1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
42 The \PASCAL\ program that follows defines a standard version
44 of \MP\ that is designed to be highly portable so that identical output
45 will be obtainable on a great variety of computers.
47 The main purpose of the following program is to explain the algorithms of \MP\
48 as clearly as possible. As a result, the program will not necessarily be very
49 efficient when a particular \PASCAL\ compiler has translated it into a
50 particular machine language. However, the program has been written so that it
51 can be tuned to run efficiently in a wide variety of operating environments
52 by making comparatively few changes. Such flexibility is possible because
53 the documentation that follows is written in the \.{WEB} language, which is
54 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
55 to \PASCAL\ is able to introduce most of the necessary refinements.
56 Semi-automatic translation to other languages is also feasible, because the
57 program below does not make extensive use of features that are peculiar to
60 A large piece of software like \MP\ has inherent complexity that cannot
61 be reduced below a certain level of difficulty, although each individual
62 part is fairly simple by itself. The \.{WEB} language is intended to make
63 the algorithms as readable as possible, by reflecting the way the
64 individual program pieces fit together and by providing the
65 cross-references that connect different parts. Detailed comments about
66 what is going on, and about why things were done in certain ways, have
67 been liberally sprinkled throughout the program. These comments explain
68 features of the implementation, but they rarely attempt to explain the
69 \MP\ language itself, since the reader is supposed to be familiar with
70 {\sl The {\logos METAFONT\/}book} as well as the manual
72 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
73 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
74 AT\AM T Bell Laboratories.
76 @ The present implementation is a preliminary version, but the possibilities
77 for new features are limited by the desire to remain as nearly compatible
78 with \MF\ as possible.
80 On the other hand, the \.{WEB} description can be extended without changing
81 the core of the program, and it has been designed so that such
82 extensions are not extremely difficult to make.
83 The |banner| string defined here should be changed whenever \MP\
84 undergoes any modifications, so that it will be clear which version of
85 \MP\ might be the guilty party when a problem arises.
87 @^system dependencies@>
89 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
90 @d metapost_version "1.002"
91 @d mplib_version "0.10"
92 @d version_string " (Cweb version 0.10)"
94 @ Different \PASCAL s have slightly different conventions, and the present
96 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
97 Constructions that apply to
98 this particular compiler, which we shall call \ph, should help the
99 reader see how to make an appropriate interface for other systems
100 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
101 @^Hedrick, Charles Locke@>
102 for the DECsystem-10 that was originally developed at the University of
103 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
104 29--42. The \MP\ program below is intended to be adaptable, without
105 extensive changes, to most other versions of \PASCAL\ and commonly used
106 \PASCAL-to-C translators, so it does not fully
108 use the admirable features of \ph. Indeed, a conscious effort has been
109 made here to avoid using several idiosyncratic features of standard
110 \PASCAL\ itself, so that most of the code can be translated mechanically
111 into other high-level languages. For example, the `\&{with}' and `\\{new}'
112 features are not used, nor are pointer types, set types, or enumerated
113 scalar types; there are no `\&{var}' parameters, except in the case of files;
114 there are no tag fields on variant records; there are no |real| variables;
115 no procedures are declared local to other procedures.)
117 The portions of this program that involve system-dependent code, where
118 changes might be necessary because of differences between \PASCAL\ compilers
119 and/or differences between
120 operating systems, can be identified by looking at the sections whose
121 numbers are listed under `system dependencies' in the index. Furthermore,
122 the index entries for `dirty \PASCAL' list all places where the restrictions
123 of \PASCAL\ have not been followed perfectly, for one reason or another.
124 @^system dependencies@>
127 @ The program begins with a normal \PASCAL\ program heading, whose
128 components will be filled in later, using the conventions of \.{WEB}.
130 For example, the portion of the program called `\X\glob:Global
131 variables\X' below will be replaced by a sequence of variable declarations
132 that starts in $\section\glob$ of this documentation. In this way, we are able
133 to define each individual global variable when we are prepared to
134 understand what it means; we do not have to define all of the globals at
135 once. Cross references in $\section\glob$, where it says ``See also
136 sections \gglob, \dots,'' also make it possible to look at the set of
137 all global variables, if desired. Similar remarks apply to the other
138 portions of the program heading.
140 Actually the heading shown here is not quite normal: The |program| line
141 does not mention any |output| file, because \ph\ would ask the \MP\ user
142 to specify a file name if |output| were specified here.
143 @^system dependencies@>
149 # ifndef LIBAVL_ALLOCATOR
150 # define LIBAVL_ALLOCATOR
151 struct libavl_allocator {
152 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
153 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
156 typedef struct psout_data_struct * psout_data;
157 typedef struct MP_instance * MP;
159 typedef signed int integer;
160 @<Types in the outer block@>
161 typedef struct MP_options {
164 @<Exported function headers@>
168 @<Constants in the outer block@>
169 typedef struct MP_instance {
179 #include <unistd.h> /* for access() */
180 #include <time.h> /* for struct tm \& co */
182 #include "mpmp.h" /* internal header */
183 #include "mppsout.h" /* internal header */
186 @<Basic printing procedures@>
187 @<Error handling procedures@>
189 @ Here are the functions that set up the \MP\ instance.
192 @<Declare |mp_reallocate| functions@>;
193 struct MP_options mp_options (void) {
194 struct MP_options *opt;
195 opt = xmalloc(1,sizeof(MP_options));
196 memset (opt,0,sizeof(MP_options));
199 MP mp_new (struct MP_options opt) {
201 mp = xmalloc(1,sizeof(MP_instance));
202 @<Set |ini_version|@>;
203 @<Allocate or initialize variables@>
204 mp_reallocate_paths(mp,1000);
205 mp_reallocate_fonts(mp,8);
207 mp->term_out = stdout;
210 void mp_free (MP mp) {
211 int k; /* loop variable */
212 @<Dealloc variables@>
217 boolean mp_initialize (MP mp) { /* this procedure gets things started properly */
218 @<Local variables for initialization@>
219 mp->history=fatal_error_stop; /* in case we quit during initialization */
220 t_open_out; /* open the terminal for output */
221 @<Check the ``constant'' values...@>;
223 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
224 "---case %i",(int)mp->bad);
228 @<Set initial values of key variables@>
229 if (mp->ini_version) {
230 @<Run inimpost commands@>;
232 @<Initialize the output routines@>;
233 @<Get the first line of input and prepare to start@>;
234 mp_set_job_id(mp,mp->internal[year],mp->internal[month],
235 mp->internal[day],mp->internal[mp_time]);
236 mp_init_map_file(mp, mp->troff_mode);
237 mp->history=spotless; /* ready to go! */
238 if (mp->troff_mode) {
239 mp->internal[gtroffmode]=unity;
240 mp->internal[prologues]=unity;
242 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
243 mp->cur_sym=mp->start_sym; mp_back_input(mp);
249 @<Exported function headers@>=
250 extern struct MP_options mp_options (void);
251 extern MP mp_new (struct MP_options opt) ;
252 extern void mp_free (MP mp);
253 extern boolean mp_initialize (MP mp);
256 @ The overall \MP\ program begins with the heading just shown, after which
257 comes a bunch of procedure declarations and function declarations.
258 Finally we will get to the main program, which begins with the
259 comment `|start_here|'. If you want to skip down to the
260 main program now, you can look up `|start_here|' in the index.
261 But the author suggests that the best way to understand this program
262 is to follow pretty much the order of \MP's components as they appear in the
263 \.{WEB} description you are now reading, since the present ordering is
264 intended to combine the advantages of the ``bottom up'' and ``top down''
265 approaches to the problem of understanding a somewhat complicated system.
267 @ Some of the code below is intended to be used only when diagnosing the
268 strange behavior that sometimes occurs when \MP\ is being installed or
269 when system wizards are fooling around with \MP\ without quite knowing
270 what they are doing. Such code will not normally be compiled; it is
271 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
273 @ This program has two important variations: (1) There is a long and slow
274 version called \.{INIMP}, which does the extra calculations needed to
276 initialize \MP's internal tables; and (2)~there is a shorter and faster
277 production version, which cuts the initialization to a bare minimum.
279 Which is which is decided at runtime.
281 @ The following parameters can be changed at compile time to extend or
282 reduce \MP's capacity. They may have different values in \.{INIMP} and
283 in production versions of \MP.
285 @^system dependencies@>
288 #define file_name_size 255 /* file names shouldn't be longer than this */
289 #define bistack_size 1500 /* size of stack for bisection algorithms;
290 should probably be left at this value */
292 @ Like the preceding parameters, the following quantities can be changed
293 at compile time to extend or reduce \MP's capacity. But if they are changed,
294 it is necessary to rerun the initialization program \.{INIMP}
296 to generate new tables for the production \MP\ program.
297 One can't simply make helter-skelter changes to the following constants,
298 since certain rather complex initialization
299 numbers are computed from them.
302 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
303 int pool_size; /* maximum number of characters in strings, including all
304 error messages and help texts, and the names of all identifiers */
305 int error_line; /* width of context lines on terminal error messages */
306 int half_error_line; /* width of first lines of contexts in terminal
307 error messages; should be between 30 and |error_line-15| */
308 int max_print_line; /* width of longest text lines output; should be at least 60 */
309 int mem_max; /* greatest index in \MP's internal |mem| array;
310 must be strictly less than |max_halfword|;
311 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
312 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
313 must not be greater than |mem_max| */
314 int hash_size; /* maximum number of symbolic tokens,
315 must be less than |max_halfword-3*param_size| */
316 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
317 int param_size; /* maximum number of simultaneous macro parameters */
318 int max_in_open; /* maximum number of input files and error insertions that
319 can be going on simultaneously */
321 @ @<Option variables@>=
332 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
337 set_value(mp->error_line,opt.error_line,79);
338 set_value(mp->half_error_line,opt.half_error_line,50);
339 set_value(mp->max_print_line,opt.max_print_line,79);
342 if (opt.main_memory>mp->mem_max)
343 mp_reallocate_memory(mp,opt.main_memory);
344 set_value(mp->hash_size,opt.hash_size,9500);
345 set_value(mp->hash_prime,opt.hash_prime,7919);
346 set_value(mp->param_size,opt.param_size,150);
347 set_value(mp->max_in_open,opt.max_in_open,10);
350 @ In case somebody has inadvertently made bad settings of the ``constants,''
351 \MP\ checks them using a global variable called |bad|.
353 This is the first of many sections of \MP\ where global variables are
357 integer bad; /* is some ``constant'' wrong? */
359 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
360 or something similar. (We can't do that until |max_halfword| has been defined.)
362 @<Check the ``constant'' values for consistency@>=
364 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
365 if ( mp->max_print_line<60 ) mp->bad=2;
366 if ( mp->mem_top<=1100 ) mp->bad=4;
367 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
369 @ Labels are given symbolic names by the following definitions, so that
370 occasional |goto| statements will be meaningful. We insert the label
371 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
372 which we have used the `|return|' statement defined below; the label
373 `|restart|' is occasionally used at the very beginning of a procedure; and
374 the label `|reswitch|' is occasionally used just prior to a |case|
375 statement in which some cases change the conditions and we wish to branch
376 to the newly applicable case. Loops that are set up with the |loop|
377 construction defined below are commonly exited by going to `|done|' or to
378 `|found|' or to `|not_found|', and they are sometimes repeated by going to
379 `|continue|'. If two or more parts of a subroutine start differently but
380 end up the same, the shared code may be gathered together at
383 Incidentally, this program never declares a label that isn't actually used,
384 because some fussy \PASCAL\ compilers will complain about redundant labels.
386 @d label_exit 10 /* go here to leave a procedure */
387 @d restart 20 /* go here to start a procedure again */
388 @d reswitch 21 /* go here to start a case statement again */
389 @d continue 22 /* go here to resume a loop */
390 @d done 30 /* go here to exit a loop */
391 @d done1 31 /* like |done|, when there is more than one loop */
392 @d done2 32 /* for exiting the second loop in a long block */
393 @d done3 33 /* for exiting the third loop in a very long block */
394 @d done4 34 /* for exiting the fourth loop in an extremely long block */
395 @d done5 35 /* for exiting the fifth loop in an immense block */
396 @d done6 36 /* for exiting the sixth loop in a block */
397 @d found 40 /* go here when you've found it */
398 @d found1 41 /* like |found|, when there's more than one per routine */
399 @d found2 42 /* like |found|, when there's more than two per routine */
400 @d found3 43 /* like |found|, when there's more than three per routine */
401 @d not_found 45 /* go here when you've found nothing */
402 @d common_ending 50 /* go here when you want to merge with another branch */
404 @ Here are some macros for common programming idioms.
406 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
407 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
408 @d negate(A) (A)=-(A) /* change the sign of a variable */
411 @d do_nothing /* empty statement */
412 @d Return goto exit /* terminate a procedure call */
413 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
415 @* \[2] The character set.
416 In order to make \MP\ readily portable to a wide variety of
417 computers, all of its input text is converted to an internal eight-bit
418 code that includes standard ASCII, the ``American Standard Code for
419 Information Interchange.'' This conversion is done immediately when each
420 character is read in. Conversely, characters are converted from ASCII to
421 the user's external representation just before they are output to a
425 Such an internal code is relevant to users of \MP\ only with respect to
426 the \&{char} and \&{ASCII} operations, and the comparison of strings.
428 @ Characters of text that have been converted to \MP's internal form
429 are said to be of type |ASCII_code|, which is a subrange of the integers.
432 typedef unsigned char ASCII_code; /* eight-bit numbers */
434 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
435 character sets were common, so it did not make provision for lowercase
436 letters. Nowadays, of course, we need to deal with both capital and small
437 letters in a convenient way, especially in a program for font design;
438 so the present specification of \MP\ has been written under the assumption
439 that the \PASCAL\ compiler and run-time system permit the use of text files
440 with more than 64 distinguishable characters. More precisely, we assume that
441 the character set contains at least the letters and symbols associated
442 with ASCII codes 040 through 0176; all of these characters are now
443 available on most computer terminals.
445 Since we are dealing with more characters than were present in the first
446 \PASCAL\ compilers, we have to decide what to call the associated data
447 type. Some \PASCAL s use the original name |char| for the
448 characters in text files, even though there now are more than 64 such
449 characters, while other \PASCAL s consider |char| to be a 64-element
450 subrange of a larger data type that has some other name.
452 In order to accommodate this difference, we shall use the name |text_char|
453 to stand for the data type of the characters that are converted to and
454 from |ASCII_code| when they are input and output. We shall also assume
455 that |text_char| consists of the elements |chr(first_text_char)| through
456 |chr(last_text_char)|, inclusive. The following definitions should be
457 adjusted if necessary.
458 @^system dependencies@>
460 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
461 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
464 typedef unsigned char text_char; /* the data type of characters in text files */
466 @ @<Local variables for init...@>=
469 @ The \MP\ processor converts between ASCII code and
470 the user's external character set by means of arrays |xord| and |xchr|
471 that are analogous to \PASCAL's |ord| and |chr| functions.
474 ASCII_code xord[256]; /* specifies conversion of input characters */
475 text_char xchr[256]; /* specifies conversion of output characters */
477 @ The core system assumes all 8-bit is acceptable. If it is not,
478 a change file has to alter the below section.
479 @^system dependencies@>
481 Additionally, people with extended character sets can
482 assign codes arbitrarily, giving an |xchr| equivalent to whatever
483 characters the users of \MP\ are allowed to have in their input files.
484 Appropriate changes to \MP's |char_class| table should then be made.
485 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
486 codes, called the |char_class|.) Such changes make portability of programs
487 more difficult, so they should be introduced cautiously if at all.
488 @^character set dependencies@>
489 @^system dependencies@>
492 for (i=0;i<=0377;i++) { mp->xchr[i]=i; }
494 @ The following system-independent code makes the |xord| array contain a
495 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
496 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
497 |j| or more; hence, standard ASCII code numbers will be used instead of
498 codes below 040 in case there is a coincidence.
501 for (i=first_text_char;i<=last_text_char;i++) {
502 mp->xord[chr(i)]=0177;
504 for (i=0200;i<=0377;i++) { mp->xord[mp->xchr[i]]=i;}
505 for (i=0;i<=0176;i++) {mp->xord[mp->xchr[i]]=i;}
507 @* \[3] Input and output.
508 The bane of portability is the fact that different operating systems treat
509 input and output quite differently, perhaps because computer scientists
510 have not given sufficient attention to this problem. People have felt somehow
511 that input and output are not part of ``real'' programming. Well, it is true
512 that some kinds of programming are more fun than others. With existing
513 input/output conventions being so diverse and so messy, the only sources of
514 joy in such parts of the code are the rare occasions when one can find a
515 way to make the program a little less bad than it might have been. We have
516 two choices, either to attack I/O now and get it over with, or to postpone
517 I/O until near the end. Neither prospect is very attractive, so let's
520 The basic operations we need to do are (1)~inputting and outputting of
521 text, to or from a file or the user's terminal; (2)~inputting and
522 outputting of eight-bit bytes, to or from a file; (3)~instructing the
523 operating system to initiate (``open'') or to terminate (``close'') input or
524 output from a specified file; (4)~testing whether the end of an input
525 file has been reached; (5)~display of bits on the user's screen.
526 The bit-display operation will be discussed in a later section; we shall
527 deal here only with more traditional kinds of I/O.
529 @ Finding files happens in a slightly roundabout fashion: the \MP\
530 instance object contains a field that holds a function pointer that finds a
531 file, and returns its name, or NULL. For this, it receives three
532 parameters: the non-qualified name |fname|, the intended |fopen|
533 operation type |fmode|, and the type of the file |ftype|.
535 The file types that are passed on in |ftype| can be used to
536 differentiate file searches if a library like kpathsea is used,
537 the fopen mode is passed along for the same reason.
540 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
542 mp_filetype_program = 1, /* \MP\ language input */
543 mp_filetype_log, /* the log file */
544 mp_filetype_postscript, /* the postscript output */
545 mp_filetype_text, /* text files for readfrom and writeto primitives */
546 mp_filetype_memfile, /* memory dumps */
547 mp_filetype_metrics, /* TeX font metric files */
548 mp_filetype_fontmap, /* PostScript font mapping files */
549 mp_filetype_font, /* PostScript type1 font programs */
550 mp_filetype_encoding, /* PostScript font encoding files */
552 typedef char *(*file_finder)(char *, char *, int);
555 file_finder find_file;
557 @ @<Option variables@>=
558 file_finder find_file;
560 @ The default function for finding files is |mp_find_file|. It is
561 pretty stupid: it will only find files in the current directory.
564 char *mp_find_file (char *fname, char *fmode, int ftype) {
565 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
566 return xstrdup(fname);
570 @ This has to be done very early on, so it is best to put it in with
571 the |mp_new| allocations
573 @d set_callback_option(A) do { mp->A = mp_##A;
574 if (opt.A!=NULL) mp->A = opt.A;
577 @<Allocate or initialize ...@>=
578 set_callback_option(find_file);
580 @ Because |mp_find_file| is used so early, it has to be in the helpers
584 char *mp_find_file (char *fname, char *fmode, int ftype) ;
586 @ The function to open files can now be very short.
589 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
590 char *s = (mp->find_file)(fname,fmode,ftype);
592 FILE *f = fopen(s, fmode);
599 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
602 char name_of_file[file_name_size+1]; /* the name of a system file */
603 int name_length;/* this many characters are actually
604 relevant in |name_of_file| (the rest are blank) */
605 boolean print_found_names; /* configuration parameter */
607 @ @<Option variables@>=
608 boolean print_found_names; /* configuration parameter */
610 @ If this parameter is true, the terminal and log will report the found
611 file names for input files instead of the requested ones.
612 It is off by default because it creates an extra filename lookup.
614 @<Allocate or initialize ...@>=
615 mp->print_found_names = (opt.print_found_names>0 ? true : false);
617 @ \MP's file-opening procedures return |false| if no file identified by
618 |name_of_file| could be opened.
620 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
621 It is not used for opening a mem file for read, because that file name
625 if (mp->print_found_names) {
626 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
628 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
629 strncpy(mp->name_of_file,s,file_name_size);
635 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
638 return (*f ? true : false)
641 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
642 /* open a text file for input */
646 boolean mp_w_open_in (MP mp, FILE **f) {
647 /* open a word file for input */
648 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
649 return (*f ? true : false);
652 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
653 /* open a text file for output */
657 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
658 /* open a binary file for output */
662 boolean mp_w_open_out (MP mp, FILE**f) {
663 /* open a word file for output */
664 int ftype = mp_filetype_memfile;
669 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
671 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
672 procedures, so we don't have to make any other special arrangements for
673 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
674 The treatment of text input is more difficult, however, because
675 of the necessary translation to |ASCII_code| values.
676 \MP's conventions should be efficient, and they should
677 blend nicely with the user's operating environment.
679 @ Input from text files is read one line at a time, using a routine called
680 |input_ln|. This function is defined in terms of global variables called
681 |buffer|, |first|, and |last| that will be described in detail later; for
682 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
683 values, and that |first| and |last| are indices into this array
684 representing the beginning and ending of a line of text.
687 size_t buf_size; /* maximum number of characters simultaneously present in
688 current lines of open files */
689 ASCII_code *buffer; /* lines of characters being read */
690 size_t first; /* the first unused position in |buffer| */
691 size_t last; /* end of the line just input to |buffer| */
692 size_t max_buf_stack; /* largest index used in |buffer| */
694 @ @<Allocate or initialize ...@>=
696 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
698 @ @<Dealloc variables@>=
702 void mp_reallocate_buffer(MP mp, size_t l) {
704 if (l>max_halfword) {
705 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
707 buffer = xmalloc((l+1),sizeof(ASCII_code));
708 memcpy(buffer,mp->buffer,(mp->buf_size+1));
710 mp->buffer = buffer ;
714 @ The |input_ln| function brings the next line of input from the specified
715 field into available positions of the buffer array and returns the value
716 |true|, unless the file has already been entirely read, in which case it
717 returns |false| and sets |last:=first|. In general, the |ASCII_code|
718 numbers that represent the next line of the file are input into
719 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
720 global variable |last| is set equal to |first| plus the length of the
721 line. Trailing blanks are removed from the line; thus, either |last=first|
722 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
725 An overflow error is given, however, if the normal actions of |input_ln|
726 would make |last>=buf_size|; this is done so that other parts of \MP\
727 can safely look at the contents of |buffer[last+1]| without overstepping
728 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
729 |first<buf_size| will always hold, so that there is always room for an
732 The variable |max_buf_stack|, which is used to keep track of how large
733 the |buf_size| parameter must be to accommodate the present job, is
734 also kept up to date by |input_ln|.
736 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
737 before looking at the first character of the line; this skips over
738 an |eoln| that was in |f^|. The procedure does not do a |get| when it
739 reaches the end of the line; therefore it can be used to acquire input
740 from the user's terminal as well as from ordinary text files.
742 Standard \PASCAL\ says that a file should have |eoln| immediately
743 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
744 occurs in the middle of a line, the system function |eoln| should return
745 a |true| result (even though |f^| will be undefined).
748 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
749 /* inputs the next line or returns |false| */
750 int last_nonblank; /* |last| with trailing blanks removed */
756 if (c!='\n' && c!='\r') {
760 /* input the first character of the line into |f^| */
761 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
765 last_nonblank=mp->first;
766 while (c!=EOF && c!='\n' && c!='\r') {
767 if ( mp->last>=mp->max_buf_stack ) {
768 mp->max_buf_stack=mp->last+1;
769 if ( mp->max_buf_stack==mp->buf_size ) {
770 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
773 mp->buffer[mp->last]=mp->xord[c];
775 if ( mp->buffer[mp->last-1]!=' ' )
776 last_nonblank=mp->last;
782 mp->last=last_nonblank;
786 @ The user's terminal acts essentially like other files of text, except
787 that it is used both for input and for output. When the terminal is
788 considered an input file, the file variable is called |term_in|, and when it
789 is considered an output file the file variable is |term_out|.
790 @^system dependencies@>
793 FILE * term_in; /* the terminal as an input file */
794 FILE * term_out; /* the terminal as an output file */
796 @ Here is how to open the terminal files. In the default configuration,
797 nothing happens except that the command line (if there is one) is copied
798 to the input buffer. The variable |command_line| will be filled by the
799 |main| procedure. The copying can not be done earlier in the program
800 logic because in the |INI| version, the |buffer| is also used for primitive
803 @^system dependencies@>
805 @d t_open_out /* open the terminal for text output */
806 @d t_open_in do { /* open the terminal for text input */
807 if (mp->command_line!=NULL) {
808 mp->last = strlen(mp->command_line);
809 strncpy((char *)mp->buffer,mp->command_line,mp->last);
810 xfree(mp->command_line);
817 @ @<Option variables@>=
820 @ @<Allocate or initialize ...@>=
821 mp->command_line = mp_xstrdup(opt.command_line);
823 @ Sometimes it is necessary to synchronize the input/output mixture that
824 happens on the user's terminal, and three system-dependent
825 procedures are used for this
826 purpose. The first of these, |update_terminal|, is called when we want
827 to make sure that everything we have output to the terminal so far has
828 actually left the computer's internal buffers and been sent.
829 The second, |clear_terminal|, is called when we wish to cancel any
830 input that the user may have typed ahead (since we are about to
831 issue an unexpected error message). The third, |wake_up_terminal|,
832 is supposed to revive the terminal if the user has disabled it by
833 some instruction to the operating system. The following macros show how
834 these operations can be specified in \ph:
835 @^system dependencies@>
837 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
838 @d clear_terminal do_nothing /* clear the terminal input buffer */
839 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
841 @ We need a special routine to read the first line of \MP\ input from
842 the user's terminal. This line is different because it is read before we
843 have opened the transcript file; there is sort of a ``chicken and
844 egg'' problem here. If the user types `\.{input cmr10}' on the first
845 line, or if some macro invoked by that line does such an \.{input},
846 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
847 commands are performed during the first line of terminal input, the transcript
848 file will acquire its default name `\.{mpout.log}'. (The transcript file
849 will not contain error messages generated by the first line before the
850 first \.{input} command.)
852 The first line is even more special if we are lucky enough to have an operating
853 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
854 program. It's nice to let the user start running a \MP\ job by typing
855 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
856 as if the first line of input were `\.{cmr10}', i.e., the first line will
857 consist of the remainder of the command line, after the part that invoked \MP.
859 @ Different systems have different ways to get started. But regardless of
860 what conventions are adopted, the routine that initializes the terminal
861 should satisfy the following specifications:
863 \yskip\textindent{1)}It should open file |term_in| for input from the
864 terminal. (The file |term_out| will already be open for output to the
867 \textindent{2)}If the user has given a command line, this line should be
868 considered the first line of terminal input. Otherwise the
869 user should be prompted with `\.{**}', and the first line of input
870 should be whatever is typed in response.
872 \textindent{3)}The first line of input, which might or might not be a
873 command line, should appear in locations |first| to |last-1| of the
876 \textindent{4)}The global variable |loc| should be set so that the
877 character to be read next by \MP\ is in |buffer[loc]|. This
878 character should not be blank, and we should have |loc<last|.
880 \yskip\noindent(It may be necessary to prompt the user several times
881 before a non-blank line comes in. The prompt is `\.{**}' instead of the
882 later `\.*' because the meaning is slightly different: `\.{input}' need
883 not be typed immediately after~`\.{**}'.)
885 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
887 @ The following program does the required initialization
888 without retrieving a possible command line.
889 It should be clear how to modify this routine to deal with command lines,
890 if the system permits them.
891 @^system dependencies@>
894 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
901 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
903 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
904 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
905 @.End of file on the terminal@>
909 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
911 if ( loc<(int)mp->last ) {
912 return true; /* return unless the line was all blank */
914 fprintf(mp->term_out,"Please type the name of your input file.\n");
919 boolean mp_init_terminal (MP mp) ;
922 @* \[4] String handling.
923 Symbolic token names and diagnostic messages are variable-length strings
924 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
925 mechanism, \MP\ does all of its string processing by homegrown methods.
927 \MP\ uses strings more extensively than \MF\ does, but the necessary
928 operations can still be handled with a fairly simple data structure.
929 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
930 of the strings, and the array |str_start| contains indices of the starting
931 points of each string. Strings are referred to by integer numbers, so that
932 string number |s| comprises the characters |str_pool[j]| for
933 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
934 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
935 location. The first string number not currently in use is |str_ptr|
936 and |next_str[str_ptr]| begins a list of free string numbers. String
937 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
938 string currently being constructed.
940 String numbers 0 to 255 are reserved for strings that correspond to single
941 ASCII characters. This is in accordance with the conventions of \.{WEB},
943 which converts single-character strings into the ASCII code number of the
944 single character involved, while it converts other strings into integers
945 and builds a string pool file. Thus, when the string constant \.{"."} appears
946 in the program below, \.{WEB} converts it into the integer 46, which is the
947 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
948 into some integer greater than~255. String number 46 will presumably be the
949 single character `\..'\thinspace; but some ASCII codes have no standard visible
950 representation, and \MP\ may need to be able to print an arbitrary
951 ASCII character, so the first 256 strings are used to specify exactly what
952 should be printed for each of the 256 possibilities.
955 typedef int pool_pointer; /* for variables that point into |str_pool| */
956 typedef int str_number; /* for variables that point into |str_start| */
959 ASCII_code *str_pool; /* the characters */
960 pool_pointer *str_start; /* the starting pointers */
961 str_number *next_str; /* for linking strings in order */
962 pool_pointer pool_ptr; /* first unused position in |str_pool| */
963 str_number str_ptr; /* number of the current string being created */
964 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
965 str_number init_str_use; /* the initial number of strings in use */
966 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
967 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
969 @ @<Allocate or initialize ...@>=
970 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
971 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
972 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
974 @ @<Dealloc variables@>=
976 xfree(mp->str_start);
979 @ Most printing is done from |char *|s, but sometimes not. Here are
980 functions that convert an internal string into a |char *| for use
981 by the printing routines, and vice versa.
983 @d str(A) mp_str(mp,A)
984 @d rts(A) mp_rts(mp,A)
986 @<Exported function headers@>=
987 int mp_xstrcmp (const char *a, const char *b);
988 char * mp_str (MP mp, str_number s);
991 str_number mp_rts (MP mp, char *s);
992 str_number mp_make_string (MP mp);
994 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
995 very good: it does not handle nesting over more than one level.
998 int mp_xstrcmp (const char *a, const char *b) {
999 if (a==NULL && b==NULL)
1009 char * mp_str (MP mp, str_number ss) {
1011 int len = length(ss);
1012 s = xmalloc(len+1,sizeof(char));
1013 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1017 str_number mp_rts (MP mp, char *s) {
1018 int r; /* the new string */
1019 int old; /* a possible string in progress */
1023 } else if (strlen(s)==1) {
1027 str_room((integer)strlen(s));
1028 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1029 old = mp_make_string(mp);
1034 r = mp_make_string(mp);
1036 str_room(length(old));
1037 while (i<length(old)) {
1038 append_char((mp->str_start[old]+i));
1040 mp_flush_string(mp,old);
1046 @ Except for |strs_used_up|, the following string statistics are only
1047 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1051 integer strs_used_up; /* strings in use or unused but not reclaimed */
1052 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1053 integer strs_in_use; /* total number of strings actually in use */
1054 integer max_pl_used; /* maximum |pool_in_use| so far */
1055 integer max_strs_used; /* maximum |strs_in_use| so far */
1057 @ Several of the elementary string operations are performed using \.{WEB}
1058 macros instead of \PASCAL\ procedures, because many of the
1059 operations are done quite frequently and we want to avoid the
1060 overhead of procedure calls. For example, here is
1061 a simple macro that computes the length of a string.
1064 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1066 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1068 @ The length of the current string is called |cur_length|. If we decide that
1069 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1070 |cur_length| becomes zero.
1072 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1073 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1075 @ Strings are created by appending character codes to |str_pool|.
1076 The |append_char| macro, defined here, does not check to see if the
1077 value of |pool_ptr| has gotten too high; this test is supposed to be
1078 made before |append_char| is used.
1080 To test if there is room to append |l| more characters to |str_pool|,
1081 we shall write |str_room(l)|, which tries to make sure there is enough room
1082 by compacting the string pool if necessary. If this does not work,
1083 |do_compaction| aborts \MP\ and gives an apologetic error message.
1085 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1086 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1088 @d str_room(A) /* make sure that the pool hasn't overflowed */
1089 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1090 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1091 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1094 @ The following routine is similar to |str_room(1)| but it uses the
1095 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1096 string space is exhausted.
1098 @<Declare the procedure called |unit_str_room|@>=
1099 void mp_unit_str_room (MP mp);
1102 void mp_unit_str_room (MP mp) {
1103 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1104 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1107 @ \MP's string expressions are implemented in a brute-force way: Every
1108 new string or substring that is needed is simply copied into the string pool.
1109 Space is eventually reclaimed by a procedure called |do_compaction| with
1110 the aid of a simple system system of reference counts.
1111 @^reference counts@>
1113 The number of references to string number |s| will be |str_ref[s]|. The
1114 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1115 positive number of references; such strings will never be recycled. If
1116 a string is ever referred to more than 126 times, simultaneously, we
1117 put it in this category. Hence a single byte suffices to store each |str_ref|.
1119 @d max_str_ref 127 /* ``infinite'' number of references */
1120 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1126 @ @<Allocate or initialize ...@>=
1127 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1129 @ @<Dealloc variables@>=
1132 @ Here's what we do when a string reference disappears:
1134 @d delete_str_ref(A) {
1135 if ( mp->str_ref[(A)]<max_str_ref ) {
1136 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1137 else mp_flush_string(mp, (A));
1141 @<Declare the procedure called |flush_string|@>=
1142 void mp_flush_string (MP mp,str_number s) ;
1145 @ We can't flush the first set of static strings at all, so there
1146 is no point in trying
1149 void mp_flush_string (MP mp,str_number s) {
1151 mp->pool_in_use=mp->pool_in_use-length(s);
1152 decr(mp->strs_in_use);
1153 if ( mp->next_str[s]!=mp->str_ptr ) {
1157 decr(mp->strs_used_up);
1159 mp->pool_ptr=mp->str_start[mp->str_ptr];
1163 @ C literals cannot be simply added, they need to be set so they can't
1166 @d intern(A) mp_intern(mp,(A))
1169 str_number mp_intern (MP mp, char *s) {
1172 mp->str_ref[r] = max_str_ref;
1177 str_number mp_intern (MP mp, char *s);
1180 @ Once a sequence of characters has been appended to |str_pool|, it
1181 officially becomes a string when the function |make_string| is called.
1182 This function returns the identification number of the new string as its
1185 When getting the next unused string number from the linked list, we pretend
1187 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1188 are linked sequentially even though the |next_str| entries have not been
1189 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1190 |do_compaction| is responsible for making sure of this.
1193 @<Declare the procedure called |do_compaction|@>;
1194 @<Declare the procedure called |unit_str_room|@>;
1195 str_number mp_make_string (MP mp);
1198 str_number mp_make_string (MP mp) { /* current string enters the pool */
1199 str_number s; /* the new string */
1202 mp->str_ptr=mp->next_str[s];
1203 if ( mp->str_ptr>mp->max_str_ptr ) {
1204 if ( mp->str_ptr==mp->max_strings ) {
1206 mp_do_compaction(mp, 0);
1210 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1211 @:this can't happen s}{\quad \.s@>
1213 mp->max_str_ptr=mp->str_ptr;
1214 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1218 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1219 incr(mp->strs_used_up);
1220 incr(mp->strs_in_use);
1221 mp->pool_in_use=mp->pool_in_use+length(s);
1222 if ( mp->pool_in_use>mp->max_pl_used )
1223 mp->max_pl_used=mp->pool_in_use;
1224 if ( mp->strs_in_use>mp->max_strs_used )
1225 mp->max_strs_used=mp->strs_in_use;
1229 @ The most interesting string operation is string pool compaction. The idea
1230 is to recover unused space in the |str_pool| array by recopying the strings
1231 to close the gaps created when some strings become unused. All string
1232 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1233 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1234 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1235 with |needed=mp->pool_size| supresses all overflow tests.
1237 The compaction process starts with |last_fixed_str| because all lower numbered
1238 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1241 str_number last_fixed_str; /* last permanently allocated string */
1242 str_number fixed_str_use; /* number of permanently allocated strings */
1244 @ @<Declare the procedure called |do_compaction|@>=
1245 void mp_do_compaction (MP mp, pool_pointer needed) ;
1248 void mp_do_compaction (MP mp, pool_pointer needed) {
1249 str_number str_use; /* a count of strings in use */
1250 str_number r,s,t; /* strings being manipulated */
1251 pool_pointer p,q; /* destination and source for copying string characters */
1252 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1253 r=mp->last_fixed_str;
1256 while ( s!=mp->str_ptr ) {
1257 while ( mp->str_ref[s]==0 ) {
1258 @<Advance |s| and add the old |s| to the list of free string numbers;
1259 then |break| if |s=str_ptr|@>;
1261 r=s; s=mp->next_str[s];
1263 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1264 after the end of the string@>;
1266 @<Move the current string back so that it starts at |p|@>;
1267 if ( needed<mp->pool_size ) {
1268 @<Make sure that there is room for another string with |needed| characters@>;
1270 @<Account for the compaction and make sure the statistics agree with the
1272 mp->strs_used_up=str_use;
1275 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1276 t=mp->next_str[mp->last_fixed_str];
1277 while ( (mp->str_ref[t]==max_str_ref)&&(t!=mp->str_ptr) ) {
1278 incr(mp->fixed_str_use);
1279 mp->last_fixed_str=t;
1282 str_use=mp->fixed_str_use
1284 @ Because of the way |flush_string| has been written, it should never be
1285 necessary to |break| here. The extra line of code seems worthwhile to
1286 preserve the generality of |do_compaction|.
1288 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1293 mp->next_str[t]=mp->next_str[mp->str_ptr];
1294 mp->next_str[mp->str_ptr]=t;
1295 if ( s==mp->str_ptr ) break;
1298 @ The string currently starts at |str_start[r]| and ends just before
1299 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1300 to locate the next string.
1302 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1305 while ( q<mp->str_start[s] ) {
1306 mp->str_pool[p]=mp->str_pool[q];
1310 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1311 we do this, anything between them should be moved.
1313 @ @<Move the current string back so that it starts at |p|@>=
1314 q=mp->str_start[mp->str_ptr];
1315 mp->str_start[mp->str_ptr]=p;
1316 while ( q<mp->pool_ptr ) {
1317 mp->str_pool[p]=mp->str_pool[q];
1322 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1324 @<Make sure that there is room for another string with |needed| char...@>=
1325 if ( str_use>=mp->max_strings-1 )
1326 mp_reallocate_strings (mp,str_use);
1327 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1328 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1329 mp->max_pool_ptr=mp->pool_ptr+needed;
1333 void mp_reallocate_strings (MP mp, str_number str_use) ;
1334 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1337 void mp_reallocate_strings (MP mp, str_number str_use) {
1338 while ( str_use>=mp->max_strings-1 ) {
1339 int l = mp->max_strings + (mp->max_strings>>2);
1340 XREALLOC (mp->str_ref, (l+1),sizeof(int));
1341 XREALLOC (mp->str_start, (l+1),sizeof(pool_pointer));
1342 XREALLOC (mp->next_str, (l+1),sizeof(str_number));
1343 mp->max_strings = l;
1346 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1347 while ( needed>mp->pool_size ) {
1348 int l = mp->pool_size + (mp->pool_size>>2);
1349 XREALLOC (mp->str_pool, (l+1),sizeof(ASCII_code));
1354 @ @<Account for the compaction and make sure the statistics agree with...@>=
1355 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1356 mp_confusion(mp, "string");
1357 @:this can't happen string}{\quad string@>
1358 incr(mp->pact_count);
1359 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1360 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1362 s=mp->str_ptr; t=str_use;
1363 while ( s<=mp->max_str_ptr ){
1364 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1365 incr(t); s=mp->next_str[s];
1367 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1370 @ A few more global variables are needed to keep track of statistics when
1371 |stat| $\ldots$ |tats| blocks are not commented out.
1374 integer pact_count; /* number of string pool compactions so far */
1375 integer pact_chars; /* total number of characters moved during compactions */
1376 integer pact_strs; /* total number of strings moved during compactions */
1378 @ @<Initialize compaction statistics@>=
1383 @ The following subroutine compares string |s| with another string of the
1384 same length that appears in |buffer| starting at position |k|;
1385 the result is |true| if and only if the strings are equal.
1388 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1389 /* test equality of strings */
1390 pool_pointer j; /* running index */
1392 while ( j<str_stop(s) ) {
1393 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1399 @ Here is a similar routine, but it compares two strings in the string pool,
1400 and it does not assume that they have the same length. If the first string
1401 is lexicographically greater than, less than, or equal to the second,
1402 the result is respectively positive, negative, or zero.
1405 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1406 /* test equality of strings */
1407 pool_pointer j,k; /* running indices */
1408 integer ls,lt; /* lengths */
1409 integer l; /* length remaining to test */
1410 ls=length(s); lt=length(t);
1411 if ( ls<=lt ) l=ls; else l=lt;
1412 j=mp->str_start[s]; k=mp->str_start[t];
1414 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1415 return (mp->str_pool[j]-mp->str_pool[k]);
1422 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1423 and |str_ptr| are computed by the \.{INIMP} program, based in part
1424 on the information that \.{WEB} has output while processing \MP.
1429 void mp_get_strings_started (MP mp) {
1430 /* initializes the string pool,
1431 but returns |false| if something goes wrong */
1432 int k; /* small indices or counters */
1433 str_number g; /* a new string */
1434 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1437 mp->pool_in_use=0; mp->strs_in_use=0;
1438 mp->max_pl_used=0; mp->max_strs_used=0;
1439 @<Initialize compaction statistics@>;
1441 @<Make the first 256 strings@>;
1442 g=mp_make_string(mp); /* string 256 == "" */
1443 mp->last_fixed_str=mp->str_ptr-1;
1444 mp->fixed_str_use=mp->str_ptr;
1449 void mp_get_strings_started (MP mp);
1451 @ The first 256 strings will consist of a single character only.
1453 @<Make the first 256...@>=
1454 for (k=0;k<=255;k++) {
1456 g=mp_make_string(mp);
1457 mp->str_ref[g]=max_str_ref;
1460 @ The first 128 strings will contain 95 standard ASCII characters, and the
1461 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1462 unless a system-dependent change is made here. Installations that have
1463 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1464 would like string 032 to be printed as the single character 032 instead
1465 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1466 even people with an extended character set will want to represent string
1467 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1468 to produce visible strings instead of tabs or line-feeds or carriage-returns
1469 or bell-rings or characters that are treated anomalously in text files.
1471 Unprintable characters of codes 128--255 are, similarly, rendered
1472 \.{\^\^80}--\.{\^\^ff}.
1474 The boolean expression defined here should be |true| unless \MP\ internal
1475 code number~|k| corresponds to a non-troublesome visible symbol in the
1476 local character set.
1477 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1478 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1480 @^character set dependencies@>
1481 @^system dependencies@>
1483 @<Character |k| cannot be printed@>=
1486 @* \[5] On-line and off-line printing.
1487 Messages that are sent to a user's terminal and to the transcript-log file
1488 are produced by several `|print|' procedures. These procedures will
1489 direct their output to a variety of places, based on the setting of
1490 the global variable |selector|, which has the following possible
1494 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1497 \hang |log_only|, prints only on the transcript file.
1499 \hang |term_only|, prints only on the terminal.
1501 \hang |no_print|, doesn't print at all. This is used only in rare cases
1502 before the transcript file is open.
1504 \hang |ps_file_only| prints only on the \ps\ output file.
1506 \hang |pseudo|, puts output into a cyclic buffer that is used
1507 by the |show_context| routine; when we get to that routine we shall discuss
1508 the reasoning behind this curious mode.
1510 \hang |new_string|, appends the output to the current string in the
1513 \hang |>=write_file| prints on one of the files used for the \&{write}
1514 @:write_}{\&{write} primitive@>
1518 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1519 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1520 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1521 relations are not used when |selector| could be |pseudo|, |new_string|,
1522 or |ps_file_only|. We need not check for unprintable characters when
1525 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1526 and |ps_offset| record the number of characters that have been printed
1527 since they were most recently cleared to zero. We use |tally| to record
1528 the length of (possibly very long) stretches of printing; |term_offset|,
1529 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1530 characters have appeared so far on the current line that has been output
1531 to the terminal, the transcript file, or the \ps\ output file, respectively.
1533 @d new_string 0 /* printing is deflected to the string pool */
1534 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1535 @d pseudo 2 /* special |selector| setting for |show_context| */
1536 @d no_print 3 /* |selector| setting that makes data disappear */
1537 @d term_only 4 /* printing is destined for the terminal only */
1538 @d log_only 5 /* printing is destined for the transcript file only */
1539 @d term_and_log 6 /* normal |selector| setting */
1540 @d write_file 7 /* first write file selector */
1543 FILE * log_file; /* transcript of \MP\ session */
1544 FILE * ps_file; /* the generic font output goes here */
1545 unsigned int selector; /* where to print a message */
1546 unsigned char dig[23]; /* digits in a number being output */
1547 integer tally; /* the number of characters recently printed */
1548 unsigned int term_offset;
1549 /* the number of characters on the current terminal line */
1550 unsigned int file_offset;
1551 /* the number of characters on the current file line */
1553 /* the number of characters on the current \ps\ file line */
1554 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1555 integer trick_count; /* threshold for pseudoprinting, explained later */
1556 integer first_count; /* another variable for pseudoprinting */
1558 @ @<Allocate or initialize ...@>=
1559 memset(mp->dig,0,23);
1560 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1562 @ @<Dealloc variables@>=
1563 xfree(mp->trick_buf);
1565 @ @<Initialize the output routines@>=
1566 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1568 @ Macro abbreviations for output to the terminal and to the log file are
1569 defined here for convenience. Some systems need special conventions
1570 for terminal output, and it is possible to adhere to those conventions
1571 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1572 @^system dependencies@>
1574 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1575 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1576 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1577 @d wterm_cr fprintf(mp->term_out,"\n")
1578 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1579 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1580 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1581 @d wlog_cr fprintf(mp->log_file, "\n")
1582 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1583 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1584 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1585 @d wps_cr fprintf(mp->ps_file,"\n")
1587 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1588 use an array |wr_file| that will be declared later.
1590 @d mp_print_text(A) mp_print_str(mp,text((A)))
1593 void mp_print_ln (MP mp);
1594 void mp_print_visible_char (MP mp, ASCII_code s);
1595 void mp_print_char (MP mp, ASCII_code k);
1596 void mp_print (MP mp, char *s);
1597 void mp_print_str (MP mp, str_number s);
1598 void mp_print_nl (MP mp, char *s);
1599 void mp_print_two (MP mp,scaled x, scaled y) ;
1600 void mp_print_scaled (MP mp,scaled s);
1602 @ @<Basic print...@>=
1603 void mp_print_ln (MP mp) { /* prints an end-of-line */
1604 switch (mp->selector) {
1607 mp->term_offset=0; mp->file_offset=0;
1610 wlog_cr; mp->file_offset=0;
1613 wterm_cr; mp->term_offset=0;
1616 wps_cr; mp->ps_offset=0;
1623 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1625 } /* note that |tally| is not affected */
1627 @ The |print_visible_char| procedure sends one character to the desired
1628 destination, using the |xchr| array to map it into an external character
1629 compatible with |input_ln|. (It assumes that it is always called with
1630 a visible ASCII character.) All printing comes through |print_ln| or
1631 |print_char|, which ultimately calls |print_visible_char|, hence these
1632 routines are the ones that limit lines to at most |max_print_line| characters.
1633 But we must make an exception for the \ps\ output file since it is not safe
1634 to cut up lines arbitrarily in \ps.
1636 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1637 |do_compaction| and |do_compaction| can call the error routines. Actually,
1638 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1640 @<Basic printing...@>=
1641 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1642 switch (mp->selector) {
1644 wterm_chr(mp->xchr[s]); wlog_chr(mp->xchr[s]);
1645 incr(mp->term_offset); incr(mp->file_offset);
1646 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1647 wterm_cr; mp->term_offset=0;
1649 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1650 wlog_cr; mp->file_offset=0;
1654 wlog_chr(mp->xchr[s]); incr(mp->file_offset);
1655 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1658 wterm_chr(mp->xchr[s]); incr(mp->term_offset);
1659 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1663 wps_cr; mp->ps_offset=0;
1665 wps_chr(mp->xchr[s]); incr(mp->ps_offset);
1671 if ( mp->tally<mp->trick_count )
1672 mp->trick_buf[mp->tally % mp->error_line]=s;
1675 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1676 mp_unit_str_room(mp);
1677 if ( mp->pool_ptr>=mp->pool_size )
1678 goto DONE; /* drop characters if string space is full */
1683 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",mp->xchr[s]);
1689 @ The |print_char| procedure sends one character to the desired destination.
1690 File names and string expressions might contain |ASCII_code| values that
1691 can't be printed using |print_visible_char|. These characters will be
1692 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1693 (This procedure assumes that it is safe to bypass all checks for unprintable
1694 characters when |selector| is in the range |0..max_write_files-1| or when
1695 |selector=ps_file_only|. In the former case the user might want to write
1696 unprintable characters, and in the latter case the \ps\ printing routines
1697 check their arguments themselves before calling |print_char| or |print|.)
1699 @d print_lc_hex(A) do { l=(A);
1700 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1703 @<Basic printing...@>=
1704 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1705 int l; /* small index or counter */
1706 if ( mp->selector<pseudo || mp->selector>=write_file) {
1707 mp_print_visible_char(mp, k);
1708 } else if ( @<Character |k| cannot be printed@> ) {
1711 mp_print_visible_char(mp, k+0100);
1712 } else if ( k<0200 ) {
1713 mp_print_visible_char(mp, k-0100);
1715 print_lc_hex(k / 16);
1716 print_lc_hex(k % 16);
1719 mp_print_visible_char(mp, k);
1723 @ An entire string is output by calling |print|. Note that if we are outputting
1724 the single standard ASCII character \.c, we could call |print("c")|, since
1725 |"c"=99| is the number of a single-character string, as explained above. But
1726 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1727 routine when it knows that this is safe. (The present implementation
1728 assumes that it is always safe to print a visible ASCII character.)
