1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.20"
88 @d version_string " (Cweb version 0.20)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
216 void mp_free (MP mp) {
217 int k; /* loop variable */
218 @<Dealloc variables@>
223 void mp_do_initialize ( MP mp) {
224 @<Local variables for initialization@>
225 @<Set initial values of key variables@>
227 int mp_initialize (MP mp) { /* this procedure gets things started properly */
228 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
229 @<Install and test the non-local jump buffer@>;
230 t_open_out; /* open the terminal for output */
231 @<Check the ``constant'' values...@>;
234 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
235 "---case %i",(int)mp->bad);
236 do_fprintf(mp->err_out,(char *)ss);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,100);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_terminal = 0, /* the terminal */
561 mp_filetype_error, /* the terminal */
562 mp_filetype_program , /* \MP\ language input */
563 mp_filetype_log, /* the log file */
564 mp_filetype_postscript, /* the postscript output */
565 mp_filetype_memfile, /* memory dumps */
566 mp_filetype_metrics, /* TeX font metric files */
567 mp_filetype_fontmap, /* PostScript font mapping files */
568 mp_filetype_font, /* PostScript type1 font programs */
569 mp_filetype_encoding, /* PostScript font encoding files */
570 mp_filetype_text, /* first text file for readfrom and writeto primitives */
572 typedef char *(*mp_file_finder)(char *, char *, int);
573 typedef void *(*mp_file_opener)(char *, char *, int);
574 typedef char *(*mp_file_reader)(void *, size_t *);
575 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
576 typedef void (*mp_file_closer)(void *);
577 typedef int (*mp_file_eoftest)(void *);
578 typedef void (*mp_file_flush)(void *);
579 typedef void (*mp_file_writer)(void *, char *);
580 typedef void (*mp_binfile_writer)(void *, void *, size_t);
584 mp_file_finder find_file;
585 mp_file_opener open_file;
586 mp_file_reader read_ascii_file;
587 mp_binfile_reader read_binary_file;
588 mp_file_closer close_file;
589 mp_file_eoftest eof_file;
590 mp_file_flush flush_file;
591 mp_file_writer write_ascii_file;
592 mp_binfile_writer write_binary_file;
594 @ @<Option variables@>=
595 mp_file_finder find_file;
596 mp_file_opener open_file;
597 mp_file_reader read_ascii_file;
598 mp_binfile_reader read_binary_file;
599 mp_file_closer close_file;
600 mp_file_eoftest eof_file;
601 mp_file_flush flush_file;
602 mp_file_writer write_ascii_file;
603 mp_binfile_writer write_binary_file;
605 @ The default function for finding files is |mp_find_file|. It is
606 pretty stupid: it will only find files in the current directory.
608 This function may disappear altogether, it is currently only
609 used for the default font map file.
612 char *mp_find_file (char *fname, char *fmode, int ftype) {
613 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
614 return strdup(fname);
619 @ This has to be done very early on, so it is best to put it in with
620 the |mp_new| allocations
622 @d set_callback_option(A) do { mp->A = mp_##A;
623 if (opt->A!=NULL) mp->A = opt->A;
626 @<Allocate or initialize ...@>=
627 set_callback_option(find_file);
628 set_callback_option(open_file);
629 set_callback_option(read_ascii_file);
630 set_callback_option(read_binary_file);
631 set_callback_option(close_file);
632 set_callback_option(eof_file);
633 set_callback_option(flush_file);
634 set_callback_option(write_ascii_file);
635 set_callback_option(write_binary_file);
637 @ Because |mp_find_file| is used so early, it has to be in the helpers
641 char *mp_find_file (char *fname, char *fmode, int ftype) ;
642 void *mp_open_file (char *fname, char *fmode, int ftype) ;
643 char *mp_read_ascii_file (void *f, size_t *size) ;
644 void mp_read_binary_file (void *f, void **d, size_t *size) ;
645 void mp_close_file (void *f) ;
646 int mp_eof_file (void *f) ;
647 void mp_flush_file (void *f) ;
648 void mp_write_ascii_file (void *f, char *s) ;
649 void mp_write_binary_file (void *f, void *s, size_t t) ;
651 @ The function to open files can now be very short.
654 void *mp_open_file(char *fname, char *fmode, int ftype) {
656 if (ftype==mp_filetype_terminal) {
657 return (fmode[0] == 'r' ? stdin : stdout);
658 } else if (ftype==mp_filetype_error) {
660 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
661 return (void *)fopen(fname, fmode);
667 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
670 char name_of_file[file_name_size+1]; /* the name of a system file */
671 int name_length;/* this many characters are actually
672 relevant in |name_of_file| (the rest are blank) */
673 boolean print_found_names; /* configuration parameter */
675 @ @<Option variables@>=
676 int print_found_names; /* configuration parameter */
678 @ If this parameter is true, the terminal and log will report the found
679 file names for input files instead of the requested ones.
680 It is off by default because it creates an extra filename lookup.
682 @<Allocate or initialize ...@>=
683 mp->print_found_names = (opt->print_found_names>0 ? true : false);
685 @ \MP's file-opening procedures return |false| if no file identified by
686 |name_of_file| could be opened.
688 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
689 It is not used for opening a mem file for read, because that file name
693 if (mp->print_found_names) {
694 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
696 *f = (mp->open_file)(mp->name_of_file,A, ftype);
697 strncpy(mp->name_of_file,s,file_name_size);
703 *f = (mp->open_file)(mp->name_of_file,A, ftype);
706 return (*f ? true : false)
709 boolean mp_a_open_in (MP mp, void **f, int ftype) {
710 /* open a text file for input */
714 boolean mp_w_open_in (MP mp, void **f) {
715 /* open a word file for input */
716 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
717 return (*f ? true : false);
720 boolean mp_a_open_out (MP mp, void **f, int ftype) {
721 /* open a text file for output */
725 boolean mp_b_open_out (MP mp, void **f, int ftype) {
726 /* open a binary file for output */
730 boolean mp_w_open_out (MP mp, void **f) {
731 /* open a word file for output */
732 int ftype = mp_filetype_memfile;
737 char *mp_read_ascii_file (void *f, size_t *size) {
739 size_t len = 0, lim = 128;
747 if (s==NULL) return NULL;
748 while (c!=EOF && c!='\n' && c!='\r') {
750 s =realloc(s, (lim+(lim>>2)));
751 if (s==NULL) return NULL;
759 if (c!=EOF && c!='\n')
769 void mp_write_ascii_file (void *f, char *s) {
778 void mp_read_binary_file (void *f, void **data, size_t *size) {
781 len = fread(*data,1,*size,f);
787 void mp_write_binary_file (void *f, void *s, size_t size) {
796 void mp_close_file (void *f) {
803 int mp_eof_file (void *f) {
812 void mp_flush_file (void *f) {
818 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
819 procedures, so we don't have to make any other special arrangements for
820 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
821 The treatment of text input is more difficult, however, because
822 of the necessary translation to |ASCII_code| values.
823 \MP's conventions should be efficient, and they should
824 blend nicely with the user's operating environment.
826 @ Input from text files is read one line at a time, using a routine called
827 |input_ln|. This function is defined in terms of global variables called
828 |buffer|, |first|, and |last| that will be described in detail later; for
829 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
830 values, and that |first| and |last| are indices into this array
831 representing the beginning and ending of a line of text.
834 size_t buf_size; /* maximum number of characters simultaneously present in
835 current lines of open files */
836 ASCII_code *buffer; /* lines of characters being read */
837 size_t first; /* the first unused position in |buffer| */
838 size_t last; /* end of the line just input to |buffer| */
839 size_t max_buf_stack; /* largest index used in |buffer| */
841 @ @<Allocate or initialize ...@>=
843 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
845 @ @<Dealloc variables@>=
849 void mp_reallocate_buffer(MP mp, size_t l) {
851 if (l>max_halfword) {
852 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
854 buffer = xmalloc((l+1),sizeof(ASCII_code));
855 memcpy(buffer,mp->buffer,(mp->buf_size+1));
857 mp->buffer = buffer ;
861 @ The |input_ln| function brings the next line of input from the specified
862 field into available positions of the buffer array and returns the value
863 |true|, unless the file has already been entirely read, in which case it
864 returns |false| and sets |last:=first|. In general, the |ASCII_code|
865 numbers that represent the next line of the file are input into
866 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
867 global variable |last| is set equal to |first| plus the length of the
868 line. Trailing blanks are removed from the line; thus, either |last=first|
869 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
872 The variable |max_buf_stack|, which is used to keep track of how large
873 the |buf_size| parameter must be to accommodate the present job, is
874 also kept up to date by |input_ln|.
877 boolean mp_input_ln (MP mp, void *f ) {
878 /* inputs the next line or returns |false| */
881 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
882 s = (mp->read_ascii_file)(f, &size);
886 mp->last = mp->first+size;
887 if ( mp->last>=mp->max_buf_stack ) {
888 mp->max_buf_stack=mp->last+1;
889 while ( mp->max_buf_stack>=mp->buf_size ) {
890 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
893 memcpy((mp->buffer+mp->first),s,size);
894 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
900 @ The user's terminal acts essentially like other files of text, except
901 that it is used both for input and for output. When the terminal is
902 considered an input file, the file variable is called |term_in|, and when it
903 is considered an output file the file variable is |term_out|.
904 @^system dependencies@>
907 void * term_in; /* the terminal as an input file */
908 void * term_out; /* the terminal as an output file */
909 void * err_out; /* the terminal as an output file */
911 @ Here is how to open the terminal files. In the default configuration,
912 nothing happens except that the command line (if there is one) is copied
913 to the input buffer. The variable |command_line| will be filled by the
914 |main| procedure. The copying can not be done earlier in the program
915 logic because in the |INI| version, the |buffer| is also used for primitive
918 @^system dependencies@>
920 @d t_open_out do {/* open the terminal for text output */
921 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
922 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
924 @d t_open_in do { /* open the terminal for text input */
925 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
926 if (mp->command_line!=NULL) {
927 mp->last = strlen(mp->command_line);
928 strncpy((char *)mp->buffer,mp->command_line,mp->last);
929 xfree(mp->command_line);
933 @d t_close_out do { /* close the terminal */
934 (mp->close_file)(mp->term_out);
935 (mp->close_file)(mp->err_out);
938 @d t_close_in do { /* close the terminal */
939 (mp->close_file)(mp->term_in);
945 @ @<Option variables@>=
948 @ @<Allocate or initialize ...@>=
949 mp->command_line = xstrdup(opt->command_line);
951 @ Sometimes it is necessary to synchronize the input/output mixture that
952 happens on the user's terminal, and three system-dependent
953 procedures are used for this
954 purpose. The first of these, |update_terminal|, is called when we want
955 to make sure that everything we have output to the terminal so far has
956 actually left the computer's internal buffers and been sent.
957 The second, |clear_terminal|, is called when we wish to cancel any
958 input that the user may have typed ahead (since we are about to
959 issue an unexpected error message). The third, |wake_up_terminal|,
960 is supposed to revive the terminal if the user has disabled it by
961 some instruction to the operating system. The following macros show how
962 these operations can be specified in \ph:
963 @^system dependencies@>
965 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
966 @d clear_terminal do_nothing /* clear the terminal input buffer */
967 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
969 @ We need a special routine to read the first line of \MP\ input from
970 the user's terminal. This line is different because it is read before we
971 have opened the transcript file; there is sort of a ``chicken and
972 egg'' problem here. If the user types `\.{input cmr10}' on the first
973 line, or if some macro invoked by that line does such an \.{input},
974 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
975 commands are performed during the first line of terminal input, the transcript
976 file will acquire its default name `\.{mpout.log}'. (The transcript file
977 will not contain error messages generated by the first line before the
978 first \.{input} command.)
980 The first line is even more special if we are lucky enough to have an operating
981 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
982 program. It's nice to let the user start running a \MP\ job by typing
983 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
984 as if the first line of input were `\.{cmr10}', i.e., the first line will
985 consist of the remainder of the command line, after the part that invoked \MP.
987 @ Different systems have different ways to get started. But regardless of
988 what conventions are adopted, the routine that initializes the terminal
989 should satisfy the following specifications:
991 \yskip\textindent{1)}It should open file |term_in| for input from the
992 terminal. (The file |term_out| will already be open for output to the
995 \textindent{2)}If the user has given a command line, this line should be
996 considered the first line of terminal input. Otherwise the
997 user should be prompted with `\.{**}', and the first line of input
998 should be whatever is typed in response.
1000 \textindent{3)}The first line of input, which might or might not be a
1001 command line, should appear in locations |first| to |last-1| of the
1004 \textindent{4)}The global variable |loc| should be set so that the
1005 character to be read next by \MP\ is in |buffer[loc]|. This
1006 character should not be blank, and we should have |loc<last|.
1008 \yskip\noindent(It may be necessary to prompt the user several times
1009 before a non-blank line comes in. The prompt is `\.{**}' instead of the
1010 later `\.*' because the meaning is slightly different: `\.{input}' need
1011 not be typed immediately after~`\.{**}'.)
1013 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
1015 @ The following program does the required initialization
1016 without retrieving a possible command line.
1017 It should be clear how to modify this routine to deal with command lines,
1018 if the system permits them.
1019 @^system dependencies@>
1022 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
1025 loc = mp->first = 0;
1029 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
1031 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
1032 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
1033 @.End of file on the terminal@>
1037 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
1039 if ( loc<(int)mp->last ) {
1040 return true; /* return unless the line was all blank */
1042 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
1047 boolean mp_init_terminal (MP mp) ;
1050 @* \[4] String handling.
1051 Symbolic token names and diagnostic messages are variable-length strings
1052 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
1053 mechanism, \MP\ does all of its string processing by homegrown methods.
1055 \MP\ uses strings more extensively than \MF\ does, but the necessary
1056 operations can still be handled with a fairly simple data structure.
1057 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
1058 of the strings, and the array |str_start| contains indices of the starting
1059 points of each string. Strings are referred to by integer numbers, so that
1060 string number |s| comprises the characters |str_pool[j]| for
1061 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
1062 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
1063 location. The first string number not currently in use is |str_ptr|
1064 and |next_str[str_ptr]| begins a list of free string numbers. String
1065 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
1066 string currently being constructed.
1068 String numbers 0 to 255 are reserved for strings that correspond to single
1069 ASCII characters. This is in accordance with the conventions of \.{WEB},
1071 which converts single-character strings into the ASCII code number of the
1072 single character involved, while it converts other strings into integers
1073 and builds a string pool file. Thus, when the string constant \.{"."} appears
1074 in the program below, \.{WEB} converts it into the integer 46, which is the
1075 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1076 into some integer greater than~255. String number 46 will presumably be the
1077 single character `\..'\thinspace; but some ASCII codes have no standard visible
1078 representation, and \MP\ may need to be able to print an arbitrary
1079 ASCII character, so the first 256 strings are used to specify exactly what
1080 should be printed for each of the 256 possibilities.
1083 typedef int pool_pointer; /* for variables that point into |str_pool| */
1084 typedef int str_number; /* for variables that point into |str_start| */
1087 ASCII_code *str_pool; /* the characters */
1088 pool_pointer *str_start; /* the starting pointers */
1089 str_number *next_str; /* for linking strings in order */
1090 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1091 str_number str_ptr; /* number of the current string being created */
1092 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1093 str_number init_str_use; /* the initial number of strings in use */
1094 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1095 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1097 @ @<Allocate or initialize ...@>=
1098 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1099 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1100 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1102 @ @<Dealloc variables@>=
1103 xfree(mp->str_pool);
1104 xfree(mp->str_start);
1105 xfree(mp->next_str);
1107 @ Most printing is done from |char *|s, but sometimes not. Here are
1108 functions that convert an internal string into a |char *| for use
1109 by the printing routines, and vice versa.
1111 @d str(A) mp_str(mp,A)
1112 @d rts(A) mp_rts(mp,A)
1115 int mp_xstrcmp (const char *a, const char *b);
1116 char * mp_str (MP mp, str_number s);
1119 str_number mp_rts (MP mp, char *s);
1120 str_number mp_make_string (MP mp);
1122 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1123 very good: it does not handle nesting over more than one level.
1126 int mp_xstrcmp (const char *a, const char *b) {
1127 if (a==NULL && b==NULL)
1137 char * mp_str (MP mp, str_number ss) {
1140 if (ss==mp->str_ptr) {
1144 s = xmalloc(len+1,sizeof(char));
1145 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1150 str_number mp_rts (MP mp, char *s) {
1151 int r; /* the new string */
1152 int old; /* a possible string in progress */
1156 } else if (strlen(s)==1) {
1160 str_room((integer)strlen(s));
1161 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1162 old = mp_make_string(mp);
1167 r = mp_make_string(mp);
1169 str_room(length(old));
1170 while (i<length(old)) {
1171 append_char((mp->str_start[old]+i));
1173 mp_flush_string(mp,old);
1179 @ Except for |strs_used_up|, the following string statistics are only
1180 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1184 integer strs_used_up; /* strings in use or unused but not reclaimed */
1185 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1186 integer strs_in_use; /* total number of strings actually in use */
1187 integer max_pl_used; /* maximum |pool_in_use| so far */
1188 integer max_strs_used; /* maximum |strs_in_use| so far */
1190 @ Several of the elementary string operations are performed using \.{WEB}
1191 macros instead of \PASCAL\ procedures, because many of the
1192 operations are done quite frequently and we want to avoid the
1193 overhead of procedure calls. For example, here is
1194 a simple macro that computes the length of a string.
1197 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1199 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1201 @ The length of the current string is called |cur_length|. If we decide that
1202 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1203 |cur_length| becomes zero.
1205 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1206 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1208 @ Strings are created by appending character codes to |str_pool|.
1209 The |append_char| macro, defined here, does not check to see if the
1210 value of |pool_ptr| has gotten too high; this test is supposed to be
1211 made before |append_char| is used.
1213 To test if there is room to append |l| more characters to |str_pool|,
1214 we shall write |str_room(l)|, which tries to make sure there is enough room
1215 by compacting the string pool if necessary. If this does not work,
1216 |do_compaction| aborts \MP\ and gives an apologetic error message.
1218 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1219 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1221 @d str_room(A) /* make sure that the pool hasn't overflowed */
1222 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1223 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1224 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1227 @ The following routine is similar to |str_room(1)| but it uses the
1228 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1229 string space is exhausted.
1231 @<Declare the procedure called |unit_str_room|@>=
1232 void mp_unit_str_room (MP mp);
1235 void mp_unit_str_room (MP mp) {
1236 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1237 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1240 @ \MP's string expressions are implemented in a brute-force way: Every
1241 new string or substring that is needed is simply copied into the string pool.
1242 Space is eventually reclaimed by a procedure called |do_compaction| with
1243 the aid of a simple system system of reference counts.
1244 @^reference counts@>
1246 The number of references to string number |s| will be |str_ref[s]|. The
1247 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1248 positive number of references; such strings will never be recycled. If
1249 a string is ever referred to more than 126 times, simultaneously, we
1250 put it in this category. Hence a single byte suffices to store each |str_ref|.
1252 @d max_str_ref 127 /* ``infinite'' number of references */
1253 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1259 @ @<Allocate or initialize ...@>=
1260 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1262 @ @<Dealloc variables@>=
1265 @ Here's what we do when a string reference disappears:
1267 @d delete_str_ref(A) {
1268 if ( mp->str_ref[(A)]<max_str_ref ) {
1269 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1270 else mp_flush_string(mp, (A));
1274 @<Declare the procedure called |flush_string|@>=
1275 void mp_flush_string (MP mp,str_number s) ;
1278 @ We can't flush the first set of static strings at all, so there
1279 is no point in trying
1282 void mp_flush_string (MP mp,str_number s) {
1284 mp->pool_in_use=mp->pool_in_use-length(s);
1285 decr(mp->strs_in_use);
1286 if ( mp->next_str[s]!=mp->str_ptr ) {
1290 decr(mp->strs_used_up);
1292 mp->pool_ptr=mp->str_start[mp->str_ptr];
1296 @ C literals cannot be simply added, they need to be set so they can't
1299 @d intern(A) mp_intern(mp,(A))
1302 str_number mp_intern (MP mp, char *s) {
1305 mp->str_ref[r] = max_str_ref;
1310 str_number mp_intern (MP mp, char *s);
1313 @ Once a sequence of characters has been appended to |str_pool|, it
1314 officially becomes a string when the function |make_string| is called.
1315 This function returns the identification number of the new string as its
1318 When getting the next unused string number from the linked list, we pretend
1320 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1321 are linked sequentially even though the |next_str| entries have not been
1322 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1323 |do_compaction| is responsible for making sure of this.
1326 @<Declare the procedure called |do_compaction|@>;
1327 @<Declare the procedure called |unit_str_room|@>;
1328 str_number mp_make_string (MP mp);
1331 str_number mp_make_string (MP mp) { /* current string enters the pool */
1332 str_number s; /* the new string */
1335 mp->str_ptr=mp->next_str[s];
1336 if ( mp->str_ptr>mp->max_str_ptr ) {
1337 if ( mp->str_ptr==mp->max_strings ) {
1339 mp_do_compaction(mp, 0);
1343 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1344 @:this can't happen s}{\quad \.s@>
1346 mp->max_str_ptr=mp->str_ptr;
1347 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1351 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1352 incr(mp->strs_used_up);
1353 incr(mp->strs_in_use);
1354 mp->pool_in_use=mp->pool_in_use+length(s);
1355 if ( mp->pool_in_use>mp->max_pl_used )
1356 mp->max_pl_used=mp->pool_in_use;
1357 if ( mp->strs_in_use>mp->max_strs_used )
1358 mp->max_strs_used=mp->strs_in_use;
1362 @ The most interesting string operation is string pool compaction. The idea
1363 is to recover unused space in the |str_pool| array by recopying the strings
1364 to close the gaps created when some strings become unused. All string
1365 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1366 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1367 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1368 with |needed=mp->pool_size| supresses all overflow tests.
1370 The compaction process starts with |last_fixed_str| because all lower numbered
1371 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1374 str_number last_fixed_str; /* last permanently allocated string */
1375 str_number fixed_str_use; /* number of permanently allocated strings */
1377 @ @<Declare the procedure called |do_compaction|@>=
1378 void mp_do_compaction (MP mp, pool_pointer needed) ;
1381 void mp_do_compaction (MP mp, pool_pointer needed) {
1382 str_number str_use; /* a count of strings in use */
1383 str_number r,s,t; /* strings being manipulated */
1384 pool_pointer p,q; /* destination and source for copying string characters */
1385 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1386 r=mp->last_fixed_str;
1389 while ( s!=mp->str_ptr ) {
1390 while ( mp->str_ref[s]==0 ) {
1391 @<Advance |s| and add the old |s| to the list of free string numbers;
1392 then |break| if |s=str_ptr|@>;
1394 r=s; s=mp->next_str[s];
1396 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1397 after the end of the string@>;
1399 @<Move the current string back so that it starts at |p|@>;
1400 if ( needed<mp->pool_size ) {
1401 @<Make sure that there is room for another string with |needed| characters@>;
1403 @<Account for the compaction and make sure the statistics agree with the
1405 mp->strs_used_up=str_use;
1408 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1409 t=mp->next_str[mp->last_fixed_str];
1410 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1411 incr(mp->fixed_str_use);
1412 mp->last_fixed_str=t;
1415 str_use=mp->fixed_str_use
1417 @ Because of the way |flush_string| has been written, it should never be
1418 necessary to |break| here. The extra line of code seems worthwhile to
1419 preserve the generality of |do_compaction|.
1421 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1426 mp->next_str[t]=mp->next_str[mp->str_ptr];
1427 mp->next_str[mp->str_ptr]=t;
1428 if ( s==mp->str_ptr ) break;
1431 @ The string currently starts at |str_start[r]| and ends just before
1432 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1433 to locate the next string.
1435 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1438 while ( q<mp->str_start[s] ) {
1439 mp->str_pool[p]=mp->str_pool[q];
1443 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1444 we do this, anything between them should be moved.
1446 @ @<Move the current string back so that it starts at |p|@>=
1447 q=mp->str_start[mp->str_ptr];
1448 mp->str_start[mp->str_ptr]=p;
1449 while ( q<mp->pool_ptr ) {
1450 mp->str_pool[p]=mp->str_pool[q];
1455 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1457 @<Make sure that there is room for another string with |needed| char...@>=
1458 if ( str_use>=mp->max_strings-1 )
1459 mp_reallocate_strings (mp,str_use);
1460 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1461 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1462 mp->max_pool_ptr=mp->pool_ptr+needed;
1466 void mp_reallocate_strings (MP mp, str_number str_use) ;
1467 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1470 void mp_reallocate_strings (MP mp, str_number str_use) {
1471 while ( str_use>=mp->max_strings-1 ) {
1472 int l = mp->max_strings + (mp->max_strings>>2);
1473 XREALLOC (mp->str_ref, l, int);
1474 XREALLOC (mp->str_start, l, pool_pointer);
1475 XREALLOC (mp->next_str, l, str_number);
1476 mp->max_strings = l;
1479 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1480 while ( needed>mp->pool_size ) {
1481 int l = mp->pool_size + (mp->pool_size>>2);
1482 XREALLOC (mp->str_pool, l, ASCII_code);
1487 @ @<Account for the compaction and make sure the statistics agree with...@>=
1488 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1489 mp_confusion(mp, "string");
1490 @:this can't happen string}{\quad string@>
1491 incr(mp->pact_count);
1492 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1493 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1495 s=mp->str_ptr; t=str_use;
1496 while ( s<=mp->max_str_ptr ){
1497 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1498 incr(t); s=mp->next_str[s];
1500 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1503 @ A few more global variables are needed to keep track of statistics when
1504 |stat| $\ldots$ |tats| blocks are not commented out.
1507 integer pact_count; /* number of string pool compactions so far */
1508 integer pact_chars; /* total number of characters moved during compactions */
1509 integer pact_strs; /* total number of strings moved during compactions */
1511 @ @<Initialize compaction statistics@>=
1516 @ The following subroutine compares string |s| with another string of the
1517 same length that appears in |buffer| starting at position |k|;
1518 the result is |true| if and only if the strings are equal.
1521 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1522 /* test equality of strings */
1523 pool_pointer j; /* running index */
1525 while ( j<str_stop(s) ) {
1526 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1532 @ Here is a similar routine, but it compares two strings in the string pool,
1533 and it does not assume that they have the same length. If the first string
1534 is lexicographically greater than, less than, or equal to the second,
1535 the result is respectively positive, negative, or zero.
1538 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1539 /* test equality of strings */
1540 pool_pointer j,k; /* running indices */
1541 integer ls,lt; /* lengths */
1542 integer l; /* length remaining to test */
1543 ls=length(s); lt=length(t);
1544 if ( ls<=lt ) l=ls; else l=lt;
1545 j=mp->str_start[s]; k=mp->str_start[t];
1547 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1548 return (mp->str_pool[j]-mp->str_pool[k]);
1555 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1556 and |str_ptr| are computed by the \.{INIMP} program, based in part
1557 on the information that \.{WEB} has output while processing \MP.
1562 void mp_get_strings_started (MP mp) {
1563 /* initializes the string pool,
1564 but returns |false| if something goes wrong */
1565 int k; /* small indices or counters */
1566 str_number g; /* a new string */
1567 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1570 mp->pool_in_use=0; mp->strs_in_use=0;
1571 mp->max_pl_used=0; mp->max_strs_used=0;
1572 @<Initialize compaction statistics@>;
1574 @<Make the first 256 strings@>;
1575 g=mp_make_string(mp); /* string 256 == "" */
1576 mp->str_ref[g]=max_str_ref;
1577 mp->last_fixed_str=mp->str_ptr-1;
1578 mp->fixed_str_use=mp->str_ptr;
1583 void mp_get_strings_started (MP mp);
1585 @ The first 256 strings will consist of a single character only.
1587 @<Make the first 256...@>=
1588 for (k=0;k<=255;k++) {
1590 g=mp_make_string(mp);
1591 mp->str_ref[g]=max_str_ref;
1594 @ The first 128 strings will contain 95 standard ASCII characters, and the
1595 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1596 unless a system-dependent change is made here. Installations that have
1597 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1598 would like string 032 to be printed as the single character 032 instead
1599 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1600 even people with an extended character set will want to represent string
1601 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1602 to produce visible strings instead of tabs or line-feeds or carriage-returns
1603 or bell-rings or characters that are treated anomalously in text files.
1605 Unprintable characters of codes 128--255 are, similarly, rendered
1606 \.{\^\^80}--\.{\^\^ff}.
1608 The boolean expression defined here should be |true| unless \MP\ internal
1609 code number~|k| corresponds to a non-troublesome visible symbol in the
1610 local character set.
1611 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1612 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1614 @^character set dependencies@>
1615 @^system dependencies@>
1617 @<Character |k| cannot be printed@>=
1620 @* \[5] On-line and off-line printing.
1621 Messages that are sent to a user's terminal and to the transcript-log file
1622 are produced by several `|print|' procedures. These procedures will
1623 direct their output to a variety of places, based on the setting of
1624 the global variable |selector|, which has the following possible
1628 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1631 \hang |log_only|, prints only on the transcript file.
1633 \hang |term_only|, prints only on the terminal.
1635 \hang |no_print|, doesn't print at all. This is used only in rare cases
1636 before the transcript file is open.
1638 \hang |pseudo|, puts output into a cyclic buffer that is used
1639 by the |show_context| routine; when we get to that routine we shall discuss
1640 the reasoning behind this curious mode.
1642 \hang |new_string|, appends the output to the current string in the
1645 \hang |>=write_file| prints on one of the files used for the \&{write}
1646 @:write_}{\&{write} primitive@>
1650 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1651 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1652 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1653 relations are not used when |selector| could be |pseudo|, or |new_string|.
1654 We need not check for unprintable characters when |selector<pseudo|.
1656 Three additional global variables, |tally|, |term_offset| and |file_offset|
1657 record the number of characters that have been printed
1658 since they were most recently cleared to zero. We use |tally| to record
1659 the length of (possibly very long) stretches of printing; |term_offset|,
1660 and |file_offset|, on the other hand, keep track of how many
1661 characters have appeared so far on the current line that has been output
1662 to the terminal, the transcript file, or the \ps\ output file, respectively.
1664 @d new_string 0 /* printing is deflected to the string pool */
1665 @d pseudo 2 /* special |selector| setting for |show_context| */
1666 @d no_print 3 /* |selector| setting that makes data disappear */
1667 @d term_only 4 /* printing is destined for the terminal only */
1668 @d log_only 5 /* printing is destined for the transcript file only */
1669 @d term_and_log 6 /* normal |selector| setting */
1670 @d write_file 7 /* first write file selector */
1673 void * log_file; /* transcript of \MP\ session */
1674 void * ps_file; /* the generic font output goes here */
1675 unsigned int selector; /* where to print a message */
1676 unsigned char dig[23]; /* digits in a number being output */
1677 integer tally; /* the number of characters recently printed */
1678 unsigned int term_offset;
1679 /* the number of characters on the current terminal line */
1680 unsigned int file_offset;
1681 /* the number of characters on the current file line */
1682 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1683 integer trick_count; /* threshold for pseudoprinting, explained later */
1684 integer first_count; /* another variable for pseudoprinting */
1686 @ @<Allocate or initialize ...@>=
1687 memset(mp->dig,0,23);
1688 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1690 @ @<Dealloc variables@>=
1691 xfree(mp->trick_buf);
1693 @ @<Initialize the output routines@>=
1694 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1696 @ Macro abbreviations for output to the terminal and to the log file are
1697 defined here for convenience. Some systems need special conventions
1698 for terminal output, and it is possible to adhere to those conventions
1699 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1700 @^system dependencies@>
1702 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1703 @d wterm(A) do_fprintf(mp->term_out,(A))
1704 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1705 @d wterm_cr do_fprintf(mp->term_out,"\n")
1706 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1707 @d wlog(A) do_fprintf(mp->log_file,(A))
1708 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1709 @d wlog_cr do_fprintf(mp->log_file, "\n")
1710 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1713 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1714 use an array |wr_file| that will be declared later.
1716 @d mp_print_text(A) mp_print_str(mp,text((A)))
1719 void mp_print_ln (MP mp);
1720 void mp_print_visible_char (MP mp, ASCII_code s);
1721 void mp_print_char (MP mp, ASCII_code k);
1722 void mp_print (MP mp, char *s);
1723 void mp_print_str (MP mp, str_number s);
1724 void mp_print_nl (MP mp, char *s);
1725 void mp_print_two (MP mp,scaled x, scaled y) ;
1726 void mp_print_scaled (MP mp,scaled s);
1728 @ @<Basic print...@>=
1729 void mp_print_ln (MP mp) { /* prints an end-of-line */
1730 switch (mp->selector) {
1733 mp->term_offset=0; mp->file_offset=0;
1736 wlog_cr; mp->file_offset=0;
1739 wterm_cr; mp->term_offset=0;
1746 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1748 } /* note that |tally| is not affected */
1750 @ The |print_visible_char| procedure sends one character to the desired
1751 destination, using the |xchr| array to map it into an external character
1752 compatible with |input_ln|. (It assumes that it is always called with
1753 a visible ASCII character.) All printing comes through |print_ln| or
1754 |print_char|, which ultimately calls |print_visible_char|, hence these
1755 routines are the ones that limit lines to at most |max_print_line| characters.
1756 But we must make an exception for the \ps\ output file since it is not safe
1757 to cut up lines arbitrarily in \ps.
1759 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1760 |do_compaction| and |do_compaction| can call the error routines. Actually,
1761 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1763 @<Basic printing...@>=
1764 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1765 switch (mp->selector) {
1767 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1768 incr(mp->term_offset); incr(mp->file_offset);
1769 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1770 wterm_cr; mp->term_offset=0;
1772 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1773 wlog_cr; mp->file_offset=0;
1777 wlog_chr(xchr(s)); incr(mp->file_offset);
1778 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1781 wterm_chr(xchr(s)); incr(mp->term_offset);
1782 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1787 if ( mp->tally<mp->trick_count )
1788 mp->trick_buf[mp->tally % mp->error_line]=s;
1791 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1792 mp_unit_str_room(mp);
1793 if ( mp->pool_ptr>=mp->pool_size )
1794 goto DONE; /* drop characters if string space is full */
1799 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1800 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1807 @ The |print_char| procedure sends one character to the desired destination.
1808 File names and string expressions might contain |ASCII_code| values that
1809 can't be printed using |print_visible_char|. These characters will be
1810 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1811 (This procedure assumes that it is safe to bypass all checks for unprintable
1812 characters when |selector| is in the range |0..max_write_files-1|.
1813 The user might want to write unprintable characters.
1815 @d print_lc_hex(A) do { l=(A);
1816 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1819 @<Basic printing...@>=
1820 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1821 int l; /* small index or counter */
1822 if ( mp->selector<pseudo || mp->selector>=write_file) {
1823 mp_print_visible_char(mp, k);
1824 } else if ( @<Character |k| cannot be printed@> ) {
1827 mp_print_visible_char(mp, k+0100);
1828 } else if ( k<0200 ) {
1829 mp_print_visible_char(mp, k-0100);
1831 print_lc_hex(k / 16);
1832 print_lc_hex(k % 16);
1835 mp_print_visible_char(mp, k);
1839 @ An entire string is output by calling |print|. Note that if we are outputting
1840 the single standard ASCII character \.c, we could call |print("c")|, since
1841 |"c"=99| is the number of a single-character string, as explained above. But
1842 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1843 routine when it knows that this is safe. (The present implementation
1844 assumes that it is always safe to print a visible ASCII character.)
1845 @^system dependencies@>
1848 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1851 mp_print_char(mp, ss[j]); incr(j);
1857 void mp_print (MP mp, char *ss) {
1858 mp_do_print(mp, ss, strlen(ss));
1860 void mp_print_str (MP mp, str_number s) {
1861 pool_pointer j; /* current character code position */
1862 if ( (s<0)||(s>mp->max_str_ptr) ) {
1863 mp_do_print(mp,"???",3); /* this can't happen */
1867 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1871 @ Here is the very first thing that \MP\ prints: a headline that identifies
1872 the version number and base name. The |term_offset| variable is temporarily
1873 incorrect, but the discrepancy is not serious since we assume that the banner
1874 and mem identifier together will occupy at most |max_print_line|
1875 character positions.
1877 @<Initialize the output...@>=
1879 wterm (version_string);
1880 if (mp->mem_ident!=NULL)
1881 mp_print(mp,mp->mem_ident);
1885 @ The procedure |print_nl| is like |print|, but it makes sure that the
1886 string appears at the beginning of a new line.
1889 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1890 switch(mp->selector) {
1892 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1895 if ( mp->file_offset>0 ) mp_print_ln(mp);
1898 if ( mp->term_offset>0 ) mp_print_ln(mp);
1904 } /* there are no other cases */
1908 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1911 void mp_print_the_digs (MP mp, eight_bits k) {
1912 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1914 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1918 @ The following procedure, which prints out the decimal representation of a
1919 given integer |n|, has been written carefully so that it works properly
1920 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1921 to negative arguments, since such operations are not implemented consistently
1922 by all \PASCAL\ compilers.
1925 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1926 integer m; /* used to negate |n| in possibly dangerous cases */
1927 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1929 mp_print_char(mp, '-');
1930 if ( n>-100000000 ) {
1933 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1937 mp->dig[0]=0; incr(n);
1942 mp->dig[k]=n % 10; n=n / 10; incr(k);
1944 mp_print_the_digs(mp, k);
1948 void mp_print_int (MP mp,integer n);
1950 @ \MP\ also makes use of a trivial procedure to print two digits. The
1951 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1954 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1956 mp_print_char(mp, '0'+(n / 10));
1957 mp_print_char(mp, '0'+(n % 10));
1962 void mp_print_dd (MP mp,integer n);
1964 @ Here is a procedure that asks the user to type a line of input,
1965 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1966 The input is placed into locations |first| through |last-1| of the
1967 |buffer| array, and echoed on the transcript file if appropriate.
1969 This procedure is never called when |interaction<mp_scroll_mode|.
1971 @d prompt_input(A) do {
1972 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1973 } while (0) /* prints a string and gets a line of input */
1976 void mp_term_input (MP mp) { /* gets a line from the terminal */
1977 size_t k; /* index into |buffer| */
1978 update_terminal; /* Now the user sees the prompt for sure */
1979 if (!mp_input_ln(mp, mp->term_in ))
1980 mp_fatal_error(mp, "End of file on the terminal!");
1981 @.End of file on the terminal@>
1982 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1983 decr(mp->selector); /* prepare to echo the input */
1984 if ( mp->last!=mp->first ) {
1985 for (k=mp->first;k<=mp->last-1;k++) {
1986 mp_print_char(mp, mp->buffer[k]);
1990 mp->buffer[mp->last]='%';
1991 incr(mp->selector); /* restore previous status */
1994 @* \[6] Reporting errors.
1995 When something anomalous is detected, \MP\ typically does something like this:
1996 $$\vbox{\halign{#\hfil\cr
1997 |print_err("Something anomalous has been detected");|\cr
1998 |help3("This is the first line of my offer to help.")|\cr
1999 |("This is the second line. I'm trying to")|\cr
2000 |("explain the best way for you to proceed.");|\cr
2002 A two-line help message would be given using |help2|, etc.; these informal
2003 helps should use simple vocabulary that complements the words used in the
2004 official error message that was printed. (Outside the U.S.A., the help
2005 messages should preferably be translated into the local vernacular. Each
2006 line of help is at most 60 characters long, in the present implementation,
2007 so that |max_print_line| will not be exceeded.)
2009 The |print_err| procedure supplies a `\.!' before the official message,
2010 and makes sure that the terminal is awake if a stop is going to occur.
2011 The |error| procedure supplies a `\..' after the official message, then it
2012 shows the location of the error; and if |interaction=error_stop_mode|,
2013 it also enters into a dialog with the user, during which time the help
2014 message may be printed.
2015 @^system dependencies@>
2017 @ The global variable |interaction| has four settings, representing increasing
2018 amounts of user interaction:
2021 enum mp_interaction_mode {
2022 mp_unspecified_mode=0, /* extra value for command-line switch */
2023 mp_batch_mode, /* omits all stops and omits terminal output */
2024 mp_nonstop_mode, /* omits all stops */
2025 mp_scroll_mode, /* omits error stops */
2026 mp_error_stop_mode, /* stops at every opportunity to interact */
2030 int interaction; /* current level of interaction */
2032 @ @<Option variables@>=
2033 int interaction; /* current level of interaction */
2035 @ Set it here so it can be overwritten by the commandline
2037 @<Allocate or initialize ...@>=
2038 mp->interaction=opt->interaction;
2039 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
2040 mp->interaction=mp_error_stop_mode;
2041 if (mp->interaction<mp_unspecified_mode)
2042 mp->interaction=mp_batch_mode;
2046 @d print_err(A) mp_print_err(mp,(A))
2049 void mp_print_err(MP mp, char * A);
2052 void mp_print_err(MP mp, char * A) {
2053 if ( mp->interaction==mp_error_stop_mode )
2055 mp_print_nl(mp, "! ");
2061 @ \MP\ is careful not to call |error| when the print |selector| setting
2062 might be unusual. The only possible values of |selector| at the time of
2065 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
2066 and |log_file| not yet open);
2068 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2070 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2072 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2074 @<Initialize the print |selector| based on |interaction|@>=
2075 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2077 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2078 routine is active when |error| is called; this ensures that |get_next|
2079 will never be called recursively.
2082 The global variable |history| records the worst level of error that
2083 has been detected. It has four possible values: |spotless|, |warning_issued|,
2084 |error_message_issued|, and |fatal_error_stop|.
2086 Another global variable, |error_count|, is increased by one when an
2087 |error| occurs without an interactive dialog, and it is reset to zero at
2088 the end of every statement. If |error_count| reaches 100, \MP\ decides
2089 that there is no point in continuing further.
2092 enum mp_history_states {
2093 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2094 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2095 mp_error_message_issued, /* |history| value when |error| has been called */
2096 mp_fatal_error_stop, /* |history| value when termination was premature */
2100 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2101 int history; /* has the source input been clean so far? */
2102 int error_count; /* the number of scrolled errors since the last statement ended */
2104 @ The value of |history| is initially |fatal_error_stop|, but it will
2105 be changed to |spotless| if \MP\ survives the initialization process.
2107 @<Allocate or ...@>=
2108 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2110 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2111 error procedures near the beginning of the program. But the error procedures
2112 in turn use some other procedures, which need to be declared |forward|
2113 before we get to |error| itself.
2115 It is possible for |error| to be called recursively if some error arises
2116 when |get_next| is being used to delete a token, and/or if some fatal error
2117 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2119 is never more than two levels deep.
2122 void mp_get_next (MP mp);
2123 void mp_term_input (MP mp);
2124 void mp_show_context (MP mp);
2125 void mp_begin_file_reading (MP mp);
2126 void mp_open_log_file (MP mp);
2127 void mp_clear_for_error_prompt (MP mp);
2128 void mp_debug_help (MP mp);
2129 @<Declare the procedure called |flush_string|@>
2132 void mp_normalize_selector (MP mp);
2134 @ Individual lines of help are recorded in the array |help_line|, which
2135 contains entries in positions |0..(help_ptr-1)|. They should be printed
2136 in reverse order, i.e., with |help_line[0]| appearing last.
2138 @d hlp1(A) mp->help_line[0]=(A); }
2139 @d hlp2(A) mp->help_line[1]=(A); hlp1
2140 @d hlp3(A) mp->help_line[2]=(A); hlp2
2141 @d hlp4(A) mp->help_line[3]=(A); hlp3
2142 @d hlp5(A) mp->help_line[4]=(A); hlp4
2143 @d hlp6(A) mp->help_line[5]=(A); hlp5
2144 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2145 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2146 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2147 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2148 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2149 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2150 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2153 char * help_line[6]; /* helps for the next |error| */
2154 unsigned int help_ptr; /* the number of help lines present */
2155 boolean use_err_help; /* should the |err_help| string be shown? */
2156 str_number err_help; /* a string set up by \&{errhelp} */
2157 str_number filename_template; /* a string set up by \&{filenametemplate} */
2159 @ @<Allocate or ...@>=
2160 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2162 @ The |jump_out| procedure just cuts across all active procedure levels and
2163 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2164 whole program. It is used when there is no recovery from a particular error.
2166 The program uses a |jump_buf| to handle this, this is initialized at three
2167 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2168 of |mp_run|. Those are the only library enty points.
2170 @^system dependencies@>
2175 @ @<Install and test the non-local jump buffer@>=
2176 if (setjmp(mp->jump_buf) != 0) return mp->history;
2178 @ @<Setup the non-local jump buffer in |mp_new|@>=
2179 if (setjmp(mp->jump_buf) != 0) return NULL;
2181 @ If |mp->internal| is zero, then a crash occured during initialization,
2182 and it is not safe to run |mp_close_files_and_terminate|.
2185 void mp_jump_out (MP mp) {
2186 if(mp->internal!=NULL)
2187 mp_close_files_and_terminate(mp);
2188 longjmp(mp->jump_buf,1);
2191 @ Here now is the general |error| routine.
2194 void mp_error (MP mp) { /* completes the job of error reporting */
2195 ASCII_code c; /* what the user types */
2196 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2197 pool_pointer j; /* character position being printed */
2198 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2199 mp_print_char(mp, '.'); mp_show_context(mp);
2200 if ( mp->interaction==mp_error_stop_mode ) {
2201 @<Get user's advice and |return|@>;
2203 incr(mp->error_count);
2204 if ( mp->error_count==100 ) {
2205 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2206 @.That makes 100 errors...@>
2207 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2209 @<Put help message on the transcript file@>;
2211 void mp_warn (MP mp, char *msg) {
2212 int saved_selector = mp->selector;
2213 mp_normalize_selector(mp);
2214 mp_print_nl(mp,"Warning: ");
2216 mp->selector = saved_selector;
2219 @ @<Exported function ...@>=
2220 void mp_error (MP mp);
2221 void mp_warn (MP mp, char *msg);
2224 @ @<Get user's advice...@>=
2227 mp_clear_for_error_prompt(mp); prompt_input("? ");
2229 if ( mp->last==mp->first ) return;
2230 c=mp->buffer[mp->first];
2231 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2232 @<Interpret code |c| and |return| if done@>;
2235 @ It is desirable to provide an `\.E' option here that gives the user
2236 an easy way to return from \MP\ to the system editor, with the offending
2237 line ready to be edited. But such an extension requires some system
2238 wizardry, so the present implementation simply types out the name of the
2240 edited and the relevant line number.
2241 @^system dependencies@>
2244 typedef void (*mp_run_editor_command)(MP, char *, int);
2247 mp_run_editor_command run_editor;
2249 @ @<Option variables@>=
2250 mp_run_editor_command run_editor;
2252 @ @<Allocate or initialize ...@>=
2253 set_callback_option(run_editor);
2256 void mp_run_editor (MP mp, char *fname, int fline);
2258 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2259 mp_print_nl(mp, "You want to edit file ");
2260 @.You want to edit file x@>
2261 mp_print(mp, fname);
2262 mp_print(mp, " at line ");
2263 mp_print_int(mp, fline);
2264 mp->interaction=mp_scroll_mode;
2269 There is a secret `\.D' option available when the debugging routines haven't
2273 @<Interpret code |c| and |return| if done@>=
2275 case '0': case '1': case '2': case '3': case '4':
2276 case '5': case '6': case '7': case '8': case '9':
2277 if ( mp->deletions_allowed ) {
2278 @<Delete |c-"0"| tokens and |continue|@>;
2283 mp_debug_help(mp); continue;
2287 if ( mp->file_ptr>0 ){
2288 (mp->run_editor)(mp,
2289 str(mp->input_stack[mp->file_ptr].name_field),
2294 @<Print the help information and |continue|@>;
2297 @<Introduce new material from the terminal and |return|@>;
2299 case 'Q': case 'R': case 'S':
2300 @<Change the interaction level and |return|@>;
2303 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2308 @<Print the menu of available options@>
2310 @ @<Print the menu...@>=
2312 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2313 @.Type <return> to proceed...@>
2314 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2315 mp_print_nl(mp, "I to insert something, ");
2316 if ( mp->file_ptr>0 )
2317 mp_print(mp, "E to edit your file,");
2318 if ( mp->deletions_allowed )
2319 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2320 mp_print_nl(mp, "H for help, X to quit.");
2323 @ Here the author of \MP\ apologizes for making use of the numerical
2324 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2325 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2326 @^Knuth, Donald Ervin@>
2328 @<Change the interaction...@>=
2330 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2331 mp_print(mp, "OK, entering ");
2333 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2334 case 'R': mp_print(mp, "nonstopmode"); break;
2335 case 'S': mp_print(mp, "scrollmode"); break;
2336 } /* there are no other cases */
2337 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2340 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2341 contain the material inserted by the user; otherwise another prompt will
2342 be given. In order to understand this part of the program fully, you need
2343 to be familiar with \MP's input stacks.
2345 @<Introduce new material...@>=
2347 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2348 if ( mp->last>mp->first+1 ) {
2349 loc=mp->first+1; mp->buffer[mp->first]=' ';
2351 prompt_input("insert>"); loc=mp->first;
2354 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2357 @ We allow deletion of up to 99 tokens at a time.
2359 @<Delete |c-"0"| tokens...@>=
2361 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2362 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2363 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2367 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2368 @<Decrease the string reference count, if the current token is a string@>;
2371 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2372 help2("I have just deleted some text, as you asked.")
2373 ("You can now delete more, or insert, or whatever.");
2374 mp_show_context(mp);
2378 @ @<Print the help info...@>=
2380 if ( mp->use_err_help ) {
2381 @<Print the string |err_help|, possibly on several lines@>;
2382 mp->use_err_help=false;
2384 if ( mp->help_ptr==0 ) {
2385 help2("Sorry, I don't know how to help in this situation.")
2386 ("Maybe you should try asking a human?");
2389 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2390 } while (mp->help_ptr!=0);
2392 help4("Sorry, I already gave what help I could...")
2393 ("Maybe you should try asking a human?")
2394 ("An error might have occurred before I noticed any problems.")
2395 ("``If all else fails, read the instructions.''");
2399 @ @<Print the string |err_help|, possibly on several lines@>=
2400 j=mp->str_start[mp->err_help];
2401 while ( j<str_stop(mp->err_help) ) {
2402 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2403 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2404 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2405 else { incr(j); mp_print_char(mp, '%'); };
2409 @ @<Put help message on the transcript file@>=
2410 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2411 if ( mp->use_err_help ) {
2412 mp_print_nl(mp, "");
2413 @<Print the string |err_help|, possibly on several lines@>;
2415 while ( mp->help_ptr>0 ){
2416 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2420 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2423 @ In anomalous cases, the print selector might be in an unknown state;
2424 the following subroutine is called to fix things just enough to keep
2425 running a bit longer.
2428 void mp_normalize_selector (MP mp) {
2429 if ( mp->log_opened ) mp->selector=term_and_log;
2430 else mp->selector=term_only;
2431 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2432 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2435 @ The following procedure prints \MP's last words before dying.
2437 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2438 mp->interaction=mp_scroll_mode; /* no more interaction */
2439 if ( mp->log_opened ) mp_error(mp);
2440 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2441 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2445 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2446 mp_normalize_selector(mp);
2447 print_err("Emergency stop"); help1(s); succumb;
2451 @ @<Exported function ...@>=
2452 void mp_fatal_error (MP mp, char *s);
2455 @ Here is the most dreaded error message.
2458 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2459 mp_normalize_selector(mp);
2460 print_err("MetaPost capacity exceeded, sorry [");
2461 @.MetaPost capacity exceeded ...@>
2462 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2463 help2("If you really absolutely need more capacity,")
2464 ("you can ask a wizard to enlarge me.");
2468 @ @<Internal library declarations@>=
2469 void mp_overflow (MP mp, char *s, integer n);
2471 @ The program might sometime run completely amok, at which point there is
2472 no choice but to stop. If no previous error has been detected, that's bad
2473 news; a message is printed that is really intended for the \MP\
2474 maintenance person instead of the user (unless the user has been
2475 particularly diabolical). The index entries for `this can't happen' may
2476 help to pinpoint the problem.
2479 @<Internal library ...@>=
2480 void mp_confusion (MP mp,char *s);
2482 @ @<Error hand...@>=
2483 void mp_confusion (MP mp,char *s) {
2484 /* consistency check violated; |s| tells where */
2485 mp_normalize_selector(mp);
2486 if ( mp->history<mp_error_message_issued ) {
2487 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2488 @.This can't happen@>
2489 help1("I'm broken. Please show this to someone who can fix can fix");
2491 print_err("I can\'t go on meeting you like this");
2492 @.I can't go on...@>
2493 help2("One of your faux pas seems to have wounded me deeply...")
2494 ("in fact, I'm barely conscious. Please fix it and try again.");
2499 @ Users occasionally want to interrupt \MP\ while it's running.
2500 If the \PASCAL\ runtime system allows this, one can implement
2501 a routine that sets the global variable |interrupt| to some nonzero value
2502 when such an interrupt is signaled. Otherwise there is probably at least
2503 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2504 @^system dependencies@>
2507 @d check_interrupt { if ( mp->interrupt!=0 )
2508 mp_pause_for_instructions(mp); }
2511 integer interrupt; /* should \MP\ pause for instructions? */
2512 boolean OK_to_interrupt; /* should interrupts be observed? */
2514 @ @<Allocate or ...@>=
2515 mp->interrupt=0; mp->OK_to_interrupt=true;
2517 @ When an interrupt has been detected, the program goes into its
2518 highest interaction level and lets the user have the full flexibility of
2519 the |error| routine. \MP\ checks for interrupts only at times when it is
2523 void mp_pause_for_instructions (MP mp) {
2524 if ( mp->OK_to_interrupt ) {
2525 mp->interaction=mp_error_stop_mode;
2526 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2528 print_err("Interruption");
2531 ("Try to insert some instructions for me (e.g.,`I show x'),")
2532 ("unless you just want to quit by typing `X'.");
2533 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2538 @ Many of \MP's error messages state that a missing token has been
2539 inserted behind the scenes. We can save string space and program space
2540 by putting this common code into a subroutine.
2543 void mp_missing_err (MP mp, char *s) {
2544 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2545 @.Missing...inserted@>
2548 @* \[7] Arithmetic with scaled numbers.
2549 The principal computations performed by \MP\ are done entirely in terms of
2550 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2551 program can be carried out in exactly the same way on a wide variety of
2552 computers, including some small ones.
2555 But \PASCAL\ does not define the |div|
2556 operation in the case of negative dividends; for example, the result of
2557 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2558 There are two principal types of arithmetic: ``translation-preserving,''
2559 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2560 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2561 two \MP s, which can produce different results, although the differences
2562 should be negligible when the language is being used properly.
2563 The \TeX\ processor has been defined carefully so that both varieties
2564 of arithmetic will produce identical output, but it would be too
2565 inefficient to constrain \MP\ in a similar way.
2567 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2569 @ One of \MP's most common operations is the calculation of
2570 $\lfloor{a+b\over2}\rfloor$,
2571 the midpoint of two given integers |a| and~|b|. The only decent way to do
2572 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2573 far more efficient to calculate `|(a+b)| right shifted one bit'.
2575 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2576 in this program. If \MP\ is being implemented with languages that permit
2577 binary shifting, the |half| macro should be changed to make this operation
2578 as efficient as possible. Since some languages have shift operators that can
2579 only be trusted to work on positive numbers, there is also a macro |halfp|
2580 that is used only when the quantity being halved is known to be positive
2583 @d half(A) ((A) / 2)
2584 @d halfp(A) ((A) / 2)
2586 @ A single computation might use several subroutine calls, and it is
2587 desirable to avoid producing multiple error messages in case of arithmetic
2588 overflow. So the routines below set the global variable |arith_error| to |true|
2589 instead of reporting errors directly to the user.
2592 boolean arith_error; /* has arithmetic overflow occurred recently? */
2594 @ @<Allocate or ...@>=
2595 mp->arith_error=false;
2597 @ At crucial points the program will say |check_arith|, to test if
2598 an arithmetic error has been detected.
2600 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2603 void mp_clear_arith (MP mp) {
2604 print_err("Arithmetic overflow");
2605 @.Arithmetic overflow@>
2606 help4("Uh, oh. A little while ago one of the quantities that I was")
2607 ("computing got too large, so I'm afraid your answers will be")
2608 ("somewhat askew. You'll probably have to adopt different")
2609 ("tactics next time. But I shall try to carry on anyway.");
2611 mp->arith_error=false;
2614 @ Addition is not always checked to make sure that it doesn't overflow,
2615 but in places where overflow isn't too unlikely the |slow_add| routine
2618 @c integer mp_slow_add (MP mp,integer x, integer y) {
2620 if ( y<=el_gordo-x ) {
2623 mp->arith_error=true;
2626 } else if ( -y<=el_gordo+x ) {
2629 mp->arith_error=true;
2634 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2635 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2636 positions from the right end of a binary computer word.
2638 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2639 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2640 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2641 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2642 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2643 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2646 typedef integer scaled; /* this type is used for scaled integers */
2647 typedef unsigned char small_number; /* this type is self-explanatory */
2649 @ The following function is used to create a scaled integer from a given decimal
2650 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2651 given in |dig[i]|, and the calculation produces a correctly rounded result.
2654 scaled mp_round_decimals (MP mp,small_number k) {
2655 /* converts a decimal fraction */
2656 integer a = 0; /* the accumulator */
2658 a=(a+mp->dig[k]*two) / 10;
2663 @ Conversely, here is a procedure analogous to |print_int|. If the output
2664 of this procedure is subsequently read by \MP\ and converted by the
2665 |round_decimals| routine above, it turns out that the original value will
2666 be reproduced exactly. A decimal point is printed only if the value is
2667 not an integer. If there is more than one way to print the result with
2668 the optimum number of digits following the decimal point, the closest
2669 possible value is given.
2671 The invariant relation in the \&{repeat} loop is that a sequence of
2672 decimal digits yet to be printed will yield the original number if and only if
2673 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2674 We can stop if and only if $f=0$ satisfies this condition; the loop will
2675 terminate before $s$ can possibly become zero.
2677 @<Basic printing...@>=
2678 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2679 scaled delta; /* amount of allowable inaccuracy */
2681 mp_print_char(mp, '-');
2682 negate(s); /* print the sign, if negative */
2684 mp_print_int(mp, s / unity); /* print the integer part */
2688 mp_print_char(mp, '.');
2691 s=s+0100000-(delta / 2); /* round the final digit */
2692 mp_print_char(mp, '0'+(s / unity));
2699 @ We often want to print two scaled quantities in parentheses,
2700 separated by a comma.
2702 @<Basic printing...@>=
2703 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2704 mp_print_char(mp, '(');
2705 mp_print_scaled(mp, x);
2706 mp_print_char(mp, ',');
2707 mp_print_scaled(mp, y);
2708 mp_print_char(mp, ')');
2711 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2712 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2713 arithmetic with 28~significant bits of precision. A |fraction| denotes
2714 a scaled integer whose binary point is assumed to be 28 bit positions
2717 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2718 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2719 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2720 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2721 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2724 typedef integer fraction; /* this type is used for scaled fractions */
2726 @ In fact, the two sorts of scaling discussed above aren't quite
2727 sufficient; \MP\ has yet another, used internally to keep track of angles
2728 in units of $2^{-20}$ degrees.
2730 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2731 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2732 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2733 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2736 typedef integer angle; /* this type is used for scaled angles */
2738 @ The |make_fraction| routine produces the |fraction| equivalent of
2739 |p/q|, given integers |p| and~|q|; it computes the integer
2740 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2741 positive. If |p| and |q| are both of the same scaled type |t|,
2742 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2743 and it's also possible to use the subroutine ``backwards,'' using
2744 the relation |make_fraction(t,fraction)=t| between scaled types.
2746 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2747 sets |arith_error:=true|. Most of \MP's internal computations have
2748 been designed to avoid this sort of error.
2750 If this subroutine were programmed in assembly language on a typical
2751 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2752 double-precision product can often be input to a fixed-point division
2753 instruction. But when we are restricted to \PASCAL\ arithmetic it
2754 is necessary either to resort to multiple-precision maneuvering
2755 or to use a simple but slow iteration. The multiple-precision technique
2756 would be about three times faster than the code adopted here, but it
2757 would be comparatively long and tricky, involving about sixteen
2758 additional multiplications and divisions.
2760 This operation is part of \MP's ``inner loop''; indeed, it will
2761 consume nearly 10\pct! of the running time (exclusive of input and output)
2762 if the code below is left unchanged. A machine-dependent recoding
2763 will therefore make \MP\ run faster. The present implementation
2764 is highly portable, but slow; it avoids multiplication and division
2765 except in the initial stage. System wizards should be careful to
2766 replace it with a routine that is guaranteed to produce identical
2767 results in all cases.
2768 @^system dependencies@>
2770 As noted below, a few more routines should also be replaced by machine-dependent
2771 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2772 such changes aren't advisable; simplicity and robustness are
2773 preferable to trickery, unless the cost is too high.
2777 fraction mp_make_fraction (MP mp,integer p, integer q);
2778 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2780 @ If FIXPT is not defined, we need these preprocessor values
2782 @d ELGORDO 0x7fffffff
2783 @d TWEXP31 2147483648.0
2784 @d TWEXP28 268435456.0
2786 @d TWEXP_16 (1.0/65536.0)
2787 @d TWEXP_28 (1.0/268435456.0)
2791 fraction mp_make_fraction (MP mp,integer p, integer q) {
2793 integer f; /* the fraction bits, with a leading 1 bit */
2794 integer n; /* the integer part of $\vert p/q\vert$ */
2795 integer be_careful; /* disables certain compiler optimizations */
2796 boolean negative = false; /* should the result be negated? */
2798 negate(p); negative=true;
2802 if ( q==0 ) mp_confusion(mp, '/');
2804 @:this can't happen /}{\quad \./@>
2805 negate(q); negative = ! negative;
2809 mp->arith_error=true;
2810 return ( negative ? -el_gordo : el_gordo);
2812 n=(n-1)*fraction_one;
2813 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2814 return (negative ? (-(f+n)) : (f+n));
2820 if (q==0) mp_confusion(mp,'/');
2822 d = TWEXP28 * (double)p /(double)q;
2825 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2827 if (d==i && ( ((q>0 ? -q : q)&077777)
2828 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2831 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2833 if (d==i && ( ((q>0 ? q : -q)&077777)
2834 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2840 @ The |repeat| loop here preserves the following invariant relations
2841 between |f|, |p|, and~|q|:
2842 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2843 $p_0$ is the original value of~$p$.
2845 Notice that the computation specifies
2846 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2847 Let us hope that optimizing compilers do not miss this point; a
2848 special variable |be_careful| is used to emphasize the necessary
2849 order of computation. Optimizing compilers should keep |be_careful|
2850 in a register, not store it in memory.
2853 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2857 be_careful=p-q; p=be_careful+p;
2863 } while (f<fraction_one);
2865 if ( be_careful+p>=0 ) incr(f);
2868 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2869 given integer~|q| by a fraction~|f|. When the operands are positive, it
2870 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2873 This routine is even more ``inner loopy'' than |make_fraction|;
2874 the present implementation consumes almost 20\pct! of \MP's computation
2875 time during typical jobs, so a machine-language substitute is advisable.
2876 @^inner loop@> @^system dependencies@>
2879 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2883 integer mp_take_fraction (MP mp,integer q, fraction f) {
2884 integer p; /* the fraction so far */
2885 boolean negative; /* should the result be negated? */
2886 integer n; /* additional multiple of $q$ */
2887 integer be_careful; /* disables certain compiler optimizations */
2888 @<Reduce to the case that |f>=0| and |q>0|@>;
2889 if ( f<fraction_one ) {
2892 n=f / fraction_one; f=f % fraction_one;
2893 if ( q<=el_gordo / n ) {
2896 mp->arith_error=true; n=el_gordo;
2900 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2901 be_careful=n-el_gordo;
2902 if ( be_careful+p>0 ){
2903 mp->arith_error=true; n=el_gordo-p;
2910 integer mp_take_fraction (MP mp,integer p, fraction q) {
2913 d = (double)p * (double)q * TWEXP_28;
2917 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2918 mp->arith_error = true;
2922 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2926 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2927 mp->arith_error = true;
2931 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2937 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2941 negate( f); negative=true;
2944 negate(q); negative=! negative;
2947 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2948 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2949 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2952 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2953 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2954 if ( q<fraction_four ) {
2956 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2961 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2967 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2968 analogous to |take_fraction| but with a different scaling.
2969 Given positive operands, |take_scaled|
2970 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2972 Once again it is a good idea to use a machine-language replacement if
2973 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2974 when the Computer Modern fonts are being generated.
2979 integer mp_take_scaled (MP mp,integer q, scaled f) {
2980 integer p; /* the fraction so far */
2981 boolean negative; /* should the result be negated? */
2982 integer n; /* additional multiple of $q$ */
2983 integer be_careful; /* disables certain compiler optimizations */
2984 @<Reduce to the case that |f>=0| and |q>0|@>;
2988 n=f / unity; f=f % unity;
2989 if ( q<=el_gordo / n ) {
2992 mp->arith_error=true; n=el_gordo;
2996 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2997 be_careful=n-el_gordo;
2998 if ( be_careful+p>0 ) {
2999 mp->arith_error=true; n=el_gordo-p;
3001 return ( negative ?(-(n+p)) :(n+p));
3003 integer mp_take_scaled (MP mp,integer p, scaled q) {
3006 d = (double)p * (double)q * TWEXP_16;
3010 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
3011 mp->arith_error = true;
3015 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
3019 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
3020 mp->arith_error = true;
3024 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
3030 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
3031 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
3033 if ( q<fraction_four ) {
3035 p = (odd(f) ? halfp(p+q) : halfp(p));
3040 p = (odd(f) ? p+halfp(q-p) : halfp(p));
3045 @ For completeness, there's also |make_scaled|, which computes a
3046 quotient as a |scaled| number instead of as a |fraction|.
3047 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
3048 operands are positive. \ (This procedure is not used especially often,
3049 so it is not part of \MP's inner loop.)
3051 @<Internal library ...@>=
3052 scaled mp_make_scaled (MP mp,integer p, integer q) ;
3055 scaled mp_make_scaled (MP mp,integer p, integer q) {
3057 integer f; /* the fraction bits, with a leading 1 bit */
3058 integer n; /* the integer part of $\vert p/q\vert$ */
3059 boolean negative; /* should the result be negated? */
3060 integer be_careful; /* disables certain compiler optimizations */
3061 if ( p>=0 ) negative=false;
3062 else { negate(p); negative=true; };
3065 if ( q==0 ) mp_confusion(mp, "/");
3066 @:this can't happen /}{\quad \./@>
3068 negate(q); negative=! negative;
3072 mp->arith_error=true;
3073 return (negative ? (-el_gordo) : el_gordo);
3076 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3077 return ( negative ? (-(f+n)) :(f+n));
3083 if (q==0) mp_confusion(mp,"/");
3085 d = TWEXP16 * (double)p /(double)q;
3088 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3090 if (d==i && ( ((q>0 ? -q : q)&077777)
3091 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3094 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3096 if (d==i && ( ((q>0 ? q : -q)&077777)
3097 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3103 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3106 be_careful=p-q; p=be_careful+p;
3107 if ( p>=0 ) f=f+f+1;
3108 else { f+=f; p=p+q; };
3111 if ( be_careful+p>=0 ) incr(f)
3113 @ Here is a typical example of how the routines above can be used.
3114 It computes the function
3115 $${1\over3\tau}f(\theta,\phi)=
3116 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3117 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3118 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3119 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3120 fudge factor for placing the first control point of a curve that starts
3121 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3122 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3124 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3125 (It's a sum of eight terms whose absolute values can be bounded using
3126 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3127 is positive; and since the tension $\tau$ is constrained to be at least
3128 $3\over4$, the numerator is less than $16\over3$. The denominator is
3129 nonnegative and at most~6. Hence the fixed-point calculations below
3130 are guaranteed to stay within the bounds of a 32-bit computer word.
3132 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3133 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3134 $\sin\phi$, and $\cos\phi$, respectively.
3137 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3138 fraction cf, scaled t) {
3139 integer acc,num,denom; /* registers for intermediate calculations */
3140 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3141 acc=mp_take_fraction(mp, acc,ct-cf);
3142 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3143 /* $2^{28}\sqrt2\approx379625062.497$ */
3144 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3145 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3146 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3147 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3148 /* |make_scaled(fraction,scaled)=fraction| */
3149 if ( num / 4>=denom )
3150 return fraction_four;
3152 return mp_make_fraction(mp, num, denom);
3155 @ The following somewhat different subroutine tests rigorously if $ab$ is
3156 greater than, equal to, or less than~$cd$,
3157 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3158 The result is $+1$, 0, or~$-1$ in the three respective cases.
3160 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3163 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3164 integer q,r; /* temporary registers */
3165 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3167 q = a / d; r = c / b;
3169 return ( q>r ? 1 : -1);
3170 q = a % d; r = c % b;
3173 if ( q==0 ) return -1;
3175 } /* now |a>d>0| and |c>b>0| */
3178 @ @<Reduce to the case that |a...@>=
3179 if ( a<0 ) { negate(a); negate(b); };
3180 if ( c<0 ) { negate(c); negate(d); };
3183 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3187 return ( a==0 ? 0 : -1);
3188 q=a; a=c; c=q; q=-b; b=-d; d=q;
3189 } else if ( b<=0 ) {
3190 if ( b<0 ) if ( a>0 ) return -1;
3191 return (c==0 ? 0 : -1);
3194 @ We conclude this set of elementary routines with some simple rounding
3195 and truncation operations.
3197 @<Internal library declarations@>=
3198 #define mp_floor_scaled(M,i) ((i)&(-65536))
3199 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3200 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3203 @* \[8] Algebraic and transcendental functions.
3204 \MP\ computes all of the necessary special functions from scratch, without
3205 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3207 @ To get the square root of a |scaled| number |x|, we want to calculate
3208 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3209 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3210 determines $s$ by an iterative method that maintains the invariant
3211 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3212 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3213 might, however, be zero at the start of the first iteration.
3216 scaled mp_square_rt (MP mp,scaled x) ;
3219 scaled mp_square_rt (MP mp,scaled x) {
3220 small_number k; /* iteration control counter */
3221 integer y,q; /* registers for intermediate calculations */
3223 @<Handle square root of zero or negative argument@>;
3226 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3229 if ( x<fraction_four ) y=0;
3230 else { x=x-fraction_four; y=1; };
3232 @<Decrease |k| by 1, maintaining the invariant
3233 relations between |x|, |y|, and~|q|@>;
3239 @ @<Handle square root of zero...@>=
3242 print_err("Square root of ");
3243 @.Square root...replaced by 0@>
3244 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3245 help2("Since I don't take square roots of negative numbers,")
3246 ("I'm zeroing this one. Proceed, with fingers crossed.");
3252 @ @<Decrease |k| by 1, maintaining...@>=
3254 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3255 x=x-fraction_four; incr(y);
3257 x+=x; y=y+y-q; q+=q;
3258 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3259 if ( y>q ){ y=y-q; q=q+2; }
3260 else if ( y<=0 ) { q=q-2; y=y+q; };
3263 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3264 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3265 @^Moler, Cleve Barry@>
3266 @^Morrison, Donald Ross@>
3267 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3268 in such a way that their Pythagorean sum remains invariant, while the
3269 smaller argument decreases.
3271 @<Internal library ...@>=
3272 integer mp_pyth_add (MP mp,integer a, integer b);
3276 integer mp_pyth_add (MP mp,integer a, integer b) {
3277 fraction r; /* register used to transform |a| and |b| */
3278 boolean big; /* is the result dangerously near $2^{31}$? */
3280 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3282 if ( a<fraction_two ) {
3285 a=a / 4; b=b / 4; big=true;
3286 }; /* we reduced the precision to avoid arithmetic overflow */
3287 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3289 if ( a<fraction_two ) {
3292 mp->arith_error=true; a=el_gordo;
3299 @ The key idea here is to reflect the vector $(a,b)$ about the
3300 line through $(a,b/2)$.
3302 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3304 r=mp_make_fraction(mp, b,a);
3305 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3307 r=mp_make_fraction(mp, r,fraction_four+r);
3308 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3312 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3313 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3316 integer mp_pyth_sub (MP mp,integer a, integer b) {
3317 fraction r; /* register used to transform |a| and |b| */
3318 boolean big; /* is the input dangerously near $2^{31}$? */
3321 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3323 if ( a<fraction_four ) {
3326 a=halfp(a); b=halfp(b); big=true;
3328 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3329 if ( big ) double(a);
3334 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3336 r=mp_make_fraction(mp, b,a);
3337 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3339 r=mp_make_fraction(mp, r,fraction_four-r);
3340 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3343 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3346 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3347 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3348 mp_print(mp, " has been replaced by 0");
3350 help2("Since I don't take square roots of negative numbers,")
3351 ("I'm zeroing this one. Proceed, with fingers crossed.");
3357 @ The subroutines for logarithm and exponential involve two tables.
3358 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3359 a bit more calculation, which the author claims to have done correctly:
3360 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3361 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3364 @d two_to_the(A) (1<<(A))
3367 static const integer spec_log[29] = { 0, /* special logarithms */
3368 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3369 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3370 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3372 @ @<Local variables for initialization@>=
3373 integer k; /* all-purpose loop index */
3376 @ Here is the routine that calculates $2^8$ times the natural logarithm
3377 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3378 when |x| is a given positive integer.
3380 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3381 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3382 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3383 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3384 during the calculation, and sixteen auxiliary bits to extend |y| are
3385 kept in~|z| during the initial argument reduction. (We add
3386 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3387 not become negative; also, the actual amount subtracted from~|y| is~96,
3388 not~100, because we want to add~4 for rounding before the final division by~8.)
3391 scaled mp_m_log (MP mp,scaled x) {
3392 integer y,z; /* auxiliary registers */
3393 integer k; /* iteration counter */
3395 @<Handle non-positive logarithm@>;
3397 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3398 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3399 while ( x<fraction_four ) {
3400 double(x); y-=93032639; z-=48782;
3401 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3402 y=y+(z / unity); k=2;
3403 while ( x>fraction_four+4 ) {
3404 @<Increase |k| until |x| can be multiplied by a
3405 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3411 @ @<Increase |k| until |x| can...@>=
3413 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3414 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3415 y+=spec_log[k]; x-=z;
3418 @ @<Handle non-positive logarithm@>=
3420 print_err("Logarithm of ");
3421 @.Logarithm...replaced by 0@>
3422 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3423 help2("Since I don't take logs of non-positive numbers,")
3424 ("I'm zeroing this one. Proceed, with fingers crossed.");
3429 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3430 when |x| is |scaled|. The result is an integer approximation to
3431 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3434 scaled mp_m_exp (MP mp,scaled x) {
3435 small_number k; /* loop control index */
3436 integer y,z; /* auxiliary registers */
3437 if ( x>174436200 ) {
3438 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3439 mp->arith_error=true;
3441 } else if ( x<-197694359 ) {
3442 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3446 z=-8*x; y=04000000; /* $y=2^{20}$ */
3448 if ( x<=127919879 ) {
3450 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3452 z=8*(174436200-x); /* |z| is always nonnegative */
3456 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3458 return ((y+8) / 16);
3464 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3465 to multiplying |y| by $1-2^{-k}$.
3467 A subtle point (which had to be checked) was that if $x=127919879$, the
3468 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3469 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3470 and by~16 when |k=27|.
3472 @<Multiply |y| by...@>=
3475 while ( z>=spec_log[k] ) {
3477 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3482 @ The trigonometric subroutines use an auxiliary table such that
3483 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3484 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3487 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3488 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3489 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3491 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3492 returns the |angle| whose tangent points in the direction $(x,y)$.
3493 This subroutine first determines the correct octant, then solves the
3494 problem for |0<=y<=x|, then converts the result appropriately to
3495 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3496 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3497 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3499 The octants are represented in a ``Gray code,'' since that turns out
3500 to be computationally simplest.
3506 @d second_octant (first_octant+switch_x_and_y)
3507 @d third_octant (first_octant+switch_x_and_y+negate_x)
3508 @d fourth_octant (first_octant+negate_x)
3509 @d fifth_octant (first_octant+negate_x+negate_y)
3510 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3511 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3512 @d eighth_octant (first_octant+negate_y)
3515 angle mp_n_arg (MP mp,integer x, integer y) {
3516 angle z; /* auxiliary register */
3517 integer t; /* temporary storage */
3518 small_number k; /* loop counter */
3519 int octant; /* octant code */
3521 octant=first_octant;
3523 negate(x); octant=first_octant+negate_x;
3526 negate(y); octant=octant+negate_y;
3529 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3532 @<Handle undefined arg@>;
3534 @<Set variable |z| to the arg of $(x,y)$@>;
3535 @<Return an appropriate answer based on |z| and |octant|@>;
3539 @ @<Handle undefined arg@>=
3541 print_err("angle(0,0) is taken as zero");
3542 @.angle(0,0)...zero@>
3543 help2("The `angle' between two identical points is undefined.")
3544 ("I'm zeroing this one. Proceed, with fingers crossed.");
3549 @ @<Return an appropriate answer...@>=
3551 case first_octant: return z;
3552 case second_octant: return (ninety_deg-z);
3553 case third_octant: return (ninety_deg+z);
3554 case fourth_octant: return (one_eighty_deg-z);
3555 case fifth_octant: return (z-one_eighty_deg);
3556 case sixth_octant: return (-z-ninety_deg);
3557 case seventh_octant: return (z-ninety_deg);
3558 case eighth_octant: return (-z);
3559 }; /* there are no other cases */
3562 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3563 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3566 @<Set variable |z| to the arg...@>=
3567 while ( x>=fraction_two ) {
3568 x=halfp(x); y=halfp(y);
3572 while ( x<fraction_one ) {
3575 @<Increase |z| to the arg of $(x,y)$@>;
3578 @ During the calculations of this section, variables |x| and~|y|
3579 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3580 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3581 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3582 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3583 coordinates whose angle has decreased by~$\phi$; in the special case
3584 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3585 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3586 @^Meggitt, John E.@>
3587 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3589 The initial value of |x| will be multiplied by at most
3590 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3591 there is no chance of integer overflow.
3593 @<Increase |z|...@>=
3598 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3603 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3606 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3607 and cosine of that angle. The results of this routine are
3608 stored in global integer variables |n_sin| and |n_cos|.
3611 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3613 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3614 the purpose of |n_sin_cos(z)| is to set
3615 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3616 for some rather large number~|r|. The maximum of |x| and |y|
3617 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3618 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3621 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3623 small_number k; /* loop control variable */
3624 int q; /* specifies the quadrant */
3625 fraction r; /* magnitude of |(x,y)| */
3626 integer x,y,t; /* temporary registers */
3627 while ( z<0 ) z=z+three_sixty_deg;
3628 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3629 q=z / forty_five_deg; z=z % forty_five_deg;
3630 x=fraction_one; y=x;
3631 if ( ! odd(q) ) z=forty_five_deg-z;
3632 @<Subtract angle |z| from |(x,y)|@>;
3633 @<Convert |(x,y)| to the octant determined by~|q|@>;
3634 r=mp_pyth_add(mp, x,y);
3635 mp->n_cos=mp_make_fraction(mp, x,r);
3636 mp->n_sin=mp_make_fraction(mp, y,r);
3639 @ In this case the octants are numbered sequentially.
3641 @<Convert |(x,...@>=
3644 case 1: t=x; x=y; y=t; break;
3645 case 2: t=x; x=-y; y=t; break;
3646 case 3: negate(x); break;
3647 case 4: negate(x); negate(y); break;
3648 case 5: t=x; x=-y; y=-t; break;
3649 case 6: t=x; x=y; y=-t; break;
3650 case 7: negate(y); break;
3651 } /* there are no other cases */
3653 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3654 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3655 that this loop is guaranteed to terminate before the (nonexistent) value
3656 |spec_atan[27]| would be required.
3658 @<Subtract angle |z|...@>=
3661 if ( z>=spec_atan[k] ) {
3662 z=z-spec_atan[k]; t=x;
3663 x=t+y / two_to_the(k);
3664 y=y-t / two_to_the(k);
3668 if ( y<0 ) y=0 /* this precaution may never be needed */
3670 @ And now let's complete our collection of numeric utility routines
3671 by considering random number generation.
3672 \MP\ generates pseudo-random numbers with the additive scheme recommended
3673 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3674 results are random fractions between 0 and |fraction_one-1|, inclusive.
3676 There's an auxiliary array |randoms| that contains 55 pseudo-random
3677 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3678 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3679 The global variable |j_random| tells which element has most recently
3681 The global variable |random_seed| was introduced in version 0.9,
3682 for the sole reason of stressing the fact that the initial value of the
3683 random seed is system-dependant. The initialization code below will initialize
3684 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3685 is not good enough on modern fast machines that are capable of running
3686 multiple MetaPost processes within the same second.
3687 @^system dependencies@>
3690 fraction randoms[55]; /* the last 55 random values generated */
3691 int j_random; /* the number of unused |randoms| */
3692 scaled random_seed; /* the default random seed */
3694 @ @<Option variables@>=
3697 @ @<Allocate or initialize ...@>=
3698 mp->random_seed = (scaled)opt->random_seed;
3700 @ To consume a random fraction, the program below will say `|next_random|'
3701 and then it will fetch |randoms[j_random]|.
3703 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3704 else decr(mp->j_random); }
3707 void mp_new_randoms (MP mp) {
3708 int k; /* index into |randoms| */
3709 fraction x; /* accumulator */
3710 for (k=0;k<=23;k++) {
3711 x=mp->randoms[k]-mp->randoms[k+31];
3712 if ( x<0 ) x=x+fraction_one;
3715 for (k=24;k<= 54;k++){
3716 x=mp->randoms[k]-mp->randoms[k-24];
3717 if ( x<0 ) x=x+fraction_one;
3724 void mp_init_randoms (MP mp,scaled seed);
3726 @ To initialize the |randoms| table, we call the following routine.
3729 void mp_init_randoms (MP mp,scaled seed) {
3730 fraction j,jj,k; /* more or less random integers */
3731 int i; /* index into |randoms| */
3733 while ( j>=fraction_one ) j=halfp(j);
3735 for (i=0;i<=54;i++ ){
3737 if ( k<0 ) k=k+fraction_one;
3738 mp->randoms[(i*21)% 55]=j;
3742 mp_new_randoms(mp); /* ``warm up'' the array */
3745 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3746 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3748 Note that the call of |take_fraction| will produce the values 0 and~|x|
3749 with about half the probability that it will produce any other particular
3750 values between 0 and~|x|, because it rounds its answers.
3753 scaled mp_unif_rand (MP mp,scaled x) {
3754 scaled y; /* trial value */
3755 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3756 if ( y==abs(x) ) return 0;
3757 else if ( x>0 ) return y;
3761 @ Finally, a normal deviate with mean zero and unit standard deviation
3762 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3763 {\sl The Art of Computer Programming\/}).
3766 scaled mp_norm_rand (MP mp) {
3767 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3771 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3772 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3773 next_random; u=mp->randoms[mp->j_random];
3774 } while (abs(x)>=u);
3775 x=mp_make_fraction(mp, x,u);
3776 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3777 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3781 @* \[9] Packed data.
3782 In order to make efficient use of storage space, \MP\ bases its major data
3783 structures on a |memory_word|, which contains either a (signed) integer,
3784 possibly scaled, or a small number of fields that are one half or one
3785 quarter of the size used for storing integers.
3787 If |x| is a variable of type |memory_word|, it contains up to four
3788 fields that can be referred to as follows:
3789 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3790 |x|&.|int|&(an |integer|)\cr
3791 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3792 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3793 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3795 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3796 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3797 This is somewhat cumbersome to write, and not very readable either, but
3798 macros will be used to make the notation shorter and more transparent.
3799 The code below gives a formal definition of |memory_word| and
3800 its subsidiary types, using packed variant records. \MP\ makes no
3801 assumptions about the relative positions of the fields within a word.
3803 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3804 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3806 @ Here are the inequalities that the quarterword and halfword values
3807 must satisfy (or rather, the inequalities that they mustn't satisfy):
3809 @<Check the ``constant''...@>=
3810 if (mp->ini_version) {
3811 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3813 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3815 if ( max_quarterword<255 ) mp->bad=9;
3816 if ( max_halfword<65535 ) mp->bad=10;
3817 if ( max_quarterword>max_halfword ) mp->bad=11;
3818 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3819 if ( mp->max_strings>max_halfword ) mp->bad=13;
3821 @ The macros |qi| and |qo| are used for input to and output
3822 from quarterwords. These are legacy macros.
3823 @^system dependencies@>
3825 @d qo(A) (A) /* to read eight bits from a quarterword */
3826 @d qi(A) (A) /* to store eight bits in a quarterword */
3828 @ The reader should study the following definitions closely:
3829 @^system dependencies@>
3831 @d sc cint /* |scaled| data is equivalent to |integer| */
3834 typedef short quarterword; /* 1/4 of a word */
3835 typedef int halfword; /* 1/2 of a word */
3840 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3847 quarterword B2, B3, B0, B1;
3862 @ When debugging, we may want to print a |memory_word| without knowing
3863 what type it is; so we print it in all modes.
3864 @^dirty \PASCAL@>@^debugging@>
3867 void mp_print_word (MP mp,memory_word w) {
3868 /* prints |w| in all ways */
3869 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3870 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3871 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3872 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3873 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3874 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3875 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3876 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3877 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3878 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3879 mp_print_int(mp, w.qqqq.b3);
3883 @* \[10] Dynamic memory allocation.
3885 The \MP\ system does nearly all of its own memory allocation, so that it
3886 can readily be transported into environments that do not have automatic
3887 facilities for strings, garbage collection, etc., and so that it can be in
3888 control of what error messages the user receives. The dynamic storage
3889 requirements of \MP\ are handled by providing a large array |mem| in
3890 which consecutive blocks of words are used as nodes by the \MP\ routines.
3892 Pointer variables are indices into this array, or into another array
3893 called |eqtb| that will be explained later. A pointer variable might
3894 also be a special flag that lies outside the bounds of |mem|, so we
3895 allow pointers to assume any |halfword| value. The minimum memory
3896 index represents a null pointer.
3898 @d null 0 /* the null pointer */
3899 @d mp_void (null+1) /* a null pointer different from |null| */
3903 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3905 @ The |mem| array is divided into two regions that are allocated separately,
3906 but the dividing line between these two regions is not fixed; they grow
3907 together until finding their ``natural'' size in a particular job.
3908 Locations less than or equal to |lo_mem_max| are used for storing
3909 variable-length records consisting of two or more words each. This region
3910 is maintained using an algorithm similar to the one described in exercise
3911 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3912 appears in the allocated nodes; the program is responsible for knowing the
3913 relevant size when a node is freed. Locations greater than or equal to
3914 |hi_mem_min| are used for storing one-word records; a conventional
3915 \.{AVAIL} stack is used for allocation in this region.
3917 Locations of |mem| between |0| and |mem_top| may be dumped as part
3918 of preloaded format files, by the \.{INIMP} preprocessor.
3920 Production versions of \MP\ may extend the memory at the top end in order to
3921 provide more space; these locations, between |mem_top| and |mem_max|,
3922 are always used for single-word nodes.
3924 The key pointers that govern |mem| allocation have a prescribed order:
3925 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3928 memory_word *mem; /* the big dynamic storage area */
3929 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3930 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3934 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3935 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3936 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3937 @d xstrdup(A) mp_xstrdup(mp,A)
3938 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3940 @<Declare helpers@>=
3941 void mp_xfree (void *x);
3942 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3943 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3944 char *mp_xstrdup(MP mp, const char *s);
3946 @ The |max_size_test| guards against overflow, on the assumption that
3947 |size_t| is at least 31bits wide.
3949 @d max_size_test 0x7FFFFFFF
3952 void mp_xfree (void *x) {
3953 if (x!=NULL) free(x);
3955 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3957 if ((max_size_test/size)<nmem) {
3958 do_fprintf(mp->err_out,"Memory size overflow!\n");
3959 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3961 w = realloc (p,(nmem*size));
3963 do_fprintf(mp->err_out,"Out of memory!\n");
3964 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3968 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3970 if ((max_size_test/size)<nmem) {
3971 do_fprintf(mp->err_out,"Memory size overflow!\n");
3972 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3974 w = malloc (nmem*size);
3976 do_fprintf(mp->err_out,"Out of memory!\n");
3977 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3981 char *mp_xstrdup(MP mp, const char *s) {
3987 do_fprintf(mp->err_out,"Out of memory!\n");
3988 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3995 @<Allocate or initialize ...@>=
3996 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3997 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3999 @ @<Dealloc variables@>=
4002 @ Users who wish to study the memory requirements of particular applications can
4003 can use optional special features that keep track of current and
4004 maximum memory usage. When code between the delimiters |stat| $\ldots$
4005 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
4006 report these statistics when |mp_tracing_stats| is positive.
4009 integer var_used; integer dyn_used; /* how much memory is in use */
4011 @ Let's consider the one-word memory region first, since it's the
4012 simplest. The pointer variable |mem_end| holds the highest-numbered location
4013 of |mem| that has ever been used. The free locations of |mem| that
4014 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
4015 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
4016 and |rh| fields of |mem[p]| when it is of this type. The single-word
4017 free locations form a linked list
4018 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
4019 terminated by |null|.
