save_exp; /* |cur_exp| to be restored */
13443 if ( mp->cur_sym==0 ) {
13444 if ( mp->cur_cmd==capsule_token ) {
13445 save_type=mp->cur_type; save_exp=mp->cur_exp;
13446 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); mp_link(p)=null;
13447 mp->cur_type=save_type; mp->cur_exp=save_exp;
13449 p=mp_get_node(mp, token_node_size);
13450 value(p)=mp->cur_mod; mp_name_type(p)=mp_token;
13451 if ( mp->cur_cmd==numeric_token ) mp_type(p)=mp_known;
13452 else mp_type(p)=mp_string_type;
13455 fast_get_avail(p); mp_info(p)=mp->cur_sym;
13460 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13461 seen. The |back_input| procedure takes care of this by putting the token
13462 just scanned back into the input stream, ready to be read again.
13463 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13466 static void mp_back_input (MP mp);
13468 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13469 pointer p; /* a token list of length one */
13471 while ( token_state &&(loc==null) )
13472 mp_end_token_list(mp); /* conserve stack space */
13476 @ The |back_error| routine is used when we want to restore or replace an
13477 offending token just before issuing an error message. We disable interrupts
13478 during the call of |back_input| so that the help message won't be lost.
13480 @ @c static void mp_back_error (MP mp) { /* back up one token and call |error| */
13481 mp->OK_to_interrupt=false;
13483 mp->OK_to_interrupt=true; mp_error(mp);
13485 static void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13486 mp->OK_to_interrupt=false;
13487 mp_back_input(mp); token_type=inserted;
13488 mp->OK_to_interrupt=true; mp_error(mp);
13491 @ The |begin_file_reading| procedure starts a new level of input for lines
13492 of characters to be read from a file, or as an insertion from the
13493 terminal. It does not take care of opening the file, nor does it set |loc|
13494 or |limit| or |line|.
13495 @^system dependencies@>
13497 @c void mp_begin_file_reading (MP mp) {
13498 if ( mp->in_open==mp->max_in_open )
13499 mp_overflow(mp, "text input levels",mp->max_in_open);
13500 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13501 if ( mp->first==mp->buf_size )
13502 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size/4)));
13503 incr(mp->in_open); push_input; iindex=mp->in_open;
13504 mp->mpx_name[iindex]=absent;
13505 start=(halfword)mp->first;
13506 name=is_term; /* |terminal_input| is now |true| */
13509 @ Conversely, the variables must be downdated when such a level of input
13510 is finished. Any associated \.{MPX} file must also be closed and popped
13511 off the file stack.
13513 @c static void mp_end_file_reading (MP mp) {
13514 if ( mp->in_open>iindex ) {
13515 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13516 mp_confusion(mp, "endinput");
13517 @:this can't happen endinput}{\quad endinput@>
13519 (mp->close_file)(mp,mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13520 delete_str_ref(mp->mpx_name[mp->in_open]);
13524 mp->first=(size_t)start;
13525 if ( iindex!=mp->in_open ) mp_confusion(mp, "endinput");
13526 if ( name>max_spec_src ) {
13527 (mp->close_file)(mp,cur_file);
13528 delete_str_ref(name);
13532 pop_input; decr(mp->in_open);
13535 @ Here is a function that tries to resume input from an \.{MPX} file already
13536 associated with the current input file. It returns |false| if this doesn't
13539 @c static boolean mp_begin_mpx_reading (MP mp) {
13540 if ( mp->in_open!=iindex+1 ) {
13543 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13544 @:this can't happen mpx}{\quad mpx@>
13545 if ( mp->first==mp->buf_size )
13546 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size/4)));
13547 push_input; iindex=mp->in_open;
13548 start=(halfword)mp->first;
13549 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13550 @<Put an empty line in the input buffer@>;
13555 @ This procedure temporarily stops reading an \.{MPX} file.
13557 @c static void mp_end_mpx_reading (MP mp) {
13558 if ( mp->in_open!=iindex ) mp_confusion(mp, "mpx");
13559 @:this can't happen mpx}{\quad mpx@>
13561 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13563 mp->first=(size_t)start;
13567 @ Here we enforce a restriction that simplifies the input stacks considerably.
13568 This should not inconvenience the user because \.{MPX} files are generated
13569 by an auxiliary program called \.{DVItoMP}.
13571 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13573 print_err("`mpxbreak' must be at the end of a line");
13574 help4("This file contains picture expressions for btex...etex",
13575 "blocks. Such files are normally generated automatically",
13576 "but this one seems to be messed up. I'm going to ignore",
13577 "the rest of this line.");
13581 @ In order to keep the stack from overflowing during a long sequence of
13582 inserted `\.{show}' commands, the following routine removes completed
13583 error-inserted lines from memory.
13585 @c void mp_clear_for_error_prompt (MP mp) {
13586 while ( file_state && terminal_input &&
13587 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13588 mp_print_ln(mp); clear_terminal;
13591 @ To get \MP's whole input mechanism going, we perform the following
13594 @<Initialize the input routines@>=
13595 { mp->input_ptr=0; mp->max_in_stack=0;
13596 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13597 mp->param_ptr=0; mp->max_param_stack=0;
13599 start=1; iindex=0; line=0; name=is_term;
13600 mp->mpx_name[0]=absent;
13601 mp->force_eof=false;
13602 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13603 limit=(halfword)mp->last; mp->first=mp->last+1;
13604 /* |init_terminal| has set |loc| and |last| */
13607 @* \[29] Getting the next token.
13608 The heart of \MP's input mechanism is the |get_next| procedure, which
13609 we shall develop in the next few sections of the program. Perhaps we
13610 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13611 eyes and mouth, reading the source files and gobbling them up. And it also
13612 helps \MP\ to regurgitate stored token lists that are to be processed again.
13614 The main duty of |get_next| is to input one token and to set |cur_cmd|
13615 and |cur_mod| to that token's command code and modifier. Furthermore, if
13616 the input token is a symbolic token, that token's |hash| address
13617 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13619 Underlying this simple description is a certain amount of complexity
13620 because of all the cases that need to be handled.
13621 However, the inner loop of |get_next| is reasonably short and fast.
13623 @ Before getting into |get_next|, we need to consider a mechanism by which
13624 \MP\ helps keep errors from propagating too far. Whenever the program goes
13625 into a mode where it keeps calling |get_next| repeatedly until a certain
13626 condition is met, it sets |scanner_status| to some value other than |normal|.
13627 Then if an input file ends, or if an `\&{outer}' symbol appears,
13628 an appropriate error recovery will be possible.
13630 The global variable |warning_info| helps in this error recovery by providing
13631 additional information. For example, |warning_info| might indicate the
13632 name of a macro whose replacement text is being scanned.
13634 @d normal 0 /* |scanner_status| at ``quiet times'' */
13635 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13636 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13637 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13638 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13639 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13640 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13641 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13644 integer scanner_status; /* are we scanning at high speed? */
13645 integer warning_info; /* if so, what else do we need to know,
13646 in case an error occurs? */
13648 @ @<Initialize the input routines@>=
13649 mp->scanner_status=normal;
13651 @ The following subroutine
13652 is called when an `\&{outer}' symbolic token has been scanned or
13653 when the end of a file has been reached. These two cases are distinguished
13654 by |cur_sym|, which is zero at the end of a file.
13657 static boolean mp_check_outer_validity (MP mp) {
13658 pointer p; /* points to inserted token list */
13659 if ( mp->scanner_status==normal ) {
13661 } else if ( mp->scanner_status==tex_flushing ) {
13662 @<Check if the file has ended while flushing \TeX\ material and set the
13663 result value for |check_outer_validity|@>;
13665 mp->deletions_allowed=false;
13666 @<Back up an outer symbolic token so that it can be reread@>;
13667 if ( mp->scanner_status>skipping ) {
13668 @<Tell the user what has run away and try to recover@>;
13670 print_err("Incomplete if; all text was ignored after line ");
13671 @.Incomplete if...@>
13672 mp_print_int(mp, mp->warning_info);
13673 help3("A forbidden `outer' token occurred in skipped text.",
13674 "This kind of error happens when you say `if...' and forget",
13675 "the matching `fi'. I've inserted a `fi'; this might work.");
13676 if ( mp->cur_sym==0 )
13677 mp->help_line[2]="The file ended while I was skipping conditional text.";
13678 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13680 mp->deletions_allowed=true;
13685 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13686 if ( mp->cur_sym!=0 ) {
13689 mp->deletions_allowed=false;
13690 print_err("TeX mode didn't end; all text was ignored after line ");
13691 mp_print_int(mp, mp->warning_info);
13692 help2("The file ended while I was looking for the `etex' to",
13693 "finish this TeX material. I've inserted `etex' now.");
13694 mp->cur_sym = frozen_etex;
13696 mp->deletions_allowed=true;
13700 @ @<Back up an outer symbolic token so that it can be reread@>=
13701 if ( mp->cur_sym!=0 ) {
13702 p=mp_get_avail(mp); mp_info(p)=mp->cur_sym;
13703 back_list(p); /* prepare to read the symbolic token again */
13706 @ @<Tell the user what has run away...@>=
13708 mp_runaway(mp); /* print the definition-so-far */
13709 if ( mp->cur_sym==0 ) {
13710 print_err("File ended");
13711 @.File ended while scanning...@>
13713 print_err("Forbidden token found");
13714 @.Forbidden token found...@>
13716 mp_print(mp, " while scanning ");
13717 help4("I suspect you have forgotten an `enddef',",
13718 "causing me to read past where you wanted me to stop.",
13719 "I'll try to recover; but if the error is serious,",
13720 "you'd better type `E' or `X' now and fix your file.");
13721 switch (mp->scanner_status) {
13722 @<Complete the error message,
13723 and set |cur_sym| to a token that might help recover from the error@>
13724 } /* there are no other cases */
13728 @ As we consider various kinds of errors, it is also appropriate to
13729 change the first line of the help message just given; |help_line[3]|
13730 points to the string that might be changed.
13732 @<Complete the error message,...@>=
13734 mp_print(mp, "to the end of the statement");
13735 mp->help_line[3]="A previous error seems to have propagated,";
13736 mp->cur_sym=frozen_semicolon;
13739 mp_print(mp, "a text argument");
13740 mp->help_line[3]="It seems that a right delimiter was left out,";
13741 if ( mp->warning_info==0 ) {
13742 mp->cur_sym=frozen_end_group;
13744 mp->cur_sym=frozen_right_delimiter;
13745 equiv(frozen_right_delimiter)=mp->warning_info;
13750 mp_print(mp, "the definition of ");
13751 if ( mp->scanner_status==op_defining )
13752 mp_print_text(mp->warning_info);
13754 mp_print_variable_name(mp, mp->warning_info);
13755 mp->cur_sym=frozen_end_def;
13757 case loop_defining:
13758 mp_print(mp, "the text of a ");
13759 mp_print_text(mp->warning_info);
13760 mp_print(mp, " loop");
13761 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13762 mp->cur_sym=frozen_end_for;
13765 @ The |runaway| procedure displays the first part of the text that occurred
13766 when \MP\ began its special |scanner_status|, if that text has been saved.
13769 static void mp_runaway (MP mp) ;
13772 void mp_runaway (MP mp) {
13773 if ( mp->scanner_status>flushing ) {
13774 mp_print_nl(mp, "Runaway ");
13775 switch (mp->scanner_status) {
13776 case absorbing: mp_print(mp, "text?"); break;
13778 case op_defining: mp_print(mp,"definition?"); break;
13779 case loop_defining: mp_print(mp, "loop?"); break;
13780 } /* there are no other cases */
13782 mp_show_token_list(mp, mp_link(hold_head),null,mp->error_line-10,0);
13786 @ We need to mention a procedure that may be called by |get_next|.
13789 static void mp_firm_up_the_line (MP mp);
13791 @ And now we're ready to take the plunge into |get_next| itself.
13792 Note that the behavior depends on the |scanner_status| because percent signs
13793 and double quotes need to be passed over when skipping TeX material.
13796 void mp_get_next (MP mp) {
13797 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13799 /*restart*/ /* go here to get the next input token */
13800 /*exit*/ /* go here when the next input token has been got */
13801 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13802 /*found*/ /* go here when the end of a symbolic token has been found */
13803 /*switch*/ /* go here to branch on the class of an input character */
13804 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13805 /* go here at crucial stages when scanning a number */
13806 int k; /* an index into |buffer| */
13807 ASCII_code c; /* the current character in the buffer */
13808 int class; /* its class number */
13809 integer n,f; /* registers for decimal-to-binary conversion */
13812 if ( file_state ) {
13813 @<Input from external file; |goto restart| if no input found,
13814 or |return| if a non-symbolic token is found@>;
13816 @<Input from token list; |goto restart| if end of list or
13817 if a parameter needs to be expanded,
13818 or |return| if a non-symbolic token is found@>;
13821 @<Finish getting the symbolic token in |cur_sym|;
13822 |goto restart| if it is illegal@>;
13825 @ When a symbolic token is declared to be `\&{outer}', its command code
13826 is increased by |outer_tag|.
13829 @<Finish getting the symbolic token in |cur_sym|...@>=
13830 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13831 if ( mp->cur_cmd>=outer_tag ) {
13832 if ( mp_check_outer_validity(mp) )
13833 mp->cur_cmd=mp->cur_cmd-outer_tag;
13838 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13839 to have a special test for end-of-line.
13842 @<Input from external file;...@>=
13845 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13847 case digit_class: goto START_NUMERIC_TOKEN; break;
13849 class=mp->char_class[mp->buffer[loc]];
13850 if ( class>period_class ) {
13852 } else if ( class<period_class ) { /* |class=digit_class| */
13853 n=0; goto START_DECIMAL_TOKEN;
13857 case space_class: goto SWITCH; break;
13858 case percent_class:
13859 if ( mp->scanner_status==tex_flushing ) {
13860 if ( loc<limit ) goto SWITCH;
13862 @<Move to next line of file, or |goto restart| if there is no next line@>;
13867 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13868 else @<Get a string token and |return|@>;
13870 case isolated_classes:
13871 k=loc-1; goto FOUND; break;
13872 case invalid_class:
13873 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13874 else @<Decry the invalid character and |goto restart|@>;
13876 default: break; /* letters, etc. */
13879 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13881 START_NUMERIC_TOKEN:
13882 @<Get the integer part |n| of a numeric token;
13883 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13884 START_DECIMAL_TOKEN:
13885 @<Get the fraction part |f| of a numeric token@>;
13887 @<Pack the numeric and fraction parts of a numeric token
13890 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13893 @ We go to |restart| instead of to |SWITCH|, because we might enter
13894 |token_state| after the error has been dealt with
13895 (cf.\ |clear_for_error_prompt|).
13897 @<Decry the invalid...@>=
13899 print_err("Text line contains an invalid character");
13900 @.Text line contains...@>
13901 help2("A funny symbol that I can\'t read has just been input.",
13902 "Continue, and I'll forget that it ever happened.");
13903 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13907 @ @<Get a string token and |return|@>=
13909 if ( mp->buffer[loc]=='"' ) {
13910 mp->cur_mod=null_str;
13912 k=loc; mp->buffer[limit+1]=xord('"');
13915 } while (mp->buffer[loc]!='"');
13917 @<Decry the missing string delimiter and |goto restart|@>;
13920 mp->cur_mod=mp->buffer[k];
13924 append_char(mp->buffer[k]); incr(k);
13926 mp->cur_mod=mp_make_string(mp);
13929 incr(loc); mp->cur_cmd=string_token;
13933 @ We go to |restart| after this error message, not to |SWITCH|,
13934 because the |clear_for_error_prompt| routine might have reinstated
13935 |token_state| after |error| has finished.
13937 @<Decry the missing string delimiter and |goto restart|@>=
13939 loc=limit; /* the next character to be read on this line will be |"%"| */
13940 print_err("Incomplete string token has been flushed");
13941 @.Incomplete string token...@>
13942 help3("Strings should finish on the same line as they began.",
13943 "I've deleted the partial string; you might want to",
13944 "insert another by typing, e.g., `I\"new string\"'.");
13945 mp->deletions_allowed=false; mp_error(mp);
13946 mp->deletions_allowed=true;
13950 @ @<Get the integer part |n| of a numeric token...@>=
13952 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13953 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13956 if ( mp->buffer[loc]=='.' )
13957 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13960 goto FIN_NUMERIC_TOKEN;
13963 @ @<Get the fraction part |f| of a numeric token@>=
13966 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13967 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13970 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13971 f=mp_round_decimals(mp, k);
13976 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13978 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13979 } else if ( mp->scanner_status!=tex_flushing ) {
13980 print_err("Enormous number has been reduced");
13981 @.Enormous number...@>
13982 help2("I can\'t handle numbers bigger than 32767.99998;",
13983 "so I've changed your constant to that maximum amount.");
13984 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13985 mp->cur_mod=el_gordo;
13987 mp->cur_cmd=numeric_token; return
13989 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13991 mp->cur_mod=n*unity+f;
13992 if ( mp->cur_mod>=fraction_one ) {
13993 if ( (mp->internal[mp_warning_check]>0) &&
13994 (mp->scanner_status!=tex_flushing) ) {
13995 print_err("Number is too large (");
13996 mp_print_scaled(mp, mp->cur_mod);
13997 mp_print_char(mp, xord(')'));
13998 help3("It is at least 4096. Continue and I'll try to cope",
13999 "with that big value; but it might be dangerous.",
14000 "(Set warningcheck:=0 to suppress this message.)");
14006 @ Let's consider now what happens when |get_next| is looking at a token list.
14009 @<Input from token list;...@>=
14010 if ( loc>=mp->hi_mem_min ) { /* one-word token */
14011 mp->cur_sym=mp_info(loc); loc=mp_link(loc); /* move to next */
14012 if ( mp->cur_sym>=expr_base ) {
14013 if ( mp->cur_sym>=suffix_base ) {
14014 @<Insert a suffix or text parameter and |goto restart|@>;
14016 mp->cur_cmd=capsule_token;
14017 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
14018 mp->cur_sym=0; return;
14021 } else if ( loc>null ) {
14022 @<Get a stored numeric or string or capsule token and |return|@>
14023 } else { /* we are done with this token list */
14024 mp_end_token_list(mp); goto RESTART; /* resume previous level */
14027 @ @<Insert a suffix or text parameter...@>=
14029 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
14030 /* |param_size=text_base-suffix_base| */
14031 mp_begin_token_list(mp,
14032 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
14037 @ @<Get a stored numeric or string or capsule token...@>=
14039 if ( mp_name_type(loc)==mp_token ) {
14040 mp->cur_mod=value(loc);
14041 if ( mp_type(loc)==mp_known ) {
14042 mp->cur_cmd=numeric_token;
14044 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
14047 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
14049 loc=mp_link(loc); return;
14052 @ All of the easy branches of |get_next| have now been taken care of.
14053 There is one more branch.
14055 @<Move to next line of file, or |goto restart|...@>=
14056 if ( name>max_spec_src) {
14057 @<Read next line of file into |buffer|, or
14058 |goto restart| if the file has ended@>;
14060 if ( mp->input_ptr>0 ) {
14061 /* text was inserted during error recovery or by \&{scantokens} */
14062 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
14064 if (mp->job_name == NULL && ( mp->selector<log_only || mp->selector>=write_file))
14065 mp_open_log_file(mp);
14066 if ( mp->interaction>mp_nonstop_mode ) {
14067 if ( limit==start ) /* previous line was empty */
14068 mp_print_nl(mp, "(Please type a command or say `end')");
14070 mp_print_ln(mp); mp->first=(size_t)start;
14071 prompt_input("*"); /* input on-line into |buffer| */
14073 limit=(halfword)mp->last; mp->buffer[limit]=xord('%');
14074 mp->first=(size_t)(limit+1); loc=start;
14076 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
14078 /* nonstop mode, which is intended for overnight batch processing,
14079 never waits for on-line input */
14083 @ The global variable |force_eof| is normally |false|; it is set |true|
14084 by an \&{endinput} command.
14087 boolean force_eof; /* should the next \&{input} be aborted early? */
14089 @ We must decrement |loc| in order to leave the buffer in a valid state
14090 when an error condition causes us to |goto restart| without calling
14091 |end_file_reading|.
14093 @<Read next line of file into |buffer|, or
14094 |goto restart| if the file has ended@>=
14096 incr(line); mp->first=(size_t)start;
14097 if ( ! mp->force_eof ) {
14098 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
14099 mp_firm_up_the_line(mp); /* this sets |limit| */
14101 mp->force_eof=true;
14103 if ( mp->force_eof ) {
14104 mp->force_eof=false;
14106 if ( mpx_reading ) {
14107 @<Complain that the \.{MPX} file ended unexpectly; then set
14108 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
14110 mp_print_char(mp, xord(')')); decr(mp->open_parens);
14111 update_terminal; /* show user that file has been read */
14112 mp_end_file_reading(mp); /* resume previous level */
14113 if ( mp_check_outer_validity(mp) ) goto RESTART;
14117 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start; /* ready to read */
14120 @ We should never actually come to the end of an \.{MPX} file because such
14121 files should have an \&{mpxbreak} after the translation of the last
14122 \&{btex}$\,\ldots\,$\&{etex} block.
14124 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14126 mp->mpx_name[iindex]=mpx_finished;
14127 print_err("mpx file ended unexpectedly");
14128 help4("The file had too few picture expressions for btex...etex",
14129 "blocks. Such files are normally generated automatically",
14130 "but this one got messed up. You might want to insert a",
14131 "picture expression now.");
14132 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14133 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14136 @ Sometimes we want to make it look as though we have just read a blank line
14137 without really doing so.
14139 @<Put an empty line in the input buffer@>=
14140 mp->last=mp->first; limit=(halfword)mp->last;
14141 /* simulate |input_ln| and |firm_up_the_line| */
14142 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start
14144 @ If the user has set the |mp_pausing| parameter to some positive value,
14145 and if nonstop mode has not been selected, each line of input is displayed
14146 on the terminal and the transcript file, followed by `\.{=>}'.
14147 \MP\ waits for a response. If the response is null (i.e., if nothing is
14148 typed except perhaps a few blank spaces), the original
14149 line is accepted as it stands; otherwise the line typed is
14150 used instead of the line in the file.
14152 @c void mp_firm_up_the_line (MP mp) {
14153 size_t k; /* an index into |buffer| */
14154 limit=(halfword)mp->last;
14155 if ((!mp->noninteractive)
14156 && (mp->internal[mp_pausing]>0 )
14157 && (mp->interaction>mp_nonstop_mode )) {
14158 wake_up_terminal; mp_print_ln(mp);
14159 if ( start<limit ) {
14160 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14161 mp_print_str(mp, mp->buffer[k]);
14164 mp->first=(size_t)limit; prompt_input("=>"); /* wait for user response */
14166 if ( mp->last>mp->first ) {
14167 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14168 mp->buffer[k+start-mp->first]=mp->buffer[k];
14170 limit=(halfword)(start+mp->last-mp->first);
14175 @* \[30] Dealing with \TeX\ material.
14176 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14177 features need to be implemented at a low level in the scanning process
14178 so that \MP\ can stay in synch with the a preprocessor that treats
14179 blocks of \TeX\ material as they occur in the input file without trying
14180 to expand \MP\ macros. Thus we need a special version of |get_next|
14181 that does not expand macros and such but does handle \&{btex},
14182 \&{verbatimtex}, etc.
14184 The special version of |get_next| is called |get_t_next|. It works by flushing
14185 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14186 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14187 \&{btex}, and switching back when it sees \&{mpxbreak}.
14193 mp_primitive(mp, "btex",start_tex,btex_code);
14194 @:btex_}{\&{btex} primitive@>
14195 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14196 @:verbatimtex_}{\&{verbatimtex} primitive@>
14197 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14198 @:etex_}{\&{etex} primitive@>
14199 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14200 @:mpx_break_}{\&{mpxbreak} primitive@>
14202 @ @<Cases of |print_cmd...@>=
14203 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14204 else mp_print(mp, "verbatimtex"); break;
14205 case etex_marker: mp_print(mp, "etex"); break;
14206 case mpx_break: mp_print(mp, "mpxbreak"); break;
14208 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14209 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14212 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14215 static void mp_start_mpx_input (MP mp);
14218 static void mp_t_next (MP mp) {
14219 int old_status; /* saves the |scanner_status| */
14220 integer old_info; /* saves the |warning_info| */
14221 while ( mp->cur_cmd<=max_pre_command ) {
14222 if ( mp->cur_cmd==mpx_break ) {
14223 if ( ! file_state || (mp->mpx_name[iindex]==absent) ) {
14224 @<Complain about a misplaced \&{mpxbreak}@>;
14226 mp_end_mpx_reading(mp);
14229 } else if ( mp->cur_cmd==start_tex ) {
14230 if ( token_state || (name<=max_spec_src) ) {
14231 @<Complain that we are not reading a file@>;
14232 } else if ( mpx_reading ) {
14233 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14234 } else if ( (mp->cur_mod!=verbatim_code)&&
14235 (mp->mpx_name[iindex]!=mpx_finished) ) {
14236 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14241 @<Complain about a misplaced \&{etex}@>;
14243 goto COMMON_ENDING;
14245 @<Flush the \TeX\ material@>;
14251 @ We could be in the middle of an operation such as skipping false conditional
14252 text when \TeX\ material is encountered, so we must be careful to save the
14255 @<Flush the \TeX\ material@>=
14256 old_status=mp->scanner_status;
14257 old_info=mp->warning_info;
14258 mp->scanner_status=tex_flushing;
14259 mp->warning_info=line;
14260 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14261 mp->scanner_status=old_status;
14262 mp->warning_info=old_info
14264 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14265 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14266 help4("This file contains picture expressions for btex...etex",
14267 "blocks. Such files are normally generated automatically",
14268 "but this one seems to be messed up. I'll just keep going",
14269 "and hope for the best.");
14273 @ @<Complain that we are not reading a file@>=
14274 { print_err("You can only use `btex' or `verbatimtex' in a file");
14275 help3("I'll have to ignore this preprocessor command because it",
14276 "only works when there is a file to preprocess. You might",
14277 "want to delete everything up to the next `etex`.");
14281 @ @<Complain about a misplaced \&{mpxbreak}@>=
14282 { print_err("Misplaced mpxbreak");
14283 help2("I'll ignore this preprocessor command because it",
14284 "doesn't belong here");
14288 @ @<Complain about a misplaced \&{etex}@>=
14289 { print_err("Extra etex will be ignored");
14290 help1("There is no btex or verbatimtex for this to match");
14294 @* \[31] Scanning macro definitions.
14295 \MP\ has a variety of ways to tuck tokens away into token lists for later
14296 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14297 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14298 All such operations are handled by the routines in this part of the program.
14300 The modifier part of each command code is zero for the ``ending delimiters''
14301 like \&{enddef} and \&{endfor}.
14303 @d start_def 1 /* command modifier for \&{def} */
14304 @d var_def 2 /* command modifier for \&{vardef} */
14305 @d end_def 0 /* command modifier for \&{enddef} */
14306 @d start_forever 1 /* command modifier for \&{forever} */
14307 @d end_for 0 /* command modifier for \&{endfor} */
14310 mp_primitive(mp, "def",macro_def,start_def);
14311 @:def_}{\&{def} primitive@>
14312 mp_primitive(mp, "vardef",macro_def,var_def);
14313 @:var_def_}{\&{vardef} primitive@>
14314 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14315 @:primary_def_}{\&{primarydef} primitive@>
14316 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14317 @:secondary_def_}{\&{secondarydef} primitive@>
14318 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14319 @:tertiary_def_}{\&{tertiarydef} primitive@>
14320 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14321 @:end_def_}{\&{enddef} primitive@>
14323 mp_primitive(mp, "for",iteration,expr_base);
14324 @:for_}{\&{for} primitive@>
14325 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14326 @:for_suffixes_}{\&{forsuffixes} primitive@>
14327 mp_primitive(mp, "forever",iteration,start_forever);
14328 @:forever_}{\&{forever} primitive@>
14329 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14330 @:end_for_}{\&{endfor} primitive@>
14332 @ @<Cases of |print_cmd...@>=
14334 if ( m<=var_def ) {
14335 if ( m==start_def ) mp_print(mp, "def");
14336 else if ( m<start_def ) mp_print(mp, "enddef");
14337 else mp_print(mp, "vardef");
14338 } else if ( m==secondary_primary_macro ) {
14339 mp_print(mp, "primarydef");
14340 } else if ( m==tertiary_secondary_macro ) {
14341 mp_print(mp, "secondarydef");
14343 mp_print(mp, "tertiarydef");
14347 if ( m<=start_forever ) {
14348 if ( m==start_forever ) mp_print(mp, "forever");
14349 else mp_print(mp, "endfor");
14350 } else if ( m==expr_base ) {
14351 mp_print(mp, "for");
14353 mp_print(mp, "forsuffixes");
14357 @ Different macro-absorbing operations have different syntaxes, but they
14358 also have a lot in common. There is a list of special symbols that are to
14359 be replaced by parameter tokens; there is a special command code that
14360 ends the definition; the quotation conventions are identical. Therefore
14361 it makes sense to have most of the work done by a single subroutine. That
14362 subroutine is called |scan_toks|.
14364 The first parameter to |scan_toks| is the command code that will
14365 terminate scanning (either |macro_def| or |iteration|).
14367 The second parameter, |subst_list|, points to a (possibly empty) list
14368 of two-word nodes whose |info| and |value| fields specify symbol tokens
14369 before and after replacement. The list will be returned to free storage
14372 The third parameter is simply appended to the token list that is built.
14373 And the final parameter tells how many of the special operations
14374 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14375 When such parameters are present, they are called \.{(SUFFIX0)},
14376 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14378 @c static pointer mp_scan_toks (MP mp,command_code terminator, pointer
14379 subst_list, pointer tail_end, quarterword suffix_count) {
14380 pointer p; /* tail of the token list being built */
14381 pointer q; /* temporary for link management */
14382 integer balance; /* left delimiters minus right delimiters */
14383 p=hold_head; balance=1; mp_link(hold_head)=null;
14386 if ( mp->cur_sym>0 ) {
14387 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14388 if ( mp->cur_cmd==terminator ) {
14389 @<Adjust the balance; |break| if it's zero@>;
14390 } else if ( mp->cur_cmd==macro_special ) {
14391 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14394 mp_link(p)=mp_cur_tok(mp); p=mp_link(p);
14396 mp_link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14397 return mp_link(hold_head);
14400 @ @<Substitute for |cur_sym|...@>=
14403 while ( q!=null ) {
14404 if ( mp_info(q)==mp->cur_sym ) {
14405 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14411 @ @<Adjust the balance; |break| if it's zero@>=
14412 if ( mp->cur_mod>0 ) {
14420 @ Four commands are intended to be used only within macro texts: \&{quote},
14421 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14422 code called |macro_special|.
14424 @d quote 0 /* |macro_special| modifier for \&{quote} */
14425 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14426 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14427 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14430 mp_primitive(mp, "quote",macro_special,quote);
14431 @:quote_}{\&{quote} primitive@>
14432 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14433 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14434 mp_primitive(mp, "@@",macro_special,macro_at);
14435 @:]]]\AT!_}{\.{\AT!} primitive@>
14436 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14437 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14439 @ @<Cases of |print_cmd...@>=
14440 case macro_special:
14442 case macro_prefix: mp_print(mp, "#@@"); break;
14443 case macro_at: mp_print_char(mp, xord('@@')); break;
14444 case macro_suffix: mp_print(mp, "@@#"); break;
14445 default: mp_print(mp, "quote"); break;
14449 @ @<Handle quoted...@>=
14451 if ( mp->cur_mod==quote ) { get_t_next; }
14452 else if ( mp->cur_mod<=suffix_count )
14453 mp->cur_sym=suffix_base-1+mp->cur_mod;
14456 @ Here is a routine that's used whenever a token will be redefined. If
14457 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14458 substituted; the latter is redefinable but essentially impossible to use,
14459 hence \MP's tables won't get fouled up.
14461 @c static void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14464 if ( (mp->cur_sym==0)||(mp->cur_sym>(integer)frozen_inaccessible) ) {
14465 print_err("Missing symbolic token inserted");
14466 @.Missing symbolic token...@>
14467 help3("Sorry: You can\'t redefine a number, string, or expr.",
14468 "I've inserted an inaccessible symbol so that your",
14469 "definition will be completed without mixing me up too badly.");
14470 if ( mp->cur_sym>0 )
14471 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14472 else if ( mp->cur_cmd==string_token )
14473 delete_str_ref(mp->cur_mod);
14474 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14478 @ Before we actually redefine a symbolic token, we need to clear away its
14479 former value, if it was a variable. The following stronger version of
14480 |get_symbol| does that.
14482 @c static void mp_get_clear_symbol (MP mp) {
14483 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14486 @ Here's another little subroutine; it checks that an equals sign
14487 or assignment sign comes along at the proper place in a macro definition.
14489 @c static void mp_check_equals (MP mp) {
14490 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14491 mp_missing_err(mp, "=");
14493 help5("The next thing in this `def' should have been `=',",
14494 "because I've already looked at the definition heading.",
14495 "But don't worry; I'll pretend that an equals sign",
14496 "was present. Everything from here to `enddef'",
14497 "will be the replacement text of this macro.");
14502 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14503 handled now that we have |scan_toks|. In this case there are
14504 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14505 |expr_base| and |expr_base+1|).
14507 @c static void mp_make_op_def (MP mp) {
14508 command_code m; /* the type of definition */
14509 pointer p,q,r; /* for list manipulation */
14511 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14512 mp_info(q)=mp->cur_sym; value(q)=expr_base;
14513 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14514 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14515 mp_info(p)=mp->cur_sym; value(p)=expr_base+1; mp_link(p)=q;
14516 get_t_next; mp_check_equals(mp);
14517 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14518 r=mp_get_avail(mp); mp_link(q)=r; mp_info(r)=general_macro;
14519 mp_link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14520 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14521 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14524 @ Parameters to macros are introduced by the keywords \&{expr},
14525 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14528 mp_primitive(mp, "expr",param_type,expr_base);
14529 @:expr_}{\&{expr} primitive@>
14530 mp_primitive(mp, "suffix",param_type,suffix_base);
14531 @:suffix_}{\&{suffix} primitive@>
14532 mp_primitive(mp, "text",param_type,text_base);
14533 @:text_}{\&{text} primitive@>
14534 mp_primitive(mp, "primary",param_type,primary_macro);
14535 @:primary_}{\&{primary} primitive@>
14536 mp_primitive(mp, "secondary",param_type,secondary_macro);
14537 @:secondary_}{\&{secondary} primitive@>
14538 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14539 @:tertiary_}{\&{tertiary} primitive@>
14541 @ @<Cases of |print_cmd...@>=
14543 if ( m>=expr_base ) {
14544 if ( m==expr_base ) mp_print(mp, "expr");
14545 else if ( m==suffix_base ) mp_print(mp, "suffix");
14546 else mp_print(mp, "text");
14547 } else if ( m<secondary_macro ) {
14548 mp_print(mp, "primary");
14549 } else if ( m==secondary_macro ) {
14550 mp_print(mp, "secondary");
14552 mp_print(mp, "tertiary");
14556 @ Let's turn next to the more complex processing associated with \&{def}
14557 and \&{vardef}. When the following procedure is called, |cur_mod|
14558 should be either |start_def| or |var_def|.
14561 static void mp_scan_def (MP mp) {
14562 int m; /* the type of definition */
14563 int n; /* the number of special suffix parameters */
14564 int k; /* the total number of parameters */
14565 int c; /* the kind of macro we're defining */
14566 pointer r; /* parameter-substitution list */
14567 pointer q; /* tail of the macro token list */
14568 pointer p; /* temporary storage */
14569 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14570 pointer l_delim,r_delim; /* matching delimiters */
14571 m=mp->cur_mod; c=general_macro; mp_link(hold_head)=null;
14572 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14573 @<Scan the token or variable to be defined;
14574 set |n|, |scanner_status|, and |warning_info|@>;
14576 if ( mp->cur_cmd==left_delimiter ) {
14577 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14579 if ( mp->cur_cmd==param_type ) {
14580 @<Absorb undelimited parameters, putting them into list |r|@>;
14582 mp_check_equals(mp);
14583 p=mp_get_avail(mp); mp_info(p)=c; mp_link(q)=p;
14584 @<Attach the replacement text to the tail of node |p|@>;
14585 mp->scanner_status=normal; mp_get_x_next(mp);
14588 @ We don't put `|frozen_end_group|' into the replacement text of
14589 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14591 @<Attach the replacement text to the tail of node |p|@>=
14592 if ( m==start_def ) {
14593 mp_link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14595 q=mp_get_avail(mp); mp_info(q)=mp->bg_loc; mp_link(p)=q;
14596 p=mp_get_avail(mp); mp_info(p)=mp->eg_loc;
14597 mp_link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14599 if ( mp->warning_info==bad_vardef )
14600 mp_flush_token_list(mp, value(bad_vardef))
14604 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14606 @ @<Scan the token or variable to be defined;...@>=
14607 if ( m==start_def ) {
14608 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14609 mp->scanner_status=op_defining; n=0;
14610 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14612 p=mp_scan_declared_variable(mp);
14613 mp_flush_variable(mp, equiv(mp_info(p)),mp_link(p),true);
14614 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14615 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14616 mp->scanner_status=var_defining; n=2;
14617 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14620 mp_type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14621 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14623 @ @<Change to `\.{a bad variable}'@>=
14625 print_err("This variable already starts with a macro");
14626 @.This variable already...@>
14627 help2("After `vardef a' you can\'t say `vardef a.b'.",
14628 "So I'll have to discard this definition.");
14629 mp_error(mp); mp->warning_info=bad_vardef;
14632 @ @<Initialize table entries...@>=
14633 mp_name_type(bad_vardef)=mp_root; mp_link(bad_vardef)=frozen_bad_vardef;
14634 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14636 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14638 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14639 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14642 print_err("Missing parameter type; `expr' will be assumed");
14643 @.Missing parameter type@>
14644 help1("You should've had `expr' or `suffix' or `text' here.");
14645 mp_back_error(mp); base=expr_base;
14647 @<Absorb parameter tokens for type |base|@>;
14648 mp_check_delimiter(mp, l_delim,r_delim);
14650 } while (mp->cur_cmd==left_delimiter)
14652 @ @<Absorb parameter tokens for type |base|@>=
14654 mp_link(q)=mp_get_avail(mp); q=mp_link(q); mp_info(q)=base+k;
14655 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14656 value(p)=base+k; mp_info(p)=mp->cur_sym;
14657 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14658 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14659 incr(k); mp_link(p)=r; r=p; get_t_next;
14660 } while (mp->cur_cmd==comma)
14662 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14664 p=mp_get_node(mp, token_node_size);
14665 if ( mp->cur_mod<expr_base ) {
14666 c=mp->cur_mod; value(p)=expr_base+k;
14668 value(p)=mp->cur_mod+k;
14669 if ( mp->cur_mod==expr_base ) c=expr_macro;
14670 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14673 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14674 incr(k); mp_get_symbol(mp); mp_info(p)=mp->cur_sym; mp_link(p)=r; r=p; get_t_next;
14675 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14676 c=of_macro; p=mp_get_node(mp, token_node_size);
14677 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14678 value(p)=expr_base+k; mp_get_symbol(mp); mp_info(p)=mp->cur_sym;
14679 mp_link(p)=r; r=p; get_t_next;
14683 @* \[32] Expanding the next token.
14684 Only a few command codes |<min_command| can possibly be returned by
14685 |get_t_next|; in increasing order, they are
14686 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14687 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14689 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14690 like |get_t_next| except that it keeps getting more tokens until
14691 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14692 macros and removes conditionals or iterations or input instructions that
14695 It follows that |get_x_next| might invoke itself recursively. In fact,
14696 there is massive recursion, since macro expansion can involve the
14697 scanning of arbitrarily complex expressions, which in turn involve
14698 macro expansion and conditionals, etc.
14701 Therefore it's necessary to declare a whole bunch of |forward|
14702 procedures at this point, and to insert some other procedures
14703 that will be invoked by |get_x_next|.
14706 static void mp_scan_primary (MP mp);
14707 static void mp_scan_secondary (MP mp);
14708 static void mp_scan_tertiary (MP mp);
14709 static void mp_scan_expression (MP mp);
14710 static void mp_scan_suffix (MP mp);
14711 static void mp_get_boolean (MP mp);
14712 static void mp_pass_text (MP mp);
14713 static void mp_conditional (MP mp);
14714 static void mp_start_input (MP mp);
14715 static void mp_begin_iteration (MP mp);
14716 static void mp_resume_iteration (MP mp);
14717 static void mp_stop_iteration (MP mp);
14719 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14720 when it has to do exotic expansion commands.
14723 static void mp_expand (MP mp) {
14724 pointer p; /* for list manipulation */
14725 size_t k; /* something that we hope is |<=buf_size| */
14726 pool_pointer j; /* index into |str_pool| */
14727 if ( mp->internal[mp_tracing_commands]>unity )
14728 if ( mp->cur_cmd!=defined_macro )
14730 switch (mp->cur_cmd) {
14732 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14735 @<Terminate the current conditional and skip to \&{fi}@>;
14738 @<Initiate or terminate input from a file@>;
14741 if ( mp->cur_mod==end_for ) {
14742 @<Scold the user for having an extra \&{endfor}@>;
14744 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14751 @<Exit a loop if the proper time has come@>;
14756 @<Expand the token after the next token@>;
14759 @<Put a string into the input buffer@>;
14761 case defined_macro:
14762 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14764 }; /* there are no other cases */
14767 @ @<Scold the user...@>=
14769 print_err("Extra `endfor'");
14771 help2("I'm not currently working on a for loop,",
14772 "so I had better not try to end anything.");
14776 @ The processing of \&{input} involves the |start_input| subroutine,
14777 which will be declared later; the processing of \&{endinput} is trivial.
14780 mp_primitive(mp, "input",input,0);
14781 @:input_}{\&{input} primitive@>
14782 mp_primitive(mp, "endinput",input,1);
14783 @:end_input_}{\&{endinput} primitive@>
14785 @ @<Cases of |print_cmd_mod|...@>=
14787 if ( m==0 ) mp_print(mp, "input");
14788 else mp_print(mp, "endinput");
14791 @ @<Initiate or terminate input...@>=
14792 if ( mp->cur_mod>0 ) mp->force_eof=true;
14793 else mp_start_input(mp)
14795 @ We'll discuss the complicated parts of loop operations later. For now
14796 it suffices to know that there's a global variable called |loop_ptr|
14797 that will be |null| if no loop is in progress.
14800 { while ( token_state &&(loc==null) )
14801 mp_end_token_list(mp); /* conserve stack space */
14802 if ( mp->loop_ptr==null ) {
14803 print_err("Lost loop");
14805 help2("I'm confused; after exiting from a loop, I still seem",
14806 "to want to repeat it. I'll try to forget the problem.");
14809 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14813 @ @<Exit a loop if the proper time has come@>=
14814 { mp_get_boolean(mp);
14815 if ( mp->internal[mp_tracing_commands]>unity )
14816 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14817 if ( mp->cur_exp==true_code ) {
14818 if ( mp->loop_ptr==null ) {
14819 print_err("No loop is in progress");
14820 @.No loop is in progress@>
14821 help1("Why say `exitif' when there's nothing to exit from?");
14822 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14824 @<Exit prematurely from an iteration@>;
14826 } else if ( mp->cur_cmd!=semicolon ) {
14827 mp_missing_err(mp, ";");
14829 help2("After `exitif <boolean exp>' I expect to see a semicolon.",
14830 "I shall pretend that one was there."); mp_back_error(mp);
14834 @ Here we use the fact that |forever_text| is the only |token_type| that
14835 is less than |loop_text|.
14837 @<Exit prematurely...@>=
14840 if ( file_state ) {
14841 mp_end_file_reading(mp);
14843 if ( token_type<=loop_text ) p=start;
14844 mp_end_token_list(mp);
14847 if ( p!=mp_info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14849 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14852 @ @<Expand the token after the next token@>=
14854 p=mp_cur_tok(mp); get_t_next;
14855 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14856 else mp_back_input(mp);
14860 @ @<Put a string into the input buffer@>=
14861 { mp_get_x_next(mp); mp_scan_primary(mp);
14862 if ( mp->cur_type!=mp_string_type ) {
14863 mp_disp_err(mp, null,"Not a string");
14865 help2("I'm going to flush this expression, since",
14866 "scantokens should be followed by a known string.");
14867 mp_put_get_flush_error(mp, 0);
14870 if ( length(mp->cur_exp)>0 )
14871 @<Pretend we're reading a new one-line file@>;
14875 @ @<Pretend we're reading a new one-line file@>=
14876 { mp_begin_file_reading(mp); name=is_scantok;
14877 k=mp->first+length(mp->cur_exp);
14878 if ( k>=mp->max_buf_stack ) {
14879 while ( k>=mp->buf_size ) {
14880 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size/4)));
14882 mp->max_buf_stack=k+1;
14884 j=mp->str_start[mp->cur_exp]; limit=(halfword)k;
14885 while ( mp->first<(size_t)limit ) {
14886 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14888 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start;
14889 mp_flush_cur_exp(mp, 0);
14892 @ Here finally is |get_x_next|.
14894 The expression scanning routines to be considered later
14895 communicate via the global quantities |cur_type| and |cur_exp|;
14896 we must be very careful to save and restore these quantities while
14897 macros are being expanded.
14901 static void mp_get_x_next (MP mp);
14903 @ @c void mp_get_x_next (MP mp) {
14904 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14906 if ( mp->cur_cmd<min_command ) {
14907 save_exp=mp_stash_cur_exp(mp);
14909 if ( mp->cur_cmd==defined_macro )
14910 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14914 } while (mp->cur_cmd<min_command);
14915 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14919 @ Now let's consider the |macro_call| procedure, which is used to start up
14920 all user-defined macros. Since the arguments to a macro might be expressions,
14921 |macro_call| is recursive.
14924 The first parameter to |macro_call| points to the reference count of the
14925 token list that defines the macro. The second parameter contains any
14926 arguments that have already been parsed (see below). The third parameter
14927 points to the symbolic token that names the macro. If the third parameter
14928 is |null|, the macro was defined by \&{vardef}, so its name can be
14929 reconstructed from the prefix and ``at'' arguments found within the
14932 What is this second parameter? It's simply a linked list of one-word items,
14933 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14934 no arguments have been scanned yet; otherwise |mp_info(arg_list)| points to
14935 the first scanned argument, and |mp_link(arg_list)| points to the list of
14936 further arguments (if any).
14938 Arguments of type \&{expr} are so-called capsules, which we will
14939 discuss later when we concentrate on expressions; they can be
14940 recognized easily because their |link| field is |void|. Arguments of type
14941 \&{suffix} and \&{text} are token lists without reference counts.
14943 @ After argument scanning is complete, the arguments are moved to the
14944 |param_stack|. (They can't be put on that stack any sooner, because
14945 the stack is growing and shrinking in unpredictable ways as more arguments
14946 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14947 the replacement text of the macro is placed at the top of the \MP's
14948 input stack, so that |get_t_next| will proceed to read it next.
14951 static void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14952 pointer macro_name) ;
14955 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14956 pointer macro_name) {
14957 /* invokes a user-defined control sequence */
14958 pointer r; /* current node in the macro's token list */
14959 pointer p,q; /* for list manipulation */
14960 integer n; /* the number of arguments */
14961 pointer tail = 0; /* tail of the argument list */
14962 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14963 r=mp_link(def_ref); add_mac_ref(def_ref);
14964 if ( arg_list==null ) {
14967 @<Determine the number |n| of arguments already supplied,
14968 and set |tail| to the tail of |arg_list|@>;
14970 if ( mp->internal[mp_tracing_macros]>0 ) {
14971 @<Show the text of the macro being expanded, and the existing arguments@>;
14973 @<Scan the remaining arguments, if any; set |r| to the first token
14974 of the replacement text@>;
14975 @<Feed the arguments and replacement text to the scanner@>;
14978 @ @<Show the text of the macro...@>=
14979 mp_begin_diagnostic(mp); mp_print_ln(mp);
14980 mp_print_macro_name(mp, arg_list,macro_name);
14981 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14982 mp_show_macro(mp, def_ref,null,100000);
14983 if ( arg_list!=null ) {
14987 mp_print_arg(mp, q,n,0);
14988 incr(n); p=mp_link(p);
14991 mp_end_diagnostic(mp, false)
14994 @ @<Declarations@>=
14995 static void mp_print_macro_name (MP mp,pointer a, pointer n);
14998 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14999 pointer p,q; /* they traverse the first part of |a| */
15005 mp_print_text(mp_info(mp_info(mp_link(a))));
15008 while ( mp_link(q)!=null ) q=mp_link(q);
15009 mp_link(q)=mp_info(mp_link(a));
15010 mp_show_token_list(mp, p,null,1000,0);
15016 @ @<Declarations@>=
15017 static void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
15020 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
15021 if ( mp_link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
15022 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
15023 else mp_print_nl(mp, "(TEXT");
15024 mp_print_int(mp, n); mp_print(mp, ")<-");
15025 if ( mp_link(q)==mp_void ) mp_print_exp(mp, q,1);
15026 else mp_show_token_list(mp, q,null,1000,0);
15029 @ @<Determine the number |n| of arguments already supplied...@>=
15031 n=1; tail=arg_list;
15032 while ( mp_link(tail)!=null ) {
15033 incr(n); tail=mp_link(tail);
15037 @ @<Scan the remaining arguments, if any; set |r|...@>=
15038 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
15039 while ( mp_info(r)>=expr_base ) {
15040 @<Scan the delimited argument represented by |mp_info(r)|@>;
15043 if ( mp->cur_cmd==comma ) {
15044 print_err("Too many arguments to ");
15045 @.Too many arguments...@>
15046 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, xord(';'));
15047 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
15049 mp_print(mp, "' has been inserted");
15050 help3("I'm going to assume that the comma I just read was a",
15051 "right delimiter, and then I'll begin expanding the macro.",
15052 "You might want to delete some tokens before continuing.");
15055 if ( mp_info(r)!=general_macro ) {
15056 @<Scan undelimited argument(s)@>;
15060 @ At this point, the reader will find it advisable to review the explanation
15061 of token list format that was presented earlier, paying special attention to
15062 the conventions that apply only at the beginning of a macro's token list.