1729 @^system dependencies@>
1732 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1735 mp_print_char(mp, ss[j]); incr(j);
1741 void mp_print (MP mp, char *ss) {
1742 mp_do_print(mp, ss, strlen(ss));
1744 void mp_print_str (MP mp, str_number s) {
1745 pool_pointer j; /* current character code position */
1746 if ( (s<0)||(s>mp->max_str_ptr) ) {
1747 mp_do_print(mp,"???",3); /* this can't happen */
1751 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1755 @ Here is the very first thing that \MP\ prints: a headline that identifies
1756 the version number and base name. The |term_offset| variable is temporarily
1757 incorrect, but the discrepancy is not serious since we assume that the banner
1758 and mem identifier together will occupy at most |max_print_line|
1759 character positions.
1761 @<Initialize the output...@>=
1763 wterm (version_string);
1764 if (mp->mem_ident!=NULL)
1765 mp_print(mp,mp->mem_ident);
1769 @ The procedure |print_nl| is like |print|, but it makes sure that the
1770 string appears at the beginning of a new line.
1773 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1774 switch(mp->selector) {
1776 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1779 if ( mp->file_offset>0 ) mp_print_ln(mp);
1782 if ( mp->term_offset>0 ) mp_print_ln(mp);
1785 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1791 } /* there are no other cases */
1795 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1798 void mp_print_the_digs (MP mp, eight_bits k) {
1799 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1801 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1805 @ The following procedure, which prints out the decimal representation of a
1806 given integer |n|, has been written carefully so that it works properly
1807 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1808 to negative arguments, since such operations are not implemented consistently
1809 by all \PASCAL\ compilers.
1812 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1813 integer m; /* used to negate |n| in possibly dangerous cases */
1814 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1816 mp_print_char(mp, '-');
1817 if ( n>-100000000 ) {
1820 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1824 mp->dig[0]=0; incr(n);
1829 mp->dig[k]=n % 10; n=n / 10; incr(k);
1831 mp_print_the_digs(mp, k);
1835 void mp_print_int (MP mp,integer n);
1837 @ \MP\ also makes use of a trivial procedure to print two digits. The
1838 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1841 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1843 mp_print_char(mp, '0'+(n / 10));
1844 mp_print_char(mp, '0'+(n % 10));
1847 @ Here is a procedure that asks the user to type a line of input,
1848 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1849 The input is placed into locations |first| through |last-1| of the
1850 |buffer| array, and echoed on the transcript file if appropriate.
1852 This procedure is never called when |interaction<mp_scroll_mode|.
1854 @d prompt_input(A) do {
1855 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1856 } while (0) /* prints a string and gets a line of input */
1859 void mp_term_input (MP mp) { /* gets a line from the terminal */
1860 size_t k; /* index into |buffer| */
1861 update_terminal; /* Now the user sees the prompt for sure */
1862 if (!mp_input_ln(mp, mp->term_in,true))
1863 mp_fatal_error(mp, "End of file on the terminal!");
1864 @.End of file on the terminal@>
1865 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1866 decr(mp->selector); /* prepare to echo the input */
1867 if ( mp->last!=mp->first ) {
1868 for (k=mp->first;k<=mp->last-1;k++) {
1869 mp_print_char(mp, mp->buffer[k]);
1873 mp->buffer[mp->last]='%';
1874 incr(mp->selector); /* restore previous status */
1877 @* \[6] Reporting errors.
1878 When something anomalous is detected, \MP\ typically does something like this:
1879 $$\vbox{\halign{#\hfil\cr
1880 |print_err("Something anomalous has been detected");|\cr
1881 |help3("This is the first line of my offer to help.")|\cr
1882 |("This is the second line. I'm trying to")|\cr
1883 |("explain the best way for you to proceed.");|\cr
1885 A two-line help message would be given using |help2|, etc.; these informal
1886 helps should use simple vocabulary that complements the words used in the
1887 official error message that was printed. (Outside the U.S.A., the help
1888 messages should preferably be translated into the local vernacular. Each
1889 line of help is at most 60 characters long, in the present implementation,
1890 so that |max_print_line| will not be exceeded.)
1892 The |print_err| procedure supplies a `\.!' before the official message,
1893 and makes sure that the terminal is awake if a stop is going to occur.
1894 The |error| procedure supplies a `\..' after the official message, then it
1895 shows the location of the error; and if |interaction=error_stop_mode|,
1896 it also enters into a dialog with the user, during which time the help
1897 message may be printed.
1898 @^system dependencies@>
1900 @ The global variable |interaction| has four settings, representing increasing
1901 amounts of user interaction:
1905 mp_unspecified_mode=0, /* extra value for command-line switch */
1906 mp_batch_mode, /* omits all stops and omits terminal output */
1907 mp_nonstop_mode, /* omits all stops */
1908 mp_scroll_mode, /* omits error stops */
1909 mp_error_stop_mode, /* stops at every opportunity to interact */
1913 int interaction; /* current level of interaction */
1915 @ @<Option variables@>=
1916 int interaction; /* current level of interaction */
1918 @ Set it here so it can be overwritten by the commandline
1920 @<Allocate or initialize ...@>=
1921 mp->interaction=opt.interaction;
1922 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1923 mp->interaction=mp_error_stop_mode;
1924 if (mp->interaction<mp_unspecified_mode)
1925 mp->interaction=mp_batch_mode;
1929 @d print_err(A) mp_print_err(mp,(A))
1932 void mp_print_err(MP mp, char * A);
1935 void mp_print_err(MP mp, char * A) {
1936 if ( mp->interaction==mp_error_stop_mode )
1938 mp_print_nl(mp, "! ");
1944 @ \MP\ is careful not to call |error| when the print |selector| setting
1945 might be unusual. The only possible values of |selector| at the time of
1948 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1949 and |log_file| not yet open);
1951 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1953 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1955 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1957 @<Initialize the print |selector| based on |interaction|@>=
1958 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1960 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1961 routine is active when |error| is called; this ensures that |get_next|
1962 will never be called recursively.
1965 The global variable |history| records the worst level of error that
1966 has been detected. It has four possible values: |spotless|, |warning_issued|,
1967 |error_message_issued|, and |fatal_error_stop|.
1969 Another global variable, |error_count|, is increased by one when an
1970 |error| occurs without an interactive dialog, and it is reset to zero at
1971 the end of every statement. If |error_count| reaches 100, \MP\ decides
1972 that there is no point in continuing further.
1974 @d spotless 0 /* |history| value when nothing has been amiss yet */
1975 @d warning_issued 1 /* |history| value when |begin_diagnostic| has been called */
1976 @d error_message_issued 2 /* |history| value when |error| has been called */
1977 @d fatal_error_stop 3 /* |history| value when termination was premature */
1980 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
1981 int history; /* has the source input been clean so far? */
1982 int error_count; /* the number of scrolled errors since the last statement ended */
1984 @ The value of |history| is initially |fatal_error_stop|, but it will
1985 be changed to |spotless| if \MP\ survives the initialization process.
1987 @<Allocate or ...@>=
1988 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
1990 @ Since errors can be detected almost anywhere in \MP, we want to declare the
1991 error procedures near the beginning of the program. But the error procedures
1992 in turn use some other procedures, which need to be declared |forward|
1993 before we get to |error| itself.
1995 It is possible for |error| to be called recursively if some error arises
1996 when |get_next| is being used to delete a token, and/or if some fatal error
1997 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
1999 is never more than two levels deep.
2002 void mp_get_next (MP mp);
2003 void mp_term_input (MP mp);
2004 void mp_show_context (MP mp);
2005 void mp_begin_file_reading (MP mp);
2006 void mp_open_log_file (MP mp);
2007 void mp_clear_for_error_prompt (MP mp);
2008 void mp_debug_help (MP mp);
2009 @<Declare the procedure called |flush_string|@>
2012 void mp_normalize_selector (MP mp);
2014 @ Individual lines of help are recorded in the array |help_line|, which
2015 contains entries in positions |0..(help_ptr-1)|. They should be printed
2016 in reverse order, i.e., with |help_line[0]| appearing last.
2018 @d hlp1(A) mp->help_line[0]=(A); }
2019 @d hlp2(A) mp->help_line[1]=(A); hlp1
2020 @d hlp3(A) mp->help_line[2]=(A); hlp2
2021 @d hlp4(A) mp->help_line[3]=(A); hlp3
2022 @d hlp5(A) mp->help_line[4]=(A); hlp4
2023 @d hlp6(A) mp->help_line[5]=(A); hlp5
2024 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2025 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2026 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2027 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2028 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2029 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2030 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2033 char * help_line[6]; /* helps for the next |error| */
2034 unsigned int help_ptr; /* the number of help lines present */
2035 boolean use_err_help; /* should the |err_help| string be shown? */
2036 str_number err_help; /* a string set up by \&{errhelp} */
2037 str_number filename_template; /* a string set up by \&{filenametemplate} */
2039 @ @<Allocate or ...@>=
2040 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2042 @ The |jump_out| procedure just cuts across all active procedure levels and
2043 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2044 whole program. It is used when there is no recovery from a particular error.
2046 Some \PASCAL\ compilers do not implement non-local |goto| statements.
2047 @^system dependencies@>
2048 In such cases the body of |jump_out| should simply be
2049 `|close_files_and_terminate|;\thinspace' followed by a call on some system
2050 procedure that quietly terminates the program.
2053 void mp_jump_out (MP mp) {
2057 @ Here now is the general |error| routine.
2060 void mp_error (MP mp) { /* completes the job of error reporting */
2061 ASCII_code c; /* what the user types */
2062 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2063 pool_pointer j; /* character position being printed */
2064 if ( mp->history<error_message_issued ) mp->history=error_message_issued;
2065 mp_print_char(mp, '.'); mp_show_context(mp);
2066 if ( mp->interaction==mp_error_stop_mode ) {
2067 @<Get user's advice and |return|@>;
2069 incr(mp->error_count);
2070 if ( mp->error_count==100 ) {
2071 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2072 @.That makes 100 errors...@>
2073 mp->history=fatal_error_stop; mp_jump_out(mp);
2075 @<Put help message on the transcript file@>;
2077 void mp_warn (MP mp, char *msg) {
2078 int saved_selector = mp->selector;
2079 mp_normalize_selector(mp);
2080 mp_print_nl(mp,"Warning: ");
2082 mp->selector = saved_selector;
2086 void mp_error (MP mp);
2087 void mp_warn (MP mp, char *msg);
2090 @ @<Get user's advice...@>=
2093 mp_clear_for_error_prompt(mp); prompt_input("? ");
2095 if ( mp->last==mp->first ) return;
2096 c=mp->buffer[mp->first];
2097 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2098 @<Interpret code |c| and |return| if done@>;
2101 @ It is desirable to provide an `\.E' option here that gives the user
2102 an easy way to return from \MP\ to the system editor, with the offending
2103 line ready to be edited. But such an extension requires some system
2104 wizardry, so the present implementation simply types out the name of the
2106 edited and the relevant line number.
2107 @^system dependencies@>
2110 typedef void (*run_editor_command)(MP, char *, int);
2113 run_editor_command run_editor;
2115 @ @<Option variables@>=
2116 run_editor_command run_editor;
2118 @ @<Allocate or initialize ...@>=
2119 set_callback_option(run_editor);
2121 @ @<Exported function headers@>=
2122 void mp_run_editor (MP mp, char *fname, int fline);
2124 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2125 mp_print_nl(mp, "You want to edit file ");
2126 @.You want to edit file x@>
2127 mp_print(mp, fname);
2128 mp_print(mp, " at line ");
2129 mp_print_int(mp, fline);
2130 mp->interaction=mp_scroll_mode;
2135 There is a secret `\.D' option available when the debugging routines haven't
2139 @<Interpret code |c| and |return| if done@>=
2141 case '0': case '1': case '2': case '3': case '4':
2142 case '5': case '6': case '7': case '8': case '9':
2143 if ( mp->deletions_allowed ) {
2144 @<Delete |c-"0"| tokens and |continue|@>;
2149 mp_debug_help(mp); continue;
2153 if ( mp->file_ptr>0 ){
2154 (mp->run_editor)(mp,
2155 str(mp->input_stack[mp->file_ptr].name_field),
2160 @<Print the help information and |continue|@>;
2163 @<Introduce new material from the terminal and |return|@>;
2165 case 'Q': case 'R': case 'S':
2166 @<Change the interaction level and |return|@>;
2169 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2174 @<Print the menu of available options@>
2176 @ @<Print the menu...@>=
2178 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2179 @.Type <return> to proceed...@>
2180 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2181 mp_print_nl(mp, "I to insert something, ");
2182 if ( mp->file_ptr>0 )
2183 mp_print(mp, "E to edit your file,");
2184 if ( mp->deletions_allowed )
2185 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2186 mp_print_nl(mp, "H for help, X to quit.");
2189 @ Here the author of \MP\ apologizes for making use of the numerical
2190 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2191 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2192 @^Knuth, Donald Ervin@>
2194 @<Change the interaction...@>=
2196 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2197 mp_print(mp, "OK, entering ");
2199 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2200 case 'R': mp_print(mp, "nonstopmode"); break;
2201 case 'S': mp_print(mp, "scrollmode"); break;
2202 } /* there are no other cases */
2203 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2206 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2207 contain the material inserted by the user; otherwise another prompt will
2208 be given. In order to understand this part of the program fully, you need
2209 to be familiar with \MP's input stacks.
2211 @<Introduce new material...@>=
2213 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2214 if ( mp->last>mp->first+1 ) {
2215 loc=mp->first+1; mp->buffer[mp->first]=' ';
2217 prompt_input("insert>"); loc=mp->first;
2220 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2223 @ We allow deletion of up to 99 tokens at a time.
2225 @<Delete |c-"0"| tokens...@>=
2227 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2228 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2229 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2233 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2234 @<Decrease the string reference count, if the current token is a string@>;
2237 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2238 help2("I have just deleted some text, as you asked.")
2239 ("You can now delete more, or insert, or whatever.");
2240 mp_show_context(mp);
2244 @ @<Print the help info...@>=
2246 if ( mp->use_err_help ) {
2247 @<Print the string |err_help|, possibly on several lines@>;
2248 mp->use_err_help=false;
2250 if ( mp->help_ptr==0 ) {
2251 help2("Sorry, I don't know how to help in this situation.")
2252 ("Maybe you should try asking a human?");
2255 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2256 } while (mp->help_ptr!=0);
2258 help4("Sorry, I already gave what help I could...")
2259 ("Maybe you should try asking a human?")
2260 ("An error might have occurred before I noticed any problems.")
2261 ("``If all else fails, read the instructions.''");
2265 @ @<Print the string |err_help|, possibly on several lines@>=
2266 j=mp->str_start[mp->err_help];
2267 while ( j<str_stop(mp->err_help) ) {
2268 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2269 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2270 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2271 else { incr(j); mp_print_char(mp, '%'); };
2275 @ @<Put help message on the transcript file@>=
2276 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2277 if ( mp->use_err_help ) {
2278 mp_print_nl(mp, "");
2279 @<Print the string |err_help|, possibly on several lines@>;
2281 while ( mp->help_ptr>0 ){
2282 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2286 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2289 @ In anomalous cases, the print selector might be in an unknown state;
2290 the following subroutine is called to fix things just enough to keep
2291 running a bit longer.
2294 void mp_normalize_selector (MP mp) {
2295 if ( mp->log_opened ) mp->selector=term_and_log;
2296 else mp->selector=term_only;
2297 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2298 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2301 @ The following procedure prints \MP's last words before dying.
2303 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2304 mp->interaction=mp_scroll_mode; /* no more interaction */
2305 if ( mp->log_opened ) mp_error(mp);
2306 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2307 mp->history=fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2311 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2312 mp_normalize_selector(mp);
2313 print_err("Emergency stop"); help1(s); succumb;
2318 void mp_fatal_error (MP mp, char *s);
2321 @ Here is the most dreaded error message.
2324 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2325 mp_normalize_selector(mp);
2326 print_err("MetaPost capacity exceeded, sorry [");
2327 @.MetaPost capacity exceeded ...@>
2328 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2329 help2("If you really absolutely need more capacity,")
2330 ("you can ask a wizard to enlarge me.");
2335 void mp_overflow (MP mp, char *s, integer n);
2337 @ The program might sometime run completely amok, at which point there is
2338 no choice but to stop. If no previous error has been detected, that's bad
2339 news; a message is printed that is really intended for the \MP\
2340 maintenance person instead of the user (unless the user has been
2341 particularly diabolical). The index entries for `this can't happen' may
2342 help to pinpoint the problem.
2346 void mp_confusion (MP mp,char *s);
2348 @ @<Error hand...@>=
2349 void mp_confusion (MP mp,char *s) {
2350 /* consistency check violated; |s| tells where */
2351 mp_normalize_selector(mp);
2352 if ( mp->history<error_message_issued ) {
2353 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2354 @.This can't happen@>
2355 help1("I'm broken. Please show this to someone who can fix can fix");
2357 print_err("I can\'t go on meeting you like this");
2358 @.I can't go on...@>
2359 help2("One of your faux pas seems to have wounded me deeply...")
2360 ("in fact, I'm barely conscious. Please fix it and try again.");
2365 @ Users occasionally want to interrupt \MP\ while it's running.
2366 If the \PASCAL\ runtime system allows this, one can implement
2367 a routine that sets the global variable |interrupt| to some nonzero value
2368 when such an interrupt is signaled. Otherwise there is probably at least
2369 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2370 @^system dependencies@>
2373 @d check_interrupt { if ( mp->interrupt!=0 )
2374 mp_pause_for_instructions(mp); }
2377 integer interrupt; /* should \MP\ pause for instructions? */
2378 boolean OK_to_interrupt; /* should interrupts be observed? */
2380 @ @<Allocate or ...@>=
2381 mp->interrupt=0; mp->OK_to_interrupt=true;
2383 @ When an interrupt has been detected, the program goes into its
2384 highest interaction level and lets the user have the full flexibility of
2385 the |error| routine. \MP\ checks for interrupts only at times when it is
2389 void mp_pause_for_instructions (MP mp) {
2390 if ( mp->OK_to_interrupt ) {
2391 mp->interaction=mp_error_stop_mode;
2392 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2394 print_err("Interruption");
2397 ("Try to insert some instructions for me (e.g.,`I show x'),")
2398 ("unless you just want to quit by typing `X'.");
2399 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2404 @ Many of \MP's error messages state that a missing token has been
2405 inserted behind the scenes. We can save string space and program space
2406 by putting this common code into a subroutine.
2409 void mp_missing_err (MP mp, char *s) {
2410 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2411 @.Missing...inserted@>
2414 @* \[7] Arithmetic with scaled numbers.
2415 The principal computations performed by \MP\ are done entirely in terms of
2416 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2417 program can be carried out in exactly the same way on a wide variety of
2418 computers, including some small ones.
2421 But \PASCAL\ does not define the |div|
2422 operation in the case of negative dividends; for example, the result of
2423 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2424 There are two principal types of arithmetic: ``translation-preserving,''
2425 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2426 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2427 two \MP s, which can produce different results, although the differences
2428 should be negligible when the language is being used properly.
2429 The \TeX\ processor has been defined carefully so that both varieties
2430 of arithmetic will produce identical output, but it would be too
2431 inefficient to constrain \MP\ in a similar way.
2433 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2435 @ One of \MP's most common operations is the calculation of
2436 $\lfloor{a+b\over2}\rfloor$,
2437 the midpoint of two given integers |a| and~|b|. The only decent way to do
2438 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2439 far more efficient to calculate `|(a+b)| right shifted one bit'.
2441 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2442 in this program. If \MP\ is being implemented with languages that permit
2443 binary shifting, the |half| macro should be changed to make this operation
2444 as efficient as possible. Since some languages have shift operators that can
2445 only be trusted to work on positive numbers, there is also a macro |halfp|
2446 that is used only when the quantity being halved is known to be positive
2449 @d half(A) ((A)) / 2
2450 @d halfp(A) ((A)) / 2
2452 @ A single computation might use several subroutine calls, and it is
2453 desirable to avoid producing multiple error messages in case of arithmetic
2454 overflow. So the routines below set the global variable |arith_error| to |true|
2455 instead of reporting errors directly to the user.
2458 boolean arith_error; /* has arithmetic overflow occurred recently? */
2460 @ @<Allocate or ...@>=
2461 mp->arith_error=false;
2463 @ At crucial points the program will say |check_arith|, to test if
2464 an arithmetic error has been detected.
2466 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2469 void mp_clear_arith (MP mp) {
2470 print_err("Arithmetic overflow");
2471 @.Arithmetic overflow@>
2472 help4("Uh, oh. A little while ago one of the quantities that I was")
2473 ("computing got too large, so I'm afraid your answers will be")
2474 ("somewhat askew. You'll probably have to adopt different")
2475 ("tactics next time. But I shall try to carry on anyway.");
2477 mp->arith_error=false;
2480 @ Addition is not always checked to make sure that it doesn't overflow,
2481 but in places where overflow isn't too unlikely the |slow_add| routine
2484 @c integer mp_slow_add (MP mp,integer x, integer y) {
2486 if ( y<=el_gordo-x ) {
2489 mp->arith_error=true;
2492 } else if ( -y<=el_gordo+x ) {
2495 mp->arith_error=true;
2500 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2501 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2502 positions from the right end of a binary computer word.
2504 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2505 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2506 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2507 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2508 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2509 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2512 typedef integer scaled; /* this type is used for scaled integers */
2513 typedef unsigned char small_number; /* this type is self-explanatory */
2515 @ The following function is used to create a scaled integer from a given decimal
2516 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2517 given in |dig[i]|, and the calculation produces a correctly rounded result.
2520 scaled mp_round_decimals (MP mp,small_number k) {
2521 /* converts a decimal fraction */
2522 integer a = 0; /* the accumulator */
2524 a=(a+mp->dig[k]*two) / 10;
2529 @ Conversely, here is a procedure analogous to |print_int|. If the output
2530 of this procedure is subsequently read by \MP\ and converted by the
2531 |round_decimals| routine above, it turns out that the original value will
2532 be reproduced exactly. A decimal point is printed only if the value is
2533 not an integer. If there is more than one way to print the result with
2534 the optimum number of digits following the decimal point, the closest
2535 possible value is given.
2537 The invariant relation in the \&{repeat} loop is that a sequence of
2538 decimal digits yet to be printed will yield the original number if and only if
2539 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2540 We can stop if and only if $f=0$ satisfies this condition; the loop will
2541 terminate before $s$ can possibly become zero.
2543 @<Basic printing...@>=
2544 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2545 scaled delta; /* amount of allowable inaccuracy */
2547 mp_print_char(mp, '-');
2548 negate(s); /* print the sign, if negative */
2550 mp_print_int(mp, s / unity); /* print the integer part */
2554 mp_print_char(mp, '.');
2557 s=s+0100000-(delta / 2); /* round the final digit */
2558 mp_print_char(mp, '0'+(s / unity));
2565 @ We often want to print two scaled quantities in parentheses,
2566 separated by a comma.
2568 @<Basic printing...@>=
2569 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2570 mp_print_char(mp, '(');
2571 mp_print_scaled(mp, x);
2572 mp_print_char(mp, ',');
2573 mp_print_scaled(mp, y);
2574 mp_print_char(mp, ')');
2577 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2578 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2579 arithmetic with 28~significant bits of precision. A |fraction| denotes
2580 a scaled integer whose binary point is assumed to be 28 bit positions
2583 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2584 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2585 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2586 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2587 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2590 typedef integer fraction; /* this type is used for scaled fractions */
2592 @ In fact, the two sorts of scaling discussed above aren't quite
2593 sufficient; \MP\ has yet another, used internally to keep track of angles
2594 in units of $2^{-20}$ degrees.
2596 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2597 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2598 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2599 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2602 typedef integer angle; /* this type is used for scaled angles */
2604 @ The |make_fraction| routine produces the |fraction| equivalent of
2605 |p/q|, given integers |p| and~|q|; it computes the integer
2606 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2607 positive. If |p| and |q| are both of the same scaled type |t|,
2608 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2609 and it's also possible to use the subroutine ``backwards,'' using
2610 the relation |make_fraction(t,fraction)=t| between scaled types.
2612 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2613 sets |arith_error:=true|. Most of \MP's internal computations have
2614 been designed to avoid this sort of error.
2616 If this subroutine were programmed in assembly language on a typical
2617 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2618 double-precision product can often be input to a fixed-point division
2619 instruction. But when we are restricted to \PASCAL\ arithmetic it
2620 is necessary either to resort to multiple-precision maneuvering
2621 or to use a simple but slow iteration. The multiple-precision technique
2622 would be about three times faster than the code adopted here, but it
2623 would be comparatively long and tricky, involving about sixteen
2624 additional multiplications and divisions.
2626 This operation is part of \MP's ``inner loop''; indeed, it will
2627 consume nearly 10\pct! of the running time (exclusive of input and output)
2628 if the code below is left unchanged. A machine-dependent recoding
2629 will therefore make \MP\ run faster. The present implementation
2630 is highly portable, but slow; it avoids multiplication and division
2631 except in the initial stage. System wizards should be careful to
2632 replace it with a routine that is guaranteed to produce identical
2633 results in all cases.
2634 @^system dependencies@>
2636 As noted below, a few more routines should also be replaced by machine-dependent
2637 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2638 such changes aren't advisable; simplicity and robustness are
2639 preferable to trickery, unless the cost is too high.
2643 fraction mp_make_fraction (MP mp,integer p, integer q);
2644 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2646 @ If FIXPT is not defined, we need these preprocessor values
2648 @d ELGORDO 0x7fffffff
2649 @d TWEXP31 2147483648.0
2650 @d TWEXP28 268435456.0
2652 @d TWEXP_16 (1.0/65536.0)
2653 @d TWEXP_28 (1.0/268435456.0)
2657 fraction mp_make_fraction (MP mp,integer p, integer q) {
2659 integer f; /* the fraction bits, with a leading 1 bit */
2660 integer n; /* the integer part of $\vert p/q\vert$ */
2661 integer be_careful; /* disables certain compiler optimizations */
2662 boolean negative = false; /* should the result be negated? */
2664 negate(p); negative=true;
2668 if ( q==0 ) mp_confusion(mp, '/');
2670 @:this can't happen /}{\quad \./@>
2671 negate(q); negative = ! negative;
2675 mp->arith_error=true;
2676 return ( negative ? -el_gordo : el_gordo);
2678 n=(n-1)*fraction_one;
2679 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2680 return (negative ? (-(f+n)) : (f+n));
2686 if (q==0) mp_confusion(mp,'/');
2688 d = TWEXP28 * (double)p /(double)q;
2691 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2693 if (d==i && ( ((q>0 ? -q : q)&077777)
2694 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2697 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2699 if (d==i && ( ((q>0 ? q : -q)&077777)
2700 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2706 @ The |repeat| loop here preserves the following invariant relations
2707 between |f|, |p|, and~|q|:
2708 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2709 $p_0$ is the original value of~$p$.
2711 Notice that the computation specifies
2712 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2713 Let us hope that optimizing compilers do not miss this point; a
2714 special variable |be_careful| is used to emphasize the necessary
2715 order of computation. Optimizing compilers should keep |be_careful|
2716 in a register, not store it in memory.
2719 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2723 be_careful=p-q; p=be_careful+p;
2729 } while (f<fraction_one);
2731 if ( be_careful+p>=0 ) incr(f);
2734 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2735 given integer~|q| by a fraction~|f|. When the operands are positive, it
2736 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2739 This routine is even more ``inner loopy'' than |make_fraction|;
2740 the present implementation consumes almost 20\pct! of \MP's computation
2741 time during typical jobs, so a machine-language substitute is advisable.
2742 @^inner loop@> @^system dependencies@>
2745 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2749 integer mp_take_fraction (MP mp,integer q, fraction f) {
2750 integer p; /* the fraction so far */
2751 boolean negative; /* should the result be negated? */
2752 integer n; /* additional multiple of $q$ */
2753 integer be_careful; /* disables certain compiler optimizations */
2754 @<Reduce to the case that |f>=0| and |q>0|@>;
2755 if ( f<fraction_one ) {
2758 n=f / fraction_one; f=f % fraction_one;
2759 if ( q<=el_gordo / n ) {
2762 mp->arith_error=true; n=el_gordo;
2766 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2767 be_careful=n-el_gordo;
2768 if ( be_careful+p>0 ){
2769 mp->arith_error=true; n=el_gordo-p;
2776 integer mp_take_fraction (MP mp,integer p, fraction q) {
2779 d = (double)p * (double)q * TWEXP_28;
2783 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2784 mp->arith_error = true;
2788 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2792 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2793 mp->arith_error = true;
2797 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2803 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2807 negate( f); negative=true;
2810 negate(q); negative=! negative;
2813 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2814 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2815 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2818 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2819 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2820 if ( q<fraction_four ) {
2822 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2827 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2833 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2834 analogous to |take_fraction| but with a different scaling.
2835 Given positive operands, |take_scaled|
2836 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2838 Once again it is a good idea to use a machine-language replacement if
2839 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2840 when the Computer Modern fonts are being generated.
2845 integer mp_take_scaled (MP mp,integer q, scaled f) {
2846 integer p; /* the fraction so far */
2847 boolean negative; /* should the result be negated? */
2848 integer n; /* additional multiple of $q$ */
2849 integer be_careful; /* disables certain compiler optimizations */
2850 @<Reduce to the case that |f>=0| and |q>0|@>;
2854 n=f / unity; f=f % unity;
2855 if ( q<=el_gordo / n ) {
2858 mp->arith_error=true; n=el_gordo;
2862 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2863 be_careful=n-el_gordo;
2864 if ( be_careful+p>0 ) {
2865 mp->arith_error=true; n=el_gordo-p;
2867 return ( negative ?(-(n+p)) :(n+p));
2869 integer mp_take_scaled (MP mp,integer p, scaled q) {
2872 d = (double)p * (double)q * TWEXP_16;
2876 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2877 mp->arith_error = true;
2881 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2885 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2886 mp->arith_error = true;
2890 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2896 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2897 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2899 if ( q<fraction_four ) {
2901 p = (odd(f) ? halfp(p+q) : halfp(p));
2906 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2911 @ For completeness, there's also |make_scaled|, which computes a
2912 quotient as a |scaled| number instead of as a |fraction|.
2913 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2914 operands are positive. \ (This procedure is not used especially often,
2915 so it is not part of \MP's inner loop.)
2918 scaled mp_make_scaled (MP mp,integer p, integer q) {
2920 integer f; /* the fraction bits, with a leading 1 bit */
2921 integer n; /* the integer part of $\vert p/q\vert$ */
2922 boolean negative; /* should the result be negated? */
2923 integer be_careful; /* disables certain compiler optimizations */
2924 if ( p>=0 ) negative=false;
2925 else { negate(p); negative=true; };
2928 if ( q==0 ) mp_confusion(mp, "/");
2929 @:this can't happen /}{\quad \./@>
2931 negate(q); negative=! negative;
2935 mp->arith_error=true;
2936 return (negative ? (-el_gordo) : el_gordo);
2939 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2940 return ( negative ? (-(f+n)) :(f+n));
2946 if (q==0) mp_confusion(mp,"/");
2948 d = TWEXP16 * (double)p /(double)q;
2951 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2953 if (d==i && ( ((q>0 ? -q : q)&077777)
2954 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2957 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2959 if (d==i && ( ((q>0 ? q : -q)&077777)
2960 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2966 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
2969 be_careful=p-q; p=be_careful+p;
2970 if ( p>=0 ) f=f+f+1;
2971 else { f+=f; p=p+q; };
2974 if ( be_careful+p>=0 ) incr(f)
2976 @ Here is a typical example of how the routines above can be used.
2977 It computes the function
2978 $${1\over3\tau}f(\theta,\phi)=
2979 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
2980 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
2981 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
2982 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
2983 fudge factor for placing the first control point of a curve that starts
2984 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
2985 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
2987 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
2988 (It's a sum of eight terms whose absolute values can be bounded using
2989 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
2990 is positive; and since the tension $\tau$ is constrained to be at least
2991 $3\over4$, the numerator is less than $16\over3$. The denominator is
2992 nonnegative and at most~6. Hence the fixed-point calculations below
2993 are guaranteed to stay within the bounds of a 32-bit computer word.
2995 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
2996 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
2997 $\sin\phi$, and $\cos\phi$, respectively.
3000 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3001 fraction cf, scaled t) {
3002 integer acc,num,denom; /* registers for intermediate calculations */
3003 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3004 acc=mp_take_fraction(mp, acc,ct-cf);
3005 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3006 /* $2^{28}\sqrt2\approx379625062.497$ */
3007 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3008 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3009 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3010 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3011 /* |make_scaled(fraction,scaled)=fraction| */
3012 if ( num / 4>=denom )
3013 return fraction_four;
3015 return mp_make_fraction(mp, num, denom);
3018 @ The following somewhat different subroutine tests rigorously if $ab$ is
3019 greater than, equal to, or less than~$cd$,
3020 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3021 The result is $+1$, 0, or~$-1$ in the three respective cases.
3023 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3026 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3027 integer q,r; /* temporary registers */
3028 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3030 q = a / d; r = c / b;
3032 return ( q>r ? 1 : -1);
3033 q = a % d; r = c % b;
3036 if ( q==0 ) return -1;
3038 } /* now |a>d>0| and |c>b>0| */
3041 @ @<Reduce to the case that |a...@>=
3042 if ( a<0 ) { negate(a); negate(b); };
3043 if ( c<0 ) { negate(c); negate(d); };
3046 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3050 return ( a==0 ? 0 : -1);
3051 q=a; a=c; c=q; q=-b; b=-d; d=q;
3052 } else if ( b<=0 ) {
3053 if ( b<0 ) if ( a>0 ) return -1;
3054 return (c==0 ? 0 : -1);
3057 @ We conclude this set of elementary routines with some simple rounding
3058 and truncation operations that are coded in a machine-independent fashion.
3059 The routines are slightly complicated because we want them to work
3060 without overflow whenever $-2^{31}\L x<2^{31}$.
3063 #define mp_floor_scaled(M,i) ((i)&(-65536))
3064 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3065 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3068 @* \[8] Algebraic and transcendental functions.
3069 \MP\ computes all of the necessary special functions from scratch, without
3070 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3072 @ To get the square root of a |scaled| number |x|, we want to calculate
3073 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3074 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3075 determines $s$ by an iterative method that maintains the invariant
3076 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3077 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3078 might, however, be zero at the start of the first iteration.
3081 scaled mp_square_rt (MP mp,scaled x) ;
3084 scaled mp_square_rt (MP mp,scaled x) {
3085 small_number k; /* iteration control counter */
3086 integer y,q; /* registers for intermediate calculations */
3088 @<Handle square root of zero or negative argument@>;
3091 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3094 if ( x<fraction_four ) y=0;
3095 else { x=x-fraction_four; y=1; };
3097 @<Decrease |k| by 1, maintaining the invariant
3098 relations between |x|, |y|, and~|q|@>;
3104 @ @<Handle square root of zero...@>=
3107 print_err("Square root of ");
3108 @.Square root...replaced by 0@>
3109 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3110 help2("Since I don't take square roots of negative numbers,")
3111 ("I'm zeroing this one. Proceed, with fingers crossed.");
3117 @ @<Decrease |k| by 1, maintaining...@>=
3119 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3120 x=x-fraction_four; incr(y);
3122 x+=x; y=y+y-q; q+=q;
3123 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3124 if ( y>q ){ y=y-q; q=q+2; }
3125 else if ( y<=0 ) { q=q-2; y=y+q; };
3128 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3129 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3130 @^Moler, Cleve Barry@>
3131 @^Morrison, Donald Ross@>
3132 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3133 in such a way that their Pythagorean sum remains invariant, while the
3134 smaller argument decreases.
3137 integer mp_pyth_add (MP mp,integer a, integer b) {
3138 fraction r; /* register used to transform |a| and |b| */
3139 boolean big; /* is the result dangerously near $2^{31}$? */
3141 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3143 if ( a<fraction_two ) {
3146 a=a / 4; b=b / 4; big=true;
3147 }; /* we reduced the precision to avoid arithmetic overflow */
3148 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3150 if ( a<fraction_two ) {
3153 mp->arith_error=true; a=el_gordo;
3160 @ The key idea here is to reflect the vector $(a,b)$ about the
3161 line through $(a,b/2)$.
3163 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3165 r=mp_make_fraction(mp, b,a);
3166 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3168 r=mp_make_fraction(mp, r,fraction_four+r);
3169 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3173 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3174 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3177 integer mp_pyth_sub (MP mp,integer a, integer b) {
3178 fraction r; /* register used to transform |a| and |b| */
3179 boolean big; /* is the input dangerously near $2^{31}$? */
3182 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3184 if ( a<fraction_four ) {
3187 a=halfp(a); b=halfp(b); big=true;
3189 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3195 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3197 r=mp_make_fraction(mp, b,a);
3198 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3200 r=mp_make_fraction(mp, r,fraction_four-r);
3201 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3204 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3207 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3208 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3209 mp_print(mp, " has been replaced by 0");
3211 help2("Since I don't take square roots of negative numbers,")
3212 ("I'm zeroing this one. Proceed, with fingers crossed.");
3218 @ The subroutines for logarithm and exponential involve two tables.
3219 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3220 a bit more calculation, which the author claims to have done correctly:
3221 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3222 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3225 @d two_to_the(A) (1<<(A))
3228 static const integer spec_log[29] = { 0, /* special logarithms */
3229 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3230 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3231 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3233 @ @<Local variables for initialization@>=
3234 integer k; /* all-purpose loop index */
3237 @ Here is the routine that calculates $2^8$ times the natural logarithm
3238 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3239 when |x| is a given positive integer.
3241 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3242 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3243 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3244 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3245 during the calculation, and sixteen auxiliary bits to extend |y| are
3246 kept in~|z| during the initial argument reduction. (We add
3247 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3248 not become negative; also, the actual amount subtracted from~|y| is~96,
3249 not~100, because we want to add~4 for rounding before the final division by~8.)
3252 scaled mp_m_log (MP mp,scaled x) {
3253 integer y,z; /* auxiliary registers */
3254 integer k; /* iteration counter */
3256 @<Handle non-positive logarithm@>;
3258 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3259 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3260 while ( x<fraction_four ) {
3261 x+=x; y=y-93032639; z=z-48782;
3262 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3263 y=y+(z / unity); k=2;
3264 while ( x>fraction_four+4 ) {
3265 @<Increase |k| until |x| can be multiplied by a
3266 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3272 @ @<Increase |k| until |x| can...@>=
3274 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3275 while ( x<fraction_four+z ) { z=halfp(z+1); k=k+1; };
3276 y=y+spec_log[k]; x=x-z;
3279 @ @<Handle non-positive logarithm@>=
3281 print_err("Logarithm of ");
3282 @.Logarithm...replaced by 0@>
3283 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3284 help2("Since I don't take logs of non-positive numbers,")
3285 ("I'm zeroing this one. Proceed, with fingers crossed.");
3290 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3291 when |x| is |scaled|. The result is an integer approximation to
3292 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3295 scaled mp_m_exp (MP mp,scaled x) {
3296 small_number k; /* loop control index */
3297 integer y,z; /* auxiliary registers */
3298 if ( x>174436200 ) {
3299 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3300 mp->arith_error=true;
3302 } else if ( x<-197694359 ) {
3303 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3307 z=-8*x; y=04000000; /* $y=2^{20}$ */
3309 if ( x<=127919879 ) {
3311 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3313 z=8*(174436200-x); /* |z| is always nonnegative */
3317 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3319 return ((y+8) / 16);
3325 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3326 to multiplying |y| by $1-2^{-k}$.
3328 A subtle point (which had to be checked) was that if $x=127919879$, the
3329 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3330 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3331 and by~16 when |k=27|.
3333 @<Multiply |y| by...@>=
3336 while ( z>=spec_log[k] ) {
3338 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3343 @ The trigonometric subroutines use an auxiliary table such that
3344 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3345 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3348 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3349 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3350 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3352 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3353 returns the |angle| whose tangent points in the direction $(x,y)$.
3354 This subroutine first determines the correct octant, then solves the
3355 problem for |0<=y<=x|, then converts the result appropriately to
3356 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3357 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3358 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3360 The octants are represented in a ``Gray code,'' since that turns out
3361 to be computationally simplest.
3367 @d second_octant (first_octant+switch_x_and_y)
3368 @d third_octant (first_octant+switch_x_and_y+negate_x)
3369 @d fourth_octant (first_octant+negate_x)
3370 @d fifth_octant (first_octant+negate_x+negate_y)
3371 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3372 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3373 @d eighth_octant (first_octant+negate_y)
3376 angle mp_n_arg (MP mp,integer x, integer y) {
3377 angle z; /* auxiliary register */
3378 integer t; /* temporary storage */
3379 small_number k; /* loop counter */
3380 int octant; /* octant code */
3382 octant=first_octant;
3384 negate(x); octant=first_octant+negate_x;
3387 negate(y); octant=octant+negate_y;
3390 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3393 @<Handle undefined arg@>;
3395 @<Set variable |z| to the arg of $(x,y)$@>;
3396 @<Return an appropriate answer based on |z| and |octant|@>;
3400 @ @<Handle undefined arg@>=
3402 print_err("angle(0,0) is taken as zero");
3403 @.angle(0,0)...zero@>
3404 help2("The `angle' between two identical points is undefined.")
3405 ("I'm zeroing this one. Proceed, with fingers crossed.");
3410 @ @<Return an appropriate answer...@>=
3412 case first_octant: return z;
3413 case second_octant: return (ninety_deg-z);
3414 case third_octant: return (ninety_deg+z);
3415 case fourth_octant: return (one_eighty_deg-z);
3416 case fifth_octant: return (z-one_eighty_deg);
3417 case sixth_octant: return (-z-ninety_deg);
3418 case seventh_octant: return (z-ninety_deg);
3419 case eighth_octant: return (-z);
3420 }; /* there are no other cases */
3423 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3424 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3427 @<Set variable |z| to the arg...@>=
3428 while ( x>=fraction_two ) {
3429 x=halfp(x); y=halfp(y);
3433 while ( x<fraction_one ) {
3436 @<Increase |z| to the arg of $(x,y)$@>;
3439 @ During the calculations of this section, variables |x| and~|y|
3440 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3441 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3442 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3443 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3444 coordinates whose angle has decreased by~$\phi$; in the special case
3445 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3446 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3447 @^Meggitt, John E.@>
3448 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3450 The initial value of |x| will be multiplied by at most
3451 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3452 there is no chance of integer overflow.
3454 @<Increase |z|...@>=
3459 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3464 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3467 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3468 and cosine of that angle. The results of this routine are
3469 stored in global integer variables |n_sin| and |n_cos|.
3472 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3474 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3475 the purpose of |n_sin_cos(z)| is to set
3476 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3477 for some rather large number~|r|. The maximum of |x| and |y|
3478 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3479 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3482 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3484 small_number k; /* loop control variable */
3485 int q; /* specifies the quadrant */
3486 fraction r; /* magnitude of |(x,y)| */
3487 integer x,y,t; /* temporary registers */
3488 while ( z<0 ) z=z+three_sixty_deg;
3489 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3490 q=z / forty_five_deg; z=z % forty_five_deg;
3491 x=fraction_one; y=x;
3492 if ( ! odd(q) ) z=forty_five_deg-z;
3493 @<Subtract angle |z| from |(x,y)|@>;
3494 @<Convert |(x,y)| to the octant determined by~|q|@>;
3495 r=mp_pyth_add(mp, x,y);
3496 mp->n_cos=mp_make_fraction(mp, x,r);
3497 mp->n_sin=mp_make_fraction(mp, y,r);
3500 @ In this case the octants are numbered sequentially.
3502 @<Convert |(x,...@>=
3505 case 1: t=x; x=y; y=t; break;
3506 case 2: t=x; x=-y; y=t; break;
3507 case 3: negate(x); break;
3508 case 4: negate(x); negate(y); break;
3509 case 5: t=x; x=-y; y=-t; break;
3510 case 6: t=x; x=y; y=-t; break;
3511 case 7: negate(y); break;
3512 } /* there are no other cases */
3514 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3515 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3516 that this loop is guaranteed to terminate before the (nonexistent) value
3517 |spec_atan[27]| would be required.
3519 @<Subtract angle |z|...@>=
3522 if ( z>=spec_atan[k] ) {
3523 z=z-spec_atan[k]; t=x;
3524 x=t+y / two_to_the(k);
3525 y=y-t / two_to_the(k);
3529 if ( y<0 ) y=0 /* this precaution may never be needed */
3531 @ And now let's complete our collection of numeric utility routines
3532 by considering random number generation.
3533 \MP\ generates pseudo-random numbers with the additive scheme recommended
3534 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3535 results are random fractions between 0 and |fraction_one-1|, inclusive.
3537 There's an auxiliary array |randoms| that contains 55 pseudo-random
3538 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3539 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3540 The global variable |j_random| tells which element has most recently
3542 The global variable |sys_random_seed| was introduced in version 0.9,
3543 for the sole reason of stressing the fact that the initial value of the
3544 random seed is system-dependant. The pascal code below will initialize
3545 this variable to |(internal[time] div unity)+internal[day]|, but this is
3546 not good enough on modern fast machines that are capable of running
3547 multiple MetaPost processes within the same second.
3548 @^system dependencies@>
3551 fraction randoms[55]; /* the last 55 random values generated */
3552 int j_random; /* the number of unused |randoms| */
3553 scaled sys_random_seed; /* the default random seed */
3556 typedef scaled (*get_random_seed_command)(MP mp);
3559 get_random_seed_command get_random_seed;
3561 @ @<Option variables@>=
3562 get_random_seed_command get_random_seed;
3564 @ @<Allocate or initialize ...@>=
3565 set_callback_option(get_random_seed);
3567 @ @<Exported function headers@>=
3568 scaled mp_get_random_seed (MP mp);
3571 scaled mp_get_random_seed (MP mp) {
3572 return (mp->internal[mp_time] / unity)+mp->internal[day];
3575 @ To consume a random fraction, the program below will say `|next_random|'
3576 and then it will fetch |randoms[j_random]|.
3578 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3579 else decr(mp->j_random); }
3582 void mp_new_randoms (MP mp) {
3583 int k; /* index into |randoms| */
3584 fraction x; /* accumulator */
3585 for (k=0;k<=23;k++) {
3586 x=mp->randoms[k]-mp->randoms[k+31];
3587 if ( x<0 ) x=x+fraction_one;
3590 for (k=24;k<= 54;k++){
3591 x=mp->randoms[k]-mp->randoms[k-24];
3592 if ( x<0 ) x=x+fraction_one;
3599 void mp_init_randoms (MP mp,scaled seed);
3601 @ To initialize the |randoms| table, we call the following routine.
3604 void mp_init_randoms (MP mp,scaled seed) {
3605 fraction j,jj,k; /* more or less random integers */
3606 int i; /* index into |randoms| */
3608 while ( j>=fraction_one ) j=halfp(j);
3610 for (i=0;i<=54;i++ ){
3612 if ( k<0 ) k=k+fraction_one;
3613 mp->randoms[(i*21)% 55]=j;
3617 mp_new_randoms(mp); /* ``warm up'' the array */
3620 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3621 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3623 Note that the call of |take_fraction| will produce the values 0 and~|x|
3624 with about half the probability that it will produce any other particular
3625 values between 0 and~|x|, because it rounds its answers.
3628 scaled mp_unif_rand (MP mp,scaled x) {
3629 scaled y; /* trial value */
3630 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3631 if ( y==abs(x) ) return 0;
3632 else if ( x>0 ) return y;
3636 @ Finally, a normal deviate with mean zero and unit standard deviation
3637 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3638 {\sl The Art of Computer Programming\/}).
3641 scaled mp_norm_rand (MP mp) {
3642 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3646 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3647 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3648 next_random; u=mp->randoms[mp->j_random];
3649 } while (abs(x)>=u);
3650 x=mp_make_fraction(mp, x,u);
3651 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3652 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3656 @* \[9] Packed data.
3657 In order to make efficient use of storage space, \MP\ bases its major data
3658 structures on a |memory_word|, which contains either a (signed) integer,
3659 possibly scaled, or a small number of fields that are one half or one
3660 quarter of the size used for storing integers.
3662 If |x| is a variable of type |memory_word|, it contains up to four
3663 fields that can be referred to as follows:
3664 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3665 |x|&.|int|&(an |integer|)\cr
3666 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3667 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3668 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3670 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3671 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3672 This is somewhat cumbersome to write, and not very readable either, but
3673 macros will be used to make the notation shorter and more transparent.
3674 The code below gives a formal definition of |memory_word| and
3675 its subsidiary types, using packed variant records. \MP\ makes no
3676 assumptions about the relative positions of the fields within a word.
3678 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3679 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3681 @ Here are the inequalities that the quarterword and halfword values
3682 must satisfy (or rather, the inequalities that they mustn't satisfy):
3684 @<Check the ``constant''...@>=
3685 if (mp->ini_version) {
3686 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3688 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3690 if ( max_quarterword<255 ) mp->bad=9;
3691 if ( max_halfword<65535 ) mp->bad=10;
3692 if ( max_quarterword>max_halfword ) mp->bad=11;
3693 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3694 if ( mp->max_strings>max_halfword ) mp->bad=13;
3696 @ The macros |qi| and |qo| are used for input to and output
3697 from quarterwords. These are legacy macros.
3698 @^system dependencies@>
3700 @d qo(A) (A) /* to read eight bits from a quarterword */
3701 @d qi(A) (A) /* to store eight bits in a quarterword */
3703 @ The reader should study the following definitions closely:
3704 @^system dependencies@>
3706 @d sc cint /* |scaled| data is equivalent to |integer| */
3709 typedef short quarterword; /* 1/4 of a word */
3710 typedef int halfword; /* 1/2 of a word */
3715 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3722 quarterword B2, B3, B0, B1;
3737 @ When debugging, we may want to print a |memory_word| without knowing
3738 what type it is; so we print it in all modes.
3739 @^dirty \PASCAL@>@^debugging@>
3742 void mp_print_word (MP mp,memory_word w) {
3743 /* prints |w| in all ways */
3744 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3745 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3746 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3747 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3748 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3749 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3750 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3751 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3752 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3753 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3754 mp_print_int(mp, w.qqqq.b3);
3758 @* \[10] Dynamic memory allocation.
3760 The \MP\ system does nearly all of its own memory allocation, so that it
3761 can readily be transported into environments that do not have automatic
3762 facilities for strings, garbage collection, etc., and so that it can be in
3763 control of what error messages the user receives. The dynamic storage
3764 requirements of \MP\ are handled by providing a large array |mem| in
3765 which consecutive blocks of words are used as nodes by the \MP\ routines.