4021 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
4022 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
4025 pointer avail; /* head of the list of available one-word nodes */
4026 pointer mem_end; /* the last one-word node used in |mem| */
4028 @ If one-word memory is exhausted, it might mean that the user has forgotten
4029 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
4030 later that try to help pinpoint the trouble.
4033 @<Declare the procedure called |show_token_list|@>;
4034 @<Declare the procedure called |runaway|@>
4036 @ The function |get_avail| returns a pointer to a new one-word node whose
4037 |link| field is null. However, \MP\ will halt if there is no more room left.
4041 pointer mp_get_avail (MP mp) { /* single-word node allocation */
4042 pointer p; /* the new node being got */
4043 p=mp->avail; /* get top location in the |avail| stack */
4045 mp->avail=link(mp->avail); /* and pop it off */
4046 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4047 incr(mp->mem_end); p=mp->mem_end;
4049 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4050 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4051 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4052 mp_overflow(mp, "main memory size",mp->mem_max);
4053 /* quit; all one-word nodes are busy */
4054 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4057 link(p)=null; /* provide an oft-desired initialization of the new node */
4058 incr(mp->dyn_used);/* maintain statistics */
4062 @ Conversely, a one-word node is recycled by calling |free_avail|.
4064 @d free_avail(A) /* single-word node liberation */
4065 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4067 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4068 overhead at the expense of extra programming. This macro is used in
4069 the places that would otherwise account for the most calls of |get_avail|.
4072 @d fast_get_avail(A) {
4073 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4074 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4075 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4078 @ The available-space list that keeps track of the variable-size portion
4079 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4080 pointed to by the roving pointer |rover|.
4082 Each empty node has size 2 or more; the first word contains the special
4083 value |max_halfword| in its |link| field and the size in its |info| field;
4084 the second word contains the two pointers for double linking.
4086 Each nonempty node also has size 2 or more. Its first word is of type
4087 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4088 Otherwise there is complete flexibility with respect to the contents
4089 of its other fields and its other words.
4091 (We require |mem_max<max_halfword| because terrible things can happen
4092 when |max_halfword| appears in the |link| field of a nonempty node.)
4094 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4095 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4096 @d node_size info /* the size field in empty variable-size nodes */
4097 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4098 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4101 pointer rover; /* points to some node in the list of empties */
4103 @ A call to |get_node| with argument |s| returns a pointer to a new node
4104 of size~|s|, which must be 2~or more. The |link| field of the first word
4105 of this new node is set to null. An overflow stop occurs if no suitable
4108 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4109 areas and returns the value |max_halfword|.
4111 @<Internal library declarations@>=
4112 pointer mp_get_node (MP mp,integer s) ;
4115 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4116 pointer p; /* the node currently under inspection */
4117 pointer q; /* the node physically after node |p| */
4118 integer r; /* the newly allocated node, or a candidate for this honor */
4119 integer t,tt; /* temporary registers */
4122 p=mp->rover; /* start at some free node in the ring */
4124 @<Try to allocate within node |p| and its physical successors,
4125 and |goto found| if allocation was possible@>;
4126 if (rlink(p)==null || rlink(p)==p) {
4127 print_err("Free list garbled");
4128 help3("I found an entry in the list of free nodes that links")
4129 ("badly. I will try to ignore the broken link, but something")
4130 ("is seriously amiss. It is wise to warn the maintainers.")
4134 p=rlink(p); /* move to the next node in the ring */
4135 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4136 if ( s==010000000000 ) {
4137 return max_halfword;
4139 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4140 if ( mp->lo_mem_max+2<=max_halfword ) {
4141 @<Grow more variable-size memory and |goto restart|@>;
4144 mp_overflow(mp, "main memory size",mp->mem_max);
4145 /* sorry, nothing satisfactory is left */
4146 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4148 link(r)=null; /* this node is now nonempty */
4149 mp->var_used+=s; /* maintain usage statistics */
4153 @ The lower part of |mem| grows by 1000 words at a time, unless
4154 we are very close to going under. When it grows, we simply link
4155 a new node into the available-space list. This method of controlled
4156 growth helps to keep the |mem| usage consecutive when \MP\ is
4157 implemented on ``virtual memory'' systems.
4160 @<Grow more variable-size memory and |goto restart|@>=
4162 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4163 t=mp->lo_mem_max+1000;
4165 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4166 /* |lo_mem_max+2<=t<hi_mem_min| */
4168 if ( t>max_halfword ) t=max_halfword;
4169 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4170 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4171 node_size(q)=t-mp->lo_mem_max;
4172 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4177 @ @<Try to allocate...@>=
4178 q=p+node_size(p); /* find the physical successor */
4179 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4180 t=rlink(q); tt=llink(q);
4182 if ( q==mp->rover ) mp->rover=t;
4183 llink(t)=tt; rlink(tt)=t;
4188 @<Allocate from the top of node |p| and |goto found|@>;
4191 if ( rlink(p)!=p ) {
4192 @<Allocate entire node |p| and |goto found|@>;
4195 node_size(p)=q-p /* reset the size in case it grew */
4197 @ @<Allocate from the top...@>=
4199 node_size(p)=r-p; /* store the remaining size */
4200 mp->rover=p; /* start searching here next time */
4204 @ Here we delete node |p| from the ring, and let |rover| rove around.
4206 @<Allocate entire...@>=
4208 mp->rover=rlink(p); t=llink(p);
4209 llink(mp->rover)=t; rlink(t)=mp->rover;
4213 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4214 the operation |free_node(p,s)| will make its words available, by inserting
4215 |p| as a new empty node just before where |rover| now points.
4217 @<Internal library declarations@>=
4218 void mp_free_node (MP mp, pointer p, halfword s) ;
4221 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4223 pointer q; /* |llink(rover)| */
4224 node_size(p)=s; link(p)=empty_flag;
4226 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4227 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4228 mp->var_used-=s; /* maintain statistics */
4231 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4232 available space list. The list is probably very short at such times, so a
4233 simple insertion sort is used. The smallest available location will be
4234 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4237 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4239 pointer p,q,r; /* indices into |mem| */
4240 pointer old_rover; /* initial |rover| setting */
4241 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4242 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4243 while ( p!=old_rover ) {
4244 @<Sort |p| into the list starting at |rover|
4245 and advance |p| to |rlink(p)|@>;
4248 while ( rlink(p)!=max_halfword ) {
4249 llink(rlink(p))=p; p=rlink(p);
4251 rlink(p)=mp->rover; llink(mp->rover)=p;
4254 @ The following |while| loop is guaranteed to
4255 terminate, since the list that starts at
4256 |rover| ends with |max_halfword| during the sorting procedure.
4259 if ( p<mp->rover ) {
4260 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4263 while ( rlink(q)<p ) q=rlink(q);
4264 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4267 @* \[11] Memory layout.
4268 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4269 more efficient than dynamic allocation when we can get away with it. For
4270 example, locations |0| to |1| are always used to store a
4271 two-word dummy token whose second word is zero.
4272 The following macro definitions accomplish the static allocation by giving
4273 symbolic names to the fixed positions. Static variable-size nodes appear
4274 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4275 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4277 @d null_dash (2) /* the first two words are reserved for a null value */
4278 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4279 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4280 @d temp_val (zero_val+2) /* two words for a temporary value node */
4281 @d end_attr temp_val /* we use |end_attr+2| only */
4282 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4283 @d test_pen (inf_val+2)
4284 /* nine words for a pen used when testing the turning number */
4285 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4286 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4287 allocated word in the variable-size |mem| */
4289 @d sentinel mp->mem_top /* end of sorted lists */
4290 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4291 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4292 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4293 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4294 the one-word |mem| */
4296 @ The following code gets the dynamic part of |mem| off to a good start,
4297 when \MP\ is initializing itself the slow way.
4299 @<Initialize table entries (done by \.{INIMP} only)@>=
4300 @^data structure assumptions@>
4301 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4302 link(mp->rover)=empty_flag;
4303 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4304 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4305 mp->lo_mem_max=mp->rover+1000;
4306 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4307 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4308 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4310 mp->avail=null; mp->mem_end=mp->mem_top;
4311 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4312 mp->var_used=lo_mem_stat_max+1;
4313 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4314 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4316 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4317 nodes that starts at a given position, until coming to |sentinel| or a
4318 pointer that is not in the one-word region. Another procedure,
4319 |flush_node_list|, frees an entire linked list of one-word and two-word
4320 nodes, until coming to a |null| pointer.
4324 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4325 pointer q,r; /* list traversers */
4326 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4331 if ( r<mp->hi_mem_min ) break;
4332 } while (r!=sentinel);
4333 /* now |q| is the last node on the list */
4334 link(q)=mp->avail; mp->avail=p;
4338 void mp_flush_node_list (MP mp,pointer p) {
4339 pointer q; /* the node being recycled */
4342 if ( q<mp->hi_mem_min )
4343 mp_free_node(mp, q,2);
4349 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4350 For example, some pointers might be wrong, or some ``dead'' nodes might not
4351 have been freed when the last reference to them disappeared. Procedures
4352 |check_mem| and |search_mem| are available to help diagnose such
4353 problems. These procedures make use of two arrays called |free| and
4354 |was_free| that are present only if \MP's debugging routines have
4355 been included. (You may want to decrease the size of |mem| while you
4359 Because |boolean|s are typedef-d as ints, it is better to use
4360 unsigned chars here.
4363 unsigned char *free; /* free cells */
4364 unsigned char *was_free; /* previously free cells */
4365 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4366 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4367 boolean panicking; /* do we want to check memory constantly? */
4369 @ @<Allocate or initialize ...@>=
4370 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4371 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4373 @ @<Dealloc variables@>=
4375 xfree(mp->was_free);
4377 @ @<Allocate or ...@>=
4378 mp->was_mem_end=0; /* indicate that everything was previously free */
4379 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4380 mp->panicking=false;
4382 @ @<Declare |mp_reallocate| functions@>=
4383 void mp_reallocate_memory(MP mp, int l) ;
4386 void mp_reallocate_memory(MP mp, int l) {
4387 XREALLOC(mp->free, l, unsigned char);
4388 XREALLOC(mp->was_free, l, unsigned char);
4390 int newarea = l-mp->mem_max;
4391 XREALLOC(mp->mem, l, memory_word);
4392 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4394 XREALLOC(mp->mem, l, memory_word);
4395 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4398 if (mp->ini_version)
4404 @ Procedure |check_mem| makes sure that the available space lists of
4405 |mem| are well formed, and it optionally prints out all locations
4406 that are reserved now but were free the last time this procedure was called.
4409 void mp_check_mem (MP mp,boolean print_locs ) {
4410 pointer p,q,r; /* current locations of interest in |mem| */
4411 boolean clobbered; /* is something amiss? */
4412 for (p=0;p<=mp->lo_mem_max;p++) {
4413 mp->free[p]=false; /* you can probably do this faster */
4415 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4416 mp->free[p]=false; /* ditto */
4418 @<Check single-word |avail| list@>;
4419 @<Check variable-size |avail| list@>;
4420 @<Check flags of unavailable nodes@>;
4421 @<Check the list of linear dependencies@>;
4423 @<Print newly busy locations@>;
4425 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4426 mp->was_mem_end=mp->mem_end;
4427 mp->was_lo_max=mp->lo_mem_max;
4428 mp->was_hi_min=mp->hi_mem_min;
4431 @ @<Check single-word...@>=
4432 p=mp->avail; q=null; clobbered=false;
4434 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4435 else if ( mp->free[p] ) clobbered=true;
4437 mp_print_nl(mp, "AVAIL list clobbered at ");
4438 @.AVAIL list clobbered...@>
4439 mp_print_int(mp, q); break;
4441 mp->free[p]=true; q=p; p=link(q);
4444 @ @<Check variable-size...@>=
4445 p=mp->rover; q=null; clobbered=false;
4447 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4448 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4449 else if ( !(is_empty(p))||(node_size(p)<2)||
4450 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4452 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4453 @.Double-AVAIL list clobbered...@>
4454 mp_print_int(mp, q); break;
4456 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4457 if ( mp->free[q] ) {
4458 mp_print_nl(mp, "Doubly free location at ");
4459 @.Doubly free location...@>
4460 mp_print_int(mp, q); break;
4465 } while (p!=mp->rover)
4468 @ @<Check flags...@>=
4470 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4471 if ( is_empty(p) ) {
4472 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4475 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4476 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4479 @ @<Print newly busy...@>=
4481 @<Do intialization required before printing new busy locations@>;
4482 mp_print_nl(mp, "New busy locs:");
4484 for (p=0;p<= mp->lo_mem_max;p++ ) {
4485 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4486 @<Indicate that |p| is a new busy location@>;
4489 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4490 if ( ! mp->free[p] &&
4491 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4492 @<Indicate that |p| is a new busy location@>;
4495 @<Finish printing new busy locations@>;
4498 @ There might be many new busy locations so we are careful to print contiguous
4499 blocks compactly. During this operation |q| is the last new busy location and
4500 |r| is the start of the block containing |q|.
4502 @<Indicate that |p| is a new busy location@>=
4506 mp_print(mp, ".."); mp_print_int(mp, q);
4508 mp_print_char(mp, ' '); mp_print_int(mp, p);
4514 @ @<Do intialization required before printing new busy locations@>=
4515 q=mp->mem_max; r=mp->mem_max
4517 @ @<Finish printing new busy locations@>=
4519 mp_print(mp, ".."); mp_print_int(mp, q);
4522 @ The |search_mem| procedure attempts to answer the question ``Who points
4523 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4524 that might not be of type |two_halves|. Strictly speaking, this is
4526 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4527 point to |p| purely by coincidence). But for debugging purposes, we want
4528 to rule out the places that do {\sl not\/} point to |p|, so a few false
4529 drops are tolerable.
4532 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4533 integer q; /* current position being searched */
4534 for (q=0;q<=mp->lo_mem_max;q++) {
4536 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4539 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4542 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4544 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4547 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4550 @<Search |eqtb| for equivalents equal to |p|@>;
4553 @* \[12] The command codes.
4554 Before we can go much further, we need to define symbolic names for the internal
4555 code numbers that represent the various commands obeyed by \MP. These codes
4556 are somewhat arbitrary, but not completely so. For example,
4557 some codes have been made adjacent so that |case| statements in the
4558 program need not consider cases that are widely spaced, or so that |case|
4559 statements can be replaced by |if| statements. A command can begin an
4560 expression if and only if its code lies between |min_primary_command| and
4561 |max_primary_command|, inclusive. The first token of a statement that doesn't
4562 begin with an expression has a command code between |min_command| and
4563 |max_statement_command|, inclusive. Anything less than |min_command| is
4564 eliminated during macro expansions, and anything no more than |max_pre_command|
4565 is eliminated when expanding \TeX\ material. Ranges such as
4566 |min_secondary_command..max_secondary_command| are used when parsing
4567 expressions, but the relative ordering within such a range is generally not
4570 The ordering of the highest-numbered commands
4571 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4572 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4573 for the smallest two commands. The ordering is also important in the ranges
4574 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4576 At any rate, here is the list, for future reference.
4578 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4579 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4580 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4581 @d max_pre_command mpx_break
4582 @d if_test 4 /* conditional text (\&{if}) */
4583 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4584 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4585 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4586 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4587 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4588 @d relax 10 /* do nothing (\.{\char`\\}) */
4589 @d scan_tokens 11 /* put a string into the input buffer */
4590 @d expand_after 12 /* look ahead one token */
4591 @d defined_macro 13 /* a macro defined by the user */
4592 @d min_command (defined_macro+1)
4593 @d save_command 14 /* save a list of tokens (\&{save}) */
4594 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4595 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4596 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4597 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4598 @d ship_out_command 19 /* output a character (\&{shipout}) */
4599 @d add_to_command 20 /* add to edges (\&{addto}) */
4600 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4601 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4602 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4603 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4604 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4605 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4606 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4607 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4608 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4609 @d special_command 30 /* output special info (\&{special})
4610 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4611 @d write_command 31 /* write text to a file (\&{write}) */
4612 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4613 @d max_statement_command type_name
4614 @d min_primary_command type_name
4615 @d left_delimiter 33 /* the left delimiter of a matching pair */
4616 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4617 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4618 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4619 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4620 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4621 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4622 @d capsule_token 40 /* a value that has been put into a token list */
4623 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4624 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4625 @d min_suffix_token internal_quantity
4626 @d tag_token 43 /* a symbolic token without a primitive meaning */
4627 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4628 @d max_suffix_token numeric_token
4629 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4630 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4631 @d min_tertiary_command plus_or_minus
4632 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4633 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4634 @d max_tertiary_command tertiary_binary
4635 @d left_brace 48 /* the operator `\.{\char`\{}' */
4636 @d min_expression_command left_brace
4637 @d path_join 49 /* the operator `\.{..}' */
4638 @d ampersand 50 /* the operator `\.\&' */
4639 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4640 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4641 @d equals 53 /* the operator `\.=' */
4642 @d max_expression_command equals
4643 @d and_command 54 /* the operator `\&{and}' */
4644 @d min_secondary_command and_command
4645 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4646 @d slash 56 /* the operator `\./' */
4647 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4648 @d max_secondary_command secondary_binary
4649 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4650 @d controls 59 /* specify control points explicitly (\&{controls}) */
4651 @d tension 60 /* specify tension between knots (\&{tension}) */
4652 @d at_least 61 /* bounded tension value (\&{atleast}) */
4653 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4654 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4655 @d right_delimiter 64 /* the right delimiter of a matching pair */
4656 @d left_bracket 65 /* the operator `\.[' */
4657 @d right_bracket 66 /* the operator `\.]' */
4658 @d right_brace 67 /* the operator `\.{\char`\}}' */
4659 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4661 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4662 @d of_token 70 /* the operator `\&{of}' */
4663 @d to_token 71 /* the operator `\&{to}' */
4664 @d step_token 72 /* the operator `\&{step}' */
4665 @d until_token 73 /* the operator `\&{until}' */
4666 @d within_token 74 /* the operator `\&{within}' */
4667 @d lig_kern_token 75
4668 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4669 @d assignment 76 /* the operator `\.{:=}' */
4670 @d skip_to 77 /* the operation `\&{skipto}' */
4671 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4672 @d double_colon 79 /* the operator `\.{::}' */
4673 @d colon 80 /* the operator `\.:' */
4675 @d comma 81 /* the operator `\.,', must be |colon+1| */
4676 @d end_of_statement (mp->cur_cmd>comma)
4677 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4678 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4679 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4680 @d max_command_code stop
4681 @d outer_tag (max_command_code+1) /* protection code added to command code */
4684 typedef int command_code;
4686 @ Variables and capsules in \MP\ have a variety of ``types,''
4687 distinguished by the code numbers defined here. These numbers are also
4688 not completely arbitrary. Things that get expanded must have types
4689 |>mp_independent|; a type remaining after expansion is numeric if and only if
4690 its code number is at least |numeric_type|; objects containing numeric
4691 parts must have types between |transform_type| and |pair_type|;
4692 all other types must be smaller than |transform_type|; and among the types
4693 that are not unknown or vacuous, the smallest two must be |boolean_type|
4694 and |string_type| in that order.
4696 @d undefined 0 /* no type has been declared */
4697 @d unknown_tag 1 /* this constant is added to certain type codes below */
4698 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4699 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4702 enum mp_variable_type {
4703 mp_vacuous=1, /* no expression was present */
4704 mp_boolean_type, /* \&{boolean} with a known value */
4706 mp_string_type, /* \&{string} with a known value */
4708 mp_pen_type, /* \&{pen} with a known value */
4710 mp_path_type, /* \&{path} with a known value */
4712 mp_picture_type, /* \&{picture} with a known value */
4714 mp_transform_type, /* \&{transform} variable or capsule */
4715 mp_color_type, /* \&{color} variable or capsule */
4716 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4717 mp_pair_type, /* \&{pair} variable or capsule */
4718 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4719 mp_known, /* \&{numeric} with a known value */
4720 mp_dependent, /* a linear combination with |fraction| coefficients */
4721 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4722 mp_independent, /* \&{numeric} with unknown value */
4723 mp_token_list, /* variable name or suffix argument or text argument */
4724 mp_structured, /* variable with subscripts and attributes */
4725 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4726 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4730 void mp_print_type (MP mp,small_number t) ;
4732 @ @<Basic printing procedures@>=
4733 void mp_print_type (MP mp,small_number t) {
4735 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4736 case mp_boolean_type:mp_print(mp, "boolean"); break;
4737 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4738 case mp_string_type:mp_print(mp, "string"); break;
4739 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4740 case mp_pen_type:mp_print(mp, "pen"); break;
4741 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4742 case mp_path_type:mp_print(mp, "path"); break;
4743 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4744 case mp_picture_type:mp_print(mp, "picture"); break;
4745 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4746 case mp_transform_type:mp_print(mp, "transform"); break;
4747 case mp_color_type:mp_print(mp, "color"); break;
4748 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4749 case mp_pair_type:mp_print(mp, "pair"); break;
4750 case mp_known:mp_print(mp, "known numeric"); break;
4751 case mp_dependent:mp_print(mp, "dependent"); break;
4752 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4753 case mp_numeric_type:mp_print(mp, "numeric"); break;
4754 case mp_independent:mp_print(mp, "independent"); break;
4755 case mp_token_list:mp_print(mp, "token list"); break;
4756 case mp_structured:mp_print(mp, "mp_structured"); break;
4757 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4758 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4759 default: mp_print(mp, "undefined"); break;
4763 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4764 as well as a |type|. The possibilities for |name_type| are defined
4765 here; they will be explained in more detail later.
4769 mp_root=0, /* |name_type| at the top level of a variable */
4770 mp_saved_root, /* same, when the variable has been saved */
4771 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4772 mp_subscr, /* |name_type| in a subscript node */
4773 mp_attr, /* |name_type| in an attribute node */
4774 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4775 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4776 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4777 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4778 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4779 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4780 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4781 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4782 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4783 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4784 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4785 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4786 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4787 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4788 mp_capsule, /* |name_type| in stashed-away subexpressions */
4789 mp_token /* |name_type| in a numeric token or string token */
4792 @ Primitive operations that produce values have a secondary identification
4793 code in addition to their command code; it's something like genera and species.
4794 For example, `\.*' has the command code |primary_binary|, and its
4795 secondary identification is |times|. The secondary codes start at 30 so that
4796 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4797 are used as operators as well as type identifications. The relative values
4798 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4799 and |filled_op..bounded_op|. The restrictions are that
4800 |and_op-false_code=or_op-true_code|, that the ordering of
4801 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4802 and the ordering of |filled_op..bounded_op| must match that of the code
4803 values they test for.
4805 @d true_code 30 /* operation code for \.{true} */
4806 @d false_code 31 /* operation code for \.{false} */
4807 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4808 @d null_pen_code 33 /* operation code for \.{nullpen} */
4809 @d job_name_op 34 /* operation code for \.{jobname} */
4810 @d read_string_op 35 /* operation code for \.{readstring} */
4811 @d pen_circle 36 /* operation code for \.{pencircle} */
4812 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4813 @d read_from_op 38 /* operation code for \.{readfrom} */
4814 @d close_from_op 39 /* operation code for \.{closefrom} */
4815 @d odd_op 40 /* operation code for \.{odd} */
4816 @d known_op 41 /* operation code for \.{known} */
4817 @d unknown_op 42 /* operation code for \.{unknown} */
4818 @d not_op 43 /* operation code for \.{not} */
4819 @d decimal 44 /* operation code for \.{decimal} */
4820 @d reverse 45 /* operation code for \.{reverse} */
4821 @d make_path_op 46 /* operation code for \.{makepath} */
4822 @d make_pen_op 47 /* operation code for \.{makepen} */
4823 @d oct_op 48 /* operation code for \.{oct} */
4824 @d hex_op 49 /* operation code for \.{hex} */
4825 @d ASCII_op 50 /* operation code for \.{ASCII} */
4826 @d char_op 51 /* operation code for \.{char} */
4827 @d length_op 52 /* operation code for \.{length} */
4828 @d turning_op 53 /* operation code for \.{turningnumber} */
4829 @d color_model_part 54 /* operation code for \.{colormodel} */
4830 @d x_part 55 /* operation code for \.{xpart} */
4831 @d y_part 56 /* operation code for \.{ypart} */
4832 @d xx_part 57 /* operation code for \.{xxpart} */
4833 @d xy_part 58 /* operation code for \.{xypart} */
4834 @d yx_part 59 /* operation code for \.{yxpart} */
4835 @d yy_part 60 /* operation code for \.{yypart} */
4836 @d red_part 61 /* operation code for \.{redpart} */
4837 @d green_part 62 /* operation code for \.{greenpart} */
4838 @d blue_part 63 /* operation code for \.{bluepart} */
4839 @d cyan_part 64 /* operation code for \.{cyanpart} */
4840 @d magenta_part 65 /* operation code for \.{magentapart} */
4841 @d yellow_part 66 /* operation code for \.{yellowpart} */
4842 @d black_part 67 /* operation code for \.{blackpart} */
4843 @d grey_part 68 /* operation code for \.{greypart} */
4844 @d font_part 69 /* operation code for \.{fontpart} */
4845 @d text_part 70 /* operation code for \.{textpart} */
4846 @d path_part 71 /* operation code for \.{pathpart} */
4847 @d pen_part 72 /* operation code for \.{penpart} */
4848 @d dash_part 73 /* operation code for \.{dashpart} */
4849 @d sqrt_op 74 /* operation code for \.{sqrt} */
4850 @d m_exp_op 75 /* operation code for \.{mexp} */
4851 @d m_log_op 76 /* operation code for \.{mlog} */
4852 @d sin_d_op 77 /* operation code for \.{sind} */
4853 @d cos_d_op 78 /* operation code for \.{cosd} */
4854 @d floor_op 79 /* operation code for \.{floor} */
4855 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4856 @d char_exists_op 81 /* operation code for \.{charexists} */
4857 @d font_size 82 /* operation code for \.{fontsize} */
4858 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4859 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4860 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4861 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4862 @d arc_length 87 /* operation code for \.{arclength} */
4863 @d angle_op 88 /* operation code for \.{angle} */
4864 @d cycle_op 89 /* operation code for \.{cycle} */
4865 @d filled_op 90 /* operation code for \.{filled} */
4866 @d stroked_op 91 /* operation code for \.{stroked} */
4867 @d textual_op 92 /* operation code for \.{textual} */
4868 @d clipped_op 93 /* operation code for \.{clipped} */
4869 @d bounded_op 94 /* operation code for \.{bounded} */
4870 @d plus 95 /* operation code for \.+ */
4871 @d minus 96 /* operation code for \.- */
4872 @d times 97 /* operation code for \.* */
4873 @d over 98 /* operation code for \./ */
4874 @d pythag_add 99 /* operation code for \.{++} */
4875 @d pythag_sub 100 /* operation code for \.{+-+} */
4876 @d or_op 101 /* operation code for \.{or} */
4877 @d and_op 102 /* operation code for \.{and} */
4878 @d less_than 103 /* operation code for \.< */
4879 @d less_or_equal 104 /* operation code for \.{<=} */
4880 @d greater_than 105 /* operation code for \.> */
4881 @d greater_or_equal 106 /* operation code for \.{>=} */
4882 @d equal_to 107 /* operation code for \.= */
4883 @d unequal_to 108 /* operation code for \.{<>} */
4884 @d concatenate 109 /* operation code for \.\& */
4885 @d rotated_by 110 /* operation code for \.{rotated} */
4886 @d slanted_by 111 /* operation code for \.{slanted} */
4887 @d scaled_by 112 /* operation code for \.{scaled} */
4888 @d shifted_by 113 /* operation code for \.{shifted} */
4889 @d transformed_by 114 /* operation code for \.{transformed} */
4890 @d x_scaled 115 /* operation code for \.{xscaled} */
4891 @d y_scaled 116 /* operation code for \.{yscaled} */
4892 @d z_scaled 117 /* operation code for \.{zscaled} */
4893 @d in_font 118 /* operation code for \.{infont} */
4894 @d intersect 119 /* operation code for \.{intersectiontimes} */
4895 @d double_dot 120 /* operation code for improper \.{..} */
4896 @d substring_of 121 /* operation code for \.{substring} */
4897 @d min_of substring_of
4898 @d subpath_of 122 /* operation code for \.{subpath} */
4899 @d direction_time_of 123 /* operation code for \.{directiontime} */
4900 @d point_of 124 /* operation code for \.{point} */
4901 @d precontrol_of 125 /* operation code for \.{precontrol} */
4902 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4903 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4904 @d arc_time_of 128 /* operation code for \.{arctime} */
4905 @d mp_version 129 /* operation code for \.{mpversion} */
4906 @d envelope_of 130 /* operation code for \{.envelope} */
4908 @c void mp_print_op (MP mp,quarterword c) {
4909 if (c<=mp_numeric_type ) {
4910 mp_print_type(mp, c);
4913 case true_code:mp_print(mp, "true"); break;
4914 case false_code:mp_print(mp, "false"); break;
4915 case null_picture_code:mp_print(mp, "nullpicture"); break;
4916 case null_pen_code:mp_print(mp, "nullpen"); break;
4917 case job_name_op:mp_print(mp, "jobname"); break;
4918 case read_string_op:mp_print(mp, "readstring"); break;
4919 case pen_circle:mp_print(mp, "pencircle"); break;
4920 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4921 case read_from_op:mp_print(mp, "readfrom"); break;
4922 case close_from_op:mp_print(mp, "closefrom"); break;
4923 case odd_op:mp_print(mp, "odd"); break;
4924 case known_op:mp_print(mp, "known"); break;
4925 case unknown_op:mp_print(mp, "unknown"); break;
4926 case not_op:mp_print(mp, "not"); break;
4927 case decimal:mp_print(mp, "decimal"); break;
4928 case reverse:mp_print(mp, "reverse"); break;
4929 case make_path_op:mp_print(mp, "makepath"); break;
4930 case make_pen_op:mp_print(mp, "makepen"); break;
4931 case oct_op:mp_print(mp, "oct"); break;
4932 case hex_op:mp_print(mp, "hex"); break;
4933 case ASCII_op:mp_print(mp, "ASCII"); break;
4934 case char_op:mp_print(mp, "char"); break;
4935 case length_op:mp_print(mp, "length"); break;
4936 case turning_op:mp_print(mp, "turningnumber"); break;
4937 case x_part:mp_print(mp, "xpart"); break;
4938 case y_part:mp_print(mp, "ypart"); break;
4939 case xx_part:mp_print(mp, "xxpart"); break;
4940 case xy_part:mp_print(mp, "xypart"); break;
4941 case yx_part:mp_print(mp, "yxpart"); break;
4942 case yy_part:mp_print(mp, "yypart"); break;
4943 case red_part:mp_print(mp, "redpart"); break;
4944 case green_part:mp_print(mp, "greenpart"); break;
4945 case blue_part:mp_print(mp, "bluepart"); break;
4946 case cyan_part:mp_print(mp, "cyanpart"); break;
4947 case magenta_part:mp_print(mp, "magentapart"); break;
4948 case yellow_part:mp_print(mp, "yellowpart"); break;
4949 case black_part:mp_print(mp, "blackpart"); break;
4950 case grey_part:mp_print(mp, "greypart"); break;
4951 case color_model_part:mp_print(mp, "colormodel"); break;
4952 case font_part:mp_print(mp, "fontpart"); break;
4953 case text_part:mp_print(mp, "textpart"); break;
4954 case path_part:mp_print(mp, "pathpart"); break;
4955 case pen_part:mp_print(mp, "penpart"); break;
4956 case dash_part:mp_print(mp, "dashpart"); break;
4957 case sqrt_op:mp_print(mp, "sqrt"); break;
4958 case m_exp_op:mp_print(mp, "mexp"); break;
4959 case m_log_op:mp_print(mp, "mlog"); break;
4960 case sin_d_op:mp_print(mp, "sind"); break;
4961 case cos_d_op:mp_print(mp, "cosd"); break;
4962 case floor_op:mp_print(mp, "floor"); break;
4963 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4964 case char_exists_op:mp_print(mp, "charexists"); break;
4965 case font_size:mp_print(mp, "fontsize"); break;
4966 case ll_corner_op:mp_print(mp, "llcorner"); break;
4967 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4968 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4969 case ur_corner_op:mp_print(mp, "urcorner"); break;
4970 case arc_length:mp_print(mp, "arclength"); break;
4971 case angle_op:mp_print(mp, "angle"); break;
4972 case cycle_op:mp_print(mp, "cycle"); break;
4973 case filled_op:mp_print(mp, "filled"); break;
4974 case stroked_op:mp_print(mp, "stroked"); break;
4975 case textual_op:mp_print(mp, "textual"); break;
4976 case clipped_op:mp_print(mp, "clipped"); break;
4977 case bounded_op:mp_print(mp, "bounded"); break;
4978 case plus:mp_print_char(mp, '+'); break;
4979 case minus:mp_print_char(mp, '-'); break;
4980 case times:mp_print_char(mp, '*'); break;
4981 case over:mp_print_char(mp, '/'); break;
4982 case pythag_add:mp_print(mp, "++"); break;
4983 case pythag_sub:mp_print(mp, "+-+"); break;
4984 case or_op:mp_print(mp, "or"); break;
4985 case and_op:mp_print(mp, "and"); break;
4986 case less_than:mp_print_char(mp, '<'); break;
4987 case less_or_equal:mp_print(mp, "<="); break;
4988 case greater_than:mp_print_char(mp, '>'); break;
4989 case greater_or_equal:mp_print(mp, ">="); break;
4990 case equal_to:mp_print_char(mp, '='); break;
4991 case unequal_to:mp_print(mp, "<>"); break;
4992 case concatenate:mp_print(mp, "&"); break;
4993 case rotated_by:mp_print(mp, "rotated"); break;
4994 case slanted_by:mp_print(mp, "slanted"); break;
4995 case scaled_by:mp_print(mp, "scaled"); break;
4996 case shifted_by:mp_print(mp, "shifted"); break;
4997 case transformed_by:mp_print(mp, "transformed"); break;
4998 case x_scaled:mp_print(mp, "xscaled"); break;
4999 case y_scaled:mp_print(mp, "yscaled"); break;
5000 case z_scaled:mp_print(mp, "zscaled"); break;
5001 case in_font:mp_print(mp, "infont"); break;
5002 case intersect:mp_print(mp, "intersectiontimes"); break;
5003 case substring_of:mp_print(mp, "substring"); break;
5004 case subpath_of:mp_print(mp, "subpath"); break;
5005 case direction_time_of:mp_print(mp, "directiontime"); break;
5006 case point_of:mp_print(mp, "point"); break;
5007 case precontrol_of:mp_print(mp, "precontrol"); break;
5008 case postcontrol_of:mp_print(mp, "postcontrol"); break;
5009 case pen_offset_of:mp_print(mp, "penoffset"); break;
5010 case arc_time_of:mp_print(mp, "arctime"); break;
5011 case mp_version:mp_print(mp, "mpversion"); break;
5012 case envelope_of:mp_print(mp, "envelope"); break;
5013 default: mp_print(mp, ".."); break;
5018 @ \MP\ also has a bunch of internal parameters that a user might want to
5019 fuss with. Every such parameter has an identifying code number, defined here.
5022 enum mp_given_internal {
5023 mp_tracing_titles=1, /* show titles online when they appear */
5024 mp_tracing_equations, /* show each variable when it becomes known */
5025 mp_tracing_capsules, /* show capsules too */
5026 mp_tracing_choices, /* show the control points chosen for paths */
5027 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
5028 mp_tracing_commands, /* show commands and operations before they are performed */
5029 mp_tracing_restores, /* show when a variable or internal is restored */
5030 mp_tracing_macros, /* show macros before they are expanded */
5031 mp_tracing_output, /* show digitized edges as they are output */
5032 mp_tracing_stats, /* show memory usage at end of job */
5033 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
5034 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
5035 mp_year, /* the current year (e.g., 1984) */
5036 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
5037 mp_day, /* the current day of the month */
5038 mp_time, /* the number of minutes past midnight when this job started */
5039 mp_char_code, /* the number of the next character to be output */
5040 mp_char_ext, /* the extension code of the next character to be output */
5041 mp_char_wd, /* the width of the next character to be output */
5042 mp_char_ht, /* the height of the next character to be output */
5043 mp_char_dp, /* the depth of the next character to be output */
5044 mp_char_ic, /* the italic correction of the next character to be output */
5045 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5046 mp_pausing, /* positive to display lines on the terminal before they are read */
5047 mp_showstopping, /* positive to stop after each \&{show} command */
5048 mp_fontmaking, /* positive if font metric output is to be produced */
5049 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5050 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5051 mp_miterlimit, /* controls miter length as in \ps */
5052 mp_warning_check, /* controls error message when variable value is large */
5053 mp_boundary_char, /* the right boundary character for ligatures */
5054 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5055 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5056 mp_default_color_model, /* the default color model for unspecified items */
5057 mp_restore_clip_color,
5058 mp_procset, /* wether or not create PostScript command shortcuts */
5059 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
5064 @d max_given_internal mp_gtroffmode
5067 scaled *internal; /* the values of internal quantities */
5068 char **int_name; /* their names */
5069 int int_ptr; /* the maximum internal quantity defined so far */
5070 int max_internal; /* current maximum number of internal quantities */
5073 @ @<Option variables@>=
5076 @ @<Allocate or initialize ...@>=
5077 mp->max_internal=2*max_given_internal;
5078 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5079 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5080 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5082 @ @<Exported function ...@>=
5083 int mp_troff_mode(MP mp);
5086 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5088 @ @<Set initial ...@>=
5089 for (k=0;k<= mp->max_internal; k++ ) {
5091 mp->int_name[k]=NULL;
5093 mp->int_ptr=max_given_internal;
5095 @ The symbolic names for internal quantities are put into \MP's hash table
5096 by using a routine called |primitive|, which will be defined later. Let us
5097 enter them now, so that we don't have to list all those names again
5100 @<Put each of \MP's primitives into the hash table@>=
5101 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5102 @:tracingtitles_}{\&{tracingtitles} primitive@>
5103 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5104 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5105 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5106 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5107 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5108 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5109 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5110 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5111 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5112 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5113 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5114 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5115 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5116 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5117 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5118 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5119 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5120 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5121 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5122 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5123 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5124 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5125 mp_primitive(mp, "year",internal_quantity,mp_year);
5126 @:mp_year_}{\&{year} primitive@>
5127 mp_primitive(mp, "month",internal_quantity,mp_month);
5128 @:mp_month_}{\&{month} primitive@>
5129 mp_primitive(mp, "day",internal_quantity,mp_day);
5130 @:mp_day_}{\&{day} primitive@>
5131 mp_primitive(mp, "time",internal_quantity,mp_time);
5132 @:time_}{\&{time} primitive@>
5133 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5134 @:mp_char_code_}{\&{charcode} primitive@>
5135 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5136 @:mp_char_ext_}{\&{charext} primitive@>
5137 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5138 @:mp_char_wd_}{\&{charwd} primitive@>
5139 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5140 @:mp_char_ht_}{\&{charht} primitive@>
5141 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5142 @:mp_char_dp_}{\&{chardp} primitive@>
5143 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5144 @:mp_char_ic_}{\&{charic} primitive@>
5145 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5146 @:mp_design_size_}{\&{designsize} primitive@>
5147 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5148 @:mp_pausing_}{\&{pausing} primitive@>
5149 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5150 @:mp_showstopping_}{\&{showstopping} primitive@>
5151 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5152 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5153 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5154 @:mp_linejoin_}{\&{linejoin} primitive@>
5155 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5156 @:mp_linecap_}{\&{linecap} primitive@>
5157 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5158 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5159 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5160 @:mp_warning_check_}{\&{warningcheck} primitive@>
5161 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5162 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5163 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5164 @:mp_prologues_}{\&{prologues} primitive@>
5165 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5166 @:mp_true_corners_}{\&{truecorners} primitive@>
5167 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5168 @:mp_procset_}{\&{mpprocset} primitive@>
5169 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5170 @:troffmode_}{\&{troffmode} primitive@>
5171 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5172 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5173 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5174 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5176 @ Colors can be specified in four color models. In the special
5177 case of |no_model|, MetaPost does not output any color operator to
5178 the postscript output.
5180 Note: these values are passed directly on to |with_option|. This only
5181 works because the other possible values passed to |with_option| are
5182 8 and 10 respectively (from |with_pen| and |with_picture|).
5184 There is a first state, that is only used for |gs_colormodel|. It flags
5185 the fact that there has not been any kind of color specification by
5186 the user so far in the game.
5189 enum mp_color_model {
5194 mp_uninitialized_model=9,
5198 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5199 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5200 mp->internal[mp_restore_clip_color]=unity;
5202 @ Well, we do have to list the names one more time, for use in symbolic
5205 @<Initialize table...@>=
5206 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5207 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5208 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5209 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5210 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5211 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5212 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5213 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5214 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5215 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5216 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5217 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5218 mp->int_name[mp_year]=xstrdup("year");
5219 mp->int_name[mp_month]=xstrdup("month");
5220 mp->int_name[mp_day]=xstrdup("day");
5221 mp->int_name[mp_time]=xstrdup("time");
5222 mp->int_name[mp_char_code]=xstrdup("charcode");
5223 mp->int_name[mp_char_ext]=xstrdup("charext");
5224 mp->int_name[mp_char_wd]=xstrdup("charwd");
5225 mp->int_name[mp_char_ht]=xstrdup("charht");
5226 mp->int_name[mp_char_dp]=xstrdup("chardp");
5227 mp->int_name[mp_char_ic]=xstrdup("charic");
5228 mp->int_name[mp_design_size]=xstrdup("designsize");
5229 mp->int_name[mp_pausing]=xstrdup("pausing");
5230 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5231 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5232 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5233 mp->int_name[mp_linecap]=xstrdup("linecap");
5234 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5235 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5236 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5237 mp->int_name[mp_prologues]=xstrdup("prologues");
5238 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5239 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5240 mp->int_name[mp_procset]=xstrdup("mpprocset");
5241 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5242 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5244 @ The following procedure, which is called just before \MP\ initializes its
5245 input and output, establishes the initial values of the date and time.
5246 @^system dependencies@>
5248 Note that the values are |scaled| integers. Hence \MP\ can no longer
5249 be used after the year 32767.
5252 void mp_fix_date_and_time (MP mp) {
5253 time_t clock = time ((time_t *) 0);
5254 struct tm *tmptr = localtime (&clock);
5255 mp->internal[mp_time]=
5256 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5257 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5258 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5259 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5263 void mp_fix_date_and_time (MP mp) ;
5265 @ \MP\ is occasionally supposed to print diagnostic information that
5266 goes only into the transcript file, unless |mp_tracing_online| is positive.
5267 Now that we have defined |mp_tracing_online| we can define
5268 two routines that adjust the destination of print commands:
5271 void mp_begin_diagnostic (MP mp) ;
5272 void mp_end_diagnostic (MP mp,boolean blank_line);
5273 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5275 @ @<Basic printing...@>=
5276 @<Declare a function called |true_line|@>;
5277 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5278 mp->old_setting=mp->selector;
5279 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5281 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5285 void mp_end_diagnostic (MP mp,boolean blank_line) {
5286 /* restore proper conditions after tracing */
5287 mp_print_nl(mp, "");
5288 if ( blank_line ) mp_print_ln(mp);
5289 mp->selector=mp->old_setting;
5295 unsigned int old_setting;
5297 @ We will occasionally use |begin_diagnostic| in connection with line-number
5298 printing, as follows. (The parameter |s| is typically |"Path"| or
5299 |"Cycle spec"|, etc.)
5301 @<Basic printing...@>=
5302 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5303 mp_begin_diagnostic(mp);
5304 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5305 mp_print(mp, " at line ");
5306 mp_print_int(mp, mp_true_line(mp));
5307 mp_print(mp, t); mp_print_char(mp, ':');
5310 @ The 256 |ASCII_code| characters are grouped into classes by means of
5311 the |char_class| table. Individual class numbers have no semantic
5312 or syntactic significance, except in a few instances defined here.
5313 There's also |max_class|, which can be used as a basis for additional
5314 class numbers in nonstandard extensions of \MP.
5316 @d digit_class 0 /* the class number of \.{0123456789} */
5317 @d period_class 1 /* the class number of `\..' */
5318 @d space_class 2 /* the class number of spaces and nonstandard characters */
5319 @d percent_class 3 /* the class number of `\.\%' */
5320 @d string_class 4 /* the class number of `\."' */
5321 @d right_paren_class 8 /* the class number of `\.)' */
5322 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5323 @d letter_class 9 /* letters and the underline character */
5324 @d left_bracket_class 17 /* `\.[' */
5325 @d right_bracket_class 18 /* `\.]' */
5326 @d invalid_class 20 /* bad character in the input */
5327 @d max_class 20 /* the largest class number */
5330 int char_class[256]; /* the class numbers */
5332 @ If changes are made to accommodate non-ASCII character sets, they should
5333 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5334 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5335 @^system dependencies@>
5337 @<Set initial ...@>=
5338 for (k='0';k<='9';k++)
5339 mp->char_class[k]=digit_class;
5340 mp->char_class['.']=period_class;
5341 mp->char_class[' ']=space_class;
5342 mp->char_class['%']=percent_class;
5343 mp->char_class['"']=string_class;
5344 mp->char_class[',']=5;
5345 mp->char_class[';']=6;
5346 mp->char_class['(']=7;
5347 mp->char_class[')']=right_paren_class;
5348 for (k='A';k<= 'Z';k++ )
5349 mp->char_class[k]=letter_class;
5350 for (k='a';k<='z';k++)
5351 mp->char_class[k]=letter_class;
5352 mp->char_class['_']=letter_class;
5353 mp->char_class['<']=10;
5354 mp->char_class['=']=10;
5355 mp->char_class['>']=10;
5356 mp->char_class[':']=10;
5357 mp->char_class['|']=10;
5358 mp->char_class['`']=11;
5359 mp->char_class['\'']=11;
5360 mp->char_class['+']=12;
5361 mp->char_class['-']=12;
5362 mp->char_class['/']=13;
5363 mp->char_class['*']=13;
5364 mp->char_class['\\']=13;
5365 mp->char_class['!']=14;
5366 mp->char_class['?']=14;
5367 mp->char_class['#']=15;
5368 mp->char_class['&']=15;
5369 mp->char_class['@@']=15;
5370 mp->char_class['$']=15;
5371 mp->char_class['^']=16;
5372 mp->char_class['~']=16;
5373 mp->char_class['[']=left_bracket_class;
5374 mp->char_class[']']=right_bracket_class;
5375 mp->char_class['{']=19;
5376 mp->char_class['}']=19;
5378 mp->char_class[k]=invalid_class;
5379 mp->char_class['\t']=space_class;
5380 mp->char_class['\f']=space_class;
5381 for (k=127;k<=255;k++)
5382 mp->char_class[k]=invalid_class;
5384 @* \[13] The hash table.
5385 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5386 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5387 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5388 table, it is never removed.
5390 The actual sequence of characters forming a symbolic token is
5391 stored in the |str_pool| array together with all the other strings. An
5392 auxiliary array |hash| consists of items with two halfword fields per
5393 word. The first of these, called |next(p)|, points to the next identifier
5394 belonging to the same coalesced list as the identifier corresponding to~|p|;
5395 and the other, called |text(p)|, points to the |str_start| entry for
5396 |p|'s identifier. If position~|p| of the hash table is empty, we have
5397 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5398 hash list, we have |next(p)=0|.
5400 An auxiliary pointer variable called |hash_used| is maintained in such a
5401 way that all locations |p>=hash_used| are nonempty. The global variable
5402 |st_count| tells how many symbolic tokens have been defined, if statistics
5405 The first 256 locations of |hash| are reserved for symbols of length one.
5407 There's a parallel array called |eqtb| that contains the current equivalent
5408 values of each symbolic token. The entries of this array consist of
5409 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5410 piece of information that qualifies the |eq_type|).
5412 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5413 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5414 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5415 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5416 @d hash_base 257 /* hashing actually starts here */
5417 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5420 pointer hash_used; /* allocation pointer for |hash| */
5421 integer st_count; /* total number of known identifiers */
5423 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5424 since they are used in error recovery.
5426 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5427 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5428 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5429 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5430 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5431 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5432 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5433 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5434 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5435 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5436 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5437 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5438 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5439 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5440 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5441 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5442 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5445 two_halves *hash; /* the hash table */
5446 two_halves *eqtb; /* the equivalents */
5448 @ @<Allocate or initialize ...@>=
5449 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5450 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5452 @ @<Dealloc variables@>=
5457 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5458 for (k=2;k<=hash_end;k++) {
5459 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5462 @ @<Initialize table entries...@>=
5463 mp->hash_used=frozen_inaccessible; /* nothing is used */
5465 text(frozen_bad_vardef)=intern("a bad variable");
5466 text(frozen_etex)=intern("etex");
5467 text(frozen_mpx_break)=intern("mpxbreak");
5468 text(frozen_fi)=intern("fi");
5469 text(frozen_end_group)=intern("endgroup");
5470 text(frozen_end_def)=intern("enddef");
5471 text(frozen_end_for)=intern("endfor");
5472 text(frozen_semicolon)=intern(";");
5473 text(frozen_colon)=intern(":");
5474 text(frozen_slash)=intern("/");
5475 text(frozen_left_bracket)=intern("[");
5476 text(frozen_right_delimiter)=intern(")");
5477 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5478 eq_type(frozen_right_delimiter)=right_delimiter;
5480 @ @<Check the ``constant'' values...@>=
5481 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5483 @ Here is the subroutine that searches the hash table for an identifier
5484 that matches a given string of length~|l| appearing in |buffer[j..
5485 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5486 will always be found, and the corresponding hash table address
5490 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5491 integer h; /* hash code */
5492 pointer p; /* index in |hash| array */
5493 pointer k; /* index in |buffer| array */
5495 @<Treat special case of length 1 and |break|@>;
5497 @<Compute the hash code |h|@>;
5498 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5500 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5503 @<Insert a new symbolic token after |p|, then
5504 make |p| point to it and |break|@>;
5511 @ @<Treat special case of length 1...@>=
5512 p=mp->buffer[j]+1; text(p)=p-1; return p;
5515 @ @<Insert a new symbolic...@>=
5520 mp_overflow(mp, "hash size",mp->hash_size);
5521 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5522 decr(mp->hash_used);
5523 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5524 next(p)=mp->hash_used;
5528 for (k=j;k<=j+l-1;k++) {
5529 append_char(mp->buffer[k]);
5531 text(p)=mp_make_string(mp);
5532 mp->str_ref[text(p)]=max_str_ref;
5538 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5539 should be a prime number. The theory of hashing tells us to expect fewer
5540 than two table probes, on the average, when the search is successful.
5541 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5542 @^Vitter, Jeffrey Scott@>
5544 @<Compute the hash code |h|@>=
5546 for (k=j+1;k<=j+l-1;k++){
5547 h=h+h+mp->buffer[k];
5548 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5551 @ @<Search |eqtb| for equivalents equal to |p|@>=
5552 for (q=1;q<=hash_end;q++) {
5553 if ( equiv(q)==p ) {
5554 mp_print_nl(mp, "EQUIV(");
5555 mp_print_int(mp, q);
5556 mp_print_char(mp, ')');
5560 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5561 table, together with their command code (which will be the |eq_type|)
5562 and an operand (which will be the |equiv|). The |primitive| procedure
5563 does this, in a way that no \MP\ user can. The global value |cur_sym|
5564 contains the new |eqtb| pointer after |primitive| has acted.
5567 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5568 pool_pointer k; /* index into |str_pool| */
5569 small_number j; /* index into |buffer| */
5570 small_number l; /* length of the string */
5573 k=mp->str_start[s]; l=str_stop(s)-k;
5574 /* we will move |s| into the (empty) |buffer| */
5575 for (j=0;j<=l-1;j++) {
5576 mp->buffer[j]=mp->str_pool[k+j];
5578 mp->cur_sym=mp_id_lookup(mp, 0,l);
5579 if ( s>=256 ) { /* we don't want to have the string twice */
5580 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5582 eq_type(mp->cur_sym)=c;
5583 equiv(mp->cur_sym)=o;
5587 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5588 by their |eq_type| alone. These primitives are loaded into the hash table
5591 @<Put each of \MP's primitives into the hash table@>=
5592 mp_primitive(mp, "..",path_join,0);
5593 @:.._}{\.{..} primitive@>
5594 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5595 @:[ }{\.{[} primitive@>
5596 mp_primitive(mp, "]",right_bracket,0);
5597 @:] }{\.{]} primitive@>
5598 mp_primitive(mp, "}",right_brace,0);
5599 @:]]}{\.{\char`\}} primitive@>
5600 mp_primitive(mp, "{",left_brace,0);
5601 @:][}{\.{\char`\{} primitive@>
5602 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5603 @:: }{\.{:} primitive@>
5604 mp_primitive(mp, "::",double_colon,0);
5605 @::: }{\.{::} primitive@>
5606 mp_primitive(mp, "||:",bchar_label,0);
5607 @:::: }{\.{\char'174\char'174:} primitive@>
5608 mp_primitive(mp, ":=",assignment,0);
5609 @::=_}{\.{:=} primitive@>
5610 mp_primitive(mp, ",",comma,0);
5611 @:, }{\., primitive@>
5612 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5613 @:; }{\.; primitive@>
5614 mp_primitive(mp, "\\",relax,0);
5615 @:]]\\}{\.{\char`\\} primitive@>
5617 mp_primitive(mp, "addto",add_to_command,0);
5618 @:add_to_}{\&{addto} primitive@>
5619 mp_primitive(mp, "atleast",at_least,0);
5620 @:at_least_}{\&{atleast} primitive@>
5621 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5622 @:begin_group_}{\&{begingroup} primitive@>
5623 mp_primitive(mp, "controls",controls,0);
5624 @:controls_}{\&{controls} primitive@>
5625 mp_primitive(mp, "curl",curl_command,0);
5626 @:curl_}{\&{curl} primitive@>
5627 mp_primitive(mp, "delimiters",delimiters,0);
5628 @:delimiters_}{\&{delimiters} primitive@>
5629 mp_primitive(mp, "endgroup",end_group,0);
5630 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5631 @:endgroup_}{\&{endgroup} primitive@>
5632 mp_primitive(mp, "everyjob",every_job_command,0);
5633 @:every_job_}{\&{everyjob} primitive@>
5634 mp_primitive(mp, "exitif",exit_test,0);
5635 @:exit_if_}{\&{exitif} primitive@>
5636 mp_primitive(mp, "expandafter",expand_after,0);
5637 @:expand_after_}{\&{expandafter} primitive@>
5638 mp_primitive(mp, "interim",interim_command,0);
5639 @:interim_}{\&{interim} primitive@>
5640 mp_primitive(mp, "let",let_command,0);
5641 @:let_}{\&{let} primitive@>
5642 mp_primitive(mp, "newinternal",new_internal,0);
5643 @:new_internal_}{\&{newinternal} primitive@>
5644 mp_primitive(mp, "of",of_token,0);
5645 @:of_}{\&{of} primitive@>
5646 mp_primitive(mp, "randomseed",mp_random_seed,0);
5647 @:mp_random_seed_}{\&{randomseed} primitive@>
5648 mp_primitive(mp, "save",save_command,0);
5649 @:save_}{\&{save} primitive@>
5650 mp_primitive(mp, "scantokens",scan_tokens,0);
5651 @:scan_tokens_}{\&{scantokens} primitive@>
5652 mp_primitive(mp, "shipout",ship_out_command,0);
5653 @:ship_out_}{\&{shipout} primitive@>
5654 mp_primitive(mp, "skipto",skip_to,0);
5655 @:skip_to_}{\&{skipto} primitive@>
5656 mp_primitive(mp, "special",special_command,0);
5657 @:special}{\&{special} primitive@>
5658 mp_primitive(mp, "fontmapfile",special_command,1);
5659 @:fontmapfile}{\&{fontmapfile} primitive@>
5660 mp_primitive(mp, "fontmapline",special_command,2);
5661 @:fontmapline}{\&{fontmapline} primitive@>
5662 mp_primitive(mp, "step",step_token,0);
5663 @:step_}{\&{step} primitive@>
5664 mp_primitive(mp, "str",str_op,0);
5665 @:str_}{\&{str} primitive@>
5666 mp_primitive(mp, "tension",tension,0);
5667 @:tension_}{\&{tension} primitive@>
5668 mp_primitive(mp, "to",to_token,0);
5669 @:to_}{\&{to} primitive@>
5670 mp_primitive(mp, "until",until_token,0);
5671 @:until_}{\&{until} primitive@>
5672 mp_primitive(mp, "within",within_token,0);
5673 @:within_}{\&{within} primitive@>
5674 mp_primitive(mp, "write",write_command,0);
5675 @:write_}{\&{write} primitive@>
5677 @ Each primitive has a corresponding inverse, so that it is possible to
5678 display the cryptic numeric contents of |eqtb| in symbolic form.
5679 Every call of |primitive| in this program is therefore accompanied by some
5680 straightforward code that forms part of the |print_cmd_mod| routine
5683 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5684 case add_to_command:mp_print(mp, "addto"); break;
5685 case assignment:mp_print(mp, ":="); break;
5686 case at_least:mp_print(mp, "atleast"); break;
5687 case bchar_label:mp_print(mp, "||:"); break;
5688 case begin_group:mp_print(mp, "begingroup"); break;
5689 case colon:mp_print(mp, ":"); break;
5690 case comma:mp_print(mp, ","); break;
5691 case controls:mp_print(mp, "controls"); break;
5692 case curl_command:mp_print(mp, "curl"); break;
5693 case delimiters:mp_print(mp, "delimiters"); break;
5694 case double_colon:mp_print(mp, "::"); break;
5695 case end_group:mp_print(mp, "endgroup"); break;
5696 case every_job_command:mp_print(mp, "everyjob"); break;
5697 case exit_test:mp_print(mp, "exitif"); break;
5698 case expand_after:mp_print(mp, "expandafter"); break;
5699 case interim_command:mp_print(mp, "interim"); break;
5700 case left_brace:mp_print(mp, "{"); break;
5701 case left_bracket:mp_print(mp, "["); break;
5702 case let_command:mp_print(mp, "let"); break;
5703 case new_internal:mp_print(mp, "newinternal"); break;
5704 case of_token:mp_print(mp, "of"); break;
5705 case path_join:mp_print(mp, ".."); break;
5706 case mp_random_seed:mp_print(mp, "randomseed"); break;
5707 case relax:mp_print_char(mp, '\\'); break;
5708 case right_brace:mp_print(mp, "}"); break;
5709 case right_bracket:mp_print(mp, "]"); break;
5710 case save_command:mp_print(mp, "save"); break;
5711 case scan_tokens:mp_print(mp, "scantokens"); break;
5712 case semicolon:mp_print(mp, ";"); break;
5713 case ship_out_command:mp_print(mp, "shipout"); break;
5714 case skip_to:mp_print(mp, "skipto"); break;
5715 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5716 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5717 mp_print(mp, "special"); break;
5718 case step_token:mp_print(mp, "step"); break;
5719 case str_op:mp_print(mp, "str"); break;
5720 case tension:mp_print(mp, "tension"); break;
5721 case to_token:mp_print(mp, "to"); break;
5722 case until_token:mp_print(mp, "until"); break;
5723 case within_token:mp_print(mp, "within"); break;
5724 case write_command:mp_print(mp, "write"); break;
5726 @ We will deal with the other primitives later, at some point in the program
5727 where their |eq_type| and |equiv| values are more meaningful. For example,
5728 the primitives for macro definitions will be loaded when we consider the
5729 routines that define macros.
5730 It is easy to find where each particular
5731 primitive was treated by looking in the index at the end; for example, the
5732 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5734 @* \[14] Token lists.
5735 A \MP\ token is either symbolic or numeric or a string, or it denotes
5736 a macro parameter or capsule; so there are five corresponding ways to encode it
5738 internally: (1)~A symbolic token whose hash code is~|p|
5739 is represented by the number |p|, in the |info| field of a single-word
5740 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5741 represented in a two-word node of~|mem|; the |type| field is |known|,
5742 the |name_type| field is |token|, and the |value| field holds~|v|.
5743 The fact that this token appears in a two-word node rather than a
5744 one-word node is, of course, clear from the node address.
5745 (3)~A string token is also represented in a two-word node; the |type|
5746 field is |mp_string_type|, the |name_type| field is |token|, and the
5747 |value| field holds the corresponding |str_number|. (4)~Capsules have
5748 |name_type=capsule|, and their |type| and |value| fields represent
5749 arbitrary values (in ways to be explained later). (5)~Macro parameters
5750 are like symbolic tokens in that they appear in |info| fields of
5751 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5752 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5753 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5754 Actual values of these parameters are kept in a separate stack, as we will
5755 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5756 of course, chosen so that there will be no confusion between symbolic
5757 tokens and parameters of various types.
5760 the `\\{type}' field of a node has nothing to do with ``type'' in a
5761 printer's sense. It's curious that the same word is used in such different ways.
5763 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5764 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5765 @d token_node_size 2 /* the number of words in a large token node */
5766 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5767 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5768 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5769 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5770 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5772 @<Check the ``constant''...@>=
5773 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5775 @ We have set aside a two word node beginning at |null| so that we can have
5776 |value(null)=0|. We will make use of this coincidence later.
5778 @<Initialize table entries...@>=
5779 link(null)=null; value(null)=0;
5781 @ A numeric token is created by the following trivial routine.
5784 pointer mp_new_num_tok (MP mp,scaled v) {
5785 pointer p; /* the new node */
5786 p=mp_get_node(mp, token_node_size); value(p)=v;
5787 type(p)=mp_known; name_type(p)=mp_token;
5791 @ A token list is a singly linked list of nodes in |mem|, where
5792 each node contains a token and a link. Here's a subroutine that gets rid
5793 of a token list when it is no longer needed.
5796 void mp_token_recycle (MP mp);
5799 @c void mp_flush_token_list (MP mp,pointer p) {
5800 pointer q; /* the node being recycled */
5803 if ( q>=mp->hi_mem_min ) {
5807 case mp_vacuous: case mp_boolean_type: case mp_known:
5809 case mp_string_type:
5810 delete_str_ref(value(q));
5812 case unknown_types: case mp_pen_type: case mp_path_type:
5813 case mp_picture_type: case mp_pair_type: case mp_color_type:
5814 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5815 case mp_proto_dependent: case mp_independent:
5816 mp->g_pointer=q; mp_token_recycle(mp);
5818 default: mp_confusion(mp, "token");
5819 @:this can't happen token}{\quad token@>
5821 mp_free_node(mp, q,token_node_size);
5826 @ The procedure |show_token_list|, which prints a symbolic form of
5827 the token list that starts at a given node |p|, illustrates these
5828 conventions. The token list being displayed should not begin with a reference
5829 count. However, the procedure is intended to be fairly robust, so that if the
5830 memory links are awry or if |p| is not really a pointer to a token list,
5831 almost nothing catastrophic can happen.
5833 An additional parameter |q| is also given; this parameter is either null
5834 or it points to a node in the token list where a certain magic computation
5835 takes place that will be explained later. (Basically, |q| is non-null when
5836 we are printing the two-line context information at the time of an error
5837 message; |q| marks the place corresponding to where the second line
5840 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5841 of printing exceeds a given limit~|l|; the length of printing upon entry is
5842 assumed to be a given amount called |null_tally|. (Note that
5843 |show_token_list| sometimes uses itself recursively to print
5844 variable names within a capsule.)
5847 Unusual entries are printed in the form of all-caps tokens
5848 preceded by a space, e.g., `\.{\char`\ BAD}'.
5851 void mp_print_capsule (MP mp);
5853 @ @<Declare the procedure called |show_token_list|@>=
5854 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5855 integer null_tally) ;
5858 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5859 integer null_tally) {
5860 small_number class,c; /* the |char_class| of previous and new tokens */
5861 integer r,v; /* temporary registers */
5862 class=percent_class;
5863 mp->tally=null_tally;
5864 while ( (p!=null) && (mp->tally<l) ) {
5866 @<Do magic computation@>;
5867 @<Display token |p| and set |c| to its class;
5868 but |return| if there are problems@>;
5872 mp_print(mp, " ETC.");
5877 @ @<Display token |p| and set |c| to its class...@>=
5878 c=letter_class; /* the default */
5879 if ( (p<0)||(p>mp->mem_end) ) {
5880 mp_print(mp, " CLOBBERED"); return;
5883 if ( p<mp->hi_mem_min ) {
5884 @<Display two-word token@>;
5887 if ( r>=expr_base ) {
5888 @<Display a parameter token@>;
5892 @<Display a collective subscript@>
5894 mp_print(mp, " IMPOSSIBLE");
5899 if ( (r<0)||(r>mp->max_str_ptr) ) {
5900 mp_print(mp, " NONEXISTENT");
5903 @<Print string |r| as a symbolic token
5904 and set |c| to its class@>;
5910 @ @<Display two-word token@>=
5911 if ( name_type(p)==mp_token ) {
5912 if ( type(p)==mp_known ) {
5913 @<Display a numeric token@>;
5914 } else if ( type(p)!=mp_string_type ) {
5915 mp_print(mp, " BAD");
5918 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5921 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5922 mp_print(mp, " BAD");
5924 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5927 @ @<Display a numeric token@>=
5928 if ( class==digit_class )
5929 mp_print_char(mp, ' ');
5932 if ( class==left_bracket_class )
5933 mp_print_char(mp, ' ');
5934 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5935 c=right_bracket_class;
5937 mp_print_scaled(mp, v); c=digit_class;
5941 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5942 But we will see later (in the |print_variable_name| routine) that
5943 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5945 @<Display a collective subscript@>=
5947 if ( class==left_bracket_class )
5948 mp_print_char(mp, ' ');
5949 mp_print(mp, "[]"); c=right_bracket_class;
5952 @ @<Display a parameter token@>=
5954 if ( r<suffix_base ) {
5955 mp_print(mp, "(EXPR"); r=r-(expr_base);
5957 } else if ( r<text_base ) {
5958 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5961 mp_print(mp, "(TEXT"); r=r-(text_base);
5964 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5968 @ @<Print string |r| as a symbolic token...@>=
5970 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5973 case letter_class:mp_print_char(mp, '.'); break;
5974 case isolated_classes: break;
5975 default: mp_print_char(mp, ' '); break;
5978 mp_print_str(mp, r);
5981 @ The following procedures have been declared |forward| with no parameters,
5982 because the author dislikes \PASCAL's convention about |forward| procedures
5983 with parameters. It was necessary to do something, because |show_token_list|
5984 is recursive (although the recursion is limited to one level), and because
5985 |flush_token_list| is syntactically (but not semantically) recursive.
5988 @<Declare miscellaneous procedures that were declared |forward|@>=
5989 void mp_print_capsule (MP mp) {
5990 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5993 void mp_token_recycle (MP mp) {
5994 mp_recycle_value(mp, mp->g_pointer);
5998 pointer g_pointer; /* (global) parameter to the |forward| procedures */
6000 @ Macro definitions are kept in \MP's memory in the form of token lists
6001 that have a few extra one-word nodes at the beginning.
6003 The first node contains a reference count that is used to tell when the
6004 list is no longer needed. To emphasize the fact that a reference count is
6005 present, we shall refer to the |info| field of this special node as the
6007 @^reference counts@>
6009 The next node or nodes after the reference count serve to describe the
6010 formal parameters. They either contain a code word that specifies all
6011 of the parameters, or they contain zero or more parameter tokens followed
6012 by the code `|general_macro|'.
6015 /* reference count preceding a macro definition or picture header */
6016 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
6017 @d general_macro 0 /* preface to a macro defined with a parameter list */
6018 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
6019 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
6020 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
6021 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
6022 @d of_macro 5 /* preface to a macro with
6023 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
6024 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
6025 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
6028 void mp_delete_mac_ref (MP mp,pointer p) {
6029 /* |p| points to the reference count of a macro list that is
6030 losing one reference */
6031 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
6032 else decr(ref_count(p));
6035 @ The following subroutine displays a macro, given a pointer to its
6039 @<Declare the procedure called |print_cmd_mod|@>;
6040 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
6041 pointer r; /* temporary storage */
6042 p=link(p); /* bypass the reference count */
6043 while ( info(p)>text_macro ){
6044 r=link(p); link(p)=null;
6045 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
6046 if ( l>0 ) l=l-mp->tally; else return;
6047 } /* control printing of `\.{ETC.}' */
6051 case general_macro:mp_print(mp, "->"); break;
6053 case primary_macro: case secondary_macro: case tertiary_macro:
6054 mp_print_char(mp, '<');
6055 mp_print_cmd_mod(mp, param_type,info(p));
6056 mp_print(mp, ">->");
6058 case expr_macro:mp_print(mp, "<expr>->"); break;
6059 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
6060 case suffix_macro:mp_print(mp, "<suffix>->"); break;
6061 case text_macro:mp_print(mp, "<text>->"); break;
6062 } /* there are no other cases */
6063 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
6066 @* \[15] Data structures for variables.
6067 The variables of \MP\ programs can be simple, like `\.x', or they can
6068 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6069 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6070 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
6071 things are represented inside of the computer.
6073 Each variable value occupies two consecutive words, either in a two-word
6074 node called a value node, or as a two-word subfield of a larger node. One
6075 of those two words is called the |value| field; it is an integer,
6076 containing either a |scaled| numeric value or the representation of some
6077 other type of quantity. (It might also be subdivided into halfwords, in
6078 which case it is referred to by other names instead of |value|.) The other
6079 word is broken into subfields called |type|, |name_type|, and |link|. The
6080 |type| field is a quarterword that specifies the variable's type, and
6081 |name_type| is a quarterword from which \MP\ can reconstruct the
6082 variable's name (sometimes by using the |link| field as well). Thus, only
6083 1.25 words are actually devoted to the value itself; the other
6084 three-quarters of a word are overhead, but they aren't wasted because they
6085 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6087 In this section we shall be concerned only with the structural aspects of
6088 variables, not their values. Later parts of the program will change the
6089 |type| and |value| fields, but we shall treat those fields as black boxes
6090 whose contents should not be touched.
6092 However, if the |type| field is |mp_structured|, there is no |value| field,
6093 and the second word is broken into two pointer fields called |attr_head|
6094 and |subscr_head|. Those fields point to additional nodes that
6095 contain structural information, as we shall see.
6097 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6098 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6099 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6100 @d value_node_size 2 /* the number of words in a value node */
6102 @ An attribute node is three words long. Two of these words contain |type|
6103 and |value| fields as described above, and the third word contains
6104 additional information: There is an |attr_loc| field, which contains the
6105 hash address of the token that names this attribute; and there's also a
6106 |parent| field, which points to the value node of |mp_structured| type at the
6107 next higher level (i.e., at the level to which this attribute is
6108 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6109 |link| field points to the next attribute with the same parent; these are
6110 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6111 final attribute node links to the constant |end_attr|, whose |attr_loc|
6112 field is greater than any legal hash address. The |attr_head| in the
6113 parent points to a node whose |name_type| is |mp_structured_root|; this
6114 node represents the null attribute, i.e., the variable that is relevant
6115 when no attributes are attached to the parent. The |attr_head| node is either
6116 a value node, a subscript node, or an attribute node, depending on what
6117 the parent would be if it were not structured; but the subscript and
6118 attribute fields are ignored, so it effectively contains only the data of
6119 a value node. The |link| field in this special node points to an attribute
6120 node whose |attr_loc| field is zero; the latter node represents a collective
6121 subscript `\.{[]}' attached to the parent, and its |link| field points to
6122 the first non-special attribute node (or to |end_attr| if there are none).
6124 A subscript node likewise occupies three words, with |type| and |value| fields
6125 plus extra information; its |name_type| is |subscr|. In this case the
6126 third word is called the |subscript| field, which is a |scaled| integer.
6127 The |link| field points to the subscript node with the next larger
6128 subscript, if any; otherwise the |link| points to the attribute node
6129 for collective subscripts at this level. We have seen that the latter node
6130 contains an upward pointer, so that the parent can be deduced.
6132 The |name_type| in a parent-less value node is |root|, and the |link|
6133 is the hash address of the token that names this value.
6135 In other words, variables have a hierarchical structure that includes
6136 enough threads running around so that the program is able to move easily
6137 between siblings, parents, and children. An example should be helpful:
6138 (The reader is advised to draw a picture while reading the following
6139 description, since that will help to firm up the ideas.)
6140 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6141 and `\.{x20b}' have been mentioned in a user's program, where
6142 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6143 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6144 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6145 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6146 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6147 node and |r| to a subscript node. (Are you still following this? Use
6148 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6149 |type(q)| and |value(q)|; furthermore
6150 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6151 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6152 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6153 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6154 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6155 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6156 |name_type(qq)=mp_structured_root|, and
6157 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6158 an attribute node representing `\.{x[][]}', which has never yet
6159 occurred; its |type| field is |undefined|, and its |value| field is
6160 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6161 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6162 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6163 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6164 (Maybe colored lines will help untangle your picture.)
6165 Node |r| is a subscript node with |type| and |value|
6166 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6167 and |link(r)=r1| is another subscript node. To complete the picture,
6168 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6169 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6170 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6171 and we finish things off with three more nodes
6172 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6173 with a larger sheet of paper.) The value of variable \.{x20b}
6174 appears in node~|qqq2|, as you can well imagine.
6176 If the example in the previous paragraph doesn't make things crystal
6177 clear, a glance at some of the simpler subroutines below will reveal how
6178 things work out in practice.
6180 The only really unusual thing about these conventions is the use of
6181 collective subscript attributes. The idea is to avoid repeating a lot of
6182 type information when many elements of an array are identical macros
6183 (for which distinct values need not be stored) or when they don't have
6184 all of the possible attributes. Branches of the structure below collective
6185 subscript attributes do not carry actual values except for macro identifiers;
6186 branches of the structure below subscript nodes do not carry significant
6187 information in their collective subscript attributes.
6189 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6190 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6191 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6192 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6193 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6194 @d attr_node_size 3 /* the number of words in an attribute node */
6195 @d subscr_node_size 3 /* the number of words in a subscript node */
6196 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6198 @<Initialize table...@>=
6199 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6201 @ Variables of type \&{pair} will have values that point to four-word
6202 nodes containing two numeric values. The first of these values has
6203 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6204 the |link| in the first points back to the node whose |value| points
6205 to this four-word node.
6207 Variables of type \&{transform} are similar, but in this case their
6208 |value| points to a 12-word node containing six values, identified by
6209 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6210 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6211 Finally, variables of type \&{color} have three values in six words
6212 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6214 When an entire structured variable is saved, the |root| indication
6215 is temporarily replaced by |saved_root|.
6217 Some variables have no name; they just are used for temporary storage
6218 while expressions are being evaluated. We call them {\sl capsules}.
6220 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6221 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6222 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6223 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6224 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6225 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6226 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6227 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6228 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6229 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6230 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6231 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6232 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6233 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6235 @d pair_node_size 4 /* the number of words in a pair node */
6236 @d transform_node_size 12 /* the number of words in a transform node */
6237 @d color_node_size 6 /* the number of words in a color node */
6238 @d cmykcolor_node_size 8 /* the number of words in a color node */
6241 small_number big_node_size[mp_pair_type+1];
6242 small_number sector0[mp_pair_type+1];
6243 small_number sector_offset[mp_black_part_sector+1];
6245 @ The |sector0| array gives for each big node type, |name_type| values
6246 for its first subfield; the |sector_offset| array gives for each
6247 |name_type| value, the offset from the first subfield in words;
6248 and the |big_node_size| array gives the size in words for each type of
6252 mp->big_node_size[mp_transform_type]=transform_node_size;
6253 mp->big_node_size[mp_pair_type]=pair_node_size;
6254 mp->big_node_size[mp_color_type]=color_node_size;
6255 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6256 mp->sector0[mp_transform_type]=mp_x_part_sector;
6257 mp->sector0[mp_pair_type]=mp_x_part_sector;
6258 mp->sector0[mp_color_type]=mp_red_part_sector;
6259 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6260 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6261 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6263 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6264 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6266 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6267 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6270 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6271 procedure call |init_big_node(p)| will allocate a pair or transform node
6272 for~|p|. The individual parts of such nodes are initially of type
6276 void mp_init_big_node (MP mp,pointer p) {
6277 pointer q; /* the new node */
6278 small_number s; /* its size */
6279 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6282 @<Make variable |q+s| newly independent@>;
6283 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6286 link(q)=p; value(p)=q;
6289 @ The |id_transform| function creates a capsule for the
6290 identity transformation.
6293 pointer mp_id_transform (MP mp) {
6294 pointer p,q,r; /* list manipulation registers */
6295 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6296 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6297 r=q+transform_node_size;
6300 type(r)=mp_known; value(r)=0;
6302 value(xx_part_loc(q))=unity;
6303 value(yy_part_loc(q))=unity;
6307 @ Tokens are of type |tag_token| when they first appear, but they point
6308 to |null| until they are first used as the root of a variable.
6309 The following subroutine establishes the root node on such grand occasions.
6312 void mp_new_root (MP mp,pointer x) {
6313 pointer p; /* the new node */
6314 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6315 link(p)=x; equiv(x)=p;
6318 @ These conventions for variable representation are illustrated by the
6319 |print_variable_name| routine, which displays the full name of a
6320 variable given only a pointer to its two-word value packet.
6323 void mp_print_variable_name (MP mp, pointer p);
6326 void mp_print_variable_name (MP mp, pointer p) {
6327 pointer q; /* a token list that will name the variable's suffix */
6328 pointer r; /* temporary for token list creation */
6329 while ( name_type(p)>=mp_x_part_sector ) {
6330 @<Preface the output with a part specifier; |return| in the
6331 case of a capsule@>;
6334 while ( name_type(p)>mp_saved_root ) {
6335 @<Ascend one level, pushing a token onto list |q|
6336 and replacing |p| by its parent@>;
6338 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6339 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6341 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6342 mp_flush_token_list(mp, r);
6345 @ @<Ascend one level, pushing a token onto list |q|...@>=
6347 if ( name_type(p)==mp_subscr ) {
6348 r=mp_new_num_tok(mp, subscript(p));
6351 } while (name_type(p)!=mp_attr);
6352 } else if ( name_type(p)==mp_structured_root ) {
6353 p=link(p); goto FOUND;
6355 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6356 @:this can't happen var}{\quad var@>
6357 r=mp_get_avail(mp); info(r)=attr_loc(p);
6364 @ @<Preface the output with a part specifier...@>=
6365 { switch (name_type(p)) {
6366 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6367 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6368 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6369 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6370 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6371 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6372 case mp_red_part_sector: mp_print(mp, "red"); break;
6373 case mp_green_part_sector: mp_print(mp, "green"); break;
6374 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6375 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6376 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6377 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6378 case mp_black_part_sector: mp_print(mp, "black"); break;
6379 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6381 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6384 } /* there are no other cases */
6385 mp_print(mp, "part ");
6386 p=link(p-mp->sector_offset[name_type(p)]);
6389 @ The |interesting| function returns |true| if a given variable is not
6390 in a capsule, or if the user wants to trace capsules.
6393 boolean mp_interesting (MP mp,pointer p) {
6394 small_number t; /* a |name_type| */
6395 if ( mp->internal[mp_tracing_capsules]>0 ) {
6399 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6400 t=name_type(link(p-mp->sector_offset[t]));
6401 return (t!=mp_capsule);
6405 @ Now here is a subroutine that converts an unstructured type into an
6406 equivalent structured type, by inserting a |mp_structured| node that is
6407 capable of growing. This operation is done only when |name_type(p)=root|,
6408 |subscr|, or |attr|.
6410 The procedure returns a pointer to the new node that has taken node~|p|'s
6411 place in the structure. Node~|p| itself does not move, nor are its
6412 |value| or |type| fields changed in any way.
6415 pointer mp_new_structure (MP mp,pointer p) {
6416 pointer q,r=0; /* list manipulation registers */
6417 switch (name_type(p)) {
6419 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6422 @<Link a new subscript node |r| in place of node |p|@>;
6425 @<Link a new attribute node |r| in place of node |p|@>;
6428 mp_confusion(mp, "struct");
6429 @:this can't happen struct}{\quad struct@>
6432 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6433 attr_head(r)=p; name_type(p)=mp_structured_root;
6434 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6435 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6436 attr_loc(q)=collective_subscript;
6440 @ @<Link a new subscript node |r| in place of node |p|@>=
6445 } while (name_type(q)!=mp_attr);
6446 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6450 r=mp_get_node(mp, subscr_node_size);
6451 link(q)=r; subscript(r)=subscript(p);
6454 @ If the attribute is |collective_subscript|, there are two pointers to
6455 node~|p|, so we must change both of them.
6457 @<Link a new attribute node |r| in place of node |p|@>=
6459 q=parent(p); r=attr_head(q);
6463 r=mp_get_node(mp, attr_node_size); link(q)=r;
6464 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6465 if ( attr_loc(p)==collective_subscript ) {
6466 q=subscr_head_loc(parent(p));
6467 while ( link(q)!=p ) q=link(q);
6472 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6473 list of suffixes; it returns a pointer to the corresponding two-word
6474 value. For example, if |t| points to token \.x followed by a numeric
6475 token containing the value~7, |find_variable| finds where the value of
6476 \.{x7} is stored in memory. This may seem a simple task, and it
6477 usually is, except when \.{x7} has never been referenced before.
6478 Indeed, \.x may never have even been subscripted before; complexities
6479 arise with respect to updating the collective subscript information.
6481 If a macro type is detected anywhere along path~|t|, or if the first
6482 item on |t| isn't a |tag_token|, the value |null| is returned.
6483 Otherwise |p| will be a non-null pointer to a node such that
6484 |undefined<type(p)<mp_structured|.
6486 @d abort_find { return null; }
6489 pointer mp_find_variable (MP mp,pointer t) {
6490 pointer p,q,r,s; /* nodes in the ``value'' line */
6491 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6492 integer n; /* subscript or attribute */
6493 memory_word save_word; /* temporary storage for a word of |mem| */
6495 p=info(t); t=link(t);
6496 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6497 if ( equiv(p)==null ) mp_new_root(mp, p);
6500 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6501 if ( t<mp->hi_mem_min ) {
6502 @<Descend one level for the subscript |value(t)|@>
6504 @<Descend one level for the attribute |info(t)|@>;
6508 if ( type(pp)>=mp_structured ) {
6509 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6511 if ( type(p)==mp_structured ) p=attr_head(p);
6512 if ( type(p)==undefined ) {
6513 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6514 type(p)=type(pp); value(p)=null;
6519 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6520 |pp|~stays in the collective line while |p|~goes through actual subscript
6523 @<Make sure that both nodes |p| and |pp|...@>=
6524 if ( type(pp)!=mp_structured ) {
6525 if ( type(pp)>mp_structured ) abort_find;
6526 ss=mp_new_structure(mp, pp);
6529 }; /* now |type(pp)=mp_structured| */
6530 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6531 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6533 @ We want this part of the program to be reasonably fast, in case there are
6535 lots of subscripts at the same level of the data structure. Therefore
6536 we store an ``infinite'' value in the word that appears at the end of the
6537 subscript list, even though that word isn't part of a subscript node.
6539 @<Descend one level for the subscript |value(t)|@>=
6542 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6543 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6544 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6547 } while (n>subscript(s));
6548 if ( n==subscript(s) ) {
6551 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6552 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6554 mp->mem[subscript_loc(q)]=save_word;
6557 @ @<Descend one level for the attribute |info(t)|@>=
6563 } while (n>attr_loc(ss));
6564 if ( n<attr_loc(ss) ) {
6565 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6566 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6567 parent(qq)=pp; ss=qq;
6572 pp=ss; s=attr_head(p);
6575 } while (n>attr_loc(s));
6576 if ( n==attr_loc(s) ) {
6579 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6580 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6586 @ Variables lose their former values when they appear in a type declaration,
6587 or when they are defined to be macros or \&{let} equal to something else.
6588 A subroutine will be defined later that recycles the storage associated
6589 with any particular |type| or |value|; our goal now is to study a higher
6590 level process called |flush_variable|, which selectively frees parts of a
6593 This routine has some complexity because of examples such as
6594 `\hbox{\tt numeric x[]a[]b}'
6595 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6596 `\hbox{\tt vardef x[]a[]=...}'
6597 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6598 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6599 to handle such examples is to use recursion; so that's what we~do.
6602 Parameter |p| points to the root information of the variable;
6603 parameter |t| points to a list of one-word nodes that represent
6604 suffixes, with |info=collective_subscript| for subscripts.
6607 @<Declare subroutines for printing expressions@>
6608 @<Declare basic dependency-list subroutines@>
6609 @<Declare the recycling subroutines@>
6610 void mp_flush_cur_exp (MP mp,scaled v) ;
6611 @<Declare the procedure called |flush_below_variable|@>
6614 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6615 pointer q,r; /* list manipulation */
6616 halfword n; /* attribute to match */
6618 if ( type(p)!=mp_structured ) return;
6619 n=info(t); t=link(t);
6620 if ( n==collective_subscript ) {
6621 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6622 while ( name_type(q)==mp_subscr ){
6623 mp_flush_variable(mp, q,t,discard_suffixes);
6625 if ( type(q)==mp_structured ) r=q;
6626 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6636 } while (attr_loc(p)<n);
6637 if ( attr_loc(p)!=n ) return;
6639 if ( discard_suffixes ) {
6640 mp_flush_below_variable(mp, p);
6642 if ( type(p)==mp_structured ) p=attr_head(p);
6643 mp_recycle_value(mp, p);
6647 @ The next procedure is simpler; it wipes out everything but |p| itself,
6648 which becomes undefined.
6650 @<Declare the procedure called |flush_below_variable|@>=
6651 void mp_flush_below_variable (MP mp, pointer p);
6654 void mp_flush_below_variable (MP mp,pointer p) {
6655 pointer q,r; /* list manipulation registers */
6656 if ( type(p)!=mp_structured ) {
6657 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6660 while ( name_type(q)==mp_subscr ) {
6661 mp_flush_below_variable(mp, q); r=q; q=link(q);
6662 mp_free_node(mp, r,subscr_node_size);
6664 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6665 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6666 else mp_free_node(mp, r,subscr_node_size);
6667 /* we assume that |subscr_node_size=attr_node_size| */
6669 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6670 } while (q!=end_attr);
6675 @ Just before assigning a new value to a variable, we will recycle the
6676 old value and make the old value undefined. The |und_type| routine
6677 determines what type of undefined value should be given, based on
6678 the current type before recycling.
6681 small_number mp_und_type (MP mp,pointer p) {
6683 case undefined: case mp_vacuous:
6685 case mp_boolean_type: case mp_unknown_boolean:
6686 return mp_unknown_boolean;
6687 case mp_string_type: case mp_unknown_string:
6688 return mp_unknown_string;
6689 case mp_pen_type: case mp_unknown_pen:
6690 return mp_unknown_pen;
6691 case mp_path_type: case mp_unknown_path:
6692 return mp_unknown_path;
6693 case mp_picture_type: case mp_unknown_picture:
6694 return mp_unknown_picture;
6695 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6696 case mp_pair_type: case mp_numeric_type:
6698 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6699 return mp_numeric_type;
6700 } /* there are no other cases */
6704 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6705 of a symbolic token. It must remove any variable structure or macro
6706 definition that is currently attached to that symbol. If the |saving|
6707 parameter is true, a subsidiary structure is saved instead of destroyed.
6710 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6711 pointer q; /* |equiv(p)| */
6713 switch (eq_type(p) % outer_tag) {
6715 case secondary_primary_macro:
6716 case tertiary_secondary_macro:
6717 case expression_tertiary_macro:
6718 if ( ! saving ) mp_delete_mac_ref(mp, q);
6723 name_type(q)=mp_saved_root;
6725 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6732 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6735 @* \[16] Saving and restoring equivalents.
6736 The nested structure given by \&{begingroup} and \&{endgroup}
6737 allows |eqtb| entries to be saved and restored, so that temporary changes
6738 can be made without difficulty. When the user requests a current value to
6739 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6740 \&{endgroup} ultimately causes the old values to be removed from the save
6741 stack and put back in their former places.
6743 The save stack is a linked list containing three kinds of entries,
6744 distinguished by their |info| fields. If |p| points to a saved item,
6748 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6749 such an item to the save stack and each \&{endgroup} cuts back the stack
6750 until the most recent such entry has been removed.
6753 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6754 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6755 commands or suitable \&{interim} commands.
6758 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6759 integer to be restored to internal parameter number~|q|. Such entries
6760 are generated by \&{interim} commands.
6763 The global variable |save_ptr| points to the top item on the save stack.
6765 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6766 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6767 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6768 link((A))=mp->save_ptr; mp->save_ptr=(A);
6772 pointer save_ptr; /* the most recently saved item */
6774 @ @<Set init...@>=mp->save_ptr=null;
6776 @ The |save_variable| routine is given a hash address |q|; it salts this
6777 address in the save stack, together with its current equivalent,
6778 then makes token~|q| behave as though it were brand new.
6780 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6781 things from the stack when the program is not inside a group, so there's
6782 no point in wasting the space.
6784 @c void mp_save_variable (MP mp,pointer q) {
6785 pointer p; /* temporary register */
6786 if ( mp->save_ptr!=null ){
6787 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6788 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6790 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6793 @ Similarly, |save_internal| is given the location |q| of an internal
6794 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6797 @c void mp_save_internal (MP mp,halfword q) {
6798 pointer p; /* new item for the save stack */
6799 if ( mp->save_ptr!=null ){
6800 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6801 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6805 @ At the end of a group, the |unsave| routine restores all of the saved
6806 equivalents in reverse order. This routine will be called only when there
6807 is at least one boundary item on the save stack.