15064 On the other hand, the reader will have to take the expression-parsing
15065 aspects of the following program on faith; we will explain |cur_type|
15066 and |cur_exp| later. (Several things in this program depend on each other,
15067 and it's necessary to jump into the circle somewhere.)
15069 @<Scan the delimited argument represented by |mp_info(r)|@>=
15070 if ( mp->cur_cmd!=comma ) {
15072 if ( mp->cur_cmd!=left_delimiter ) {
15073 print_err("Missing argument to ");
15074 @.Missing argument...@>
15075 mp_print_macro_name(mp, arg_list,macro_name);
15076 help3("That macro has more parameters than you thought.",
15077 "I'll continue by pretending that each missing argument",
15078 "is either zero or null.");
15079 if ( mp_info(r)>=suffix_base ) {
15080 mp->cur_exp=null; mp->cur_type=mp_token_list;
15082 mp->cur_exp=0; mp->cur_type=mp_known;
15084 mp_back_error(mp); mp->cur_cmd=right_delimiter;
15087 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
15089 @<Scan the argument represented by |mp_info(r)|@>;
15090 if ( mp->cur_cmd!=comma )
15091 @<Check that the proper right delimiter was present@>;
15093 @<Append the current expression to |arg_list|@>
15095 @ @<Check that the proper right delim...@>=
15096 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15097 if ( mp_info(mp_link(r))>=expr_base ) {
15098 mp_missing_err(mp, ",");
15100 help3("I've finished reading a macro argument and am about to",
15101 "read another; the arguments weren't delimited correctly.",
15102 "You might want to delete some tokens before continuing.");
15103 mp_back_error(mp); mp->cur_cmd=comma;
15105 mp_missing_err(mp, str(text(r_delim)));
15107 help2("I've gotten to the end of the macro parameter list.",
15108 "You might want to delete some tokens before continuing.");
15113 @ A \&{suffix} or \&{text} parameter will have been scanned as
15114 a token list pointed to by |cur_exp|, in which case we will have
15115 |cur_type=token_list|.
15117 @<Append the current expression to |arg_list|@>=
15119 p=mp_get_avail(mp);
15120 if ( mp->cur_type==mp_token_list ) mp_info(p)=mp->cur_exp;
15121 else mp_info(p)=mp_stash_cur_exp(mp);
15122 if ( mp->internal[mp_tracing_macros]>0 ) {
15123 mp_begin_diagnostic(mp); mp_print_arg(mp, mp_info(p),n,mp_info(r));
15124 mp_end_diagnostic(mp, false);
15126 if ( arg_list==null ) arg_list=p;
15127 else mp_link(tail)=p;
15131 @ @<Scan the argument represented by |mp_info(r)|@>=
15132 if ( mp_info(r)>=text_base ) {
15133 mp_scan_text_arg(mp, l_delim,r_delim);
15136 if ( mp_info(r)>=suffix_base ) mp_scan_suffix(mp);
15137 else mp_scan_expression(mp);
15140 @ The parameters to |scan_text_arg| are either a pair of delimiters
15141 or zero; the latter case is for undelimited text arguments, which
15142 end with the first semicolon or \&{endgroup} or \&{end} that is not
15143 contained in a group.
15146 static void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15149 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15150 integer balance; /* excess of |l_delim| over |r_delim| */
15151 pointer p; /* list tail */
15152 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15153 p=hold_head; balance=1; mp_link(hold_head)=null;
15156 if ( l_delim==0 ) {
15157 @<Adjust the balance for an undelimited argument; |break| if done@>;
15159 @<Adjust the balance for a delimited argument; |break| if done@>;
15161 mp_link(p)=mp_cur_tok(mp); p=mp_link(p);
15163 mp->cur_exp=mp_link(hold_head); mp->cur_type=mp_token_list;
15164 mp->scanner_status=normal;
15167 @ @<Adjust the balance for a delimited argument...@>=
15168 if ( mp->cur_cmd==right_delimiter ) {
15169 if ( mp->cur_mod==l_delim ) {
15171 if ( balance==0 ) break;
15173 } else if ( mp->cur_cmd==left_delimiter ) {
15174 if ( mp->cur_mod==r_delim ) incr(balance);
15177 @ @<Adjust the balance for an undelimited...@>=
15178 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15179 if ( balance==1 ) { break; }
15180 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15181 } else if ( mp->cur_cmd==begin_group ) {
15185 @ @<Scan undelimited argument(s)@>=
15187 if ( mp_info(r)<text_macro ) {
15189 if ( mp_info(r)!=suffix_macro ) {
15190 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15193 switch (mp_info(r)) {
15194 case primary_macro:mp_scan_primary(mp); break;
15195 case secondary_macro:mp_scan_secondary(mp); break;
15196 case tertiary_macro:mp_scan_tertiary(mp); break;
15197 case expr_macro:mp_scan_expression(mp); break;
15199 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15202 @<Scan a suffix with optional delimiters@>;
15204 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15205 } /* there are no other cases */
15207 @<Append the current expression to |arg_list|@>;
15210 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15212 mp_scan_expression(mp); p=mp_get_avail(mp); mp_info(p)=mp_stash_cur_exp(mp);
15213 if ( mp->internal[mp_tracing_macros]>0 ) {
15214 mp_begin_diagnostic(mp); mp_print_arg(mp, mp_info(p),n,0);
15215 mp_end_diagnostic(mp, false);
15217 if ( arg_list==null ) arg_list=p; else mp_link(tail)=p;
15219 if ( mp->cur_cmd!=of_token ) {
15220 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15222 mp_print_macro_name(mp, arg_list,macro_name);
15223 help1("I've got the first argument; will look now for the other.");
15226 mp_get_x_next(mp); mp_scan_primary(mp);
15229 @ @<Scan a suffix with optional delimiters@>=
15231 if ( mp->cur_cmd!=left_delimiter ) {
15234 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15236 mp_scan_suffix(mp);
15237 if ( l_delim!=null ) {
15238 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15239 mp_missing_err(mp, str(text(r_delim)));
15241 help2("I've gotten to the end of the macro parameter list.",
15242 "You might want to delete some tokens before continuing.");
15249 @ Before we put a new token list on the input stack, it is wise to clean off
15250 all token lists that have recently been depleted. Then a user macro that ends
15251 with a call to itself will not require unbounded stack space.
15253 @<Feed the arguments and replacement text to the scanner@>=
15254 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15255 if ( mp->param_ptr+n>mp->max_param_stack ) {
15256 mp->max_param_stack=mp->param_ptr+n;
15257 if ( mp->max_param_stack>mp->param_size )
15258 mp_overflow(mp, "parameter stack size",mp->param_size);
15259 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15261 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15265 mp->param_stack[mp->param_ptr]=mp_info(p); incr(mp->param_ptr); p=mp_link(p);
15267 mp_flush_list(mp, arg_list);
15270 @ It's sometimes necessary to put a single argument onto |param_stack|.
15271 The |stack_argument| subroutine does this.
15274 static void mp_stack_argument (MP mp,pointer p) {
15275 if ( mp->param_ptr==mp->max_param_stack ) {
15276 incr(mp->max_param_stack);
15277 if ( mp->max_param_stack>mp->param_size )
15278 mp_overflow(mp, "parameter stack size",mp->param_size);
15279 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15281 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15284 @* \[33] Conditional processing.
15285 Let's consider now the way \&{if} commands are handled.
15287 Conditions can be inside conditions, and this nesting has a stack
15288 that is independent of other stacks.
15289 Four global variables represent the top of the condition stack:
15290 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15291 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15292 the largest code of a |fi_or_else| command that is syntactically legal;
15293 and |if_line| is the line number at which the current conditional began.
15295 If no conditions are currently in progress, the condition stack has the
15296 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15297 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15298 |link| fields of the first word contain |if_limit|, |cur_if|, and
15299 |cond_ptr| at the next level, and the second word contains the
15300 corresponding |if_line|.
15302 @d if_node_size 2 /* number of words in stack entry for conditionals */
15303 @d if_line_field(A) mp->mem[(A)+1].cint
15304 @d if_code 1 /* code for \&{if} being evaluated */
15305 @d fi_code 2 /* code for \&{fi} */
15306 @d else_code 3 /* code for \&{else} */
15307 @d else_if_code 4 /* code for \&{elseif} */
15310 pointer cond_ptr; /* top of the condition stack */
15311 integer if_limit; /* upper bound on |fi_or_else| codes */
15312 quarterword cur_if; /* type of conditional being worked on */
15313 integer if_line; /* line where that conditional began */
15316 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15319 mp_primitive(mp, "if",if_test,if_code);
15320 @:if_}{\&{if} primitive@>
15321 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15322 @:fi_}{\&{fi} primitive@>
15323 mp_primitive(mp, "else",fi_or_else,else_code);
15324 @:else_}{\&{else} primitive@>
15325 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15326 @:else_if_}{\&{elseif} primitive@>
15328 @ @<Cases of |print_cmd_mod|...@>=
15332 case if_code:mp_print(mp, "if"); break;
15333 case fi_code:mp_print(mp, "fi"); break;
15334 case else_code:mp_print(mp, "else"); break;
15335 default: mp_print(mp, "elseif"); break;
15339 @ Here is a procedure that ignores text until coming to an \&{elseif},
15340 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15341 nesting. After it has acted, |cur_mod| will indicate the token that
15344 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15345 makes the skipping process a bit simpler.
15348 void mp_pass_text (MP mp) {
15350 mp->scanner_status=skipping;
15351 mp->warning_info=mp_true_line(mp);
15354 if ( mp->cur_cmd<=fi_or_else ) {
15355 if ( mp->cur_cmd<fi_or_else ) {
15359 if ( mp->cur_mod==fi_code ) decr(l);
15362 @<Decrease the string reference count,
15363 if the current token is a string@>;
15366 mp->scanner_status=normal;
15369 @ @<Decrease the string reference count...@>=
15370 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15372 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15373 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15374 condition has been evaluated, a colon will be inserted.
15375 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15377 @<Push the condition stack@>=
15378 { p=mp_get_node(mp, if_node_size); mp_link(p)=mp->cond_ptr; mp_type(p)=mp->if_limit;
15379 mp_name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15380 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15381 mp->cur_if=if_code;
15384 @ @<Pop the condition stack@>=
15385 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15386 mp->cur_if=mp_name_type(p); mp->if_limit=mp_type(p); mp->cond_ptr=mp_link(p);
15387 mp_free_node(mp, p,if_node_size);
15390 @ Here's a procedure that changes the |if_limit| code corresponding to
15391 a given value of |cond_ptr|.
15394 static void mp_change_if_limit (MP mp,quarterword l, pointer p) {
15396 if ( p==mp->cond_ptr ) {
15397 mp->if_limit=l; /* that's the easy case */
15401 if ( q==null ) mp_confusion(mp, "if");
15402 @:this can't happen if}{\quad if@>
15403 if ( mp_link(q)==p ) {
15404 mp_type(q)=l; return;
15411 @ The user is supposed to put colons into the proper parts of conditional
15412 statements. Therefore, \MP\ has to check for their presence.
15415 static void mp_check_colon (MP mp) {
15416 if ( mp->cur_cmd!=colon ) {
15417 mp_missing_err(mp, ":");
15419 help2("There should've been a colon after the condition.",
15420 "I shall pretend that one was there.");
15425 @ A condition is started when the |get_x_next| procedure encounters
15426 an |if_test| command; in that case |get_x_next| calls |conditional|,
15427 which is a recursive procedure.
15431 void mp_conditional (MP mp) {
15432 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15433 int new_if_limit; /* future value of |if_limit| */
15434 pointer p; /* temporary register */
15435 @<Push the condition stack@>;
15436 save_cond_ptr=mp->cond_ptr;
15438 mp_get_boolean(mp); new_if_limit=else_if_code;
15439 if ( mp->internal[mp_tracing_commands]>unity ) {
15440 @<Display the boolean value of |cur_exp|@>;
15443 mp_check_colon(mp);
15444 if ( mp->cur_exp==true_code ) {
15445 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15446 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15448 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15450 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15451 if ( mp->cur_mod==fi_code ) {
15452 @<Pop the condition stack@>
15453 } else if ( mp->cur_mod==else_if_code ) {
15456 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15461 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15462 \&{else}: \\{bar} \&{fi}', the first \&{else}
15463 that we come to after learning that the \&{if} is false is not the
15464 \&{else} we're looking for. Hence the following curious logic is needed.
15466 @<Skip to \&{elseif}...@>=
15469 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15470 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15474 @ @<Display the boolean value...@>=
15475 { mp_begin_diagnostic(mp);
15476 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15477 else mp_print(mp, "{false}");
15478 mp_end_diagnostic(mp, false);
15481 @ The processing of conditionals is complete except for the following
15482 code, which is actually part of |get_x_next|. It comes into play when
15483 \&{elseif}, \&{else}, or \&{fi} is scanned.
15485 @<Terminate the current conditional and skip to \&{fi}@>=
15486 if ( mp->cur_mod>mp->if_limit ) {
15487 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15488 mp_missing_err(mp, ":");
15490 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15492 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15496 help1("I'm ignoring this; it doesn't match any if.");
15500 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15501 @<Pop the condition stack@>;
15504 @* \[34] Iterations.
15505 To bring our treatment of |get_x_next| to a close, we need to consider what
15506 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15508 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15509 that are currently active. If |loop_ptr=null|, no loops are in progress;
15510 otherwise |mp_info(loop_ptr)| points to the iterative text of the current
15511 (innermost) loop, and |mp_link(loop_ptr)| points to the data for any other
15512 loops that enclose the current one.
15514 A loop-control node also has two other fields, called |loop_type| and
15515 |loop_list|, whose contents depend on the type of loop:
15517 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15518 points to a list of one-word nodes whose |info| fields point to the
15519 remaining argument values of a suffix list and expression list.
15521 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15524 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15525 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15526 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15529 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15530 header and |loop_list(loop_ptr)| points into the graphical object list for
15533 \yskip\noindent In the case of a progression node, the first word is not used
15534 because the link field of words in the dynamic memory area cannot be arbitrary.
15536 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15537 @d loop_type(A) mp_info(loop_list_loc((A))) /* the type of \&{for} loop */
15538 @d loop_list(A) mp_link(loop_list_loc((A))) /* the remaining list elements */
15539 @d loop_node_size 2 /* the number of words in a loop control node */
15540 @d progression_node_size 4 /* the number of words in a progression node */
15541 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15542 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15543 @d progression_flag (null+2)
15544 /* |loop_type| value when |loop_list| points to a progression node */
15547 pointer loop_ptr; /* top of the loop-control-node stack */
15552 @ If the expressions that define an arithmetic progression in
15553 a \&{for} loop don't have known numeric values, the |bad_for|
15554 subroutine screams at the user.
15557 static void mp_bad_for (MP mp, const char * s) {
15558 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15559 @.Improper...replaced by 0@>
15560 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15561 help4("When you say `for x=a step b until c',",
15562 "the initial value `a' and the step size `b'",
15563 "and the final value `c' must have known numeric values.",
15564 "I'm zeroing this one. Proceed, with fingers crossed.");
15565 mp_put_get_flush_error(mp, 0);
15568 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15569 has just been scanned. (This code requires slight familiarity with
15570 expression-parsing routines that we have not yet discussed; but it seems
15571 to belong in the present part of the program, even though the original author
15572 didn't write it until later. The reader may wish to come back to it.)
15574 @c void mp_begin_iteration (MP mp) {
15575 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15576 halfword n; /* hash address of the current symbol */
15577 pointer s; /* the new loop-control node */
15578 pointer p; /* substitution list for |scan_toks| */
15579 pointer q; /* link manipulation register */
15580 pointer pp; /* a new progression node */
15581 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15582 if ( m==start_forever ){
15583 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15585 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15586 mp_info(p)=mp->cur_sym; value(p)=m;
15588 if ( mp->cur_cmd==within_token ) {
15589 @<Set up a picture iteration@>;
15591 @<Check for the |"="| or |":="| in a loop header@>;
15592 @<Scan the values to be used in the loop@>;
15595 @<Check for the presence of a colon@>;
15596 @<Scan the loop text and put it on the loop control stack@>;
15597 mp_resume_iteration(mp);
15600 @ @<Check for the |"="| or |":="| in a loop header@>=
15601 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15602 mp_missing_err(mp, "=");
15604 help3("The next thing in this loop should have been `=' or `:='.",
15605 "But don't worry; I'll pretend that an equals sign",
15606 "was present, and I'll look for the values next.");
15610 @ @<Check for the presence of a colon@>=
15611 if ( mp->cur_cmd!=colon ) {
15612 mp_missing_err(mp, ":");
15614 help3("The next thing in this loop should have been a `:'.",
15615 "So I'll pretend that a colon was present;",
15616 "everything from here to `endfor' will be iterated.");
15620 @ We append a special |frozen_repeat_loop| token in place of the
15621 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15622 at the proper time to cause the loop to be repeated.
15624 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15625 he will be foiled by the |get_symbol| routine, which keeps frozen
15626 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15627 token, so it won't be lost accidentally.)
15629 @ @<Scan the loop text...@>=
15630 q=mp_get_avail(mp); mp_info(q)=frozen_repeat_loop;
15631 mp->scanner_status=loop_defining; mp->warning_info=n;
15632 mp_info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15633 mp_link(s)=mp->loop_ptr; mp->loop_ptr=s
15635 @ @<Initialize table...@>=
15636 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15637 text(frozen_repeat_loop)=intern(" ENDFOR");
15639 @ The loop text is inserted into \MP's scanning apparatus by the
15640 |resume_iteration| routine.
15642 @c void mp_resume_iteration (MP mp) {
15643 pointer p,q; /* link registers */
15644 p=loop_type(mp->loop_ptr);
15645 if ( p==progression_flag ) {
15646 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15647 mp->cur_exp=value(p);
15648 if ( @<The arithmetic progression has ended@> ) {
15649 mp_stop_iteration(mp);
15652 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15653 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15654 } else if ( p==null ) {
15655 p=loop_list(mp->loop_ptr);
15657 mp_stop_iteration(mp);
15660 loop_list(mp->loop_ptr)=mp_link(p); q=mp_info(p); free_avail(p);
15661 } else if ( p==mp_void ) {
15662 mp_begin_token_list(mp, mp_info(mp->loop_ptr),forever_text); return;
15664 @<Make |q| a capsule containing the next picture component from
15665 |loop_list(loop_ptr)| or |goto not_found|@>;
15667 mp_begin_token_list(mp, mp_info(mp->loop_ptr),loop_text);
15668 mp_stack_argument(mp, q);
15669 if ( mp->internal[mp_tracing_commands]>unity ) {
15670 @<Trace the start of a loop@>;
15674 mp_stop_iteration(mp);
15677 @ @<The arithmetic progression has ended@>=
15678 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15679 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15681 @ @<Trace the start of a loop@>=
15683 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15685 if ( (q!=null)&&(mp_link(q)==mp_void) ) mp_print_exp(mp, q,1);
15686 else mp_show_token_list(mp, q,null,50,0);
15687 mp_print_char(mp, xord('}')); mp_end_diagnostic(mp, false);
15690 @ @<Make |q| a capsule containing the next picture component from...@>=
15691 { q=loop_list(mp->loop_ptr);
15692 if ( q==null ) goto NOT_FOUND;
15693 skip_component(q) goto NOT_FOUND;
15694 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15695 mp_init_bbox(mp, mp->cur_exp);
15696 mp->cur_type=mp_picture_type;
15697 loop_list(mp->loop_ptr)=q;
15698 q=mp_stash_cur_exp(mp);
15701 @ A level of loop control disappears when |resume_iteration| has decided
15702 not to resume, or when an \&{exitif} construction has removed the loop text
15703 from the input stack.
15705 @c void mp_stop_iteration (MP mp) {
15706 pointer p,q; /* the usual */
15707 p=loop_type(mp->loop_ptr);
15708 if ( p==progression_flag ) {
15709 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15710 } else if ( p==null ){
15711 q=loop_list(mp->loop_ptr);
15712 while ( q!=null ) {
15715 if ( mp_link(p)==mp_void ) { /* it's an \&{expr} parameter */
15716 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15718 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15721 p=q; q=mp_link(q); free_avail(p);
15723 } else if ( p>progression_flag ) {
15724 delete_edge_ref(p);
15726 p=mp->loop_ptr; mp->loop_ptr=mp_link(p); mp_flush_token_list(mp, mp_info(p));
15727 mp_free_node(mp, p,loop_node_size);
15730 @ Now that we know all about loop control, we can finish up
15731 the missing portion of |begin_iteration| and we'll be done.
15733 The following code is performed after the `\.=' has been scanned in
15734 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15735 (if |m=suffix_base|).
15737 @<Scan the values to be used in the loop@>=
15738 loop_type(s)=null; q=loop_list_loc(s); mp_link(q)=null; /* |mp_link(q)=loop_list(s)| */
15741 if ( m!=expr_base ) {
15742 mp_scan_suffix(mp);
15744 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15746 mp_scan_expression(mp);
15747 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15748 @<Prepare for step-until construction and |break|@>;
15750 mp->cur_exp=mp_stash_cur_exp(mp);
15752 mp_link(q)=mp_get_avail(mp); q=mp_link(q);
15753 mp_info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15756 } while (mp->cur_cmd==comma)
15758 @ @<Prepare for step-until construction and |break|@>=
15760 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15761 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15762 mp_get_x_next(mp); mp_scan_expression(mp);
15763 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15764 step_size(pp)=mp->cur_exp;
15765 if ( mp->cur_cmd!=until_token ) {
15766 mp_missing_err(mp, "until");
15767 @.Missing `until'@>
15768 help2("I assume you meant to say `until' after `step'.",
15769 "So I'll look for the final value and colon next.");
15772 mp_get_x_next(mp); mp_scan_expression(mp);
15773 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15774 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15775 loop_type(s)=progression_flag;
15779 @ The last case is when we have just seen ``\&{within}'', and we need to
15780 parse a picture expression and prepare to iterate over it.
15782 @<Set up a picture iteration@>=
15783 { mp_get_x_next(mp);
15784 mp_scan_expression(mp);
15785 @<Make sure the current expression is a known picture@>;
15786 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15787 q=mp_link(dummy_loc(mp->cur_exp));
15789 if ( is_start_or_stop(q) )
15790 if ( mp_skip_1component(mp, q)==null ) q=mp_link(q);
15794 @ @<Make sure the current expression is a known picture@>=
15795 if ( mp->cur_type!=mp_picture_type ) {
15796 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15797 help1("When you say `for x in p', p must be a known picture.");
15798 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15799 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15802 @* \[35] File names.
15803 It's time now to fret about file names. Besides the fact that different
15804 operating systems treat files in different ways, we must cope with the
15805 fact that completely different naming conventions are used by different
15806 groups of people. The following programs show what is required for one
15807 particular operating system; similar routines for other systems are not
15808 difficult to devise.
15809 @^system dependencies@>
15811 \MP\ assumes that a file name has three parts: the name proper; its
15812 ``extension''; and a ``file area'' where it is found in an external file
15813 system. The extension of an input file is assumed to be
15814 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15815 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15816 metric files that describe characters in any fonts created by \MP; it is
15817 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15818 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15819 The file area can be arbitrary on input files, but files are usually
15820 output to the user's current area. If an input file cannot be
15821 found on the specified area, \MP\ will look for it on a special system
15822 area; this special area is intended for commonly used input files.
15824 Simple uses of \MP\ refer only to file names that have no explicit
15825 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15826 instead of `\.{input} \.{cmr10.new}'. Simple file
15827 names are best, because they make the \MP\ source files portable;
15828 whenever a file name consists entirely of letters and digits, it should be
15829 treated in the same way by all implementations of \MP. However, users
15830 need the ability to refer to other files in their environment, especially
15831 when responding to error messages concerning unopenable files; therefore
15832 we want to let them use the syntax that appears in their favorite
15835 @ \MP\ uses the same conventions that have proved to be satisfactory for
15836 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15837 @^system dependencies@>
15838 the system-independent parts of \MP\ are expressed in terms
15839 of three system-dependent
15840 procedures called |begin_name|, |more_name|, and |end_name|. In
15841 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15842 the system-independent driver program does the operations
15843 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;\,|more_name|(c_n);
15845 These three procedures communicate with each other via global variables.
15846 Afterwards the file name will appear in the string pool as three strings
15847 called |cur_name|\penalty10000\hskip-.05em,
15848 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15849 |""|), unless they were explicitly specified by the user.
15851 Actually the situation is slightly more complicated, because \MP\ needs
15852 to know when the file name ends. The |more_name| routine is a function
15853 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15854 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15855 returns |false|; or, it returns |true| and $c_n$ is the last character
15856 on the current input line. In other words,
15857 |more_name| is supposed to return |true| unless it is sure that the
15858 file name has been completely scanned; and |end_name| is supposed to be able
15859 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15860 whether $|more_name|(c_n)$ returned |true| or |false|.
15863 char * cur_name; /* name of file just scanned */
15864 char * cur_area; /* file area just scanned, or \.{""} */
15865 char * cur_ext; /* file extension just scanned, or \.{""} */
15867 @ It is easier to maintain reference counts if we assign initial values.
15870 mp->cur_name=xstrdup("");
15871 mp->cur_area=xstrdup("");
15872 mp->cur_ext=xstrdup("");
15874 @ @<Dealloc variables@>=
15875 xfree(mp->cur_area);
15876 xfree(mp->cur_name);
15877 xfree(mp->cur_ext);
15879 @ The file names we shall deal with for illustrative purposes have the
15880 following structure: If the name contains `\.>' or `\.:', the file area
15881 consists of all characters up to and including the final such character;
15882 otherwise the file area is null. If the remaining file name contains
15883 `\..', the file extension consists of all such characters from the first
15884 remaining `\..' to the end, otherwise the file extension is null.
15885 @^system dependencies@>
15887 We can scan such file names easily by using two global variables that keep track
15888 of the occurrences of area and extension delimiters. Note that these variables
15889 cannot be of type |pool_pointer| because a string pool compaction could occur
15890 while scanning a file name.
15893 integer area_delimiter;
15894 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15895 integer ext_delimiter; /* the relevant `\..', if any */
15897 @ Here now is the first of the system-dependent routines for file name scanning.
15898 @^system dependencies@>
15900 The file name length is limited to |file_name_size|. That is good, because
15901 in the current configuration we cannot call |mp_do_compaction| while a name
15902 is being scanned, |mp->area_delimiter| and |mp->ext_delimiter| are direct
15903 offsets into |mp->str_pool|. I am not in a great hurry to fix this, because
15904 calling |str_room()| just once is more efficient anyway. TODO.
15907 static void mp_begin_name (MP mp);
15908 static boolean mp_more_name (MP mp, ASCII_code c);
15909 static void mp_end_name (MP mp);
15912 void mp_begin_name (MP mp) {
15913 xfree(mp->cur_name);
15914 xfree(mp->cur_area);
15915 xfree(mp->cur_ext);
15916 mp->area_delimiter=-1;
15917 mp->ext_delimiter=-1;
15918 str_room(file_name_size);
15921 @ And here's the second.
15922 @^system dependencies@>
15925 boolean mp_more_name (MP mp, ASCII_code c) {
15929 if ( (c=='>')||(c==':') ) {
15930 mp->area_delimiter=mp->pool_ptr;
15931 mp->ext_delimiter=-1;
15932 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15933 mp->ext_delimiter=mp->pool_ptr;
15935 append_char(c); /* contribute |c| to the current string */
15941 @^system dependencies@>
15943 @d copy_pool_segment(A,B,C) {
15944 A = xmalloc(C+1,sizeof(char));
15945 strncpy(A,(char *)(mp->str_pool+B),C);
15949 void mp_end_name (MP mp) {
15950 pool_pointer s; /* length of area, name, and extension */
15953 s = mp->str_start[mp->str_ptr];
15954 if ( mp->area_delimiter<0 ) {
15955 mp->cur_area=xstrdup("");
15957 len = (unsigned)(mp->area_delimiter-s);
15958 copy_pool_segment(mp->cur_area,s,len);
15961 if ( mp->ext_delimiter<0 ) {
15962 mp->cur_ext=xstrdup("");
15963 len = (unsigned)(mp->pool_ptr-s);
15965 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(size_t)(mp->pool_ptr-mp->ext_delimiter));
15966 len = (unsigned)(mp->ext_delimiter-s);
15968 copy_pool_segment(mp->cur_name,s,len);
15969 mp->pool_ptr=s; /* don't need this partial string */
15972 @ Conversely, here is a routine that takes three strings and prints a file
15973 name that might have produced them. (The routine is system dependent, because
15974 some operating systems put the file area last instead of first.)
15975 @^system dependencies@>
15977 @<Basic printing...@>=
15978 static void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15979 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15982 @ Another system-dependent routine is needed to convert three internal
15984 to the |name_of_file| value that is used to open files. The present code
15985 allows both lowercase and uppercase letters in the file name.
15986 @^system dependencies@>
15988 @d append_to_name(A) { c=xord((int)(A));
15989 if ( k<file_name_size ) {
15990 mp->name_of_file[k]=(char)xchr(c);
15996 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) {
15997 integer k; /* number of positions filled in |name_of_file| */
15998 ASCII_code c; /* character being packed */
15999 const char *j; /* a character index */
16003 for (j=a;*j!='\0';j++) { append_to_name(*j); }
16005 for (j=n;*j!='\0';j++) { append_to_name(*j); }
16007 for (j=e;*j!='\0';j++) { append_to_name(*j); }
16009 mp->name_of_file[k]=0;
16013 @ @<Internal library declarations@>=
16014 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) ;
16016 @ @<Option variables@>=
16017 char *mem_name; /* for commandline */
16019 @ @<Find constant sizes@>=
16020 mp->mem_name = xstrdup(opt->mem_name);
16021 if (mp->mem_name) {
16022 size_t l = strlen(mp->mem_name);
16024 char *test = strstr(mp->mem_name,".mem");
16025 if (test == mp->mem_name+l-4) {
16032 @ @<Dealloc variables@>=
16033 xfree(mp->mem_name);
16035 @ This part of the program becomes active when a ``virgin'' \MP\ is
16036 trying to get going, just after the preliminary initialization, or
16037 when the user is substituting another mem file by typing `\.\&' after
16038 the initial `\.{**}' prompt. The buffer contains the first line of
16039 input in |buffer[loc..(last-1)]|, where |loc<last| and |buffer[loc]<>""|.
16042 static boolean mp_open_mem_name (MP mp) ;
16043 static boolean mp_open_mem_file (MP mp) ;
16046 boolean mp_open_mem_name (MP mp) {
16047 if (mp->mem_name!=NULL) {
16048 size_t l = strlen(mp->mem_name);
16049 char *s = xstrdup (mp->mem_name);
16051 char *test = strstr(s,".mem");
16052 if (test == NULL || test != s+l-4) {
16053 s = xrealloc (s, l+5, 1);
16054 strcat (s, ".mem");
16057 s = xrealloc (s, l+5, 1);
16058 strcat (s, ".mem");
16060 mp->mem_file = (mp->open_file)(mp,s, "r", mp_filetype_memfile);
16062 if ( mp->mem_file ) return true;
16066 boolean mp_open_mem_file (MP mp) {
16067 if (mp->mem_file != NULL)
16069 if (mp_open_mem_name(mp))
16071 if (mp_xstrcmp(mp->mem_name, "plain")) {
16073 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
16074 @.Sorry, I can't find...@>
16076 /* now pull out all the stops: try for the system \.{plain} file */
16077 xfree(mp->mem_name);
16078 mp->mem_name = xstrdup("plain");
16079 if (mp_open_mem_name(mp))
16083 wterm_ln("I can\'t find the PLAIN mem file!");
16084 @.I can't find PLAIN...@>
16089 @ Operating systems often make it possible to determine the exact name (and
16090 possible version number) of a file that has been opened. The following routine,
16091 which simply makes a \MP\ string from the value of |name_of_file|, should
16092 ideally be changed to deduce the full name of file~|f|, which is the file
16093 most recently opened, if it is possible to do this.
16094 @^system dependencies@>
16097 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16098 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16099 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16102 static str_number mp_make_name_string (MP mp) {
16103 int k; /* index into |name_of_file| */
16104 str_room(mp->name_length);
16105 for (k=0;k<mp->name_length;k++) {
16106 append_char(xord((int)mp->name_of_file[k]));
16108 return mp_make_string(mp);
16111 @ Now let's consider the ``driver''
16112 routines by which \MP\ deals with file names
16113 in a system-independent manner. First comes a procedure that looks for a
16114 file name in the input by taking the information from the input buffer.
16115 (We can't use |get_next|, because the conversion to tokens would
16116 destroy necessary information.)
16118 This procedure doesn't allow semicolons or percent signs to be part of
16119 file names, because of other conventions of \MP.
16120 {\sl The {\logos METAFONT\/}book} doesn't
16121 use semicolons or percents immediately after file names, but some users
16122 no doubt will find it natural to do so; therefore system-dependent
16123 changes to allow such characters in file names should probably
16124 be made with reluctance, and only when an entire file name that
16125 includes special characters is ``quoted'' somehow.
16126 @^system dependencies@>
16129 static void mp_scan_file_name (MP mp) {
16131 while ( mp->buffer[loc]==' ' ) incr(loc);
16133 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16134 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16140 @ Here is another version that takes its input from a string.
16142 @<Declare subroutines for parsing file names@>=
16143 void mp_str_scan_file (MP mp, str_number s) ;
16146 void mp_str_scan_file (MP mp, str_number s) {
16147 pool_pointer p,q; /* current position and stopping point */
16149 p=mp->str_start[s]; q=str_stop(s);
16151 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16157 @ And one that reads from a |char*|.
16159 @<Declare subroutines for parsing file names@>=
16160 extern void mp_ptr_scan_file (MP mp, char *s);
16163 void mp_ptr_scan_file (MP mp, char *s) {
16164 char *p, *q; /* current position and stopping point */
16166 p=s; q=p+strlen(s);
16168 if ( ! mp_more_name(mp, xord((int)(*p)))) break;
16175 @ The global variable |job_name| contains the file name that was first
16176 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16177 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16180 boolean log_opened; /* has the transcript file been opened? */
16181 char *log_name; /* full name of the log file */
16183 @ @<Option variables@>=
16184 char *job_name; /* principal file name */
16186 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16187 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16188 except of course for a short time just after |job_name| has become nonzero.
16190 @<Allocate or ...@>=
16191 mp->job_name=mp_xstrdup(mp, opt->job_name);
16192 if (opt->noninteractive && opt->ini_version) {
16193 if (mp->job_name == NULL)
16194 mp->job_name=mp_xstrdup(mp,mp->mem_name);
16195 if (mp->job_name != NULL) {
16196 size_t l = strlen(mp->job_name);
16198 char *test = strstr(mp->job_name,".mem");
16199 if (test == mp->job_name+l-4)
16204 mp->log_opened=false;
16206 @ @<Dealloc variables@>=
16207 xfree(mp->job_name);
16209 @ Here is a routine that manufactures the output file names, assuming that
16210 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16213 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16215 @<Internal library ...@>=
16216 void mp_pack_job_name (MP mp, const char *s) ;
16219 void mp_pack_job_name (MP mp, const char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16220 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16221 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16222 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16226 @ If some trouble arises when \MP\ tries to open a file, the following
16227 routine calls upon the user to supply another file name. Parameter~|s|
16228 is used in the error message to identify the type of file; parameter~|e|
16229 is the default extension if none is given. Upon exit from the routine,
16230 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16231 ready for another attempt at file opening.
16233 @<Internal library ...@>=
16234 void mp_prompt_file_name (MP mp, const char * s, const char * e) ;
16236 @ @c void mp_prompt_file_name (MP mp, const char * s, const char * e) {
16237 size_t k; /* index into |buffer| */
16238 char * saved_cur_name;
16239 if ( mp->interaction==mp_scroll_mode )
16241 if (strcmp(s,"input file name")==0) {
16242 print_err("I can\'t find file `");
16243 @.I can't find file x@>
16245 print_err("I can\'t write on file `");
16246 @.I can't write on file x@>
16248 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16249 mp_print(mp, "'.");
16250 if (strcmp(e,"")==0)
16251 mp_show_context(mp);
16252 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16254 if (mp->noninteractive || mp->interaction<mp_scroll_mode )
16255 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16256 @.job aborted, file error...@>
16257 saved_cur_name = xstrdup(mp->cur_name);
16258 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16259 if (strcmp(mp->cur_ext,"")==0)
16260 mp->cur_ext=xstrdup(e);
16261 if (strlen(mp->cur_name)==0) {
16262 mp->cur_name=saved_cur_name;
16264 xfree(saved_cur_name);
16269 @ @<Scan file name in the buffer@>=
16271 mp_begin_name(mp); k=mp->first;
16272 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16274 if ( k==mp->last ) break;
16275 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16281 @ The |open_log_file| routine is used to open the transcript file and to help
16282 it catch up to what has previously been printed on the terminal.
16284 @c void mp_open_log_file (MP mp) {
16285 unsigned old_setting; /* previous |selector| setting */
16286 int k; /* index into |months| and |buffer| */
16287 int l; /* end of first input line */
16288 integer m; /* the current month */
16289 const char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16290 /* abbreviations of month names */
16291 old_setting=mp->selector;
16292 if ( mp->job_name==NULL ) {
16293 mp->job_name=xstrdup("mpout");
16295 mp_pack_job_name(mp,".log");
16296 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16297 @<Try to get a different log file name@>;
16299 mp->log_name=xstrdup(mp->name_of_file);
16300 mp->selector=log_only; mp->log_opened=true;
16301 @<Print the banner line, including the date and time@>;
16302 mp->input_stack[mp->input_ptr]=mp->cur_input;
16303 /* make sure bottom level is in memory */
16304 if (!mp->noninteractive) {
16305 mp_print_nl(mp, "**");
16307 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16308 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16309 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16311 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16314 @ @<Dealloc variables@>=
16315 xfree(mp->log_name);
16317 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16318 unable to print error messages or even to |show_context|.
16319 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16320 routine will not be invoked because |log_opened| will be false.
16322 The normal idea of |mp_batch_mode| is that nothing at all should be written
16323 on the terminal. However, in the unusual case that
16324 no log file could be opened, we make an exception and allow
16325 an explanatory message to be seen.
16327 Incidentally, the program always refers to the log file as a `\.{transcript
16328 file}', because some systems cannot use the extension `\.{.log}' for
16331 @<Try to get a different log file name@>=
16333 mp->selector=term_only;
16334 mp_prompt_file_name(mp, "transcript file name",".log");
16337 @ @<Print the banner...@>=
16340 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16341 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16342 mp_print_char(mp, xord(' '));
16343 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16344 for (k=3*m-3;k<3*m;k++) { wlog_chr((unsigned char)months[k]); }
16345 mp_print_char(mp, xord(' '));
16346 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16347 mp_print_char(mp, xord(' '));
16348 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16349 mp_print_dd(mp, m / 60); mp_print_char(mp, xord(':')); mp_print_dd(mp, m % 60);
16352 @ The |try_extension| function tries to open an input file determined by
16353 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16354 can't find the file in |cur_area| or the appropriate system area.
16357 static boolean mp_try_extension (MP mp, const char *ext) {
16358 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16359 in_name=xstrdup(mp->cur_name);
16360 in_area=xstrdup(mp->cur_area);
16361 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16364 mp_pack_file_name(mp, mp->cur_name,NULL,ext);
16365 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16369 @ Let's turn now to the procedure that is used to initiate file reading
16370 when an `\.{input}' command is being processed.
16372 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16373 char *fname = NULL;
16374 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16376 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16377 if ( strlen(mp->cur_ext)==0 ) {
16378 if ( mp_try_extension(mp, ".mp") ) break;
16379 else if ( mp_try_extension(mp, "") ) break;
16380 else if ( mp_try_extension(mp, ".mf") ) break;
16381 /* |else do_nothing; | */
16382 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16385 mp_end_file_reading(mp); /* remove the level that didn't work */
16386 mp_prompt_file_name(mp, "input file name","");
16388 name=mp_a_make_name_string(mp, cur_file);
16389 fname = xstrdup(mp->name_of_file);
16390 if ( mp->job_name==NULL ) {
16391 mp->job_name=xstrdup(mp->cur_name);
16392 mp_open_log_file(mp);
16393 } /* |open_log_file| doesn't |show_context|, so |limit|
16394 and |loc| needn't be set to meaningful values yet */
16395 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16396 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, xord(' '));
16397 mp_print_char(mp, xord('(')); incr(mp->open_parens); mp_print(mp, fname);
16400 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16401 @<Read the first line of the new file@>;
16404 @ This code should be omitted if |a_make_name_string| returns something other
16405 than just a copy of its argument and the full file name is needed for opening
16406 \.{MPX} files or implementing the switch-to-editor option.
16407 @^system dependencies@>
16409 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16410 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16412 @ If the file is empty, it is considered to contain a single blank line,
16413 so there is no need to test the return value.
16415 @<Read the first line...@>=
16418 (void)mp_input_ln(mp, cur_file );
16419 mp_firm_up_the_line(mp);
16420 mp->buffer[limit]=xord('%'); mp->first=(size_t)(limit+1); loc=start;
16423 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16424 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16425 if ( token_state ) {
16426 print_err("File names can't appear within macros");
16427 @.File names can't...@>
16428 help3("Sorry...I've converted what follows to tokens,",
16429 "possibly garbaging the name you gave.",
16430 "Please delete the tokens and insert the name again.");
16433 if ( file_state ) {
16434 mp_scan_file_name(mp);
16436 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16437 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16438 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16441 @ The following simple routine starts reading the \.{MPX} file associated
16442 with the current input file.
16444 @c void mp_start_mpx_input (MP mp) {
16445 char *origname = NULL; /* a copy of nameoffile */
16446 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16447 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16448 |goto not_found| if there is a problem@>;
16449 mp_begin_file_reading(mp);
16450 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16451 mp_end_file_reading(mp);
16454 name=mp_a_make_name_string(mp, cur_file);
16455 mp->mpx_name[iindex]=name; add_str_ref(name);
16456 @<Read the first line of the new file@>;
16460 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16464 @ This should ideally be changed to do whatever is necessary to create the
16465 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16466 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16467 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16468 completely different typesetting program if suitable postprocessor is
16469 available to perform the function of \.{DVItoMP}.)
16470 @^system dependencies@>
16472 @ @<Exported types@>=
16473 typedef int (*mp_makempx_cmd)(MP mp, char *origname, char *mtxname);
16475 @ @<Option variables@>=
16476 mp_makempx_cmd run_make_mpx;
16478 @ @<Allocate or initialize ...@>=
16479 set_callback_option(run_make_mpx);
16481 @ @<Declarations@>=
16482 static int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16484 @ The default does nothing.
16486 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16493 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16494 |goto not_found| if there is a problem@>=
16495 origname = mp_xstrdup(mp,mp->name_of_file);
16496 *(origname+strlen(origname)-1)=0; /* drop the x */
16497 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16500 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16501 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16502 mp_print_nl(mp, ">> ");
16503 mp_print(mp, origname);
16504 mp_print_nl(mp, ">> ");
16505 mp_print(mp, mp->name_of_file);
16506 mp_print_nl(mp, "! Unable to make mpx file");
16507 help4("The two files given above are one of your source files",
16508 "and an auxiliary file I need to read to find out what your",
16509 "btex..etex blocks mean. If you don't know why I had trouble,",
16510 "try running it manually through MPtoTeX, TeX, and DVItoMP");
16513 @ The last file-opening commands are for files accessed via the \&{readfrom}
16514 @:read_from_}{\&{readfrom} primitive@>
16515 operator and the \&{write} command. Such files are stored in separate arrays.
16516 @:write_}{\&{write} primitive@>
16518 @<Types in the outer block@>=
16519 typedef unsigned int readf_index; /* |0..max_read_files| */
16520 typedef unsigned int write_index; /* |0..max_write_files| */
16523 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16524 void ** rd_file; /* \&{readfrom} files */
16525 char ** rd_fname; /* corresponding file name or 0 if file not open */
16526 readf_index read_files; /* number of valid entries in the above arrays */
16527 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16528 void ** wr_file; /* \&{write} files */
16529 char ** wr_fname; /* corresponding file name or 0 if file not open */
16530 write_index write_files; /* number of valid entries in the above arrays */
16532 @ @<Allocate or initialize ...@>=
16533 mp->max_read_files=8;
16534 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16535 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16536 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16537 mp->max_write_files=8;
16538 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16539 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16540 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16543 @ This routine starts reading the file named by string~|s| without setting
16544 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16545 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16548 static boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16549 mp_ptr_scan_file(mp, s);
16551 mp_begin_file_reading(mp);
16552 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (int)(mp_filetype_text+n)) )
16554 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16555 (mp->close_file)(mp,mp->rd_file[n]);
16558 mp->rd_fname[n]=xstrdup(s);
16561 mp_end_file_reading(mp);
16565 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16568 static void mp_open_write_file (MP mp, char *s, readf_index n) ;
16570 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16571 mp_ptr_scan_file(mp, s);
16573 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (int)(mp_filetype_text+n)) )
16574 mp_prompt_file_name(mp, "file name for write output","");
16575 mp->wr_fname[n]=xstrdup(s);
16579 @* \[36] Introduction to the parsing routines.
16580 We come now to the central nervous system that sparks many of \MP's activities.
16581 By evaluating expressions, from their primary constituents to ever larger
16582 subexpressions, \MP\ builds the structures that ultimately define complete
16583 pictures or fonts of type.
16585 Four mutually recursive subroutines are involved in this process: We call them
16586 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16587 and |scan_expression|.}$$
16589 Each of them is parameterless and begins with the first token to be scanned
16590 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16591 the value of the primary or secondary or tertiary or expression that was
16592 found will appear in the global variables |cur_type| and |cur_exp|. The
16593 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16596 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16597 backup mechanisms have been added in order to provide reasonable error
16601 quarterword cur_type; /* the type of the expression just found */
16602 integer cur_exp; /* the value of the expression just found */
16607 @ Many different kinds of expressions are possible, so it is wise to have
16608 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16611 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16612 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16613 construction in which there was no expression before the \&{endgroup}.
16614 In this case |cur_exp| has some irrelevant value.
16617 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16621 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16623 a ring of equivalent booleans whose value has not yet been defined.
16626 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16627 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16628 includes this particular reference.
16631 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16633 a ring of equivalent strings whose value has not yet been defined.
16636 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16637 else points to any of the nodes in this pen. The pen may be polygonal or
16641 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16643 a ring of equivalent pens whose value has not yet been defined.
16646 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16647 a path; nobody else points to this particular path. The control points of
16648 the path will have been chosen.
16651 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16653 a ring of equivalent paths whose value has not yet been defined.
16656 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16657 There may be other pointers to this particular set of edges. The header node
16658 contains a reference count that includes this particular reference.
16661 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16663 a ring of equivalent pictures whose value has not yet been defined.
16666 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16667 capsule node. The |value| part of this capsule
16668 points to a transform node that contains six numeric values,
16669 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16672 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16673 capsule node. The |value| part of this capsule
16674 points to a color node that contains three numeric values,
16675 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16678 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16679 capsule node. The |value| part of this capsule
16680 points to a color node that contains four numeric values,
16681 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16684 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16685 node whose type is |mp_pair_type|. The |value| part of this capsule
16686 points to a pair node that contains two numeric values,
16687 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16690 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16693 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16694 is |dependent|. The |dep_list| field in this capsule points to the associated
16698 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16699 capsule node. The |dep_list| field in this capsule
16700 points to the associated dependency list.
16703 |cur_type=independent| means that |cur_exp| points to a capsule node
16704 whose type is |independent|. This somewhat unusual case can arise, for
16705 example, in the expression
16706 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16709 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16712 \smallskip\noindent
16713 The possible settings of |cur_type| have been listed here in increasing
16714 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16715 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16716 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16719 @ Capsules are two-word nodes that have a similar meaning
16720 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|,
16721 and their |type| field is one of the possibilities for |cur_type| listed above.
16722 Also |link<=void| in capsules that aren't part of a token list.
16724 The |value| field of a capsule is, in most cases, the value that
16725 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16726 However, when |cur_exp| would point to a capsule,
16727 no extra layer of indirection is present; the |value|
16728 field is what would have been called |value(cur_exp)| if it had not been
16729 encapsulated. Furthermore, if the type is |dependent| or
16730 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16731 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16732 always part of the general |dep_list| structure.
16734 The |get_x_next| routine is careful not to change the values of |cur_type|
16735 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16736 call a macro, which might parse an expression, which might execute lots of
16737 commands in a group; hence it's possible that |cur_type| might change
16738 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16739 |known| or |independent|, during the time |get_x_next| is called. The
16740 programs below are careful to stash sensitive intermediate results in
16741 capsules, so that \MP's generality doesn't cause trouble.