3767 Pointer variables are indices into this array, or into another array
3768 called |eqtb| that will be explained later. A pointer variable might
3769 also be a special flag that lies outside the bounds of |mem|, so we
3770 allow pointers to assume any |halfword| value. The minimum memory
3771 index represents a null pointer.
3773 @d null 0 /* the null pointer */
3776 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3778 @ The |mem| array is divided into two regions that are allocated separately,
3779 but the dividing line between these two regions is not fixed; they grow
3780 together until finding their ``natural'' size in a particular job.
3781 Locations less than or equal to |lo_mem_max| are used for storing
3782 variable-length records consisting of two or more words each. This region
3783 is maintained using an algorithm similar to the one described in exercise
3784 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3785 appears in the allocated nodes; the program is responsible for knowing the
3786 relevant size when a node is freed. Locations greater than or equal to
3787 |hi_mem_min| are used for storing one-word records; a conventional
3788 \.{AVAIL} stack is used for allocation in this region.
3790 Locations of |mem| between |0| and |mem_top| may be dumped as part
3791 of preloaded format files, by the \.{INIMP} preprocessor.
3793 Production versions of \MP\ may extend the memory at the top end in order to
3794 provide more space; these locations, between |mem_top| and |mem_max|,
3795 are always used for single-word nodes.
3797 The key pointers that govern |mem| allocation have a prescribed order:
3798 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3801 memory_word *mem; /* the big dynamic storage area */
3802 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3803 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3808 @d xrealloc mp_xrealloc
3809 @d xmalloc mp_xmalloc
3810 @d xstrdup mp_xstrdup
3811 @d XREALLOC(a,b,c) a = xrealloc(a,b,sizeof(c));
3813 @<Declare helpers@>=
3814 void mp_xfree (void *x);
3815 void *mp_xrealloc (void *p, size_t nmem, size_t size) ;
3816 void *mp_xmalloc (size_t nmem, size_t size) ;
3817 char *mp_xstrdup(const char *s);
3819 @ The |max_size_test| guards against overflow, on the assumption that
3820 |size_t| is at least 31bits wide.
3822 @d max_size_test 0x7FFFFFFF
3825 void mp_xfree (void *x) {
3826 if (x!=NULL) free(x);
3828 void *mp_xrealloc (void *p, size_t nmem, size_t size) {
3830 if ((max_size_test/size)<nmem) {
3831 fprintf(stderr,"Memory size overflow!\n");
3834 w = realloc (p,(nmem*size));
3836 fprintf(stderr,"Out of memory!\n");
3841 void *mp_xmalloc (size_t nmem, size_t size) {
3843 if ((max_size_test/size)<nmem) {
3844 fprintf(stderr,"Memory size overflow!\n");
3847 w = malloc (nmem*size);
3849 fprintf(stderr,"Out of memory!\n");
3854 char *mp_xstrdup(const char *s) {
3860 fprintf(stderr,"Out of memory!\n");
3868 @<Allocate or initialize ...@>=
3869 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3871 @ @<Dealloc variables@>=
3874 @ Users who wish to study the memory requirements of particular applications can
3875 can use optional special features that keep track of current and
3876 maximum memory usage. When code between the delimiters |stat| $\ldots$
3877 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3878 report these statistics when |tracing_stats| is positive.
3881 integer var_used; integer dyn_used; /* how much memory is in use */
3883 @ Let's consider the one-word memory region first, since it's the
3884 simplest. The pointer variable |mem_end| holds the highest-numbered location
3885 of |mem| that has ever been used. The free locations of |mem| that
3886 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3887 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3888 and |rh| fields of |mem[p]| when it is of this type. The single-word
3889 free locations form a linked list
3890 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3891 terminated by |null|.
3893 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3894 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3897 pointer avail; /* head of the list of available one-word nodes */
3898 pointer mem_end; /* the last one-word node used in |mem| */
3900 @ If one-word memory is exhausted, it might mean that the user has forgotten
3901 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3902 later that try to help pinpoint the trouble.
3905 @<Declare the procedure called |show_token_list|@>;
3906 @<Declare the procedure called |runaway|@>
3908 @ The function |get_avail| returns a pointer to a new one-word node whose
3909 |link| field is null. However, \MP\ will halt if there is no more room left.
3913 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3914 pointer p; /* the new node being got */
3915 p=mp->avail; /* get top location in the |avail| stack */
3917 mp->avail=link(mp->avail); /* and pop it off */
3918 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3919 incr(mp->mem_end); p=mp->mem_end;
3921 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3922 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3923 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3924 mp_overflow(mp, "main memory size",mp->mem_max);
3925 /* quit; all one-word nodes are busy */
3926 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3929 link(p)=null; /* provide an oft-desired initialization of the new node */
3930 incr(mp->dyn_used);/* maintain statistics */
3934 @ Conversely, a one-word node is recycled by calling |free_avail|.
3936 @d free_avail(A) /* single-word node liberation */
3937 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3939 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3940 overhead at the expense of extra programming. This macro is used in
3941 the places that would otherwise account for the most calls of |get_avail|.
3944 @d fast_get_avail(A) {
3945 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3946 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3947 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3950 @ The available-space list that keeps track of the variable-size portion
3951 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3952 pointed to by the roving pointer |rover|.
3954 Each empty node has size 2 or more; the first word contains the special
3955 value |max_halfword| in its |link| field and the size in its |info| field;
3956 the second word contains the two pointers for double linking.
3958 Each nonempty node also has size 2 or more. Its first word is of type
3959 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3960 Otherwise there is complete flexibility with respect to the contents
3961 of its other fields and its other words.
3963 (We require |mem_max<max_halfword| because terrible things can happen
3964 when |max_halfword| appears in the |link| field of a nonempty node.)
3966 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
3967 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
3968 @d node_size info /* the size field in empty variable-size nodes */
3969 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
3970 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
3973 pointer rover; /* points to some node in the list of empties */
3975 @ A call to |get_node| with argument |s| returns a pointer to a new node
3976 of size~|s|, which must be 2~or more. The |link| field of the first word
3977 of this new node is set to null. An overflow stop occurs if no suitable
3980 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
3981 areas and returns the value |max_halfword|.
3984 pointer mp_get_node (MP mp,integer s) ;
3987 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
3988 pointer p; /* the node currently under inspection */
3989 pointer q; /* the node physically after node |p| */
3990 integer r; /* the newly allocated node, or a candidate for this honor */
3991 integer t,tt; /* temporary registers */
3994 p=mp->rover; /* start at some free node in the ring */
3996 @<Try to allocate within node |p| and its physical successors,
3997 and |goto found| if allocation was possible@>;
3998 p=rlink(p); /* move to the next node in the ring */
3999 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4000 if ( s==010000000000 ) {
4001 return max_halfword;
4003 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4004 if ( mp->lo_mem_max+2<=max_halfword ) {
4005 @<Grow more variable-size memory and |goto restart|@>;
4008 mp_overflow(mp, "main memory size",mp->mem_max);
4009 /* sorry, nothing satisfactory is left */
4010 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4012 link(r)=null; /* this node is now nonempty */
4013 mp->var_used=mp->var_used+s; /* maintain usage statistics */
4017 @ The lower part of |mem| grows by 1000 words at a time, unless
4018 we are very close to going under. When it grows, we simply link
4019 a new node into the available-space list. This method of controlled
4020 growth helps to keep the |mem| usage consecutive when \MP\ is
4021 implemented on ``virtual memory'' systems.
4024 @<Grow more variable-size memory and |goto restart|@>=
4026 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4027 t=mp->lo_mem_max+1000;
4029 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4030 /* |lo_mem_max+2<=t<hi_mem_min| */
4032 if ( t>max_halfword ) t=max_halfword;
4033 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4034 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag; node_size(q)=t-mp->lo_mem_max;
4035 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4040 @ @<Try to allocate...@>=
4041 q=p+node_size(p); /* find the physical successor */
4042 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4043 t=rlink(q); tt=llink(q);
4045 if ( q==mp->rover ) mp->rover=t;
4046 llink(t)=tt; rlink(tt)=t;
4051 @<Allocate from the top of node |p| and |goto found|@>;
4054 if ( rlink(p)!=p ) {
4055 @<Allocate entire node |p| and |goto found|@>;
4058 node_size(p)=q-p /* reset the size in case it grew */
4060 @ @<Allocate from the top...@>=
4062 node_size(p)=r-p; /* store the remaining size */
4063 mp->rover=p; /* start searching here next time */
4067 @ Here we delete node |p| from the ring, and let |rover| rove around.
4069 @<Allocate entire...@>=
4071 mp->rover=rlink(p); t=llink(p);
4072 llink(mp->rover)=t; rlink(t)=mp->rover;
4076 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4077 the operation |free_node(p,s)| will make its words available, by inserting
4078 |p| as a new empty node just before where |rover| now points.
4081 void mp_free_node (MP mp, pointer p, halfword s) ;
4084 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4086 pointer q; /* |llink(rover)| */
4087 node_size(p)=s; link(p)=empty_flag;
4089 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4090 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4091 mp->var_used=mp->var_used-s; /* maintain statistics */
4094 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4095 available space list. The list is probably very short at such times, so a
4096 simple insertion sort is used. The smallest available location will be
4097 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4100 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4102 pointer p,q,r; /* indices into |mem| */
4103 pointer old_rover; /* initial |rover| setting */
4104 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4105 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4106 while ( p!=old_rover ) {
4107 @<Sort |p| into the list starting at |rover|
4108 and advance |p| to |rlink(p)|@>;
4111 while ( rlink(p)!=max_halfword ) {
4112 llink(rlink(p))=p; p=rlink(p);
4114 rlink(p)=mp->rover; llink(mp->rover)=p;
4117 @ The following |while| loop is guaranteed to
4118 terminate, since the list that starts at
4119 |rover| ends with |max_halfword| during the sorting procedure.
4122 if ( p<mp->rover ) {
4123 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4126 while ( rlink(q)<p ) q=rlink(q);
4127 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4130 @* \[11] Memory layout.
4131 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4132 more efficient than dynamic allocation when we can get away with it. For
4133 example, locations |0| to |1| are always used to store a
4134 two-word dummy token whose second word is zero.
4135 The following macro definitions accomplish the static allocation by giving
4136 symbolic names to the fixed positions. Static variable-size nodes appear
4137 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4138 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4140 @d null_dash (2) /* the first two words are reserved for a null value */
4141 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4142 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4143 @d temp_val (zero_val+2) /* two words for a temporary value node */
4144 @d end_attr temp_val /* we use |end_attr+2| only */
4145 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4146 @d test_pen (inf_val+2)
4147 /* nine words for a pen used when testing the turning number */
4148 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4149 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4150 allocated word in the variable-size |mem| */
4152 @d sentinel mp->mem_top /* end of sorted lists */
4153 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4154 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4155 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4156 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4157 the one-word |mem| */
4159 @ The following code gets the dynamic part of |mem| off to a good start,
4160 when \MP\ is initializing itself the slow way.
4162 @<Initialize table entries (done by \.{INIMP} only)@>=
4163 @^data structure assumptions@>
4164 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4165 link(mp->rover)=empty_flag;
4166 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4167 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4168 mp->lo_mem_max=mp->rover+1000; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4169 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4170 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4172 mp->avail=null; mp->mem_end=mp->mem_top;
4173 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4174 mp->var_used=lo_mem_stat_max+1;
4175 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4176 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4178 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4179 nodes that starts at a given position, until coming to |sentinel| or a
4180 pointer that is not in the one-word region. Another procedure,
4181 |flush_node_list|, frees an entire linked list of one-word and two-word
4182 nodes, until coming to a |null| pointer.
4186 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4187 pointer q,r; /* list traversers */
4188 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4193 if ( r<mp->hi_mem_min ) break;
4194 } while (r!=sentinel);
4195 /* now |q| is the last node on the list */
4196 link(q)=mp->avail; mp->avail=p;
4200 void mp_flush_node_list (MP mp,pointer p) {
4201 pointer q; /* the node being recycled */
4204 if ( q<mp->hi_mem_min )
4205 mp_free_node(mp, q,2);
4211 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4212 For example, some pointers might be wrong, or some ``dead'' nodes might not
4213 have been freed when the last reference to them disappeared. Procedures
4214 |check_mem| and |search_mem| are available to help diagnose such
4215 problems. These procedures make use of two arrays called |free| and
4216 |was_free| that are present only if \MP's debugging routines have
4217 been included. (You may want to decrease the size of |mem| while you
4221 Because |boolean|s are typedef-d as ints, it is better to use
4222 unsigned chars here.
4225 unsigned char *free; /* free cells */
4226 unsigned char *was_free; /* previously free cells */
4227 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4228 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4229 boolean panicking; /* do we want to check memory constantly? */
4231 @ @<Allocate or initialize ...@>=
4232 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4233 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4235 @ @<Dealloc variables@>=
4237 xfree(mp->was_free);
4239 @ @<Allocate or ...@>=
4240 mp->was_mem_end=0; /* indicate that everything was previously free */
4241 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4242 mp->panicking=false;
4244 @ @<Declare |mp_reallocate| functions@>=
4245 void mp_reallocate_memory(MP mp, int l) ;
4248 void mp_reallocate_memory(MP mp, int l) {
4249 XREALLOC(mp->free, (l+1), unsigned char);
4250 XREALLOC(mp->was_free, (l+1), unsigned char);
4251 XREALLOC(mp->mem, (l+1), memory_word);
4253 if (mp->ini_version)
4259 @ Procedure |check_mem| makes sure that the available space lists of
4260 |mem| are well formed, and it optionally prints out all locations
4261 that are reserved now but were free the last time this procedure was called.
4264 void mp_check_mem (MP mp,boolean print_locs ) {
4265 pointer p,q,r; /* current locations of interest in |mem| */
4266 boolean clobbered; /* is something amiss? */
4267 for (p=0;p<=mp->lo_mem_max;p++) {
4268 mp->free[p]=false; /* you can probably do this faster */
4270 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4271 mp->free[p]=false; /* ditto */
4273 @<Check single-word |avail| list@>;
4274 @<Check variable-size |avail| list@>;
4275 @<Check flags of unavailable nodes@>;
4276 @<Check the list of linear dependencies@>;
4278 @<Print newly busy locations@>;
4280 for (p=0;p<=mp->lo_mem_max;p++) {
4281 mp->was_free[p]=mp->free[p];
4283 for (p=mp->hi_mem_min;p<=mp->mem_end;p++) {
4284 mp->was_free[p]=mp->free[p];
4286 /* |was_free:=free| might be faster */
4287 mp->was_mem_end=mp->mem_end;
4288 mp->was_lo_max=mp->lo_mem_max;
4289 mp->was_hi_min=mp->hi_mem_min;
4292 @ @<Check single-word...@>=
4293 p=mp->avail; q=null; clobbered=false;
4295 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4296 else if ( mp->free[p] ) clobbered=true;
4298 mp_print_nl(mp, "AVAIL list clobbered at ");
4299 @.AVAIL list clobbered...@>
4300 mp_print_int(mp, q); break;
4302 mp->free[p]=true; q=p; p=link(q);
4305 @ @<Check variable-size...@>=
4306 p=mp->rover; q=null; clobbered=false;
4308 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4309 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4310 else if ( !(is_empty(p))||(node_size(p)<2)||
4311 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4313 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4314 @.Double-AVAIL list clobbered...@>
4315 mp_print_int(mp, q); break;
4317 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4318 if ( mp->free[q] ) {
4319 mp_print_nl(mp, "Doubly free location at ");
4320 @.Doubly free location...@>
4321 mp_print_int(mp, q); break;
4326 } while (p!=mp->rover)
4329 @ @<Check flags...@>=
4331 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4332 if ( is_empty(p) ) {
4333 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4336 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4337 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4340 @ @<Print newly busy...@>=
4342 @<Do intialization required before printing new busy locations@>;
4343 mp_print_nl(mp, "New busy locs:");
4345 for (p=0;p<= mp->lo_mem_max;p++ ) {
4346 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4347 @<Indicate that |p| is a new busy location@>;
4350 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4351 if ( ! mp->free[p] &&
4352 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4353 @<Indicate that |p| is a new busy location@>;
4356 @<Finish printing new busy locations@>;
4359 @ There might be many new busy locations so we are careful to print contiguous
4360 blocks compactly. During this operation |q| is the last new busy location and
4361 |r| is the start of the block containing |q|.
4363 @<Indicate that |p| is a new busy location@>=
4367 mp_print(mp, ".."); mp_print_int(mp, q);
4369 mp_print_char(mp, ' '); mp_print_int(mp, p);
4375 @ @<Do intialization required before printing new busy locations@>=
4376 q=mp->mem_max; r=mp->mem_max
4378 @ @<Finish printing new busy locations@>=
4380 mp_print(mp, ".."); mp_print_int(mp, q);
4383 @ The |search_mem| procedure attempts to answer the question ``Who points
4384 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4385 that might not be of type |two_halves|. Strictly speaking, this is
4387 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4388 point to |p| purely by coincidence). But for debugging purposes, we want
4389 to rule out the places that do {\sl not\/} point to |p|, so a few false
4390 drops are tolerable.
4393 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4394 integer q; /* current position being searched */
4395 for (q=0;q<=mp->lo_mem_max;q++) {
4397 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4400 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4403 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4405 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4408 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4411 @<Search |eqtb| for equivalents equal to |p|@>;
4414 @* \[12] The command codes.
4415 Before we can go much further, we need to define symbolic names for the internal
4416 code numbers that represent the various commands obeyed by \MP. These codes
4417 are somewhat arbitrary, but not completely so. For example,
4418 some codes have been made adjacent so that |case| statements in the
4419 program need not consider cases that are widely spaced, or so that |case|
4420 statements can be replaced by |if| statements. A command can begin an
4421 expression if and only if its code lies between |min_primary_command| and
4422 |max_primary_command|, inclusive. The first token of a statement that doesn't
4423 begin with an expression has a command code between |min_command| and
4424 |max_statement_command|, inclusive. Anything less than |min_command| is
4425 eliminated during macro expansions, and anything no more than |max_pre_command|
4426 is eliminated when expanding \TeX\ material. Ranges such as
4427 |min_secondary_command..max_secondary_command| are used when parsing
4428 expressions, but the relative ordering within such a range is generally not
4431 The ordering of the highest-numbered commands
4432 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4433 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4434 for the smallest two commands. The ordering is also important in the ranges
4435 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4437 At any rate, here is the list, for future reference.
4439 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4440 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4441 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4442 @d max_pre_command mpx_break
4443 @d if_test 4 /* conditional text (\&{if}) */
4444 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4445 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4446 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4447 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4448 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4449 @d relax 10 /* do nothing (\.{\char`\\}) */
4450 @d scan_tokens 11 /* put a string into the input buffer */
4451 @d expand_after 12 /* look ahead one token */
4452 @d defined_macro 13 /* a macro defined by the user */
4453 @d min_command (defined_macro+1)
4454 @d save_command 14 /* save a list of tokens (\&{save}) */
4455 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4456 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4457 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4458 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4459 @d ship_out_command 19 /* output a character (\&{shipout}) */
4460 @d add_to_command 20 /* add to edges (\&{addto}) */
4461 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4462 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4463 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4464 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4465 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4466 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4467 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4468 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4469 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4470 @d special_command 30 /* output special info (\&{special})
4471 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4472 @d write_command 31 /* write text to a file (\&{write}) */
4473 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4474 @d max_statement_command type_name
4475 @d min_primary_command type_name
4476 @d left_delimiter 33 /* the left delimiter of a matching pair */
4477 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4478 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4479 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4480 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4481 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4482 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4483 @d capsule_token 40 /* a value that has been put into a token list */
4484 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4485 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4486 @d min_suffix_token internal_quantity
4487 @d tag_token 43 /* a symbolic token without a primitive meaning */
4488 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4489 @d max_suffix_token numeric_token
4490 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4491 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4492 @d min_tertiary_command plus_or_minus
4493 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4494 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4495 @d max_tertiary_command tertiary_binary
4496 @d left_brace 48 /* the operator `\.{\char`\{}' */
4497 @d min_expression_command left_brace
4498 @d path_join 49 /* the operator `\.{..}' */
4499 @d ampersand 50 /* the operator `\.\&' */
4500 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4501 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4502 @d equals 53 /* the operator `\.=' */
4503 @d max_expression_command equals
4504 @d and_command 54 /* the operator `\&{and}' */
4505 @d min_secondary_command and_command
4506 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4507 @d slash 56 /* the operator `\./' */
4508 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4509 @d max_secondary_command secondary_binary
4510 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4511 @d controls 59 /* specify control points explicitly (\&{controls}) */
4512 @d tension 60 /* specify tension between knots (\&{tension}) */
4513 @d at_least 61 /* bounded tension value (\&{atleast}) */
4514 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4515 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4516 @d right_delimiter 64 /* the right delimiter of a matching pair */
4517 @d left_bracket 65 /* the operator `\.[' */
4518 @d right_bracket 66 /* the operator `\.]' */
4519 @d right_brace 67 /* the operator `\.{\char`\}}' */
4520 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4522 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4523 @d of_token 70 /* the operator `\&{of}' */
4524 @d to_token 71 /* the operator `\&{to}' */
4525 @d step_token 72 /* the operator `\&{step}' */
4526 @d until_token 73 /* the operator `\&{until}' */
4527 @d within_token 74 /* the operator `\&{within}' */
4528 @d lig_kern_token 75
4529 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4530 @d assignment 76 /* the operator `\.{:=}' */
4531 @d skip_to 77 /* the operation `\&{skipto}' */
4532 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4533 @d double_colon 79 /* the operator `\.{::}' */
4534 @d colon 80 /* the operator `\.:' */
4536 @d comma 81 /* the operator `\.,', must be |colon+1| */
4537 @d end_of_statement (mp->cur_cmd>comma)
4538 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4539 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4540 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4541 @d max_command_code stop
4542 @d outer_tag (max_command_code+1) /* protection code added to command code */
4545 typedef int command_code;
4547 @ Variables and capsules in \MP\ have a variety of ``types,''
4548 distinguished by the code numbers defined here. These numbers are also
4549 not completely arbitrary. Things that get expanded must have types
4550 |>mp_independent|; a type remaining after expansion is numeric if and only if
4551 its code number is at least |numeric_type|; objects containing numeric
4552 parts must have types between |transform_type| and |pair_type|;
4553 all other types must be smaller than |transform_type|; and among the types
4554 that are not unknown or vacuous, the smallest two must be |boolean_type|
4555 and |string_type| in that order.
4557 @d undefined 0 /* no type has been declared */
4558 @d unknown_tag 1 /* this constant is added to certain type codes below */
4559 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4560 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4564 mp_vacuous=1, /* no expression was present */
4565 mp_boolean_type, /* \&{boolean} with a known value */
4567 mp_string_type, /* \&{string} with a known value */
4569 mp_pen_type, /* \&{pen} with a known value */
4571 mp_path_type, /* \&{path} with a known value */
4573 mp_picture_type, /* \&{picture} with a known value */
4575 mp_transform_type, /* \&{transform} variable or capsule */
4576 mp_color_type, /* \&{color} variable or capsule */
4577 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4578 mp_pair_type, /* \&{pair} variable or capsule */
4579 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4580 mp_known, /* \&{numeric} with a known value */
4581 mp_dependent, /* a linear combination with |fraction| coefficients */
4582 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4583 mp_independent, /* \&{numeric} with unknown value */
4584 mp_token_list, /* variable name or suffix argument or text argument */
4585 mp_structured, /* variable with subscripts and attributes */
4586 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4587 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4591 void mp_print_type (MP mp,small_number t) ;
4593 @ @<Basic printing procedures@>=
4594 void mp_print_type (MP mp,small_number t) {
4596 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4597 case mp_boolean_type:mp_print(mp, "boolean"); break;
4598 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4599 case mp_string_type:mp_print(mp, "string"); break;
4600 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4601 case mp_pen_type:mp_print(mp, "pen"); break;
4602 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4603 case mp_path_type:mp_print(mp, "path"); break;
4604 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4605 case mp_picture_type:mp_print(mp, "picture"); break;
4606 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4607 case mp_transform_type:mp_print(mp, "transform"); break;
4608 case mp_color_type:mp_print(mp, "color"); break;
4609 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4610 case mp_pair_type:mp_print(mp, "pair"); break;
4611 case mp_known:mp_print(mp, "known numeric"); break;
4612 case mp_dependent:mp_print(mp, "dependent"); break;
4613 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4614 case mp_numeric_type:mp_print(mp, "numeric"); break;
4615 case mp_independent:mp_print(mp, "independent"); break;
4616 case mp_token_list:mp_print(mp, "token list"); break;
4617 case mp_structured:mp_print(mp, "mp_structured"); break;
4618 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4619 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4620 default: mp_print(mp, "undefined"); break;
4624 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4625 as well as a |type|. The possibilities for |name_type| are defined
4626 here; they will be explained in more detail later.
4630 mp_root=0, /* |name_type| at the top level of a variable */
4631 mp_saved_root, /* same, when the variable has been saved */
4632 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4633 mp_subscr, /* |name_type| in a subscript node */
4634 mp_attr, /* |name_type| in an attribute node */
4635 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4636 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4637 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4638 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4639 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4640 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4641 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4642 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4643 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4644 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4645 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4646 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4647 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4648 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4649 mp_capsule, /* |name_type| in stashed-away subexpressions */
4650 mp_token /* |name_type| in a numeric token or string token */
4653 @ Primitive operations that produce values have a secondary identification
4654 code in addition to their command code; it's something like genera and species.
4655 For example, `\.*' has the command code |primary_binary|, and its
4656 secondary identification is |times|. The secondary codes start at 30 so that
4657 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4658 are used as operators as well as type identifications. The relative values
4659 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4660 and |filled_op..bounded_op|. The restrictions are that
4661 |and_op-false_code=or_op-true_code|, that the ordering of
4662 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4663 and the ordering of |filled_op..bounded_op| must match that of the code
4664 values they test for.
4666 @d true_code 30 /* operation code for \.{true} */
4667 @d false_code 31 /* operation code for \.{false} */
4668 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4669 @d null_pen_code 33 /* operation code for \.{nullpen} */
4670 @d job_name_op 34 /* operation code for \.{jobname} */
4671 @d read_string_op 35 /* operation code for \.{readstring} */
4672 @d pen_circle 36 /* operation code for \.{pencircle} */
4673 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4674 @d read_from_op 38 /* operation code for \.{readfrom} */
4675 @d close_from_op 39 /* operation code for \.{closefrom} */
4676 @d odd_op 40 /* operation code for \.{odd} */
4677 @d known_op 41 /* operation code for \.{known} */
4678 @d unknown_op 42 /* operation code for \.{unknown} */
4679 @d not_op 43 /* operation code for \.{not} */
4680 @d decimal 44 /* operation code for \.{decimal} */
4681 @d reverse 45 /* operation code for \.{reverse} */
4682 @d make_path_op 46 /* operation code for \.{makepath} */
4683 @d make_pen_op 47 /* operation code for \.{makepen} */
4684 @d oct_op 48 /* operation code for \.{oct} */
4685 @d hex_op 49 /* operation code for \.{hex} */
4686 @d ASCII_op 50 /* operation code for \.{ASCII} */
4687 @d char_op 51 /* operation code for \.{char} */
4688 @d length_op 52 /* operation code for \.{length} */
4689 @d turning_op 53 /* operation code for \.{turningnumber} */
4690 @d color_model_part 54 /* operation code for \.{colormodel} */
4691 @d x_part 55 /* operation code for \.{xpart} */
4692 @d y_part 56 /* operation code for \.{ypart} */
4693 @d xx_part 57 /* operation code for \.{xxpart} */
4694 @d xy_part 58 /* operation code for \.{xypart} */
4695 @d yx_part 59 /* operation code for \.{yxpart} */
4696 @d yy_part 60 /* operation code for \.{yypart} */
4697 @d red_part 61 /* operation code for \.{redpart} */
4698 @d green_part 62 /* operation code for \.{greenpart} */
4699 @d blue_part 63 /* operation code for \.{bluepart} */
4700 @d cyan_part 64 /* operation code for \.{cyanpart} */
4701 @d magenta_part 65 /* operation code for \.{magentapart} */
4702 @d yellow_part 66 /* operation code for \.{yellowpart} */
4703 @d black_part 67 /* operation code for \.{blackpart} */
4704 @d grey_part 68 /* operation code for \.{greypart} */
4705 @d font_part 69 /* operation code for \.{fontpart} */
4706 @d text_part 70 /* operation code for \.{textpart} */
4707 @d path_part 71 /* operation code for \.{pathpart} */
4708 @d pen_part 72 /* operation code for \.{penpart} */
4709 @d dash_part 73 /* operation code for \.{dashpart} */
4710 @d sqrt_op 74 /* operation code for \.{sqrt} */
4711 @d m_exp_op 75 /* operation code for \.{mexp} */
4712 @d m_log_op 76 /* operation code for \.{mlog} */
4713 @d sin_d_op 77 /* operation code for \.{sind} */
4714 @d cos_d_op 78 /* operation code for \.{cosd} */
4715 @d floor_op 79 /* operation code for \.{floor} */
4716 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4717 @d char_exists_op 81 /* operation code for \.{charexists} */
4718 @d font_size 82 /* operation code for \.{fontsize} */
4719 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4720 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4721 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4722 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4723 @d arc_length 87 /* operation code for \.{arclength} */
4724 @d angle_op 88 /* operation code for \.{angle} */
4725 @d cycle_op 89 /* operation code for \.{cycle} */
4726 @d filled_op 90 /* operation code for \.{filled} */
4727 @d stroked_op 91 /* operation code for \.{stroked} */
4728 @d textual_op 92 /* operation code for \.{textual} */
4729 @d clipped_op 93 /* operation code for \.{clipped} */
4730 @d bounded_op 94 /* operation code for \.{bounded} */
4731 @d plus 95 /* operation code for \.+ */
4732 @d minus 96 /* operation code for \.- */
4733 @d times 97 /* operation code for \.* */
4734 @d over 98 /* operation code for \./ */
4735 @d pythag_add 99 /* operation code for \.{++} */
4736 @d pythag_sub 100 /* operation code for \.{+-+} */
4737 @d or_op 101 /* operation code for \.{or} */
4738 @d and_op 102 /* operation code for \.{and} */
4739 @d less_than 103 /* operation code for \.< */
4740 @d less_or_equal 104 /* operation code for \.{<=} */
4741 @d greater_than 105 /* operation code for \.> */
4742 @d greater_or_equal 106 /* operation code for \.{>=} */
4743 @d equal_to 107 /* operation code for \.= */
4744 @d unequal_to 108 /* operation code for \.{<>} */
4745 @d concatenate 109 /* operation code for \.\& */
4746 @d rotated_by 110 /* operation code for \.{rotated} */
4747 @d slanted_by 111 /* operation code for \.{slanted} */
4748 @d scaled_by 112 /* operation code for \.{scaled} */
4749 @d shifted_by 113 /* operation code for \.{shifted} */
4750 @d transformed_by 114 /* operation code for \.{transformed} */
4751 @d x_scaled 115 /* operation code for \.{xscaled} */
4752 @d y_scaled 116 /* operation code for \.{yscaled} */
4753 @d z_scaled 117 /* operation code for \.{zscaled} */
4754 @d in_font 118 /* operation code for \.{infont} */
4755 @d intersect 119 /* operation code for \.{intersectiontimes} */
4756 @d double_dot 120 /* operation code for improper \.{..} */
4757 @d substring_of 121 /* operation code for \.{substring} */
4758 @d min_of substring_of
4759 @d subpath_of 122 /* operation code for \.{subpath} */
4760 @d direction_time_of 123 /* operation code for \.{directiontime} */
4761 @d point_of 124 /* operation code for \.{point} */
4762 @d precontrol_of 125 /* operation code for \.{precontrol} */
4763 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4764 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4765 @d arc_time_of 128 /* operation code for \.{arctime} */
4766 @d mp_version 129 /* operation code for \.{mpversion} */
4768 @c void mp_print_op (MP mp,quarterword c) {
4769 if (c<=mp_numeric_type ) {
4770 mp_print_type(mp, c);
4773 case true_code:mp_print(mp, "true"); break;
4774 case false_code:mp_print(mp, "false"); break;
4775 case null_picture_code:mp_print(mp, "nullpicture"); break;
4776 case null_pen_code:mp_print(mp, "nullpen"); break;
4777 case job_name_op:mp_print(mp, "jobname"); break;
4778 case read_string_op:mp_print(mp, "readstring"); break;
4779 case pen_circle:mp_print(mp, "pencircle"); break;
4780 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4781 case read_from_op:mp_print(mp, "readfrom"); break;
4782 case close_from_op:mp_print(mp, "closefrom"); break;
4783 case odd_op:mp_print(mp, "odd"); break;
4784 case known_op:mp_print(mp, "known"); break;
4785 case unknown_op:mp_print(mp, "unknown"); break;
4786 case not_op:mp_print(mp, "not"); break;
4787 case decimal:mp_print(mp, "decimal"); break;
4788 case reverse:mp_print(mp, "reverse"); break;
4789 case make_path_op:mp_print(mp, "makepath"); break;
4790 case make_pen_op:mp_print(mp, "makepen"); break;
4791 case oct_op:mp_print(mp, "oct"); break;
4792 case hex_op:mp_print(mp, "hex"); break;
4793 case ASCII_op:mp_print(mp, "ASCII"); break;
4794 case char_op:mp_print(mp, "char"); break;
4795 case length_op:mp_print(mp, "length"); break;
4796 case turning_op:mp_print(mp, "turningnumber"); break;
4797 case x_part:mp_print(mp, "xpart"); break;
4798 case y_part:mp_print(mp, "ypart"); break;
4799 case xx_part:mp_print(mp, "xxpart"); break;
4800 case xy_part:mp_print(mp, "xypart"); break;
4801 case yx_part:mp_print(mp, "yxpart"); break;
4802 case yy_part:mp_print(mp, "yypart"); break;
4803 case red_part:mp_print(mp, "redpart"); break;
4804 case green_part:mp_print(mp, "greenpart"); break;
4805 case blue_part:mp_print(mp, "bluepart"); break;
4806 case cyan_part:mp_print(mp, "cyanpart"); break;
4807 case magenta_part:mp_print(mp, "magentapart"); break;
4808 case yellow_part:mp_print(mp, "yellowpart"); break;
4809 case black_part:mp_print(mp, "blackpart"); break;
4810 case grey_part:mp_print(mp, "greypart"); break;
4811 case color_model_part:mp_print(mp, "colormodel"); break;
4812 case font_part:mp_print(mp, "fontpart"); break;
4813 case text_part:mp_print(mp, "textpart"); break;
4814 case path_part:mp_print(mp, "pathpart"); break;
4815 case pen_part:mp_print(mp, "penpart"); break;
4816 case dash_part:mp_print(mp, "dashpart"); break;
4817 case sqrt_op:mp_print(mp, "sqrt"); break;
4818 case m_exp_op:mp_print(mp, "mexp"); break;
4819 case m_log_op:mp_print(mp, "mlog"); break;
4820 case sin_d_op:mp_print(mp, "sind"); break;
4821 case cos_d_op:mp_print(mp, "cosd"); break;
4822 case floor_op:mp_print(mp, "floor"); break;
4823 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4824 case char_exists_op:mp_print(mp, "charexists"); break;
4825 case font_size:mp_print(mp, "fontsize"); break;
4826 case ll_corner_op:mp_print(mp, "llcorner"); break;
4827 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4828 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4829 case ur_corner_op:mp_print(mp, "urcorner"); break;
4830 case arc_length:mp_print(mp, "arclength"); break;
4831 case angle_op:mp_print(mp, "angle"); break;
4832 case cycle_op:mp_print(mp, "cycle"); break;
4833 case filled_op:mp_print(mp, "filled"); break;
4834 case stroked_op:mp_print(mp, "stroked"); break;
4835 case textual_op:mp_print(mp, "textual"); break;
4836 case clipped_op:mp_print(mp, "clipped"); break;
4837 case bounded_op:mp_print(mp, "bounded"); break;
4838 case plus:mp_print_char(mp, '+'); break;
4839 case minus:mp_print_char(mp, '-'); break;
4840 case times:mp_print_char(mp, '*'); break;
4841 case over:mp_print_char(mp, '/'); break;
4842 case pythag_add:mp_print(mp, "++"); break;
4843 case pythag_sub:mp_print(mp, "+-+"); break;
4844 case or_op:mp_print(mp, "or"); break;
4845 case and_op:mp_print(mp, "and"); break;
4846 case less_than:mp_print_char(mp, '<'); break;
4847 case less_or_equal:mp_print(mp, "<="); break;
4848 case greater_than:mp_print_char(mp, '>'); break;
4849 case greater_or_equal:mp_print(mp, ">="); break;
4850 case equal_to:mp_print_char(mp, '='); break;
4851 case unequal_to:mp_print(mp, "<>"); break;
4852 case concatenate:mp_print(mp, "&"); break;
4853 case rotated_by:mp_print(mp, "rotated"); break;
4854 case slanted_by:mp_print(mp, "slanted"); break;
4855 case scaled_by:mp_print(mp, "scaled"); break;
4856 case shifted_by:mp_print(mp, "shifted"); break;
4857 case transformed_by:mp_print(mp, "transformed"); break;
4858 case x_scaled:mp_print(mp, "xscaled"); break;
4859 case y_scaled:mp_print(mp, "yscaled"); break;
4860 case z_scaled:mp_print(mp, "zscaled"); break;
4861 case in_font:mp_print(mp, "infont"); break;
4862 case intersect:mp_print(mp, "intersectiontimes"); break;
4863 case substring_of:mp_print(mp, "substring"); break;
4864 case subpath_of:mp_print(mp, "subpath"); break;
4865 case direction_time_of:mp_print(mp, "directiontime"); break;
4866 case point_of:mp_print(mp, "point"); break;
4867 case precontrol_of:mp_print(mp, "precontrol"); break;
4868 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4869 case pen_offset_of:mp_print(mp, "penoffset"); break;
4870 case arc_time_of:mp_print(mp, "arctime"); break;
4871 case mp_version:mp_print(mp, "mpversion"); break;
4872 default: mp_print(mp, ".."); break;
4877 @ \MP\ also has a bunch of internal parameters that a user might want to
4878 fuss with. Every such parameter has an identifying code number, defined here.
4880 @d tracing_titles 1 /* show titles online when they appear */
4881 @d tracing_equations 2 /* show each variable when it becomes known */
4882 @d tracing_capsules 3 /* show capsules too */
4883 @d tracing_choices 4 /* show the control points chosen for paths */
4884 @d tracing_specs 5 /* show path subdivision prior to filling with polygonal a pen */
4885 @d tracing_commands 6 /* show commands and operations before they are performed */
4886 @d tracing_restores 7 /* show when a variable or internal is restored */
4887 @d tracing_macros 8 /* show macros before they are expanded */
4888 @d tracing_output 9 /* show digitized edges as they are output */
4889 @d tracing_stats 10 /* show memory usage at end of job */
4890 @d tracing_lost_chars 11 /* show characters that aren't \&{infont} */
4891 @d tracing_online 12 /* show long diagnostics on terminal and in the log file */
4892 @d year 13 /* the current year (e.g., 1984) */
4893 @d month 14 /* the current month (e.g, 3 $\equiv$ March) */
4894 @d day 15 /* the current day of the month */
4895 @d mp_time 16 /* the number of minutes past midnight when this job started */
4896 @d char_code 17 /* the number of the next character to be output */
4897 @d char_ext 18 /* the extension code of the next character to be output */
4898 @d char_wd 19 /* the width of the next character to be output */
4899 @d char_ht 20 /* the height of the next character to be output */
4900 @d char_dp 21 /* the depth of the next character to be output */
4901 @d char_ic 22 /* the italic correction of the next character to be output */
4902 @d design_size 23 /* the unit of measure used for |char_wd..char_ic|, in points */
4903 @d pausing 24 /* positive to display lines on the terminal before they are read */
4904 @d showstopping 25 /* positive to stop after each \&{show} command */
4905 @d fontmaking 26 /* positive if font metric output is to be produced */
4906 @d linejoin 27 /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4907 @d linecap 28 /* as in \ps: 0 for butt, 1 for round, 2 for square */
4908 @d miterlimit 29 /* controls miter length as in \ps */
4909 @d warning_check 30 /* controls error message when variable value is large */
4910 @d boundary_char 31 /* the right boundary character for ligatures */
4911 @d prologues 32 /* positive to output conforming PostScript using built-in fonts */
4912 @d true_corners 33 /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4913 @d default_color_model 34 /* the default color model for unspecified items */
4914 @d restore_clip_color 35
4915 @d mpprocset 36 /* wether or not create PostScript command shortcuts */
4916 @d gtroffmode 37 /* whether the user specified |-troff| on the command line */
4917 @d max_given_internal 37
4920 scaled *internal; /* the values of internal quantities */
4921 char **int_name; /* their names */
4922 int int_ptr; /* the maximum internal quantity defined so far */
4923 int max_internal; /* current maximum number of internal quantities */
4926 @ @<Option variables@>=
4929 @ @<Allocate or initialize ...@>=
4930 mp->max_internal=2*max_given_internal;
4931 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4932 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4933 mp->troff_mode=(opt.troff_mode>0 ? true : false);
4935 @ @<Set initial ...@>=
4936 for (k=0;k<= mp->max_internal; k++ ) {
4938 mp->int_name[k]=NULL;
4940 mp->int_ptr=max_given_internal;
4942 @ The symbolic names for internal quantities are put into \MP's hash table
4943 by using a routine called |primitive|, which will be defined later. Let us
4944 enter them now, so that we don't have to list all those names again
4947 @<Put each of \MP's primitives into the hash table@>=
4948 mp_primitive(mp, "tracingtitles",internal_quantity,tracing_titles);
4949 @:tracingtitles_}{\&{tracingtitles} primitive@>
4950 mp_primitive(mp, "tracingequations",internal_quantity,tracing_equations);
4951 @:tracing_equations_}{\&{tracingequations} primitive@>
4952 mp_primitive(mp, "tracingcapsules",internal_quantity,tracing_capsules);
4953 @:tracing_capsules_}{\&{tracingcapsules} primitive@>
4954 mp_primitive(mp, "tracingchoices",internal_quantity,tracing_choices);
4955 @:tracing_choices_}{\&{tracingchoices} primitive@>
4956 mp_primitive(mp, "tracingspecs",internal_quantity,tracing_specs);
4957 @:tracing_specs_}{\&{tracingspecs} primitive@>
4958 mp_primitive(mp, "tracingcommands",internal_quantity,tracing_commands);
4959 @:tracing_commands_}{\&{tracingcommands} primitive@>
4960 mp_primitive(mp, "tracingrestores",internal_quantity,tracing_restores);
4961 @:tracing_restores_}{\&{tracingrestores} primitive@>
4962 mp_primitive(mp, "tracingmacros",internal_quantity,tracing_macros);
4963 @:tracing_macros_}{\&{tracingmacros} primitive@>
4964 mp_primitive(mp, "tracingoutput",internal_quantity,tracing_output);
4965 @:tracing_output_}{\&{tracingoutput} primitive@>
4966 mp_primitive(mp, "tracingstats",internal_quantity,tracing_stats);
4967 @:tracing_stats_}{\&{tracingstats} primitive@>
4968 mp_primitive(mp, "tracinglostchars",internal_quantity,tracing_lost_chars);
4969 @:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
4970 mp_primitive(mp, "tracingonline",internal_quantity,tracing_online);
4971 @:tracing_online_}{\&{tracingonline} primitive@>
4972 mp_primitive(mp, "year",internal_quantity,year);
4973 @:year_}{\&{year} primitive@>
4974 mp_primitive(mp, "month",internal_quantity,month);
4975 @:month_}{\&{month} primitive@>
4976 mp_primitive(mp, "day",internal_quantity,day);
4977 @:day_}{\&{day} primitive@>
4978 mp_primitive(mp, "time",internal_quantity,mp_time);
4979 @:time_}{\&{time} primitive@>
4980 mp_primitive(mp, "charcode",internal_quantity,char_code);
4981 @:char_code_}{\&{charcode} primitive@>
4982 mp_primitive(mp, "charext",internal_quantity,char_ext);
4983 @:char_ext_}{\&{charext} primitive@>
4984 mp_primitive(mp, "charwd",internal_quantity,char_wd);
4985 @:char_wd_}{\&{charwd} primitive@>
4986 mp_primitive(mp, "charht",internal_quantity,char_ht);
4987 @:char_ht_}{\&{charht} primitive@>
4988 mp_primitive(mp, "chardp",internal_quantity,char_dp);
4989 @:char_dp_}{\&{chardp} primitive@>
4990 mp_primitive(mp, "charic",internal_quantity,char_ic);
4991 @:char_ic_}{\&{charic} primitive@>
4992 mp_primitive(mp, "designsize",internal_quantity,design_size);
4993 @:design_size_}{\&{designsize} primitive@>
4994 mp_primitive(mp, "pausing",internal_quantity,pausing);
4995 @:pausing_}{\&{pausing} primitive@>
4996 mp_primitive(mp, "showstopping",internal_quantity,showstopping);
4997 @:showstopping_}{\&{showstopping} primitive@>
4998 mp_primitive(mp, "fontmaking",internal_quantity,fontmaking);
4999 @:fontmaking_}{\&{fontmaking} primitive@>
5000 mp_primitive(mp, "linejoin",internal_quantity,linejoin);
5001 @:linejoin_}{\&{linejoin} primitive@>
5002 mp_primitive(mp, "linecap",internal_quantity,linecap);
5003 @:linecap_}{\&{linecap} primitive@>
5004 mp_primitive(mp, "miterlimit",internal_quantity,miterlimit);
5005 @:miterlimit_}{\&{miterlimit} primitive@>
5006 mp_primitive(mp, "warningcheck",internal_quantity,warning_check);
5007 @:warning_check_}{\&{warningcheck} primitive@>
5008 mp_primitive(mp, "boundarychar",internal_quantity,boundary_char);
5009 @:boundary_char_}{\&{boundarychar} primitive@>
5010 mp_primitive(mp, "prologues",internal_quantity,prologues);
5011 @:prologues_}{\&{prologues} primitive@>
5012 mp_primitive(mp, "truecorners",internal_quantity,true_corners);
5013 @:true_corners_}{\&{truecorners} primitive@>
5014 mp_primitive(mp, "mpprocset",internal_quantity,mpprocset);
5015 @:mpprocset_}{\&{mpprocset} primitive@>
5016 mp_primitive(mp, "troffmode",internal_quantity,gtroffmode);
5017 @:troffmode_}{\&{troffmode} primitive@>
5018 mp_primitive(mp, "defaultcolormodel",internal_quantity,default_color_model);
5019 @:default_color_model_}{\&{defaultcolormodel} primitive@>
5020 mp_primitive(mp, "restoreclipcolor",internal_quantity,restore_clip_color);
5021 @:restore_clip_color_}{\&{restoreclipcolor} primitive@>
5023 @ Colors can be specified in four color models. In the special
5024 case of |no_model|, MetaPost does not output any color operator to
5025 the postscript output.
5027 Note: these values are passed directly on to |with_option|. This only
5028 works because the other possible values passed to |with_option| are
5029 8 and 10 respectively (from |with_pen| and |with_picture|).
5031 There is a first state, that is only used for |gs_colormodel|. It flags
5032 the fact that there has not been any kind of color specification by
5033 the user so far in the game.
5039 @d uninitialized_model 9
5041 @<Initialize table entries (done by \.{INIMP} only)@>=
5042 mp->internal[default_color_model]=(rgb_model*unity);
5043 mp->internal[restore_clip_color]=unity;
5045 @ Well, we do have to list the names one more time, for use in symbolic
5048 @<Initialize table...@>=
5049 mp->int_name[tracing_titles]=xstrdup("tracingtitles");
5050 mp->int_name[tracing_equations]=xstrdup("tracingequations");
5051 mp->int_name[tracing_capsules]=xstrdup("tracingcapsules");
5052 mp->int_name[tracing_choices]=xstrdup("tracingchoices");
5053 mp->int_name[tracing_specs]=xstrdup("tracingspecs");
5054 mp->int_name[tracing_commands]=xstrdup("tracingcommands");
5055 mp->int_name[tracing_restores]=xstrdup("tracingrestores");
5056 mp->int_name[tracing_macros]=xstrdup("tracingmacros");
5057 mp->int_name[tracing_output]=xstrdup("tracingoutput");
5058 mp->int_name[tracing_stats]=xstrdup("tracingstats");
5059 mp->int_name[tracing_lost_chars]=xstrdup("tracinglostchars");
5060 mp->int_name[tracing_online]=xstrdup("tracingonline");
5061 mp->int_name[year]=xstrdup("year");
5062 mp->int_name[month]=xstrdup("month");
5063 mp->int_name[day]=xstrdup("day");
5064 mp->int_name[mp_time]=xstrdup("time");
5065 mp->int_name[char_code]=xstrdup("charcode");
5066 mp->int_name[char_ext]=xstrdup("charext");
5067 mp->int_name[char_wd]=xstrdup("charwd");
5068 mp->int_name[char_ht]=xstrdup("charht");
5069 mp->int_name[char_dp]=xstrdup("chardp");
5070 mp->int_name[char_ic]=xstrdup("charic");
5071 mp->int_name[design_size]=xstrdup("designsize");
5072 mp->int_name[pausing]=xstrdup("pausing");
5073 mp->int_name[showstopping]=xstrdup("showstopping");
5074 mp->int_name[fontmaking]=xstrdup("fontmaking");
5075 mp->int_name[linejoin]=xstrdup("linejoin");
5076 mp->int_name[linecap]=xstrdup("linecap");
5077 mp->int_name[miterlimit]=xstrdup("miterlimit");
5078 mp->int_name[warning_check]=xstrdup("warningcheck");
5079 mp->int_name[boundary_char]=xstrdup("boundarychar");
5080 mp->int_name[prologues]=xstrdup("prologues");
5081 mp->int_name[true_corners]=xstrdup("truecorners");
5082 mp->int_name[default_color_model]=xstrdup("defaultcolormodel");
5083 mp->int_name[mpprocset]=xstrdup("mpprocset");
5084 mp->int_name[gtroffmode]=xstrdup("troffmode");
5085 mp->int_name[restore_clip_color]=xstrdup("restoreclipcolor");
5087 @ The following procedure, which is called just before \MP\ initializes its
5088 input and output, establishes the initial values of the date and time.
5089 @^system dependencies@>
5091 Note that the values are |scaled| integers. Hence \MP\ can no longer
5092 be used after the year 32767.