6810 void mp_unsave (MP mp) {
6811 pointer q; /* index to saved item */
6812 pointer p; /* temporary register */
6813 while ( info(mp->save_ptr)!=0 ) {
6814 q=info(mp->save_ptr);
6816 if ( mp->internal[mp_tracing_restores]>0 ) {
6817 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6818 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6819 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6820 mp_end_diagnostic(mp, false);
6822 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6824 if ( mp->internal[mp_tracing_restores]>0 ) {
6825 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6826 mp_print_text(q); mp_print_char(mp, '}');
6827 mp_end_diagnostic(mp, false);
6829 mp_clear_symbol(mp, q,false);
6830 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6831 if ( eq_type(q) % outer_tag==tag_token ) {
6833 if ( p!=null ) name_type(p)=mp_root;
6836 p=link(mp->save_ptr);
6837 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6839 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6842 @* \[17] Data structures for paths.
6843 When a \MP\ user specifies a path, \MP\ will create a list of knots
6844 and control points for the associated cubic spline curves. If the
6845 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6846 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6847 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6848 @:Bezier}{B\'ezier, Pierre Etienne@>
6849 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6850 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6853 There is a 8-word node for each knot $z_k$, containing one word of
6854 control information and six words for the |x| and |y| coordinates of
6855 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6856 |left_type| and |right_type| fields, which each occupy a quarter of
6857 the first word in the node; they specify properties of the curve as it
6858 enters and leaves the knot. There's also a halfword |link| field,
6859 which points to the following knot, and a final supplementary word (of
6860 which only a quarter is used).
6862 If the path is a closed contour, knots 0 and |n| are identical;
6863 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6864 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6865 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6866 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6868 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6869 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6870 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6871 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6872 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6873 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6874 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6875 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6876 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6877 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6878 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6879 @d left_coord(A) mp->mem[(A)+2].sc
6880 /* coordinate of previous control point given |x_loc| or |y_loc| */
6881 @d right_coord(A) mp->mem[(A)+4].sc
6882 /* coordinate of next control point given |x_loc| or |y_loc| */
6883 @d knot_node_size 8 /* number of words in a knot node */
6887 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6888 mp_explicit, /* |left_type| or |right_type| when control points are known */
6889 mp_given, /* |left_type| or |right_type| when a direction is given */
6890 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6891 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6895 @ Before the B\'ezier control points have been calculated, the memory
6896 space they will ultimately occupy is taken up by information that can be
6897 used to compute them. There are four cases:
6900 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6901 the knot in the same direction it entered; \MP\ will figure out a
6905 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6906 knot in a direction depending on the angle at which it enters the next
6907 knot and on the curl parameter stored in |right_curl|.
6910 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6911 knot in a nonzero direction stored as an |angle| in |right_given|.
6914 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6915 point for leaving this knot has already been computed; it is in the
6916 |right_x| and |right_y| fields.
6919 The rules for |left_type| are similar, but they refer to the curve entering
6920 the knot, and to \\{left} fields instead of \\{right} fields.
6922 Non-|explicit| control points will be chosen based on ``tension'' parameters
6923 in the |left_tension| and |right_tension| fields. The
6924 `\&{atleast}' option is represented by negative tension values.
6925 @:at_least_}{\&{atleast} primitive@>
6927 For example, the \MP\ path specification
6928 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6930 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6932 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6933 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6934 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6936 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6937 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6938 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6939 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6940 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6941 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6942 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6943 Of course, this example is more complicated than anything a normal user
6946 These types must satisfy certain restrictions because of the form of \MP's
6948 (i)~|open| type never appears in the same node together with |endpoint|,
6950 (ii)~The |right_type| of a node is |explicit| if and only if the
6951 |left_type| of the following node is |explicit|.
6952 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6954 @d left_curl left_x /* curl information when entering this knot */
6955 @d left_given left_x /* given direction when entering this knot */
6956 @d left_tension left_y /* tension information when entering this knot */
6957 @d right_curl right_x /* curl information when leaving this knot */
6958 @d right_given right_x /* given direction when leaving this knot */
6959 @d right_tension right_y /* tension information when leaving this knot */
6961 @ Knots can be user-supplied, or they can be created by program code,
6962 like the |split_cubic| function, or |copy_path|. The distinction is
6963 needed for the cleanup routine that runs after |split_cubic|, because
6964 it should only delete knots it has previously inserted, and never
6965 anything that was user-supplied. In order to be able to differentiate
6966 one knot from another, we will set |originator(p):=mp_metapost_user| when
6967 it appeared in the actual metapost program, and
6968 |originator(p):=mp_program_code| in all other cases.
6970 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6974 mp_program_code=0, /* not created by a user */
6975 mp_metapost_user, /* created by a user */
6978 @ Here is a routine that prints a given knot list
6979 in symbolic form. It illustrates the conventions discussed above,
6980 and checks for anomalies that might arise while \MP\ is being debugged.
6982 @<Declare subroutines for printing expressions@>=
6983 void mp_pr_path (MP mp,pointer h);
6986 void mp_pr_path (MP mp,pointer h) {
6987 pointer p,q; /* for list traversal */
6991 if ( (p==null)||(q==null) ) {
6992 mp_print_nl(mp, "???"); return; /* this won't happen */
6995 @<Print information for adjacent knots |p| and |q|@>;
6998 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6999 @<Print two dots, followed by |given| or |curl| if present@>;
7002 if ( left_type(h)!=mp_endpoint )
7003 mp_print(mp, "cycle");
7006 @ @<Print information for adjacent knots...@>=
7007 mp_print_two(mp, x_coord(p),y_coord(p));
7008 switch (right_type(p)) {
7010 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
7012 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
7016 @<Print control points between |p| and |q|, then |goto done1|@>;
7019 @<Print information for a curve that begins |open|@>;
7023 @<Print information for a curve that begins |curl| or |given|@>;
7026 mp_print(mp, "???"); /* can't happen */
7030 if ( left_type(q)<=mp_explicit ) {
7031 mp_print(mp, "..control?"); /* can't happen */
7033 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
7034 @<Print tension between |p| and |q|@>;
7037 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
7038 were |scaled|, the magnitude of a |given| direction vector will be~4096.
7040 @<Print two dots...@>=
7042 mp_print_nl(mp, " ..");
7043 if ( left_type(p)==mp_given ) {
7044 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
7045 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7046 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
7047 } else if ( left_type(p)==mp_curl ){
7048 mp_print(mp, "{curl ");
7049 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
7053 @ @<Print tension between |p| and |q|@>=
7055 mp_print(mp, "..tension ");
7056 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
7057 mp_print_scaled(mp, abs(right_tension(p)));
7058 if ( right_tension(p)!=left_tension(q) ){
7059 mp_print(mp, " and ");
7060 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
7061 mp_print_scaled(mp, abs(left_tension(q)));
7065 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7067 mp_print(mp, "..controls ");
7068 mp_print_two(mp, right_x(p),right_y(p));
7069 mp_print(mp, " and ");
7070 if ( left_type(q)!=mp_explicit ) {
7071 mp_print(mp, "??"); /* can't happen */
7074 mp_print_two(mp, left_x(q),left_y(q));
7079 @ @<Print information for a curve that begins |open|@>=
7080 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7081 mp_print(mp, "{open?}"); /* can't happen */
7085 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7086 \MP's default curl is present.
7088 The code here uses the fact that |left_curl==left_given| and
7089 |right_curl==right_given|.
7091 @<Print information for a curve that begins |curl|...@>=
7093 if ( left_type(p)==mp_open )
7094 mp_print(mp, "??"); /* can't happen */
7096 if ( right_type(p)==mp_curl ) {
7097 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7099 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7100 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7101 mp_print_scaled(mp, mp->n_sin);
7103 mp_print_char(mp, '}');
7106 @ It is convenient to have another version of |pr_path| that prints the path
7107 as a diagnostic message.
7109 @<Declare subroutines for printing expressions@>=
7110 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7111 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7114 mp_end_diagnostic(mp, true);
7117 @ If we want to duplicate a knot node, we can say |copy_knot|:
7120 pointer mp_copy_knot (MP mp,pointer p) {
7121 pointer q; /* the copy */
7122 int k; /* runs through the words of a knot node */
7123 q=mp_get_node(mp, knot_node_size);
7124 for (k=0;k<knot_node_size;k++) {
7125 mp->mem[q+k]=mp->mem[p+k];
7127 originator(q)=originator(p);
7131 @ The |copy_path| routine makes a clone of a given path.
7134 pointer mp_copy_path (MP mp, pointer p) {
7135 pointer q,pp,qq; /* for list manipulation */
7136 q=mp_copy_knot(mp, p);
7139 link(qq)=mp_copy_knot(mp, pp);
7148 @ Just before |ship_out|, knot lists are exported for printing.
7150 The |gr_XXXX| macros are defined in |mppsout.h|.
7153 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7154 struct mp_knot *q; /* the copy */
7157 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7158 memset(q,0,sizeof (struct mp_knot));
7159 gr_left_type(q) = left_type(p);
7160 gr_right_type(q) = right_type(p);
7161 gr_x_coord(q) = x_coord(p);
7162 gr_y_coord(q) = y_coord(p);
7163 gr_left_x(q) = left_x(p);
7164 gr_left_y(q) = left_y(p);
7165 gr_right_x(q) = right_x(p);
7166 gr_right_y(q) = right_y(p);
7167 gr_originator(q) = originator(p);
7171 @ The |export_knot_list| routine therefore also makes a clone
7175 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7176 struct mp_knot *q, *qq; /* for list manipulation */
7177 pointer pp; /* for list manipulation */
7180 q=mp_export_knot(mp, p);
7183 gr_next_knot(qq)=mp_export_knot(mp, pp);
7184 qq=gr_next_knot(qq);
7192 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7193 returns a pointer to the first node of the copy, if the path is a cycle,
7194 but to the final node of a non-cyclic copy. The global
7195 variable |path_tail| will point to the final node of the original path;
7196 this trick makes it easier to implement `\&{doublepath}'.
7198 All node types are assumed to be |endpoint| or |explicit| only.
7201 pointer mp_htap_ypoc (MP mp,pointer p) {
7202 pointer q,pp,qq,rr; /* for list manipulation */
7203 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7206 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7207 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7208 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7209 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7210 originator(qq)=originator(pp);
7211 if ( link(pp)==p ) {
7212 link(q)=qq; mp->path_tail=pp; return q;
7214 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7219 pointer path_tail; /* the node that links to the beginning of a path */
7221 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7222 calling the following subroutine.
7224 @<Declare the recycling subroutines@>=
7225 void mp_toss_knot_list (MP mp,pointer p) ;
7228 void mp_toss_knot_list (MP mp,pointer p) {
7229 pointer q; /* the node being freed */
7230 pointer r; /* the next node */
7234 mp_free_node(mp, q,knot_node_size); q=r;
7238 @* \[18] Choosing control points.
7239 Now we must actually delve into one of \MP's more difficult routines,
7240 the |make_choices| procedure that chooses angles and control points for
7241 the splines of a curve when the user has not specified them explicitly.
7242 The parameter to |make_choices| points to a list of knots and
7243 path information, as described above.
7245 A path decomposes into independent segments at ``breakpoint'' knots,
7246 which are knots whose left and right angles are both prespecified in
7247 some way (i.e., their |left_type| and |right_type| aren't both open).
7250 @<Declare the procedure called |solve_choices|@>;
7251 void mp_make_choices (MP mp,pointer knots) {
7252 pointer h; /* the first breakpoint */
7253 pointer p,q; /* consecutive breakpoints being processed */
7254 @<Other local variables for |make_choices|@>;
7255 check_arith; /* make sure that |arith_error=false| */
7256 if ( mp->internal[mp_tracing_choices]>0 )
7257 mp_print_path(mp, knots,", before choices",true);
7258 @<If consecutive knots are equal, join them explicitly@>;
7259 @<Find the first breakpoint, |h|, on the path;
7260 insert an artificial breakpoint if the path is an unbroken cycle@>;
7263 @<Fill in the control points between |p| and the next breakpoint,
7264 then advance |p| to that breakpoint@>;
7266 if ( mp->internal[mp_tracing_choices]>0 )
7267 mp_print_path(mp, knots,", after choices",true);
7268 if ( mp->arith_error ) {
7269 @<Report an unexpected problem during the choice-making@>;
7273 @ @<Report an unexpected problem during the choice...@>=
7275 print_err("Some number got too big");
7276 @.Some number got too big@>
7277 help2("The path that I just computed is out of range.")
7278 ("So it will probably look funny. Proceed, for a laugh.");
7279 mp_put_get_error(mp); mp->arith_error=false;
7282 @ Two knots in a row with the same coordinates will always be joined
7283 by an explicit ``curve'' whose control points are identical with the
7286 @<If consecutive knots are equal, join them explicitly@>=
7290 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7291 right_type(p)=mp_explicit;
7292 if ( left_type(p)==mp_open ) {
7293 left_type(p)=mp_curl; left_curl(p)=unity;
7295 left_type(q)=mp_explicit;
7296 if ( right_type(q)==mp_open ) {
7297 right_type(q)=mp_curl; right_curl(q)=unity;
7299 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7300 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7305 @ If there are no breakpoints, it is necessary to compute the direction
7306 angles around an entire cycle. In this case the |left_type| of the first
7307 node is temporarily changed to |end_cycle|.
7309 @<Find the first breakpoint, |h|, on the path...@>=
7312 if ( left_type(h)!=mp_open ) break;
7313 if ( right_type(h)!=mp_open ) break;
7316 left_type(h)=mp_end_cycle; break;
7320 @ If |right_type(p)<given| and |q=link(p)|, we must have
7321 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7323 @<Fill in the control points between |p| and the next breakpoint...@>=
7325 if ( right_type(p)>=mp_given ) {
7326 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7327 @<Fill in the control information between
7328 consecutive breakpoints |p| and |q|@>;
7329 } else if ( right_type(p)==mp_endpoint ) {
7330 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7334 @ This step makes it possible to transform an explicitly computed path without
7335 checking the |left_type| and |right_type| fields.
7337 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7339 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7340 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7343 @ Before we can go further into the way choices are made, we need to
7344 consider the underlying theory. The basic ideas implemented in |make_choices|
7345 are due to John Hobby, who introduced the notion of ``mock curvature''
7346 @^Hobby, John Douglas@>
7347 at a knot. Angles are chosen so that they preserve mock curvature when
7348 a knot is passed, and this has been found to produce excellent results.
7350 It is convenient to introduce some notations that simplify the necessary
7351 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7352 between knots |k| and |k+1|; and let
7353 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7354 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7355 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7356 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7357 $$\eqalign{z_k^+&=z_k+
7358 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7360 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7361 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7362 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7363 corresponding ``offset angles.'' These angles satisfy the condition
7364 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7365 whenever the curve leaves an intermediate knot~|k| in the direction that
7368 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7369 the curve at its beginning and ending points. This means that
7370 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7371 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7372 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7373 z\k^-,z\k^{\phantom+};t)$
7376 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7377 \qquad{\rm and}\qquad
7378 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7379 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7381 approximation to this true curvature that arises in the limit for
7382 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7383 The standard velocity function satisfies
7384 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7385 hence the mock curvatures are respectively
7386 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7387 \qquad{\rm and}\qquad
7388 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7390 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7391 determines $\phi_k$ when $\theta_k$ is known, so the task of
7392 angle selection is essentially to choose appropriate values for each
7393 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7394 from $(**)$, we obtain a system of linear equations of the form
7395 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7397 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7398 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7399 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7400 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7401 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7402 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7403 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7404 hence they have a unique solution. Moreover, in most cases the tensions
7405 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7406 solution numerically stable, and there is an exponential damping
7407 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7408 a factor of~$O(2^{-j})$.
7410 @ However, we still must consider the angles at the starting and ending
7411 knots of a non-cyclic path. These angles might be given explicitly, or
7412 they might be specified implicitly in terms of an amount of ``curl.''
7414 Let's assume that angles need to be determined for a non-cyclic path
7415 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7416 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7417 have been given for $0<k<n$, and it will be convenient to introduce
7418 equations of the same form for $k=0$ and $k=n$, where
7419 $$A_0=B_0=C_n=D_n=0.$$
7420 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7421 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7422 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7423 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7424 mock curvature at $z_1$; i.e.,
7425 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7426 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7427 This equation simplifies to
7428 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7429 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7430 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7431 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7432 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7433 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7434 hence the linear equations remain nonsingular.
7436 Similar considerations apply at the right end, when the final angle $\phi_n$
7437 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7438 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7440 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7441 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7442 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7444 When |make_choices| chooses angles, it must compute the coefficients of
7445 these linear equations, then solve the equations. To compute the coefficients,
7446 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7447 When the equations are solved, the chosen directions $\theta_k$ are put
7448 back into the form of control points by essentially computing sines and
7451 @ OK, we are ready to make the hard choices of |make_choices|.
7452 Most of the work is relegated to an auxiliary procedure
7453 called |solve_choices|, which has been introduced to keep
7454 |make_choices| from being extremely long.
7456 @<Fill in the control information between...@>=
7457 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7458 set $n$ to the length of the path@>;
7459 @<Remove |open| types at the breakpoints@>;
7460 mp_solve_choices(mp, p,q,n)
7462 @ It's convenient to precompute quantities that will be needed several
7463 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7464 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7465 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7466 and $z\k-z_k$ will be stored in |psi[k]|.
7469 int path_size; /* maximum number of knots between breakpoints of a path */
7472 scaled *delta; /* knot differences */
7473 angle *psi; /* turning angles */
7475 @ @<Allocate or initialize ...@>=
7481 @ @<Dealloc variables@>=
7487 @ @<Other local variables for |make_choices|@>=
7488 int k,n; /* current and final knot numbers */
7489 pointer s,t; /* registers for list traversal */
7490 scaled delx,dely; /* directions where |open| meets |explicit| */
7491 fraction sine,cosine; /* trig functions of various angles */
7493 @ @<Calculate the turning angles...@>=
7496 k=0; s=p; n=mp->path_size;
7499 mp->delta_x[k]=x_coord(t)-x_coord(s);
7500 mp->delta_y[k]=y_coord(t)-y_coord(s);
7501 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7503 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7504 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7505 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7506 mp_take_fraction(mp, mp->delta_y[k],sine),
7507 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7508 mp_take_fraction(mp, mp->delta_x[k],sine));
7511 if ( k==mp->path_size ) {
7512 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7513 goto RESTART; /* retry, loop size has changed */
7516 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7517 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7520 @ When we get to this point of the code, |right_type(p)| is either
7521 |given| or |curl| or |open|. If it is |open|, we must have
7522 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7523 case, the |open| type is converted to |given|; however, if the
7524 velocity coming into this knot is zero, the |open| type is
7525 converted to a |curl|, since we don't know the incoming direction.
7527 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7528 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7530 @<Remove |open| types at the breakpoints@>=
7531 if ( left_type(q)==mp_open ) {
7532 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7533 if ( (delx==0)&&(dely==0) ) {
7534 left_type(q)=mp_curl; left_curl(q)=unity;
7536 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7539 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7540 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7541 if ( (delx==0)&&(dely==0) ) {
7542 right_type(p)=mp_curl; right_curl(p)=unity;
7544 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7548 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7549 and exactly one of the breakpoints involves a curl. The simplest case occurs
7550 when |n=1| and there is a curl at both breakpoints; then we simply draw
7553 But before coding up the simple cases, we might as well face the general case,
7554 since we must deal with it sooner or later, and since the general case
7555 is likely to give some insight into the way simple cases can be handled best.
7557 When there is no cycle, the linear equations to be solved form a tridiagonal
7558 system, and we can apply the standard technique of Gaussian elimination
7559 to convert that system to a sequence of equations of the form
7560 $$\theta_0+u_0\theta_1=v_0,\quad
7561 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7562 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7564 It is possible to do this diagonalization while generating the equations.
7565 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7566 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7568 The procedure is slightly more complex when there is a cycle, but the
7569 basic idea will be nearly the same. In the cyclic case the right-hand
7570 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7571 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7572 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7573 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7574 eliminate the $w$'s from the system, after which the solution can be
7577 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7578 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7579 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7580 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7583 angle *theta; /* values of $\theta_k$ */
7584 fraction *uu; /* values of $u_k$ */
7585 angle *vv; /* values of $v_k$ */
7586 fraction *ww; /* values of $w_k$ */
7588 @ @<Allocate or initialize ...@>=
7594 @ @<Dealloc variables@>=
7600 @ @<Declare |mp_reallocate| functions@>=
7601 void mp_reallocate_paths (MP mp, int l);
7604 void mp_reallocate_paths (MP mp, int l) {
7605 XREALLOC (mp->delta_x, l, scaled);
7606 XREALLOC (mp->delta_y, l, scaled);
7607 XREALLOC (mp->delta, l, scaled);
7608 XREALLOC (mp->psi, l, angle);
7609 XREALLOC (mp->theta, l, angle);
7610 XREALLOC (mp->uu, l, fraction);
7611 XREALLOC (mp->vv, l, angle);
7612 XREALLOC (mp->ww, l, fraction);
7616 @ Our immediate problem is to get the ball rolling by setting up the
7617 first equation or by realizing that no equations are needed, and to fit
7618 this initialization into a framework suitable for the overall computation.
7620 @<Declare the procedure called |solve_choices|@>=
7621 @<Declare subroutines needed by |solve_choices|@>;
7622 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7623 int k; /* current knot number */
7624 pointer r,s,t; /* registers for list traversal */
7625 @<Other local variables for |solve_choices|@>;
7630 @<Get the linear equations started; or |return|
7631 with the control points in place, if linear equations
7634 switch (left_type(s)) {
7635 case mp_end_cycle: case mp_open:
7636 @<Set up equation to match mock curvatures
7637 at $z_k$; then |goto found| with $\theta_n$
7638 adjusted to equal $\theta_0$, if a cycle has ended@>;
7641 @<Set up equation for a curl at $\theta_n$
7645 @<Calculate the given value of $\theta_n$
7648 } /* there are no other cases */
7653 @<Finish choosing angles and assigning control points@>;
7656 @ On the first time through the loop, we have |k=0| and |r| is not yet
7657 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7659 @<Get the linear equations started...@>=
7660 switch (right_type(s)) {
7662 if ( left_type(t)==mp_given ) {
7663 @<Reduce to simple case of two givens and |return|@>
7665 @<Set up the equation for a given value of $\theta_0$@>;
7669 if ( left_type(t)==mp_curl ) {
7670 @<Reduce to simple case of straight line and |return|@>
7672 @<Set up the equation for a curl at $\theta_0$@>;
7676 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7677 /* this begins a cycle */
7679 } /* there are no other cases */
7681 @ The general equation that specifies equality of mock curvature at $z_k$ is
7682 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7683 as derived above. We want to combine this with the already-derived equation
7684 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7686 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7688 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7689 -A_kw_{k-1}\theta_0$$
7690 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7691 fixed-point arithmetic, avoiding the chance of overflow while retaining
7694 The calculations will be performed in several registers that
7695 provide temporary storage for intermediate quantities.
7697 @<Other local variables for |solve_choices|@>=
7698 fraction aa,bb,cc,ff,acc; /* temporary registers */
7699 scaled dd,ee; /* likewise, but |scaled| */
7700 scaled lt,rt; /* tension values */
7702 @ @<Set up equation to match mock curvatures...@>=
7703 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7704 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7705 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7706 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7707 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7708 @<Calculate the values of $v_k$ and $w_k$@>;
7709 if ( left_type(s)==mp_end_cycle ) {
7710 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7714 @ Since tension values are never less than 3/4, the values |aa| and
7715 |bb| computed here are never more than 4/5.
7717 @<Calculate the values $\\{aa}=...@>=
7718 if ( abs(right_tension(r))==unity) {
7719 aa=fraction_half; dd=2*mp->delta[k];
7721 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7722 dd=mp_take_fraction(mp, mp->delta[k],
7723 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7725 if ( abs(left_tension(t))==unity ){
7726 bb=fraction_half; ee=2*mp->delta[k-1];
7728 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7729 ee=mp_take_fraction(mp, mp->delta[k-1],
7730 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7732 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7734 @ The ratio to be calculated in this step can be written in the form
7735 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7736 \\{cc}\cdot\\{dd},$$
7737 because of the quantities just calculated. The values of |dd| and |ee|
7738 will not be needed after this step has been performed.
7740 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7741 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7742 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7744 ff=mp_make_fraction(mp, lt,rt);
7745 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7746 dd=mp_take_fraction(mp, dd,ff);
7748 ff=mp_make_fraction(mp, rt,lt);
7749 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7750 ee=mp_take_fraction(mp, ee,ff);
7753 ff=mp_make_fraction(mp, ee,ee+dd)
7755 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7756 equation was specified by a curl. In that case we must use a special
7757 method of computation to prevent overflow.
7759 Fortunately, the calculations turn out to be even simpler in this ``hard''
7760 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7761 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7763 @<Calculate the values of $v_k$ and $w_k$@>=
7764 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7765 if ( right_type(r)==mp_curl ) {
7767 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7769 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7770 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7771 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7772 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7773 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7774 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7775 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7778 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7779 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7780 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7781 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7784 The idea in the following code is to observe that
7785 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7786 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7787 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7788 so we can solve for $\theta_n=\theta_0$.
7790 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7792 aa=0; bb=fraction_one; /* we have |k=n| */
7795 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7796 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7797 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7798 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7799 mp->theta[n]=aa; mp->vv[0]=aa;
7800 for (k=1;k<=n-1;k++) {
7801 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7806 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7807 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7809 @<Calculate the given value of $\theta_n$...@>=
7811 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7812 reduce_angle(mp->theta[n]);
7816 @ @<Set up the equation for a given value of $\theta_0$@>=
7818 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7819 reduce_angle(mp->vv[0]);
7820 mp->uu[0]=0; mp->ww[0]=0;
7823 @ @<Set up the equation for a curl at $\theta_0$@>=
7824 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7825 if ( (rt==unity)&&(lt==unity) )
7826 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7828 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7829 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7832 @ @<Set up equation for a curl at $\theta_n$...@>=
7833 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7834 if ( (rt==unity)&&(lt==unity) )
7835 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7837 ff=mp_curl_ratio(mp, cc,lt,rt);
7838 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7839 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7843 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7844 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7845 a somewhat tedious program to calculate
7846 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7847 \alpha^3\gamma+(3-\beta)\beta^2},$$
7848 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7849 is necessary only if the curl and tension are both large.)
7850 The values of $\alpha$ and $\beta$ will be at most~4/3.
7852 @<Declare subroutines needed by |solve_choices|@>=
7853 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7855 fraction alpha,beta,num,denom,ff; /* registers */
7856 alpha=mp_make_fraction(mp, unity,a_tension);
7857 beta=mp_make_fraction(mp, unity,b_tension);
7858 if ( alpha<=beta ) {
7859 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7860 gamma=mp_take_fraction(mp, gamma,ff);
7861 beta=beta / 010000; /* convert |fraction| to |scaled| */
7862 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7863 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7865 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7866 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7867 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7868 /* $1365\approx 2^{12}/3$ */
7869 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7871 if ( num>=denom+denom+denom+denom ) return fraction_four;
7872 else return mp_make_fraction(mp, num,denom);
7875 @ We're in the home stretch now.
7877 @<Finish choosing angles and assigning control points@>=
7878 for (k=n-1;k>=0;k--) {
7879 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7884 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7885 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7886 mp_set_controls(mp, s,t,k);
7890 @ The |set_controls| routine actually puts the control points into
7891 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7892 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7893 $\cos\phi$ needed in this calculation.
7899 fraction cf; /* sines and cosines */
7901 @ @<Declare subroutines needed by |solve_choices|@>=
7902 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7903 fraction rr,ss; /* velocities, divided by thrice the tension */
7904 scaled lt,rt; /* tensions */
7905 fraction sine; /* $\sin(\theta+\phi)$ */
7906 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7907 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7908 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7909 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7910 @<Decrease the velocities,
7911 if necessary, to stay inside the bounding triangle@>;
7913 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7914 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7915 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7916 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7917 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7918 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7919 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7920 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7921 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7922 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7923 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7924 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7925 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7928 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7929 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7930 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7931 there is no ``bounding triangle.''
7932 @:at_least_}{\&{atleast} primitive@>
7934 @<Decrease the velocities, if necessary...@>=
7935 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7936 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7937 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7939 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7940 if ( right_tension(p)<0 )
7941 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7942 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7943 if ( left_tension(q)<0 )
7944 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7945 ss=mp_make_fraction(mp, abs(mp->st),sine);
7949 @ Only the simple cases remain to be handled.
7951 @<Reduce to simple case of two givens and |return|@>=
7953 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7954 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7955 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7956 mp_set_controls(mp, p,q,0); return;
7959 @ @<Reduce to simple case of straight line and |return|@>=
7961 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7962 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7964 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7965 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7966 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7967 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7969 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7970 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7971 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7974 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7975 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7976 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7977 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7979 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7980 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7981 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7986 @* \[19] Measuring paths.
7987 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7988 allow the user to measure the bounding box of anything that can go into a
7989 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7990 by just finding the bounding box of the knots and the control points. We
7991 need a more accurate version of the bounding box, but we can still use the
7992 easy estimate to save time by focusing on the interesting parts of the path.
7994 @ Computing an accurate bounding box involves a theme that will come up again
7995 and again. Given a Bernshte{\u\i}n polynomial
7996 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7997 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7998 we can conveniently bisect its range as follows:
8001 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
8004 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
8005 |0<=k<n-j|, for |0<=j<n|.
8009 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
8010 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
8011 This formula gives us the coefficients of polynomials to use over the ranges
8012 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
8014 @ Now here's a subroutine that's handy for all sorts of path computations:
8015 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
8016 returns the unique |fraction| value |t| between 0 and~1 at which
8017 $B(a,b,c;t)$ changes from positive to negative, or returns
8018 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
8019 is already negative at |t=0|), |crossing_point| returns the value zero.
8021 @d no_crossing { return (fraction_one+1); }
8022 @d one_crossing { return fraction_one; }
8023 @d zero_crossing { return 0; }
8024 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
8026 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
8027 integer d; /* recursive counter */
8028 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
8029 if ( a<0 ) zero_crossing;
8032 if ( c>0 ) { no_crossing; }
8033 else if ( (a==0)&&(b==0) ) { no_crossing;}
8034 else { one_crossing; }
8036 if ( a==0 ) zero_crossing;
8037 } else if ( a==0 ) {
8038 if ( b<=0 ) zero_crossing;
8040 @<Use bisection to find the crossing point, if one exists@>;
8043 @ The general bisection method is quite simple when $n=2$, hence
8044 |crossing_point| does not take much time. At each stage in the
8045 recursion we have a subinterval defined by |l| and~|j| such that
8046 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
8047 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
8049 It is convenient for purposes of calculation to combine the values
8050 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
8051 of bisection then corresponds simply to doubling $d$ and possibly
8052 adding~1. Furthermore it proves to be convenient to modify
8053 our previous conventions for bisection slightly, maintaining the
8054 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
8055 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
8056 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
8058 The following code maintains the invariant relations
8059 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
8060 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
8061 it has been constructed in such a way that no arithmetic overflow
8062 will occur if the inputs satisfy
8063 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8065 @<Use bisection to find the crossing point...@>=
8066 d=1; x0=a; x1=a-b; x2=b-c;
8077 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8081 } while (d<fraction_one);
8082 return (d-fraction_one)
8084 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8085 a cubic corresponding to the |fraction| value~|t|.
8087 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8088 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8090 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8092 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8093 scaled x1,x2,x3; /* intermediate values */
8094 x1=t_of_the_way(knot_coord(p),right_coord(p));
8095 x2=t_of_the_way(right_coord(p),left_coord(q));
8096 x3=t_of_the_way(left_coord(q),knot_coord(q));
8097 x1=t_of_the_way(x1,x2);
8098 x2=t_of_the_way(x2,x3);
8099 return t_of_the_way(x1,x2);
8102 @ The actual bounding box information is stored in global variables.
8103 Since it is convenient to address the $x$ and $y$ information
8104 separately, we define arrays indexed by |x_code..y_code| and use
8105 macros to give them more convenient names.
8109 mp_x_code=0, /* index for |minx| and |maxx| */
8110 mp_y_code /* index for |miny| and |maxy| */
8114 @d minx mp->bbmin[mp_x_code]
8115 @d maxx mp->bbmax[mp_x_code]
8116 @d miny mp->bbmin[mp_y_code]
8117 @d maxy mp->bbmax[mp_y_code]
8120 scaled bbmin[mp_y_code+1];
8121 scaled bbmax[mp_y_code+1];
8122 /* the result of procedures that compute bounding box information */
8124 @ Now we're ready for the key part of the bounding box computation.
8125 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8126 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8127 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8129 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8130 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8131 The |c| parameter is |x_code| or |y_code|.
8133 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8134 boolean wavy; /* whether we need to look for extremes */
8135 scaled del1,del2,del3,del,dmax; /* proportional to the control
8136 points of a quadratic derived from a cubic */
8137 fraction t,tt; /* where a quadratic crosses zero */
8138 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8140 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8141 @<Check the control points against the bounding box and set |wavy:=true|
8142 if any of them lie outside@>;
8144 del1=right_coord(p)-knot_coord(p);
8145 del2=left_coord(q)-right_coord(p);
8146 del3=knot_coord(q)-left_coord(q);
8147 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8148 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8150 negate(del1); negate(del2); negate(del3);
8152 t=mp_crossing_point(mp, del1,del2,del3);
8153 if ( t<fraction_one ) {
8154 @<Test the extremes of the cubic against the bounding box@>;
8159 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8160 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8161 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8163 @ @<Check the control points against the bounding box and set...@>=
8165 if ( mp->bbmin[c]<=right_coord(p) )
8166 if ( right_coord(p)<=mp->bbmax[c] )
8167 if ( mp->bbmin[c]<=left_coord(q) )
8168 if ( left_coord(q)<=mp->bbmax[c] )
8171 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8172 section. We just set |del=0| in that case.
8174 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8175 if ( del1!=0 ) del=del1;
8176 else if ( del2!=0 ) del=del2;
8180 if ( abs(del2)>dmax ) dmax=abs(del2);
8181 if ( abs(del3)>dmax ) dmax=abs(del3);
8182 while ( dmax<fraction_half ) {
8183 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8187 @ Since |crossing_point| has tried to choose |t| so that
8188 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8189 slope, the value of |del2| computed below should not be positive.
8190 But rounding error could make it slightly positive in which case we
8191 must cut it to zero to avoid confusion.
8193 @<Test the extremes of the cubic against the bounding box@>=
8195 x=mp_eval_cubic(mp, p,q,t);
8196 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8197 del2=t_of_the_way(del2,del3);
8198 /* now |0,del2,del3| represent the derivative on the remaining interval */
8199 if ( del2>0 ) del2=0;
8200 tt=mp_crossing_point(mp, 0,-del2,-del3);
8201 if ( tt<fraction_one ) {
8202 @<Test the second extreme against the bounding box@>;
8206 @ @<Test the second extreme against the bounding box@>=
8208 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8209 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8212 @ Finding the bounding box of a path is basically a matter of applying
8213 |bound_cubic| twice for each pair of adjacent knots.
8215 @c void mp_path_bbox (MP mp,pointer h) {
8216 pointer p,q; /* a pair of adjacent knots */
8217 minx=x_coord(h); miny=y_coord(h);
8218 maxx=minx; maxy=miny;
8221 if ( right_type(p)==mp_endpoint ) return;
8223 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8224 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8229 @ Another important way to measure a path is to find its arc length. This
8230 is best done by using the general bisection algorithm to subdivide the path
8231 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8234 Since the arc length is the integral with respect to time of the magnitude of
8235 the velocity, it is natural to use Simpson's rule for the approximation.
8237 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8238 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8239 for the arc length of a path of length~1. For a cubic spline
8240 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8241 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8243 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8245 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8246 is the result of the bisection algorithm.
8248 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8249 This could be done via the theoretical error bound for Simpson's rule,
8251 but this is impractical because it requires an estimate of the fourth
8252 derivative of the quantity being integrated. It is much easier to just perform
8253 a bisection step and see how much the arc length estimate changes. Since the
8254 error for Simpson's rule is proportional to the fourth power of the sample
8255 spacing, the remaining error is typically about $1\over16$ of the amount of
8256 the change. We say ``typically'' because the error has a pseudo-random behavior
8257 that could cause the two estimates to agree when each contain large errors.
8259 To protect against disasters such as undetected cusps, the bisection process
8260 should always continue until all the $dz_i$ vectors belong to a single
8261 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8262 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8263 If such a spline happens to produce an erroneous arc length estimate that
8264 is little changed by bisection, the amount of the error is likely to be fairly
8265 small. We will try to arrange things so that freak accidents of this type do
8266 not destroy the inverse relationship between the \&{arclength} and
8267 \&{arctime} operations.
8268 @:arclength_}{\&{arclength} primitive@>
8269 @:arctime_}{\&{arctime} primitive@>
8271 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8273 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8274 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8275 returns the time when the arc length reaches |a_goal| if there is such a time.
8276 Thus the return value is either an arc length less than |a_goal| or, if the
8277 arc length would be at least |a_goal|, it returns a time value decreased by
8278 |two|. This allows the caller to use the sign of the result to distinguish
8279 between arc lengths and time values. On certain types of overflow, it is
8280 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8281 Otherwise, the result is always less than |a_goal|.
8283 Rather than halving the control point coordinates on each recursive call to
8284 |arc_test|, it is better to keep them proportional to velocity on the original
8285 curve and halve the results instead. This means that recursive calls can
8286 potentially use larger error tolerances in their arc length estimates. How
8287 much larger depends on to what extent the errors behave as though they are
8288 independent of each other. To save computing time, we use optimistic assumptions
8289 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8292 In addition to the tolerance parameter, |arc_test| should also have parameters
8293 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8294 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8295 and they are needed in different instances of |arc_test|.
8297 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8298 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8299 scaled dx2, scaled dy2, scaled v0, scaled v02,
8300 scaled v2, scaled a_goal, scaled tol) {
8301 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8302 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8304 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8305 scaled arc; /* best arc length estimate before recursion */
8306 @<Other local variables in |arc_test|@>;
8307 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8309 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8310 set |arc_test| and |return|@>;
8311 @<Test if the control points are confined to one quadrant or rotating them
8312 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8313 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8314 if ( arc < a_goal ) {
8317 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8318 that time minus |two|@>;
8321 @<Use one or two recursive calls to compute the |arc_test| function@>;
8325 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8326 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8327 |make_fraction| in this inner loop.
8330 @<Use one or two recursive calls to compute the |arc_test| function@>=
8332 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8333 large as possible@>;
8334 tol = tol + halfp(tol);
8335 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8336 halfp(v02), a_new, tol);
8338 return (-halfp(two-a));
8340 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8341 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8342 halfp(v02), v022, v2, a_new, tol);
8344 return (-halfp(-b) - half_unit);
8346 return (a + half(b-a));
8350 @ @<Other local variables in |arc_test|@>=
8351 scaled a,b; /* results of recursive calls */
8352 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8354 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8355 a_aux = el_gordo - a_goal;
8356 if ( a_goal > a_aux ) {
8357 a_aux = a_goal - a_aux;
8360 a_new = a_goal + a_goal;
8364 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8365 to force the additions and subtractions to be done in an order that avoids
8368 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8371 a_new = a_new + a_aux;
8374 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8375 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8376 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8377 this bound. Note that recursive calls will maintain this invariant.
8379 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8380 dx01 = half(dx0 + dx1);
8381 dx12 = half(dx1 + dx2);
8382 dx02 = half(dx01 + dx12);
8383 dy01 = half(dy0 + dy1);
8384 dy12 = half(dy1 + dy2);
8385 dy02 = half(dy01 + dy12)
8387 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8388 |a_goal=el_gordo| is guaranteed to yield the arc length.
8390 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8391 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8392 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8394 arc1 = v002 + half(halfp(v0+tmp) - v002);
8395 arc = v022 + half(halfp(v2+tmp) - v022);
8396 if ( (arc < el_gordo-arc1) ) {
8399 mp->arith_error = true;
8400 if ( a_goal==el_gordo ) return (el_gordo);
8404 @ @<Other local variables in |arc_test|@>=
8405 scaled tmp, tmp2; /* all purpose temporary registers */
8406 scaled arc1; /* arc length estimate for the first half */
8408 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8409 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8410 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8412 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8413 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8415 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8416 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8418 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8419 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8422 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8424 it is appropriate to use the same approximation to decide when the integral
8425 reaches the intermediate value |a_goal|. At this point
8427 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8428 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8429 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8430 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8431 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8435 $$ {\vb\dot B(t)\vb\over 3} \approx
8436 \cases{B\left(\hbox{|v0|},
8437 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8438 {1\over 2}\hbox{|v02|}; 2t \right)&
8439 if $t\le{1\over 2}$\cr
8440 B\left({1\over 2}\hbox{|v02|},
8441 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8442 \hbox{|v2|}; 2t-1 \right)&
8443 if $t\ge{1\over 2}$.\cr}
8446 We can integrate $\vb\dot B(t)\vb$ by using
8447 $$\int 3B(a,b,c;\tau)\,dt =
8448 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8451 This construction allows us to find the time when the arc length reaches
8452 |a_goal| by solving a cubic equation of the form
8453 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8454 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8455 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8456 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8457 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8458 $\tau$ given $a$, $b$, $c$, and $x$.
8460 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8462 tmp = (v02 + 2) / 4;
8463 if ( a_goal<=arc1 ) {
8466 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8469 return ((half_unit - two) +
8470 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8474 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8475 $$ B(0, a, a+b, a+b+c; t) = x. $$
8476 This routine is based on |crossing_point| but is simplified by the
8477 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8478 If rounding error causes this condition to be violated slightly, we just ignore
8479 it and proceed with binary search. This finds a time when the function value
8480 reaches |x| and the slope is positive.
8482 @<Declare subroutines needed by |arc_test|@>=
8483 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8484 scaled ab, bc, ac; /* bisection results */
8485 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8486 integer xx; /* temporary for updating |x| */
8487 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8488 @:this can't happen rising?}{\quad rising?@>
8491 } else if ( x >= a+b+c ) {
8495 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8499 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8500 xx = x - a - ab - ac;
8501 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8502 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8503 } while (t < unity);
8508 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8513 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8515 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8516 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8523 @ It is convenient to have a simpler interface to |arc_test| that requires no
8524 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8525 length less than |fraction_four|.
8527 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8529 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8530 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8531 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8532 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8533 v0 = mp_pyth_add(mp, dx0,dy0);
8534 v1 = mp_pyth_add(mp, dx1,dy1);
8535 v2 = mp_pyth_add(mp, dx2,dy2);
8536 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8537 mp->arith_error = true;
8538 if ( a_goal==el_gordo ) return el_gordo;
8541 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8542 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8543 v0, v02, v2, a_goal, arc_tol));
8547 @ Now it is easy to find the arc length of an entire path.
8549 @c scaled mp_get_arc_length (MP mp,pointer h) {
8550 pointer p,q; /* for traversing the path */
8551 scaled a,a_tot; /* current and total arc lengths */
8554 while ( right_type(p)!=mp_endpoint ){
8556 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8557 left_x(q)-right_x(p), left_y(q)-right_y(p),
8558 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8559 a_tot = mp_slow_add(mp, a, a_tot);
8560 if ( q==h ) break; else p=q;
8566 @ The inverse operation of finding the time on a path~|h| when the arc length
8567 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8568 is required to handle very large times or negative times on cyclic paths. For
8569 non-cyclic paths, |arc0| values that are negative or too large cause
8570 |get_arc_time| to return 0 or the length of path~|h|.
8572 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8573 time value greater than the length of the path. Since it could be much greater,
8574 we must be prepared to compute the arc length of path~|h| and divide this into
8575 |arc0| to find how many multiples of the length of path~|h| to add.
8577 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8578 pointer p,q; /* for traversing the path */
8579 scaled t_tot; /* accumulator for the result */
8580 scaled t; /* the result of |do_arc_test| */
8581 scaled arc; /* portion of |arc0| not used up so far */
8582 integer n; /* number of extra times to go around the cycle */
8584 @<Deal with a negative |arc0| value and |return|@>;
8586 if ( arc0==el_gordo ) decr(arc0);
8590 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8592 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8593 left_x(q)-right_x(p), left_y(q)-right_y(p),
8594 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8595 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8597 @<Update |t_tot| and |arc| to avoid going around the cyclic
8598 path too many times but set |arith_error:=true| and |goto done| on
8607 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8608 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8609 else { t_tot = t_tot + unity; arc = arc - t; }
8611 @ @<Deal with a negative |arc0| value and |return|@>=
8613 if ( left_type(h)==mp_endpoint ) {
8616 p = mp_htap_ypoc(mp, h);
8617 t_tot = -mp_get_arc_time(mp, p, -arc0);
8618 mp_toss_knot_list(mp, p);
8624 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8626 n = arc / (arc0 - arc);
8627 arc = arc - n*(arc0 - arc);
8628 if ( t_tot > el_gordo / (n+1) ) {
8629 mp->arith_error = true;
8633 t_tot = (n + 1)*t_tot;
8636 @* \[20] Data structures for pens.
8637 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8638 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8639 @:stroke}{\&{stroke} command@>
8640 converted into an area fill as described in the next part of this program.
8641 The mathematics behind this process is based on simple aspects of the theory
8642 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8643 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8644 Foundations of Computer Science {\bf 24} (1983), 100--111].
8646 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8647 @:makepen_}{\&{makepen} primitive@>
8648 This path representation is almost sufficient for our purposes except that
8649 a pen path should always be a convex polygon with the vertices in
8650 counter-clockwise order.
8651 Since we will need to scan pen polygons both forward and backward, a pen
8652 should be represented as a doubly linked ring of knot nodes. There is
8653 room for the extra back pointer because we do not need the
8654 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8655 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8656 so that certain procedures can operate on both pens and paths. In particular,
8657 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8660 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8662 @ The |make_pen| procedure turns a path into a pen by initializing
8663 the |knil| pointers and making sure the knots form a convex polygon.
8664 Thus each cubic in the given path becomes a straight line and the control
8665 points are ignored. If the path is not cyclic, the ends are connected by a
8668 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8670 @c @<Declare a function called |convex_hull|@>;
8671 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8672 pointer p,q; /* two consecutive knots */
8679 h=mp_convex_hull(mp, h);
8680 @<Make sure |h| isn't confused with an elliptical pen@>;
8685 @ The only information required about an elliptical pen is the overall
8686 transformation that has been applied to the original \&{pencircle}.
8687 @:pencircle_}{\&{pencircle} primitive@>
8688 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8689 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8690 knot node and transformed as if it were a path.
8692 @d pen_is_elliptical(A) ((A)==link((A)))
8694 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8695 pointer h; /* the knot node to return */
8696 h=mp_get_node(mp, knot_node_size);
8697 link(h)=h; knil(h)=h;
8698 originator(h)=mp_program_code;
8699 x_coord(h)=0; y_coord(h)=0;
8700 left_x(h)=diam; left_y(h)=0;
8701 right_x(h)=0; right_y(h)=diam;
8705 @ If the polygon being returned by |make_pen| has only one vertex, it will
8706 be interpreted as an elliptical pen. This is no problem since a degenerate
8707 polygon can equally well be thought of as a degenerate ellipse. We need only
8708 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8710 @<Make sure |h| isn't confused with an elliptical pen@>=
8711 if ( pen_is_elliptical( h) ){
8712 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8713 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8716 @ We have to cheat a little here but most operations on pens only use
8717 the first three words in each knot node.
8718 @^data structure assumptions@>
8720 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8721 x_coord(test_pen)=-half_unit;
8722 y_coord(test_pen)=0;
8723 x_coord(test_pen+3)=half_unit;
8724 y_coord(test_pen+3)=0;
8725 x_coord(test_pen+6)=0;
8726 y_coord(test_pen+6)=unity;
8727 link(test_pen)=test_pen+3;
8728 link(test_pen+3)=test_pen+6;
8729 link(test_pen+6)=test_pen;
8730 knil(test_pen)=test_pen+6;
8731 knil(test_pen+3)=test_pen;
8732 knil(test_pen+6)=test_pen+3
8734 @ Printing a polygonal pen is very much like printing a path
8736 @<Declare subroutines for printing expressions@>=
8737 void mp_pr_pen (MP mp,pointer h) {
8738 pointer p,q; /* for list traversal */
8739 if ( pen_is_elliptical(h) ) {
8740 @<Print the elliptical pen |h|@>;
8744 mp_print_two(mp, x_coord(p),y_coord(p));
8745 mp_print_nl(mp, " .. ");
8746 @<Advance |p| making sure the links are OK and |return| if there is
8749 mp_print(mp, "cycle");
8753 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8755 if ( (q==null) || (knil(q)!=p) ) {
8756 mp_print_nl(mp, "???"); return; /* this won't happen */
8761 @ @<Print the elliptical pen |h|@>=
8763 mp_print(mp, "pencircle transformed (");
8764 mp_print_scaled(mp, x_coord(h));
8765 mp_print_char(mp, ',');
8766 mp_print_scaled(mp, y_coord(h));
8767 mp_print_char(mp, ',');
8768 mp_print_scaled(mp, left_x(h)-x_coord(h));
8769 mp_print_char(mp, ',');
8770 mp_print_scaled(mp, right_x(h)-x_coord(h));
8771 mp_print_char(mp, ',');
8772 mp_print_scaled(mp, left_y(h)-y_coord(h));
8773 mp_print_char(mp, ',');
8774 mp_print_scaled(mp, right_y(h)-y_coord(h));
8775 mp_print_char(mp, ')');
8778 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8781 @<Declare subroutines for printing expressions@>=
8782 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8783 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8786 mp_end_diagnostic(mp, true);
8789 @ Making a polygonal pen into a path involves restoring the |left_type| and
8790 |right_type| fields and setting the control points so as to make a polygonal
8794 void mp_make_path (MP mp,pointer h) {
8795 pointer p; /* for traversing the knot list */
8796 small_number k; /* a loop counter */
8797 @<Other local variables in |make_path|@>;
8798 if ( pen_is_elliptical(h) ) {
8799 @<Make the elliptical pen |h| into a path@>;
8803 left_type(p)=mp_explicit;
8804 right_type(p)=mp_explicit;
8805 @<copy the coordinates of knot |p| into its control points@>;
8811 @ @<copy the coordinates of knot |p| into its control points@>=
8812 left_x(p)=x_coord(p);
8813 left_y(p)=y_coord(p);
8814 right_x(p)=x_coord(p);
8815 right_y(p)=y_coord(p)
8817 @ We need an eight knot path to get a good approximation to an ellipse.
8819 @<Make the elliptical pen |h| into a path@>=
8821 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8823 for (k=0;k<=7;k++ ) {
8824 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8825 transforming it appropriately@>;
8826 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8831 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8832 center_x=x_coord(h);
8833 center_y=y_coord(h);
8834 width_x=left_x(h)-center_x;
8835 width_y=left_y(h)-center_y;
8836 height_x=right_x(h)-center_x;
8837 height_y=right_y(h)-center_y
8839 @ @<Other local variables in |make_path|@>=
8840 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8841 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8842 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8843 scaled dx,dy; /* the vector from knot |p| to its right control point */
8845 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8847 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8848 find the point $k/8$ of the way around the circle and the direction vector
8851 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8853 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8854 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8855 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8856 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8857 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8858 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8859 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8860 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8861 right_x(p)=x_coord(p)+dx;
8862 right_y(p)=y_coord(p)+dy;
8863 left_x(p)=x_coord(p)-dx;
8864 left_y(p)=y_coord(p)-dy;
8865 left_type(p)=mp_explicit;
8866 right_type(p)=mp_explicit;
8867 originator(p)=mp_program_code
8870 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8871 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8873 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8874 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8875 function for $\theta=\phi=22.5^\circ$. This comes out to be
8876 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8877 \approx 0.132608244919772.
8881 mp->half_cos[0]=fraction_half;
8882 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8884 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8885 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8887 for (k=3;k<= 4;k++ ) {
8888 mp->half_cos[k]=-mp->half_cos[4-k];
8889 mp->d_cos[k]=-mp->d_cos[4-k];
8891 for (k=5;k<= 7;k++ ) {
8892 mp->half_cos[k]=mp->half_cos[8-k];
8893 mp->d_cos[k]=mp->d_cos[8-k];
8896 @ The |convex_hull| function forces a pen polygon to be convex when it is
8897 returned by |make_pen| and after any subsequent transformation where rounding
8898 error might allow the convexity to be lost.
8899 The convex hull algorithm used here is described by F.~P. Preparata and
8900 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8902 @<Declare a function called |convex_hull|@>=
8903 @<Declare a procedure called |move_knot|@>;
8904 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8905 pointer l,r; /* the leftmost and rightmost knots */
8906 pointer p,q; /* knots being scanned */
8907 pointer s; /* the starting point for an upcoming scan */
8908 scaled dx,dy; /* a temporary pointer */
8909 if ( pen_is_elliptical(h) ) {
8912 @<Set |l| to the leftmost knot in polygon~|h|@>;
8913 @<Set |r| to the rightmost knot in polygon~|h|@>;
8916 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8917 move them past~|r|@>;
8918 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8919 move them past~|l|@>;
8920 @<Sort the path from |l| to |r| by increasing $x$@>;
8921 @<Sort the path from |r| to |l| by decreasing $x$@>;
8924 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8930 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8932 @<Set |l| to the leftmost knot in polygon~|h|@>=
8936 if ( x_coord(p)<=x_coord(l) )
8937 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8942 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8946 if ( x_coord(p)>=x_coord(r) )
8947 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8952 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8953 dx=x_coord(r)-x_coord(l);
8954 dy=y_coord(r)-y_coord(l);
8958 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8959 mp_move_knot(mp, p, r);
8963 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8966 @ @<Declare a procedure called |move_knot|@>=
8967 void mp_move_knot (MP mp,pointer p, pointer q) {
8968 link(knil(p))=link(p);
8969 knil(link(p))=knil(p);
8976 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8980 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8981 mp_move_knot(mp, p,l);
8985 @ The list is likely to be in order already so we just do linear insertions.
8986 Secondary comparisons on $y$ ensure that the sort is consistent with the
8987 choice of |l| and |r|.
8989 @<Sort the path from |l| to |r| by increasing $x$@>=
8993 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8994 while ( x_coord(q)==x_coord(p) ) {
8995 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8997 if ( q==knil(p) ) p=link(p);
8998 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9001 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
9005 while ( x_coord(q)<x_coord(p) ) q=knil(q);
9006 while ( x_coord(q)==x_coord(p) ) {
9007 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
9009 if ( q==knil(p) ) p=link(p);
9010 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9013 @ The condition involving |ab_vs_cd| tests if there is not a left turn
9014 at knot |q|. There usually will be a left turn so we streamline the case
9015 where the |then| clause is not executed.
9017 @<Do a Gramm scan and remove vertices where there...@>=
9021 dx=x_coord(q)-x_coord(p);
9022 dy=y_coord(q)-y_coord(p);
9026 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
9027 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
9032 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
9035 mp_free_node(mp, p,knot_node_size);
9036 link(s)=q; knil(q)=s;
9038 else { p=knil(s); q=s; };
9041 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
9042 offset associated with the given direction |(x,y)|. If two different offsets
9043 apply, it chooses one of them.
9046 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
9047 pointer p,q; /* consecutive knots */
9049 /* the transformation matrix for an elliptical pen */
9050 fraction xx,yy; /* untransformed offset for an elliptical pen */
9051 fraction d; /* a temporary register */
9052 if ( pen_is_elliptical(h) ) {
9053 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
9058 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
9061 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
9062 mp->cur_x=x_coord(p);
9063 mp->cur_y=y_coord(p);
9069 scaled cur_y; /* all-purpose return value registers */
9071 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9072 if ( (x==0) && (y==0) ) {
9073 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9075 @<Find the non-constant part of the transformation for |h|@>;
9076 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9079 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9080 untransformed version of |(x,y)|@>;
9081 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9082 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9085 @ @<Find the non-constant part of the transformation for |h|@>=
9086 wx=left_x(h)-x_coord(h);
9087 wy=left_y(h)-y_coord(h);
9088 hx=right_x(h)-x_coord(h);
9089 hy=right_y(h)-y_coord(h)
9091 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9092 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9093 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9094 d=mp_pyth_add(mp, xx,yy);
9096 xx=half(mp_make_fraction(mp, xx,d));
9097 yy=half(mp_make_fraction(mp, yy,d));
9100 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9101 But we can handle that case by just calling |find_offset| twice. The answer
9102 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9105 void mp_pen_bbox (MP mp,pointer h) {
9106 pointer p; /* for scanning the knot list */
9107 if ( pen_is_elliptical(h) ) {
9108 @<Find the bounding box of an elliptical pen@>;
9110 minx=x_coord(h); maxx=minx;
9111 miny=y_coord(h); maxy=miny;
9114 if ( x_coord(p)<minx ) minx=x_coord(p);
9115 if ( y_coord(p)<miny ) miny=y_coord(p);
9116 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9117 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9123 @ @<Find the bounding box of an elliptical pen@>=
9125 mp_find_offset(mp, 0,fraction_one,h);
9127 minx=2*x_coord(h)-mp->cur_x;
9128 mp_find_offset(mp, -fraction_one,0,h);
9130 miny=2*y_coord(h)-mp->cur_y;
9133 @* \[21] Edge structures.
9134 Now we come to \MP's internal scheme for representing pictures.
9135 The representation is very different from \MF's edge structures
9136 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9137 images. However, the basic idea is somewhat similar in that shapes
9138 are represented via their boundaries.
9140 The main purpose of edge structures is to keep track of graphical objects
9141 until it is time to translate them into \ps. Since \MP\ does not need to
9142 know anything about an edge structure other than how to translate it into
9143 \ps\ and how to find its bounding box, edge structures can be just linked
9144 lists of graphical objects. \MP\ has no easy way to determine whether
9145 two such objects overlap, but it suffices to draw the first one first and
9146 let the second one overwrite it if necessary.
9149 enum mp_graphical_object_code {
9150 @<Graphical object codes@>
9153 @ Let's consider the types of graphical objects one at a time.
9154 First of all, a filled contour is represented by a eight-word node. The first
9155 word contains |type| and |link| fields, and the next six words contain a
9156 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9157 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9158 give the relevant information.
9160 @d path_p(A) link((A)+1)
9161 /* a pointer to the path that needs filling */
9162 @d pen_p(A) info((A)+1)
9163 /* a pointer to the pen to fill or stroke with */
9164 @d color_model(A) type((A)+2) /* the color model */
9165 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9166 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9167 @d obj_grey_loc obj_red_loc /* the location for the color */
9168 @d red_val(A) mp->mem[(A)+3].sc
9169 /* the red component of the color in the range $0\ldots1$ */
9172 @d green_val(A) mp->mem[(A)+4].sc
9173 /* the green component of the color in the range $0\ldots1$ */
9174 @d magenta_val green_val
9175 @d blue_val(A) mp->mem[(A)+5].sc
9176 /* the blue component of the color in the range $0\ldots1$ */
9177 @d yellow_val blue_val
9178 @d black_val(A) mp->mem[(A)+6].sc
9179 /* the blue component of the color in the range $0\ldots1$ */
9180 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9181 @:mp_linejoin_}{\&{linejoin} primitive@>
9182 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9183 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9184 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9185 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9186 @d pre_script(A) mp->mem[(A)+8].hh.lh
9187 @d post_script(A) mp->mem[(A)+8].hh.rh
9190 @ @<Graphical object codes@>=
9194 pointer mp_new_fill_node (MP mp,pointer p) {
9195 /* make a fill node for cyclic path |p| and color black */
9196 pointer t; /* the new node */
9197 t=mp_get_node(mp, fill_node_size);
9198 type(t)=mp_fill_code;
9200 pen_p(t)=null; /* |null| means don't use a pen */
9205 color_model(t)=mp_uninitialized_model;
9207 post_script(t)=null;
9208 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9212 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9213 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9214 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9215 else ljoin_val(t)=0;
9216 if ( mp->internal[mp_miterlimit]<unity )
9217 miterlim_val(t)=unity;
9219 miterlim_val(t)=mp->internal[mp_miterlimit]
9221 @ A stroked path is represented by an eight-word node that is like a filled
9222 contour node except that it contains the current \&{linecap} value, a scale
9223 factor for the dash pattern, and a pointer that is non-null if the stroke
9224 is to be dashed. The purpose of the scale factor is to allow a picture to
9225 be transformed without touching the picture that |dash_p| points to.
9227 @d dash_p(A) link((A)+9)
9228 /* a pointer to the edge structure that gives the dash pattern */
9229 @d lcap_val(A) type((A)+9)
9230 /* the value of \&{linecap} */
9231 @:mp_linecap_}{\&{linecap} primitive@>
9232 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9233 @d stroked_node_size 11
9235 @ @<Graphical object codes@>=
9239 pointer mp_new_stroked_node (MP mp,pointer p) {
9240 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9241 pointer t; /* the new node */
9242 t=mp_get_node(mp, stroked_node_size);
9243 type(t)=mp_stroked_code;
9244 path_p(t)=p; pen_p(t)=null;
9246 dash_scale(t)=unity;
9251 color_model(t)=mp_uninitialized_model;
9253 post_script(t)=null;
9254 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9255 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9256 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9261 @ When a dashed line is computed in a transformed coordinate system, the dash
9262 lengths get scaled like the pen shape and we need to compensate for this. Since
9263 there is no unique scale factor for an arbitrary transformation, we use the
9264 the square root of the determinant. The properties of the determinant make it
9265 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9266 except for the initialization of the scale factor |s|. The factor of 64 is
9267 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9268 to counteract the effect of |take_fraction|.
9270 @<Declare subroutines needed by |print_edges|@>=
9271 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9272 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9273 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9274 @<Initialize |maxabs|@>;
9276 while ( (maxabs<fraction_one) && (s>1) ){
9277 a+=a; b+=b; c+=c; d+=d;
9278 maxabs+=maxabs; s=halfp(s);
9280 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9283 scaled mp_get_pen_scale (MP mp,pointer p) {
9284 return mp_sqrt_det(mp,
9285 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9286 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9289 @ @<Internal library ...@>=
9290 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9293 @ @<Initialize |maxabs|@>=
9295 if ( abs(b)>maxabs ) maxabs=abs(b);
9296 if ( abs(c)>maxabs ) maxabs=abs(c);
9297 if ( abs(d)>maxabs ) maxabs=abs(d)
9299 @ When a picture contains text, this is represented by a fourteen-word node
9300 where the color information and |type| and |link| fields are augmented by
9301 additional fields that describe the text and how it is transformed.
9302 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9303 the font and a string number that gives the text to be displayed.
9304 The |width|, |height|, and |depth| fields
9305 give the dimensions of the text at its design size, and the remaining six
9306 words give a transformation to be applied to the text. The |new_text_node|
9307 function initializes everything to default values so that the text comes out
9308 black with its reference point at the origin.
9310 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9311 @d font_n(A) info((A)+1) /* the font number */
9312 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9313 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9314 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9315 @d text_tx_loc(A) ((A)+11)
9316 /* the first of six locations for transformation parameters */
9317 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9318 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9319 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9320 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9321 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9322 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9323 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9324 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9325 @d text_node_size 17
9327 @ @<Graphical object codes@>=
9330 @ @c @<Declare text measuring subroutines@>;
9331 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9332 /* make a text node for font |f| and text string |s| */
9333 pointer t; /* the new node */
9334 t=mp_get_node(mp, text_node_size);
9335 type(t)=mp_text_code;
9337 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9342 color_model(t)=mp_uninitialized_model;
9344 post_script(t)=null;
9345 tx_val(t)=0; ty_val(t)=0;
9346 txx_val(t)=unity; txy_val(t)=0;
9347 tyx_val(t)=0; tyy_val(t)=unity;
9348 mp_set_text_box(mp, t); /* this finds the bounding box */
9352 @ The last two types of graphical objects that can occur in an edge structure
9353 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9354 @:set_bounds_}{\&{setbounds} primitive@>
9355 to implement because we must keep track of exactly what is being clipped or
9356 bounded when pictures get merged together. For this reason, each clipping or
9357 \&{setbounds} operation is represented by a pair of nodes: first comes a
9358 two-word node whose |path_p| gives the relevant path, then there is the list
9359 of objects to clip or bound followed by a two-word node whose second word is
9362 Using at least two words for each graphical object node allows them all to be
9363 allocated and deallocated similarly with a global array |gr_object_size| to
9364 give the size in words for each object type.
9366 @d start_clip_size 2
9367 @d start_bounds_size 2
9368 @d stop_clip_size 2 /* the second word is not used here */
9369 @d stop_bounds_size 2 /* the second word is not used here */
9371 @d stop_type(A) ((A)+2)
9372 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9373 @d has_color(A) (type((A))<mp_start_clip_code)
9374 /* does a graphical object have color fields? */
9375 @d has_pen(A) (type((A))<mp_text_code)
9376 /* does a graphical object have a |pen_p| field? */
9377 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9378 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9380 @ @<Graphical object codes@>=
9381 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9382 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9383 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9384 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9387 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9388 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9389 pointer t; /* the new node */
9390 t=mp_get_node(mp, mp->gr_object_size[c]);
9396 @ We need an array to keep track of the sizes of graphical objects.
9399 small_number gr_object_size[mp_stop_bounds_code+1];
9402 mp->gr_object_size[mp_fill_code]=fill_node_size;
9403 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9404 mp->gr_object_size[mp_text_code]=text_node_size;
9405 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9406 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9407 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9408 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9410 @ All the essential information in an edge structure is encoded as a linked list
9411 of graphical objects as we have just seen, but it is helpful to add some
9412 redundant information. A single edge structure might be used as a dash pattern
9413 many times, and it would be nice to avoid scanning the same structure
9414 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9415 has a header that gives a list of dashes in a sorted order designed for rapid
9416 translation into \ps.
9418 Each dash is represented by a three-word node containing the initial and final
9419 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9420 the dash node with the next higher $x$-coordinates and the final link points
9421 to a special location called |null_dash|. (There should be no overlap between
9422 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9423 the period of repetition, this needs to be stored in the edge header along
9424 with a pointer to the list of dash nodes.
9426 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9427 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9430 /* in an edge header this points to the first dash node */
9431 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9433 @ It is also convenient for an edge header to contain the bounding
9434 box information needed by the \&{llcorner} and \&{urcorner} operators
9435 so that this does not have to be recomputed unnecessarily. This is done by
9436 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9437 how far the bounding box computation has gotten. Thus if the user asks for
9438 the bounding box and then adds some more text to the picture before asking
9439 for more bounding box information, the second computation need only look at
9440 the additional text.
9442 When the bounding box has not been computed, the |bblast| pointer points
9443 to a dummy link at the head of the graphical object list while the |minx_val|
9444 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9445 fields contain |-el_gordo|.
9447 Since the bounding box of pictures containing objects of type
9448 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9449 @:mp_true_corners_}{\&{truecorners} primitive@>
9450 data might not be valid for all values of this parameter. Hence, the |bbtype|
9451 field is needed to keep track of this.
9453 @d minx_val(A) mp->mem[(A)+2].sc
9454 @d miny_val(A) mp->mem[(A)+3].sc
9455 @d maxx_val(A) mp->mem[(A)+4].sc
9456 @d maxy_val(A) mp->mem[(A)+5].sc
9457 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9458 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9459 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9461 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9463 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9465 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9468 void mp_init_bbox (MP mp,pointer h) {
9469 /* Initialize the bounding box information in edge structure |h| */
9470 bblast(h)=dummy_loc(h);
9471 bbtype(h)=no_bounds;
9472 minx_val(h)=el_gordo;
9473 miny_val(h)=el_gordo;
9474 maxx_val(h)=-el_gordo;
9475 maxy_val(h)=-el_gordo;
9478 @ The only other entries in an edge header are a reference count in the first
9479 word and a pointer to the tail of the object list in the last word.
9481 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9482 @d edge_header_size 8
9485 void mp_init_edges (MP mp,pointer h) {
9486 /* initialize an edge header to null values */
9487 dash_list(h)=null_dash;
9488 obj_tail(h)=dummy_loc(h);
9489 link(dummy_loc(h))=null;
9491 mp_init_bbox(mp, h);
9494 @ Here is how edge structures are deleted. The process can be recursive because
9495 of the need to dereference edge structures that are used as dash patterns.
9498 @d add_edge_ref(A) incr(ref_count(A))
9499 @d delete_edge_ref(A) {
9500 if ( ref_count((A))==null )
9501 mp_toss_edges(mp, A);
9506 @<Declare the recycling subroutines@>=
9507 void mp_flush_dash_list (MP mp,pointer h);
9508 pointer mp_toss_gr_object (MP mp,pointer p) ;
9509 void mp_toss_edges (MP mp,pointer h) ;
9511 @ @c void mp_toss_edges (MP mp,pointer h) {
9512 pointer p,q; /* pointers that scan the list being recycled */
9513 pointer r; /* an edge structure that object |p| refers to */
9514 mp_flush_dash_list(mp, h);
9515 q=link(dummy_loc(h));
9516 while ( (q!=null) ) {
9518 r=mp_toss_gr_object(mp, p);
9519 if ( r!=null ) delete_edge_ref(r);
9521 mp_free_node(mp, h,edge_header_size);
9523 void mp_flush_dash_list (MP mp,pointer h) {
9524 pointer p,q; /* pointers that scan the list being recycled */
9526 while ( q!=null_dash ) {
9528 mp_free_node(mp, p,dash_node_size);
9530 dash_list(h)=null_dash;
9532 pointer mp_toss_gr_object (MP mp,pointer p) {
9533 /* returns an edge structure that needs to be dereferenced */
9534 pointer e; /* the edge structure to return */
9536 @<Prepare to recycle graphical object |p|@>;
9537 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9541 @ @<Prepare to recycle graphical object |p|@>=
9544 mp_toss_knot_list(mp, path_p(p));
9545 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9546 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9547 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9549 case mp_stroked_code:
9550 mp_toss_knot_list(mp, path_p(p));
9551 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9552 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9553 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9557 delete_str_ref(text_p(p));
9558 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9559 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9561 case mp_start_clip_code:
9562 case mp_start_bounds_code:
9563 mp_toss_knot_list(mp, path_p(p));
9565 case mp_stop_clip_code:
9566 case mp_stop_bounds_code:
9568 } /* there are no other cases */
9570 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9571 to be done before making a significant change to an edge structure. Much of
9572 the work is done in a separate routine |copy_objects| that copies a list of
9573 graphical objects into a new edge header.
9575 @c @<Declare a function called |copy_objects|@>;
9576 pointer mp_private_edges (MP mp,pointer h) {
9577 /* make a private copy of the edge structure headed by |h| */
9578 pointer hh; /* the edge header for the new copy */
9579 pointer p,pp; /* pointers for copying the dash list */
9580 if ( ref_count(h)==null ) {
9584 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9585 @<Copy the dash list from |h| to |hh|@>;
9586 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9587 point into the new object list@>;
9592 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9593 @^data structure assumptions@>
9595 @<Copy the dash list from |h| to |hh|@>=
9596 pp=hh; p=dash_list(h);
9597 while ( (p!=null_dash) ) {
9598 link(pp)=mp_get_node(mp, dash_node_size);
9600 start_x(pp)=start_x(p);
9601 stop_x(pp)=stop_x(p);
9605 dash_y(hh)=dash_y(h)
9608 @ |h| is an edge structure
9610 @d gr_start_x(A) (A)->start_x_field
9611 @d gr_stop_x(A) (A)->stop_x_field
9612 @d gr_dash_link(A) (A)->next_field
9614 @d gr_dash_list(A) (A)->list_field
9615 @d gr_dash_y(A) (A)->y_field
9618 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9619 struct mp_dash_list *dl;
9620 struct mp_dash_item *dh, *di;
9622 if (h==null || dash_list(h)==null_dash)
9625 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9626 gr_dash_list(dl) = NULL;
9627 gr_dash_y(dl) = dash_y(h);
9629 while (p != null_dash) {
9630 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9631 gr_dash_link(di) = NULL;
9632 gr_start_x(di) = start_x(p);
9633 gr_stop_x(di) = stop_x(p);
9635 gr_dash_list(dl) = di;
9637 gr_dash_link(dh) = di;
9646 @ @<Copy the bounding box information from |h| to |hh|...@>=
9647 minx_val(hh)=minx_val(h);
9648 miny_val(hh)=miny_val(h);
9649 maxx_val(hh)=maxx_val(h);
9650 maxy_val(hh)=maxy_val(h);
9651 bbtype(hh)=bbtype(h);
9652 p=dummy_loc(h); pp=dummy_loc(hh);
9653 while ((p!=bblast(h)) ) {
9654 if ( p==null ) mp_confusion(mp, "bblast");
9655 @:this can't happen bblast}{\quad bblast@>
9656 p=link(p); pp=link(pp);
9660 @ Here is the promised routine for copying graphical objects into a new edge
9661 structure. It starts copying at object~|p| and stops just before object~|q|.
9662 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9663 structure requires further initialization by |init_bbox|.
9665 @<Declare a function called |copy_objects|@>=
9666 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9667 pointer hh; /* the new edge header */
9668 pointer pp; /* the last newly copied object */
9669 small_number k; /* temporary register */
9670 hh=mp_get_node(mp, edge_header_size);
9671 dash_list(hh)=null_dash;
9675 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9682 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9683 { k=mp->gr_object_size[type(p)];
9684 link(pp)=mp_get_node(mp, k);
9686 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9687 @<Fix anything in graphical object |pp| that should differ from the
9688 corresponding field in |p|@>;
9692 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9694 case mp_start_clip_code:
9695 case mp_start_bounds_code:
9696 path_p(pp)=mp_copy_path(mp, path_p(p));
9699 path_p(pp)=mp_copy_path(mp, path_p(p));
9700 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9702 case mp_stroked_code:
9703 path_p(pp)=mp_copy_path(mp, path_p(p));
9704 pen_p(pp)=copy_pen(pen_p(p));
9705 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9708 add_str_ref(text_p(pp));
9710 case mp_stop_clip_code:
9711 case mp_stop_bounds_code:
9713 } /* there are no other cases */
9715 @ Here is one way to find an acceptable value for the second argument to
9716 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9717 skips past one picture component, where a ``picture component'' is a single
9718 graphical object, or a start bounds or start clip object and everything up
9719 through the matching stop bounds or stop clip object. The macro version avoids
9720 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9721 unless |p| points to a stop bounds or stop clip node, in which case it executes
9724 @d skip_component(A)
9725 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9726 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9730 pointer mp_skip_1component (MP mp,pointer p) {
9731 integer lev; /* current nesting level */
9734 if ( is_start_or_stop(p) ) {
9735 if ( is_stop(p) ) decr(lev); else incr(lev);
9742 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9744 @<Declare subroutines for printing expressions@>=
9745 @<Declare subroutines needed by |print_edges|@>;
9746 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9747 pointer p; /* a graphical object to be printed */
9748 pointer hh,pp; /* temporary pointers */
9749 scaled scf; /* a scale factor for the dash pattern */
9750 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9751 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9753 while ( link(p)!=null ) {
9757 @<Cases for printing graphical object node |p|@>;
9759 mp_print(mp, "[unknown object type!]");
9763 mp_print_nl(mp, "End edges");
9764 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9766 mp_end_diagnostic(mp, true);
9769 @ @<Cases for printing graphical object node |p|@>=
9771 mp_print(mp, "Filled contour ");
9772 mp_print_obj_color(mp, p);
9773 mp_print_char(mp, ':'); mp_print_ln(mp);
9774 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9775 if ( (pen_p(p)!=null) ) {
9776 @<Print join type for graphical object |p|@>;
9777 mp_print(mp, " with pen"); mp_print_ln(mp);
9778 mp_pr_pen(mp, pen_p(p));
9782 @ @<Print join type for graphical object |p|@>=
9783 switch (ljoin_val(p)) {
9785 mp_print(mp, "mitered joins limited ");
9786 mp_print_scaled(mp, miterlim_val(p));
9789 mp_print(mp, "round joins");
9792 mp_print(mp, "beveled joins");
9795 mp_print(mp, "?? joins");
9800 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9802 @<Print join and cap types for stroked node |p|@>=
9803 switch (lcap_val(p)) {
9804 case 0:mp_print(mp, "butt"); break;
9805 case 1:mp_print(mp, "round"); break;
9806 case 2:mp_print(mp, "square"); break;
9807 default: mp_print(mp, "??"); break;
9810 mp_print(mp, " ends, ");
9811 @<Print join type for graphical object |p|@>
9813 @ Here is a routine that prints the color of a graphical object if it isn't
9814 black (the default color).
9816 @<Declare subroutines needed by |print_edges|@>=
9817 @<Declare a procedure called |print_compact_node|@>;
9818 void mp_print_obj_color (MP mp,pointer p) {
9819 if ( color_model(p)==mp_grey_model ) {
9820 if ( grey_val(p)>0 ) {
9821 mp_print(mp, "greyed ");
9822 mp_print_compact_node(mp, obj_grey_loc(p),1);
9824 } else if ( color_model(p)==mp_cmyk_model ) {
9825 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9826 (yellow_val(p)>0) || (black_val(p)>0) ) {
9827 mp_print(mp, "processcolored ");
9828 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9830 } else if ( color_model(p)==mp_rgb_model ) {
9831 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9832 mp_print(mp, "colored ");
9833 mp_print_compact_node(mp, obj_red_loc(p),3);
9838 @ We also need a procedure for printing consecutive scaled values as if they
9839 were a known big node.
9841 @<Declare a procedure called |print_compact_node|@>=
9842 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9843 pointer q; /* last location to print */
9845 mp_print_char(mp, '(');
9847 mp_print_scaled(mp, mp->mem[p].sc);
9848 if ( p<q ) mp_print_char(mp, ',');
9851 mp_print_char(mp, ')');
9854 @ @<Cases for printing graphical object node |p|@>=
9855 case mp_stroked_code:
9856 mp_print(mp, "Filled pen stroke ");
9857 mp_print_obj_color(mp, p);
9858 mp_print_char(mp, ':'); mp_print_ln(mp);
9859 mp_pr_path(mp, path_p(p));
9860 if ( dash_p(p)!=null ) {
9861 mp_print_nl(mp, "dashed (");
9862 @<Finish printing the dash pattern that |p| refers to@>;
9865 @<Print join and cap types for stroked node |p|@>;
9866 mp_print(mp, " with pen"); mp_print_ln(mp);
9867 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9869 else mp_pr_pen(mp, pen_p(p));
9872 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9873 when it is not known to define a suitable dash pattern. This is disallowed
9874 here because the |dash_p| field should never point to such an edge header.
9875 Note that memory is allocated for |start_x(null_dash)| and we are free to
9876 give it any convenient value.
9878 @<Finish printing the dash pattern that |p| refers to@>=
9879 ok_to_dash=pen_is_elliptical(pen_p(p));
9880 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9883 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9884 mp_print(mp, " ??");
9885 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9886 while ( pp!=null_dash ) {
9887 mp_print(mp, "on ");
9888 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9889 mp_print(mp, " off ");
9890 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9892 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9894 mp_print(mp, ") shifted ");
9895 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9896 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9899 @ @<Declare subroutines needed by |print_edges|@>=
9900 scaled mp_dash_offset (MP mp,pointer h) {
9901 scaled x; /* the answer */
9902 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9903 @:this can't happen dash0}{\quad dash0@>
9904 if ( dash_y(h)==0 ) {
9907 x=-(start_x(dash_list(h)) % dash_y(h));
9908 if ( x<0 ) x=x+dash_y(h);
9913 @ @<Cases for printing graphical object node |p|@>=
9915 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9916 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9917 mp_print_char(mp, '"'); mp_print_ln(mp);
9918 mp_print_obj_color(mp, p);
9919 mp_print(mp, "transformed ");
9920 mp_print_compact_node(mp, text_tx_loc(p),6);
9923 @ @<Cases for printing graphical object node |p|@>=
9924 case mp_start_clip_code:
9925 mp_print(mp, "clipping path:");
9927 mp_pr_path(mp, path_p(p));
9929 case mp_stop_clip_code:
9930 mp_print(mp, "stop clipping");
9933 @ @<Cases for printing graphical object node |p|@>=
9934 case mp_start_bounds_code:
9935 mp_print(mp, "setbounds path:");
9937 mp_pr_path(mp, path_p(p));
9939 case mp_stop_bounds_code:
9940 mp_print(mp, "end of setbounds");
9943 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9944 subroutine that scans an edge structure and tries to interpret it as a dash
9945 pattern. This can only be done when there are no filled regions or clipping
9946 paths and all the pen strokes have the same color. The first step is to let
9947 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9948 project all the pen stroke paths onto the line $y=y_0$ and require that there
9949 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9950 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9951 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9953 @c @<Declare a procedure called |x_retrace_error|@>;
9954 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9955 pointer p; /* this scans the stroked nodes in the object list */
9956 pointer p0; /* if not |null| this points to the first stroked node */
9957 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9958 pointer d,dd; /* pointers used to create the dash list */
9959 @<Other local variables in |make_dashes|@>;
9960 scaled y0=0; /* the initial $y$ coordinate */
9961 if ( dash_list(h)!=null_dash )
9964 p=link(dummy_loc(h));
9966 if ( type(p)!=mp_stroked_code ) {
9967 @<Compain that the edge structure contains a node of the wrong type
9968 and |goto not_found|@>;
9971 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9972 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9973 or |goto not_found| if there is an error@>;
9974 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9977 if ( dash_list(h)==null_dash )
9978 goto NOT_FOUND; /* No error message */
9979 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9980 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9983 @<Flush the dash list, recycle |h| and return |null|@>;
9986 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9988 print_err("Picture is too complicated to use as a dash pattern");
9989 help3("When you say `dashed p', picture p should not contain any")
9990 ("text, filled regions, or clipping paths. This time it did")
9991 ("so I'll just make it a solid line instead.");
9992 mp_put_get_error(mp);
9996 @ A similar error occurs when monotonicity fails.
9998 @<Declare a procedure called |x_retrace_error|@>=
9999 void mp_x_retrace_error (MP mp) {
10000 print_err("Picture is too complicated to use as a dash pattern");
10001 help3("When you say `dashed p', every path in p should be monotone")
10002 ("in x and there must be no overlapping. This failed")
10003 ("so I'll just make it a solid line instead.");
10004 mp_put_get_error(mp);
10007 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
10008 handle the case where the pen stroke |p| is itself dashed.
10010 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
10011 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
10014 if ( link(pp)!=pp ) {
10016 qq=rr; rr=link(rr);
10017 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
10018 if there is a problem@>;
10019 } while (right_type(rr)!=mp_endpoint);
10021 d=mp_get_node(mp, dash_node_size);
10022 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
10023 if ( x_coord(pp)<x_coord(rr) ) {
10024 start_x(d)=x_coord(pp);
10025 stop_x(d)=x_coord(rr);
10027 start_x(d)=x_coord(rr);
10028 stop_x(d)=x_coord(pp);
10031 @ We also need to check for the case where the segment from |qq| to |rr| is
10032 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
10034 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
10039 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
10040 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
10041 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
10042 mp_x_retrace_error(mp); goto NOT_FOUND;
10046 if ( (x_coord(pp)>x0) || (x0>x3) ) {
10047 if ( (x_coord(pp)<x0) || (x0<x3) ) {
10048 mp_x_retrace_error(mp); goto NOT_FOUND;
10052 @ @<Other local variables in |make_dashes|@>=
10053 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
10055 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
10056 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
10057 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
10058 print_err("Picture is too complicated to use as a dash pattern");
10059 help3("When you say `dashed p', everything in picture p should")
10060 ("be the same color. I can\'t handle your color changes")
10061 ("so I'll just make it a solid line instead.");
10062 mp_put_get_error(mp);
10066 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10067 start_x(null_dash)=stop_x(d);
10068 dd=h; /* this makes |link(dd)=dash_list(h)| */
10069 while ( start_x(link(dd))<stop_x(d) )
10072 if ( (stop_x(dd)>start_x(d)) )
10073 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10078 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10080 while ( (link(d)!=null_dash) )
10083 dash_y(h)=stop_x(d)-start_x(dd);
10084 if ( abs(y0)>dash_y(h) ) {
10086 } else if ( d!=dd ) {
10087 dash_list(h)=link(dd);
10088 stop_x(d)=stop_x(dd)+dash_y(h);
10089 mp_free_node(mp, dd,dash_node_size);
10092 @ We get here when the argument is a null picture or when there is an error.
10093 Recovering from an error involves making |dash_list(h)| empty to indicate
10094 that |h| is not known to be a valid dash pattern. We also dereference |h|
10095 since it is not being used for the return value.
10097 @<Flush the dash list, recycle |h| and return |null|@>=
10098 mp_flush_dash_list(mp, h);
10099 delete_edge_ref(h);
10102 @ Having carefully saved the dashed stroked nodes in the
10103 corresponding dash nodes, we must be prepared to break up these dashes into
10106 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10107 d=h; /* now |link(d)=dash_list(h)| */
10108 while ( link(d)!=null_dash ) {
10114 hsf=dash_scale(ds);
10115 if ( (hh==null) ) mp_confusion(mp, "dash1");
10116 @:this can't happen dash0}{\quad dash1@>
10117 if ( dash_y(hh)==0 ) {
10120 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10121 @:this can't happen dash0}{\quad dash1@>
10122 @<Replace |link(d)| by a dashed version as determined by edge header
10123 |hh| and scale factor |ds|@>;
10128 @ @<Other local variables in |make_dashes|@>=
10129 pointer dln; /* |link(d)| */
10130 pointer hh; /* an edge header that tells how to break up |dln| */
10131 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10132 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10133 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10135 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10138 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10139 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10140 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10141 +mp_take_scaled(mp, hsf,dash_y(hh));
10142 stop_x(null_dash)=start_x(null_dash);
10143 @<Advance |dd| until finding the first dash that overlaps |dln| when
10144 offset by |xoff|@>;
10145 while ( start_x(dln)<=stop_x(dln) ) {
10146 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10147 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10150 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10153 mp_free_node(mp, dln,dash_node_size)
10155 @ The name of this module is a bit of a lie because we actually just find the
10156 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10157 overlap possible. It could be that the unoffset version of dash |dln| falls
10158 in the gap between |dd| and its predecessor.
10160 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10161 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10165 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10166 if ( dd==null_dash ) {
10168 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10171 @ At this point we already know that
10172 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10174 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10175 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10176 link(d)=mp_get_node(mp, dash_node_size);
10179 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10180 start_x(d)=start_x(dln);
10182 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10183 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10184 stop_x(d)=stop_x(dln);
10186 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10189 @ The next major task is to update the bounding box information in an edge
10190 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10191 header's bounding box to accommodate the box computed by |path_bbox| or
10192 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10195 @c void mp_adjust_bbox (MP mp,pointer h) {
10196 if ( minx<minx_val(h) ) minx_val(h)=minx;
10197 if ( miny<miny_val(h) ) miny_val(h)=miny;
10198 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10199 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10202 @ Here is a special routine for updating the bounding box information in
10203 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10204 that is to be stroked with the pen~|pp|.
10206 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10207 pointer q; /* a knot node adjacent to knot |p| */
10208 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10209 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10210 scaled z; /* a coordinate being tested against the bounding box */
10211 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10212 integer i; /* a loop counter */
10213 if ( right_type(p)!=mp_endpoint ) {
10216 @<Make |(dx,dy)| the final direction for the path segment from
10217 |q| to~|p|; set~|d|@>;
10218 d=mp_pyth_add(mp, dx,dy);
10220 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10221 for (i=1;i<= 2;i++) {
10222 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10223 update the bounding box to accommodate it@>;
10227 if ( right_type(p)==mp_endpoint ) {
10230 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10236 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10237 if ( q==link(p) ) {
10238 dx=x_coord(p)-right_x(p);
10239 dy=y_coord(p)-right_y(p);
10240 if ( (dx==0)&&(dy==0) ) {
10241 dx=x_coord(p)-left_x(q);
10242 dy=y_coord(p)-left_y(q);
10245 dx=x_coord(p)-left_x(p);
10246 dy=y_coord(p)-left_y(p);
10247 if ( (dx==0)&&(dy==0) ) {
10248 dx=x_coord(p)-right_x(q);
10249 dy=y_coord(p)-right_y(q);
10252 dx=x_coord(p)-x_coord(q);
10253 dy=y_coord(p)-y_coord(q)
10255 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10256 dx=mp_make_fraction(mp, dx,d);
10257 dy=mp_make_fraction(mp, dy,d);
10258 mp_find_offset(mp, -dy,dx,pp);
10259 xx=mp->cur_x; yy=mp->cur_y
10261 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10262 mp_find_offset(mp, dx,dy,pp);
10263 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10264 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10265 mp_confusion(mp, "box_ends");
10266 @:this can't happen box ends}{\quad\\{box\_ends}@>
10267 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10268 if ( z<minx_val(h) ) minx_val(h)=z;
10269 if ( z>maxx_val(h) ) maxx_val(h)=z;
10270 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10271 if ( z<miny_val(h) ) miny_val(h)=z;
10272 if ( z>maxy_val(h) ) maxy_val(h)=z
10274 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10278 } while (right_type(p)!=mp_endpoint)
10280 @ The major difficulty in finding the bounding box of an edge structure is the
10281 effect of clipping paths. We treat them conservatively by only clipping to the
10282 clipping path's bounding box, but this still
10283 requires recursive calls to |set_bbox| in order to find the bounding box of
10285 the objects to be clipped. Such calls are distinguished by the fact that the
10286 boolean parameter |top_level| is false.