16743 Here's a procedure that illustrates these conventions. It takes
16744 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16745 and stashes them away in a
16746 capsule. It is not used when |cur_type=mp_token_list|.
16747 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16748 copy path lists or to update reference counts, etc.
16750 The special link |mp_void| is put on the capsule returned by
16751 |stash_cur_exp|, because this procedure is used to store macro parameters
16752 that must be easily distinguishable from token lists.
16754 @<Declare the stashing/unstashing routines@>=
16755 static pointer mp_stash_cur_exp (MP mp) {
16756 pointer p; /* the capsule that will be returned */
16757 switch (mp->cur_type) {
16758 case unknown_types:
16759 case mp_transform_type:
16760 case mp_color_type:
16763 case mp_proto_dependent:
16764 case mp_independent:
16765 case mp_cmykcolor_type:
16769 p=mp_get_node(mp, value_node_size); mp_name_type(p)=mp_capsule;
16770 mp_type(p)=mp->cur_type; value(p)=mp->cur_exp;
16773 mp->cur_type=mp_vacuous; mp_link(p)=mp_void;
16777 @ The inverse of |stash_cur_exp| is the following procedure, which
16778 deletes an unnecessary capsule and puts its contents into |cur_type|
16781 The program steps of \MP\ can be divided into two categories: those in
16782 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16783 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16784 information or not. It's important not to ignore them when they're alive,
16785 and it's important not to pay attention to them when they're dead.
16787 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16788 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16789 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16790 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16791 only when they are alive or dormant.
16793 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16794 are alive or dormant. The \\{unstash} procedure assumes that they are
16795 dead or dormant; it resuscitates them.
16797 @<Declare the stashing/unstashing...@>=
16798 static void mp_unstash_cur_exp (MP mp,pointer p) ;
16801 void mp_unstash_cur_exp (MP mp,pointer p) {
16802 mp->cur_type=mp_type(p);
16803 switch (mp->cur_type) {
16804 case unknown_types:
16805 case mp_transform_type:
16806 case mp_color_type:
16809 case mp_proto_dependent:
16810 case mp_independent:
16811 case mp_cmykcolor_type:
16815 mp->cur_exp=value(p);
16816 mp_free_node(mp, p,value_node_size);
16821 @ The following procedure prints the values of expressions in an
16822 abbreviated format. If its first parameter |p| is null, the value of
16823 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16824 containing the desired value. The second parameter controls the amount of
16825 output. If it is~0, dependency lists will be abbreviated to
16826 `\.{linearform}' unless they consist of a single term. If it is greater
16827 than~1, complicated structures (pens, pictures, and paths) will be displayed
16832 @<Declare the procedure called |print_dp|@>
16833 @<Declare the stashing/unstashing routines@>
16834 static void mp_print_exp (MP mp,pointer p, quarterword verbosity) ;
16837 void mp_print_exp (MP mp,pointer p, quarterword verbosity) {
16838 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16839 quarterword t; /* the type of the expression */
16840 pointer q; /* a big node being displayed */
16841 integer v=0; /* the value of the expression */
16843 restore_cur_exp=false;
16845 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16848 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16849 @<Print an abbreviated value of |v| with format depending on |t|@>;
16850 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16853 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16855 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16856 case mp_boolean_type:
16857 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16859 case unknown_types: case mp_numeric_type:
16860 @<Display a variable that's been declared but not defined@>;
16862 case mp_string_type:
16863 mp_print_char(mp, xord('"')); mp_print_str(mp, v); mp_print_char(mp, xord('"'));
16865 case mp_pen_type: case mp_path_type: case mp_picture_type:
16866 @<Display a complex type@>;
16868 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16869 if ( v==null ) mp_print_type(mp, t);
16870 else @<Display a big node@>;
16872 case mp_known:mp_print_scaled(mp, v); break;
16873 case mp_dependent: case mp_proto_dependent:
16874 mp_print_dp(mp, t,v,verbosity);
16876 case mp_independent:mp_print_variable_name(mp, p); break;
16877 default: mp_confusion(mp, "exp"); break;
16878 @:this can't happen exp}{\quad exp@>
16881 @ @<Display a big node@>=
16883 mp_print_char(mp, xord('(')); q=v+mp->big_node_size[t];
16885 if ( mp_type(v)==mp_known ) mp_print_scaled(mp, value(v));
16886 else if ( mp_type(v)==mp_independent ) mp_print_variable_name(mp, v);
16887 else mp_print_dp(mp, mp_type(v),dep_list(v),verbosity);
16889 if ( v!=q ) mp_print_char(mp, xord(','));
16891 mp_print_char(mp, xord(')'));
16894 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16895 in the log file only, unless the user has given a positive value to
16898 @<Display a complex type@>=
16899 if ( verbosity<=1 ) {
16900 mp_print_type(mp, t);
16902 if ( mp->selector==term_and_log )
16903 if ( mp->internal[mp_tracing_online]<=0 ) {
16904 mp->selector=term_only;
16905 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16906 mp->selector=term_and_log;
16909 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16910 case mp_path_type:mp_print_path(mp, v,"",false); break;
16911 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16912 } /* there are no other cases */
16915 @ @<Declare the procedure called |print_dp|@>=
16916 static void mp_print_dp (MP mp, quarterword t, pointer p,
16917 quarterword verbosity) {
16918 pointer q; /* the node following |p| */
16920 if ( (mp_info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16921 else mp_print(mp, "linearform");
16924 @ The displayed name of a variable in a ring will not be a capsule unless
16925 the ring consists entirely of capsules.
16927 @<Display a variable that's been declared but not defined@>=
16928 { mp_print_type(mp, t);
16930 { mp_print_char(mp, xord(' '));
16931 while ( (mp_name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16932 mp_print_variable_name(mp, v);
16936 @ When errors are detected during parsing, it is often helpful to
16937 display an expression just above the error message, using |exp_err|
16938 or |disp_err| instead of |print_err|.
16940 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16943 static void mp_disp_err (MP mp,pointer p, const char *s) ;
16946 void mp_disp_err (MP mp,pointer p, const char *s) {
16947 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16948 mp_print_nl(mp, ">> ");
16950 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16952 mp_print_nl(mp, "! "); mp_print(mp, s);
16957 @ If |cur_type| and |cur_exp| contain relevant information that should
16958 be recycled, we will use the following procedure, which changes |cur_type|
16959 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16960 and |cur_exp| as either alive or dormant after this has been done,
16961 because |cur_exp| will not contain a pointer value.
16964 static void mp_flush_cur_exp (MP mp,scaled v) {
16965 switch (mp->cur_type) {
16966 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16967 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16968 mp_recycle_value(mp, mp->cur_exp);
16969 mp_free_node(mp, mp->cur_exp,value_node_size);
16971 case mp_string_type:
16972 delete_str_ref(mp->cur_exp); break;
16973 case mp_pen_type: case mp_path_type:
16974 mp_toss_knot_list(mp, mp->cur_exp); break;
16975 case mp_picture_type:
16976 delete_edge_ref(mp->cur_exp); break;
16980 mp->cur_type=mp_known; mp->cur_exp=v;
16983 @ There's a much more general procedure that is capable of releasing
16984 the storage associated with any two-word value packet.
16987 static void mp_recycle_value (MP mp,pointer p) ;
16990 static void mp_recycle_value (MP mp,pointer p) {
16991 quarterword t; /* a type code */
16992 integer vv; /* another value */
16993 pointer q,r,s,pp; /* link manipulation registers */
16994 integer v=0; /* a value */
16996 if ( t<mp_dependent ) v=value(p);
16998 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16999 case mp_numeric_type:
17001 case unknown_types:
17002 mp_ring_delete(mp, p); break;
17003 case mp_string_type:
17004 delete_str_ref(v); break;
17005 case mp_path_type: case mp_pen_type:
17006 mp_toss_knot_list(mp, v); break;
17007 case mp_picture_type:
17008 delete_edge_ref(v); break;
17009 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
17010 case mp_transform_type:
17011 @<Recycle a big node@>; break;
17012 case mp_dependent: case mp_proto_dependent:
17013 @<Recycle a dependency list@>; break;
17014 case mp_independent:
17015 @<Recycle an independent variable@>; break;
17016 case mp_token_list: case mp_structured:
17017 mp_confusion(mp, "recycle"); break;
17018 @:this can't happen recycle}{\quad recycle@>
17019 case mp_unsuffixed_macro: case mp_suffixed_macro:
17020 mp_delete_mac_ref(mp, value(p)); break;
17021 } /* there are no other cases */
17022 mp_type(p)=undefined;
17025 @ @<Recycle a big node@>=
17027 q=v+mp->big_node_size[t];
17029 q=q-2; mp_recycle_value(mp, q);
17031 mp_free_node(mp, v,mp->big_node_size[t]);
17034 @ @<Recycle a dependency list@>=
17037 while ( mp_info(q)!=null ) q=mp_link(q);
17038 mp_link(prev_dep(p))=mp_link(q);
17039 prev_dep(mp_link(q))=prev_dep(p);
17040 mp_link(q)=null; mp_flush_node_list(mp, dep_list(p));
17043 @ When an independent variable disappears, it simply fades away, unless
17044 something depends on it. In the latter case, a dependent variable whose
17045 coefficient of dependence is maximal will take its place.
17046 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
17047 as part of his Ph.D. thesis (Stanford University, December 1982).
17048 @^Zabala Salelles, Ignacio Andr\'es@>
17050 For example, suppose that variable $x$ is being recycled, and that the
17051 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
17052 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
17053 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
17054 we will print `\.{\#\#\# -2x=-y+a}'.
17056 There's a slight complication, however: An independent variable $x$
17057 can occur both in dependency lists and in proto-dependency lists.
17058 This makes it necessary to be careful when deciding which coefficient
17061 Furthermore, this complication is not so slight when
17062 a proto-dependent variable is chosen to become independent. For example,
17063 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
17064 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
17065 large coefficient `50'.
17067 In order to deal with these complications without wasting too much time,
17068 we shall link together the occurrences of~$x$ among all the linear
17069 dependencies, maintaining separate lists for the dependent and
17070 proto-dependent cases.
17072 @<Recycle an independent variable@>=
17074 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
17075 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
17076 q=mp_link(dep_head);
17077 while ( q!=dep_head ) {
17078 s=value_loc(q); /* now |mp_link(s)=dep_list(q)| */
17081 if ( mp_info(r)==null ) break;
17082 if ( mp_info(r)!=p ) {
17085 t=mp_type(q); mp_link(s)=mp_link(r); mp_info(r)=q;
17086 if ( abs(value(r))>mp->max_c[t] ) {
17087 @<Record a new maximum coefficient of type |t|@>;
17089 mp_link(r)=mp->max_link[t]; mp->max_link[t]=r;
17095 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17096 @<Choose a dependent variable to take the place of the disappearing
17097 independent variable, and change all remaining dependencies
17102 @ The code for independency removal makes use of three two-word arrays.
17105 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17106 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17107 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17109 @ @<Record a new maximum coefficient...@>=
17111 if ( mp->max_c[t]>0 ) {
17112 mp_link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17114 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17117 @ @<Choose a dependent...@>=
17119 if ( (mp->max_c[mp_dependent] / 010000) >= mp->max_c[mp_proto_dependent] )
17122 t=mp_proto_dependent;
17123 @<Determine the dependency list |s| to substitute for the independent
17125 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17126 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17127 mp_link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17129 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17130 else { @<Substitute new proto-dependencies in place of |p|@>;}
17131 mp_flush_node_list(mp, s);
17132 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17136 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17137 and |mp_info(s)| points to the dependent variable~|pp| of type~|t| from
17138 whose dependency list we have removed node~|s|. We must reinsert
17139 node~|s| into the dependency list, with coefficient $-1.0$, and with
17140 |pp| as the new independent variable. Since |pp| will have a larger serial
17141 number than any other variable, we can put node |s| at the head of the
17144 @<Determine the dep...@>=
17145 s=mp->max_ptr[t]; pp=mp_info(s); v=value(s);
17146 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17147 r=dep_list(pp); mp_link(s)=r;
17148 while ( mp_info(r)!=null ) r=mp_link(r);
17149 q=mp_link(r); mp_link(r)=null;
17150 prev_dep(q)=prev_dep(pp); mp_link(prev_dep(pp))=q;
17152 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17153 if ( mp->internal[mp_tracing_equations]>0 ) {
17154 @<Show the transformed dependency@>;
17157 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17158 by the dependency list~|s|.
17160 @<Show the transformed...@>=
17161 if ( mp_interesting(mp, p) ) {
17162 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17163 @:]]]\#\#\#_}{\.{\#\#\#}@>
17164 if ( v>0 ) mp_print_char(mp, xord('-'));
17165 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17166 else vv=mp->max_c[mp_proto_dependent];
17167 if ( vv!=unity ) mp_print_scaled(mp, vv);
17168 mp_print_variable_name(mp, p);
17169 while ( value(p) % s_scale>0 ) {
17170 mp_print(mp, "*4"); value(p)=value(p)-2;
17172 if ( t==mp_dependent ) mp_print_char(mp, xord('=')); else mp_print(mp, " = ");
17173 mp_print_dependency(mp, s,t);
17174 mp_end_diagnostic(mp, false);
17177 @ Finally, there are dependent and proto-dependent variables whose
17178 dependency lists must be brought up to date.
17180 @<Substitute new dependencies...@>=
17181 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17183 while ( r!=null ) {
17185 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17186 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17187 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17188 q=r; r=mp_link(r); mp_free_node(mp, q,dep_node_size);
17192 @ @<Substitute new proto...@>=
17193 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17195 while ( r!=null ) {
17197 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17198 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17199 mp->cur_type=mp_proto_dependent;
17200 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,
17201 mp_dependent,mp_proto_dependent);
17202 mp_type(q)=mp_proto_dependent;
17203 value(r)=mp_round_fraction(mp, value(r));
17205 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17206 mp_make_scaled(mp, value(r),-v),s,
17207 mp_proto_dependent,mp_proto_dependent);
17208 if ( dep_list(q)==mp->dep_final )
17209 mp_make_known(mp, q,mp->dep_final);
17210 q=r; r=mp_link(r); mp_free_node(mp, q,dep_node_size);
17214 @ Here are some routines that provide handy combinations of actions
17215 that are often needed during error recovery. For example,
17216 `|flush_error|' flushes the current expression, replaces it by
17217 a given value, and calls |error|.
17219 Errors often are detected after an extra token has already been scanned.
17220 The `\\{put\_get}' routines put that token back before calling |error|;
17221 then they get it back again. (Or perhaps they get another token, if
17222 the user has changed things.)
17225 static void mp_flush_error (MP mp,scaled v);
17226 static void mp_put_get_error (MP mp);
17227 static void mp_put_get_flush_error (MP mp,scaled v) ;
17230 void mp_flush_error (MP mp,scaled v) {
17231 mp_error(mp); mp_flush_cur_exp(mp, v);
17233 void mp_put_get_error (MP mp) {
17234 mp_back_error(mp); mp_get_x_next(mp);
17236 void mp_put_get_flush_error (MP mp,scaled v) {
17237 mp_put_get_error(mp);
17238 mp_flush_cur_exp(mp, v);
17241 @ A global variable |var_flag| is set to a special command code
17242 just before \MP\ calls |scan_expression|, if the expression should be
17243 treated as a variable when this command code immediately follows. For
17244 example, |var_flag| is set to |assignment| at the beginning of a
17245 statement, because we want to know the {\sl location\/} of a variable at
17246 the left of `\.{:=}', not the {\sl value\/} of that variable.
17248 The |scan_expression| subroutine calls |scan_tertiary|,
17249 which calls |scan_secondary|, which calls |scan_primary|, which sets
17250 |var_flag:=0|. In this way each of the scanning routines ``knows''
17251 when it has been called with a special |var_flag|, but |var_flag| is
17254 A variable preceding a command that equals |var_flag| is converted to a
17255 token list rather than a value. Furthermore, an `\.{=}' sign following an
17256 expression with |var_flag=assignment| is not considered to be a relation
17257 that produces boolean expressions.
17261 int var_flag; /* command that wants a variable */
17266 @* \[37] Parsing primary expressions.
17267 The first parsing routine, |scan_primary|, is also the most complicated one,
17268 since it involves so many different cases. But each case---with one
17269 exception---is fairly simple by itself.
17271 When |scan_primary| begins, the first token of the primary to be scanned
17272 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17273 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17274 earlier. If |cur_cmd| is not between |min_primary_command| and
17275 |max_primary_command|, inclusive, a syntax error will be signaled.
17277 @<Declare the basic parsing subroutines@>=
17278 void mp_scan_primary (MP mp) {
17279 pointer p,q,r; /* for list manipulation */
17280 quarterword c; /* a primitive operation code */
17281 int my_var_flag; /* initial value of |my_var_flag| */
17282 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17283 @<Other local variables for |scan_primary|@>;
17284 my_var_flag=mp->var_flag; mp->var_flag=0;
17287 @<Supply diagnostic information, if requested@>;
17288 switch (mp->cur_cmd) {
17289 case left_delimiter:
17290 @<Scan a delimited primary@>; break;
17292 @<Scan a grouped primary@>; break;
17294 @<Scan a string constant@>; break;
17295 case numeric_token:
17296 @<Scan a primary that starts with a numeric token@>; break;
17298 @<Scan a nullary operation@>; break;
17299 case unary: case type_name: case cycle: case plus_or_minus:
17300 @<Scan a unary operation@>; break;
17301 case primary_binary:
17302 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17304 @<Convert a suffix to a string@>; break;
17305 case internal_quantity:
17306 @<Scan an internal numeric quantity@>; break;
17307 case capsule_token:
17308 mp_make_exp_copy(mp, mp->cur_mod); break;
17310 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17312 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17313 @.A primary expression...@>
17315 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17317 if ( mp->cur_cmd==left_bracket ) {
17318 if ( mp->cur_type>=mp_known ) {
17319 @<Scan a mediation construction@>;
17326 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17329 static void mp_bad_exp (MP mp, const char * s) {
17331 print_err(s); mp_print(mp, " expression can't begin with `");
17332 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17333 mp_print_char(mp, xord('\''));
17334 help4("I'm afraid I need some sort of value in order to continue,",
17335 "so I've tentatively inserted `0'. You may want to",
17336 "delete this zero and insert something else;",
17337 "see Chapter 27 of The METAFONTbook for an example.");
17338 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17339 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17340 mp->cur_mod=0; mp_ins_error(mp);
17341 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17342 mp->var_flag=save_flag;
17345 @ @<Supply diagnostic information, if requested@>=
17347 if ( mp->panicking ) mp_check_mem(mp, false);
17349 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17350 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17353 @ @<Scan a delimited primary@>=
17355 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17356 mp_get_x_next(mp); mp_scan_expression(mp);
17357 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17358 @<Scan the rest of a delimited set of numerics@>;
17360 mp_check_delimiter(mp, l_delim,r_delim);
17364 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17365 within a ``big node.''
17368 static void mp_stash_in (MP mp,pointer p) {
17369 pointer q; /* temporary register */
17370 mp_type(p)=mp->cur_type;
17371 if ( mp->cur_type==mp_known ) {
17372 value(p)=mp->cur_exp;
17374 if ( mp->cur_type==mp_independent ) {
17375 @<Stash an independent |cur_exp| into a big node@>;
17377 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17378 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17379 mp_link(prev_dep(p))=p;
17381 mp_free_node(mp, mp->cur_exp,value_node_size);
17383 mp->cur_type=mp_vacuous;
17386 @ In rare cases the current expression can become |independent|. There
17387 may be many dependency lists pointing to such an independent capsule,
17388 so we can't simply move it into place within a big node. Instead,
17389 we copy it, then recycle it.
17391 @ @<Stash an independent |cur_exp|...@>=
17393 q=mp_single_dependency(mp, mp->cur_exp);
17394 if ( q==mp->dep_final ){
17395 mp_type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17397 mp_type(p)=mp_dependent; mp_new_dep(mp, p,q);
17399 mp_recycle_value(mp, mp->cur_exp);
17402 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17403 are synonymous with |x_part_loc| and |y_part_loc|.
17405 @<Scan the rest of a delimited set of numerics@>=
17407 p=mp_stash_cur_exp(mp);
17408 mp_get_x_next(mp); mp_scan_expression(mp);
17409 @<Make sure the second part of a pair or color has a numeric type@>;
17410 q=mp_get_node(mp, value_node_size); mp_name_type(q)=mp_capsule;
17411 if ( mp->cur_cmd==comma ) mp_type(q)=mp_color_type;
17412 else mp_type(q)=mp_pair_type;
17413 mp_init_big_node(mp, q); r=value(q);
17414 mp_stash_in(mp, y_part_loc(r));
17415 mp_unstash_cur_exp(mp, p);
17416 mp_stash_in(mp, x_part_loc(r));
17417 if ( mp->cur_cmd==comma ) {
17418 @<Scan the last of a triplet of numerics@>;
17420 if ( mp->cur_cmd==comma ) {
17421 mp_type(q)=mp_cmykcolor_type;
17422 mp_init_big_node(mp, q); t=value(q);
17423 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17424 value(cyan_part_loc(t))=value(red_part_loc(r));
17425 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17426 value(magenta_part_loc(t))=value(green_part_loc(r));
17427 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17428 value(yellow_part_loc(t))=value(blue_part_loc(r));
17429 mp_recycle_value(mp, r);
17431 @<Scan the last of a quartet of numerics@>;
17433 mp_check_delimiter(mp, l_delim,r_delim);
17434 mp->cur_type=mp_type(q);
17438 @ @<Make sure the second part of a pair or color has a numeric type@>=
17439 if ( mp->cur_type<mp_known ) {
17440 exp_err("Nonnumeric ypart has been replaced by 0");
17441 @.Nonnumeric...replaced by 0@>
17442 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';",
17443 "but after finding a nice `a' I found a `b' that isn't",
17444 "of numeric type. So I've changed that part to zero.",
17445 "(The b that I didn't like appears above the error message.)");
17446 mp_put_get_flush_error(mp, 0);
17449 @ @<Scan the last of a triplet of numerics@>=
17451 mp_get_x_next(mp); mp_scan_expression(mp);
17452 if ( mp->cur_type<mp_known ) {
17453 exp_err("Nonnumeric third part has been replaced by 0");
17454 @.Nonnumeric...replaced by 0@>
17455 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'",
17456 "isn't of numeric type. So I've changed that part to zero.",
17457 "(The c that I didn't like appears above the error message.)");
17458 mp_put_get_flush_error(mp, 0);
17460 mp_stash_in(mp, blue_part_loc(r));
17463 @ @<Scan the last of a quartet of numerics@>=
17465 mp_get_x_next(mp); mp_scan_expression(mp);
17466 if ( mp->cur_type<mp_known ) {
17467 exp_err("Nonnumeric blackpart has been replaced by 0");
17468 @.Nonnumeric...replaced by 0@>
17469 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't",
17470 "of numeric type. So I've changed that part to zero.",
17471 "(The k that I didn't like appears above the error message.)");
17472 mp_put_get_flush_error(mp, 0);
17474 mp_stash_in(mp, black_part_loc(r));
17477 @ The local variable |group_line| keeps track of the line
17478 where a \&{begingroup} command occurred; this will be useful
17479 in an error message if the group doesn't actually end.
17481 @<Other local variables for |scan_primary|@>=
17482 integer group_line; /* where a group began */
17484 @ @<Scan a grouped primary@>=
17486 group_line=mp_true_line(mp);
17487 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17488 save_boundary_item(p);
17490 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17491 } while (mp->cur_cmd==semicolon);
17492 if ( mp->cur_cmd!=end_group ) {
17493 print_err("A group begun on line ");
17494 @.A group...never ended@>
17495 mp_print_int(mp, group_line);
17496 mp_print(mp, " never ended");
17497 help2("I saw a `begingroup' back there that hasn't been matched",
17498 "by `endgroup'. So I've inserted `endgroup' now.");
17499 mp_back_error(mp); mp->cur_cmd=end_group;
17502 /* this might change |cur_type|, if independent variables are recycled */
17503 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17506 @ @<Scan a string constant@>=
17508 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17511 @ Later we'll come to procedures that perform actual operations like
17512 addition, square root, and so on; our purpose now is to do the parsing.
17513 But we might as well mention those future procedures now, so that the
17514 suspense won't be too bad:
17517 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17518 `\&{true}' or `\&{pencircle}');
17521 |do_unary(c)| applies a primitive operation to the current expression;
17524 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17525 and the current expression.
17527 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17529 @ @<Scan a unary operation@>=
17531 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17532 mp_do_unary(mp, c); goto DONE;
17535 @ A numeric token might be a primary by itself, or it might be the
17536 numerator of a fraction composed solely of numeric tokens, or it might
17537 multiply the primary that follows (provided that the primary doesn't begin
17538 with a plus sign or a minus sign). The code here uses the facts that
17539 |max_primary_command=plus_or_minus| and
17540 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17541 than unity, we try to retain higher precision when we use it in scalar
17544 @<Other local variables for |scan_primary|@>=
17545 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17547 @ @<Scan a primary that starts with a numeric token@>=
17549 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17550 if ( mp->cur_cmd!=slash ) {
17554 if ( mp->cur_cmd!=numeric_token ) {
17556 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17559 num=mp->cur_exp; denom=mp->cur_mod;
17560 if ( denom==0 ) { @<Protest division by zero@>; }
17561 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17562 check_arith; mp_get_x_next(mp);
17564 if ( mp->cur_cmd>=min_primary_command ) {
17565 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17566 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17567 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17568 mp_do_binary(mp, p,times);
17570 mp_frac_mult(mp, num,denom);
17571 mp_free_node(mp, p,value_node_size);
17578 @ @<Protest division...@>=
17580 print_err("Division by zero");
17581 @.Division by zero@>
17582 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17585 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17587 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17588 if ( mp->cur_cmd!=of_token ) {
17589 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17590 mp_print_cmd_mod(mp, primary_binary,c);
17592 help1("I've got the first argument; will look now for the other.");
17595 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17596 mp_do_binary(mp, p,c); goto DONE;
17599 @ @<Convert a suffix to a string@>=
17601 mp_get_x_next(mp); mp_scan_suffix(mp);
17602 mp->old_setting=mp->selector; mp->selector=new_string;
17603 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17604 mp_flush_token_list(mp, mp->cur_exp);
17605 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17606 mp->cur_type=mp_string_type;
17610 @ If an internal quantity appears all by itself on the left of an
17611 assignment, we return a token list of length one, containing the address
17612 of the internal quantity plus |hash_end|. (This accords with the conventions
17613 of the save stack, as described earlier.)
17615 @<Scan an internal...@>=
17618 if ( my_var_flag==assignment ) {
17620 if ( mp->cur_cmd==assignment ) {
17621 mp->cur_exp=mp_get_avail(mp);
17622 mp_info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17627 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17630 @ The most difficult part of |scan_primary| has been saved for last, since
17631 it was necessary to build up some confidence first. We can now face the task
17632 of scanning a variable.
17634 As we scan a variable, we build a token list containing the relevant
17635 names and subscript values, simultaneously following along in the
17636 ``collective'' structure to see if we are actually dealing with a macro
17637 instead of a value.
17639 The local variables |pre_head| and |post_head| will point to the beginning
17640 of the prefix and suffix lists; |tail| will point to the end of the list
17641 that is currently growing.
17643 Another local variable, |tt|, contains partial information about the
17644 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17645 relation |tt=mp_type(q)| will always hold. If |tt=undefined|, the routine
17646 doesn't bother to update its information about type. And if
17647 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17649 @ @<Other local variables for |scan_primary|@>=
17650 pointer pre_head,post_head,tail;
17651 /* prefix and suffix list variables */
17652 quarterword tt; /* approximation to the type of the variable-so-far */
17653 pointer t; /* a token */
17654 pointer macro_ref = 0; /* reference count for a suffixed macro */
17656 @ @<Scan a variable primary...@>=
17658 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17660 t=mp_cur_tok(mp); mp_link(tail)=t;
17661 if ( tt!=undefined ) {
17662 @<Find the approximate type |tt| and corresponding~|q|@>;
17663 if ( tt>=mp_unsuffixed_macro ) {
17664 @<Either begin an unsuffixed macro call or
17665 prepare for a suffixed one@>;
17668 mp_get_x_next(mp); tail=t;
17669 if ( mp->cur_cmd==left_bracket ) {
17670 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17672 if ( mp->cur_cmd>max_suffix_token ) break;
17673 if ( mp->cur_cmd<min_suffix_token ) break;
17674 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17675 @<Handle unusual cases that masquerade as variables, and |goto restart|
17676 or |goto done| if appropriate;
17677 otherwise make a copy of the variable and |goto done|@>;
17680 @ @<Either begin an unsuffixed macro call or...@>=
17682 mp_link(tail)=null;
17683 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17684 post_head=mp_get_avail(mp); tail=post_head; mp_link(tail)=t;
17685 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17687 @<Set up unsuffixed macro call and |goto restart|@>;
17691 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17693 mp_get_x_next(mp); mp_scan_expression(mp);
17694 if ( mp->cur_cmd!=right_bracket ) {
17695 @<Put the left bracket and the expression back to be rescanned@>;
17697 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17698 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17702 @ The left bracket that we thought was introducing a subscript might have
17703 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17704 So we don't issue an error message at this point; but we do want to back up
17705 so as to avoid any embarrassment about our incorrect assumption.
17707 @<Put the left bracket and the expression back to be rescanned@>=
17709 mp_back_input(mp); /* that was the token following the current expression */
17710 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17711 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17714 @ Here's a routine that puts the current expression back to be read again.
17717 static void mp_back_expr (MP mp) {
17718 pointer p; /* capsule token */
17719 p=mp_stash_cur_exp(mp); mp_link(p)=null; back_list(p);
17722 @ Unknown subscripts lead to the following error message.
17725 static void mp_bad_subscript (MP mp) {
17726 exp_err("Improper subscript has been replaced by zero");
17727 @.Improper subscript...@>
17728 help3("A bracketed subscript must have a known numeric value;",
17729 "unfortunately, what I found was the value that appears just",
17730 "above this error message. So I'll try a zero subscript.");
17731 mp_flush_error(mp, 0);
17734 @ Every time we call |get_x_next|, there's a chance that the variable we've
17735 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17736 into the variable structure; we need to start searching from the root each time.
17738 @<Find the approximate type |tt| and corresponding~|q|@>=
17741 p=mp_link(pre_head); q=mp_info(p); tt=undefined;
17742 if ( eq_type(q) % outer_tag==tag_token ) {
17744 if ( q==null ) goto DONE2;
17748 tt=mp_type(q); goto DONE2;
17750 if ( mp_type(q)!=mp_structured ) goto DONE2;
17751 q=mp_link(attr_head(q)); /* the |collective_subscript| attribute */
17752 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17753 do { q=mp_link(q); } while (! (attr_loc(q)>=mp_info(p)));
17754 if ( attr_loc(q)>mp_info(p) ) goto DONE2;
17762 @ How do things stand now? Well, we have scanned an entire variable name,
17763 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17764 |cur_sym| represent the token that follows. If |post_head=null|, a
17765 token list for this variable name starts at |mp_link(pre_head)|, with all
17766 subscripts evaluated. But if |post_head<>null|, the variable turned out
17767 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17768 |post_head| is the head of a token list containing both `\.{\AT!}' and
17771 Our immediate problem is to see if this variable still exists. (Variable
17772 structures can change drastically whenever we call |get_x_next|; users
17773 aren't supposed to do this, but the fact that it is possible means that
17774 we must be cautious.)
17776 The following procedure prints an error message when a variable
17777 unexpectedly disappears. Its help message isn't quite right for
17778 our present purposes, but we'll be able to fix that up.
17781 static void mp_obliterated (MP mp,pointer q) {
17782 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17783 mp_print(mp, " has been obliterated");
17784 @.Variable...obliterated@>
17785 help5("It seems you did a nasty thing---probably by accident,",
17786 "but nevertheless you nearly hornswoggled me...",
17787 "While I was evaluating the right-hand side of this",
17788 "command, something happened, and the left-hand side",
17789 "is no longer a variable! So I won't change anything.");
17792 @ If the variable does exist, we also need to check
17793 for a few other special cases before deciding that a plain old ordinary
17794 variable has, indeed, been scanned.
17796 @<Handle unusual cases that masquerade as variables...@>=
17797 if ( post_head!=null ) {
17798 @<Set up suffixed macro call and |goto restart|@>;
17800 q=mp_link(pre_head); free_avail(pre_head);
17801 if ( mp->cur_cmd==my_var_flag ) {
17802 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17804 p=mp_find_variable(mp, q);
17806 mp_make_exp_copy(mp, p);
17808 mp_obliterated(mp, q);
17809 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17810 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17811 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17812 mp_put_get_flush_error(mp, 0);
17814 mp_flush_node_list(mp, q);
17817 @ The only complication associated with macro calling is that the prefix
17818 and ``at'' parameters must be packaged in an appropriate list of lists.
17820 @<Set up unsuffixed macro call and |goto restart|@>=
17822 p=mp_get_avail(mp); mp_info(pre_head)=mp_link(pre_head); mp_link(pre_head)=p;
17823 mp_info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17828 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17829 we don't care, because we have reserved a pointer (|macro_ref|) to its
17832 @<Set up suffixed macro call and |goto restart|@>=
17834 mp_back_input(mp); p=mp_get_avail(mp); q=mp_link(post_head);
17835 mp_info(pre_head)=mp_link(pre_head); mp_link(pre_head)=post_head;
17836 mp_info(post_head)=q; mp_link(post_head)=p; mp_info(p)=mp_link(q); mp_link(q)=null;
17837 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17838 mp_get_x_next(mp); goto RESTART;
17841 @ Our remaining job is simply to make a copy of the value that has been
17842 found. Some cases are harder than others, but complexity arises solely
17843 because of the multiplicity of possible cases.
17845 @<Declare the procedure called |make_exp_copy|@>=
17846 @<Declare subroutines needed by |make_exp_copy|@>
17847 static void mp_make_exp_copy (MP mp,pointer p) {
17848 pointer q,r,t; /* registers for list manipulation */
17850 mp->cur_type=mp_type(p);
17851 switch (mp->cur_type) {
17852 case mp_vacuous: case mp_boolean_type: case mp_known:
17853 mp->cur_exp=value(p); break;
17854 case unknown_types:
17855 mp->cur_exp=mp_new_ring_entry(mp, p);
17857 case mp_string_type:
17858 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17860 case mp_picture_type:
17861 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17864 mp->cur_exp=copy_pen(value(p));
17867 mp->cur_exp=mp_copy_path(mp, value(p));
17869 case mp_transform_type: case mp_color_type:
17870 case mp_cmykcolor_type: case mp_pair_type:
17871 @<Copy the big node |p|@>;
17873 case mp_dependent: case mp_proto_dependent:
17874 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17876 case mp_numeric_type:
17877 new_indep(p); goto RESTART;
17879 case mp_independent:
17880 q=mp_single_dependency(mp, p);
17881 if ( q==mp->dep_final ){
17882 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,dep_node_size);
17884 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17888 mp_confusion(mp, "copy");
17889 @:this can't happen copy}{\quad copy@>
17894 @ The |encapsulate| subroutine assumes that |dep_final| is the
17895 tail of dependency list~|p|.
17897 @<Declare subroutines needed by |make_exp_copy|@>=
17898 static void mp_encapsulate (MP mp,pointer p) {
17899 mp->cur_exp=mp_get_node(mp, value_node_size); mp_type(mp->cur_exp)=mp->cur_type;
17900 mp_name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17903 @ The most tedious case arises when the user refers to a
17904 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17905 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17908 @<Copy the big node |p|@>=
17910 if ( value(p)==null )
17911 mp_init_big_node(mp, p);
17912 t=mp_get_node(mp, value_node_size); mp_name_type(t)=mp_capsule; mp_type(t)=mp->cur_type;
17913 mp_init_big_node(mp, t);
17914 q=value(p)+mp->big_node_size[mp->cur_type];
17915 r=value(t)+mp->big_node_size[mp->cur_type];
17917 q=q-2; r=r-2; mp_install(mp, r,q);
17918 } while (q!=value(p));
17922 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17923 a big node that will be part of a capsule.
17925 @<Declare subroutines needed by |make_exp_copy|@>=
17926 static void mp_install (MP mp,pointer r, pointer q) {
17927 pointer p; /* temporary register */
17928 if ( mp_type(q)==mp_known ){
17929 value(r)=value(q); mp_type(r)=mp_known;
17930 } else if ( mp_type(q)==mp_independent ) {
17931 p=mp_single_dependency(mp, q);
17932 if ( p==mp->dep_final ) {
17933 mp_type(r)=mp_known; value(r)=0; mp_free_node(mp, p,dep_node_size);
17935 mp_type(r)=mp_dependent; mp_new_dep(mp, r,p);
17938 mp_type(r)=mp_type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17942 @ Expressions of the form `\.{a[b,c]}' are converted into
17943 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17944 provided that \.a is numeric.
17946 @<Scan a mediation...@>=
17948 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17949 if ( mp->cur_cmd!=comma ) {
17950 @<Put the left bracket and the expression back...@>;
17951 mp_unstash_cur_exp(mp, p);
17953 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17954 if ( mp->cur_cmd!=right_bracket ) {
17955 mp_missing_err(mp, "]");
17957 help3("I've scanned an expression of the form `a[b,c',",
17958 "so a right bracket should have come next.",
17959 "I shall pretend that one was there.");
17962 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17963 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17964 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17968 @ Here is a comparatively simple routine that is used to scan the
17969 \&{suffix} parameters of a macro.
17971 @<Declare the basic parsing subroutines@>=
17972 static void mp_scan_suffix (MP mp) {
17973 pointer h,t; /* head and tail of the list being built */
17974 pointer p; /* temporary register */
17975 h=mp_get_avail(mp); t=h;
17977 if ( mp->cur_cmd==left_bracket ) {
17978 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17980 if ( mp->cur_cmd==numeric_token ) {
17981 p=mp_new_num_tok(mp, mp->cur_mod);
17982 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17983 p=mp_get_avail(mp); mp_info(p)=mp->cur_sym;
17987 mp_link(t)=p; t=p; mp_get_x_next(mp);
17989 mp->cur_exp=mp_link(h); free_avail(h); mp->cur_type=mp_token_list;
17992 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17994 mp_get_x_next(mp); mp_scan_expression(mp);
17995 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17996 if ( mp->cur_cmd!=right_bracket ) {
17997 mp_missing_err(mp, "]");
17999 help3("I've seen a `[' and a subscript value, in a suffix,",
18000 "so a right bracket should have come next.",
18001 "I shall pretend that one was there.");
18004 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
18007 @* \[38] Parsing secondary and higher expressions.
18009 After the intricacies of |scan_primary|\kern-1pt,
18010 the |scan_secondary| routine is
18011 refreshingly simple. It's not trivial, but the operations are relatively
18012 straightforward; the main difficulty is, again, that expressions and data
18013 structures might change drastically every time we call |get_x_next|, so a
18014 cautious approach is mandatory. For example, a macro defined by
18015 \&{primarydef} might have disappeared by the time its second argument has
18016 been scanned; we solve this by increasing the reference count of its token
18017 list, so that the macro can be called even after it has been clobbered.
18019 @<Declare the basic parsing subroutines@>=
18020 static void mp_scan_secondary (MP mp) {
18021 pointer p; /* for list manipulation */
18022 halfword c,d; /* operation codes or modifiers */
18023 pointer mac_name; /* token defined with \&{primarydef} */
18025 if ((mp->cur_cmd<min_primary_command)||
18026 (mp->cur_cmd>max_primary_command) )
18027 mp_bad_exp(mp, "A secondary");
18028 @.A secondary expression...@>
18029 mp_scan_primary(mp);
18031 if ( mp->cur_cmd<=max_secondary_command &&
18032 mp->cur_cmd>=min_secondary_command ) {
18033 p=mp_stash_cur_exp(mp);
18034 c=mp->cur_mod; d=mp->cur_cmd;
18035 if ( d==secondary_primary_macro ) {
18036 mac_name=mp->cur_sym;
18040 mp_scan_primary(mp);
18041 if ( d!=secondary_primary_macro ) {
18042 mp_do_binary(mp, p,c);
18045 mp_binary_mac(mp, p,c,mac_name);
18046 decr(ref_count(c));
18054 @ The following procedure calls a macro that has two parameters,
18058 static void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
18059 pointer q,r; /* nodes in the parameter list */
18060 q=mp_get_avail(mp); r=mp_get_avail(mp); mp_link(q)=r;
18061 mp_info(q)=p; mp_info(r)=mp_stash_cur_exp(mp);
18062 mp_macro_call(mp, c,q,n);
18065 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
18067 @<Declare the basic parsing subroutines@>=
18068 static void mp_scan_tertiary (MP mp) {
18069 pointer p; /* for list manipulation */
18070 halfword c,d; /* operation codes or modifiers */
18071 pointer mac_name; /* token defined with \&{secondarydef} */
18073 if ((mp->cur_cmd<min_primary_command)||
18074 (mp->cur_cmd>max_primary_command) )
18075 mp_bad_exp(mp, "A tertiary");
18076 @.A tertiary expression...@>
18077 mp_scan_secondary(mp);
18079 if ( mp->cur_cmd<=max_tertiary_command ) {
18080 if ( mp->cur_cmd>=min_tertiary_command ) {
18081 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18082 if ( d==tertiary_secondary_macro ) {
18083 mac_name=mp->cur_sym; add_mac_ref(c);
18085 mp_get_x_next(mp); mp_scan_secondary(mp);
18086 if ( d!=tertiary_secondary_macro ) {
18087 mp_do_binary(mp, p,c);
18089 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18090 decr(ref_count(c)); mp_get_x_next(mp);
18098 @ Finally we reach the deepest level in our quartet of parsing routines.
18099 This one is much like the others; but it has an extra complication from
18100 paths, which materialize here.
18102 @d continue_path 25 /* a label inside of |scan_expression| */
18103 @d finish_path 26 /* another */
18105 @<Declare the basic parsing subroutines@>=
18106 static void mp_scan_expression (MP mp) {
18107 pointer p,q,r,pp,qq; /* for list manipulation */
18108 halfword c,d; /* operation codes or modifiers */
18109 int my_var_flag; /* initial value of |var_flag| */
18110 pointer mac_name; /* token defined with \&{tertiarydef} */
18111 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18112 scaled x,y; /* explicit coordinates or tension at a path join */
18113 int t; /* knot type following a path join */
18115 my_var_flag=mp->var_flag; mac_name=null;
18117 if ((mp->cur_cmd<min_primary_command)||
18118 (mp->cur_cmd>max_primary_command) )
18119 mp_bad_exp(mp, "An");
18120 @.An expression...@>
18121 mp_scan_tertiary(mp);
18123 if ( mp->cur_cmd<=max_expression_command )
18124 if ( mp->cur_cmd>=min_expression_command ) {
18125 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18126 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18127 if ( d==expression_tertiary_macro ) {
18128 mac_name=mp->cur_sym; add_mac_ref(c);
18130 if ( (d<ampersand)||((d==ampersand)&&
18131 ((mp_type(p)==mp_pair_type)||(mp_type(p)==mp_path_type))) ) {
18132 @<Scan a path construction operation;
18133 but |return| if |p| has the wrong type@>;
18135 mp_get_x_next(mp); mp_scan_tertiary(mp);
18136 if ( d!=expression_tertiary_macro ) {
18137 mp_do_binary(mp, p,c);
18139 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18140 decr(ref_count(c)); mp_get_x_next(mp);
18149 @ The reader should review the data structure conventions for paths before
18150 hoping to understand the next part of this code.
18152 @<Scan a path construction operation...@>=
18155 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18156 but |return| if |p| doesn't have a suitable type@>;
18158 @<Determine the path join parameters;
18159 but |goto finish_path| if there's only a direction specifier@>;
18160 if ( mp->cur_cmd==cycle ) {
18161 @<Get ready to close a cycle@>;
18163 mp_scan_tertiary(mp);
18164 @<Convert the right operand, |cur_exp|,
18165 into a partial path from |pp| to~|qq|@>;
18167 @<Join the partial paths and reset |p| and |q| to the head and tail
18169 if ( mp->cur_cmd>=min_expression_command )
18170 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18172 @<Choose control points for the path and put the result into |cur_exp|@>;
18175 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18177 mp_unstash_cur_exp(mp, p);
18178 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18179 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18182 while ( mp_link(q)!=p ) q=mp_link(q);
18183 if ( mp_left_type(p)!=mp_endpoint ) { /* open up a cycle */
18184 r=mp_copy_knot(mp, p); mp_link(q)=r; q=r;
18186 mp_left_type(p)=mp_open; mp_right_type(q)=mp_open;
18189 @ A pair of numeric values is changed into a knot node for a one-point path
18190 when \MP\ discovers that the pair is part of a path.
18193 static pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18194 pointer q; /* the new node */
18195 q=mp_get_node(mp, knot_node_size); mp_left_type(q)=mp_endpoint;
18196 mp_right_type(q)=mp_endpoint; mp_originator(q)=mp_metapost_user; mp_link(q)=q;
18197 mp_known_pair(mp); mp_x_coord(q)=mp->cur_x; mp_y_coord(q)=mp->cur_y;
18201 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18202 of the current expression, assuming that the current expression is a
18203 pair of known numerics. Unknown components are zeroed, and the
18204 current expression is flushed.
18207 static void mp_known_pair (MP mp);
18210 void mp_known_pair (MP mp) {
18211 pointer p; /* the pair node */
18212 if ( mp->cur_type!=mp_pair_type ) {
18213 exp_err("Undefined coordinates have been replaced by (0,0)");
18214 @.Undefined coordinates...@>
18215 help5("I need x and y numbers for this part of the path.",
18216 "The value I found (see above) was no good;",
18217 "so I'll try to keep going by using zero instead.",
18218 "(Chapter 27 of The METAFONTbook explains that",
18219 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18220 "you might want to type `I ??" "?' now.)");
18221 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18223 p=value(mp->cur_exp);
18224 @<Make sure that both |x| and |y| parts of |p| are known;
18225 copy them into |cur_x| and |cur_y|@>;
18226 mp_flush_cur_exp(mp, 0);
18230 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18231 if ( mp_type(x_part_loc(p))==mp_known ) {
18232 mp->cur_x=value(x_part_loc(p));
18234 mp_disp_err(mp, x_part_loc(p),
18235 "Undefined x coordinate has been replaced by 0");
18236 @.Undefined coordinates...@>
18237 help5("I need a `known' x value for this part of the path.",
18238 "The value I found (see above) was no good;",
18239 "so I'll try to keep going by using zero instead.",
18240 "(Chapter 27 of The METAFONTbook explains that",
18241 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18242 "you might want to type `I ??" "?' now.)");
18243 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18245 if ( mp_type(y_part_loc(p))==mp_known ) {
18246 mp->cur_y=value(y_part_loc(p));
18248 mp_disp_err(mp, y_part_loc(p),
18249 "Undefined y coordinate has been replaced by 0");
18250 help5("I need a `known' y value for this part of the path.",
18251 "The value I found (see above) was no good;",
18252 "so I'll try to keep going by using zero instead.",
18253 "(Chapter 27 of The METAFONTbook explains that",
18254 "you might want to type `I ??" "?' now.)");
18255 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18258 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18260 @<Determine the path join parameters...@>=
18261 if ( mp->cur_cmd==left_brace ) {
18262 @<Put the pre-join direction information into node |q|@>;
18265 if ( d==path_join ) {
18266 @<Determine the tension and/or control points@>;
18267 } else if ( d!=ampersand ) {
18271 if ( mp->cur_cmd==left_brace ) {
18272 @<Put the post-join direction information into |x| and |t|@>;
18273 } else if ( mp_right_type(q)!=mp_explicit ) {
18277 @ The |scan_direction| subroutine looks at the directional information
18278 that is enclosed in braces, and also scans ahead to the following character.
18279 A type code is returned, either |open| (if the direction was $(0,0)$),
18280 or |curl| (if the direction was a curl of known value |cur_exp|), or
18281 |given| (if the direction is given by the |angle| value that now
18282 appears in |cur_exp|).
18284 There's nothing difficult about this subroutine, but the program is rather
18285 lengthy because a variety of potential errors need to be nipped in the bud.
18288 static quarterword mp_scan_direction (MP mp) {
18289 int t; /* the type of information found */
18290 scaled x; /* an |x| coordinate */
18292 if ( mp->cur_cmd==curl_command ) {
18293 @<Scan a curl specification@>;
18295 @<Scan a given direction@>;
18297 if ( mp->cur_cmd!=right_brace ) {
18298 mp_missing_err(mp, "}");
18299 @.Missing `\char`\}'@>
18300 help3("I've scanned a direction spec for part of a path,",
18301 "so a right brace should have come next.",
18302 "I shall pretend that one was there.");
18309 @ @<Scan a curl specification@>=
18310 { mp_get_x_next(mp); mp_scan_expression(mp);
18311 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18312 exp_err("Improper curl has been replaced by 1");
18314 help1("A curl must be a known, nonnegative number.");
18315 mp_put_get_flush_error(mp, unity);
18320 @ @<Scan a given direction@>=
18321 { mp_scan_expression(mp);
18322 if ( mp->cur_type>mp_pair_type ) {
18323 @<Get given directions separated by commas@>;
18327 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18328 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18331 @ @<Get given directions separated by commas@>=
18333 if ( mp->cur_type!=mp_known ) {
18334 exp_err("Undefined x coordinate has been replaced by 0");
18335 @.Undefined coordinates...@>
18336 help5("I need a `known' x value for this part of the path.",
18337 "The value I found (see above) was no good;",
18338 "so I'll try to keep going by using zero instead.",
18339 "(Chapter 27 of The METAFONTbook explains that",
18340 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18341 "you might want to type `I ??" "?' now.)");
18342 mp_put_get_flush_error(mp, 0);
18345 if ( mp->cur_cmd!=comma ) {
18346 mp_missing_err(mp, ",");
18348 help2("I've got the x coordinate of a path direction;",
18349 "will look for the y coordinate next.");
18352 mp_get_x_next(mp); mp_scan_expression(mp);
18353 if ( mp->cur_type!=mp_known ) {
18354 exp_err("Undefined y coordinate has been replaced by 0");
18355 help5("I need a `known' y value for this part of the path.",
18356 "The value I found (see above) was no good;",
18357 "so I'll try to keep going by using zero instead.",
18358 "(Chapter 27 of The METAFONTbook explains that",
18359 "you might want to type `I ??" "?' now.)");
18360 mp_put_get_flush_error(mp, 0);
18362 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18365 @ At this point |mp_right_type(q)| is usually |open|, but it may have been
18366 set to some other value by a previous operation. We must maintain
18367 the value of |mp_right_type(q)| in cases such as
18368 `\.{..\{curl2\}z\{0,0\}..}'.