5095 void mp_fix_date_and_time (MP mp) {
5096 time_t clock = time ((time_t *) 0);
5097 struct tm *tmptr = localtime (&clock);
5098 mp->internal[mp_time]=
5099 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5100 mp->internal[day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5101 mp->internal[month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5102 mp->internal[year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5106 void mp_fix_date_and_time (MP mp) ;
5108 @ \MP\ is occasionally supposed to print diagnostic information that
5109 goes only into the transcript file, unless |tracing_online| is positive.
5110 Now that we have defined |tracing_online| we can define
5111 two routines that adjust the destination of print commands:
5114 void mp_begin_diagnostic (MP mp) ;
5115 void mp_end_diagnostic (MP mp,boolean blank_line);
5116 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5118 @ @<Basic printing...@>=
5119 @<Declare a function called |true_line|@>;
5120 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5121 mp->old_setting=mp->selector;
5122 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5123 if ((mp->internal[tracing_online]<=0)&&(mp->selector==term_and_log)){
5125 if ( mp->history==spotless ) mp->history=warning_issued;
5129 void mp_end_diagnostic (MP mp,boolean blank_line) {
5130 /* restore proper conditions after tracing */
5131 mp_print_nl(mp, "");
5132 if ( blank_line ) mp_print_ln(mp);
5133 mp->selector=mp->old_setting;
5136 @ The global variable |non_ps_setting| is initialized when it is time to print
5140 unsigned int old_setting;
5141 unsigned int non_ps_setting;
5143 @ We will occasionally use |begin_diagnostic| in connection with line-number
5144 printing, as follows. (The parameter |s| is typically |"Path"| or
5145 |"Cycle spec"|, etc.)
5147 @<Basic printing...@>=
5148 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5149 mp_begin_diagnostic(mp);
5150 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5151 mp_print(mp, " at line ");
5152 mp_print_int(mp, mp_true_line(mp));
5153 mp_print(mp, t); mp_print_char(mp, ':');
5156 @ The 256 |ASCII_code| characters are grouped into classes by means of
5157 the |char_class| table. Individual class numbers have no semantic
5158 or syntactic significance, except in a few instances defined here.
5159 There's also |max_class|, which can be used as a basis for additional
5160 class numbers in nonstandard extensions of \MP.
5162 @d digit_class 0 /* the class number of \.{0123456789} */
5163 @d period_class 1 /* the class number of `\..' */
5164 @d space_class 2 /* the class number of spaces and nonstandard characters */
5165 @d percent_class 3 /* the class number of `\.\%' */
5166 @d string_class 4 /* the class number of `\."' */
5167 @d right_paren_class 8 /* the class number of `\.)' */
5168 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5169 @d letter_class 9 /* letters and the underline character */
5170 @d left_bracket_class 17 /* `\.[' */
5171 @d right_bracket_class 18 /* `\.]' */
5172 @d invalid_class 20 /* bad character in the input */
5173 @d max_class 20 /* the largest class number */
5176 int char_class[256]; /* the class numbers */
5178 @ If changes are made to accommodate non-ASCII character sets, they should
5179 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5180 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5181 @^system dependencies@>
5183 @<Set initial ...@>=
5184 for (k='0';k<='9';k++)
5185 mp->char_class[k]=digit_class;
5186 mp->char_class['.']=period_class;
5187 mp->char_class[' ']=space_class;
5188 mp->char_class['%']=percent_class;
5189 mp->char_class['"']=string_class;
5190 mp->char_class[',']=5;
5191 mp->char_class[';']=6;
5192 mp->char_class['(']=7;
5193 mp->char_class[')']=right_paren_class;
5194 for (k='A';k<= 'Z';k++ )
5195 mp->char_class[k]=letter_class;
5196 for (k='a';k<='z';k++)
5197 mp->char_class[k]=letter_class;
5198 mp->char_class['_']=letter_class;
5199 mp->char_class['<']=10;
5200 mp->char_class['=']=10;
5201 mp->char_class['>']=10;
5202 mp->char_class[':']=10;
5203 mp->char_class['|']=10;
5204 mp->char_class['`']=11;
5205 mp->char_class['\'']=11;
5206 mp->char_class['+']=12;
5207 mp->char_class['-']=12;
5208 mp->char_class['/']=13;
5209 mp->char_class['*']=13;
5210 mp->char_class['\\']=13;
5211 mp->char_class['!']=14;
5212 mp->char_class['?']=14;
5213 mp->char_class['#']=15;
5214 mp->char_class['&']=15;
5215 mp->char_class['@@']=15;
5216 mp->char_class['$']=15;
5217 mp->char_class['^']=16;
5218 mp->char_class['~']=16;
5219 mp->char_class['[']=left_bracket_class;
5220 mp->char_class[']']=right_bracket_class;
5221 mp->char_class['{']=19;
5222 mp->char_class['}']=19;
5224 mp->char_class[k]=invalid_class;
5225 mp->char_class['\t']=space_class;
5226 mp->char_class['\f']=space_class;
5227 for (k=127;k<=255;k++)
5228 mp->char_class[k]=invalid_class;
5230 @* \[13] The hash table.
5231 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5232 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5233 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5234 table, it is never removed.
5236 The actual sequence of characters forming a symbolic token is
5237 stored in the |str_pool| array together with all the other strings. An
5238 auxiliary array |hash| consists of items with two halfword fields per
5239 word. The first of these, called |next(p)|, points to the next identifier
5240 belonging to the same coalesced list as the identifier corresponding to~|p|;
5241 and the other, called |text(p)|, points to the |str_start| entry for
5242 |p|'s identifier. If position~|p| of the hash table is empty, we have
5243 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5244 hash list, we have |next(p)=0|.
5246 An auxiliary pointer variable called |hash_used| is maintained in such a
5247 way that all locations |p>=hash_used| are nonempty. The global variable
5248 |st_count| tells how many symbolic tokens have been defined, if statistics
5251 The first 256 locations of |hash| are reserved for symbols of length one.
5253 There's a parallel array called |eqtb| that contains the current equivalent
5254 values of each symbolic token. The entries of this array consist of
5255 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5256 piece of information that qualifies the |eq_type|).
5258 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5259 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5260 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5261 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5262 @d hash_base 257 /* hashing actually starts here */
5263 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5266 pointer hash_used; /* allocation pointer for |hash| */
5267 integer st_count; /* total number of known identifiers */
5269 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5270 since they are used in error recovery.
5272 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5273 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5274 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5275 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5276 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5277 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5278 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5279 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5280 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5281 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5282 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5283 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5284 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5285 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5286 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5287 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5288 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5291 two_halves *hash; /* the hash table */
5292 two_halves *eqtb; /* the equivalents */
5294 @ @<Allocate or initialize ...@>=
5295 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5296 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5298 @ @<Dealloc variables@>=
5303 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5304 for (k=2;k<=hash_end;k++) {
5305 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5308 @ @<Initialize table entries...@>=
5309 mp->hash_used=frozen_inaccessible; /* nothing is used */
5311 text(frozen_bad_vardef)=intern("a bad variable");
5312 text(frozen_etex)=intern("etex");
5313 text(frozen_mpx_break)=intern("mpxbreak");
5314 text(frozen_fi)=intern("fi");
5315 text(frozen_end_group)=intern("endgroup");
5316 text(frozen_end_def)=intern("enddef");
5317 text(frozen_end_for)=intern("endfor");
5318 text(frozen_semicolon)=intern(";");
5319 text(frozen_colon)=intern(":");
5320 text(frozen_slash)=intern("/");
5321 text(frozen_left_bracket)=intern("[");
5322 text(frozen_right_delimiter)=intern(")");
5323 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5324 eq_type(frozen_right_delimiter)=right_delimiter;
5326 @ @<Check the ``constant'' values...@>=
5327 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5329 @ Here is the subroutine that searches the hash table for an identifier
5330 that matches a given string of length~|l| appearing in |buffer[j..
5331 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5332 will always be found, and the corresponding hash table address
5336 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5337 integer h; /* hash code */
5338 pointer p; /* index in |hash| array */
5339 pointer k; /* index in |buffer| array */
5341 @<Treat special case of length 1 and |break|@>;
5343 @<Compute the hash code |h|@>;
5344 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5346 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5349 @<Insert a new symbolic token after |p|, then
5350 make |p| point to it and |break|@>;
5357 @ @<Treat special case of length 1...@>=
5358 p=mp->buffer[j]+1; text(p)=p-1; return p;
5361 @ @<Insert a new symbolic...@>=
5366 mp_overflow(mp, "hash size",mp->hash_size);
5367 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5368 decr(mp->hash_used);
5369 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5370 next(p)=mp->hash_used;
5374 for (k=j;k<=j+l-1;k++) {
5375 append_char(mp->buffer[k]);
5377 text(p)=mp_make_string(mp);
5378 mp->str_ref[text(p)]=max_str_ref;
5384 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5385 should be a prime number. The theory of hashing tells us to expect fewer
5386 than two table probes, on the average, when the search is successful.
5387 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5388 @^Vitter, Jeffrey Scott@>
5390 @<Compute the hash code |h|@>=
5392 for (k=j+1;k<=j+l-1;k++){
5393 h=h+h+mp->buffer[k];
5394 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5397 @ @<Search |eqtb| for equivalents equal to |p|@>=
5398 for (q=1;q<=hash_end;q++) {
5399 if ( equiv(q)==p ) {
5400 mp_print_nl(mp, "EQUIV(");
5401 mp_print_int(mp, q);
5402 mp_print_char(mp, ')');
5406 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5407 table, together with their command code (which will be the |eq_type|)
5408 and an operand (which will be the |equiv|). The |primitive| procedure
5409 does this, in a way that no \MP\ user can. The global value |cur_sym|
5410 contains the new |eqtb| pointer after |primitive| has acted.
5413 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5414 pool_pointer k; /* index into |str_pool| */
5415 small_number j; /* index into |buffer| */
5416 small_number l; /* length of the string */
5419 k=mp->str_start[s]; l=str_stop(s)-k;
5420 /* we will move |s| into the (empty) |buffer| */
5421 for (j=0;j<=l-1;j++) {
5422 mp->buffer[j]=mp->str_pool[k+j];
5424 mp->cur_sym=mp_id_lookup(mp, 0,l);
5425 if ( s>=256 ) { /* we don't want to have the string twice */
5426 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5428 eq_type(mp->cur_sym)=c;
5429 equiv(mp->cur_sym)=o;
5433 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5434 by their |eq_type| alone. These primitives are loaded into the hash table
5437 @<Put each of \MP's primitives into the hash table@>=
5438 mp_primitive(mp, "..",path_join,0);
5439 @:.._}{\.{..} primitive@>
5440 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5441 @:[ }{\.{[} primitive@>
5442 mp_primitive(mp, "]",right_bracket,0);
5443 @:] }{\.{]} primitive@>
5444 mp_primitive(mp, "}",right_brace,0);
5445 @:]]}{\.{\char`\}} primitive@>
5446 mp_primitive(mp, "{",left_brace,0);
5447 @:][}{\.{\char`\{} primitive@>
5448 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5449 @:: }{\.{:} primitive@>
5450 mp_primitive(mp, "::",double_colon,0);
5451 @::: }{\.{::} primitive@>
5452 mp_primitive(mp, "||:",bchar_label,0);
5453 @:::: }{\.{\char'174\char'174:} primitive@>
5454 mp_primitive(mp, ":=",assignment,0);
5455 @::=_}{\.{:=} primitive@>
5456 mp_primitive(mp, ",",comma,0);
5457 @:, }{\., primitive@>
5458 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5459 @:; }{\.; primitive@>
5460 mp_primitive(mp, "\\",relax,0);
5461 @:]]\\}{\.{\char`\\} primitive@>
5463 mp_primitive(mp, "addto",add_to_command,0);
5464 @:add_to_}{\&{addto} primitive@>
5465 mp_primitive(mp, "atleast",at_least,0);
5466 @:at_least_}{\&{atleast} primitive@>
5467 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5468 @:begin_group_}{\&{begingroup} primitive@>
5469 mp_primitive(mp, "controls",controls,0);
5470 @:controls_}{\&{controls} primitive@>
5471 mp_primitive(mp, "curl",curl_command,0);
5472 @:curl_}{\&{curl} primitive@>
5473 mp_primitive(mp, "delimiters",delimiters,0);
5474 @:delimiters_}{\&{delimiters} primitive@>
5475 mp_primitive(mp, "endgroup",end_group,0);
5476 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5477 @:endgroup_}{\&{endgroup} primitive@>
5478 mp_primitive(mp, "everyjob",every_job_command,0);
5479 @:every_job_}{\&{everyjob} primitive@>
5480 mp_primitive(mp, "exitif",exit_test,0);
5481 @:exit_if_}{\&{exitif} primitive@>
5482 mp_primitive(mp, "expandafter",expand_after,0);
5483 @:expand_after_}{\&{expandafter} primitive@>
5484 mp_primitive(mp, "interim",interim_command,0);
5485 @:interim_}{\&{interim} primitive@>
5486 mp_primitive(mp, "let",let_command,0);
5487 @:let_}{\&{let} primitive@>
5488 mp_primitive(mp, "newinternal",new_internal,0);
5489 @:new_internal_}{\&{newinternal} primitive@>
5490 mp_primitive(mp, "of",of_token,0);
5491 @:of_}{\&{of} primitive@>
5492 mp_primitive(mp, "randomseed",random_seed,0);
5493 @:random_seed_}{\&{randomseed} primitive@>
5494 mp_primitive(mp, "save",save_command,0);
5495 @:save_}{\&{save} primitive@>
5496 mp_primitive(mp, "scantokens",scan_tokens,0);
5497 @:scan_tokens_}{\&{scantokens} primitive@>
5498 mp_primitive(mp, "shipout",ship_out_command,0);
5499 @:ship_out_}{\&{shipout} primitive@>
5500 mp_primitive(mp, "skipto",skip_to,0);
5501 @:skip_to_}{\&{skipto} primitive@>
5502 mp_primitive(mp, "special",special_command,0);
5503 @:special}{\&{special} primitive@>
5504 mp_primitive(mp, "fontmapfile",special_command,1);
5505 @:fontmapfile}{\&{fontmapfile} primitive@>
5506 mp_primitive(mp, "fontmapline",special_command,2);
5507 @:fontmapline}{\&{fontmapline} primitive@>
5508 mp_primitive(mp, "step",step_token,0);
5509 @:step_}{\&{step} primitive@>
5510 mp_primitive(mp, "str",str_op,0);
5511 @:str_}{\&{str} primitive@>
5512 mp_primitive(mp, "tension",tension,0);
5513 @:tension_}{\&{tension} primitive@>
5514 mp_primitive(mp, "to",to_token,0);
5515 @:to_}{\&{to} primitive@>
5516 mp_primitive(mp, "until",until_token,0);
5517 @:until_}{\&{until} primitive@>
5518 mp_primitive(mp, "within",within_token,0);
5519 @:within_}{\&{within} primitive@>
5520 mp_primitive(mp, "write",write_command,0);
5521 @:write_}{\&{write} primitive@>
5523 @ Each primitive has a corresponding inverse, so that it is possible to
5524 display the cryptic numeric contents of |eqtb| in symbolic form.
5525 Every call of |primitive| in this program is therefore accompanied by some
5526 straightforward code that forms part of the |print_cmd_mod| routine
5529 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5530 case add_to_command:mp_print(mp, "addto"); break;
5531 case assignment:mp_print(mp, ":="); break;
5532 case at_least:mp_print(mp, "atleast"); break;
5533 case bchar_label:mp_print(mp, "||:"); break;
5534 case begin_group:mp_print(mp, "begingroup"); break;
5535 case colon:mp_print(mp, ":"); break;
5536 case comma:mp_print(mp, ","); break;
5537 case controls:mp_print(mp, "controls"); break;
5538 case curl_command:mp_print(mp, "curl"); break;
5539 case delimiters:mp_print(mp, "delimiters"); break;
5540 case double_colon:mp_print(mp, "::"); break;
5541 case end_group:mp_print(mp, "endgroup"); break;
5542 case every_job_command:mp_print(mp, "everyjob"); break;
5543 case exit_test:mp_print(mp, "exitif"); break;
5544 case expand_after:mp_print(mp, "expandafter"); break;
5545 case interim_command:mp_print(mp, "interim"); break;
5546 case left_brace:mp_print(mp, "{"); break;
5547 case left_bracket:mp_print(mp, "["); break;
5548 case let_command:mp_print(mp, "let"); break;
5549 case new_internal:mp_print(mp, "newinternal"); break;
5550 case of_token:mp_print(mp, "of"); break;
5551 case path_join:mp_print(mp, ".."); break;
5552 case random_seed:mp_print(mp, "randomseed"); break;
5553 case relax:mp_print_char(mp, '\\'); break;
5554 case right_brace:mp_print(mp, "}"); break;
5555 case right_bracket:mp_print(mp, "]"); break;
5556 case save_command:mp_print(mp, "save"); break;
5557 case scan_tokens:mp_print(mp, "scantokens"); break;
5558 case semicolon:mp_print(mp, ";"); break;
5559 case ship_out_command:mp_print(mp, "shipout"); break;
5560 case skip_to:mp_print(mp, "skipto"); break;
5561 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5562 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5563 mp_print(mp, "special"); break;
5564 case step_token:mp_print(mp, "step"); break;
5565 case str_op:mp_print(mp, "str"); break;
5566 case tension:mp_print(mp, "tension"); break;
5567 case to_token:mp_print(mp, "to"); break;
5568 case until_token:mp_print(mp, "until"); break;
5569 case within_token:mp_print(mp, "within"); break;
5570 case write_command:mp_print(mp, "write"); break;
5572 @ We will deal with the other primitives later, at some point in the program
5573 where their |eq_type| and |equiv| values are more meaningful. For example,
5574 the primitives for macro definitions will be loaded when we consider the
5575 routines that define macros.
5576 It is easy to find where each particular
5577 primitive was treated by looking in the index at the end; for example, the
5578 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5580 @* \[14] Token lists.
5581 A \MP\ token is either symbolic or numeric or a string, or it denotes
5582 a macro parameter or capsule; so there are five corresponding ways to encode it
5584 internally: (1)~A symbolic token whose hash code is~|p|
5585 is represented by the number |p|, in the |info| field of a single-word
5586 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5587 represented in a two-word node of~|mem|; the |type| field is |known|,
5588 the |name_type| field is |token|, and the |value| field holds~|v|.
5589 The fact that this token appears in a two-word node rather than a
5590 one-word node is, of course, clear from the node address.
5591 (3)~A string token is also represented in a two-word node; the |type|
5592 field is |mp_string_type|, the |name_type| field is |token|, and the
5593 |value| field holds the corresponding |str_number|. (4)~Capsules have
5594 |name_type=capsule|, and their |type| and |value| fields represent
5595 arbitrary values (in ways to be explained later). (5)~Macro parameters
5596 are like symbolic tokens in that they appear in |info| fields of
5597 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5598 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5599 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5600 Actual values of these parameters are kept in a separate stack, as we will
5601 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5602 of course, chosen so that there will be no confusion between symbolic
5603 tokens and parameters of various types.
5606 the `\\{type}' field of a node has nothing to do with ``type'' in a
5607 printer's sense. It's curious that the same word is used in such different ways.
5609 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5610 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5611 @d token_node_size 2 /* the number of words in a large token node */
5612 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5613 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5614 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5615 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5616 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5618 @<Check the ``constant''...@>=
5619 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5621 @ We have set aside a two word node beginning at |null| so that we can have
5622 |value(null)=0|. We will make use of this coincidence later.
5624 @<Initialize table entries...@>=
5625 link(null)=null; value(null)=0;
5627 @ A numeric token is created by the following trivial routine.
5630 pointer mp_new_num_tok (MP mp,scaled v) {
5631 pointer p; /* the new node */
5632 p=mp_get_node(mp, token_node_size); value(p)=v;
5633 type(p)=mp_known; name_type(p)=mp_token;
5637 @ A token list is a singly linked list of nodes in |mem|, where
5638 each node contains a token and a link. Here's a subroutine that gets rid
5639 of a token list when it is no longer needed.
5642 void mp_token_recycle (MP mp);
5645 @c void mp_flush_token_list (MP mp,pointer p) {
5646 pointer q; /* the node being recycled */
5649 if ( q>=mp->hi_mem_min ) {
5653 case mp_vacuous: case mp_boolean_type: case mp_known:
5655 case mp_string_type:
5656 delete_str_ref(value(q));
5658 case unknown_types: case mp_pen_type: case mp_path_type:
5659 case mp_picture_type: case mp_pair_type: case mp_color_type:
5660 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5661 case mp_proto_dependent: case mp_independent:
5662 mp->g_pointer=q; mp_token_recycle(mp);
5664 default: mp_confusion(mp, "token");
5665 @:this can't happen token}{\quad token@>
5667 mp_free_node(mp, q,token_node_size);
5672 @ The procedure |show_token_list|, which prints a symbolic form of
5673 the token list that starts at a given node |p|, illustrates these
5674 conventions. The token list being displayed should not begin with a reference
5675 count. However, the procedure is intended to be fairly robust, so that if the
5676 memory links are awry or if |p| is not really a pointer to a token list,
5677 almost nothing catastrophic can happen.
5679 An additional parameter |q| is also given; this parameter is either null
5680 or it points to a node in the token list where a certain magic computation
5681 takes place that will be explained later. (Basically, |q| is non-null when
5682 we are printing the two-line context information at the time of an error
5683 message; |q| marks the place corresponding to where the second line
5686 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5687 of printing exceeds a given limit~|l|; the length of printing upon entry is
5688 assumed to be a given amount called |null_tally|. (Note that
5689 |show_token_list| sometimes uses itself recursively to print
5690 variable names within a capsule.)
5693 Unusual entries are printed in the form of all-caps tokens
5694 preceded by a space, e.g., `\.{\char`\ BAD}'.
5697 void mp_print_capsule (MP mp);
5699 @ @<Declare the procedure called |show_token_list|@>=
5700 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5701 integer null_tally) ;
5704 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5705 integer null_tally) {
5706 small_number class,c; /* the |char_class| of previous and new tokens */
5707 integer r,v; /* temporary registers */
5708 class=percent_class;
5709 mp->tally=null_tally;
5710 while ( (p!=null) && (mp->tally<l) ) {
5712 @<Do magic computation@>;
5713 @<Display token |p| and set |c| to its class;
5714 but |return| if there are problems@>;
5718 mp_print(mp, " ETC.");
5723 @ @<Display token |p| and set |c| to its class...@>=
5724 c=letter_class; /* the default */
5725 if ( (p<0)||(p>mp->mem_end) ) {
5726 mp_print(mp, " CLOBBERED"); return;
5729 if ( p<mp->hi_mem_min ) {
5730 @<Display two-word token@>;
5733 if ( r>=expr_base ) {
5734 @<Display a parameter token@>;
5738 @<Display a collective subscript@>
5740 mp_print(mp, " IMPOSSIBLE");
5745 if ( (r<0)||(r>mp->max_str_ptr) ) {
5746 mp_print(mp, " NONEXISTENT");
5749 @<Print string |r| as a symbolic token
5750 and set |c| to its class@>;
5756 @ @<Display two-word token@>=
5757 if ( name_type(p)==mp_token ) {
5758 if ( type(p)==mp_known ) {
5759 @<Display a numeric token@>;
5760 } else if ( type(p)!=mp_string_type ) {
5761 mp_print(mp, " BAD");
5764 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5767 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5768 mp_print(mp, " BAD");
5770 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5773 @ @<Display a numeric token@>=
5774 if ( class==digit_class )
5775 mp_print_char(mp, ' ');
5778 if ( class==left_bracket_class )
5779 mp_print_char(mp, ' ');
5780 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5781 c=right_bracket_class;
5783 mp_print_scaled(mp, v); c=digit_class;
5787 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5788 But we will see later (in the |print_variable_name| routine) that
5789 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5791 @<Display a collective subscript@>=
5793 if ( class==left_bracket_class )
5794 mp_print_char(mp, ' ');
5795 mp_print(mp, "[]"); c=right_bracket_class;
5798 @ @<Display a parameter token@>=
5800 if ( r<suffix_base ) {
5801 mp_print(mp, "(EXPR"); r=r-(expr_base);
5803 } else if ( r<text_base ) {
5804 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5807 mp_print(mp, "(TEXT"); r=r-(text_base);
5810 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5814 @ @<Print string |r| as a symbolic token...@>=
5816 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5819 case letter_class:mp_print_char(mp, '.'); break;
5820 case isolated_classes: break;
5821 default: mp_print_char(mp, ' '); break;
5824 mp_print_str(mp, r);
5827 @ The following procedures have been declared |forward| with no parameters,
5828 because the author dislikes \PASCAL's convention about |forward| procedures
5829 with parameters. It was necessary to do something, because |show_token_list|
5830 is recursive (although the recursion is limited to one level), and because
5831 |flush_token_list| is syntactically (but not semantically) recursive.
5834 @<Declare miscellaneous procedures that were declared |forward|@>=
5835 void mp_print_capsule (MP mp) {
5836 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5839 void mp_token_recycle (MP mp) {
5840 mp_recycle_value(mp, mp->g_pointer);
5844 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5846 @ Macro definitions are kept in \MP's memory in the form of token lists
5847 that have a few extra one-word nodes at the beginning.
5849 The first node contains a reference count that is used to tell when the
5850 list is no longer needed. To emphasize the fact that a reference count is
5851 present, we shall refer to the |info| field of this special node as the
5853 @^reference counts@>
5855 The next node or nodes after the reference count serve to describe the
5856 formal parameters. They either contain a code word that specifies all
5857 of the parameters, or they contain zero or more parameter tokens followed
5858 by the code `|general_macro|'.
5861 /* reference count preceding a macro definition or picture header */
5862 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5863 @d general_macro 0 /* preface to a macro defined with a parameter list */
5864 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5865 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5866 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5867 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5868 @d of_macro 5 /* preface to a macro with
5869 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5870 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5871 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5874 void mp_delete_mac_ref (MP mp,pointer p) {
5875 /* |p| points to the reference count of a macro list that is
5876 losing one reference */
5877 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5878 else decr(ref_count(p));
5881 @ The following subroutine displays a macro, given a pointer to its
5885 @<Declare the procedure called |print_cmd_mod|@>;
5886 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5887 pointer r; /* temporary storage */
5888 p=link(p); /* bypass the reference count */
5889 while ( info(p)>text_macro ){
5890 r=link(p); link(p)=null;
5891 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5892 if ( l>0 ) l=l-mp->tally; else return;
5893 } /* control printing of `\.{ETC.}' */
5897 case general_macro:mp_print(mp, "->"); break;
5899 case primary_macro: case secondary_macro: case tertiary_macro:
5900 mp_print_char(mp, '<');
5901 mp_print_cmd_mod(mp, param_type,info(p));
5902 mp_print(mp, ">->");
5904 case expr_macro:mp_print(mp, "<expr>->"); break;
5905 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5906 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5907 case text_macro:mp_print(mp, "<text>->"); break;
5908 } /* there are no other cases */
5909 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5912 @* \[15] Data structures for variables.
5913 The variables of \MP\ programs can be simple, like `\.x', or they can
5914 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5915 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5916 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5917 things are represented inside of the computer.
5919 Each variable value occupies two consecutive words, either in a two-word
5920 node called a value node, or as a two-word subfield of a larger node. One
5921 of those two words is called the |value| field; it is an integer,
5922 containing either a |scaled| numeric value or the representation of some
5923 other type of quantity. (It might also be subdivided into halfwords, in
5924 which case it is referred to by other names instead of |value|.) The other
5925 word is broken into subfields called |type|, |name_type|, and |link|. The
5926 |type| field is a quarterword that specifies the variable's type, and
5927 |name_type| is a quarterword from which \MP\ can reconstruct the
5928 variable's name (sometimes by using the |link| field as well). Thus, only
5929 1.25 words are actually devoted to the value itself; the other
5930 three-quarters of a word are overhead, but they aren't wasted because they
5931 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5933 In this section we shall be concerned only with the structural aspects of
5934 variables, not their values. Later parts of the program will change the
5935 |type| and |value| fields, but we shall treat those fields as black boxes
5936 whose contents should not be touched.
5938 However, if the |type| field is |mp_structured|, there is no |value| field,
5939 and the second word is broken into two pointer fields called |attr_head|
5940 and |subscr_head|. Those fields point to additional nodes that
5941 contain structural information, as we shall see.
5943 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5944 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5945 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5946 @d value_node_size 2 /* the number of words in a value node */
5948 @ An attribute node is three words long. Two of these words contain |type|
5949 and |value| fields as described above, and the third word contains
5950 additional information: There is an |attr_loc| field, which contains the
5951 hash address of the token that names this attribute; and there's also a
5952 |parent| field, which points to the value node of |mp_structured| type at the
5953 next higher level (i.e., at the level to which this attribute is
5954 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5955 |link| field points to the next attribute with the same parent; these are
5956 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5957 final attribute node links to the constant |end_attr|, whose |attr_loc|
5958 field is greater than any legal hash address. The |attr_head| in the
5959 parent points to a node whose |name_type| is |mp_structured_root|; this
5960 node represents the null attribute, i.e., the variable that is relevant
5961 when no attributes are attached to the parent. The |attr_head| node is either
5962 a value node, a subscript node, or an attribute node, depending on what
5963 the parent would be if it were not structured; but the subscript and
5964 attribute fields are ignored, so it effectively contains only the data of
5965 a value node. The |link| field in this special node points to an attribute
5966 node whose |attr_loc| field is zero; the latter node represents a collective
5967 subscript `\.{[]}' attached to the parent, and its |link| field points to
5968 the first non-special attribute node (or to |end_attr| if there are none).
5970 A subscript node likewise occupies three words, with |type| and |value| fields
5971 plus extra information; its |name_type| is |subscr|. In this case the
5972 third word is called the |subscript| field, which is a |scaled| integer.
5973 The |link| field points to the subscript node with the next larger
5974 subscript, if any; otherwise the |link| points to the attribute node
5975 for collective subscripts at this level. We have seen that the latter node
5976 contains an upward pointer, so that the parent can be deduced.
5978 The |name_type| in a parent-less value node is |root|, and the |link|
5979 is the hash address of the token that names this value.
5981 In other words, variables have a hierarchical structure that includes
5982 enough threads running around so that the program is able to move easily
5983 between siblings, parents, and children. An example should be helpful:
5984 (The reader is advised to draw a picture while reading the following
5985 description, since that will help to firm up the ideas.)
5986 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
5987 and `\.{x20b}' have been mentioned in a user's program, where
5988 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
5989 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
5990 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
5991 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
5992 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
5993 node and |r| to a subscript node. (Are you still following this? Use
5994 a pencil to draw a diagram.) The lone variable `\.x' is represented by
5995 |type(q)| and |value(q)|; furthermore
5996 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
5997 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
5998 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
5999 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6000 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6001 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6002 |name_type(qq)=mp_structured_root|, and
6003 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6004 an attribute node representing `\.{x[][]}', which has never yet
6005 occurred; its |type| field is |undefined|, and its |value| field is
6006 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6007 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6008 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6009 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6010 (Maybe colored lines will help untangle your picture.)
6011 Node |r| is a subscript node with |type| and |value|
6012 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6013 and |link(r)=r1| is another subscript node. To complete the picture,
6014 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6015 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6016 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6017 and we finish things off with three more nodes
6018 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6019 with a larger sheet of paper.) The value of variable \.{x20b}
6020 appears in node~|qqq2|, as you can well imagine.
6022 If the example in the previous paragraph doesn't make things crystal
6023 clear, a glance at some of the simpler subroutines below will reveal how
6024 things work out in practice.
6026 The only really unusual thing about these conventions is the use of
6027 collective subscript attributes. The idea is to avoid repeating a lot of
6028 type information when many elements of an array are identical macros
6029 (for which distinct values need not be stored) or when they don't have
6030 all of the possible attributes. Branches of the structure below collective
6031 subscript attributes do not carry actual values except for macro identifiers;
6032 branches of the structure below subscript nodes do not carry significant
6033 information in their collective subscript attributes.
6035 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6036 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6037 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6038 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6039 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6040 @d attr_node_size 3 /* the number of words in an attribute node */
6041 @d subscr_node_size 3 /* the number of words in a subscript node */
6042 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6044 @<Initialize table...@>=
6045 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6047 @ Variables of type \&{pair} will have values that point to four-word
6048 nodes containing two numeric values. The first of these values has
6049 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6050 the |link| in the first points back to the node whose |value| points
6051 to this four-word node.
6053 Variables of type \&{transform} are similar, but in this case their
6054 |value| points to a 12-word node containing six values, identified by
6055 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6056 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6057 Finally, variables of type \&{color} have three values in six words
6058 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6060 When an entire structured variable is saved, the |root| indication
6061 is temporarily replaced by |saved_root|.
6063 Some variables have no name; they just are used for temporary storage
6064 while expressions are being evaluated. We call them {\sl capsules}.
6066 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6067 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6068 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6069 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6070 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6071 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6072 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6073 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6074 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6075 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6076 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6077 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6078 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6079 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6081 @d pair_node_size 4 /* the number of words in a pair node */
6082 @d transform_node_size 12 /* the number of words in a transform node */
6083 @d color_node_size 6 /* the number of words in a color node */
6084 @d cmykcolor_node_size 8 /* the number of words in a color node */
6087 small_number big_node_size[mp_pair_type+1];
6088 small_number sector0[mp_pair_type+1];
6089 small_number sector_offset[mp_black_part_sector+1];
6091 @ The |sector0| array gives for each big node type, |name_type| values
6092 for its first subfield; the |sector_offset| array gives for each
6093 |name_type| value, the offset from the first subfield in words;
6094 and the |big_node_size| array gives the size in words for each type of
6098 mp->big_node_size[mp_transform_type]=transform_node_size;
6099 mp->big_node_size[mp_pair_type]=pair_node_size;
6100 mp->big_node_size[mp_color_type]=color_node_size;
6101 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6102 mp->sector0[mp_transform_type]=mp_x_part_sector;
6103 mp->sector0[mp_pair_type]=mp_x_part_sector;
6104 mp->sector0[mp_color_type]=mp_red_part_sector;
6105 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6106 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6107 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6109 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6110 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6112 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6113 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6116 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6117 procedure call |init_big_node(p)| will allocate a pair or transform node
6118 for~|p|. The individual parts of such nodes are initially of type
6122 void mp_init_big_node (MP mp,pointer p) {
6123 pointer q; /* the new node */
6124 small_number s; /* its size */
6125 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6128 @<Make variable |q+s| newly independent@>;
6129 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6132 link(q)=p; value(p)=q;
6135 @ The |id_transform| function creates a capsule for the
6136 identity transformation.
6139 pointer mp_id_transform (MP mp) {
6140 pointer p,q,r; /* list manipulation registers */
6141 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6142 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6143 r=q+transform_node_size;
6146 type(r)=mp_known; value(r)=0;
6148 value(xx_part_loc(q))=unity;
6149 value(yy_part_loc(q))=unity;
6153 @ Tokens are of type |tag_token| when they first appear, but they point
6154 to |null| until they are first used as the root of a variable.
6155 The following subroutine establishes the root node on such grand occasions.
6158 void mp_new_root (MP mp,pointer x) {
6159 pointer p; /* the new node */
6160 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6161 link(p)=x; equiv(x)=p;
6164 @ These conventions for variable representation are illustrated by the
6165 |print_variable_name| routine, which displays the full name of a
6166 variable given only a pointer to its two-word value packet.
6169 void mp_print_variable_name (MP mp, pointer p);
6172 void mp_print_variable_name (MP mp, pointer p) {
6173 pointer q; /* a token list that will name the variable's suffix */
6174 pointer r; /* temporary for token list creation */
6175 while ( name_type(p)>=mp_x_part_sector ) {
6176 @<Preface the output with a part specifier; |return| in the
6177 case of a capsule@>;
6180 while ( name_type(p)>mp_saved_root ) {
6181 @<Ascend one level, pushing a token onto list |q|
6182 and replacing |p| by its parent@>;
6184 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6185 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6187 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6188 mp_flush_token_list(mp, r);
6191 @ @<Ascend one level, pushing a token onto list |q|...@>=
6193 if ( name_type(p)==mp_subscr ) {
6194 r=mp_new_num_tok(mp, subscript(p));
6197 } while (name_type(p)!=mp_attr);
6198 } else if ( name_type(p)==mp_structured_root ) {
6199 p=link(p); goto FOUND;
6201 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6202 @:this can't happen var}{\quad var@>
6203 r=mp_get_avail(mp); info(r)=attr_loc(p);
6210 @ @<Preface the output with a part specifier...@>=
6211 { switch (name_type(p)) {
6212 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6213 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6214 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6215 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6216 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6217 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6218 case mp_red_part_sector: mp_print(mp, "red"); break;
6219 case mp_green_part_sector: mp_print(mp, "green"); break;
6220 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6221 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6222 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6223 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6224 case mp_black_part_sector: mp_print(mp, "black"); break;
6225 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6227 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6230 } /* there are no other cases */
6231 mp_print(mp, "part ");
6232 p=link(p-mp->sector_offset[name_type(p)]);
6235 @ The |interesting| function returns |true| if a given variable is not
6236 in a capsule, or if the user wants to trace capsules.
6239 boolean mp_interesting (MP mp,pointer p) {
6240 small_number t; /* a |name_type| */
6241 if ( mp->internal[tracing_capsules]>0 ) {
6245 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6246 t=name_type(link(p-mp->sector_offset[t]));
6247 return (t!=mp_capsule);
6251 @ Now here is a subroutine that converts an unstructured type into an
6252 equivalent structured type, by inserting a |mp_structured| node that is
6253 capable of growing. This operation is done only when |name_type(p)=root|,
6254 |subscr|, or |attr|.
6256 The procedure returns a pointer to the new node that has taken node~|p|'s
6257 place in the structure. Node~|p| itself does not move, nor are its
6258 |value| or |type| fields changed in any way.
6261 pointer mp_new_structure (MP mp,pointer p) {
6262 pointer q,r=0; /* list manipulation registers */
6263 switch (name_type(p)) {
6265 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6268 @<Link a new subscript node |r| in place of node |p|@>;
6271 @<Link a new attribute node |r| in place of node |p|@>;
6274 mp_confusion(mp, "struct");
6275 @:this can't happen struct}{\quad struct@>
6278 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6279 attr_head(r)=p; name_type(p)=mp_structured_root;
6280 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6281 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6282 attr_loc(q)=collective_subscript;
6286 @ @<Link a new subscript node |r| in place of node |p|@>=
6291 } while (name_type(q)!=mp_attr);
6292 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6296 r=mp_get_node(mp, subscr_node_size);
6297 link(q)=r; subscript(r)=subscript(p);
6300 @ If the attribute is |collective_subscript|, there are two pointers to
6301 node~|p|, so we must change both of them.
6303 @<Link a new attribute node |r| in place of node |p|@>=
6305 q=parent(p); r=attr_head(q);
6309 r=mp_get_node(mp, attr_node_size); link(q)=r;
6310 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6311 if ( attr_loc(p)==collective_subscript ) {
6312 q=subscr_head_loc(parent(p));
6313 while ( link(q)!=p ) q=link(q);
6318 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6319 list of suffixes; it returns a pointer to the corresponding two-word
6320 value. For example, if |t| points to token \.x followed by a numeric
6321 token containing the value~7, |find_variable| finds where the value of
6322 \.{x7} is stored in memory. This may seem a simple task, and it
6323 usually is, except when \.{x7} has never been referenced before.
6324 Indeed, \.x may never have even been subscripted before; complexities
6325 arise with respect to updating the collective subscript information.
6327 If a macro type is detected anywhere along path~|t|, or if the first
6328 item on |t| isn't a |tag_token|, the value |null| is returned.
6329 Otherwise |p| will be a non-null pointer to a node such that
6330 |undefined<type(p)<mp_structured|.
6332 @d abort_find { return null; }
6335 pointer mp_find_variable (MP mp,pointer t) {
6336 pointer p,q,r,s; /* nodes in the ``value'' line */
6337 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6338 integer n; /* subscript or attribute */
6339 memory_word save_word; /* temporary storage for a word of |mem| */
6341 p=info(t); t=link(t);
6342 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6343 if ( equiv(p)==null ) mp_new_root(mp, p);
6346 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6347 if ( t<mp->hi_mem_min ) {
6348 @<Descend one level for the subscript |value(t)|@>
6350 @<Descend one level for the attribute |info(t)|@>;
6354 if ( type(pp)>=mp_structured ) {
6355 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6357 if ( type(p)==mp_structured ) p=attr_head(p);
6358 if ( type(p)==undefined ) {
6359 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6360 type(p)=type(pp); value(p)=null;
6365 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6366 |pp|~stays in the collective line while |p|~goes through actual subscript
6369 @<Make sure that both nodes |p| and |pp|...@>=
6370 if ( type(pp)!=mp_structured ) {
6371 if ( type(pp)>mp_structured ) abort_find;
6372 ss=mp_new_structure(mp, pp);
6375 }; /* now |type(pp)=mp_structured| */
6376 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6377 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6379 @ We want this part of the program to be reasonably fast, in case there are
6381 lots of subscripts at the same level of the data structure. Therefore
6382 we store an ``infinite'' value in the word that appears at the end of the
6383 subscript list, even though that word isn't part of a subscript node.
6385 @<Descend one level for the subscript |value(t)|@>=
6388 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6389 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6390 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6393 } while (n>subscript(s));
6394 if ( n==subscript(s) ) {
6397 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6398 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6400 mp->mem[subscript_loc(q)]=save_word;
6403 @ @<Descend one level for the attribute |info(t)|@>=
6409 } while (n>attr_loc(ss));
6410 if ( n<attr_loc(ss) ) {
6411 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6412 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6413 parent(qq)=pp; ss=qq;
6418 pp=ss; s=attr_head(p);
6421 } while (n>attr_loc(s));
6422 if ( n==attr_loc(s) ) {
6425 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6426 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6432 @ Variables lose their former values when they appear in a type declaration,
6433 or when they are defined to be macros or \&{let} equal to something else.
6434 A subroutine will be defined later that recycles the storage associated
6435 with any particular |type| or |value|; our goal now is to study a higher
6436 level process called |flush_variable|, which selectively frees parts of a
6439 This routine has some complexity because of examples such as
6440 `\hbox{\tt numeric x[]a[]b}'
6441 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6442 `\hbox{\tt vardef x[]a[]=...}'
6443 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6444 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6445 to handle such examples is to use recursion; so that's what we~do.
6448 Parameter |p| points to the root information of the variable;
6449 parameter |t| points to a list of one-word nodes that represent
6450 suffixes, with |info=collective_subscript| for subscripts.
6453 @<Declare subroutines for printing expressions@>
6454 @<Declare basic dependency-list subroutines@>
6455 @<Declare the recycling subroutines@>
6456 void mp_flush_cur_exp (MP mp,scaled v) ;
6457 @<Declare the procedure called |flush_below_variable|@>
6460 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6461 pointer q,r; /* list manipulation */
6462 halfword n; /* attribute to match */
6464 if ( type(p)!=mp_structured ) return;
6465 n=info(t); t=link(t);
6466 if ( n==collective_subscript ) {
6467 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6468 while ( name_type(q)==mp_subscr ){
6469 mp_flush_variable(mp, q,t,discard_suffixes);
6471 if ( type(q)==mp_structured ) r=q;
6472 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6482 } while (attr_loc(p)<n);
6483 if ( attr_loc(p)!=n ) return;
6485 if ( discard_suffixes ) {
6486 mp_flush_below_variable(mp, p);
6488 if ( type(p)==mp_structured ) p=attr_head(p);
6489 mp_recycle_value(mp, p);
6493 @ The next procedure is simpler; it wipes out everything but |p| itself,
6494 which becomes undefined.
6496 @<Declare the procedure called |flush_below_variable|@>=
6497 void mp_flush_below_variable (MP mp, pointer p);
6500 void mp_flush_below_variable (MP mp,pointer p) {
6501 pointer q,r; /* list manipulation registers */
6502 if ( type(p)!=mp_structured ) {
6503 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6506 while ( name_type(q)==mp_subscr ) {
6507 mp_flush_below_variable(mp, q); r=q; q=link(q);
6508 mp_free_node(mp, r,subscr_node_size);
6510 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6511 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6512 else mp_free_node(mp, r,subscr_node_size);
6513 /* we assume that |subscr_node_size=attr_node_size| */
6515 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6516 } while (q!=end_attr);
6521 @ Just before assigning a new value to a variable, we will recycle the
6522 old value and make the old value undefined. The |und_type| routine
6523 determines what type of undefined value should be given, based on
6524 the current type before recycling.
6527 small_number mp_und_type (MP mp,pointer p) {
6529 case undefined: case mp_vacuous:
6531 case mp_boolean_type: case mp_unknown_boolean:
6532 return mp_unknown_boolean;
6533 case mp_string_type: case mp_unknown_string:
6534 return mp_unknown_string;
6535 case mp_pen_type: case mp_unknown_pen:
6536 return mp_unknown_pen;
6537 case mp_path_type: case mp_unknown_path:
6538 return mp_unknown_path;
6539 case mp_picture_type: case mp_unknown_picture:
6540 return mp_unknown_picture;
6541 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6542 case mp_pair_type: case mp_numeric_type:
6544 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6545 return mp_numeric_type;
6546 } /* there are no other cases */
6550 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6551 of a symbolic token. It must remove any variable structure or macro
6552 definition that is currently attached to that symbol. If the |saving|
6553 parameter is true, a subsidiary structure is saved instead of destroyed.
6556 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6557 pointer q; /* |equiv(p)| */
6559 switch (eq_type(p) % outer_tag) {
6561 case secondary_primary_macro:
6562 case tertiary_secondary_macro:
6563 case expression_tertiary_macro:
6564 if ( ! saving ) mp_delete_mac_ref(mp, q);
6569 name_type(q)=mp_saved_root;
6571 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6578 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6581 @* \[16] Saving and restoring equivalents.
6582 The nested structure given by \&{begingroup} and \&{endgroup}
6583 allows |eqtb| entries to be saved and restored, so that temporary changes
6584 can be made without difficulty. When the user requests a current value to
6585 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6586 \&{endgroup} ultimately causes the old values to be removed from the save
6587 stack and put back in their former places.
6589 The save stack is a linked list containing three kinds of entries,
6590 distinguished by their |info| fields. If |p| points to a saved item,
6594 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6595 such an item to the save stack and each \&{endgroup} cuts back the stack
6596 until the most recent such entry has been removed.
6599 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6600 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6601 commands or suitable \&{interim} commands.
6604 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6605 integer to be restored to internal parameter number~|q|. Such entries
6606 are generated by \&{interim} commands.
6609 The global variable |save_ptr| points to the top item on the save stack.
6611 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6612 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6613 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6614 link((A))=mp->save_ptr; mp->save_ptr=(A);
6618 pointer save_ptr; /* the most recently saved item */
6620 @ @<Set init...@>=mp->save_ptr=null;
6622 @ The |save_variable| routine is given a hash address |q|; it salts this
6623 address in the save stack, together with its current equivalent,
6624 then makes token~|q| behave as though it were brand new.
6626 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6627 things from the stack when the program is not inside a group, so there's
6628 no point in wasting the space.
6630 @c void mp_save_variable (MP mp,pointer q) {
6631 pointer p; /* temporary register */
6632 if ( mp->save_ptr!=null ){
6633 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6634 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6636 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6639 @ Similarly, |save_internal| is given the location |q| of an internal
6640 quantity like |tracing_pens|. It creates a save stack entry of the
6643 @c void mp_save_internal (MP mp,halfword q) {
6644 pointer p; /* new item for the save stack */
6645 if ( mp->save_ptr!=null ){
6646 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6647 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6651 @ At the end of a group, the |unsave| routine restores all of the saved
6652 equivalents in reverse order. This routine will be called only when there
6653 is at least one boundary item on the save stack.
6656 void mp_unsave (MP mp) {
6657 pointer q; /* index to saved item */
6658 pointer p; /* temporary register */
6659 while ( info(mp->save_ptr)!=0 ) {
6660 q=info(mp->save_ptr);
6662 if ( mp->internal[tracing_restores]>0 ) {
6663 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6664 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6665 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6666 mp_end_diagnostic(mp, false);
6668 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6670 if ( mp->internal[tracing_restores]>0 ) {
6671 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6672 mp_print_text(q); mp_print_char(mp, '}');
6673 mp_end_diagnostic(mp, false);
6675 mp_clear_symbol(mp, q,false);
6676 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6677 if ( eq_type(q) % outer_tag==tag_token ) {
6679 if ( p!=null ) name_type(p)=mp_root;
6682 p=link(mp->save_ptr);
6683 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6685 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6688 @* \[17] Data structures for paths.
6689 When a \MP\ user specifies a path, \MP\ will create a list of knots
6690 and control points for the associated cubic spline curves. If the
6691 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6692 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6693 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6694 @:Bezier}{B\'ezier, Pierre Etienne@>
6695 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6696 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6699 There is a 8-word node for each knot $z_k$, containing one word of
6700 control information and six words for the |x| and |y| coordinates of
6701 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6702 |left_type| and |right_type| fields, which each occupy a quarter of
6703 the first word in the node; they specify properties of the curve as it
6704 enters and leaves the knot. There's also a halfword |link| field,
6705 which points to the following knot, and a final supplementary word (of
6706 which only a quarter is used).
6708 If the path is a closed contour, knots 0 and |n| are identical;
6709 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6710 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6711 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6712 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6714 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6715 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6716 @d endpoint 0 /* |left_type| at path beginning and |right_type| at path end */
6717 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6718 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6719 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6720 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6721 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6722 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6723 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6724 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6725 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6726 @d left_coord(A) mp->mem[(A)+2].sc
6727 /* coordinate of previous control point given |x_loc| or |y_loc| */
6728 @d right_coord(A) mp->mem[(A)+4].sc
6729 /* coordinate of next control point given |x_loc| or |y_loc| */
6730 @d knot_node_size 8 /* number of words in a knot node */
6732 @ Before the B\'ezier control points have been calculated, the memory
6733 space they will ultimately occupy is taken up by information that can be
6734 used to compute them. There are four cases:
6737 \textindent{$\bullet$} If |right_type=open|, the curve should leave
6738 the knot in the same direction it entered; \MP\ will figure out a
6742 \textindent{$\bullet$} If |right_type=curl|, the curve should leave the
6743 knot in a direction depending on the angle at which it enters the next
6744 knot and on the curl parameter stored in |right_curl|.