10288 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10289 pointer p; /* a graphical object being considered */
10290 scaled sminx,sminy,smaxx,smaxy;
10291 /* for saving the bounding box during recursive calls */
10292 scaled x0,x1,y0,y1; /* temporary registers */
10293 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10294 @<Wipe out any existing bounding box information if |bbtype(h)| is
10295 incompatible with |internal[mp_true_corners]|@>;
10296 while ( link(bblast(h))!=null ) {
10300 case mp_stop_clip_code:
10301 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10302 @:this can't happen bbox}{\quad bbox@>
10304 @<Other cases for updating the bounding box based on the type of object |p|@>;
10305 } /* all cases are enumerated above */
10307 if ( ! top_level ) mp_confusion(mp, "bbox");
10310 @ @<Internal library declarations@>=
10311 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10313 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10314 switch (bbtype(h)) {
10318 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10321 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10323 } /* there are no other cases */
10325 @ @<Other cases for updating the bounding box...@>=
10327 mp_path_bbox(mp, path_p(p));
10328 if ( pen_p(p)!=null ) {
10331 mp_pen_bbox(mp, pen_p(p));
10337 mp_adjust_bbox(mp, h);
10340 @ @<Other cases for updating the bounding box...@>=
10341 case mp_start_bounds_code:
10342 if ( mp->internal[mp_true_corners]>0 ) {
10343 bbtype(h)=bounds_unset;
10345 bbtype(h)=bounds_set;
10346 mp_path_bbox(mp, path_p(p));
10347 mp_adjust_bbox(mp, h);
10348 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10352 case mp_stop_bounds_code:
10353 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10354 @:this can't happen bbox2}{\quad bbox2@>
10357 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10360 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10361 @:this can't happen bbox2}{\quad bbox2@>
10363 if ( type(p)==mp_start_bounds_code ) incr(lev);
10364 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10368 @ It saves a lot of grief here to be slightly conservative and not account for
10369 omitted parts of dashed lines. We also don't worry about the material omitted
10370 when using butt end caps. The basic computation is for round end caps and
10371 |box_ends| augments it for square end caps.
10373 @<Other cases for updating the bounding box...@>=
10374 case mp_stroked_code:
10375 mp_path_bbox(mp, path_p(p));
10378 mp_pen_bbox(mp, pen_p(p));
10383 mp_adjust_bbox(mp, h);
10384 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10385 mp_box_ends(mp, path_p(p), pen_p(p), h);
10388 @ The height width and depth information stored in a text node determines a
10389 rectangle that needs to be transformed according to the transformation
10390 parameters stored in the text node.
10392 @<Other cases for updating the bounding box...@>=
10394 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10395 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10396 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10399 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10400 else { minx=minx+y1; maxx=maxx+y0; }
10401 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10402 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10403 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10404 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10407 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10408 else { miny=miny+y1; maxy=maxy+y0; }
10409 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10410 mp_adjust_bbox(mp, h);
10413 @ This case involves a recursive call that advances |bblast(h)| to the node of
10414 type |mp_stop_clip_code| that matches |p|.
10416 @<Other cases for updating the bounding box...@>=
10417 case mp_start_clip_code:
10418 mp_path_bbox(mp, path_p(p));
10421 sminx=minx_val(h); sminy=miny_val(h);
10422 smaxx=maxx_val(h); smaxy=maxy_val(h);
10423 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10424 starting at |link(p)|@>;
10425 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10427 minx=sminx; miny=sminy;
10428 maxx=smaxx; maxy=smaxy;
10429 mp_adjust_bbox(mp, h);
10432 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10433 minx_val(h)=el_gordo;
10434 miny_val(h)=el_gordo;
10435 maxx_val(h)=-el_gordo;
10436 maxy_val(h)=-el_gordo;
10437 mp_set_bbox(mp, h,false)
10439 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10440 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10441 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10442 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10443 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10445 @* \[22] Finding an envelope.
10446 When \MP\ has a path and a polygonal pen, it needs to express the desired
10447 shape in terms of things \ps\ can understand. The present task is to compute
10448 a new path that describes the region to be filled. It is convenient to
10449 define this as a two step process where the first step is determining what
10450 offset to use for each segment of the path.
10452 @ Given a pointer |c| to a cyclic path,
10453 and a pointer~|h| to the first knot of a pen polygon,
10454 the |offset_prep| routine changes the path into cubics that are
10455 associated with particular pen offsets. Thus if the cubic between |p|
10456 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10457 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10458 to because |l-k| could be negative.)
10460 After overwriting the type information with offset differences, we no longer
10461 have a true path so we refer to the knot list returned by |offset_prep| as an
10464 Since an envelope spec only determines relative changes in pen offsets,
10465 |offset_prep| sets a global variable |spec_offset| to the relative change from
10466 |h| to the first offset.
10468 @d zero_off 16384 /* added to offset changes to make them positive */
10471 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10473 @ @c @<Declare subroutines needed by |offset_prep|@>;
10474 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10475 halfword n; /* the number of vertices in the pen polygon */
10476 pointer p,q,q0,r,w, ww; /* for list manipulation */
10477 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10478 pointer w0; /* a pointer to pen offset to use just before |p| */
10479 scaled dxin,dyin; /* the direction into knot |p| */
10480 integer turn_amt; /* change in pen offsets for the current cubic */
10481 @<Other local variables for |offset_prep|@>;
10483 @<Initialize the pen size~|n|@>;
10484 @<Initialize the incoming direction and pen offset at |c|@>;
10488 @<Split the cubic between |p| and |q|, if necessary, into cubics
10489 associated with single offsets, after which |q| should
10490 point to the end of the final such cubic@>;
10492 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10493 might have been introduced by the splitting process@>;
10495 @<Fix the offset change in |info(c)| and set |c| to the return value of
10500 @ We shall want to keep track of where certain knots on the cyclic path
10501 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10502 knot nodes because some nodes are deleted while removing dead cubics. Thus
10503 |offset_prep| updates the following pointers
10507 pointer spec_p2; /* pointers to distinguished knots */
10510 mp->spec_p1=null; mp->spec_p2=null;
10512 @ @<Initialize the pen size~|n|@>=
10519 @ Since the true incoming direction isn't known yet, we just pick a direction
10520 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10523 @<Initialize the incoming direction and pen offset at |c|@>=
10524 dxin=x_coord(link(h))-x_coord(knil(h));
10525 dyin=y_coord(link(h))-y_coord(knil(h));
10526 if ( (dxin==0)&&(dyin==0) ) {
10527 dxin=y_coord(knil(h))-y_coord(h);
10528 dyin=x_coord(h)-x_coord(knil(h));
10532 @ We must be careful not to remove the only cubic in a cycle.
10534 But we must also be careful for another reason. If the user-supplied
10535 path starts with a set of degenerate cubics, the target node |q| can
10536 be collapsed to the initial node |p| which might be the same as the
10537 initial node |c| of the curve. This would cause the |offset_prep| routine
10538 to bail out too early, causing distress later on. (See for example
10539 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10542 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10546 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10547 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10548 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10550 @<Remove the cubic following |p| and update the data structures
10551 to merge |r| into |p|@>;
10555 /* Check if we removed too much */
10559 @ @<Remove the cubic following |p| and update the data structures...@>=
10560 { k_needed=info(p)-zero_off;
10564 info(p)=k_needed+info(r);
10567 if ( r==c ) { info(p)=info(c); c=p; };
10568 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10569 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10570 r=p; mp_remove_cubic(mp, p);
10573 @ Not setting the |info| field of the newly created knot allows the splitting
10574 routine to work for paths.
10576 @<Declare subroutines needed by |offset_prep|@>=
10577 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10578 scaled v; /* an intermediate value */
10579 pointer q,r; /* for list manipulation */
10580 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10581 originator(r)=mp_program_code;
10582 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10583 v=t_of_the_way(right_x(p),left_x(q));
10584 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10585 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10586 left_x(r)=t_of_the_way(right_x(p),v);
10587 right_x(r)=t_of_the_way(v,left_x(q));
10588 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10589 v=t_of_the_way(right_y(p),left_y(q));
10590 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10591 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10592 left_y(r)=t_of_the_way(right_y(p),v);
10593 right_y(r)=t_of_the_way(v,left_y(q));
10594 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10597 @ This does not set |info(p)| or |right_type(p)|.
10599 @<Declare subroutines needed by |offset_prep|@>=
10600 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10601 pointer q; /* the node that disappears */
10602 q=link(p); link(p)=link(q);
10603 right_x(p)=right_x(q); right_y(p)=right_y(q);
10604 mp_free_node(mp, q,knot_node_size);
10607 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10608 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10609 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10610 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10611 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10612 When listed by increasing $k$, these directions occur in counter-clockwise
10613 order so that $d_k\preceq d\k$ for all~$k$.
10614 The goal of |offset_prep| is to find an offset index~|k| to associate with
10615 each cubic, such that the direction $d(t)$ of the cubic satisfies
10616 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10617 We may have to split a cubic into many pieces before each
10618 piece corresponds to a unique offset.
10620 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10621 info(p)=zero_off+k_needed;
10623 @<Prepare for derivative computations;
10624 |goto not_found| if the current cubic is dead@>;
10625 @<Find the initial direction |(dx,dy)|@>;
10626 @<Update |info(p)| and find the offset $w_k$ such that
10627 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10628 the direction change at |p|@>;
10629 @<Find the final direction |(dxin,dyin)|@>;
10630 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10631 @<Complete the offset splitting process@>;
10632 w0=mp_pen_walk(mp, w0,turn_amt)
10634 @ @<Declare subroutines needed by |offset_prep|@>=
10635 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10636 /* walk |k| steps around a pen from |w| */
10637 while ( k>0 ) { w=link(w); decr(k); };
10638 while ( k<0 ) { w=knil(w); incr(k); };
10642 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10643 calculated from the quadratic polynomials
10644 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10645 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10646 Since we may be calculating directions from several cubics
10647 split from the current one, it is desirable to do these calculations
10648 without losing too much precision. ``Scaled up'' values of the
10649 derivatives, which will be less tainted by accumulated errors than
10650 derivatives found from the cubics themselves, are maintained in
10651 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10652 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10653 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10655 @<Other local variables for |offset_prep|@>=
10656 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10657 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10658 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10659 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10660 integer max_coef; /* used while scaling */
10661 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10662 fraction t; /* where the derivative passes through zero */
10663 fraction s; /* a temporary value */
10665 @ @<Prepare for derivative computations...@>=
10666 x0=right_x(p)-x_coord(p);
10667 x2=x_coord(q)-left_x(q);
10668 x1=left_x(q)-right_x(p);
10669 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10670 y1=left_y(q)-right_y(p);
10672 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10673 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10674 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10675 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10676 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10677 if ( max_coef==0 ) goto NOT_FOUND;
10678 while ( max_coef<fraction_half ) {
10680 double(x0); double(x1); double(x2);
10681 double(y0); double(y1); double(y2);
10684 @ Let us first solve a special case of the problem: Suppose we
10685 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10686 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10687 $d(0)\succ d_{k-1}$.
10688 Then, in a sense, we're halfway done, since one of the two relations
10689 in $(*)$ is satisfied, and the other couldn't be satisfied for
10690 any other value of~|k|.
10692 Actually, the conditions can be relaxed somewhat since a relation such as
10693 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10694 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10695 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10696 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10697 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10698 counterclockwise direction.
10700 The |fin_offset_prep| subroutine solves the stated subproblem.
10701 It has a parameter called |rise| that is |1| in
10702 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10703 the derivative of the cubic following |p|.
10704 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10705 be set properly. The |turn_amt| parameter gives the absolute value of the
10706 overall net change in pen offsets.
10708 @<Declare subroutines needed by |offset_prep|@>=
10709 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10710 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10711 integer rise, integer turn_amt) {
10712 pointer ww; /* for list manipulation */
10713 scaled du,dv; /* for slope calculation */
10714 integer t0,t1,t2; /* test coefficients */
10715 fraction t; /* place where the derivative passes a critical slope */
10716 fraction s; /* slope or reciprocal slope */
10717 integer v; /* intermediate value for updating |x0..y2| */
10718 pointer q; /* original |link(p)| */
10721 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10722 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10723 @<Compute test coefficients |(t0,t1,t2)|
10724 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10725 t=mp_crossing_point(mp, t0,t1,t2);
10726 if ( t>=fraction_one ) {
10727 if ( turn_amt>0 ) t=fraction_one; else return;
10729 @<Split the cubic at $t$,
10730 and split off another cubic if the derivative crosses back@>;
10735 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10736 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10737 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10740 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10741 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10742 if ( abs(du)>=abs(dv) ) {
10743 s=mp_make_fraction(mp, dv,du);
10744 t0=mp_take_fraction(mp, x0,s)-y0;
10745 t1=mp_take_fraction(mp, x1,s)-y1;
10746 t2=mp_take_fraction(mp, x2,s)-y2;
10747 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10749 s=mp_make_fraction(mp, du,dv);
10750 t0=x0-mp_take_fraction(mp, y0,s);
10751 t1=x1-mp_take_fraction(mp, y1,s);
10752 t2=x2-mp_take_fraction(mp, y2,s);
10753 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10755 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10757 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10758 $(*)$, and it might cross again, yielding another solution of $(*)$.
10760 @<Split the cubic at $t$, and split off another...@>=
10762 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10764 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10765 x0=t_of_the_way(v,x1);
10766 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10767 y0=t_of_the_way(v,y1);
10768 if ( turn_amt<0 ) {
10769 t1=t_of_the_way(t1,t2);
10770 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10771 t=mp_crossing_point(mp, 0,-t1,-t2);
10772 if ( t>fraction_one ) t=fraction_one;
10774 if ( (t==fraction_one)&&(link(p)!=q) ) {
10775 info(link(p))=info(link(p))-rise;
10777 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10778 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10779 x2=t_of_the_way(x1,v);
10780 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10781 y2=t_of_the_way(y1,v);
10786 @ Now we must consider the general problem of |offset_prep|, when
10787 nothing is known about a given cubic. We start by finding its
10788 direction in the vicinity of |t=0|.
10790 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10791 has not yet introduced any more numerical errors. Thus we can compute
10792 the true initial direction for the given cubic, even if it is almost
10795 @<Find the initial direction |(dx,dy)|@>=
10797 if ( dx==0 && dy==0 ) {
10799 if ( dx==0 && dy==0 ) {
10803 if ( p==c ) { dx0=dx; dy0=dy; }
10805 @ @<Find the final direction |(dxin,dyin)|@>=
10807 if ( dxin==0 && dyin==0 ) {
10809 if ( dxin==0 && dyin==0 ) {
10814 @ The next step is to bracket the initial direction between consecutive
10815 edges of the pen polygon. We must be careful to turn clockwise only if
10816 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10817 counter-clockwise in order to make \&{doublepath} envelopes come out
10818 @:double_path_}{\&{doublepath} primitive@>
10819 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10821 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10822 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10823 w=mp_pen_walk(mp, w0, turn_amt);
10825 info(p)=info(p)+turn_amt
10827 @ Decide how many pen offsets to go away from |w| in order to find the offset
10828 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10829 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10830 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10832 If the pen polygon has only two edges, they could both be parallel
10833 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10834 such edge in order to avoid an infinite loop.
10836 @<Declare subroutines needed by |offset_prep|@>=
10837 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10838 scaled dy, boolean ccw) {
10839 pointer ww; /* a neighbor of knot~|w| */
10840 integer s; /* turn amount so far */
10841 integer t; /* |ab_vs_cd| result */
10846 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10847 dx,(y_coord(ww)-y_coord(w)));
10854 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10855 dx,(y_coord(w)-y_coord(ww))) < 0) {
10863 @ When we're all done, the final offset is |w0| and the final curve direction
10864 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10865 can correct |info(c)| which was erroneously based on an incoming offset
10868 @d fix_by(A) info(c)=info(c)+(A)
10870 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10871 mp->spec_offset=info(c)-zero_off;
10872 if ( link(c)==c ) {
10873 info(c)=zero_off+n;
10876 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10877 while ( info(c)<=zero_off-n ) fix_by(n);
10878 while ( info(c)>zero_off ) fix_by(-n);
10879 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10883 @ Finally we want to reduce the general problem to situations that
10884 |fin_offset_prep| can handle. We split the cubic into at most three parts
10885 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10887 @<Complete the offset splitting process@>=
10889 @<Compute test coeff...@>;
10890 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10891 |t:=fraction_one+1|@>;
10892 if ( t>fraction_one ) {
10893 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10895 mp_split_cubic(mp, p,t); r=link(p);
10896 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10897 x2a=t_of_the_way(x1a,x1);
10898 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10899 y2a=t_of_the_way(y1a,y1);
10900 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10901 info(r)=zero_off-1;
10902 if ( turn_amt>=0 ) {
10903 t1=t_of_the_way(t1,t2);
10905 t=mp_crossing_point(mp, 0,-t1,-t2);
10906 if ( t>fraction_one ) t=fraction_one;
10907 @<Split off another rising cubic for |fin_offset_prep|@>;
10908 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10910 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10914 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10915 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10916 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10917 x0a=t_of_the_way(x1,x1a);
10918 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10919 y0a=t_of_the_way(y1,y1a);
10920 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10923 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10924 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10925 need to decide whether the directions are parallel or antiparallel. We
10926 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10927 should be avoided when the value of |turn_amt| already determines the
10928 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10929 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10930 crossing and the first crossing cannot be antiparallel.
10932 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10933 t=mp_crossing_point(mp, t0,t1,t2);
10934 if ( turn_amt>=0 ) {
10938 u0=t_of_the_way(x0,x1);
10939 u1=t_of_the_way(x1,x2);
10940 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10941 v0=t_of_the_way(y0,y1);
10942 v1=t_of_the_way(y1,y2);
10943 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10944 if ( ss<0 ) t=fraction_one+1;
10946 } else if ( t>fraction_one ) {
10950 @ @<Other local variables for |offset_prep|@>=
10951 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10952 integer ss = 0; /* the part of the dot product computed so far */
10953 int d_sign; /* sign of overall change in direction for this cubic */
10955 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10956 problem to decide which way it loops around but that's OK as long we're
10957 consistent. To make \&{doublepath} envelopes work properly, reversing
10958 the path should always change the sign of |turn_amt|.
10960 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10961 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10963 @<Check rotation direction based on node position@>
10967 if ( dy>0 ) d_sign=1; else d_sign=-1;
10969 if ( dx>0 ) d_sign=1; else d_sign=-1;
10972 @<Make |ss| negative if and only if the total change in direction is
10973 more than $180^\circ$@>;
10974 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10975 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10977 @ We check rotation direction by looking at the vector connecting the current
10978 node with the next. If its angle with incoming and outgoing tangents has the
10979 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10980 Otherwise we proceed to the cusp code.
10982 @<Check rotation direction based on node position@>=
10983 u0=x_coord(q)-x_coord(p);
10984 u1=y_coord(q)-y_coord(p);
10985 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10986 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10988 @ In order to be invariant under path reversal, the result of this computation
10989 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10990 then swapped with |(x2,y2)|. We make use of the identities
10991 |take_fraction(-a,-b)=take_fraction(a,b)| and
10992 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10994 @<Make |ss| negative if and only if the total change in direction is...@>=
10995 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10996 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10997 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10999 t=mp_crossing_point(mp, t0,t1,-t0);
11000 u0=t_of_the_way(x0,x1);
11001 u1=t_of_the_way(x1,x2);
11002 v0=t_of_the_way(y0,y1);
11003 v1=t_of_the_way(y1,y2);
11005 t=mp_crossing_point(mp, -t0,t1,t0);
11006 u0=t_of_the_way(x2,x1);
11007 u1=t_of_the_way(x1,x0);
11008 v0=t_of_the_way(y2,y1);
11009 v1=t_of_the_way(y1,y0);
11011 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
11012 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
11014 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
11015 that the |cur_pen| has not been walked around to the first offset.
11018 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
11019 pointer p,q; /* list traversal */
11020 pointer w; /* the current pen offset */
11021 mp_print_diagnostic(mp, "Envelope spec",s,true);
11022 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
11024 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
11025 mp_print(mp, " % beginning with offset ");
11026 mp_print_two(mp, x_coord(w),y_coord(w));
11030 @<Print the cubic between |p| and |q|@>;
11032 if ((p==cur_spec) || (info(p)!=zero_off))
11035 if ( info(p)!=zero_off ) {
11036 @<Update |w| as indicated by |info(p)| and print an explanation@>;
11038 } while (p!=cur_spec);
11039 mp_print_nl(mp, " & cycle");
11040 mp_end_diagnostic(mp, true);
11043 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
11045 w=mp_pen_walk(mp, w, (info(p)-zero_off));
11046 mp_print(mp, " % ");
11047 if ( info(p)>zero_off ) mp_print(mp, "counter");
11048 mp_print(mp, "clockwise to offset ");
11049 mp_print_two(mp, x_coord(w),y_coord(w));
11052 @ @<Print the cubic between |p| and |q|@>=
11054 mp_print_nl(mp, " ..controls ");
11055 mp_print_two(mp, right_x(p),right_y(p));
11056 mp_print(mp, " and ");
11057 mp_print_two(mp, left_x(q),left_y(q));
11058 mp_print_nl(mp, " ..");
11059 mp_print_two(mp, x_coord(q),y_coord(q));
11062 @ Once we have an envelope spec, the remaining task to construct the actual
11063 envelope by offsetting each cubic as determined by the |info| fields in
11064 the knots. First we use |offset_prep| to convert the |c| into an envelope
11065 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11068 The |ljoin| and |miterlim| parameters control the treatment of points where the
11069 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11070 The endpoints are easily located because |c| is given in undoubled form
11071 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11072 track of the endpoints and treat them like very sharp corners.
11073 Butt end caps are treated like beveled joins; round end caps are treated like
11074 round joins; and square end caps are achieved by setting |join_type:=3|.
11076 None of these parameters apply to inside joins where the convolution tracing
11077 has retrograde lines. In such cases we use a simple connect-the-endpoints
11078 approach that is achieved by setting |join_type:=2|.
11080 @c @<Declare a function called |insert_knot|@>;
11081 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11082 small_number lcap, scaled miterlim) {
11083 pointer p,q,r,q0; /* for manipulating the path */
11084 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11085 pointer w,w0; /* the pen knot for the current offset */
11086 scaled qx,qy; /* unshifted coordinates of |q| */
11087 halfword k,k0; /* controls pen edge insertion */
11088 @<Other local variables for |make_envelope|@>;
11089 dxin=0; dyin=0; dxout=0; dyout=0;
11090 mp->spec_p1=null; mp->spec_p2=null;
11091 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11092 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11093 the initial offset@>;
11098 qx=x_coord(q); qy=y_coord(q);
11101 if ( k!=zero_off ) {
11102 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11104 @<Add offset |w| to the cubic from |p| to |q|@>;
11105 while ( k!=zero_off ) {
11106 @<Step |w| and move |k| one step closer to |zero_off|@>;
11107 if ( (join_type==1)||(k==zero_off) )
11108 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11110 if ( q!=link(p) ) {
11111 @<Set |p=link(p)| and add knots between |p| and |q| as
11112 required by |join_type|@>;
11119 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11120 c=mp_offset_prep(mp, c,h);
11121 if ( mp->internal[mp_tracing_specs]>0 )
11122 mp_print_spec(mp, c,h,"");
11123 h=mp_pen_walk(mp, h,mp->spec_offset)
11125 @ Mitered and squared-off joins depend on path directions that are difficult to
11126 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11127 have degenerate cubics only if the entire cycle collapses to a single
11128 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11129 envelope degenerate as well.
11131 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11132 if ( k<zero_off ) {
11135 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11136 else if ( lcap==2 ) join_type=3;
11137 else join_type=2-lcap;
11138 if ( (join_type==0)||(join_type==3) ) {
11139 @<Set the incoming and outgoing directions at |q|; in case of
11140 degeneracy set |join_type:=2|@>;
11141 if ( join_type==0 ) {
11142 @<If |miterlim| is less than the secant of half the angle at |q|
11143 then set |join_type:=2|@>;
11148 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11150 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11151 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11153 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11156 @ @<Other local variables for |make_envelope|@>=
11157 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11158 scaled tmp; /* a temporary value */
11160 @ The coordinates of |p| have already been shifted unless |p| is the first
11161 knot in which case they get shifted at the very end.
11163 @<Add offset |w| to the cubic from |p| to |q|@>=
11164 right_x(p)=right_x(p)+x_coord(w);
11165 right_y(p)=right_y(p)+y_coord(w);
11166 left_x(q)=left_x(q)+x_coord(w);
11167 left_y(q)=left_y(q)+y_coord(w);
11168 x_coord(q)=x_coord(q)+x_coord(w);
11169 y_coord(q)=y_coord(q)+y_coord(w);
11170 left_type(q)=mp_explicit;
11171 right_type(q)=mp_explicit
11173 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11174 if ( k>zero_off ){ w=link(w); decr(k); }
11175 else { w=knil(w); incr(k); }
11177 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11178 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11179 case the cubic containing these control points is ``yet to be examined.''
11181 @<Declare a function called |insert_knot|@>=
11182 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11183 /* returns the inserted knot */
11184 pointer r; /* the new knot */
11185 r=mp_get_node(mp, knot_node_size);
11186 link(r)=link(q); link(q)=r;
11187 right_x(r)=right_x(q);
11188 right_y(r)=right_y(q);
11191 right_x(q)=x_coord(q);
11192 right_y(q)=y_coord(q);
11193 left_x(r)=x_coord(r);
11194 left_y(r)=y_coord(r);
11195 left_type(r)=mp_explicit;
11196 right_type(r)=mp_explicit;
11197 originator(r)=mp_program_code;
11201 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11203 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11206 if ( (join_type==0)||(join_type==3) ) {
11207 if ( join_type==0 ) {
11208 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11210 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11214 right_x(r)=x_coord(r);
11215 right_y(r)=y_coord(r);
11220 @ For very small angles, adding a knot is unnecessary and would cause numerical
11221 problems, so we just set |r:=null| in that case.
11223 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11225 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11226 if ( abs(det)<26844 ) {
11227 r=null; /* sine $<10^{-4}$ */
11229 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11230 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11231 tmp=mp_make_fraction(mp, tmp,det);
11232 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11233 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11237 @ @<Other local variables for |make_envelope|@>=
11238 fraction det; /* a determinant used for mitered join calculations */
11240 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11242 ht_x=y_coord(w)-y_coord(w0);
11243 ht_y=x_coord(w0)-x_coord(w);
11244 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11245 ht_x+=ht_x; ht_y+=ht_y;
11247 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11248 product with |(ht_x,ht_y)|@>;
11249 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11250 mp_take_fraction(mp, dyin,ht_y));
11251 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11252 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11253 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11254 mp_take_fraction(mp, dyout,ht_y));
11255 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11256 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11259 @ @<Other local variables for |make_envelope|@>=
11260 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11261 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11262 halfword kk; /* keeps track of the pen vertices being scanned */
11263 pointer ww; /* the pen vertex being tested */
11265 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11266 from zero to |max_ht|.
11268 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11273 @<Step |ww| and move |kk| one step closer to |k0|@>;
11274 if ( kk==k0 ) break;
11275 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11276 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11277 if ( tmp>max_ht ) max_ht=tmp;
11281 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11282 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11283 else { ww=knil(ww); incr(kk); }
11285 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11286 if ( left_type(c)==mp_endpoint ) {
11287 mp->spec_p1=mp_htap_ypoc(mp, c);
11288 mp->spec_p2=mp->path_tail;
11289 originator(mp->spec_p1)=mp_program_code;
11290 link(mp->spec_p2)=link(mp->spec_p1);
11291 link(mp->spec_p1)=c;
11292 mp_remove_cubic(mp, mp->spec_p1);
11294 if ( c!=link(c) ) {
11295 originator(mp->spec_p2)=mp_program_code;
11296 mp_remove_cubic(mp, mp->spec_p2);
11298 @<Make |c| look like a cycle of length one@>;
11302 @ @<Make |c| look like a cycle of length one@>=
11304 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11305 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11306 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11309 @ In degenerate situations we might have to look at the knot preceding~|q|.
11310 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11312 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11313 dxin=x_coord(q)-left_x(q);
11314 dyin=y_coord(q)-left_y(q);
11315 if ( (dxin==0)&&(dyin==0) ) {
11316 dxin=x_coord(q)-right_x(p);
11317 dyin=y_coord(q)-right_y(p);
11318 if ( (dxin==0)&&(dyin==0) ) {
11319 dxin=x_coord(q)-x_coord(p);
11320 dyin=y_coord(q)-y_coord(p);
11321 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11322 dxin=dxin+x_coord(w);
11323 dyin=dyin+y_coord(w);
11327 tmp=mp_pyth_add(mp, dxin,dyin);
11331 dxin=mp_make_fraction(mp, dxin,tmp);
11332 dyin=mp_make_fraction(mp, dyin,tmp);
11333 @<Set the outgoing direction at |q|@>;
11336 @ If |q=c| then the coordinates of |r| and the control points between |q|
11337 and~|r| have already been offset by |h|.
11339 @<Set the outgoing direction at |q|@>=
11340 dxout=right_x(q)-x_coord(q);
11341 dyout=right_y(q)-y_coord(q);
11342 if ( (dxout==0)&&(dyout==0) ) {
11344 dxout=left_x(r)-x_coord(q);
11345 dyout=left_y(r)-y_coord(q);
11346 if ( (dxout==0)&&(dyout==0) ) {
11347 dxout=x_coord(r)-x_coord(q);
11348 dyout=y_coord(r)-y_coord(q);
11352 dxout=dxout-x_coord(h);
11353 dyout=dyout-y_coord(h);
11355 tmp=mp_pyth_add(mp, dxout,dyout);
11356 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11357 @:this can't happen degerate spec}{\quad degenerate spec@>
11358 dxout=mp_make_fraction(mp, dxout,tmp);
11359 dyout=mp_make_fraction(mp, dyout,tmp)
11361 @* \[23] Direction and intersection times.
11362 A path of length $n$ is defined parametrically by functions $x(t)$ and
11363 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11364 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11365 we shall consider operations that determine special times associated with
11366 given paths: the first time that a path travels in a given direction, and
11367 a pair of times at which two paths cross each other.
11369 @ Let's start with the easier task. The function |find_direction_time| is
11370 given a direction |(x,y)| and a path starting at~|h|. If the path never
11371 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11372 it will be nonnegative.
11374 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11375 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11376 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11377 assumed to match any given direction at time~|t|.
11379 The routine solves this problem in nondegenerate cases by rotating the path
11380 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11381 to find when a given path first travels ``due east.''
11384 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11385 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11386 pointer p,q; /* for list traversal */
11387 scaled n; /* the direction time at knot |p| */
11388 scaled tt; /* the direction time within a cubic */
11389 @<Other local variables for |find_direction_time|@>;
11390 @<Normalize the given direction for better accuracy;
11391 but |return| with zero result if it's zero@>;
11394 if ( right_type(p)==mp_endpoint ) break;
11396 @<Rotate the cubic between |p| and |q|; then
11397 |goto found| if the rotated cubic travels due east at some time |tt|;
11398 but |break| if an entire cyclic path has been traversed@>;
11406 @ @<Normalize the given direction for better accuracy...@>=
11407 if ( abs(x)<abs(y) ) {
11408 x=mp_make_fraction(mp, x,abs(y));
11409 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11410 } else if ( x==0 ) {
11413 y=mp_make_fraction(mp, y,abs(x));
11414 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11417 @ Since we're interested in the tangent directions, we work with the
11418 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11419 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11420 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11421 in order to achieve better accuracy.
11423 The given path may turn abruptly at a knot, and it might pass the critical
11424 tangent direction at such a time. Therefore we remember the direction |phi|
11425 in which the previous rotated cubic was traveling. (The value of |phi| will be
11426 undefined on the first cubic, i.e., when |n=0|.)
11428 @<Rotate the cubic between |p| and |q|; then...@>=
11430 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11431 points of the rotated derivatives@>;
11432 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11434 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11437 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11438 @<Exit to |found| if the curve whose derivatives are specified by
11439 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11441 @ @<Other local variables for |find_direction_time|@>=
11442 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11443 angle theta,phi; /* angles of exit and entry at a knot */
11444 fraction t; /* temp storage */
11446 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11447 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11448 x3=x_coord(q)-left_x(q);
11449 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11450 y3=y_coord(q)-left_y(q);
11452 if ( abs(x2)>max ) max=abs(x2);
11453 if ( abs(x3)>max ) max=abs(x3);
11454 if ( abs(y1)>max ) max=abs(y1);
11455 if ( abs(y2)>max ) max=abs(y2);
11456 if ( abs(y3)>max ) max=abs(y3);
11457 if ( max==0 ) goto FOUND;
11458 while ( max<fraction_half ){
11459 max+=max; x1+=x1; x2+=x2; x3+=x3;
11460 y1+=y1; y2+=y2; y3+=y3;
11462 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11463 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11464 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11465 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11466 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11467 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11469 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11470 theta=mp_n_arg(mp, x1,y1);
11471 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11472 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11474 @ In this step we want to use the |crossing_point| routine to find the
11475 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11476 Several complications arise: If the quadratic equation has a double root,
11477 the curve never crosses zero, and |crossing_point| will find nothing;
11478 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11479 equation has simple roots, or only one root, we may have to negate it
11480 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11481 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11484 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11485 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11486 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11487 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11488 either |goto found| or |goto done|@>;
11491 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11492 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11494 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11495 $B(x_1,x_2,x_3;t)\ge0$@>;
11498 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11499 two roots, because we know that it isn't identically zero.
11501 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11502 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11503 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11504 subject to rounding errors. Yet this code optimistically tries to
11505 do the right thing.
11507 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11509 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11510 t=mp_crossing_point(mp, y1,y2,y3);
11511 if ( t>fraction_one ) goto DONE;
11512 y2=t_of_the_way(y2,y3);
11513 x1=t_of_the_way(x1,x2);
11514 x2=t_of_the_way(x2,x3);
11515 x1=t_of_the_way(x1,x2);
11516 if ( x1>=0 ) we_found_it;
11518 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11519 if ( t>fraction_one ) goto DONE;
11520 x1=t_of_the_way(x1,x2);
11521 x2=t_of_the_way(x2,x3);
11522 if ( t_of_the_way(x1,x2)>=0 ) {
11523 t=t_of_the_way(tt,fraction_one); we_found_it;
11526 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11527 either |goto found| or |goto done|@>=
11529 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11530 t=mp_make_fraction(mp, y1,y1-y2);
11531 x1=t_of_the_way(x1,x2);
11532 x2=t_of_the_way(x2,x3);
11533 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11534 } else if ( y3==0 ) {
11536 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11537 } else if ( x3>=0 ) {
11538 tt=unity; goto FOUND;
11544 @ At this point we know that the derivative of |y(t)| is identically zero,
11545 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11548 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11550 t=mp_crossing_point(mp, -x1,-x2,-x3);
11551 if ( t<=fraction_one ) we_found_it;
11552 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11553 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11557 @ The intersection of two cubics can be found by an interesting variant
11558 of the general bisection scheme described in the introduction to
11560 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11561 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11562 if an intersection exists. First we find the smallest rectangle that
11563 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11564 the smallest rectangle that encloses
11565 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11566 But if the rectangles do overlap, we bisect the intervals, getting
11567 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11568 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11569 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11570 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11571 levels of bisection we will have determined the intersection times $t_1$
11572 and~$t_2$ to $l$~bits of accuracy.
11574 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11575 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11576 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11577 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11578 to determine when the enclosing rectangles overlap. Here's why:
11579 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11580 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11581 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11582 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11583 overlap if and only if $u\submin\L x\submax$ and
11584 $x\submin\L u\submax$. Letting
11585 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11586 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11587 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11589 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11590 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11591 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11592 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11593 because of the overlap condition; i.e., we know that $X\submin$,
11594 $X\submax$, and their relatives are bounded, hence $X\submax-
11595 U\submin$ and $X\submin-U\submax$ are bounded.
11597 @ Incidentally, if the given cubics intersect more than once, the process
11598 just sketched will not necessarily find the lexicographically smallest pair
11599 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11600 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11601 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11602 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11603 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11604 Shuffled order agrees with lexicographic order if all pairs of solutions
11605 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11606 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11607 and the bisection algorithm would be substantially less efficient if it were
11608 constrained by lexicographic order.
11610 For example, suppose that an overlap has been found for $l=3$ and
11611 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11612 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11613 Then there is probably an intersection in one of the subintervals
11614 $(.1011,.011x)$; but lexicographic order would require us to explore
11615 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11616 want to store all of the subdivision data for the second path, so the
11617 subdivisions would have to be regenerated many times. Such inefficiencies
11618 would be associated with every `1' in the binary representation of~$t_1$.
11620 @ The subdivision process introduces rounding errors, hence we need to
11621 make a more liberal test for overlap. It is not hard to show that the
11622 computed values of $U_i$ differ from the truth by at most~$l$, on
11623 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11624 If $\beta$ is an upper bound on the absolute error in the computed
11625 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11626 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11627 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11629 More accuracy is obtained if we try the algorithm first with |tol=0|;
11630 the more liberal tolerance is used only if an exact approach fails.
11631 It is convenient to do this double-take by letting `3' in the preceding
11632 paragraph be a parameter, which is first 0, then 3.
11635 unsigned int tol_step; /* either 0 or 3, usually */
11637 @ We shall use an explicit stack to implement the recursive bisection
11638 method described above. The |bisect_stack| array will contain numerous 5-word
11639 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11640 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11642 The following macros define the allocation of stack positions to
11643 the quantities needed for bisection-intersection.
11645 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11646 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11647 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11648 @d stack_min(A) mp->bisect_stack[(A)+3]
11649 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11650 @d stack_max(A) mp->bisect_stack[(A)+4]
11651 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11652 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11654 @d u_packet(A) ((A)-5)
11655 @d v_packet(A) ((A)-10)
11656 @d x_packet(A) ((A)-15)
11657 @d y_packet(A) ((A)-20)
11658 @d l_packets (mp->bisect_ptr-int_packets)
11659 @d r_packets mp->bisect_ptr
11660 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11661 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11662 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11663 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11664 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11665 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11666 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11667 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11669 @d u1l stack_1(ul_packet) /* $U'_1$ */
11670 @d u2l stack_2(ul_packet) /* $U'_2$ */
11671 @d u3l stack_3(ul_packet) /* $U'_3$ */
11672 @d v1l stack_1(vl_packet) /* $V'_1$ */
11673 @d v2l stack_2(vl_packet) /* $V'_2$ */
11674 @d v3l stack_3(vl_packet) /* $V'_3$ */
11675 @d x1l stack_1(xl_packet) /* $X'_1$ */
11676 @d x2l stack_2(xl_packet) /* $X'_2$ */
11677 @d x3l stack_3(xl_packet) /* $X'_3$ */
11678 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11679 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11680 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11681 @d u1r stack_1(ur_packet) /* $U''_1$ */
11682 @d u2r stack_2(ur_packet) /* $U''_2$ */
11683 @d u3r stack_3(ur_packet) /* $U''_3$ */
11684 @d v1r stack_1(vr_packet) /* $V''_1$ */
11685 @d v2r stack_2(vr_packet) /* $V''_2$ */
11686 @d v3r stack_3(vr_packet) /* $V''_3$ */
11687 @d x1r stack_1(xr_packet) /* $X''_1$ */
11688 @d x2r stack_2(xr_packet) /* $X''_2$ */
11689 @d x3r stack_3(xr_packet) /* $X''_3$ */
11690 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11691 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11692 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11694 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11695 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11696 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11697 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11698 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11699 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11702 integer *bisect_stack;
11703 unsigned int bisect_ptr;
11705 @ @<Allocate or initialize ...@>=
11706 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11708 @ @<Dealloc variables@>=
11709 xfree(mp->bisect_stack);
11711 @ @<Check the ``constant''...@>=
11712 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11714 @ Computation of the min and max is a tedious but fairly fast sequence of
11715 instructions; exactly four comparisons are made in each branch.
11718 if ( stack_1((A))<0 ) {
11719 if ( stack_3((A))>=0 ) {
11720 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11721 else stack_min((A))=stack_1((A));
11722 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11723 if ( stack_max((A))<0 ) stack_max((A))=0;
11725 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11726 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11727 stack_max((A))=stack_1((A))+stack_2((A));
11728 if ( stack_max((A))<0 ) stack_max((A))=0;
11730 } else if ( stack_3((A))<=0 ) {
11731 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11732 else stack_max((A))=stack_1((A));
11733 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11734 if ( stack_min((A))>0 ) stack_min((A))=0;
11736 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11737 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11738 stack_min((A))=stack_1((A))+stack_2((A));
11739 if ( stack_min((A))>0 ) stack_min((A))=0;
11742 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11743 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11744 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11745 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11746 plus the |scaled| values of $t_1$ and~$t_2$.
11748 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11749 finds no intersection. The routine gives up and gives an approximate answer
11750 if it has backtracked
11751 more than 5000 times (otherwise there are cases where several minutes
11752 of fruitless computation would be possible).
11754 @d max_patience 5000
11757 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11758 integer time_to_go; /* this many backtracks before giving up */
11759 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11761 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11762 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11763 and |(pp,link(pp))|, respectively.
11765 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11766 pointer q,qq; /* |link(p)|, |link(pp)| */
11767 mp->time_to_go=max_patience; mp->max_t=2;
11768 @<Initialize for intersections at level zero@>;
11771 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11772 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11773 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11774 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11776 if ( mp->cur_t>=mp->max_t ){
11777 if ( mp->max_t==two ) { /* we've done 17 bisections */
11778 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11780 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11782 @<Subdivide for a new level of intersection@>;
11785 if ( mp->time_to_go>0 ) {
11786 decr(mp->time_to_go);
11788 while ( mp->appr_t<unity ) {
11789 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11791 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11793 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11797 @ The following variables are global, although they are used only by
11798 |cubic_intersection|, because it is necessary on some machines to
11799 split |cubic_intersection| up into two procedures.
11802 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11803 integer tol; /* bound on the uncertainly in the overlap test */
11805 unsigned int xy; /* pointers to the current packets of interest */
11806 integer three_l; /* |tol_step| times the bisection level */
11807 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11809 @ We shall assume that the coordinates are sufficiently non-extreme that
11810 integer overflow will not occur.
11812 @<Initialize for intersections at level zero@>=
11813 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11814 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11815 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11816 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11817 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11818 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11819 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11820 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11821 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11822 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11823 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11824 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11826 @ @<Subdivide for a new level of intersection@>=
11827 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11828 stack_uv=mp->uv; stack_xy=mp->xy;
11829 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11830 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11831 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11832 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11833 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11834 u3l=half(u2l+u2r); u1r=u3l;
11835 set_min_max(ul_packet); set_min_max(ur_packet);
11836 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11837 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11838 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11839 v3l=half(v2l+v2r); v1r=v3l;
11840 set_min_max(vl_packet); set_min_max(vr_packet);
11841 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11842 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11843 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11844 x3l=half(x2l+x2r); x1r=x3l;
11845 set_min_max(xl_packet); set_min_max(xr_packet);
11846 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11847 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11848 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11849 y3l=half(y2l+y2r); y1r=y3l;
11850 set_min_max(yl_packet); set_min_max(yr_packet);
11851 mp->uv=l_packets; mp->xy=l_packets;
11852 mp->delx+=mp->delx; mp->dely+=mp->dely;
11853 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11854 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11856 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11858 if ( odd(mp->cur_tt) ) {
11859 if ( odd(mp->cur_t) ) {
11860 @<Descend to the previous level and |goto not_found|@>;
11863 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11864 +stack_3(u_packet(mp->uv));
11865 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11866 +stack_3(v_packet(mp->uv));
11867 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11868 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11869 /* switch from |r_packet| to |l_packet| */
11870 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11871 +stack_3(x_packet(mp->xy));
11872 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11873 +stack_3(y_packet(mp->xy));
11876 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11877 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11878 -stack_3(x_packet(mp->xy));
11879 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11880 -stack_3(y_packet(mp->xy));
11881 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11884 @ @<Descend to the previous level...@>=
11886 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11887 if ( mp->cur_t==0 ) return;
11888 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11889 mp->three_l=mp->three_l-mp->tol_step;
11890 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11891 mp->uv=stack_uv; mp->xy=stack_xy;
11895 @ The |path_intersection| procedure is much simpler.
11896 It invokes |cubic_intersection| in lexicographic order until finding a
11897 pair of cubics that intersect. The final intersection times are placed in
11898 |cur_t| and~|cur_tt|.
11900 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11901 pointer p,pp; /* link registers that traverse the given paths */
11902 integer n,nn; /* integer parts of intersection times, minus |unity| */
11903 @<Change one-point paths into dead cycles@>;
11908 if ( right_type(p)!=mp_endpoint ) {
11911 if ( right_type(pp)!=mp_endpoint ) {
11912 mp_cubic_intersection(mp, p,pp);
11913 if ( mp->cur_t>0 ) {
11914 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11918 nn=nn+unity; pp=link(pp);
11921 n=n+unity; p=link(p);
11923 mp->tol_step=mp->tol_step+3;
11924 } while (mp->tol_step<=3);
11925 mp->cur_t=-unity; mp->cur_tt=-unity;
11928 @ @<Change one-point paths...@>=
11929 if ( right_type(h)==mp_endpoint ) {
11930 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11931 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11933 if ( right_type(hh)==mp_endpoint ) {
11934 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11935 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11938 @* \[24] Dynamic linear equations.
11939 \MP\ users define variables implicitly by stating equations that should be
11940 satisfied; the computer is supposed to be smart enough to solve those equations.
11941 And indeed, the computer tries valiantly to do so, by distinguishing five
11942 different types of numeric values:
11945 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11946 of the variable whose address is~|p|.
11949 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11950 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11951 as a |scaled| number plus a sum of independent variables with |fraction|
11955 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11956 number'' reflecting the time this variable was first used in an equation;
11957 also |0<=m<64|, and each dependent variable
11958 that refers to this one is actually referring to the future value of
11959 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11960 scaling are sometimes needed to keep the coefficients in dependency lists
11961 from getting too large. The value of~|m| will always be even.)
11964 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11965 equation before, but it has been explicitly declared to be numeric.
11968 |type(p)=undefined| means that variable |p| hasn't appeared before.
11970 \smallskip\noindent
11971 We have actually discussed these five types in the reverse order of their
11972 history during a computation: Once |known|, a variable never again
11973 becomes |dependent|; once |dependent|, it almost never again becomes
11974 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11975 and once |mp_numeric_type|, it never again becomes |undefined| (except
11976 of course when the user specifically decides to scrap the old value
11977 and start again). A backward step may, however, take place: Sometimes
11978 a |dependent| variable becomes |mp_independent| again, when one of the
11979 independent variables it depends on is reverting to |undefined|.
11982 The next patch detects overflow of independent-variable serial
11983 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11985 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11986 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11987 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11988 @d new_indep(A) /* create a new independent variable */
11989 { if ( mp->serial_no==max_serial_no )
11990 mp_fatal_error(mp, "variable instance identifiers exhausted");
11991 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11992 value((A))=mp->serial_no;
11996 integer serial_no; /* the most recent serial number, times |s_scale| */
11998 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
12000 @ But how are dependency lists represented? It's simple: The linear combination
12001 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
12002 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
12003 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
12004 of $\alpha_1$; and |link(p)| points to the dependency list
12005 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
12006 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
12007 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
12008 they appear in decreasing order of their |value| fields (i.e., of
12009 their serial numbers). \ (It is convenient to use decreasing order,
12010 since |value(null)=0|. If the independent variables were not sorted by
12011 serial number but by some other criterion, such as their location in |mem|,
12012 the equation-solving mechanism would be too system-dependent, because
12013 the ordering can affect the computed results.)
12015 The |link| field in the node that contains the constant term $\beta$ is
12016 called the {\sl final link\/} of the dependency list. \MP\ maintains
12017 a doubly-linked master list of all dependency lists, in terms of a permanently
12019 in |mem| called |dep_head|. If there are no dependencies, we have
12020 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
12021 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
12022 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
12023 points to its dependency list. If the final link of that dependency list
12024 occurs in location~|q|, then |link(q)| points to the next dependent
12025 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
12027 @d dep_list(A) link(value_loc((A)))
12028 /* half of the |value| field in a |dependent| variable */
12029 @d prev_dep(A) info(value_loc((A)))
12030 /* the other half; makes a doubly linked list */
12031 @d dep_node_size 2 /* the number of words per dependency node */
12033 @<Initialize table entries...@>= mp->serial_no=0;
12034 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
12035 info(dep_head)=null; dep_list(dep_head)=null;
12037 @ Actually the description above contains a little white lie. There's
12038 another kind of variable called |mp_proto_dependent|, which is
12039 just like a |dependent| one except that the $\alpha$ coefficients
12040 in its dependency list are |scaled| instead of being fractions.
12041 Proto-dependency lists are mixed with dependency lists in the
12042 nodes reachable from |dep_head|.
12044 @ Here is a procedure that prints a dependency list in symbolic form.
12045 The second parameter should be either |dependent| or |mp_proto_dependent|,
12046 to indicate the scaling of the coefficients.
12048 @<Declare subroutines for printing expressions@>=
12049 void mp_print_dependency (MP mp,pointer p, small_number t) {
12050 integer v; /* a coefficient */
12051 pointer pp,q; /* for list manipulation */
12054 v=abs(value(p)); q=info(p);
12055 if ( q==null ) { /* the constant term */
12056 if ( (v!=0)||(p==pp) ) {
12057 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
12058 mp_print_scaled(mp, value(p));
12062 @<Print the coefficient, unless it's $\pm1.0$@>;
12063 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12064 @:this can't happen dep}{\quad dep@>
12065 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12066 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12071 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12072 if ( value(p)<0 ) mp_print_char(mp, '-');
12073 else if ( p!=pp ) mp_print_char(mp, '+');
12074 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12075 if ( v!=unity ) mp_print_scaled(mp, v)
12077 @ The maximum absolute value of a coefficient in a given dependency list
12078 is returned by the following simple function.
12080 @c fraction mp_max_coef (MP mp,pointer p) {
12081 fraction x; /* the maximum so far */
12083 while ( info(p)!=null ) {
12084 if ( abs(value(p))>x ) x=abs(value(p));
12090 @ One of the main operations needed on dependency lists is to add a multiple
12091 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12092 to dependency lists and |f| is a fraction.
12094 If the coefficient of any independent variable becomes |coef_bound| or
12095 more, in absolute value, this procedure changes the type of that variable
12096 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12097 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12098 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12099 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12100 2.3723$, the safer value 7/3 is taken as the threshold.)
12102 The changes mentioned in the preceding paragraph are actually done only if
12103 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12104 it is |false| only when \MP\ is making a dependency list that will soon
12105 be equated to zero.
12107 Several procedures that act on dependency lists, including |p_plus_fq|,
12108 set the global variable |dep_final| to the final (constant term) node of
12109 the dependency list that they produce.
12111 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12112 @d independent_needing_fix 0
12115 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12116 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12117 pointer dep_final; /* location of the constant term and final link */
12120 mp->fix_needed=false; mp->watch_coefs=true;
12122 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12123 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12124 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12125 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12127 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12129 The final link of the dependency list or proto-dependency list returned
12130 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12131 constant term of the result will be located in the same |mem| location
12132 as the original constant term of~|p|.
12134 Coefficients of the result are assumed to be zero if they are less than
12135 a certain threshold. This compensates for inevitable rounding errors,
12136 and tends to make more variables `|known|'. The threshold is approximately
12137 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12138 proto-dependencies.
12140 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12141 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12142 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12143 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12145 @<Declare basic dependency-list subroutines@>=
12146 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12147 pointer q, small_number t, small_number tt) ;
12150 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12151 pointer q, small_number t, small_number tt) {
12152 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12153 pointer r,s; /* for list manipulation */
12154 integer mp_threshold; /* defines a neighborhood of zero */
12155 integer v; /* temporary register */
12156 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12157 else mp_threshold=scaled_threshold;
12158 r=temp_head; pp=info(p); qq=info(q);
12164 @<Contribute a term from |p|, plus |f| times the
12165 corresponding term from |q|@>
12167 } else if ( value(pp)<value(qq) ) {
12168 @<Contribute a term from |q|, multiplied by~|f|@>
12170 link(r)=p; r=p; p=link(p); pp=info(p);
12173 if ( t==mp_dependent )
12174 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12176 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12177 link(r)=p; mp->dep_final=p;
12178 return link(temp_head);
12181 @ @<Contribute a term from |p|, plus |f|...@>=
12183 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12184 else v=value(p)+mp_take_scaled(mp, f,value(q));
12185 value(p)=v; s=p; p=link(p);
12186 if ( abs(v)<mp_threshold ) {
12187 mp_free_node(mp, s,dep_node_size);
12189 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12190 type(qq)=independent_needing_fix; mp->fix_needed=true;
12194 pp=info(p); q=link(q); qq=info(q);
12197 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12199 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12200 else v=mp_take_scaled(mp, f,value(q));
12201 if ( abs(v)>halfp(mp_threshold) ) {
12202 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12203 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12204 type(qq)=independent_needing_fix; mp->fix_needed=true;
12208 q=link(q); qq=info(q);
12211 @ It is convenient to have another subroutine for the special case
12212 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12213 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12215 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12216 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12217 pointer r,s; /* for list manipulation */
12218 integer mp_threshold; /* defines a neighborhood of zero */
12219 integer v; /* temporary register */
12220 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12221 else mp_threshold=scaled_threshold;
12222 r=temp_head; pp=info(p); qq=info(q);
12228 @<Contribute a term from |p|, plus the
12229 corresponding term from |q|@>
12231 } else if ( value(pp)<value(qq) ) {
12232 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12233 q=link(q); qq=info(q); link(r)=s; r=s;
12235 link(r)=p; r=p; p=link(p); pp=info(p);
12238 value(p)=mp_slow_add(mp, value(p),value(q));
12239 link(r)=p; mp->dep_final=p;
12240 return link(temp_head);
12243 @ @<Contribute a term from |p|, plus the...@>=
12245 v=value(p)+value(q);
12246 value(p)=v; s=p; p=link(p); pp=info(p);
12247 if ( abs(v)<mp_threshold ) {
12248 mp_free_node(mp, s,dep_node_size);
12250 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12251 type(qq)=independent_needing_fix; mp->fix_needed=true;
12255 q=link(q); qq=info(q);
12258 @ A somewhat simpler routine will multiply a dependency list
12259 by a given constant~|v|. The constant is either a |fraction| less than
12260 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12261 convert a dependency list to a proto-dependency list.
12262 Parameters |t0| and |t1| are the list types before and after;
12263 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12264 and |v_is_scaled=true|.
12266 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12267 small_number t1, boolean v_is_scaled) {
12268 pointer r,s; /* for list manipulation */
12269 integer w; /* tentative coefficient */
12270 integer mp_threshold;
12271 boolean scaling_down;
12272 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12273 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12274 else mp_threshold=half_scaled_threshold;
12276 while ( info(p)!=null ) {
12277 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12278 else w=mp_take_scaled(mp, v,value(p));
12279 if ( abs(w)<=mp_threshold ) {
12280 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12282 if ( abs(w)>=coef_bound ) {
12283 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12285 link(r)=p; r=p; value(p)=w; p=link(p);
12289 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12290 else value(p)=mp_take_fraction(mp, value(p),v);
12291 return link(temp_head);
12294 @ Similarly, we sometimes need to divide a dependency list
12295 by a given |scaled| constant.
12297 @<Declare basic dependency-list subroutines@>=
12298 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12299 t0, small_number t1) ;
12302 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12303 t0, small_number t1) {
12304 pointer r,s; /* for list manipulation */
12305 integer w; /* tentative coefficient */
12306 integer mp_threshold;
12307 boolean scaling_down;
12308 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12309 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12310 else mp_threshold=half_scaled_threshold;
12312 while ( info( p)!=null ) {
12313 if ( scaling_down ) {
12314 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12315 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12317 w=mp_make_scaled(mp, value(p),v);
12319 if ( abs(w)<=mp_threshold ) {
12320 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12322 if ( abs(w)>=coef_bound ) {
12323 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12325 link(r)=p; r=p; value(p)=w; p=link(p);
12328 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12329 return link(temp_head);
12332 @ Here's another utility routine for dependency lists. When an independent
12333 variable becomes dependent, we want to remove it from all existing
12334 dependencies. The |p_with_x_becoming_q| function computes the
12335 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12337 This procedure has basically the same calling conventions as |p_plus_fq|:
12338 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12339 final link are inherited from~|p|; and the fourth parameter tells whether
12340 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12341 is not altered if |x| does not occur in list~|p|.
12343 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12344 pointer x, pointer q, small_number t) {
12345 pointer r,s; /* for list manipulation */
12346 integer v; /* coefficient of |x| */
12347 integer sx; /* serial number of |x| */
12348 s=p; r=temp_head; sx=value(x);
12349 while ( value(info(s))>sx ) { r=s; s=link(s); };
12350 if ( info(s)!=x ) {
12353 link(temp_head)=p; link(r)=link(s); v=value(s);
12354 mp_free_node(mp, s,dep_node_size);
12355 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12359 @ Here's a simple procedure that reports an error when a variable
12360 has just received a known value that's out of the required range.
12362 @<Declare basic dependency-list subroutines@>=
12363 void mp_val_too_big (MP mp,scaled x) ;
12365 @ @c void mp_val_too_big (MP mp,scaled x) {
12366 if ( mp->internal[mp_warning_check]>0 ) {
12367 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12368 @.Value is too large@>
12369 help4("The equation I just processed has given some variable")
12370 ("a value of 4096 or more. Continue and I'll try to cope")
12371 ("with that big value; but it might be dangerous.")
12372 ("(Set warningcheck:=0 to suppress this message.)");
12377 @ When a dependent variable becomes known, the following routine
12378 removes its dependency list. Here |p| points to the variable, and
12379 |q| points to the dependency list (which is one node long).
12381 @<Declare basic dependency-list subroutines@>=
12382 void mp_make_known (MP mp,pointer p, pointer q) ;
12384 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12385 int t; /* the previous type */
12386 prev_dep(link(q))=prev_dep(p);
12387 link(prev_dep(p))=link(q); t=type(p);
12388 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12389 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12390 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12391 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12392 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12393 mp_print_variable_name(mp, p);
12394 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12395 mp_end_diagnostic(mp, false);
12397 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12398 mp->cur_type=mp_known; mp->cur_exp=value(p);
12399 mp_free_node(mp, p,value_node_size);
12403 @ The |fix_dependencies| routine is called into action when |fix_needed|
12404 has been triggered. The program keeps a list~|s| of independent variables
12405 whose coefficients must be divided by~4.
12407 In unusual cases, this fixup process might reduce one or more coefficients
12408 to zero, so that a variable will become known more or less by default.
12410 @<Declare basic dependency-list subroutines@>=
12411 void mp_fix_dependencies (MP mp);
12413 @ @c void mp_fix_dependencies (MP mp) {
12414 pointer p,q,r,s,t; /* list manipulation registers */
12415 pointer x; /* an independent variable */
12416 r=link(dep_head); s=null;
12417 while ( r!=dep_head ){
12419 @<Run through the dependency list for variable |t|, fixing
12420 all nodes, and ending with final link~|q|@>;
12422 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12424 while ( s!=null ) {
12425 p=link(s); x=info(s); free_avail(s); s=p;
12426 type(x)=mp_independent; value(x)=value(x)+2;
12428 mp->fix_needed=false;
12431 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12433 @<Run through the dependency list for variable |t|...@>=
12434 r=value_loc(t); /* |link(r)=dep_list(t)| */
12436 q=link(r); x=info(q);
12437 if ( x==null ) break;
12438 if ( type(x)<=independent_being_fixed ) {
12439 if ( type(x)<independent_being_fixed ) {
12440 p=mp_get_avail(mp); link(p)=s; s=p;
12441 info(s)=x; type(x)=independent_being_fixed;
12443 value(q)=value(q) / 4;
12444 if ( value(q)==0 ) {
12445 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12452 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12453 linking it into the list of all known dependencies. We assume that
12454 |dep_final| points to the final node of list~|p|.
12456 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12457 pointer r; /* what used to be the first dependency */
12458 dep_list(q)=p; prev_dep(q)=dep_head;
12459 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12463 @ Here is one of the ways a dependency list gets started.
12464 The |const_dependency| routine produces a list that has nothing but
12467 @c pointer mp_const_dependency (MP mp, scaled v) {
12468 mp->dep_final=mp_get_node(mp, dep_node_size);
12469 value(mp->dep_final)=v; info(mp->dep_final)=null;
12470 return mp->dep_final;
12473 @ And here's a more interesting way to start a dependency list from scratch:
12474 The parameter to |single_dependency| is the location of an
12475 independent variable~|x|, and the result is the simple dependency list
12478 In the unlikely event that the given independent variable has been doubled so
12479 often that we can't refer to it with a nonzero coefficient,
12480 |single_dependency| returns the simple list `0'. This case can be
12481 recognized by testing that the returned list pointer is equal to
12484 @c pointer mp_single_dependency (MP mp,pointer p) {
12485 pointer q; /* the new dependency list */
12486 integer m; /* the number of doublings */
12487 m=value(p) % s_scale;
12489 return mp_const_dependency(mp, 0);
12491 q=mp_get_node(mp, dep_node_size);
12492 value(q)=two_to_the(28-m); info(q)=p;
12493 link(q)=mp_const_dependency(mp, 0);
12498 @ We sometimes need to make an exact copy of a dependency list.
12500 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12501 pointer q; /* the new dependency list */
12502 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12504 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12505 if ( info(mp->dep_final)==null ) break;
12506 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12507 mp->dep_final=link(mp->dep_final); p=link(p);
12512 @ But how do variables normally become known? Ah, now we get to the heart of the
12513 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12514 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12515 appears. It equates this list to zero, by choosing an independent variable
12516 with the largest coefficient and making it dependent on the others. The
12517 newly dependent variable is eliminated from all current dependencies,
12518 thereby possibly making other dependent variables known.
12520 The given list |p| is, of course, totally destroyed by all this processing.
12522 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12523 pointer q,r,s; /* for link manipulation */
12524 pointer x; /* the variable that loses its independence */
12525 integer n; /* the number of times |x| had been halved */
12526 integer v; /* the coefficient of |x| in list |p| */
12527 pointer prev_r; /* lags one step behind |r| */
12528 pointer final_node; /* the constant term of the new dependency list */
12529 integer w; /* a tentative coefficient */
12530 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12531 x=info(q); n=value(x) % s_scale;
12532 @<Divide list |p| by |-v|, removing node |q|@>;
12533 if ( mp->internal[mp_tracing_equations]>0 ) {
12534 @<Display the new dependency@>;
12536 @<Simplify all existing dependencies by substituting for |x|@>;
12537 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12538 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12541 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12542 q=p; r=link(p); v=value(q);
12543 while ( info(r)!=null ) {
12544 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12548 @ Here we want to change the coefficients from |scaled| to |fraction|,
12549 except in the constant term. In the common case of a trivial equation
12550 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12552 @<Divide list |p| by |-v|, removing node |q|@>=
12553 s=temp_head; link(s)=p; r=p;
12556 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12558 w=mp_make_fraction(mp, value(r),v);
12559 if ( abs(w)<=half_fraction_threshold ) {
12560 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12566 } while (info(r)!=null);
12567 if ( t==mp_proto_dependent ) {
12568 value(r)=-mp_make_scaled(mp, value(r),v);
12569 } else if ( v!=-fraction_one ) {
12570 value(r)=-mp_make_fraction(mp, value(r),v);
12572 final_node=r; p=link(temp_head)
12574 @ @<Display the new dependency@>=
12575 if ( mp_interesting(mp, x) ) {
12576 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12577 mp_print_variable_name(mp, x);
12578 @:]]]\#\#_}{\.{\#\#}@>
12580 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12581 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12582 mp_end_diagnostic(mp, false);
12585 @ @<Simplify all existing dependencies by substituting for |x|@>=
12586 prev_r=dep_head; r=link(dep_head);
12587 while ( r!=dep_head ) {
12588 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12589 if ( info(q)==null ) {
12590 mp_make_known(mp, r,q);
12593 do { q=link(q); } while (info(q)!=null);
12599 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12600 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12601 if ( info(p)==null ) {
12604 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12605 mp_free_node(mp, p,dep_node_size);
12606 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12607 mp->cur_exp=value(x); mp->cur_type=mp_known;
12608 mp_free_node(mp, x,value_node_size);
12611 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12612 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12615 @ @<Divide list |p| by $2^n$@>=
12617 s=temp_head; link(temp_head)=p; r=p;
12620 else w=value(r) / two_to_the(n);
12621 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12623 mp_free_node(mp, r,dep_node_size);
12628 } while (info(s)!=null);
12632 @ The |check_mem| procedure, which is used only when \MP\ is being
12633 debugged, makes sure that the current dependency lists are well formed.
12635 @<Check the list of linear dependencies@>=
12636 q=dep_head; p=link(q);
12637 while ( p!=dep_head ) {
12638 if ( prev_dep(p)!=q ) {
12639 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12644 r=info(p); q=p; p=link(q);
12645 if ( r==null ) break;
12646 if ( value(info(p))>=value(r) ) {
12647 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12648 @.Out of order...@>
12653 @* \[25] Dynamic nonlinear equations.
12654 Variables of numeric type are maintained by the general scheme of
12655 independent, dependent, and known values that we have just studied;
12656 and the components of pair and transform variables are handled in the
12657 same way. But \MP\ also has five other types of values: \&{boolean},
12658 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12660 Equations are allowed between nonlinear quantities, but only in a
12661 simple form. Two variables that haven't yet been assigned values are
12662 either equal to each other, or they're not.
12664 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12665 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12666 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12667 |null| (which means that no other variables are equivalent to this one), or
12668 it points to another variable of the same undefined type. The pointers in the
12669 latter case form a cycle of nodes, which we shall call a ``ring.''
12670 Rings of undefined variables may include capsules, which arise as
12671 intermediate results within expressions or as \&{expr} parameters to macros.
12673 When one member of a ring receives a value, the same value is given to
12674 all the other members. In the case of paths and pictures, this implies
12675 making separate copies of a potentially large data structure; users should
12676 restrain their enthusiasm for such generality, unless they have lots and
12677 lots of memory space.
12679 @ The following procedure is called when a capsule node is being
12680 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12682 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12683 pointer q; /* the new capsule node */
12684 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12686 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12691 @ Conversely, we might delete a capsule or a variable before it becomes known.
12692 The following procedure simply detaches a quantity from its ring,
12693 without recycling the storage.
12695 @<Declare the recycling subroutines@>=
12696 void mp_ring_delete (MP mp,pointer p) {
12699 if ( q!=null ) if ( q!=p ){
12700 while ( value(q)!=p ) q=value(q);
12705 @ Eventually there might be an equation that assigns values to all of the
12706 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12707 propagation of values.
12709 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12710 value, it will soon be recycled.
12712 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12713 small_number t; /* the type of ring |p| */
12714 pointer q,r; /* link manipulation registers */
12715 t=type(p)-unknown_tag; q=value(p);
12716 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12718 r=value(q); type(q)=t;
12720 case mp_boolean_type: value(q)=v; break;
12721 case mp_string_type: value(q)=v; add_str_ref(v); break;
12722 case mp_pen_type: value(q)=copy_pen(v); break;
12723 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12724 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12725 } /* there ain't no more cases */
12730 @ If two members of rings are equated, and if they have the same type,
12731 the |ring_merge| procedure is called on to make them equivalent.
12733 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12734 pointer r; /* traverses one list */
12738 @<Exclaim about a redundant equation@>;
12743 r=value(p); value(p)=value(q); value(q)=r;
12746 @ @<Exclaim about a redundant equation@>=
12748 print_err("Redundant equation");
12749 @.Redundant equation@>
12750 help2("I already knew that this equation was true.")
12751 ("But perhaps no harm has been done; let's continue.");
12752 mp_put_get_error(mp);
12755 @* \[26] Introduction to the syntactic routines.
12756 Let's pause a moment now and try to look at the Big Picture.
12757 The \MP\ program consists of three main parts: syntactic routines,
12758 semantic routines, and output routines. The chief purpose of the
12759 syntactic routines is to deliver the user's input to the semantic routines,
12760 while parsing expressions and locating operators and operands. The
12761 semantic routines act as an interpreter responding to these operators,
12762 which may be regarded as commands. And the output routines are
12763 periodically called on to produce compact font descriptions that can be
12764 used for typesetting or for making interim proof drawings. We have
12765 discussed the basic data structures and many of the details of semantic
12766 operations, so we are good and ready to plunge into the part of \MP\ that
12767 actually controls the activities.
12769 Our current goal is to come to grips with the |get_next| procedure,
12770 which is the keystone of \MP's input mechanism. Each call of |get_next|
12771 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12772 representing the next input token.
12773 $$\vbox{\halign{#\hfil\cr
12774 \hbox{|cur_cmd| denotes a command code from the long list of codes
12776 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12777 \hbox{|cur_sym| is the hash address of the symbolic token that was
12779 \hbox{\qquad or zero in the case of a numeric or string
12780 or capsule token.}\cr}}$$
12781 Underlying this external behavior of |get_next| is all the machinery
12782 necessary to convert from character files to tokens. At a given time we
12783 may be only partially finished with the reading of several files (for
12784 which \&{input} was specified), and partially finished with the expansion
12785 of some user-defined macros and/or some macro parameters, and partially
12786 finished reading some text that the user has inserted online,
12787 and so on. When reading a character file, the characters must be
12788 converted to tokens; comments and blank spaces must
12789 be removed, numeric and string tokens must be evaluated.
12791 To handle these situations, which might all be present simultaneously,
12792 \MP\ uses various stacks that hold information about the incomplete
12793 activities, and there is a finite state control for each level of the
12794 input mechanism. These stacks record the current state of an implicitly
12795 recursive process, but the |get_next| procedure is not recursive.
12798 eight_bits cur_cmd; /* current command set by |get_next| */
12799 integer cur_mod; /* operand of current command */
12800 halfword cur_sym; /* hash address of current symbol */
12802 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12803 command code and its modifier.
12804 It consists of a rather tedious sequence of print
12805 commands, and most of it is essentially an inverse to the |primitive|
12806 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12807 all of this procedure appears elsewhere in the program, together with the
12808 corresponding |primitive| calls.
12810 @<Declare the procedure called |print_cmd_mod|@>=
12811 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12813 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12814 default: mp_print(mp, "[unknown command code!]"); break;
12818 @ Here is a procedure that displays a given command in braces, in the
12819 user's transcript file.
12821 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12824 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12825 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12826 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12827 mp_end_diagnostic(mp, false);
12830 @* \[27] Input stacks and states.
12831 The state of \MP's input mechanism appears in the input stack, whose
12832 entries are records with five fields, called |index|, |start|, |loc|,
12833 |limit|, and |name|. The top element of this stack is maintained in a
12834 global variable for which no subscripting needs to be done; the other
12835 elements of the stack appear in an array. Hence the stack is declared thus:
12839 quarterword index_field;
12840 halfword start_field, loc_field, limit_field, name_field;
12844 in_state_record *input_stack;
12845 integer input_ptr; /* first unused location of |input_stack| */
12846 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12847 in_state_record cur_input; /* the ``top'' input state */
12848 int stack_size; /* maximum number of simultaneous input sources */
12850 @ @<Allocate or initialize ...@>=
12851 mp->stack_size = 300;
12852 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12854 @ @<Dealloc variables@>=
12855 xfree(mp->input_stack);
12857 @ We've already defined the special variable |loc==cur_input.loc_field|
12858 in our discussion of basic input-output routines. The other components of
12859 |cur_input| are defined in the same way:
12861 @d index mp->cur_input.index_field /* reference for buffer information */
12862 @d start mp->cur_input.start_field /* starting position in |buffer| */
12863 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12864 @d name mp->cur_input.name_field /* name of the current file */
12866 @ Let's look more closely now at the five control variables
12867 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12868 assuming that \MP\ is reading a line of characters that have been input
12869 from some file or from the user's terminal. There is an array called
12870 |buffer| that acts as a stack of all lines of characters that are
12871 currently being read from files, including all lines on subsidiary
12872 levels of the input stack that are not yet completed. \MP\ will return to
12873 the other lines when it is finished with the present input file.
12875 (Incidentally, on a machine with byte-oriented addressing, it would be
12876 appropriate to combine |buffer| with the |str_pool| array,
12877 letting the buffer entries grow downward from the top of the string pool
12878 and checking that these two tables don't bump into each other.)
12880 The line we are currently working on begins in position |start| of the
12881 buffer; the next character we are about to read is |buffer[loc]|; and
12882 |limit| is the location of the last character present. We always have
12883 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12884 that the end of a line is easily sensed.
12886 The |name| variable is a string number that designates the name of
12887 the current file, if we are reading an ordinary text file. Special codes
12888 |is_term..max_spec_src| indicate other sources of input text.
12890 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12891 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12892 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12893 @d max_spec_src is_scantok
12895 @ Additional information about the current line is available via the
12896 |index| variable, which counts how many lines of characters are present
12897 in the buffer below the current level. We have |index=0| when reading
12898 from the terminal and prompting the user for each line; then if the user types,
12899 e.g., `\.{input figs}', we will have |index=1| while reading
12900 the file \.{figs.mp}. However, it does not follow that |index| is the
12901 same as the input stack pointer, since many of the levels on the input
12902 stack may come from token lists and some |index| values may correspond
12903 to \.{MPX} files that are not currently on the stack.
12905 The global variable |in_open| is equal to the highest |index| value counting
12906 \.{MPX} files but excluding token-list input levels. Thus, the number of
12907 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12908 when we are not reading a token list.
12910 If we are not currently reading from the terminal,
12911 we are reading from the file variable |input_file[index]|. We use
12912 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12913 and |cur_file| as an abbreviation for |input_file[index]|.
12915 When \MP\ is not reading from the terminal, the global variable |line| contains
12916 the line number in the current file, for use in error messages. More precisely,
12917 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12918 the line number for each file in the |input_file| array.
12920 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12921 array so that the name doesn't get lost when the file is temporarily removed
12922 from the input stack.
12923 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12924 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12925 Since this is not an \.{MPX} file, we have
12926 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12927 This |name| field is set to |finished| when |input_file[k]| is completely
12930 If more information about the input state is needed, it can be
12931 included in small arrays like those shown here. For example,
12932 the current page or segment number in the input file might be put
12933 into a variable |page|, that is really a macro for the current entry
12934 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12935 by analogy with |line_stack|.
12936 @^system dependencies@>
12938 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12939 @d cur_file mp->input_file[index] /* the current |void *| variable */
12940 @d line mp->line_stack[index] /* current line number in the current source file */
12941 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12942 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12943 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12944 @d mpx_reading (mp->mpx_name[index]>absent)
12945 /* when reading a file, is it an \.{MPX} file? */
12947 /* |name_field| value when the corresponding \.{MPX} file is finished */
12950 integer in_open; /* the number of lines in the buffer, less one */
12951 unsigned int open_parens; /* the number of open text files */
12952 void * *input_file ;
12953 integer *line_stack ; /* the line number for each file */
12954 char * *iname_stack; /* used for naming \.{MPX} files */
12955 char * *iarea_stack; /* used for naming \.{MPX} files */
12956 halfword*mpx_name ;
12958 @ @<Allocate or ...@>=
12959 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12960 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12961 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12962 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12963 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12966 for (k=0;k<=mp->max_in_open;k++) {
12967 mp->iname_stack[k] =NULL;
12968 mp->iarea_stack[k] =NULL;
12972 @ @<Dealloc variables@>=
12975 for (l=0;l<=mp->max_in_open;l++) {
12976 xfree(mp->iname_stack[l]);
12977 xfree(mp->iarea_stack[l]);
12980 xfree(mp->input_file);
12981 xfree(mp->line_stack);
12982 xfree(mp->iname_stack);
12983 xfree(mp->iarea_stack);
12984 xfree(mp->mpx_name);
12987 @ However, all this discussion about input state really applies only to the
12988 case that we are inputting from a file. There is another important case,
12989 namely when we are currently getting input from a token list. In this case
12990 |index>max_in_open|, and the conventions about the other state variables
12993 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12994 the node that will be read next. If |loc=null|, the token list has been
12997 \yskip\hang|start| points to the first node of the token list; this node
12998 may or may not contain a reference count, depending on the type of token
13001 \yskip\hang|token_type|, which takes the place of |index| in the
13002 discussion above, is a code number that explains what kind of token list
13005 \yskip\hang|name| points to the |eqtb| address of the control sequence
13006 being expanded, if the current token list is a macro not defined by
13007 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
13008 can be deduced by looking at their first two parameters.
13010 \yskip\hang|param_start|, which takes the place of |limit|, tells where
13011 the parameters of the current macro or loop text begin in the |param_stack|.
13013 \yskip\noindent The |token_type| can take several values, depending on
13014 where the current token list came from:
13017 \indent|forever_text|, if the token list being scanned is the body of
13018 a \&{forever} loop;
13020 \indent|loop_text|, if the token list being scanned is the body of
13021 a \&{for} or \&{forsuffixes} loop;
13023 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
13025 \indent|backed_up|, if the token list being scanned has been inserted as
13026 `to be read again'.
13028 \indent|inserted|, if the token list being scanned has been inserted as
13029 part of error recovery;
13031 \indent|macro|, if the expansion of a user-defined symbolic token is being
13035 The token list begins with a reference count if and only if |token_type=
13037 @^reference counts@>
13039 @d token_type index /* type of current token list */
13040 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
13041 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
13042 @d param_start limit /* base of macro parameters in |param_stack| */
13043 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
13044 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
13045 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
13046 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
13047 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
13048 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
13050 @ The |param_stack| is an auxiliary array used to hold pointers to the token
13051 lists for parameters at the current level and subsidiary levels of input.
13052 This stack grows at a different rate from the others.
13055 pointer *param_stack; /* token list pointers for parameters */
13056 integer param_ptr; /* first unused entry in |param_stack| */
13057 integer max_param_stack; /* largest value of |param_ptr| */
13059 @ @<Allocate or initialize ...@>=
13060 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13062 @ @<Dealloc variables@>=
13063 xfree(mp->param_stack);
13065 @ Notice that the |line| isn't valid when |token_state| is true because it
13066 depends on |index|. If we really need to know the line number for the
13067 topmost file in the index stack we use the following function. If a page
13068 number or other information is needed, this routine should be modified to
13069 compute it as well.
13070 @^system dependencies@>
13072 @<Declare a function called |true_line|@>=
13073 integer mp_true_line (MP mp) {
13074 int k; /* an index into the input stack */
13075 if ( file_state && (name>max_spec_src) ) {
13080 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13081 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13084 return mp->line_stack[(k-1)];
13089 @ Thus, the ``current input state'' can be very complicated indeed; there
13090 can be many levels and each level can arise in a variety of ways. The
13091 |show_context| procedure, which is used by \MP's error-reporting routine to
13092 print out the current input state on all levels down to the most recent
13093 line of characters from an input file, illustrates most of these conventions.
13094 The global variable |file_ptr| contains the lowest level that was
13095 displayed by this procedure.
13098 integer file_ptr; /* shallowest level shown by |show_context| */
13100 @ The status at each level is indicated by printing two lines, where the first
13101 line indicates what was read so far and the second line shows what remains
13102 to be read. The context is cropped, if necessary, so that the first line
13103 contains at most |half_error_line| characters, and the second contains
13104 at most |error_line|. Non-current input levels whose |token_type| is
13105 `|backed_up|' are shown only if they have not been fully read.
13107 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13108 int old_setting; /* saved |selector| setting */
13109 @<Local variables for formatting calculations@>
13110 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13111 /* store current state */
13113 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13114 @<Display the current context@>;
13116 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13117 decr(mp->file_ptr);
13119 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13122 @ @<Display the current context@>=
13123 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13124 (token_type!=backed_up) || (loc!=null) ) {
13125 /* we omit backed-up token lists that have already been read */
13126 mp->tally=0; /* get ready to count characters */
13127 old_setting=mp->selector;
13128 if ( file_state ) {
13129 @<Print location of current line@>;
13130 @<Pseudoprint the line@>;
13132 @<Print type of token list@>;
13133 @<Pseudoprint the token list@>;
13135 mp->selector=old_setting; /* stop pseudoprinting */
13136 @<Print two lines using the tricky pseudoprinted information@>;
13139 @ This routine should be changed, if necessary, to give the best possible
13140 indication of where the current line resides in the input file.
13141 For example, on some systems it is best to print both a page and line number.
13142 @^system dependencies@>
13144 @<Print location of current line@>=
13145 if ( name>max_spec_src ) {
13146 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13147 } else if ( terminal_input ) {
13148 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13149 else mp_print_nl(mp, "<insert>");
13150 } else if ( name==is_scantok ) {
13151 mp_print_nl(mp, "<scantokens>");
13153 mp_print_nl(mp, "<read>");
13155 mp_print_char(mp, ' ')
13157 @ Can't use case statement here because the |token_type| is not
13158 a constant expression.
13160 @<Print type of token list@>=
13162 if(token_type==forever_text) {
13163 mp_print_nl(mp, "<forever> ");
13164 } else if (token_type==loop_text) {
13165 @<Print the current loop value@>;
13166 } else if (token_type==parameter) {
13167 mp_print_nl(mp, "<argument> ");
13168 } else if (token_type==backed_up) {
13169 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13170 else mp_print_nl(mp, "<to be read again> ");
13171 } else if (token_type==inserted) {
13172 mp_print_nl(mp, "<inserted text> ");
13173 } else if (token_type==macro) {
13175 if ( name!=null ) mp_print_text(name);
13176 else @<Print the name of a \&{vardef}'d macro@>;
13177 mp_print(mp, "->");
13179 mp_print_nl(mp, "?");/* this should never happen */
13184 @ The parameter that corresponds to a loop text is either a token list
13185 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13186 We'll discuss capsules later; for now, all we need to know is that
13187 the |link| field in a capsule parameter is |void| and that
13188 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13190 @<Print the current loop value@>=
13191 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13193 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13194 else mp_show_token_list(mp, p,null,20,mp->tally);
13196 mp_print(mp, ")> ");
13199 @ The first two parameters of a macro defined by \&{vardef} will be token
13200 lists representing the macro's prefix and ``at point.'' By putting these
13201 together, we get the macro's full name.
13203 @<Print the name of a \&{vardef}'d macro@>=
13204 { p=mp->param_stack[param_start];
13206 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13209 while ( link(q)!=null ) q=link(q);
13210 link(q)=mp->param_stack[param_start+1];
13211 mp_show_token_list(mp, p,null,20,mp->tally);
13216 @ Now it is necessary to explain a little trick. We don't want to store a long
13217 string that corresponds to a token list, because that string might take up
13218 lots of memory; and we are printing during a time when an error message is
13219 being given, so we dare not do anything that might overflow one of \MP's
13220 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13221 that stores characters into a buffer of length |error_line|, where character
13222 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13223 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13224 |tally:=0| and |trick_count:=1000000|; then when we reach the
13225 point where transition from line 1 to line 2 should occur, we
13226 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13227 tally+1+error_line-half_error_line)|. At the end of the
13228 pseudoprinting, the values of |first_count|, |tally|, and
13229 |trick_count| give us all the information we need to print the two lines,
13230 and all of the necessary text is in |trick_buf|.
13232 Namely, let |l| be the length of the descriptive information that appears
13233 on the first line. The length of the context information gathered for that
13234 line is |k=first_count|, and the length of the context information
13235 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13236 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13237 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13238 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13239 and print `\.{...}' followed by
13240 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13241 where subscripts of |trick_buf| are circular modulo |error_line|. The
13242 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13243 unless |n+m>error_line|; in the latter case, further cropping is done.
13244 This is easier to program than to explain.
13246 @<Local variables for formatting...@>=
13247 int i; /* index into |buffer| */
13248 integer l; /* length of descriptive information on line 1 */
13249 integer m; /* context information gathered for line 2 */
13250 int n; /* length of line 1 */
13251 integer p; /* starting or ending place in |trick_buf| */
13252 integer q; /* temporary index */
13254 @ The following code tells the print routines to gather
13255 the desired information.
13257 @d begin_pseudoprint {
13258 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13259 mp->trick_count=1000000;
13261 @d set_trick_count {
13262 mp->first_count=mp->tally;
13263 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13264 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13267 @ And the following code uses the information after it has been gathered.
13269 @<Print two lines using the tricky pseudoprinted information@>=
13270 if ( mp->trick_count==1000000 ) set_trick_count;
13271 /* |set_trick_count| must be performed */
13272 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13273 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13274 if ( l+mp->first_count<=mp->half_error_line ) {
13275 p=0; n=l+mp->first_count;
13277 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13278 n=mp->half_error_line;
13280 for (q=p;q<=mp->first_count-1;q++) {
13281 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13284 for (q=1;q<=n;q++) {
13285 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13287 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13288 else p=mp->first_count+(mp->error_line-n-3);
13289 for (q=mp->first_count;q<=p-1;q++) {
13290 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13292 if ( m+n>mp->error_line ) mp_print(mp, "...")
13294 @ But the trick is distracting us from our current goal, which is to
13295 understand the input state. So let's concentrate on the data structures that
13296 are being pseudoprinted as we finish up the |show_context| procedure.
13298 @<Pseudoprint the line@>=
13301 for (i=start;i<=limit-1;i++) {
13302 if ( i==loc ) set_trick_count;
13303 mp_print_str(mp, mp->buffer[i]);
13307 @ @<Pseudoprint the token list@>=
13309 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13310 else mp_show_macro(mp, start,loc,100000)
13312 @ Here is the missing piece of |show_token_list| that is activated when the
13313 token beginning line~2 is about to be shown:
13315 @<Do magic computation@>=set_trick_count
13317 @* \[28] Maintaining the input stacks.
13318 The following subroutines change the input status in commonly needed ways.
13320 First comes |push_input|, which stores the current state and creates a
13321 new level (having, initially, the same properties as the old).
13323 @d push_input { /* enter a new input level, save the old */
13324 if ( mp->input_ptr>mp->max_in_stack ) {
13325 mp->max_in_stack=mp->input_ptr;
13326 if ( mp->input_ptr==mp->stack_size ) {
13327 int l = (mp->stack_size+(mp->stack_size>>2));
13328 XREALLOC(mp->input_stack, l, in_state_record);
13329 mp->stack_size = l;
13332 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13333 incr(mp->input_ptr);
13336 @ And of course what goes up must come down.
13338 @d pop_input { /* leave an input level, re-enter the old */
13339 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13342 @ Here is a procedure that starts a new level of token-list input, given
13343 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13344 set |name|, reset~|loc|, and increase the macro's reference count.
13346 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13348 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13349 push_input; start=p; token_type=t;
13350 param_start=mp->param_ptr; loc=p;
13353 @ When a token list has been fully scanned, the following computations
13354 should be done as we leave that level of input.
13357 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13358 pointer p; /* temporary register */
13359 if ( token_type>=backed_up ) { /* token list to be deleted */
13360 if ( token_type<=inserted ) {
13361 mp_flush_token_list(mp, start); goto DONE;
13363 mp_delete_mac_ref(mp, start); /* update reference count */
13366 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13367 decr(mp->param_ptr);
13368 p=mp->param_stack[mp->param_ptr];
13370 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13371 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13373 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13378 pop_input; check_interrupt;
13381 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13382 token by the |cur_tok| routine.
13385 @c @<Declare the procedure called |make_exp_copy|@>;
13386 pointer mp_cur_tok (MP mp) {
13387 pointer p; /* a new token node */
13388 small_number save_type; /* |cur_type| to be restored */
13389 integer save_exp; /* |cur_exp| to be restored */
13390 if ( mp->cur_sym==0 ) {
13391 if ( mp->cur_cmd==capsule_token ) {
13392 save_type=mp->cur_type; save_exp=mp->cur_exp;
13393 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13394 mp->cur_type=save_type; mp->cur_exp=save_exp;
13396 p=mp_get_node(mp, token_node_size);
13397 value(p)=mp->cur_mod; name_type(p)=mp_token;
13398 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13399 else type(p)=mp_string_type;
13402 fast_get_avail(p); info(p)=mp->cur_sym;
13407 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13408 seen. The |back_input| procedure takes care of this by putting the token
13409 just scanned back into the input stream, ready to be read again.
13410 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13413 void mp_back_input (MP mp);
13415 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13416 pointer p; /* a token list of length one */
13418 while ( token_state &&(loc==null) )
13419 mp_end_token_list(mp); /* conserve stack space */
13423 @ The |back_error| routine is used when we want to restore or replace an
13424 offending token just before issuing an error message. We disable interrupts
13425 during the call of |back_input| so that the help message won't be lost.
13428 void mp_error (MP mp);
13429 void mp_back_error (MP mp);
13431 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13432 mp->OK_to_interrupt=false;
13434 mp->OK_to_interrupt=true; mp_error(mp);
13436 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13437 mp->OK_to_interrupt=false;
13438 mp_back_input(mp); token_type=inserted;
13439 mp->OK_to_interrupt=true; mp_error(mp);
13442 @ The |begin_file_reading| procedure starts a new level of input for lines
13443 of characters to be read from a file, or as an insertion from the
13444 terminal. It does not take care of opening the file, nor does it set |loc|
13445 or |limit| or |line|.