18370 @<Put the pre-join...@>=
18372 t=mp_scan_direction(mp);
18373 if ( t!=mp_open ) {
18374 mp_right_type(q)=t; right_given(q)=mp->cur_exp;
18375 if ( mp_left_type(q)==mp_open ) {
18376 mp_left_type(q)=t; left_given(q)=mp->cur_exp;
18377 } /* note that |left_given(q)=left_curl(q)| */
18381 @ Since |left_tension| and |mp_left_y| share the same position in knot nodes,
18382 and since |left_given| is similarly equivalent to |mp_left_x|, we use
18383 |x| and |y| to hold the given direction and tension information when
18384 there are no explicit control points.
18386 @<Put the post-join...@>=
18388 t=mp_scan_direction(mp);
18389 if ( mp_right_type(q)!=mp_explicit ) x=mp->cur_exp;
18390 else t=mp_explicit; /* the direction information is superfluous */
18393 @ @<Determine the tension and/or...@>=
18396 if ( mp->cur_cmd==tension ) {
18397 @<Set explicit tensions@>;
18398 } else if ( mp->cur_cmd==controls ) {
18399 @<Set explicit control points@>;
18401 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18404 if ( mp->cur_cmd!=path_join ) {
18405 mp_missing_err(mp, "..");
18407 help1("A path join command should end with two dots.");
18414 @ @<Set explicit tensions@>=
18416 mp_get_x_next(mp); y=mp->cur_cmd;
18417 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18418 mp_scan_primary(mp);
18419 @<Make sure that the current expression is a valid tension setting@>;
18420 if ( y==at_least ) negate(mp->cur_exp);
18421 right_tension(q)=mp->cur_exp;
18422 if ( mp->cur_cmd==and_command ) {
18423 mp_get_x_next(mp); y=mp->cur_cmd;
18424 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18425 mp_scan_primary(mp);
18426 @<Make sure that the current expression is a valid tension setting@>;
18427 if ( y==at_least ) negate(mp->cur_exp);
18432 @ @d min_tension three_quarter_unit
18434 @<Make sure that the current expression is a valid tension setting@>=
18435 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18436 exp_err("Improper tension has been set to 1");
18437 @.Improper tension@>
18438 help1("The expression above should have been a number >=3/4.");
18439 mp_put_get_flush_error(mp, unity);
18442 @ @<Set explicit control points@>=
18444 mp_right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18445 mp_known_pair(mp); mp_right_x(q)=mp->cur_x; mp_right_y(q)=mp->cur_y;
18446 if ( mp->cur_cmd!=and_command ) {
18447 x=mp_right_x(q); y=mp_right_y(q);
18449 mp_get_x_next(mp); mp_scan_primary(mp);
18450 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18454 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18456 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18457 else pp=mp->cur_exp;
18459 while ( mp_link(qq)!=pp ) qq=mp_link(qq);
18460 if ( mp_left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18461 r=mp_copy_knot(mp, pp); mp_link(qq)=r; qq=r;
18463 mp_left_type(pp)=mp_open; mp_right_type(qq)=mp_open;
18466 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18467 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18468 shouldn't have length zero.
18470 @<Get ready to close a cycle@>=
18472 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18473 if ( d==ampersand ) if ( p==q ) {
18474 d=path_join; right_tension(q)=unity; y=unity;
18478 @ @<Join the partial paths and reset |p| and |q|...@>=
18480 if ( d==ampersand ) {
18481 if ( (mp_x_coord(q)!=mp_x_coord(pp))||(mp_y_coord(q)!=mp_y_coord(pp)) ) {
18482 print_err("Paths don't touch; `&' will be changed to `..'");
18483 @.Paths don't touch@>
18484 help3("When you join paths `p&q', the ending point of p",
18485 "must be exactly equal to the starting point of q.",
18486 "So I'm going to pretend that you said `p..q' instead.");
18487 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18490 @<Plug an opening in |mp_right_type(pp)|, if possible@>;
18491 if ( d==ampersand ) {
18492 @<Splice independent paths together@>;
18494 @<Plug an opening in |mp_right_type(q)|, if possible@>;
18495 mp_link(q)=pp; mp_left_y(pp)=y;
18496 if ( t!=mp_open ) { mp_left_x(pp)=x; mp_left_type(pp)=t; };
18501 @ @<Plug an opening in |mp_right_type(q)|...@>=
18502 if ( mp_right_type(q)==mp_open ) {
18503 if ( (mp_left_type(q)==mp_curl)||(mp_left_type(q)==mp_given) ) {
18504 mp_right_type(q)=mp_left_type(q); right_given(q)=left_given(q);
18508 @ @<Plug an opening in |mp_right_type(pp)|...@>=
18509 if ( mp_right_type(pp)==mp_open ) {
18510 if ( (t==mp_curl)||(t==mp_given) ) {
18511 mp_right_type(pp)=t; right_given(pp)=x;
18515 @ @<Splice independent paths together@>=
18517 if ( mp_left_type(q)==mp_open ) if ( mp_right_type(q)==mp_open ) {
18518 mp_left_type(q)=mp_curl; left_curl(q)=unity;
18520 if ( mp_right_type(pp)==mp_open ) if ( t==mp_open ) {
18521 mp_right_type(pp)=mp_curl; right_curl(pp)=unity;
18523 mp_right_type(q)=mp_right_type(pp); mp_link(q)=mp_link(pp);
18524 mp_right_x(q)=mp_right_x(pp); mp_right_y(q)=mp_right_y(pp);
18525 mp_free_node(mp, pp,knot_node_size);
18526 if ( qq==pp ) qq=q;
18529 @ @<Choose control points for the path...@>=
18531 if ( d==ampersand ) p=q;
18533 mp_left_type(p)=mp_endpoint;
18534 if ( mp_right_type(p)==mp_open ) {
18535 mp_right_type(p)=mp_curl; right_curl(p)=unity;
18537 mp_right_type(q)=mp_endpoint;
18538 if ( mp_left_type(q)==mp_open ) {
18539 mp_left_type(q)=mp_curl; left_curl(q)=unity;
18543 mp_make_choices(mp, p);
18544 mp->cur_type=mp_path_type; mp->cur_exp=p
18546 @ Finally, we sometimes need to scan an expression whose value is
18547 supposed to be either |true_code| or |false_code|.
18549 @<Declare the basic parsing subroutines@>=
18550 static void mp_get_boolean (MP mp) {
18551 mp_get_x_next(mp); mp_scan_expression(mp);
18552 if ( mp->cur_type!=mp_boolean_type ) {
18553 exp_err("Undefined condition will be treated as `false'");
18554 @.Undefined condition...@>
18555 help2("The expression shown above should have had a definite",
18556 "true-or-false value. I'm changing it to `false'.");
18557 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18561 @* \[39] Doing the operations.
18562 The purpose of parsing is primarily to permit people to avoid piles of
18563 parentheses. But the real work is done after the structure of an expression
18564 has been recognized; that's when new expressions are generated. We
18565 turn now to the guts of \MP, which handles individual operators that
18566 have come through the parsing mechanism.
18568 We'll start with the easy ones that take no operands, then work our way
18569 up to operators with one and ultimately two arguments. In other words,
18570 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18571 that are invoked periodically by the expression scanners.
18573 First let's make sure that all of the primitive operators are in the
18574 hash table. Although |scan_primary| and its relatives made use of the
18575 \\{cmd} code for these operators, the \\{do} routines base everything
18576 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18577 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18580 mp_primitive(mp, "true",nullary,true_code);
18581 @:true_}{\&{true} primitive@>
18582 mp_primitive(mp, "false",nullary,false_code);
18583 @:false_}{\&{false} primitive@>
18584 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18585 @:null_picture_}{\&{nullpicture} primitive@>
18586 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18587 @:null_pen_}{\&{nullpen} primitive@>
18588 mp_primitive(mp, "jobname",nullary,job_name_op);
18589 @:job_name_}{\&{jobname} primitive@>
18590 mp_primitive(mp, "readstring",nullary,read_string_op);
18591 @:read_string_}{\&{readstring} primitive@>
18592 mp_primitive(mp, "pencircle",nullary,pen_circle);
18593 @:pen_circle_}{\&{pencircle} primitive@>
18594 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18595 @:normal_deviate_}{\&{normaldeviate} primitive@>
18596 mp_primitive(mp, "readfrom",unary,read_from_op);
18597 @:read_from_}{\&{readfrom} primitive@>
18598 mp_primitive(mp, "closefrom",unary,close_from_op);
18599 @:close_from_}{\&{closefrom} primitive@>
18600 mp_primitive(mp, "odd",unary,odd_op);
18601 @:odd_}{\&{odd} primitive@>
18602 mp_primitive(mp, "known",unary,known_op);
18603 @:known_}{\&{known} primitive@>
18604 mp_primitive(mp, "unknown",unary,unknown_op);
18605 @:unknown_}{\&{unknown} primitive@>
18606 mp_primitive(mp, "not",unary,not_op);
18607 @:not_}{\&{not} primitive@>
18608 mp_primitive(mp, "decimal",unary,decimal);
18609 @:decimal_}{\&{decimal} primitive@>
18610 mp_primitive(mp, "reverse",unary,reverse);
18611 @:reverse_}{\&{reverse} primitive@>
18612 mp_primitive(mp, "makepath",unary,make_path_op);
18613 @:make_path_}{\&{makepath} primitive@>
18614 mp_primitive(mp, "makepen",unary,make_pen_op);
18615 @:make_pen_}{\&{makepen} primitive@>
18616 mp_primitive(mp, "oct",unary,oct_op);
18617 @:oct_}{\&{oct} primitive@>
18618 mp_primitive(mp, "hex",unary,hex_op);
18619 @:hex_}{\&{hex} primitive@>
18620 mp_primitive(mp, "ASCII",unary,ASCII_op);
18621 @:ASCII_}{\&{ASCII} primitive@>
18622 mp_primitive(mp, "char",unary,char_op);
18623 @:char_}{\&{char} primitive@>
18624 mp_primitive(mp, "length",unary,length_op);
18625 @:length_}{\&{length} primitive@>
18626 mp_primitive(mp, "turningnumber",unary,turning_op);
18627 @:turning_number_}{\&{turningnumber} primitive@>
18628 mp_primitive(mp, "xpart",unary,x_part);
18629 @:x_part_}{\&{xpart} primitive@>
18630 mp_primitive(mp, "ypart",unary,y_part);
18631 @:y_part_}{\&{ypart} primitive@>
18632 mp_primitive(mp, "xxpart",unary,xx_part);
18633 @:xx_part_}{\&{xxpart} primitive@>
18634 mp_primitive(mp, "xypart",unary,xy_part);
18635 @:xy_part_}{\&{xypart} primitive@>
18636 mp_primitive(mp, "yxpart",unary,yx_part);
18637 @:yx_part_}{\&{yxpart} primitive@>
18638 mp_primitive(mp, "yypart",unary,yy_part);
18639 @:yy_part_}{\&{yypart} primitive@>
18640 mp_primitive(mp, "redpart",unary,red_part);
18641 @:red_part_}{\&{redpart} primitive@>
18642 mp_primitive(mp, "greenpart",unary,green_part);
18643 @:green_part_}{\&{greenpart} primitive@>
18644 mp_primitive(mp, "bluepart",unary,blue_part);
18645 @:blue_part_}{\&{bluepart} primitive@>
18646 mp_primitive(mp, "cyanpart",unary,cyan_part);
18647 @:cyan_part_}{\&{cyanpart} primitive@>
18648 mp_primitive(mp, "magentapart",unary,magenta_part);
18649 @:magenta_part_}{\&{magentapart} primitive@>
18650 mp_primitive(mp, "yellowpart",unary,yellow_part);
18651 @:yellow_part_}{\&{yellowpart} primitive@>
18652 mp_primitive(mp, "blackpart",unary,black_part);
18653 @:black_part_}{\&{blackpart} primitive@>
18654 mp_primitive(mp, "greypart",unary,grey_part);
18655 @:grey_part_}{\&{greypart} primitive@>
18656 mp_primitive(mp, "colormodel",unary,color_model_part);
18657 @:color_model_part_}{\&{colormodel} primitive@>
18658 mp_primitive(mp, "fontpart",unary,font_part);
18659 @:font_part_}{\&{fontpart} primitive@>
18660 mp_primitive(mp, "textpart",unary,text_part);
18661 @:text_part_}{\&{textpart} primitive@>
18662 mp_primitive(mp, "pathpart",unary,path_part);
18663 @:path_part_}{\&{pathpart} primitive@>
18664 mp_primitive(mp, "penpart",unary,pen_part);
18665 @:pen_part_}{\&{penpart} primitive@>
18666 mp_primitive(mp, "dashpart",unary,dash_part);
18667 @:dash_part_}{\&{dashpart} primitive@>
18668 mp_primitive(mp, "sqrt",unary,sqrt_op);
18669 @:sqrt_}{\&{sqrt} primitive@>
18670 mp_primitive(mp, "mexp",unary,mp_m_exp_op);
18671 @:m_exp_}{\&{mexp} primitive@>
18672 mp_primitive(mp, "mlog",unary,mp_m_log_op);
18673 @:m_log_}{\&{mlog} primitive@>
18674 mp_primitive(mp, "sind",unary,sin_d_op);
18675 @:sin_d_}{\&{sind} primitive@>
18676 mp_primitive(mp, "cosd",unary,cos_d_op);
18677 @:cos_d_}{\&{cosd} primitive@>
18678 mp_primitive(mp, "floor",unary,floor_op);
18679 @:floor_}{\&{floor} primitive@>
18680 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18681 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18682 mp_primitive(mp, "charexists",unary,char_exists_op);
18683 @:char_exists_}{\&{charexists} primitive@>
18684 mp_primitive(mp, "fontsize",unary,font_size);
18685 @:font_size_}{\&{fontsize} primitive@>
18686 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18687 @:ll_corner_}{\&{llcorner} primitive@>
18688 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18689 @:lr_corner_}{\&{lrcorner} primitive@>
18690 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18691 @:ul_corner_}{\&{ulcorner} primitive@>
18692 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18693 @:ur_corner_}{\&{urcorner} primitive@>
18694 mp_primitive(mp, "arclength",unary,arc_length);
18695 @:arc_length_}{\&{arclength} primitive@>
18696 mp_primitive(mp, "angle",unary,angle_op);
18697 @:angle_}{\&{angle} primitive@>
18698 mp_primitive(mp, "cycle",cycle,cycle_op);
18699 @:cycle_}{\&{cycle} primitive@>
18700 mp_primitive(mp, "stroked",unary,stroked_op);
18701 @:stroked_}{\&{stroked} primitive@>
18702 mp_primitive(mp, "filled",unary,filled_op);
18703 @:filled_}{\&{filled} primitive@>
18704 mp_primitive(mp, "textual",unary,textual_op);
18705 @:textual_}{\&{textual} primitive@>
18706 mp_primitive(mp, "clipped",unary,clipped_op);
18707 @:clipped_}{\&{clipped} primitive@>
18708 mp_primitive(mp, "bounded",unary,bounded_op);
18709 @:bounded_}{\&{bounded} primitive@>
18710 mp_primitive(mp, "+",plus_or_minus,plus);
18711 @:+ }{\.{+} primitive@>
18712 mp_primitive(mp, "-",plus_or_minus,minus);
18713 @:- }{\.{-} primitive@>
18714 mp_primitive(mp, "*",secondary_binary,times);
18715 @:* }{\.{*} primitive@>
18716 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18717 @:/ }{\.{/} primitive@>
18718 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18719 @:++_}{\.{++} primitive@>
18720 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18721 @:+-+_}{\.{+-+} primitive@>
18722 mp_primitive(mp, "or",tertiary_binary,or_op);
18723 @:or_}{\&{or} primitive@>
18724 mp_primitive(mp, "and",and_command,and_op);
18725 @:and_}{\&{and} primitive@>
18726 mp_primitive(mp, "<",expression_binary,less_than);
18727 @:< }{\.{<} primitive@>
18728 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18729 @:<=_}{\.{<=} primitive@>
18730 mp_primitive(mp, ">",expression_binary,greater_than);
18731 @:> }{\.{>} primitive@>
18732 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18733 @:>=_}{\.{>=} primitive@>
18734 mp_primitive(mp, "=",equals,equal_to);
18735 @:= }{\.{=} primitive@>
18736 mp_primitive(mp, "<>",expression_binary,unequal_to);
18737 @:<>_}{\.{<>} primitive@>
18738 mp_primitive(mp, "substring",primary_binary,substring_of);
18739 @:substring_}{\&{substring} primitive@>
18740 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18741 @:subpath_}{\&{subpath} primitive@>
18742 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18743 @:direction_time_}{\&{directiontime} primitive@>
18744 mp_primitive(mp, "point",primary_binary,point_of);
18745 @:point_}{\&{point} primitive@>
18746 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18747 @:precontrol_}{\&{precontrol} primitive@>
18748 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18749 @:postcontrol_}{\&{postcontrol} primitive@>
18750 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18751 @:pen_offset_}{\&{penoffset} primitive@>
18752 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18753 @:arc_time_of_}{\&{arctime} primitive@>
18754 mp_primitive(mp, "mpversion",nullary,mp_version);
18755 @:mp_verison_}{\&{mpversion} primitive@>
18756 mp_primitive(mp, "&",ampersand,concatenate);
18757 @:!!!}{\.{\&} primitive@>
18758 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18759 @:rotated_}{\&{rotated} primitive@>
18760 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18761 @:slanted_}{\&{slanted} primitive@>
18762 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18763 @:scaled_}{\&{scaled} primitive@>
18764 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18765 @:shifted_}{\&{shifted} primitive@>
18766 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18767 @:transformed_}{\&{transformed} primitive@>
18768 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18769 @:x_scaled_}{\&{xscaled} primitive@>
18770 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18771 @:y_scaled_}{\&{yscaled} primitive@>
18772 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18773 @:z_scaled_}{\&{zscaled} primitive@>
18774 mp_primitive(mp, "infont",secondary_binary,in_font);
18775 @:in_font_}{\&{infont} primitive@>
18776 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18777 @:intersection_times_}{\&{intersectiontimes} primitive@>
18778 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18779 @:envelope_}{\&{envelope} primitive@>
18781 @ @<Cases of |print_cmd...@>=
18784 case primary_binary:
18785 case secondary_binary:
18786 case tertiary_binary:
18787 case expression_binary:
18789 case plus_or_minus:
18794 mp_print_op(mp, m);
18797 @ OK, let's look at the simplest \\{do} procedure first.
18799 @c @<Declare nullary action procedure@>
18800 static void mp_do_nullary (MP mp,quarterword c) {
18802 if ( mp->internal[mp_tracing_commands]>two )
18803 mp_show_cmd_mod(mp, nullary,c);
18805 case true_code: case false_code:
18806 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18808 case null_picture_code:
18809 mp->cur_type=mp_picture_type;
18810 mp->cur_exp=mp_get_node(mp, edge_header_size);
18811 mp_init_edges(mp, mp->cur_exp);
18813 case null_pen_code:
18814 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18816 case normal_deviate:
18817 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18820 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18823 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18824 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18827 mp->cur_type=mp_string_type;
18828 mp->cur_exp=intern(metapost_version) ;
18830 case read_string_op:
18831 @<Read a string from the terminal@>;
18833 } /* there are no other cases */
18837 @ @<Read a string...@>=
18839 if (mp->noninteractive || mp->interaction<=mp_nonstop_mode )
18840 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18841 mp_begin_file_reading(mp); name=is_read;
18842 limit=start; prompt_input("");
18843 mp_finish_read(mp);
18846 @ @<Declare nullary action procedure@>=
18847 static void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18849 str_room((int)mp->last-start);
18850 for (k=(size_t)start;k<=mp->last-1;k++) {
18851 append_char(mp->buffer[k]);
18853 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18854 mp->cur_exp=mp_make_string(mp);
18857 @ Things get a bit more interesting when there's an operand. The
18858 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18860 @c @<Declare unary action procedures@>
18861 static void mp_do_unary (MP mp,quarterword c) {
18862 pointer p,q,r; /* for list manipulation */
18863 integer x; /* a temporary register */
18865 if ( mp->internal[mp_tracing_commands]>two )
18866 @<Trace the current unary operation@>;
18869 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18872 @<Negate the current expression@>;
18874 @<Additional cases of unary operators@>;
18875 } /* there are no other cases */
18879 @ The |nice_pair| function returns |true| if both components of a pair
18882 @<Declare unary action procedures@>=
18883 static boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18884 if ( t==mp_pair_type ) {
18886 if ( mp_type(x_part_loc(p))==mp_known )
18887 if ( mp_type(y_part_loc(p))==mp_known )
18893 @ The |nice_color_or_pair| function is analogous except that it also accepts
18894 fully known colors.
18896 @<Declare unary action procedures@>=
18897 static boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18898 pointer q,r; /* for scanning the big node */
18899 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18903 r=q+mp->big_node_size[mp_type(p)];
18906 if ( mp_type(r)!=mp_known )
18913 @ @<Declare unary action...@>=
18914 static void mp_print_known_or_unknown_type (MP mp,quarterword t, integer v) {
18915 mp_print_char(mp, xord('('));
18916 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18917 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18918 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18919 mp_print_type(mp, t);
18921 mp_print_char(mp, xord(')'));
18924 @ @<Declare unary action...@>=
18925 static void mp_bad_unary (MP mp,quarterword c) {
18926 exp_err("Not implemented: "); mp_print_op(mp, c);
18927 @.Not implemented...@>
18928 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18929 help3("I'm afraid I don't know how to apply that operation to that",
18930 "particular type. Continue, and I'll simply return the",
18931 "argument (shown above) as the result of the operation.");
18932 mp_put_get_error(mp);
18935 @ @<Trace the current unary operation@>=
18937 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18938 mp_print_op(mp, c); mp_print_char(mp, xord('('));
18939 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18940 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18943 @ Negation is easy except when the current expression
18944 is of type |independent|, or when it is a pair with one or more
18945 |independent| components.
18947 It is tempting to argue that the negative of an independent variable
18948 is an independent variable, hence we don't have to do anything when
18949 negating it. The fallacy is that other dependent variables pointing
18950 to the current expression must change the sign of their
18951 coefficients if we make no change to the current expression.
18953 Instead, we work around the problem by copying the current expression
18954 and recycling it afterwards (cf.~the |stash_in| routine).
18956 @<Negate the current expression@>=
18957 switch (mp->cur_type) {
18958 case mp_color_type:
18959 case mp_cmykcolor_type:
18961 case mp_independent:
18962 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18963 if ( mp->cur_type==mp_dependent ) {
18964 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18965 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18966 p=value(mp->cur_exp);
18967 r=p+mp->big_node_size[mp->cur_type];
18970 if ( mp_type(r)==mp_known ) negate(value(r));
18971 else mp_negate_dep_list(mp, dep_list(r));
18973 } /* if |cur_type=mp_known| then |cur_exp=0| */
18974 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18977 case mp_proto_dependent:
18978 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18981 negate(mp->cur_exp);
18984 mp_bad_unary(mp, minus);
18988 @ @<Declare unary action...@>=
18989 static void mp_negate_dep_list (MP mp,pointer p) {
18992 if ( mp_info(p)==null ) return;
18997 @ @<Additional cases of unary operators@>=
18999 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
19000 else mp->cur_exp=true_code+false_code-mp->cur_exp;
19003 @ @d three_sixty_units 23592960 /* that's |360*unity| */
19004 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
19006 @<Additional cases of unary operators@>=
19013 case uniform_deviate:
19015 case char_exists_op:
19016 if ( mp->cur_type!=mp_known ) {
19017 mp_bad_unary(mp, c);
19020 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
19021 case mp_m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
19022 case mp_m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
19025 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
19026 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
19027 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
19029 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
19030 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
19032 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
19033 mp->cur_type=mp_boolean_type;
19035 case char_exists_op:
19036 @<Determine if a character has been shipped out@>;
19038 } /* there are no other cases */
19042 @ @<Additional cases of unary operators@>=
19044 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
19045 p=value(mp->cur_exp);
19046 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
19047 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
19048 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
19050 mp_bad_unary(mp, angle_op);
19054 @ If the current expression is a pair, but the context wants it to
19055 be a path, we call |pair_to_path|.
19057 @<Declare unary action...@>=
19058 static void mp_pair_to_path (MP mp) {
19059 mp->cur_exp=mp_new_knot(mp);
19060 mp->cur_type=mp_path_type;
19064 @d pict_color_type(A) ((mp_link(dummy_loc(mp->cur_exp))!=null) &&
19065 (has_color(mp_link(dummy_loc(mp->cur_exp)))) &&
19066 ((mp_color_model(mp_link(dummy_loc(mp->cur_exp)))==A)
19068 ((mp_color_model(mp_link(dummy_loc(mp->cur_exp)))==mp_uninitialized_model) &&
19069 (mp->internal[mp_default_color_model]/unity)==(A))))
19071 @<Additional cases of unary operators@>=
19074 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
19075 mp_take_part(mp, c);
19076 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19077 else mp_bad_unary(mp, c);
19083 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
19084 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19085 else mp_bad_unary(mp, c);
19090 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
19091 else if ( mp->cur_type==mp_picture_type ) {
19092 if pict_color_type(mp_rgb_model) mp_take_pict_part(mp, c);
19093 else mp_bad_color_part(mp, c);
19095 else mp_bad_unary(mp, c);
19101 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
19102 else if ( mp->cur_type==mp_picture_type ) {
19103 if pict_color_type(mp_cmyk_model) mp_take_pict_part(mp, c);
19104 else mp_bad_color_part(mp, c);
19106 else mp_bad_unary(mp, c);
19109 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
19110 else if ( mp->cur_type==mp_picture_type ) {
19111 if pict_color_type(mp_grey_model) mp_take_pict_part(mp, c);
19112 else mp_bad_color_part(mp, c);
19114 else mp_bad_unary(mp, c);
19116 case color_model_part:
19117 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19118 else mp_bad_unary(mp, c);
19121 @ @<Declarations@>=
19122 static void mp_bad_color_part(MP mp, quarterword c);
19125 static void mp_bad_color_part(MP mp, quarterword c) {
19126 pointer p; /* the big node */
19127 p=mp_link(dummy_loc(mp->cur_exp));
19128 exp_err("Wrong picture color model: "); mp_print_op(mp, c);
19129 @.Wrong picture color model...@>
19130 if (mp_color_model(p)==mp_grey_model)
19131 mp_print(mp, " of grey object");
19132 else if (mp_color_model(p)==mp_cmyk_model)
19133 mp_print(mp, " of cmyk object");
19134 else if (mp_color_model(p)==mp_rgb_model)
19135 mp_print(mp, " of rgb object");
19136 else if (mp_color_model(p)==mp_no_model)
19137 mp_print(mp, " of marking object");
19139 mp_print(mp," of defaulted object");
19140 help3("You can only ask for the redpart, greenpart, bluepart of a rgb object,",
19141 "the cyanpart, magentapart, yellowpart or blackpart of a cmyk object, ",
19142 "or the greypart of a grey object. No mixing and matching, please.");
19145 mp_flush_cur_exp(mp,unity);
19147 mp_flush_cur_exp(mp,0);
19150 @ In the following procedure, |cur_exp| points to a capsule, which points to
19151 a big node. We want to delete all but one part of the big node.
19153 @<Declare unary action...@>=
19154 static void mp_take_part (MP mp,quarterword c) {
19155 pointer p; /* the big node */
19156 p=value(mp->cur_exp); value(temp_val)=p; mp_type(temp_val)=mp->cur_type;
19157 mp_link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19158 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19159 mp_recycle_value(mp, temp_val);
19162 @ @<Initialize table entries...@>=
19163 mp_name_type(temp_val)=mp_capsule;
19165 @ @<Additional cases of unary operators@>=
19171 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19172 else mp_bad_unary(mp, c);
19175 @ @<Declarations@>=
19176 static void mp_scale_edges (MP mp);
19178 @ @<Declare unary action...@>=
19179 static void mp_take_pict_part (MP mp,quarterword c) {
19180 pointer p; /* first graphical object in |cur_exp| */
19181 p=mp_link(dummy_loc(mp->cur_exp));
19184 case x_part: case y_part: case xx_part:
19185 case xy_part: case yx_part: case yy_part:
19186 if ( mp_type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19187 else goto NOT_FOUND;
19189 case red_part: case green_part: case blue_part:
19190 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19191 else goto NOT_FOUND;
19193 case cyan_part: case magenta_part: case yellow_part:
19195 if ( has_color(p) ) {
19196 if ( mp_color_model(p)==mp_uninitialized_model && c==black_part)
19197 mp_flush_cur_exp(mp, unity);
19199 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19200 } else goto NOT_FOUND;
19203 if ( has_color(p) )
19204 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19205 else goto NOT_FOUND;
19207 case color_model_part:
19208 if ( has_color(p) ) {
19209 if ( mp_color_model(p)==mp_uninitialized_model )
19210 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19212 mp_flush_cur_exp(mp, mp_color_model(p)*unity);
19213 } else goto NOT_FOUND;
19215 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19216 } /* all cases have been enumerated */
19220 @<Convert the current expression to a null value appropriate
19224 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19226 if ( mp_type(p)!=mp_text_code ) goto NOT_FOUND;
19228 mp_flush_cur_exp(mp, mp_text_p(p));
19229 add_str_ref(mp->cur_exp);
19230 mp->cur_type=mp_string_type;
19234 if ( mp_type(p)!=mp_text_code ) goto NOT_FOUND;
19236 mp_flush_cur_exp(mp, rts(mp->font_name[mp_font_n(p)]));
19237 add_str_ref(mp->cur_exp);
19238 mp->cur_type=mp_string_type;
19242 if ( mp_type(p)==mp_text_code ) goto NOT_FOUND;
19243 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19244 @:this can't happen pict}{\quad pict@>
19246 mp_flush_cur_exp(mp, mp_copy_path(mp, mp_path_p(p)));
19247 mp->cur_type=mp_path_type;
19251 if ( ! has_pen(p) ) goto NOT_FOUND;
19253 if ( mp_pen_p(p)==null ) goto NOT_FOUND;
19254 else { mp_flush_cur_exp(mp, copy_pen(mp_pen_p(p)));
19255 mp->cur_type=mp_pen_type;
19260 if ( mp_type(p)!=mp_stroked_code ) goto NOT_FOUND;
19261 else { if ( mp_dash_p(p)==null ) goto NOT_FOUND;
19262 else { add_edge_ref(mp_dash_p(p));
19263 mp->se_sf=dash_scale(p);
19264 mp->se_pic=mp_dash_p(p);
19265 mp_scale_edges(mp);
19266 mp_flush_cur_exp(mp, mp->se_pic);
19267 mp->cur_type=mp_picture_type;
19272 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19273 parameterless procedure even though it really takes two arguments and updates
19274 one of them. Hence the following globals are needed.
19277 pointer se_pic; /* edge header used and updated by |scale_edges| */
19278 scaled se_sf; /* the scale factor argument to |scale_edges| */
19280 @ @<Convert the current expression to a null value appropriate...@>=
19282 case text_part: case font_part:
19283 mp_flush_cur_exp(mp, null_str);
19284 mp->cur_type=mp_string_type;
19287 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19288 mp_left_type(mp->cur_exp)=mp_endpoint;
19289 mp_right_type(mp->cur_exp)=mp_endpoint;
19290 mp_link(mp->cur_exp)=mp->cur_exp;
19291 mp_x_coord(mp->cur_exp)=0;
19292 mp_y_coord(mp->cur_exp)=0;
19293 mp_originator(mp->cur_exp)=mp_metapost_user;
19294 mp->cur_type=mp_path_type;
19297 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19298 mp->cur_type=mp_pen_type;
19301 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19302 mp_init_edges(mp, mp->cur_exp);
19303 mp->cur_type=mp_picture_type;
19306 mp_flush_cur_exp(mp, 0);
19310 @ @<Additional cases of unary...@>=
19312 if ( mp->cur_type!=mp_known ) {
19313 mp_bad_unary(mp, char_op);
19315 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19316 mp->cur_type=mp_string_type;
19317 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19321 if ( mp->cur_type!=mp_known ) {
19322 mp_bad_unary(mp, decimal);
19324 mp->old_setting=mp->selector; mp->selector=new_string;
19325 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19326 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19332 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19333 else mp_str_to_num(mp, c);
19336 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19337 else @<Find the design size of the font whose name is |cur_exp|@>;
19340 @ @<Declare unary action...@>=
19341 static void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19342 integer n; /* accumulator */
19343 ASCII_code m; /* current character */
19344 pool_pointer k; /* index into |str_pool| */
19345 int b; /* radix of conversion */
19346 boolean bad_char; /* did the string contain an invalid digit? */
19347 if ( c==ASCII_op ) {
19348 if ( length(mp->cur_exp)==0 ) n=-1;
19349 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19351 if ( c==oct_op ) b=8; else b=16;
19352 n=0; bad_char=false;
19353 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19355 if ( (m>='0')&&(m<='9') ) m=m-'0';
19356 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19357 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19358 else { bad_char=true; m=0; };
19359 if ( (int)m>=b ) { bad_char=true; m=0; };
19360 if ( n<32768 / b ) n=n*b+m; else n=32767;
19362 @<Give error messages if |bad_char| or |n>=4096|@>;
19364 mp_flush_cur_exp(mp, n*unity);
19367 @ @<Give error messages if |bad_char|...@>=
19369 exp_err("String contains illegal digits");
19370 @.String contains illegal digits@>
19372 help1("I zeroed out characters that weren't in the range 0..7.");
19374 help1("I zeroed out characters that weren't hex digits.");
19376 mp_put_get_error(mp);
19379 if ( mp->internal[mp_warning_check]>0 ) {
19380 print_err("Number too large (");
19381 mp_print_int(mp, n); mp_print_char(mp, xord(')'));
19382 @.Number too large@>
19383 help2("I have trouble with numbers greater than 4095; watch out.",
19384 "(Set warningcheck:=0 to suppress this message.)");
19385 mp_put_get_error(mp);
19389 @ The length operation is somewhat unusual in that it applies to a variety
19390 of different types of operands.
19392 @<Additional cases of unary...@>=
19394 switch (mp->cur_type) {
19395 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19396 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19397 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19398 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19400 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19401 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19402 value(x_part_loc(value(mp->cur_exp))),
19403 value(y_part_loc(value(mp->cur_exp)))));
19404 else mp_bad_unary(mp, c);
19409 @ @<Declare unary action...@>=
19410 static scaled mp_path_length (MP mp) { /* computes the length of the current path */
19411 scaled n; /* the path length so far */
19412 pointer p; /* traverser */
19414 if ( mp_left_type(p)==mp_endpoint ) n=-unity; else n=0;
19415 do { p=mp_link(p); n=n+unity; } while (p!=mp->cur_exp);
19419 @ @<Declare unary action...@>=
19420 static scaled mp_pict_length (MP mp) {
19421 /* counts interior components in picture |cur_exp| */
19422 scaled n; /* the count so far */
19423 pointer p; /* traverser */
19425 p=mp_link(dummy_loc(mp->cur_exp));
19427 if ( is_start_or_stop(p) )
19428 if ( mp_skip_1component(mp, p)==null ) p=mp_link(p);
19429 while ( p!=null ) {
19430 skip_component(p) return n;
19437 @ Implement |turningnumber|
19439 @<Additional cases of unary...@>=
19441 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19442 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19443 else if ( mp_left_type(mp->cur_exp)==mp_endpoint )
19444 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19446 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19449 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19450 argument is |origin|.
19452 @<Declare unary action...@>=
19453 static angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19454 if ( (! ((xpar==0) && (ypar==0))) )
19455 return mp_n_arg(mp, xpar,ypar);
19460 @ The actual turning number is (for the moment) computed in a C function
19461 that receives eight integers corresponding to the four controlling points,
19462 and returns a single angle. Besides those, we have to account for discrete
19463 moves at the actual points.
19465 @d mp_floor(a) ((a)>=0 ? (int)(a) : -(int)(-(a)))
19466 @d bezier_error (720*(256*256*16))+1
19467 @d mp_sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19468 @d mp_out(A) (double)((A)/(256*256*16))
19469 @d divisor (256*256)
19470 @d double2angle(a) (int)mp_floor(a*256.0*256.0*16.0)
19472 @<Declare unary action...@>=
19473 static angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19474 integer CX,integer CY,integer DX,integer DY);
19477 static angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19478 integer CX,integer CY,integer DX,integer DY) {
19480 integer deltax,deltay;
19481 double ax,ay,bx,by,cx,cy,dx,dy;
19482 angle xi = 0, xo = 0, xm = 0;
19484 ax=(double)(AX/divisor); ay=(double)(AY/divisor);
19485 bx=(double)(BX/divisor); by=(double)(BY/divisor);
19486 cx=(double)(CX/divisor); cy=(double)(CY/divisor);
19487 dx=(double)(DX/divisor); dy=(double)(DY/divisor);
19489 deltax = (BX-AX); deltay = (BY-AY);
19490 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19491 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19492 xi = mp_an_angle(mp,deltax,deltay);
19494 deltax = (CX-BX); deltay = (CY-BY);
19495 xm = mp_an_angle(mp,deltax,deltay);
19497 deltax = (DX-CX); deltay = (DY-CY);
19498 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19499 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19500 xo = mp_an_angle(mp,deltax,deltay);
19502 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19503 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19504 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19506 if ((a==0)&&(c==0)) {
19507 res = (b==0 ? 0 : (mp_out(xo)-mp_out(xi)));
19508 } else if ((a==0)||(c==0)) {
19509 if ((mp_sign(b) == mp_sign(a)) || (mp_sign(b) == mp_sign(c))) {
19510 res = mp_out(xo)-mp_out(xi); /* ? */
19513 else if (res>180.0)
19516 res = mp_out(xo)-mp_out(xi); /* ? */
19518 } else if ((mp_sign(a)*mp_sign(c))<0) {
19519 res = mp_out(xo)-mp_out(xi); /* ? */
19522 else if (res>180.0)
19525 if (mp_sign(a) == mp_sign(b)) {
19526 res = mp_out(xo)-mp_out(xi); /* ? */
19529 else if (res>180.0)
19532 if ((b*b) == (4*a*c)) {
19533 res = (double)bezier_error;
19534 } else if ((b*b) < (4*a*c)) {
19535 res = mp_out(xo)-mp_out(xi); /* ? */
19536 if (res<=0.0 &&res>-180.0)
19538 else if (res>=0.0 && res<180.0)
19541 res = mp_out(xo)-mp_out(xi);
19544 else if (res>180.0)
19549 return double2angle(res);
19553 @d p_nextnext mp_link(mp_link(p))
19554 @d p_next mp_link(p)
19555 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19557 @<Declare unary action...@>=
19558 static scaled mp_new_turn_cycles (MP mp,pointer c) {
19559 angle res,ang; /* the angles of intermediate results */
19560 scaled turns; /* the turn counter */
19561 pointer p; /* for running around the path */
19562 integer xp,yp; /* coordinates of next point */
19563 integer x,y; /* helper coordinates */
19564 angle in_angle,out_angle; /* helper angles */
19565 unsigned old_setting; /* saved |selector| setting */
19569 old_setting = mp->selector; mp->selector=term_only;
19570 if ( mp->internal[mp_tracing_commands]>unity ) {
19571 mp_begin_diagnostic(mp);
19572 mp_print_nl(mp, "");
19573 mp_end_diagnostic(mp, false);
19576 xp = mp_x_coord(p_next); yp = mp_y_coord(p_next);
19577 ang = mp_bezier_slope(mp,mp_x_coord(p), mp_y_coord(p), mp_right_x(p), mp_right_y(p),
19578 mp_left_x(p_next), mp_left_y(p_next), xp, yp);
19579 if ( ang>seven_twenty_deg ) {
19580 print_err("Strange path");
19582 mp->selector=old_setting;
19586 if ( res > one_eighty_deg ) {
19587 res = res - three_sixty_deg;
19588 turns = turns + unity;
19590 if ( res <= -one_eighty_deg ) {
19591 res = res + three_sixty_deg;
19592 turns = turns - unity;
19594 /* incoming angle at next point */
19595 x = mp_left_x(p_next); y = mp_left_y(p_next);
19596 if ( (xp==x)&&(yp==y) ) { x = mp_right_x(p); y = mp_right_y(p); };
19597 if ( (xp==x)&&(yp==y) ) { x = mp_x_coord(p); y = mp_y_coord(p); };
19598 in_angle = mp_an_angle(mp, xp - x, yp - y);
19599 /* outgoing angle at next point */
19600 x = mp_right_x(p_next); y = mp_right_y(p_next);
19601 if ( (xp==x)&&(yp==y) ) { x = mp_left_x(p_nextnext); y = mp_left_y(p_nextnext); };
19602 if ( (xp==x)&&(yp==y) ) { x = mp_x_coord(p_nextnext); y = mp_y_coord(p_nextnext); };
19603 out_angle = mp_an_angle(mp, x - xp, y- yp);
19604 ang = (out_angle - in_angle);
19608 if ( res >= one_eighty_deg ) {
19609 res = res - three_sixty_deg;
19610 turns = turns + unity;
19612 if ( res <= -one_eighty_deg ) {
19613 res = res + three_sixty_deg;
19614 turns = turns - unity;
19619 mp->selector=old_setting;
19624 @ This code is based on Bogus\l{}av Jackowski's
19625 |emergency_turningnumber| macro, with some minor changes by Taco
19626 Hoekwater. The macro code looked more like this:
19628 vardef turning\_number primary p =
19629 ~~save res, ang, turns;
19631 ~~if length p <= 2:
19632 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19634 ~~~~for t = 0 upto length p-1 :
19635 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19636 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19637 ~~~~~~if angc > 180: angc := angc - 360; fi;
19638 ~~~~~~if angc < -180: angc := angc + 360; fi;
19639 ~~~~~~res := res + angc;
19644 The general idea is to calculate only the sum of the angles of
19645 straight lines between the points, of a path, not worrying about cusps
19646 or self-intersections in the segments at all. If the segment is not
19647 well-behaved, the result is not necesarily correct. But the old code
19648 was not always correct either, and worse, it sometimes failed for
19649 well-behaved paths as well. All known bugs that were triggered by the
19650 original code no longer occur with this code, and it runs roughly 3
19651 times as fast because the algorithm is much simpler.
19653 @ It is possible to overflow the return value of the |turn_cycles|
19654 function when the path is sufficiently long and winding, but I am not
19655 going to bother testing for that. In any case, it would only return
19656 the looped result value, which is not a big problem.
19658 The macro code for the repeat loop was a bit nicer to look
19659 at than the pascal code, because it could use |point -1 of p|. In
19660 pascal, the fastest way to loop around the path is not to look
19661 backward once, but forward twice. These defines help hide the trick.
19663 @d p_to mp_link(mp_link(p))
19664 @d p_here mp_link(p)
19667 @<Declare unary action...@>=
19668 static scaled mp_turn_cycles (MP mp,pointer c) {
19669 angle res,ang; /* the angles of intermediate results */
19670 scaled turns; /* the turn counter */
19671 pointer p; /* for running around the path */
19672 res=0; turns= 0; p=c;
19674 ang = mp_an_angle (mp, mp_x_coord(p_to) - mp_x_coord(p_here),
19675 mp_y_coord(p_to) - mp_y_coord(p_here))
19676 - mp_an_angle (mp, mp_x_coord(p_here) - mp_x_coord(p_from),
19677 mp_y_coord(p_here) - mp_y_coord(p_from));
19680 if ( res >= three_sixty_deg ) {
19681 res = res - three_sixty_deg;
19682 turns = turns + unity;
19684 if ( res <= -three_sixty_deg ) {
19685 res = res + three_sixty_deg;
19686 turns = turns - unity;
19693 @ @<Declare unary action...@>=
19694 static scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19696 scaled saved_t_o; /* tracing\_online saved */
19697 if ( (mp_link(c)==c)||(mp_link(mp_link(c))==c) ) {
19698 if ( mp_an_angle (mp, mp_x_coord(c) - mp_right_x(c), mp_y_coord(c) - mp_right_y(c)) > 0 )
19703 nval = mp_new_turn_cycles(mp, c);
19704 oval = mp_turn_cycles(mp, c);
19705 if ( nval!=oval ) {
19706 saved_t_o=mp->internal[mp_tracing_online];
19707 mp->internal[mp_tracing_online]=unity;
19708 mp_begin_diagnostic(mp);
19709 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19710 " The current computed value is ");
19711 mp_print_scaled(mp, nval);
19712 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19713 mp_print_scaled(mp, oval);
19714 mp_end_diagnostic(mp, false);
19715 mp->internal[mp_tracing_online]=saved_t_o;
19721 @ @d type_range(A,B) {
19722 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19723 mp_flush_cur_exp(mp, true_code);
19724 else mp_flush_cur_exp(mp, false_code);
19725 mp->cur_type=mp_boolean_type;
19728 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19729 else mp_flush_cur_exp(mp, false_code);
19730 mp->cur_type=mp_boolean_type;
19733 @<Additional cases of unary operators@>=
19734 case mp_boolean_type:
19735 type_range(mp_boolean_type,mp_unknown_boolean); break;
19736 case mp_string_type:
19737 type_range(mp_string_type,mp_unknown_string); break;
19739 type_range(mp_pen_type,mp_unknown_pen); break;
19741 type_range(mp_path_type,mp_unknown_path); break;
19742 case mp_picture_type:
19743 type_range(mp_picture_type,mp_unknown_picture); break;
19744 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19746 type_test(c); break;
19747 case mp_numeric_type:
19748 type_range(mp_known,mp_independent); break;
19749 case known_op: case unknown_op:
19750 mp_test_known(mp, c); break;
19752 @ @<Declare unary action procedures@>=
19753 static void mp_test_known (MP mp,quarterword c) {
19754 int b; /* is the current expression known? */
19755 pointer p,q; /* locations in a big node */
19757 switch (mp->cur_type) {
19758 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19759 case mp_pen_type: case mp_path_type: case mp_picture_type:
19763 case mp_transform_type:
19764 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19765 p=value(mp->cur_exp);
19766 q=p+mp->big_node_size[mp->cur_type];
19769 if ( mp_type(q)!=mp_known )
19778 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19779 else mp_flush_cur_exp(mp, true_code+false_code-b);
19780 mp->cur_type=mp_boolean_type;
19783 @ @<Additional cases of unary operators@>=
19785 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19786 else if ( mp_left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19787 else mp_flush_cur_exp(mp, false_code);
19788 mp->cur_type=mp_boolean_type;
19791 @ @<Additional cases of unary operators@>=
19793 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19794 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19795 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19798 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19800 @^data structure assumptions@>
19802 @<Additional cases of unary operators@>=
19808 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19809 else if ( mp_link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19810 else if ( mp_type(mp_link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19811 mp_flush_cur_exp(mp, true_code);
19812 else mp_flush_cur_exp(mp, false_code);
19813 mp->cur_type=mp_boolean_type;
19816 @ @<Additional cases of unary operators@>=
19818 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19819 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19821 mp->cur_type=mp_pen_type;
19822 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19826 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19828 mp->cur_type=mp_path_type;
19829 mp_make_path(mp, mp->cur_exp);
19833 if ( mp->cur_type==mp_path_type ) {
19834 p=mp_htap_ypoc(mp, mp->cur_exp);
19835 if ( mp_right_type(p)==mp_endpoint ) p=mp_link(p);
19836 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19837 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19838 else mp_bad_unary(mp, reverse);
19841 @ The |pair_value| routine changes the current expression to a
19842 given ordered pair of values.
19844 @<Declare unary action procedures@>=
19845 static void mp_pair_value (MP mp,scaled x, scaled y) {
19846 pointer p; /* a pair node */
19847 p=mp_get_node(mp, value_node_size);
19848 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19849 mp_type(p)=mp_pair_type; mp_name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19851 mp_type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19852 mp_type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19855 @ @<Additional cases of unary operators@>=
19857 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19858 else mp_pair_value(mp, mp_minx, mp_miny);
19861 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19862 else mp_pair_value(mp, mp_maxx, mp_miny);
19865 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19866 else mp_pair_value(mp, mp_minx, mp_maxy);
19869 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19870 else mp_pair_value(mp, mp_maxx, mp_maxy);
19873 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19874 box of the current expression. The boolean result is |false| if the expression
19875 has the wrong type.