6747 \textindent{$\bullet$} If |right_type=given|, the curve should leave the
6748 knot in a nonzero direction stored as an |angle| in |right_given|.
6751 \textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
6752 point for leaving this knot has already been computed; it is in the
6753 |right_x| and |right_y| fields.
6756 The rules for |left_type| are similar, but they refer to the curve entering
6757 the knot, and to \\{left} fields instead of \\{right} fields.
6759 Non-|explicit| control points will be chosen based on ``tension'' parameters
6760 in the |left_tension| and |right_tension| fields. The
6761 `\&{atleast}' option is represented by negative tension values.
6762 @:at_least_}{\&{atleast} primitive@>
6764 For example, the \MP\ path specification
6765 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6767 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6769 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6770 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6771 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6773 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6774 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6775 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6776 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6777 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6778 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6779 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6780 Of course, this example is more complicated than anything a normal user
6783 These types must satisfy certain restrictions because of the form of \MP's
6785 (i)~|open| type never appears in the same node together with |endpoint|,
6787 (ii)~The |right_type| of a node is |explicit| if and only if the
6788 |left_type| of the following node is |explicit|.
6789 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6791 @d left_curl left_x /* curl information when entering this knot */
6792 @d left_given left_x /* given direction when entering this knot */
6793 @d left_tension left_y /* tension information when entering this knot */
6794 @d right_curl right_x /* curl information when leaving this knot */
6795 @d right_given right_x /* given direction when leaving this knot */
6796 @d right_tension right_y /* tension information when leaving this knot */
6797 @d explicit 1 /* |left_type| or |right_type| when control points are known */
6798 @d given 2 /* |left_type| or |right_type| when a direction is given */
6799 @d curl 3 /* |left_type| or |right_type| when a curl is desired */
6800 @d open 4 /* |left_type| or |right_type| when \MP\ should choose the direction */
6802 @ Knots can be user-supplied, or they can be created by program code,
6803 like the |split_cubic| function, or |copy_path|. The distinction is
6804 needed for the cleanup routine that runs after |split_cubic|, because
6805 it should only delete knots it has previously inserted, and never
6806 anything that was user-supplied. In order to be able to differentiate
6807 one knot from another, we will set |originator(p):=metapost_user| when
6808 it appeared in the actual metapost program, and
6809 |originator(p):=program_code| in all other cases.
6811 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6812 @d program_code 0 /* not created by a user */
6813 @d metapost_user 1 /* created by a user */
6815 @ Here is a routine that prints a given knot list
6816 in symbolic form. It illustrates the conventions discussed above,
6817 and checks for anomalies that might arise while \MP\ is being debugged.
6819 @<Declare subroutines for printing expressions@>=
6820 void mp_pr_path (MP mp,pointer h);
6823 void mp_pr_path (MP mp,pointer h) {
6824 pointer p,q; /* for list traversal */
6828 if ( (p==null)||(q==null) ) {
6829 mp_print_nl(mp, "???"); return; /* this won't happen */
6832 @<Print information for adjacent knots |p| and |q|@>;
6835 if ( (p!=h)||(left_type(h)!=endpoint) ) {
6836 @<Print two dots, followed by |given| or |curl| if present@>;
6839 if ( left_type(h)!=endpoint )
6840 mp_print(mp, "cycle");
6843 @ @<Print information for adjacent knots...@>=
6844 mp_print_two(mp, x_coord(p),y_coord(p));
6845 switch (right_type(p)) {
6847 if ( left_type(p)==open ) mp_print(mp, "{open?}"); /* can't happen */
6849 if ( (left_type(q)!=endpoint)||(q!=h) ) q=null; /* force an error */
6853 @<Print control points between |p| and |q|, then |goto done1|@>;
6856 @<Print information for a curve that begins |open|@>;
6860 @<Print information for a curve that begins |curl| or |given|@>;
6863 mp_print(mp, "???"); /* can't happen */
6867 if ( left_type(q)<=explicit ) {
6868 mp_print(mp, "..control?"); /* can't happen */
6870 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6871 @<Print tension between |p| and |q|@>;
6874 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6875 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6877 @<Print two dots...@>=
6879 mp_print_nl(mp, " ..");
6880 if ( left_type(p)==given ) {
6881 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6882 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6883 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6884 } else if ( left_type(p)==curl ){
6885 mp_print(mp, "{curl ");
6886 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6890 @ @<Print tension between |p| and |q|@>=
6892 mp_print(mp, "..tension ");
6893 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6894 mp_print_scaled(mp, abs(right_tension(p)));
6895 if ( right_tension(p)!=left_tension(q) ){
6896 mp_print(mp, " and ");
6897 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6898 mp_print_scaled(mp, abs(left_tension(q)));
6902 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6904 mp_print(mp, "..controls ");
6905 mp_print_two(mp, right_x(p),right_y(p));
6906 mp_print(mp, " and ");
6907 if ( left_type(q)!=explicit ) {
6908 mp_print(mp, "??"); /* can't happen */
6911 mp_print_two(mp, left_x(q),left_y(q));
6916 @ @<Print information for a curve that begins |open|@>=
6917 if ( (left_type(p)!=explicit)&&(left_type(p)!=open) ) {
6918 mp_print(mp, "{open?}"); /* can't happen */
6922 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6923 \MP's default curl is present.
6925 The code here uses the fact that |left_curl==left_given| and
6926 |right_curl==right_given|.
6928 @<Print information for a curve that begins |curl|...@>=
6930 if ( left_type(p)==open )
6931 mp_print(mp, "??"); /* can't happen */
6933 if ( right_type(p)==curl ) {
6934 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6936 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6937 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6938 mp_print_scaled(mp, mp->n_sin);
6940 mp_print_char(mp, '}');
6943 @ It is convenient to have another version of |pr_path| that prints the path
6944 as a diagnostic message.
6946 @<Declare subroutines for printing expressions@>=
6947 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6948 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
6951 mp_end_diagnostic(mp, true);
6954 @ If we want to duplicate a knot node, we can say |copy_knot|:
6957 pointer mp_copy_knot (MP mp,pointer p) {
6958 pointer q; /* the copy */
6959 int k; /* runs through the words of a knot node */
6960 q=mp_get_node(mp, knot_node_size);
6961 for (k=0;k<=knot_node_size-1;k++) {
6962 mp->mem[q+k]=mp->mem[p+k];
6964 originator(q)=originator(p);
6968 @ The |copy_path| routine makes a clone of a given path.
6971 pointer mp_copy_path (MP mp, pointer p) {
6972 pointer q,pp,qq; /* for list manipulation */
6973 q=mp_copy_knot(mp, p);
6976 link(qq)=mp_copy_knot(mp, pp);
6984 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
6985 returns a pointer to the first node of the copy, if the path is a cycle,
6986 but to the final node of a non-cyclic copy. The global
6987 variable |path_tail| will point to the final node of the original path;
6988 this trick makes it easier to implement `\&{doublepath}'.
6990 All node types are assumed to be |endpoint| or |explicit| only.
6993 pointer mp_htap_ypoc (MP mp,pointer p) {
6994 pointer q,pp,qq,rr; /* for list manipulation */
6995 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
6998 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
6999 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7000 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7001 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7002 originator(qq)=originator(pp);
7003 if ( link(pp)==p ) {
7004 link(q)=qq; mp->path_tail=pp; return q;
7006 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7011 pointer path_tail; /* the node that links to the beginning of a path */
7013 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7014 calling the following subroutine.
7016 @<Declare the recycling subroutines@>=
7017 void mp_toss_knot_list (MP mp,pointer p) ;
7020 void mp_toss_knot_list (MP mp,pointer p) {
7021 pointer q; /* the node being freed */
7022 pointer r; /* the next node */
7026 mp_free_node(mp, q,knot_node_size); q=r;
7030 @* \[18] Choosing control points.
7031 Now we must actually delve into one of \MP's more difficult routines,
7032 the |make_choices| procedure that chooses angles and control points for
7033 the splines of a curve when the user has not specified them explicitly.
7034 The parameter to |make_choices| points to a list of knots and
7035 path information, as described above.
7037 A path decomposes into independent segments at ``breakpoint'' knots,
7038 which are knots whose left and right angles are both prespecified in
7039 some way (i.e., their |left_type| and |right_type| aren't both open).
7042 @<Declare the procedure called |solve_choices|@>;
7043 void mp_make_choices (MP mp,pointer knots) {
7044 pointer h; /* the first breakpoint */
7045 pointer p,q; /* consecutive breakpoints being processed */
7046 @<Other local variables for |make_choices|@>;
7047 check_arith; /* make sure that |arith_error=false| */
7048 if ( mp->internal[tracing_choices]>0 )
7049 mp_print_path(mp, knots,", before choices",true);
7050 @<If consecutive knots are equal, join them explicitly@>;
7051 @<Find the first breakpoint, |h|, on the path;
7052 insert an artificial breakpoint if the path is an unbroken cycle@>;
7055 @<Fill in the control points between |p| and the next breakpoint,
7056 then advance |p| to that breakpoint@>;
7058 if ( mp->internal[tracing_choices]>0 )
7059 mp_print_path(mp, knots,", after choices",true);
7060 if ( mp->arith_error ) {
7061 @<Report an unexpected problem during the choice-making@>;
7065 @ @<Report an unexpected problem during the choice...@>=
7067 print_err("Some number got too big");
7068 @.Some number got too big@>
7069 help2("The path that I just computed is out of range.")
7070 ("So it will probably look funny. Proceed, for a laugh.");
7071 mp_put_get_error(mp); mp->arith_error=false;
7074 @ Two knots in a row with the same coordinates will always be joined
7075 by an explicit ``curve'' whose control points are identical with the
7078 @<If consecutive knots are equal, join them explicitly@>=
7082 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>explicit ) {
7083 right_type(p)=explicit;
7084 if ( left_type(p)==open ) {
7085 left_type(p)=curl; left_curl(p)=unity;
7087 left_type(q)=explicit;
7088 if ( right_type(q)==open ) {
7089 right_type(q)=curl; right_curl(q)=unity;
7091 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7092 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7097 @ If there are no breakpoints, it is necessary to compute the direction
7098 angles around an entire cycle. In this case the |left_type| of the first
7099 node is temporarily changed to |end_cycle|.
7101 @d end_cycle (open+1)
7103 @<Find the first breakpoint, |h|, on the path...@>=
7106 if ( left_type(h)!=open ) break;
7107 if ( right_type(h)!=open ) break;
7110 left_type(h)=end_cycle; break;
7114 @ If |right_type(p)<given| and |q=link(p)|, we must have
7115 |right_type(p)=left_type(q)=explicit| or |endpoint|.
7117 @<Fill in the control points between |p| and the next breakpoint...@>=
7119 if ( right_type(p)>=given ) {
7120 while ( (left_type(q)==open)&&(right_type(q)==open) ) q=link(q);
7121 @<Fill in the control information between
7122 consecutive breakpoints |p| and |q|@>;
7123 } else if ( right_type(p)==endpoint ) {
7124 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7128 @ This step makes it possible to transform an explicitly computed path without
7129 checking the |left_type| and |right_type| fields.
7131 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7133 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7134 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7137 @ Before we can go further into the way choices are made, we need to
7138 consider the underlying theory. The basic ideas implemented in |make_choices|
7139 are due to John Hobby, who introduced the notion of ``mock curvature''
7140 @^Hobby, John Douglas@>
7141 at a knot. Angles are chosen so that they preserve mock curvature when
7142 a knot is passed, and this has been found to produce excellent results.
7144 It is convenient to introduce some notations that simplify the necessary
7145 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7146 between knots |k| and |k+1|; and let
7147 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7148 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7149 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7150 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7151 $$\eqalign{z_k^+&=z_k+
7152 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7154 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7155 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7156 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7157 corresponding ``offset angles.'' These angles satisfy the condition
7158 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7159 whenever the curve leaves an intermediate knot~|k| in the direction that
7162 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7163 the curve at its beginning and ending points. This means that
7164 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7165 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7166 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7167 z\k^-,z\k^{\phantom+};t)$
7170 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7171 \qquad{\rm and}\qquad
7172 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7173 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7175 approximation to this true curvature that arises in the limit for
7176 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7177 The standard velocity function satisfies
7178 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7179 hence the mock curvatures are respectively
7180 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7181 \qquad{\rm and}\qquad
7182 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7184 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7185 determines $\phi_k$ when $\theta_k$ is known, so the task of
7186 angle selection is essentially to choose appropriate values for each
7187 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7188 from $(**)$, we obtain a system of linear equations of the form
7189 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7191 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7192 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7193 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7194 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7195 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7196 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7197 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7198 hence they have a unique solution. Moreover, in most cases the tensions
7199 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7200 solution numerically stable, and there is an exponential damping
7201 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7202 a factor of~$O(2^{-j})$.
7204 @ However, we still must consider the angles at the starting and ending
7205 knots of a non-cyclic path. These angles might be given explicitly, or
7206 they might be specified implicitly in terms of an amount of ``curl.''
7208 Let's assume that angles need to be determined for a non-cyclic path
7209 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7210 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7211 have been given for $0<k<n$, and it will be convenient to introduce
7212 equations of the same form for $k=0$ and $k=n$, where
7213 $$A_0=B_0=C_n=D_n=0.$$
7214 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7215 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7216 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7217 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7218 mock curvature at $z_1$; i.e.,
7219 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7220 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7221 This equation simplifies to
7222 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7223 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7224 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7225 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7226 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7227 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7228 hence the linear equations remain nonsingular.
7230 Similar considerations apply at the right end, when the final angle $\phi_n$
7231 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7232 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7234 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7235 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7236 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7238 When |make_choices| chooses angles, it must compute the coefficients of
7239 these linear equations, then solve the equations. To compute the coefficients,
7240 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7241 When the equations are solved, the chosen directions $\theta_k$ are put
7242 back into the form of control points by essentially computing sines and
7245 @ OK, we are ready to make the hard choices of |make_choices|.
7246 Most of the work is relegated to an auxiliary procedure
7247 called |solve_choices|, which has been introduced to keep
7248 |make_choices| from being extremely long.
7250 @<Fill in the control information between...@>=
7251 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7252 set $n$ to the length of the path@>;
7253 @<Remove |open| types at the breakpoints@>;
7254 mp_solve_choices(mp, p,q,n)
7256 @ It's convenient to precompute quantities that will be needed several
7257 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7258 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7259 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7260 and $z\k-z_k$ will be stored in |psi[k]|.
7263 int path_size; /* maximum number of knots between breakpoints of a path */
7266 scaled *delta; /* knot differences */
7267 angle *psi; /* turning angles */
7269 @ @<Allocate or initialize ...@>=
7275 @ @<Dealloc variables@>=
7281 @ @<Other local variables for |make_choices|@>=
7282 int k,n; /* current and final knot numbers */
7283 pointer s,t; /* registers for list traversal */
7284 scaled delx,dely; /* directions where |open| meets |explicit| */
7285 fraction sine,cosine; /* trig functions of various angles */
7287 @ @<Calculate the turning angles...@>=
7290 k=0; s=p; n=mp->path_size;
7293 mp->delta_x[k]=x_coord(t)-x_coord(s);
7294 mp->delta_y[k]=y_coord(t)-y_coord(s);
7295 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7297 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7298 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7299 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7300 mp_take_fraction(mp, mp->delta_y[k],sine),
7301 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7302 mp_take_fraction(mp, mp->delta_x[k],sine));
7305 if ( k==mp->path_size ) {
7306 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7307 goto RESTART; /* retry, loop size has changed */
7310 } while (! (k>=n)&&(left_type(s)!=end_cycle));
7311 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7314 @ When we get to this point of the code, |right_type(p)| is either
7315 |given| or |curl| or |open|. If it is |open|, we must have
7316 |left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
7317 case, the |open| type is converted to |given|; however, if the
7318 velocity coming into this knot is zero, the |open| type is
7319 converted to a |curl|, since we don't know the incoming direction.
7321 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7322 |end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7324 @<Remove |open| types at the breakpoints@>=
7325 if ( left_type(q)==open ) {
7326 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7327 if ( (delx==0)&&(dely==0) ) {
7328 left_type(q)=curl; left_curl(q)=unity;
7330 left_type(q)=given; left_given(q)=mp_n_arg(mp, delx,dely);
7333 if ( (right_type(p)==open)&&(left_type(p)==explicit) ) {
7334 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7335 if ( (delx==0)&&(dely==0) ) {
7336 right_type(p)=curl; right_curl(p)=unity;
7338 right_type(p)=given; right_given(p)=mp_n_arg(mp, delx,dely);
7342 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7343 and exactly one of the breakpoints involves a curl. The simplest case occurs
7344 when |n=1| and there is a curl at both breakpoints; then we simply draw
7347 But before coding up the simple cases, we might as well face the general case,
7348 since we must deal with it sooner or later, and since the general case
7349 is likely to give some insight into the way simple cases can be handled best.
7351 When there is no cycle, the linear equations to be solved form a tridiagonal
7352 system, and we can apply the standard technique of Gaussian elimination
7353 to convert that system to a sequence of equations of the form
7354 $$\theta_0+u_0\theta_1=v_0,\quad
7355 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7356 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7358 It is possible to do this diagonalization while generating the equations.
7359 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7360 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7362 The procedure is slightly more complex when there is a cycle, but the
7363 basic idea will be nearly the same. In the cyclic case the right-hand
7364 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7365 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7366 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7367 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7368 eliminate the $w$'s from the system, after which the solution can be
7371 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7372 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7373 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7374 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7377 angle *theta; /* values of $\theta_k$ */
7378 fraction *uu; /* values of $u_k$ */
7379 angle *vv; /* values of $v_k$ */
7380 fraction *ww; /* values of $w_k$ */
7382 @ @<Allocate or initialize ...@>=
7388 @ @<Dealloc variables@>=
7394 @ @<Declare |mp_reallocate| functions@>=
7395 void mp_reallocate_paths (MP mp, int l);
7398 void mp_reallocate_paths (MP mp, int l) {
7399 XREALLOC (mp->delta_x, (l+1), scaled);
7400 XREALLOC (mp->delta_y, (l+1), scaled);
7401 XREALLOC (mp->delta, (l+1), scaled);
7402 XREALLOC (mp->psi, (l+1), angle);
7403 XREALLOC (mp->theta, (l+1), angle);
7404 XREALLOC (mp->uu, (l+1), fraction);
7405 XREALLOC (mp->vv, (l+1), angle);
7406 XREALLOC (mp->ww, (l+1), fraction);
7410 @ Our immediate problem is to get the ball rolling by setting up the
7411 first equation or by realizing that no equations are needed, and to fit
7412 this initialization into a framework suitable for the overall computation.
7414 @<Declare the procedure called |solve_choices|@>=
7415 @<Declare subroutines needed by |solve_choices|@>;
7416 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7417 int k; /* current knot number */
7418 pointer r,s,t; /* registers for list traversal */
7419 @<Other local variables for |solve_choices|@>;
7424 @<Get the linear equations started; or |return|
7425 with the control points in place, if linear equations
7428 switch (left_type(s)) {
7429 case end_cycle: case open:
7430 @<Set up equation to match mock curvatures
7431 at $z_k$; then |goto found| with $\theta_n$
7432 adjusted to equal $\theta_0$, if a cycle has ended@>;
7435 @<Set up equation for a curl at $\theta_n$
7439 @<Calculate the given value of $\theta_n$
7442 } /* there are no other cases */
7447 @<Finish choosing angles and assigning control points@>;
7450 @ On the first time through the loop, we have |k=0| and |r| is not yet
7451 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7453 @<Get the linear equations started...@>=
7454 switch (right_type(s)) {
7456 if ( left_type(t)==given ) {
7457 @<Reduce to simple case of two givens and |return|@>
7459 @<Set up the equation for a given value of $\theta_0$@>;
7463 if ( left_type(t)==curl ) {
7464 @<Reduce to simple case of straight line and |return|@>
7466 @<Set up the equation for a curl at $\theta_0$@>;
7470 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7471 /* this begins a cycle */
7473 } /* there are no other cases */
7475 @ The general equation that specifies equality of mock curvature at $z_k$ is
7476 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7477 as derived above. We want to combine this with the already-derived equation
7478 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7480 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7482 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7483 -A_kw_{k-1}\theta_0$$
7484 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7485 fixed-point arithmetic, avoiding the chance of overflow while retaining
7488 The calculations will be performed in several registers that
7489 provide temporary storage for intermediate quantities.
7491 @<Other local variables for |solve_choices|@>=
7492 fraction aa,bb,cc,ff,acc; /* temporary registers */
7493 scaled dd,ee; /* likewise, but |scaled| */
7494 scaled lt,rt; /* tension values */
7496 @ @<Set up equation to match mock curvatures...@>=
7497 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7498 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7499 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7500 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7501 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7502 @<Calculate the values of $v_k$ and $w_k$@>;
7503 if ( left_type(s)==end_cycle ) {
7504 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7508 @ Since tension values are never less than 3/4, the values |aa| and
7509 |bb| computed here are never more than 4/5.
7511 @<Calculate the values $\\{aa}=...@>=
7512 if ( abs(right_tension(r))==unity) {
7513 aa=fraction_half; dd=2*mp->delta[k];
7515 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7516 dd=mp_take_fraction(mp, mp->delta[k],
7517 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7519 if ( abs(left_tension(t))==unity ){
7520 bb=fraction_half; ee=2*mp->delta[k-1];
7522 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7523 ee=mp_take_fraction(mp, mp->delta[k-1],
7524 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7526 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7528 @ The ratio to be calculated in this step can be written in the form
7529 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7530 \\{cc}\cdot\\{dd},$$
7531 because of the quantities just calculated. The values of |dd| and |ee|
7532 will not be needed after this step has been performed.
7534 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7535 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7536 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7538 ff=mp_make_fraction(mp, lt,rt);
7539 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7540 dd=mp_take_fraction(mp, dd,ff);
7542 ff=mp_make_fraction(mp, rt,lt);
7543 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7544 ee=mp_take_fraction(mp, ee,ff);
7547 ff=mp_make_fraction(mp, ee,ee+dd)
7549 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7550 equation was specified by a curl. In that case we must use a special
7551 method of computation to prevent overflow.
7553 Fortunately, the calculations turn out to be even simpler in this ``hard''
7554 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7555 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7557 @<Calculate the values of $v_k$ and $w_k$@>=
7558 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7559 if ( right_type(r)==curl ) {
7561 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7563 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7564 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7565 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7566 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7567 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7568 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7569 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7572 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7573 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7574 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7575 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7578 The idea in the following code is to observe that
7579 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7580 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7581 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7582 so we can solve for $\theta_n=\theta_0$.
7584 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7586 aa=0; bb=fraction_one; /* we have |k=n| */
7589 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7590 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7591 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7592 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7593 mp->theta[n]=aa; mp->vv[0]=aa;
7594 for (k=1;k<=n-1;k++) {
7595 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7600 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7601 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7603 @<Calculate the given value of $\theta_n$...@>=
7605 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7606 reduce_angle(mp->theta[n]);
7610 @ @<Set up the equation for a given value of $\theta_0$@>=
7612 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7613 reduce_angle(mp->vv[0]);
7614 mp->uu[0]=0; mp->ww[0]=0;
7617 @ @<Set up the equation for a curl at $\theta_0$@>=
7618 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7619 if ( (rt==unity)&&(lt==unity) )
7620 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7622 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7623 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7626 @ @<Set up equation for a curl at $\theta_n$...@>=
7627 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7628 if ( (rt==unity)&&(lt==unity) )
7629 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7631 ff=mp_curl_ratio(mp, cc,lt,rt);
7632 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7633 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7637 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7638 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7639 a somewhat tedious program to calculate
7640 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7641 \alpha^3\gamma+(3-\beta)\beta^2},$$
7642 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7643 is necessary only if the curl and tension are both large.)
7644 The values of $\alpha$ and $\beta$ will be at most~4/3.
7646 @<Declare subroutines needed by |solve_choices|@>=
7647 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7649 fraction alpha,beta,num,denom,ff; /* registers */
7650 alpha=mp_make_fraction(mp, unity,a_tension);
7651 beta=mp_make_fraction(mp, unity,b_tension);
7652 if ( alpha<=beta ) {
7653 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7654 gamma=mp_take_fraction(mp, gamma,ff);
7655 beta=beta / 010000; /* convert |fraction| to |scaled| */
7656 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7657 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7659 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7660 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7661 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7662 /* $1365\approx 2^{12}/3$ */
7663 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7665 if ( num>=denom+denom+denom+denom ) return fraction_four;
7666 else return mp_make_fraction(mp, num,denom);
7669 @ We're in the home stretch now.
7671 @<Finish choosing angles and assigning control points@>=
7672 for (k=n-1;k>=0;k--) {
7673 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7678 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7679 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7680 mp_set_controls(mp, s,t,k);
7684 @ The |set_controls| routine actually puts the control points into
7685 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7686 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7687 $\cos\phi$ needed in this calculation.
7693 fraction cf; /* sines and cosines */
7695 @ @<Declare subroutines needed by |solve_choices|@>=
7696 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7697 fraction rr,ss; /* velocities, divided by thrice the tension */
7698 scaled lt,rt; /* tensions */
7699 fraction sine; /* $\sin(\theta+\phi)$ */
7700 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7701 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7702 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7703 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7704 @<Decrease the velocities,
7705 if necessary, to stay inside the bounding triangle@>;
7707 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7708 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7709 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7710 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7711 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7712 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7713 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7714 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7715 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7716 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7717 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7718 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7719 right_type(p)=explicit; left_type(q)=explicit;
7722 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7723 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7724 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7725 there is no ``bounding triangle.''
7726 @:at_least_}{\&{atleast} primitive@>
7728 @<Decrease the velocities, if necessary...@>=
7729 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7730 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7731 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7733 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7734 if ( right_tension(p)<0 )
7735 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7736 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7737 if ( left_tension(q)<0 )
7738 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7739 ss=mp_make_fraction(mp, abs(mp->st),sine);
7743 @ Only the simple cases remain to be handled.
7745 @<Reduce to simple case of two givens and |return|@>=
7747 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7748 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7749 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7750 mp_set_controls(mp, p,q,0); return;
7753 @ @<Reduce to simple case of straight line and |return|@>=
7755 right_type(p)=explicit; left_type(q)=explicit;
7756 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7758 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7759 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7760 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7761 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7763 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7764 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7765 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7768 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7769 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7770 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7771 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7773 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7774 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7775 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7780 @* \[19] Measuring paths.
7781 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7782 allow the user to measure the bounding box of anything that can go into a
7783 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7784 by just finding the bounding box of the knots and the control points. We
7785 need a more accurate version of the bounding box, but we can still use the
7786 easy estimate to save time by focusing on the interesting parts of the path.
7788 @ Computing an accurate bounding box involves a theme that will come up again
7789 and again. Given a Bernshte{\u\i}n polynomial
7790 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7791 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7792 we can conveniently bisect its range as follows:
7795 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7798 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7799 |0<=k<n-j|, for |0<=j<n|.
7803 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7804 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7805 This formula gives us the coefficients of polynomials to use over the ranges
7806 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7808 @ Now here's a subroutine that's handy for all sorts of path computations:
7809 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7810 returns the unique |fraction| value |t| between 0 and~1 at which
7811 $B(a,b,c;t)$ changes from positive to negative, or returns
7812 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7813 is already negative at |t=0|), |crossing_point| returns the value zero.
7815 @d no_crossing { return (fraction_one+1); }
7816 @d one_crossing { return fraction_one; }
7817 @d zero_crossing { return 0; }
7818 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7820 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7821 integer d; /* recursive counter */
7822 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7823 if ( a<0 ) zero_crossing;
7826 if ( c>0 ) { no_crossing; }
7827 else if ( (a==0)&&(b==0) ) { no_crossing;}
7828 else { one_crossing; }
7830 if ( a==0 ) zero_crossing;
7831 } else if ( a==0 ) {
7832 if ( b<=0 ) zero_crossing;
7834 @<Use bisection to find the crossing point, if one exists@>;
7837 @ The general bisection method is quite simple when $n=2$, hence
7838 |crossing_point| does not take much time. At each stage in the
7839 recursion we have a subinterval defined by |l| and~|j| such that
7840 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7841 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7843 It is convenient for purposes of calculation to combine the values
7844 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7845 of bisection then corresponds simply to doubling $d$ and possibly
7846 adding~1. Furthermore it proves to be convenient to modify
7847 our previous conventions for bisection slightly, maintaining the
7848 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7849 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7850 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7852 The following code maintains the invariant relations
7853 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7854 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7855 it has been constructed in such a way that no arithmetic overflow
7856 will occur if the inputs satisfy
7857 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7859 @<Use bisection to find the crossing point...@>=
7860 d=1; x0=a; x1=a-b; x2=b-c;
7871 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7875 } while (d<fraction_one);
7876 return (d-fraction_one)
7878 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7879 a cubic corresponding to the |fraction| value~|t|.
7881 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7882 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7884 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,(A)-(B),t))
7886 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7887 scaled x1,x2,x3; /* intermediate values */
7888 x1=t_of_the_way(knot_coord(p),right_coord(p));
7889 x2=t_of_the_way(right_coord(p),left_coord(q));
7890 x3=t_of_the_way(left_coord(q),knot_coord(q));
7891 x1=t_of_the_way(x1,x2);
7892 x2=t_of_the_way(x2,x3);
7893 return t_of_the_way(x1,x2);
7896 @ The actual bounding box information is stored in global variables.
7897 Since it is convenient to address the $x$ and $y$ information
7898 separately, we define arrays indexed by |x_code..y_code| and use
7899 macros to give them more convenient names.
7903 mp_x_code=0, /* index for |minx| and |maxx| */
7904 mp_y_code /* index for |miny| and |maxy| */
7908 @d minx mp->bbmin[mp_x_code]
7909 @d maxx mp->bbmax[mp_x_code]
7910 @d miny mp->bbmin[mp_y_code]
7911 @d maxy mp->bbmax[mp_y_code]
7914 scaled bbmin[mp_y_code+1];
7915 scaled bbmax[mp_y_code+1];
7916 /* the result of procedures that compute bounding box information */
7918 @ Now we're ready for the key part of the bounding box computation.
7919 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
7920 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
7921 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
7923 for $0<t\le1$. In other words, the procedure adjusts the bounds to
7924 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
7925 The |c| parameter is |x_code| or |y_code|.
7927 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
7928 boolean wavy; /* whether we need to look for extremes */
7929 scaled del1,del2,del3,del,dmax; /* proportional to the control
7930 points of a quadratic derived from a cubic */
7931 fraction t,tt; /* where a quadratic crosses zero */
7932 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
7934 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7935 @<Check the control points against the bounding box and set |wavy:=true|
7936 if any of them lie outside@>;
7938 del1=right_coord(p)-knot_coord(p);
7939 del2=left_coord(q)-right_coord(p);
7940 del3=knot_coord(q)-left_coord(q);
7941 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
7942 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
7944 negate(del1); negate(del2); negate(del3);
7946 t=mp_crossing_point(mp, del1,del2,del3);
7947 if ( t<fraction_one ) {
7948 @<Test the extremes of the cubic against the bounding box@>;
7953 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
7954 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
7955 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
7957 @ @<Check the control points against the bounding box and set...@>=
7959 if ( mp->bbmin[c]<=right_coord(p) )
7960 if ( right_coord(p)<=mp->bbmax[c] )
7961 if ( mp->bbmin[c]<=left_coord(q) )
7962 if ( left_coord(q)<=mp->bbmax[c] )
7965 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
7966 section. We just set |del=0| in that case.
7968 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
7969 if ( del1!=0 ) del=del1;
7970 else if ( del2!=0 ) del=del2;
7974 if ( abs(del2)>dmax ) dmax=abs(del2);
7975 if ( abs(del3)>dmax ) dmax=abs(del3);
7976 while ( dmax<fraction_half ) {
7977 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
7981 @ Since |crossing_point| has tried to choose |t| so that
7982 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
7983 slope, the value of |del2| computed below should not be positive.
7984 But rounding error could make it slightly positive in which case we
7985 must cut it to zero to avoid confusion.
7987 @<Test the extremes of the cubic against the bounding box@>=
7989 x=mp_eval_cubic(mp, p,q,t);
7990 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7991 del2=t_of_the_way(del2,del3);
7992 /* now |0,del2,del3| represent the derivative on the remaining interval */
7993 if ( del2>0 ) del2=0;
7994 tt=mp_crossing_point(mp, 0,-del2,-del3);
7995 if ( tt<fraction_one ) {
7996 @<Test the second extreme against the bounding box@>;
8000 @ @<Test the second extreme against the bounding box@>=
8002 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8003 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8006 @ Finding the bounding box of a path is basically a matter of applying
8007 |bound_cubic| twice for each pair of adjacent knots.
8009 @c void mp_path_bbox (MP mp,pointer h) {
8010 pointer p,q; /* a pair of adjacent knots */
8011 minx=x_coord(h); miny=y_coord(h);
8012 maxx=minx; maxy=miny;
8015 if ( right_type(p)==endpoint ) return;
8017 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8018 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8023 @ Another important way to measure a path is to find its arc length. This
8024 is best done by using the general bisection algorithm to subdivide the path
8025 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8028 Since the arc length is the integral with respect to time of the magnitude of
8029 the velocity, it is natural to use Simpson's rule for the approximation.
8031 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8032 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8033 for the arc length of a path of length~1. For a cubic spline
8034 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8035 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8037 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8039 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8040 is the result of the bisection algorithm.
8042 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8043 This could be done via the theoretical error bound for Simpson's rule,
8045 but this is impractical because it requires an estimate of the fourth
8046 derivative of the quantity being integrated. It is much easier to just perform
8047 a bisection step and see how much the arc length estimate changes. Since the
8048 error for Simpson's rule is proportional to the fourth power of the sample
8049 spacing, the remaining error is typically about $1\over16$ of the amount of
8050 the change. We say ``typically'' because the error has a pseudo-random behavior
8051 that could cause the two estimates to agree when each contain large errors.
8053 To protect against disasters such as undetected cusps, the bisection process
8054 should always continue until all the $dz_i$ vectors belong to a single
8055 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8056 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8057 If such a spline happens to produce an erroneous arc length estimate that
8058 is little changed by bisection, the amount of the error is likely to be fairly
8059 small. We will try to arrange things so that freak accidents of this type do
8060 not destroy the inverse relationship between the \&{arclength} and
8061 \&{arctime} operations.
8062 @:arclength_}{\&{arclength} primitive@>
8063 @:arctime_}{\&{arctime} primitive@>
8065 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8067 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8068 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8069 returns the time when the arc length reaches |a_goal| if there is such a time.
8070 Thus the return value is either an arc length less than |a_goal| or, if the
8071 arc length would be at least |a_goal|, it returns a time value decreased by
8072 |two|. This allows the caller to use the sign of the result to distinguish
8073 between arc lengths and time values. On certain types of overflow, it is
8074 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8075 Otherwise, the result is always less than |a_goal|.
8077 Rather than halving the control point coordinates on each recursive call to
8078 |arc_test|, it is better to keep them proportional to velocity on the original
8079 curve and halve the results instead. This means that recursive calls can
8080 potentially use larger error tolerances in their arc length estimates. How
8081 much larger depends on to what extent the errors behave as though they are
8082 independent of each other. To save computing time, we use optimistic assumptions
8083 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8086 In addition to the tolerance parameter, |arc_test| should also have parameters
8087 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8088 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8089 and they are needed in different instances of |arc_test|.
8091 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8092 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8093 scaled dx2, scaled dy2, scaled v0, scaled v02,
8094 scaled v2, scaled a_goal, scaled tol) {
8095 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8096 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8098 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8099 scaled arc; /* best arc length estimate before recursion */
8100 @<Other local variables in |arc_test|@>;
8101 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8103 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8104 set |arc_test| and |return|@>;
8105 @<Test if the control points are confined to one quadrant or rotating them
8106 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8107 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8108 if ( arc < a_goal ) {
8111 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8112 that time minus |two|@>;
8115 @<Use one or two recursive calls to compute the |arc_test| function@>;
8119 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8120 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8121 |make_fraction| in this inner loop.
8124 @<Use one or two recursive calls to compute the |arc_test| function@>=
8126 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8127 large as possible@>;
8128 tol = tol + halfp(tol);
8129 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8130 halfp(v02), a_new, tol);
8132 return (-halfp(two-a));
8134 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8135 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8136 halfp(v02), v022, v2, a_new, tol);
8138 return (-halfp(-b) - half_unit);
8140 return (a + half(b-a));
8144 @ @<Other local variables in |arc_test|@>=
8145 scaled a,b; /* results of recursive calls */
8146 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8148 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8149 a_aux = el_gordo - a_goal;
8150 if ( a_goal > a_aux ) {
8151 a_aux = a_goal - a_aux;
8154 a_new = a_goal + a_goal;
8158 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8159 to force the additions and subtractions to be done in an order that avoids
8162 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8165 a_new = a_new + a_aux;
8168 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8169 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8170 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8171 this bound. Note that recursive calls will maintain this invariant.
8173 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8174 dx01 = half(dx0 + dx1);
8175 dx12 = half(dx1 + dx2);
8176 dx02 = half(dx01 + dx12);
8177 dy01 = half(dy0 + dy1);
8178 dy12 = half(dy1 + dy2);
8179 dy02 = half(dy01 + dy12)
8181 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8182 |a_goal=el_gordo| is guaranteed to yield the arc length.
8184 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8185 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8186 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8188 arc1 = v002 + half(halfp(v0+tmp) - v002);
8189 arc = v022 + half(halfp(v2+tmp) - v022);
8190 if ( (arc < el_gordo-arc1) ) {
8193 mp->arith_error = true;
8194 if ( a_goal==el_gordo ) return (el_gordo);
8198 @ @<Other local variables in |arc_test|@>=
8199 scaled tmp, tmp2; /* all purpose temporary registers */
8200 scaled arc1; /* arc length estimate for the first half */
8202 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8203 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8204 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8206 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8207 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8209 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8210 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8212 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8213 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8216 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8218 it is appropriate to use the same approximation to decide when the integral
8219 reaches the intermediate value |a_goal|. At this point
8221 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8222 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8223 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8224 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8225 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8229 $$ {\vb\dot B(t)\vb\over 3} \approx
8230 \cases{B\left(\hbox{|v0|},
8231 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8232 {1\over 2}\hbox{|v02|}; 2t \right)&
8233 if $t\le{1\over 2}$\cr
8234 B\left({1\over 2}\hbox{|v02|},
8235 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8236 \hbox{|v2|}; 2t-1 \right)&
8237 if $t\ge{1\over 2}$.\cr}
8240 We can integrate $\vb\dot B(t)\vb$ by using
8241 $$\int 3B(a,b,c;\tau)\,dt =
8242 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8245 This construction allows us to find the time when the arc length reaches
8246 |a_goal| by solving a cubic equation of the form
8247 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8248 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8249 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8250 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8251 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8252 $\tau$ given $a$, $b$, $c$, and $x$.
8254 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8256 tmp = (v02 + 2) / 4;
8257 if ( a_goal<=arc1 ) {
8260 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8263 return ((half_unit - two) +
8264 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8268 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8269 $$ B(0, a, a+b, a+b+c; t) = x. $$
8270 This routine is based on |crossing_point| but is simplified by the
8271 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8272 If rounding error causes this condition to be violated slightly, we just ignore
8273 it and proceed with binary search. This finds a time when the function value
8274 reaches |x| and the slope is positive.
8276 @<Declare subroutines needed by |arc_test|@>=
8277 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8278 scaled ab, bc, ac; /* bisection results */
8279 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8280 integer xx; /* temporary for updating |x| */
8281 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8282 @:this can't happen rising?}{\quad rising?@>
8285 } else if ( x >= a+b+c ) {
8289 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8293 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8294 xx = x - a - ab - ac;
8295 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8296 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8297 } while (t < unity);
8302 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8307 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8309 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8310 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8317 @ It is convenient to have a simpler interface to |arc_test| that requires no
8318 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8319 length less than |fraction_four|.
8321 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8323 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8324 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8325 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8326 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8327 v0 = mp_pyth_add(mp, dx0,dy0);
8328 v1 = mp_pyth_add(mp, dx1,dy1);
8329 v2 = mp_pyth_add(mp, dx2,dy2);
8330 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8331 mp->arith_error = true;
8332 if ( a_goal==el_gordo ) return el_gordo;
8335 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8336 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8337 v0, v02, v2, a_goal, arc_tol));
8341 @ Now it is easy to find the arc length of an entire path.
8343 @c scaled mp_get_arc_length (MP mp,pointer h) {
8344 pointer p,q; /* for traversing the path */
8345 scaled a,a_tot; /* current and total arc lengths */
8348 while ( right_type(p)!=endpoint ){
8350 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8351 left_x(q)-right_x(p), left_y(q)-right_y(p),
8352 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8353 a_tot = mp_slow_add(mp, a, a_tot);
8354 if ( q==h ) break; else p=q;
8360 @ The inverse operation of finding the time on a path~|h| when the arc length
8361 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8362 is required to handle very large times or negative times on cyclic paths. For
8363 non-cyclic paths, |arc0| values that are negative or too large cause
8364 |get_arc_time| to return 0 or the length of path~|h|.
8366 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8367 time value greater than the length of the path. Since it could be much greater,
8368 we must be prepared to compute the arc length of path~|h| and divide this into
8369 |arc0| to find how many multiples of the length of path~|h| to add.
8371 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8372 pointer p,q; /* for traversing the path */
8373 scaled t_tot; /* accumulator for the result */
8374 scaled t; /* the result of |do_arc_test| */
8375 scaled arc; /* portion of |arc0| not used up so far */
8376 integer n; /* number of extra times to go around the cycle */
8378 @<Deal with a negative |arc0| value and |return|@>;
8380 if ( arc0==el_gordo ) decr(arc0);
8384 while ( (right_type(p)!=endpoint) && (arc>0) ) {
8386 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8387 left_x(q)-right_x(p), left_y(q)-right_y(p),
8388 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8389 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8391 @<Update |t_tot| and |arc| to avoid going around the cyclic
8392 path too many times but set |arith_error:=true| and |goto done| on
8401 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8402 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8403 else { t_tot = t_tot + unity; arc = arc - t; }
8405 @ @<Deal with a negative |arc0| value and |return|@>=
8407 if ( left_type(h)==endpoint ) {
8410 p = mp_htap_ypoc(mp, h);
8411 t_tot = -mp_get_arc_time(mp, p, -arc0);
8412 mp_toss_knot_list(mp, p);
8418 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8420 n = arc / (arc0 - arc);
8421 arc = arc - n*(arc0 - arc);
8422 if ( t_tot > el_gordo / (n+1) ) {
8423 mp->arith_error = true;
8427 t_tot = (n + 1)*t_tot;
8430 @* \[20] Data structures for pens.
8431 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8432 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8433 @:stroke}{\&{stroke} command@>
8434 converted into an area fill as described in the next part of this program.
8435 The mathematics behind this process is based on simple aspects of the theory
8436 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8437 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8438 Foundations of Computer Science {\bf 24} (1983), 100--111].
8440 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8441 @:makepen_}{\&{makepen} primitive@>
8442 This path representation is almost sufficient for our purposes except that
8443 a pen path should always be a convex polygon with the vertices in
8444 counter-clockwise order.
8445 Since we will need to scan pen polygons both forward and backward, a pen
8446 should be represented as a doubly linked ring of knot nodes. There is
8447 room for the extra back pointer because we do not need the
8448 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8449 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8450 so that certain procedures can operate on both pens and paths. In particular,
8451 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8454 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8456 @ The |make_pen| procedure turns a path into a pen by initializing
8457 the |knil| pointers and making sure the knots form a convex polygon.
8458 Thus each cubic in the given path becomes a straight line and the control
8459 points are ignored. If the path is not cyclic, the ends are connected by a
8462 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8464 @c @<Declare a function called |convex_hull|@>;
8465 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8466 pointer p,q; /* two consecutive knots */
8473 h=mp_convex_hull(mp, h);
8474 @<Make sure |h| isn't confused with an elliptical pen@>;
8479 @ The only information required about an elliptical pen is the overall
8480 transformation that has been applied to the original \&{pencircle}.
8481 @:pencircle_}{\&{pencircle} primitive@>
8482 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8483 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8484 knot node and transformed as if it were a path.
8486 @d pen_is_elliptical(A) ((A)==link((A)))
8488 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8489 pointer h; /* the knot node to return */
8490 h=mp_get_node(mp, knot_node_size);
8491 link(h)=h; knil(h)=h;
8492 originator(h)=program_code;
8493 x_coord(h)=0; y_coord(h)=0;
8494 left_x(h)=diam; left_y(h)=0;
8495 right_x(h)=0; right_y(h)=diam;
8499 @ If the polygon being returned by |make_pen| has only one vertex, it will
8500 be interpreted as an elliptical pen. This is no problem since a degenerate
8501 polygon can equally well be thought of as a degenerate ellipse. We need only
8502 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8504 @<Make sure |h| isn't confused with an elliptical pen@>=
8505 if ( pen_is_elliptical( h) ){
8506 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8507 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8510 @ We have to cheat a little here but most operations on pens only use
8511 the first three words in each knot node.
8512 @^data structure assumptions@>
8514 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8515 x_coord(test_pen)=-half_unit;
8516 y_coord(test_pen)=0;
8517 x_coord(test_pen+3)=half_unit;
8518 y_coord(test_pen+3)=0;
8519 x_coord(test_pen+6)=0;
8520 y_coord(test_pen+6)=unity;
8521 link(test_pen)=test_pen+3;
8522 link(test_pen+3)=test_pen+6;
8523 link(test_pen+6)=test_pen;
8524 knil(test_pen)=test_pen+6;
8525 knil(test_pen+3)=test_pen;
8526 knil(test_pen+6)=test_pen+3
8528 @ Printing a polygonal pen is very much like printing a path
8530 @<Declare subroutines for printing expressions@>=
8531 void mp_pr_pen (MP mp,pointer h) {
8532 pointer p,q; /* for list traversal */
8533 if ( pen_is_elliptical(h) ) {
8534 @<Print the elliptical pen |h|@>;
8538 mp_print_two(mp, x_coord(p),y_coord(p));
8539 mp_print_nl(mp, " .. ");
8540 @<Advance |p| making sure the links are OK and |return| if there is
8543 mp_print(mp, "cycle");
8547 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8549 if ( (q==null) || (knil(q)!=p) ) {
8550 mp_print_nl(mp, "???"); return; /* this won't happen */
8555 @ @<Print the elliptical pen |h|@>=
8557 mp_print(mp, "pencircle transformed (");
8558 mp_print_scaled(mp, x_coord(h));
8559 mp_print_char(mp, ',');
8560 mp_print_scaled(mp, y_coord(h));
8561 mp_print_char(mp, ',');
8562 mp_print_scaled(mp, left_x(h)-x_coord(h));
8563 mp_print_char(mp, ',');
8564 mp_print_scaled(mp, right_x(h)-x_coord(h));
8565 mp_print_char(mp, ',');
8566 mp_print_scaled(mp, left_y(h)-y_coord(h));
8567 mp_print_char(mp, ',');
8568 mp_print_scaled(mp, right_y(h)-y_coord(h));
8569 mp_print_char(mp, ')');
8572 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8575 @<Declare subroutines for printing expressions@>=
8576 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8577 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8580 mp_end_diagnostic(mp, true);
8583 @ Making a polygonal pen into a path involves restoring the |left_type| and
8584 |right_type| fields and setting the control points so as to make a polygonal
8588 void mp_make_path (MP mp,pointer h) {
8589 pointer p; /* for traversing the knot list */
8590 small_number k; /* a loop counter */
8591 @<Other local variables in |make_path|@>;
8592 if ( pen_is_elliptical(h) ) {
8593 @<Make the elliptical pen |h| into a path@>;
8597 left_type(p)=explicit;
8598 right_type(p)=explicit;
8599 @<copy the coordinates of knot |p| into its control points@>;
8605 @ @<copy the coordinates of knot |p| into its control points@>=
8606 left_x(p)=x_coord(p);
8607 left_y(p)=y_coord(p);
8608 right_x(p)=x_coord(p);
8609 right_y(p)=y_coord(p)
8611 @ We need an eight knot path to get a good approximation to an ellipse.
8613 @<Make the elliptical pen |h| into a path@>=
8615 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8617 for (k=0;k<=7;k++ ) {
8618 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8619 transforming it appropriately@>;
8620 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8625 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8626 center_x=x_coord(h);
8627 center_y=y_coord(h);
8628 width_x=left_x(h)-center_x;
8629 width_y=left_y(h)-center_y;
8630 height_x=right_x(h)-center_x;
8631 height_y=right_y(h)-center_y
8633 @ @<Other local variables in |make_path|@>=
8634 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8635 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8636 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8637 scaled dx,dy; /* the vector from knot |p| to its right control point */
8639 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8641 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8642 find the point $k/8$ of the way around the circle and the direction vector
8645 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8647 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8648 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8649 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8650 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8651 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8652 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8653 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8654 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8655 right_x(p)=x_coord(p)+dx;
8656 right_y(p)=y_coord(p)+dy;
8657 left_x(p)=x_coord(p)-dx;
8658 left_y(p)=y_coord(p)-dy;
8659 left_type(p)=explicit;
8660 right_type(p)=explicit;
8661 originator(p)=program_code
8664 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8665 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8667 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8668 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8669 function for $\theta=\phi=22.5^\circ$. This comes out to be
8670 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8671 \approx 0.132608244919772.
8675 mp->half_cos[0]=fraction_half;
8676 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8678 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8679 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8681 for (k=3;k<= 4;k++ ) {
8682 mp->half_cos[k]=-mp->half_cos[4-k];
8683 mp->d_cos[k]=-mp->d_cos[4-k];
8685 for (k=5;k<= 7;k++ ) {
8686 mp->half_cos[k]=mp->half_cos[8-k];
8687 mp->d_cos[k]=mp->d_cos[8-k];
8690 @ The |convex_hull| function forces a pen polygon to be convex when it is
8691 returned by |make_pen| and after any subsequent transformation where rounding
8692 error might allow the convexity to be lost.