13446 @^system dependencies@>
13448 @c void mp_begin_file_reading (MP mp) {
13449 if ( mp->in_open==mp->max_in_open )
13450 mp_overflow(mp, "text input levels",mp->max_in_open);
13451 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13452 if ( mp->first==mp->buf_size )
13453 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13454 incr(mp->in_open); push_input; index=mp->in_open;
13455 mp->mpx_name[index]=absent;
13457 name=is_term; /* |terminal_input| is now |true| */
13460 @ Conversely, the variables must be downdated when such a level of input
13461 is finished. Any associated \.{MPX} file must also be closed and popped
13462 off the file stack.
13464 @c void mp_end_file_reading (MP mp) {
13465 if ( mp->in_open>index ) {
13466 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13467 mp_confusion(mp, "endinput");
13468 @:this can't happen endinput}{\quad endinput@>
13470 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13471 delete_str_ref(mp->mpx_name[mp->in_open]);
13476 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13477 if ( name>max_spec_src ) {
13478 (mp->close_file)(cur_file);
13479 delete_str_ref(name);
13483 pop_input; decr(mp->in_open);
13486 @ Here is a function that tries to resume input from an \.{MPX} file already
13487 associated with the current input file. It returns |false| if this doesn't
13490 @c boolean mp_begin_mpx_reading (MP mp) {
13491 if ( mp->in_open!=index+1 ) {
13494 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13495 @:this can't happen mpx}{\quad mpx@>
13496 if ( mp->first==mp->buf_size )
13497 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13498 push_input; index=mp->in_open;
13500 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13501 @<Put an empty line in the input buffer@>;
13506 @ This procedure temporarily stops reading an \.{MPX} file.
13508 @c void mp_end_mpx_reading (MP mp) {
13509 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13510 @:this can't happen mpx}{\quad mpx@>
13512 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13518 @ Here we enforce a restriction that simplifies the input stacks considerably.
13519 This should not inconvenience the user because \.{MPX} files are generated
13520 by an auxiliary program called \.{DVItoMP}.
13522 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13524 print_err("`mpxbreak' must be at the end of a line");
13525 help4("This file contains picture expressions for btex...etex")
13526 ("blocks. Such files are normally generated automatically")
13527 ("but this one seems to be messed up. I'm going to ignore")
13528 ("the rest of this line.");
13532 @ In order to keep the stack from overflowing during a long sequence of
13533 inserted `\.{show}' commands, the following routine removes completed
13534 error-inserted lines from memory.
13536 @c void mp_clear_for_error_prompt (MP mp) {
13537 while ( file_state && terminal_input &&
13538 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13539 mp_print_ln(mp); clear_terminal;
13542 @ To get \MP's whole input mechanism going, we perform the following
13545 @<Initialize the input routines@>=
13546 { mp->input_ptr=0; mp->max_in_stack=0;
13547 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13548 mp->param_ptr=0; mp->max_param_stack=0;
13550 start=1; index=0; line=0; name=is_term;
13551 mp->mpx_name[0]=absent;
13552 mp->force_eof=false;
13553 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13554 limit=mp->last; mp->first=mp->last+1;
13555 /* |init_terminal| has set |loc| and |last| */
13558 @* \[29] Getting the next token.
13559 The heart of \MP's input mechanism is the |get_next| procedure, which
13560 we shall develop in the next few sections of the program. Perhaps we
13561 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13562 eyes and mouth, reading the source files and gobbling them up. And it also
13563 helps \MP\ to regurgitate stored token lists that are to be processed again.
13565 The main duty of |get_next| is to input one token and to set |cur_cmd|
13566 and |cur_mod| to that token's command code and modifier. Furthermore, if
13567 the input token is a symbolic token, that token's |hash| address
13568 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13570 Underlying this simple description is a certain amount of complexity
13571 because of all the cases that need to be handled.
13572 However, the inner loop of |get_next| is reasonably short and fast.
13574 @ Before getting into |get_next|, we need to consider a mechanism by which
13575 \MP\ helps keep errors from propagating too far. Whenever the program goes
13576 into a mode where it keeps calling |get_next| repeatedly until a certain
13577 condition is met, it sets |scanner_status| to some value other than |normal|.
13578 Then if an input file ends, or if an `\&{outer}' symbol appears,
13579 an appropriate error recovery will be possible.
13581 The global variable |warning_info| helps in this error recovery by providing
13582 additional information. For example, |warning_info| might indicate the
13583 name of a macro whose replacement text is being scanned.
13585 @d normal 0 /* |scanner_status| at ``quiet times'' */
13586 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13587 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13588 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13589 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13590 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13591 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13592 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13595 integer scanner_status; /* are we scanning at high speed? */
13596 integer warning_info; /* if so, what else do we need to know,
13597 in case an error occurs? */
13599 @ @<Initialize the input routines@>=
13600 mp->scanner_status=normal;
13602 @ The following subroutine
13603 is called when an `\&{outer}' symbolic token has been scanned or
13604 when the end of a file has been reached. These two cases are distinguished
13605 by |cur_sym|, which is zero at the end of a file.
13607 @c boolean mp_check_outer_validity (MP mp) {
13608 pointer p; /* points to inserted token list */
13609 if ( mp->scanner_status==normal ) {
13611 } else if ( mp->scanner_status==tex_flushing ) {
13612 @<Check if the file has ended while flushing \TeX\ material and set the
13613 result value for |check_outer_validity|@>;
13615 mp->deletions_allowed=false;
13616 @<Back up an outer symbolic token so that it can be reread@>;
13617 if ( mp->scanner_status>skipping ) {
13618 @<Tell the user what has run away and try to recover@>;
13620 print_err("Incomplete if; all text was ignored after line ");
13621 @.Incomplete if...@>
13622 mp_print_int(mp, mp->warning_info);
13623 help3("A forbidden `outer' token occurred in skipped text.")
13624 ("This kind of error happens when you say `if...' and forget")
13625 ("the matching `fi'. I've inserted a `fi'; this might work.");
13626 if ( mp->cur_sym==0 )
13627 mp->help_line[2]="The file ended while I was skipping conditional text.";
13628 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13630 mp->deletions_allowed=true;
13635 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13636 if ( mp->cur_sym!=0 ) {
13639 mp->deletions_allowed=false;
13640 print_err("TeX mode didn't end; all text was ignored after line ");
13641 mp_print_int(mp, mp->warning_info);
13642 help2("The file ended while I was looking for the `etex' to")
13643 ("finish this TeX material. I've inserted `etex' now.");
13644 mp->cur_sym = frozen_etex;
13646 mp->deletions_allowed=true;
13650 @ @<Back up an outer symbolic token so that it can be reread@>=
13651 if ( mp->cur_sym!=0 ) {
13652 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13653 back_list(p); /* prepare to read the symbolic token again */
13656 @ @<Tell the user what has run away...@>=
13658 mp_runaway(mp); /* print the definition-so-far */
13659 if ( mp->cur_sym==0 ) {
13660 print_err("File ended");
13661 @.File ended while scanning...@>
13663 print_err("Forbidden token found");
13664 @.Forbidden token found...@>
13666 mp_print(mp, " while scanning ");
13667 help4("I suspect you have forgotten an `enddef',")
13668 ("causing me to read past where you wanted me to stop.")
13669 ("I'll try to recover; but if the error is serious,")
13670 ("you'd better type `E' or `X' now and fix your file.");
13671 switch (mp->scanner_status) {
13672 @<Complete the error message,
13673 and set |cur_sym| to a token that might help recover from the error@>
13674 } /* there are no other cases */
13678 @ As we consider various kinds of errors, it is also appropriate to
13679 change the first line of the help message just given; |help_line[3]|
13680 points to the string that might be changed.
13682 @<Complete the error message,...@>=
13684 mp_print(mp, "to the end of the statement");
13685 mp->help_line[3]="A previous error seems to have propagated,";
13686 mp->cur_sym=frozen_semicolon;
13689 mp_print(mp, "a text argument");
13690 mp->help_line[3]="It seems that a right delimiter was left out,";
13691 if ( mp->warning_info==0 ) {
13692 mp->cur_sym=frozen_end_group;
13694 mp->cur_sym=frozen_right_delimiter;
13695 equiv(frozen_right_delimiter)=mp->warning_info;
13700 mp_print(mp, "the definition of ");
13701 if ( mp->scanner_status==op_defining )
13702 mp_print_text(mp->warning_info);
13704 mp_print_variable_name(mp, mp->warning_info);
13705 mp->cur_sym=frozen_end_def;
13707 case loop_defining:
13708 mp_print(mp, "the text of a ");
13709 mp_print_text(mp->warning_info);
13710 mp_print(mp, " loop");
13711 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13712 mp->cur_sym=frozen_end_for;
13715 @ The |runaway| procedure displays the first part of the text that occurred
13716 when \MP\ began its special |scanner_status|, if that text has been saved.
13718 @<Declare the procedure called |runaway|@>=
13719 void mp_runaway (MP mp) {
13720 if ( mp->scanner_status>flushing ) {
13721 mp_print_nl(mp, "Runaway ");
13722 switch (mp->scanner_status) {
13723 case absorbing: mp_print(mp, "text?"); break;
13725 case op_defining: mp_print(mp,"definition?"); break;
13726 case loop_defining: mp_print(mp, "loop?"); break;
13727 } /* there are no other cases */
13729 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13733 @ We need to mention a procedure that may be called by |get_next|.
13736 void mp_firm_up_the_line (MP mp);
13738 @ And now we're ready to take the plunge into |get_next| itself.
13739 Note that the behavior depends on the |scanner_status| because percent signs
13740 and double quotes need to be passed over when skipping TeX material.
13743 void mp_get_next (MP mp) {
13744 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13746 /*restart*/ /* go here to get the next input token */
13747 /*exit*/ /* go here when the next input token has been got */
13748 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13749 /*found*/ /* go here when the end of a symbolic token has been found */
13750 /*switch*/ /* go here to branch on the class of an input character */
13751 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13752 /* go here at crucial stages when scanning a number */
13753 int k; /* an index into |buffer| */
13754 ASCII_code c; /* the current character in the buffer */
13755 ASCII_code class; /* its class number */
13756 integer n,f; /* registers for decimal-to-binary conversion */
13759 if ( file_state ) {
13760 @<Input from external file; |goto restart| if no input found,
13761 or |return| if a non-symbolic token is found@>;
13763 @<Input from token list; |goto restart| if end of list or
13764 if a parameter needs to be expanded,
13765 or |return| if a non-symbolic token is found@>;
13768 @<Finish getting the symbolic token in |cur_sym|;
13769 |goto restart| if it is illegal@>;
13772 @ When a symbolic token is declared to be `\&{outer}', its command code
13773 is increased by |outer_tag|.
13776 @<Finish getting the symbolic token in |cur_sym|...@>=
13777 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13778 if ( mp->cur_cmd>=outer_tag ) {
13779 if ( mp_check_outer_validity(mp) )
13780 mp->cur_cmd=mp->cur_cmd-outer_tag;
13785 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13786 to have a special test for end-of-line.
13789 @<Input from external file;...@>=
13792 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13794 case digit_class: goto START_NUMERIC_TOKEN; break;
13796 class=mp->char_class[mp->buffer[loc]];
13797 if ( class>period_class ) {
13799 } else if ( class<period_class ) { /* |class=digit_class| */
13800 n=0; goto START_DECIMAL_TOKEN;
13804 case space_class: goto SWITCH; break;
13805 case percent_class:
13806 if ( mp->scanner_status==tex_flushing ) {
13807 if ( loc<limit ) goto SWITCH;
13809 @<Move to next line of file, or |goto restart| if there is no next line@>;
13814 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13815 else @<Get a string token and |return|@>;
13817 case isolated_classes:
13818 k=loc-1; goto FOUND; break;
13819 case invalid_class:
13820 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13821 else @<Decry the invalid character and |goto restart|@>;
13823 default: break; /* letters, etc. */
13826 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13828 START_NUMERIC_TOKEN:
13829 @<Get the integer part |n| of a numeric token;
13830 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13831 START_DECIMAL_TOKEN:
13832 @<Get the fraction part |f| of a numeric token@>;
13834 @<Pack the numeric and fraction parts of a numeric token
13837 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13840 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13841 |token_list| after the error has been dealt with
13842 (cf.\ |clear_for_error_prompt|).
13844 @<Decry the invalid...@>=
13846 print_err("Text line contains an invalid character");
13847 @.Text line contains...@>
13848 help2("A funny symbol that I can\'t read has just been input.")
13849 ("Continue, and I'll forget that it ever happened.");
13850 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13854 @ @<Get a string token and |return|@>=
13856 if ( mp->buffer[loc]=='"' ) {
13857 mp->cur_mod=rts("");
13859 k=loc; mp->buffer[limit+1]='"';
13862 } while (mp->buffer[loc]!='"');
13864 @<Decry the missing string delimiter and |goto restart|@>;
13867 mp->cur_mod=mp->buffer[k];
13871 append_char(mp->buffer[k]); incr(k);
13873 mp->cur_mod=mp_make_string(mp);
13876 incr(loc); mp->cur_cmd=string_token;
13880 @ We go to |restart| after this error message, not to |SWITCH|,
13881 because the |clear_for_error_prompt| routine might have reinstated
13882 |token_state| after |error| has finished.
13884 @<Decry the missing string delimiter and |goto restart|@>=
13886 loc=limit; /* the next character to be read on this line will be |"%"| */
13887 print_err("Incomplete string token has been flushed");
13888 @.Incomplete string token...@>
13889 help3("Strings should finish on the same line as they began.")
13890 ("I've deleted the partial string; you might want to")
13891 ("insert another by typing, e.g., `I\"new string\"'.");
13892 mp->deletions_allowed=false; mp_error(mp);
13893 mp->deletions_allowed=true;
13897 @ @<Get the integer part |n| of a numeric token...@>=
13899 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13900 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13903 if ( mp->buffer[loc]=='.' )
13904 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13907 goto FIN_NUMERIC_TOKEN;
13910 @ @<Get the fraction part |f| of a numeric token@>=
13913 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13914 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13917 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13918 f=mp_round_decimals(mp, k);
13923 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13925 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13926 } else if ( mp->scanner_status!=tex_flushing ) {
13927 print_err("Enormous number has been reduced");
13928 @.Enormous number...@>
13929 help2("I can\'t handle numbers bigger than 32767.99998;")
13930 ("so I've changed your constant to that maximum amount.");
13931 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13932 mp->cur_mod=el_gordo;
13934 mp->cur_cmd=numeric_token; return
13936 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13938 mp->cur_mod=n*unity+f;
13939 if ( mp->cur_mod>=fraction_one ) {
13940 if ( (mp->internal[mp_warning_check]>0) &&
13941 (mp->scanner_status!=tex_flushing) ) {
13942 print_err("Number is too large (");
13943 mp_print_scaled(mp, mp->cur_mod);
13944 mp_print_char(mp, ')');
13945 help3("It is at least 4096. Continue and I'll try to cope")
13946 ("with that big value; but it might be dangerous.")
13947 ("(Set warningcheck:=0 to suppress this message.)");
13953 @ Let's consider now what happens when |get_next| is looking at a token list.
13956 @<Input from token list;...@>=
13957 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13958 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13959 if ( mp->cur_sym>=expr_base ) {
13960 if ( mp->cur_sym>=suffix_base ) {
13961 @<Insert a suffix or text parameter and |goto restart|@>;
13963 mp->cur_cmd=capsule_token;
13964 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13965 mp->cur_sym=0; return;
13968 } else if ( loc>null ) {
13969 @<Get a stored numeric or string or capsule token and |return|@>
13970 } else { /* we are done with this token list */
13971 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13974 @ @<Insert a suffix or text parameter...@>=
13976 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13977 /* |param_size=text_base-suffix_base| */
13978 mp_begin_token_list(mp,
13979 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13984 @ @<Get a stored numeric or string or capsule token...@>=
13986 if ( name_type(loc)==mp_token ) {
13987 mp->cur_mod=value(loc);
13988 if ( type(loc)==mp_known ) {
13989 mp->cur_cmd=numeric_token;
13991 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13994 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13996 loc=link(loc); return;
13999 @ All of the easy branches of |get_next| have now been taken care of.
14000 There is one more branch.
14002 @<Move to next line of file, or |goto restart|...@>=
14003 if ( name>max_spec_src ) {
14004 @<Read next line of file into |buffer|, or
14005 |goto restart| if the file has ended@>;
14007 if ( mp->input_ptr>0 ) {
14008 /* text was inserted during error recovery or by \&{scantokens} */
14009 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
14011 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
14012 if ( mp->interaction>mp_nonstop_mode ) {
14013 if ( limit==start ) /* previous line was empty */
14014 mp_print_nl(mp, "(Please type a command or say `end')");
14016 mp_print_ln(mp); mp->first=start;
14017 prompt_input("*"); /* input on-line into |buffer| */
14019 limit=mp->last; mp->buffer[limit]='%';
14020 mp->first=limit+1; loc=start;
14022 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
14024 /* nonstop mode, which is intended for overnight batch processing,
14025 never waits for on-line input */
14029 @ The global variable |force_eof| is normally |false|; it is set |true|
14030 by an \&{endinput} command.
14033 boolean force_eof; /* should the next \&{input} be aborted early? */
14035 @ We must decrement |loc| in order to leave the buffer in a valid state
14036 when an error condition causes us to |goto restart| without calling
14037 |end_file_reading|.
14039 @<Read next line of file into |buffer|, or
14040 |goto restart| if the file has ended@>=
14042 incr(line); mp->first=start;
14043 if ( ! mp->force_eof ) {
14044 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
14045 mp_firm_up_the_line(mp); /* this sets |limit| */
14047 mp->force_eof=true;
14049 if ( mp->force_eof ) {
14050 mp->force_eof=false;
14052 if ( mpx_reading ) {
14053 @<Complain that the \.{MPX} file ended unexpectly; then set
14054 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
14056 mp_print_char(mp, ')'); decr(mp->open_parens);
14057 update_terminal; /* show user that file has been read */
14058 mp_end_file_reading(mp); /* resume previous level */
14059 if ( mp_check_outer_validity(mp) ) goto RESTART;
14063 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14066 @ We should never actually come to the end of an \.{MPX} file because such
14067 files should have an \&{mpxbreak} after the translation of the last
14068 \&{btex}$\,\ldots\,$\&{etex} block.
14070 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14072 mp->mpx_name[index]=finished;
14073 print_err("mpx file ended unexpectedly");
14074 help4("The file had too few picture expressions for btex...etex")
14075 ("blocks. Such files are normally generated automatically")
14076 ("but this one got messed up. You might want to insert a")
14077 ("picture expression now.");
14078 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14079 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14082 @ Sometimes we want to make it look as though we have just read a blank line
14083 without really doing so.
14085 @<Put an empty line in the input buffer@>=
14086 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14087 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14089 @ If the user has set the |mp_pausing| parameter to some positive value,
14090 and if nonstop mode has not been selected, each line of input is displayed
14091 on the terminal and the transcript file, followed by `\.{=>}'.
14092 \MP\ waits for a response. If the response is null (i.e., if nothing is
14093 typed except perhaps a few blank spaces), the original
14094 line is accepted as it stands; otherwise the line typed is
14095 used instead of the line in the file.
14097 @c void mp_firm_up_the_line (MP mp) {
14098 size_t k; /* an index into |buffer| */
14100 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14101 wake_up_terminal; mp_print_ln(mp);
14102 if ( start<limit ) {
14103 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14104 mp_print_str(mp, mp->buffer[k]);
14107 mp->first=limit; prompt_input("=>"); /* wait for user response */
14109 if ( mp->last>mp->first ) {
14110 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14111 mp->buffer[k+start-mp->first]=mp->buffer[k];
14113 limit=start+mp->last-mp->first;
14118 @* \[30] Dealing with \TeX\ material.
14119 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14120 features need to be implemented at a low level in the scanning process
14121 so that \MP\ can stay in synch with the a preprocessor that treats
14122 blocks of \TeX\ material as they occur in the input file without trying
14123 to expand \MP\ macros. Thus we need a special version of |get_next|
14124 that does not expand macros and such but does handle \&{btex},
14125 \&{verbatimtex}, etc.
14127 The special version of |get_next| is called |get_t_next|. It works by flushing
14128 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14129 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14130 \&{btex}, and switching back when it sees \&{mpxbreak}.
14136 mp_primitive(mp, "btex",start_tex,btex_code);
14137 @:btex_}{\&{btex} primitive@>
14138 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14139 @:verbatimtex_}{\&{verbatimtex} primitive@>
14140 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14141 @:etex_}{\&{etex} primitive@>
14142 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14143 @:mpx_break_}{\&{mpxbreak} primitive@>
14145 @ @<Cases of |print_cmd...@>=
14146 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14147 else mp_print(mp, "verbatimtex"); break;
14148 case etex_marker: mp_print(mp, "etex"); break;
14149 case mpx_break: mp_print(mp, "mpxbreak"); break;
14151 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14152 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14155 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14158 void mp_start_mpx_input (MP mp);
14161 void mp_t_next (MP mp) {
14162 int old_status; /* saves the |scanner_status| */
14163 integer old_info; /* saves the |warning_info| */
14164 while ( mp->cur_cmd<=max_pre_command ) {
14165 if ( mp->cur_cmd==mpx_break ) {
14166 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14167 @<Complain about a misplaced \&{mpxbreak}@>;
14169 mp_end_mpx_reading(mp);
14172 } else if ( mp->cur_cmd==start_tex ) {
14173 if ( token_state || (name<=max_spec_src) ) {
14174 @<Complain that we are not reading a file@>;
14175 } else if ( mpx_reading ) {
14176 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14177 } else if ( (mp->cur_mod!=verbatim_code)&&
14178 (mp->mpx_name[index]!=finished) ) {
14179 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14184 @<Complain about a misplaced \&{etex}@>;
14186 goto COMMON_ENDING;
14188 @<Flush the \TeX\ material@>;
14194 @ We could be in the middle of an operation such as skipping false conditional
14195 text when \TeX\ material is encountered, so we must be careful to save the
14198 @<Flush the \TeX\ material@>=
14199 old_status=mp->scanner_status;
14200 old_info=mp->warning_info;
14201 mp->scanner_status=tex_flushing;
14202 mp->warning_info=line;
14203 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14204 mp->scanner_status=old_status;
14205 mp->warning_info=old_info
14207 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14208 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14209 help4("This file contains picture expressions for btex...etex")
14210 ("blocks. Such files are normally generated automatically")
14211 ("but this one seems to be messed up. I'll just keep going")
14212 ("and hope for the best.");
14216 @ @<Complain that we are not reading a file@>=
14217 { print_err("You can only use `btex' or `verbatimtex' in a file");
14218 help3("I'll have to ignore this preprocessor command because it")
14219 ("only works when there is a file to preprocess. You might")
14220 ("want to delete everything up to the next `etex`.");
14224 @ @<Complain about a misplaced \&{mpxbreak}@>=
14225 { print_err("Misplaced mpxbreak");
14226 help2("I'll ignore this preprocessor command because it")
14227 ("doesn't belong here");
14231 @ @<Complain about a misplaced \&{etex}@>=
14232 { print_err("Extra etex will be ignored");
14233 help1("There is no btex or verbatimtex for this to match");
14237 @* \[31] Scanning macro definitions.
14238 \MP\ has a variety of ways to tuck tokens away into token lists for later
14239 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14240 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14241 All such operations are handled by the routines in this part of the program.
14243 The modifier part of each command code is zero for the ``ending delimiters''
14244 like \&{enddef} and \&{endfor}.
14246 @d start_def 1 /* command modifier for \&{def} */
14247 @d var_def 2 /* command modifier for \&{vardef} */
14248 @d end_def 0 /* command modifier for \&{enddef} */
14249 @d start_forever 1 /* command modifier for \&{forever} */
14250 @d end_for 0 /* command modifier for \&{endfor} */
14253 mp_primitive(mp, "def",macro_def,start_def);
14254 @:def_}{\&{def} primitive@>
14255 mp_primitive(mp, "vardef",macro_def,var_def);
14256 @:var_def_}{\&{vardef} primitive@>
14257 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14258 @:primary_def_}{\&{primarydef} primitive@>
14259 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14260 @:secondary_def_}{\&{secondarydef} primitive@>
14261 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14262 @:tertiary_def_}{\&{tertiarydef} primitive@>
14263 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14264 @:end_def_}{\&{enddef} primitive@>
14266 mp_primitive(mp, "for",iteration,expr_base);
14267 @:for_}{\&{for} primitive@>
14268 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14269 @:for_suffixes_}{\&{forsuffixes} primitive@>
14270 mp_primitive(mp, "forever",iteration,start_forever);
14271 @:forever_}{\&{forever} primitive@>
14272 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14273 @:end_for_}{\&{endfor} primitive@>
14275 @ @<Cases of |print_cmd...@>=
14277 if ( m<=var_def ) {
14278 if ( m==start_def ) mp_print(mp, "def");
14279 else if ( m<start_def ) mp_print(mp, "enddef");
14280 else mp_print(mp, "vardef");
14281 } else if ( m==secondary_primary_macro ) {
14282 mp_print(mp, "primarydef");
14283 } else if ( m==tertiary_secondary_macro ) {
14284 mp_print(mp, "secondarydef");
14286 mp_print(mp, "tertiarydef");
14290 if ( m<=start_forever ) {
14291 if ( m==start_forever ) mp_print(mp, "forever");
14292 else mp_print(mp, "endfor");
14293 } else if ( m==expr_base ) {
14294 mp_print(mp, "for");
14296 mp_print(mp, "forsuffixes");
14300 @ Different macro-absorbing operations have different syntaxes, but they
14301 also have a lot in common. There is a list of special symbols that are to
14302 be replaced by parameter tokens; there is a special command code that
14303 ends the definition; the quotation conventions are identical. Therefore
14304 it makes sense to have most of the work done by a single subroutine. That
14305 subroutine is called |scan_toks|.
14307 The first parameter to |scan_toks| is the command code that will
14308 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14310 The second parameter, |subst_list|, points to a (possibly empty) list
14311 of two-word nodes whose |info| and |value| fields specify symbol tokens
14312 before and after replacement. The list will be returned to free storage
14315 The third parameter is simply appended to the token list that is built.
14316 And the final parameter tells how many of the special operations
14317 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14318 When such parameters are present, they are called \.{(SUFFIX0)},
14319 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14321 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14322 subst_list, pointer tail_end, small_number suffix_count) {
14323 pointer p; /* tail of the token list being built */
14324 pointer q; /* temporary for link management */
14325 integer balance; /* left delimiters minus right delimiters */
14326 p=hold_head; balance=1; link(hold_head)=null;
14329 if ( mp->cur_sym>0 ) {
14330 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14331 if ( mp->cur_cmd==terminator ) {
14332 @<Adjust the balance; |break| if it's zero@>;
14333 } else if ( mp->cur_cmd==macro_special ) {
14334 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14337 link(p)=mp_cur_tok(mp); p=link(p);
14339 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14340 return link(hold_head);
14343 @ @<Substitute for |cur_sym|...@>=
14346 while ( q!=null ) {
14347 if ( info(q)==mp->cur_sym ) {
14348 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14354 @ @<Adjust the balance; |break| if it's zero@>=
14355 if ( mp->cur_mod>0 ) {
14363 @ Four commands are intended to be used only within macro texts: \&{quote},
14364 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14365 code called |macro_special|.
14367 @d quote 0 /* |macro_special| modifier for \&{quote} */
14368 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14369 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14370 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14373 mp_primitive(mp, "quote",macro_special,quote);
14374 @:quote_}{\&{quote} primitive@>
14375 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14376 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14377 mp_primitive(mp, "@@",macro_special,macro_at);
14378 @:]]]\AT!_}{\.{\AT!} primitive@>
14379 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14380 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14382 @ @<Cases of |print_cmd...@>=
14383 case macro_special:
14385 case macro_prefix: mp_print(mp, "#@@"); break;
14386 case macro_at: mp_print_char(mp, '@@'); break;
14387 case macro_suffix: mp_print(mp, "@@#"); break;
14388 default: mp_print(mp, "quote"); break;
14392 @ @<Handle quoted...@>=
14394 if ( mp->cur_mod==quote ) { get_t_next; }
14395 else if ( mp->cur_mod<=suffix_count )
14396 mp->cur_sym=suffix_base-1+mp->cur_mod;
14399 @ Here is a routine that's used whenever a token will be redefined. If
14400 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14401 substituted; the latter is redefinable but essentially impossible to use,
14402 hence \MP's tables won't get fouled up.
14404 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14407 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14408 print_err("Missing symbolic token inserted");
14409 @.Missing symbolic token...@>
14410 help3("Sorry: You can\'t redefine a number, string, or expr.")
14411 ("I've inserted an inaccessible symbol so that your")
14412 ("definition will be completed without mixing me up too badly.");
14413 if ( mp->cur_sym>0 )
14414 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14415 else if ( mp->cur_cmd==string_token )
14416 delete_str_ref(mp->cur_mod);
14417 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14421 @ Before we actually redefine a symbolic token, we need to clear away its
14422 former value, if it was a variable. The following stronger version of
14423 |get_symbol| does that.
14425 @c void mp_get_clear_symbol (MP mp) {
14426 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14429 @ Here's another little subroutine; it checks that an equals sign
14430 or assignment sign comes along at the proper place in a macro definition.
14432 @c void mp_check_equals (MP mp) {
14433 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14434 mp_missing_err(mp, "=");
14436 help5("The next thing in this `def' should have been `=',")
14437 ("because I've already looked at the definition heading.")
14438 ("But don't worry; I'll pretend that an equals sign")
14439 ("was present. Everything from here to `enddef'")
14440 ("will be the replacement text of this macro.");
14445 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14446 handled now that we have |scan_toks|. In this case there are
14447 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14448 |expr_base| and |expr_base+1|).
14450 @c void mp_make_op_def (MP mp) {
14451 command_code m; /* the type of definition */
14452 pointer p,q,r; /* for list manipulation */
14454 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14455 info(q)=mp->cur_sym; value(q)=expr_base;
14456 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14457 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14458 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14459 get_t_next; mp_check_equals(mp);
14460 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14461 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14462 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14463 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14464 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14467 @ Parameters to macros are introduced by the keywords \&{expr},
14468 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14471 mp_primitive(mp, "expr",param_type,expr_base);
14472 @:expr_}{\&{expr} primitive@>
14473 mp_primitive(mp, "suffix",param_type,suffix_base);
14474 @:suffix_}{\&{suffix} primitive@>
14475 mp_primitive(mp, "text",param_type,text_base);
14476 @:text_}{\&{text} primitive@>
14477 mp_primitive(mp, "primary",param_type,primary_macro);
14478 @:primary_}{\&{primary} primitive@>
14479 mp_primitive(mp, "secondary",param_type,secondary_macro);
14480 @:secondary_}{\&{secondary} primitive@>
14481 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14482 @:tertiary_}{\&{tertiary} primitive@>
14484 @ @<Cases of |print_cmd...@>=
14486 if ( m>=expr_base ) {
14487 if ( m==expr_base ) mp_print(mp, "expr");
14488 else if ( m==suffix_base ) mp_print(mp, "suffix");
14489 else mp_print(mp, "text");
14490 } else if ( m<secondary_macro ) {
14491 mp_print(mp, "primary");
14492 } else if ( m==secondary_macro ) {
14493 mp_print(mp, "secondary");
14495 mp_print(mp, "tertiary");
14499 @ Let's turn next to the more complex processing associated with \&{def}
14500 and \&{vardef}. When the following procedure is called, |cur_mod|
14501 should be either |start_def| or |var_def|.
14503 @c @<Declare the procedure called |check_delimiter|@>;
14504 @<Declare the function called |scan_declared_variable|@>;
14505 void mp_scan_def (MP mp) {
14506 int m; /* the type of definition */
14507 int n; /* the number of special suffix parameters */
14508 int k; /* the total number of parameters */
14509 int c; /* the kind of macro we're defining */
14510 pointer r; /* parameter-substitution list */
14511 pointer q; /* tail of the macro token list */
14512 pointer p; /* temporary storage */
14513 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14514 pointer l_delim,r_delim; /* matching delimiters */
14515 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14516 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14517 @<Scan the token or variable to be defined;
14518 set |n|, |scanner_status|, and |warning_info|@>;
14520 if ( mp->cur_cmd==left_delimiter ) {
14521 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14523 if ( mp->cur_cmd==param_type ) {
14524 @<Absorb undelimited parameters, putting them into list |r|@>;
14526 mp_check_equals(mp);
14527 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14528 @<Attach the replacement text to the tail of node |p|@>;
14529 mp->scanner_status=normal; mp_get_x_next(mp);
14532 @ We don't put `|frozen_end_group|' into the replacement text of
14533 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14535 @<Attach the replacement text to the tail of node |p|@>=
14536 if ( m==start_def ) {
14537 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14539 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14540 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14541 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14543 if ( mp->warning_info==bad_vardef )
14544 mp_flush_token_list(mp, value(bad_vardef))
14548 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14550 @ @<Scan the token or variable to be defined;...@>=
14551 if ( m==start_def ) {
14552 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14553 mp->scanner_status=op_defining; n=0;
14554 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14556 p=mp_scan_declared_variable(mp);
14557 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14558 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14559 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14560 mp->scanner_status=var_defining; n=2;
14561 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14564 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14565 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14567 @ @<Change to `\.{a bad variable}'@>=
14569 print_err("This variable already starts with a macro");
14570 @.This variable already...@>
14571 help2("After `vardef a' you can\'t say `vardef a.b'.")
14572 ("So I'll have to discard this definition.");
14573 mp_error(mp); mp->warning_info=bad_vardef;
14576 @ @<Initialize table entries...@>=
14577 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14578 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14580 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14582 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14583 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14586 print_err("Missing parameter type; `expr' will be assumed");
14587 @.Missing parameter type@>
14588 help1("You should've had `expr' or `suffix' or `text' here.");
14589 mp_back_error(mp); base=expr_base;
14591 @<Absorb parameter tokens for type |base|@>;
14592 mp_check_delimiter(mp, l_delim,r_delim);
14594 } while (mp->cur_cmd==left_delimiter)
14596 @ @<Absorb parameter tokens for type |base|@>=
14598 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14599 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14600 value(p)=base+k; info(p)=mp->cur_sym;
14601 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14602 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14603 incr(k); link(p)=r; r=p; get_t_next;
14604 } while (mp->cur_cmd==comma)
14606 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14608 p=mp_get_node(mp, token_node_size);
14609 if ( mp->cur_mod<expr_base ) {
14610 c=mp->cur_mod; value(p)=expr_base+k;
14612 value(p)=mp->cur_mod+k;
14613 if ( mp->cur_mod==expr_base ) c=expr_macro;
14614 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14617 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14618 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14619 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14620 c=of_macro; p=mp_get_node(mp, token_node_size);
14621 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14622 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14623 link(p)=r; r=p; get_t_next;
14627 @* \[32] Expanding the next token.
14628 Only a few command codes |<min_command| can possibly be returned by
14629 |get_t_next|; in increasing order, they are
14630 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14631 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14633 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14634 like |get_t_next| except that it keeps getting more tokens until
14635 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14636 macros and removes conditionals or iterations or input instructions that
14639 It follows that |get_x_next| might invoke itself recursively. In fact,
14640 there is massive recursion, since macro expansion can involve the
14641 scanning of arbitrarily complex expressions, which in turn involve
14642 macro expansion and conditionals, etc.
14645 Therefore it's necessary to declare a whole bunch of |forward|
14646 procedures at this point, and to insert some other procedures
14647 that will be invoked by |get_x_next|.
14650 void mp_scan_primary (MP mp);
14651 void mp_scan_secondary (MP mp);
14652 void mp_scan_tertiary (MP mp);
14653 void mp_scan_expression (MP mp);
14654 void mp_scan_suffix (MP mp);
14655 @<Declare the procedure called |macro_call|@>;
14656 void mp_get_boolean (MP mp);
14657 void mp_pass_text (MP mp);
14658 void mp_conditional (MP mp);
14659 void mp_start_input (MP mp);
14660 void mp_begin_iteration (MP mp);
14661 void mp_resume_iteration (MP mp);
14662 void mp_stop_iteration (MP mp);
14664 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14665 when it has to do exotic expansion commands.
14667 @c void mp_expand (MP mp) {
14668 pointer p; /* for list manipulation */
14669 size_t k; /* something that we hope is |<=buf_size| */
14670 pool_pointer j; /* index into |str_pool| */
14671 if ( mp->internal[mp_tracing_commands]>unity )
14672 if ( mp->cur_cmd!=defined_macro )
14674 switch (mp->cur_cmd) {
14676 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14679 @<Terminate the current conditional and skip to \&{fi}@>;
14682 @<Initiate or terminate input from a file@>;
14685 if ( mp->cur_mod==end_for ) {
14686 @<Scold the user for having an extra \&{endfor}@>;
14688 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14695 @<Exit a loop if the proper time has come@>;
14700 @<Expand the token after the next token@>;
14703 @<Put a string into the input buffer@>;
14705 case defined_macro:
14706 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14708 }; /* there are no other cases */
14711 @ @<Scold the user...@>=
14713 print_err("Extra `endfor'");
14715 help2("I'm not currently working on a for loop,")
14716 ("so I had better not try to end anything.");
14720 @ The processing of \&{input} involves the |start_input| subroutine,
14721 which will be declared later; the processing of \&{endinput} is trivial.
14724 mp_primitive(mp, "input",input,0);
14725 @:input_}{\&{input} primitive@>
14726 mp_primitive(mp, "endinput",input,1);
14727 @:end_input_}{\&{endinput} primitive@>
14729 @ @<Cases of |print_cmd_mod|...@>=
14731 if ( m==0 ) mp_print(mp, "input");
14732 else mp_print(mp, "endinput");
14735 @ @<Initiate or terminate input...@>=
14736 if ( mp->cur_mod>0 ) mp->force_eof=true;
14737 else mp_start_input(mp)
14739 @ We'll discuss the complicated parts of loop operations later. For now
14740 it suffices to know that there's a global variable called |loop_ptr|
14741 that will be |null| if no loop is in progress.
14744 { while ( token_state &&(loc==null) )
14745 mp_end_token_list(mp); /* conserve stack space */
14746 if ( mp->loop_ptr==null ) {
14747 print_err("Lost loop");
14749 help2("I'm confused; after exiting from a loop, I still seem")
14750 ("to want to repeat it. I'll try to forget the problem.");
14753 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14757 @ @<Exit a loop if the proper time has come@>=
14758 { mp_get_boolean(mp);
14759 if ( mp->internal[mp_tracing_commands]>unity )
14760 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14761 if ( mp->cur_exp==true_code ) {
14762 if ( mp->loop_ptr==null ) {
14763 print_err("No loop is in progress");
14764 @.No loop is in progress@>
14765 help1("Why say `exitif' when there's nothing to exit from?");
14766 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14768 @<Exit prematurely from an iteration@>;
14770 } else if ( mp->cur_cmd!=semicolon ) {
14771 mp_missing_err(mp, ";");
14773 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14774 ("I shall pretend that one was there."); mp_back_error(mp);
14778 @ Here we use the fact that |forever_text| is the only |token_type| that
14779 is less than |loop_text|.
14781 @<Exit prematurely...@>=
14784 if ( file_state ) {
14785 mp_end_file_reading(mp);
14787 if ( token_type<=loop_text ) p=start;
14788 mp_end_token_list(mp);
14791 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14793 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14796 @ @<Expand the token after the next token@>=
14798 p=mp_cur_tok(mp); get_t_next;
14799 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14800 else mp_back_input(mp);
14804 @ @<Put a string into the input buffer@>=
14805 { mp_get_x_next(mp); mp_scan_primary(mp);
14806 if ( mp->cur_type!=mp_string_type ) {
14807 mp_disp_err(mp, null,"Not a string");
14809 help2("I'm going to flush this expression, since")
14810 ("scantokens should be followed by a known string.");
14811 mp_put_get_flush_error(mp, 0);
14814 if ( length(mp->cur_exp)>0 )
14815 @<Pretend we're reading a new one-line file@>;
14819 @ @<Pretend we're reading a new one-line file@>=
14820 { mp_begin_file_reading(mp); name=is_scantok;
14821 k=mp->first+length(mp->cur_exp);
14822 if ( k>=mp->max_buf_stack ) {
14823 while ( k>=mp->buf_size ) {
14824 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14826 mp->max_buf_stack=k+1;
14828 j=mp->str_start[mp->cur_exp]; limit=k;
14829 while ( mp->first<(size_t)limit ) {
14830 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14832 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14833 mp_flush_cur_exp(mp, 0);
14836 @ Here finally is |get_x_next|.
14838 The expression scanning routines to be considered later
14839 communicate via the global quantities |cur_type| and |cur_exp|;
14840 we must be very careful to save and restore these quantities while
14841 macros are being expanded.
14845 void mp_get_x_next (MP mp);
14847 @ @c void mp_get_x_next (MP mp) {
14848 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14850 if ( mp->cur_cmd<min_command ) {
14851 save_exp=mp_stash_cur_exp(mp);
14853 if ( mp->cur_cmd==defined_macro )
14854 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14858 } while (mp->cur_cmd<min_command);
14859 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14863 @ Now let's consider the |macro_call| procedure, which is used to start up
14864 all user-defined macros. Since the arguments to a macro might be expressions,
14865 |macro_call| is recursive.
14868 The first parameter to |macro_call| points to the reference count of the
14869 token list that defines the macro. The second parameter contains any
14870 arguments that have already been parsed (see below). The third parameter
14871 points to the symbolic token that names the macro. If the third parameter
14872 is |null|, the macro was defined by \&{vardef}, so its name can be
14873 reconstructed from the prefix and ``at'' arguments found within the
14876 What is this second parameter? It's simply a linked list of one-word items,
14877 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14878 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14879 the first scanned argument, and |link(arg_list)| points to the list of
14880 further arguments (if any).
14882 Arguments of type \&{expr} are so-called capsules, which we will
14883 discuss later when we concentrate on expressions; they can be
14884 recognized easily because their |link| field is |void|. Arguments of type
14885 \&{suffix} and \&{text} are token lists without reference counts.
14887 @ After argument scanning is complete, the arguments are moved to the
14888 |param_stack|. (They can't be put on that stack any sooner, because
14889 the stack is growing and shrinking in unpredictable ways as more arguments
14890 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14891 the replacement text of the macro is placed at the top of the \MP's
14892 input stack, so that |get_t_next| will proceed to read it next.
14894 @<Declare the procedure called |macro_call|@>=
14895 @<Declare the procedure called |print_macro_name|@>;
14896 @<Declare the procedure called |print_arg|@>;
14897 @<Declare the procedure called |scan_text_arg|@>;
14898 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14899 pointer macro_name) ;
14902 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14903 pointer macro_name) {
14904 /* invokes a user-defined control sequence */
14905 pointer r; /* current node in the macro's token list */
14906 pointer p,q; /* for list manipulation */
14907 integer n; /* the number of arguments */
14908 pointer tail = 0; /* tail of the argument list */
14909 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14910 r=link(def_ref); add_mac_ref(def_ref);
14911 if ( arg_list==null ) {
14914 @<Determine the number |n| of arguments already supplied,
14915 and set |tail| to the tail of |arg_list|@>;
14917 if ( mp->internal[mp_tracing_macros]>0 ) {
14918 @<Show the text of the macro being expanded, and the existing arguments@>;
14920 @<Scan the remaining arguments, if any; set |r| to the first token
14921 of the replacement text@>;
14922 @<Feed the arguments and replacement text to the scanner@>;
14925 @ @<Show the text of the macro...@>=
14926 mp_begin_diagnostic(mp); mp_print_ln(mp);
14927 mp_print_macro_name(mp, arg_list,macro_name);
14928 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14929 mp_show_macro(mp, def_ref,null,100000);
14930 if ( arg_list!=null ) {
14934 mp_print_arg(mp, q,n,0);
14935 incr(n); p=link(p);
14938 mp_end_diagnostic(mp, false)
14941 @ @<Declare the procedure called |print_macro_name|@>=
14942 void mp_print_macro_name (MP mp,pointer a, pointer n);
14945 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14946 pointer p,q; /* they traverse the first part of |a| */
14952 mp_print_text(info(info(link(a))));
14955 while ( link(q)!=null ) q=link(q);
14956 link(q)=info(link(a));
14957 mp_show_token_list(mp, p,null,1000,0);
14963 @ @<Declare the procedure called |print_arg|@>=
14964 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14967 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14968 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14969 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14970 else mp_print_nl(mp, "(TEXT");
14971 mp_print_int(mp, n); mp_print(mp, ")<-");
14972 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14973 else mp_show_token_list(mp, q,null,1000,0);
14976 @ @<Determine the number |n| of arguments already supplied...@>=
14978 n=1; tail=arg_list;
14979 while ( link(tail)!=null ) {
14980 incr(n); tail=link(tail);
14984 @ @<Scan the remaining arguments, if any; set |r|...@>=
14985 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14986 while ( info(r)>=expr_base ) {
14987 @<Scan the delimited argument represented by |info(r)|@>;
14990 if ( mp->cur_cmd==comma ) {
14991 print_err("Too many arguments to ");
14992 @.Too many arguments...@>
14993 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14994 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14996 mp_print(mp, "' has been inserted");
14997 help3("I'm going to assume that the comma I just read was a")
14998 ("right delimiter, and then I'll begin expanding the macro.")
14999 ("You might want to delete some tokens before continuing.");
15002 if ( info(r)!=general_macro ) {
15003 @<Scan undelimited argument(s)@>;
15007 @ At this point, the reader will find it advisable to review the explanation
15008 of token list format that was presented earlier, paying special attention to
15009 the conventions that apply only at the beginning of a macro's token list.
15011 On the other hand, the reader will have to take the expression-parsing
15012 aspects of the following program on faith; we will explain |cur_type|
15013 and |cur_exp| later. (Several things in this program depend on each other,
15014 and it's necessary to jump into the circle somewhere.)
15016 @<Scan the delimited argument represented by |info(r)|@>=
15017 if ( mp->cur_cmd!=comma ) {
15019 if ( mp->cur_cmd!=left_delimiter ) {
15020 print_err("Missing argument to ");
15021 @.Missing argument...@>
15022 mp_print_macro_name(mp, arg_list,macro_name);
15023 help3("That macro has more parameters than you thought.")
15024 ("I'll continue by pretending that each missing argument")
15025 ("is either zero or null.");
15026 if ( info(r)>=suffix_base ) {
15027 mp->cur_exp=null; mp->cur_type=mp_token_list;
15029 mp->cur_exp=0; mp->cur_type=mp_known;
15031 mp_back_error(mp); mp->cur_cmd=right_delimiter;
15034 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
15036 @<Scan the argument represented by |info(r)|@>;
15037 if ( mp->cur_cmd!=comma )
15038 @<Check that the proper right delimiter was present@>;
15040 @<Append the current expression to |arg_list|@>
15042 @ @<Check that the proper right delim...@>=
15043 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15044 if ( info(link(r))>=expr_base ) {
15045 mp_missing_err(mp, ",");
15047 help3("I've finished reading a macro argument and am about to")
15048 ("read another; the arguments weren't delimited correctly.")
15049 ("You might want to delete some tokens before continuing.");
15050 mp_back_error(mp); mp->cur_cmd=comma;
15052 mp_missing_err(mp, str(text(r_delim)));
15054 help2("I've gotten to the end of the macro parameter list.")
15055 ("You might want to delete some tokens before continuing.");
15060 @ A \&{suffix} or \&{text} parameter will be have been scanned as
15061 a token list pointed to by |cur_exp|, in which case we will have
15062 |cur_type=token_list|.
15064 @<Append the current expression to |arg_list|@>=
15066 p=mp_get_avail(mp);
15067 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15068 else info(p)=mp_stash_cur_exp(mp);
15069 if ( mp->internal[mp_tracing_macros]>0 ) {
15070 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15071 mp_end_diagnostic(mp, false);
15073 if ( arg_list==null ) arg_list=p;
15078 @ @<Scan the argument represented by |info(r)|@>=
15079 if ( info(r)>=text_base ) {
15080 mp_scan_text_arg(mp, l_delim,r_delim);
15083 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15084 else mp_scan_expression(mp);
15087 @ The parameters to |scan_text_arg| are either a pair of delimiters
15088 or zero; the latter case is for undelimited text arguments, which
15089 end with the first semicolon or \&{endgroup} or \&{end} that is not
15090 contained in a group.
15092 @<Declare the procedure called |scan_text_arg|@>=
15093 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15096 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15097 integer balance; /* excess of |l_delim| over |r_delim| */
15098 pointer p; /* list tail */
15099 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15100 p=hold_head; balance=1; link(hold_head)=null;
15103 if ( l_delim==0 ) {
15104 @<Adjust the balance for an undelimited argument; |break| if done@>;
15106 @<Adjust the balance for a delimited argument; |break| if done@>;
15108 link(p)=mp_cur_tok(mp); p=link(p);
15110 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15111 mp->scanner_status=normal;
15114 @ @<Adjust the balance for a delimited argument...@>=
15115 if ( mp->cur_cmd==right_delimiter ) {
15116 if ( mp->cur_mod==l_delim ) {
15118 if ( balance==0 ) break;
15120 } else if ( mp->cur_cmd==left_delimiter ) {
15121 if ( mp->cur_mod==r_delim ) incr(balance);
15124 @ @<Adjust the balance for an undelimited...@>=
15125 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15126 if ( balance==1 ) { break; }
15127 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15128 } else if ( mp->cur_cmd==begin_group ) {
15132 @ @<Scan undelimited argument(s)@>=
15134 if ( info(r)<text_macro ) {
15136 if ( info(r)!=suffix_macro ) {
15137 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15141 case primary_macro:mp_scan_primary(mp); break;
15142 case secondary_macro:mp_scan_secondary(mp); break;
15143 case tertiary_macro:mp_scan_tertiary(mp); break;
15144 case expr_macro:mp_scan_expression(mp); break;
15146 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15149 @<Scan a suffix with optional delimiters@>;
15151 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15152 } /* there are no other cases */
15154 @<Append the current expression to |arg_list|@>;
15157 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15159 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15160 if ( mp->internal[mp_tracing_macros]>0 ) {
15161 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15162 mp_end_diagnostic(mp, false);
15164 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15166 if ( mp->cur_cmd!=of_token ) {
15167 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15169 mp_print_macro_name(mp, arg_list,macro_name);
15170 help1("I've got the first argument; will look now for the other.");
15173 mp_get_x_next(mp); mp_scan_primary(mp);
15176 @ @<Scan a suffix with optional delimiters@>=
15178 if ( mp->cur_cmd!=left_delimiter ) {
15181 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15183 mp_scan_suffix(mp);
15184 if ( l_delim!=null ) {
15185 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15186 mp_missing_err(mp, str(text(r_delim)));
15188 help2("I've gotten to the end of the macro parameter list.")
15189 ("You might want to delete some tokens before continuing.");
15196 @ Before we put a new token list on the input stack, it is wise to clean off
15197 all token lists that have recently been depleted. Then a user macro that ends
15198 with a call to itself will not require unbounded stack space.
15200 @<Feed the arguments and replacement text to the scanner@>=
15201 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15202 if ( mp->param_ptr+n>mp->max_param_stack ) {
15203 mp->max_param_stack=mp->param_ptr+n;
15204 if ( mp->max_param_stack>mp->param_size )
15205 mp_overflow(mp, "parameter stack size",mp->param_size);
15206 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15208 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15212 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15214 mp_flush_list(mp, arg_list);
15217 @ It's sometimes necessary to put a single argument onto |param_stack|.
15218 The |stack_argument| subroutine does this.
15220 @c void mp_stack_argument (MP mp,pointer p) {
15221 if ( mp->param_ptr==mp->max_param_stack ) {
15222 incr(mp->max_param_stack);
15223 if ( mp->max_param_stack>mp->param_size )
15224 mp_overflow(mp, "parameter stack size",mp->param_size);
15225 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15227 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15230 @* \[33] Conditional processing.
15231 Let's consider now the way \&{if} commands are handled.
15233 Conditions can be inside conditions, and this nesting has a stack
15234 that is independent of other stacks.
15235 Four global variables represent the top of the condition stack:
15236 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15237 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15238 the largest code of a |fi_or_else| command that is syntactically legal;
15239 and |if_line| is the line number at which the current conditional began.
15241 If no conditions are currently in progress, the condition stack has the
15242 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15243 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15244 |link| fields of the first word contain |if_limit|, |cur_if|, and
15245 |cond_ptr| at the next level, and the second word contains the
15246 corresponding |if_line|.
15248 @d if_node_size 2 /* number of words in stack entry for conditionals */
15249 @d if_line_field(A) mp->mem[(A)+1].cint
15250 @d if_code 1 /* code for \&{if} being evaluated */
15251 @d fi_code 2 /* code for \&{fi} */
15252 @d else_code 3 /* code for \&{else} */
15253 @d else_if_code 4 /* code for \&{elseif} */
15256 pointer cond_ptr; /* top of the condition stack */
15257 integer if_limit; /* upper bound on |fi_or_else| codes */
15258 small_number cur_if; /* type of conditional being worked on */
15259 integer if_line; /* line where that conditional began */
15262 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15265 mp_primitive(mp, "if",if_test,if_code);
15266 @:if_}{\&{if} primitive@>
15267 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15268 @:fi_}{\&{fi} primitive@>
15269 mp_primitive(mp, "else",fi_or_else,else_code);
15270 @:else_}{\&{else} primitive@>
15271 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15272 @:else_if_}{\&{elseif} primitive@>
15274 @ @<Cases of |print_cmd_mod|...@>=
15278 case if_code:mp_print(mp, "if"); break;
15279 case fi_code:mp_print(mp, "fi"); break;
15280 case else_code:mp_print(mp, "else"); break;
15281 default: mp_print(mp, "elseif"); break;
15285 @ Here is a procedure that ignores text until coming to an \&{elseif},
15286 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15287 nesting. After it has acted, |cur_mod| will indicate the token that
15290 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15291 makes the skipping process a bit simpler.
15294 void mp_pass_text (MP mp) {
15296 mp->scanner_status=skipping;
15297 mp->warning_info=mp_true_line(mp);
15300 if ( mp->cur_cmd<=fi_or_else ) {
15301 if ( mp->cur_cmd<fi_or_else ) {
15305 if ( mp->cur_mod==fi_code ) decr(l);
15308 @<Decrease the string reference count,
15309 if the current token is a string@>;
15312 mp->scanner_status=normal;
15315 @ @<Decrease the string reference count...@>=
15316 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15318 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15319 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15320 condition has been evaluated, a colon will be inserted.
15321 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15323 @<Push the condition stack@>=
15324 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15325 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15326 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15327 mp->cur_if=if_code;
15330 @ @<Pop the condition stack@>=
15331 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15332 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15333 mp_free_node(mp, p,if_node_size);
15336 @ Here's a procedure that changes the |if_limit| code corresponding to
15337 a given value of |cond_ptr|.
15339 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15341 if ( p==mp->cond_ptr ) {
15342 mp->if_limit=l; /* that's the easy case */
15346 if ( q==null ) mp_confusion(mp, "if");
15347 @:this can't happen if}{\quad if@>
15348 if ( link(q)==p ) {
15356 @ The user is supposed to put colons into the proper parts of conditional
15357 statements. Therefore, \MP\ has to check for their presence.
15360 void mp_check_colon (MP mp) {
15361 if ( mp->cur_cmd!=colon ) {
15362 mp_missing_err(mp, ":");
15364 help2("There should've been a colon after the condition.")
15365 ("I shall pretend that one was there.");;
15370 @ A condition is started when the |get_x_next| procedure encounters
15371 an |if_test| command; in that case |get_x_next| calls |conditional|,
15372 which is a recursive procedure.
15375 @c void mp_conditional (MP mp) {
15376 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15377 int new_if_limit; /* future value of |if_limit| */
15378 pointer p; /* temporary register */
15379 @<Push the condition stack@>;
15380 save_cond_ptr=mp->cond_ptr;
15382 mp_get_boolean(mp); new_if_limit=else_if_code;
15383 if ( mp->internal[mp_tracing_commands]>unity ) {
15384 @<Display the boolean value of |cur_exp|@>;
15387 mp_check_colon(mp);
15388 if ( mp->cur_exp==true_code ) {
15389 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15390 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15392 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15394 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15395 if ( mp->cur_mod==fi_code ) {
15396 @<Pop the condition stack@>
15397 } else if ( mp->cur_mod==else_if_code ) {
15400 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15405 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15406 \&{else}: \\{bar} \&{fi}', the first \&{else}
15407 that we come to after learning that the \&{if} is false is not the
15408 \&{else} we're looking for. Hence the following curious logic is needed.
15410 @<Skip to \&{elseif}...@>=
15413 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15414 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15418 @ @<Display the boolean value...@>=
15419 { mp_begin_diagnostic(mp);
15420 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15421 else mp_print(mp, "{false}");
15422 mp_end_diagnostic(mp, false);
15425 @ The processing of conditionals is complete except for the following
15426 code, which is actually part of |get_x_next|. It comes into play when
15427 \&{elseif}, \&{else}, or \&{fi} is scanned.
15429 @<Terminate the current conditional and skip to \&{fi}@>=
15430 if ( mp->cur_mod>mp->if_limit ) {
15431 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15432 mp_missing_err(mp, ":");
15434 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15436 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15440 help1("I'm ignoring this; it doesn't match any if.");
15444 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15445 @<Pop the condition stack@>;
15448 @* \[34] Iterations.
15449 To bring our treatment of |get_x_next| to a close, we need to consider what
15450 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15452 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15453 that are currently active. If |loop_ptr=null|, no loops are in progress;
15454 otherwise |info(loop_ptr)| points to the iterative text of the current
15455 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15456 loops that enclose the current one.
15458 A loop-control node also has two other fields, called |loop_type| and
15459 |loop_list|, whose contents depend on the type of loop:
15461 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15462 points to a list of one-word nodes whose |info| fields point to the
15463 remaining argument values of a suffix list and expression list.
15465 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15468 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15469 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15470 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15473 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15474 header and |loop_list(loop_ptr)| points into the graphical object list for
15477 \yskip\noindent In the case of a progression node, the first word is not used
15478 because the link field of words in the dynamic memory area cannot be arbitrary.
15480 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15481 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15482 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15483 @d loop_node_size 2 /* the number of words in a loop control node */
15484 @d progression_node_size 4 /* the number of words in a progression node */
15485 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15486 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15487 @d progression_flag (null+2)
15488 /* |loop_type| value when |loop_list| points to a progression node */
15491 pointer loop_ptr; /* top of the loop-control-node stack */
15496 @ If the expressions that define an arithmetic progression in
15497 a \&{for} loop don't have known numeric values, the |bad_for|
15498 subroutine screams at the user.
15500 @c void mp_bad_for (MP mp, char * s) {
15501 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15502 @.Improper...replaced by 0@>
15503 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15504 help4("When you say `for x=a step b until c',")
15505 ("the initial value `a' and the step size `b'")
15506 ("and the final value `c' must have known numeric values.")
15507 ("I'm zeroing this one. Proceed, with fingers crossed.");
15508 mp_put_get_flush_error(mp, 0);
15511 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15512 has just been scanned. (This code requires slight familiarity with
15513 expression-parsing routines that we have not yet discussed; but it seems
15514 to belong in the present part of the program, even though the original author
15515 didn't write it until later. The reader may wish to come back to it.)
15517 @c void mp_begin_iteration (MP mp) {
15518 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15519 halfword n; /* hash address of the current symbol */
15520 pointer s; /* the new loop-control node */
15521 pointer p; /* substitution list for |scan_toks| */
15522 pointer q; /* link manipulation register */
15523 pointer pp; /* a new progression node */
15524 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15525 if ( m==start_forever ){
15526 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15528 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15529 info(p)=mp->cur_sym; value(p)=m;
15531 if ( mp->cur_cmd==within_token ) {
15532 @<Set up a picture iteration@>;
15534 @<Check for the |"="| or |":="| in a loop header@>;
15535 @<Scan the values to be used in the loop@>;
15538 @<Check for the presence of a colon@>;
15539 @<Scan the loop text and put it on the loop control stack@>;
15540 mp_resume_iteration(mp);
15543 @ @<Check for the |"="| or |":="| in a loop header@>=
15544 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15545 mp_missing_err(mp, "=");
15547 help3("The next thing in this loop should have been `=' or `:='.")
15548 ("But don't worry; I'll pretend that an equals sign")
15549 ("was present, and I'll look for the values next.");
15553 @ @<Check for the presence of a colon@>=
15554 if ( mp->cur_cmd!=colon ) {
15555 mp_missing_err(mp, ":");
15557 help3("The next thing in this loop should have been a `:'.")
15558 ("So I'll pretend that a colon was present;")
15559 ("everything from here to `endfor' will be iterated.");
15563 @ We append a special |frozen_repeat_loop| token in place of the
15564 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15565 at the proper time to cause the loop to be repeated.
15567 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15568 he will be foiled by the |get_symbol| routine, which keeps frozen
15569 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15570 token, so it won't be lost accidentally.)
15572 @ @<Scan the loop text...@>=
15573 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15574 mp->scanner_status=loop_defining; mp->warning_info=n;
15575 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15576 link(s)=mp->loop_ptr; mp->loop_ptr=s
15578 @ @<Initialize table...@>=
15579 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15580 text(frozen_repeat_loop)=intern(" ENDFOR");
15582 @ The loop text is inserted into \MP's scanning apparatus by the
15583 |resume_iteration| routine.
15585 @c void mp_resume_iteration (MP mp) {
15586 pointer p,q; /* link registers */
15587 p=loop_type(mp->loop_ptr);
15588 if ( p==progression_flag ) {
15589 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15590 mp->cur_exp=value(p);
15591 if ( @<The arithmetic progression has ended@> ) {
15592 mp_stop_iteration(mp);
15595 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15596 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15597 } else if ( p==null ) {
15598 p=loop_list(mp->loop_ptr);
15600 mp_stop_iteration(mp);
15603 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15604 } else if ( p==mp_void ) {
15605 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15607 @<Make |q| a capsule containing the next picture component from
15608 |loop_list(loop_ptr)| or |goto not_found|@>;
15610 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15611 mp_stack_argument(mp, q);
15612 if ( mp->internal[mp_tracing_commands]>unity ) {
15613 @<Trace the start of a loop@>;
15617 mp_stop_iteration(mp);
15620 @ @<The arithmetic progression has ended@>=
15621 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15622 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15624 @ @<Trace the start of a loop@>=
15626 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15628 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15629 else mp_show_token_list(mp, q,null,50,0);
15630 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15633 @ @<Make |q| a capsule containing the next picture component from...@>=
15634 { q=loop_list(mp->loop_ptr);
15635 if ( q==null ) goto NOT_FOUND;
15636 skip_component(q) goto NOT_FOUND;
15637 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15638 mp_init_bbox(mp, mp->cur_exp);
15639 mp->cur_type=mp_picture_type;
15640 loop_list(mp->loop_ptr)=q;
15641 q=mp_stash_cur_exp(mp);
15644 @ A level of loop control disappears when |resume_iteration| has decided
15645 not to resume, or when an \&{exitif} construction has removed the loop text
15646 from the input stack.
15648 @c void mp_stop_iteration (MP mp) {
15649 pointer p,q; /* the usual */
15650 p=loop_type(mp->loop_ptr);
15651 if ( p==progression_flag ) {
15652 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15653 } else if ( p==null ){
15654 q=loop_list(mp->loop_ptr);
15655 while ( q!=null ) {
15658 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15659 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15661 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15664 p=q; q=link(q); free_avail(p);
15666 } else if ( p>progression_flag ) {
15667 delete_edge_ref(p);
15669 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15670 mp_free_node(mp, p,loop_node_size);
15673 @ Now that we know all about loop control, we can finish up
15674 the missing portion of |begin_iteration| and we'll be done.
15676 The following code is performed after the `\.=' has been scanned in
15677 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15678 (if |m=suffix_base|).
15680 @<Scan the values to be used in the loop@>=
15681 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15684 if ( m!=expr_base ) {
15685 mp_scan_suffix(mp);
15687 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15689 mp_scan_expression(mp);
15690 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15691 @<Prepare for step-until construction and |break|@>;
15693 mp->cur_exp=mp_stash_cur_exp(mp);
15695 link(q)=mp_get_avail(mp); q=link(q);
15696 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15699 } while (mp->cur_cmd==comma)
15701 @ @<Prepare for step-until construction and |break|@>=
15703 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15704 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15705 mp_get_x_next(mp); mp_scan_expression(mp);
15706 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15707 step_size(pp)=mp->cur_exp;
15708 if ( mp->cur_cmd!=until_token ) {
15709 mp_missing_err(mp, "until");
15710 @.Missing `until'@>
15711 help2("I assume you meant to say `until' after `step'.")
15712 ("So I'll look for the final value and colon next.");
15715 mp_get_x_next(mp); mp_scan_expression(mp);
15716 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15717 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15718 loop_type(s)=progression_flag;
15722 @ The last case is when we have just seen ``\&{within}'', and we need to
15723 parse a picture expression and prepare to iterate over it.
15725 @<Set up a picture iteration@>=
15726 { mp_get_x_next(mp);
15727 mp_scan_expression(mp);
15728 @<Make sure the current expression is a known picture@>;
15729 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15730 q=link(dummy_loc(mp->cur_exp));
15732 if ( is_start_or_stop(q) )
15733 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15737 @ @<Make sure the current expression is a known picture@>=
15738 if ( mp->cur_type!=mp_picture_type ) {
15739 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15740 help1("When you say `for x in p', p must be a known picture.");
15741 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15742 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15745 @* \[35] File names.
15746 It's time now to fret about file names. Besides the fact that different
15747 operating systems treat files in different ways, we must cope with the
15748 fact that completely different naming conventions are used by different
15749 groups of people. The following programs show what is required for one
15750 particular operating system; similar routines for other systems are not
15751 difficult to devise.
15752 @^system dependencies@>
15754 \MP\ assumes that a file name has three parts: the name proper; its
15755 ``extension''; and a ``file area'' where it is found in an external file
15756 system. The extension of an input file is assumed to be
15757 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15758 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15759 metric files that describe characters in any fonts created by \MP; it is
15760 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15761 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15762 The file area can be arbitrary on input files, but files are usually
15763 output to the user's current area. If an input file cannot be
15764 found on the specified area, \MP\ will look for it on a special system
15765 area; this special area is intended for commonly used input files.
15767 Simple uses of \MP\ refer only to file names that have no explicit
15768 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15769 instead of `\.{input} \.{cmr10.new}'. Simple file
15770 names are best, because they make the \MP\ source files portable;
15771 whenever a file name consists entirely of letters and digits, it should be
15772 treated in the same way by all implementations of \MP. However, users
15773 need the ability to refer to other files in their environment, especially
15774 when responding to error messages concerning unopenable files; therefore
15775 we want to let them use the syntax that appears in their favorite
15778 @ \MP\ uses the same conventions that have proved to be satisfactory for
15779 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15780 @^system dependencies@>
15781 the system-independent parts of \MP\ are expressed in terms
15782 of three system-dependent
15783 procedures called |begin_name|, |more_name|, and |end_name|. In
15784 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15785 the system-independent driver program does the operations
15786 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15788 These three procedures communicate with each other via global variables.
15789 Afterwards the file name will appear in the string pool as three strings
15790 called |cur_name|\penalty10000\hskip-.05em,
15791 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15792 |""|), unless they were explicitly specified by the user.
15794 Actually the situation is slightly more complicated, because \MP\ needs
15795 to know when the file name ends. The |more_name| routine is a function
15796 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15797 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15798 returns |false|; or, it returns |true| and $c_n$ is the last character
15799 on the current input line. In other words,
15800 |more_name| is supposed to return |true| unless it is sure that the
15801 file name has been completely scanned; and |end_name| is supposed to be able
15802 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15803 whether $|more_name|(c_n)$ returned |true| or |false|.
15806 char * cur_name; /* name of file just scanned */
15807 char * cur_area; /* file area just scanned, or \.{""} */
15808 char * cur_ext; /* file extension just scanned, or \.{""} */
15810 @ It is easier to maintain reference counts if we assign initial values.
15813 mp->cur_name=xstrdup("");
15814 mp->cur_area=xstrdup("");
15815 mp->cur_ext=xstrdup("");
15817 @ @<Dealloc variables@>=
15818 xfree(mp->cur_area);
15819 xfree(mp->cur_name);
15820 xfree(mp->cur_ext);
15822 @ The file names we shall deal with for illustrative purposes have the
15823 following structure: If the name contains `\.>' or `\.:', the file area
15824 consists of all characters up to and including the final such character;
15825 otherwise the file area is null. If the remaining file name contains
15826 `\..', the file extension consists of all such characters from the first
15827 remaining `\..' to the end, otherwise the file extension is null.
15828 @^system dependencies@>
15830 We can scan such file names easily by using two global variables that keep track
15831 of the occurrences of area and extension delimiters. Note that these variables
15832 cannot be of type |pool_pointer| because a string pool compaction could occur
15833 while scanning a file name.
15836 integer area_delimiter;
15837 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15838 integer ext_delimiter; /* the relevant `\..', if any */
15840 @ Input files that can't be found in the user's area may appear in standard
15841 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15842 extension is |".mf"|.) The standard system area for font metric files
15843 to be read is |MP_font_area|.
15844 This system area name will, of course, vary from place to place.
15845 @^system dependencies@>
15847 @d MP_area "MPinputs:"
15849 @d MF_area "MFinputs:"
15854 @ Here now is the first of the system-dependent routines for file name scanning.
15855 @^system dependencies@>
15857 @<Declare subroutines for parsing file names@>=
15858 void mp_begin_name (MP mp) {
15859 xfree(mp->cur_name);
15860 xfree(mp->cur_area);
15861 xfree(mp->cur_ext);
15862 mp->area_delimiter=-1;
15863 mp->ext_delimiter=-1;
15866 @ And here's the second.
15867 @^system dependencies@>
15869 @<Declare subroutines for parsing file names@>=
15870 boolean mp_more_name (MP mp, ASCII_code c) {
15874 if ( (c=='>')||(c==':') ) {
15875 mp->area_delimiter=mp->pool_ptr;
15876 mp->ext_delimiter=-1;
15877 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15878 mp->ext_delimiter=mp->pool_ptr;
15880 str_room(1); append_char(c); /* contribute |c| to the current string */
15886 @^system dependencies@>
15888 @d copy_pool_segment(A,B,C) {
15889 A = xmalloc(C+1,sizeof(char));
15890 strncpy(A,(char *)(mp->str_pool+B),C);
15893 @<Declare subroutines for parsing file names@>=
15894 void mp_end_name (MP mp) {
15895 pool_pointer s; /* length of area, name, and extension */
15898 s = mp->str_start[mp->str_ptr];
15899 if ( mp->area_delimiter<0 ) {
15900 mp->cur_area=xstrdup("");
15902 len = mp->area_delimiter-s;
15903 copy_pool_segment(mp->cur_area,s,len);
15906 if ( mp->ext_delimiter<0 ) {
15907 mp->cur_ext=xstrdup("");
15908 len = mp->pool_ptr-s;
15910 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15911 len = mp->ext_delimiter-s;
15913 copy_pool_segment(mp->cur_name,s,len);
15914 mp->pool_ptr=s; /* don't need this partial string */
15917 @ Conversely, here is a routine that takes three strings and prints a file
15918 name that might have produced them. (The routine is system dependent, because
15919 some operating systems put the file area last instead of first.)
15920 @^system dependencies@>
15922 @<Basic printing...@>=
15923 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15924 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15927 @ Another system-dependent routine is needed to convert three internal
15929 to the |name_of_file| value that is used to open files. The present code
15930 allows both lowercase and uppercase letters in the file name.
15931 @^system dependencies@>
15933 @d append_to_name(A) { c=(A);
15934 if ( k<file_name_size ) {
15935 mp->name_of_file[k]=xchr(c);
15940 @<Declare subroutines for parsing file names@>=
15941 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15942 integer k; /* number of positions filled in |name_of_file| */
15943 ASCII_code c; /* character being packed */
15944 char *j; /* a character index */
15948 for (j=a;*j;j++) { append_to_name(*j); }
15950 for (j=n;*j;j++) { append_to_name(*j); }
15952 for (j=e;*j;j++) { append_to_name(*j); }
15954 mp->name_of_file[k]=0;
15958 @ @<Internal library declarations@>=
15959 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15961 @ A messier routine is also needed, since mem file names must be scanned
15962 before \MP's string mechanism has been initialized. We shall use the
15963 global variable |MP_mem_default| to supply the text for default system areas
15964 and extensions related to mem files.
15965 @^system dependencies@>
15967 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15968 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15969 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15972 char *MP_mem_default;
15973 char *mem_name; /* for commandline */
15975 @ @<Option variables@>=
15976 char *mem_name; /* for commandline */
15978 @ @<Allocate or initialize ...@>=
15979 mp->MP_mem_default = xstrdup("plain.mem");
15980 mp->mem_name = xstrdup(opt->mem_name);
15982 @^system dependencies@>
15984 @ @<Dealloc variables@>=
15985 xfree(mp->MP_mem_default);
15986 xfree(mp->mem_name);
15988 @ @<Check the ``constant'' values for consistency@>=
15989 if ( mem_default_length>file_name_size ) mp->bad=20;
15991 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15992 from the first |n| characters of |MP_mem_default|, followed by
15993 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15996 We dare not give error messages here, since \MP\ calls this routine before
15997 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15998 since the error will be detected in another way when a strange file name
16000 @^system dependencies@>
16002 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
16004 integer k; /* number of positions filled in |name_of_file| */
16005 ASCII_code c; /* character being packed */
16006 integer j; /* index into |buffer| or |MP_mem_default| */
16007 if ( n+b-a+1+mem_ext_length>file_name_size )
16008 b=a+file_name_size-n-1-mem_ext_length;
16010 for (j=0;j<n;j++) {
16011 append_to_name(xord((int)mp->MP_mem_default[j]));
16013 for (j=a;j<b;j++) {
16014 append_to_name(mp->buffer[j]);
16016 for (j=mem_default_length-mem_ext_length;
16017 j<mem_default_length;j++) {
16018 append_to_name(xord((int)mp->MP_mem_default[j]));
16020 mp->name_of_file[k]=0;
16024 @ Here is the only place we use |pack_buffered_name|. This part of the program
16025 becomes active when a ``virgin'' \MP\ is trying to get going, just after
16026 the preliminary initialization, or when the user is substituting another
16027 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
16028 contains the first line of input in |buffer[loc..(last-1)]|, where
16029 |loc<last| and |buffer[loc]<>" "|.
16032 boolean mp_open_mem_file (MP mp) ;
16035 boolean mp_open_mem_file (MP mp) {
16036 int j; /* the first space after the file name */
16037 if (mp->mem_name!=NULL) {
16038 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
16039 if ( mp->mem_file ) return true;
16042 if ( mp->buffer[loc]=='&' ) {
16043 incr(loc); j=loc; mp->buffer[mp->last]=' ';
16044 while ( mp->buffer[j]!=' ' ) incr(j);
16045 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
16046 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
16048 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
16049 @.Sorry, I can't find...@>
16052 /* now pull out all the stops: try for the system \.{plain} file */
16053 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
16054 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
16056 wterm_ln("I can\'t find the PLAIN mem file!\n");
16057 @.I can't find PLAIN...@>
16062 loc=j; return true;
16065 @ Operating systems often make it possible to determine the exact name (and
16066 possible version number) of a file that has been opened. The following routine,
16067 which simply makes a \MP\ string from the value of |name_of_file|, should
16068 ideally be changed to deduce the full name of file~|f|, which is the file
16069 most recently opened, if it is possible to do this in a \PASCAL\ program.
16070 @^system dependencies@>
16073 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16074 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16075 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16078 str_number mp_make_name_string (MP mp) {
16079 int k; /* index into |name_of_file| */
16080 str_room(mp->name_length);
16081 for (k=0;k<mp->name_length;k++) {
16082 append_char(xord((int)mp->name_of_file[k]));
16084 return mp_make_string(mp);
16087 @ Now let's consider the ``driver''
16088 routines by which \MP\ deals with file names
16089 in a system-independent manner. First comes a procedure that looks for a
16090 file name in the input by taking the information from the input buffer.
16091 (We can't use |get_next|, because the conversion to tokens would
16092 destroy necessary information.)
16094 This procedure doesn't allow semicolons or percent signs to be part of
16095 file names, because of other conventions of \MP.
16096 {\sl The {\logos METAFONT\/}book} doesn't
16097 use semicolons or percents immediately after file names, but some users
16098 no doubt will find it natural to do so; therefore system-dependent
16099 changes to allow such characters in file names should probably
16100 be made with reluctance, and only when an entire file name that
16101 includes special characters is ``quoted'' somehow.
16102 @^system dependencies@>
16104 @c void mp_scan_file_name (MP mp) {
16106 while ( mp->buffer[loc]==' ' ) incr(loc);
16108 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16109 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16115 @ Here is another version that takes its input from a string.
16117 @<Declare subroutines for parsing file names@>=
16118 void mp_str_scan_file (MP mp, str_number s) {
16119 pool_pointer p,q; /* current position and stopping point */
16121 p=mp->str_start[s]; q=str_stop(s);
16123 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16129 @ And one that reads from a |char*|.
16131 @<Declare subroutines for parsing file names@>=
16132 void mp_ptr_scan_file (MP mp, char *s) {
16133 char *p, *q; /* current position and stopping point */
16135 p=s; q=p+strlen(s);
16137 if ( ! mp_more_name(mp, *p)) break;
16144 @ The global variable |job_name| contains the file name that was first
16145 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16146 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16149 char *job_name; /* principal file name */
16150 boolean log_opened; /* has the transcript file been opened? */
16151 char *log_name; /* full name of the log file */
16153 @ @<Option variables@>=
16154 char *job_name; /* principal file name */
16156 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16157 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16158 except of course for a short time just after |job_name| has become nonzero.
16160 @<Allocate or ...@>=
16161 mp->job_name=opt->job_name;
16162 mp->log_opened=false;
16164 @ @<Dealloc variables@>=
16165 xfree(mp->job_name);
16167 @ Here is a routine that manufactures the output file names, assuming that
16168 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16171 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16174 void mp_pack_job_name (MP mp, char *s) ;
16176 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16177 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16178 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16179 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16183 @ If some trouble arises when \MP\ tries to open a file, the following
16184 routine calls upon the user to supply another file name. Parameter~|s|
16185 is used in the error message to identify the type of file; parameter~|e|
16186 is the default extension if none is given. Upon exit from the routine,
16187 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16188 ready for another attempt at file opening.
16191 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16193 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16194 size_t k; /* index into |buffer| */
16195 char * saved_cur_name;
16196 if ( mp->interaction==mp_scroll_mode )
16198 if (strcmp(s,"input file name")==0) {
16199 print_err("I can\'t find file `");
16200 @.I can't find file x@>
16202 print_err("I can\'t write on file `");
16204 @.I can't write on file x@>
16205 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16206 mp_print(mp, "'.");
16207 if (strcmp(e,"")==0)
16208 mp_show_context(mp);
16209 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16211 if ( mp->interaction<mp_scroll_mode )
16212 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16213 @.job aborted, file error...@>
16214 saved_cur_name = xstrdup(mp->cur_name);
16215 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16216 if (strcmp(mp->cur_ext,"")==0)
16218 if (strlen(mp->cur_name)==0) {
16219 mp->cur_name=saved_cur_name;
16221 xfree(saved_cur_name);
16226 @ @<Scan file name in the buffer@>=
16228 mp_begin_name(mp); k=mp->first;
16229 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16231 if ( k==mp->last ) break;
16232 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16238 @ The |open_log_file| routine is used to open the transcript file and to help
16239 it catch up to what has previously been printed on the terminal.
16241 @c void mp_open_log_file (MP mp) {
16242 int old_setting; /* previous |selector| setting */
16243 int k; /* index into |months| and |buffer| */
16244 int l; /* end of first input line */
16245 integer m; /* the current month */
16246 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16247 /* abbreviations of month names */
16248 old_setting=mp->selector;
16249 if ( mp->job_name==NULL ) {
16250 mp->job_name=xstrdup("mpout");
16252 mp_pack_job_name(mp,".log");
16253 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16254 @<Try to get a different log file name@>;
16256 mp->log_name=xstrdup(mp->name_of_file);
16257 mp->selector=log_only; mp->log_opened=true;
16258 @<Print the banner line, including the date and time@>;
16259 mp->input_stack[mp->input_ptr]=mp->cur_input;
16260 /* make sure bottom level is in memory */
16261 mp_print_nl(mp, "**");
16263 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16264 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16265 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16266 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16269 @ @<Dealloc variables@>=
16270 xfree(mp->log_name);
16272 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16273 unable to print error messages or even to |show_context|.
16274 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16275 routine will not be invoked because |log_opened| will be false.
16277 The normal idea of |mp_batch_mode| is that nothing at all should be written
16278 on the terminal. However, in the unusual case that
16279 no log file could be opened, we make an exception and allow
16280 an explanatory message to be seen.
16282 Incidentally, the program always refers to the log file as a `\.{transcript
16283 file}', because some systems cannot use the extension `\.{.log}' for
16286 @<Try to get a different log file name@>=
16288 mp->selector=term_only;
16289 mp_prompt_file_name(mp, "transcript file name",".log");
16292 @ @<Print the banner...@>=
16295 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16296 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16297 mp_print_char(mp, ' ');
16298 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16299 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16300 mp_print_char(mp, ' ');
16301 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16302 mp_print_char(mp, ' ');
16303 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16304 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16307 @ The |try_extension| function tries to open an input file determined by
16308 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16309 can't find the file in |cur_area| or the appropriate system area.
16311 @c boolean mp_try_extension (MP mp,char *ext) {
16312 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16313 in_name=xstrdup(mp->cur_name);
16314 in_area=xstrdup(mp->cur_area);
16315 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16318 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16319 else in_area=xstrdup(MP_area);
16320 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16321 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16326 @ Let's turn now to the procedure that is used to initiate file reading
16327 when an `\.{input}' command is being processed.
16329 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16330 char *fname = NULL;
16331 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16333 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16334 if ( strlen(mp->cur_ext)==0 ) {
16335 if ( mp_try_extension(mp, ".mp") ) break;
16336 else if ( mp_try_extension(mp, "") ) break;
16337 else if ( mp_try_extension(mp, ".mf") ) break;
16338 /* |else do_nothing; | */
16339 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16342 mp_end_file_reading(mp); /* remove the level that didn't work */
16343 mp_prompt_file_name(mp, "input file name","");
16345 name=mp_a_make_name_string(mp, cur_file);
16346 fname = xstrdup(mp->name_of_file);
16347 if ( mp->job_name==NULL ) {
16348 mp->job_name=xstrdup(mp->cur_name);
16349 mp_open_log_file(mp);
16350 } /* |open_log_file| doesn't |show_context|, so |limit|
16351 and |loc| needn't be set to meaningful values yet */
16352 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16353 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16354 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16357 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16358 @<Read the first line of the new file@>;
16361 @ This code should be omitted if |a_make_name_string| returns something other
16362 than just a copy of its argument and the full file name is needed for opening
16363 \.{MPX} files or implementing the switch-to-editor option.
16364 @^system dependencies@>
16366 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16367 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16369 @ If the file is empty, it is considered to contain a single blank line,
16370 so there is no need to test the return value.
16372 @<Read the first line...@>=
16375 (void)mp_input_ln(mp, cur_file );
16376 mp_firm_up_the_line(mp);
16377 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16380 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16381 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16382 if ( token_state ) {
16383 print_err("File names can't appear within macros");
16384 @.File names can't...@>
16385 help3("Sorry...I've converted what follows to tokens,")
16386 ("possibly garbaging the name you gave.")
16387 ("Please delete the tokens and insert the name again.");
16390 if ( file_state ) {
16391 mp_scan_file_name(mp);
16393 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16394 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16395 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16398 @ The following simple routine starts reading the \.{MPX} file associated
16399 with the current input file.
16401 @c void mp_start_mpx_input (MP mp) {
16402 char *origname = NULL; /* a copy of nameoffile */
16403 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16404 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16405 |goto not_found| if there is a problem@>;
16406 mp_begin_file_reading(mp);
16407 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16408 mp_end_file_reading(mp);
16411 name=mp_a_make_name_string(mp, cur_file);
16412 mp->mpx_name[index]=name; add_str_ref(name);
16413 @<Read the first line of the new file@>;
16416 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16420 @ This should ideally be changed to do whatever is necessary to create the
16421 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16422 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16423 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16424 completely different typesetting program if suitable postprocessor is
16425 available to perform the function of \.{DVItoMP}.)
16426 @^system dependencies@>
16428 @ @<Exported types@>=
16429 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16432 mp_run_make_mpx_command run_make_mpx;
16434 @ @<Option variables@>=
16435 mp_run_make_mpx_command run_make_mpx;
16437 @ @<Allocate or initialize ...@>=
16438 set_callback_option(run_make_mpx);
16440 @ @<Internal library declarations@>=
16441 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16443 @ The default does nothing.
16445 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16446 if (mp && origname && mtxname) /* for -W */
16451 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16452 |goto not_found| if there is a problem@>=
16453 origname = mp_xstrdup(mp,mp->name_of_file);
16454 *(origname+strlen(origname)-1)=0; /* drop the x */
16455 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16458 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16459 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16460 mp_print_nl(mp, ">> ");
16461 mp_print(mp, origname);
16462 mp_print_nl(mp, ">> ");
16463 mp_print(mp, mp->name_of_file);
16464 mp_print_nl(mp, "! Unable to make mpx file");
16465 help4("The two files given above are one of your source files")
16466 ("and an auxiliary file I need to read to find out what your")
16467 ("btex..etex blocks mean. If you don't know why I had trouble,")
16468 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16471 @ The last file-opening commands are for files accessed via the \&{readfrom}
16472 @:read_from_}{\&{readfrom} primitive@>
16473 operator and the \&{write} command. Such files are stored in separate arrays.
16474 @:write_}{\&{write} primitive@>
16476 @<Types in the outer block@>=
16477 typedef unsigned int readf_index; /* |0..max_read_files| */
16478 typedef unsigned int write_index; /* |0..max_write_files| */
16481 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16482 void ** rd_file; /* \&{readfrom} files */
16483 char ** rd_fname; /* corresponding file name or 0 if file not open */
16484 readf_index read_files; /* number of valid entries in the above arrays */
16485 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16486 void ** wr_file; /* \&{write} files */
16487 char ** wr_fname; /* corresponding file name or 0 if file not open */
16488 write_index write_files; /* number of valid entries in the above arrays */
16490 @ @<Allocate or initialize ...@>=
16491 mp->max_read_files=8;
16492 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16493 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16494 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16496 mp->max_write_files=8;
16497 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16498 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16499 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16503 @ This routine starts reading the file named by string~|s| without setting
16504 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16505 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16507 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16508 mp_ptr_scan_file(mp, s);
16510 mp_begin_file_reading(mp);
16511 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16513 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16514 (mp->close_file)(mp->rd_file[n]);
16517 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16520 mp_end_file_reading(mp);
16524 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16527 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16529 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16530 mp_ptr_scan_file(mp, s);
16532 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16533 mp_prompt_file_name(mp, "file name for write output","");
16534 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16538 @* \[36] Introduction to the parsing routines.
16539 We come now to the central nervous system that sparks many of \MP's activities.
16540 By evaluating expressions, from their primary constituents to ever larger
16541 subexpressions, \MP\ builds the structures that ultimately define complete
16542 pictures or fonts of type.
16544 Four mutually recursive subroutines are involved in this process: We call them
16545 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16546 and |scan_expression|.}$$
16548 Each of them is parameterless and begins with the first token to be scanned
16549 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16550 the value of the primary or secondary or tertiary or expression that was
16551 found will appear in the global variables |cur_type| and |cur_exp|. The
16552 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16555 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16556 backup mechanisms have been added in order to provide reasonable error
16560 small_number cur_type; /* the type of the expression just found */
16561 integer cur_exp; /* the value of the expression just found */
16566 @ Many different kinds of expressions are possible, so it is wise to have
16567 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16570 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16571 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16572 construction in which there was no expression before the \&{endgroup}.
16573 In this case |cur_exp| has some irrelevant value.
16576 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16580 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16581 node that is in the ring of variables equivalent
16582 to at least one undefined boolean variable.
16585 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16586 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16587 includes this particular reference.
16590 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16591 node that is in the ring of variables equivalent
16592 to at least one undefined string variable.
16595 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16596 else points to any of the nodes in this pen. The pen may be polygonal or
16600 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16601 node that is in the ring of variables equivalent
16602 to at least one undefined pen variable.
16605 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16606 a path; nobody else points to this particular path. The control points of
16607 the path will have been chosen.
16610 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16611 node that is in the ring of variables equivalent
16612 to at least one undefined path variable.
16615 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16616 There may be other pointers to this particular set of edges. The header node
16617 contains a reference count that includes this particular reference.
16620 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16621 node that is in the ring of variables equivalent
16622 to at least one undefined picture variable.
16625 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16626 capsule node. The |value| part of this capsule
16627 points to a transform node that contains six numeric values,
16628 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16631 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16632 capsule node. The |value| part of this capsule
16633 points to a color node that contains three numeric values,
16634 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16637 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16638 capsule node. The |value| part of this capsule
16639 points to a color node that contains four numeric values,
16640 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16643 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16644 node whose type is |mp_pair_type|. The |value| part of this capsule
16645 points to a pair node that contains two numeric values,
16646 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16649 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16652 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16653 is |dependent|. The |dep_list| field in this capsule points to the associated
16657 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16658 capsule node. The |dep_list| field in this capsule
16659 points to the associated dependency list.