19877 @<Declare unary action procedures@>=
19878 static boolean mp_get_cur_bbox (MP mp) {
19879 switch (mp->cur_type) {
19880 case mp_picture_type:
19881 mp_set_bbox(mp, mp->cur_exp,true);
19882 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19883 mp_minx=0; mp_maxx=0; mp_miny=0; mp_maxy=0;
19885 mp_minx=minx_val(mp->cur_exp);
19886 mp_maxx=maxx_val(mp->cur_exp);
19887 mp_miny=miny_val(mp->cur_exp);
19888 mp_maxy=maxy_val(mp->cur_exp);
19892 mp_path_bbox(mp, mp->cur_exp);
19895 mp_pen_bbox(mp, mp->cur_exp);
19903 @ @<Additional cases of unary operators@>=
19905 case close_from_op:
19906 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19907 else mp_do_read_or_close(mp,c);
19910 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19911 a line from the file or to close the file.
19913 @<Declare unary action procedures@>=
19914 static void mp_do_read_or_close (MP mp,quarterword c) {
19915 readf_index n,n0; /* indices for searching |rd_fname| */
19916 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19917 call |start_read_input| and |goto found| or |not_found|@>;
19918 mp_begin_file_reading(mp);
19920 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19922 mp_end_file_reading(mp);
19924 @<Record the end of file and set |cur_exp| to a dummy value@>;
19927 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19930 mp_flush_cur_exp(mp, 0);
19931 mp_finish_read(mp);
19934 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19937 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19942 fn = str(mp->cur_exp);
19943 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19946 } else if ( c==close_from_op ) {
19949 if ( n0==mp->read_files ) {
19950 if ( mp->read_files<mp->max_read_files ) {
19951 incr(mp->read_files);
19956 l = mp->max_read_files + (mp->max_read_files/4);
19957 rd_file = xmalloc((l+1), sizeof(void *));
19958 rd_fname = xmalloc((l+1), sizeof(char *));
19959 for (k=0;k<=l;k++) {
19960 if (k<=mp->max_read_files) {
19961 rd_file[k]=mp->rd_file[k];
19962 rd_fname[k]=mp->rd_fname[k];
19968 xfree(mp->rd_file); xfree(mp->rd_fname);
19969 mp->max_read_files = l;
19970 mp->rd_file = rd_file;
19971 mp->rd_fname = rd_fname;
19975 if ( mp_start_read_input(mp,fn,n) )
19980 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19982 if ( c==close_from_op ) {
19983 (mp->close_file)(mp,mp->rd_file[n]);
19988 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19989 xfree(mp->rd_fname[n]);
19990 mp->rd_fname[n]=NULL;
19991 if ( n==mp->read_files-1 ) mp->read_files=n;
19992 if ( c==close_from_op )
19994 mp_flush_cur_exp(mp, mp->eof_line);
19995 mp->cur_type=mp_string_type
19997 @ The string denoting end-of-file is a one-byte string at position zero, by definition
20000 str_number eof_line;
20005 @ Finally, we have the operations that combine a capsule~|p|
20006 with the current expression.
20008 @d binary_return { mp_finish_binary(mp, old_p, old_exp); return; }
20010 @c @<Declare binary action procedures@>
20011 static void mp_finish_binary (MP mp, pointer old_p, pointer old_exp ){
20013 @<Recycle any sidestepped |independent| capsules@>;
20015 static void mp_do_binary (MP mp,pointer p, quarterword c) {
20016 pointer q,r,rr; /* for list manipulation */
20017 pointer old_p,old_exp; /* capsules to recycle */
20018 integer v; /* for numeric manipulation */
20020 if ( mp->internal[mp_tracing_commands]>two ) {
20021 @<Trace the current binary operation@>;
20023 @<Sidestep |independent| cases in capsule |p|@>;
20024 @<Sidestep |independent| cases in the current expression@>;
20026 case plus: case minus:
20027 @<Add or subtract the current expression from |p|@>;
20029 @<Additional cases of binary operators@>;
20030 }; /* there are no other cases */
20031 mp_recycle_value(mp, p);
20032 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
20033 mp_finish_binary(mp, old_p, old_exp);
20036 @ @<Declare binary action...@>=
20037 static void mp_bad_binary (MP mp,pointer p, quarterword c) {
20038 mp_disp_err(mp, p,"");
20039 exp_err("Not implemented: ");
20040 @.Not implemented...@>
20041 if ( c>=min_of ) mp_print_op(mp, c);
20042 mp_print_known_or_unknown_type(mp, mp_type(p),p);
20043 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
20044 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
20045 help3("I'm afraid I don't know how to apply that operation to that",
20046 "combination of types. Continue, and I'll return the second",
20047 "argument (see above) as the result of the operation.");
20048 mp_put_get_error(mp);
20050 static void mp_bad_envelope_pen (MP mp) {
20051 mp_disp_err(mp, null,"");
20052 exp_err("Not implemented: envelope(elliptical pen)of(path)");
20053 @.Not implemented...@>
20054 help3("I'm afraid I don't know how to apply that operation to that",
20055 "combination of types. Continue, and I'll return the second",
20056 "argument (see above) as the result of the operation.");
20057 mp_put_get_error(mp);
20060 @ @<Trace the current binary operation@>=
20062 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
20063 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
20064 mp_print_char(mp,xord(')')); mp_print_op(mp,c); mp_print_char(mp,xord('('));
20065 mp_print_exp(mp,null,0); mp_print(mp,")}");
20066 mp_end_diagnostic(mp, false);
20069 @ Several of the binary operations are potentially complicated by the
20070 fact that |independent| values can sneak into capsules. For example,
20071 we've seen an instance of this difficulty in the unary operation
20072 of negation. In order to reduce the number of cases that need to be
20073 handled, we first change the two operands (if necessary)
20074 to rid them of |independent| components. The original operands are
20075 put into capsules called |old_p| and |old_exp|, which will be
20076 recycled after the binary operation has been safely carried out.
20078 @<Recycle any sidestepped |independent| capsules@>=
20079 if ( old_p!=null ) {
20080 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
20082 if ( old_exp!=null ) {
20083 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
20086 @ A big node is considered to be ``tarnished'' if it contains at least one
20087 independent component. We will define a simple function called `|tarnished|'
20088 that returns |null| if and only if its argument is not tarnished.
20090 @<Sidestep |independent| cases in capsule |p|@>=
20091 switch (mp_type(p)) {
20092 case mp_transform_type:
20093 case mp_color_type:
20094 case mp_cmykcolor_type:
20096 old_p=mp_tarnished(mp, p);
20098 case mp_independent: old_p=mp_void; break;
20099 default: old_p=null; break;
20101 if ( old_p!=null ) {
20102 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
20103 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20106 @ @<Sidestep |independent| cases in the current expression@>=
20107 switch (mp->cur_type) {
20108 case mp_transform_type:
20109 case mp_color_type:
20110 case mp_cmykcolor_type:
20112 old_exp=mp_tarnished(mp, mp->cur_exp);
20114 case mp_independent:old_exp=mp_void; break;
20115 default: old_exp=null; break;
20117 if ( old_exp!=null ) {
20118 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20121 @ @<Declare binary action...@>=
20122 static pointer mp_tarnished (MP mp,pointer p) {
20123 pointer q; /* beginning of the big node */
20124 pointer r; /* current position in the big node */
20125 q=value(p); r=q+mp->big_node_size[mp_type(p)];
20128 if ( mp_type(r)==mp_independent ) return mp_void;
20133 @ @<Add or subtract the current expression from |p|@>=
20134 if ( (mp->cur_type<mp_color_type)||(mp_type(p)<mp_color_type) ) {
20135 mp_bad_binary(mp, p,c);
20137 if ((mp->cur_type>mp_pair_type)&&(mp_type(p)>mp_pair_type) ) {
20138 mp_add_or_subtract(mp, p,null,c);
20140 if ( mp->cur_type!=mp_type(p) ) {
20141 mp_bad_binary(mp, p,c);
20143 q=value(p); r=value(mp->cur_exp);
20144 rr=r+mp->big_node_size[mp->cur_type];
20146 mp_add_or_subtract(mp, q,r,c);
20153 @ The first argument to |add_or_subtract| is the location of a value node
20154 in a capsule or pair node that will soon be recycled. The second argument
20155 is either a location within a pair or transform node of |cur_exp|,
20156 or it is null (which means that |cur_exp| itself should be the second
20157 argument). The third argument is either |plus| or |minus|.
20159 The sum or difference of the numeric quantities will replace the second
20160 operand. Arithmetic overflow may go undetected; users aren't supposed to
20161 be monkeying around with really big values.
20162 @^overflow in arithmetic@>
20164 @<Declare binary action...@>=
20165 @<Declare the procedure called |dep_finish|@>
20166 static void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20167 quarterword s,t; /* operand types */
20168 pointer r; /* list traverser */
20169 integer v; /* second operand value */
20172 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20175 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20177 if ( t==mp_known ) {
20178 if ( c==minus ) negate(v);
20179 if ( mp_type(p)==mp_known ) {
20180 v=mp_slow_add(mp, value(p),v);
20181 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20184 @<Add a known value to the constant term of |dep_list(p)|@>;
20186 if ( c==minus ) mp_negate_dep_list(mp, v);
20187 @<Add operand |p| to the dependency list |v|@>;
20191 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20193 while ( mp_info(r)!=null ) r=mp_link(r);
20194 value(r)=mp_slow_add(mp, value(r),v);
20196 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=mp_type(p);
20197 mp_name_type(q)=mp_capsule;
20199 dep_list(q)=dep_list(p); mp_type(q)=mp_type(p);
20200 prev_dep(q)=prev_dep(p); mp_link(prev_dep(p))=q;
20201 mp_type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20203 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20204 nice to retain the extra accuracy of |fraction| coefficients.
20205 But we have to handle both kinds, and mixtures too.
20207 @<Add operand |p| to the dependency list |v|@>=
20208 if ( mp_type(p)==mp_known ) {
20209 @<Add the known |value(p)| to the constant term of |v|@>;
20211 s=mp_type(p); r=dep_list(p);
20212 if ( t==mp_dependent ) {
20213 if ( s==mp_dependent ) {
20214 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20215 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20216 } /* |fix_needed| will necessarily be false */
20217 t=mp_proto_dependent;
20218 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20220 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20221 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20223 @<Output the answer, |v| (which might have become |known|)@>;
20226 @ @<Add the known |value(p)| to the constant term of |v|@>=
20228 while ( mp_info(v)!=null ) v=mp_link(v);
20229 value(v)=mp_slow_add(mp, value(p),value(v));
20232 @ @<Output the answer, |v| (which might have become |known|)@>=
20233 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20234 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20236 @ Here's the current situation: The dependency list |v| of type |t|
20237 should either be put into the current expression (if |q=null|) or
20238 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20239 or |q|) formerly held a dependency list with the same
20240 final pointer as the list |v|.
20242 @<Declare the procedure called |dep_finish|@>=
20243 static void mp_dep_finish (MP mp, pointer v, pointer q, quarterword t) {
20244 pointer p; /* the destination */
20245 scaled vv; /* the value, if it is |known| */
20246 if ( q==null ) p=mp->cur_exp; else p=q;
20247 dep_list(p)=v; mp_type(p)=t;
20248 if ( mp_info(v)==null ) {
20251 mp_flush_cur_exp(mp, vv);
20253 mp_recycle_value(mp, p); mp_type(q)=mp_known; value(q)=vv;
20255 } else if ( q==null ) {
20258 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20261 @ Let's turn now to the six basic relations of comparison.
20263 @<Additional cases of binary operators@>=
20264 case less_than: case less_or_equal: case greater_than:
20265 case greater_or_equal: case equal_to: case unequal_to:
20266 check_arith; /* at this point |arith_error| should be |false|? */
20267 if ( (mp->cur_type>mp_pair_type)&&(mp_type(p)>mp_pair_type) ) {
20268 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20269 } else if ( mp->cur_type!=mp_type(p) ) {
20270 mp_bad_binary(mp, p,c); goto DONE;
20271 } else if ( mp->cur_type==mp_string_type ) {
20272 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20273 } else if ((mp->cur_type==mp_unknown_string)||
20274 (mp->cur_type==mp_unknown_boolean) ) {
20275 @<Check if unknowns have been equated@>;
20276 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20277 @<Reduce comparison of big nodes to comparison of scalars@>;
20278 } else if ( mp->cur_type==mp_boolean_type ) {
20279 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20281 mp_bad_binary(mp, p,c); goto DONE;
20283 @<Compare the current expression with zero@>;
20285 mp->arith_error=false; /* ignore overflow in comparisons */
20288 @ @<Compare the current expression with zero@>=
20289 if ( mp->cur_type!=mp_known ) {
20290 if ( mp->cur_type<mp_known ) {
20291 mp_disp_err(mp, p,"");
20292 help1("The quantities shown above have not been equated.")
20294 help2("Oh dear. I can\'t decide if the expression above is positive,",
20295 "negative, or zero. So this comparison test won't be `true'.");
20297 exp_err("Unknown relation will be considered false");
20298 @.Unknown relation...@>
20299 mp_put_get_flush_error(mp, false_code);
20302 case less_than: boolean_reset(mp->cur_exp<0); break;
20303 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20304 case greater_than: boolean_reset(mp->cur_exp>0); break;
20305 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20306 case equal_to: boolean_reset(mp->cur_exp==0); break;
20307 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20308 }; /* there are no other cases */
20310 mp->cur_type=mp_boolean_type
20312 @ When two unknown strings are in the same ring, we know that they are
20313 equal. Otherwise, we don't know whether they are equal or not, so we
20316 @<Check if unknowns have been equated@>=
20318 q=value(mp->cur_exp);
20319 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20320 if ( q==p ) mp_flush_cur_exp(mp, 0);
20323 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20325 q=value(p); r=value(mp->cur_exp);
20326 rr=r+mp->big_node_size[mp->cur_type]-2;
20327 while (1) { mp_add_or_subtract(mp, q,r,minus);
20328 if ( mp_type(r)!=mp_known ) break;
20329 if ( value(r)!=0 ) break;
20330 if ( r==rr ) break;
20333 mp_take_part(mp, mp_name_type(r)+x_part-mp_x_part_sector);
20336 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20338 @<Additional cases of binary operators@>=
20341 if ( (mp_type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20342 mp_bad_binary(mp, p,c);
20343 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20346 @ @<Additional cases of binary operators@>=
20348 if ( (mp->cur_type<mp_color_type)||(mp_type(p)<mp_color_type) ) {
20349 mp_bad_binary(mp, p,times);
20350 } else if ( (mp->cur_type==mp_known)||(mp_type(p)==mp_known) ) {
20351 @<Multiply when at least one operand is known@>;
20352 } else if ( (mp_nice_color_or_pair(mp, p,mp_type(p))&&(mp->cur_type>mp_pair_type))
20353 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20354 (mp_type(p)>mp_pair_type)) ) {
20355 mp_hard_times(mp, p);
20358 mp_bad_binary(mp, p,times);
20362 @ @<Multiply when at least one operand is known@>=
20364 if ( mp_type(p)==mp_known ) {
20365 v=value(p); mp_free_node(mp, p,value_node_size);
20367 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20369 if ( mp->cur_type==mp_known ) {
20370 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20371 } else if ( (mp->cur_type==mp_pair_type)||
20372 (mp->cur_type==mp_color_type)||
20373 (mp->cur_type==mp_cmykcolor_type) ) {
20374 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20376 p=p-2; mp_dep_mult(mp, p,v,true);
20377 } while (p!=value(mp->cur_exp));
20379 mp_dep_mult(mp, null,v,true);
20384 @ @<Declare binary action...@>=
20385 static void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20386 pointer q; /* the dependency list being multiplied by |v| */
20387 quarterword s,t; /* its type, before and after */
20390 } else if ( mp_type(p)!=mp_known ) {
20393 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20394 else value(p)=mp_take_fraction(mp, value(p),v);
20397 t=mp_type(q); q=dep_list(q); s=t;
20398 if ( t==mp_dependent ) if ( v_is_scaled )
20399 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20400 t=mp_proto_dependent;
20401 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20402 mp_dep_finish(mp, q,p,t);
20405 @ Here is a routine that is similar to |times|; but it is invoked only
20406 internally, when |v| is a |fraction| whose magnitude is at most~1,
20407 and when |cur_type>=mp_color_type|.
20410 static void mp_frac_mult (MP mp,scaled n, scaled d) {
20411 /* multiplies |cur_exp| by |n/d| */
20412 pointer p; /* a pair node */
20413 pointer old_exp; /* a capsule to recycle */
20414 fraction v; /* |n/d| */
20415 if ( mp->internal[mp_tracing_commands]>two ) {
20416 @<Trace the fraction multiplication@>;
20418 switch (mp->cur_type) {
20419 case mp_transform_type:
20420 case mp_color_type:
20421 case mp_cmykcolor_type:
20423 old_exp=mp_tarnished(mp, mp->cur_exp);
20425 case mp_independent: old_exp=mp_void; break;
20426 default: old_exp=null; break;
20428 if ( old_exp!=null ) {
20429 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20431 v=mp_make_fraction(mp, n,d);
20432 if ( mp->cur_type==mp_known ) {
20433 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20434 } else if ( mp->cur_type<=mp_pair_type ) {
20435 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20438 mp_dep_mult(mp, p,v,false);
20439 } while (p!=value(mp->cur_exp));
20441 mp_dep_mult(mp, null,v,false);
20443 if ( old_exp!=null ) {
20444 mp_recycle_value(mp, old_exp);
20445 mp_free_node(mp, old_exp,value_node_size);
20449 @ @<Trace the fraction multiplication@>=
20451 mp_begin_diagnostic(mp);
20452 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,xord('/'));
20453 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20455 mp_end_diagnostic(mp, false);
20458 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20460 @<Declare binary action procedures@>=
20461 static void mp_hard_times (MP mp,pointer p) {
20462 pointer q; /* a copy of the dependent variable |p| */
20463 pointer r; /* a component of the big node for the nice color or pair */
20464 scaled v; /* the known value for |r| */
20465 if ( mp_type(p)<=mp_pair_type ) {
20466 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20467 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20468 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20472 mp_type(r)=mp_type(p);
20473 if ( r==value(mp->cur_exp) )
20475 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20476 mp_dep_mult(mp, r,v,true);
20478 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20479 mp_link(prev_dep(p))=r;
20480 mp_free_node(mp, p,value_node_size);
20481 mp_dep_mult(mp, r,v,true);
20484 @ @<Additional cases of binary operators@>=
20486 if ( (mp->cur_type!=mp_known)||(mp_type(p)<mp_color_type) ) {
20487 mp_bad_binary(mp, p,over);
20489 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20491 @<Squeal about division by zero@>;
20493 if ( mp->cur_type==mp_known ) {
20494 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20495 } else if ( mp->cur_type<=mp_pair_type ) {
20496 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20498 p=p-2; mp_dep_div(mp, p,v);
20499 } while (p!=value(mp->cur_exp));
20501 mp_dep_div(mp, null,v);
20508 @ @<Declare binary action...@>=
20509 static void mp_dep_div (MP mp,pointer p, scaled v) {
20510 pointer q; /* the dependency list being divided by |v| */
20511 quarterword s,t; /* its type, before and after */
20512 if ( p==null ) q=mp->cur_exp;
20513 else if ( mp_type(p)!=mp_known ) q=p;
20514 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20515 t=mp_type(q); q=dep_list(q); s=t;
20516 if ( t==mp_dependent )
20517 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20518 t=mp_proto_dependent;
20519 q=mp_p_over_v(mp, q,v,s,t);
20520 mp_dep_finish(mp, q,p,t);
20523 @ @<Squeal about division by zero@>=
20525 exp_err("Division by zero");
20526 @.Division by zero@>
20527 help2("You're trying to divide the quantity shown above the error",
20528 "message by zero. I'm going to divide it by one instead.");
20529 mp_put_get_error(mp);
20532 @ @<Additional cases of binary operators@>=
20535 if ( (mp->cur_type==mp_known)&&(mp_type(p)==mp_known) ) {
20536 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20537 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20538 } else mp_bad_binary(mp, p,c);
20541 @ The next few sections of the program deal with affine transformations
20542 of coordinate data.
20544 @<Additional cases of binary operators@>=
20545 case rotated_by: case slanted_by:
20546 case scaled_by: case shifted_by: case transformed_by:
20547 case x_scaled: case y_scaled: case z_scaled:
20548 if ( mp_type(p)==mp_path_type ) {
20549 path_trans(c,p); binary_return;
20550 } else if ( mp_type(p)==mp_pen_type ) {
20552 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20553 /* rounding error could destroy convexity */
20555 } else if ( (mp_type(p)==mp_pair_type)||(mp_type(p)==mp_transform_type) ) {
20556 mp_big_trans(mp, p,c);
20557 } else if ( mp_type(p)==mp_picture_type ) {
20558 mp_do_edges_trans(mp, p,c); binary_return;
20560 mp_bad_binary(mp, p,c);
20564 @ Let |c| be one of the eight transform operators. The procedure call
20565 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20566 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20567 change at all if |c=transformed_by|.)
20569 Then, if all components of the resulting transform are |known|, they are
20570 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20571 and |cur_exp| is changed to the known value zero.
20573 @<Declare binary action...@>=
20574 static void mp_set_up_trans (MP mp,quarterword c) {
20575 pointer p,q,r; /* list manipulation registers */
20576 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20577 @<Put the current transform into |cur_exp|@>;
20579 @<If the current transform is entirely known, stash it in global variables;
20580 otherwise |return|@>;
20589 scaled ty; /* current transform coefficients */
20591 @ @<Put the current transform...@>=
20593 p=mp_stash_cur_exp(mp);
20594 mp->cur_exp=mp_id_transform(mp);
20595 mp->cur_type=mp_transform_type;
20596 q=value(mp->cur_exp);
20598 @<For each of the eight cases, change the relevant fields of |cur_exp|
20600 but do nothing if capsule |p| doesn't have the appropriate type@>;
20601 }; /* there are no other cases */
20602 mp_disp_err(mp, p,"Improper transformation argument");
20603 @.Improper transformation argument@>
20604 help3("The expression shown above has the wrong type,",
20605 "so I can\'t transform anything using it.",
20606 "Proceed, and I'll omit the transformation.");
20607 mp_put_get_error(mp);
20609 mp_recycle_value(mp, p);
20610 mp_free_node(mp, p,value_node_size);
20613 @ @<If the current transform is entirely known, ...@>=
20614 q=value(mp->cur_exp); r=q+transform_node_size;
20617 if ( mp_type(r)!=mp_known ) return;
20619 mp->txx=value(xx_part_loc(q));
20620 mp->txy=value(xy_part_loc(q));
20621 mp->tyx=value(yx_part_loc(q));
20622 mp->tyy=value(yy_part_loc(q));
20623 mp->tx=value(x_part_loc(q));
20624 mp->ty=value(y_part_loc(q));
20625 mp_flush_cur_exp(mp, 0)
20627 @ @<For each of the eight cases...@>=
20629 if ( mp_type(p)==mp_known )
20630 @<Install sines and cosines, then |goto done|@>;
20633 if ( mp_type(p)>mp_pair_type ) {
20634 mp_install(mp, xy_part_loc(q),p); goto DONE;
20638 if ( mp_type(p)>mp_pair_type ) {
20639 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20644 if ( mp_type(p)==mp_pair_type ) {
20645 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20646 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20650 if ( mp_type(p)>mp_pair_type ) {
20651 mp_install(mp, xx_part_loc(q),p); goto DONE;
20655 if ( mp_type(p)>mp_pair_type ) {
20656 mp_install(mp, yy_part_loc(q),p); goto DONE;
20660 if ( mp_type(p)==mp_pair_type )
20661 @<Install a complex multiplier, then |goto done|@>;
20663 case transformed_by:
20667 @ @<Install sines and cosines, then |goto done|@>=
20668 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20669 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20670 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20671 value(xy_part_loc(q))=-value(yx_part_loc(q));
20672 value(yy_part_loc(q))=value(xx_part_loc(q));
20676 @ @<Install a complex multiplier, then |goto done|@>=
20679 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20680 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20681 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20682 if ( mp_type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20683 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20684 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20688 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20689 insists that the transformation be entirely known.
20691 @<Declare binary action...@>=
20692 static void mp_set_up_known_trans (MP mp,quarterword c) {
20693 mp_set_up_trans(mp, c);
20694 if ( mp->cur_type!=mp_known ) {
20695 exp_err("Transform components aren't all known");
20696 @.Transform components...@>
20697 help3("I'm unable to apply a partially specified transformation",
20698 "except to a fully known pair or transform.",
20699 "Proceed, and I'll omit the transformation.");
20700 mp_put_get_flush_error(mp, 0);
20701 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20702 mp->tx=0; mp->ty=0;
20706 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20707 coordinates in locations |p| and~|q|.
20709 @<Declare binary action...@>=
20710 static void mp_trans (MP mp,pointer p, pointer q) {
20711 scaled v; /* the new |x| value */
20712 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20713 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20714 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20715 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20719 @ The simplest transformation procedure applies a transform to all
20720 coordinates of a path. The |path_trans(c)(p)| macro applies
20721 a transformation defined by |cur_exp| and the transform operator |c|
20724 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20725 mp_unstash_cur_exp(mp, (B));
20726 mp_do_path_trans(mp, mp->cur_exp); }
20728 @<Declare binary action...@>=
20729 static void mp_do_path_trans (MP mp,pointer p) {
20730 pointer q; /* list traverser */
20733 if ( mp_left_type(q)!=mp_endpoint )
20734 mp_trans(mp, q+3,q+4); /* that's |mp_left_x| and |mp_left_y| */
20735 mp_trans(mp, q+1,q+2); /* that's |mp_x_coord| and |mp_y_coord| */
20736 if ( mp_right_type(q)!=mp_endpoint )
20737 mp_trans(mp, q+5,q+6); /* that's |mp_right_x| and |mp_right_y| */
20738 @^data structure assumptions@>
20743 @ Transforming a pen is very similar, except that there are no |mp_left_type|
20744 and |mp_right_type| fields.
20746 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20747 mp_unstash_cur_exp(mp, (B));
20748 mp_do_pen_trans(mp, mp->cur_exp); }
20750 @<Declare binary action...@>=
20751 static void mp_do_pen_trans (MP mp,pointer p) {
20752 pointer q; /* list traverser */
20753 if ( pen_is_elliptical(p) ) {
20754 mp_trans(mp, p+3,p+4); /* that's |mp_left_x| and |mp_left_y| */
20755 mp_trans(mp, p+5,p+6); /* that's |mp_right_x| and |mp_right_y| */
20759 mp_trans(mp, q+1,q+2); /* that's |mp_x_coord| and |mp_y_coord| */
20760 @^data structure assumptions@>
20765 @ The next transformation procedure applies to edge structures. It will do
20766 any transformation, but the results may be substandard if the picture contains
20767 text that uses downloaded bitmap fonts. The binary action procedure is
20768 |do_edges_trans|, but we also need a function that just scales a picture.
20769 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20770 should be thought of as procedures that update an edge structure |h|, except
20771 that they have to return a (possibly new) structure because of the need to call
20774 @<Declare binary action...@>=
20775 static pointer mp_edges_trans (MP mp, pointer h) {
20776 pointer q; /* the object being transformed */
20777 pointer r,s; /* for list manipulation */
20778 scaled sx,sy; /* saved transformation parameters */
20779 scaled sqdet; /* square root of determinant for |dash_scale| */
20780 integer sgndet; /* sign of the determinant */
20781 scaled v; /* a temporary value */
20782 h=mp_private_edges(mp, h);
20783 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20784 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20785 if ( dash_list(h)!=null_dash ) {
20786 @<Try to transform the dash list of |h|@>;
20788 @<Make the bounding box of |h| unknown if it can't be updated properly
20789 without scanning the whole structure@>;
20790 q=mp_link(dummy_loc(h));
20791 while ( q!=null ) {
20792 @<Transform graphical object |q|@>;
20797 static void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20798 mp_set_up_known_trans(mp, c);
20799 value(p)=mp_edges_trans(mp, value(p));
20800 mp_unstash_cur_exp(mp, p);
20802 static void mp_scale_edges (MP mp) {
20803 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20804 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20805 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20808 @ @<Try to transform the dash list of |h|@>=
20809 if ( (mp->txy!=0)||(mp->tyx!=0)||
20810 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20811 mp_flush_dash_list(mp, h);
20813 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20814 @<Scale the dash list by |txx| and shift it by |tx|@>;
20815 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20818 @ @<Reverse the dash list of |h|@>=
20821 dash_list(h)=null_dash;
20822 while ( r!=null_dash ) {
20824 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20825 mp_link(s)=dash_list(h);
20830 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20832 while ( r!=null_dash ) {
20833 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20834 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20838 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20839 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20840 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20841 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20842 mp_init_bbox(mp, h);
20845 if ( minx_val(h)<=maxx_val(h) ) {
20846 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20853 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20855 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20856 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20859 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20862 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20864 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20865 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20866 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20867 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20868 if ( mp->txx+mp->txy<0 ) {
20869 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20871 if ( mp->tyx+mp->tyy<0 ) {
20872 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20876 @ Now we ready for the main task of transforming the graphical objects in edge
20879 @<Transform graphical object |q|@>=
20880 switch (mp_type(q)) {
20881 case mp_fill_code: case mp_stroked_code:
20882 mp_do_path_trans(mp, mp_path_p(q));
20883 @<Transform |mp_pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20885 case mp_start_clip_code: case mp_start_bounds_code:
20886 mp_do_path_trans(mp, mp_path_p(q));
20890 @<Transform the compact transformation starting at |r|@>;
20892 case mp_stop_clip_code: case mp_stop_bounds_code:
20894 } /* there are no other cases */
20896 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20897 The |dash_scale| has to be adjusted to scale the dash lengths in |mp_dash_p(q)|
20898 since the \ps\ output procedures will try to compensate for the transformation
20899 we are applying to |mp_pen_p(q)|. Since this compensation is based on the square
20900 root of the determinant, |sqdet| is the appropriate factor.
20902 @<Transform |mp_pen_p(q)|, making sure...@>=
20903 if ( mp_pen_p(q)!=null ) {
20904 sx=mp->tx; sy=mp->ty;
20905 mp->tx=0; mp->ty=0;
20906 mp_do_pen_trans(mp, mp_pen_p(q));
20907 if ( ((mp_type(q)==mp_stroked_code)&&(mp_dash_p(q)!=null)) )
20908 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20909 if ( ! pen_is_elliptical(mp_pen_p(q)) )
20911 mp_pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, mp_pen_p(q)),true);
20912 /* this unreverses the pen */
20913 mp->tx=sx; mp->ty=sy;
20916 @ This uses the fact that transformations are stored in the order
20917 |(tx,ty,txx,txy,tyx,tyy)|.
20918 @^data structure assumptions@>
20920 @<Transform the compact transformation starting at |r|@>=
20921 mp_trans(mp, r,r+1);
20922 sx=mp->tx; sy=mp->ty;
20923 mp->tx=0; mp->ty=0;
20924 mp_trans(mp, r+2,r+4);
20925 mp_trans(mp, r+3,r+5);
20926 mp->tx=sx; mp->ty=sy
20928 @ The hard cases of transformation occur when big nodes are involved,
20929 and when some of their components are unknown.
20931 @<Declare binary action...@>=
20932 @<Declare subroutines needed by |big_trans|@>
20933 static void mp_big_trans (MP mp,pointer p, quarterword c) {
20934 pointer q,r,pp,qq; /* list manipulation registers */
20935 quarterword s; /* size of a big node */
20936 s=mp->big_node_size[mp_type(p)]; q=value(p); r=q+s;
20939 if ( mp_type(r)!=mp_known ) {
20940 @<Transform an unknown big node and |return|@>;
20943 @<Transform a known big node@>;
20944 } /* node |p| will now be recycled by |do_binary| */
20946 @ @<Transform an unknown big node and |return|@>=
20948 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20949 r=value(mp->cur_exp);
20950 if ( mp->cur_type==mp_transform_type ) {
20951 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20952 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20953 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20954 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20956 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20957 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20961 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20962 and let |q| point to a another value field. The |bilin1| procedure
20963 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20965 @<Declare subroutines needed by |big_trans|@>=
20966 static void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20967 scaled u, scaled delta) {
20968 pointer r; /* list traverser */
20969 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20971 if ( mp_type(q)==mp_known ) {
20972 delta+=mp_take_scaled(mp, value(q),u);
20974 @<Ensure that |type(p)=mp_proto_dependent|@>;
20975 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20976 mp_proto_dependent,mp_type(q));
20979 if ( mp_type(p)==mp_known ) {
20983 while ( mp_info(r)!=null ) r=mp_link(r);
20985 if ( r!=dep_list(p) ) value(r)=delta;
20986 else { mp_recycle_value(mp, p); mp_type(p)=mp_known; value(p)=delta; };
20988 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20991 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20992 if ( mp_type(p)!=mp_proto_dependent ) {
20993 if ( mp_type(p)==mp_known )
20994 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20996 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20997 mp_proto_dependent,true);
20998 mp_type(p)=mp_proto_dependent;
21001 @ @<Transform a known big node@>=
21002 mp_set_up_trans(mp, c);
21003 if ( mp->cur_type==mp_known ) {
21004 @<Transform known by known@>;
21006 pp=mp_stash_cur_exp(mp); qq=value(pp);
21007 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
21008 if ( mp->cur_type==mp_transform_type ) {
21009 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
21010 value(xy_part_loc(q)),yx_part_loc(qq),null);
21011 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
21012 value(xx_part_loc(q)),yx_part_loc(qq),null);
21013 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
21014 value(yy_part_loc(q)),xy_part_loc(qq),null);
21015 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
21016 value(yx_part_loc(q)),xy_part_loc(qq),null);
21018 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
21019 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
21020 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
21021 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
21022 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
21025 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
21026 at |dep_final|. The following procedure adds |v| times another
21027 numeric quantity to~|p|.
21029 @<Declare subroutines needed by |big_trans|@>=
21030 static void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
21031 if ( mp_type(r)==mp_known ) {
21032 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
21034 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
21035 mp_proto_dependent,mp_type(r));
21036 if ( mp->fix_needed ) mp_fix_dependencies(mp);
21040 @ The |bilin2| procedure is something like |bilin1|, but with known
21041 and unknown quantities reversed. Parameter |p| points to a value field
21042 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
21043 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
21044 unless it is |null| (which stands for zero). Location~|p| will be
21045 replaced by $p\cdot t+v\cdot u+q$.
21047 @<Declare subroutines needed by |big_trans|@>=
21048 static void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
21049 pointer u, pointer q) {
21050 scaled vv; /* temporary storage for |value(p)| */
21051 vv=value(p); mp_type(p)=mp_proto_dependent;
21052 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
21054 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
21055 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
21056 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
21057 if ( dep_list(p)==mp->dep_final ) {
21058 vv=value(mp->dep_final); mp_recycle_value(mp, p);
21059 mp_type(p)=mp_known; value(p)=vv;
21063 @ @<Transform known by known@>=
21065 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
21066 if ( mp->cur_type==mp_transform_type ) {
21067 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
21068 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
21069 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
21070 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
21072 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
21073 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
21076 @ Finally, in |bilin3| everything is |known|.
21078 @<Declare subroutines needed by |big_trans|@>=
21079 static void mp_bilin3 (MP mp,pointer p, scaled t,
21080 scaled v, scaled u, scaled delta) {
21082 delta+=mp_take_scaled(mp, value(p),t);
21085 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
21086 else value(p)=delta;
21089 @ @<Additional cases of binary operators@>=
21091 if ( (mp->cur_type==mp_string_type)&&(mp_type(p)==mp_string_type) ) mp_cat(mp, p);
21092 else mp_bad_binary(mp, p,concatenate);
21095 if ( mp_nice_pair(mp, p,mp_type(p))&&(mp->cur_type==mp_string_type) )
21096 mp_chop_string(mp, value(p));
21097 else mp_bad_binary(mp, p,substring_of);
21100 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21101 if ( mp_nice_pair(mp, p,mp_type(p))&&(mp->cur_type==mp_path_type) )
21102 mp_chop_path(mp, value(p));
21103 else mp_bad_binary(mp, p,subpath_of);
21106 @ @<Declare binary action...@>=
21107 static void mp_cat (MP mp,pointer p) {
21108 str_number a,b; /* the strings being concatenated */
21109 pool_pointer k; /* index into |str_pool| */
21110 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
21111 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
21112 append_char(mp->str_pool[k]);
21114 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
21115 append_char(mp->str_pool[k]);
21117 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21120 @ @<Declare binary action...@>=
21121 static void mp_chop_string (MP mp,pointer p) {
21122 integer a, b; /* start and stop points */
21123 integer l; /* length of the original string */
21124 integer k; /* runs from |a| to |b| */
21125 str_number s; /* the original string */
21126 boolean reversed; /* was |a>b|? */
21127 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21128 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21129 if ( a<=b ) reversed=false;
21130 else { reversed=true; k=a; a=b; b=k; };
21131 s=mp->cur_exp; l=length(s);
21142 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21143 append_char(mp->str_pool[k]);
21146 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21147 append_char(mp->str_pool[k]);
21150 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21153 @ @<Declare binary action...@>=
21154 static void mp_chop_path (MP mp,pointer p) {
21155 pointer q; /* a knot in the original path */
21156 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21157 scaled a,b,k,l; /* indices for chopping */
21158 boolean reversed; /* was |a>b|? */
21159 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21160 if ( a<=b ) reversed=false;
21161 else { reversed=true; k=a; a=b; b=k; };
21162 @<Dispense with the cases |a<0| and/or |b>l|@>;
21164 while ( a>=unity ) {
21165 q=mp_link(q); a=a-unity; b=b-unity;
21168 @<Construct a path from |pp| to |qq| of length zero@>;
21170 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21172 mp_left_type(pp)=mp_endpoint; mp_right_type(qq)=mp_endpoint; mp_link(qq)=pp;
21173 mp_toss_knot_list(mp, mp->cur_exp);
21175 mp->cur_exp=mp_link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21181 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21183 if ( mp_left_type(mp->cur_exp)==mp_endpoint ) {
21184 a=0; if ( b<0 ) b=0;
21186 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21190 if ( mp_left_type(mp->cur_exp)==mp_endpoint ) {
21191 b=l; if ( a>l ) a=l;
21199 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21201 pp=mp_copy_knot(mp, q); qq=pp;
21203 q=mp_link(q); rr=qq; qq=mp_copy_knot(mp, q); mp_link(rr)=qq; b=b-unity;
21206 ss=pp; pp=mp_link(pp);
21207 mp_split_cubic(mp, ss,a*010000); pp=mp_link(ss);
21208 mp_free_node(mp, ss,knot_node_size);
21210 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21214 mp_split_cubic(mp, rr,(b+unity)*010000);
21215 mp_free_node(mp, qq,knot_node_size);
21220 @ @<Construct a path from |pp| to |qq| of length zero@>=
21222 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=mp_link(q); };
21223 pp=mp_copy_knot(mp, q); qq=pp;
21226 @ @<Additional cases of binary operators@>=
21227 case point_of: case precontrol_of: case postcontrol_of:
21228 if ( mp->cur_type==mp_pair_type )
21229 mp_pair_to_path(mp);
21230 if ( (mp->cur_type==mp_path_type)&&(mp_type(p)==mp_known) )
21231 mp_find_point(mp, value(p),c);
21233 mp_bad_binary(mp, p,c);
21235 case pen_offset_of:
21236 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,mp_type(p)) )
21237 mp_set_up_offset(mp, value(p));
21239 mp_bad_binary(mp, p,pen_offset_of);
21241 case direction_time_of:
21242 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21243 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,mp_type(p)) )
21244 mp_set_up_direction_time(mp, value(p));
21246 mp_bad_binary(mp, p,direction_time_of);
21249 if ( (mp_type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21250 mp_bad_binary(mp, p,envelope_of);
21252 mp_set_up_envelope(mp, p);
21255 @ @<Declare binary action...@>=
21256 static void mp_set_up_offset (MP mp,pointer p) {
21257 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21258 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21260 static void mp_set_up_direction_time (MP mp,pointer p) {
21261 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21262 value(y_part_loc(p)),mp->cur_exp));
21264 static void mp_set_up_envelope (MP mp,pointer p) {
21265 quarterword ljoin, lcap;
21267 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21268 /* TODO: accept elliptical pens for straight paths */
21269 if (pen_is_elliptical(value(p))) {
21270 mp_bad_envelope_pen(mp);
21272 mp->cur_type = mp_path_type;
21275 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21276 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21278 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21279 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21281 if ( mp->internal[mp_miterlimit]<unity )
21284 miterlim=mp->internal[mp_miterlimit];
21285 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21286 mp->cur_type = mp_path_type;
21289 @ @<Declare binary action...@>=
21290 static void mp_find_point (MP mp,scaled v, quarterword c) {
21291 pointer p; /* the path */
21292 scaled n; /* its length */
21294 if ( mp_left_type(p)==mp_endpoint ) n=-unity; else n=0;
21295 do { p=mp_link(p); n=n+unity; } while (p!=mp->cur_exp);
21298 } else if ( v<0 ) {
21299 if ( mp_left_type(p)==mp_endpoint ) v=0;
21300 else v=n-1-((-v-1) % n);
21301 } else if ( v>n ) {
21302 if ( mp_left_type(p)==mp_endpoint ) v=n;
21306 while ( v>=unity ) { p=mp_link(p); v=v-unity; };
21308 @<Insert a fractional node by splitting the cubic@>;
21310 @<Set the current expression to the desired path coordinates@>;
21313 @ @<Insert a fractional node...@>=
21314 { mp_split_cubic(mp, p,v*010000); p=mp_link(p); }
21316 @ @<Set the current expression to the desired path coordinates...@>=
21319 mp_pair_value(mp, mp_x_coord(p),mp_y_coord(p));
21321 case precontrol_of:
21322 if ( mp_left_type(p)==mp_endpoint ) mp_pair_value(mp, mp_x_coord(p),mp_y_coord(p));
21323 else mp_pair_value(mp, mp_left_x(p),mp_left_y(p));
21325 case postcontrol_of:
21326 if ( mp_right_type(p)==mp_endpoint ) mp_pair_value(mp, mp_x_coord(p),mp_y_coord(p));
21327 else mp_pair_value(mp, mp_right_x(p),mp_right_y(p));
21329 } /* there are no other cases */
21331 @ @<Additional cases of binary operators@>=
21333 if ( mp->cur_type==mp_pair_type )
21334 mp_pair_to_path(mp);
21335 if ( (mp->cur_type==mp_path_type)&&(mp_type(p)==mp_known) )
21336 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21338 mp_bad_binary(mp, p,c);
21341 @ @<Additional cases of bin...@>=
21343 if ( mp_type(p)==mp_pair_type ) {
21344 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21345 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21347 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21348 if ( (mp->cur_type==mp_path_type)&&(mp_type(p)==mp_path_type) ) {
21349 mp_path_intersection(mp, value(p),mp->cur_exp);
21350 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21352 mp_bad_binary(mp, p,intersect);
21356 @ @<Additional cases of bin...@>=
21358 if ( (mp->cur_type!=mp_string_type)||(mp_type(p)!=mp_string_type))
21359 mp_bad_binary(mp, p,in_font);
21360 else { mp_do_infont(mp, p); binary_return; }
21363 @ Function |new_text_node| owns the reference count for its second argument
21364 (the text string) but not its first (the font name).
21366 @<Declare binary action...@>=
21367 static void mp_do_infont (MP mp,pointer p) {
21369 q=mp_get_node(mp, edge_header_size);
21370 mp_init_edges(mp, q);
21371 mp_link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21372 obj_tail(q)=mp_link(obj_tail(q));
21373 mp_free_node(mp, p,value_node_size);
21374 mp_flush_cur_exp(mp, q);
21375 mp->cur_type=mp_picture_type;
21378 @* \[40] Statements and commands.
21379 The chief executive of \MP\ is the |do_statement| routine, which
21380 contains the master switch that causes all the various pieces of \MP\
21381 to do their things, in the right order.
21383 In a sense, this is the grand climax of the program: It applies all the
21384 tools that we have worked so hard to construct. In another sense, this is
21385 the messiest part of the program: It necessarily refers to other pieces
21386 of code all over the place, so that a person can't fully understand what is
21387 going on without paging back and forth to be reminded of conventions that
21388 are defined elsewhere. We are now at the hub of the web.
21390 The structure of |do_statement| itself is quite simple. The first token
21391 of the statement is fetched using |get_x_next|. If it can be the first
21392 token of an expression, we look for an equation, an assignment, or a
21393 title. Otherwise we use a \&{case} construction to branch at high speed to
21394 the appropriate routine for various and sundry other types of commands,
21395 each of which has an ``action procedure'' that does the necessary work.
21397 The program uses the fact that
21398 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21399 to interpret a statement that starts with, e.g., `\&{string}',
21400 as a type declaration rather than a boolean expression.
21402 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21403 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21404 if ( mp->cur_cmd>max_primary_command ) {
21405 @<Worry about bad statement@>;
21406 } else if ( mp->cur_cmd>max_statement_command ) {
21407 @<Do an equation, assignment, title, or
21408 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21410 @<Do a statement that doesn't begin with an expression@>;
21412 if ( mp->cur_cmd<semicolon )
21413 @<Flush unparsable junk that was found after the statement@>;
21417 @ @<Declarations@>=
21418 @<Declare action procedures for use by |do_statement|@>
21420 @ The only command codes |>max_primary_command| that can be present
21421 at the beginning of a statement are |semicolon| and higher; these
21422 occur when the statement is null.
21424 @<Worry about bad statement@>=
21426 if ( mp->cur_cmd<semicolon ) {
21427 print_err("A statement can't begin with `");
21428 @.A statement can't begin with x@>
21429 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, xord('\''));
21430 help5("I was looking for the beginning of a new statement.",
21431 "If you just proceed without changing anything, I'll ignore",
21432 "everything up to the next `;'. Please insert a semicolon",
21433 "now in front of anything that you don't want me to delete.",
21434 "(See Chapter 27 of The METAFONTbook for an example.)");
21435 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21436 mp_back_error(mp); mp_get_x_next(mp);
21440 @ The help message printed here says that everything is flushed up to
21441 a semicolon, but actually the commands |end_group| and |stop| will
21442 also terminate a statement.
21444 @<Flush unparsable junk that was found after the statement@>=
21446 print_err("Extra tokens will be flushed");
21447 @.Extra tokens will be flushed@>
21448 help6("I've just read as much of that statement as I could fathom,",
21449 "so a semicolon should have been next. It's very puzzling...",
21450 "but I'll try to get myself back together, by ignoring",
21451 "everything up to the next `;'. Please insert a semicolon",
21452 "now in front of anything that you don't want me to delete.",
21453 "(See Chapter 27 of The METAFONTbook for an example.)");
21454 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21455 mp_back_error(mp); mp->scanner_status=flushing;
21458 @<Decrease the string reference count...@>;
21459 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21460 mp->scanner_status=normal;
21463 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21464 |cur_type=mp_vacuous| unless the statement was simply an expression;
21465 in the latter case, |cur_type| and |cur_exp| should represent that
21468 @<Do a statement that doesn't...@>=
21470 if ( mp->internal[mp_tracing_commands]>0 )
21472 switch (mp->cur_cmd ) {
21473 case type_name:mp_do_type_declaration(mp); break;
21475 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21476 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21478 @<Cases of |do_statement| that invoke particular commands@>;
21479 } /* there are no other cases */
21480 mp->cur_type=mp_vacuous;
21483 @ The most important statements begin with expressions.
21485 @<Do an equation, assignment, title, or...@>=
21487 mp->var_flag=assignment; mp_scan_expression(mp);
21488 if ( mp->cur_cmd<end_group ) {
21489 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21490 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21491 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21492 else if ( mp->cur_type!=mp_vacuous ){
21493 exp_err("Isolated expression");
21494 @.Isolated expression@>
21495 help3("I couldn't find an `=' or `:=' after the",
21496 "expression that is shown above this error message,",
21497 "so I guess I'll just ignore it and carry on.");
21498 mp_put_get_error(mp);
21500 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21506 if ( mp->internal[mp_tracing_titles]>0 ) {
21507 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21511 @ Equations and assignments are performed by the pair of mutually recursive
21513 routines |do_equation| and |do_assignment|. These routines are called when
21514 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21515 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21516 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21517 will be equal to the right-hand side (which will normally be equal
21518 to the left-hand side).