8693 The convex hull algorithm used here is described by F.~P. Preparata and
8694 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8696 @<Declare a function called |convex_hull|@>=
8697 @<Declare a procedure called |move_knot|@>;
8698 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8699 pointer l,r; /* the leftmost and rightmost knots */
8700 pointer p,q; /* knots being scanned */
8701 pointer s; /* the starting point for an upcoming scan */
8702 scaled dx,dy; /* a temporary pointer */
8703 if ( pen_is_elliptical(h) ) {
8706 @<Set |l| to the leftmost knot in polygon~|h|@>;
8707 @<Set |r| to the rightmost knot in polygon~|h|@>;
8710 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8711 move them past~|r|@>;
8712 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8713 move them past~|l|@>;
8714 @<Sort the path from |l| to |r| by increasing $x$@>;
8715 @<Sort the path from |r| to |l| by decreasing $x$@>;
8718 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8724 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8726 @<Set |l| to the leftmost knot in polygon~|h|@>=
8730 if ( x_coord(p)<=x_coord(l) )
8731 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8736 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8740 if ( x_coord(p)>=x_coord(r) )
8741 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8746 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8747 dx=x_coord(r)-x_coord(l);
8748 dy=y_coord(r)-y_coord(l);
8752 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8753 mp_move_knot(mp, p, r);
8757 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8760 @ @<Declare a procedure called |move_knot|@>=
8761 void mp_move_knot (MP mp,pointer p, pointer q) {
8762 link(knil(p))=link(p);
8763 knil(link(p))=knil(p);
8770 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8774 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8775 mp_move_knot(mp, p,l);
8779 @ The list is likely to be in order already so we just do linear insertions.
8780 Secondary comparisons on $y$ ensure that the sort is consistent with the
8781 choice of |l| and |r|.
8783 @<Sort the path from |l| to |r| by increasing $x$@>=
8787 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8788 while ( x_coord(q)==x_coord(p) ) {
8789 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8791 if ( q==knil(p) ) p=link(p);
8792 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8795 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8799 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8800 while ( x_coord(q)==x_coord(p) ) {
8801 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8803 if ( q==knil(p) ) p=link(p);
8804 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8807 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8808 at knot |q|. There usually will be a left turn so we streamline the case
8809 where the |then| clause is not executed.
8811 @<Do a Gramm scan and remove vertices where there...@>=
8815 dx=x_coord(q)-x_coord(p);
8816 dy=y_coord(q)-y_coord(p);
8820 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8821 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8826 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8829 mp_free_node(mp, p,knot_node_size);
8830 link(s)=q; knil(q)=s;
8832 else { p=knil(s); q=s; };
8835 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8836 offset associated with the given direction |(x,y)|. If two different offsets
8837 apply, it chooses one of them.
8840 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8841 pointer p,q; /* consecutive knots */
8843 /* the transformation matrix for an elliptical pen */
8844 fraction xx,yy; /* untransformed offset for an elliptical pen */
8845 fraction d; /* a temporary register */
8846 if ( pen_is_elliptical(h) ) {
8847 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8852 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0);
8855 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0);
8856 mp->cur_x=x_coord(p);
8857 mp->cur_y=y_coord(p);
8863 scaled cur_y; /* all-purpose return value registers */
8865 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8866 if ( (x==0) && (y==0) ) {
8867 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8869 @<Find the non-constant part of the transformation for |h|@>;
8870 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8873 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8874 untransformed version of |(x,y)|@>;
8875 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8876 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8879 @ @<Find the non-constant part of the transformation for |h|@>=
8880 wx=left_x(h)-x_coord(h);
8881 wy=left_y(h)-y_coord(h);
8882 hx=right_x(h)-x_coord(h);
8883 hy=right_y(h)-y_coord(h)
8885 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8886 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8887 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8888 d=mp_pyth_add(mp, xx,yy);
8890 xx=half(mp_make_fraction(mp, xx,d));
8891 yy=half(mp_make_fraction(mp, yy,d));
8894 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8895 But we can handle that case by just calling |find_offset| twice. The answer
8896 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8899 void mp_pen_bbox (MP mp,pointer h) {
8900 pointer p; /* for scanning the knot list */
8901 if ( pen_is_elliptical(h) ) {
8902 @<Find the bounding box of an elliptical pen@>;
8904 minx=x_coord(h); maxx=minx;
8905 miny=y_coord(h); maxy=miny;
8908 if ( x_coord(p)<minx ) minx=x_coord(p);
8909 if ( y_coord(p)<miny ) miny=y_coord(p);
8910 if ( x_coord(p)>maxx ) maxx=x_coord(p);
8911 if ( y_coord(p)>maxy ) maxy=y_coord(p);
8917 @ @<Find the bounding box of an elliptical pen@>=
8919 mp_find_offset(mp, 0,fraction_one,h);
8921 minx=2*x_coord(h)-mp->cur_x;
8922 mp_find_offset(mp, -fraction_one,0,h);
8924 miny=2*y_coord(h)-mp->cur_y;
8927 @* \[21] Edge structures.
8928 Now we come to \MP's internal scheme for representing pictures.
8929 The representation is very different from \MF's edge structures
8930 because \MP\ pictures contain \ps\ graphics objects instead of pixel
8931 images. However, the basic idea is somewhat similar in that shapes
8932 are represented via their boundaries.
8934 The main purpose of edge structures is to keep track of graphical objects
8935 until it is time to translate them into \ps. Since \MP\ does not need to
8936 know anything about an edge structure other than how to translate it into
8937 \ps\ and how to find its bounding box, edge structures can be just linked
8938 lists of graphical objects. \MP\ has no easy way to determine whether
8939 two such objects overlap, but it suffices to draw the first one first and
8940 let the second one overwrite it if necessary.
8942 @ Let's consider the types of graphical objects one at a time.
8943 First of all, a filled contour is represented by a eight-word node. The first
8944 word contains |type| and |link| fields, and the next six words contain a
8945 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
8946 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
8947 give the relevant information.
8949 @d path_p(A) link((A)+1)
8950 /* a pointer to the path that needs filling */
8951 @d pen_p(A) info((A)+1)
8952 /* a pointer to the pen to fill or stroke with */
8953 @d color_model(A) type((A)+2) /* the color model */
8954 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
8955 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
8956 @d obj_grey_loc obj_red_loc /* the location for the color */
8957 @d red_val(A) mp->mem[(A)+3].sc
8958 /* the red component of the color in the range $0\ldots1$ */
8961 @d green_val(A) mp->mem[(A)+4].sc
8962 /* the green component of the color in the range $0\ldots1$ */
8963 @d magenta_val green_val
8964 @d blue_val(A) mp->mem[(A)+5].sc
8965 /* the blue component of the color in the range $0\ldots1$ */
8966 @d yellow_val blue_val
8967 @d black_val(A) mp->mem[(A)+6].sc
8968 /* the blue component of the color in the range $0\ldots1$ */
8969 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
8970 @:linejoin_}{\&{linejoin} primitive@>
8971 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
8972 @:miterlimit_}{\&{miterlimit} primitive@>
8973 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
8974 /* interpret an object pointer that has been offset by |red_part..blue_part| */
8975 @d pre_script(A) mp->mem[(A)+8].hh.lh
8976 @d post_script(A) mp->mem[(A)+8].hh.rh
8981 pointer mp_new_fill_node (MP mp,pointer p) {
8982 /* make a fill node for cyclic path |p| and color black */
8983 pointer t; /* the new node */
8984 t=mp_get_node(mp, fill_node_size);
8987 pen_p(t)=null; /* |null| means don't use a pen */
8992 color_model(t)=uninitialized_model;
8994 post_script(t)=null;
8995 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
8999 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9000 if ( mp->internal[linejoin]>unity ) ljoin_val(t)=2;
9001 else if ( mp->internal[linejoin]>0 ) ljoin_val(t)=1;
9002 else ljoin_val(t)=0;
9003 if ( mp->internal[miterlimit]<unity )
9004 miterlim_val(t)=unity;
9006 miterlim_val(t)=mp->internal[miterlimit]
9008 @ A stroked path is represented by an eight-word node that is like a filled
9009 contour node except that it contains the current \&{linecap} value, a scale
9010 factor for the dash pattern, and a pointer that is non-null if the stroke
9011 is to be dashed. The purpose of the scale factor is to allow a picture to
9012 be transformed without touching the picture that |dash_p| points to.
9014 @d dash_p(A) link((A)+9)
9015 /* a pointer to the edge structure that gives the dash pattern */
9016 @d lcap_val(A) type((A)+9)
9017 /* the value of \&{linecap} */
9018 @:linecap_}{\&{linecap} primitive@>
9019 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9020 @d stroked_node_size 11
9024 pointer mp_new_stroked_node (MP mp,pointer p) {
9025 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9026 pointer t; /* the new node */
9027 t=mp_get_node(mp, stroked_node_size);
9028 type(t)=stroked_code;
9029 path_p(t)=p; pen_p(t)=null;
9031 dash_scale(t)=unity;
9036 color_model(t)=uninitialized_model;
9038 post_script(t)=null;
9039 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9040 if ( mp->internal[linecap]>unity ) lcap_val(t)=2;
9041 else if ( mp->internal[linecap]>0 ) lcap_val(t)=1;
9046 @ When a dashed line is computed in a transformed coordinate system, the dash
9047 lengths get scaled like the pen shape and we need to compensate for this. Since
9048 there is no unique scale factor for an arbitrary transformation, we use the
9049 the square root of the determinant. The properties of the determinant make it
9050 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9051 except for the initialization of the scale factor |s|. The factor of 64 is
9052 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9053 to counteract the effect of |take_fraction|.
9055 @<Declare subroutines needed by |print_edges|@>=
9056 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9057 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9058 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9059 @<Initialize |maxabs|@>;
9061 while ( (maxabs<fraction_one) && (s>1) ){
9062 a+=a; b+=b; c+=c; d+=d;
9063 maxabs+=maxabs; s=halfp(s);
9065 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9068 scaled mp_get_pen_scale (MP mp,pointer p) {
9069 return mp_sqrt_det(mp,
9070 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9071 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9074 @ @<Initialize |maxabs|@>=
9076 if ( abs(b)>maxabs ) maxabs=abs(b);
9077 if ( abs(c)>maxabs ) maxabs=abs(c);
9078 if ( abs(d)>maxabs ) maxabs=abs(d)
9080 @ When a picture contains text, this is represented by a fourteen-word node
9081 where the color information and |type| and |link| fields are augmented by
9082 additional fields that describe the text and how it is transformed.
9083 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9084 the font and a string number that gives the text to be displayed.
9085 The |width|, |height|, and |depth| fields
9086 give the dimensions of the text at its design size, and the remaining six
9087 words give a transformation to be applied to the text. The |new_text_node|
9088 function initializes everything to default values so that the text comes out
9089 black with its reference point at the origin.
9091 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9092 @d font_n(A) info((A)+1) /* the font number */
9093 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9094 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9095 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9096 @d text_tx_loc(A) ((A)+11)
9097 /* the first of six locations for transformation parameters */
9098 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9099 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9100 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9101 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9102 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9103 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9104 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9105 /* interpret a text node ponter that has been offset by |x_part..yy_part| */
9106 @d text_node_size 17
9109 @c @<Declare text measuring subroutines@>;
9110 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9111 /* make a text node for font |f| and text string |s| */
9112 pointer t; /* the new node */
9113 t=mp_get_node(mp, text_node_size);
9116 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9121 color_model(t)=uninitialized_model;
9123 post_script(t)=null;
9124 tx_val(t)=0; ty_val(t)=0;
9125 txx_val(t)=unity; txy_val(t)=0;
9126 tyx_val(t)=0; tyy_val(t)=unity;
9127 mp_set_text_box(mp, t); /* this finds the bounding box */
9131 @ The last two types of graphical objects that can occur in an edge structure
9132 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9133 @:set_bounds_}{\&{setbounds} primitive@>
9134 to implement because we must keep track of exactly what is being clipped or
9135 bounded when pictures get merged together. For this reason, each clipping or
9136 \&{setbounds} operation is represented by a pair of nodes: first comes a
9137 two-word node whose |path_p| gives the relevant path, then there is the list
9138 of objects to clip or bound followed by a two-word node whose second word is
9141 Using at least two words for each graphical object node allows them all to be
9142 allocated and deallocated similarly with a global array |gr_object_size| to
9143 give the size in words for each object type.
9145 @d start_clip_size 2
9146 @d start_bounds_size 2
9147 @d stop_clip_size 2 /* the second word is not used here */
9148 @d stop_bounds_size 2 /* the second word is not used here */
9150 @d stop_type(A) ((A)+2)
9151 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9152 @d has_color(A) (type((A))<mp_start_clip_code)
9153 /* does a graphical object have color fields? */
9154 @d has_pen(A) (type((A))<text_code)
9155 /* does a graphical object have a |pen_p| field? */
9156 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9157 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9161 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9162 mp_start_bounds_code, /* |type| of a node that gives a \&{setbounds} path */
9163 mp_stop_clip_code, /* |type| of a node that stops clipping */
9164 mp_stop_bounds_code /* |type| of a node that stops \&{setbounds} */
9168 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9169 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9170 pointer t; /* the new node */
9171 t=mp_get_node(mp, mp->gr_object_size[c]);
9177 @ We need an array to keep track of the sizes of graphical objects.
9180 small_number gr_object_size[mp_stop_bounds_code+1];
9183 mp->gr_object_size[fill_code]=fill_node_size;
9184 mp->gr_object_size[stroked_code]=stroked_node_size;
9185 mp->gr_object_size[text_code]=text_node_size;
9186 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9187 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9188 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9189 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9191 @ All the essential information in an edge structure is encoded as a linked list
9192 of graphical objects as we have just seen, but it is helpful to add some
9193 redundant information. A single edge structure might be used as a dash pattern
9194 many times, and it would be nice to avoid scanning the same structure
9195 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9196 has a header that gives a list of dashes in a sorted order designed for rapid
9197 translation into \ps.
9199 Each dash is represented by a three-word node containing the initial and final
9200 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9201 the dash node with the next higher $x$-coordinates and the final link points
9202 to a special location called |null_dash|. (There should be no overlap between
9203 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9204 the period of repetition, this needs to be stored in the edge header along
9205 with a pointer to the list of dash nodes.
9207 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9208 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9211 /* in an edge header this points to the first dash node */
9212 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9214 @ It is also convenient for an edge header to contain the bounding
9215 box information needed by the \&{llcorner} and \&{urcorner} operators
9216 so that this does not have to be recomputed unnecessarily. This is done by
9217 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9218 how far the bounding box computation has gotten. Thus if the user asks for
9219 the bounding box and then adds some more text to the picture before asking
9220 for more bounding box information, the second computation need only look at
9221 the additional text.
9223 When the bounding box has not been computed, the |bblast| pointer points
9224 to a dummy link at the head of the graphical object list while the |minx_val|
9225 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9226 fields contain |-el_gordo|.
9228 Since the bounding box of pictures containing objects of type
9229 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9230 @:true_corners_}{\&{truecorners} primitive@>
9231 data might not be valid for all values of this parameter. Hence, the |bbtype|
9232 field is needed to keep track of this.
9234 @d minx_val(A) mp->mem[(A)+2].sc
9235 @d miny_val(A) mp->mem[(A)+3].sc
9236 @d maxx_val(A) mp->mem[(A)+4].sc
9237 @d maxy_val(A) mp->mem[(A)+5].sc
9238 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9239 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9240 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9242 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9244 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9246 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9249 void mp_init_bbox (MP mp,pointer h) {
9250 /* Initialize the bounding box information in edge structure |h| */
9251 bblast(h)=dummy_loc(h);
9252 bbtype(h)=no_bounds;
9253 minx_val(h)=el_gordo;
9254 miny_val(h)=el_gordo;
9255 maxx_val(h)=-el_gordo;
9256 maxy_val(h)=-el_gordo;
9259 @ The only other entries in an edge header are a reference count in the first
9260 word and a pointer to the tail of the object list in the last word.
9262 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9263 @d edge_header_size 8
9266 void mp_init_edges (MP mp,pointer h) {
9267 /* initialize an edge header to null values */
9268 dash_list(h)=null_dash;
9269 obj_tail(h)=dummy_loc(h);
9270 link(dummy_loc(h))=null;
9272 mp_init_bbox(mp, h);
9275 @ Here is how edge structures are deleted. The process can be recursive because
9276 of the need to dereference edge structures that are used as dash patterns.
9279 @d add_edge_ref(A) incr(ref_count((A)))
9280 @d delete_edge_ref(A) { if ( ref_count((A))==null ) mp_toss_edges(mp, (A));
9281 else decr(ref_count((A))); }
9283 @<Declare the recycling subroutines@>=
9284 void mp_flush_dash_list (MP mp,pointer h);
9285 pointer mp_toss_gr_object (MP mp,pointer p) ;
9286 void mp_toss_edges (MP mp,pointer h) ;
9288 @ @c void mp_toss_edges (MP mp,pointer h) {
9289 pointer p,q; /* pointers that scan the list being recycled */
9290 pointer r; /* an edge structure that object |p| refers to */
9291 mp_flush_dash_list(mp, h);
9292 q=link(dummy_loc(h));
9293 while ( (q!=null) ) {
9295 r=mp_toss_gr_object(mp, p);
9296 if ( r!=null ) delete_edge_ref(r);
9298 mp_free_node(mp, h,edge_header_size);
9300 void mp_flush_dash_list (MP mp,pointer h) {
9301 pointer p,q; /* pointers that scan the list being recycled */
9303 while ( q!=null_dash ) {
9305 mp_free_node(mp, p,dash_node_size);
9307 dash_list(h)=null_dash;
9309 pointer mp_toss_gr_object (MP mp,pointer p) {
9310 /* returns an edge structure that needs to be dereferenced */
9311 pointer e; /* the edge structure to return */
9313 @<Prepare to recycle graphical object |p|@>;
9314 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9318 @ @<Prepare to recycle graphical object |p|@>=
9321 mp_toss_knot_list(mp, path_p(p));
9322 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9323 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9324 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9327 mp_toss_knot_list(mp, path_p(p));
9328 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9329 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9330 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9334 delete_str_ref(text_p(p));
9335 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9336 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9338 case mp_start_clip_code:
9339 case mp_start_bounds_code:
9340 mp_toss_knot_list(mp, path_p(p));
9342 case mp_stop_clip_code:
9343 case mp_stop_bounds_code:
9345 } /* there are no other cases */
9347 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9348 to be done before making a significant change to an edge structure. Much of
9349 the work is done in a separate routine |copy_objects| that copies a list of
9350 graphical objects into a new edge header.
9352 @c @<Declare a function called |copy_objects|@>;
9353 pointer mp_private_edges (MP mp,pointer h) {
9354 /* make a private copy of the edge structure headed by |h| */
9355 pointer hh; /* the edge header for the new copy */
9356 pointer p,pp; /* pointers for copying the dash list */
9357 if ( ref_count(h)==null ) {
9361 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9362 @<Copy the dash list from |h| to |hh|@>;
9363 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9364 point into the new object list@>;
9369 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9370 @^data structure assumptions@>
9372 @<Copy the dash list from |h| to |hh|@>=
9373 pp=hh; p=dash_list(h);
9374 while ( (p!=null_dash) ) {
9375 link(pp)=mp_get_node(mp, dash_node_size);
9377 start_x(pp)=start_x(p);
9378 stop_x(pp)=stop_x(p);
9382 dash_y(hh)=dash_y(h)
9384 @ @<Copy the bounding box information from |h| to |hh|...@>=
9385 minx_val(hh)=minx_val(h);
9386 miny_val(hh)=miny_val(h);
9387 maxx_val(hh)=maxx_val(h);
9388 maxy_val(hh)=maxy_val(h);
9389 bbtype(hh)=bbtype(h);
9390 p=dummy_loc(h); pp=dummy_loc(hh);
9391 while ((p!=bblast(h)) ) {
9392 if ( p==null ) mp_confusion(mp, "bblast");
9393 @:this can't happen bblast}{\quad bblast@>
9394 p=link(p); pp=link(pp);
9398 @ Here is the promised routine for copying graphical objects into a new edge
9399 structure. It starts copying at object~|p| and stops just before object~|q|.
9400 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9401 structure requires further initialization by |init_bbox|.
9403 @<Declare a function called |copy_objects|@>=
9404 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9405 pointer hh; /* the new edge header */
9406 pointer pp; /* the last newly copied object */
9407 small_number k; /* temporary register */
9408 hh=mp_get_node(mp, edge_header_size);
9409 dash_list(hh)=null_dash;
9413 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9420 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9421 { k=mp->gr_object_size[type(p)];
9422 link(pp)=mp_get_node(mp, k);
9424 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9425 @<Fix anything in graphical object |pp| that should differ from the
9426 corresponding field in |p|@>;
9430 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9432 case mp_start_clip_code:
9433 case mp_start_bounds_code:
9434 path_p(pp)=mp_copy_path(mp, path_p(p));
9437 path_p(pp)=mp_copy_path(mp, path_p(p));
9438 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9441 path_p(pp)=mp_copy_path(mp, path_p(p));
9442 pen_p(pp)=copy_pen(pen_p(p));
9443 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9446 add_str_ref(text_p(pp));
9448 case mp_stop_clip_code:
9449 case mp_stop_bounds_code:
9451 } /* there are no other cases */
9453 @ Here is one way to find an acceptable value for the second argument to
9454 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9455 skips past one picture component, where a ``picture component'' is a single
9456 graphical object, or a start bounds or start clip object and everything up
9457 through the matching stop bounds or stop clip object. The macro version avoids
9458 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9459 unless |p| points to a stop bounds or stop clip node, in which case it executes
9462 @d skip_component(A)
9463 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9464 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9468 pointer mp_skip_1component (MP mp,pointer p) {
9469 integer lev; /* current nesting level */
9472 if ( is_start_or_stop(p) ) {
9473 if ( is_stop(p) ) decr(lev); else incr(lev);
9480 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9482 @<Declare subroutines for printing expressions@>=
9483 @<Declare subroutines needed by |print_edges|@>;
9484 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9485 pointer p; /* a graphical object to be printed */
9486 pointer hh,pp; /* temporary pointers */
9487 scaled scf; /* a scale factor for the dash pattern */
9488 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9489 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9491 while ( link(p)!=null ) {
9495 @<Cases for printing graphical object node |p|@>;
9497 mp_print(mp, "[unknown object type!]");
9501 mp_print_nl(mp, "End edges");
9502 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9504 mp_end_diagnostic(mp, true);
9507 @ @<Cases for printing graphical object node |p|@>=
9509 mp_print(mp, "Filled contour ");
9510 mp_print_obj_color(mp, p);
9511 mp_print_char(mp, ':'); mp_print_ln(mp);
9512 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9513 if ( (pen_p(p)!=null) ) {
9514 @<Print join type for graphical object |p|@>;
9515 mp_print(mp, " with pen"); mp_print_ln(mp);
9516 mp_pr_pen(mp, pen_p(p));
9520 @ @<Print join type for graphical object |p|@>=
9521 switch (ljoin_val(p)) {
9523 mp_print(mp, "mitered joins limited ");
9524 mp_print_scaled(mp, miterlim_val(p));
9527 mp_print(mp, "round joins");
9530 mp_print(mp, "beveled joins");
9533 mp_print(mp, "?? joins");
9538 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9540 @<Print join and cap types for stroked node |p|@>=
9541 switch (lcap_val(p)) {
9542 case 0:mp_print(mp, "butt"); break;
9543 case 1:mp_print(mp, "round"); break;
9544 case 2:mp_print(mp, "square"); break;
9545 default: mp_print(mp, "??"); break;
9548 mp_print(mp, " ends, ");
9549 @<Print join type for graphical object |p|@>
9551 @ Here is a routine that prints the color of a graphical object if it isn't
9552 black (the default color).
9554 @<Declare subroutines needed by |print_edges|@>=
9555 @<Declare a procedure called |print_compact_node|@>;
9556 void mp_print_obj_color (MP mp,pointer p) {
9557 if ( color_model(p)==grey_model ) {
9558 if ( grey_val(p)>0 ) {
9559 mp_print(mp, "greyed ");
9560 mp_print_compact_node(mp, obj_grey_loc(p),1);
9562 } else if ( color_model(p)==cmyk_model ) {
9563 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9564 (yellow_val(p)>0) || (black_val(p)>0) ) {
9565 mp_print(mp, "processcolored ");
9566 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9568 } else if ( color_model(p)==rgb_model ) {
9569 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9570 mp_print(mp, "colored ");
9571 mp_print_compact_node(mp, obj_red_loc(p),3);
9576 @ We also need a procedure for printing consecutive scaled values as if they
9577 were a known big node.
9579 @<Declare a procedure called |print_compact_node|@>=
9580 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9581 pointer q; /* last location to print */
9583 mp_print_char(mp, '(');
9585 mp_print_scaled(mp, mp->mem[p].sc);
9586 if ( p<q ) mp_print_char(mp, ',');
9589 mp_print_char(mp, ')');
9592 @ @<Cases for printing graphical object node |p|@>=
9594 mp_print(mp, "Filled pen stroke ");
9595 mp_print_obj_color(mp, p);
9596 mp_print_char(mp, ':'); mp_print_ln(mp);
9597 mp_pr_path(mp, path_p(p));
9598 if ( dash_p(p)!=null ) {
9599 mp_print_nl(mp, "dashed (");
9600 @<Finish printing the dash pattern that |p| refers to@>;
9603 @<Print join and cap types for stroked node |p|@>;
9604 mp_print(mp, " with pen"); mp_print_ln(mp);
9605 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9607 else mp_pr_pen(mp, pen_p(p));
9610 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9611 when it is not known to define a suitable dash pattern. This is disallowed
9612 here because the |dash_p| field should never point to such an edge header.
9613 Note that memory is allocated for |start_x(null_dash)| and we are free to
9614 give it any convenient value.
9616 @<Finish printing the dash pattern that |p| refers to@>=
9617 ok_to_dash=pen_is_elliptical(pen_p(p));
9618 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9621 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9622 mp_print(mp, " ??");
9623 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9624 while ( pp!=null_dash ) {
9625 mp_print(mp, "on ");
9626 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9627 mp_print(mp, " off ");
9628 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9630 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9632 mp_print(mp, ") shifted ");
9633 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9634 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9637 @ @<Declare subroutines needed by |print_edges|@>=
9638 scaled mp_dash_offset (MP mp,pointer h) {
9639 scaled x; /* the answer */
9640 if ( (dash_list(h)==null_dash) || (dash_y(h)<0) ) mp_confusion(mp, "dash0");
9641 @:this can't happen dash0}{\quad dash0@>
9642 if ( dash_y(h)==0 ) {
9645 x=-(start_x(dash_list(h)) % dash_y(h));
9646 if ( x<0 ) x=x+dash_y(h);
9651 @ @<Cases for printing graphical object node |p|@>=
9653 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9654 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9655 mp_print_char(mp, '"'); mp_print_ln(mp);
9656 mp_print_obj_color(mp, p);
9657 mp_print(mp, "transformed ");
9658 mp_print_compact_node(mp, text_tx_loc(p),6);
9661 @ @<Cases for printing graphical object node |p|@>=
9662 case mp_start_clip_code:
9663 mp_print(mp, "clipping path:");
9665 mp_pr_path(mp, path_p(p));
9667 case mp_stop_clip_code:
9668 mp_print(mp, "stop clipping");
9671 @ @<Cases for printing graphical object node |p|@>=
9672 case mp_start_bounds_code:
9673 mp_print(mp, "setbounds path:");
9675 mp_pr_path(mp, path_p(p));
9677 case mp_stop_bounds_code:
9678 mp_print(mp, "end of setbounds");
9681 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9682 subroutine that scans an edge structure and tries to interpret it as a dash
9683 pattern. This can only be done when there are no filled regions or clipping
9684 paths and all the pen strokes have the same color. The first step is to let
9685 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9686 project all the pen stroke paths onto the line $y=y_0$ and require that there
9687 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9688 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9689 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9691 @c @<Declare a procedure called |x_retrace_error|@>;
9692 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9693 pointer p; /* this scans the stroked nodes in the object list */
9694 pointer p0; /* if not |null| this points to the first stroked node */
9695 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9696 pointer d,dd; /* pointers used to create the dash list */
9697 @<Other local variables in |make_dashes|@>;
9698 scaled y0=0; /* the initial $y$ coordinate */
9699 if ( dash_list(h)!=null_dash )
9702 p=link(dummy_loc(h));
9704 if ( type(p)!=stroked_code ) {
9705 @<Compain that the edge structure contains a node of the wrong type
9706 and |goto not_found|@>;
9709 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9710 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9711 or |goto not_found| if there is an error@>;
9712 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9715 if ( dash_list(h)==null_dash )
9716 goto NOT_FOUND; /* No error message */
9717 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9718 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9721 @<Flush the dash list, recycle |h| and return |null|@>;
9724 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9726 print_err("Picture is too complicated to use as a dash pattern");
9727 help3("When you say `dashed p', picture p should not contain any")
9728 ("text, filled regions, or clipping paths. This time it did")
9729 ("so I'll just make it a solid line instead.");
9730 mp_put_get_error(mp);
9734 @ A similar error occurs when monotonicity fails.
9736 @<Declare a procedure called |x_retrace_error|@>=
9737 void mp_x_retrace_error (MP mp) {
9738 print_err("Picture is too complicated to use as a dash pattern");
9739 help3("When you say `dashed p', every path in p should be monotone")
9740 ("in x and there must be no overlapping. This failed")
9741 ("so I'll just make it a solid line instead.");
9742 mp_put_get_error(mp);
9745 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9746 handle the case where the pen stroke |p| is itself dashed.
9748 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9749 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9752 if ( link(pp)!=pp ) {
9755 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9756 if there is a problem@>;
9757 } while (right_type(rr)!=endpoint);
9759 d=mp_get_node(mp, dash_node_size);
9760 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9761 if ( x_coord(pp)<x_coord(rr) ) {
9762 start_x(d)=x_coord(pp);
9763 stop_x(d)=x_coord(rr);
9765 start_x(d)=x_coord(rr);
9766 stop_x(d)=x_coord(pp);
9769 @ We also need to check for the case where the segment from |qq| to |rr| is
9770 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9772 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9777 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9778 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9779 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9780 mp_x_retrace_error(mp); goto NOT_FOUND;
9784 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9785 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9786 mp_x_retrace_error(mp); goto NOT_FOUND;
9790 @ @<Other local variables in |make_dashes|@>=
9791 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9793 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9794 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9795 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9796 print_err("Picture is too complicated to use as a dash pattern");
9797 help3("When you say `dashed p', everything in picture p should")
9798 ("be the same color. I can\'t handle your color changes")
9799 ("so I'll just make it a solid line instead.");
9800 mp_put_get_error(mp);
9804 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9805 start_x(null_dash)=stop_x(d);
9806 dd=h; /* this makes |link(dd)=dash_list(h)| */
9807 while ( start_x(link(dd))<stop_x(d) )
9810 if ( (stop_x(dd)>start_x(d)) )
9811 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9816 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9818 while ( (link(d)!=null_dash) )
9821 dash_y(h)=stop_x(d)-start_x(dd);
9822 if ( abs(y0)>dash_y(h) ) {
9824 } else if ( d!=dd ) {
9825 dash_list(h)=link(dd);
9826 stop_x(d)=stop_x(dd)+dash_y(h);
9827 mp_free_node(mp, dd,dash_node_size);
9830 @ We get here when the argument is a null picture or when there is an error.
9831 Recovering from an error involves making |dash_list(h)| empty to indicate
9832 that |h| is not known to be a valid dash pattern. We also dereference |h|
9833 since it is not being used for the return value.
9835 @<Flush the dash list, recycle |h| and return |null|@>=
9836 mp_flush_dash_list(mp, h);
9840 @ Having carefully saved the dashed stroked nodes in the
9841 corresponding dash nodes, we must be prepared to break up these dashes into
9844 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9845 d=h; /* now |link(d)=dash_list(h)| */
9846 while ( link(d)!=null_dash ) {
9853 if ( (hh==null) ) mp_confusion(mp, "dash1");
9854 @:this can't happen dash0}{\quad dash1@>
9855 if ( dash_y(hh)==0 ) {
9858 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
9859 @:this can't happen dash0}{\quad dash1@>
9860 @<Replace |link(d)| by a dashed version as determined by edge header
9861 |hh| and scale factor |ds|@>;
9866 @ @<Other local variables in |make_dashes|@>=
9867 pointer dln; /* |link(d)| */
9868 pointer hh; /* an edge header that tells how to break up |dln| */
9869 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
9870 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
9871 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
9873 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
9876 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
9877 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
9878 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
9879 +mp_take_scaled(mp, hsf,dash_y(hh));
9880 stop_x(null_dash)=start_x(null_dash);
9881 @<Advance |dd| until finding the first dash that overlaps |dln| when
9883 while ( start_x(dln)<=stop_x(dln) ) {
9884 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
9885 @<Insert a dash between |d| and |dln| for the overlap with the offset version
9888 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9891 mp_free_node(mp, dln,dash_node_size)
9893 @ The name of this module is a bit of a lie because we actually just find the
9894 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
9895 overlap possible. It could be that the unoffset version of dash |dln| falls
9896 in the gap between |dd| and its predecessor.
9898 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
9899 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
9903 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
9904 if ( dd==null_dash ) {
9906 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
9909 @ At this point we already know that
9910 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
9912 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
9913 if ( xoff+mp_take_scaled(mp, hsf,start_x(dd))<=stop_x(dln) ) {
9914 link(d)=mp_get_node(mp, dash_node_size);
9917 if ( start_x(dln)>xoff+mp_take_scaled(mp, hsf,start_x(dd)))
9918 start_x(d)=start_x(dln);
9920 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9921 if ( stop_x(dln)<xoff+mp_take_scaled(mp, hsf,stop_x(dd)) )
9922 stop_x(d)=stop_x(dln);
9924 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
9927 @ The next major task is to update the bounding box information in an edge
9928 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
9929 header's bounding box to accommodate the box computed by |path_bbox| or
9930 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
9933 @c void mp_adjust_bbox (MP mp,pointer h) {
9934 if ( minx<minx_val(h) ) minx_val(h)=minx;
9935 if ( miny<miny_val(h) ) miny_val(h)=miny;
9936 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
9937 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
9940 @ Here is a special routine for updating the bounding box information in
9941 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
9942 that is to be stroked with the pen~|pp|.
9944 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
9945 pointer q; /* a knot node adjacent to knot |p| */
9946 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
9947 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
9948 scaled z; /* a coordinate being tested against the bounding box */
9949 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
9950 integer i; /* a loop counter */
9951 if ( right_type(p)!=endpoint ) {
9954 @<Make |(dx,dy)| the final direction for the path segment from
9955 |q| to~|p|; set~|d|@>;
9956 d=mp_pyth_add(mp, dx,dy);
9958 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
9959 for (i=1;i<= 2;i++) {
9960 @<Use |(dx,dy)| to generate a vertex of the square end cap and
9961 update the bounding box to accommodate it@>;
9965 if ( right_type(p)==endpoint ) {
9968 @<Advance |p| to the end of the path and make |q| the previous knot@>;
9974 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
9976 dx=x_coord(p)-right_x(p);
9977 dy=y_coord(p)-right_y(p);
9978 if ( (dx==0)&&(dy==0) ) {
9979 dx=x_coord(p)-left_x(q);
9980 dy=y_coord(p)-left_y(q);
9983 dx=x_coord(p)-left_x(p);
9984 dy=y_coord(p)-left_y(p);
9985 if ( (dx==0)&&(dy==0) ) {
9986 dx=x_coord(p)-right_x(q);
9987 dy=y_coord(p)-right_y(q);
9990 dx=x_coord(p)-x_coord(q);
9991 dy=y_coord(p)-y_coord(q)
9993 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
9994 dx=mp_make_fraction(mp, dx,d);
9995 dy=mp_make_fraction(mp, dy,d);
9996 mp_find_offset(mp, -dy,dx,pp);
9997 xx=mp->cur_x; yy=mp->cur_y
9999 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10000 mp_find_offset(mp, dx,dy,pp);
10001 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10002 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10003 mp_confusion(mp, "box_ends");
10004 @:this can't happen box ends}{\quad\\{box\_ends}@>
10005 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10006 if ( z<minx_val(h) ) minx_val(h)=z;
10007 if ( z>maxx_val(h) ) maxx_val(h)=z;
10008 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10009 if ( z<miny_val(h) ) miny_val(h)=z;
10010 if ( z>maxy_val(h) ) maxy_val(h)=z
10012 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10016 } while (right_type(p)!=endpoint)
10018 @ The major difficulty in finding the bounding box of an edge structure is the
10019 effect of clipping paths. We treat them conservatively by only clipping to the
10020 clipping path's bounding box, but this still
10021 requires recursive calls to |set_bbox| in order to find the bounding box of
10023 the objects to be clipped. Such calls are distinguished by the fact that the
10024 boolean parameter |top_level| is false.
10026 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10027 pointer p; /* a graphical object being considered */
10028 scaled sminx,sminy,smaxx,smaxy;
10029 /* for saving the bounding box during recursive calls */
10030 scaled x0,x1,y0,y1; /* temporary registers */
10031 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10032 @<Wipe out any existing bounding box information if |bbtype(h)| is
10033 incompatible with |internal[true_corners]|@>;
10034 while ( link(bblast(h))!=null ) {
10038 case mp_stop_clip_code:
10039 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10040 @:this can't happen bbox}{\quad bbox@>
10042 @<Other cases for updating the bounding box based on the type of object |p|@>;
10043 } /* all cases are enumerated above */
10045 if ( ! top_level ) mp_confusion(mp, "bbox");
10048 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10049 switch (bbtype(h)) {
10053 if ( mp->internal[true_corners]>0 ) mp_init_bbox(mp, h);
10056 if ( mp->internal[true_corners]<=0 ) mp_init_bbox(mp, h);
10058 } /* there are no other cases */
10060 @ @<Other cases for updating the bounding box...@>=
10062 mp_path_bbox(mp, path_p(p));
10063 if ( pen_p(p)!=null ) {
10066 mp_pen_bbox(mp, pen_p(p));
10072 mp_adjust_bbox(mp, h);
10075 @ @<Other cases for updating the bounding box...@>=
10076 case mp_start_bounds_code:
10077 if ( mp->internal[true_corners]>0 ) {
10078 bbtype(h)=bounds_unset;
10080 bbtype(h)=bounds_set;
10081 mp_path_bbox(mp, path_p(p));
10082 mp_adjust_bbox(mp, h);
10083 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10087 case mp_stop_bounds_code:
10088 if ( mp->internal[true_corners]<=0 ) mp_confusion(mp, "bbox2");
10089 @:this can't happen bbox2}{\quad bbox2@>
10092 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10095 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10096 @:this can't happen bbox2}{\quad bbox2@>
10098 if ( type(p)==mp_start_bounds_code ) incr(lev);
10099 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10103 @ It saves a lot of grief here to be slightly conservative and not account for
10104 omitted parts of dashed lines. We also don't worry about the material omitted
10105 when using butt end caps. The basic computation is for round end caps and
10106 |box_ends| augments it for square end caps.
10108 @<Other cases for updating the bounding box...@>=
10110 mp_path_bbox(mp, path_p(p));
10113 mp_pen_bbox(mp, pen_p(p));
10118 mp_adjust_bbox(mp, h);
10119 if ( (left_type(path_p(p))==endpoint)&&(lcap_val(p)==2) )
10120 mp_box_ends(mp, path_p(p), pen_p(p), h);
10123 @ The height width and depth information stored in a text node determines a
10124 rectangle that needs to be transformed according to the transformation
10125 parameters stored in the text node.
10127 @<Other cases for updating the bounding box...@>=
10129 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10130 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10131 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10134 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10135 else { minx=minx+y1; maxx=maxx+y0; }
10136 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10137 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10138 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10139 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10142 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10143 else { miny=miny+y1; maxy=maxy+y0; }
10144 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10145 mp_adjust_bbox(mp, h);
10148 @ This case involves a recursive call that advances |bblast(h)| to the node of
10149 type |mp_stop_clip_code| that matches |p|.
10151 @<Other cases for updating the bounding box...@>=
10152 case mp_start_clip_code:
10153 mp_path_bbox(mp, path_p(p));
10156 sminx=minx_val(h); sminy=miny_val(h);
10157 smaxx=maxx_val(h); smaxy=maxy_val(h);
10158 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10159 starting at |link(p)|@>;
10160 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10162 minx=sminx; miny=sminy;
10163 maxx=smaxx; maxy=smaxy;
10164 mp_adjust_bbox(mp, h);
10167 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10168 minx_val(h)=el_gordo;
10169 miny_val(h)=el_gordo;
10170 maxx_val(h)=-el_gordo;
10171 maxy_val(h)=-el_gordo;
10172 mp_set_bbox(mp, h,false)
10174 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10175 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10176 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10177 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10178 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10180 @* \[22] Finding an envelope.
10181 When \MP\ has a path and a polygonal pen, it needs to express the desired
10182 shape in terms of things \ps\ can understand. The present task is to compute
10183 a new path that describes the region to be filled. It is convenient to
10184 define this as a two step process where the first step is determining what
10185 offset to use for each segment of the path.
10187 @ Given a pointer |c| to a cyclic path,
10188 and a pointer~|h| to the first knot of a pen polygon,
10189 the |offset_prep| routine changes the path into cubics that are
10190 associated with particular pen offsets. Thus if the cubic between |p|
10191 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10192 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10193 to because |l-k| could be negative.)
10195 After overwriting the type information with offset differences, we no longer
10196 have a true path so we refer to the knot list returned by |offset_prep| as an
10199 Since an envelope spec only determines relative changes in pen offsets,
10200 |offset_prep| sets a global variable |spec_offset| to the relative change from
10201 |h| to the first offset.
10203 @d zero_off 16384 /* added to offset changes to make them positive */
10206 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10208 @ @c @<Declare subroutines needed by |offset_prep|@>;
10209 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10210 halfword n; /* the number of vertices in the pen polygon */
10211 pointer p,q,r,w, ww; /* for list manipulation */
10212 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10213 pointer w0; /* a pointer to pen offset to use just before |p| */
10214 scaled dxin,dyin; /* the direction into knot |p| */
10215 integer turn_amt; /* change in pen offsets for the current cubic */
10216 @<Other local variables for |offset_prep|@>;
10218 @<Initialize the pen size~|n|@>;
10219 @<Initialize the incoming direction and pen offset at |c|@>;
10223 @<Split the cubic between |p| and |q|, if necessary, into cubics
10224 associated with single offsets, after which |q| should
10225 point to the end of the final such cubic@>;
10226 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10227 might have been introduced by the splitting process@>;
10229 @<Fix the offset change in |info(c)| and set the return value of
10233 @ We shall want to keep track of where certain knots on the cyclic path
10234 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10235 knot nodes because some nodes are deleted while removing dead cubics. Thus
10236 |offset_prep| updates the following pointers
10240 pointer spec_p2; /* pointers to distinguished knots */
10243 mp->spec_p1=null; mp->spec_p2=null;
10245 @ @<Initialize the pen size~|n|@>=
10252 @ Since the true incoming direction isn't known yet, we just pick a direction
10253 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10256 @<Initialize the incoming direction and pen offset at |c|@>=
10257 dxin=x_coord(link(h))-x_coord(knil(h));
10258 dyin=y_coord(link(h))-y_coord(knil(h));
10259 if ( (dxin==0)&&(dyin==0) ) {
10260 dxin=y_coord(knil(h))-y_coord(h);
10261 dyin=x_coord(h)-x_coord(knil(h));
10265 @ We must be careful not to remove the only cubic in a cycle.
10267 But we must also be careful for another reason. If the user-supplied
10268 path starts with a set of degenerate cubics, these should not be removed
10269 because at this point we cannot do so cleanly. The relevant bug is
10270 tracker id 267, bugs 52c, reported by Boguslav.
10272 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10274 if ( x_coord(p)==right_x(p) ) if ( y_coord(p)==right_y(p) )
10275 if ( x_coord(p)==left_x(r) ) if ( y_coord(p)==left_y(r) )
10276 if ( x_coord(p)==x_coord(r) ) if ( y_coord(p)==y_coord(r) )
10277 if ( r!=p ) if ( ((r!=q) || (originator(r)!=metapost_user)) ) {
10278 @<Remove the cubic following |p| and update the data structures
10279 to merge |r| into |p|@>;
10284 @ @<Remove the cubic following |p| and update the data structures...@>=
10285 { k_needed=info(p)-zero_off;
10289 info(p)=k_needed+info(r);
10292 if ( r==c ) { info(p)=info(c); c=p; };
10293 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10294 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10295 r=p; mp_remove_cubic(mp, p);
10298 @ Not setting the |info| field of the newly created knot allows the splitting
10299 routine to work for paths.
10301 @<Declare subroutines needed by |offset_prep|@>=
10302 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10303 scaled v; /* an intermediate value */
10304 pointer q,r; /* for list manipulation */
10305 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10306 originator(r)=program_code;
10307 left_type(r)=explicit; right_type(r)=explicit;
10308 v=t_of_the_way(right_x(p),left_x(q));
10309 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10310 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10311 left_x(r)=t_of_the_way(right_x(p),v);
10312 right_x(r)=t_of_the_way(v,left_x(q));
10313 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10314 v=t_of_the_way(right_y(p),left_y(q));
10315 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10316 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10317 left_y(r)=t_of_the_way(right_y(p),v);
10318 right_y(r)=t_of_the_way(v,left_y(q));
10319 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10322 @ This does not set |info(p)| or |right_type(p)|.
10324 @<Declare subroutines needed by |offset_prep|@>=
10325 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10326 pointer q; /* the node that disappears */
10327 q=link(p); link(p)=link(q);
10328 right_x(p)=right_x(q); right_y(p)=right_y(q);
10329 mp_free_node(mp, q,knot_node_size);
10332 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10333 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10334 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10335 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10336 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10337 When listed by increasing $k$, these directions occur in counter-clockwise
10338 order so that $d_k\preceq d\k$ for all~$k$.
10339 The goal of |offset_prep| is to find an offset index~|k| to associate with
10340 each cubic, such that the direction $d(t)$ of the cubic satisfies
10341 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10342 We may have to split a cubic into many pieces before each
10343 piece corresponds to a unique offset.
10345 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10346 info(p)=zero_off+k_needed;
10348 @<Prepare for derivative computations;
10349 |goto not_found| if the current cubic is dead@>;
10350 @<Find the initial direction |(dx,dy)|@>;
10351 @<Update |info(p)| and find the offset $w_k$ such that
10352 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10353 the direction change at |p|@>;
10354 @<Find the final direction |(dxin,dyin)|@>;
10355 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10356 @<Complete the offset splitting process@>;
10357 w0=mp_pen_walk(mp, w0,turn_amt);
10358 NOT_FOUND: do_nothing
10360 @ @<Declare subroutines needed by |offset_prep|@>=
10361 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10362 /* walk |k| steps around a pen from |w| */
10363 while ( k>0 ) { w=link(w); decr(k); };
10364 while ( k<0 ) { w=knil(w); incr(k); };
10368 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10369 calculated from the quadratic polynomials
10370 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10371 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10372 Since we may be calculating directions from several cubics
10373 split from the current one, it is desirable to do these calculations
10374 without losing too much precision. ``Scaled up'' values of the
10375 derivatives, which will be less tainted by accumulated errors than
10376 derivatives found from the cubics themselves, are maintained in
10377 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10378 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10379 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10381 @<Other local variables for |offset_prep|@>=
10382 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10383 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10384 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10385 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10386 integer mp_max_coef; /* used while scaling */
10387 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10388 fraction t; /* where the derivative passes through zero */
10389 fraction s; /* a temporary value */
10391 @ @<Prepare for derivative computations...@>=
10392 x0=right_x(p)-x_coord(p);
10393 x2=x_coord(q)-left_x(q);
10394 x1=left_x(q)-right_x(p);
10395 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10396 y1=left_y(q)-right_y(p);
10397 mp_max_coef=abs(x0);
10398 if ( abs(x1)>mp_max_coef ) mp_max_coef=abs(x1);
10399 if ( abs(x2)>mp_max_coef ) mp_max_coef=abs(x2);
10400 if ( abs(y0)>mp_max_coef ) mp_max_coef=abs(y0);
10401 if ( abs(y1)>mp_max_coef ) mp_max_coef=abs(y1);
10402 if ( abs(y2)>mp_max_coef ) mp_max_coef=abs(y2);
10403 if ( mp_max_coef==0 ) goto NOT_FOUND;
10404 while ( mp_max_coef<fraction_half ) {
10405 mp_max_coef+=mp_max_coef;
10406 x0+=x0; x1+=x1; x2+=x2;
10407 y0+=y0; y1+=y1; y2+=y2;
10410 @ Let us first solve a special case of the problem: Suppose we
10411 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10412 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10413 $d(0)\succ d_{k-1}$.
10414 Then, in a sense, we're halfway done, since one of the two relations
10415 in $(*)$ is satisfied, and the other couldn't be satisfied for
10416 any other value of~|k|.
10418 Actually, the conditions can be relaxed somewhat since a relation such as
10419 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10420 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10421 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10422 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10423 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10424 counterclockwise direction.
10426 The |fin_offset_prep| subroutine solves the stated subproblem.
10427 It has a parameter called |rise| that is |1| in
10428 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10429 the derivative of the cubic following |p|.
10430 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10431 be set properly. The |turn_amt| parameter gives the absolute value of the
10432 overall net change in pen offsets.
10434 @<Declare subroutines needed by |offset_prep|@>=
10435 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10436 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10437 integer rise, integer turn_amt) {
10438 pointer ww; /* for list manipulation */
10439 scaled du,dv; /* for slope calculation */
10440 integer t0,t1,t2; /* test coefficients */
10441 fraction t; /* place where the derivative passes a critical slope */
10442 fraction s; /* slope or reciprocal slope */
10443 integer v; /* intermediate value for updating |x0..y2| */
10444 pointer q; /* original |link(p)| */
10447 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10448 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10449 @<Compute test coefficients |(t0,t1,t2)|
10450 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10451 t=mp_crossing_point(mp, t0,t1,t2);
10452 if ( t>=fraction_one ) {
10453 if ( turn_amt>0 ) t=fraction_one; else return;
10455 @<Split the cubic at $t$,
10456 and split off another cubic if the derivative crosses back@>;
10461 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10462 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10463 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10466 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10467 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10468 if ( abs(du)>=abs(dv) ) {
10469 s=mp_make_fraction(mp, dv,du);
10470 t0=mp_take_fraction(mp, x0,s)-y0;
10471 t1=mp_take_fraction(mp, x1,s)-y1;
10472 t2=mp_take_fraction(mp, x2,s)-y2;
10473 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10475 s=mp_make_fraction(mp, du,dv);
10476 t0=x0-mp_take_fraction(mp, y0,s);
10477 t1=x1-mp_take_fraction(mp, y1,s);
10478 t2=x2-mp_take_fraction(mp, y2,s);
10479 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10481 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10483 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10484 $(*)$, and it might cross again, yielding another solution of $(*)$.