16662 |cur_type=independent| means that |cur_exp| points to a capsule node
16663 whose type is |independent|. This somewhat unusual case can arise, for
16664 example, in the expression
16665 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16668 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16669 tokens. This case arises only on the left-hand side of an assignment
16670 (`\.{:=}') operation, under very special circumstances.
16672 \smallskip\noindent
16673 The possible settings of |cur_type| have been listed here in increasing
16674 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16675 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16676 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16679 @ Capsules are two-word nodes that have a similar meaning
16680 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16681 and |link<=mp_void|; and their |type| field is one of the possibilities for
16682 |cur_type| listed above.
16684 The |value| field of a capsule is, in most cases, the value that
16685 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16686 However, when |cur_exp| would point to a capsule,
16687 no extra layer of indirection is present; the |value|
16688 field is what would have been called |value(cur_exp)| if it had not been
16689 encapsulated. Furthermore, if the type is |dependent| or
16690 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16691 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16692 always part of the general |dep_list| structure.
16694 The |get_x_next| routine is careful not to change the values of |cur_type|
16695 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16696 call a macro, which might parse an expression, which might execute lots of
16697 commands in a group; hence it's possible that |cur_type| might change
16698 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16699 |known| or |independent|, during the time |get_x_next| is called. The
16700 programs below are careful to stash sensitive intermediate results in
16701 capsules, so that \MP's generality doesn't cause trouble.
16703 Here's a procedure that illustrates these conventions. It takes
16704 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16705 and stashes them away in a
16706 capsule. It is not used when |cur_type=mp_token_list|.
16707 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16708 copy path lists or to update reference counts, etc.
16710 The special link |mp_void| is put on the capsule returned by
16711 |stash_cur_exp|, because this procedure is used to store macro parameters
16712 that must be easily distinguishable from token lists.
16714 @<Declare the stashing/unstashing routines@>=
16715 pointer mp_stash_cur_exp (MP mp) {
16716 pointer p; /* the capsule that will be returned */
16717 switch (mp->cur_type) {
16718 case unknown_types:
16719 case mp_transform_type:
16720 case mp_color_type:
16723 case mp_proto_dependent:
16724 case mp_independent:
16725 case mp_cmykcolor_type:
16729 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16730 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16733 mp->cur_type=mp_vacuous; link(p)=mp_void;
16737 @ The inverse of |stash_cur_exp| is the following procedure, which
16738 deletes an unnecessary capsule and puts its contents into |cur_type|
16741 The program steps of \MP\ can be divided into two categories: those in
16742 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16743 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16744 information or not. It's important not to ignore them when they're alive,
16745 and it's important not to pay attention to them when they're dead.
16747 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16748 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16749 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16750 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16751 only when they are alive or dormant.
16753 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16754 are alive or dormant. The \\{unstash} procedure assumes that they are
16755 dead or dormant; it resuscitates them.
16757 @<Declare the stashing/unstashing...@>=
16758 void mp_unstash_cur_exp (MP mp,pointer p) ;
16761 void mp_unstash_cur_exp (MP mp,pointer p) {
16762 mp->cur_type=type(p);
16763 switch (mp->cur_type) {
16764 case unknown_types:
16765 case mp_transform_type:
16766 case mp_color_type:
16769 case mp_proto_dependent:
16770 case mp_independent:
16771 case mp_cmykcolor_type:
16775 mp->cur_exp=value(p);
16776 mp_free_node(mp, p,value_node_size);
16781 @ The following procedure prints the values of expressions in an
16782 abbreviated format. If its first parameter |p| is null, the value of
16783 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16784 containing the desired value. The second parameter controls the amount of
16785 output. If it is~0, dependency lists will be abbreviated to
16786 `\.{linearform}' unless they consist of a single term. If it is greater
16787 than~1, complicated structures (pens, pictures, and paths) will be displayed
16790 @<Declare subroutines for printing expressions@>=
16791 @<Declare the procedure called |print_dp|@>;
16792 @<Declare the stashing/unstashing routines@>;
16793 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16794 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16795 small_number t; /* the type of the expression */
16796 pointer q; /* a big node being displayed */
16797 integer v=0; /* the value of the expression */
16799 restore_cur_exp=false;
16801 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16804 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16805 @<Print an abbreviated value of |v| with format depending on |t|@>;
16806 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16809 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16811 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16812 case mp_boolean_type:
16813 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16815 case unknown_types: case mp_numeric_type:
16816 @<Display a variable that's been declared but not defined@>;
16818 case mp_string_type:
16819 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16821 case mp_pen_type: case mp_path_type: case mp_picture_type:
16822 @<Display a complex type@>;
16824 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16825 if ( v==null ) mp_print_type(mp, t);
16826 else @<Display a big node@>;
16828 case mp_known:mp_print_scaled(mp, v); break;
16829 case mp_dependent: case mp_proto_dependent:
16830 mp_print_dp(mp, t,v,verbosity);
16832 case mp_independent:mp_print_variable_name(mp, p); break;
16833 default: mp_confusion(mp, "exp"); break;
16834 @:this can't happen exp}{\quad exp@>
16837 @ @<Display a big node@>=
16839 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16841 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16842 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16843 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16845 if ( v!=q ) mp_print_char(mp, ',');
16847 mp_print_char(mp, ')');
16850 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16851 in the log file only, unless the user has given a positive value to
16854 @<Display a complex type@>=
16855 if ( verbosity<=1 ) {
16856 mp_print_type(mp, t);
16858 if ( mp->selector==term_and_log )
16859 if ( mp->internal[mp_tracing_online]<=0 ) {
16860 mp->selector=term_only;
16861 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16862 mp->selector=term_and_log;
16865 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16866 case mp_path_type:mp_print_path(mp, v,"",false); break;
16867 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16868 } /* there are no other cases */
16871 @ @<Declare the procedure called |print_dp|@>=
16872 void mp_print_dp (MP mp,small_number t, pointer p,
16873 small_number verbosity) {
16874 pointer q; /* the node following |p| */
16876 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16877 else mp_print(mp, "linearform");
16880 @ The displayed name of a variable in a ring will not be a capsule unless
16881 the ring consists entirely of capsules.
16883 @<Display a variable that's been declared but not defined@>=
16884 { mp_print_type(mp, t);
16886 { mp_print_char(mp, ' ');
16887 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16888 mp_print_variable_name(mp, v);
16892 @ When errors are detected during parsing, it is often helpful to
16893 display an expression just above the error message, using |exp_err|
16894 or |disp_err| instead of |print_err|.
16896 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16898 @<Declare subroutines for printing expressions@>=
16899 void mp_disp_err (MP mp,pointer p, char *s) {
16900 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16901 mp_print_nl(mp, ">> ");
16903 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16905 mp_print_nl(mp, "! "); mp_print(mp, s);
16910 @ If |cur_type| and |cur_exp| contain relevant information that should
16911 be recycled, we will use the following procedure, which changes |cur_type|
16912 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16913 and |cur_exp| as either alive or dormant after this has been done,
16914 because |cur_exp| will not contain a pointer value.
16916 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16917 switch (mp->cur_type) {
16918 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16919 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16920 mp_recycle_value(mp, mp->cur_exp);
16921 mp_free_node(mp, mp->cur_exp,value_node_size);
16923 case mp_string_type:
16924 delete_str_ref(mp->cur_exp); break;
16925 case mp_pen_type: case mp_path_type:
16926 mp_toss_knot_list(mp, mp->cur_exp); break;
16927 case mp_picture_type:
16928 delete_edge_ref(mp->cur_exp); break;
16932 mp->cur_type=mp_known; mp->cur_exp=v;
16935 @ There's a much more general procedure that is capable of releasing
16936 the storage associated with any two-word value packet.
16938 @<Declare the recycling subroutines@>=
16939 void mp_recycle_value (MP mp,pointer p) ;
16941 @ @c void mp_recycle_value (MP mp,pointer p) {
16942 small_number t; /* a type code */
16943 integer vv; /* another value */
16944 pointer q,r,s,pp; /* link manipulation registers */
16945 integer v=0; /* a value */
16947 if ( t<mp_dependent ) v=value(p);
16949 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16950 case mp_numeric_type:
16952 case unknown_types:
16953 mp_ring_delete(mp, p); break;
16954 case mp_string_type:
16955 delete_str_ref(v); break;
16956 case mp_path_type: case mp_pen_type:
16957 mp_toss_knot_list(mp, v); break;
16958 case mp_picture_type:
16959 delete_edge_ref(v); break;
16960 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16961 case mp_transform_type:
16962 @<Recycle a big node@>; break;
16963 case mp_dependent: case mp_proto_dependent:
16964 @<Recycle a dependency list@>; break;
16965 case mp_independent:
16966 @<Recycle an independent variable@>; break;
16967 case mp_token_list: case mp_structured:
16968 mp_confusion(mp, "recycle"); break;
16969 @:this can't happen recycle}{\quad recycle@>
16970 case mp_unsuffixed_macro: case mp_suffixed_macro:
16971 mp_delete_mac_ref(mp, value(p)); break;
16972 } /* there are no other cases */
16976 @ @<Recycle a big node@>=
16978 q=v+mp->big_node_size[t];
16980 q=q-2; mp_recycle_value(mp, q);
16982 mp_free_node(mp, v,mp->big_node_size[t]);
16985 @ @<Recycle a dependency list@>=
16988 while ( info(q)!=null ) q=link(q);
16989 link(prev_dep(p))=link(q);
16990 prev_dep(link(q))=prev_dep(p);
16991 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16994 @ When an independent variable disappears, it simply fades away, unless
16995 something depends on it. In the latter case, a dependent variable whose
16996 coefficient of dependence is maximal will take its place.
16997 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16998 as part of his Ph.D. thesis (Stanford University, December 1982).
16999 @^Zabala Salelles, Ignacio Andres@>
17001 For example, suppose that variable $x$ is being recycled, and that the
17002 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
17003 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
17004 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
17005 we will print `\.{\#\#\# -2x=-y+a}'.
17007 There's a slight complication, however: An independent variable $x$
17008 can occur both in dependency lists and in proto-dependency lists.
17009 This makes it necessary to be careful when deciding which coefficient
17012 Furthermore, this complication is not so slight when
17013 a proto-dependent variable is chosen to become independent. For example,
17014 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
17015 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
17016 large coefficient `50'.
17018 In order to deal with these complications without wasting too much time,
17019 we shall link together the occurrences of~$x$ among all the linear
17020 dependencies, maintaining separate lists for the dependent and
17021 proto-dependent cases.
17023 @<Recycle an independent variable@>=
17025 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
17026 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
17028 while ( q!=dep_head ) {
17029 s=value_loc(q); /* now |link(s)=dep_list(q)| */
17032 if ( info(r)==null ) break;;
17033 if ( info(r)!=p ) {
17036 t=type(q); link(s)=link(r); info(r)=q;
17037 if ( abs(value(r))>mp->max_c[t] ) {
17038 @<Record a new maximum coefficient of type |t|@>;
17040 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17046 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17047 @<Choose a dependent variable to take the place of the disappearing
17048 independent variable, and change all remaining dependencies
17053 @ The code for independency removal makes use of three two-word arrays.
17056 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17057 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17058 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17060 @ @<Record a new maximum coefficient...@>=
17062 if ( mp->max_c[t]>0 ) {
17063 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17065 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17068 @ @<Choose a dependent...@>=
17070 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17073 t=mp_proto_dependent;
17074 @<Determine the dependency list |s| to substitute for the independent
17076 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17077 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17078 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17080 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17081 else { @<Substitute new proto-dependencies in place of |p|@>;}
17082 mp_flush_node_list(mp, s);
17083 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17087 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17088 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17089 whose dependency list we have removed node~|s|. We must reinsert
17090 node~|s| into the dependency list, with coefficient $-1.0$, and with
17091 |pp| as the new independent variable. Since |pp| will have a larger serial
17092 number than any other variable, we can put node |s| at the head of the
17095 @<Determine the dep...@>=
17096 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17097 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17098 r=dep_list(pp); link(s)=r;
17099 while ( info(r)!=null ) r=link(r);
17100 q=link(r); link(r)=null;
17101 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17103 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17104 if ( mp->internal[mp_tracing_equations]>0 ) {
17105 @<Show the transformed dependency@>;
17108 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17109 by the dependency list~|s|.
17111 @<Show the transformed...@>=
17112 if ( mp_interesting(mp, p) ) {
17113 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17114 @:]]]\#\#\#_}{\.{\#\#\#}@>
17115 if ( v>0 ) mp_print_char(mp, '-');
17116 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17117 else vv=mp->max_c[mp_proto_dependent];
17118 if ( vv!=unity ) mp_print_scaled(mp, vv);
17119 mp_print_variable_name(mp, p);
17120 while ( value(p) % s_scale>0 ) {
17121 mp_print(mp, "*4"); value(p)=value(p)-2;
17123 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17124 mp_print_dependency(mp, s,t);
17125 mp_end_diagnostic(mp, false);
17128 @ Finally, there are dependent and proto-dependent variables whose
17129 dependency lists must be brought up to date.
17131 @<Substitute new dependencies...@>=
17132 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17134 while ( r!=null ) {
17136 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17137 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17138 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17139 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17143 @ @<Substitute new proto...@>=
17144 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17146 while ( r!=null ) {
17148 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17149 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17150 mp->cur_type=mp_proto_dependent;
17151 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17152 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17154 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17155 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17156 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17157 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17161 @ Here are some routines that provide handy combinations of actions
17162 that are often needed during error recovery. For example,
17163 `|flush_error|' flushes the current expression, replaces it by
17164 a given value, and calls |error|.
17166 Errors often are detected after an extra token has already been scanned.
17167 The `\\{put\_get}' routines put that token back before calling |error|;
17168 then they get it back again. (Or perhaps they get another token, if
17169 the user has changed things.)
17172 void mp_flush_error (MP mp,scaled v);
17173 void mp_put_get_error (MP mp);
17174 void mp_put_get_flush_error (MP mp,scaled v) ;
17177 void mp_flush_error (MP mp,scaled v) {
17178 mp_error(mp); mp_flush_cur_exp(mp, v);
17180 void mp_put_get_error (MP mp) {
17181 mp_back_error(mp); mp_get_x_next(mp);
17183 void mp_put_get_flush_error (MP mp,scaled v) {
17184 mp_put_get_error(mp);
17185 mp_flush_cur_exp(mp, v);
17188 @ A global variable |var_flag| is set to a special command code
17189 just before \MP\ calls |scan_expression|, if the expression should be
17190 treated as a variable when this command code immediately follows. For
17191 example, |var_flag| is set to |assignment| at the beginning of a
17192 statement, because we want to know the {\sl location\/} of a variable at
17193 the left of `\.{:=}', not the {\sl value\/} of that variable.
17195 The |scan_expression| subroutine calls |scan_tertiary|,
17196 which calls |scan_secondary|, which calls |scan_primary|, which sets
17197 |var_flag:=0|. In this way each of the scanning routines ``knows''
17198 when it has been called with a special |var_flag|, but |var_flag| is
17201 A variable preceding a command that equals |var_flag| is converted to a
17202 token list rather than a value. Furthermore, an `\.{=}' sign following an
17203 expression with |var_flag=assignment| is not considered to be a relation
17204 that produces boolean expressions.
17208 int var_flag; /* command that wants a variable */
17213 @* \[37] Parsing primary expressions.
17214 The first parsing routine, |scan_primary|, is also the most complicated one,
17215 since it involves so many different cases. But each case---with one
17216 exception---is fairly simple by itself.
17218 When |scan_primary| begins, the first token of the primary to be scanned
17219 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17220 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17221 earlier. If |cur_cmd| is not between |min_primary_command| and
17222 |max_primary_command|, inclusive, a syntax error will be signaled.
17224 @<Declare the basic parsing subroutines@>=
17225 void mp_scan_primary (MP mp) {
17226 pointer p,q,r; /* for list manipulation */
17227 quarterword c; /* a primitive operation code */
17228 int my_var_flag; /* initial value of |my_var_flag| */
17229 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17230 @<Other local variables for |scan_primary|@>;
17231 my_var_flag=mp->var_flag; mp->var_flag=0;
17234 @<Supply diagnostic information, if requested@>;
17235 switch (mp->cur_cmd) {
17236 case left_delimiter:
17237 @<Scan a delimited primary@>; break;
17239 @<Scan a grouped primary@>; break;
17241 @<Scan a string constant@>; break;
17242 case numeric_token:
17243 @<Scan a primary that starts with a numeric token@>; break;
17245 @<Scan a nullary operation@>; break;
17246 case unary: case type_name: case cycle: case plus_or_minus:
17247 @<Scan a unary operation@>; break;
17248 case primary_binary:
17249 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17251 @<Convert a suffix to a string@>; break;
17252 case internal_quantity:
17253 @<Scan an internal numeric quantity@>; break;
17254 case capsule_token:
17255 mp_make_exp_copy(mp, mp->cur_mod); break;
17257 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17259 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17260 @.A primary expression...@>
17262 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17264 if ( mp->cur_cmd==left_bracket ) {
17265 if ( mp->cur_type>=mp_known ) {
17266 @<Scan a mediation construction@>;
17273 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17275 @c void mp_bad_exp (MP mp,char * s) {
17277 print_err(s); mp_print(mp, " expression can't begin with `");
17278 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17279 mp_print_char(mp, '\'');
17280 help4("I'm afraid I need some sort of value in order to continue,")
17281 ("so I've tentatively inserted `0'. You may want to")
17282 ("delete this zero and insert something else;")
17283 ("see Chapter 27 of The METAFONTbook for an example.");
17284 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17285 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17286 mp->cur_mod=0; mp_ins_error(mp);
17287 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17288 mp->var_flag=save_flag;
17291 @ @<Supply diagnostic information, if requested@>=
17293 if ( mp->panicking ) mp_check_mem(mp, false);
17295 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17296 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17299 @ @<Scan a delimited primary@>=
17301 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17302 mp_get_x_next(mp); mp_scan_expression(mp);
17303 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17304 @<Scan the rest of a delimited set of numerics@>;
17306 mp_check_delimiter(mp, l_delim,r_delim);
17310 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17311 within a ``big node.''
17313 @c void mp_stash_in (MP mp,pointer p) {
17314 pointer q; /* temporary register */
17315 type(p)=mp->cur_type;
17316 if ( mp->cur_type==mp_known ) {
17317 value(p)=mp->cur_exp;
17319 if ( mp->cur_type==mp_independent ) {
17320 @<Stash an independent |cur_exp| into a big node@>;
17322 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17323 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17324 link(prev_dep(p))=p;
17326 mp_free_node(mp, mp->cur_exp,value_node_size);
17328 mp->cur_type=mp_vacuous;
17331 @ In rare cases the current expression can become |independent|. There
17332 may be many dependency lists pointing to such an independent capsule,
17333 so we can't simply move it into place within a big node. Instead,
17334 we copy it, then recycle it.
17336 @ @<Stash an independent |cur_exp|...@>=
17338 q=mp_single_dependency(mp, mp->cur_exp);
17339 if ( q==mp->dep_final ){
17340 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17342 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17344 mp_recycle_value(mp, mp->cur_exp);
17347 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17348 are synonymous with |x_part_loc| and |y_part_loc|.
17350 @<Scan the rest of a delimited set of numerics@>=
17352 p=mp_stash_cur_exp(mp);
17353 mp_get_x_next(mp); mp_scan_expression(mp);
17354 @<Make sure the second part of a pair or color has a numeric type@>;
17355 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17356 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17357 else type(q)=mp_pair_type;
17358 mp_init_big_node(mp, q); r=value(q);
17359 mp_stash_in(mp, y_part_loc(r));
17360 mp_unstash_cur_exp(mp, p);
17361 mp_stash_in(mp, x_part_loc(r));
17362 if ( mp->cur_cmd==comma ) {
17363 @<Scan the last of a triplet of numerics@>;
17365 if ( mp->cur_cmd==comma ) {
17366 type(q)=mp_cmykcolor_type;
17367 mp_init_big_node(mp, q); t=value(q);
17368 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17369 value(cyan_part_loc(t))=value(red_part_loc(r));
17370 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17371 value(magenta_part_loc(t))=value(green_part_loc(r));
17372 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17373 value(yellow_part_loc(t))=value(blue_part_loc(r));
17374 mp_recycle_value(mp, r);
17376 @<Scan the last of a quartet of numerics@>;
17378 mp_check_delimiter(mp, l_delim,r_delim);
17379 mp->cur_type=type(q);
17383 @ @<Make sure the second part of a pair or color has a numeric type@>=
17384 if ( mp->cur_type<mp_known ) {
17385 exp_err("Nonnumeric ypart has been replaced by 0");
17386 @.Nonnumeric...replaced by 0@>
17387 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17388 ("but after finding a nice `a' I found a `b' that isn't")
17389 ("of numeric type. So I've changed that part to zero.")
17390 ("(The b that I didn't like appears above the error message.)");
17391 mp_put_get_flush_error(mp, 0);
17394 @ @<Scan the last of a triplet of numerics@>=
17396 mp_get_x_next(mp); mp_scan_expression(mp);
17397 if ( mp->cur_type<mp_known ) {
17398 exp_err("Nonnumeric third part has been replaced by 0");
17399 @.Nonnumeric...replaced by 0@>
17400 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17401 ("isn't of numeric type. So I've changed that part to zero.")
17402 ("(The c that I didn't like appears above the error message.)");
17403 mp_put_get_flush_error(mp, 0);
17405 mp_stash_in(mp, blue_part_loc(r));
17408 @ @<Scan the last of a quartet of numerics@>=
17410 mp_get_x_next(mp); mp_scan_expression(mp);
17411 if ( mp->cur_type<mp_known ) {
17412 exp_err("Nonnumeric blackpart has been replaced by 0");
17413 @.Nonnumeric...replaced by 0@>
17414 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17415 ("of numeric type. So I've changed that part to zero.")
17416 ("(The k that I didn't like appears above the error message.)");
17417 mp_put_get_flush_error(mp, 0);
17419 mp_stash_in(mp, black_part_loc(r));
17422 @ The local variable |group_line| keeps track of the line
17423 where a \&{begingroup} command occurred; this will be useful
17424 in an error message if the group doesn't actually end.
17426 @<Other local variables for |scan_primary|@>=
17427 integer group_line; /* where a group began */
17429 @ @<Scan a grouped primary@>=
17431 group_line=mp_true_line(mp);
17432 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17433 save_boundary_item(p);
17435 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17436 } while (! (mp->cur_cmd!=semicolon));
17437 if ( mp->cur_cmd!=end_group ) {
17438 print_err("A group begun on line ");
17439 @.A group...never ended@>
17440 mp_print_int(mp, group_line);
17441 mp_print(mp, " never ended");
17442 help2("I saw a `begingroup' back there that hasn't been matched")
17443 ("by `endgroup'. So I've inserted `endgroup' now.");
17444 mp_back_error(mp); mp->cur_cmd=end_group;
17447 /* this might change |cur_type|, if independent variables are recycled */
17448 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17451 @ @<Scan a string constant@>=
17453 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17456 @ Later we'll come to procedures that perform actual operations like
17457 addition, square root, and so on; our purpose now is to do the parsing.
17458 But we might as well mention those future procedures now, so that the
17459 suspense won't be too bad:
17462 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17463 `\&{true}' or `\&{pencircle}');
17466 |do_unary(c)| applies a primitive operation to the current expression;
17469 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17470 and the current expression.
17472 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17474 @ @<Scan a unary operation@>=
17476 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17477 mp_do_unary(mp, c); goto DONE;
17480 @ A numeric token might be a primary by itself, or it might be the
17481 numerator of a fraction composed solely of numeric tokens, or it might
17482 multiply the primary that follows (provided that the primary doesn't begin
17483 with a plus sign or a minus sign). The code here uses the facts that
17484 |max_primary_command=plus_or_minus| and
17485 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17486 than unity, we try to retain higher precision when we use it in scalar
17489 @<Other local variables for |scan_primary|@>=
17490 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17492 @ @<Scan a primary that starts with a numeric token@>=
17494 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17495 if ( mp->cur_cmd!=slash ) {
17499 if ( mp->cur_cmd!=numeric_token ) {
17501 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17504 num=mp->cur_exp; denom=mp->cur_mod;
17505 if ( denom==0 ) { @<Protest division by zero@>; }
17506 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17507 check_arith; mp_get_x_next(mp);
17509 if ( mp->cur_cmd>=min_primary_command ) {
17510 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17511 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17512 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17513 mp_do_binary(mp, p,times);
17515 mp_frac_mult(mp, num,denom);
17516 mp_free_node(mp, p,value_node_size);
17523 @ @<Protest division...@>=
17525 print_err("Division by zero");
17526 @.Division by zero@>
17527 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17530 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17532 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17533 if ( mp->cur_cmd!=of_token ) {
17534 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17535 mp_print_cmd_mod(mp, primary_binary,c);
17537 help1("I've got the first argument; will look now for the other.");
17540 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17541 mp_do_binary(mp, p,c); goto DONE;
17544 @ @<Convert a suffix to a string@>=
17546 mp_get_x_next(mp); mp_scan_suffix(mp);
17547 mp->old_setting=mp->selector; mp->selector=new_string;
17548 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17549 mp_flush_token_list(mp, mp->cur_exp);
17550 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17551 mp->cur_type=mp_string_type;
17555 @ If an internal quantity appears all by itself on the left of an
17556 assignment, we return a token list of length one, containing the address
17557 of the internal quantity plus |hash_end|. (This accords with the conventions
17558 of the save stack, as described earlier.)
17560 @<Scan an internal...@>=
17563 if ( my_var_flag==assignment ) {
17565 if ( mp->cur_cmd==assignment ) {
17566 mp->cur_exp=mp_get_avail(mp);
17567 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17572 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17575 @ The most difficult part of |scan_primary| has been saved for last, since
17576 it was necessary to build up some confidence first. We can now face the task
17577 of scanning a variable.
17579 As we scan a variable, we build a token list containing the relevant
17580 names and subscript values, simultaneously following along in the
17581 ``collective'' structure to see if we are actually dealing with a macro
17582 instead of a value.
17584 The local variables |pre_head| and |post_head| will point to the beginning
17585 of the prefix and suffix lists; |tail| will point to the end of the list
17586 that is currently growing.
17588 Another local variable, |tt|, contains partial information about the
17589 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17590 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17591 doesn't bother to update its information about type. And if
17592 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17594 @ @<Other local variables for |scan_primary|@>=
17595 pointer pre_head,post_head,tail;
17596 /* prefix and suffix list variables */
17597 small_number tt; /* approximation to the type of the variable-so-far */
17598 pointer t; /* a token */
17599 pointer macro_ref = 0; /* reference count for a suffixed macro */
17601 @ @<Scan a variable primary...@>=
17603 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17605 t=mp_cur_tok(mp); link(tail)=t;
17606 if ( tt!=undefined ) {
17607 @<Find the approximate type |tt| and corresponding~|q|@>;
17608 if ( tt>=mp_unsuffixed_macro ) {
17609 @<Either begin an unsuffixed macro call or
17610 prepare for a suffixed one@>;
17613 mp_get_x_next(mp); tail=t;
17614 if ( mp->cur_cmd==left_bracket ) {
17615 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17617 if ( mp->cur_cmd>max_suffix_token ) break;
17618 if ( mp->cur_cmd<min_suffix_token ) break;
17619 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17620 @<Handle unusual cases that masquerade as variables, and |goto restart|
17621 or |goto done| if appropriate;
17622 otherwise make a copy of the variable and |goto done|@>;
17625 @ @<Either begin an unsuffixed macro call or...@>=
17628 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17629 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17630 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17632 @<Set up unsuffixed macro call and |goto restart|@>;
17636 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17638 mp_get_x_next(mp); mp_scan_expression(mp);
17639 if ( mp->cur_cmd!=right_bracket ) {
17640 @<Put the left bracket and the expression back to be rescanned@>;
17642 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17643 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17647 @ The left bracket that we thought was introducing a subscript might have
17648 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17649 So we don't issue an error message at this point; but we do want to back up
17650 so as to avoid any embarrassment about our incorrect assumption.
17652 @<Put the left bracket and the expression back to be rescanned@>=
17654 mp_back_input(mp); /* that was the token following the current expression */
17655 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17656 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17659 @ Here's a routine that puts the current expression back to be read again.
17661 @c void mp_back_expr (MP mp) {
17662 pointer p; /* capsule token */
17663 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17666 @ Unknown subscripts lead to the following error message.
17668 @c void mp_bad_subscript (MP mp) {
17669 exp_err("Improper subscript has been replaced by zero");
17670 @.Improper subscript...@>
17671 help3("A bracketed subscript must have a known numeric value;")
17672 ("unfortunately, what I found was the value that appears just")
17673 ("above this error message. So I'll try a zero subscript.");
17674 mp_flush_error(mp, 0);
17677 @ Every time we call |get_x_next|, there's a chance that the variable we've
17678 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17679 into the variable structure; we need to start searching from the root each time.
17681 @<Find the approximate type |tt| and corresponding~|q|@>=
17684 p=link(pre_head); q=info(p); tt=undefined;
17685 if ( eq_type(q) % outer_tag==tag_token ) {
17687 if ( q==null ) goto DONE2;
17691 tt=type(q); goto DONE2;
17693 if ( type(q)!=mp_structured ) goto DONE2;
17694 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17695 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17696 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17697 if ( attr_loc(q)>info(p) ) goto DONE2;
17705 @ How do things stand now? Well, we have scanned an entire variable name,
17706 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17707 |cur_sym| represent the token that follows. If |post_head=null|, a
17708 token list for this variable name starts at |link(pre_head)|, with all
17709 subscripts evaluated. But if |post_head<>null|, the variable turned out
17710 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17711 |post_head| is the head of a token list containing both `\.{\AT!}' and
17714 Our immediate problem is to see if this variable still exists. (Variable
17715 structures can change drastically whenever we call |get_x_next|; users
17716 aren't supposed to do this, but the fact that it is possible means that
17717 we must be cautious.)
17719 The following procedure prints an error message when a variable
17720 unexpectedly disappears. Its help message isn't quite right for
17721 our present purposes, but we'll be able to fix that up.
17724 void mp_obliterated (MP mp,pointer q) {
17725 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17726 mp_print(mp, " has been obliterated");
17727 @.Variable...obliterated@>
17728 help5("It seems you did a nasty thing---probably by accident,")
17729 ("but nevertheless you nearly hornswoggled me...")
17730 ("While I was evaluating the right-hand side of this")
17731 ("command, something happened, and the left-hand side")
17732 ("is no longer a variable! So I won't change anything.");
17735 @ If the variable does exist, we also need to check
17736 for a few other special cases before deciding that a plain old ordinary
17737 variable has, indeed, been scanned.
17739 @<Handle unusual cases that masquerade as variables...@>=
17740 if ( post_head!=null ) {
17741 @<Set up suffixed macro call and |goto restart|@>;
17743 q=link(pre_head); free_avail(pre_head);
17744 if ( mp->cur_cmd==my_var_flag ) {
17745 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17747 p=mp_find_variable(mp, q);
17749 mp_make_exp_copy(mp, p);
17751 mp_obliterated(mp, q);
17752 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17753 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17754 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17755 mp_put_get_flush_error(mp, 0);
17757 mp_flush_node_list(mp, q);
17760 @ The only complication associated with macro calling is that the prefix
17761 and ``at'' parameters must be packaged in an appropriate list of lists.
17763 @<Set up unsuffixed macro call and |goto restart|@>=
17765 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17766 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17771 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17772 we don't care, because we have reserved a pointer (|macro_ref|) to its
17775 @<Set up suffixed macro call and |goto restart|@>=
17777 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17778 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17779 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17780 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17781 mp_get_x_next(mp); goto RESTART;
17784 @ Our remaining job is simply to make a copy of the value that has been
17785 found. Some cases are harder than others, but complexity arises solely
17786 because of the multiplicity of possible cases.
17788 @<Declare the procedure called |make_exp_copy|@>=
17789 @<Declare subroutines needed by |make_exp_copy|@>;
17790 void mp_make_exp_copy (MP mp,pointer p) {
17791 pointer q,r,t; /* registers for list manipulation */
17793 mp->cur_type=type(p);
17794 switch (mp->cur_type) {
17795 case mp_vacuous: case mp_boolean_type: case mp_known:
17796 mp->cur_exp=value(p); break;
17797 case unknown_types:
17798 mp->cur_exp=mp_new_ring_entry(mp, p);
17800 case mp_string_type:
17801 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17803 case mp_picture_type:
17804 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17807 mp->cur_exp=copy_pen(value(p));
17810 mp->cur_exp=mp_copy_path(mp, value(p));
17812 case mp_transform_type: case mp_color_type:
17813 case mp_cmykcolor_type: case mp_pair_type:
17814 @<Copy the big node |p|@>;
17816 case mp_dependent: case mp_proto_dependent:
17817 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17819 case mp_numeric_type:
17820 new_indep(p); goto RESTART;
17822 case mp_independent:
17823 q=mp_single_dependency(mp, p);
17824 if ( q==mp->dep_final ){
17825 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17827 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17831 mp_confusion(mp, "copy");
17832 @:this can't happen copy}{\quad copy@>
17837 @ The |encapsulate| subroutine assumes that |dep_final| is the
17838 tail of dependency list~|p|.
17840 @<Declare subroutines needed by |make_exp_copy|@>=
17841 void mp_encapsulate (MP mp,pointer p) {
17842 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17843 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17846 @ The most tedious case arises when the user refers to a
17847 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17848 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17851 @<Copy the big node |p|@>=
17853 if ( value(p)==null )
17854 mp_init_big_node(mp, p);
17855 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17856 mp_init_big_node(mp, t);
17857 q=value(p)+mp->big_node_size[mp->cur_type];
17858 r=value(t)+mp->big_node_size[mp->cur_type];
17860 q=q-2; r=r-2; mp_install(mp, r,q);
17861 } while (q!=value(p));
17865 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17866 a big node that will be part of a capsule.
17868 @<Declare subroutines needed by |make_exp_copy|@>=
17869 void mp_install (MP mp,pointer r, pointer q) {
17870 pointer p; /* temporary register */
17871 if ( type(q)==mp_known ){
17872 value(r)=value(q); type(r)=mp_known;
17873 } else if ( type(q)==mp_independent ) {
17874 p=mp_single_dependency(mp, q);
17875 if ( p==mp->dep_final ) {
17876 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17878 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17881 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17885 @ Expressions of the form `\.{a[b,c]}' are converted into
17886 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17887 provided that \.a is numeric.
17889 @<Scan a mediation...@>=
17891 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17892 if ( mp->cur_cmd!=comma ) {
17893 @<Put the left bracket and the expression back...@>;
17894 mp_unstash_cur_exp(mp, p);
17896 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17897 if ( mp->cur_cmd!=right_bracket ) {
17898 mp_missing_err(mp, "]");
17900 help3("I've scanned an expression of the form `a[b,c',")
17901 ("so a right bracket should have come next.")
17902 ("I shall pretend that one was there.");
17905 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17906 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17907 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17911 @ Here is a comparatively simple routine that is used to scan the
17912 \&{suffix} parameters of a macro.
17914 @<Declare the basic parsing subroutines@>=
17915 void mp_scan_suffix (MP mp) {
17916 pointer h,t; /* head and tail of the list being built */
17917 pointer p; /* temporary register */
17918 h=mp_get_avail(mp); t=h;
17920 if ( mp->cur_cmd==left_bracket ) {
17921 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17923 if ( mp->cur_cmd==numeric_token ) {
17924 p=mp_new_num_tok(mp, mp->cur_mod);
17925 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17926 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17930 link(t)=p; t=p; mp_get_x_next(mp);
17932 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17935 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17937 mp_get_x_next(mp); mp_scan_expression(mp);
17938 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17939 if ( mp->cur_cmd!=right_bracket ) {
17940 mp_missing_err(mp, "]");
17942 help3("I've seen a `[' and a subscript value, in a suffix,")
17943 ("so a right bracket should have come next.")
17944 ("I shall pretend that one was there.");
17947 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17950 @* \[38] Parsing secondary and higher expressions.
17951 After the intricacies of |scan_primary|\kern-1pt,
17952 the |scan_secondary| routine is
17953 refreshingly simple. It's not trivial, but the operations are relatively
17954 straightforward; the main difficulty is, again, that expressions and data
17955 structures might change drastically every time we call |get_x_next|, so a
17956 cautious approach is mandatory. For example, a macro defined by
17957 \&{primarydef} might have disappeared by the time its second argument has
17958 been scanned; we solve this by increasing the reference count of its token
17959 list, so that the macro can be called even after it has been clobbered.
17961 @<Declare the basic parsing subroutines@>=
17962 void mp_scan_secondary (MP mp) {
17963 pointer p; /* for list manipulation */
17964 halfword c,d; /* operation codes or modifiers */
17965 pointer mac_name; /* token defined with \&{primarydef} */
17967 if ((mp->cur_cmd<min_primary_command)||
17968 (mp->cur_cmd>max_primary_command) )
17969 mp_bad_exp(mp, "A secondary");
17970 @.A secondary expression...@>
17971 mp_scan_primary(mp);
17973 if ( mp->cur_cmd<=max_secondary_command )
17974 if ( mp->cur_cmd>=min_secondary_command ) {
17975 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17976 if ( d==secondary_primary_macro ) {
17977 mac_name=mp->cur_sym; add_mac_ref(c);
17979 mp_get_x_next(mp); mp_scan_primary(mp);
17980 if ( d!=secondary_primary_macro ) {
17981 mp_do_binary(mp, p,c);
17983 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17984 decr(ref_count(c)); mp_get_x_next(mp);
17991 @ The following procedure calls a macro that has two parameters,
17994 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17995 pointer q,r; /* nodes in the parameter list */
17996 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17997 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17998 mp_macro_call(mp, c,q,n);
18001 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
18003 @<Declare the basic parsing subroutines@>=
18004 void mp_scan_tertiary (MP mp) {
18005 pointer p; /* for list manipulation */
18006 halfword c,d; /* operation codes or modifiers */
18007 pointer mac_name; /* token defined with \&{secondarydef} */
18009 if ((mp->cur_cmd<min_primary_command)||
18010 (mp->cur_cmd>max_primary_command) )
18011 mp_bad_exp(mp, "A tertiary");
18012 @.A tertiary expression...@>
18013 mp_scan_secondary(mp);
18015 if ( mp->cur_cmd<=max_tertiary_command ) {
18016 if ( mp->cur_cmd>=min_tertiary_command ) {
18017 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18018 if ( d==tertiary_secondary_macro ) {
18019 mac_name=mp->cur_sym; add_mac_ref(c);
18021 mp_get_x_next(mp); mp_scan_secondary(mp);
18022 if ( d!=tertiary_secondary_macro ) {
18023 mp_do_binary(mp, p,c);
18025 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18026 decr(ref_count(c)); mp_get_x_next(mp);
18034 @ Finally we reach the deepest level in our quartet of parsing routines.
18035 This one is much like the others; but it has an extra complication from
18036 paths, which materialize here.
18038 @d continue_path 25 /* a label inside of |scan_expression| */
18039 @d finish_path 26 /* another */
18041 @<Declare the basic parsing subroutines@>=
18042 void mp_scan_expression (MP mp) {
18043 pointer p,q,r,pp,qq; /* for list manipulation */
18044 halfword c,d; /* operation codes or modifiers */
18045 int my_var_flag; /* initial value of |var_flag| */
18046 pointer mac_name; /* token defined with \&{tertiarydef} */
18047 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18048 scaled x,y; /* explicit coordinates or tension at a path join */
18049 int t; /* knot type following a path join */
18051 my_var_flag=mp->var_flag; mac_name=null;
18053 if ((mp->cur_cmd<min_primary_command)||
18054 (mp->cur_cmd>max_primary_command) )
18055 mp_bad_exp(mp, "An");
18056 @.An expression...@>
18057 mp_scan_tertiary(mp);
18059 if ( mp->cur_cmd<=max_expression_command )
18060 if ( mp->cur_cmd>=min_expression_command ) {
18061 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18062 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18063 if ( d==expression_tertiary_macro ) {
18064 mac_name=mp->cur_sym; add_mac_ref(c);
18066 if ( (d<ampersand)||((d==ampersand)&&
18067 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18068 @<Scan a path construction operation;
18069 but |return| if |p| has the wrong type@>;
18071 mp_get_x_next(mp); mp_scan_tertiary(mp);
18072 if ( d!=expression_tertiary_macro ) {
18073 mp_do_binary(mp, p,c);
18075 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18076 decr(ref_count(c)); mp_get_x_next(mp);
18085 @ The reader should review the data structure conventions for paths before
18086 hoping to understand the next part of this code.
18088 @<Scan a path construction operation...@>=
18091 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18092 but |return| if |p| doesn't have a suitable type@>;
18094 @<Determine the path join parameters;
18095 but |goto finish_path| if there's only a direction specifier@>;
18096 if ( mp->cur_cmd==cycle ) {
18097 @<Get ready to close a cycle@>;
18099 mp_scan_tertiary(mp);
18100 @<Convert the right operand, |cur_exp|,
18101 into a partial path from |pp| to~|qq|@>;
18103 @<Join the partial paths and reset |p| and |q| to the head and tail
18105 if ( mp->cur_cmd>=min_expression_command )
18106 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18108 @<Choose control points for the path and put the result into |cur_exp|@>;
18111 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18113 mp_unstash_cur_exp(mp, p);
18114 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18115 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18118 while ( link(q)!=p ) q=link(q);
18119 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18120 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18122 left_type(p)=mp_open; right_type(q)=mp_open;
18125 @ A pair of numeric values is changed into a knot node for a one-point path
18126 when \MP\ discovers that the pair is part of a path.
18128 @c@<Declare the procedure called |known_pair|@>;
18129 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18130 pointer q; /* the new node */
18131 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18132 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18133 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18137 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18138 of the current expression, assuming that the current expression is a
18139 pair of known numerics. Unknown components are zeroed, and the
18140 current expression is flushed.
18142 @<Declare the procedure called |known_pair|@>=
18143 void mp_known_pair (MP mp) {
18144 pointer p; /* the pair node */
18145 if ( mp->cur_type!=mp_pair_type ) {
18146 exp_err("Undefined coordinates have been replaced by (0,0)");
18147 @.Undefined coordinates...@>
18148 help5("I need x and y numbers for this part of the path.")
18149 ("The value I found (see above) was no good;")
18150 ("so I'll try to keep going by using zero instead.")
18151 ("(Chapter 27 of The METAFONTbook explains that")
18152 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18153 ("you might want to type `I ??" "?' now.)");
18154 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18156 p=value(mp->cur_exp);
18157 @<Make sure that both |x| and |y| parts of |p| are known;
18158 copy them into |cur_x| and |cur_y|@>;
18159 mp_flush_cur_exp(mp, 0);
18163 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18164 if ( type(x_part_loc(p))==mp_known ) {
18165 mp->cur_x=value(x_part_loc(p));
18167 mp_disp_err(mp, x_part_loc(p),
18168 "Undefined x coordinate has been replaced by 0");
18169 @.Undefined coordinates...@>
18170 help5("I need a `known' x value for this part of the path.")
18171 ("The value I found (see above) was no good;")
18172 ("so I'll try to keep going by using zero instead.")
18173 ("(Chapter 27 of The METAFONTbook explains that")
18174 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18175 ("you might want to type `I ??" "?' now.)");
18176 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18178 if ( type(y_part_loc(p))==mp_known ) {
18179 mp->cur_y=value(y_part_loc(p));
18181 mp_disp_err(mp, y_part_loc(p),
18182 "Undefined y coordinate has been replaced by 0");
18183 help5("I need a `known' y value for this part of the path.")
18184 ("The value I found (see above) was no good;")
18185 ("so I'll try to keep going by using zero instead.")
18186 ("(Chapter 27 of The METAFONTbook explains that")
18187 ("you might want to type `I ??" "?' now.)");
18188 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18191 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18193 @<Determine the path join parameters...@>=
18194 if ( mp->cur_cmd==left_brace ) {
18195 @<Put the pre-join direction information into node |q|@>;
18198 if ( d==path_join ) {
18199 @<Determine the tension and/or control points@>;
18200 } else if ( d!=ampersand ) {
18204 if ( mp->cur_cmd==left_brace ) {
18205 @<Put the post-join direction information into |x| and |t|@>;
18206 } else if ( right_type(q)!=mp_explicit ) {
18210 @ The |scan_direction| subroutine looks at the directional information
18211 that is enclosed in braces, and also scans ahead to the following character.
18212 A type code is returned, either |open| (if the direction was $(0,0)$),
18213 or |curl| (if the direction was a curl of known value |cur_exp|), or
18214 |given| (if the direction is given by the |angle| value that now
18215 appears in |cur_exp|).
18217 There's nothing difficult about this subroutine, but the program is rather
18218 lengthy because a variety of potential errors need to be nipped in the bud.
18220 @c small_number mp_scan_direction (MP mp) {
18221 int t; /* the type of information found */
18222 scaled x; /* an |x| coordinate */
18224 if ( mp->cur_cmd==curl_command ) {
18225 @<Scan a curl specification@>;
18227 @<Scan a given direction@>;
18229 if ( mp->cur_cmd!=right_brace ) {
18230 mp_missing_err(mp, "}");
18231 @.Missing `\char`\}'@>
18232 help3("I've scanned a direction spec for part of a path,")
18233 ("so a right brace should have come next.")
18234 ("I shall pretend that one was there.");
18241 @ @<Scan a curl specification@>=
18242 { mp_get_x_next(mp); mp_scan_expression(mp);
18243 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18244 exp_err("Improper curl has been replaced by 1");
18246 help1("A curl must be a known, nonnegative number.");
18247 mp_put_get_flush_error(mp, unity);
18252 @ @<Scan a given direction@>=
18253 { mp_scan_expression(mp);
18254 if ( mp->cur_type>mp_pair_type ) {
18255 @<Get given directions separated by commas@>;
18259 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18260 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18263 @ @<Get given directions separated by commas@>=
18265 if ( mp->cur_type!=mp_known ) {
18266 exp_err("Undefined x coordinate has been replaced by 0");
18267 @.Undefined coordinates...@>
18268 help5("I need a `known' x value for this part of the path.")
18269 ("The value I found (see above) was no good;")
18270 ("so I'll try to keep going by using zero instead.")
18271 ("(Chapter 27 of The METAFONTbook explains that")
18272 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18273 ("you might want to type `I ??" "?' now.)");
18274 mp_put_get_flush_error(mp, 0);
18277 if ( mp->cur_cmd!=comma ) {
18278 mp_missing_err(mp, ",");
18280 help2("I've got the x coordinate of a path direction;")
18281 ("will look for the y coordinate next.");
18284 mp_get_x_next(mp); mp_scan_expression(mp);
18285 if ( mp->cur_type!=mp_known ) {
18286 exp_err("Undefined y coordinate has been replaced by 0");
18287 help5("I need a `known' y value for this part of the path.")
18288 ("The value I found (see above) was no good;")
18289 ("so I'll try to keep going by using zero instead.")
18290 ("(Chapter 27 of The METAFONTbook explains that")
18291 ("you might want to type `I ??" "?' now.)");
18292 mp_put_get_flush_error(mp, 0);
18294 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18297 @ At this point |right_type(q)| is usually |open|, but it may have been
18298 set to some other value by a previous splicing operation. We must maintain
18299 the value of |right_type(q)| in unusual cases such as
18300 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18302 @<Put the pre-join...@>=
18304 t=mp_scan_direction(mp);
18305 if ( t!=mp_open ) {
18306 right_type(q)=t; right_given(q)=mp->cur_exp;
18307 if ( left_type(q)==mp_open ) {
18308 left_type(q)=t; left_given(q)=mp->cur_exp;
18309 } /* note that |left_given(q)=left_curl(q)| */
18313 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18314 and since |left_given| is similarly equivalent to |left_x|, we use
18315 |x| and |y| to hold the given direction and tension information when
18316 there are no explicit control points.
18318 @<Put the post-join...@>=
18320 t=mp_scan_direction(mp);
18321 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18322 else t=mp_explicit; /* the direction information is superfluous */
18325 @ @<Determine the tension and/or...@>=
18328 if ( mp->cur_cmd==tension ) {
18329 @<Set explicit tensions@>;
18330 } else if ( mp->cur_cmd==controls ) {
18331 @<Set explicit control points@>;
18333 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18336 if ( mp->cur_cmd!=path_join ) {
18337 mp_missing_err(mp, "..");
18339 help1("A path join command should end with two dots.");
18346 @ @<Set explicit tensions@>=
18348 mp_get_x_next(mp); y=mp->cur_cmd;
18349 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18350 mp_scan_primary(mp);
18351 @<Make sure that the current expression is a valid tension setting@>;
18352 if ( y==at_least ) negate(mp->cur_exp);
18353 right_tension(q)=mp->cur_exp;
18354 if ( mp->cur_cmd==and_command ) {
18355 mp_get_x_next(mp); y=mp->cur_cmd;
18356 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18357 mp_scan_primary(mp);
18358 @<Make sure that the current expression is a valid tension setting@>;
18359 if ( y==at_least ) negate(mp->cur_exp);
18364 @ @d min_tension three_quarter_unit
18366 @<Make sure that the current expression is a valid tension setting@>=
18367 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18368 exp_err("Improper tension has been set to 1");
18369 @.Improper tension@>
18370 help1("The expression above should have been a number >=3/4.");
18371 mp_put_get_flush_error(mp, unity);
18374 @ @<Set explicit control points@>=
18376 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18377 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18378 if ( mp->cur_cmd!=and_command ) {
18379 x=right_x(q); y=right_y(q);
18381 mp_get_x_next(mp); mp_scan_primary(mp);
18382 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18386 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18388 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18389 else pp=mp->cur_exp;
18391 while ( link(qq)!=pp ) qq=link(qq);
18392 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18393 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18395 left_type(pp)=mp_open; right_type(qq)=mp_open;
18398 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18399 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18400 shouldn't have length zero.
18402 @<Get ready to close a cycle@>=
18404 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18405 if ( d==ampersand ) if ( p==q ) {
18406 d=path_join; right_tension(q)=unity; y=unity;
18410 @ @<Join the partial paths and reset |p| and |q|...@>=
18412 if ( d==ampersand ) {
18413 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18414 print_err("Paths don't touch; `&' will be changed to `..'");
18415 @.Paths don't touch@>
18416 help3("When you join paths `p&q', the ending point of p")
18417 ("must be exactly equal to the starting point of q.")
18418 ("So I'm going to pretend that you said `p..q' instead.");
18419 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18422 @<Plug an opening in |right_type(pp)|, if possible@>;
18423 if ( d==ampersand ) {
18424 @<Splice independent paths together@>;
18426 @<Plug an opening in |right_type(q)|, if possible@>;
18427 link(q)=pp; left_y(pp)=y;
18428 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18433 @ @<Plug an opening in |right_type(q)|...@>=
18434 if ( right_type(q)==mp_open ) {
18435 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18436 right_type(q)=left_type(q); right_given(q)=left_given(q);
18440 @ @<Plug an opening in |right_type(pp)|...@>=
18441 if ( right_type(pp)==mp_open ) {
18442 if ( (t==mp_curl)||(t==mp_given) ) {
18443 right_type(pp)=t; right_given(pp)=x;
18447 @ @<Splice independent paths together@>=
18449 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18450 left_type(q)=mp_curl; left_curl(q)=unity;
18452 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18453 right_type(pp)=mp_curl; right_curl(pp)=unity;
18455 right_type(q)=right_type(pp); link(q)=link(pp);
18456 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18457 mp_free_node(mp, pp,knot_node_size);
18458 if ( qq==pp ) qq=q;
18461 @ @<Choose control points for the path...@>=
18463 if ( d==ampersand ) p=q;
18465 left_type(p)=mp_endpoint;
18466 if ( right_type(p)==mp_open ) {
18467 right_type(p)=mp_curl; right_curl(p)=unity;
18469 right_type(q)=mp_endpoint;
18470 if ( left_type(q)==mp_open ) {
18471 left_type(q)=mp_curl; left_curl(q)=unity;
18475 mp_make_choices(mp, p);
18476 mp->cur_type=mp_path_type; mp->cur_exp=p
18478 @ Finally, we sometimes need to scan an expression whose value is
18479 supposed to be either |true_code| or |false_code|.
18481 @<Declare the basic parsing subroutines@>=
18482 void mp_get_boolean (MP mp) {
18483 mp_get_x_next(mp); mp_scan_expression(mp);
18484 if ( mp->cur_type!=mp_boolean_type ) {
18485 exp_err("Undefined condition will be treated as `false'");
18486 @.Undefined condition...@>
18487 help2("The expression shown above should have had a definite")
18488 ("true-or-false value. I'm changing it to `false'.");
18489 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18493 @* \[39] Doing the operations.
18494 The purpose of parsing is primarily to permit people to avoid piles of
18495 parentheses. But the real work is done after the structure of an expression
18496 has been recognized; that's when new expressions are generated. We
18497 turn now to the guts of \MP, which handles individual operators that
18498 have come through the parsing mechanism.
18500 We'll start with the easy ones that take no operands, then work our way
18501 up to operators with one and ultimately two arguments. In other words,
18502 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18503 that are invoked periodically by the expression scanners.
18505 First let's make sure that all of the primitive operators are in the
18506 hash table. Although |scan_primary| and its relatives made use of the
18507 \\{cmd} code for these operators, the \\{do} routines base everything
18508 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18509 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18512 mp_primitive(mp, "true",nullary,true_code);
18513 @:true_}{\&{true} primitive@>
18514 mp_primitive(mp, "false",nullary,false_code);
18515 @:false_}{\&{false} primitive@>
18516 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18517 @:null_picture_}{\&{nullpicture} primitive@>
18518 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18519 @:null_pen_}{\&{nullpen} primitive@>
18520 mp_primitive(mp, "jobname",nullary,job_name_op);
18521 @:job_name_}{\&{jobname} primitive@>
18522 mp_primitive(mp, "readstring",nullary,read_string_op);
18523 @:read_string_}{\&{readstring} primitive@>
18524 mp_primitive(mp, "pencircle",nullary,pen_circle);
18525 @:pen_circle_}{\&{pencircle} primitive@>
18526 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18527 @:normal_deviate_}{\&{normaldeviate} primitive@>
18528 mp_primitive(mp, "readfrom",unary,read_from_op);
18529 @:read_from_}{\&{readfrom} primitive@>
18530 mp_primitive(mp, "closefrom",unary,close_from_op);
18531 @:close_from_}{\&{closefrom} primitive@>
18532 mp_primitive(mp, "odd",unary,odd_op);
18533 @:odd_}{\&{odd} primitive@>
18534 mp_primitive(mp, "known",unary,known_op);
18535 @:known_}{\&{known} primitive@>
18536 mp_primitive(mp, "unknown",unary,unknown_op);
18537 @:unknown_}{\&{unknown} primitive@>
18538 mp_primitive(mp, "not",unary,not_op);
18539 @:not_}{\&{not} primitive@>
18540 mp_primitive(mp, "decimal",unary,decimal);
18541 @:decimal_}{\&{decimal} primitive@>
18542 mp_primitive(mp, "reverse",unary,reverse);
18543 @:reverse_}{\&{reverse} primitive@>
18544 mp_primitive(mp, "makepath",unary,make_path_op);
18545 @:make_path_}{\&{makepath} primitive@>
18546 mp_primitive(mp, "makepen",unary,make_pen_op);
18547 @:make_pen_}{\&{makepen} primitive@>
18548 mp_primitive(mp, "oct",unary,oct_op);
18549 @:oct_}{\&{oct} primitive@>
18550 mp_primitive(mp, "hex",unary,hex_op);
18551 @:hex_}{\&{hex} primitive@>
18552 mp_primitive(mp, "ASCII",unary,ASCII_op);
18553 @:ASCII_}{\&{ASCII} primitive@>
18554 mp_primitive(mp, "char",unary,char_op);
18555 @:char_}{\&{char} primitive@>
18556 mp_primitive(mp, "length",unary,length_op);
18557 @:length_}{\&{length} primitive@>
18558 mp_primitive(mp, "turningnumber",unary,turning_op);
18559 @:turning_number_}{\&{turningnumber} primitive@>
18560 mp_primitive(mp, "xpart",unary,x_part);
18561 @:x_part_}{\&{xpart} primitive@>
18562 mp_primitive(mp, "ypart",unary,y_part);
18563 @:y_part_}{\&{ypart} primitive@>
18564 mp_primitive(mp, "xxpart",unary,xx_part);
18565 @:xx_part_}{\&{xxpart} primitive@>
18566 mp_primitive(mp, "xypart",unary,xy_part);
18567 @:xy_part_}{\&{xypart} primitive@>
18568 mp_primitive(mp, "yxpart",unary,yx_part);
18569 @:yx_part_}{\&{yxpart} primitive@>
18570 mp_primitive(mp, "yypart",unary,yy_part);
18571 @:yy_part_}{\&{yypart} primitive@>
18572 mp_primitive(mp, "redpart",unary,red_part);
18573 @:red_part_}{\&{redpart} primitive@>
18574 mp_primitive(mp, "greenpart",unary,green_part);
18575 @:green_part_}{\&{greenpart} primitive@>
18576 mp_primitive(mp, "bluepart",unary,blue_part);
18577 @:blue_part_}{\&{bluepart} primitive@>
18578 mp_primitive(mp, "cyanpart",unary,cyan_part);
18579 @:cyan_part_}{\&{cyanpart} primitive@>
18580 mp_primitive(mp, "magentapart",unary,magenta_part);
18581 @:magenta_part_}{\&{magentapart} primitive@>
18582 mp_primitive(mp, "yellowpart",unary,yellow_part);
18583 @:yellow_part_}{\&{yellowpart} primitive@>
18584 mp_primitive(mp, "blackpart",unary,black_part);
18585 @:black_part_}{\&{blackpart} primitive@>
18586 mp_primitive(mp, "greypart",unary,grey_part);
18587 @:grey_part_}{\&{greypart} primitive@>
18588 mp_primitive(mp, "colormodel",unary,color_model_part);
18589 @:color_model_part_}{\&{colormodel} primitive@>
18590 mp_primitive(mp, "fontpart",unary,font_part);
18591 @:font_part_}{\&{fontpart} primitive@>
18592 mp_primitive(mp, "textpart",unary,text_part);
18593 @:text_part_}{\&{textpart} primitive@>
18594 mp_primitive(mp, "pathpart",unary,path_part);
18595 @:path_part_}{\&{pathpart} primitive@>
18596 mp_primitive(mp, "penpart",unary,pen_part);
18597 @:pen_part_}{\&{penpart} primitive@>
18598 mp_primitive(mp, "dashpart",unary,dash_part);
18599 @:dash_part_}{\&{dashpart} primitive@>
18600 mp_primitive(mp, "sqrt",unary,sqrt_op);
18601 @:sqrt_}{\&{sqrt} primitive@>
18602 mp_primitive(mp, "mexp",unary,m_exp_op);
18603 @:m_exp_}{\&{mexp} primitive@>
18604 mp_primitive(mp, "mlog",unary,m_log_op);
18605 @:m_log_}{\&{mlog} primitive@>
18606 mp_primitive(mp, "sind",unary,sin_d_op);
18607 @:sin_d_}{\&{sind} primitive@>
18608 mp_primitive(mp, "cosd",unary,cos_d_op);
18609 @:cos_d_}{\&{cosd} primitive@>
18610 mp_primitive(mp, "floor",unary,floor_op);
18611 @:floor_}{\&{floor} primitive@>
18612 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18613 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18614 mp_primitive(mp, "charexists",unary,char_exists_op);
18615 @:char_exists_}{\&{charexists} primitive@>
18616 mp_primitive(mp, "fontsize",unary,font_size);
18617 @:font_size_}{\&{fontsize} primitive@>
18618 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18619 @:ll_corner_}{\&{llcorner} primitive@>
18620 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18621 @:lr_corner_}{\&{lrcorner} primitive@>
18622 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18623 @:ul_corner_}{\&{ulcorner} primitive@>
18624 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18625 @:ur_corner_}{\&{urcorner} primitive@>
18626 mp_primitive(mp, "arclength",unary,arc_length);
18627 @:arc_length_}{\&{arclength} primitive@>
18628 mp_primitive(mp, "angle",unary,angle_op);
18629 @:angle_}{\&{angle} primitive@>
18630 mp_primitive(mp, "cycle",cycle,cycle_op);
18631 @:cycle_}{\&{cycle} primitive@>
18632 mp_primitive(mp, "stroked",unary,stroked_op);
18633 @:stroked_}{\&{stroked} primitive@>
18634 mp_primitive(mp, "filled",unary,filled_op);
18635 @:filled_}{\&{filled} primitive@>
18636 mp_primitive(mp, "textual",unary,textual_op);
18637 @:textual_}{\&{textual} primitive@>
18638 mp_primitive(mp, "clipped",unary,clipped_op);
18639 @:clipped_}{\&{clipped} primitive@>
18640 mp_primitive(mp, "bounded",unary,bounded_op);
18641 @:bounded_}{\&{bounded} primitive@>
18642 mp_primitive(mp, "+",plus_or_minus,plus);
18643 @:+ }{\.{+} primitive@>
18644 mp_primitive(mp, "-",plus_or_minus,minus);
18645 @:- }{\.{-} primitive@>
18646 mp_primitive(mp, "*",secondary_binary,times);
18647 @:* }{\.{*} primitive@>
18648 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18649 @:/ }{\.{/} primitive@>
18650 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18651 @:++_}{\.{++} primitive@>
18652 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18653 @:+-+_}{\.{+-+} primitive@>
18654 mp_primitive(mp, "or",tertiary_binary,or_op);
18655 @:or_}{\&{or} primitive@>
18656 mp_primitive(mp, "and",and_command,and_op);
18657 @:and_}{\&{and} primitive@>
18658 mp_primitive(mp, "<",expression_binary,less_than);
18659 @:< }{\.{<} primitive@>
18660 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18661 @:<=_}{\.{<=} primitive@>
18662 mp_primitive(mp, ">",expression_binary,greater_than);
18663 @:> }{\.{>} primitive@>
18664 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18665 @:>=_}{\.{>=} primitive@>
18666 mp_primitive(mp, "=",equals,equal_to);
18667 @:= }{\.{=} primitive@>
18668 mp_primitive(mp, "<>",expression_binary,unequal_to);
18669 @:<>_}{\.{<>} primitive@>
18670 mp_primitive(mp, "substring",primary_binary,substring_of);
18671 @:substring_}{\&{substring} primitive@>
18672 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18673 @:subpath_}{\&{subpath} primitive@>
18674 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18675 @:direction_time_}{\&{directiontime} primitive@>
18676 mp_primitive(mp, "point",primary_binary,point_of);
18677 @:point_}{\&{point} primitive@>
18678 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18679 @:precontrol_}{\&{precontrol} primitive@>
18680 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18681 @:postcontrol_}{\&{postcontrol} primitive@>
18682 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18683 @:pen_offset_}{\&{penoffset} primitive@>
18684 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18685 @:arc_time_of_}{\&{arctime} primitive@>
18686 mp_primitive(mp, "mpversion",nullary,mp_version);
18687 @:mp_verison_}{\&{mpversion} primitive@>
18688 mp_primitive(mp, "&",ampersand,concatenate);
18689 @:!!!}{\.{\&} primitive@>
18690 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18691 @:rotated_}{\&{rotated} primitive@>
18692 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18693 @:slanted_}{\&{slanted} primitive@>
18694 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18695 @:scaled_}{\&{scaled} primitive@>
18696 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18697 @:shifted_}{\&{shifted} primitive@>
18698 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18699 @:transformed_}{\&{transformed} primitive@>
18700 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18701 @:x_scaled_}{\&{xscaled} primitive@>
18702 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18703 @:y_scaled_}{\&{yscaled} primitive@>
18704 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18705 @:z_scaled_}{\&{zscaled} primitive@>
18706 mp_primitive(mp, "infont",secondary_binary,in_font);
18707 @:in_font_}{\&{infont} primitive@>
18708 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18709 @:intersection_times_}{\&{intersectiontimes} primitive@>
18710 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18711 @:envelope_}{\&{envelope} primitive@>
18713 @ @<Cases of |print_cmd...@>=
18716 case primary_binary:
18717 case secondary_binary:
18718 case tertiary_binary:
18719 case expression_binary:
18721 case plus_or_minus:
18726 mp_print_op(mp, m);
18729 @ OK, let's look at the simplest \\{do} procedure first.
18731 @c @<Declare nullary action procedure@>;
18732 void mp_do_nullary (MP mp,quarterword c) {
18734 if ( mp->internal[mp_tracing_commands]>two )
18735 mp_show_cmd_mod(mp, nullary,c);
18737 case true_code: case false_code:
18738 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18740 case null_picture_code:
18741 mp->cur_type=mp_picture_type;
18742 mp->cur_exp=mp_get_node(mp, edge_header_size);
18743 mp_init_edges(mp, mp->cur_exp);
18745 case null_pen_code:
18746 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18748 case normal_deviate:
18749 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18752 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18755 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18756 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18759 mp->cur_type=mp_string_type;
18760 mp->cur_exp=intern(metapost_version) ;
18762 case read_string_op:
18763 @<Read a string from the terminal@>;
18765 } /* there are no other cases */
18769 @ @<Read a string...@>=
18771 if ( mp->interaction<=mp_nonstop_mode )
18772 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18773 mp_begin_file_reading(mp); name=is_read;
18774 limit=start; prompt_input("");
18775 mp_finish_read(mp);
18778 @ @<Declare nullary action procedure@>=
18779 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18781 str_room((int)mp->last-start);
18782 for (k=start;k<=mp->last-1;k++) {
18783 append_char(mp->buffer[k]);
18785 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18786 mp->cur_exp=mp_make_string(mp);
18789 @ Things get a bit more interesting when there's an operand. The
18790 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18792 @c @<Declare unary action procedures@>;
18793 void mp_do_unary (MP mp,quarterword c) {
18794 pointer p,q,r; /* for list manipulation */
18795 integer x; /* a temporary register */
18797 if ( mp->internal[mp_tracing_commands]>two )
18798 @<Trace the current unary operation@>;
18801 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18804 @<Negate the current expression@>;
18806 @<Additional cases of unary operators@>;
18807 } /* there are no other cases */
18811 @ The |nice_pair| function returns |true| if both components of a pair
18814 @<Declare unary action procedures@>=
18815 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18816 if ( t==mp_pair_type ) {
18818 if ( type(x_part_loc(p))==mp_known )
18819 if ( type(y_part_loc(p))==mp_known )
18825 @ The |nice_color_or_pair| function is analogous except that it also accepts
18826 fully known colors.
18828 @<Declare unary action procedures@>=
18829 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18830 pointer q,r; /* for scanning the big node */
18831 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18835 r=q+mp->big_node_size[type(p)];
18838 if ( type(r)!=mp_known )
18845 @ @<Declare unary action...@>=
18846 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18847 mp_print_char(mp, '(');
18848 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18849 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18850 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18851 mp_print_type(mp, t);
18853 mp_print_char(mp, ')');
18856 @ @<Declare unary action...@>=
18857 void mp_bad_unary (MP mp,quarterword c) {
18858 exp_err("Not implemented: "); mp_print_op(mp, c);
18859 @.Not implemented...@>
18860 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18861 help3("I'm afraid I don't know how to apply that operation to that")
18862 ("particular type. Continue, and I'll simply return the")
18863 ("argument (shown above) as the result of the operation.");
18864 mp_put_get_error(mp);
18867 @ @<Trace the current unary operation@>=
18869 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18870 mp_print_op(mp, c); mp_print_char(mp, '(');
18871 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18872 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18875 @ Negation is easy except when the current expression
18876 is of type |independent|, or when it is a pair with one or more
18877 |independent| components.
18879 It is tempting to argue that the negative of an independent variable
18880 is an independent variable, hence we don't have to do anything when
18881 negating it. The fallacy is that other dependent variables pointing
18882 to the current expression must change the sign of their
18883 coefficients if we make no change to the current expression.
18885 Instead, we work around the problem by copying the current expression
18886 and recycling it afterwards (cf.~the |stash_in| routine).
18888 @<Negate the current expression@>=
18889 switch (mp->cur_type) {
18890 case mp_color_type:
18891 case mp_cmykcolor_type:
18893 case mp_independent:
18894 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18895 if ( mp->cur_type==mp_dependent ) {
18896 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18897 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18898 p=value(mp->cur_exp);
18899 r=p+mp->big_node_size[mp->cur_type];
18902 if ( type(r)==mp_known ) negate(value(r));
18903 else mp_negate_dep_list(mp, dep_list(r));
18905 } /* if |cur_type=mp_known| then |cur_exp=0| */
18906 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18909 case mp_proto_dependent:
18910 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18913 negate(mp->cur_exp);
18916 mp_bad_unary(mp, minus);
18920 @ @<Declare unary action...@>=
18921 void mp_negate_dep_list (MP mp,pointer p) {
18924 if ( info(p)==null ) return;
18929 @ @<Additional cases of unary operators@>=
18931 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18932 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18935 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18936 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18938 @<Additional cases of unary operators@>=
18945 case uniform_deviate:
18947 case char_exists_op:
18948 if ( mp->cur_type!=mp_known ) {
18949 mp_bad_unary(mp, c);
18952 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18953 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18954 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18957 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18958 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18959 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18961 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18962 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18964 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18965 mp->cur_type=mp_boolean_type;
18967 case char_exists_op:
18968 @<Determine if a character has been shipped out@>;
18970 } /* there are no other cases */
18974 @ @<Additional cases of unary operators@>=
18976 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18977 p=value(mp->cur_exp);
18978 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18979 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18980 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18982 mp_bad_unary(mp, angle_op);
18986 @ If the current expression is a pair, but the context wants it to
18987 be a path, we call |pair_to_path|.
18989 @<Declare unary action...@>=
18990 void mp_pair_to_path (MP mp) {
18991 mp->cur_exp=mp_new_knot(mp);
18992 mp->cur_type=mp_path_type;
18995 @ @<Additional cases of unary operators@>=
18998 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18999 mp_take_part(mp, c);
19000 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19001 else mp_bad_unary(mp, c);
19007 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
19008 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19009 else mp_bad_unary(mp, c);
19014 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
19015 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19016 else mp_bad_unary(mp, c);
19022 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
19023 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19024 else mp_bad_unary(mp, c);
19027 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
19028 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19029 else mp_bad_unary(mp, c);
19031 case color_model_part:
19032 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19033 else mp_bad_unary(mp, c);
19036 @ In the following procedure, |cur_exp| points to a capsule, which points to
19037 a big node. We want to delete all but one part of the big node.
19039 @<Declare unary action...@>=
19040 void mp_take_part (MP mp,quarterword c) {
19041 pointer p; /* the big node */
19042 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19043 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19044 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19045 mp_recycle_value(mp, temp_val);
19048 @ @<Initialize table entries...@>=
19049 name_type(temp_val)=mp_capsule;
19051 @ @<Additional cases of unary operators@>=
19057 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19058 else mp_bad_unary(mp, c);
19061 @ @<Declarations@>=
19062 void mp_scale_edges (MP mp);
19064 @ @<Declare unary action...@>=
19065 void mp_take_pict_part (MP mp,quarterword c) {
19066 pointer p; /* first graphical object in |cur_exp| */
19067 p=link(dummy_loc(mp->cur_exp));
19070 case x_part: case y_part: case xx_part:
19071 case xy_part: case yx_part: case yy_part:
19072 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19073 else goto NOT_FOUND;
19075 case red_part: case green_part: case blue_part:
19076 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19077 else goto NOT_FOUND;
19079 case cyan_part: case magenta_part: case yellow_part:
19081 if ( has_color(p) ) {
19082 if ( color_model(p)==mp_uninitialized_model )
19083 mp_flush_cur_exp(mp, unity);
19085 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19086 } else goto NOT_FOUND;
19089 if ( has_color(p) )
19090 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19091 else goto NOT_FOUND;
19093 case color_model_part:
19094 if ( has_color(p) ) {
19095 if ( color_model(p)==mp_uninitialized_model )
19096 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19098 mp_flush_cur_exp(mp, color_model(p)*unity);
19099 } else goto NOT_FOUND;
19101 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19102 } /* all cases have been enumerated */
19106 @<Convert the current expression to a null value appropriate
19110 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19112 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19114 mp_flush_cur_exp(mp, text_p(p));
19115 add_str_ref(mp->cur_exp);
19116 mp->cur_type=mp_string_type;
19120 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19122 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19123 add_str_ref(mp->cur_exp);
19124 mp->cur_type=mp_string_type;
19128 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19129 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19130 @:this can't happen pict}{\quad pict@>
19132 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19133 mp->cur_type=mp_path_type;
19137 if ( ! has_pen(p) ) goto NOT_FOUND;
19139 if ( pen_p(p)==null ) goto NOT_FOUND;
19140 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19141 mp->cur_type=mp_pen_type;
19146 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19147 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19148 else { add_edge_ref(dash_p(p));
19149 mp->se_sf=dash_scale(p);
19150 mp->se_pic=dash_p(p);
19151 mp_scale_edges(mp);
19152 mp_flush_cur_exp(mp, mp->se_pic);
19153 mp->cur_type=mp_picture_type;
19158 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19159 parameterless procedure even though it really takes two arguments and updates
19160 one of them. Hence the following globals are needed.
19163 pointer se_pic; /* edge header used and updated by |scale_edges| */
19164 scaled se_sf; /* the scale factor argument to |scale_edges| */
19166 @ @<Convert the current expression to a null value appropriate...@>=
19168 case text_part: case font_part:
19169 mp_flush_cur_exp(mp, rts(""));
19170 mp->cur_type=mp_string_type;
19173 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19174 left_type(mp->cur_exp)=mp_endpoint;
19175 right_type(mp->cur_exp)=mp_endpoint;
19176 link(mp->cur_exp)=mp->cur_exp;
19177 x_coord(mp->cur_exp)=0;
19178 y_coord(mp->cur_exp)=0;
19179 originator(mp->cur_exp)=mp_metapost_user;
19180 mp->cur_type=mp_path_type;
19183 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19184 mp->cur_type=mp_pen_type;
19187 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19188 mp_init_edges(mp, mp->cur_exp);
19189 mp->cur_type=mp_picture_type;
19192 mp_flush_cur_exp(mp, 0);
19196 @ @<Additional cases of unary...@>=
19198 if ( mp->cur_type!=mp_known ) {
19199 mp_bad_unary(mp, char_op);
19201 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19202 mp->cur_type=mp_string_type;
19203 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19207 if ( mp->cur_type!=mp_known ) {
19208 mp_bad_unary(mp, decimal);
19210 mp->old_setting=mp->selector; mp->selector=new_string;
19211 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19212 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19218 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19219 else mp_str_to_num(mp, c);
19222 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19223 else @<Find the design size of the font whose name is |cur_exp|@>;
19226 @ @<Declare unary action...@>=
19227 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19228 integer n; /* accumulator */
19229 ASCII_code m; /* current character */
19230 pool_pointer k; /* index into |str_pool| */
19231 int b; /* radix of conversion */
19232 boolean bad_char; /* did the string contain an invalid digit? */
19233 if ( c==ASCII_op ) {
19234 if ( length(mp->cur_exp)==0 ) n=-1;
19235 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19237 if ( c==oct_op ) b=8; else b=16;
19238 n=0; bad_char=false;
19239 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19241 if ( (m>='0')&&(m<='9') ) m=m-'0';
19242 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19243 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19244 else { bad_char=true; m=0; };
19245 if ( m>=b ) { bad_char=true; m=0; };
19246 if ( n<32768 / b ) n=n*b+m; else n=32767;
19248 @<Give error messages if |bad_char| or |n>=4096|@>;
19250 mp_flush_cur_exp(mp, n*unity);
19253 @ @<Give error messages if |bad_char|...@>=
19255 exp_err("String contains illegal digits");
19256 @.String contains illegal digits@>
19258 help1("I zeroed out characters that weren't in the range 0..7.");
19260 help1("I zeroed out characters that weren't hex digits.");
19262 mp_put_get_error(mp);
19265 if ( mp->internal[mp_warning_check]>0 ) {
19266 print_err("Number too large (");
19267 mp_print_int(mp, n); mp_print_char(mp, ')');
19268 @.Number too large@>
19269 help2("I have trouble with numbers greater than 4095; watch out.")
19270 ("(Set warningcheck:=0 to suppress this message.)");
19271 mp_put_get_error(mp);
19275 @ The length operation is somewhat unusual in that it applies to a variety
19276 of different types of operands.
19278 @<Additional cases of unary...@>=
19280 switch (mp->cur_type) {
19281 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19282 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19283 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19284 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19286 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19287 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19288 value(x_part_loc(value(mp->cur_exp))),
19289 value(y_part_loc(value(mp->cur_exp)))));
19290 else mp_bad_unary(mp, c);
19295 @ @<Declare unary action...@>=
19296 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19297 scaled n; /* the path length so far */
19298 pointer p; /* traverser */
19300 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19301 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19305 @ @<Declare unary action...@>=
19306 scaled mp_pict_length (MP mp) {
19307 /* counts interior components in picture |cur_exp| */
19308 scaled n; /* the count so far */
19309 pointer p; /* traverser */
19311 p=link(dummy_loc(mp->cur_exp));
19313 if ( is_start_or_stop(p) )
19314 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19315 while ( p!=null ) {
19316 skip_component(p) return n;
19323 @ Implement |turningnumber|
19325 @<Additional cases of unary...@>=
19327 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19328 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19329 else if ( left_type(mp->cur_exp)==mp_endpoint )
19330 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19332 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19335 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19336 argument is |origin|.
19338 @<Declare unary action...@>=
19339 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19340 if ( (! ((xpar==0) && (ypar==0))) )
19341 return mp_n_arg(mp, xpar,ypar);
19346 @ The actual turning number is (for the moment) computed in a C function
19347 that receives eight integers corresponding to the four controlling points,
19348 and returns a single angle. Besides those, we have to account for discrete
19349 moves at the actual points.
19351 @d floor(a) (a>=0 ? a : -(int)(-a))
19352 @d bezier_error (720<<20)+1
19353 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19355 @d out ((double)(xo>>20))
19356 @d mid ((double)(xm>>20))
19357 @d in ((double)(xi>>20))
19358 @d divisor (256*256)
19359 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19361 @<Declare unary action...@>=
19362 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19363 integer CX,integer CY,integer DX,integer DY);
19366 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19367 integer CX,integer CY,integer DX,integer DY) {
19369 integer deltax,deltay;
19370 double ax,ay,bx,by,cx,cy,dx,dy;
19371 angle xi = 0, xo = 0, xm = 0;
19373 ax=AX/divisor; ay=AY/divisor;
19374 bx=BX/divisor; by=BY/divisor;
19375 cx=CX/divisor; cy=CY/divisor;
19376 dx=DX/divisor; dy=DY/divisor;
19378 deltax = (BX-AX); deltay = (BY-AY);
19379 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19380 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19381 xi = mp_an_angle(mp,deltax,deltay);
19383 deltax = (CX-BX); deltay = (CY-BY);
19384 xm = mp_an_angle(mp,deltax,deltay);
19386 deltax = (DX-CX); deltay = (DY-CY);
19387 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19388 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19389 xo = mp_an_angle(mp,deltax,deltay);
19391 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19392 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19393 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19395 if ((a==0)&&(c==0)) {
19396 res = (b==0 ? 0 : (out-in));
19397 print_roots("no roots (a)");
19398 } else if ((a==0)||(c==0)) {
19399 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19400 res = out-in; /* ? */
19403 else if (res>180.0)
19405 print_roots("no roots (b)");
19407 res = out-in; /* ? */
19408 print_roots("one root (a)");
19410 } else if ((sign(a)*sign(c))<0) {
19411 res = out-in; /* ? */
19414 else if (res>180.0)
19416 print_roots("one root (b)");
19418 if (sign(a) == sign(b)) {
19419 res = out-in; /* ? */
19422 else if (res>180.0)
19424 print_roots("no roots (d)");
19426 if ((b*b) == (4*a*c)) {
19427 res = bezier_error;
19428 print_roots("double root"); /* cusp */
19429 } else if ((b*b) < (4*a*c)) {
19430 res = out-in; /* ? */
19431 if (res<=0.0 &&res>-180.0)
19433 else if (res>=0.0 && res<180.0)
19435 print_roots("no roots (e)");
19440 else if (res>180.0)
19442 print_roots("two roots"); /* two inflections */
19446 return double2angle(res);
19450 @d p_nextnext link(link(p))
19452 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19454 @<Declare unary action...@>=
19455 scaled mp_new_turn_cycles (MP mp,pointer c) {
19456 angle res,ang; /* the angles of intermediate results */
19457 scaled turns; /* the turn counter */
19458 pointer p; /* for running around the path */
19459 integer xp,yp; /* coordinates of next point */
19460 integer x,y; /* helper coordinates */
19461 angle in_angle,out_angle; /* helper angles */
19462 int old_setting; /* saved |selector| setting */
19466 old_setting = mp->selector; mp->selector=term_only;
19467 if ( mp->internal[mp_tracing_commands]>unity ) {
19468 mp_begin_diagnostic(mp);
19469 mp_print_nl(mp, "");
19470 mp_end_diagnostic(mp, false);
19473 xp = x_coord(p_next); yp = y_coord(p_next);
19474 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19475 left_x(p_next), left_y(p_next), xp, yp);
19476 if ( ang>seven_twenty_deg ) {
19477 print_err("Strange path");
19479 mp->selector=old_setting;
19483 if ( res > one_eighty_deg ) {
19484 res = res - three_sixty_deg;
19485 turns = turns + unity;
19487 if ( res <= -one_eighty_deg ) {
19488 res = res + three_sixty_deg;
19489 turns = turns - unity;
19491 /* incoming angle at next point */
19492 x = left_x(p_next); y = left_y(p_next);
19493 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19494 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19495 in_angle = mp_an_angle(mp, xp - x, yp - y);
19496 /* outgoing angle at next point */
19497 x = right_x(p_next); y = right_y(p_next);
19498 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19499 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19500 out_angle = mp_an_angle(mp, x - xp, y- yp);
19501 ang = (out_angle - in_angle);
19505 if ( res >= one_eighty_deg ) {
19506 res = res - three_sixty_deg;
19507 turns = turns + unity;
19509 if ( res <= -one_eighty_deg ) {
19510 res = res + three_sixty_deg;
19511 turns = turns - unity;
19516 mp->selector=old_setting;
19521 @ This code is based on Bogus\l{}av Jackowski's
19522 |emergency_turningnumber| macro, with some minor changes by Taco
19523 Hoekwater. The macro code looked more like this:
19525 vardef turning\_number primary p =
19526 ~~save res, ang, turns;
19528 ~~if length p <= 2:
19529 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19531 ~~~~for t = 0 upto length p-1 :
19532 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19533 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19534 ~~~~~~if angc > 180: angc := angc - 360; fi;
19535 ~~~~~~if angc < -180: angc := angc + 360; fi;
19536 ~~~~~~res := res + angc;
19541 The general idea is to calculate only the sum of the angles of
19542 straight lines between the points, of a path, not worrying about cusps
19543 or self-intersections in the segments at all. If the segment is not
19544 well-behaved, the result is not necesarily correct. But the old code
19545 was not always correct either, and worse, it sometimes failed for
19546 well-behaved paths as well. All known bugs that were triggered by the
19547 original code no longer occur with this code, and it runs roughly 3
19548 times as fast because the algorithm is much simpler.
19550 @ It is possible to overflow the return value of the |turn_cycles|
19551 function when the path is sufficiently long and winding, but I am not
19552 going to bother testing for that. In any case, it would only return
19553 the looped result value, which is not a big problem.
19555 The macro code for the repeat loop was a bit nicer to look
19556 at than the pascal code, because it could use |point -1 of p|. In
19557 pascal, the fastest way to loop around the path is not to look
19558 backward once, but forward twice. These defines help hide the trick.
19560 @d p_to link(link(p))
19564 @<Declare unary action...@>=
19565 scaled mp_turn_cycles (MP mp,pointer c) {
19566 angle res,ang; /* the angles of intermediate results */
19567 scaled turns; /* the turn counter */
19568 pointer p; /* for running around the path */
19569 res=0; turns= 0; p=c;
19571 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19572 y_coord(p_to) - y_coord(p_here))
19573 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19574 y_coord(p_here) - y_coord(p_from));
19577 if ( res >= three_sixty_deg ) {
19578 res = res - three_sixty_deg;
19579 turns = turns + unity;
19581 if ( res <= -three_sixty_deg ) {
19582 res = res + three_sixty_deg;
19583 turns = turns - unity;
19590 @ @<Declare unary action...@>=
19591 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19593 scaled saved_t_o; /* tracing\_online saved */
19594 if ( (link(c)==c)||(link(link(c))==c) ) {
19595 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19600 nval = mp_new_turn_cycles(mp, c);
19601 oval = mp_turn_cycles(mp, c);
19602 if ( nval!=oval ) {
19603 saved_t_o=mp->internal[mp_tracing_online];
19604 mp->internal[mp_tracing_online]=unity;
19605 mp_begin_diagnostic(mp);
19606 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19607 " The current computed value is ");
19608 mp_print_scaled(mp, nval);
19609 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19610 mp_print_scaled(mp, oval);
19611 mp_end_diagnostic(mp, false);
19612 mp->internal[mp_tracing_online]=saved_t_o;
19618 @ @<Declare unary action...@>=
19619 scaled mp_count_turns (MP mp,pointer c) {
19620 pointer p; /* a knot in envelope spec |c| */
19621 integer t; /* total pen offset changes counted */
19624 t=t+info(p)-zero_off;
19627 return ((t / 3)*unity);
19630 @ @d type_range(A,B) {
19631 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19632 mp_flush_cur_exp(mp, true_code);
19633 else mp_flush_cur_exp(mp, false_code);
19634 mp->cur_type=mp_boolean_type;
19637 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19638 else mp_flush_cur_exp(mp, false_code);
19639 mp->cur_type=mp_boolean_type;
19642 @<Additional cases of unary operators@>=
19643 case mp_boolean_type:
19644 type_range(mp_boolean_type,mp_unknown_boolean); break;
19645 case mp_string_type:
19646 type_range(mp_string_type,mp_unknown_string); break;
19648 type_range(mp_pen_type,mp_unknown_pen); break;
19650 type_range(mp_path_type,mp_unknown_path); break;
19651 case mp_picture_type:
19652 type_range(mp_picture_type,mp_unknown_picture); break;
19653 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19655 type_test(c); break;
19656 case mp_numeric_type:
19657 type_range(mp_known,mp_independent); break;
19658 case known_op: case unknown_op:
19659 mp_test_known(mp, c); break;
19661 @ @<Declare unary action procedures@>=
19662 void mp_test_known (MP mp,quarterword c) {
19663 int b; /* is the current expression known? */
19664 pointer p,q; /* locations in a big node */
19666 switch (mp->cur_type) {
19667 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19668 case mp_pen_type: case mp_path_type: case mp_picture_type:
19672 case mp_transform_type:
19673 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19674 p=value(mp->cur_exp);
19675 q=p+mp->big_node_size[mp->cur_type];
19678 if ( type(q)!=mp_known )
19687 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19688 else mp_flush_cur_exp(mp, true_code+false_code-b);
19689 mp->cur_type=mp_boolean_type;
19692 @ @<Additional cases of unary operators@>=
19694 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19695 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19696 else mp_flush_cur_exp(mp, false_code);
19697 mp->cur_type=mp_boolean_type;
19700 @ @<Additional cases of unary operators@>=
19702 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19703 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19704 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19707 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19709 @^data structure assumptions@>
19711 @<Additional cases of unary operators@>=
19717 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19718 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19719 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19720 mp_flush_cur_exp(mp, true_code);
19721 else mp_flush_cur_exp(mp, false_code);
19722 mp->cur_type=mp_boolean_type;
19725 @ @<Additional cases of unary operators@>=
19727 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19728 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19730 mp->cur_type=mp_pen_type;
19731 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19735 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19737 mp->cur_type=mp_path_type;
19738 mp_make_path(mp, mp->cur_exp);
19742 if ( mp->cur_type==mp_path_type ) {
19743 p=mp_htap_ypoc(mp, mp->cur_exp);
19744 if ( right_type(p)==mp_endpoint ) p=link(p);
19745 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19746 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19747 else mp_bad_unary(mp, reverse);
19750 @ The |pair_value| routine changes the current expression to a
19751 given ordered pair of values.
19753 @<Declare unary action procedures@>=
19754 void mp_pair_value (MP mp,scaled x, scaled y) {
19755 pointer p; /* a pair node */
19756 p=mp_get_node(mp, value_node_size);
19757 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19758 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19760 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19761 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19764 @ @<Additional cases of unary operators@>=
19766 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19767 else mp_pair_value(mp, minx,miny);
19770 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19771 else mp_pair_value(mp, maxx,miny);
19774 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19775 else mp_pair_value(mp, minx,maxy);
19778 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19779 else mp_pair_value(mp, maxx,maxy);
19782 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19783 box of the current expression. The boolean result is |false| if the expression
19784 has the wrong type.