21521 @<Declare the procedure called |make_eq|@>
21522 static void mp_do_equation (MP mp) ;
21525 void mp_do_equation (MP mp) {
21526 pointer lhs; /* capsule for the left-hand side */
21527 pointer p; /* temporary register */
21528 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21529 mp->var_flag=assignment; mp_scan_expression(mp);
21530 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21531 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21532 if ( mp->internal[mp_tracing_commands]>two )
21533 @<Trace the current equation@>;
21534 if ( mp->cur_type==mp_unknown_path ) if ( mp_type(lhs)==mp_pair_type ) {
21535 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21536 }; /* in this case |make_eq| will change the pair to a path */
21537 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21540 @ And |do_assignment| is similar to |do_equation|:
21543 static void mp_do_assignment (MP mp);
21546 void mp_do_assignment (MP mp) {
21547 pointer lhs; /* token list for the left-hand side */
21548 pointer p; /* where the left-hand value is stored */
21549 pointer q; /* temporary capsule for the right-hand value */
21550 if ( mp->cur_type!=mp_token_list ) {
21551 exp_err("Improper `:=' will be changed to `='");
21553 help2("I didn't find a variable name at the left of the `:=',",
21554 "so I'm going to pretend that you said `=' instead.");
21555 mp_error(mp); mp_do_equation(mp);
21557 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21558 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21559 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21560 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21561 if ( mp->internal[mp_tracing_commands]>two )
21562 @<Trace the current assignment@>;
21563 if ( mp_info(lhs)>hash_end ) {
21564 @<Assign the current expression to an internal variable@>;
21566 @<Assign the current expression to the variable |lhs|@>;
21568 mp_flush_node_list(mp, lhs);
21572 @ @<Trace the current equation@>=
21574 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21575 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21576 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21579 @ @<Trace the current assignment@>=
21581 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21582 if ( mp_info(lhs)>hash_end )
21583 mp_print(mp, mp->int_name[mp_info(lhs)-(hash_end)]);
21585 mp_show_token_list(mp, lhs,null,1000,0);
21586 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21587 mp_print_char(mp, xord('}')); mp_end_diagnostic(mp, false);
21590 @ @<Assign the current expression to an internal variable@>=
21591 if ( mp->cur_type==mp_known ) {
21592 mp->internal[mp_info(lhs)-(hash_end)]=mp->cur_exp;
21594 exp_err("Internal quantity `");
21595 @.Internal quantity...@>
21596 mp_print(mp, mp->int_name[mp_info(lhs)-(hash_end)]);
21597 mp_print(mp, "' must receive a known value");
21598 help2("I can\'t set an internal quantity to anything but a known",
21599 "numeric value, so I'll have to ignore this assignment.");
21600 mp_put_get_error(mp);
21603 @ @<Assign the current expression to the variable |lhs|@>=
21605 p=mp_find_variable(mp, lhs);
21607 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21608 mp_recycle_value(mp, p);
21609 mp_type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21610 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21612 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21617 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21618 a pointer to a capsule that is to be equated to the current expression.
21620 @<Declare the procedure called |make_eq|@>=
21621 static void mp_make_eq (MP mp,pointer lhs) ;
21625 @c void mp_make_eq (MP mp,pointer lhs) {
21626 quarterword t; /* type of the left-hand side */
21627 pointer p,q; /* pointers inside of big nodes */
21628 integer v=0; /* value of the left-hand side */
21631 if ( t<=mp_pair_type ) v=value(lhs);
21633 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21634 is incompatible with~|t|@>;
21635 } /* all cases have been listed */
21636 @<Announce that the equation cannot be performed@>;
21638 check_arith; mp_recycle_value(mp, lhs);
21639 mp_free_node(mp, lhs,value_node_size);
21642 @ @<Announce that the equation cannot be performed@>=
21643 mp_disp_err(mp, lhs,"");
21644 exp_err("Equation cannot be performed (");
21645 @.Equation cannot be performed@>
21646 if ( mp_type(lhs)<=mp_pair_type ) mp_print_type(mp, mp_type(lhs));
21647 else mp_print(mp, "numeric");
21648 mp_print_char(mp, xord('='));
21649 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21650 else mp_print(mp, "numeric");
21651 mp_print_char(mp, xord(')'));
21652 help2("I'm sorry, but I don't know how to make such things equal.",
21653 "(See the two expressions just above the error message.)");
21654 mp_put_get_error(mp)
21656 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21657 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21658 case mp_path_type: case mp_picture_type:
21659 if ( mp->cur_type==t+unknown_tag ) {
21660 mp_nonlinear_eq(mp, v,mp->cur_exp,false);
21661 mp_unstash_cur_exp(mp, mp->cur_exp); goto DONE;
21662 } else if ( mp->cur_type==t ) {
21663 @<Report redundant or inconsistent equation and |goto done|@>;
21666 case unknown_types:
21667 if ( mp->cur_type==t-unknown_tag ) {
21668 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21669 } else if ( mp->cur_type==t ) {
21670 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21671 } else if ( mp->cur_type==mp_pair_type ) {
21672 if ( t==mp_unknown_path ) {
21673 mp_pair_to_path(mp); goto RESTART;
21677 case mp_transform_type: case mp_color_type:
21678 case mp_cmykcolor_type: case mp_pair_type:
21679 if ( mp->cur_type==t ) {
21680 @<Do multiple equations and |goto done|@>;
21683 case mp_known: case mp_dependent:
21684 case mp_proto_dependent: case mp_independent:
21685 if ( mp->cur_type>=mp_known ) {
21686 mp_try_eq(mp, lhs,null); goto DONE;
21692 @ @<Report redundant or inconsistent equation and |goto done|@>=
21694 if ( mp->cur_type<=mp_string_type ) {
21695 if ( mp->cur_type==mp_string_type ) {
21696 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21699 } else if ( v!=mp->cur_exp ) {
21702 @<Exclaim about a redundant equation@>; goto DONE;
21704 print_err("Redundant or inconsistent equation");
21705 @.Redundant or inconsistent equation@>
21706 help2("An equation between already-known quantities can't help.",
21707 "But don't worry; continue and I'll just ignore it.");
21708 mp_put_get_error(mp); goto DONE;
21710 print_err("Inconsistent equation");
21711 @.Inconsistent equation@>
21712 help2("The equation I just read contradicts what was said before.",
21713 "But don't worry; continue and I'll just ignore it.");
21714 mp_put_get_error(mp); goto DONE;
21717 @ @<Do multiple equations and |goto done|@>=
21719 p=v+mp->big_node_size[t];
21720 q=value(mp->cur_exp)+mp->big_node_size[t];
21722 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21727 @ The first argument to |try_eq| is the location of a value node
21728 in a capsule that will soon be recycled. The second argument is
21729 either a location within a pair or transform node pointed to by
21730 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21731 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21732 but to equate the two operands.
21735 static void mp_try_eq (MP mp,pointer l, pointer r) ;
21738 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21739 pointer p; /* dependency list for right operand minus left operand */
21740 int t; /* the type of list |p| */
21741 pointer q; /* the constant term of |p| is here */
21742 pointer pp; /* dependency list for right operand */
21743 int tt; /* the type of list |pp| */
21744 boolean copied; /* have we copied a list that ought to be recycled? */
21745 @<Remove the left operand from its container, negate it, and
21746 put it into dependency list~|p| with constant term~|q|@>;
21747 @<Add the right operand to list |p|@>;
21748 if ( mp_info(p)==null ) {
21749 @<Deal with redundant or inconsistent equation@>;
21751 mp_linear_eq(mp, p,t);
21752 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21753 if ( mp_type(mp->cur_exp)==mp_known ) {
21754 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21755 mp_free_node(mp, pp,value_node_size);
21761 @ @<Remove the left operand from its container, negate it, and...@>=
21763 if ( t==mp_known ) {
21764 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21765 } else if ( t==mp_independent ) {
21766 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21769 p=dep_list(l); q=p;
21772 if ( mp_info(q)==null ) break;
21775 mp_link(prev_dep(l))=mp_link(q); prev_dep(mp_link(q))=prev_dep(l);
21776 mp_type(l)=mp_known;
21779 @ @<Deal with redundant or inconsistent equation@>=
21781 if ( abs(value(p))>64 ) { /* off by .001 or more */
21782 print_err("Inconsistent equation");
21783 @.Inconsistent equation@>
21784 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21785 mp_print_char(mp, xord(')'));
21786 help2("The equation I just read contradicts what was said before.",
21787 "But don't worry; continue and I'll just ignore it.");
21788 mp_put_get_error(mp);
21789 } else if ( r==null ) {
21790 @<Exclaim about a redundant equation@>;
21792 mp_free_node(mp, p,dep_node_size);
21795 @ @<Add the right operand to list |p|@>=
21797 if ( mp->cur_type==mp_known ) {
21798 value(q)=value(q)+mp->cur_exp; goto DONE1;
21801 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21802 else pp=dep_list(mp->cur_exp);
21805 if ( mp_type(r)==mp_known ) {
21806 value(q)=value(q)+value(r); goto DONE1;
21809 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21810 else pp=dep_list(r);
21813 if ( tt!=mp_independent ) copied=false;
21814 else { copied=true; tt=mp_dependent; };
21815 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21816 if ( copied ) mp_flush_node_list(mp, pp);
21819 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21820 mp->watch_coefs=false;
21822 p=mp_p_plus_q(mp, p,pp,t);
21823 } else if ( t==mp_proto_dependent ) {
21824 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21827 while ( mp_info(q)!=null ) {
21828 value(q)=mp_round_fraction(mp, value(q)); q=mp_link(q);
21830 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21832 mp->watch_coefs=true;
21834 @ Our next goal is to process type declarations. For this purpose it's
21835 convenient to have a procedure that scans a $\langle\,$declared
21836 variable$\,\rangle$ and returns the corresponding token list. After the
21837 following procedure has acted, the token after the declared variable
21838 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21842 static pointer mp_scan_declared_variable (MP mp) ;
21845 pointer mp_scan_declared_variable (MP mp) {
21846 pointer x; /* hash address of the variable's root */
21847 pointer h,t; /* head and tail of the token list to be returned */
21848 pointer l; /* hash address of left bracket */
21849 mp_get_symbol(mp); x=mp->cur_sym;
21850 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21851 h=mp_get_avail(mp); mp_info(h)=x; t=h;
21854 if ( mp->cur_sym==0 ) break;
21855 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21856 if ( mp->cur_cmd==left_bracket ) {
21857 @<Descend past a collective subscript@>;
21862 mp_link(t)=mp_get_avail(mp); t=mp_link(t); mp_info(t)=mp->cur_sym;
21864 if ( (eq_type(x)%outer_tag)!=tag_token ) mp_clear_symbol(mp, x,false);
21865 if ( equiv(x)==null ) mp_new_root(mp, x);
21869 @ If the subscript isn't collective, we don't accept it as part of the
21872 @<Descend past a collective subscript@>=
21874 l=mp->cur_sym; mp_get_x_next(mp);
21875 if ( mp->cur_cmd!=right_bracket ) {
21876 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21878 mp->cur_sym=collective_subscript;
21882 @ Type declarations are introduced by the following primitive operations.
21885 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21886 @:numeric_}{\&{numeric} primitive@>
21887 mp_primitive(mp, "string",type_name,mp_string_type);
21888 @:string_}{\&{string} primitive@>
21889 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21890 @:boolean_}{\&{boolean} primitive@>
21891 mp_primitive(mp, "path",type_name,mp_path_type);
21892 @:path_}{\&{path} primitive@>
21893 mp_primitive(mp, "pen",type_name,mp_pen_type);
21894 @:pen_}{\&{pen} primitive@>
21895 mp_primitive(mp, "picture",type_name,mp_picture_type);
21896 @:picture_}{\&{picture} primitive@>
21897 mp_primitive(mp, "transform",type_name,mp_transform_type);
21898 @:transform_}{\&{transform} primitive@>
21899 mp_primitive(mp, "color",type_name,mp_color_type);
21900 @:color_}{\&{color} primitive@>
21901 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21902 @:color_}{\&{rgbcolor} primitive@>
21903 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21904 @:color_}{\&{cmykcolor} primitive@>
21905 mp_primitive(mp, "pair",type_name,mp_pair_type);
21906 @:pair_}{\&{pair} primitive@>
21908 @ @<Cases of |print_cmd...@>=
21909 case type_name: mp_print_type(mp, m); break;
21911 @ Now we are ready to handle type declarations, assuming that a
21912 |type_name| has just been scanned.
21914 @<Declare action procedures for use by |do_statement|@>=
21915 static void mp_do_type_declaration (MP mp) ;
21918 void mp_do_type_declaration (MP mp) {
21919 quarterword t; /* the type being declared */
21920 pointer p; /* token list for a declared variable */
21921 pointer q; /* value node for the variable */
21922 if ( mp->cur_mod>=mp_transform_type )
21925 t=mp->cur_mod+unknown_tag;
21927 p=mp_scan_declared_variable(mp);
21928 mp_flush_variable(mp, equiv(mp_info(p)),mp_link(p),false);
21929 q=mp_find_variable(mp, p);
21931 mp_type(q)=t; value(q)=null;
21933 print_err("Declared variable conflicts with previous vardef");
21934 @.Declared variable conflicts...@>
21935 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.",
21936 "Proceed, and I'll ignore the illegal redeclaration.");
21937 mp_put_get_error(mp);
21939 mp_flush_list(mp, p);
21940 if ( mp->cur_cmd<comma ) {
21941 @<Flush spurious symbols after the declared variable@>;
21943 } while (! end_of_statement);
21946 @ @<Flush spurious symbols after the declared variable@>=
21948 print_err("Illegal suffix of declared variable will be flushed");
21949 @.Illegal suffix...flushed@>
21950 help5("Variables in declarations must consist entirely of",
21951 "names and collective subscripts, e.g., `x[]a'.",
21952 "Are you trying to use a reserved word in a variable name?",
21953 "I'm going to discard the junk I found here,",
21954 "up to the next comma or the end of the declaration.");
21955 if ( mp->cur_cmd==numeric_token )
21956 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21957 mp_put_get_error(mp); mp->scanner_status=flushing;
21960 @<Decrease the string reference count...@>;
21961 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21962 mp->scanner_status=normal;
21965 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21966 until coming to the end of the user's program.
21967 Each execution of |do_statement| concludes with
21968 |cur_cmd=semicolon|, |end_group|, or |stop|.
21971 static void mp_main_control (MP mp) {
21973 mp_do_statement(mp);
21974 if ( mp->cur_cmd==end_group ) {
21975 print_err("Extra `endgroup'");
21976 @.Extra `endgroup'@>
21977 help2("I'm not currently working on a `begingroup',",
21978 "so I had better not try to end anything.");
21979 mp_flush_error(mp, 0);
21981 } while (mp->cur_cmd!=stop);
21983 int mp_run (MP mp) {
21984 if (mp->history < mp_fatal_error_stop ) {
21985 xfree(mp->jump_buf);
21986 mp->jump_buf = malloc(sizeof(jmp_buf));
21987 if (mp->jump_buf == NULL || setjmp(*(mp->jump_buf)) != 0)
21988 return mp->history;
21989 mp_main_control(mp); /* come to life */
21990 mp_final_cleanup(mp); /* prepare for death */
21991 mp_close_files_and_terminate(mp);
21993 return mp->history;
21996 @ For |mp_execute|, we need to define a structure to store the
21997 redirected input and output. This structure holds the five relevant
21998 streams: the three informational output streams, the PostScript
21999 generation stream, and the input stream. These streams have many
22000 things in common, so it makes sense to give them their own structure
22003 \item{fptr} is a virtual file pointer
22004 \item{data} is the data this stream holds
22005 \item{cur} is a cursor pointing into |data|
22006 \item{size} is the allocated length of the data stream
22007 \item{used} is the actual length of the data stream
22009 There are small differences between input and output: |term_in| never
22010 uses |used|, whereas the other four never use |cur|.
22012 @<Exported types@>=
22022 mp_stream term_out;
22023 mp_stream error_out;
22027 struct mp_edge_object *edges;
22030 @ We need a function to clear an output stream, this is called at the
22031 beginning of |mp_execute|. We also need one for destroying an output
22032 stream, this is called just before a stream is (re)opened.
22035 static void mp_reset_stream(mp_stream *str) {
22041 static void mp_free_stream(mp_stream *str) {
22043 mp_reset_stream(str);
22046 @ @<Declarations@>=
22047 static void mp_reset_stream(mp_stream *str);
22048 static void mp_free_stream(mp_stream *str);
22050 @ The global instance contains a pointer instead of the actual structure
22051 even though it is essentially static, because that makes it is easier to move
22055 mp_run_data run_data;
22057 @ Another type is needed: the indirection will overload some of the
22058 file pointer objects in the instance (but not all). For clarity, an
22059 indirect object is used that wraps a |FILE *|.
22062 typedef struct File {
22066 @ Here are all of the functions that need to be overloaded for |mp_execute|.
22069 static void *mplib_open_file(MP mp, const char *fname, const char *fmode, int ftype);
22070 static int mplib_get_char(void *f, mp_run_data * mplib_data);
22071 static void mplib_unget_char(void *f, mp_run_data * mplib_data, int c);
22072 static char *mplib_read_ascii_file(MP mp, void *ff, size_t * size);
22073 static void mplib_write_ascii_file(MP mp, void *ff, const char *s);
22074 static void mplib_read_binary_file(MP mp, void *ff, void **data, size_t * size);
22075 static void mplib_write_binary_file(MP mp, void *ff, void *s, size_t size);
22076 static void mplib_close_file(MP mp, void *ff);
22077 static int mplib_eof_file(MP mp, void *ff);
22078 static void mplib_flush_file(MP mp, void *ff);
22079 static void mplib_shipout_backend(MP mp, int h);
22081 @ The |xmalloc(1,1)| calls make sure the stored indirection values are unique.
22083 @d reset_stream(a) do {
22084 mp_reset_stream(&(a));
22086 ff->f = xmalloc(1,1);
22092 static void *mplib_open_file(MP mp, const char *fname, const char *fmode, int ftype)
22094 File *ff = xmalloc(1, sizeof(File));
22095 mp_run_data *run = mp_rundata(mp);
22097 if (ftype == mp_filetype_terminal) {
22098 if (fmode[0] == 'r') {
22100 ff->f = xmalloc(1,1);
22101 run->term_in.fptr = ff->f;
22104 reset_stream(run->term_out);
22106 } else if (ftype == mp_filetype_error) {
22107 reset_stream(run->error_out);
22108 } else if (ftype == mp_filetype_log) {
22109 reset_stream(run->log_out);
22110 } else if (ftype == mp_filetype_postscript) {
22111 mp_free_stream(&(run->ps_out));
22112 ff->f = xmalloc(1,1);
22113 run->ps_out.fptr = ff->f;
22116 char *f = (mp->find_file)(mp, fname, fmode, ftype);
22119 realmode[0] = *fmode;
22122 ff->f = fopen(f, realmode);
22124 if ((fmode[0] == 'r') && (ff->f == NULL)) {
22132 static int mplib_get_char(void *f, mp_run_data * run)
22135 if (f == run->term_in.fptr && run->term_in.data != NULL) {
22136 if (run->term_in.size == 0) {
22137 if (run->term_in.cur != NULL) {
22138 run->term_in.cur = NULL;
22140 xfree(run->term_in.data);
22144 run->term_in.size--;
22145 c = *(run->term_in.cur)++;
22153 static void mplib_unget_char(void *f, mp_run_data * run, int c)
22155 if (f == run->term_in.fptr && run->term_in.cur != NULL) {
22156 run->term_in.size++;
22157 run->term_in.cur--;
22164 static char *mplib_read_ascii_file(MP mp, void *ff, size_t * size)
22169 size_t len = 0, lim = 128;
22170 mp_run_data *run = mp_rundata(mp);
22171 FILE *f = ((File *) ff)->f;
22175 c = mplib_get_char(f, run);
22181 while (c != EOF && c != '\n' && c != '\r') {
22183 s = xrealloc(s, (lim + (lim >> 2)),1);
22189 c = mplib_get_char(f, run);
22192 c = mplib_get_char(f, run);
22193 if (c != EOF && c != '\n')
22194 mplib_unget_char(f, run, c);
22202 static void mp_append_string (MP mp, mp_stream *a,const char *b) {
22203 size_t l = strlen(b);
22204 if ((a->used+l)>=a->size) {
22205 a->size += 256+(a->size)/5+l;
22206 a->data = xrealloc(a->data,a->size,1);
22208 (void)strcpy(a->data+a->used,b);
22213 static void mplib_write_ascii_file(MP mp, void *ff, const char *s)
22216 void *f = ((File *) ff)->f;
22217 mp_run_data *run = mp_rundata(mp);
22219 if (f == run->term_out.fptr) {
22220 mp_append_string(mp,&(run->term_out), s);
22221 } else if (f == run->error_out.fptr) {
22222 mp_append_string(mp,&(run->error_out), s);
22223 } else if (f == run->log_out.fptr) {
22224 mp_append_string(mp,&(run->log_out), s);
22225 } else if (f == run->ps_out.fptr) {
22226 mp_append_string(mp,&(run->ps_out), s);
22228 fprintf((FILE *) f, "%s", s);
22234 static void mplib_read_binary_file(MP mp, void *ff, void **data, size_t * size)
22239 FILE *f = ((File *) ff)->f;
22241 len = fread(*data, 1, *size, f);
22246 static void mplib_write_binary_file(MP mp, void *ff, void *s, size_t size)
22250 FILE *f = ((File *) ff)->f;
22252 (void)fwrite(s, size, 1, f);
22256 static void mplib_close_file(MP mp, void *ff)
22259 mp_run_data *run = mp_rundata(mp);
22260 void *f = ((File *) ff)->f;
22262 if (f != run->term_out.fptr
22263 && f != run->error_out.fptr
22264 && f != run->log_out.fptr
22265 && f != run->ps_out.fptr
22266 && f != run->term_in.fptr) {
22274 static int mplib_eof_file(MP mp, void *ff)
22277 mp_run_data *run = mp_rundata(mp);
22278 FILE *f = ((File *) ff)->f;
22281 if (f == run->term_in.fptr && run->term_in.data != NULL) {
22282 return (run->term_in.size == 0);
22289 static void mplib_flush_file(MP mp, void *ff)
22296 static void mplib_shipout_backend(MP mp, int h)
22298 mp_edge_object *hh = mp_gr_export(mp, h);
22300 mp_run_data *run = mp_rundata(mp);
22301 if (run->edges==NULL) {
22304 mp_edge_object *p = run->edges;
22305 while (p->next!=NULL) { p = p->next; }
22312 @ This is where we fill them all in.
22313 @<Prepare function pointers for non-interactive use@>=
22315 mp->open_file = mplib_open_file;
22316 mp->close_file = mplib_close_file;
22317 mp->eof_file = mplib_eof_file;
22318 mp->flush_file = mplib_flush_file;
22319 mp->write_ascii_file = mplib_write_ascii_file;
22320 mp->read_ascii_file = mplib_read_ascii_file;
22321 mp->write_binary_file = mplib_write_binary_file;
22322 mp->read_binary_file = mplib_read_binary_file;
22323 mp->shipout_backend = mplib_shipout_backend;
22326 @ Perhaps this is the most important API function in the library.
22328 @<Exported function ...@>=
22329 extern mp_run_data *mp_rundata (MP mp) ;
22332 mp_run_data *mp_rundata (MP mp) {
22333 return &(mp->run_data);
22337 mp_free_stream(&(mp->run_data.term_in));
22338 mp_free_stream(&(mp->run_data.term_out));
22339 mp_free_stream(&(mp->run_data.log_out));
22340 mp_free_stream(&(mp->run_data.error_out));
22341 mp_free_stream(&(mp->run_data.ps_out));
22343 @ @<Finish non-interactive use@>=
22344 xfree(mp->term_out);
22345 xfree(mp->term_in);
22346 xfree(mp->err_out);
22348 @ @<Start non-interactive work@>=
22349 @<Initialize the output routines@>;
22350 mp->input_ptr=0; mp->max_in_stack=0;
22351 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
22352 mp->param_ptr=0; mp->max_param_stack=0;
22353 start = loc = iindex = 0; mp->first = 0;
22354 line=0; name=is_term;
22355 mp->mpx_name[0]=absent;
22356 mp->force_eof=false;
22358 mp->scanner_status=normal;
22359 if (mp->mem_ident==NULL) {
22360 if ( ! mp_load_mem_file(mp) ) {
22361 (mp->close_file)(mp, mp->mem_file);
22362 mp->history = mp_fatal_error_stop;
22363 return mp->history;
22365 (mp->close_file)(mp, mp->mem_file);
22367 mp_fix_date_and_time(mp);
22368 if (mp->random_seed==0)
22369 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
22370 mp_init_randoms(mp, mp->random_seed);
22371 @<Initialize the print |selector|...@>;
22372 mp_open_log_file(mp);
22374 mp_init_map_file(mp, mp->troff_mode);
22375 mp->history=mp_spotless; /* ready to go! */
22376 if (mp->troff_mode) {
22377 mp->internal[mp_gtroffmode]=unity;
22378 mp->internal[mp_prologues]=unity;
22380 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
22381 mp->cur_sym=mp->start_sym; mp_back_input(mp);
22385 int mp_execute (MP mp, char *s, size_t l) {
22386 mp_reset_stream(&(mp->run_data.term_out));
22387 mp_reset_stream(&(mp->run_data.log_out));
22388 mp_reset_stream(&(mp->run_data.error_out));
22389 mp_reset_stream(&(mp->run_data.ps_out));
22390 if (mp->finished) {
22391 return mp->history;
22392 } else if (!mp->noninteractive) {
22393 mp->history = mp_fatal_error_stop ;
22394 return mp->history;
22396 if (mp->history < mp_fatal_error_stop ) {
22397 xfree(mp->jump_buf);
22398 mp->jump_buf = malloc(sizeof(jmp_buf));
22399 if (mp->jump_buf == NULL || setjmp(*(mp->jump_buf)) != 0) {
22400 return mp->history;
22402 if (s==NULL) { /* this signals EOF */
22403 mp_final_cleanup(mp); /* prepare for death */
22404 mp_close_files_and_terminate(mp);
22405 return mp->history;
22408 mp->term_offset=0; mp->file_offset=0;
22409 /* Perhaps some sort of warning here when |data| is not
22410 * yet exhausted would be nice ... this happens after errors
22412 if (mp->run_data.term_in.data)
22413 xfree(mp->run_data.term_in.data);
22414 mp->run_data.term_in.data = xstrdup(s);
22415 mp->run_data.term_in.cur = mp->run_data.term_in.data;
22416 mp->run_data.term_in.size = l;
22417 if (mp->run_state == 0) {
22418 mp->selector=term_only;
22419 @<Start non-interactive work@>;
22422 (void)mp_input_ln(mp,mp->term_in);
22423 mp_firm_up_the_line(mp);
22424 mp->buffer[limit]=xord('%');
22425 mp->first=(size_t)(limit+1);
22428 mp_do_statement(mp);
22429 } while (mp->cur_cmd!=stop);
22430 mp_final_cleanup(mp);
22431 mp_close_files_and_terminate(mp);
22433 return mp->history;
22436 @ This function cleans up
22438 int mp_finish (MP mp) {
22440 if (mp->finished || mp->history >= mp_fatal_error_stop) {
22441 history = mp->history;
22445 xfree(mp->jump_buf);
22446 mp->jump_buf = malloc(sizeof(jmp_buf));
22447 if (mp->jump_buf == NULL || setjmp(*(mp->jump_buf)) != 0) {
22448 history = mp->history;
22450 history = mp->history;
22451 mp_final_cleanup(mp); /* prepare for death */
22453 mp_close_files_and_terminate(mp);
22458 @ People may want to know the library version
22460 char * mp_metapost_version (void) {
22461 return mp_strdup(metapost_version);
22464 @ @<Exported function headers@>=
22465 int mp_run (MP mp);
22466 int mp_execute (MP mp, char *s, size_t l);
22467 int mp_finish (MP mp);
22468 char * mp_metapost_version (void);
22471 mp_primitive(mp, "end",stop,0);
22472 @:end_}{\&{end} primitive@>
22473 mp_primitive(mp, "dump",stop,1);
22474 @:dump_}{\&{dump} primitive@>
22476 @ @<Cases of |print_cmd...@>=
22478 if ( m==0 ) mp_print(mp, "end");
22479 else mp_print(mp, "dump");
22483 Let's turn now to statements that are classified as ``commands'' because
22484 of their imperative nature. We'll begin with simple ones, so that it
22485 will be clear how to hook command processing into the |do_statement| routine;
22486 then we'll tackle the tougher commands.
22488 Here's one of the simplest:
22490 @<Cases of |do_statement|...@>=
22491 case mp_random_seed: mp_do_random_seed(mp); break;
22493 @ @<Declare action procedures for use by |do_statement|@>=
22494 static void mp_do_random_seed (MP mp) ;
22496 @ @c void mp_do_random_seed (MP mp) {
22498 if ( mp->cur_cmd!=assignment ) {
22499 mp_missing_err(mp, ":=");
22501 help1("Always say `randomseed:=<numeric expression>'.");
22504 mp_get_x_next(mp); mp_scan_expression(mp);
22505 if ( mp->cur_type!=mp_known ) {
22506 exp_err("Unknown value will be ignored");
22507 @.Unknown value...ignored@>
22508 help2("Your expression was too random for me to handle,",
22509 "so I won't change the random seed just now.");
22510 mp_put_get_flush_error(mp, 0);
22512 @<Initialize the random seed to |cur_exp|@>;
22516 @ @<Initialize the random seed to |cur_exp|@>=
22518 mp_init_randoms(mp, mp->cur_exp);
22519 if ( mp->selector>=log_only && mp->selector<write_file) {
22520 mp->old_setting=mp->selector; mp->selector=log_only;
22521 mp_print_nl(mp, "{randomseed:=");
22522 mp_print_scaled(mp, mp->cur_exp);
22523 mp_print_char(mp, xord('}'));
22524 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
22528 @ And here's another simple one (somewhat different in flavor):
22530 @<Cases of |do_statement|...@>=
22532 mp_print_ln(mp); mp->interaction=mp->cur_mod;
22533 @<Initialize the print |selector| based on |interaction|@>;
22534 if ( mp->log_opened ) mp->selector=mp->selector+2;
22539 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
22540 @:mp_batch_mode_}{\&{batchmode} primitive@>
22541 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
22542 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
22543 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
22544 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
22545 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
22546 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
22548 @ @<Cases of |print_cmd_mod|...@>=
22551 case mp_batch_mode: mp_print(mp, "batchmode"); break;
22552 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
22553 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
22554 default: mp_print(mp, "errorstopmode"); break;
22558 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22560 @<Cases of |do_statement|...@>=
22561 case protection_command: mp_do_protection(mp); break;
22564 mp_primitive(mp, "inner",protection_command,0);
22565 @:inner_}{\&{inner} primitive@>
22566 mp_primitive(mp, "outer",protection_command,1);
22567 @:outer_}{\&{outer} primitive@>
22569 @ @<Cases of |print_cmd...@>=
22570 case protection_command:
22571 if ( m==0 ) mp_print(mp, "inner");
22572 else mp_print(mp, "outer");
22575 @ @<Declare action procedures for use by |do_statement|@>=
22576 static void mp_do_protection (MP mp) ;
22578 @ @c void mp_do_protection (MP mp) {
22579 int m; /* 0 to unprotect, 1 to protect */
22580 halfword t; /* the |eq_type| before we change it */
22583 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22585 if ( t>=outer_tag )
22586 eq_type(mp->cur_sym)=t-outer_tag;
22587 } else if ( t<outer_tag ) {
22588 eq_type(mp->cur_sym)=t+outer_tag;
22591 } while (mp->cur_cmd==comma);
22594 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22595 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22596 declaration assigns the command code |left_delimiter| to `\.{(}' and
22597 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22598 hash address of its mate.
22600 @<Cases of |do_statement|...@>=
22601 case delimiters: mp_def_delims(mp); break;
22603 @ @<Declare action procedures for use by |do_statement|@>=
22604 static void mp_def_delims (MP mp) ;
22606 @ @c void mp_def_delims (MP mp) {
22607 pointer l_delim,r_delim; /* the new delimiter pair */
22608 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22609 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22610 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22611 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22615 @ Here is a procedure that is called when \MP\ has reached a point
22616 where some right delimiter is mandatory.
22619 static void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim);
22622 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22623 if ( mp->cur_cmd==right_delimiter )
22624 if ( mp->cur_mod==l_delim )
22626 if ( mp->cur_sym!=r_delim ) {
22627 mp_missing_err(mp, str(text(r_delim)));
22629 help2("I found no right delimiter to match a left one. So I've",
22630 "put one in, behind the scenes; this may fix the problem.");
22633 print_err("The token `"); mp_print_text(r_delim);
22634 @.The token...delimiter@>
22635 mp_print(mp, "' is no longer a right delimiter");
22636 help3("Strange: This token has lost its former meaning!",
22637 "I'll read it as a right delimiter this time;",
22638 "but watch out, I'll probably miss it later.");
22643 @ The next four commands save or change the values associated with tokens.
22645 @<Cases of |do_statement|...@>=
22648 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22649 } while (mp->cur_cmd==comma);
22651 case interim_command: mp_do_interim(mp); break;
22652 case let_command: mp_do_let(mp); break;
22653 case new_internal: mp_do_new_internal(mp); break;
22655 @ @<Declare action procedures for use by |do_statement|@>=
22656 static void mp_do_statement (MP mp);
22657 static void mp_do_interim (MP mp);
22659 @ @c void mp_do_interim (MP mp) {
22661 if ( mp->cur_cmd!=internal_quantity ) {
22662 print_err("The token `");
22663 @.The token...quantity@>
22664 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22665 else mp_print_text(mp->cur_sym);
22666 mp_print(mp, "' isn't an internal quantity");
22667 help1("Something like `tracingonline' should follow `interim'.");
22670 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22672 mp_do_statement(mp);
22675 @ The following procedure is careful not to undefine the left-hand symbol
22676 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22678 @<Declare action procedures for use by |do_statement|@>=
22679 static void mp_do_let (MP mp) ;
22681 @ @c void mp_do_let (MP mp) {
22682 pointer l; /* hash location of the left-hand symbol */
22683 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22684 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22685 mp_missing_err(mp, "=");
22687 help3("You should have said `let symbol = something'.",
22688 "But don't worry; I'll pretend that an equals sign",
22689 "was present. The next token I read will be `something'.");
22693 switch (mp->cur_cmd) {
22694 case defined_macro: case secondary_primary_macro:
22695 case tertiary_secondary_macro: case expression_tertiary_macro:
22696 add_mac_ref(mp->cur_mod);
22701 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22702 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22703 else equiv(l)=mp->cur_mod;
22707 @ @<Declarations@>=
22708 static void mp_do_new_internal (MP mp) ;
22710 @ @<Internal library ...@>=
22711 void mp_grow_internals (MP mp, int l);
22714 void mp_grow_internals (MP mp, int l) {
22718 if ( hash_end+l>max_halfword ) {
22719 mp_confusion(mp, "out of memory space"); /* can't be reached */
22721 int_name = xmalloc ((l+1),sizeof(char *));
22722 internal = xmalloc ((l+1),sizeof(scaled));
22723 for (k=0;k<=l; k++ ) {
22724 if (k<=mp->max_internal) {
22725 internal[k]=mp->internal[k];
22726 int_name[k]=mp->int_name[k];
22732 xfree(mp->internal); xfree(mp->int_name);
22733 mp->int_name = int_name;
22734 mp->internal = internal;
22735 mp->max_internal = l;
22738 void mp_do_new_internal (MP mp) {
22740 if ( mp->int_ptr==mp->max_internal ) {
22741 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal/4)));
22743 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22744 eq_type(mp->cur_sym)=internal_quantity;
22745 equiv(mp->cur_sym)=mp->int_ptr;
22746 if(mp->int_name[mp->int_ptr]!=NULL)
22747 xfree(mp->int_name[mp->int_ptr]);
22748 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22749 mp->internal[mp->int_ptr]=0;
22751 } while (mp->cur_cmd==comma);
22754 @ @<Dealloc variables@>=
22755 for (k=0;k<=mp->max_internal;k++) {
22756 xfree(mp->int_name[k]);
22758 xfree(mp->internal);
22759 xfree(mp->int_name);
22762 @ The various `\&{show}' commands are distinguished by modifier fields
22765 @d show_token_code 0 /* show the meaning of a single token */
22766 @d show_stats_code 1 /* show current memory and string usage */
22767 @d show_code 2 /* show a list of expressions */
22768 @d show_var_code 3 /* show a variable and its descendents */
22769 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22772 mp_primitive(mp, "showtoken",show_command,show_token_code);
22773 @:show_token_}{\&{showtoken} primitive@>
22774 mp_primitive(mp, "showstats",show_command,show_stats_code);
22775 @:show_stats_}{\&{showstats} primitive@>
22776 mp_primitive(mp, "show",show_command,show_code);
22777 @:show_}{\&{show} primitive@>
22778 mp_primitive(mp, "showvariable",show_command,show_var_code);
22779 @:show_var_}{\&{showvariable} primitive@>
22780 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22781 @:show_dependencies_}{\&{showdependencies} primitive@>
22783 @ @<Cases of |print_cmd...@>=
22786 case show_token_code:mp_print(mp, "showtoken"); break;
22787 case show_stats_code:mp_print(mp, "showstats"); break;
22788 case show_code:mp_print(mp, "show"); break;
22789 case show_var_code:mp_print(mp, "showvariable"); break;
22790 default: mp_print(mp, "showdependencies"); break;
22794 @ @<Cases of |do_statement|...@>=
22795 case show_command:mp_do_show_whatever(mp); break;
22797 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22798 if it's |show_code|, complicated structures are abbreviated, otherwise
22801 @<Declare action procedures for use by |do_statement|@>=
22802 static void mp_do_show (MP mp) ;
22804 @ @c void mp_do_show (MP mp) {
22806 mp_get_x_next(mp); mp_scan_expression(mp);
22807 mp_print_nl(mp, ">> ");
22809 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22810 } while (mp->cur_cmd==comma);
22813 @ @<Declare action procedures for use by |do_statement|@>=
22814 static void mp_disp_token (MP mp) ;
22816 @ @c void mp_disp_token (MP mp) {
22817 mp_print_nl(mp, "> ");
22819 if ( mp->cur_sym==0 ) {
22820 @<Show a numeric or string or capsule token@>;
22822 mp_print_text(mp->cur_sym); mp_print_char(mp, xord('='));
22823 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22824 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22825 if ( mp->cur_cmd==defined_macro ) {
22826 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22827 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22832 @ @<Show a numeric or string or capsule token@>=
22834 if ( mp->cur_cmd==numeric_token ) {
22835 mp_print_scaled(mp, mp->cur_mod);
22836 } else if ( mp->cur_cmd==capsule_token ) {
22837 mp_print_capsule(mp,mp->cur_mod);
22839 mp_print_char(mp, xord('"'));
22840 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, xord('"'));
22841 delete_str_ref(mp->cur_mod);
22845 @ The following cases of |print_cmd_mod| might arise in connection
22846 with |disp_token|, although they don't necessarily correspond to
22849 @<Cases of |print_cmd_...@>=
22850 case left_delimiter:
22851 case right_delimiter:
22852 if ( c==left_delimiter ) mp_print(mp, "left");
22853 else mp_print(mp, "right");
22854 mp_print(mp, " delimiter that matches ");
22858 if ( m==null ) mp_print(mp, "tag");
22859 else mp_print(mp, "variable");
22861 case defined_macro:
22862 mp_print(mp, "macro:");
22864 case secondary_primary_macro:
22865 case tertiary_secondary_macro:
22866 case expression_tertiary_macro:
22867 mp_print_cmd_mod(mp, macro_def,c);
22868 mp_print(mp, "'d macro:");
22869 mp_print_ln(mp); mp_show_token_list(mp, mp_link(mp_link(m)),null,1000,0);
22872 mp_print(mp, "[repeat the loop]");
22874 case internal_quantity:
22875 mp_print(mp, mp->int_name[m]);
22878 @ @<Declare action procedures for use by |do_statement|@>=
22879 static void mp_do_show_token (MP mp) ;
22881 @ @c void mp_do_show_token (MP mp) {
22883 get_t_next; mp_disp_token(mp);
22885 } while (mp->cur_cmd==comma);
22888 @ @<Declare action procedures for use by |do_statement|@>=
22889 static void mp_do_show_stats (MP mp) ;
22891 @ @c void mp_do_show_stats (MP mp) {
22892 mp_print_nl(mp, "Memory usage ");
22893 @.Memory usage...@>
22894 mp_print_int(mp, mp->var_used); mp_print_char(mp, xord('&')); mp_print_int(mp, mp->dyn_used);
22895 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22896 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22897 mp_print_nl(mp, "String usage ");
22898 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22899 mp_print_char(mp, xord('&')); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22900 mp_print(mp, " (");
22901 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, xord('&'));
22902 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22903 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22907 @ Here's a recursive procedure that gives an abbreviated account
22908 of a variable, for use by |do_show_var|.
22910 @<Declare action procedures for use by |do_statement|@>=
22911 static void mp_disp_var (MP mp,pointer p) ;
22913 @ @c void mp_disp_var (MP mp,pointer p) {
22914 pointer q; /* traverses attributes and subscripts */
22915 int n; /* amount of macro text to show */
22916 if ( mp_type(p)==mp_structured ) {
22917 @<Descend the structure@>;
22918 } else if ( mp_type(p)>=mp_unsuffixed_macro ) {
22919 @<Display a variable macro@>;
22920 } else if ( mp_type(p)!=undefined ){
22921 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22922 mp_print_char(mp, xord('='));
22923 mp_print_exp(mp, p,0);
22927 @ @<Descend the structure@>=
22930 do { mp_disp_var(mp, q); q=mp_link(q); } while (q!=end_attr);
22932 while ( mp_name_type(q)==mp_subscr ) {
22933 mp_disp_var(mp, q); q=mp_link(q);
22937 @ @<Display a variable macro@>=
22939 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22940 if ( mp_type(p)>mp_unsuffixed_macro )
22941 mp_print(mp, "@@#"); /* |suffixed_macro| */
22942 mp_print(mp, "=macro:");
22943 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22944 else n=mp->max_print_line-mp->file_offset-15;
22945 mp_show_macro(mp, value(p),null,n);
22948 @ @<Declare action procedures for use by |do_statement|@>=
22949 static void mp_do_show_var (MP mp) ;
22951 @ @c void mp_do_show_var (MP mp) {
22954 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22955 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22956 mp_disp_var(mp, mp->cur_mod); goto DONE;
22961 } while (mp->cur_cmd==comma);
22964 @ @<Declare action procedures for use by |do_statement|@>=
22965 static void mp_do_show_dependencies (MP mp) ;
22967 @ @c void mp_do_show_dependencies (MP mp) {
22968 pointer p; /* link that runs through all dependencies */
22969 p=mp_link(dep_head);
22970 while ( p!=dep_head ) {
22971 if ( mp_interesting(mp, p) ) {
22972 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22973 if ( mp_type(p)==mp_dependent ) mp_print_char(mp, xord('='));
22974 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22975 mp_print_dependency(mp, dep_list(p),mp_type(p));
22978 while ( mp_info(p)!=null ) p=mp_link(p);
22984 @ Finally we are ready for the procedure that governs all of the
22987 @<Declare action procedures for use by |do_statement|@>=
22988 static void mp_do_show_whatever (MP mp) ;
22990 @ @c void mp_do_show_whatever (MP mp) {
22991 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22992 switch (mp->cur_mod) {
22993 case show_token_code:mp_do_show_token(mp); break;
22994 case show_stats_code:mp_do_show_stats(mp); break;
22995 case show_code:mp_do_show(mp); break;
22996 case show_var_code:mp_do_show_var(mp); break;
22997 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22998 } /* there are no other cases */
22999 if ( mp->internal[mp_showstopping]>0 ){
23002 if ( mp->interaction<mp_error_stop_mode ) {
23003 help0; decr(mp->error_count);
23005 help1("This isn't an error message; I'm just showing something.");
23007 if ( mp->cur_cmd==semicolon ) mp_error(mp);
23008 else mp_put_get_error(mp);
23012 @ The `\&{addto}' command needs the following additional primitives:
23014 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
23015 @d contour_code 1 /* command modifier for `\&{contour}' */
23016 @d also_code 2 /* command modifier for `\&{also}' */
23018 @ Pre and postscripts need two new identifiers:
23020 @d with_mp_pre_script 11
23021 @d with_mp_post_script 13
23024 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
23025 @:double_path_}{\&{doublepath} primitive@>
23026 mp_primitive(mp, "contour",thing_to_add,contour_code);
23027 @:contour_}{\&{contour} primitive@>
23028 mp_primitive(mp, "also",thing_to_add,also_code);
23029 @:also_}{\&{also} primitive@>
23030 mp_primitive(mp, "withpen",with_option,mp_pen_type);
23031 @:with_pen_}{\&{withpen} primitive@>
23032 mp_primitive(mp, "dashed",with_option,mp_picture_type);
23033 @:dashed_}{\&{dashed} primitive@>
23034 mp_primitive(mp, "withprescript",with_option,with_mp_pre_script);
23035 @:with_mp_pre_script_}{\&{withprescript} primitive@>
23036 mp_primitive(mp, "withpostscript",with_option,with_mp_post_script);
23037 @:with_mp_post_script_}{\&{withpostscript} primitive@>
23038 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
23039 @:with_color_}{\&{withoutcolor} primitive@>
23040 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
23041 @:with_color_}{\&{withgreyscale} primitive@>
23042 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
23043 @:with_color_}{\&{withcolor} primitive@>
23044 /* \&{withrgbcolor} is an alias for \&{withcolor} */
23045 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
23046 @:with_color_}{\&{withrgbcolor} primitive@>
23047 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
23048 @:with_color_}{\&{withcmykcolor} primitive@>
23050 @ @<Cases of |print_cmd...@>=
23052 if ( m==contour_code ) mp_print(mp, "contour");
23053 else if ( m==double_path_code ) mp_print(mp, "doublepath");
23054 else mp_print(mp, "also");
23057 if ( m==mp_pen_type ) mp_print(mp, "withpen");
23058 else if ( m==with_mp_pre_script ) mp_print(mp, "withprescript");
23059 else if ( m==with_mp_post_script ) mp_print(mp, "withpostscript");
23060 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
23061 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
23062 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
23063 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
23064 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
23065 else mp_print(mp, "dashed");
23068 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
23069 updates the list of graphical objects starting at |p|. Each $\langle$with
23070 clause$\rangle$ updates all graphical objects whose |type| is compatible.
23071 Other objects are ignored.
23073 @<Declare action procedures for use by |do_statement|@>=
23074 static void mp_scan_with_list (MP mp,pointer p) ;
23076 @ @c void mp_scan_with_list (MP mp,pointer p) {
23077 quarterword t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
23078 pointer q; /* for list manipulation */
23079 unsigned old_setting; /* saved |selector| setting */
23080 pointer k; /* for finding the near-last item in a list */
23081 str_number s; /* for string cleanup after combining */
23082 pointer cp,pp,dp,ap,bp;
23083 /* objects being updated; |void| initially; |null| to suppress update */
23084 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
23086 while ( mp->cur_cmd==with_option ){
23089 if ( t!=mp_no_model ) mp_scan_expression(mp);
23090 if (((t==with_mp_pre_script)&&(mp->cur_type!=mp_string_type))||
23091 ((t==with_mp_post_script)&&(mp->cur_type!=mp_string_type))||
23092 ((t==mp_uninitialized_model)&&
23093 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
23094 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
23095 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
23096 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
23097 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
23098 ((t==mp_pen_type)&&(mp->cur_type!=t))||
23099 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
23100 @<Complain about improper type@>;
23101 } else if ( t==mp_uninitialized_model ) {
23102 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
23104 @<Transfer a color from the current expression to object~|cp|@>;
23105 mp_flush_cur_exp(mp, 0);
23106 } else if ( t==mp_rgb_model ) {
23107 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
23109 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
23110 mp_flush_cur_exp(mp, 0);
23111 } else if ( t==mp_cmyk_model ) {
23112 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
23114 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
23115 mp_flush_cur_exp(mp, 0);
23116 } else if ( t==mp_grey_model ) {
23117 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
23119 @<Transfer a greyscale from the current expression to object~|cp|@>;
23120 mp_flush_cur_exp(mp, 0);
23121 } else if ( t==mp_no_model ) {
23122 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
23124 @<Transfer a noncolor from the current expression to object~|cp|@>;
23125 } else if ( t==mp_pen_type ) {
23126 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
23128 if ( mp_pen_p(pp)!=null ) mp_toss_knot_list(mp, mp_pen_p(pp));
23129 mp_pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
23131 } else if ( t==with_mp_pre_script ) {
23134 while ( (ap!=null)&&(! has_color(ap)) )
23137 if ( mp_pre_script(ap)!=null ) { /* build a new,combined string */
23138 s=mp_pre_script(ap);
23139 old_setting=mp->selector;
23140 mp->selector=new_string;
23141 str_room(length(mp_pre_script(ap))+length(mp->cur_exp)+2);
23142 mp_print_str(mp, mp->cur_exp);
23143 append_char(13); /* a forced \ps\ newline */
23144 mp_print_str(mp, mp_pre_script(ap));
23145 mp_pre_script(ap)=mp_make_string(mp);
23147 mp->selector=old_setting;
23149 mp_pre_script(ap)=mp->cur_exp;
23151 mp->cur_type=mp_vacuous;
23153 } else if ( t==with_mp_post_script ) {
23157 while ( mp_link(k)!=null ) {
23159 if ( has_color(k) ) bp=k;
23162 if ( mp_post_script(bp)!=null ) {
23163 s=mp_post_script(bp);
23164 old_setting=mp->selector;
23165 mp->selector=new_string;
23166 str_room(length(mp_post_script(bp))+length(mp->cur_exp)+2);
23167 mp_print_str(mp, mp_post_script(bp));
23168 append_char(13); /* a forced \ps\ newline */
23169 mp_print_str(mp, mp->cur_exp);
23170 mp_post_script(bp)=mp_make_string(mp);
23172 mp->selector=old_setting;
23174 mp_post_script(bp)=mp->cur_exp;
23176 mp->cur_type=mp_vacuous;
23179 if ( dp==mp_void ) {
23180 @<Make |dp| a stroked node in list~|p|@>;
23183 if ( mp_dash_p(dp)!=null ) delete_edge_ref(mp_dash_p(dp));
23184 mp_dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
23185 dash_scale(dp)=unity;
23186 mp->cur_type=mp_vacuous;
23190 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
23194 @ @<Complain about improper type@>=
23195 { exp_err("Improper type");
23197 help2("Next time say `withpen <known pen expression>';",
23198 "I'll ignore the bad `with' clause and look for another.");
23199 if ( t==with_mp_pre_script )
23200 mp->help_line[1]="Next time say `withprescript <known string expression>';";
23201 else if ( t==with_mp_post_script )
23202 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
23203 else if ( t==mp_picture_type )
23204 mp->help_line[1]="Next time say `dashed <known picture expression>';";
23205 else if ( t==mp_uninitialized_model )
23206 mp->help_line[1]="Next time say `withcolor <known color expression>';";
23207 else if ( t==mp_rgb_model )
23208 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
23209 else if ( t==mp_cmyk_model )
23210 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
23211 else if ( t==mp_grey_model )
23212 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
23213 mp_put_get_flush_error(mp, 0);
23216 @ Forcing the color to be between |0| and |unity| here guarantees that no
23217 picture will ever contain a color outside the legal range for \ps\ graphics.