10486 @<Split the cubic at $t$, and split off another...@>=
10488 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10490 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10491 x0=t_of_the_way(v,x1);
10492 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10493 y0=t_of_the_way(v,y1);
10494 if ( turn_amt<0 ) {
10495 t1=t_of_the_way(t1,t2);
10496 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10497 t=mp_crossing_point(mp, 0,-t1,-t2);
10498 if ( t>fraction_one ) t=fraction_one;
10500 if ( (t==fraction_one)&&(link(p)!=q) ) {
10501 info(link(p))=info(link(p))-rise;
10503 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10504 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10505 x2=t_of_the_way(x1,v);
10506 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10507 y2=t_of_the_way(y1,v);
10512 @ Now we must consider the general problem of |offset_prep|, when
10513 nothing is known about a given cubic. We start by finding its
10514 direction in the vicinity of |t=0|.
10516 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10517 has not yet introduced any more numerical errors. Thus we can compute
10518 the true initial direction for the given cubic, even if it is almost
10521 @<Find the initial direction |(dx,dy)|@>=
10523 if ( dx==0 ) if ( dy==0 ) {
10525 if ( dx==0 ) if ( dy==0 ) {
10529 if ( p==c ) { dx0=dx; dy0=dy; }
10531 @ @<Find the final direction |(dxin,dyin)|@>=
10533 if ( dxin==0 ) if ( dyin==0 ) {
10535 if ( dxin==0 ) if ( dyin==0 ) {
10540 @ The next step is to bracket the initial direction between consecutive
10541 edges of the pen polygon. We must be careful to turn clockwise only if
10542 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10543 counter-clockwise in order to make \&{doublepath} envelopes come out
10544 @:double_path_}{\&{doublepath} primitive@>
10545 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10547 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10548 turn_amt=mp_get_turn_amt(mp, w0, dx, dy, mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0);
10549 w=mp_pen_walk(mp, w0, turn_amt);
10551 info(p)=info(p)+turn_amt
10553 @ Decide how many pen offsets to go away from |w| in order to find the offset
10554 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10555 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10556 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10558 If the pen polygon has only two edges, they could both be parallel
10559 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10560 such edge in order to avoid an infinite loop.
10562 @<Declare subroutines needed by |offset_prep|@>=
10563 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10564 scaled dy, boolean ccw) {
10565 pointer ww; /* a neighbor of knot~|w| */
10566 integer s; /* turn amount so far */
10567 integer t; /* |ab_vs_cd| result */
10572 t=mp_ab_vs_cd(mp, dy,x_coord(ww)-x_coord(w),
10573 dx,y_coord(ww)-y_coord(w));
10580 while ( mp_ab_vs_cd(mp, dy,x_coord(w)-x_coord(ww),
10581 dx,y_coord(w)-y_coord(ww))<0 ) {
10589 @ When we're all done, the final offset is |w0| and the final curve direction
10590 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10591 can correct |info(c)| which was erroneously based on an incoming offset
10594 @d fix_by(A) info(c)=info(c)+(A)
10596 @<Fix the offset change in |info(c)| and set the return value of...@>=
10597 mp->spec_offset=info(c)-zero_off;
10598 if ( link(c)==c ) {
10599 info(c)=zero_off+n;
10602 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10603 while ( info(c)<=zero_off-n ) fix_by(n);
10604 while ( info(c)>zero_off ) fix_by(-n);
10605 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10609 @ Finally we want to reduce the general problem to situations that
10610 |fin_offset_prep| can handle. We split the cubic into at most three parts
10611 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10613 @<Complete the offset splitting process@>=
10615 @<Compute test coeff...@>;
10616 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10617 |t:=fraction_one+1|@>;
10618 if ( t>fraction_one ) {
10619 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10621 mp_split_cubic(mp, p,t); r=link(p);
10622 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10623 x2a=t_of_the_way(x1a,x1);
10624 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10625 y2a=t_of_the_way(y1a,y1);
10626 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10627 info(r)=zero_off-1;
10628 if ( turn_amt>=0 ) {
10629 t1=t_of_the_way(t1,t2);
10631 t=mp_crossing_point(mp, 0,-t1,-t2);
10632 if ( t>fraction_one ) t=fraction_one;
10633 @<Split off another rising cubic for |fin_offset_prep|@>;
10634 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10636 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
10640 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10641 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10642 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10643 x0a=t_of_the_way(x1,x1a);
10644 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10645 y0a=t_of_the_way(y1,y1a);
10646 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10649 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10650 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10651 need to decide whether the directions are parallel or antiparallel. We
10652 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10653 should be avoided when the value of |turn_amt| already determines the
10654 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10655 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10656 crossing and the first crossing cannot be antiparallel.
10658 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10659 t=mp_crossing_point(mp, t0,t1,t2);
10660 if ( turn_amt>=0 ) {
10664 u0=t_of_the_way(x0,x1);
10665 u1=t_of_the_way(x1,x2);
10666 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10667 v0=t_of_the_way(y0,y1);
10668 v1=t_of_the_way(y1,y2);
10669 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10670 if ( ss<0 ) t=fraction_one+1;
10672 } else if ( t>fraction_one ) {
10676 @ @<Other local variables for |offset_prep|@>=
10677 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10678 integer ss = 0; /* the part of the dot product computed so far */
10679 int d_sign; /* sign of overall change in direction for this cubic */
10681 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10682 problem to decide which way it loops around but that's OK as long we're
10683 consistent. To make \&{doublepath} envelopes work properly, reversing
10684 the path should always change the sign of |turn_amt|.
10686 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10687 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10690 if ( dy>0 ) d_sign=1; else d_sign=-1;
10691 } else if ( dx>0 ) {
10697 @<Make |ss| negative if and only if the total change in direction is
10698 more than $180^\circ$@>;
10699 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, d_sign>0);
10700 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10702 @ In order to be invariant under path reversal, the result of this computation
10703 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10704 then swapped with |(x2,y2)|. We make use of the identities
10705 |take_fraction(-a,-b)=take_fraction(a,b)| and
10706 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10708 @<Make |ss| negative if and only if the total change in direction is...@>=
10709 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10710 t1=half(mp_take_fraction(mp, x1,y0+y2))-half(mp_take_fraction(mp, y1,x0+x2));
10711 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10713 t=mp_crossing_point(mp, t0,t1,-t0);
10714 u0=t_of_the_way(x0,x1);
10715 u1=t_of_the_way(x1,x2);
10716 v0=t_of_the_way(y0,y1);
10717 v1=t_of_the_way(y1,y2);
10719 t=mp_crossing_point(mp, -t0,t1,t0);
10720 u0=t_of_the_way(x2,x1);
10721 u1=t_of_the_way(x1,x0);
10722 v0=t_of_the_way(y2,y1);
10723 v1=t_of_the_way(y1,y0);
10725 s=mp_take_fraction(mp, x0+x2,t_of_the_way(u0,u1))+
10726 mp_take_fraction(mp, y0+y2,t_of_the_way(v0,v1))
10728 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10729 that the |cur_pen| has not been walked around to the first offset.
10732 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10733 pointer p,q; /* list traversal */
10734 pointer w; /* the current pen offset */
10735 mp_print_diagnostic(mp, "Envelope spec",s,true);
10736 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10738 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10739 mp_print(mp, " % beginning with offset ");
10740 mp_print_two(mp, x_coord(w),y_coord(w));
10744 @<Print the cubic between |p| and |q|@>;
10746 } while (! ((p==cur_spec) || (info(p)!=zero_off)));
10747 if ( info(p)!=zero_off ) {
10748 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10750 } while (p!=cur_spec);
10751 mp_print_nl(mp, " & cycle");
10752 mp_end_diagnostic(mp, true);
10755 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10757 w=mp_pen_walk(mp, w,info(p)-zero_off);
10758 mp_print(mp, " % ");
10759 if ( info(p)>zero_off ) mp_print(mp, "counter");
10760 mp_print(mp, "clockwise to offset ");
10761 mp_print_two(mp, x_coord(w),y_coord(w));
10764 @ @<Print the cubic between |p| and |q|@>=
10766 mp_print_nl(mp, " ..controls ");
10767 mp_print_two(mp, right_x(p),right_y(p));
10768 mp_print(mp, " and ");
10769 mp_print_two(mp, left_x(q),left_y(q));
10770 mp_print_nl(mp, " ..");
10771 mp_print_two(mp, x_coord(q),y_coord(q));
10774 @ Once we have an envelope spec, the remaining task to construct the actual
10775 envelope by offsetting each cubic as determined by the |info| fields in
10776 the knots. First we use |offset_prep| to convert the |c| into an envelope
10777 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10780 The |ljoin| and |miterlim| parameters control the treatment of points where the
10781 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10782 The endpoints are easily located because |c| is given in undoubled form
10783 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10784 track of the endpoints and treat them like very sharp corners.
10785 Butt end caps are treated like beveled joins; round end caps are treated like
10786 round joins; and square end caps are achieved by setting |join_type:=3|.
10788 None of these parameters apply to inside joins where the convolution tracing
10789 has retrograde lines. In such cases we use a simple connect-the-endpoints
10790 approach that is achieved by setting |join_type:=2|.
10792 @c @<Declare a function called |insert_knot|@>;
10793 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10794 small_number lcap, scaled miterlim) {
10795 pointer p,q,r,q0; /* for manipulating the path */
10796 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10797 pointer w,w0; /* the pen knot for the current offset */
10798 scaled qx,qy; /* unshifted coordinates of |q| */
10799 halfword k,k0; /* controls pen edge insertion */
10800 @<Other local variables for |make_envelope|@>;
10801 dxin=0; dyin=0; dxout=0; dyout=0;
10802 mp->spec_p1=null; mp->spec_p2=null;
10803 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10804 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10805 the initial offset@>;
10810 qx=x_coord(q); qy=y_coord(q);
10813 if ( k!=zero_off ) {
10814 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10816 @<Add offset |w| to the cubic from |p| to |q|@>;
10817 while ( k!=zero_off ) {
10818 @<Step |w| and move |k| one step closer to |zero_off|@>;
10819 if ( (join_type==1)||(k==zero_off) )
10820 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10822 if ( q!=link(p) ) {
10823 @<Set |p=link(p)| and add knots between |p| and |q| as
10824 required by |join_type|@>;
10831 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
10832 c=mp_offset_prep(mp, c,h);
10833 if ( mp->internal[tracing_specs]>0 )
10834 mp_print_spec(mp, c,h,"");
10835 h=mp_pen_walk(mp, h,mp->spec_offset)
10837 @ Mitered and squared-off joins depend on path directions that are difficult to
10838 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
10839 have degenerate cubics only if the entire cycle collapses to a single
10840 degenerate cubic. Setting |join_type:=2| in this case makes the computed
10841 envelope degenerate as well.
10843 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
10844 if ( k<zero_off ) {
10847 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
10848 else if ( lcap==2 ) join_type=3;
10849 else join_type=2-lcap;
10850 if ( (join_type==0)||(join_type==3) ) {
10851 @<Set the incoming and outgoing directions at |q|; in case of
10852 degeneracy set |join_type:=2|@>;
10853 if ( join_type==0 ) {
10854 @<If |miterlim| is less than the secant of half the angle at |q|
10855 then set |join_type:=2|@>;
10860 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
10862 tmp=mp_take_fraction(mp, miterlim,fraction_half+
10863 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
10865 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
10868 @ @<Other local variables for |make_envelope|@>=
10869 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
10870 scaled tmp; /* a temporary value */
10872 @ The coordinates of |p| have already been shifted unless |p| is the first
10873 knot in which case they get shifted at the very end.
10875 @<Add offset |w| to the cubic from |p| to |q|@>=
10876 right_x(p)=right_x(p)+x_coord(w);
10877 right_y(p)=right_y(p)+y_coord(w);
10878 left_x(q)=left_x(q)+x_coord(w);
10879 left_y(q)=left_y(q)+y_coord(w);
10880 x_coord(q)=x_coord(q)+x_coord(w);
10881 y_coord(q)=y_coord(q)+y_coord(w);
10882 left_type(q)=explicit;
10883 right_type(q)=explicit
10885 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
10886 if ( k>zero_off ){ w=link(w); decr(k); }
10887 else { w=knil(w); incr(k); }
10889 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
10890 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
10891 case the cubic containing these control points is ``yet to be examined.''
10893 @<Declare a function called |insert_knot|@>=
10894 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
10895 /* returns the inserted knot */
10896 pointer r; /* the new knot */
10897 r=mp_get_node(mp, knot_node_size);
10898 link(r)=link(q); link(q)=r;
10899 right_x(r)=right_x(q);
10900 right_y(r)=right_y(q);
10903 right_x(q)=x_coord(q);
10904 right_y(q)=y_coord(q);
10905 left_x(r)=x_coord(r);
10906 left_y(r)=y_coord(r);
10907 left_type(r)=explicit;
10908 right_type(r)=explicit;
10909 originator(r)=program_code;
10913 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
10915 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
10918 if ( (join_type==0)||(join_type==3) ) {
10919 if ( join_type==0 ) {
10920 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
10922 @<Make |r| the last of two knots inserted between |p| and |q| to form a
10926 right_x(r)=x_coord(r);
10927 right_y(r)=y_coord(r);
10932 @ For very small angles, adding a knot is unnecessary and would cause numerical
10933 problems, so we just set |r:=null| in that case.
10935 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
10937 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
10938 if ( abs(det)<26844 ) {
10939 r=null; /* sine $<10^{-4}$ */
10941 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
10942 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
10943 tmp=mp_make_fraction(mp, tmp,det);
10944 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10945 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10949 @ @<Other local variables for |make_envelope|@>=
10950 fraction det; /* a determinant used for mitered join calculations */
10952 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
10954 ht_x=y_coord(w)-y_coord(w0);
10955 ht_y=x_coord(w0)-x_coord(w);
10956 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
10957 ht_x+=ht_x; ht_y+=ht_y;
10959 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
10960 product with |(ht_x,ht_y)|@>;
10961 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
10962 mp_take_fraction(mp, dyin,ht_y));
10963 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10964 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10965 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
10966 mp_take_fraction(mp, dyout,ht_y));
10967 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
10968 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
10971 @ @<Other local variables for |make_envelope|@>=
10972 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
10973 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
10974 halfword kk; /* keeps track of the pen vertices being scanned */
10975 pointer ww; /* the pen vertex being tested */
10977 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
10978 from zero to |max_ht|.
10980 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
10985 @<Step |ww| and move |kk| one step closer to |k0|@>;
10986 if ( kk==k0 ) break;
10987 tmp=mp_take_fraction(mp, x_coord(ww)-x_coord(w0),ht_x)+
10988 mp_take_fraction(mp, y_coord(ww)-y_coord(w0),ht_y);
10989 if ( tmp>max_ht ) max_ht=tmp;
10993 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
10994 if ( kk>k0 ) { ww=link(ww); decr(kk); }
10995 else { ww=knil(ww); incr(kk); }
10997 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
10998 if ( left_type(c)==endpoint ) {
10999 mp->spec_p1=mp_htap_ypoc(mp, c);
11000 mp->spec_p2=mp->path_tail;
11001 originator(mp->spec_p1)=program_code;
11002 link(mp->spec_p2)=link(mp->spec_p1);
11003 link(mp->spec_p1)=c;
11004 mp_remove_cubic(mp, mp->spec_p1);
11006 if ( c!=link(c) ) {
11007 originator(mp->spec_p2)=program_code;
11008 mp_remove_cubic(mp, mp->spec_p2);
11010 @<Make |c| look like a cycle of length one@>;
11014 @ @<Make |c| look like a cycle of length one@>=
11016 left_type(c)=explicit; right_type(c)=explicit;
11017 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11018 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11021 @ In degenerate situations we might have to look at the knot preceding~|q|.
11022 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11024 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11025 dxin=x_coord(q)-left_x(q);
11026 dyin=y_coord(q)-left_y(q);
11027 if ( (dxin==0)&&(dyin==0) ) {
11028 dxin=x_coord(q)-right_x(p);
11029 dyin=y_coord(q)-right_y(p);
11030 if ( (dxin==0)&&(dyin==0) ) {
11031 dxin=x_coord(q)-x_coord(p);
11032 dyin=y_coord(q)-y_coord(p);
11033 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11034 dxin=dxin+x_coord(w);
11035 dyin=dyin+y_coord(w);
11039 tmp=mp_pyth_add(mp, dxin,dyin);
11043 dxin=mp_make_fraction(mp, dxin,tmp);
11044 dyin=mp_make_fraction(mp, dyin,tmp);
11045 @<Set the outgoing direction at |q|@>;
11048 @ If |q=c| then the coordinates of |r| and the control points between |q|
11049 and~|r| have already been offset by |h|.
11051 @<Set the outgoing direction at |q|@>=
11052 dxout=right_x(q)-x_coord(q);
11053 dyout=right_y(q)-y_coord(q);
11054 if ( (dxout==0)&&(dyout==0) ) {
11056 dxout=left_x(r)-x_coord(q);
11057 dyout=left_y(r)-y_coord(q);
11058 if ( (dxout==0)&&(dyout==0) ) {
11059 dxout=x_coord(r)-x_coord(q);
11060 dyout=y_coord(r)-y_coord(q);
11064 dxout=dxout-x_coord(h);
11065 dyout=dyout-y_coord(h);
11067 tmp=mp_pyth_add(mp, dxout,dyout);
11068 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11069 @:this can't happen degerate spec}{\quad degenerate spec@>
11070 dxout=mp_make_fraction(mp, dxout,tmp);
11071 dyout=mp_make_fraction(mp, dyout,tmp)
11073 @* \[23] Direction and intersection times.
11074 A path of length $n$ is defined parametrically by functions $x(t)$ and
11075 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11076 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11077 we shall consider operations that determine special times associated with
11078 given paths: the first time that a path travels in a given direction, and
11079 a pair of times at which two paths cross each other.
11081 @ Let's start with the easier task. The function |find_direction_time| is
11082 given a direction |(x,y)| and a path starting at~|h|. If the path never
11083 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11084 it will be nonnegative.
11086 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11087 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11088 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11089 assumed to match any given direction at time~|t|.
11091 The routine solves this problem in nondegenerate cases by rotating the path
11092 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11093 to find when a given path first travels ``due east.''
11096 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11097 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11098 pointer p,q; /* for list traversal */
11099 scaled n; /* the direction time at knot |p| */
11100 scaled tt; /* the direction time within a cubic */
11101 @<Other local variables for |find_direction_time|@>;
11102 @<Normalize the given direction for better accuracy;
11103 but |return| with zero result if it's zero@>;
11106 if ( right_type(p)==endpoint ) break;
11108 @<Rotate the cubic between |p| and |q|; then
11109 |goto found| if the rotated cubic travels due east at some time |tt|;
11110 but |break| if an entire cyclic path has been traversed@>;
11118 @ @<Normalize the given direction for better accuracy...@>=
11119 if ( abs(x)<abs(y) ) {
11120 x=mp_make_fraction(mp, x,abs(y));
11121 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11122 } else if ( x==0 ) {
11125 y=mp_make_fraction(mp, y,abs(x));
11126 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11129 @ Since we're interested in the tangent directions, we work with the
11130 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11131 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11132 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11133 in order to achieve better accuracy.
11135 The given path may turn abruptly at a knot, and it might pass the critical
11136 tangent direction at such a time. Therefore we remember the direction |phi|
11137 in which the previous rotated cubic was traveling. (The value of |phi| will be
11138 undefined on the first cubic, i.e., when |n=0|.)
11140 @<Rotate the cubic between |p| and |q|; then...@>=
11142 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11143 points of the rotated derivatives@>;
11144 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11146 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11149 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11150 @<Exit to |found| if the curve whose derivatives are specified by
11151 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11153 @ @<Other local variables for |find_direction_time|@>=
11154 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11155 angle theta,phi; /* angles of exit and entry at a knot */
11156 fraction t; /* temp storage */
11158 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11159 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11160 x3=x_coord(q)-left_x(q);
11161 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11162 y3=y_coord(q)-left_y(q);
11164 if ( abs(x2)>max ) max=abs(x2);
11165 if ( abs(x3)>max ) max=abs(x3);
11166 if ( abs(y1)>max ) max=abs(y1);
11167 if ( abs(y2)>max ) max=abs(y2);
11168 if ( abs(y3)>max ) max=abs(y3);
11169 if ( max==0 ) goto FOUND;
11170 while ( max<fraction_half ){
11171 max+=max; x1+=x1; x2+=x2; x3+=x3;
11172 y1+=y1; y2+=y2; y3+=y3;
11174 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11175 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11176 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11177 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11178 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11179 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11181 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11182 theta=mp_n_arg(mp, x1,y1);
11183 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11184 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11186 @ In this step we want to use the |crossing_point| routine to find the
11187 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11188 Several complications arise: If the quadratic equation has a double root,
11189 the curve never crosses zero, and |crossing_point| will find nothing;
11190 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11191 equation has simple roots, or only one root, we may have to negate it
11192 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11193 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11196 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11197 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11198 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11199 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11200 either |goto found| or |goto done|@>;
11203 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11204 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11206 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11207 $B(x_1,x_2,x_3;t)\ge0$@>;
11210 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11211 two roots, because we know that it isn't identically zero.
11213 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11214 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11215 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11216 subject to rounding errors. Yet this code optimistically tries to
11217 do the right thing.
11219 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11221 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11222 t=mp_crossing_point(mp, y1,y2,y3);
11223 if ( t>fraction_one ) goto DONE;
11224 y2=t_of_the_way(y2,y3);
11225 x1=t_of_the_way(x1,x2);
11226 x2=t_of_the_way(x2,x3);
11227 x1=t_of_the_way(x1,x2);
11228 if ( x1>=0 ) we_found_it;
11230 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11231 if ( t>fraction_one ) goto DONE;
11232 x1=t_of_the_way(x1,x2);
11233 x2=t_of_the_way(x2,x3);
11234 if ( t_of_the_way(x1,x2)>=0 ) {
11235 t=t_of_the_way(tt,fraction_one); we_found_it;
11238 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11239 either |goto found| or |goto done|@>=
11241 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11242 t=mp_make_fraction(mp, y1,y1-y2);
11243 x1=t_of_the_way(x1,x2);
11244 x2=t_of_the_way(x2,x3);
11245 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11246 } else if ( y3==0 ) {
11248 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11249 } else if ( x3>=0 ) {
11250 tt=unity; goto FOUND;
11256 @ At this point we know that the derivative of |y(t)| is identically zero,
11257 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11260 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11262 t=mp_crossing_point(mp, -x1,-x2,-x3);
11263 if ( t<=fraction_one ) we_found_it;
11264 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11265 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11269 @ The intersection of two cubics can be found by an interesting variant
11270 of the general bisection scheme described in the introduction to
11272 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11273 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11274 if an intersection exists. First we find the smallest rectangle that
11275 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11276 the smallest rectangle that encloses
11277 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11278 But if the rectangles do overlap, we bisect the intervals, getting
11279 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11280 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11281 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11282 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11283 levels of bisection we will have determined the intersection times $t_1$
11284 and~$t_2$ to $l$~bits of accuracy.
11286 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11287 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11288 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11289 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11290 to determine when the enclosing rectangles overlap. Here's why:
11291 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11292 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11293 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11294 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11295 overlap if and only if $u\submin\L x\submax$ and
11296 $x\submin\L u\submax$. Letting
11297 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11298 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11299 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11301 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11302 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11303 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11304 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11305 because of the overlap condition; i.e., we know that $X\submin$,
11306 $X\submax$, and their relatives are bounded, hence $X\submax-
11307 U\submin$ and $X\submin-U\submax$ are bounded.
11309 @ Incidentally, if the given cubics intersect more than once, the process
11310 just sketched will not necessarily find the lexicographically smallest pair
11311 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11312 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11313 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11314 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11315 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11316 Shuffled order agrees with lexicographic order if all pairs of solutions
11317 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11318 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11319 and the bisection algorithm would be substantially less efficient if it were
11320 constrained by lexicographic order.
11322 For example, suppose that an overlap has been found for $l=3$ and
11323 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11324 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11325 Then there is probably an intersection in one of the subintervals
11326 $(.1011,.011x)$; but lexicographic order would require us to explore
11327 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11328 want to store all of the subdivision data for the second path, so the
11329 subdivisions would have to be regenerated many times. Such inefficiencies
11330 would be associated with every `1' in the binary representation of~$t_1$.
11332 @ The subdivision process introduces rounding errors, hence we need to
11333 make a more liberal test for overlap. It is not hard to show that the
11334 computed values of $U_i$ differ from the truth by at most~$l$, on
11335 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11336 If $\beta$ is an upper bound on the absolute error in the computed
11337 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11338 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11339 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11341 More accuracy is obtained if we try the algorithm first with |tol=0|;
11342 the more liberal tolerance is used only if an exact approach fails.
11343 It is convenient to do this double-take by letting `3' in the preceding
11344 paragraph be a parameter, which is first 0, then 3.
11347 unsigned int tol_step; /* either 0 or 3, usually */
11349 @ We shall use an explicit stack to implement the recursive bisection
11350 method described above. The |bisect_stack| array will contain numerous 5-word
11351 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11352 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11354 The following macros define the allocation of stack positions to
11355 the quantities needed for bisection-intersection.
11357 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11358 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11359 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11360 @d stack_min(A) mp->bisect_stack[(A)+3]
11361 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11362 @d stack_max(A) mp->bisect_stack[(A)+4]
11363 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11364 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11366 @d u_packet(A) ((A)-5)
11367 @d v_packet(A) ((A)-10)
11368 @d x_packet(A) ((A)-15)
11369 @d y_packet(A) ((A)-20)
11370 @d l_packets (mp->bisect_ptr-int_packets)
11371 @d r_packets mp->bisect_ptr
11372 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11373 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11374 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11375 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11376 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11377 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11378 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11379 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11381 @d u1l stack_1(ul_packet) /* $U'_1$ */
11382 @d u2l stack_2(ul_packet) /* $U'_2$ */
11383 @d u3l stack_3(ul_packet) /* $U'_3$ */
11384 @d v1l stack_1(vl_packet) /* $V'_1$ */
11385 @d v2l stack_2(vl_packet) /* $V'_2$ */
11386 @d v3l stack_3(vl_packet) /* $V'_3$ */
11387 @d x1l stack_1(xl_packet) /* $X'_1$ */
11388 @d x2l stack_2(xl_packet) /* $X'_2$ */
11389 @d x3l stack_3(xl_packet) /* $X'_3$ */
11390 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11391 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11392 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11393 @d u1r stack_1(ur_packet) /* $U''_1$ */
11394 @d u2r stack_2(ur_packet) /* $U''_2$ */
11395 @d u3r stack_3(ur_packet) /* $U''_3$ */
11396 @d v1r stack_1(vr_packet) /* $V''_1$ */
11397 @d v2r stack_2(vr_packet) /* $V''_2$ */
11398 @d v3r stack_3(vr_packet) /* $V''_3$ */
11399 @d x1r stack_1(xr_packet) /* $X''_1$ */
11400 @d x2r stack_2(xr_packet) /* $X''_2$ */
11401 @d x3r stack_3(xr_packet) /* $X''_3$ */
11402 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11403 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11404 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11406 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11407 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11408 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11409 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11410 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11411 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11414 integer *bisect_stack;
11415 unsigned int bisect_ptr;
11417 @ @<Allocate or initialize ...@>=
11418 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11420 @ @<Dealloc variables@>=
11421 xfree(mp->bisect_stack);
11423 @ @<Check the ``constant''...@>=
11424 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11426 @ Computation of the min and max is a tedious but fairly fast sequence of
11427 instructions; exactly four comparisons are made in each branch.
11430 if ( stack_1((A))<0 ) {
11431 if ( stack_3((A))>=0 ) {
11432 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11433 else stack_min((A))=stack_1((A));
11434 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11435 if ( stack_max((A))<0 ) stack_max((A))=0;
11437 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11438 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11439 stack_max((A))=stack_1((A))+stack_2((A));
11440 if ( stack_max((A))<0 ) stack_max((A))=0;
11442 } else if ( stack_3((A))<=0 ) {
11443 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11444 else stack_max((A))=stack_1((A));
11445 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11446 if ( stack_min((A))>0 ) stack_min((A))=0;
11448 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11449 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11450 stack_min((A))=stack_1((A))+stack_2((A));
11451 if ( stack_min((A))>0 ) stack_min((A))=0;
11454 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11455 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11456 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11457 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11458 plus the |scaled| values of $t_1$ and~$t_2$.
11460 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11461 finds no intersection. The routine gives up and gives an approximate answer
11462 if it has backtracked
11463 more than 5000 times (otherwise there are cases where several minutes
11464 of fruitless computation would be possible).
11466 @d max_patience 5000
11469 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11470 integer time_to_go; /* this many backtracks before giving up */
11471 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11473 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11474 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11475 and |(pp,link(pp))|, respectively.
11477 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11478 pointer q,qq; /* |link(p)|, |link(pp)| */
11479 mp->time_to_go=max_patience; mp->max_t=2;
11480 @<Initialize for intersections at level zero@>;
11483 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11484 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11485 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11486 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11488 if ( mp->cur_t>=mp->max_t ){
11489 if ( mp->max_t==two ) { /* we've done 17 bisections */
11490 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11492 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11494 @<Subdivide for a new level of intersection@>;
11497 if ( mp->time_to_go>0 ) {
11498 decr(mp->time_to_go);
11500 while ( mp->appr_t<unity ) {
11501 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11503 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11505 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11509 @ The following variables are global, although they are used only by
11510 |cubic_intersection|, because it is necessary on some machines to
11511 split |cubic_intersection| up into two procedures.
11514 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11515 integer tol; /* bound on the uncertainly in the overlap test */
11517 unsigned int xy; /* pointers to the current packets of interest */
11518 integer three_l; /* |tol_step| times the bisection level */
11519 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11521 @ We shall assume that the coordinates are sufficiently non-extreme that
11522 integer overflow will not occur.
11524 @<Initialize for intersections at level zero@>=
11525 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11526 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11527 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11528 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11529 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11530 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11531 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11532 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11533 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11534 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11535 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11536 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11538 @ @<Subdivide for a new level of intersection@>=
11539 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11540 stack_uv=mp->uv; stack_xy=mp->xy;
11541 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11542 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11543 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11544 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11545 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11546 u3l=half(u2l+u2r); u1r=u3l;
11547 set_min_max(ul_packet); set_min_max(ur_packet);
11548 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11549 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11550 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11551 v3l=half(v2l+v2r); v1r=v3l;
11552 set_min_max(vl_packet); set_min_max(vr_packet);
11553 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11554 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11555 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11556 x3l=half(x2l+x2r); x1r=x3l;
11557 set_min_max(xl_packet); set_min_max(xr_packet);
11558 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11559 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11560 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11561 y3l=half(y2l+y2r); y1r=y3l;
11562 set_min_max(yl_packet); set_min_max(yr_packet);
11563 mp->uv=l_packets; mp->xy=l_packets;
11564 mp->delx+=mp->delx; mp->dely+=mp->dely;
11565 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11566 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11568 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11570 if ( odd(mp->cur_tt) ) {
11571 if ( odd(mp->cur_t) ) {
11572 @<Descend to the previous level and |goto not_found|@>;
11575 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11576 +stack_3(u_packet(mp->uv));
11577 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11578 +stack_3(v_packet(mp->uv));
11579 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11580 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11581 /* switch from |r_packet| to |l_packet| */
11582 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11583 +stack_3(x_packet(mp->xy));
11584 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11585 +stack_3(y_packet(mp->xy));
11588 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11589 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11590 -stack_3(x_packet(mp->xy));
11591 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11592 -stack_3(y_packet(mp->xy));
11593 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11596 @ @<Descend to the previous level...@>=
11598 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11599 if ( mp->cur_t==0 ) return;
11600 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11601 mp->three_l=mp->three_l-mp->tol_step;
11602 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11603 mp->uv=stack_uv; mp->xy=stack_xy;
11607 @ The |path_intersection| procedure is much simpler.
11608 It invokes |cubic_intersection| in lexicographic order until finding a
11609 pair of cubics that intersect. The final intersection times are placed in
11610 |cur_t| and~|cur_tt|.
11612 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11613 pointer p,pp; /* link registers that traverse the given paths */
11614 integer n,nn; /* integer parts of intersection times, minus |unity| */
11615 @<Change one-point paths into dead cycles@>;
11620 if ( right_type(p)!=endpoint ) {
11623 if ( right_type(pp)!=endpoint ) {
11624 mp_cubic_intersection(mp, p,pp);
11625 if ( mp->cur_t>0 ) {
11626 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11630 nn=nn+unity; pp=link(pp);
11633 n=n+unity; p=link(p);
11635 mp->tol_step=mp->tol_step+3;
11636 } while (mp->tol_step<=3);
11637 mp->cur_t=-unity; mp->cur_tt=-unity;
11640 @ @<Change one-point paths...@>=
11641 if ( right_type(h)==endpoint ) {
11642 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11643 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=explicit;
11645 if ( right_type(hh)==endpoint ) {
11646 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11647 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=explicit;
11650 @* \[24] Dynamic linear equations.
11651 \MP\ users define variables implicitly by stating equations that should be
11652 satisfied; the computer is supposed to be smart enough to solve those equations.
11653 And indeed, the computer tries valiantly to do so, by distinguishing five
11654 different types of numeric values:
11657 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11658 of the variable whose address is~|p|.
11661 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11662 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11663 as a |scaled| number plus a sum of independent variables with |fraction|
11667 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11668 number'' reflecting the time this variable was first used in an equation;
11669 also |0<=m<64|, and each dependent variable
11670 that refers to this one is actually referring to the future value of
11671 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11672 scaling are sometimes needed to keep the coefficients in dependency lists
11673 from getting too large. The value of~|m| will always be even.)
11676 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11677 equation before, but it has been explicitly declared to be numeric.
11680 |type(p)=undefined| means that variable |p| hasn't appeared before.
11682 \smallskip\noindent
11683 We have actually discussed these five types in the reverse order of their
11684 history during a computation: Once |known|, a variable never again
11685 becomes |dependent|; once |dependent|, it almost never again becomes
11686 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11687 and once |mp_numeric_type|, it never again becomes |undefined| (except
11688 of course when the user specifically decides to scrap the old value
11689 and start again). A backward step may, however, take place: Sometimes
11690 a |dependent| variable becomes |mp_independent| again, when one of the
11691 independent variables it depends on is reverting to |undefined|.
11694 The next patch detects overflow of independent-variable serial
11695 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11697 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11698 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11699 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11700 @d new_indep(A) /* create a new independent variable */
11701 { if ( mp->serial_no==max_serial_no )
11702 mp_fatal_error(mp, "variable instance identifiers exhausted");
11703 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11704 value((A))=mp->serial_no;
11708 integer serial_no; /* the most recent serial number, times |s_scale| */
11710 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11712 @ But how are dependency lists represented? It's simple: The linear combination
11713 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11714 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11715 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11716 of $\alpha_1$; and |link(p)| points to the dependency list
11717 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11718 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11719 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11720 they appear in decreasing order of their |value| fields (i.e., of
11721 their serial numbers). \ (It is convenient to use decreasing order,
11722 since |value(null)=0|. If the independent variables were not sorted by
11723 serial number but by some other criterion, such as their location in |mem|,
11724 the equation-solving mechanism would be too system-dependent, because
11725 the ordering can affect the computed results.)
11727 The |link| field in the node that contains the constant term $\beta$ is
11728 called the {\sl final link\/} of the dependency list. \MP\ maintains
11729 a doubly-linked master list of all dependency lists, in terms of a permanently
11731 in |mem| called |dep_head|. If there are no dependencies, we have
11732 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11733 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11734 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11735 points to its dependency list. If the final link of that dependency list
11736 occurs in location~|q|, then |link(q)| points to the next dependent
11737 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11739 @d dep_list(A) link(value_loc((A)))
11740 /* half of the |value| field in a |dependent| variable */
11741 @d prev_dep(A) info(value_loc((A)))
11742 /* the other half; makes a doubly linked list */
11743 @d dep_node_size 2 /* the number of words per dependency node */
11745 @<Initialize table entries...@>= mp->serial_no=0;
11746 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11747 info(dep_head)=null; dep_list(dep_head)=null;
11749 @ Actually the description above contains a little white lie. There's
11750 another kind of variable called |mp_proto_dependent|, which is
11751 just like a |dependent| one except that the $\alpha$ coefficients
11752 in its dependency list are |scaled| instead of being fractions.
11753 Proto-dependency lists are mixed with dependency lists in the
11754 nodes reachable from |dep_head|.
11756 @ Here is a procedure that prints a dependency list in symbolic form.
11757 The second parameter should be either |dependent| or |mp_proto_dependent|,
11758 to indicate the scaling of the coefficients.
11760 @<Declare subroutines for printing expressions@>=
11761 void mp_print_dependency (MP mp,pointer p, small_number t) {
11762 integer v; /* a coefficient */
11763 pointer pp,q; /* for list manipulation */
11766 v=abs(value(p)); q=info(p);
11767 if ( q==null ) { /* the constant term */
11768 if ( (v!=0)||(p==pp) ) {
11769 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11770 mp_print_scaled(mp, value(p));
11774 @<Print the coefficient, unless it's $\pm1.0$@>;
11775 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11776 @:this can't happen dep}{\quad dep@>
11777 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11778 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11783 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11784 if ( value(p)<0 ) mp_print_char(mp, '-');
11785 else if ( p!=pp ) mp_print_char(mp, '+');
11786 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11787 if ( v!=unity ) mp_print_scaled(mp, v)
11789 @ The maximum absolute value of a coefficient in a given dependency list
11790 is returned by the following simple function.
11792 @c fraction mp_max_coef (MP mp,pointer p) {
11793 fraction x; /* the maximum so far */
11795 while ( info(p)!=null ) {
11796 if ( abs(value(p))>x ) x=abs(value(p));
11802 @ One of the main operations needed on dependency lists is to add a multiple
11803 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11804 to dependency lists and |f| is a fraction.
11806 If the coefficient of any independent variable becomes |coef_bound| or
11807 more, in absolute value, this procedure changes the type of that variable
11808 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11809 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11810 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11811 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11812 2.3723$, the safer value 7/3 is taken as the threshold.)
11814 The changes mentioned in the preceding paragraph are actually done only if
11815 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11816 it is |false| only when \MP\ is making a dependency list that will soon
11817 be equated to zero.
11819 Several procedures that act on dependency lists, including |p_plus_fq|,
11820 set the global variable |dep_final| to the final (constant term) node of
11821 the dependency list that they produce.
11823 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11824 @d independent_needing_fix 0
11827 boolean fix_needed; /* does at least one |independent| variable need scaling? */
11828 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
11829 pointer dep_final; /* location of the constant term and final link */
11832 mp->fix_needed=false; mp->watch_coefs=true;
11834 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
11835 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
11836 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
11837 should be |mp_proto_dependent| if |q| is a proto-dependency list.
11839 List |q| is unchanged by the operation; but list |p| is totally destroyed.
11841 The final link of the dependency list or proto-dependency list returned
11842 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
11843 constant term of the result will be located in the same |mem| location
11844 as the original constant term of~|p|.
11846 Coefficients of the result are assumed to be zero if they are less than
11847 a certain threshold. This compensates for inevitable rounding errors,
11848 and tends to make more variables `|known|'. The threshold is approximately
11849 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
11850 proto-dependencies.
11852 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
11853 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
11854 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
11855 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
11857 @<Declare basic dependency-list subroutines@>=
11858 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11859 pointer q, small_number t, small_number tt) ;
11862 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11863 pointer q, small_number t, small_number tt) {
11864 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11865 pointer r,s; /* for list manipulation */
11866 integer mp_threshold; /* defines a neighborhood of zero */
11867 integer v; /* temporary register */
11868 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11869 else mp_threshold=scaled_threshold;
11870 r=temp_head; pp=info(p); qq=info(q);
11876 @<Contribute a term from |p|, plus |f| times the
11877 corresponding term from |q|@>
11879 } else if ( value(pp)<value(qq) ) {
11880 @<Contribute a term from |q|, multiplied by~|f|@>
11882 link(r)=p; r=p; p=link(p); pp=info(p);
11885 if ( t==mp_dependent )
11886 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
11888 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
11889 link(r)=p; mp->dep_final=p;
11890 return link(temp_head);
11893 @ @<Contribute a term from |p|, plus |f|...@>=
11895 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
11896 else v=value(p)+mp_take_scaled(mp, f,value(q));
11897 value(p)=v; s=p; p=link(p);
11898 if ( abs(v)<mp_threshold ) {
11899 mp_free_node(mp, s,dep_node_size);
11901 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11902 type(qq)=independent_needing_fix; mp->fix_needed=true;
11906 pp=info(p); q=link(q); qq=info(q);
11909 @ @<Contribute a term from |q|, multiplied by~|f|@>=
11911 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
11912 else v=mp_take_scaled(mp, f,value(q));
11913 if ( abs(v)>halfp(mp_threshold) ) {
11914 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
11915 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11916 type(qq)=independent_needing_fix; mp->fix_needed=true;
11920 q=link(q); qq=info(q);
11923 @ It is convenient to have another subroutine for the special case
11924 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
11925 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
11927 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
11928 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11929 pointer r,s; /* for list manipulation */
11930 integer mp_threshold; /* defines a neighborhood of zero */
11931 integer v; /* temporary register */
11932 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11933 else mp_threshold=scaled_threshold;
11934 r=temp_head; pp=info(p); qq=info(q);
11940 @<Contribute a term from |p|, plus the
11941 corresponding term from |q|@>
11943 } else if ( value(pp)<value(qq) ) {
11944 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
11945 q=link(q); qq=info(q); link(r)=s; r=s;
11947 link(r)=p; r=p; p=link(p); pp=info(p);
11950 value(p)=mp_slow_add(mp, value(p),value(q));
11951 link(r)=p; mp->dep_final=p;
11952 return link(temp_head);
11955 @ @<Contribute a term from |p|, plus the...@>=
11957 v=value(p)+value(q);
11958 value(p)=v; s=p; p=link(p); pp=info(p);
11959 if ( abs(v)<mp_threshold ) {
11960 mp_free_node(mp, s,dep_node_size);
11962 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
11963 type(qq)=independent_needing_fix; mp->fix_needed=true;
11967 q=link(q); qq=info(q);
11970 @ A somewhat simpler routine will multiply a dependency list
11971 by a given constant~|v|. The constant is either a |fraction| less than
11972 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
11973 convert a dependency list to a proto-dependency list.
11974 Parameters |t0| and |t1| are the list types before and after;
11975 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
11976 and |v_is_scaled=true|.
11978 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
11979 small_number t1, boolean v_is_scaled) {
11980 pointer r,s; /* for list manipulation */
11981 integer w; /* tentative coefficient */
11982 integer mp_threshold;
11983 boolean scaling_down;
11984 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
11985 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
11986 else mp_threshold=half_scaled_threshold;
11988 while ( info(p)!=null ) {
11989 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
11990 else w=mp_take_scaled(mp, v,value(p));
11991 if ( abs(w)<=mp_threshold ) {
11992 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
11994 if ( abs(w)>=coef_bound ) {
11995 mp->fix_needed=true; type(info(p))=independent_needing_fix;
11997 link(r)=p; r=p; value(p)=w; p=link(p);
12001 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12002 else value(p)=mp_take_fraction(mp, value(p),v);
12003 return link(temp_head);
12006 @ Similarly, we sometimes need to divide a dependency list
12007 by a given |scaled| constant.
12009 @<Declare basic dependency-list subroutines@>=
12010 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12011 t0, small_number t1) ;
12014 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12015 t0, small_number t1) {
12016 pointer r,s; /* for list manipulation */
12017 integer w; /* tentative coefficient */
12018 integer mp_threshold;
12019 boolean scaling_down;
12020 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12021 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12022 else mp_threshold=half_scaled_threshold;
12024 while ( info( p)!=null ) {
12025 if ( scaling_down ) {
12026 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12027 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12029 w=mp_make_scaled(mp, value(p),v);
12031 if ( abs(w)<=mp_threshold ) {
12032 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12034 if ( abs(w)>=coef_bound ) {
12035 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12037 link(r)=p; r=p; value(p)=w; p=link(p);
12040 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12041 return link(temp_head);
12044 @ Here's another utility routine for dependency lists. When an independent
12045 variable becomes dependent, we want to remove it from all existing
12046 dependencies. The |p_with_x_becoming_q| function computes the
12047 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12049 This procedure has basically the same calling conventions as |p_plus_fq|:
12050 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12051 final link are inherited from~|p|; and the fourth parameter tells whether
12052 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12053 is not altered if |x| does not occur in list~|p|.
12055 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12056 pointer x, pointer q, small_number t) {
12057 pointer r,s; /* for list manipulation */
12058 integer v; /* coefficient of |x| */
12059 integer sx; /* serial number of |x| */
12060 s=p; r=temp_head; sx=value(x);
12061 while ( value(info(s))>sx ) { r=s; s=link(s); };
12062 if ( info(s)!=x ) {
12065 link(temp_head)=p; link(r)=link(s); v=value(s);
12066 mp_free_node(mp, s,dep_node_size);
12067 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12071 @ Here's a simple procedure that reports an error when a variable
12072 has just received a known value that's out of the required range.
12074 @<Declare basic dependency-list subroutines@>=
12075 void mp_val_too_big (MP mp,scaled x) ;
12077 @ @c void mp_val_too_big (MP mp,scaled x) {
12078 if ( mp->internal[warning_check]>0 ) {
12079 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12080 @.Value is too large@>
12081 help4("The equation I just processed has given some variable")
12082 ("a value of 4096 or more. Continue and I'll try to cope")
12083 ("with that big value; but it might be dangerous.")
12084 ("(Set warningcheck:=0 to suppress this message.)");
12089 @ When a dependent variable becomes known, the following routine
12090 removes its dependency list. Here |p| points to the variable, and
12091 |q| points to the dependency list (which is one node long).
12093 @<Declare basic dependency-list subroutines@>=
12094 void mp_make_known (MP mp,pointer p, pointer q) ;
12096 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12097 int t; /* the previous type */
12098 prev_dep(link(q))=prev_dep(p);
12099 link(prev_dep(p))=link(q); t=type(p);
12100 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12101 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12102 if (( mp->internal[tracing_equations]>0) && mp_interesting(mp, p) ) {
12103 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12104 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12105 mp_print_variable_name(mp, p);
12106 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12107 mp_end_diagnostic(mp, false);
12109 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12110 mp->cur_type=mp_known; mp->cur_exp=value(p);
12111 mp_free_node(mp, p,value_node_size);
12115 @ The |fix_dependencies| routine is called into action when |fix_needed|
12116 has been triggered. The program keeps a list~|s| of independent variables
12117 whose coefficients must be divided by~4.
12119 In unusual cases, this fixup process might reduce one or more coefficients
12120 to zero, so that a variable will become known more or less by default.
12122 @<Declare basic dependency-list subroutines@>=
12123 void mp_fix_dependencies (MP mp);
12125 @ @c void mp_fix_dependencies (MP mp) {
12126 pointer p,q,r,s,t; /* list manipulation registers */
12127 pointer x; /* an independent variable */
12128 r=link(dep_head); s=null;
12129 while ( r!=dep_head ){
12131 @<Run through the dependency list for variable |t|, fixing
12132 all nodes, and ending with final link~|q|@>;
12134 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12136 while ( s!=null ) {
12137 p=link(s); x=info(s); free_avail(s); s=p;
12138 type(x)=mp_independent; value(x)=value(x)+2;
12140 mp->fix_needed=false;
12143 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12145 @<Run through the dependency list for variable |t|...@>=
12146 r=value_loc(t); /* |link(r)=dep_list(t)| */
12148 q=link(r); x=info(q);
12149 if ( x==null ) break;
12150 if ( type(x)<=independent_being_fixed ) {
12151 if ( type(x)<independent_being_fixed ) {
12152 p=mp_get_avail(mp); link(p)=s; s=p;
12153 info(s)=x; type(x)=independent_being_fixed;
12155 value(q)=value(q) / 4;
12156 if ( value(q)==0 ) {
12157 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12164 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12165 linking it into the list of all known dependencies. We assume that
12166 |dep_final| points to the final node of list~|p|.
12168 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12169 pointer r; /* what used to be the first dependency */
12170 dep_list(q)=p; prev_dep(q)=dep_head;
12171 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12175 @ Here is one of the ways a dependency list gets started.
12176 The |const_dependency| routine produces a list that has nothing but
12179 @c pointer mp_const_dependency (MP mp, scaled v) {
12180 mp->dep_final=mp_get_node(mp, dep_node_size);
12181 value(mp->dep_final)=v; info(mp->dep_final)=null;
12182 return mp->dep_final;
12185 @ And here's a more interesting way to start a dependency list from scratch:
12186 The parameter to |single_dependency| is the location of an
12187 independent variable~|x|, and the result is the simple dependency list
12190 In the unlikely event that the given independent variable has been doubled so
12191 often that we can't refer to it with a nonzero coefficient,
12192 |single_dependency| returns the simple list `0'. This case can be
12193 recognized by testing that the returned list pointer is equal to
12196 @c pointer mp_single_dependency (MP mp,pointer p) {
12197 pointer q; /* the new dependency list */
12198 integer m; /* the number of doublings */
12199 m=value(p) % s_scale;
12201 return mp_const_dependency(mp, 0);
12203 q=mp_get_node(mp, dep_node_size);
12204 value(q)=two_to_the(28-m); info(q)=p;
12205 link(q)=mp_const_dependency(mp, 0);
12210 @ We sometimes need to make an exact copy of a dependency list.
12212 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12213 pointer q; /* the new dependency list */
12214 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12216 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12217 if ( info(mp->dep_final)==null ) break;
12218 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12219 mp->dep_final=link(mp->dep_final); p=link(p);
12224 @ But how do variables normally become known? Ah, now we get to the heart of the
12225 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12226 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12227 appears. It equates this list to zero, by choosing an independent variable
12228 with the largest coefficient and making it dependent on the others. The
12229 newly dependent variable is eliminated from all current dependencies,
12230 thereby possibly making other dependent variables known.