19786 @<Declare unary action procedures@>=
19787 boolean mp_get_cur_bbox (MP mp) {
19788 switch (mp->cur_type) {
19789 case mp_picture_type:
19790 mp_set_bbox(mp, mp->cur_exp,true);
19791 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19792 minx=0; maxx=0; miny=0; maxy=0;
19794 minx=minx_val(mp->cur_exp);
19795 maxx=maxx_val(mp->cur_exp);
19796 miny=miny_val(mp->cur_exp);
19797 maxy=maxy_val(mp->cur_exp);
19801 mp_path_bbox(mp, mp->cur_exp);
19804 mp_pen_bbox(mp, mp->cur_exp);
19812 @ @<Additional cases of unary operators@>=
19814 case close_from_op:
19815 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19816 else mp_do_read_or_close(mp,c);
19819 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19820 a line from the file or to close the file.
19822 @<Declare unary action procedures@>=
19823 void mp_do_read_or_close (MP mp,quarterword c) {
19824 readf_index n,n0; /* indices for searching |rd_fname| */
19825 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19826 call |start_read_input| and |goto found| or |not_found|@>;
19827 mp_begin_file_reading(mp);
19829 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19831 mp_end_file_reading(mp);
19833 @<Record the end of file and set |cur_exp| to a dummy value@>;
19836 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19839 mp_flush_cur_exp(mp, 0);
19840 mp_finish_read(mp);
19843 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19846 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19851 fn = str(mp->cur_exp);
19852 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19855 } else if ( c==close_from_op ) {
19858 if ( n0==mp->read_files ) {
19859 if ( mp->read_files<mp->max_read_files ) {
19860 incr(mp->read_files);
19865 l = mp->max_read_files + (mp->max_read_files>>2);
19866 rd_file = xmalloc((l+1), sizeof(void *));
19867 rd_fname = xmalloc((l+1), sizeof(char *));
19868 for (k=0;k<=l;k++) {
19869 if (k<=mp->max_read_files) {
19870 rd_file[k]=mp->rd_file[k];
19871 rd_fname[k]=mp->rd_fname[k];
19877 xfree(mp->rd_file); xfree(mp->rd_fname);
19878 mp->max_read_files = l;
19879 mp->rd_file = rd_file;
19880 mp->rd_fname = rd_fname;
19884 if ( mp_start_read_input(mp,fn,n) )
19889 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19891 if ( c==close_from_op ) {
19892 (mp->close_file)(mp->rd_file[n]);
19897 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19898 xfree(mp->rd_fname[n]);
19899 mp->rd_fname[n]=NULL;
19900 if ( n==mp->read_files-1 ) mp->read_files=n;
19901 if ( c==close_from_op )
19903 mp_flush_cur_exp(mp, mp->eof_line);
19904 mp->cur_type=mp_string_type
19906 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19909 str_number eof_line;
19914 @ Finally, we have the operations that combine a capsule~|p|
19915 with the current expression.
19917 @c @<Declare binary action procedures@>;
19918 void mp_do_binary (MP mp,pointer p, quarterword c) {
19919 pointer q,r,rr; /* for list manipulation */
19920 pointer old_p,old_exp; /* capsules to recycle */
19921 integer v; /* for numeric manipulation */
19923 if ( mp->internal[mp_tracing_commands]>two ) {
19924 @<Trace the current binary operation@>;
19926 @<Sidestep |independent| cases in capsule |p|@>;
19927 @<Sidestep |independent| cases in the current expression@>;
19929 case plus: case minus:
19930 @<Add or subtract the current expression from |p|@>;
19932 @<Additional cases of binary operators@>;
19933 }; /* there are no other cases */
19934 mp_recycle_value(mp, p);
19935 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19937 @<Recycle any sidestepped |independent| capsules@>;
19940 @ @<Declare binary action...@>=
19941 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19942 mp_disp_err(mp, p,"");
19943 exp_err("Not implemented: ");
19944 @.Not implemented...@>
19945 if ( c>=min_of ) mp_print_op(mp, c);
19946 mp_print_known_or_unknown_type(mp, type(p),p);
19947 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19948 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19949 help3("I'm afraid I don't know how to apply that operation to that")
19950 ("combination of types. Continue, and I'll return the second")
19951 ("argument (see above) as the result of the operation.");
19952 mp_put_get_error(mp);
19954 void mp_bad_envelope_pen (MP mp) {
19955 mp_disp_err(mp, null,"");
19956 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19957 @.Not implemented...@>
19958 help3("I'm afraid I don't know how to apply that operation to that")
19959 ("combination of types. Continue, and I'll return the second")
19960 ("argument (see above) as the result of the operation.");
19961 mp_put_get_error(mp);
19964 @ @<Trace the current binary operation@>=
19966 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19967 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19968 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19969 mp_print_exp(mp,null,0); mp_print(mp,")}");
19970 mp_end_diagnostic(mp, false);
19973 @ Several of the binary operations are potentially complicated by the
19974 fact that |independent| values can sneak into capsules. For example,
19975 we've seen an instance of this difficulty in the unary operation
19976 of negation. In order to reduce the number of cases that need to be
19977 handled, we first change the two operands (if necessary)
19978 to rid them of |independent| components. The original operands are
19979 put into capsules called |old_p| and |old_exp|, which will be
19980 recycled after the binary operation has been safely carried out.
19982 @<Recycle any sidestepped |independent| capsules@>=
19983 if ( old_p!=null ) {
19984 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19986 if ( old_exp!=null ) {
19987 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19990 @ A big node is considered to be ``tarnished'' if it contains at least one
19991 independent component. We will define a simple function called `|tarnished|'
19992 that returns |null| if and only if its argument is not tarnished.
19994 @<Sidestep |independent| cases in capsule |p|@>=
19996 case mp_transform_type:
19997 case mp_color_type:
19998 case mp_cmykcolor_type:
20000 old_p=mp_tarnished(mp, p);
20002 case mp_independent: old_p=mp_void; break;
20003 default: old_p=null; break;
20005 if ( old_p!=null ) {
20006 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
20007 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20010 @ @<Sidestep |independent| cases in the current expression@>=
20011 switch (mp->cur_type) {
20012 case mp_transform_type:
20013 case mp_color_type:
20014 case mp_cmykcolor_type:
20016 old_exp=mp_tarnished(mp, mp->cur_exp);
20018 case mp_independent:old_exp=mp_void; break;
20019 default: old_exp=null; break;
20021 if ( old_exp!=null ) {
20022 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20025 @ @<Declare binary action...@>=
20026 pointer mp_tarnished (MP mp,pointer p) {
20027 pointer q; /* beginning of the big node */
20028 pointer r; /* current position in the big node */
20029 q=value(p); r=q+mp->big_node_size[type(p)];
20032 if ( type(r)==mp_independent ) return mp_void;
20037 @ @<Add or subtract the current expression from |p|@>=
20038 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20039 mp_bad_binary(mp, p,c);
20041 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20042 mp_add_or_subtract(mp, p,null,c);
20044 if ( mp->cur_type!=type(p) ) {
20045 mp_bad_binary(mp, p,c);
20047 q=value(p); r=value(mp->cur_exp);
20048 rr=r+mp->big_node_size[mp->cur_type];
20050 mp_add_or_subtract(mp, q,r,c);
20057 @ The first argument to |add_or_subtract| is the location of a value node
20058 in a capsule or pair node that will soon be recycled. The second argument
20059 is either a location within a pair or transform node of |cur_exp|,
20060 or it is null (which means that |cur_exp| itself should be the second
20061 argument). The third argument is either |plus| or |minus|.
20063 The sum or difference of the numeric quantities will replace the second
20064 operand. Arithmetic overflow may go undetected; users aren't supposed to
20065 be monkeying around with really big values.
20067 @<Declare binary action...@>=
20068 @<Declare the procedure called |dep_finish|@>;
20069 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20070 small_number s,t; /* operand types */
20071 pointer r; /* list traverser */
20072 integer v; /* second operand value */
20075 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20078 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20080 if ( t==mp_known ) {
20081 if ( c==minus ) negate(v);
20082 if ( type(p)==mp_known ) {
20083 v=mp_slow_add(mp, value(p),v);
20084 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20087 @<Add a known value to the constant term of |dep_list(p)|@>;
20089 if ( c==minus ) mp_negate_dep_list(mp, v);
20090 @<Add operand |p| to the dependency list |v|@>;
20094 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20096 while ( info(r)!=null ) r=link(r);
20097 value(r)=mp_slow_add(mp, value(r),v);
20099 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20100 name_type(q)=mp_capsule;
20102 dep_list(q)=dep_list(p); type(q)=type(p);
20103 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20104 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20106 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20107 nice to retain the extra accuracy of |fraction| coefficients.
20108 But we have to handle both kinds, and mixtures too.
20110 @<Add operand |p| to the dependency list |v|@>=
20111 if ( type(p)==mp_known ) {
20112 @<Add the known |value(p)| to the constant term of |v|@>;
20114 s=type(p); r=dep_list(p);
20115 if ( t==mp_dependent ) {
20116 if ( s==mp_dependent ) {
20117 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20118 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20119 } /* |fix_needed| will necessarily be false */
20120 t=mp_proto_dependent;
20121 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20123 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20124 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20126 @<Output the answer, |v| (which might have become |known|)@>;
20129 @ @<Add the known |value(p)| to the constant term of |v|@>=
20131 while ( info(v)!=null ) v=link(v);
20132 value(v)=mp_slow_add(mp, value(p),value(v));
20135 @ @<Output the answer, |v| (which might have become |known|)@>=
20136 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20137 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20139 @ Here's the current situation: The dependency list |v| of type |t|
20140 should either be put into the current expression (if |q=null|) or
20141 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20142 or |q|) formerly held a dependency list with the same
20143 final pointer as the list |v|.
20145 @<Declare the procedure called |dep_finish|@>=
20146 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20147 pointer p; /* the destination */
20148 scaled vv; /* the value, if it is |known| */
20149 if ( q==null ) p=mp->cur_exp; else p=q;
20150 dep_list(p)=v; type(p)=t;
20151 if ( info(v)==null ) {
20154 mp_flush_cur_exp(mp, vv);
20156 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20158 } else if ( q==null ) {
20161 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20164 @ Let's turn now to the six basic relations of comparison.
20166 @<Additional cases of binary operators@>=
20167 case less_than: case less_or_equal: case greater_than:
20168 case greater_or_equal: case equal_to: case unequal_to:
20169 check_arith; /* at this point |arith_error| should be |false|? */
20170 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20171 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20172 } else if ( mp->cur_type!=type(p) ) {
20173 mp_bad_binary(mp, p,c); goto DONE;
20174 } else if ( mp->cur_type==mp_string_type ) {
20175 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20176 } else if ((mp->cur_type==mp_unknown_string)||
20177 (mp->cur_type==mp_unknown_boolean) ) {
20178 @<Check if unknowns have been equated@>;
20179 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20180 @<Reduce comparison of big nodes to comparison of scalars@>;
20181 } else if ( mp->cur_type==mp_boolean_type ) {
20182 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20184 mp_bad_binary(mp, p,c); goto DONE;
20186 @<Compare the current expression with zero@>;
20188 mp->arith_error=false; /* ignore overflow in comparisons */
20191 @ @<Compare the current expression with zero@>=
20192 if ( mp->cur_type!=mp_known ) {
20193 if ( mp->cur_type<mp_known ) {
20194 mp_disp_err(mp, p,"");
20195 help1("The quantities shown above have not been equated.")
20197 help2("Oh dear. I can\'t decide if the expression above is positive,")
20198 ("negative, or zero. So this comparison test won't be `true'.");
20200 exp_err("Unknown relation will be considered false");
20201 @.Unknown relation...@>
20202 mp_put_get_flush_error(mp, false_code);
20205 case less_than: boolean_reset(mp->cur_exp<0); break;
20206 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20207 case greater_than: boolean_reset(mp->cur_exp>0); break;
20208 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20209 case equal_to: boolean_reset(mp->cur_exp==0); break;
20210 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20211 }; /* there are no other cases */
20213 mp->cur_type=mp_boolean_type
20215 @ When two unknown strings are in the same ring, we know that they are
20216 equal. Otherwise, we don't know whether they are equal or not, so we
20219 @<Check if unknowns have been equated@>=
20221 q=value(mp->cur_exp);
20222 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20223 if ( q==p ) mp_flush_cur_exp(mp, 0);
20226 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20228 q=value(p); r=value(mp->cur_exp);
20229 rr=r+mp->big_node_size[mp->cur_type]-2;
20230 while (1) { mp_add_or_subtract(mp, q,r,minus);
20231 if ( type(r)!=mp_known ) break;
20232 if ( value(r)!=0 ) break;
20233 if ( r==rr ) break;
20236 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20239 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20241 @<Additional cases of binary operators@>=
20244 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20245 mp_bad_binary(mp, p,c);
20246 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20249 @ @<Additional cases of binary operators@>=
20251 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20252 mp_bad_binary(mp, p,times);
20253 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20254 @<Multiply when at least one operand is known@>;
20255 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20256 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20257 (type(p)>mp_pair_type)) ) {
20258 mp_hard_times(mp, p); return;
20260 mp_bad_binary(mp, p,times);
20264 @ @<Multiply when at least one operand is known@>=
20266 if ( type(p)==mp_known ) {
20267 v=value(p); mp_free_node(mp, p,value_node_size);
20269 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20271 if ( mp->cur_type==mp_known ) {
20272 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20273 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20274 (mp->cur_type==mp_cmykcolor_type) ) {
20275 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20277 p=p-2; mp_dep_mult(mp, p,v,true);
20278 } while (p!=value(mp->cur_exp));
20280 mp_dep_mult(mp, null,v,true);
20285 @ @<Declare binary action...@>=
20286 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20287 pointer q; /* the dependency list being multiplied by |v| */
20288 small_number s,t; /* its type, before and after */
20291 } else if ( type(p)!=mp_known ) {
20294 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20295 else value(p)=mp_take_fraction(mp, value(p),v);
20298 t=type(q); q=dep_list(q); s=t;
20299 if ( t==mp_dependent ) if ( v_is_scaled )
20300 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20301 t=mp_proto_dependent;
20302 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20303 mp_dep_finish(mp, q,p,t);
20306 @ Here is a routine that is similar to |times|; but it is invoked only
20307 internally, when |v| is a |fraction| whose magnitude is at most~1,
20308 and when |cur_type>=mp_color_type|.
20310 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20311 /* multiplies |cur_exp| by |n/d| */
20312 pointer p; /* a pair node */
20313 pointer old_exp; /* a capsule to recycle */
20314 fraction v; /* |n/d| */
20315 if ( mp->internal[mp_tracing_commands]>two ) {
20316 @<Trace the fraction multiplication@>;
20318 switch (mp->cur_type) {
20319 case mp_transform_type:
20320 case mp_color_type:
20321 case mp_cmykcolor_type:
20323 old_exp=mp_tarnished(mp, mp->cur_exp);
20325 case mp_independent: old_exp=mp_void; break;
20326 default: old_exp=null; break;
20328 if ( old_exp!=null ) {
20329 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20331 v=mp_make_fraction(mp, n,d);
20332 if ( mp->cur_type==mp_known ) {
20333 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20334 } else if ( mp->cur_type<=mp_pair_type ) {
20335 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20338 mp_dep_mult(mp, p,v,false);
20339 } while (p!=value(mp->cur_exp));
20341 mp_dep_mult(mp, null,v,false);
20343 if ( old_exp!=null ) {
20344 mp_recycle_value(mp, old_exp);
20345 mp_free_node(mp, old_exp,value_node_size);
20349 @ @<Trace the fraction multiplication@>=
20351 mp_begin_diagnostic(mp);
20352 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20353 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20355 mp_end_diagnostic(mp, false);
20358 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20360 @<Declare binary action procedures@>=
20361 void mp_hard_times (MP mp,pointer p) {
20362 pointer q; /* a copy of the dependent variable |p| */
20363 pointer r; /* a component of the big node for the nice color or pair */
20364 scaled v; /* the known value for |r| */
20365 if ( type(p)<=mp_pair_type ) {
20366 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20367 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20368 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20373 if ( r==value(mp->cur_exp) )
20375 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20376 mp_dep_mult(mp, r,v,true);
20378 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20379 link(prev_dep(p))=r;
20380 mp_free_node(mp, p,value_node_size);
20381 mp_dep_mult(mp, r,v,true);
20384 @ @<Additional cases of binary operators@>=
20386 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20387 mp_bad_binary(mp, p,over);
20389 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20391 @<Squeal about division by zero@>;
20393 if ( mp->cur_type==mp_known ) {
20394 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20395 } else if ( mp->cur_type<=mp_pair_type ) {
20396 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20398 p=p-2; mp_dep_div(mp, p,v);
20399 } while (p!=value(mp->cur_exp));
20401 mp_dep_div(mp, null,v);
20408 @ @<Declare binary action...@>=
20409 void mp_dep_div (MP mp,pointer p, scaled v) {
20410 pointer q; /* the dependency list being divided by |v| */
20411 small_number s,t; /* its type, before and after */
20412 if ( p==null ) q=mp->cur_exp;
20413 else if ( type(p)!=mp_known ) q=p;
20414 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20415 t=type(q); q=dep_list(q); s=t;
20416 if ( t==mp_dependent )
20417 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20418 t=mp_proto_dependent;
20419 q=mp_p_over_v(mp, q,v,s,t);
20420 mp_dep_finish(mp, q,p,t);
20423 @ @<Squeal about division by zero@>=
20425 exp_err("Division by zero");
20426 @.Division by zero@>
20427 help2("You're trying to divide the quantity shown above the error")
20428 ("message by zero. I'm going to divide it by one instead.");
20429 mp_put_get_error(mp);
20432 @ @<Additional cases of binary operators@>=
20435 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20436 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20437 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20438 } else mp_bad_binary(mp, p,c);
20441 @ The next few sections of the program deal with affine transformations
20442 of coordinate data.
20444 @<Additional cases of binary operators@>=
20445 case rotated_by: case slanted_by:
20446 case scaled_by: case shifted_by: case transformed_by:
20447 case x_scaled: case y_scaled: case z_scaled:
20448 if ( type(p)==mp_path_type ) {
20449 path_trans(c,p); return;
20450 } else if ( type(p)==mp_pen_type ) {
20452 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20453 /* rounding error could destroy convexity */
20455 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20456 mp_big_trans(mp, p,c);
20457 } else if ( type(p)==mp_picture_type ) {
20458 mp_do_edges_trans(mp, p,c); return;
20460 mp_bad_binary(mp, p,c);
20464 @ Let |c| be one of the eight transform operators. The procedure call
20465 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20466 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20467 change at all if |c=transformed_by|.)
20469 Then, if all components of the resulting transform are |known|, they are
20470 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20471 and |cur_exp| is changed to the known value zero.
20473 @<Declare binary action...@>=
20474 void mp_set_up_trans (MP mp,quarterword c) {
20475 pointer p,q,r; /* list manipulation registers */
20476 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20477 @<Put the current transform into |cur_exp|@>;
20479 @<If the current transform is entirely known, stash it in global variables;
20480 otherwise |return|@>;
20489 scaled ty; /* current transform coefficients */
20491 @ @<Put the current transform...@>=
20493 p=mp_stash_cur_exp(mp);
20494 mp->cur_exp=mp_id_transform(mp);
20495 mp->cur_type=mp_transform_type;
20496 q=value(mp->cur_exp);
20498 @<For each of the eight cases, change the relevant fields of |cur_exp|
20500 but do nothing if capsule |p| doesn't have the appropriate type@>;
20501 }; /* there are no other cases */
20502 mp_disp_err(mp, p,"Improper transformation argument");
20503 @.Improper transformation argument@>
20504 help3("The expression shown above has the wrong type,")
20505 ("so I can\'t transform anything using it.")
20506 ("Proceed, and I'll omit the transformation.");
20507 mp_put_get_error(mp);
20509 mp_recycle_value(mp, p);
20510 mp_free_node(mp, p,value_node_size);
20513 @ @<If the current transform is entirely known, ...@>=
20514 q=value(mp->cur_exp); r=q+transform_node_size;
20517 if ( type(r)!=mp_known ) return;
20519 mp->txx=value(xx_part_loc(q));
20520 mp->txy=value(xy_part_loc(q));
20521 mp->tyx=value(yx_part_loc(q));
20522 mp->tyy=value(yy_part_loc(q));
20523 mp->tx=value(x_part_loc(q));
20524 mp->ty=value(y_part_loc(q));
20525 mp_flush_cur_exp(mp, 0)
20527 @ @<For each of the eight cases...@>=
20529 if ( type(p)==mp_known )
20530 @<Install sines and cosines, then |goto done|@>;
20533 if ( type(p)>mp_pair_type ) {
20534 mp_install(mp, xy_part_loc(q),p); goto DONE;
20538 if ( type(p)>mp_pair_type ) {
20539 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20544 if ( type(p)==mp_pair_type ) {
20545 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20546 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20550 if ( type(p)>mp_pair_type ) {
20551 mp_install(mp, xx_part_loc(q),p); goto DONE;
20555 if ( type(p)>mp_pair_type ) {
20556 mp_install(mp, yy_part_loc(q),p); goto DONE;
20560 if ( type(p)==mp_pair_type )
20561 @<Install a complex multiplier, then |goto done|@>;
20563 case transformed_by:
20567 @ @<Install sines and cosines, then |goto done|@>=
20568 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20569 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20570 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20571 value(xy_part_loc(q))=-value(yx_part_loc(q));
20572 value(yy_part_loc(q))=value(xx_part_loc(q));
20576 @ @<Install a complex multiplier, then |goto done|@>=
20579 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20580 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20581 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20582 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20583 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20584 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20588 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20589 insists that the transformation be entirely known.
20591 @<Declare binary action...@>=
20592 void mp_set_up_known_trans (MP mp,quarterword c) {
20593 mp_set_up_trans(mp, c);
20594 if ( mp->cur_type!=mp_known ) {
20595 exp_err("Transform components aren't all known");
20596 @.Transform components...@>
20597 help3("I'm unable to apply a partially specified transformation")
20598 ("except to a fully known pair or transform.")
20599 ("Proceed, and I'll omit the transformation.");
20600 mp_put_get_flush_error(mp, 0);
20601 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20602 mp->tx=0; mp->ty=0;
20606 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20607 coordinates in locations |p| and~|q|.
20609 @<Declare binary action...@>=
20610 void mp_trans (MP mp,pointer p, pointer q) {
20611 scaled v; /* the new |x| value */
20612 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20613 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20614 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20615 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20619 @ The simplest transformation procedure applies a transform to all
20620 coordinates of a path. The |path_trans(c)(p)| macro applies
20621 a transformation defined by |cur_exp| and the transform operator |c|
20624 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20625 mp_unstash_cur_exp(mp, (B));
20626 mp_do_path_trans(mp, mp->cur_exp); }
20628 @<Declare binary action...@>=
20629 void mp_do_path_trans (MP mp,pointer p) {
20630 pointer q; /* list traverser */
20633 if ( left_type(q)!=mp_endpoint )
20634 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20635 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20636 if ( right_type(q)!=mp_endpoint )
20637 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20638 @^data structure assumptions@>
20643 @ Transforming a pen is very similar, except that there are no |left_type|
20644 and |right_type| fields.
20646 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20647 mp_unstash_cur_exp(mp, (B));
20648 mp_do_pen_trans(mp, mp->cur_exp); }
20650 @<Declare binary action...@>=
20651 void mp_do_pen_trans (MP mp,pointer p) {
20652 pointer q; /* list traverser */
20653 if ( pen_is_elliptical(p) ) {
20654 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20655 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20659 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20660 @^data structure assumptions@>
20665 @ The next transformation procedure applies to edge structures. It will do
20666 any transformation, but the results may be substandard if the picture contains
20667 text that uses downloaded bitmap fonts. The binary action procedure is
20668 |do_edges_trans|, but we also need a function that just scales a picture.
20669 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20670 should be thought of as procedures that update an edge structure |h|, except
20671 that they have to return a (possibly new) structure because of the need to call
20674 @<Declare binary action...@>=
20675 pointer mp_edges_trans (MP mp, pointer h) {
20676 pointer q; /* the object being transformed */
20677 pointer r,s; /* for list manipulation */
20678 scaled sx,sy; /* saved transformation parameters */
20679 scaled sqdet; /* square root of determinant for |dash_scale| */
20680 integer sgndet; /* sign of the determinant */
20681 scaled v; /* a temporary value */
20682 h=mp_private_edges(mp, h);
20683 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20684 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20685 if ( dash_list(h)!=null_dash ) {
20686 @<Try to transform the dash list of |h|@>;
20688 @<Make the bounding box of |h| unknown if it can't be updated properly
20689 without scanning the whole structure@>;
20690 q=link(dummy_loc(h));
20691 while ( q!=null ) {
20692 @<Transform graphical object |q|@>;
20697 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20698 mp_set_up_known_trans(mp, c);
20699 value(p)=mp_edges_trans(mp, value(p));
20700 mp_unstash_cur_exp(mp, p);
20702 void mp_scale_edges (MP mp) {
20703 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20704 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20705 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20708 @ @<Try to transform the dash list of |h|@>=
20709 if ( (mp->txy!=0)||(mp->tyx!=0)||
20710 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20711 mp_flush_dash_list(mp, h);
20713 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20714 @<Scale the dash list by |txx| and shift it by |tx|@>;
20715 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20718 @ @<Reverse the dash list of |h|@>=
20721 dash_list(h)=null_dash;
20722 while ( r!=null_dash ) {
20724 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20725 link(s)=dash_list(h);
20730 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20732 while ( r!=null_dash ) {
20733 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20734 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20738 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20739 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20740 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20741 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20742 mp_init_bbox(mp, h);
20745 if ( minx_val(h)<=maxx_val(h) ) {
20746 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20753 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20755 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20756 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20759 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20762 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20764 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20765 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20766 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20767 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20768 if ( mp->txx+mp->txy<0 ) {
20769 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20771 if ( mp->tyx+mp->tyy<0 ) {
20772 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20776 @ Now we ready for the main task of transforming the graphical objects in edge
20779 @<Transform graphical object |q|@>=
20781 case mp_fill_code: case mp_stroked_code:
20782 mp_do_path_trans(mp, path_p(q));
20783 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20785 case mp_start_clip_code: case mp_start_bounds_code:
20786 mp_do_path_trans(mp, path_p(q));
20790 @<Transform the compact transformation starting at |r|@>;
20792 case mp_stop_clip_code: case mp_stop_bounds_code:
20794 } /* there are no other cases */
20796 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20797 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20798 since the \ps\ output procedures will try to compensate for the transformation
20799 we are applying to |pen_p(q)|. Since this compensation is based on the square
20800 root of the determinant, |sqdet| is the appropriate factor.
20802 @<Transform |pen_p(q)|, making sure...@>=
20803 if ( pen_p(q)!=null ) {
20804 sx=mp->tx; sy=mp->ty;
20805 mp->tx=0; mp->ty=0;
20806 mp_do_pen_trans(mp, pen_p(q));
20807 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20808 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20809 if ( ! pen_is_elliptical(pen_p(q)) )
20811 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20812 /* this unreverses the pen */
20813 mp->tx=sx; mp->ty=sy;
20816 @ This uses the fact that transformations are stored in the order
20817 |(tx,ty,txx,txy,tyx,tyy)|.
20818 @^data structure assumptions@>
20820 @<Transform the compact transformation starting at |r|@>=
20821 mp_trans(mp, r,r+1);
20822 sx=mp->tx; sy=mp->ty;
20823 mp->tx=0; mp->ty=0;
20824 mp_trans(mp, r+2,r+4);
20825 mp_trans(mp, r+3,r+5);
20826 mp->tx=sx; mp->ty=sy
20828 @ The hard cases of transformation occur when big nodes are involved,
20829 and when some of their components are unknown.
20831 @<Declare binary action...@>=
20832 @<Declare subroutines needed by |big_trans|@>;
20833 void mp_big_trans (MP mp,pointer p, quarterword c) {
20834 pointer q,r,pp,qq; /* list manipulation registers */
20835 small_number s; /* size of a big node */
20836 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20839 if ( type(r)!=mp_known ) {
20840 @<Transform an unknown big node and |return|@>;
20843 @<Transform a known big node@>;
20844 }; /* node |p| will now be recycled by |do_binary| */
20846 @ @<Transform an unknown big node and |return|@>=
20848 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20849 r=value(mp->cur_exp);
20850 if ( mp->cur_type==mp_transform_type ) {
20851 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20852 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20853 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20854 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20856 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20857 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20861 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20862 and let |q| point to a another value field. The |bilin1| procedure
20863 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20865 @<Declare subroutines needed by |big_trans|@>=
20866 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20867 scaled u, scaled delta) {
20868 pointer r; /* list traverser */
20869 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20871 if ( type(q)==mp_known ) {
20872 delta+=mp_take_scaled(mp, value(q),u);
20874 @<Ensure that |type(p)=mp_proto_dependent|@>;
20875 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20876 mp_proto_dependent,type(q));
20879 if ( type(p)==mp_known ) {
20883 while ( info(r)!=null ) r=link(r);
20885 if ( r!=dep_list(p) ) value(r)=delta;
20886 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20888 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20891 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20892 if ( type(p)!=mp_proto_dependent ) {
20893 if ( type(p)==mp_known )
20894 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20896 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20897 mp_proto_dependent,true);
20898 type(p)=mp_proto_dependent;
20901 @ @<Transform a known big node@>=
20902 mp_set_up_trans(mp, c);
20903 if ( mp->cur_type==mp_known ) {
20904 @<Transform known by known@>;
20906 pp=mp_stash_cur_exp(mp); qq=value(pp);
20907 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20908 if ( mp->cur_type==mp_transform_type ) {
20909 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20910 value(xy_part_loc(q)),yx_part_loc(qq),null);
20911 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20912 value(xx_part_loc(q)),yx_part_loc(qq),null);
20913 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20914 value(yy_part_loc(q)),xy_part_loc(qq),null);
20915 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20916 value(yx_part_loc(q)),xy_part_loc(qq),null);
20918 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20919 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20920 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20921 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20922 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20925 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20926 at |dep_final|. The following procedure adds |v| times another
20927 numeric quantity to~|p|.
20929 @<Declare subroutines needed by |big_trans|@>=
20930 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20931 if ( type(r)==mp_known ) {
20932 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20934 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20935 mp_proto_dependent,type(r));
20936 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20940 @ The |bilin2| procedure is something like |bilin1|, but with known
20941 and unknown quantities reversed. Parameter |p| points to a value field
20942 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20943 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20944 unless it is |null| (which stands for zero). Location~|p| will be
20945 replaced by $p\cdot t+v\cdot u+q$.
20947 @<Declare subroutines needed by |big_trans|@>=
20948 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20949 pointer u, pointer q) {
20950 scaled vv; /* temporary storage for |value(p)| */
20951 vv=value(p); type(p)=mp_proto_dependent;
20952 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20954 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20955 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20956 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20957 if ( dep_list(p)==mp->dep_final ) {
20958 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20959 type(p)=mp_known; value(p)=vv;
20963 @ @<Transform known by known@>=
20965 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20966 if ( mp->cur_type==mp_transform_type ) {
20967 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20968 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20969 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20970 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20972 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20973 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20976 @ Finally, in |bilin3| everything is |known|.
20978 @<Declare subroutines needed by |big_trans|@>=
20979 void mp_bilin3 (MP mp,pointer p, scaled t,
20980 scaled v, scaled u, scaled delta) {
20982 delta+=mp_take_scaled(mp, value(p),t);
20985 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20986 else value(p)=delta;
20989 @ @<Additional cases of binary operators@>=
20991 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20992 else mp_bad_binary(mp, p,concatenate);
20995 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20996 mp_chop_string(mp, value(p));
20997 else mp_bad_binary(mp, p,substring_of);
21000 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21001 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
21002 mp_chop_path(mp, value(p));
21003 else mp_bad_binary(mp, p,subpath_of);
21006 @ @<Declare binary action...@>=
21007 void mp_cat (MP mp,pointer p) {
21008 str_number a,b; /* the strings being concatenated */
21009 pool_pointer k; /* index into |str_pool| */
21010 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
21011 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
21012 append_char(mp->str_pool[k]);
21014 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
21015 append_char(mp->str_pool[k]);
21017 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21020 @ @<Declare binary action...@>=
21021 void mp_chop_string (MP mp,pointer p) {
21022 integer a, b; /* start and stop points */
21023 integer l; /* length of the original string */
21024 integer k; /* runs from |a| to |b| */
21025 str_number s; /* the original string */
21026 boolean reversed; /* was |a>b|? */
21027 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21028 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21029 if ( a<=b ) reversed=false;
21030 else { reversed=true; k=a; a=b; b=k; };
21031 s=mp->cur_exp; l=length(s);
21042 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21043 append_char(mp->str_pool[k]);
21046 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21047 append_char(mp->str_pool[k]);
21050 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21053 @ @<Declare binary action...@>=
21054 void mp_chop_path (MP mp,pointer p) {
21055 pointer q; /* a knot in the original path */
21056 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21057 scaled a,b,k,l; /* indices for chopping */
21058 boolean reversed; /* was |a>b|? */
21059 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21060 if ( a<=b ) reversed=false;
21061 else { reversed=true; k=a; a=b; b=k; };
21062 @<Dispense with the cases |a<0| and/or |b>l|@>;
21064 while ( a>=unity ) {
21065 q=link(q); a=a-unity; b=b-unity;
21068 @<Construct a path from |pp| to |qq| of length zero@>;
21070 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21072 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21073 mp_toss_knot_list(mp, mp->cur_exp);
21075 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21081 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21083 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21084 a=0; if ( b<0 ) b=0;
21086 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21090 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21091 b=l; if ( a>l ) a=l;
21099 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21101 pp=mp_copy_knot(mp, q); qq=pp;
21103 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21106 ss=pp; pp=link(pp);
21107 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21108 mp_free_node(mp, ss,knot_node_size);
21110 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21114 mp_split_cubic(mp, rr,(b+unity)*010000);
21115 mp_free_node(mp, qq,knot_node_size);
21120 @ @<Construct a path from |pp| to |qq| of length zero@>=
21122 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21123 pp=mp_copy_knot(mp, q); qq=pp;
21126 @ @<Additional cases of binary operators@>=
21127 case point_of: case precontrol_of: case postcontrol_of:
21128 if ( mp->cur_type==mp_pair_type )
21129 mp_pair_to_path(mp);
21130 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21131 mp_find_point(mp, value(p),c);
21133 mp_bad_binary(mp, p,c);
21135 case pen_offset_of:
21136 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21137 mp_set_up_offset(mp, value(p));
21139 mp_bad_binary(mp, p,pen_offset_of);
21141 case direction_time_of:
21142 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21143 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21144 mp_set_up_direction_time(mp, value(p));
21146 mp_bad_binary(mp, p,direction_time_of);
21149 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21150 mp_bad_binary(mp, p,envelope_of);
21152 mp_set_up_envelope(mp, p);
21155 @ @<Declare binary action...@>=
21156 void mp_set_up_offset (MP mp,pointer p) {
21157 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21158 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21160 void mp_set_up_direction_time (MP mp,pointer p) {
21161 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21162 value(y_part_loc(p)),mp->cur_exp));
21164 void mp_set_up_envelope (MP mp,pointer p) {
21165 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21166 /* TODO: accept elliptical pens for straight paths */
21167 if (pen_is_elliptical(value(p))) {
21168 mp_bad_envelope_pen(mp);
21170 mp->cur_type = mp_path_type;
21173 small_number ljoin, lcap;
21175 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21176 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21178 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21179 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21181 if ( mp->internal[mp_miterlimit]<unity )
21184 miterlim=mp->internal[mp_miterlimit];
21185 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21186 mp->cur_type = mp_path_type;
21189 @ @<Declare binary action...@>=
21190 void mp_find_point (MP mp,scaled v, quarterword c) {
21191 pointer p; /* the path */
21192 scaled n; /* its length */
21194 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21195 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21198 } else if ( v<0 ) {
21199 if ( left_type(p)==mp_endpoint ) v=0;
21200 else v=n-1-((-v-1) % n);
21201 } else if ( v>n ) {
21202 if ( left_type(p)==mp_endpoint ) v=n;
21206 while ( v>=unity ) { p=link(p); v=v-unity; };
21208 @<Insert a fractional node by splitting the cubic@>;
21210 @<Set the current expression to the desired path coordinates@>;
21213 @ @<Insert a fractional node...@>=
21214 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21216 @ @<Set the current expression to the desired path coordinates...@>=
21219 mp_pair_value(mp, x_coord(p),y_coord(p));
21221 case precontrol_of:
21222 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21223 else mp_pair_value(mp, left_x(p),left_y(p));
21225 case postcontrol_of:
21226 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21227 else mp_pair_value(mp, right_x(p),right_y(p));
21229 } /* there are no other cases */
21231 @ @<Additional cases of binary operators@>=
21233 if ( mp->cur_type==mp_pair_type )
21234 mp_pair_to_path(mp);
21235 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21236 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21238 mp_bad_binary(mp, p,c);
21241 @ @<Additional cases of bin...@>=
21243 if ( type(p)==mp_pair_type ) {
21244 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21245 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21247 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21248 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21249 mp_path_intersection(mp, value(p),mp->cur_exp);
21250 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21252 mp_bad_binary(mp, p,intersect);
21256 @ @<Additional cases of bin...@>=
21258 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21259 mp_bad_binary(mp, p,in_font);
21260 else { mp_do_infont(mp, p); return; }
21263 @ Function |new_text_node| owns the reference count for its second argument
21264 (the text string) but not its first (the font name).
21266 @<Declare binary action...@>=
21267 void mp_do_infont (MP mp,pointer p) {
21269 q=mp_get_node(mp, edge_header_size);
21270 mp_init_edges(mp, q);
21271 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21272 obj_tail(q)=link(obj_tail(q));
21273 mp_free_node(mp, p,value_node_size);
21274 mp_flush_cur_exp(mp, q);
21275 mp->cur_type=mp_picture_type;
21278 @* \[40] Statements and commands.
21279 The chief executive of \MP\ is the |do_statement| routine, which
21280 contains the master switch that causes all the various pieces of \MP\
21281 to do their things, in the right order.
21283 In a sense, this is the grand climax of the program: It applies all the
21284 tools that we have worked so hard to construct. In another sense, this is
21285 the messiest part of the program: It necessarily refers to other pieces
21286 of code all over the place, so that a person can't fully understand what is
21287 going on without paging back and forth to be reminded of conventions that
21288 are defined elsewhere. We are now at the hub of the web.
21290 The structure of |do_statement| itself is quite simple. The first token
21291 of the statement is fetched using |get_x_next|. If it can be the first
21292 token of an expression, we look for an equation, an assignment, or a
21293 title. Otherwise we use a \&{case} construction to branch at high speed to
21294 the appropriate routine for various and sundry other types of commands,
21295 each of which has an ``action procedure'' that does the necessary work.
21297 The program uses the fact that
21298 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21299 to interpret a statement that starts with, e.g., `\&{string}',
21300 as a type declaration rather than a boolean expression.
21302 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21303 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21304 if ( mp->cur_cmd>max_primary_command ) {
21305 @<Worry about bad statement@>;
21306 } else if ( mp->cur_cmd>max_statement_command ) {
21307 @<Do an equation, assignment, title, or
21308 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21310 @<Do a statement that doesn't begin with an expression@>;
21312 if ( mp->cur_cmd<semicolon )
21313 @<Flush unparsable junk that was found after the statement@>;
21317 @ @<Declarations@>=
21318 @<Declare action procedures for use by |do_statement|@>;
21320 @ The only command codes |>max_primary_command| that can be present
21321 at the beginning of a statement are |semicolon| and higher; these
21322 occur when the statement is null.
21324 @<Worry about bad statement@>=
21326 if ( mp->cur_cmd<semicolon ) {
21327 print_err("A statement can't begin with `");
21328 @.A statement can't begin with x@>
21329 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21330 help5("I was looking for the beginning of a new statement.")
21331 ("If you just proceed without changing anything, I'll ignore")
21332 ("everything up to the next `;'. Please insert a semicolon")
21333 ("now in front of anything that you don't want me to delete.")
21334 ("(See Chapter 27 of The METAFONTbook for an example.)");
21335 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21336 mp_back_error(mp); mp_get_x_next(mp);
21340 @ The help message printed here says that everything is flushed up to
21341 a semicolon, but actually the commands |end_group| and |stop| will
21342 also terminate a statement.
21344 @<Flush unparsable junk that was found after the statement@>=
21346 print_err("Extra tokens will be flushed");
21347 @.Extra tokens will be flushed@>
21348 help6("I've just read as much of that statement as I could fathom,")
21349 ("so a semicolon should have been next. It's very puzzling...")
21350 ("but I'll try to get myself back together, by ignoring")
21351 ("everything up to the next `;'. Please insert a semicolon")
21352 ("now in front of anything that you don't want me to delete.")
21353 ("(See Chapter 27 of The METAFONTbook for an example.)");
21354 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21355 mp_back_error(mp); mp->scanner_status=flushing;
21358 @<Decrease the string reference count...@>;
21359 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21360 mp->scanner_status=normal;
21363 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21364 |cur_type=mp_vacuous| unless the statement was simply an expression;
21365 in the latter case, |cur_type| and |cur_exp| should represent that
21368 @<Do a statement that doesn't...@>=
21370 if ( mp->internal[mp_tracing_commands]>0 )
21372 switch (mp->cur_cmd ) {
21373 case type_name:mp_do_type_declaration(mp); break;
21375 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21376 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21378 @<Cases of |do_statement| that invoke particular commands@>;
21379 } /* there are no other cases */
21380 mp->cur_type=mp_vacuous;
21383 @ The most important statements begin with expressions.
21385 @<Do an equation, assignment, title, or...@>=
21387 mp->var_flag=assignment; mp_scan_expression(mp);
21388 if ( mp->cur_cmd<end_group ) {
21389 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21390 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21391 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21392 else if ( mp->cur_type!=mp_vacuous ){
21393 exp_err("Isolated expression");
21394 @.Isolated expression@>
21395 help3("I couldn't find an `=' or `:=' after the")
21396 ("expression that is shown above this error message,")
21397 ("so I guess I'll just ignore it and carry on.");
21398 mp_put_get_error(mp);
21400 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21406 if ( mp->internal[mp_tracing_titles]>0 ) {
21407 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21411 @ Equations and assignments are performed by the pair of mutually recursive
21413 routines |do_equation| and |do_assignment|. These routines are called when
21414 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21415 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21416 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21417 will be equal to the right-hand side (which will normally be equal
21418 to the left-hand side).
21420 @<Declare action procedures for use by |do_statement|@>=
21421 @<Declare the procedure called |try_eq|@>;
21422 @<Declare the procedure called |make_eq|@>;
21423 void mp_do_equation (MP mp) ;
21426 void mp_do_equation (MP mp) {
21427 pointer lhs; /* capsule for the left-hand side */
21428 pointer p; /* temporary register */
21429 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21430 mp->var_flag=assignment; mp_scan_expression(mp);
21431 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21432 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21433 if ( mp->internal[mp_tracing_commands]>two )
21434 @<Trace the current equation@>;
21435 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21436 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21437 }; /* in this case |make_eq| will change the pair to a path */
21438 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21441 @ And |do_assignment| is similar to |do_expression|:
21444 void mp_do_assignment (MP mp);
21446 @ @<Declare action procedures for use by |do_statement|@>=
21447 void mp_do_assignment (MP mp) ;
21450 void mp_do_assignment (MP mp) {
21451 pointer lhs; /* token list for the left-hand side */
21452 pointer p; /* where the left-hand value is stored */
21453 pointer q; /* temporary capsule for the right-hand value */
21454 if ( mp->cur_type!=mp_token_list ) {
21455 exp_err("Improper `:=' will be changed to `='");
21457 help2("I didn't find a variable name at the left of the `:=',")
21458 ("so I'm going to pretend that you said `=' instead.");
21459 mp_error(mp); mp_do_equation(mp);
21461 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21462 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21463 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21464 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21465 if ( mp->internal[mp_tracing_commands]>two )
21466 @<Trace the current assignment@>;
21467 if ( info(lhs)>hash_end ) {
21468 @<Assign the current expression to an internal variable@>;
21470 @<Assign the current expression to the variable |lhs|@>;
21472 mp_flush_node_list(mp, lhs);
21476 @ @<Trace the current equation@>=
21478 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21479 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21480 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21483 @ @<Trace the current assignment@>=
21485 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21486 if ( info(lhs)>hash_end )
21487 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21489 mp_show_token_list(mp, lhs,null,1000,0);
21490 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21491 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21494 @ @<Assign the current expression to an internal variable@>=
21495 if ( mp->cur_type==mp_known ) {
21496 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21498 exp_err("Internal quantity `");
21499 @.Internal quantity...@>
21500 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21501 mp_print(mp, "' must receive a known value");
21502 help2("I can\'t set an internal quantity to anything but a known")
21503 ("numeric value, so I'll have to ignore this assignment.");
21504 mp_put_get_error(mp);
21507 @ @<Assign the current expression to the variable |lhs|@>=
21509 p=mp_find_variable(mp, lhs);
21511 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21512 mp_recycle_value(mp, p);
21513 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21514 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21516 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21521 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21522 a pointer to a capsule that is to be equated to the current expression.
21524 @<Declare the procedure called |make_eq|@>=
21525 void mp_make_eq (MP mp,pointer lhs) ;
21529 @c void mp_make_eq (MP mp,pointer lhs) {
21530 small_number t; /* type of the left-hand side */
21531 pointer p,q; /* pointers inside of big nodes */
21532 integer v=0; /* value of the left-hand side */
21535 if ( t<=mp_pair_type ) v=value(lhs);
21537 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21538 is incompatible with~|t|@>;
21539 } /* all cases have been listed */
21540 @<Announce that the equation cannot be performed@>;
21542 check_arith; mp_recycle_value(mp, lhs);
21543 mp_free_node(mp, lhs,value_node_size);
21546 @ @<Announce that the equation cannot be performed@>=
21547 mp_disp_err(mp, lhs,"");
21548 exp_err("Equation cannot be performed (");
21549 @.Equation cannot be performed@>
21550 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21551 else mp_print(mp, "numeric");
21552 mp_print_char(mp, '=');
21553 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21554 else mp_print(mp, "numeric");
21555 mp_print_char(mp, ')');
21556 help2("I'm sorry, but I don't know how to make such things equal.")
21557 ("(See the two expressions just above the error message.)");
21558 mp_put_get_error(mp)
21560 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21561 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21562 case mp_path_type: case mp_picture_type:
21563 if ( mp->cur_type==t+unknown_tag ) {
21564 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21565 } else if ( mp->cur_type==t ) {
21566 @<Report redundant or inconsistent equation and |goto done|@>;
21569 case unknown_types:
21570 if ( mp->cur_type==t-unknown_tag ) {
21571 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21572 } else if ( mp->cur_type==t ) {
21573 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21574 } else if ( mp->cur_type==mp_pair_type ) {
21575 if ( t==mp_unknown_path ) {
21576 mp_pair_to_path(mp); goto RESTART;
21580 case mp_transform_type: case mp_color_type:
21581 case mp_cmykcolor_type: case mp_pair_type:
21582 if ( mp->cur_type==t ) {
21583 @<Do multiple equations and |goto done|@>;
21586 case mp_known: case mp_dependent:
21587 case mp_proto_dependent: case mp_independent:
21588 if ( mp->cur_type>=mp_known ) {
21589 mp_try_eq(mp, lhs,null); goto DONE;
21595 @ @<Report redundant or inconsistent equation and |goto done|@>=
21597 if ( mp->cur_type<=mp_string_type ) {
21598 if ( mp->cur_type==mp_string_type ) {
21599 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21602 } else if ( v!=mp->cur_exp ) {
21605 @<Exclaim about a redundant equation@>; goto DONE;
21607 print_err("Redundant or inconsistent equation");
21608 @.Redundant or inconsistent equation@>
21609 help2("An equation between already-known quantities can't help.")
21610 ("But don't worry; continue and I'll just ignore it.");
21611 mp_put_get_error(mp); goto DONE;
21613 print_err("Inconsistent equation");
21614 @.Inconsistent equation@>
21615 help2("The equation I just read contradicts what was said before.")
21616 ("But don't worry; continue and I'll just ignore it.");
21617 mp_put_get_error(mp); goto DONE;
21620 @ @<Do multiple equations and |goto done|@>=
21622 p=v+mp->big_node_size[t];
21623 q=value(mp->cur_exp)+mp->big_node_size[t];
21625 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21630 @ The first argument to |try_eq| is the location of a value node
21631 in a capsule that will soon be recycled. The second argument is
21632 either a location within a pair or transform node pointed to by
21633 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21634 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21635 but to equate the two operands.
21637 @<Declare the procedure called |try_eq|@>=
21638 void mp_try_eq (MP mp,pointer l, pointer r) ;
21641 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21642 pointer p; /* dependency list for right operand minus left operand */
21643 int t; /* the type of list |p| */
21644 pointer q; /* the constant term of |p| is here */
21645 pointer pp; /* dependency list for right operand */
21646 int tt; /* the type of list |pp| */
21647 boolean copied; /* have we copied a list that ought to be recycled? */
21648 @<Remove the left operand from its container, negate it, and
21649 put it into dependency list~|p| with constant term~|q|@>;
21650 @<Add the right operand to list |p|@>;
21651 if ( info(p)==null ) {
21652 @<Deal with redundant or inconsistent equation@>;
21654 mp_linear_eq(mp, p,t);
21655 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21656 if ( type(mp->cur_exp)==mp_known ) {
21657 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21658 mp_free_node(mp, pp,value_node_size);
21664 @ @<Remove the left operand from its container, negate it, and...@>=
21666 if ( t==mp_known ) {
21667 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21668 } else if ( t==mp_independent ) {
21669 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21672 p=dep_list(l); q=p;
21675 if ( info(q)==null ) break;
21678 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21682 @ @<Deal with redundant or inconsistent equation@>=
21684 if ( abs(value(p))>64 ) { /* off by .001 or more */
21685 print_err("Inconsistent equation");
21686 @.Inconsistent equation@>
21687 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21688 mp_print_char(mp, ')');
21689 help2("The equation I just read contradicts what was said before.")
21690 ("But don't worry; continue and I'll just ignore it.");
21691 mp_put_get_error(mp);
21692 } else if ( r==null ) {
21693 @<Exclaim about a redundant equation@>;
21695 mp_free_node(mp, p,dep_node_size);
21698 @ @<Add the right operand to list |p|@>=
21700 if ( mp->cur_type==mp_known ) {
21701 value(q)=value(q)+mp->cur_exp; goto DONE1;
21704 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21705 else pp=dep_list(mp->cur_exp);
21708 if ( type(r)==mp_known ) {
21709 value(q)=value(q)+value(r); goto DONE1;
21712 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21713 else pp=dep_list(r);
21716 if ( tt!=mp_independent ) copied=false;
21717 else { copied=true; tt=mp_dependent; };
21718 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21719 if ( copied ) mp_flush_node_list(mp, pp);
21722 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21723 mp->watch_coefs=false;
21725 p=mp_p_plus_q(mp, p,pp,t);
21726 } else if ( t==mp_proto_dependent ) {
21727 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21730 while ( info(q)!=null ) {
21731 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21733 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21735 mp->watch_coefs=true;
21737 @ Our next goal is to process type declarations. For this purpose it's
21738 convenient to have a procedure that scans a $\langle\,$declared
21739 variable$\,\rangle$ and returns the corresponding token list. After the
21740 following procedure has acted, the token after the declared variable
21741 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21744 @<Declare the function called |scan_declared_variable|@>=
21745 pointer mp_scan_declared_variable (MP mp) {
21746 pointer x; /* hash address of the variable's root */
21747 pointer h,t; /* head and tail of the token list to be returned */
21748 pointer l; /* hash address of left bracket */
21749 mp_get_symbol(mp); x=mp->cur_sym;
21750 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21751 h=mp_get_avail(mp); info(h)=x; t=h;
21754 if ( mp->cur_sym==0 ) break;
21755 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21756 if ( mp->cur_cmd==left_bracket ) {
21757 @<Descend past a collective subscript@>;
21762 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21764 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21765 if ( equiv(x)==null ) mp_new_root(mp, x);
21769 @ If the subscript isn't collective, we don't accept it as part of the
21772 @<Descend past a collective subscript@>=
21774 l=mp->cur_sym; mp_get_x_next(mp);
21775 if ( mp->cur_cmd!=right_bracket ) {
21776 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21778 mp->cur_sym=collective_subscript;
21782 @ Type declarations are introduced by the following primitive operations.
21785 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21786 @:numeric_}{\&{numeric} primitive@>
21787 mp_primitive(mp, "string",type_name,mp_string_type);
21788 @:string_}{\&{string} primitive@>
21789 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21790 @:boolean_}{\&{boolean} primitive@>
21791 mp_primitive(mp, "path",type_name,mp_path_type);
21792 @:path_}{\&{path} primitive@>
21793 mp_primitive(mp, "pen",type_name,mp_pen_type);
21794 @:pen_}{\&{pen} primitive@>
21795 mp_primitive(mp, "picture",type_name,mp_picture_type);
21796 @:picture_}{\&{picture} primitive@>
21797 mp_primitive(mp, "transform",type_name,mp_transform_type);
21798 @:transform_}{\&{transform} primitive@>
21799 mp_primitive(mp, "color",type_name,mp_color_type);
21800 @:color_}{\&{color} primitive@>
21801 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21802 @:color_}{\&{rgbcolor} primitive@>
21803 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21804 @:color_}{\&{cmykcolor} primitive@>
21805 mp_primitive(mp, "pair",type_name,mp_pair_type);
21806 @:pair_}{\&{pair} primitive@>
21808 @ @<Cases of |print_cmd...@>=
21809 case type_name: mp_print_type(mp, m); break;
21811 @ Now we are ready to handle type declarations, assuming that a
21812 |type_name| has just been scanned.
21814 @<Declare action procedures for use by |do_statement|@>=
21815 void mp_do_type_declaration (MP mp) ;
21818 void mp_do_type_declaration (MP mp) {
21819 small_number t; /* the type being declared */
21820 pointer p; /* token list for a declared variable */
21821 pointer q; /* value node for the variable */
21822 if ( mp->cur_mod>=mp_transform_type )
21825 t=mp->cur_mod+unknown_tag;
21827 p=mp_scan_declared_variable(mp);
21828 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21829 q=mp_find_variable(mp, p);
21831 type(q)=t; value(q)=null;
21833 print_err("Declared variable conflicts with previous vardef");
21834 @.Declared variable conflicts...@>
21835 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21836 ("Proceed, and I'll ignore the illegal redeclaration.");
21837 mp_put_get_error(mp);
21839 mp_flush_list(mp, p);
21840 if ( mp->cur_cmd<comma ) {
21841 @<Flush spurious symbols after the declared variable@>;
21843 } while (! end_of_statement);
21846 @ @<Flush spurious symbols after the declared variable@>=
21848 print_err("Illegal suffix of declared variable will be flushed");
21849 @.Illegal suffix...flushed@>
21850 help5("Variables in declarations must consist entirely of")
21851 ("names and collective subscripts, e.g., `x[]a'.")
21852 ("Are you trying to use a reserved word in a variable name?")
21853 ("I'm going to discard the junk I found here,")
21854 ("up to the next comma or the end of the declaration.");
21855 if ( mp->cur_cmd==numeric_token )
21856 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21857 mp_put_get_error(mp); mp->scanner_status=flushing;
21860 @<Decrease the string reference count...@>;
21861 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21862 mp->scanner_status=normal;
21865 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21866 until coming to the end of the user's program.
21867 Each execution of |do_statement| concludes with
21868 |cur_cmd=semicolon|, |end_group|, or |stop|.
21870 @c void mp_main_control (MP mp) {
21872 mp_do_statement(mp);
21873 if ( mp->cur_cmd==end_group ) {
21874 print_err("Extra `endgroup'");
21875 @.Extra `endgroup'@>
21876 help2("I'm not currently working on a `begingroup',")
21877 ("so I had better not try to end anything.");
21878 mp_flush_error(mp, 0);
21880 } while (mp->cur_cmd!=stop);
21882 int mp_run (MP mp) {
21883 @<Install and test the non-local jump buffer@>;
21884 mp_main_control(mp); /* come to life */
21885 mp_final_cleanup(mp); /* prepare for death */
21886 mp_close_files_and_terminate(mp);
21887 return mp->history;
21889 char * mp_mplib_version (MP mp) {
21891 return mplib_version;
21893 char * mp_metapost_version (MP mp) {
21895 return metapost_version;
21898 @ @<Exported function headers@>=
21899 int mp_run (MP mp);
21900 char * mp_mplib_version (MP mp);
21901 char * mp_metapost_version (MP mp);
21904 mp_primitive(mp, "end",stop,0);
21905 @:end_}{\&{end} primitive@>
21906 mp_primitive(mp, "dump",stop,1);
21907 @:dump_}{\&{dump} primitive@>
21909 @ @<Cases of |print_cmd...@>=
21911 if ( m==0 ) mp_print(mp, "end");
21912 else mp_print(mp, "dump");
21916 Let's turn now to statements that are classified as ``commands'' because
21917 of their imperative nature. We'll begin with simple ones, so that it
21918 will be clear how to hook command processing into the |do_statement| routine;
21919 then we'll tackle the tougher commands.
21921 Here's one of the simplest:
21923 @<Cases of |do_statement|...@>=
21924 case mp_random_seed: mp_do_random_seed(mp); break;
21926 @ @<Declare action procedures for use by |do_statement|@>=
21927 void mp_do_random_seed (MP mp) ;
21929 @ @c void mp_do_random_seed (MP mp) {
21931 if ( mp->cur_cmd!=assignment ) {
21932 mp_missing_err(mp, ":=");
21934 help1("Always say `randomseed:=<numeric expression>'.");
21937 mp_get_x_next(mp); mp_scan_expression(mp);
21938 if ( mp->cur_type!=mp_known ) {
21939 exp_err("Unknown value will be ignored");
21940 @.Unknown value...ignored@>
21941 help2("Your expression was too random for me to handle,")
21942 ("so I won't change the random seed just now.");
21943 mp_put_get_flush_error(mp, 0);
21945 @<Initialize the random seed to |cur_exp|@>;
21949 @ @<Initialize the random seed to |cur_exp|@>=
21951 mp_init_randoms(mp, mp->cur_exp);
21952 if ( mp->selector>=log_only && mp->selector<write_file) {
21953 mp->old_setting=mp->selector; mp->selector=log_only;
21954 mp_print_nl(mp, "{randomseed:=");
21955 mp_print_scaled(mp, mp->cur_exp);
21956 mp_print_char(mp, '}');
21957 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21961 @ And here's another simple one (somewhat different in flavor):
21963 @<Cases of |do_statement|...@>=
21965 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21966 @<Initialize the print |selector| based on |interaction|@>;
21967 if ( mp->log_opened ) mp->selector=mp->selector+2;
21972 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21973 @:mp_batch_mode_}{\&{batchmode} primitive@>
21974 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21975 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21976 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21977 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21978 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21979 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21981 @ @<Cases of |print_cmd_mod|...@>=
21984 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21985 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21986 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21987 default: mp_print(mp, "errorstopmode"); break;
21991 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21993 @<Cases of |do_statement|...@>=
21994 case protection_command: mp_do_protection(mp); break;
21997 mp_primitive(mp, "inner",protection_command,0);
21998 @:inner_}{\&{inner} primitive@>
21999 mp_primitive(mp, "outer",protection_command,1);
22000 @:outer_}{\&{outer} primitive@>
22002 @ @<Cases of |print_cmd...@>=
22003 case protection_command:
22004 if ( m==0 ) mp_print(mp, "inner");
22005 else mp_print(mp, "outer");
22008 @ @<Declare action procedures for use by |do_statement|@>=
22009 void mp_do_protection (MP mp) ;
22011 @ @c void mp_do_protection (MP mp) {
22012 int m; /* 0 to unprotect, 1 to protect */
22013 halfword t; /* the |eq_type| before we change it */
22016 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22018 if ( t>=outer_tag )
22019 eq_type(mp->cur_sym)=t-outer_tag;
22020 } else if ( t<outer_tag ) {
22021 eq_type(mp->cur_sym)=t+outer_tag;
22024 } while (mp->cur_cmd==comma);
22027 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22028 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22029 declaration assigns the command code |left_delimiter| to `\.{(}' and
22030 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22031 hash address of its mate.
22033 @<Cases of |do_statement|...@>=
22034 case delimiters: mp_def_delims(mp); break;
22036 @ @<Declare action procedures for use by |do_statement|@>=
22037 void mp_def_delims (MP mp) ;
22039 @ @c void mp_def_delims (MP mp) {
22040 pointer l_delim,r_delim; /* the new delimiter pair */
22041 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22042 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22043 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22044 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22048 @ Here is a procedure that is called when \MP\ has reached a point
22049 where some right delimiter is mandatory.
22051 @<Declare the procedure called |check_delimiter|@>=
22052 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22053 if ( mp->cur_cmd==right_delimiter )
22054 if ( mp->cur_mod==l_delim )
22056 if ( mp->cur_sym!=r_delim ) {
22057 mp_missing_err(mp, str(text(r_delim)));
22059 help2("I found no right delimiter to match a left one. So I've")
22060 ("put one in, behind the scenes; this may fix the problem.");
22063 print_err("The token `"); mp_print_text(r_delim);
22064 @.The token...delimiter@>
22065 mp_print(mp, "' is no longer a right delimiter");
22066 help3("Strange: This token has lost its former meaning!")
22067 ("I'll read it as a right delimiter this time;")
22068 ("but watch out, I'll probably miss it later.");
22073 @ The next four commands save or change the values associated with tokens.
22075 @<Cases of |do_statement|...@>=
22078 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22079 } while (mp->cur_cmd==comma);
22081 case interim_command: mp_do_interim(mp); break;
22082 case let_command: mp_do_let(mp); break;
22083 case new_internal: mp_do_new_internal(mp); break;
22085 @ @<Declare action procedures for use by |do_statement|@>=
22086 void mp_do_statement (MP mp);
22087 void mp_do_interim (MP mp);
22089 @ @c void mp_do_interim (MP mp) {
22091 if ( mp->cur_cmd!=internal_quantity ) {
22092 print_err("The token `");
22093 @.The token...quantity@>
22094 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22095 else mp_print_text(mp->cur_sym);
22096 mp_print(mp, "' isn't an internal quantity");
22097 help1("Something like `tracingonline' should follow `interim'.");
22100 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22102 mp_do_statement(mp);
22105 @ The following procedure is careful not to undefine the left-hand symbol
22106 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22108 @<Declare action procedures for use by |do_statement|@>=
22109 void mp_do_let (MP mp) ;
22111 @ @c void mp_do_let (MP mp) {
22112 pointer l; /* hash location of the left-hand symbol */
22113 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22114 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22115 mp_missing_err(mp, "=");
22117 help3("You should have said `let symbol = something'.")
22118 ("But don't worry; I'll pretend that an equals sign")
22119 ("was present. The next token I read will be `something'.");
22123 switch (mp->cur_cmd) {
22124 case defined_macro: case secondary_primary_macro:
22125 case tertiary_secondary_macro: case expression_tertiary_macro:
22126 add_mac_ref(mp->cur_mod);
22131 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22132 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22133 else equiv(l)=mp->cur_mod;
22137 @ @<Declarations@>=
22138 void mp_grow_internals (MP mp, int l);
22139 void mp_do_new_internal (MP mp) ;
22142 void mp_grow_internals (MP mp, int l) {
22146 if ( hash_end+l>max_halfword ) {
22147 mp_confusion(mp, "out of memory space"); /* can't be reached */
22149 int_name = xmalloc ((l+1),sizeof(char *));
22150 internal = xmalloc ((l+1),sizeof(scaled));
22151 for (k=0;k<=l; k++ ) {
22152 if (k<=mp->max_internal) {
22153 internal[k]=mp->internal[k];
22154 int_name[k]=mp->int_name[k];
22160 xfree(mp->internal); xfree(mp->int_name);
22161 mp->int_name = int_name;
22162 mp->internal = internal;
22163 mp->max_internal = l;
22167 void mp_do_new_internal (MP mp) {
22169 if ( mp->int_ptr==mp->max_internal ) {
22170 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22172 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22173 eq_type(mp->cur_sym)=internal_quantity;
22174 equiv(mp->cur_sym)=mp->int_ptr;
22175 if(mp->int_name[mp->int_ptr]!=NULL)
22176 xfree(mp->int_name[mp->int_ptr]);
22177 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22178 mp->internal[mp->int_ptr]=0;
22180 } while (mp->cur_cmd==comma);
22183 @ @<Dealloc variables@>=
22184 for (k=0;k<=mp->max_internal;k++) {
22185 xfree(mp->int_name[k]);
22187 xfree(mp->internal);
22188 xfree(mp->int_name);
22191 @ The various `\&{show}' commands are distinguished by modifier fields
22194 @d show_token_code 0 /* show the meaning of a single token */
22195 @d show_stats_code 1 /* show current memory and string usage */
22196 @d show_code 2 /* show a list of expressions */
22197 @d show_var_code 3 /* show a variable and its descendents */
22198 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22201 mp_primitive(mp, "showtoken",show_command,show_token_code);
22202 @:show_token_}{\&{showtoken} primitive@>
22203 mp_primitive(mp, "showstats",show_command,show_stats_code);
22204 @:show_stats_}{\&{showstats} primitive@>
22205 mp_primitive(mp, "show",show_command,show_code);
22206 @:show_}{\&{show} primitive@>
22207 mp_primitive(mp, "showvariable",show_command,show_var_code);
22208 @:show_var_}{\&{showvariable} primitive@>
22209 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22210 @:show_dependencies_}{\&{showdependencies} primitive@>
22212 @ @<Cases of |print_cmd...@>=
22215 case show_token_code:mp_print(mp, "showtoken"); break;
22216 case show_stats_code:mp_print(mp, "showstats"); break;
22217 case show_code:mp_print(mp, "show"); break;
22218 case show_var_code:mp_print(mp, "showvariable"); break;
22219 default: mp_print(mp, "showdependencies"); break;
22223 @ @<Cases of |do_statement|...@>=
22224 case show_command:mp_do_show_whatever(mp); break;
22226 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22227 if it's |show_code|, complicated structures are abbreviated, otherwise
22230 @<Declare action procedures for use by |do_statement|@>=
22231 void mp_do_show (MP mp) ;
22233 @ @c void mp_do_show (MP mp) {
22235 mp_get_x_next(mp); mp_scan_expression(mp);
22236 mp_print_nl(mp, ">> ");
22238 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22239 } while (mp->cur_cmd==comma);
22242 @ @<Declare action procedures for use by |do_statement|@>=
22243 void mp_disp_token (MP mp) ;
22245 @ @c void mp_disp_token (MP mp) {
22246 mp_print_nl(mp, "> ");
22248 if ( mp->cur_sym==0 ) {
22249 @<Show a numeric or string or capsule token@>;
22251 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22252 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22253 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22254 if ( mp->cur_cmd==defined_macro ) {
22255 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22256 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22261 @ @<Show a numeric or string or capsule token@>=
22263 if ( mp->cur_cmd==numeric_token ) {
22264 mp_print_scaled(mp, mp->cur_mod);
22265 } else if ( mp->cur_cmd==capsule_token ) {
22266 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22268 mp_print_char(mp, '"');
22269 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22270 delete_str_ref(mp->cur_mod);
22274 @ The following cases of |print_cmd_mod| might arise in connection
22275 with |disp_token|, although they don't correspond to any
22278 @<Cases of |print_cmd_...@>=
22279 case left_delimiter:
22280 case right_delimiter:
22281 if ( c==left_delimiter ) mp_print(mp, "left");
22282 else mp_print(mp, "right");
22283 mp_print(mp, " delimiter that matches ");
22287 if ( m==null ) mp_print(mp, "tag");
22288 else mp_print(mp, "variable");
22290 case defined_macro:
22291 mp_print(mp, "macro:");
22293 case secondary_primary_macro:
22294 case tertiary_secondary_macro:
22295 case expression_tertiary_macro:
22296 mp_print_cmd_mod(mp, macro_def,c);
22297 mp_print(mp, "'d macro:");
22298 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22301 mp_print(mp, "[repeat the loop]");
22303 case internal_quantity:
22304 mp_print(mp, mp->int_name[m]);
22307 @ @<Declare action procedures for use by |do_statement|@>=
22308 void mp_do_show_token (MP mp) ;
22310 @ @c void mp_do_show_token (MP mp) {
22312 get_t_next; mp_disp_token(mp);
22314 } while (mp->cur_cmd==comma);
22317 @ @<Declare action procedures for use by |do_statement|@>=
22318 void mp_do_show_stats (MP mp) ;
22320 @ @c void mp_do_show_stats (MP mp) {
22321 mp_print_nl(mp, "Memory usage ");
22322 @.Memory usage...@>
22323 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22325 mp_print(mp, "unknown");
22326 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22327 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22328 mp_print_nl(mp, "String usage ");
22329 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22330 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22332 mp_print(mp, "unknown");
22333 mp_print(mp, " (");
22334 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22335 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22336 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22340 @ Here's a recursive procedure that gives an abbreviated account
22341 of a variable, for use by |do_show_var|.
22343 @<Declare action procedures for use by |do_statement|@>=
22344 void mp_disp_var (MP mp,pointer p) ;
22346 @ @c void mp_disp_var (MP mp,pointer p) {
22347 pointer q; /* traverses attributes and subscripts */
22348 int n; /* amount of macro text to show */
22349 if ( type(p)==mp_structured ) {
22350 @<Descend the structure@>;
22351 } else if ( type(p)>=mp_unsuffixed_macro ) {
22352 @<Display a variable macro@>;
22353 } else if ( type(p)!=undefined ){
22354 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22355 mp_print_char(mp, '=');
22356 mp_print_exp(mp, p,0);
22360 @ @<Descend the structure@>=
22363 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22365 while ( name_type(q)==mp_subscr ) {
22366 mp_disp_var(mp, q); q=link(q);
22370 @ @<Display a variable macro@>=
22372 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22373 if ( type(p)>mp_unsuffixed_macro )
22374 mp_print(mp, "@@#"); /* |suffixed_macro| */
22375 mp_print(mp, "=macro:");
22376 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22377 else n=mp->max_print_line-mp->file_offset-15;
22378 mp_show_macro(mp, value(p),null,n);
22381 @ @<Declare action procedures for use by |do_statement|@>=
22382 void mp_do_show_var (MP mp) ;
22384 @ @c void mp_do_show_var (MP mp) {
22387 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22388 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22389 mp_disp_var(mp, mp->cur_mod); goto DONE;
22394 } while (mp->cur_cmd==comma);
22397 @ @<Declare action procedures for use by |do_statement|@>=
22398 void mp_do_show_dependencies (MP mp) ;
22400 @ @c void mp_do_show_dependencies (MP mp) {
22401 pointer p; /* link that runs through all dependencies */
22403 while ( p!=dep_head ) {
22404 if ( mp_interesting(mp, p) ) {
22405 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22406 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22407 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22408 mp_print_dependency(mp, dep_list(p),type(p));
22411 while ( info(p)!=null ) p=link(p);
22417 @ Finally we are ready for the procedure that governs all of the
22420 @<Declare action procedures for use by |do_statement|@>=
22421 void mp_do_show_whatever (MP mp) ;
22423 @ @c void mp_do_show_whatever (MP mp) {
22424 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22425 switch (mp->cur_mod) {
22426 case show_token_code:mp_do_show_token(mp); break;
22427 case show_stats_code:mp_do_show_stats(mp); break;
22428 case show_code:mp_do_show(mp); break;
22429 case show_var_code:mp_do_show_var(mp); break;
22430 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22431 } /* there are no other cases */
22432 if ( mp->internal[mp_showstopping]>0 ){
22435 if ( mp->interaction<mp_error_stop_mode ) {
22436 help0; decr(mp->error_count);
22438 help1("This isn't an error message; I'm just showing something.");
22440 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22441 else mp_put_get_error(mp);
22445 @ The `\&{addto}' command needs the following additional primitives:
22447 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22448 @d contour_code 1 /* command modifier for `\&{contour}' */
22449 @d also_code 2 /* command modifier for `\&{also}' */
22451 @ Pre and postscripts need two new identifiers:
22453 @d with_pre_script 11
22454 @d with_post_script 13
22457 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22458 @:double_path_}{\&{doublepath} primitive@>
22459 mp_primitive(mp, "contour",thing_to_add,contour_code);
22460 @:contour_}{\&{contour} primitive@>
22461 mp_primitive(mp, "also",thing_to_add,also_code);
22462 @:also_}{\&{also} primitive@>
22463 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22464 @:with_pen_}{\&{withpen} primitive@>
22465 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22466 @:dashed_}{\&{dashed} primitive@>
22467 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22468 @:with_pre_script_}{\&{withprescript} primitive@>
22469 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22470 @:with_post_script_}{\&{withpostscript} primitive@>
22471 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22472 @:with_color_}{\&{withoutcolor} primitive@>
22473 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22474 @:with_color_}{\&{withgreyscale} primitive@>
22475 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22476 @:with_color_}{\&{withcolor} primitive@>
22477 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22478 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22479 @:with_color_}{\&{withrgbcolor} primitive@>
22480 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22481 @:with_color_}{\&{withcmykcolor} primitive@>
22483 @ @<Cases of |print_cmd...@>=
22485 if ( m==contour_code ) mp_print(mp, "contour");
22486 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22487 else mp_print(mp, "also");
22490 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22491 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22492 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22493 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22494 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22495 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22496 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22497 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22498 else mp_print(mp, "dashed");
22501 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22502 updates the list of graphical objects starting at |p|. Each $\langle$with
22503 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22504 Other objects are ignored.
22506 @<Declare action procedures for use by |do_statement|@>=
22507 void mp_scan_with_list (MP mp,pointer p) ;
22509 @ @c void mp_scan_with_list (MP mp,pointer p) {
22510 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22511 pointer q; /* for list manipulation */
22512 int old_setting; /* saved |selector| setting */
22513 pointer k; /* for finding the near-last item in a list */
22514 str_number s; /* for string cleanup after combining */
22515 pointer cp,pp,dp,ap,bp;
22516 /* objects being updated; |void| initially; |null| to suppress update */
22517 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22519 while ( mp->cur_cmd==with_option ){
22522 if ( t!=mp_no_model ) mp_scan_expression(mp);
22523 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22524 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22525 ((t==mp_uninitialized_model)&&
22526 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22527 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22528 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22529 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22530 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22531 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22532 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22533 @<Complain about improper type@>;
22534 } else if ( t==mp_uninitialized_model ) {
22535 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22537 @<Transfer a color from the current expression to object~|cp|@>;
22538 mp_flush_cur_exp(mp, 0);
22539 } else if ( t==mp_rgb_model ) {
22540 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22542 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22543 mp_flush_cur_exp(mp, 0);
22544 } else if ( t==mp_cmyk_model ) {
22545 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22547 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22548 mp_flush_cur_exp(mp, 0);
22549 } else if ( t==mp_grey_model ) {
22550 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22552 @<Transfer a greyscale from the current expression to object~|cp|@>;
22553 mp_flush_cur_exp(mp, 0);
22554 } else if ( t==mp_no_model ) {
22555 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22557 @<Transfer a noncolor from the current expression to object~|cp|@>;
22558 } else if ( t==mp_pen_type ) {
22559 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22561 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22562 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22564 } else if ( t==with_pre_script ) {
22567 while ( (ap!=null)&&(! has_color(ap)) )
22570 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22572 old_setting=mp->selector;
22573 mp->selector=new_string;
22574 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22575 mp_print_str(mp, mp->cur_exp);
22576 append_char(13); /* a forced \ps\ newline */
22577 mp_print_str(mp, pre_script(ap));
22578 pre_script(ap)=mp_make_string(mp);
22580 mp->selector=old_setting;
22582 pre_script(ap)=mp->cur_exp;
22584 mp->cur_type=mp_vacuous;
22586 } else if ( t==with_post_script ) {
22590 while ( link(k)!=null ) {
22592 if ( has_color(k) ) bp=k;
22595 if ( post_script(bp)!=null ) {
22597 old_setting=mp->selector;
22598 mp->selector=new_string;
22599 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22600 mp_print_str(mp, post_script(bp));
22601 append_char(13); /* a forced \ps\ newline */
22602 mp_print_str(mp, mp->cur_exp);
22603 post_script(bp)=mp_make_string(mp);
22605 mp->selector=old_setting;
22607 post_script(bp)=mp->cur_exp;
22609 mp->cur_type=mp_vacuous;
22612 if ( dp==mp_void ) {
22613 @<Make |dp| a stroked node in list~|p|@>;
22616 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22617 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22618 dash_scale(dp)=unity;
22619 mp->cur_type=mp_vacuous;
22623 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22627 @ @<Complain about improper type@>=
22628 { exp_err("Improper type");
22630 help2("Next time say `withpen <known pen expression>';")
22631 ("I'll ignore the bad `with' clause and look for another.");
22632 if ( t==with_pre_script )
22633 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22634 else if ( t==with_post_script )
22635 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22636 else if ( t==mp_picture_type )
22637 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22638 else if ( t==mp_uninitialized_model )
22639 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22640 else if ( t==mp_rgb_model )
22641 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22642 else if ( t==mp_cmyk_model )
22643 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22644 else if ( t==mp_grey_model )
22645 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22646 mp_put_get_flush_error(mp, 0);
22649 @ Forcing the color to be between |0| and |unity| here guarantees that no
22650 picture will ever contain a color outside the legal range for \ps\ graphics.
22652 @<Transfer a color from the current expression to object~|cp|@>=
22653 { if ( mp->cur_type==mp_color_type )
22654 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22655 else if ( mp->cur_type==mp_cmykcolor_type )
22656 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22657 else if ( mp->cur_type==mp_known )
22658 @<Transfer a greyscale from the current expression to object~|cp|@>
22659 else if ( mp->cur_exp==false_code )
22660 @<Transfer a noncolor from the current expression to object~|cp|@>;
22663 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22664 { q=value(mp->cur_exp);
22669 red_val(cp)=value(red_part_loc(q));
22670 green_val(cp)=value(green_part_loc(q));
22671 blue_val(cp)=value(blue_part_loc(q));
22672 color_model(cp)=mp_rgb_model;
22673 if ( red_val(cp)<0 ) red_val(cp)=0;
22674 if ( green_val(cp)<0 ) green_val(cp)=0;
22675 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22676 if ( red_val(cp)>unity ) red_val(cp)=unity;
22677 if ( green_val(cp)>unity ) green_val(cp)=unity;
22678 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22681 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22682 { q=value(mp->cur_exp);
22683 cyan_val(cp)=value(cyan_part_loc(q));
22684 magenta_val(cp)=value(magenta_part_loc(q));
22685 yellow_val(cp)=value(yellow_part_loc(q));
22686 black_val(cp)=value(black_part_loc(q));
22687 color_model(cp)=mp_cmyk_model;
22688 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22689 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22690 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22691 if ( black_val(cp)<0 ) black_val(cp)=0;
22692 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22693 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22694 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22695 if ( black_val(cp)>unity ) black_val(cp)=unity;
22698 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22705 color_model(cp)=mp_grey_model;
22706 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22707 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22710 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22717 color_model(cp)=mp_no_model;
22720 @ @<Make |cp| a colored object in object list~|p|@>=
22722 while ( cp!=null ){
22723 if ( has_color(cp) ) break;
22728 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22730 while ( pp!=null ) {
22731 if ( has_pen(pp) ) break;
22736 @ @<Make |dp| a stroked node in list~|p|@>=
22738 while ( dp!=null ) {
22739 if ( type(dp)==mp_stroked_code ) break;
22744 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22745 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22746 if ( pp>mp_void ) {
22747 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22749 if ( dp>mp_void ) {
22750 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22754 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22756 while ( q!=null ) {
22757 if ( has_color(q) ) {
22758 red_val(q)=red_val(cp);
22759 green_val(q)=green_val(cp);
22760 blue_val(q)=blue_val(cp);
22761 black_val(q)=black_val(cp);
22762 color_model(q)=color_model(cp);
22768 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22770 while ( q!=null ) {
22771 if ( has_pen(q) ) {
22772 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22773 pen_p(q)=copy_pen(pen_p(pp));
22779 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22781 while ( q!=null ) {
22782 if ( type(q)==mp_stroked_code ) {
22783 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22784 dash_p(q)=dash_p(dp);
22785 dash_scale(q)=unity;
22786 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22792 @ One of the things we need to do when we've parsed an \&{addto} or
22793 similar command is find the header of a supposed \&{picture} variable, given
22794 a token list for that variable. Since the edge structure is about to be
22795 updated, we use |private_edges| to make sure that this is possible.
22797 @<Declare action procedures for use by |do_statement|@>=
22798 pointer mp_find_edges_var (MP mp, pointer t) ;
22800 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22802 pointer cur_edges; /* the return value */
22803 p=mp_find_variable(mp, t); cur_edges=null;
22805 mp_obliterated(mp, t); mp_put_get_error(mp);
22806 } else if ( type(p)!=mp_picture_type ) {
22807 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22808 @.Variable x is the wrong type@>
22809 mp_print(mp, " is the wrong type (");
22810 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22811 help2("I was looking for a \"known\" picture variable.")
22812 ("So I'll not change anything just now.");
22813 mp_put_get_error(mp);
22815 value(p)=mp_private_edges(mp, value(p));
22816 cur_edges=value(p);
22818 mp_flush_node_list(mp, t);
22822 @ @<Cases of |do_statement|...@>=
22823 case add_to_command: mp_do_add_to(mp); break;
22824 case bounds_command:mp_do_bounds(mp); break;
22827 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22828 @:clip_}{\&{clip} primitive@>
22829 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22830 @:set_bounds_}{\&{setbounds} primitive@>
22832 @ @<Cases of |print_cmd...@>=
22833 case bounds_command:
22834 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22835 else mp_print(mp, "setbounds");
22838 @ The following function parses the beginning of an \&{addto} or \&{clip}
22839 command: it expects a variable name followed by a token with |cur_cmd=sep|
22840 and then an expression. The function returns the token list for the variable
22841 and stores the command modifier for the separator token in the global variable
22842 |last_add_type|. We must be careful because this variable might get overwritten
22843 any time we call |get_x_next|.
22846 quarterword last_add_type;
22847 /* command modifier that identifies the last \&{addto} command */
22849 @ @<Declare action procedures for use by |do_statement|@>=
22850 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22852 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22853 pointer lhv; /* variable to add to left */
22854 quarterword add_type=0; /* value to be returned in |last_add_type| */
22856 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22857 if ( mp->cur_type!=mp_token_list ) {
22858 @<Abandon edges command because there's no variable@>;
22860 lhv=mp->cur_exp; add_type=mp->cur_mod;
22861 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22863 mp->last_add_type=add_type;
22867 @ @<Abandon edges command because there's no variable@>=
22868 { exp_err("Not a suitable variable");
22869 @.Not a suitable variable@>
22870 help4("At this point I needed to see the name of a picture variable.")
22871 ("(Or perhaps you have indeed presented me with one; I might")
22872 ("have missed it, if it wasn't followed by the proper token.)")
22873 ("So I'll not change anything just now.");
22874 mp_put_get_flush_error(mp, 0);
22877 @ Here is an example of how to use |start_draw_cmd|.
22879 @<Declare action procedures for use by |do_statement|@>=
22880 void mp_do_bounds (MP mp) ;
22882 @ @c void mp_do_bounds (MP mp) {
22883 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22884 pointer p; /* for list manipulation */
22885 integer m; /* initial value of |cur_mod| */
22887 lhv=mp_start_draw_cmd(mp, to_token);
22889 lhe=mp_find_edges_var(mp, lhv);
22891 mp_flush_cur_exp(mp, 0);
22892 } else if ( mp->cur_type!=mp_path_type ) {
22893 exp_err("Improper `clip'");
22894 @.Improper `addto'@>
22895 help2("This expression should have specified a known path.")
22896 ("So I'll not change anything just now.");
22897 mp_put_get_flush_error(mp, 0);
22898 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22899 @<Complain about a non-cycle@>;
22901 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22906 @ @<Complain about a non-cycle@>=
22907 { print_err("Not a cycle");
22909 help2("That contour should have ended with `..cycle' or `&cycle'.")
22910 ("So I'll not change anything just now."); mp_put_get_error(mp);
22913 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22914 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22915 link(p)=link(dummy_loc(lhe));
22916 link(dummy_loc(lhe))=p;
22917 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22918 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22919 type(p)=stop_type(m);
22920 link(obj_tail(lhe))=p;
22922 mp_init_bbox(mp, lhe);
22925 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22926 cases to deal with.
22928 @<Declare action procedures for use by |do_statement|@>=
22929 void mp_do_add_to (MP mp) ;
22931 @ @c void mp_do_add_to (MP mp) {
22932 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22933 pointer p; /* the graphical object or list for |scan_with_list| to update */
22934 pointer e; /* an edge structure to be merged */
22935 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22936 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22938 if ( add_type==also_code ) {
22939 @<Make sure the current expression is a suitable picture and set |e| and |p|
22942 @<Create a graphical object |p| based on |add_type| and the current
22945 mp_scan_with_list(mp, p);
22946 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22950 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22951 setting |e:=null| prevents anything from being added to |lhe|.
22953 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22956 if ( mp->cur_type!=mp_picture_type ) {
22957 exp_err("Improper `addto'");
22958 @.Improper `addto'@>
22959 help2("This expression should have specified a known picture.")
22960 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22962 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22963 p=link(dummy_loc(e));
22967 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22968 attempts to add to the edge structure.
22970 @<Create a graphical object |p| based on |add_type| and the current...@>=
22972 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22973 if ( mp->cur_type!=mp_path_type ) {
22974 exp_err("Improper `addto'");
22975 @.Improper `addto'@>
22976 help2("This expression should have specified a known path.")
22977 ("So I'll not change anything just now.");
22978 mp_put_get_flush_error(mp, 0);
22979 } else if ( add_type==contour_code ) {
22980 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22981 @<Complain about a non-cycle@>;
22983 p=mp_new_fill_node(mp, mp->cur_exp);
22984 mp->cur_type=mp_vacuous;
22987 p=mp_new_stroked_node(mp, mp->cur_exp);
22988 mp->cur_type=mp_vacuous;
22992 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22993 lhe=mp_find_edges_var(mp, lhv);
22995 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22996 if ( e!=null ) delete_edge_ref(e);
22997 } else if ( add_type==also_code ) {
22999 @<Merge |e| into |lhe| and delete |e|@>;
23003 } else if ( p!=null ) {
23004 link(obj_tail(lhe))=p;
23006 if ( add_type==double_path_code )
23007 if ( pen_p(p)==null )
23008 pen_p(p)=mp_get_pen_circle(mp, 0);
23011 @ @<Merge |e| into |lhe| and delete |e|@>=
23012 { if ( link(dummy_loc(e))!=null ) {
23013 link(obj_tail(lhe))=link(dummy_loc(e));
23014 obj_tail(lhe)=obj_tail(e);
23015 obj_tail(e)=dummy_loc(e);
23016 link(dummy_loc(e))=null;
23017 mp_flush_dash_list(mp, lhe);
23019 mp_toss_edges(mp, e);
23022 @ @<Cases of |do_statement|...@>=
23023 case ship_out_command: mp_do_ship_out(mp); break;
23025 @ @<Declare action procedures for use by |do_statement|@>=
23026 @<Declare the function called |tfm_check|@>;
23027 @<Declare the \ps\ output procedures@>;
23028 void mp_do_ship_out (MP mp) ;
23030 @ @c void mp_do_ship_out (MP mp) {
23031 integer c; /* the character code */
23032 mp_get_x_next(mp); mp_scan_expression(mp);
23033 if ( mp->cur_type!=mp_picture_type ) {
23034 @<Complain that it's not a known picture@>;
23036 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23037 if ( c<0 ) c=c+256;
23038 @<Store the width information for character code~|c|@>;
23039 mp_ship_out(mp, mp->cur_exp);
23040 mp_flush_cur_exp(mp, 0);
23044 @ @<Complain that it's not a known picture@>=
23046 exp_err("Not a known picture");
23047 help1("I can only output known pictures.");
23048 mp_put_get_flush_error(mp, 0);
23051 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23054 @<Cases of |do_statement|...@>=
23055 case every_job_command:
23056 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23060 halfword start_sym; /* a symbolic token to insert at beginning of job */
23065 @ Finally, we have only the ``message'' commands remaining.
23068 @d err_message_code 1
23070 @d filename_template_code 3
23071 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23072 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23074 mp->pool_ptr = mp->pool_ptr - g;
23076 mp_print_char(mp, '0');
23079 mp_print_int(mp, (A));
23084 mp_primitive(mp, "message",message_command,message_code);
23085 @:message_}{\&{message} primitive@>
23086 mp_primitive(mp, "errmessage",message_command,err_message_code);
23087 @:err_message_}{\&{errmessage} primitive@>
23088 mp_primitive(mp, "errhelp",message_command,err_help_code);
23089 @:err_help_}{\&{errhelp} primitive@>
23090 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23091 @:filename_template_}{\&{filenametemplate} primitive@>
23093 @ @<Cases of |print_cmd...@>=
23094 case message_command:
23095 if ( m<err_message_code ) mp_print(mp, "message");
23096 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23097 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23098 else mp_print(mp, "errhelp");
23101 @ @<Cases of |do_statement|...@>=
23102 case message_command: mp_do_message(mp); break;
23104 @ @<Declare action procedures for use by |do_statement|@>=
23105 @<Declare a procedure called |no_string_err|@>;
23106 void mp_do_message (MP mp) ;
23109 @c void mp_do_message (MP mp) {
23110 int m; /* the type of message */
23111 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23112 if ( mp->cur_type!=mp_string_type )
23113 mp_no_string_err(mp, "A message should be a known string expression.");
23117 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23119 case err_message_code:
23120 @<Print string |cur_exp| as an error message@>;
23122 case err_help_code:
23123 @<Save string |cur_exp| as the |err_help|@>;
23125 case filename_template_code:
23126 @<Save the filename template@>;
23128 } /* there are no other cases */
23130 mp_flush_cur_exp(mp, 0);
23133 @ @<Declare a procedure called |no_string_err|@>=
23134 void mp_no_string_err (MP mp,char *s) {
23135 exp_err("Not a string");
23138 mp_put_get_error(mp);
23141 @ The global variable |err_help| is zero when the user has most recently
23142 given an empty help string, or if none has ever been given.