23219 @<Transfer a color from the current expression to object~|cp|@>=
23220 { if ( mp->cur_type==mp_color_type )
23221 @<Transfer a rgbcolor from the current expression to object~|cp|@>
23222 else if ( mp->cur_type==mp_cmykcolor_type )
23223 @<Transfer a cmykcolor from the current expression to object~|cp|@>
23224 else if ( mp->cur_type==mp_known )
23225 @<Transfer a greyscale from the current expression to object~|cp|@>
23226 else if ( mp->cur_exp==false_code )
23227 @<Transfer a noncolor from the current expression to object~|cp|@>;
23230 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
23231 { q=value(mp->cur_exp);
23236 red_val(cp)=value(red_part_loc(q));
23237 green_val(cp)=value(green_part_loc(q));
23238 blue_val(cp)=value(blue_part_loc(q));
23239 mp_color_model(cp)=mp_rgb_model;
23240 if ( red_val(cp)<0 ) red_val(cp)=0;
23241 if ( green_val(cp)<0 ) green_val(cp)=0;
23242 if ( blue_val(cp)<0 ) blue_val(cp)=0;
23243 if ( red_val(cp)>unity ) red_val(cp)=unity;
23244 if ( green_val(cp)>unity ) green_val(cp)=unity;
23245 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
23248 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
23249 { q=value(mp->cur_exp);
23250 cyan_val(cp)=value(cyan_part_loc(q));
23251 magenta_val(cp)=value(magenta_part_loc(q));
23252 yellow_val(cp)=value(yellow_part_loc(q));
23253 black_val(cp)=value(black_part_loc(q));
23254 mp_color_model(cp)=mp_cmyk_model;
23255 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
23256 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
23257 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
23258 if ( black_val(cp)<0 ) black_val(cp)=0;
23259 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
23260 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
23261 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
23262 if ( black_val(cp)>unity ) black_val(cp)=unity;
23265 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
23272 mp_color_model(cp)=mp_grey_model;
23273 if ( grey_val(cp)<0 ) grey_val(cp)=0;
23274 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
23277 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
23284 mp_color_model(cp)=mp_no_model;
23287 @ @<Make |cp| a colored object in object list~|p|@>=
23289 while ( cp!=null ){
23290 if ( has_color(cp) ) break;
23295 @ @<Make |pp| an object in list~|p| that needs a pen@>=
23297 while ( pp!=null ) {
23298 if ( has_pen(pp) ) break;
23303 @ @<Make |dp| a stroked node in list~|p|@>=
23305 while ( dp!=null ) {
23306 if ( mp_type(dp)==mp_stroked_code ) break;
23311 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
23312 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
23313 if ( pp>mp_void ) {
23314 @<Copy |mp_pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
23316 if ( dp>mp_void ) {
23317 @<Make stroked nodes linked to |dp| refer to |mp_dash_p(dp)|@>;
23321 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
23323 while ( q!=null ) {
23324 if ( has_color(q) ) {
23325 red_val(q)=red_val(cp);
23326 green_val(q)=green_val(cp);
23327 blue_val(q)=blue_val(cp);
23328 black_val(q)=black_val(cp);
23329 mp_color_model(q)=mp_color_model(cp);
23335 @ @<Copy |mp_pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
23337 while ( q!=null ) {
23338 if ( has_pen(q) ) {
23339 if ( mp_pen_p(q)!=null ) mp_toss_knot_list(mp, mp_pen_p(q));
23340 mp_pen_p(q)=copy_pen(mp_pen_p(pp));
23346 @ @<Make stroked nodes linked to |dp| refer to |mp_dash_p(dp)|@>=
23348 while ( q!=null ) {
23349 if ( mp_type(q)==mp_stroked_code ) {
23350 if ( mp_dash_p(q)!=null ) delete_edge_ref(mp_dash_p(q));
23351 mp_dash_p(q)=mp_dash_p(dp);
23352 dash_scale(q)=unity;
23353 if ( mp_dash_p(q)!=null ) add_edge_ref(mp_dash_p(q));
23359 @ One of the things we need to do when we've parsed an \&{addto} or
23360 similar command is find the header of a supposed \&{picture} variable, given
23361 a token list for that variable. Since the edge structure is about to be
23362 updated, we use |private_edges| to make sure that this is possible.
23364 @<Declare action procedures for use by |do_statement|@>=
23365 static pointer mp_find_edges_var (MP mp, pointer t) ;
23367 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
23369 pointer cur_edges; /* the return value */
23370 p=mp_find_variable(mp, t); cur_edges=null;
23372 mp_obliterated(mp, t); mp_put_get_error(mp);
23373 } else if ( mp_type(p)!=mp_picture_type ) {
23374 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
23375 @.Variable x is the wrong type@>
23376 mp_print(mp, " is the wrong type (");
23377 mp_print_type(mp, mp_type(p)); mp_print_char(mp, xord(')'));
23378 help2("I was looking for a \"known\" picture variable.",
23379 "So I'll not change anything just now.");
23380 mp_put_get_error(mp);
23382 value(p)=mp_private_edges(mp, value(p));
23383 cur_edges=value(p);
23385 mp_flush_node_list(mp, t);
23389 @ @<Cases of |do_statement|...@>=
23390 case add_to_command: mp_do_add_to(mp); break;
23391 case bounds_command:mp_do_bounds(mp); break;
23394 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
23395 @:clip_}{\&{clip} primitive@>
23396 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
23397 @:set_bounds_}{\&{setbounds} primitive@>
23399 @ @<Cases of |print_cmd...@>=
23400 case bounds_command:
23401 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
23402 else mp_print(mp, "setbounds");
23405 @ The following function parses the beginning of an \&{addto} or \&{clip}
23406 command: it expects a variable name followed by a token with |cur_cmd=sep|
23407 and then an expression. The function returns the token list for the variable
23408 and stores the command modifier for the separator token in the global variable
23409 |last_add_type|. We must be careful because this variable might get overwritten
23410 any time we call |get_x_next|.
23413 quarterword last_add_type;
23414 /* command modifier that identifies the last \&{addto} command */
23416 @ @<Declare action procedures for use by |do_statement|@>=
23417 static pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
23419 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
23420 pointer lhv; /* variable to add to left */
23421 quarterword add_type=0; /* value to be returned in |last_add_type| */
23423 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
23424 if ( mp->cur_type!=mp_token_list ) {
23425 @<Abandon edges command because there's no variable@>;
23427 lhv=mp->cur_exp; add_type=mp->cur_mod;
23428 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
23430 mp->last_add_type=add_type;
23434 @ @<Abandon edges command because there's no variable@>=
23435 { exp_err("Not a suitable variable");
23436 @.Not a suitable variable@>
23437 help4("At this point I needed to see the name of a picture variable.",
23438 "(Or perhaps you have indeed presented me with one; I might",
23439 "have missed it, if it wasn't followed by the proper token.)",
23440 "So I'll not change anything just now.");
23441 mp_put_get_flush_error(mp, 0);
23444 @ Here is an example of how to use |start_draw_cmd|.
23446 @<Declare action procedures for use by |do_statement|@>=
23447 static void mp_do_bounds (MP mp) ;
23449 @ @c void mp_do_bounds (MP mp) {
23450 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
23451 pointer p; /* for list manipulation */
23452 integer m; /* initial value of |cur_mod| */
23454 lhv=mp_start_draw_cmd(mp, to_token);
23456 lhe=mp_find_edges_var(mp, lhv);
23458 mp_flush_cur_exp(mp, 0);
23459 } else if ( mp->cur_type!=mp_path_type ) {
23460 exp_err("Improper `clip'");
23461 @.Improper `addto'@>
23462 help2("This expression should have specified a known path.",
23463 "So I'll not change anything just now.");
23464 mp_put_get_flush_error(mp, 0);
23465 } else if ( mp_left_type(mp->cur_exp)==mp_endpoint ) {
23466 @<Complain about a non-cycle@>;
23468 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
23473 @ @<Complain about a non-cycle@>=
23474 { print_err("Not a cycle");
23476 help2("That contour should have ended with `..cycle' or `&cycle'.",
23477 "So I'll not change anything just now."); mp_put_get_error(mp);
23480 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
23481 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
23482 mp_link(p)=mp_link(dummy_loc(lhe));
23483 mp_link(dummy_loc(lhe))=p;
23484 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
23485 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
23486 mp_type(p)=stop_type(m);
23487 mp_link(obj_tail(lhe))=p;
23489 mp_init_bbox(mp, lhe);
23492 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
23493 cases to deal with.
23495 @<Declare action procedures for use by |do_statement|@>=
23496 static void mp_do_add_to (MP mp) ;
23498 @ @c void mp_do_add_to (MP mp) {
23499 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
23500 pointer p; /* the graphical object or list for |scan_with_list| to update */
23501 pointer e; /* an edge structure to be merged */
23502 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
23503 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
23505 if ( add_type==also_code ) {
23506 @<Make sure the current expression is a suitable picture and set |e| and |p|
23509 @<Create a graphical object |p| based on |add_type| and the current
23512 mp_scan_with_list(mp, p);
23513 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
23517 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
23518 setting |e:=null| prevents anything from being added to |lhe|.
23520 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
23523 if ( mp->cur_type!=mp_picture_type ) {
23524 exp_err("Improper `addto'");
23525 @.Improper `addto'@>
23526 help2("This expression should have specified a known picture.",
23527 "So I'll not change anything just now.");
23528 mp_put_get_flush_error(mp, 0);
23530 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
23531 p=mp_link(dummy_loc(e));
23535 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
23536 attempts to add to the edge structure.
23538 @<Create a graphical object |p| based on |add_type| and the current...@>=
23540 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
23541 if ( mp->cur_type!=mp_path_type ) {
23542 exp_err("Improper `addto'");
23543 @.Improper `addto'@>
23544 help2("This expression should have specified a known path.",
23545 "So I'll not change anything just now.");
23546 mp_put_get_flush_error(mp, 0);
23547 } else if ( add_type==contour_code ) {
23548 if ( mp_left_type(mp->cur_exp)==mp_endpoint ) {
23549 @<Complain about a non-cycle@>;
23551 p=mp_new_fill_node(mp, mp->cur_exp);
23552 mp->cur_type=mp_vacuous;
23555 p=mp_new_stroked_node(mp, mp->cur_exp);
23556 mp->cur_type=mp_vacuous;
23560 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23561 lhe=mp_find_edges_var(mp, lhv);
23563 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23564 if ( e!=null ) delete_edge_ref(e);
23565 } else if ( add_type==also_code ) {
23567 @<Merge |e| into |lhe| and delete |e|@>;
23571 } else if ( p!=null ) {
23572 mp_link(obj_tail(lhe))=p;
23574 if ( add_type==double_path_code )
23575 if ( mp_pen_p(p)==null )
23576 mp_pen_p(p)=mp_get_pen_circle(mp, 0);
23579 @ @<Merge |e| into |lhe| and delete |e|@>=
23580 { if ( mp_link(dummy_loc(e))!=null ) {
23581 mp_link(obj_tail(lhe))=mp_link(dummy_loc(e));
23582 obj_tail(lhe)=obj_tail(e);
23583 obj_tail(e)=dummy_loc(e);
23584 mp_link(dummy_loc(e))=null;
23585 mp_flush_dash_list(mp, lhe);
23587 mp_toss_edges(mp, e);
23590 @ @<Cases of |do_statement|...@>=
23591 case ship_out_command: mp_do_ship_out(mp); break;
23593 @ @<Declare action procedures for use by |do_statement|@>=
23594 @<Declare the \ps\ output procedures@>
23595 static void mp_do_ship_out (MP mp) ;
23597 @ @c void mp_do_ship_out (MP mp) {
23598 integer c; /* the character code */
23599 mp_get_x_next(mp); mp_scan_expression(mp);
23600 if ( mp->cur_type!=mp_picture_type ) {
23601 @<Complain that it's not a known picture@>;
23603 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23604 if ( c<0 ) c=c+256;
23605 @<Store the width information for character code~|c|@>;
23606 mp_ship_out(mp, mp->cur_exp);
23607 mp_flush_cur_exp(mp, 0);
23611 @ @<Complain that it's not a known picture@>=
23613 exp_err("Not a known picture");
23614 help1("I can only output known pictures.");
23615 mp_put_get_flush_error(mp, 0);
23618 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23621 @<Cases of |do_statement|...@>=
23622 case every_job_command:
23623 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23627 halfword start_sym; /* a symbolic token to insert at beginning of job */
23632 @ Finally, we have only the ``message'' commands remaining.
23635 @d err_message_code 1
23637 @d filename_template_code 3
23638 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23639 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23641 mp->pool_ptr = mp->pool_ptr - g;
23643 mp_print_char(mp, xord('0'));
23646 mp_print_int(mp, (A));
23651 mp_primitive(mp, "message",message_command,message_code);
23652 @:message_}{\&{message} primitive@>
23653 mp_primitive(mp, "errmessage",message_command,err_message_code);
23654 @:err_message_}{\&{errmessage} primitive@>
23655 mp_primitive(mp, "errhelp",message_command,err_help_code);
23656 @:err_help_}{\&{errhelp} primitive@>
23657 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23658 @:filename_template_}{\&{filenametemplate} primitive@>
23660 @ @<Cases of |print_cmd...@>=
23661 case message_command:
23662 if ( m<err_message_code ) mp_print(mp, "message");
23663 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23664 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23665 else mp_print(mp, "errhelp");
23668 @ @<Cases of |do_statement|...@>=
23669 case message_command: mp_do_message(mp); break;
23671 @ @<Declare action procedures for use by |do_statement|@>=
23672 @<Declare a procedure called |no_string_err|@>
23673 static void mp_do_message (MP mp) ;
23676 @c void mp_do_message (MP mp) {
23677 int m; /* the type of message */
23678 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23679 if ( mp->cur_type!=mp_string_type )
23680 mp_no_string_err(mp, "A message should be a known string expression.");
23684 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23686 case err_message_code:
23687 @<Print string |cur_exp| as an error message@>;
23689 case err_help_code:
23690 @<Save string |cur_exp| as the |err_help|@>;
23692 case filename_template_code:
23693 @<Save the filename template@>;
23695 } /* there are no other cases */
23697 mp_flush_cur_exp(mp, 0);
23700 @ @<Declare a procedure called |no_string_err|@>=
23701 static void mp_no_string_err (MP mp, const char *s) {
23702 exp_err("Not a string");
23705 mp_put_get_error(mp);
23708 @ The global variable |err_help| is zero when the user has most recently
23709 given an empty help string, or if none has ever been given.
23711 @<Save string |cur_exp| as the |err_help|@>=
23713 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23714 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23715 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23718 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23719 \&{errhelp}, we don't want to give a long help message each time. So we
23720 give a verbose explanation only once.
23723 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23725 @ @<Set init...@>=mp->long_help_seen=false;
23727 @ @<Print string |cur_exp| as an error message@>=
23729 print_err(""); mp_print_str(mp, mp->cur_exp);
23730 if ( mp->err_help!=0 ) {
23731 mp->use_err_help=true;
23732 } else if ( mp->long_help_seen ) {
23733 help1("(That was another `errmessage'.)") ;
23735 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23736 help4("This error message was generated by an `errmessage'",
23737 "command, so I can\'t give any explicit help.",
23738 "Pretend that you're Miss Marple: Examine all clues,",
23740 "and deduce the truth by inspired guesses.");
23742 mp_put_get_error(mp); mp->use_err_help=false;
23745 @ @<Cases of |do_statement|...@>=
23746 case write_command: mp_do_write(mp); break;
23748 @ @<Declare action procedures for use by |do_statement|@>=
23749 static void mp_do_write (MP mp) ;
23751 @ @c void mp_do_write (MP mp) {
23752 str_number t; /* the line of text to be written */
23753 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23754 unsigned old_setting; /* for saving |selector| during output */
23756 mp_scan_expression(mp);
23757 if ( mp->cur_type!=mp_string_type ) {
23758 mp_no_string_err(mp, "The text to be written should be a known string expression");
23759 } else if ( mp->cur_cmd!=to_token ) {
23760 print_err("Missing `to' clause");
23761 help1("A write command should end with `to <filename>'");
23762 mp_put_get_error(mp);
23764 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23766 mp_scan_expression(mp);
23767 if ( mp->cur_type!=mp_string_type )
23768 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23770 @<Write |t| to the file named by |cur_exp|@>;
23774 mp_flush_cur_exp(mp, 0);
23777 @ @<Write |t| to the file named by |cur_exp|@>=
23779 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23780 |cur_exp| must be inserted@>;
23781 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23782 @<Record the end of file on |wr_file[n]|@>;
23784 old_setting=mp->selector;
23785 mp->selector=n+write_file;
23786 mp_print_str(mp, t); mp_print_ln(mp);
23787 mp->selector = old_setting;
23791 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23793 char *fn = str(mp->cur_exp);
23795 n0=mp->write_files;
23796 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23797 if ( n==0 ) { /* bottom reached */
23798 if ( n0==mp->write_files ) {
23799 if ( mp->write_files<mp->max_write_files ) {
23800 incr(mp->write_files);
23805 l = mp->max_write_files + (mp->max_write_files/4);
23806 wr_file = xmalloc((l+1),sizeof(void *));
23807 wr_fname = xmalloc((l+1),sizeof(char *));
23808 for (k=0;k<=l;k++) {
23809 if (k<=mp->max_write_files) {
23810 wr_file[k]=mp->wr_file[k];
23811 wr_fname[k]=mp->wr_fname[k];
23817 xfree(mp->wr_file); xfree(mp->wr_fname);
23818 mp->max_write_files = l;
23819 mp->wr_file = wr_file;
23820 mp->wr_fname = wr_fname;
23824 mp_open_write_file(mp, fn ,n);
23827 if ( mp->wr_fname[n]==NULL ) n0=n;
23832 @ @<Record the end of file on |wr_file[n]|@>=
23833 { (mp->close_file)(mp,mp->wr_file[n]);
23834 xfree(mp->wr_fname[n]);
23835 if ( n==mp->write_files-1 ) mp->write_files=n;
23839 @* \[42] Writing font metric data.
23840 \TeX\ gets its knowledge about fonts from font metric files, also called
23841 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23842 but other programs know about them too. One of \MP's duties is to
23843 write \.{TFM} files so that the user's fonts can readily be
23844 applied to typesetting.
23845 @:TFM files}{\.{TFM} files@>
23846 @^font metric files@>
23848 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23849 Since the number of bytes is always a multiple of~4, we could
23850 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23851 byte interpretation. The format of \.{TFM} files was designed by
23852 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23853 @^Ramshaw, Lyle Harold@>
23854 of information in a compact but useful form.
23857 void * tfm_file; /* the font metric output goes here */
23858 char * metric_file_name; /* full name of the font metric file */
23860 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23861 integers that give the lengths of the various subsequent portions
23862 of the file. These twelve integers are, in order:
23863 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23864 |lf|&length of the entire file, in words;\cr
23865 |lh|&length of the header data, in words;\cr
23866 |bc|&smallest character code in the font;\cr
23867 |ec|&largest character code in the font;\cr
23868 |nw|&number of words in the width table;\cr
23869 |nh|&number of words in the height table;\cr
23870 |nd|&number of words in the depth table;\cr
23871 |ni|&number of words in the italic correction table;\cr
23872 |nl|&number of words in the lig/kern table;\cr
23873 |nk|&number of words in the kern table;\cr
23874 |ne|&number of words in the extensible character table;\cr
23875 |np|&number of font parameter words.\cr}}$$
23876 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23878 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23879 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23880 and as few as 0 characters (if |bc=ec+1|).
23882 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23883 16 or more bits, the most significant bytes appear first in the file.
23884 This is called BigEndian order.
23885 @^BigEndian order@>
23887 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23890 The most important data type used here is a |fix_word|, which is
23891 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23892 quantity, with the two's complement of the entire word used to represent
23893 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23894 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23895 the smallest is $-2048$. We will see below, however, that all but two of
23896 the |fix_word| values must lie between $-16$ and $+16$.
23898 @ The first data array is a block of header information, which contains
23899 general facts about the font. The header must contain at least two words,
23900 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23901 header information of use to other software routines might also be
23902 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23903 For example, 16 more words of header information are in use at the Xerox
23904 Palo Alto Research Center; the first ten specify the character coding
23905 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23906 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23907 last gives the ``face byte.''
23909 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23910 the \.{GF} output file. This helps ensure consistency between files,
23911 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23912 should match the check sums on actual fonts that are used. The actual
23913 relation between this check sum and the rest of the \.{TFM} file is not
23914 important; the check sum is simply an identification number with the
23915 property that incompatible fonts almost always have distinct check sums.
23918 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23919 font, in units of \TeX\ points. This number must be at least 1.0; it is
23920 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23921 font, i.e., a font that was designed to look best at a 10-point size,
23922 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23923 $\delta$ \.{pt}', the effect is to override the design size and replace it
23924 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23925 the font image by a factor of $\delta$ divided by the design size. {\sl
23926 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23927 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23928 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23929 since many fonts have a design size equal to one em. The other dimensions
23930 must be less than 16 design-size units in absolute value; thus,
23931 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23932 \.{TFM} file whose first byte might be something besides 0 or 255.
23935 @ Next comes the |char_info| array, which contains one |char_info_word|
23936 per character. Each word in this part of the file contains six fields
23937 packed into four bytes as follows.
23939 \yskip\hang first byte: |width_index| (8 bits)\par
23940 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23942 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23944 \hang fourth byte: |remainder| (8 bits)\par
23946 The actual width of a character is \\{width}|[width_index]|, in design-size
23947 units; this is a device for compressing information, since many characters
23948 have the same width. Since it is quite common for many characters
23949 to have the same height, depth, or italic correction, the \.{TFM} format
23950 imposes a limit of 16 different heights, 16 different depths, and
23951 64 different italic corrections.
23953 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23954 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23955 value of zero. The |width_index| should never be zero unless the
23956 character does not exist in the font, since a character is valid if and
23957 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23959 @ The |tag| field in a |char_info_word| has four values that explain how to
23960 interpret the |remainder| field.
23962 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23963 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23964 program starting at location |remainder| in the |lig_kern| array.\par
23965 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23966 characters of ascending sizes, and not the largest in the chain. The
23967 |remainder| field gives the character code of the next larger character.\par
23968 \hang|tag=3| (|ext_tag|) means that this character code represents an
23969 extensible character, i.e., a character that is built up of smaller pieces
23970 so that it can be made arbitrarily large. The pieces are specified in
23971 |exten[remainder]|.\par
23973 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23974 unless they are used in special circumstances in math formulas. For example,
23975 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23976 operation looks for both |list_tag| and |ext_tag|.
23978 @d no_tag 0 /* vanilla character */
23979 @d lig_tag 1 /* character has a ligature/kerning program */
23980 @d list_tag 2 /* character has a successor in a charlist */
23981 @d ext_tag 3 /* character is extensible */
23983 @ The |lig_kern| array contains instructions in a simple programming language
23984 that explains what to do for special letter pairs. Each word in this array is a
23985 |lig_kern_command| of four bytes.
23987 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23988 step if the byte is 128 or more, otherwise the next step is obtained by
23989 skipping this number of intervening steps.\par
23990 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23991 then perform the operation and stop, otherwise continue.''\par
23992 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23993 a kern step otherwise.\par
23994 \hang fourth byte: |remainder|.\par
23997 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23998 between the current character and |next_char|. This amount is
23999 often negative, so that the characters are brought closer together
24000 by kerning; but it might be positive.
24002 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
24003 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
24004 |remainder| is inserted between the current character and |next_char|;
24005 then the current character is deleted if $b=0$, and |next_char| is
24006 deleted if $c=0$; then we pass over $a$~characters to reach the next
24007 current character (which may have a ligature/kerning program of its own).
24009 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
24010 the |next_char| byte is the so-called right boundary character of this font;
24011 the value of |next_char| need not lie between |bc| and~|ec|.
24012 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
24013 there is a special ligature/kerning program for a left boundary character,
24014 beginning at location |256*op_byte+remainder|.
24015 The interpretation is that \TeX\ puts implicit boundary characters
24016 before and after each consecutive string of characters from the same font.
24017 These implicit characters do not appear in the output, but they can affect
24018 ligatures and kerning.
24020 If the very first instruction of a character's |lig_kern| program has
24021 |skip_byte>128|, the program actually begins in location
24022 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
24023 arrays, because the first instruction must otherwise
24024 appear in a location |<=255|.
24026 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
24028 $$\hbox{|256*op_byte+remainder<nl|.}$$
24029 If such an instruction is encountered during
24030 normal program execution, it denotes an unconditional halt; no ligature
24031 command is performed.
24034 /* value indicating `\.{STOP}' in a lig/kern program */
24035 @d kern_flag (128) /* op code for a kern step */
24036 @d skip_byte(A) mp->lig_kern[(A)].b0
24037 @d next_char(A) mp->lig_kern[(A)].b1
24038 @d op_byte(A) mp->lig_kern[(A)].b2
24039 @d rem_byte(A) mp->lig_kern[(A)].b3
24041 @ Extensible characters are specified by an |extensible_recipe|, which
24042 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
24043 order). These bytes are the character codes of individual pieces used to
24044 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
24045 present in the built-up result. For example, an extensible vertical line is
24046 like an extensible bracket, except that the top and bottom pieces are missing.
24048 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
24049 if the piece isn't present. Then the extensible characters have the form
24050 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
24051 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
24052 The width of the extensible character is the width of $R$; and the
24053 height-plus-depth is the sum of the individual height-plus-depths of the
24054 components used, since the pieces are butted together in a vertical list.
24056 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
24057 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
24058 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
24059 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
24061 @ The final portion of a \.{TFM} file is the |param| array, which is another
24062 sequence of |fix_word| values.
24064 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
24065 to help position accents. For example, |slant=.25| means that when you go
24066 up one unit, you also go .25 units to the right. The |slant| is a pure
24067 number; it is the only |fix_word| other than the design size itself that is
24068 not scaled by the design size.
24071 \hang|param[2]=space| is the normal spacing between words in text.
24072 Note that character 040 in the font need not have anything to do with
24075 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
24077 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
24079 \hang|param[5]=x_height| is the size of one ex in the font; it is also
24080 the height of letters for which accents don't have to be raised or lowered.
24082 \hang|param[6]=quad| is the size of one em in the font.
24084 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
24088 If fewer than seven parameters are present, \TeX\ sets the missing parameters
24093 @d space_stretch_code 3
24094 @d space_shrink_code 4
24097 @d extra_space_code 7
24099 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
24100 information, and it does this all at once at the end of a job.
24101 In order to prepare for such frenetic activity, it squirrels away the
24102 necessary facts in various arrays as information becomes available.
24104 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
24105 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
24106 |tfm_ital_corr|. Other information about a character (e.g., about
24107 its ligatures or successors) is accessible via the |char_tag| and
24108 |char_remainder| arrays. Other information about the font as a whole
24109 is kept in additional arrays called |header_byte|, |lig_kern|,
24110 |kern|, |exten|, and |param|.
24112 @d max_tfm_int 32510
24113 @d undefined_label max_tfm_int /* an undefined local label */
24116 #define TFM_ITEMS 257
24118 eight_bits ec; /* smallest and largest character codes shipped out */
24119 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
24120 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
24121 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
24122 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
24123 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
24124 int char_tag[TFM_ITEMS]; /* |remainder| category */
24125 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
24126 char *header_byte; /* bytes of the \.{TFM} header */
24127 int header_last; /* last initialized \.{TFM} header byte */
24128 int header_size; /* size of the \.{TFM} header */
24129 four_quarters *lig_kern; /* the ligature/kern table */
24130 short nl; /* the number of ligature/kern steps so far */
24131 scaled *kern; /* distinct kerning amounts */
24132 short nk; /* the number of distinct kerns so far */
24133 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
24134 short ne; /* the number of extensible characters so far */
24135 scaled *param; /* \&{fontinfo} parameters */
24136 short np; /* the largest \&{fontinfo} parameter specified so far */
24137 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
24138 short skip_table[TFM_ITEMS]; /* local label status */
24139 boolean lk_started; /* has there been a lig/kern step in this command yet? */
24140 integer bchar; /* right boundary character */
24141 short bch_label; /* left boundary starting location */
24142 short ll;short lll; /* registers used for lig/kern processing */
24143 short label_loc[257]; /* lig/kern starting addresses */
24144 eight_bits label_char[257]; /* characters for |label_loc| */
24145 short label_ptr; /* highest position occupied in |label_loc| */
24147 @ @<Allocate or initialize ...@>=
24148 mp->header_size = 128; /* just for init */
24149 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
24151 @ @<Dealloc variables@>=
24152 xfree(mp->header_byte);
24153 xfree(mp->lig_kern);
24158 for (k=0;k<= 255;k++ ) {
24159 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
24160 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
24161 mp->skip_table[k]=undefined_label;
24163 memset(mp->header_byte,0,(size_t)mp->header_size);
24164 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
24165 mp->internal[mp_boundary_char]=-unity;
24166 mp->bch_label=undefined_label;
24167 mp->label_loc[0]=-1; mp->label_ptr=0;
24169 @ @<Declarations@>=
24170 static scaled mp_tfm_check (MP mp,quarterword m) ;
24173 static scaled mp_tfm_check (MP mp,quarterword m) {
24174 if ( abs(mp->internal[m])>=fraction_half ) {
24175 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
24176 @.Enormous charwd...@>
24177 @.Enormous chardp...@>
24178 @.Enormous charht...@>
24179 @.Enormous charic...@>
24180 @.Enormous designsize...@>
24181 mp_print(mp, " has been reduced");
24182 help1("Font metric dimensions must be less than 2048pt.");
24183 mp_put_get_error(mp);
24184 if ( mp->internal[m]>0 ) return (fraction_half-1);
24185 else return (1-fraction_half);
24187 return mp->internal[m];
24191 @ @<Store the width information for character code~|c|@>=
24192 if ( c<mp->bc ) mp->bc=(eight_bits)c;
24193 if ( c>mp->ec ) mp->ec=(eight_bits)c;
24194 mp->char_exists[c]=true;
24195 mp->tfm_width[c]=mp_tfm_check(mp,mp_char_wd);
24196 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
24197 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
24198 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
24200 @ Now let's consider \MP's special \.{TFM}-oriented commands.
24202 @<Cases of |do_statement|...@>=
24203 case tfm_command: mp_do_tfm_command(mp); break;
24205 @ @d char_list_code 0
24206 @d lig_table_code 1
24207 @d extensible_code 2
24208 @d header_byte_code 3
24209 @d font_dimen_code 4
24212 mp_primitive(mp, "charlist",tfm_command,char_list_code);
24213 @:char_list_}{\&{charlist} primitive@>
24214 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
24215 @:lig_table_}{\&{ligtable} primitive@>
24216 mp_primitive(mp, "extensible",tfm_command,extensible_code);
24217 @:extensible_}{\&{extensible} primitive@>
24218 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
24219 @:header_byte_}{\&{headerbyte} primitive@>
24220 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
24221 @:font_dimen_}{\&{fontdimen} primitive@>
24223 @ @<Cases of |print_cmd...@>=
24226 case char_list_code:mp_print(mp, "charlist"); break;
24227 case lig_table_code:mp_print(mp, "ligtable"); break;
24228 case extensible_code:mp_print(mp, "extensible"); break;
24229 case header_byte_code:mp_print(mp, "headerbyte"); break;
24230 default: mp_print(mp, "fontdimen"); break;
24234 @ @<Declare action procedures for use by |do_statement|@>=
24235 static eight_bits mp_get_code (MP mp) ;
24237 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
24238 integer c; /* the code value found */
24239 mp_get_x_next(mp); mp_scan_expression(mp);
24240 if ( mp->cur_type==mp_known ) {
24241 c=mp_round_unscaled(mp, mp->cur_exp);
24242 if ( c>=0 ) if ( c<256 ) return (eight_bits)c;
24243 } else if ( mp->cur_type==mp_string_type ) {
24244 if ( length(mp->cur_exp)==1 ) {
24245 c=mp->str_pool[mp->str_start[mp->cur_exp]];
24246 return (eight_bits)c;
24249 exp_err("Invalid code has been replaced by 0");
24250 @.Invalid code...@>
24251 help2("I was looking for a number between 0 and 255, or for a",
24252 "string of length 1. Didn't find it; will use 0 instead.");
24253 mp_put_get_flush_error(mp, 0); c=0;
24254 return (eight_bits)c;
24257 @ @<Declare action procedures for use by |do_statement|@>=
24258 static void mp_set_tag (MP mp,halfword c, quarterword t, halfword r) ;
24260 @ @c void mp_set_tag (MP mp,halfword c, quarterword t, halfword r) {
24261 if ( mp->char_tag[c]==no_tag ) {
24262 mp->char_tag[c]=t; mp->char_remainder[c]=r;
24264 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
24265 mp->label_char[mp->label_ptr]=(eight_bits)c;
24268 @<Complain about a character tag conflict@>;
24272 @ @<Complain about a character tag conflict@>=
24274 print_err("Character ");
24275 if ( (c>' ')&&(c<127) ) mp_print_char(mp,xord(c));
24276 else if ( c==256 ) mp_print(mp, "||");
24277 else { mp_print(mp, "code "); mp_print_int(mp, c); };
24278 mp_print(mp, " is already ");
24279 @.Character c is already...@>
24280 switch (mp->char_tag[c]) {
24281 case lig_tag: mp_print(mp, "in a ligtable"); break;
24282 case list_tag: mp_print(mp, "in a charlist"); break;
24283 case ext_tag: mp_print(mp, "extensible"); break;
24284 } /* there are no other cases */
24285 help2("It's not legal to label a character more than once.",
24286 "So I'll not change anything just now.");
24287 mp_put_get_error(mp);
24290 @ @<Declare action procedures for use by |do_statement|@>=
24291 static void mp_do_tfm_command (MP mp) ;
24293 @ @c void mp_do_tfm_command (MP mp) {
24294 int c,cc; /* character codes */
24295 int k; /* index into the |kern| array */
24296 int j; /* index into |header_byte| or |param| */
24297 switch (mp->cur_mod) {
24298 case char_list_code:
24300 /* we will store a list of character successors */
24301 while ( mp->cur_cmd==colon ) {
24302 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
24305 case lig_table_code:
24306 if (mp->lig_kern==NULL)
24307 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
24308 if (mp->kern==NULL)
24309 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
24310 @<Store a list of ligature/kern steps@>;
24312 case extensible_code:
24313 @<Define an extensible recipe@>;
24315 case header_byte_code:
24316 case font_dimen_code:
24317 c=mp->cur_mod; mp_get_x_next(mp);
24318 mp_scan_expression(mp);
24319 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
24320 exp_err("Improper location");
24321 @.Improper location@>
24322 help2("I was looking for a known, positive number.",
24323 "For safety's sake I'll ignore the present command.");
24324 mp_put_get_error(mp);
24326 j=mp_round_unscaled(mp, mp->cur_exp);
24327 if ( mp->cur_cmd!=colon ) {
24328 mp_missing_err(mp, ":");
24330 help1("A colon should follow a headerbyte or fontinfo location.");
24333 if ( c==header_byte_code ) {
24334 @<Store a list of header bytes@>;
24336 if (mp->param==NULL)
24337 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
24338 @<Store a list of font dimensions@>;
24342 } /* there are no other cases */
24345 @ @<Store a list of ligature/kern steps@>=
24347 mp->lk_started=false;
24350 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
24351 @<Process a |skip_to| command and |goto done|@>;
24352 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
24353 else { mp_back_input(mp); c=mp_get_code(mp); };
24354 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
24355 @<Record a label in a lig/kern subprogram and |goto continue|@>;
24357 if ( mp->cur_cmd==lig_kern_token ) {
24358 @<Compile a ligature/kern command@>;
24360 print_err("Illegal ligtable step");
24361 @.Illegal ligtable step@>
24362 help1("I was looking for `=:' or `kern' here.");
24363 mp_back_error(mp); next_char(mp->nl)=qi(0);
24364 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
24365 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
24367 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
24369 if ( mp->cur_cmd==comma ) goto CONTINUE;
24370 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
24375 mp_primitive(mp, "=:",lig_kern_token,0);
24376 @:=:_}{\.{=:} primitive@>
24377 mp_primitive(mp, "=:|",lig_kern_token,1);
24378 @:=:/_}{\.{=:\char'174} primitive@>
24379 mp_primitive(mp, "=:|>",lig_kern_token,5);
24380 @:=:/>_}{\.{=:\char'174>} primitive@>
24381 mp_primitive(mp, "|=:",lig_kern_token,2);
24382 @:=:/_}{\.{\char'174=:} primitive@>
24383 mp_primitive(mp, "|=:>",lig_kern_token,6);
24384 @:=:/>_}{\.{\char'174=:>} primitive@>
24385 mp_primitive(mp, "|=:|",lig_kern_token,3);
24386 @:=:/_}{\.{\char'174=:\char'174} primitive@>
24387 mp_primitive(mp, "|=:|>",lig_kern_token,7);
24388 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
24389 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
24390 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
24391 mp_primitive(mp, "kern",lig_kern_token,128);
24392 @:kern_}{\&{kern} primitive@>
24394 @ @<Cases of |print_cmd...@>=
24395 case lig_kern_token:
24397 case 0:mp_print(mp, "=:"); break;
24398 case 1:mp_print(mp, "=:|"); break;
24399 case 2:mp_print(mp, "|=:"); break;
24400 case 3:mp_print(mp, "|=:|"); break;
24401 case 5:mp_print(mp, "=:|>"); break;
24402 case 6:mp_print(mp, "|=:>"); break;
24403 case 7:mp_print(mp, "|=:|>"); break;
24404 case 11:mp_print(mp, "|=:|>>"); break;
24405 default: mp_print(mp, "kern"); break;
24409 @ Local labels are implemented by maintaining the |skip_table| array,
24410 where |skip_table[c]| is either |undefined_label| or the address of the
24411 most recent lig/kern instruction that skips to local label~|c|. In the
24412 latter case, the |skip_byte| in that instruction will (temporarily)
24413 be zero if there were no prior skips to this label, or it will be the
24414 distance to the prior skip.
24416 We may need to cancel skips that span more than 127 lig/kern steps.
24418 @d cancel_skips(A) mp->ll=(A);
24420 mp->lll=qo(skip_byte(mp->ll));
24421 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
24422 } while (mp->lll!=0)
24423 @d skip_error(A) { print_err("Too far to skip");
24424 @.Too far to skip@>
24425 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
24426 mp_error(mp); cancel_skips((A));
24429 @<Process a |skip_to| command and |goto done|@>=
24432 if ( mp->nl-mp->skip_table[c]>128 ) {
24433 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
24435 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
24436 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
24437 mp->skip_table[c]=mp->nl-1; goto DONE;
24440 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
24442 if ( mp->cur_cmd==colon ) {
24443 if ( c==256 ) mp->bch_label=mp->nl;
24444 else mp_set_tag(mp, c,lig_tag,mp->nl);
24445 } else if ( mp->skip_table[c]<undefined_label ) {
24446 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
24448 mp->lll=qo(skip_byte(mp->ll));
24449 if ( mp->nl-mp->ll>128 ) {
24450 skip_error(mp->ll); goto CONTINUE;
24452 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
24453 } while (mp->lll!=0);
24458 @ @<Compile a ligature/kern...@>=
24460 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
24461 if ( mp->cur_mod<128 ) { /* ligature op */
24462 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
24464 mp_get_x_next(mp); mp_scan_expression(mp);
24465 if ( mp->cur_type!=mp_known ) {
24466 exp_err("Improper kern");
24468 help2("The amount of kern should be a known numeric value.",
24469 "I'm zeroing this one. Proceed, with fingers crossed.");
24470 mp_put_get_flush_error(mp, 0);
24472 mp->kern[mp->nk]=mp->cur_exp;
24474 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
24476 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
24479 op_byte(mp->nl)=kern_flag+(k / 256);
24480 rem_byte(mp->nl)=qi((k % 256));
24482 mp->lk_started=true;
24485 @ @d missing_extensible_punctuation(A)
24486 { mp_missing_err(mp, (A));
24487 @.Missing `\char`\#'@>
24488 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
24491 @<Define an extensible recipe@>=
24493 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
24494 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
24495 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
24496 ext_top(mp->ne)=qi(mp_get_code(mp));
24497 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
24498 ext_mid(mp->ne)=qi(mp_get_code(mp));
24499 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
24500 ext_bot(mp->ne)=qi(mp_get_code(mp));
24501 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
24502 ext_rep(mp->ne)=qi(mp_get_code(mp));
24506 @ The header could contain ASCII zeroes, so can't use |strdup|.
24508 @<Store a list of header bytes@>=
24510 if ( j>=mp->header_size ) {
24511 size_t l = (size_t)(mp->header_size + (mp->header_size/4));
24512 char *t = xmalloc(l,1);
24514 memcpy(t,mp->header_byte,(size_t)mp->header_size);
24515 xfree (mp->header_byte);
24516 mp->header_byte = t;
24517 mp->header_size = (int)l;
24519 mp->header_byte[j]=(char)mp_get_code(mp);
24520 incr(j); incr(mp->header_last);
24521 } while (mp->cur_cmd==comma)
24523 @ @<Store a list of font dimensions@>=
24525 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
24526 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
24527 mp_get_x_next(mp); mp_scan_expression(mp);
24528 if ( mp->cur_type!=mp_known ){
24529 exp_err("Improper font parameter");
24530 @.Improper font parameter@>
24531 help1("I'm zeroing this one. Proceed, with fingers crossed.");
24532 mp_put_get_flush_error(mp, 0);
24534 mp->param[j]=mp->cur_exp; incr(j);
24535 } while (mp->cur_cmd==comma)
24537 @ OK: We've stored all the data that is needed for the \.{TFM} file.
24538 All that remains is to output it in the correct format.
24540 An interesting problem needs to be solved in this connection, because
24541 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
24542 and 64~italic corrections. If the data has more distinct values than
24543 this, we want to meet the necessary restrictions by perturbing the
24544 given values as little as possible.
24546 \MP\ solves this problem in two steps. First the values of a given
24547 kind (widths, heights, depths, or italic corrections) are sorted;
24548 then the list of sorted values is perturbed, if necessary.
24550 The sorting operation is facilitated by having a special node of
24551 essentially infinite |value| at the end of the current list.
24553 @<Initialize table entries...@>=
24554 value(inf_val)=fraction_four;
24556 @ Straight linear insertion is good enough for sorting, since the lists
24557 are usually not terribly long. As we work on the data, the current list
24558 will start at |mp_link(temp_head)| and end at |inf_val|; the nodes in this
24559 list will be in increasing order of their |value| fields.
24561 Given such a list, the |sort_in| function takes a value and returns a pointer
24562 to where that value can be found in the list. The value is inserted in
24563 the proper place, if necessary.
24565 At the time we need to do these operations, most of \MP's work has been
24566 completed, so we will have plenty of memory to play with. The value nodes
24567 that are allocated for sorting will never be returned to free storage.
24569 @d clear_the_list mp_link(temp_head)=inf_val
24572 static pointer mp_sort_in (MP mp,scaled v) {
24573 pointer p,q,r; /* list manipulation registers */
24577 if ( v<=value(q) ) break;
24580 if ( v<value(q) ) {
24581 r=mp_get_node(mp, value_node_size); value(r)=v; mp_link(r)=q; mp_link(p)=r;
24586 @ Now we come to the interesting part, where we reduce the list if necessary
24587 until it has the required size. The |min_cover| routine is basic to this
24588 process; it computes the minimum number~|m| such that the values of the
24589 current sorted list can be covered by |m|~intervals of width~|d|. It
24590 also sets the global value |perturbation| to the smallest value $d'>d$
24591 such that the covering found by this algorithm would be different.
24593 In particular, |min_cover(0)| returns the number of distinct values in the
24594 current list and sets |perturbation| to the minimum distance between
24598 static integer mp_min_cover (MP mp,scaled d) {
24599 pointer p; /* runs through the current list */
24600 scaled l; /* the least element covered by the current interval */
24601 integer m; /* lower bound on the size of the minimum cover */
24602 m=0; p=mp_link(temp_head); mp->perturbation=el_gordo;
24603 while ( p!=inf_val ){
24604 incr(m); l=value(p);
24605 do { p=mp_link(p); } while (value(p)<=l+d);
24606 if ( value(p)-l<mp->perturbation )
24607 mp->perturbation=value(p)-l;
24613 scaled perturbation; /* quantity related to \.{TFM} rounding */
24614 integer excess; /* the list is this much too long */
24616 @ The smallest |d| such that a given list can be covered with |m| intervals
24617 is determined by the |threshold| routine, which is sort of an inverse
24618 to |min_cover|. The idea is to increase the interval size rapidly until
24619 finding the range, then to go sequentially until the exact borderline has
24623 static scaled mp_threshold (MP mp,integer m) {
24624 scaled d; /* lower bound on the smallest interval size */
24625 mp->excess=mp_min_cover(mp, 0)-m;
24626 if ( mp->excess<=0 ) {
24630 d=mp->perturbation;
24631 } while (mp_min_cover(mp, d+d)>m);
24632 while ( mp_min_cover(mp, d)>m )
24633 d=mp->perturbation;
24638 @ The |skimp| procedure reduces the current list to at most |m| entries,
24639 by changing values if necessary. It also sets |mp_info(p):=k| if |value(p)|
24640 is the |k|th distinct value on the resulting list, and it sets
24641 |perturbation| to the maximum amount by which a |value| field has
24642 been changed. The size of the resulting list is returned as the
24646 static integer mp_skimp (MP mp,integer m) {
24647 scaled d; /* the size of intervals being coalesced */
24648 pointer p,q,r; /* list manipulation registers */
24649 scaled l; /* the least value in the current interval */
24650 scaled v; /* a compromise value */
24651 d=mp_threshold(mp, m); mp->perturbation=0;
24652 q=temp_head; m=0; p=mp_link(temp_head);
24653 while ( p!=inf_val ) {
24654 incr(m); l=value(p); mp_info(p)=m;
24655 if ( value(mp_link(p))<=l+d ) {
24656 @<Replace an interval of values by its midpoint@>;
24663 @ @<Replace an interval...@>=
24666 p=mp_link(p); mp_info(p)=m;
24667 decr(mp->excess); if ( mp->excess==0 ) d=0;
24668 } while (value(mp_link(p))<=l+d);
24669 v=l+halfp(value(p)-l);
24670 if ( value(p)-v>mp->perturbation )
24671 mp->perturbation=value(p)-v;
24674 r=mp_link(r); value(r)=v;
24676 mp_link(q)=p; /* remove duplicate values from the current list */
24679 @ A warning message is issued whenever something is perturbed by
24680 more than 1/16\thinspace pt.
24683 static void mp_tfm_warning (MP mp,quarterword m) {
24684 mp_print_nl(mp, "(some ");
24685 mp_print(mp, mp->int_name[m]);
24686 @.some charwds...@>
24687 @.some chardps...@>
24688 @.some charhts...@>
24689 @.some charics...@>
24690 mp_print(mp, " values had to be adjusted by as much as ");
24691 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24694 @ Here's an example of how we use these routines.
24695 The width data needs to be perturbed only if there are 256 distinct
24696 widths, but \MP\ must check for this case even though it is
24699 An integer variable |k| will be defined when we use this code.
24700 The |dimen_head| array will contain pointers to the sorted
24701 lists of dimensions.
24703 @<Massage the \.{TFM} widths@>=
24705 for (k=mp->bc;k<=mp->ec;k++) {
24706 if ( mp->char_exists[k] )
24707 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24709 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=mp_link(temp_head);
24710 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24713 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24715 @ Heights, depths, and italic corrections are different from widths
24716 not only because their list length is more severely restricted, but
24717 also because zero values do not need to be put into the lists.
24719 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24721 for (k=mp->bc;k<=mp->ec;k++) {
24722 if ( mp->char_exists[k] ) {
24723 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24724 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24727 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=mp_link(temp_head);
24728 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24730 for (k=mp->bc;k<=mp->ec;k++) {
24731 if ( mp->char_exists[k] ) {
24732 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24733 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24736 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=mp_link(temp_head);
24737 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24739 for (k=mp->bc;k<=mp->ec;k++) {
24740 if ( mp->char_exists[k] ) {
24741 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24742 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24745 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=mp_link(temp_head);
24746 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24748 @ @<Initialize table entries...@>=
24749 value(zero_val)=0; mp_info(zero_val)=0;
24751 @ Bytes 5--8 of the header are set to the design size, unless the user has
24752 some crazy reason for specifying them differently.
24755 Error messages are not allowed at the time this procedure is called,
24756 so a warning is printed instead.