23144 @<Save string |cur_exp| as the |err_help|@>=
23146 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23147 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23148 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23151 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23152 \&{errhelp}, we don't want to give a long help message each time. So we
23153 give a verbose explanation only once.
23156 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23158 @ @<Set init...@>=mp->long_help_seen=false;
23160 @ @<Print string |cur_exp| as an error message@>=
23162 print_err(""); mp_print_str(mp, mp->cur_exp);
23163 if ( mp->err_help!=0 ) {
23164 mp->use_err_help=true;
23165 } else if ( mp->long_help_seen ) {
23166 help1("(That was another `errmessage'.)") ;
23168 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23169 help4("This error message was generated by an `errmessage'")
23170 ("command, so I can\'t give any explicit help.")
23171 ("Pretend that you're Miss Marple: Examine all clues,")
23173 ("and deduce the truth by inspired guesses.");
23175 mp_put_get_error(mp); mp->use_err_help=false;
23178 @ @<Cases of |do_statement|...@>=
23179 case write_command: mp_do_write(mp); break;
23181 @ @<Declare action procedures for use by |do_statement|@>=
23182 void mp_do_write (MP mp) ;
23184 @ @c void mp_do_write (MP mp) {
23185 str_number t; /* the line of text to be written */
23186 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23187 int old_setting; /* for saving |selector| during output */
23189 mp_scan_expression(mp);
23190 if ( mp->cur_type!=mp_string_type ) {
23191 mp_no_string_err(mp, "The text to be written should be a known string expression");
23192 } else if ( mp->cur_cmd!=to_token ) {
23193 print_err("Missing `to' clause");
23194 help1("A write command should end with `to <filename>'");
23195 mp_put_get_error(mp);
23197 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23199 mp_scan_expression(mp);
23200 if ( mp->cur_type!=mp_string_type )
23201 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23203 @<Write |t| to the file named by |cur_exp|@>;
23207 mp_flush_cur_exp(mp, 0);
23210 @ @<Write |t| to the file named by |cur_exp|@>=
23212 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23213 |cur_exp| must be inserted@>;
23214 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23215 @<Record the end of file on |wr_file[n]|@>;
23217 old_setting=mp->selector;
23218 mp->selector=n+write_file;
23219 mp_print_str(mp, t); mp_print_ln(mp);
23220 mp->selector = old_setting;
23224 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23226 char *fn = str(mp->cur_exp);
23228 n0=mp->write_files;
23229 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23230 if ( n==0 ) { /* bottom reached */
23231 if ( n0==mp->write_files ) {
23232 if ( mp->write_files<mp->max_write_files ) {
23233 incr(mp->write_files);
23238 l = mp->max_write_files + (mp->max_write_files>>2);
23239 wr_file = xmalloc((l+1),sizeof(void *));
23240 wr_fname = xmalloc((l+1),sizeof(char *));
23241 for (k=0;k<=l;k++) {
23242 if (k<=mp->max_write_files) {
23243 wr_file[k]=mp->wr_file[k];
23244 wr_fname[k]=mp->wr_fname[k];
23250 xfree(mp->wr_file); xfree(mp->wr_fname);
23251 mp->max_write_files = l;
23252 mp->wr_file = wr_file;
23253 mp->wr_fname = wr_fname;
23257 mp_open_write_file(mp, fn ,n);
23260 if ( mp->wr_fname[n]==NULL ) n0=n;
23265 @ @<Record the end of file on |wr_file[n]|@>=
23266 { (mp->close_file)(mp->wr_file[n]);
23267 xfree(mp->wr_fname[n]);
23268 mp->wr_fname[n]=NULL;
23269 if ( n==mp->write_files-1 ) mp->write_files=n;
23273 @* \[42] Writing font metric data.
23274 \TeX\ gets its knowledge about fonts from font metric files, also called
23275 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23276 but other programs know about them too. One of \MP's duties is to
23277 write \.{TFM} files so that the user's fonts can readily be
23278 applied to typesetting.
23279 @:TFM files}{\.{TFM} files@>
23280 @^font metric files@>
23282 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23283 Since the number of bytes is always a multiple of~4, we could
23284 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23285 byte interpretation. The format of \.{TFM} files was designed by
23286 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23287 @^Ramshaw, Lyle Harold@>
23288 of information in a compact but useful form.
23291 void * tfm_file; /* the font metric output goes here */
23292 char * metric_file_name; /* full name of the font metric file */
23294 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23295 integers that give the lengths of the various subsequent portions
23296 of the file. These twelve integers are, in order:
23297 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23298 |lf|&length of the entire file, in words;\cr
23299 |lh|&length of the header data, in words;\cr
23300 |bc|&smallest character code in the font;\cr
23301 |ec|&largest character code in the font;\cr
23302 |nw|&number of words in the width table;\cr
23303 |nh|&number of words in the height table;\cr
23304 |nd|&number of words in the depth table;\cr
23305 |ni|&number of words in the italic correction table;\cr
23306 |nl|&number of words in the lig/kern table;\cr
23307 |nk|&number of words in the kern table;\cr
23308 |ne|&number of words in the extensible character table;\cr
23309 |np|&number of font parameter words.\cr}}$$
23310 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23312 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23313 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23314 and as few as 0 characters (if |bc=ec+1|).
23316 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23317 16 or more bits, the most significant bytes appear first in the file.
23318 This is called BigEndian order.
23319 @^BigEndian order@>
23321 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23324 The most important data type used here is a |fix_word|, which is
23325 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23326 quantity, with the two's complement of the entire word used to represent
23327 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23328 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23329 the smallest is $-2048$. We will see below, however, that all but two of
23330 the |fix_word| values must lie between $-16$ and $+16$.
23332 @ The first data array is a block of header information, which contains
23333 general facts about the font. The header must contain at least two words,
23334 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23335 header information of use to other software routines might also be
23336 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23337 For example, 16 more words of header information are in use at the Xerox
23338 Palo Alto Research Center; the first ten specify the character coding
23339 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23340 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23341 last gives the ``face byte.''
23343 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23344 the \.{GF} output file. This helps ensure consistency between files,
23345 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23346 should match the check sums on actual fonts that are used. The actual
23347 relation between this check sum and the rest of the \.{TFM} file is not
23348 important; the check sum is simply an identification number with the
23349 property that incompatible fonts almost always have distinct check sums.
23352 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23353 font, in units of \TeX\ points. This number must be at least 1.0; it is
23354 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23355 font, i.e., a font that was designed to look best at a 10-point size,
23356 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23357 $\delta$ \.{pt}', the effect is to override the design size and replace it
23358 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23359 the font image by a factor of $\delta$ divided by the design size. {\sl
23360 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23361 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23362 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23363 since many fonts have a design size equal to one em. The other dimensions
23364 must be less than 16 design-size units in absolute value; thus,
23365 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23366 \.{TFM} file whose first byte might be something besides 0 or 255.
23368 @ Next comes the |char_info| array, which contains one |char_info_word|
23369 per character. Each word in this part of the file contains six fields
23370 packed into four bytes as follows.
23372 \yskip\hang first byte: |width_index| (8 bits)\par
23373 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23375 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23377 \hang fourth byte: |remainder| (8 bits)\par
23379 The actual width of a character is \\{width}|[width_index]|, in design-size
23380 units; this is a device for compressing information, since many characters
23381 have the same width. Since it is quite common for many characters
23382 to have the same height, depth, or italic correction, the \.{TFM} format
23383 imposes a limit of 16 different heights, 16 different depths, and
23384 64 different italic corrections.
23386 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23387 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23388 value of zero. The |width_index| should never be zero unless the
23389 character does not exist in the font, since a character is valid if and
23390 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23392 @ The |tag| field in a |char_info_word| has four values that explain how to
23393 interpret the |remainder| field.
23395 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23396 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23397 program starting at location |remainder| in the |lig_kern| array.\par
23398 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23399 characters of ascending sizes, and not the largest in the chain. The
23400 |remainder| field gives the character code of the next larger character.\par
23401 \hang|tag=3| (|ext_tag|) means that this character code represents an
23402 extensible character, i.e., a character that is built up of smaller pieces
23403 so that it can be made arbitrarily large. The pieces are specified in
23404 |exten[remainder]|.\par
23406 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23407 unless they are used in special circumstances in math formulas. For example,
23408 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23409 operation looks for both |list_tag| and |ext_tag|.
23411 @d no_tag 0 /* vanilla character */
23412 @d lig_tag 1 /* character has a ligature/kerning program */
23413 @d list_tag 2 /* character has a successor in a charlist */
23414 @d ext_tag 3 /* character is extensible */
23416 @ The |lig_kern| array contains instructions in a simple programming language
23417 that explains what to do for special letter pairs. Each word in this array is a
23418 |lig_kern_command| of four bytes.
23420 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23421 step if the byte is 128 or more, otherwise the next step is obtained by
23422 skipping this number of intervening steps.\par
23423 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23424 then perform the operation and stop, otherwise continue.''\par
23425 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23426 a kern step otherwise.\par
23427 \hang fourth byte: |remainder|.\par
23430 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23431 between the current character and |next_char|. This amount is
23432 often negative, so that the characters are brought closer together
23433 by kerning; but it might be positive.
23435 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23436 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23437 |remainder| is inserted between the current character and |next_char|;
23438 then the current character is deleted if $b=0$, and |next_char| is
23439 deleted if $c=0$; then we pass over $a$~characters to reach the next
23440 current character (which may have a ligature/kerning program of its own).
23442 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23443 the |next_char| byte is the so-called right boundary character of this font;
23444 the value of |next_char| need not lie between |bc| and~|ec|.
23445 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23446 there is a special ligature/kerning program for a left boundary character,
23447 beginning at location |256*op_byte+remainder|.
23448 The interpretation is that \TeX\ puts implicit boundary characters
23449 before and after each consecutive string of characters from the same font.
23450 These implicit characters do not appear in the output, but they can affect
23451 ligatures and kerning.
23453 If the very first instruction of a character's |lig_kern| program has
23454 |skip_byte>128|, the program actually begins in location
23455 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23456 arrays, because the first instruction must otherwise
23457 appear in a location |<=255|.
23459 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23461 $$\hbox{|256*op_byte+remainder<nl|.}$$
23462 If such an instruction is encountered during
23463 normal program execution, it denotes an unconditional halt; no ligature
23464 command is performed.
23467 /* value indicating `\.{STOP}' in a lig/kern program */
23468 @d kern_flag (128) /* op code for a kern step */
23469 @d skip_byte(A) mp->lig_kern[(A)].b0
23470 @d next_char(A) mp->lig_kern[(A)].b1
23471 @d op_byte(A) mp->lig_kern[(A)].b2
23472 @d rem_byte(A) mp->lig_kern[(A)].b3
23474 @ Extensible characters are specified by an |extensible_recipe|, which
23475 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23476 order). These bytes are the character codes of individual pieces used to
23477 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23478 present in the built-up result. For example, an extensible vertical line is
23479 like an extensible bracket, except that the top and bottom pieces are missing.
23481 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23482 if the piece isn't present. Then the extensible characters have the form
23483 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23484 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23485 The width of the extensible character is the width of $R$; and the
23486 height-plus-depth is the sum of the individual height-plus-depths of the
23487 components used, since the pieces are butted together in a vertical list.
23489 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23490 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23491 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23492 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23494 @ The final portion of a \.{TFM} file is the |param| array, which is another
23495 sequence of |fix_word| values.
23497 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23498 to help position accents. For example, |slant=.25| means that when you go
23499 up one unit, you also go .25 units to the right. The |slant| is a pure
23500 number; it is the only |fix_word| other than the design size itself that is
23501 not scaled by the design size.
23503 \hang|param[2]=space| is the normal spacing between words in text.
23504 Note that character 040 in the font need not have anything to do with
23507 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23509 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23511 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23512 the height of letters for which accents don't have to be raised or lowered.
23514 \hang|param[6]=quad| is the size of one em in the font.
23516 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23520 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23525 @d space_stretch_code 3
23526 @d space_shrink_code 4
23529 @d extra_space_code 7
23531 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23532 information, and it does this all at once at the end of a job.
23533 In order to prepare for such frenetic activity, it squirrels away the
23534 necessary facts in various arrays as information becomes available.
23536 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23537 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23538 |tfm_ital_corr|. Other information about a character (e.g., about
23539 its ligatures or successors) is accessible via the |char_tag| and
23540 |char_remainder| arrays. Other information about the font as a whole
23541 is kept in additional arrays called |header_byte|, |lig_kern|,
23542 |kern|, |exten|, and |param|.
23544 @d max_tfm_int 32510
23545 @d undefined_label max_tfm_int /* an undefined local label */
23548 #define TFM_ITEMS 257
23550 eight_bits ec; /* smallest and largest character codes shipped out */
23551 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23552 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23553 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23554 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23555 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23556 int char_tag[TFM_ITEMS]; /* |remainder| category */
23557 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23558 char *header_byte; /* bytes of the \.{TFM} header */
23559 int header_last; /* last initialized \.{TFM} header byte */
23560 int header_size; /* size of the \.{TFM} header */
23561 four_quarters *lig_kern; /* the ligature/kern table */
23562 short nl; /* the number of ligature/kern steps so far */
23563 scaled *kern; /* distinct kerning amounts */
23564 short nk; /* the number of distinct kerns so far */
23565 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23566 short ne; /* the number of extensible characters so far */
23567 scaled *param; /* \&{fontinfo} parameters */
23568 short np; /* the largest \&{fontinfo} parameter specified so far */
23569 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23570 short skip_table[TFM_ITEMS]; /* local label status */
23571 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23572 integer bchar; /* right boundary character */
23573 short bch_label; /* left boundary starting location */
23574 short ll;short lll; /* registers used for lig/kern processing */
23575 short label_loc[257]; /* lig/kern starting addresses */
23576 eight_bits label_char[257]; /* characters for |label_loc| */
23577 short label_ptr; /* highest position occupied in |label_loc| */
23579 @ @<Allocate or initialize ...@>=
23580 mp->header_last = 0; mp->header_size = 128; /* just for init */
23581 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23582 mp->lig_kern = NULL; /* allocated when needed */
23583 mp->kern = NULL; /* allocated when needed */
23584 mp->param = NULL; /* allocated when needed */
23586 @ @<Dealloc variables@>=
23587 xfree(mp->header_byte);
23588 xfree(mp->lig_kern);
23593 for (k=0;k<= 255;k++ ) {
23594 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23595 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23596 mp->skip_table[k]=undefined_label;
23598 memset(mp->header_byte,0,mp->header_size);
23599 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23600 mp->internal[mp_boundary_char]=-unity;
23601 mp->bch_label=undefined_label;
23602 mp->label_loc[0]=-1; mp->label_ptr=0;
23604 @ @<Declarations@>=
23605 scaled mp_tfm_check (MP mp,small_number m) ;
23607 @ @<Declare the function called |tfm_check|@>=
23608 scaled mp_tfm_check (MP mp,small_number m) {
23609 if ( abs(mp->internal[m])>=fraction_half ) {
23610 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23611 @.Enormous charwd...@>
23612 @.Enormous chardp...@>
23613 @.Enormous charht...@>
23614 @.Enormous charic...@>
23615 @.Enormous designsize...@>
23616 mp_print(mp, " has been reduced");
23617 help1("Font metric dimensions must be less than 2048pt.");
23618 mp_put_get_error(mp);
23619 if ( mp->internal[m]>0 ) return (fraction_half-1);
23620 else return (1-fraction_half);
23622 return mp->internal[m];
23626 @ @<Store the width information for character code~|c|@>=
23627 if ( c<mp->bc ) mp->bc=c;
23628 if ( c>mp->ec ) mp->ec=c;
23629 mp->char_exists[c]=true;
23630 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23631 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23632 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23633 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23635 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23637 @<Cases of |do_statement|...@>=
23638 case tfm_command: mp_do_tfm_command(mp); break;
23640 @ @d char_list_code 0
23641 @d lig_table_code 1
23642 @d extensible_code 2
23643 @d header_byte_code 3
23644 @d font_dimen_code 4
23647 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23648 @:char_list_}{\&{charlist} primitive@>
23649 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23650 @:lig_table_}{\&{ligtable} primitive@>
23651 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23652 @:extensible_}{\&{extensible} primitive@>
23653 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23654 @:header_byte_}{\&{headerbyte} primitive@>
23655 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23656 @:font_dimen_}{\&{fontdimen} primitive@>
23658 @ @<Cases of |print_cmd...@>=
23661 case char_list_code:mp_print(mp, "charlist"); break;
23662 case lig_table_code:mp_print(mp, "ligtable"); break;
23663 case extensible_code:mp_print(mp, "extensible"); break;
23664 case header_byte_code:mp_print(mp, "headerbyte"); break;
23665 default: mp_print(mp, "fontdimen"); break;
23669 @ @<Declare action procedures for use by |do_statement|@>=
23670 eight_bits mp_get_code (MP mp) ;
23672 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23673 integer c; /* the code value found */
23674 mp_get_x_next(mp); mp_scan_expression(mp);
23675 if ( mp->cur_type==mp_known ) {
23676 c=mp_round_unscaled(mp, mp->cur_exp);
23677 if ( c>=0 ) if ( c<256 ) return c;
23678 } else if ( mp->cur_type==mp_string_type ) {
23679 if ( length(mp->cur_exp)==1 ) {
23680 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23684 exp_err("Invalid code has been replaced by 0");
23685 @.Invalid code...@>
23686 help2("I was looking for a number between 0 and 255, or for a")
23687 ("string of length 1. Didn't find it; will use 0 instead.");
23688 mp_put_get_flush_error(mp, 0); c=0;
23692 @ @<Declare action procedures for use by |do_statement|@>=
23693 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23695 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23696 if ( mp->char_tag[c]==no_tag ) {
23697 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23699 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23700 mp->label_char[mp->label_ptr]=c;
23703 @<Complain about a character tag conflict@>;
23707 @ @<Complain about a character tag conflict@>=
23709 print_err("Character ");
23710 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23711 else if ( c==256 ) mp_print(mp, "||");
23712 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23713 mp_print(mp, " is already ");
23714 @.Character c is already...@>
23715 switch (mp->char_tag[c]) {
23716 case lig_tag: mp_print(mp, "in a ligtable"); break;
23717 case list_tag: mp_print(mp, "in a charlist"); break;
23718 case ext_tag: mp_print(mp, "extensible"); break;
23719 } /* there are no other cases */
23720 help2("It's not legal to label a character more than once.")
23721 ("So I'll not change anything just now.");
23722 mp_put_get_error(mp);
23725 @ @<Declare action procedures for use by |do_statement|@>=
23726 void mp_do_tfm_command (MP mp) ;
23728 @ @c void mp_do_tfm_command (MP mp) {
23729 int c,cc; /* character codes */
23730 int k; /* index into the |kern| array */
23731 int j; /* index into |header_byte| or |param| */
23732 switch (mp->cur_mod) {
23733 case char_list_code:
23735 /* we will store a list of character successors */
23736 while ( mp->cur_cmd==colon ) {
23737 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23740 case lig_table_code:
23741 if (mp->lig_kern==NULL)
23742 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23743 if (mp->kern==NULL)
23744 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23745 @<Store a list of ligature/kern steps@>;
23747 case extensible_code:
23748 @<Define an extensible recipe@>;
23750 case header_byte_code:
23751 case font_dimen_code:
23752 c=mp->cur_mod; mp_get_x_next(mp);
23753 mp_scan_expression(mp);
23754 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23755 exp_err("Improper location");
23756 @.Improper location@>
23757 help2("I was looking for a known, positive number.")
23758 ("For safety's sake I'll ignore the present command.");
23759 mp_put_get_error(mp);
23761 j=mp_round_unscaled(mp, mp->cur_exp);
23762 if ( mp->cur_cmd!=colon ) {
23763 mp_missing_err(mp, ":");
23765 help1("A colon should follow a headerbyte or fontinfo location.");
23768 if ( c==header_byte_code ) {
23769 @<Store a list of header bytes@>;
23771 if (mp->param==NULL)
23772 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23773 @<Store a list of font dimensions@>;
23777 } /* there are no other cases */
23780 @ @<Store a list of ligature/kern steps@>=
23782 mp->lk_started=false;
23785 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23786 @<Process a |skip_to| command and |goto done|@>;
23787 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23788 else { mp_back_input(mp); c=mp_get_code(mp); };
23789 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23790 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23792 if ( mp->cur_cmd==lig_kern_token ) {
23793 @<Compile a ligature/kern command@>;
23795 print_err("Illegal ligtable step");
23796 @.Illegal ligtable step@>
23797 help1("I was looking for `=:' or `kern' here.");
23798 mp_back_error(mp); next_char(mp->nl)=qi(0);
23799 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23800 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23802 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23804 if ( mp->cur_cmd==comma ) goto CONTINUE;
23805 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23810 mp_primitive(mp, "=:",lig_kern_token,0);
23811 @:=:_}{\.{=:} primitive@>
23812 mp_primitive(mp, "=:|",lig_kern_token,1);
23813 @:=:/_}{\.{=:\char'174} primitive@>
23814 mp_primitive(mp, "=:|>",lig_kern_token,5);
23815 @:=:/>_}{\.{=:\char'174>} primitive@>
23816 mp_primitive(mp, "|=:",lig_kern_token,2);
23817 @:=:/_}{\.{\char'174=:} primitive@>
23818 mp_primitive(mp, "|=:>",lig_kern_token,6);
23819 @:=:/>_}{\.{\char'174=:>} primitive@>
23820 mp_primitive(mp, "|=:|",lig_kern_token,3);
23821 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23822 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23823 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23824 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23825 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23826 mp_primitive(mp, "kern",lig_kern_token,128);
23827 @:kern_}{\&{kern} primitive@>
23829 @ @<Cases of |print_cmd...@>=
23830 case lig_kern_token:
23832 case 0:mp_print(mp, "=:"); break;
23833 case 1:mp_print(mp, "=:|"); break;
23834 case 2:mp_print(mp, "|=:"); break;
23835 case 3:mp_print(mp, "|=:|"); break;
23836 case 5:mp_print(mp, "=:|>"); break;
23837 case 6:mp_print(mp, "|=:>"); break;
23838 case 7:mp_print(mp, "|=:|>"); break;
23839 case 11:mp_print(mp, "|=:|>>"); break;
23840 default: mp_print(mp, "kern"); break;
23844 @ Local labels are implemented by maintaining the |skip_table| array,
23845 where |skip_table[c]| is either |undefined_label| or the address of the
23846 most recent lig/kern instruction that skips to local label~|c|. In the
23847 latter case, the |skip_byte| in that instruction will (temporarily)
23848 be zero if there were no prior skips to this label, or it will be the
23849 distance to the prior skip.
23851 We may need to cancel skips that span more than 127 lig/kern steps.
23853 @d cancel_skips(A) mp->ll=(A);
23855 mp->lll=qo(skip_byte(mp->ll));
23856 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23857 } while (mp->lll!=0)
23858 @d skip_error(A) { print_err("Too far to skip");
23859 @.Too far to skip@>
23860 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23861 mp_error(mp); cancel_skips((A));
23864 @<Process a |skip_to| command and |goto done|@>=
23867 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23868 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23870 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23871 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23872 mp->skip_table[c]=mp->nl-1; goto DONE;
23875 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23877 if ( mp->cur_cmd==colon ) {
23878 if ( c==256 ) mp->bch_label=mp->nl;
23879 else mp_set_tag(mp, c,lig_tag,mp->nl);
23880 } else if ( mp->skip_table[c]<undefined_label ) {
23881 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23883 mp->lll=qo(skip_byte(mp->ll));
23884 if ( mp->nl-mp->ll>128 ) {
23885 skip_error(mp->ll); goto CONTINUE;
23887 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23888 } while (mp->lll!=0);
23893 @ @<Compile a ligature/kern...@>=
23895 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23896 if ( mp->cur_mod<128 ) { /* ligature op */
23897 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23899 mp_get_x_next(mp); mp_scan_expression(mp);
23900 if ( mp->cur_type!=mp_known ) {
23901 exp_err("Improper kern");
23903 help2("The amount of kern should be a known numeric value.")
23904 ("I'm zeroing this one. Proceed, with fingers crossed.");
23905 mp_put_get_flush_error(mp, 0);
23907 mp->kern[mp->nk]=mp->cur_exp;
23909 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23911 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23914 op_byte(mp->nl)=kern_flag+(k / 256);
23915 rem_byte(mp->nl)=qi((k % 256));
23917 mp->lk_started=true;
23920 @ @d missing_extensible_punctuation(A)
23921 { mp_missing_err(mp, (A));
23922 @.Missing `\char`\#'@>
23923 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23926 @<Define an extensible recipe@>=
23928 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23929 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23930 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23931 ext_top(mp->ne)=qi(mp_get_code(mp));
23932 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23933 ext_mid(mp->ne)=qi(mp_get_code(mp));
23934 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23935 ext_bot(mp->ne)=qi(mp_get_code(mp));
23936 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23937 ext_rep(mp->ne)=qi(mp_get_code(mp));
23941 @ The header could contain ASCII zeroes, so can't use |strdup|.
23943 @<Store a list of header bytes@>=
23945 if ( j>=mp->header_size ) {
23946 int l = mp->header_size + (mp->header_size >> 2);
23947 char *t = xmalloc(l,sizeof(char));
23949 memcpy(t,mp->header_byte,mp->header_size);
23950 xfree (mp->header_byte);
23951 mp->header_byte = t;
23952 mp->header_size = l;
23954 mp->header_byte[j]=mp_get_code(mp);
23955 incr(j); incr(mp->header_last);
23956 } while (mp->cur_cmd==comma)
23958 @ @<Store a list of font dimensions@>=
23960 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23961 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23962 mp_get_x_next(mp); mp_scan_expression(mp);
23963 if ( mp->cur_type!=mp_known ){
23964 exp_err("Improper font parameter");
23965 @.Improper font parameter@>
23966 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23967 mp_put_get_flush_error(mp, 0);
23969 mp->param[j]=mp->cur_exp; incr(j);
23970 } while (mp->cur_cmd==comma)
23972 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23973 All that remains is to output it in the correct format.
23975 An interesting problem needs to be solved in this connection, because
23976 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23977 and 64~italic corrections. If the data has more distinct values than
23978 this, we want to meet the necessary restrictions by perturbing the
23979 given values as little as possible.
23981 \MP\ solves this problem in two steps. First the values of a given
23982 kind (widths, heights, depths, or italic corrections) are sorted;
23983 then the list of sorted values is perturbed, if necessary.
23985 The sorting operation is facilitated by having a special node of
23986 essentially infinite |value| at the end of the current list.
23988 @<Initialize table entries...@>=
23989 value(inf_val)=fraction_four;
23991 @ Straight linear insertion is good enough for sorting, since the lists
23992 are usually not terribly long. As we work on the data, the current list
23993 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23994 list will be in increasing order of their |value| fields.
23996 Given such a list, the |sort_in| function takes a value and returns a pointer
23997 to where that value can be found in the list. The value is inserted in
23998 the proper place, if necessary.
24000 At the time we need to do these operations, most of \MP's work has been
24001 completed, so we will have plenty of memory to play with. The value nodes
24002 that are allocated for sorting will never be returned to free storage.
24004 @d clear_the_list link(temp_head)=inf_val
24006 @c pointer mp_sort_in (MP mp,scaled v) {
24007 pointer p,q,r; /* list manipulation registers */
24011 if ( v<=value(q) ) break;
24014 if ( v<value(q) ) {
24015 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24020 @ Now we come to the interesting part, where we reduce the list if necessary
24021 until it has the required size. The |min_cover| routine is basic to this
24022 process; it computes the minimum number~|m| such that the values of the
24023 current sorted list can be covered by |m|~intervals of width~|d|. It
24024 also sets the global value |perturbation| to the smallest value $d'>d$
24025 such that the covering found by this algorithm would be different.
24027 In particular, |min_cover(0)| returns the number of distinct values in the
24028 current list and sets |perturbation| to the minimum distance between
24031 @c integer mp_min_cover (MP mp,scaled d) {
24032 pointer p; /* runs through the current list */
24033 scaled l; /* the least element covered by the current interval */
24034 integer m; /* lower bound on the size of the minimum cover */
24035 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24036 while ( p!=inf_val ){
24037 incr(m); l=value(p);
24038 do { p=link(p); } while (value(p)<=l+d);
24039 if ( value(p)-l<mp->perturbation )
24040 mp->perturbation=value(p)-l;
24046 scaled perturbation; /* quantity related to \.{TFM} rounding */
24047 integer excess; /* the list is this much too long */
24049 @ The smallest |d| such that a given list can be covered with |m| intervals
24050 is determined by the |threshold| routine, which is sort of an inverse
24051 to |min_cover|. The idea is to increase the interval size rapidly until
24052 finding the range, then to go sequentially until the exact borderline has
24055 @c scaled mp_threshold (MP mp,integer m) {
24056 scaled d; /* lower bound on the smallest interval size */
24057 mp->excess=mp_min_cover(mp, 0)-m;
24058 if ( mp->excess<=0 ) {
24062 d=mp->perturbation;
24063 } while (mp_min_cover(mp, d+d)>m);
24064 while ( mp_min_cover(mp, d)>m )
24065 d=mp->perturbation;
24070 @ The |skimp| procedure reduces the current list to at most |m| entries,
24071 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24072 is the |k|th distinct value on the resulting list, and it sets
24073 |perturbation| to the maximum amount by which a |value| field has
24074 been changed. The size of the resulting list is returned as the
24077 @c integer mp_skimp (MP mp,integer m) {
24078 scaled d; /* the size of intervals being coalesced */
24079 pointer p,q,r; /* list manipulation registers */
24080 scaled l; /* the least value in the current interval */
24081 scaled v; /* a compromise value */
24082 d=mp_threshold(mp, m); mp->perturbation=0;
24083 q=temp_head; m=0; p=link(temp_head);
24084 while ( p!=inf_val ) {
24085 incr(m); l=value(p); info(p)=m;
24086 if ( value(link(p))<=l+d ) {
24087 @<Replace an interval of values by its midpoint@>;
24094 @ @<Replace an interval...@>=
24097 p=link(p); info(p)=m;
24098 decr(mp->excess); if ( mp->excess==0 ) d=0;
24099 } while (value(link(p))<=l+d);
24100 v=l+halfp(value(p)-l);
24101 if ( value(p)-v>mp->perturbation )
24102 mp->perturbation=value(p)-v;
24105 r=link(r); value(r)=v;
24107 link(q)=p; /* remove duplicate values from the current list */
24110 @ A warning message is issued whenever something is perturbed by
24111 more than 1/16\thinspace pt.
24113 @c void mp_tfm_warning (MP mp,small_number m) {
24114 mp_print_nl(mp, "(some ");
24115 mp_print(mp, mp->int_name[m]);
24116 @.some charwds...@>
24117 @.some chardps...@>
24118 @.some charhts...@>
24119 @.some charics...@>
24120 mp_print(mp, " values had to be adjusted by as much as ");
24121 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24124 @ Here's an example of how we use these routines.
24125 The width data needs to be perturbed only if there are 256 distinct
24126 widths, but \MP\ must check for this case even though it is
24129 An integer variable |k| will be defined when we use this code.
24130 The |dimen_head| array will contain pointers to the sorted
24131 lists of dimensions.
24133 @<Massage the \.{TFM} widths@>=
24135 for (k=mp->bc;k<=mp->ec;k++) {
24136 if ( mp->char_exists[k] )
24137 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24139 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24140 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24143 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24145 @ Heights, depths, and italic corrections are different from widths
24146 not only because their list length is more severely restricted, but
24147 also because zero values do not need to be put into the lists.
24149 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24151 for (k=mp->bc;k<=mp->ec;k++) {
24152 if ( mp->char_exists[k] ) {
24153 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24154 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24157 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24158 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24160 for (k=mp->bc;k<=mp->ec;k++) {
24161 if ( mp->char_exists[k] ) {
24162 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24163 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24166 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24167 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24169 for (k=mp->bc;k<=mp->ec;k++) {
24170 if ( mp->char_exists[k] ) {
24171 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24172 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24175 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24176 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24178 @ @<Initialize table entries...@>=
24179 value(zero_val)=0; info(zero_val)=0;
24181 @ Bytes 5--8 of the header are set to the design size, unless the user has
24182 some crazy reason for specifying them differently.
24184 Error messages are not allowed at the time this procedure is called,
24185 so a warning is printed instead.
24187 The value of |max_tfm_dimen| is calculated so that
24188 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24189 < \\{three\_bytes}.$$
24191 @d three_bytes 0100000000 /* $2^{24}$ */
24194 void mp_fix_design_size (MP mp) {
24195 scaled d; /* the design size */
24196 d=mp->internal[mp_design_size];
24197 if ( (d<unity)||(d>=fraction_half) ) {
24199 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24200 @.illegal design size...@>
24201 d=040000000; mp->internal[mp_design_size]=d;
24203 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24204 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24205 mp->header_byte[4]=d / 04000000;
24206 mp->header_byte[5]=(d / 4096) % 256;
24207 mp->header_byte[6]=(d / 16) % 256;
24208 mp->header_byte[7]=(d % 16)*16;
24210 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24211 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24214 @ The |dimen_out| procedure computes a |fix_word| relative to the
24215 design size. If the data was out of range, it is corrected and the
24216 global variable |tfm_changed| is increased by~one.
24218 @c integer mp_dimen_out (MP mp,scaled x) {
24219 if ( abs(x)>mp->max_tfm_dimen ) {
24220 incr(mp->tfm_changed);
24221 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24223 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24229 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24230 integer tfm_changed; /* the number of data entries that were out of bounds */
24232 @ If the user has not specified any of the first four header bytes,
24233 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24234 from the |tfm_width| data relative to the design size.
24237 @c void mp_fix_check_sum (MP mp) {
24238 eight_bits k; /* runs through character codes */
24239 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24240 integer x; /* hash value used in check sum computation */
24241 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24242 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24243 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24244 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24245 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24250 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24251 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24252 for (k=mp->bc;k<=mp->ec;k++) {
24253 if ( mp->char_exists[k] ) {
24254 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24255 B1=(B1+B1+x) % 255;
24256 B2=(B2+B2+x) % 253;
24257 B3=(B3+B3+x) % 251;
24258 B4=(B4+B4+x) % 247;
24262 @ Finally we're ready to actually write the \.{TFM} information.
24263 Here are some utility routines for this purpose.
24265 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24266 unsigned char s=(A);
24267 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24270 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24271 tfm_out(x / 256); tfm_out(x % 256);
24273 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24274 if ( x>=0 ) tfm_out(x / three_bytes);
24276 x=x+010000000000; /* use two's complement for negative values */
24278 tfm_out((x / three_bytes) + 128);
24280 x=x % three_bytes; tfm_out(x / unity);
24281 x=x % unity; tfm_out(x / 0400);
24284 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24285 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24286 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24289 @ @<Finish the \.{TFM} file@>=
24290 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24291 mp_pack_job_name(mp, ".tfm");
24292 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24293 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24294 mp->metric_file_name=xstrdup(mp->name_of_file);
24295 @<Output the subfile sizes and header bytes@>;
24296 @<Output the character information bytes, then
24297 output the dimensions themselves@>;
24298 @<Output the ligature/kern program@>;
24299 @<Output the extensible character recipes and the font metric parameters@>;
24300 if ( mp->internal[mp_tracing_stats]>0 )
24301 @<Log the subfile sizes of the \.{TFM} file@>;
24302 mp_print_nl(mp, "Font metrics written on ");
24303 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24304 @.Font metrics written...@>
24305 (mp->close_file)(mp->tfm_file)
24307 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24310 @<Output the subfile sizes and header bytes@>=
24312 LH=(k+3) / 4; /* this is the number of header words */
24313 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24314 @<Compute the ligature/kern program offset and implant the
24315 left boundary label@>;
24316 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24317 +lk_offset+mp->nk+mp->ne+mp->np);
24318 /* this is the total number of file words that will be output */
24319 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24320 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24321 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24322 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24323 mp_tfm_two(mp, mp->np);
24324 for (k=0;k< 4*LH;k++) {
24325 tfm_out(mp->header_byte[k]);
24328 @ @<Output the character information bytes...@>=
24329 for (k=mp->bc;k<=mp->ec;k++) {
24330 if ( ! mp->char_exists[k] ) {
24331 mp_tfm_four(mp, 0);
24333 tfm_out(info(mp->tfm_width[k])); /* the width index */
24334 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24335 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24336 tfm_out(mp->char_remainder[k]);
24340 for (k=1;k<=4;k++) {
24341 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24342 while ( p!=inf_val ) {
24343 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24348 @ We need to output special instructions at the beginning of the
24349 |lig_kern| array in order to specify the right boundary character
24350 and/or to handle starting addresses that exceed 255. The |label_loc|
24351 and |label_char| arrays have been set up to record all the
24352 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24353 \le|label_loc|[|label_ptr]|$.
24355 @<Compute the ligature/kern program offset...@>=
24356 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24357 if ((mp->bchar<0)||(mp->bchar>255))
24358 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24359 else { mp->lk_started=true; lk_offset=1; };
24360 @<Find the minimum |lk_offset| and adjust all remainders@>;
24361 if ( mp->bch_label<undefined_label )
24362 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24363 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24364 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24365 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24368 @ @<Find the minimum |lk_offset|...@>=
24369 k=mp->label_ptr; /* pointer to the largest unallocated label */
24370 if ( mp->label_loc[k]+lk_offset>255 ) {
24371 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24373 mp->char_remainder[mp->label_char[k]]=lk_offset;
24374 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24375 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24377 incr(lk_offset); decr(k);
24378 } while (! (lk_offset+mp->label_loc[k]<256));
24379 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24381 if ( lk_offset>0 ) {
24383 mp->char_remainder[mp->label_char[k]]
24384 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24389 @ @<Output the ligature/kern program@>=
24390 for (k=0;k<= 255;k++ ) {
24391 if ( mp->skip_table[k]<undefined_label ) {
24392 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24393 @.local label l:: was missing@>
24394 cancel_skips(mp->skip_table[k]);
24397 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24398 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24400 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24401 mp->ll=mp->label_loc[mp->label_ptr];
24402 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24403 else { tfm_out(255); tfm_out(mp->bchar); };
24404 mp_tfm_two(mp, mp->ll+lk_offset);
24406 decr(mp->label_ptr);
24407 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24410 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24411 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24413 @ @<Output the extensible character recipes...@>=
24414 for (k=0;k<=mp->ne-1;k++)
24415 mp_tfm_qqqq(mp, mp->exten[k]);
24416 for (k=1;k<=mp->np;k++) {
24418 if ( abs(mp->param[1])<fraction_half ) {
24419 mp_tfm_four(mp, mp->param[1]*16);
24421 incr(mp->tfm_changed);
24422 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24423 else mp_tfm_four(mp, -el_gordo);
24426 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24429 if ( mp->tfm_changed>0 ) {
24430 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24431 @.a font metric dimension...@>
24433 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24434 @.font metric dimensions...@>
24435 mp_print(mp, " font metric dimensions");
24437 mp_print(mp, " had to be decreased)");
24440 @ @<Log the subfile sizes of the \.{TFM} file@>=
24444 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24445 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24446 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24450 @* \[43] Reading font metric data.
24452 \MP\ isn't a typesetting program but it does need to find the bounding box
24453 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24454 well as write them.
24459 @ All the width, height, and depth information is stored in an array called
24460 |font_info|. This array is allocated sequentially and each font is stored
24461 as a series of |char_info| words followed by the width, height, and depth
24462 tables. Since |font_name| entries are permanent, their |str_ref| values are
24463 set to |max_str_ref|.
24466 typedef unsigned int font_number; /* |0..font_max| */
24468 @ The |font_info| array is indexed via a group directory arrays.
24469 For example, the |char_info| data for character~|c| in font~|f| will be
24470 in |font_info[char_base[f]+c].qqqq|.
24473 font_number font_max; /* maximum font number for included text fonts */
24474 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24475 memory_word *font_info; /* height, width, and depth data */
24476 char **font_enc_name; /* encoding names, if any */
24477 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24478 int next_fmem; /* next unused entry in |font_info| */
24479 font_number last_fnum; /* last font number used so far */
24480 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24481 char **font_name; /* name as specified in the \&{infont} command */
24482 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24483 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24484 eight_bits *font_bc;
24485 eight_bits *font_ec; /* first and last character code */
24486 int *char_base; /* base address for |char_info| */
24487 int *width_base; /* index for zeroth character width */
24488 int *height_base; /* index for zeroth character height */
24489 int *depth_base; /* index for zeroth character depth */
24490 pointer *font_sizes;
24492 @ @<Allocate or initialize ...@>=
24493 mp->font_mem_size = 10000;
24494 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24495 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24496 mp->font_enc_name = NULL;
24497 mp->font_ps_name_fixed = NULL;
24498 mp->font_dsize = NULL;
24499 mp->font_name = NULL;
24500 mp->font_ps_name = NULL;
24501 mp->font_bc = NULL;
24502 mp->font_ec = NULL;
24503 mp->last_fnum = null_font;
24504 mp->char_base = NULL;
24505 mp->width_base = NULL;
24506 mp->height_base = NULL;
24507 mp->depth_base = NULL;
24508 mp->font_sizes = null;
24510 @ @<Dealloc variables@>=
24511 for (k=1;k<=(int)mp->last_fnum;k++) {
24512 xfree(mp->font_enc_name[k]);
24513 xfree(mp->font_name[k]);
24514 xfree(mp->font_ps_name[k]);
24516 xfree(mp->font_info);
24517 xfree(mp->font_enc_name);
24518 xfree(mp->font_ps_name_fixed);
24519 xfree(mp->font_dsize);
24520 xfree(mp->font_name);
24521 xfree(mp->font_ps_name);
24522 xfree(mp->font_bc);
24523 xfree(mp->font_ec);
24524 xfree(mp->char_base);
24525 xfree(mp->width_base);
24526 xfree(mp->height_base);
24527 xfree(mp->depth_base);
24528 xfree(mp->font_sizes);
24532 void mp_reallocate_fonts (MP mp, font_number l) {
24534 XREALLOC(mp->font_enc_name, l, char *);
24535 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24536 XREALLOC(mp->font_dsize, l, scaled);
24537 XREALLOC(mp->font_name, l, char *);
24538 XREALLOC(mp->font_ps_name, l, char *);
24539 XREALLOC(mp->font_bc, l, eight_bits);
24540 XREALLOC(mp->font_ec, l, eight_bits);
24541 XREALLOC(mp->char_base, l, int);
24542 XREALLOC(mp->width_base, l, int);
24543 XREALLOC(mp->height_base, l, int);
24544 XREALLOC(mp->depth_base, l, int);
24545 XREALLOC(mp->font_sizes, l, pointer);
24546 for (f=(mp->last_fnum+1);f<=l;f++) {
24547 mp->font_enc_name[f]=NULL;
24548 mp->font_ps_name_fixed[f] = false;
24549 mp->font_name[f]=NULL;
24550 mp->font_ps_name[f]=NULL;
24551 mp->font_sizes[f]=null;
24556 @ @<Declare |mp_reallocate| functions@>=
24557 void mp_reallocate_fonts (MP mp, font_number l);
24560 @ A |null_font| containing no characters is useful for error recovery. Its
24561 |font_name| entry starts out empty but is reset each time an erroneous font is
24562 found. This helps to cut down on the number of duplicate error messages without
24563 wasting a lot of space.
24565 @d null_font 0 /* the |font_number| for an empty font */
24567 @<Set initial...@>=
24568 mp->font_dsize[null_font]=0;
24569 mp->font_bc[null_font]=1;
24570 mp->font_ec[null_font]=0;
24571 mp->char_base[null_font]=0;
24572 mp->width_base[null_font]=0;
24573 mp->height_base[null_font]=0;
24574 mp->depth_base[null_font]=0;
24576 mp->last_fnum=null_font;
24577 mp->last_ps_fnum=null_font;
24578 mp->font_name[null_font]="nullfont";
24579 mp->font_ps_name[null_font]="";
24580 mp->font_ps_name_fixed[null_font] = false;
24581 mp->font_enc_name[null_font]=NULL;
24582 mp->font_sizes[null_font]=null;
24584 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24585 the |width index|; the |b1| field contains the height
24586 index; the |b2| fields contains the depth index, and the |b3| field used only
24587 for temporary storage. (It is used to keep track of which characters occur in
24588 an edge structure that is being shipped out.)
24589 The corresponding words in the width, height, and depth tables are stored as
24590 |scaled| values in units of \ps\ points.
24592 With the macros below, the |char_info| word for character~|c| in font~|f| is
24593 |char_info(f)(c)| and the width is
24594 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24596 @d char_info_end(A) (A)].qqqq
24597 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24598 @d char_width_end(A) (A).b0].sc
24599 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24600 @d char_height_end(A) (A).b1].sc
24601 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24602 @d char_depth_end(A) (A).b2].sc
24603 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24604 @d ichar_exists(A) ((A).b0>0)
24606 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24607 A preliminary name is obtained here from the \.{TFM} name as given in the
24608 |fname| argument. This gets updated later from an external table if necessary.
24610 @<Declare text measuring subroutines@>=
24611 @<Declare subroutines for parsing file names@>;
24612 font_number mp_read_font_info (MP mp, char *fname) {
24613 boolean file_opened; /* has |tfm_infile| been opened? */
24614 font_number n; /* the number to return */
24615 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24616 size_t whd_size; /* words needed for heights, widths, and depths */
24617 int i,ii; /* |font_info| indices */
24618 int jj; /* counts bytes to be ignored */
24619 scaled z; /* used to compute the design size */
24621 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24622 eight_bits h_and_d; /* height and depth indices being unpacked */
24623 unsigned char tfbyte; /* a byte read from the file */
24625 @<Open |tfm_infile| for input@>;
24626 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24627 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24629 @<Complain that the \.{TFM} file is bad@>;
24631 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24632 if ( n!=null_font ) {
24633 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24634 mp->font_name[n]=mp_xstrdup(mp,fname);
24639 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24640 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24641 @.TFtoPL@> @.PLtoTF@>
24642 and \.{PLtoTF} can be used to debug \.{TFM} files.
24644 @<Complain that the \.{TFM} file is bad@>=
24645 print_err("Font ");
24646 mp_print(mp, fname);
24647 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24648 else mp_print(mp, " not usable: TFM file not found");
24649 help3("I wasn't able to read the size data for this font so this")
24650 ("`infont' operation won't produce anything. If the font name")
24651 ("is right, you might ask an expert to make a TFM file");
24653 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24656 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24657 @<Read the \.{TFM} size fields@>;
24658 @<Use the size fields to allocate space in |font_info|@>;
24659 @<Read the \.{TFM} header@>;
24660 @<Read the character data and the width, height, and depth tables and
24663 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24664 might try to read past the end of the file if this happens. Changes will be
24665 needed if it causes a system error to refer to |tfm_infile^| or call
24666 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24667 @^system dependencies@>
24668 of |tfget| could be changed to
24669 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24673 void *tfbyte_ptr = &tfbyte;
24674 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24675 if (wanted==0) goto BAD_TFM;
24677 @d read_two(A) { (A)=tfbyte;
24678 if ( (A)>127 ) goto BAD_TFM;
24679 tfget; (A)=(A)*0400+tfbyte;
24681 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24683 @<Read the \.{TFM} size fields@>=
24684 tfget; read_two(lf);
24685 tfget; read_two(tfm_lh);
24686 tfget; read_two(bc);
24687 tfget; read_two(ec);
24688 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24689 tfget; read_two(nw);
24690 tfget; read_two(nh);
24691 tfget; read_two(nd);
24692 whd_size=(ec+1-bc)+nw+nh+nd;
24693 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24696 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24697 necessary to apply the |so| and |qo| macros when looking up the width of a
24698 character in the string pool. In order to ensure nonnegative |char_base|
24699 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24702 @<Use the size fields to allocate space in |font_info|@>=
24703 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24704 if (mp->last_fnum==mp->font_max)
24705 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24706 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24707 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24708 memory_word *font_info;
24709 font_info = xmalloc ((l+1),sizeof(memory_word));
24710 memset (font_info,0,sizeof(memory_word)*(l+1));
24711 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24712 xfree(mp->font_info);
24713 mp->font_info = font_info;
24714 mp->font_mem_size = l;
24716 incr(mp->last_fnum);
24720 mp->char_base[n]=mp->next_fmem-bc;
24721 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24722 mp->height_base[n]=mp->width_base[n]+nw;
24723 mp->depth_base[n]=mp->height_base[n]+nh;
24724 mp->next_fmem=mp->next_fmem+whd_size;
24727 @ @<Read the \.{TFM} header@>=
24728 if ( tfm_lh<2 ) goto BAD_TFM;
24730 tfget; read_two(z);
24731 tfget; z=z*0400+tfbyte;
24732 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24733 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24734 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24735 tf_ignore(4*(tfm_lh-2))
24737 @ @<Read the character data and the width, height, and depth tables...@>=
24738 ii=mp->width_base[n];
24739 i=mp->char_base[n]+bc;
24741 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24742 tfget; h_and_d=tfbyte;
24743 mp->font_info[i].qqqq.b1=h_and_d / 16;
24744 mp->font_info[i].qqqq.b2=h_and_d % 16;
24748 while ( i<mp->next_fmem ) {
24749 @<Read a four byte dimension, scale it by the design size, store it in
24750 |font_info[i]|, and increment |i|@>;
24754 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24755 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24756 we can multiply it by sixteen and think of it as a |fraction| that has been
24757 divided by sixteen. This cancels the extra scale factor contained in
24760 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24763 if ( d>=0200 ) d=d-0400;
24764 tfget; d=d*0400+tfbyte;
24765 tfget; d=d*0400+tfbyte;
24766 tfget; d=d*0400+tfbyte;
24767 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24771 @ This function does no longer use the file name parser, because |fname| is
24772 a C string already.
24773 @<Open |tfm_infile| for input@>=
24775 mp_ptr_scan_file(mp, fname);
24776 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24777 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24779 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24780 if ( !mp->tfm_infile ) goto BAD_TFM;
24783 @ When we have a font name and we don't know whether it has been loaded yet,
24784 we scan the |font_name| array before calling |read_font_info|.
24786 @<Declare text measuring subroutines@>=
24787 font_number mp_find_font (MP mp, char *f) {
24789 for (n=0;n<=mp->last_fnum;n++) {
24790 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24795 n = mp_read_font_info(mp, f);
24800 @ One simple application of |find_font| is the implementation of the |font_size|
24801 operator that gets the design size for a given font name.
24803 @<Find the design size of the font whose name is |cur_exp|@>=
24804 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24806 @ If we discover that the font doesn't have a requested character, we omit it
24807 from the bounding box computation and expect the \ps\ interpreter to drop it.
24808 This routine issues a warning message if the user has asked for it.
24810 @<Declare text measuring subroutines@>=
24811 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24812 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24813 mp_begin_diagnostic(mp);
24814 if ( mp->selector==log_only ) incr(mp->selector);
24815 mp_print_nl(mp, "Missing character: There is no ");
24816 @.Missing character@>
24817 mp_print_str(mp, mp->str_pool[k]);
24818 mp_print(mp, " in font ");
24819 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24820 mp_end_diagnostic(mp, false);
24824 @ The whole purpose of saving the height, width, and depth information is to be
24825 able to find the bounding box of an item of text in an edge structure. The
24826 |set_text_box| procedure takes a text node and adds this information.
24828 @<Declare text measuring subroutines@>=
24829 void mp_set_text_box (MP mp,pointer p) {
24830 font_number f; /* |font_n(p)| */
24831 ASCII_code bc,ec; /* range of valid characters for font |f| */
24832 pool_pointer k,kk; /* current character and character to stop at */
24833 four_quarters cc; /* the |char_info| for the current character */
24834 scaled h,d; /* dimensions of the current character */
24836 height_val(p)=-el_gordo;
24837 depth_val(p)=-el_gordo;
24841 kk=str_stop(text_p(p));
24842 k=mp->str_start[text_p(p)];
24844 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24846 @<Set the height and depth to zero if the bounding box is empty@>;
24849 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24851 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24852 mp_lost_warning(mp, f,k);
24854 cc=char_info(f)(mp->str_pool[k]);
24855 if ( ! ichar_exists(cc) ) {
24856 mp_lost_warning(mp, f,k);
24858 width_val(p)=width_val(p)+char_width(f)(cc);
24859 h=char_height(f)(cc);
24860 d=char_depth(f)(cc);
24861 if ( h>height_val(p) ) height_val(p)=h;
24862 if ( d>depth_val(p) ) depth_val(p)=d;
24868 @ Let's hope modern compilers do comparisons correctly when the difference would
24871 @<Set the height and depth to zero if the bounding box is empty@>=
24872 if ( height_val(p)<-depth_val(p) ) {
24877 @ The new primitives fontmapfile and fontmapline.
24879 @<Declare action procedures for use by |do_statement|@>=
24880 void mp_do_mapfile (MP mp) ;
24881 void mp_do_mapline (MP mp) ;
24883 @ @c void mp_do_mapfile (MP mp) {
24884 mp_get_x_next(mp); mp_scan_expression(mp);
24885 if ( mp->cur_type!=mp_string_type ) {
24886 @<Complain about improper map operation@>;
24888 mp_map_file(mp,mp->cur_exp);
24891 void mp_do_mapline (MP mp) {
24892 mp_get_x_next(mp); mp_scan_expression(mp);
24893 if ( mp->cur_type!=mp_string_type ) {
24894 @<Complain about improper map operation@>;
24896 mp_map_line(mp,mp->cur_exp);
24900 @ @<Complain about improper map operation@>=
24902 exp_err("Unsuitable expression");
24903 help1("Only known strings can be map files or map lines.");
24904 mp_put_get_error(mp);
24907 @ To print |scaled| value to PDF output we need some subroutines to ensure
24910 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24913 scaled one_bp; /* scaled value corresponds to 1bp */
24914 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24915 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24916 integer ten_pow[10]; /* $10^0..10^9$ */
24917 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24920 mp->one_bp = 65782; /* 65781.76 */
24921 mp->one_hundred_bp = 6578176;
24922 mp->one_hundred_inch = 473628672;
24923 mp->ten_pow[0] = 1;
24924 for (i = 1;i<= 9; i++ ) {
24925 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24928 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24930 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24934 if ( s < 0 ) { sign = -sign; s = -s; }
24935 if ( m < 0 ) { sign = -sign; m = -m; }
24937 mp_confusion(mp, "arithmetic: divided by zero");
24938 else if ( m >= (max_integer / 10) )
24939 mp_confusion(mp, "arithmetic: number too big");
24942 for (i = 1;i<=dd;i++) {
24943 q = 10*q + (10*r) / m;
24946 if ( 2*r >= m ) { incr(q); r = r - m; }
24947 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24951 @* \[44] Shipping pictures out.
24952 The |ship_out| procedure, to be described below, is given a pointer to
24953 an edge structure. Its mission is to output a file containing the \ps\
24954 description of an edge structure.
24956 @ Each time an edge structure is shipped out we write a new \ps\ output
24957 file named according to the current \&{charcode}.
24958 @:char_code_}{\&{charcode} primitive@>
24960 This is the only backend function that remains in the main |mpost.w| file.
24961 There are just too many variable accesses needed for status reporting
24962 etcetera to make it worthwile to move the code to |psout.w|.
24964 @<Internal library declarations@>=
24965 void mp_open_output_file (MP mp) ;
24967 @ @c void mp_open_output_file (MP mp) {
24968 integer c; /* \&{charcode} rounded to the nearest integer */
24969 int old_setting; /* previous |selector| setting */
24970 pool_pointer i; /* indexes into |filename_template| */
24971 integer cc; /* a temporary integer for template building */
24972 integer f,g=0; /* field widths */
24973 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24974 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24975 if ( mp->filename_template==0 ) {
24976 char *s; /* a file extension derived from |c| */
24980 @<Use |c| to compute the file extension |s|@>;
24981 mp_pack_job_name(mp, s);
24983 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24984 mp_prompt_file_name(mp, "file name for output",s);
24985 } else { /* initializations */
24986 str_number s, n; /* a file extension derived from |c| */
24987 old_setting=mp->selector;
24988 mp->selector=new_string;
24990 i = mp->str_start[mp->filename_template];
24991 n = rts(""); /* initialize */
24992 while ( i<str_stop(mp->filename_template) ) {
24993 if ( mp->str_pool[i]=='%' ) {
24996 if ( i<str_stop(mp->filename_template) ) {
24997 if ( mp->str_pool[i]=='j' ) {
24998 mp_print(mp, mp->job_name);
24999 } else if ( mp->str_pool[i]=='d' ) {
25000 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25001 print_with_leading_zeroes(cc);
25002 } else if ( mp->str_pool[i]=='m' ) {
25003 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25004 print_with_leading_zeroes(cc);
25005 } else if ( mp->str_pool[i]=='y' ) {
25006 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25007 print_with_leading_zeroes(cc);
25008 } else if ( mp->str_pool[i]=='H' ) {
25009 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25010 print_with_leading_zeroes(cc);
25011 } else if ( mp->str_pool[i]=='M' ) {
25012 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25013 print_with_leading_zeroes(cc);
25014 } else if ( mp->str_pool[i]=='c' ) {
25015 if ( c<0 ) mp_print(mp, "ps");
25016 else print_with_leading_zeroes(c);
25017 } else if ( (mp->str_pool[i]>='0') &&
25018 (mp->str_pool[i]<='9') ) {
25020 f = (f*10) + mp->str_pool[i]-'0';
25023 mp_print_str(mp, mp->str_pool[i]);
25027 if ( mp->str_pool[i]=='.' )
25029 n = mp_make_string(mp);
25030 mp_print_str(mp, mp->str_pool[i]);
25034 s = mp_make_string(mp);
25035 mp->selector= old_setting;
25036 if (length(n)==0) {
25040 mp_pack_file_name(mp, str(n),"",str(s));
25041 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25042 mp_prompt_file_name(mp, "file name for output",str(s));
25046 @<Store the true output file name if appropriate@>;
25047 @<Begin the progress report for the output of picture~|c|@>;
25050 @ The file extension created here could be up to five characters long in
25051 extreme cases so it may have to be shortened on some systems.
25052 @^system dependencies@>
25054 @<Use |c| to compute the file extension |s|@>=
25057 snprintf(s,7,".%i",(int)c);
25060 @ The user won't want to see all the output file names so we only save the
25061 first and last ones and a count of how many there were. For this purpose
25062 files are ordered primarily by \&{charcode} and secondarily by order of
25064 @:char_code_}{\&{charcode} primitive@>
25066 @<Store the true output file name if appropriate@>=
25067 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25068 mp->first_output_code=c;
25069 xfree(mp->first_file_name);
25070 mp->first_file_name=xstrdup(mp->name_of_file);
25072 if ( c>=mp->last_output_code ) {
25073 mp->last_output_code=c;
25074 xfree(mp->last_file_name);
25075 mp->last_file_name=xstrdup(mp->name_of_file);
25079 char * first_file_name;
25080 char * last_file_name; /* full file names */
25081 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25082 @:char_code_}{\&{charcode} primitive@>
25083 integer total_shipped; /* total number of |ship_out| operations completed */
25086 mp->first_file_name=xstrdup("");
25087 mp->last_file_name=xstrdup("");
25088 mp->first_output_code=32768;
25089 mp->last_output_code=-32768;
25090 mp->total_shipped=0;
25092 @ @<Dealloc variables@>=
25093 xfree(mp->first_file_name);
25094 xfree(mp->last_file_name);
25096 @ @<Begin the progress report for the output of picture~|c|@>=
25097 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25098 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25099 mp_print_char(mp, '[');
25100 if ( c>=0 ) mp_print_int(mp, c)
25102 @ @<End progress report@>=
25103 mp_print_char(mp, ']');
25105 incr(mp->total_shipped)
25107 @ @<Explain what output files were written@>=
25108 if ( mp->total_shipped>0 ) {
25109 mp_print_nl(mp, "");
25110 mp_print_int(mp, mp->total_shipped);
25111 mp_print(mp, " output file");
25112 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25113 mp_print(mp, " written: ");
25114 mp_print(mp, mp->first_file_name);
25115 if ( mp->total_shipped>1 ) {
25116 if ( 31+strlen(mp->first_file_name)+
25117 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25119 mp_print(mp, " .. ");
25120 mp_print(mp, mp->last_file_name);
25124 @ @<Internal library declarations@>=
25125 boolean mp_has_font_size(MP mp, font_number f );
25128 boolean mp_has_font_size(MP mp, font_number f ) {
25129 return (mp->font_sizes[f]!=null);
25132 @ The \&{special} command saves up lines of text to be printed during the next
25133 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25136 pointer last_pending; /* the last token in a list of pending specials */
25139 mp->last_pending=spec_head;
25141 @ @<Cases of |do_statement|...@>=
25142 case special_command:
25143 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25144 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25148 @ @<Declare action procedures for use by |do_statement|@>=
25149 void mp_do_special (MP mp) ;
25151 @ @c void mp_do_special (MP mp) {
25152 mp_get_x_next(mp); mp_scan_expression(mp);
25153 if ( mp->cur_type!=mp_string_type ) {
25154 @<Complain about improper special operation@>;
25156 link(mp->last_pending)=mp_stash_cur_exp(mp);
25157 mp->last_pending=link(mp->last_pending);
25158 link(mp->last_pending)=null;
25162 @ @<Complain about improper special operation@>=
25164 exp_err("Unsuitable expression");
25165 help1("Only known strings are allowed for output as specials.");
25166 mp_put_get_error(mp);
25169 @ On the export side, we need an extra object type for special strings.
25171 @<Graphical object codes@>=
25174 @ @<Export pending specials@>=
25176 while ( p!=null ) {
25177 hq = mp_new_graphic_object(mp,mp_special_code);
25178 gr_pre_script(hq) = str(value(p));
25179 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25183 mp_flush_token_list(mp, link(spec_head));
25184 link(spec_head)=null;
25185 mp->last_pending=spec_head
25187 @ We are now ready for the main output procedure. Note that the |selector|
25188 setting is saved in a global variable so that |begin_diagnostic| can access it.
25190 @<Declare the \ps\ output procedures@>=
25191 void mp_ship_out (MP mp, pointer h) ;
25193 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25196 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25197 pointer p; /* the current graphical object */
25198 integer t; /* a temporary value */
25199 struct mp_edge_object *hh; /* the first graphical object */
25200 struct mp_graphic_object *hp; /* the current graphical object */
25201 struct mp_graphic_object *hq; /* something |hp| points to */
25202 mp_set_bbox(mp, h, true);
25203 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25205 hh->_minx = minx_val(h);
25206 hh->_miny = miny_val(h);
25207 hh->_maxx = maxx_val(h);
25208 hh->_maxy = maxy_val(h);
25209 @<Export pending specials@>;
25210 p=link(dummy_loc(h));
25211 while ( p!=null ) {
25212 hq = mp_new_graphic_object(mp,type(p));
25215 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25216 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25217 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25220 pc = mp_copy_path(mp, path_p(p));
25221 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25222 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25223 mp_toss_knot_list(mp, pp);
25224 pc = mp_htap_ypoc(mp, path_p(p));
25225 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25226 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25227 mp_toss_knot_list(mp, pp);
25229 @<Export object color@>;
25230 @<Export object scripts@>;
25231 gr_ljoin_val(hq) = ljoin_val(p);
25232 gr_miterlim_val(hq) = miterlim_val(p);
25234 case mp_stroked_code:
25235 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25236 if (pen_is_elliptical(pen_p(p))) {
25237 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25240 pc=mp_copy_path(mp, path_p(p));
25242 if ( left_type(pc)!=mp_endpoint ) {
25243 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25244 right_type(pc)=mp_endpoint;
25248 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25249 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25250 mp_toss_knot_list(mp, pc);
25252 @<Export object color@>;
25253 @<Export object scripts@>;
25254 gr_ljoin_val(hq) = ljoin_val(p);
25255 gr_miterlim_val(hq) = miterlim_val(p);
25256 gr_lcap_val(hq) = lcap_val(p);
25257 gr_dash_scale(hq) = dash_scale(p);
25258 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25261 gr_text_p(hq) = str(text_p(p));
25262 gr_font_n(hq) = font_n(p);
25263 @<Export object color@>;
25264 @<Export object scripts@>;
25265 gr_width_val(hq) = width_val(p);
25266 gr_height_val(hq) = height_val(p);
25267 gr_depth_val(hq) = depth_val(p);
25268 gr_tx_val(hq) = tx_val(p);
25269 gr_ty_val(hq) = ty_val(p);
25270 gr_txx_val(hq) = txx_val(p);
25271 gr_txy_val(hq) = txy_val(p);
25272 gr_tyx_val(hq) = tyx_val(p);
25273 gr_tyy_val(hq) = tyy_val(p);
25275 case mp_start_clip_code:
25276 case mp_start_bounds_code:
25277 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25279 case mp_stop_clip_code:
25280 case mp_stop_bounds_code:
25281 /* nothing to do here */
25284 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25291 @ @<Exported function ...@>=
25292 struct mp_edge_object *mp_gr_export(MP mp, int h);
25293 extern void mp_gr_ship_out (MP mp, struct mp_edge_object *hh) ;
25295 @ This function is now nearly trivial.
25298 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25299 (mp->shipout_backend) (mp, h);
25300 @<End progress report@>;
25301 if ( mp->internal[mp_tracing_output]>0 )
25302 mp_print_edges(mp, h," (just shipped out)",true);
25305 @ @<Declarations@>=
25306 void mp_shipout_backend (MP mp, pointer h);
25309 void mp_shipout_backend (MP mp, pointer h) {
25310 struct mp_edge_object *hh; /* the first graphical object */
25311 hh = mp_gr_export(mp,h);
25312 mp_gr_ship_out (mp, hh);
25316 @ @<Exported types@>=
25317 typedef void (*mp_backend_writer)(MP, int);
25320 mp_backend_writer shipout_backend;
25322 @ @<Option variables@>=
25323 mp_backend_writer shipout_backend;
25325 @ @<Allocate or initialize ...@>=
25326 set_callback_option(shipout_backend);
25330 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25332 @<Export object color@>=
25333 gr_color_model(hq) = color_model(p);
25334 gr_cyan_val(hq) = cyan_val(p);
25335 gr_magenta_val(hq) = magenta_val(p);
25336 gr_yellow_val(hq) = yellow_val(p);
25337 gr_black_val(hq) = black_val(p);
25338 gr_red_val(hq) = red_val(p);
25339 gr_green_val(hq) = green_val(p);
25340 gr_blue_val(hq) = blue_val(p);
25341 gr_grey_val(hq) = grey_val(p)
25344 @ @<Export object scripts@>=
25345 if (pre_script(p)!=null)
25346 gr_pre_script(hq) = str(pre_script(p));
25347 if (post_script(p)!=null)
25348 gr_post_script(hq) = str(post_script(p));
25350 @ Now that we've finished |ship_out|, let's look at the other commands
25351 by which a user can send things to the \.{GF} file.
25353 @ @<Determine if a character has been shipped out@>=
25355 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25356 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25357 boolean_reset(mp->char_exists[mp->cur_exp]);
25358 mp->cur_type=mp_boolean_type;
25364 @ @<Allocate or initialize ...@>=
25365 mp_backend_initialize(mp);
25368 mp_backend_free(mp);
25371 @* \[45] Dumping and undumping the tables.
25372 After \.{INIMP} has seen a collection of macros, it
25373 can write all the necessary information on an auxiliary file so
25374 that production versions of \MP\ are able to initialize their
25375 memory at high speed. The present section of the program takes
25376 care of such output and input. We shall consider simultaneously
25377 the processes of storing and restoring,
25378 so that the inverse relation between them is clear.
25381 The global variable |mem_ident| is a string that is printed right
25382 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25383 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25384 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25385 month, and day that the mem file was created. We have |mem_ident=0|
25386 before \MP's tables are loaded.
25392 mp->mem_ident=NULL;
25394 @ @<Initialize table entries...@>=
25395 mp->mem_ident=xstrdup(" (INIMP)");
25397 @ @<Declare act...@>=
25398 void mp_store_mem_file (MP mp) ;
25400 @ @c void mp_store_mem_file (MP mp) {
25401 integer k; /* all-purpose index */
25402 pointer p,q; /* all-purpose pointers */
25403 integer x; /* something to dump */
25404 four_quarters w; /* four ASCII codes */
25406 @<Create the |mem_ident|, open the mem file,
25407 and inform the user that dumping has begun@>;
25408 @<Dump constants for consistency check@>;
25409 @<Dump the string pool@>;
25410 @<Dump the dynamic memory@>;
25411 @<Dump the table of equivalents and the hash table@>;
25412 @<Dump a few more things and the closing check word@>;
25413 @<Close the mem file@>;
25416 @ Corresponding to the procedure that dumps a mem file, we also have a function
25417 that reads~one~in. The function returns |false| if the dumped mem is
25418 incompatible with the present \MP\ table sizes, etc.
25420 @d off_base 6666 /* go here if the mem file is unacceptable */
25421 @d too_small(A) { wake_up_terminal;
25422 wterm_ln("---! Must increase the "); wterm((A));
25423 @.Must increase the x@>
25428 boolean mp_load_mem_file (MP mp) {
25429 integer k; /* all-purpose index */
25430 pointer p,q; /* all-purpose pointers */
25431 integer x; /* something undumped */
25432 str_number s; /* some temporary string */
25433 four_quarters w; /* four ASCII codes */
25435 @<Undump constants for consistency check@>;
25436 @<Undump the string pool@>;
25437 @<Undump the dynamic memory@>;
25438 @<Undump the table of equivalents and the hash table@>;
25439 @<Undump a few more things and the closing check word@>;
25440 return true; /* it worked! */
25443 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25444 @.Fatal mem file error@>
25448 @ @<Declarations@>=
25449 boolean mp_load_mem_file (MP mp) ;
25451 @ Mem files consist of |memory_word| items, and we use the following
25452 macros to dump words of different types:
25454 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25455 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25456 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25457 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25458 @d dump_string(A) { dump_int(strlen(A)+1);
25459 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25462 void * mem_file; /* for input or output of mem information */
25464 @ The inverse macros are slightly more complicated, since we need to check
25465 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25466 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25469 size_t wanted = sizeof(A);
25471 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25472 if (wanted!=sizeof(A)) goto OFF_BASE;
25476 size_t wanted = sizeof(A);
25478 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25479 if (wanted!=sizeof(A)) goto OFF_BASE;
25482 @d undump_wd(A) { mgetw(WW); A=WW; }
25483 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25484 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25485 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25486 @d undump_strings(A,B,C) {
25487 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25488 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25489 @d undump_size(A,B,C,D) { undump_int(x);
25490 if (x<(A)) goto OFF_BASE;
25491 if (x>(B)) { too_small((C)); } else { D=x;} }
25492 @d undump_string(A) do {
25497 A = xmalloc(XX,sizeof(char));
25498 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25499 if (wanted!=(size_t)XX) goto OFF_BASE;
25502 @ The next few sections of the program should make it clear how we use the
25503 dump/undump macros.
25505 @<Dump constants for consistency check@>=
25506 dump_int(mp->mem_top);
25507 dump_int(mp->hash_size);
25508 dump_int(mp->hash_prime)
25509 dump_int(mp->param_size);
25510 dump_int(mp->max_in_open);
25512 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25513 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25514 the same strings. (And it is, of course, a good thing that they do.)
25518 @<Undump constants for consistency check@>=
25519 undump_int(x); mp->mem_top = x;
25520 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25521 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25522 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25523 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25525 @ We do string pool compaction to avoid dumping unused strings.
25528 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25529 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25532 @<Dump the string pool@>=
25533 mp_do_compaction(mp, mp->pool_size);
25534 dump_int(mp->pool_ptr);
25535 dump_int(mp->max_str_ptr);
25536 dump_int(mp->str_ptr);
25538 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25541 while ( k<=mp->max_str_ptr ) {
25542 dump_int(mp->next_str[k]); incr(k);
25546 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25547 if ( k==mp->str_ptr ) {
25554 while (k+4<mp->pool_ptr ) {
25555 dump_four_ASCII; k=k+4;
25557 k=mp->pool_ptr-4; dump_four_ASCII;
25558 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25559 mp_print(mp, " strings of total length ");
25560 mp_print_int(mp, mp->pool_ptr)
25562 @ @d undump_four_ASCII
25564 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25565 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25567 @<Undump the string pool@>=
25568 undump_int(mp->pool_ptr);
25569 mp_reallocate_pool(mp, mp->pool_ptr) ;
25570 undump_int(mp->max_str_ptr);
25571 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25572 undump(0,mp->max_str_ptr,mp->str_ptr);
25573 undump(0,mp->max_str_ptr+1,s);
25574 for (k=0;k<=s-1;k++)
25575 mp->next_str[k]=k+1;
25576 for (k=s;k<=mp->max_str_ptr;k++)
25577 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25578 mp->fixed_str_use=0;
25581 undump(0,mp->pool_ptr,mp->str_start[k]);
25582 if ( k==mp->str_ptr ) break;
25583 mp->str_ref[k]=max_str_ref;
25584 incr(mp->fixed_str_use);
25585 mp->last_fixed_str=k; k=mp->next_str[k];
25588 while ( k+4<mp->pool_ptr ) {
25589 undump_four_ASCII; k=k+4;
25591 k=mp->pool_ptr-4; undump_four_ASCII;
25592 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25593 mp->max_pool_ptr=mp->pool_ptr;
25594 mp->strs_used_up=mp->fixed_str_use;
25595 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25596 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25597 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25599 @ By sorting the list of available spaces in the variable-size portion of
25600 |mem|, we are usually able to get by without having to dump very much
25601 of the dynamic memory.
25603 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25604 information even when it has not been gathering statistics.
25606 @<Dump the dynamic memory@>=
25607 mp_sort_avail(mp); mp->var_used=0;
25608 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25609 p=0; q=mp->rover; x=0;
25611 for (k=p;k<= q+1;k++)
25612 dump_wd(mp->mem[k]);
25613 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25614 p=q+node_size(q); q=rlink(q);
25615 } while (q!=mp->rover);
25616 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25617 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25618 for (k=p;k<= mp->lo_mem_max;k++ )
25619 dump_wd(mp->mem[k]);
25620 x=x+mp->lo_mem_max+1-p;
25621 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25622 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25623 dump_wd(mp->mem[k]);
25624 x=x+mp->mem_end+1-mp->hi_mem_min;
25626 while ( p!=null ) {
25627 decr(mp->dyn_used); p=link(p);
25629 dump_int(mp->var_used); dump_int(mp->dyn_used);
25630 mp_print_ln(mp); mp_print_int(mp, x);
25631 mp_print(mp, " memory locations dumped; current usage is ");
25632 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25634 @ @<Undump the dynamic memory@>=
25635 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25636 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25639 for (k=p;k<= q+1; k++)
25640 undump_wd(mp->mem[k]);
25642 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25645 } while (q!=mp->rover);
25646 for (k=p;k<=mp->lo_mem_max;k++ )
25647 undump_wd(mp->mem[k]);
25648 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25649 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25650 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25651 undump_wd(mp->mem[k]);
25652 undump_int(mp->var_used); undump_int(mp->dyn_used)
25654 @ A different scheme is used to compress the hash table, since its lower region
25655 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25656 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25657 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25659 @<Dump the table of equivalents and the hash table@>=
25660 dump_int(mp->hash_used);
25661 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25662 for (p=1;p<=mp->hash_used;p++) {
25663 if ( text(p)!=0 ) {
25664 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25667 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25668 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25670 dump_int(mp->st_count);
25671 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25673 @ @<Undump the table of equivalents and the hash table@>=
25674 undump(1,frozen_inaccessible,mp->hash_used);
25677 undump(p+1,mp->hash_used,p);
25678 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25679 } while (p!=mp->hash_used);
25680 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25681 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25683 undump_int(mp->st_count)
25685 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25686 to prevent them appearing again.
25688 @<Dump a few more things and the closing check word@>=
25689 dump_int(mp->max_internal);
25690 dump_int(mp->int_ptr);
25691 for (k=1;k<= mp->int_ptr;k++ ) {
25692 dump_int(mp->internal[k]);
25693 dump_string(mp->int_name[k]);
25695 dump_int(mp->start_sym);
25696 dump_int(mp->interaction);
25697 dump_string(mp->mem_ident);
25698 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25699 mp->internal[mp_tracing_stats]=0
25701 @ @<Undump a few more things and the closing check word@>=
25703 if (x>mp->max_internal) mp_grow_internals(mp,x);
25704 undump_int(mp->int_ptr);
25705 for (k=1;k<= mp->int_ptr;k++) {
25706 undump_int(mp->internal[k]);
25707 undump_string(mp->int_name[k]);
25709 undump(0,frozen_inaccessible,mp->start_sym);
25710 if (mp->interaction==mp_unspecified_mode) {
25711 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25713 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25715 undump_string(mp->mem_ident);
25716 undump(1,hash_end,mp->bg_loc);
25717 undump(1,hash_end,mp->eg_loc);
25718 undump_int(mp->serial_no);
25720 if (x!=69073) goto OFF_BASE
25722 @ @<Create the |mem_ident|...@>=
25724 xfree(mp->mem_ident);
25725 mp->mem_ident = xmalloc(256,1);
25726 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25728 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25729 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25730 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25731 mp_pack_job_name(mp, mem_extension);
25732 while (! mp_w_open_out(mp, &mp->mem_file) )
25733 mp_prompt_file_name(mp, "mem file name", mem_extension);
25734 mp_print_nl(mp, "Beginning to dump on file ");
25735 @.Beginning to dump...@>
25736 mp_print(mp, mp->name_of_file);
25737 mp_print_nl(mp, mp->mem_ident);
25740 @ @<Dealloc variables@>=
25741 xfree(mp->mem_ident);
25743 @ @<Close the mem file@>=
25744 (mp->close_file)(mp->mem_file)
25746 @* \[46] The main program.
25747 This is it: the part of \MP\ that executes all those procedures we have
25750 Well---almost. We haven't put the parsing subroutines into the
25751 program yet; and we'd better leave space for a few more routines that may
25752 have been forgotten.
25754 @c @<Declare the basic parsing subroutines@>;
25755 @<Declare miscellaneous procedures that were declared |forward|@>;
25756 @<Last-minute procedures@>
25758 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25760 has to be run first; it initializes everything from scratch, without
25761 reading a mem file, and it has the capability of dumping a mem file.
25762 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25764 to input a mem file in order to get started. \.{VIRMP} typically has
25765 a bit more memory capacity than \.{INIMP}, because it does not need the
25766 space consumed by the dumping/undumping routines and the numerous calls on
25769 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25770 the best implementations therefore allow for production versions of \MP\ that
25771 not only avoid the loading routine for \PASCAL\ object code, they also have
25772 a mem file pre-loaded.
25775 boolean ini_version; /* are we iniMP? */
25777 @ @<Option variables@>=
25778 int ini_version; /* are we iniMP? */
25780 @ @<Set |ini_version|@>=
25781 mp->ini_version = (opt->ini_version ? true : false);
25783 @ Here we do whatever is needed to complete \MP's job gracefully on the
25784 local operating system. The code here might come into play after a fatal
25785 error; it must therefore consist entirely of ``safe'' operations that
25786 cannot produce error messages. For example, it would be a mistake to call
25787 |str_room| or |make_string| at this time, because a call on |overflow|
25788 might lead to an infinite loop.
25789 @^system dependencies@>
25791 This program doesn't bother to close the input files that may still be open.
25793 @<Last-minute...@>=
25794 void mp_close_files_and_terminate (MP mp) {
25795 integer k; /* all-purpose index */
25796 integer LH; /* the length of the \.{TFM} header, in words */
25797 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25798 pointer p; /* runs through a list of \.{TFM} dimensions */
25799 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25800 if ( mp->internal[mp_tracing_stats]>0 )
25801 @<Output statistics about this job@>;
25803 @<Do all the finishing work on the \.{TFM} file@>;
25804 @<Explain what output files were written@>;
25805 if ( mp->log_opened ){
25807 (mp->close_file)(mp->log_file);
25808 mp->selector=mp->selector-2;
25809 if ( mp->selector==term_only ) {
25810 mp_print_nl(mp, "Transcript written on ");
25811 @.Transcript written...@>
25812 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25820 @ @<Declarations@>=
25821 void mp_close_files_and_terminate (MP mp) ;
25823 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25824 if (mp->rd_fname!=NULL) {
25825 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25826 if ( mp->rd_fname[k]!=NULL ) {
25827 (mp->close_file)(mp->rd_file[k]);
25831 if (mp->wr_fname!=NULL) {
25832 for (k=0;k<=(int)mp->write_files-1;k++) {
25833 if ( mp->wr_fname[k]!=NULL ) {
25834 (mp->close_file)(mp->wr_file[k]);
25840 for (k=0;k<(int)mp->max_read_files;k++ ) {
25841 if ( mp->rd_fname[k]!=NULL ) {
25842 (mp->close_file)(mp->rd_file[k]);
25843 mp_xfree(mp->rd_fname[k]);
25846 mp_xfree(mp->rd_file);
25847 mp_xfree(mp->rd_fname);
25848 for (k=0;k<(int)mp->max_write_files;k++) {
25849 if ( mp->wr_fname[k]!=NULL ) {
25850 (mp->close_file)(mp->wr_file[k]);
25851 mp_xfree(mp->wr_fname[k]);
25854 mp_xfree(mp->wr_file);
25855 mp_xfree(mp->wr_fname);
25858 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25860 We reclaim all of the variable-size memory at this point, so that
25861 there is no chance of another memory overflow after the memory capacity
25862 has already been exceeded.
25864 @<Do all the finishing work on the \.{TFM} file@>=
25865 if ( mp->internal[mp_fontmaking]>0 ) {
25866 @<Make the dynamic memory into one big available node@>;
25867 @<Massage the \.{TFM} widths@>;
25868 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25869 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25870 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25871 @<Finish the \.{TFM} file@>;
25874 @ @<Make the dynamic memory into one big available node@>=
25875 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25876 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25877 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25878 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25879 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25881 @ The present section goes directly to the log file instead of using
25882 |print| commands, because there's no need for these strings to take
25883 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25885 @<Output statistics...@>=
25886 if ( mp->log_opened ) {
25889 wlog_ln("Here is how much of MetaPost's memory you used:");
25890 @.Here is how much...@>
25891 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25892 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25893 (int)(mp->max_strings-1-mp->init_str_use));
25895 snprintf(s,128," %i string characters out of %i",
25896 (int)mp->max_pl_used-mp->init_pool_ptr,
25897 (int)mp->pool_size-mp->init_pool_ptr);
25899 snprintf(s,128," %i words of memory out of %i",
25900 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25901 (int)mp->mem_end+1);
25903 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25905 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25906 (int)mp->max_in_stack,(int)mp->int_ptr,
25907 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25908 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25910 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25911 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25915 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25918 @<Last-minute...@>=
25919 void mp_final_cleanup (MP mp) {
25920 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25922 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25923 while ( mp->input_ptr>0 ) {
25924 if ( token_state ) mp_end_token_list(mp);
25925 else mp_end_file_reading(mp);
25927 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25928 while ( mp->open_parens>0 ) {
25929 mp_print(mp, " )"); decr(mp->open_parens);
25931 while ( mp->cond_ptr!=null ) {
25932 mp_print_nl(mp, "(end occurred when ");
25933 @.end occurred...@>
25934 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25935 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25936 if ( mp->if_line!=0 ) {
25937 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25939 mp_print(mp, " was incomplete)");
25940 mp->if_line=if_line_field(mp->cond_ptr);
25941 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25943 if ( mp->history!=mp_spotless )
25944 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25945 if ( mp->selector==term_and_log ) {
25946 mp->selector=term_only;
25947 mp_print_nl(mp, "(see the transcript file for additional information)");
25948 @.see the transcript file...@>
25949 mp->selector=term_and_log;
25952 if (mp->ini_version) {
25953 mp_store_mem_file(mp); return;
25955 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25956 @.dump...only by INIMP@>
25960 @ @<Declarations@>=
25961 void mp_final_cleanup (MP mp) ;
25962 void mp_init_prim (MP mp) ;
25963 void mp_init_tab (MP mp) ;
25965 @ @<Last-minute...@>=
25966 void mp_init_prim (MP mp) { /* initialize all the primitives */
25970 void mp_init_tab (MP mp) { /* initialize other tables */
25971 integer k; /* all-purpose index */
25972 @<Initialize table entries (done by \.{INIMP} only)@>;
25976 @ When we begin the following code, \MP's tables may still contain garbage;
25977 the strings might not even be present. Thus we must proceed cautiously to get
25980 But when we finish this part of the program, \MP\ is ready to call on the
25981 |main_control| routine to do its work.
25983 @<Get the first line...@>=
25985 @<Initialize the input routines@>;
25986 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25987 if ( mp->mem_ident!=NULL ) {
25988 mp_do_initialize(mp); /* erase preloaded mem */
25990 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25991 if ( ! mp_load_mem_file(mp) ) {
25992 (mp->close_file)(mp->mem_file);
25993 return mp_fatal_error_stop;
25995 (mp->close_file)( mp->mem_file);
25996 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25998 mp->buffer[limit]='%';
25999 mp_fix_date_and_time(mp);
26000 if (mp->random_seed==0)
26001 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
26002 mp_init_randoms(mp, mp->random_seed);
26003 @<Initialize the print |selector|...@>;
26004 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26005 mp_start_input(mp); /* \&{input} assumed */
26008 @ @<Run inimpost commands@>=
26010 mp_get_strings_started(mp);
26011 mp_init_tab(mp); /* initialize the tables */
26012 mp_init_prim(mp); /* call |primitive| for each primitive */
26013 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26014 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26015 mp_fix_date_and_time(mp);
26019 @* \[47] Debugging.
26020 Once \MP\ is working, you should be able to diagnose most errors with
26021 the \.{show} commands and other diagnostic features. But for the initial
26022 stages of debugging, and for the revelation of really deep mysteries, you
26023 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26024 checks and its debugger. An additional routine called |debug_help|
26025 will also come into play when you type `\.D' after an error message;
26026 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26028 @^system dependencies@>
26030 The interface to |debug_help| is primitive, but it is good enough when used
26031 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26032 variables and change their values. After getting the prompt `\.{debug \#}', you
26033 type either a negative number (this exits |debug_help|), or zero (this
26034 goes to a location where you can set a breakpoint, thereby entering into
26035 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26036 an argument |n|. The meaning of |m| and |n| will be clear from the
26037 program below. (If |m=13|, there is an additional argument, |l|.)
26040 @<Last-minute...@>=
26041 void mp_debug_help (MP mp) { /* routine to display various things */
26048 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26051 aline = (mp->read_ascii_file)(mp->term_in, &len);
26052 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26056 aline = (mp->read_ascii_file)(mp->term_in, &len);
26057 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26059 @<Numbered cases for |debug_help|@>;
26060 default: mp_print(mp, "?"); break;
26065 @ @<Numbered cases...@>=
26066 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26068 case 2: mp_print_int(mp, info(n));
26070 case 3: mp_print_int(mp, link(n));
26072 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26074 case 5: mp_print_variable_name(mp, n);
26076 case 6: mp_print_int(mp, mp->internal[n]);
26078 case 7: mp_do_show_dependencies(mp);
26080 case 9: mp_show_token_list(mp, n,null,100000,0);
26082 case 10: mp_print_str(mp, n);
26084 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26086 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26090 aline = (mp->read_ascii_file)(mp->term_in, &len);
26091 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26092 mp_print_cmd_mod(mp, n,l);
26094 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26096 case 15: mp->panicking=! mp->panicking;
26100 @ Saving the filename template
26102 @<Save the filename template@>=
26104 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26105 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26107 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26111 @* \[48] System-dependent changes.
26112 This section should be replaced, if necessary, by any special
26113 modification of the program
26114 that are necessary to make \MP\ work at a particular installation.
26115 It is usually best to design your change file so that all changes to
26116 previous sections preserve the section numbering; then everybody's version
26117 will be consistent with the published program. More extensive changes,
26118 which introduce new sections, can be inserted here; then only the index
26119 itself will get a new section number.
26120 @^system dependencies@>
26123 Here is where you can find all uses of each identifier in the program,
26124 with underlined entries pointing to where the identifier was defined.
26125 If the identifier is only one letter long, however, you get to see only
26126 the underlined entries. {\sl All references are to section numbers instead of
26129 This index also lists error messages and other aspects of the program
26130 that you might want to look up some day. For example, the entry
26131 for ``system dependencies'' lists all sections that should receive
26132 special attention from people who are installing \MP\ in a new
26133 operating environment. A list of various things that can't happen appears
26134 under ``this can't happen''.
26135 Approximately 25 sections are listed under ``inner loop''; these account
26136 for more than 60\pct! of \MP's running time, exclusive of input and output.