24758 The value of |max_tfm_dimen| is calculated so that
24759 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24760 < \\{three\_bytes}.$$
24762 @d three_bytes 0100000000 /* $2^{24}$ */
24765 static void mp_fix_design_size (MP mp) {
24766 scaled d; /* the design size */
24767 d=mp->internal[mp_design_size];
24768 if ( (d<unity)||(d>=fraction_half) ) {
24770 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24771 @.illegal design size...@>
24772 d=040000000; mp->internal[mp_design_size]=d;
24774 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24775 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24776 mp->header_byte[4]=d / 04000000;
24777 mp->header_byte[5]=(d / 4096) % 256;
24778 mp->header_byte[6]=(d / 16) % 256;
24779 mp->header_byte[7]=(d % 16)*16;
24781 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-1-mp->internal[mp_design_size] / 010000000;
24782 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24785 @ The |dimen_out| procedure computes a |fix_word| relative to the
24786 design size. If the data was out of range, it is corrected and the
24787 global variable |tfm_changed| is increased by~one.
24790 static integer mp_dimen_out (MP mp,scaled x) {
24791 if ( abs(x)>mp->max_tfm_dimen ) {
24792 incr(mp->tfm_changed);
24793 if ( x>0 ) x=mp->max_tfm_dimen; else x=-mp->max_tfm_dimen;
24795 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24800 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24801 integer tfm_changed; /* the number of data entries that were out of bounds */
24803 @ If the user has not specified any of the first four header bytes,
24804 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24805 from the |tfm_width| data relative to the design size.
24809 static void mp_fix_check_sum (MP mp) {
24810 eight_bits k; /* runs through character codes */
24811 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24812 integer x; /* hash value used in check sum computation */
24813 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24814 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24815 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24816 mp->header_byte[0]=(char)B1; mp->header_byte[1]=(char)B2;
24817 mp->header_byte[2]=(char)B3; mp->header_byte[3]=(char)B4;
24822 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24823 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24824 for (k=mp->bc;k<=mp->ec;k++) {
24825 if ( mp->char_exists[k] ) {
24826 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24827 B1=(eight_bits)((B1+B1+x) % 255);
24828 B2=(eight_bits)((B2+B2+x) % 253);
24829 B3=(eight_bits)((B3+B3+x) % 251);
24830 B4=(eight_bits)((B4+B4+x) % 247);
24834 @ Finally we're ready to actually write the \.{TFM} information.
24835 Here are some utility routines for this purpose.
24837 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24838 unsigned char s=(unsigned char)(A);
24839 (mp->write_binary_file)(mp,mp->tfm_file,(void *)&s,1);
24843 static void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24844 tfm_out(x / 256); tfm_out(x % 256);
24846 static void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24847 if ( x>=0 ) tfm_out(x / three_bytes);
24849 x=x+010000000000; /* use two's complement for negative values */
24851 tfm_out((x / three_bytes) + 128);
24853 x=x % three_bytes; tfm_out(x / unity);
24854 x=x % unity; tfm_out(x / 0400);
24857 static void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24858 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24859 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24862 @ @<Finish the \.{TFM} file@>=
24863 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24864 mp_pack_job_name(mp, ".tfm");
24865 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24866 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24867 mp->metric_file_name=xstrdup(mp->name_of_file);
24868 @<Output the subfile sizes and header bytes@>;
24869 @<Output the character information bytes, then
24870 output the dimensions themselves@>;
24871 @<Output the ligature/kern program@>;
24872 @<Output the extensible character recipes and the font metric parameters@>;
24873 if ( mp->internal[mp_tracing_stats]>0 )
24874 @<Log the subfile sizes of the \.{TFM} file@>;
24875 mp_print_nl(mp, "Font metrics written on ");
24876 mp_print(mp, mp->metric_file_name); mp_print_char(mp, xord('.'));
24877 @.Font metrics written...@>
24878 (mp->close_file)(mp,mp->tfm_file)
24880 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24883 @<Output the subfile sizes and header bytes@>=
24885 LH=(k+3) / 4; /* this is the number of header words */
24886 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24887 @<Compute the ligature/kern program offset and implant the
24888 left boundary label@>;
24889 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24890 +lk_offset+mp->nk+mp->ne+mp->np);
24891 /* this is the total number of file words that will be output */
24892 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24893 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24894 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24895 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24896 mp_tfm_two(mp, mp->np);
24897 for (k=0;k< 4*LH;k++) {
24898 tfm_out(mp->header_byte[k]);
24901 @ @<Output the character information bytes...@>=
24902 for (k=mp->bc;k<=mp->ec;k++) {
24903 if ( ! mp->char_exists[k] ) {
24904 mp_tfm_four(mp, 0);
24906 tfm_out(mp_info(mp->tfm_width[k])); /* the width index */
24907 tfm_out((mp_info(mp->tfm_height[k]))*16+mp_info(mp->tfm_depth[k]));
24908 tfm_out((mp_info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24909 tfm_out(mp->char_remainder[k]);
24913 for (k=1;k<=4;k++) {
24914 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24915 while ( p!=inf_val ) {
24916 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=mp_link(p);
24921 @ We need to output special instructions at the beginning of the
24922 |lig_kern| array in order to specify the right boundary character
24923 and/or to handle starting addresses that exceed 255. The |label_loc|
24924 and |label_char| arrays have been set up to record all the
24925 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24926 \le|label_loc|[|label_ptr]|$.
24928 @<Compute the ligature/kern program offset...@>=
24929 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24930 if ((mp->bchar<0)||(mp->bchar>255))
24931 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24932 else { mp->lk_started=true; lk_offset=1; };
24933 @<Find the minimum |lk_offset| and adjust all remainders@>;
24934 if ( mp->bch_label<undefined_label )
24935 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24936 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24937 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24938 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24941 @ @<Find the minimum |lk_offset|...@>=
24942 k=mp->label_ptr; /* pointer to the largest unallocated label */
24943 if ( mp->label_loc[k]+lk_offset>255 ) {
24944 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24946 mp->char_remainder[mp->label_char[k]]=lk_offset;
24947 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24948 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24950 incr(lk_offset); decr(k);
24951 } while (! (lk_offset+mp->label_loc[k]<256));
24952 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24954 if ( lk_offset>0 ) {
24956 mp->char_remainder[mp->label_char[k]]
24957 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24962 @ @<Output the ligature/kern program@>=
24963 for (k=0;k<= 255;k++ ) {
24964 if ( mp->skip_table[k]<undefined_label ) {
24965 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24966 @.local label l:: was missing@>
24967 cancel_skips(mp->skip_table[k]);
24970 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24971 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24973 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24974 mp->ll=mp->label_loc[mp->label_ptr];
24975 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24976 else { tfm_out(255); tfm_out(mp->bchar); };
24977 mp_tfm_two(mp, mp->ll+lk_offset);
24979 decr(mp->label_ptr);
24980 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24983 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24984 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24986 @ @<Output the extensible character recipes...@>=
24987 for (k=0;k<=mp->ne-1;k++)
24988 mp_tfm_qqqq(mp, mp->exten[k]);
24989 for (k=1;k<=mp->np;k++) {
24991 if ( abs(mp->param[1])<fraction_half ) {
24992 mp_tfm_four(mp, mp->param[1]*16);
24994 incr(mp->tfm_changed);
24995 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24996 else mp_tfm_four(mp, -el_gordo);
24999 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
25002 if ( mp->tfm_changed>0 ) {
25003 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
25004 @.a font metric dimension...@>
25006 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
25007 @.font metric dimensions...@>
25008 mp_print(mp, " font metric dimensions");
25010 mp_print(mp, " had to be decreased)");
25013 @ @<Log the subfile sizes of the \.{TFM} file@>=
25017 if ( mp->bch_label<undefined_label ) decr(mp->nl);
25018 mp_snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
25019 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
25023 @* \[43] Reading font metric data.
25025 \MP\ isn't a typesetting program but it does need to find the bounding box
25026 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
25027 well as write them.
25032 @ All the width, height, and depth information is stored in an array called
25033 |font_info|. This array is allocated sequentially and each font is stored
25034 as a series of |char_info| words followed by the width, height, and depth
25035 tables. Since |font_name| entries are permanent, their |str_ref| values are
25036 set to |max_str_ref|.
25039 typedef unsigned int font_number; /* |0..font_max| */
25041 @ The |font_info| array is indexed via a group directory arrays.
25042 For example, the |char_info| data for character~|c| in font~|f| will be
25043 in |font_info[char_base[f]+c].qqqq|.
25046 font_number font_max; /* maximum font number for included text fonts */
25047 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
25048 memory_word *font_info; /* height, width, and depth data */
25049 char **font_enc_name; /* encoding names, if any */
25050 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
25051 size_t next_fmem; /* next unused entry in |font_info| */
25052 font_number last_fnum; /* last font number used so far */
25053 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
25054 char **font_name; /* name as specified in the \&{infont} command */
25055 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
25056 font_number last_ps_fnum; /* last valid |font_ps_name| index */
25057 eight_bits *font_bc;
25058 eight_bits *font_ec; /* first and last character code */
25059 int *char_base; /* base address for |char_info| */
25060 int *width_base; /* index for zeroth character width */
25061 int *height_base; /* index for zeroth character height */
25062 int *depth_base; /* index for zeroth character depth */
25063 pointer *font_sizes;
25065 @ @<Allocate or initialize ...@>=
25066 mp->font_mem_size = 10000;
25067 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
25068 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
25069 mp->last_fnum = null_font;
25071 @ @<Dealloc variables@>=
25072 for (k=1;k<=(int)mp->last_fnum;k++) {
25073 xfree(mp->font_enc_name[k]);
25074 xfree(mp->font_name[k]);
25075 xfree(mp->font_ps_name[k]);
25077 xfree(mp->font_info);
25078 xfree(mp->font_enc_name);
25079 xfree(mp->font_ps_name_fixed);
25080 xfree(mp->font_dsize);
25081 xfree(mp->font_name);
25082 xfree(mp->font_ps_name);
25083 xfree(mp->font_bc);
25084 xfree(mp->font_ec);
25085 xfree(mp->char_base);
25086 xfree(mp->width_base);
25087 xfree(mp->height_base);
25088 xfree(mp->depth_base);
25089 xfree(mp->font_sizes);
25093 void mp_reallocate_fonts (MP mp, font_number l) {
25095 XREALLOC(mp->font_enc_name, l, char *);
25096 XREALLOC(mp->font_ps_name_fixed, l, boolean);
25097 XREALLOC(mp->font_dsize, l, scaled);
25098 XREALLOC(mp->font_name, l, char *);
25099 XREALLOC(mp->font_ps_name, l, char *);
25100 XREALLOC(mp->font_bc, l, eight_bits);
25101 XREALLOC(mp->font_ec, l, eight_bits);
25102 XREALLOC(mp->char_base, l, int);
25103 XREALLOC(mp->width_base, l, int);
25104 XREALLOC(mp->height_base, l, int);
25105 XREALLOC(mp->depth_base, l, int);
25106 XREALLOC(mp->font_sizes, l, pointer);
25107 for (f=(mp->last_fnum+1);f<=l;f++) {
25108 mp->font_enc_name[f]=NULL;
25109 mp->font_ps_name_fixed[f] = false;
25110 mp->font_name[f]=NULL;
25111 mp->font_ps_name[f]=NULL;
25112 mp->font_sizes[f]=null;
25117 @ @<Internal library declarations@>=
25118 void mp_reallocate_fonts (MP mp, font_number l);
25121 @ A |null_font| containing no characters is useful for error recovery. Its
25122 |font_name| entry starts out empty but is reset each time an erroneous font is
25123 found. This helps to cut down on the number of duplicate error messages without
25124 wasting a lot of space.
25126 @d null_font 0 /* the |font_number| for an empty font */
25128 @<Set initial...@>=
25129 mp->font_dsize[null_font]=0;
25130 mp->font_bc[null_font]=1;
25131 mp->font_ec[null_font]=0;
25132 mp->char_base[null_font]=0;
25133 mp->width_base[null_font]=0;
25134 mp->height_base[null_font]=0;
25135 mp->depth_base[null_font]=0;
25137 mp->last_fnum=null_font;
25138 mp->last_ps_fnum=null_font;
25139 mp->font_name[null_font]=(char *)"nullfont";
25140 mp->font_ps_name[null_font]=(char *)"";
25141 mp->font_ps_name_fixed[null_font] = false;
25142 mp->font_enc_name[null_font]=NULL;
25143 mp->font_sizes[null_font]=null;
25145 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
25146 the |width index|; the |b1| field contains the height
25147 index; the |b2| fields contains the depth index, and the |b3| field used only
25148 for temporary storage. (It is used to keep track of which characters occur in
25149 an edge structure that is being shipped out.)
25150 The corresponding words in the width, height, and depth tables are stored as
25151 |scaled| values in units of \ps\ points.
25153 With the macros below, the |char_info| word for character~|c| in font~|f| is
25154 |char_mp_info(f,c)| and the width is
25155 $$\hbox{|char_width(f,char_mp_info(f,c)).sc|.}$$
25157 @d char_mp_info(A,B) mp->font_info[mp->char_base[(A)]+(B)].qqqq
25158 @d char_width(A,B) mp->font_info[mp->width_base[(A)]+(B).b0].sc
25159 @d char_height(A,B) mp->font_info[mp->height_base[(A)]+(B).b1].sc
25160 @d char_depth(A,B) mp->font_info[mp->depth_base[(A)]+(B).b2].sc
25161 @d ichar_exists(A) ((A).b0>0)
25163 @ When we have a font name and we don't know whether it has been loaded yet,
25164 we scan the |font_name| array before calling |read_font_info|.
25167 static font_number mp_find_font (MP mp, char *f) ;
25170 font_number mp_find_font (MP mp, char *f) {
25172 for (n=0;n<=mp->last_fnum;n++) {
25173 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
25178 n = mp_read_font_info(mp, f);
25183 @ This is an interface function for getting the width of character,
25184 as a double in ps units
25186 @c double mp_get_char_dimension (MP mp, char *fname, int c, int t) {
25191 for (n=0;n<=mp->last_fnum;n++) {
25192 if (mp_xstrcmp(fname,mp->font_name[n])==0 ) {
25199 cc = char_mp_info(f,c);
25200 if (! ichar_exists(cc) )
25203 w = (double)char_width(f,cc);
25205 w = (double)char_height(f,cc);
25207 w = (double)char_depth(f,cc);
25208 return w/655.35*(72.27/72);
25211 @ @<Exported function ...@>=
25212 double mp_get_char_dimension (MP mp, char *fname, int n, int t);
25215 @ One simple application of |find_font| is the implementation of the |font_size|
25216 operator that gets the design size for a given font name.
25218 @<Find the design size of the font whose name is |cur_exp|@>=
25219 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
25221 @ If we discover that the font doesn't have a requested character, we omit it
25222 from the bounding box computation and expect the \ps\ interpreter to drop it.
25223 This routine issues a warning message if the user has asked for it.
25226 static void mp_lost_warning (MP mp,font_number f, pool_pointer k);
25229 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
25230 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
25231 mp_begin_diagnostic(mp);
25232 if ( mp->selector==log_only ) incr(mp->selector);
25233 mp_print_nl(mp, "Missing character: There is no ");
25234 @.Missing character@>
25235 mp_print_str(mp, mp->str_pool[k]);
25236 mp_print(mp, " in font ");
25237 mp_print(mp, mp->font_name[f]); mp_print_char(mp, xord('!'));
25238 mp_end_diagnostic(mp, false);
25242 @ The whole purpose of saving the height, width, and depth information is to be
25243 able to find the bounding box of an item of text in an edge structure. The
25244 |set_text_box| procedure takes a text node and adds this information.
25247 static void mp_set_text_box (MP mp,pointer p);
25250 void mp_set_text_box (MP mp,pointer p) {
25251 font_number f; /* |mp_font_n(p)| */
25252 ASCII_code bc,ec; /* range of valid characters for font |f| */
25253 pool_pointer k,kk; /* current character and character to stop at */
25254 four_quarters cc; /* the |char_info| for the current character */
25255 scaled h,d; /* dimensions of the current character */
25257 height_val(p)=-el_gordo;
25258 depth_val(p)=-el_gordo;
25259 f=(font_number)mp_font_n(p);
25262 kk=str_stop(mp_text_p(p));
25263 k=mp->str_start[mp_text_p(p)];
25265 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
25267 @<Set the height and depth to zero if the bounding box is empty@>;
25270 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
25272 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
25273 mp_lost_warning(mp, f,k);
25275 cc=char_mp_info(f,mp->str_pool[k]);
25276 if ( ! ichar_exists(cc) ) {
25277 mp_lost_warning(mp, f,k);
25279 width_val(p)=width_val(p)+char_width(f,cc);
25280 h=char_height(f,cc);
25281 d=char_depth(f,cc);
25282 if ( h>height_val(p) ) height_val(p)=h;
25283 if ( d>depth_val(p) ) depth_val(p)=d;
25289 @ Let's hope modern compilers do comparisons correctly when the difference would
25292 @<Set the height and depth to zero if the bounding box is empty@>=
25293 if ( height_val(p)<-depth_val(p) ) {
25298 @ The new primitives fontmapfile and fontmapline.
25300 @<Declare action procedures for use by |do_statement|@>=
25301 static void mp_do_mapfile (MP mp) ;
25302 static void mp_do_mapline (MP mp) ;
25305 static void mp_do_mapfile (MP mp) {
25306 mp_get_x_next(mp); mp_scan_expression(mp);
25307 if ( mp->cur_type!=mp_string_type ) {
25308 @<Complain about improper map operation@>;
25310 mp_map_file(mp,mp->cur_exp);
25313 static void mp_do_mapline (MP mp) {
25314 mp_get_x_next(mp); mp_scan_expression(mp);
25315 if ( mp->cur_type!=mp_string_type ) {
25316 @<Complain about improper map operation@>;
25318 mp_map_line(mp,mp->cur_exp);
25322 @ @<Complain about improper map operation@>=
25324 exp_err("Unsuitable expression");
25325 help1("Only known strings can be map files or map lines.");
25326 mp_put_get_error(mp);
25329 @ To print |scaled| value to PDF output we need some subroutines to ensure
25332 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
25335 scaled one_bp; /* scaled value corresponds to 1bp */
25336 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
25337 scaled one_hundred_inch; /* scaled value corresponds to 100in */
25338 integer ten_pow[10]; /* $10^0..10^9$ */
25339 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
25342 mp->one_bp = 65782; /* 65781.76 */
25343 mp->one_hundred_bp = 6578176;
25344 mp->one_hundred_inch = 473628672;
25345 mp->ten_pow[0] = 1;
25346 for (i = 1;i<= 9; i++ ) {
25347 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
25350 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
25352 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
25356 if ( s < 0 ) { sign = -sign; s = -s; }
25357 if ( m < 0 ) { sign = -sign; m = -m; }
25359 mp_confusion(mp, "arithmetic: divided by zero");
25360 else if ( m >= (max_integer / 10) )
25361 mp_confusion(mp, "arithmetic: number too big");
25364 for (i = 1;i<=dd;i++) {
25365 q = 10*q + (10*r) / m;
25368 if ( 2*r >= m ) { incr(q); r = r - m; }
25369 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
25373 @* \[44] Shipping pictures out.
25374 The |ship_out| procedure, to be described below, is given a pointer to
25375 an edge structure. Its mission is to output a file containing the \ps\
25376 description of an edge structure.
25378 @ Each time an edge structure is shipped out we write a new \ps\ output
25379 file named according to the current \&{charcode}.
25380 @:char_code_}{\&{charcode} primitive@>
25382 This is the only backend function that remains in the main |mpost.w| file.
25383 There are just too many variable accesses needed for status reporting
25384 etcetera to make it worthwile to move the code to |psout.w|.
25386 @<Internal library declarations@>=
25387 void mp_open_output_file (MP mp) ;
25390 static char *mp_set_output_file_name (MP mp, integer c) {
25391 char *ss = NULL; /* filename extension proposal */
25392 char *nn = NULL; /* temp string for str() */
25393 unsigned old_setting; /* previous |selector| setting */
25394 pool_pointer i; /* indexes into |filename_template| */
25395 integer cc; /* a temporary integer for template building */
25396 integer f,g=0; /* field widths */
25397 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25398 if ( mp->filename_template==0 ) {
25399 char *s; /* a file extension derived from |c| */
25403 @<Use |c| to compute the file extension |s|@>;
25404 mp_pack_job_name(mp, s);
25406 ss = xstrdup(mp->name_of_file);
25407 } else { /* initializations */
25408 str_number s, n; /* a file extension derived from |c| */
25409 old_setting=mp->selector;
25410 mp->selector=new_string;
25412 i = mp->str_start[mp->filename_template];
25413 n = null_str; /* initialize */
25414 while ( i<str_stop(mp->filename_template) ) {
25415 if ( mp->str_pool[i]=='%' ) {
25418 if ( i<str_stop(mp->filename_template) ) {
25419 if ( mp->str_pool[i]=='j' ) {
25420 mp_print(mp, mp->job_name);
25421 } else if ( mp->str_pool[i]=='d' ) {
25422 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25423 print_with_leading_zeroes(cc);
25424 } else if ( mp->str_pool[i]=='m' ) {
25425 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25426 print_with_leading_zeroes(cc);
25427 } else if ( mp->str_pool[i]=='y' ) {
25428 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25429 print_with_leading_zeroes(cc);
25430 } else if ( mp->str_pool[i]=='H' ) {
25431 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25432 print_with_leading_zeroes(cc);
25433 } else if ( mp->str_pool[i]=='M' ) {
25434 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25435 print_with_leading_zeroes(cc);
25436 } else if ( mp->str_pool[i]=='c' ) {
25437 if ( c<0 ) mp_print(mp, "ps");
25438 else print_with_leading_zeroes(c);
25439 } else if ( (mp->str_pool[i]>='0') &&
25440 (mp->str_pool[i]<='9') ) {
25442 f = (f*10) + mp->str_pool[i]-'0';
25445 mp_print_str(mp, mp->str_pool[i]);
25449 if ( mp->str_pool[i]=='.' )
25451 n = mp_make_string(mp);
25452 mp_print_str(mp, mp->str_pool[i]);
25456 s = mp_make_string(mp);
25457 mp->selector= old_setting;
25458 if (length(n)==0) {
25464 mp_pack_file_name(mp, nn,"",ss);
25472 static char * mp_get_output_file_name (MP mp) {
25474 char *saved_name; /* saved |name_of_file| */
25475 saved_name = xstrdup(mp->name_of_file);
25476 f = xstrdup(mp_set_output_file_name(mp, mp_round_unscaled(mp, mp->internal[mp_char_code])));
25477 mp_pack_file_name(mp, saved_name,NULL,NULL);
25482 void mp_open_output_file (MP mp) {
25483 char *ss; /* filename extension proposal */
25484 integer c; /* \&{charcode} rounded to the nearest integer */
25485 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25486 ss = mp_set_output_file_name(mp, c);
25487 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25488 mp_prompt_file_name(mp, "file name for output",ss);
25490 @<Store the true output file name if appropriate@>;
25493 @ The file extension created here could be up to five characters long in
25494 extreme cases so it may have to be shortened on some systems.
25495 @^system dependencies@>
25497 @<Use |c| to compute the file extension |s|@>=
25500 mp_snprintf(s,7,".%i",(int)c);
25503 @ The user won't want to see all the output file names so we only save the
25504 first and last ones and a count of how many there were. For this purpose
25505 files are ordered primarily by \&{charcode} and secondarily by order of
25507 @:char_code_}{\&{charcode} primitive@>
25509 @<Store the true output file name if appropriate@>=
25510 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25511 mp->first_output_code=c;
25512 xfree(mp->first_file_name);
25513 mp->first_file_name=xstrdup(mp->name_of_file);
25515 if ( c>=mp->last_output_code ) {
25516 mp->last_output_code=c;
25517 xfree(mp->last_file_name);
25518 mp->last_file_name=xstrdup(mp->name_of_file);
25522 char * first_file_name;
25523 char * last_file_name; /* full file names */
25524 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25525 @:char_code_}{\&{charcode} primitive@>
25526 integer total_shipped; /* total number of |ship_out| operations completed */
25529 mp->first_file_name=xstrdup("");
25530 mp->last_file_name=xstrdup("");
25531 mp->first_output_code=32768;
25532 mp->last_output_code=-32768;
25533 mp->total_shipped=0;
25535 @ @<Dealloc variables@>=
25536 xfree(mp->first_file_name);
25537 xfree(mp->last_file_name);
25539 @ @<Begin the progress report for the output of picture~|c|@>=
25540 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25541 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, xord(' '));
25542 mp_print_char(mp, xord('['));
25543 if ( c>=0 ) mp_print_int(mp, c)
25545 @ @<End progress report@>=
25546 mp_print_char(mp, xord(']'));
25548 incr(mp->total_shipped)
25550 @ @<Explain what output files were written@>=
25551 if ( mp->total_shipped>0 ) {
25552 mp_print_nl(mp, "");
25553 mp_print_int(mp, mp->total_shipped);
25554 if (mp->noninteractive) {
25555 mp_print(mp, " figure");
25556 if ( mp->total_shipped>1 ) mp_print_char(mp, xord('s'));
25557 mp_print(mp, " created.");
25559 mp_print(mp, " output file");
25560 if ( mp->total_shipped>1 ) mp_print_char(mp, xord('s'));
25561 mp_print(mp, " written: ");
25562 mp_print(mp, mp->first_file_name);
25563 if ( mp->total_shipped>1 ) {
25564 if ( 31+strlen(mp->first_file_name)+
25565 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25567 mp_print(mp, " .. ");
25568 mp_print(mp, mp->last_file_name);
25573 @ @<Internal library declarations@>=
25574 boolean mp_has_font_size(MP mp, font_number f );
25577 boolean mp_has_font_size(MP mp, font_number f ) {
25578 return (mp->font_sizes[f]!=null);
25581 @ The \&{special} command saves up lines of text to be printed during the next
25582 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25585 pointer last_pending; /* the last token in a list of pending specials */
25588 mp->last_pending=spec_head;
25590 @ @<Cases of |do_statement|...@>=
25591 case special_command:
25592 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25593 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25597 @ @<Declare action procedures for use by |do_statement|@>=
25598 static void mp_do_special (MP mp) ;
25600 @ @c void mp_do_special (MP mp) {
25601 mp_get_x_next(mp); mp_scan_expression(mp);
25602 if ( mp->cur_type!=mp_string_type ) {
25603 @<Complain about improper special operation@>;
25605 mp_link(mp->last_pending)=mp_stash_cur_exp(mp);
25606 mp->last_pending=mp_link(mp->last_pending);
25607 mp_link(mp->last_pending)=null;
25611 @ @<Complain about improper special operation@>=
25613 exp_err("Unsuitable expression");
25614 help1("Only known strings are allowed for output as specials.");
25615 mp_put_get_error(mp);
25618 @ On the export side, we need an extra object type for special strings.
25620 @<Graphical object codes@>=
25623 @ @<Export pending specials@>=
25624 p=mp_link(spec_head);
25625 while ( p!=null ) {
25626 mp_special_object *tp;
25627 tp = (mp_special_object *)mp_new_graphic_object(mp,mp_special_code);
25628 gr_pre_script(tp) = str(value(p));
25629 if (hh->body==NULL) hh->body = (mp_graphic_object *)tp;
25630 else gr_link(hp) = (mp_graphic_object *)tp;
25631 hp = (mp_graphic_object *)tp;
25634 mp_flush_token_list(mp, mp_link(spec_head));
25635 mp_link(spec_head)=null;
25636 mp->last_pending=spec_head
25638 @ We are now ready for the main output procedure. Note that the |selector|
25639 setting is saved in a global variable so that |begin_diagnostic| can access it.
25641 @<Declare the \ps\ output procedures@>=
25642 static void mp_ship_out (MP mp, pointer h) ;
25644 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25646 @d export_color(q,p)
25647 if ( mp_color_model(p)==mp_uninitialized_model ) {
25648 gr_color_model(q) = (unsigned char)(mp->internal[mp_default_color_model]/65536);
25649 gr_cyan_val(q) = 0;
25650 gr_magenta_val(q) = 0;
25651 gr_yellow_val(q) = 0;
25652 gr_black_val(q) = (gr_color_model(q)==mp_cmyk_model ? unity : 0);
25654 gr_color_model(q) = (unsigned char)mp_color_model(p);
25655 gr_cyan_val(q) = cyan_val(p);
25656 gr_magenta_val(q) = magenta_val(p);
25657 gr_yellow_val(q) = yellow_val(p);
25658 gr_black_val(q) = black_val(p);
25661 @d export_scripts(q,p)
25662 if (mp_pre_script(p)!=null) gr_pre_script(q) = str(mp_pre_script(p));
25663 if (mp_post_script(p)!=null) gr_post_script(q) = str(mp_post_script(p));
25666 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25667 pointer p; /* the current graphical object */
25668 integer t; /* a temporary value */
25669 integer c; /* a rounded charcode */
25670 scaled d_width; /* the current pen width */
25671 mp_edge_object *hh; /* the first graphical object */
25672 mp_graphic_object *hq; /* something |hp| points to */
25673 mp_text_object *tt;
25674 mp_fill_object *tf;
25675 mp_stroked_object *ts;
25676 mp_clip_object *tc;
25677 mp_bounds_object *tb;
25678 mp_graphic_object *hp = NULL; /* the current graphical object */
25679 mp_set_bbox(mp, h, true);
25680 hh = xmalloc(1,sizeof(mp_edge_object));
25684 hh->minx = minx_val(h);
25685 hh->miny = miny_val(h);
25686 hh->maxx = maxx_val(h);
25687 hh->maxy = maxy_val(h);
25688 hh->filename = mp_get_output_file_name(mp);
25689 c = mp_round_unscaled(mp,mp->internal[mp_char_code]);
25691 hh->width = mp->internal[mp_char_wd];
25692 hh->height = mp->internal[mp_char_ht];
25693 hh->depth = mp->internal[mp_char_dp];
25694 hh->ital_corr = mp->internal[mp_char_ic];
25695 @<Export pending specials@>;
25696 p=mp_link(dummy_loc(h));
25697 while ( p!=null ) {
25698 hq = mp_new_graphic_object(mp,mp_type(p));
25699 switch (mp_type(p)) {
25701 tf = (mp_fill_object *)hq;
25702 gr_pen_p(tf) = mp_export_knot_list(mp,mp_pen_p(p));
25703 d_width = mp_get_pen_scale(mp, mp_pen_p(p));
25704 if ((mp_pen_p(p)==null) || pen_is_elliptical(mp_pen_p(p))) {
25705 gr_path_p(tf) = mp_export_knot_list(mp,mp_path_p(p));
25708 pc = mp_copy_path(mp, mp_path_p(p));
25709 pp = mp_make_envelope(mp, pc, mp_pen_p(p),ljoin_val(p),0,miterlim_val(p));
25710 gr_path_p(tf) = mp_export_knot_list(mp,pp);
25711 mp_toss_knot_list(mp, pp);
25712 pc = mp_htap_ypoc(mp, mp_path_p(p));
25713 pp = mp_make_envelope(mp, pc, mp_pen_p(p),ljoin_val(p),0,miterlim_val(p));
25714 gr_htap_p(tf) = mp_export_knot_list(mp,pp);
25715 mp_toss_knot_list(mp, pp);
25717 export_color(tf,p) ;
25718 export_scripts(tf,p);
25719 gr_ljoin_val(tf) = (unsigned char)ljoin_val(p);
25720 gr_miterlim_val(tf) = miterlim_val(p);
25722 case mp_stroked_code:
25723 ts = (mp_stroked_object *)hq;
25724 gr_pen_p(ts) = mp_export_knot_list(mp,mp_pen_p(p));
25725 d_width = mp_get_pen_scale(mp, mp_pen_p(p));
25726 if (pen_is_elliptical(mp_pen_p(p))) {
25727 gr_path_p(ts) = mp_export_knot_list(mp,mp_path_p(p));
25730 pc=mp_copy_path(mp, mp_path_p(p));
25732 if ( mp_left_type(pc)!=mp_endpoint ) {
25733 mp_left_type(mp_insert_knot(mp, pc,mp_x_coord(pc),mp_y_coord(pc)))=mp_endpoint;
25734 mp_right_type(pc)=mp_endpoint;
25738 pc=mp_make_envelope(mp,pc,mp_pen_p(p),ljoin_val(p),t,miterlim_val(p));
25739 gr_path_p(ts) = mp_export_knot_list(mp,pc);
25740 mp_toss_knot_list(mp, pc);
25742 export_color(ts,p) ;
25743 export_scripts(ts,p);
25744 gr_ljoin_val(ts) = (unsigned char)ljoin_val(p);
25745 gr_miterlim_val(ts) = miterlim_val(p);
25746 gr_lcap_val(ts) = (unsigned char)lcap_val(p);
25747 gr_dash_p(ts) = mp_export_dashes(mp,p,&d_width);
25750 tt = (mp_text_object *)hq;
25751 gr_text_p(tt) = str(mp_text_p(p));
25752 gr_font_n(tt) = (unsigned int)mp_font_n(p);
25753 gr_font_name(tt) = mp_xstrdup(mp,mp->font_name[mp_font_n(p)]);
25754 gr_font_dsize(tt) = (unsigned int)mp->font_dsize[mp_font_n(p)];
25755 export_color(tt,p) ;
25756 export_scripts(tt,p);
25757 gr_width_val(tt) = width_val(p);
25758 gr_height_val(tt) = height_val(p);
25759 gr_depth_val(tt) = depth_val(p);
25760 gr_tx_val(tt) = tx_val(p);
25761 gr_ty_val(tt) = ty_val(p);
25762 gr_txx_val(tt) = txx_val(p);
25763 gr_txy_val(tt) = txy_val(p);
25764 gr_tyx_val(tt) = tyx_val(p);
25765 gr_tyy_val(tt) = tyy_val(p);
25767 case mp_start_clip_code:
25768 tc = (mp_clip_object *)hq;
25769 gr_path_p(tc) = mp_export_knot_list(mp,mp_path_p(p));
25771 case mp_start_bounds_code:
25772 tb = (mp_bounds_object *)hq;
25773 gr_path_p(tb) = mp_export_knot_list(mp,mp_path_p(p));
25775 case mp_stop_clip_code:
25776 case mp_stop_bounds_code:
25777 /* nothing to do here */
25780 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25787 @ @<Declarations@>=
25788 static struct mp_edge_object *mp_gr_export(MP mp, int h);
25790 @ This function is now nearly trivial.
25793 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25794 integer c; /* \&{charcode} rounded to the nearest integer */
25795 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25796 @<Begin the progress report for the output of picture~|c|@>;
25797 (mp->shipout_backend) (mp, h);
25798 @<End progress report@>;
25799 if ( mp->internal[mp_tracing_output]>0 )
25800 mp_print_edges(mp, h," (just shipped out)",true);
25803 @ @<Declarations@>=
25804 static void mp_shipout_backend (MP mp, pointer h);
25807 void mp_shipout_backend (MP mp, pointer h) {
25808 mp_edge_object *hh; /* the first graphical object */
25809 hh = mp_gr_export(mp,h);
25810 (void)mp_gr_ship_out (hh,
25811 (mp->internal[mp_prologues]/65536),
25812 (mp->internal[mp_procset]/65536),
25814 mp_gr_toss_objects(hh);
25817 @ @<Exported types@>=
25818 typedef void (*mp_backend_writer)(MP, int);
25820 @ @<Option variables@>=
25821 mp_backend_writer shipout_backend;
25823 @ Now that we've finished |ship_out|, let's look at the other commands
25824 by which a user can send things to the \.{GF} file.
25826 @ @<Determine if a character has been shipped out@>=
25828 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25829 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25830 boolean_reset(mp->char_exists[mp->cur_exp]);
25831 mp->cur_type=mp_boolean_type;
25837 @ @<Allocate or initialize ...@>=
25838 mp_backend_initialize(mp);
25841 mp_backend_free(mp);
25844 @* \[45] Dumping and undumping the tables.
25845 After \.{INIMP} has seen a collection of macros, it
25846 can write all the necessary information on an auxiliary file so
25847 that production versions of \MP\ are able to initialize their
25848 memory at high speed. The present section of the program takes
25849 care of such output and input. We shall consider simultaneously
25850 the processes of storing and restoring,
25851 so that the inverse relation between them is clear.
25854 The global variable |mem_ident| is a string that is printed right
25855 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25856 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25857 for example, `\.{(mem=plain 1990.4.14)}', showing the year,
25858 month, and day that the mem file was created. We have |mem_ident=0|
25859 before \MP's tables are loaded.
25863 void * mem_file; /* for input or output of mem information */
25866 mp->mem_ident=NULL;
25868 @ @<Initialize table entries...@>=
25869 mp->mem_ident=xstrdup(" (INIMP)");
25871 @ @<Declarations@>=
25872 extern void mp_store_mem_file (MP mp) ;
25873 extern boolean mp_load_mem_file (MP mp);
25874 extern int mp_undump_constants (MP mp);
25876 @ @<Dealloc variables@>=
25877 xfree(mp->mem_ident);
25880 @* \[46] The main program.
25881 This is it: the part of \MP\ that executes all those procedures we have
25884 Well---almost. We haven't put the parsing subroutines into the
25885 program yet; and we'd better leave space for a few more routines that may
25886 have been forgotten.
25888 @c @<Declare the basic parsing subroutines@>
25889 @<Declare miscellaneous procedures that were declared |forward|@>
25891 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25893 has to be run first; it initializes everything from scratch, without
25894 reading a mem file, and it has the capability of dumping a mem file.
25895 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25897 to input a mem file in order to get started. \.{VIRMP} typically has
25898 a bit more memory capacity than \.{INIMP}, because it does not need the
25899 space consumed by the dumping/undumping routines and the numerous calls on
25902 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25903 the best implementations therefore allow for production versions of \MP\ that
25904 not only avoid the loading routine for object code, they also have
25905 a mem file pre-loaded.
25907 @ @<Option variables@>=
25908 int ini_version; /* are we iniMP? */
25910 @ @<Set |ini_version|@>=
25911 mp->ini_version = (opt->ini_version ? true : false);
25913 @ The code below make the final chosen hash size the next larger
25914 multiple of 2 from the requested size, and this array is a list of
25915 suitable prime numbers to go with such values.
25917 The top limit is chosen such that it is definately lower than
25918 |max_halfword-3*param_size|, because |param_size| cannot be larger
25919 than |max_halfword/sizeof(pointer)|.
25922 static int mp_prime_choices[] =
25923 { 12289, 24593, 49157, 98317,
25924 196613, 393241, 786433, 1572869,
25925 3145739, 6291469, 12582917, 25165843,
25926 50331653, 100663319 };
25928 @ @<Find constant sizes@>=
25929 if (mp->ini_version) {
25931 set_value(mp->mem_top,opt->main_memory,5000);
25932 mp->mem_max = mp->mem_top;
25933 set_value(mp->param_size,opt->param_size,150);
25934 set_value(mp->max_in_open,opt->max_in_open,10);
25935 if (opt->hash_size>0x8000000)
25936 opt->hash_size=0x8000000;
25937 set_value(mp->hash_size,(2*opt->hash_size-1),16384);
25938 mp->hash_size = mp->hash_size>>i;
25939 while (mp->hash_size>=2) {
25940 mp->hash_size /= 2;
25943 mp->hash_size = mp->hash_size << i;
25944 if (mp->hash_size>0x8000000)
25945 mp->hash_size=0x8000000;
25946 mp->hash_prime=mp_prime_choices[(i-14)];
25949 if (mp->mem_name == NULL) {
25950 mp->mem_name = mp_xstrdup(mp,"plain");
25952 if (mp_open_mem_file(mp)) {
25953 i = mp_undump_constants(mp);
25954 if (i != metapost_magic)
25956 set_value(mp->mem_max,opt->main_memory,mp->mem_top);
25960 wterm_ln("(Fatal mem file error; ");
25961 wterm((mp->find_file)(mp, mp->mem_name, "r", mp_filetype_memfile));
25962 if (i>metapost_old_magic && i<metapost_magic) {
25963 wterm(" was written by an older version)\n");
25965 wterm(" appears not to be a mem file)\n");
25967 mp->history = mp_fatal_error_stop;
25973 @ Here we do whatever is needed to complete \MP's job gracefully on the
25974 local operating system. The code here might come into play after a fatal
25975 error; it must therefore consist entirely of ``safe'' operations that
25976 cannot produce error messages. For example, it would be a mistake to call
25977 |str_room| or |make_string| at this time, because a call on |overflow|
25978 might lead to an infinite loop.
25979 @^system dependencies@>
25981 This program doesn't bother to close the input files that may still be open.
25984 void mp_close_files_and_terminate (MP mp) {
25985 integer k; /* all-purpose index */
25986 integer LH; /* the length of the \.{TFM} header, in words */
25987 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25988 pointer p; /* runs through a list of \.{TFM} dimensions */
25991 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25992 if ( mp->internal[mp_tracing_stats]>0 )
25993 @<Output statistics about this job@>;
25995 @<Do all the finishing work on the \.{TFM} file@>;
25996 @<Explain what output files were written@>;
25997 if ( mp->log_opened && ! mp->noninteractive ){
25999 (mp->close_file)(mp,mp->log_file);
26000 mp->selector=mp->selector-2;
26001 if ( mp->selector==term_only ) {
26002 mp_print_nl(mp, "Transcript written on ");
26003 @.Transcript written...@>
26004 mp_print(mp, mp->log_name); mp_print_char(mp, xord('.'));
26008 mp->finished = true;
26011 @ @<Declarations@>=
26012 static void mp_close_files_and_terminate (MP mp) ;
26014 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26015 if (mp->rd_fname!=NULL) {
26016 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26017 if ( mp->rd_fname[k]!=NULL ) {
26018 (mp->close_file)(mp,mp->rd_file[k]);
26019 xfree(mp->rd_fname[k]);
26023 if (mp->wr_fname!=NULL) {
26024 for (k=0;k<=(int)mp->write_files-1;k++) {
26025 if ( mp->wr_fname[k]!=NULL ) {
26026 (mp->close_file)(mp,mp->wr_file[k]);
26027 xfree(mp->wr_fname[k]);
26033 for (k=0;k<(int)mp->max_read_files;k++ ) {
26034 if ( mp->rd_fname[k]!=NULL ) {
26035 (mp->close_file)(mp,mp->rd_file[k]);
26036 xfree(mp->rd_fname[k]);
26039 xfree(mp->rd_file);
26040 xfree(mp->rd_fname);
26041 for (k=0;k<(int)mp->max_write_files;k++) {
26042 if ( mp->wr_fname[k]!=NULL ) {
26043 (mp->close_file)(mp,mp->wr_file[k]);
26044 xfree(mp->wr_fname[k]);
26047 xfree(mp->wr_file);
26048 xfree(mp->wr_fname);
26051 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
26053 We reclaim all of the variable-size memory at this point, so that
26054 there is no chance of another memory overflow after the memory capacity
26055 has already been exceeded.
26057 @<Do all the finishing work on the \.{TFM} file@>=
26058 if ( mp->internal[mp_fontmaking]>0 ) {
26059 @<Make the dynamic memory into one big available node@>;
26060 @<Massage the \.{TFM} widths@>;
26061 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26062 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26063 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
26064 @<Finish the \.{TFM} file@>;
26067 @ @<Make the dynamic memory into one big available node@>=
26068 mp->rover=lo_mem_stat_max+1; mp_link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26069 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26070 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26071 lmp_link(mp->rover)=mp->rover; rmp_link(mp->rover)=mp->rover;
26072 mp_link(mp->lo_mem_max)=null; mp_info(mp->lo_mem_max)=null
26074 @ The present section goes directly to the log file instead of using
26075 |print| commands, because there's no need for these strings to take
26076 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26078 @<Output statistics...@>=
26079 if ( mp->log_opened ) {
26082 wlog_ln("Here is how much of MetaPost's memory you used:");
26083 @.Here is how much...@>
26084 mp_snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26085 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26086 (int)(mp->max_strings-1-mp->init_str_use));
26088 mp_snprintf(s,128," %i string characters out of %i",
26089 (int)mp->max_pl_used-mp->init_pool_ptr,
26090 (int)mp->pool_size-mp->init_pool_ptr);
26092 mp_snprintf(s,128," %i words of memory out of %i",
26093 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26096 mp_snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26098 mp_snprintf(s,128," %ii,%in,%ip,%ib stack positions out of %ii,%in,%ip,%ib",
26099 (int)mp->max_in_stack,(int)mp->int_ptr,
26100 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26101 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26103 mp_snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26104 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26108 @ It is nice to have have some of the stats available from the API.
26110 @<Exported function ...@>=
26111 int mp_memory_usage (MP mp );
26112 int mp_hash_usage (MP mp );
26113 int mp_param_usage (MP mp );
26114 int mp_open_usage (MP mp );
26117 int mp_memory_usage (MP mp ) {
26118 return (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2;
26120 int mp_hash_usage (MP mp ) {
26121 return (int)mp->st_count;
26123 int mp_param_usage (MP mp ) {
26124 return (int)mp->max_param_stack;
26126 int mp_open_usage (MP mp ) {
26127 return (int)mp->max_in_stack;
26130 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26134 void mp_final_cleanup (MP mp) {
26135 quarterword c; /* 0 for \&{end}, 1 for \&{dump} */
26137 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26138 while ( mp->input_ptr>0 ) {
26139 if ( token_state ) mp_end_token_list(mp);
26140 else mp_end_file_reading(mp);
26142 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26143 while ( mp->open_parens>0 ) {
26144 mp_print(mp, " )"); decr(mp->open_parens);
26146 while ( mp->cond_ptr!=null ) {
26147 mp_print_nl(mp, "(end occurred when ");
26148 @.end occurred...@>
26149 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26150 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26151 if ( mp->if_line!=0 ) {
26152 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26154 mp_print(mp, " was incomplete)");
26155 mp->if_line=if_line_field(mp->cond_ptr);
26156 mp->cur_if=mp_name_type(mp->cond_ptr); mp->cond_ptr=mp_link(mp->cond_ptr);
26158 if ( mp->history!=mp_spotless )
26159 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26160 if ( mp->selector==term_and_log ) {
26161 mp->selector=term_only;
26162 mp_print_nl(mp, "(see the transcript file for additional information)");
26163 @.see the transcript file...@>
26164 mp->selector=term_and_log;
26167 if (mp->ini_version) {
26168 mp_store_mem_file(mp); return;
26170 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26171 @.dump...only by INIMP@>
26175 @ @<Declarations@>=
26176 static void mp_final_cleanup (MP mp) ;
26177 static void mp_init_prim (MP mp) ;
26178 static void mp_init_tab (MP mp) ;
26181 void mp_init_prim (MP mp) { /* initialize all the primitives */
26185 void mp_init_tab (MP mp) { /* initialize other tables */
26186 integer k; /* all-purpose index */
26187 @<Initialize table entries (done by \.{INIMP} only)@>;
26191 @ When we begin the following code, \MP's tables may still contain garbage;
26192 thus we must proceed cautiously to get bootstrapped in.
26194 But when we finish this part of the program, \MP\ is ready to call on the
26195 |main_control| routine to do its work.
26197 @<Get the first line...@>=
26199 @<Initialize the input routines@>;
26200 if (mp->mem_ident==NULL) {
26201 if ( ! mp_load_mem_file(mp) ) {
26202 (mp->close_file)(mp, mp->mem_file);
26203 mp->history = mp_fatal_error_stop;
26206 (mp->close_file)(mp, mp->mem_file);
26208 @<Initializations following first line@>;
26211 @ @<Initializations following first line@>=
26212 mp->buffer[limit]=(ASCII_code)'%';
26213 mp_fix_date_and_time(mp);
26214 if (mp->random_seed==0)
26215 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
26216 mp_init_randoms(mp, mp->random_seed);
26217 @<Initialize the print |selector|...@>;
26218 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26219 mp_start_input(mp); /* \&{input} assumed */
26221 @ @<Run inimpost commands@>=
26223 mp_get_strings_started(mp);
26224 mp_init_tab(mp); /* initialize the tables */
26225 mp_init_prim(mp); /* call |primitive| for each primitive */
26226 mp->init_str_use=mp->max_str_ptr=mp->str_ptr;
26227 mp->init_pool_ptr=mp->max_pool_ptr=mp->pool_ptr;
26228 mp_fix_date_and_time(mp);
26231 @ Saving the filename template
26233 @<Save the filename template@>=
26235 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26236 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26238 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26242 @* \[47] Debugging.
26245 @* \[48] System-dependent changes.
26246 This section should be replaced, if necessary, by any special
26247 modification of the program
26248 that are necessary to make \MP\ work at a particular installation.
26249 It is usually best to design your change file so that all changes to
26250 previous sections preserve the section numbering; then everybody's version
26251 will be consistent with the published program. More extensive changes,
26252 which introduce new sections, can be inserted here; then only the index
26253 itself will get a new section number.
26254 @^system dependencies@>
26257 Here is where you can find all uses of each identifier in the program,
26258 with underlined entries pointing to where the identifier was defined.
26259 If the identifier is only one letter long, however, you get to see only
26260 the underlined entries. {\sl All references are to section numbers instead of
26263 This index also lists error messages and other aspects of the program
26264 that you might want to look up some day. For example, the entry
26265 for ``system dependencies'' lists all sections that should receive
26266 special attention from people who are installing \MP\ in a new
26267 operating environment. A list of various things that can't happen appears
26268 under ``this can't happen''.
26269 Approximately 25 sections are listed under ``inner loop''; these account
26270 for more than 60\pct! of \MP's running time, exclusive of input and output.