12232 The given list |p| is, of course, totally destroyed by all this processing.
12234 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12235 pointer q,r,s; /* for link manipulation */
12236 pointer x; /* the variable that loses its independence */
12237 integer n; /* the number of times |x| had been halved */
12238 integer v; /* the coefficient of |x| in list |p| */
12239 pointer prev_r; /* lags one step behind |r| */
12240 pointer final_node; /* the constant term of the new dependency list */
12241 integer w; /* a tentative coefficient */
12242 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12243 x=info(q); n=value(x) % s_scale;
12244 @<Divide list |p| by |-v|, removing node |q|@>;
12245 if ( mp->internal[tracing_equations]>0 ) {
12246 @<Display the new dependency@>;
12248 @<Simplify all existing dependencies by substituting for |x|@>;
12249 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12250 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12253 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12254 q=p; r=link(p); v=value(q);
12255 while ( info(r)!=null ) {
12256 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12260 @ Here we want to change the coefficients from |scaled| to |fraction|,
12261 except in the constant term. In the common case of a trivial equation
12262 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12264 @<Divide list |p| by |-v|, removing node |q|@>=
12265 s=temp_head; link(s)=p; r=p;
12268 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12270 w=mp_make_fraction(mp, value(r),v);
12271 if ( abs(w)<=half_fraction_threshold ) {
12272 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12278 } while (info(r)!=null);
12279 if ( t==mp_proto_dependent ) {
12280 value(r)=-mp_make_scaled(mp, value(r),v);
12281 } else if ( v!=-fraction_one ) {
12282 value(r)=-mp_make_fraction(mp, value(r),v);
12284 final_node=r; p=link(temp_head)
12286 @ @<Display the new dependency@>=
12287 if ( mp_interesting(mp, x) ) {
12288 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12289 mp_print_variable_name(mp, x);
12290 @:]]]\#\#_}{\.{\#\#}@>
12292 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12293 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12294 mp_end_diagnostic(mp, false);
12297 @ @<Simplify all existing dependencies by substituting for |x|@>=
12298 prev_r=dep_head; r=link(dep_head);
12299 while ( r!=dep_head ) {
12300 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12301 if ( info(q)==null ) {
12302 mp_make_known(mp, r,q);
12305 do { q=link(q); } while (info(q)!=null);
12311 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12312 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12313 if ( info(p)==null ) {
12316 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12317 mp_free_node(mp, p,dep_node_size);
12318 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12319 mp->cur_exp=value(x); mp->cur_type=mp_known;
12320 mp_free_node(mp, x,value_node_size);
12323 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12324 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12327 @ @<Divide list |p| by $2^n$@>=
12329 s=temp_head; link(temp_head)=p; r=p;
12332 else w=value(r) / two_to_the(n);
12333 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12335 mp_free_node(mp, r,dep_node_size);
12340 } while (info(s)!=null);
12344 @ The |check_mem| procedure, which is used only when \MP\ is being
12345 debugged, makes sure that the current dependency lists are well formed.
12347 @<Check the list of linear dependencies@>=
12348 q=dep_head; p=link(q);
12349 while ( p!=dep_head ) {
12350 if ( prev_dep(p)!=q ) {
12351 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12356 r=info(p); q=p; p=link(q);
12357 if ( r==null ) break;
12358 if ( value(info(p))>=value(r) ) {
12359 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12360 @.Out of order...@>
12365 @* \[25] Dynamic nonlinear equations.
12366 Variables of numeric type are maintained by the general scheme of
12367 independent, dependent, and known values that we have just studied;
12368 and the components of pair and transform variables are handled in the
12369 same way. But \MP\ also has five other types of values: \&{boolean},
12370 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12372 Equations are allowed between nonlinear quantities, but only in a
12373 simple form. Two variables that haven't yet been assigned values are
12374 either equal to each other, or they're not.
12376 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12377 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12378 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12379 |null| (which means that no other variables are equivalent to this one), or
12380 it points to another variable of the same undefined type. The pointers in the
12381 latter case form a cycle of nodes, which we shall call a ``ring.''
12382 Rings of undefined variables may include capsules, which arise as
12383 intermediate results within expressions or as \&{expr} parameters to macros.
12385 When one member of a ring receives a value, the same value is given to
12386 all the other members. In the case of paths and pictures, this implies
12387 making separate copies of a potentially large data structure; users should
12388 restrain their enthusiasm for such generality, unless they have lots and
12389 lots of memory space.
12391 @ The following procedure is called when a capsule node is being
12392 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12394 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12395 pointer q; /* the new capsule node */
12396 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12398 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12403 @ Conversely, we might delete a capsule or a variable before it becomes known.
12404 The following procedure simply detaches a quantity from its ring,
12405 without recycling the storage.
12407 @<Declare the recycling subroutines@>=
12408 void mp_ring_delete (MP mp,pointer p) {
12411 if ( q!=null ) if ( q!=p ){
12412 while ( value(q)!=p ) q=value(q);
12417 @ Eventually there might be an equation that assigns values to all of the
12418 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12419 propagation of values.
12421 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12422 value, it will soon be recycled.
12424 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12425 small_number t; /* the type of ring |p| */
12426 pointer q,r; /* link manipulation registers */
12427 t=type(p)-unknown_tag; q=value(p);
12428 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12430 r=value(q); type(q)=t;
12432 case mp_boolean_type: value(q)=v; break;
12433 case mp_string_type: value(q)=v; add_str_ref(v); break;
12434 case mp_pen_type: value(q)=copy_pen(v); break;
12435 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12436 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12437 } /* there ain't no more cases */
12442 @ If two members of rings are equated, and if they have the same type,
12443 the |ring_merge| procedure is called on to make them equivalent.
12445 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12446 pointer r; /* traverses one list */
12450 @<Exclaim about a redundant equation@>;
12455 r=value(p); value(p)=value(q); value(q)=r;
12458 @ @<Exclaim about a redundant equation@>=
12460 print_err("Redundant equation");
12461 @.Redundant equation@>
12462 help2("I already knew that this equation was true.")
12463 ("But perhaps no harm has been done; let's continue.");
12464 mp_put_get_error(mp);
12467 @* \[26] Introduction to the syntactic routines.
12468 Let's pause a moment now and try to look at the Big Picture.
12469 The \MP\ program consists of three main parts: syntactic routines,
12470 semantic routines, and output routines. The chief purpose of the
12471 syntactic routines is to deliver the user's input to the semantic routines,
12472 while parsing expressions and locating operators and operands. The
12473 semantic routines act as an interpreter responding to these operators,
12474 which may be regarded as commands. And the output routines are
12475 periodically called on to produce compact font descriptions that can be
12476 used for typesetting or for making interim proof drawings. We have
12477 discussed the basic data structures and many of the details of semantic
12478 operations, so we are good and ready to plunge into the part of \MP\ that
12479 actually controls the activities.
12481 Our current goal is to come to grips with the |get_next| procedure,
12482 which is the keystone of \MP's input mechanism. Each call of |get_next|
12483 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12484 representing the next input token.
12485 $$\vbox{\halign{#\hfil\cr
12486 \hbox{|cur_cmd| denotes a command code from the long list of codes
12488 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12489 \hbox{|cur_sym| is the hash address of the symbolic token that was
12491 \hbox{\qquad or zero in the case of a numeric or string
12492 or capsule token.}\cr}}$$
12493 Underlying this external behavior of |get_next| is all the machinery
12494 necessary to convert from character files to tokens. At a given time we
12495 may be only partially finished with the reading of several files (for
12496 which \&{input} was specified), and partially finished with the expansion
12497 of some user-defined macros and/or some macro parameters, and partially
12498 finished reading some text that the user has inserted online,
12499 and so on. When reading a character file, the characters must be
12500 converted to tokens; comments and blank spaces must
12501 be removed, numeric and string tokens must be evaluated.
12503 To handle these situations, which might all be present simultaneously,
12504 \MP\ uses various stacks that hold information about the incomplete
12505 activities, and there is a finite state control for each level of the
12506 input mechanism. These stacks record the current state of an implicitly
12507 recursive process, but the |get_next| procedure is not recursive.
12510 eight_bits cur_cmd; /* current command set by |get_next| */
12511 integer cur_mod; /* operand of current command */
12512 halfword cur_sym; /* hash address of current symbol */
12514 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12515 command code and its modifier.
12516 It consists of a rather tedious sequence of print
12517 commands, and most of it is essentially an inverse to the |primitive|
12518 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12519 all of this procedure appears elsewhere in the program, together with the
12520 corresponding |primitive| calls.
12522 @<Declare the procedure called |print_cmd_mod|@>=
12523 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12525 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12526 default: mp_print(mp, "[unknown command code!]"); break;
12530 @ Here is a procedure that displays a given command in braces, in the
12531 user's transcript file.
12533 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12536 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12537 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12538 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12539 mp_end_diagnostic(mp, false);
12542 @* \[27] Input stacks and states.
12543 The state of \MP's input mechanism appears in the input stack, whose
12544 entries are records with five fields, called |index|, |start|, |loc|,
12545 |limit|, and |name|. The top element of this stack is maintained in a
12546 global variable for which no subscripting needs to be done; the other
12547 elements of the stack appear in an array. Hence the stack is declared thus:
12551 quarterword index_field;
12552 halfword start_field, loc_field, limit_field, name_field;
12556 in_state_record *input_stack;
12557 integer input_ptr; /* first unused location of |input_stack| */
12558 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12559 in_state_record cur_input; /* the ``top'' input state */
12560 int stack_size; /* maximum number of simultaneous input sources */
12562 @ @<Allocate or initialize ...@>=
12563 mp->stack_size = 300;
12564 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12566 @ @<Dealloc variables@>=
12567 xfree(mp->input_stack);
12569 @ We've already defined the special variable |loc==cur_input.loc_field|
12570 in our discussion of basic input-output routines. The other components of
12571 |cur_input| are defined in the same way:
12573 @d index mp->cur_input.index_field /* reference for buffer information */
12574 @d start mp->cur_input.start_field /* starting position in |buffer| */
12575 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12576 @d name mp->cur_input.name_field /* name of the current file */
12578 @ Let's look more closely now at the five control variables
12579 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12580 assuming that \MP\ is reading a line of characters that have been input
12581 from some file or from the user's terminal. There is an array called
12582 |buffer| that acts as a stack of all lines of characters that are
12583 currently being read from files, including all lines on subsidiary
12584 levels of the input stack that are not yet completed. \MP\ will return to
12585 the other lines when it is finished with the present input file.
12587 (Incidentally, on a machine with byte-oriented addressing, it would be
12588 appropriate to combine |buffer| with the |str_pool| array,
12589 letting the buffer entries grow downward from the top of the string pool
12590 and checking that these two tables don't bump into each other.)
12592 The line we are currently working on begins in position |start| of the
12593 buffer; the next character we are about to read is |buffer[loc]|; and
12594 |limit| is the location of the last character present. We always have
12595 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12596 that the end of a line is easily sensed.
12598 The |name| variable is a string number that designates the name of
12599 the current file, if we are reading an ordinary text file. Special codes
12600 |is_term..max_spec_src| indicate other sources of input text.
12602 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12603 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12604 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12605 @d max_spec_src is_scantok
12607 @ Additional information about the current line is available via the
12608 |index| variable, which counts how many lines of characters are present
12609 in the buffer below the current level. We have |index=0| when reading
12610 from the terminal and prompting the user for each line; then if the user types,
12611 e.g., `\.{input figs}', we will have |index=1| while reading
12612 the file \.{figs.mp}. However, it does not follow that |index| is the
12613 same as the input stack pointer, since many of the levels on the input
12614 stack may come from token lists and some |index| values may correspond
12615 to \.{MPX} files that are not currently on the stack.
12617 The global variable |in_open| is equal to the highest |index| value counting
12618 \.{MPX} files but excluding token-list input levels. Thus, the number of
12619 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12620 when we are not reading a token list.
12622 If we are not currently reading from the terminal,
12623 we are reading from the file variable |input_file[index]|. We use
12624 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12625 and |cur_file| as an abbreviation for |input_file[index]|.
12627 When \MP\ is not reading from the terminal, the global variable |line| contains
12628 the line number in the current file, for use in error messages. More precisely,
12629 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12630 the line number for each file in the |input_file| array.
12632 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12633 array so that the name doesn't get lost when the file is temporarily removed
12634 from the input stack.
12635 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12636 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12637 Since this is not an \.{MPX} file, we have
12638 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12639 This |name| field is set to |finished| when |input_file[k]| is completely
12642 If more information about the input state is needed, it can be
12643 included in small arrays like those shown here. For example,
12644 the current page or segment number in the input file might be put
12645 into a variable |page|, that is really a macro for the current entry
12646 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12647 by analogy with |line_stack|.
12648 @^system dependencies@>
12650 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12651 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12652 @d line mp->line_stack[index] /* current line number in the current source file */
12653 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12654 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12655 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12656 @d mpx_reading (mp->mpx_name[index]>absent)
12657 /* when reading a file, is it an \.{MPX} file? */
12659 /* |name_field| value when the corresponding \.{MPX} file is finished */
12662 integer in_open; /* the number of lines in the buffer, less one */
12663 unsigned int open_parens; /* the number of open text files */
12664 FILE * *input_file ;
12665 integer *line_stack ; /* the line number for each file */
12666 char * *iname_stack; /* used for naming \.{MPX} files */
12667 char * *iarea_stack; /* used for naming \.{MPX} files */
12668 halfword*mpx_name ;
12670 @ @<Allocate or ...@>=
12671 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12672 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12673 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12674 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12675 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12678 for (k=0;k<=mp->max_in_open;k++) {
12679 mp->iname_stack[k] =NULL;
12680 mp->iarea_stack[k] =NULL;
12684 @ @<Dealloc variables@>=
12687 for (l=0;l<=mp->max_in_open;l++) {
12688 xfree(mp->iname_stack[l]);
12689 xfree(mp->iarea_stack[l]);
12692 xfree(mp->input_file);
12693 xfree(mp->line_stack);
12694 xfree(mp->iname_stack);
12695 xfree(mp->iarea_stack);
12696 xfree(mp->mpx_name);
12699 @ However, all this discussion about input state really applies only to the
12700 case that we are inputting from a file. There is another important case,
12701 namely when we are currently getting input from a token list. In this case
12702 |index>max_in_open|, and the conventions about the other state variables
12705 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12706 the node that will be read next. If |loc=null|, the token list has been
12709 \yskip\hang|start| points to the first node of the token list; this node
12710 may or may not contain a reference count, depending on the type of token
12713 \yskip\hang|token_type|, which takes the place of |index| in the
12714 discussion above, is a code number that explains what kind of token list
12717 \yskip\hang|name| points to the |eqtb| address of the control sequence
12718 being expanded, if the current token list is a macro not defined by
12719 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12720 can be deduced by looking at their first two parameters.
12722 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12723 the parameters of the current macro or loop text begin in the |param_stack|.
12725 \yskip\noindent The |token_type| can take several values, depending on
12726 where the current token list came from:
12729 \indent|forever_text|, if the token list being scanned is the body of
12730 a \&{forever} loop;
12732 \indent|loop_text|, if the token list being scanned is the body of
12733 a \&{for} or \&{forsuffixes} loop;
12735 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12737 \indent|backed_up|, if the token list being scanned has been inserted as
12738 `to be read again'.
12740 \indent|inserted|, if the token list being scanned has been inserted as
12741 part of error recovery;
12743 \indent|macro|, if the expansion of a user-defined symbolic token is being
12747 The token list begins with a reference count if and only if |token_type=
12749 @^reference counts@>
12751 @d token_type index /* type of current token list */
12752 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12753 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12754 @d param_start limit /* base of macro parameters in |param_stack| */
12755 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12756 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12757 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12758 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12759 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12760 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12762 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12763 lists for parameters at the current level and subsidiary levels of input.
12764 This stack grows at a different rate from the others.
12767 pointer *param_stack; /* token list pointers for parameters */
12768 integer param_ptr; /* first unused entry in |param_stack| */
12769 integer max_param_stack; /* largest value of |param_ptr| */
12771 @ @<Allocate or initialize ...@>=
12772 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12774 @ @<Dealloc variables@>=
12775 xfree(mp->param_stack);
12777 @ Notice that the |line| isn't valid when |token_state| is true because it
12778 depends on |index|. If we really need to know the line number for the
12779 topmost file in the index stack we use the following function. If a page
12780 number or other information is needed, this routine should be modified to
12781 compute it as well.
12782 @^system dependencies@>
12784 @<Declare a function called |true_line|@>=
12785 integer mp_true_line (MP mp) {
12786 int k; /* an index into the input stack */
12787 if ( file_state && (name>max_spec_src) ) {
12792 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12793 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12796 return mp->line_stack[(k-1)];
12801 @ Thus, the ``current input state'' can be very complicated indeed; there
12802 can be many levels and each level can arise in a variety of ways. The
12803 |show_context| procedure, which is used by \MP's error-reporting routine to
12804 print out the current input state on all levels down to the most recent
12805 line of characters from an input file, illustrates most of these conventions.
12806 The global variable |file_ptr| contains the lowest level that was
12807 displayed by this procedure.
12810 integer file_ptr; /* shallowest level shown by |show_context| */
12812 @ The status at each level is indicated by printing two lines, where the first
12813 line indicates what was read so far and the second line shows what remains
12814 to be read. The context is cropped, if necessary, so that the first line
12815 contains at most |half_error_line| characters, and the second contains
12816 at most |error_line|. Non-current input levels whose |token_type| is
12817 `|backed_up|' are shown only if they have not been fully read.
12819 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12820 int old_setting; /* saved |selector| setting */
12821 @<Local variables for formatting calculations@>
12822 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12823 /* store current state */
12825 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
12826 @<Display the current context@>;
12828 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
12829 decr(mp->file_ptr);
12831 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
12834 @ @<Display the current context@>=
12835 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
12836 (token_type!=backed_up) || (loc!=null) ) {
12837 /* we omit backed-up token lists that have already been read */
12838 mp->tally=0; /* get ready to count characters */
12839 old_setting=mp->selector;
12840 if ( file_state ) {
12841 @<Print location of current line@>;
12842 @<Pseudoprint the line@>;
12844 @<Print type of token list@>;
12845 @<Pseudoprint the token list@>;
12847 mp->selector=old_setting; /* stop pseudoprinting */
12848 @<Print two lines using the tricky pseudoprinted information@>;
12851 @ This routine should be changed, if necessary, to give the best possible
12852 indication of where the current line resides in the input file.
12853 For example, on some systems it is best to print both a page and line number.
12854 @^system dependencies@>
12856 @<Print location of current line@>=
12857 if ( name>max_spec_src ) {
12858 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
12859 } else if ( terminal_input ) {
12860 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
12861 else mp_print_nl(mp, "<insert>");
12862 } else if ( name==is_scantok ) {
12863 mp_print_nl(mp, "<scantokens>");
12865 mp_print_nl(mp, "<read>");
12867 mp_print_char(mp, ' ')
12869 @ Can't use case statement here because the |token_type| is not
12870 a constant expression.
12872 @<Print type of token list@>=
12874 if(token_type==forever_text) {
12875 mp_print_nl(mp, "<forever> ");
12876 } else if (token_type==loop_text) {
12877 @<Print the current loop value@>;
12878 } else if (token_type==parameter) {
12879 mp_print_nl(mp, "<argument> ");
12880 } else if (token_type==backed_up) {
12881 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
12882 else mp_print_nl(mp, "<to be read again> ");
12883 } else if (token_type==inserted) {
12884 mp_print_nl(mp, "<inserted text> ");
12885 } else if (token_type==macro) {
12887 if ( name!=null ) mp_print_text(name);
12888 else @<Print the name of a \&{vardef}'d macro@>;
12889 mp_print(mp, "->");
12891 mp_print_nl(mp, "?");/* this should never happen */
12896 @ The parameter that corresponds to a loop text is either a token list
12897 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
12898 We'll discuss capsules later; for now, all we need to know is that
12899 the |link| field in a capsule parameter is |void| and that
12900 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
12902 @d diov (null+1) /* a null pointer different from |null| */
12904 @<Print the current loop value@>=
12905 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
12907 if ( link(p)==diov ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
12908 else mp_show_token_list(mp, p,null,20,mp->tally);
12910 mp_print(mp, ")> ");
12913 @ The first two parameters of a macro defined by \&{vardef} will be token
12914 lists representing the macro's prefix and ``at point.'' By putting these
12915 together, we get the macro's full name.
12917 @<Print the name of a \&{vardef}'d macro@>=
12918 { p=mp->param_stack[param_start];
12920 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
12923 while ( link(q)!=null ) q=link(q);
12924 link(q)=mp->param_stack[param_start+1];
12925 mp_show_token_list(mp, p,null,20,mp->tally);
12930 @ Now it is necessary to explain a little trick. We don't want to store a long
12931 string that corresponds to a token list, because that string might take up
12932 lots of memory; and we are printing during a time when an error message is
12933 being given, so we dare not do anything that might overflow one of \MP's
12934 tables. So `pseudoprinting' is the answer: We enter a mode of printing
12935 that stores characters into a buffer of length |error_line|, where character
12936 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
12937 |k<trick_count|, otherwise character |k| is dropped. Initially we set
12938 |tally:=0| and |trick_count:=1000000|; then when we reach the
12939 point where transition from line 1 to line 2 should occur, we
12940 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
12941 tally+1+error_line-half_error_line)|. At the end of the
12942 pseudoprinting, the values of |first_count|, |tally|, and
12943 |trick_count| give us all the information we need to print the two lines,
12944 and all of the necessary text is in |trick_buf|.
12946 Namely, let |l| be the length of the descriptive information that appears
12947 on the first line. The length of the context information gathered for that
12948 line is |k=first_count|, and the length of the context information
12949 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
12950 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
12951 descriptive information on line~1, and set |n:=l+k|; here |n| is the
12952 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
12953 and print `\.{...}' followed by
12954 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
12955 where subscripts of |trick_buf| are circular modulo |error_line|. The
12956 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
12957 unless |n+m>error_line|; in the latter case, further cropping is done.
12958 This is easier to program than to explain.
12960 @<Local variables for formatting...@>=
12961 int i; /* index into |buffer| */
12962 integer l; /* length of descriptive information on line 1 */
12963 integer m; /* context information gathered for line 2 */
12964 int n; /* length of line 1 */
12965 integer p; /* starting or ending place in |trick_buf| */
12966 integer q; /* temporary index */
12968 @ The following code tells the print routines to gather
12969 the desired information.
12971 @d begin_pseudoprint {
12972 l=mp->tally; mp->tally=0; mp->selector=pseudo;
12973 mp->trick_count=1000000;
12975 @d set_trick_count {
12976 mp->first_count=mp->tally;
12977 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
12978 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
12981 @ And the following code uses the information after it has been gathered.
12983 @<Print two lines using the tricky pseudoprinted information@>=
12984 if ( mp->trick_count==1000000 ) set_trick_count;
12985 /* |set_trick_count| must be performed */
12986 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
12987 else m=mp->trick_count-mp->first_count; /* context on line 2 */
12988 if ( l+mp->first_count<=mp->half_error_line ) {
12989 p=0; n=l+mp->first_count;
12991 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
12992 n=mp->half_error_line;
12994 for (q=p;q<=mp->first_count-1;q++) {
12995 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
12998 for (q=1;q<=n;q++) {
12999 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13001 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13002 else p=mp->first_count+(mp->error_line-n-3);
13003 for (q=mp->first_count;q<=p-1;q++) {
13004 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13006 if ( m+n>mp->error_line ) mp_print(mp, "...")
13008 @ But the trick is distracting us from our current goal, which is to
13009 understand the input state. So let's concentrate on the data structures that
13010 are being pseudoprinted as we finish up the |show_context| procedure.
13012 @<Pseudoprint the line@>=
13015 for (i=start;i<=limit-1;i++) {
13016 if ( i==loc ) set_trick_count;
13017 mp_print_str(mp, mp->buffer[i]);
13021 @ @<Pseudoprint the token list@>=
13023 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13024 else mp_show_macro(mp, start,loc,100000)
13026 @ Here is the missing piece of |show_token_list| that is activated when the
13027 token beginning line~2 is about to be shown:
13029 @<Do magic computation@>=set_trick_count
13031 @* \[28] Maintaining the input stacks.
13032 The following subroutines change the input status in commonly needed ways.
13034 First comes |push_input|, which stores the current state and creates a
13035 new level (having, initially, the same properties as the old).
13037 @d push_input { /* enter a new input level, save the old */
13038 if ( mp->input_ptr>mp->max_in_stack ) {
13039 mp->max_in_stack=mp->input_ptr;
13040 if ( mp->input_ptr==mp->stack_size ) {
13041 int l = (mp->stack_size+(mp->stack_size>>2));
13042 XREALLOC(mp->input_stack, (l+1), in_state_record);
13043 mp->stack_size = l;
13046 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13047 incr(mp->input_ptr);
13050 @ And of course what goes up must come down.
13052 @d pop_input { /* leave an input level, re-enter the old */
13053 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13056 @ Here is a procedure that starts a new level of token-list input, given
13057 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13058 set |name|, reset~|loc|, and increase the macro's reference count.
13060 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13062 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13063 push_input; start=p; token_type=t;
13064 param_start=mp->param_ptr; loc=p;
13067 @ When a token list has been fully scanned, the following computations
13068 should be done as we leave that level of input.
13071 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13072 pointer p; /* temporary register */
13073 if ( token_type>=backed_up ) { /* token list to be deleted */
13074 if ( token_type<=inserted ) {
13075 mp_flush_token_list(mp, start); goto DONE;
13077 mp_delete_mac_ref(mp, start); /* update reference count */
13080 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13081 decr(mp->param_ptr);
13082 p=mp->param_stack[mp->param_ptr];
13084 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
13085 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13087 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13092 pop_input; check_interrupt;
13095 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13096 token by the |cur_tok| routine.
13099 @c @<Declare the procedure called |make_exp_copy|@>;
13100 pointer mp_cur_tok (MP mp) {
13101 pointer p; /* a new token node */
13102 small_number save_type; /* |cur_type| to be restored */
13103 integer save_exp; /* |cur_exp| to be restored */
13104 if ( mp->cur_sym==0 ) {
13105 if ( mp->cur_cmd==capsule_token ) {
13106 save_type=mp->cur_type; save_exp=mp->cur_exp;
13107 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13108 mp->cur_type=save_type; mp->cur_exp=save_exp;
13110 p=mp_get_node(mp, token_node_size);
13111 value(p)=mp->cur_mod; name_type(p)=mp_token;
13112 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13113 else type(p)=mp_string_type;
13116 fast_get_avail(p); info(p)=mp->cur_sym;
13121 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13122 seen. The |back_input| procedure takes care of this by putting the token
13123 just scanned back into the input stream, ready to be read again.
13124 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13127 void mp_back_input (MP mp);
13129 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13130 pointer p; /* a token list of length one */
13132 while ( token_state &&(loc==null) )
13133 mp_end_token_list(mp); /* conserve stack space */
13137 @ The |back_error| routine is used when we want to restore or replace an
13138 offending token just before issuing an error message. We disable interrupts
13139 during the call of |back_input| so that the help message won't be lost.
13142 void mp_error (MP mp);
13143 void mp_back_error (MP mp);
13145 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13146 mp->OK_to_interrupt=false;
13148 mp->OK_to_interrupt=true; mp_error(mp);
13150 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13151 mp->OK_to_interrupt=false;
13152 mp_back_input(mp); token_type=inserted;
13153 mp->OK_to_interrupt=true; mp_error(mp);
13156 @ The |begin_file_reading| procedure starts a new level of input for lines
13157 of characters to be read from a file, or as an insertion from the
13158 terminal. It does not take care of opening the file, nor does it set |loc|
13159 or |limit| or |line|.
13160 @^system dependencies@>
13162 @c void mp_begin_file_reading (MP mp) {
13163 if ( mp->in_open==mp->max_in_open )
13164 mp_overflow(mp, "text input levels",mp->max_in_open);
13165 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13166 if ( mp->first==mp->buf_size )
13167 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13168 incr(mp->in_open); push_input; index=mp->in_open;
13169 mp->mpx_name[index]=absent;
13171 name=is_term; /* |terminal_input| is now |true| */
13174 @ Conversely, the variables must be downdated when such a level of input
13175 is finished. Any associated \.{MPX} file must also be closed and popped
13176 off the file stack.
13178 @c void mp_end_file_reading (MP mp) {
13179 if ( mp->in_open>index ) {
13180 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13181 mp_confusion(mp, "endinput");
13182 @:this can't happen endinput}{\quad endinput@>
13184 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13185 delete_str_ref(mp->mpx_name[mp->in_open]);
13190 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13191 if ( name>max_spec_src ) {
13193 delete_str_ref(name);
13194 xfree(in_name); in_name=NULL;
13195 xfree(in_area); in_area=NULL;
13197 pop_input; decr(mp->in_open);
13200 @ Here is a function that tries to resume input from an \.{MPX} file already
13201 associated with the current input file. It returns |false| if this doesn't
13204 @c boolean mp_begin_mpx_reading (MP mp) {
13205 if ( mp->in_open!=index+1 ) {
13208 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13209 @:this can't happen mpx}{\quad mpx@>
13210 if ( mp->first==mp->buf_size )
13211 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13212 push_input; index=mp->in_open;
13214 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13215 @<Put an empty line in the input buffer@>;
13220 @ This procedure temporarily stops reading an \.{MPX} file.
13222 @c void mp_end_mpx_reading (MP mp) {
13223 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13224 @:this can't happen mpx}{\quad mpx@>
13226 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13232 @ Here we enforce a restriction that simplifies the input stacks considerably.
13233 This should not inconvenience the user because \.{MPX} files are generated
13234 by an auxiliary program called \.{DVItoMP}.
13236 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13238 print_err("`mpxbreak' must be at the end of a line");
13239 help4("This file contains picture expressions for btex...etex")
13240 ("blocks. Such files are normally generated automatically")
13241 ("but this one seems to be messed up. I'm going to ignore")
13242 ("the rest of this line.");
13246 @ In order to keep the stack from overflowing during a long sequence of
13247 inserted `\.{show}' commands, the following routine removes completed
13248 error-inserted lines from memory.
13250 @c void mp_clear_for_error_prompt (MP mp) {
13251 while ( file_state && terminal_input &&
13252 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13253 mp_print_ln(mp); clear_terminal;
13256 @ To get \MP's whole input mechanism going, we perform the following
13259 @<Initialize the input routines@>=
13260 { mp->input_ptr=0; mp->max_in_stack=0;
13261 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13262 mp->param_ptr=0; mp->max_param_stack=0;
13264 start=1; index=0; line=0; name=is_term;
13265 mp->mpx_name[0]=absent;
13266 mp->force_eof=false;
13267 if ( ! mp_init_terminal(mp) ) exit(EXIT_FAILURE);
13268 limit=mp->last; mp->first=mp->last+1;
13269 /* |init_terminal| has set |loc| and |last| */
13272 @* \[29] Getting the next token.
13273 The heart of \MP's input mechanism is the |get_next| procedure, which
13274 we shall develop in the next few sections of the program. Perhaps we
13275 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13276 eyes and mouth, reading the source files and gobbling them up. And it also
13277 helps \MP\ to regurgitate stored token lists that are to be processed again.
13279 The main duty of |get_next| is to input one token and to set |cur_cmd|
13280 and |cur_mod| to that token's command code and modifier. Furthermore, if
13281 the input token is a symbolic token, that token's |hash| address
13282 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13284 Underlying this simple description is a certain amount of complexity
13285 because of all the cases that need to be handled.
13286 However, the inner loop of |get_next| is reasonably short and fast.
13288 @ Before getting into |get_next|, we need to consider a mechanism by which
13289 \MP\ helps keep errors from propagating too far. Whenever the program goes
13290 into a mode where it keeps calling |get_next| repeatedly until a certain
13291 condition is met, it sets |scanner_status| to some value other than |normal|.
13292 Then if an input file ends, or if an `\&{outer}' symbol appears,
13293 an appropriate error recovery will be possible.
13295 The global variable |warning_info| helps in this error recovery by providing
13296 additional information. For example, |warning_info| might indicate the
13297 name of a macro whose replacement text is being scanned.
13299 @d normal 0 /* |scanner_status| at ``quiet times'' */
13300 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13301 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13302 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13303 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13304 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13305 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13306 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13309 integer scanner_status; /* are we scanning at high speed? */
13310 integer warning_info; /* if so, what else do we need to know,
13311 in case an error occurs? */
13313 @ @<Initialize the input routines@>=
13314 mp->scanner_status=normal;
13316 @ The following subroutine
13317 is called when an `\&{outer}' symbolic token has been scanned or
13318 when the end of a file has been reached. These two cases are distinguished
13319 by |cur_sym|, which is zero at the end of a file.
13321 @c boolean mp_check_outer_validity (MP mp) {
13322 pointer p; /* points to inserted token list */
13323 if ( mp->scanner_status==normal ) {
13325 } else if ( mp->scanner_status==tex_flushing ) {
13326 @<Check if the file has ended while flushing \TeX\ material and set the
13327 result value for |check_outer_validity|@>;
13329 mp->deletions_allowed=false;
13330 @<Back up an outer symbolic token so that it can be reread@>;
13331 if ( mp->scanner_status>skipping ) {
13332 @<Tell the user what has run away and try to recover@>;
13334 print_err("Incomplete if; all text was ignored after line ");
13335 @.Incomplete if...@>
13336 mp_print_int(mp, mp->warning_info);
13337 help3("A forbidden `outer' token occurred in skipped text.")
13338 ("This kind of error happens when you say `if...' and forget")
13339 ("the matching `fi'. I've inserted a `fi'; this might work.");
13340 if ( mp->cur_sym==0 )
13341 mp->help_line[2]="The file ended while I was skipping conditional text.";
13342 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13344 mp->deletions_allowed=true;
13349 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13350 if ( mp->cur_sym!=0 ) {
13353 mp->deletions_allowed=false;
13354 print_err("TeX mode didn't end; all text was ignored after line ");
13355 mp_print_int(mp, mp->warning_info);
13356 help2("The file ended while I was looking for the `etex' to")
13357 ("finish this TeX material. I've inserted `etex' now.");
13358 mp->cur_sym = frozen_etex;
13360 mp->deletions_allowed=true;
13364 @ @<Back up an outer symbolic token so that it can be reread@>=
13365 if ( mp->cur_sym!=0 ) {
13366 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13367 back_list(p); /* prepare to read the symbolic token again */
13370 @ @<Tell the user what has run away...@>=
13372 mp_runaway(mp); /* print the definition-so-far */
13373 if ( mp->cur_sym==0 ) {
13374 print_err("File ended");
13375 @.File ended while scanning...@>
13377 print_err("Forbidden token found");
13378 @.Forbidden token found...@>
13380 mp_print(mp, " while scanning ");
13381 help4("I suspect you have forgotten an `enddef',")
13382 ("causing me to read past where you wanted me to stop.")
13383 ("I'll try to recover; but if the error is serious,")
13384 ("you'd better type `E' or `X' now and fix your file.");
13385 switch (mp->scanner_status) {
13386 @<Complete the error message,
13387 and set |cur_sym| to a token that might help recover from the error@>
13388 } /* there are no other cases */
13392 @ As we consider various kinds of errors, it is also appropriate to
13393 change the first line of the help message just given; |help_line[3]|
13394 points to the string that might be changed.
13396 @<Complete the error message,...@>=
13398 mp_print(mp, "to the end of the statement");
13399 mp->help_line[3]="A previous error seems to have propagated,";
13400 mp->cur_sym=frozen_semicolon;
13403 mp_print(mp, "a text argument");
13404 mp->help_line[3]="It seems that a right delimiter was left out,";
13405 if ( mp->warning_info==0 ) {
13406 mp->cur_sym=frozen_end_group;
13408 mp->cur_sym=frozen_right_delimiter;
13409 equiv(frozen_right_delimiter)=mp->warning_info;
13414 mp_print(mp, "the definition of ");
13415 if ( mp->scanner_status==op_defining )
13416 mp_print_text(mp->warning_info);
13418 mp_print_variable_name(mp, mp->warning_info);
13419 mp->cur_sym=frozen_end_def;
13421 case loop_defining:
13422 mp_print(mp, "the text of a ");
13423 mp_print_text(mp->warning_info);
13424 mp_print(mp, " loop");
13425 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13426 mp->cur_sym=frozen_end_for;
13429 @ The |runaway| procedure displays the first part of the text that occurred
13430 when \MP\ began its special |scanner_status|, if that text has been saved.
13432 @<Declare the procedure called |runaway|@>=
13433 void mp_runaway (MP mp) {
13434 if ( mp->scanner_status>flushing ) {
13435 mp_print_nl(mp, "Runaway ");
13436 switch (mp->scanner_status) {
13437 case absorbing: mp_print(mp, "text?"); break;
13439 case op_defining: mp_print(mp,"definition?"); break;
13440 case loop_defining: mp_print(mp, "loop?"); break;
13441 } /* there are no other cases */
13443 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13447 @ We need to mention a procedure that may be called by |get_next|.
13450 void mp_firm_up_the_line (MP mp);
13452 @ And now we're ready to take the plunge into |get_next| itself.
13453 Note that the behavior depends on the |scanner_status| because percent signs
13454 and double quotes need to be passed over when skipping TeX material.
13457 void mp_get_next (MP mp) {
13458 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13460 /*restart*/ /* go here to get the next input token */
13461 /*exit*/ /* go here when the next input token has been got */
13462 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13463 /*found*/ /* go here when the end of a symbolic token has been found */
13464 /*switch*/ /* go here to branch on the class of an input character */
13465 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13466 /* go here at crucial stages when scanning a number */
13467 int k; /* an index into |buffer| */
13468 ASCII_code c; /* the current character in the buffer */
13469 ASCII_code class; /* its class number */
13470 integer n,f; /* registers for decimal-to-binary conversion */
13473 if ( file_state ) {
13474 @<Input from external file; |goto restart| if no input found,
13475 or |return| if a non-symbolic token is found@>;
13477 @<Input from token list; |goto restart| if end of list or
13478 if a parameter needs to be expanded,
13479 or |return| if a non-symbolic token is found@>;
13482 @<Finish getting the symbolic token in |cur_sym|;
13483 |goto restart| if it is illegal@>;
13486 @ When a symbolic token is declared to be `\&{outer}', its command code
13487 is increased by |outer_tag|.
13490 @<Finish getting the symbolic token in |cur_sym|...@>=
13491 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13492 if ( mp->cur_cmd>=outer_tag ) {
13493 if ( mp_check_outer_validity(mp) )
13494 mp->cur_cmd=mp->cur_cmd-outer_tag;
13499 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13500 to have a special test for end-of-line.
13503 @<Input from external file;...@>=
13506 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13508 case digit_class: goto START_NUMERIC_TOKEN; break;
13510 class=mp->char_class[mp->buffer[loc]];
13511 if ( class>period_class ) {
13513 } else if ( class<period_class ) { /* |class=digit_class| */
13514 n=0; goto START_DECIMAL_TOKEN;
13518 case space_class: goto SWITCH; break;
13519 case percent_class:
13520 if ( mp->scanner_status==tex_flushing ) {
13521 if ( loc<limit ) goto SWITCH;
13523 @<Move to next line of file, or |goto restart| if there is no next line@>;
13528 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13529 else @<Get a string token and |return|@>;
13531 case isolated_classes:
13532 k=loc-1; goto FOUND; break;
13533 case invalid_class:
13534 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13535 else @<Decry the invalid character and |goto restart|@>;
13537 default: break; /* letters, etc. */
13540 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13542 START_NUMERIC_TOKEN:
13543 @<Get the integer part |n| of a numeric token;
13544 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13545 START_DECIMAL_TOKEN:
13546 @<Get the fraction part |f| of a numeric token@>;
13548 @<Pack the numeric and fraction parts of a numeric token
13551 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13554 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13555 |token_list| after the error has been dealt with
13556 (cf.\ |clear_for_error_prompt|).
13558 @<Decry the invalid...@>=
13560 print_err("Text line contains an invalid character");
13561 @.Text line contains...@>
13562 help2("A funny symbol that I can\'t read has just been input.")
13563 ("Continue, and I'll forget that it ever happened.");
13564 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13568 @ @<Get a string token and |return|@>=
13570 if ( mp->buffer[loc]=='"' ) {
13571 mp->cur_mod=rts("");
13573 k=loc; mp->buffer[limit+1]='"';
13576 } while (mp->buffer[loc]!='"');
13578 @<Decry the missing string delimiter and |goto restart|@>;
13581 mp->cur_mod=mp->buffer[k];
13585 append_char(mp->buffer[k]); incr(k);
13587 mp->cur_mod=mp_make_string(mp);
13590 incr(loc); mp->cur_cmd=string_token;
13594 @ We go to |restart| after this error message, not to |SWITCH|,
13595 because the |clear_for_error_prompt| routine might have reinstated
13596 |token_state| after |error| has finished.
13598 @<Decry the missing string delimiter and |goto restart|@>=
13600 loc=limit; /* the next character to be read on this line will be |"%"| */
13601 print_err("Incomplete string token has been flushed");
13602 @.Incomplete string token...@>
13603 help3("Strings should finish on the same line as they began.")
13604 ("I've deleted the partial string; you might want to")
13605 ("insert another by typing, e.g., `I\"new string\"'.");
13606 mp->deletions_allowed=false; mp_error(mp);
13607 mp->deletions_allowed=true;
13611 @ @<Get the integer part |n| of a numeric token...@>=
13613 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13614 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13617 if ( mp->buffer[loc]=='.' )
13618 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13621 goto FIN_NUMERIC_TOKEN;
13624 @ @<Get the fraction part |f| of a numeric token@>=
13627 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13628 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13631 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13632 f=mp_round_decimals(mp, k);
13637 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13639 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13640 } else if ( mp->scanner_status!=tex_flushing ) {
13641 print_err("Enormous number has been reduced");
13642 @.Enormous number...@>
13643 help2("I can\'t handle numbers bigger than 32767.99998;")
13644 ("so I've changed your constant to that maximum amount.");
13645 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13646 mp->cur_mod=el_gordo;
13648 mp->cur_cmd=numeric_token; return
13650 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13652 mp->cur_mod=n*unity+f;
13653 if ( mp->cur_mod>=fraction_one ) {
13654 if ( (mp->internal[warning_check]>0) &&
13655 (mp->scanner_status!=tex_flushing) ) {
13656 print_err("Number is too large (");
13657 mp_print_scaled(mp, mp->cur_mod);
13658 mp_print_char(mp, ')');
13659 help3("It is at least 4096. Continue and I'll try to cope")
13660 ("with that big value; but it might be dangerous.")
13661 ("(Set warningcheck:=0 to suppress this message.)");
13667 @ Let's consider now what happens when |get_next| is looking at a token list.
13670 @<Input from token list;...@>=
13671 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13672 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13673 if ( mp->cur_sym>=expr_base ) {
13674 if ( mp->cur_sym>=suffix_base ) {
13675 @<Insert a suffix or text parameter and |goto restart|@>;
13677 mp->cur_cmd=capsule_token;
13678 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13679 mp->cur_sym=0; return;
13682 } else if ( loc>null ) {
13683 @<Get a stored numeric or string or capsule token and |return|@>
13684 } else { /* we are done with this token list */
13685 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13688 @ @<Insert a suffix or text parameter...@>=
13690 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13691 /* |param_size=text_base-suffix_base| */
13692 mp_begin_token_list(mp,
13693 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13698 @ @<Get a stored numeric or string or capsule token...@>=
13700 if ( name_type(loc)==mp_token ) {
13701 mp->cur_mod=value(loc);
13702 if ( type(loc)==mp_known ) {
13703 mp->cur_cmd=numeric_token;
13705 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13708 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13710 loc=link(loc); return;
13713 @ All of the easy branches of |get_next| have now been taken care of.
13714 There is one more branch.
13716 @<Move to next line of file, or |goto restart|...@>=
13717 if ( name>max_spec_src ) {
13718 @<Read next line of file into |buffer|, or
13719 |goto restart| if the file has ended@>;
13721 if ( mp->input_ptr>0 ) {
13722 /* text was inserted during error recovery or by \&{scantokens} */
13723 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13725 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13726 if ( mp->interaction>mp_nonstop_mode ) {
13727 if ( limit==start ) /* previous line was empty */
13728 mp_print_nl(mp, "(Please type a command or say `end')");
13730 mp_print_ln(mp); mp->first=start;
13731 prompt_input("*"); /* input on-line into |buffer| */
13733 limit=mp->last; mp->buffer[limit]='%';
13734 mp->first=limit+1; loc=start;
13736 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13738 /* nonstop mode, which is intended for overnight batch processing,
13739 never waits for on-line input */
13743 @ The global variable |force_eof| is normally |false|; it is set |true|
13744 by an \&{endinput} command.
13747 boolean force_eof; /* should the next \&{input} be aborted early? */
13749 @ We must decrement |loc| in order to leave the buffer in a valid state
13750 when an error condition causes us to |goto restart| without calling
13751 |end_file_reading|.
13753 @<Read next line of file into |buffer|, or
13754 |goto restart| if the file has ended@>=
13756 incr(line); mp->first=start;
13757 if ( ! mp->force_eof ) {
13758 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13759 mp_firm_up_the_line(mp); /* this sets |limit| */
13761 mp->force_eof=true;
13763 if ( mp->force_eof ) {
13764 mp->force_eof=false;
13766 if ( mpx_reading ) {
13767 @<Complain that the \.{MPX} file ended unexpectly; then set
13768 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13770 mp_print_char(mp, ')'); decr(mp->open_parens);
13771 update_terminal; /* show user that file has been read */
13772 mp_end_file_reading(mp); /* resume previous level */
13773 if ( mp_check_outer_validity(mp) ) goto RESTART;
13777 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13780 @ We should never actually come to the end of an \.{MPX} file because such
13781 files should have an \&{mpxbreak} after the translation of the last
13782 \&{btex}$\,\ldots\,$\&{etex} block.
13784 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13786 mp->mpx_name[index]=finished;
13787 print_err("mpx file ended unexpectedly");
13788 help4("The file had too few picture expressions for btex...etex")
13789 ("blocks. Such files are normally generated automatically")
13790 ("but this one got messed up. You might want to insert a")
13791 ("picture expression now.");
13792 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13793 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13796 @ Sometimes we want to make it look as though we have just read a blank line
13797 without really doing so.
13799 @<Put an empty line in the input buffer@>=
13800 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13801 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13803 @ If the user has set the |pausing| parameter to some positive value,
13804 and if nonstop mode has not been selected, each line of input is displayed
13805 on the terminal and the transcript file, followed by `\.{=>}'.
13806 \MP\ waits for a response. If the response is null (i.e., if nothing is
13807 typed except perhaps a few blank spaces), the original
13808 line is accepted as it stands; otherwise the line typed is
13809 used instead of the line in the file.
13811 @c void mp_firm_up_the_line (MP mp) {
13812 size_t k; /* an index into |buffer| */
13814 if ( mp->internal[pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
13815 wake_up_terminal; mp_print_ln(mp);
13816 if ( start<limit ) {
13817 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13818 mp_print_str(mp, mp->buffer[k]);
13821 mp->first=limit; prompt_input("=>"); /* wait for user response */
13823 if ( mp->last>mp->first ) {
13824 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13825 mp->buffer[k+start-mp->first]=mp->buffer[k];
13827 limit=start+mp->last-mp->first;
13832 @* \[30] Dealing with \TeX\ material.
13833 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
13834 features need to be implemented at a low level in the scanning process
13835 so that \MP\ can stay in synch with the a preprocessor that treats
13836 blocks of \TeX\ material as they occur in the input file without trying
13837 to expand \MP\ macros. Thus we need a special version of |get_next|
13838 that does not expand macros and such but does handle \&{btex},
13839 \&{verbatimtex}, etc.
13841 The special version of |get_next| is called |get_t_next|. It works by flushing
13842 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
13843 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
13844 \&{btex}, and switching back when it sees \&{mpxbreak}.
13850 mp_primitive(mp, "btex",start_tex,btex_code);
13851 @:btex_}{\&{btex} primitive@>
13852 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
13853 @:verbatimtex_}{\&{verbatimtex} primitive@>
13854 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
13855 @:etex_}{\&{etex} primitive@>
13856 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
13857 @:mpx_break_}{\&{mpxbreak} primitive@>
13859 @ @<Cases of |print_cmd...@>=
13860 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
13861 else mp_print(mp, "verbatimtex"); break;
13862 case etex_marker: mp_print(mp, "etex"); break;
13863 case mpx_break: mp_print(mp, "mpxbreak"); break;
13865 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
13866 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
13869 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
13872 void mp_start_mpx_input (MP mp);
13875 void mp_t_next (MP mp) {
13876 int old_status; /* saves the |scanner_status| */
13877 integer old_info; /* saves the |warning_info| */
13878 while ( mp->cur_cmd<=max_pre_command ) {
13879 if ( mp->cur_cmd==mpx_break ) {
13880 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
13881 @<Complain about a misplaced \&{mpxbreak}@>;
13883 mp_end_mpx_reading(mp);
13886 } else if ( mp->cur_cmd==start_tex ) {
13887 if ( token_state || (name<=max_spec_src) ) {
13888 @<Complain that we are not reading a file@>;
13889 } else if ( mpx_reading ) {
13890 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
13891 } else if ( (mp->cur_mod!=verbatim_code)&&
13892 (mp->mpx_name[index]!=finished) ) {
13893 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
13898 @<Complain about a misplaced \&{etex}@>;
13900 goto COMMON_ENDING;
13902 @<Flush the \TeX\ material@>;
13908 @ We could be in the middle of an operation such as skipping false conditional
13909 text when \TeX\ material is encountered, so we must be careful to save the
13912 @<Flush the \TeX\ material@>=
13913 old_status=mp->scanner_status;
13914 old_info=mp->warning_info;
13915 mp->scanner_status=tex_flushing;
13916 mp->warning_info=line;
13917 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
13918 mp->scanner_status=old_status;
13919 mp->warning_info=old_info
13921 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
13922 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
13923 help4("This file contains picture expressions for btex...etex")
13924 ("blocks. Such files are normally generated automatically")
13925 ("but this one seems to be messed up. I'll just keep going")
13926 ("and hope for the best.");
13930 @ @<Complain that we are not reading a file@>=
13931 { print_err("You can only use `btex' or `verbatimtex' in a file");
13932 help3("I'll have to ignore this preprocessor command because it")
13933 ("only works when there is a file to preprocess. You might")
13934 ("want to delete everything up to the next `etex`.");
13938 @ @<Complain about a misplaced \&{mpxbreak}@>=
13939 { print_err("Misplaced mpxbreak");
13940 help2("I'll ignore this preprocessor command because it")
13941 ("doesn't belong here");
13945 @ @<Complain about a misplaced \&{etex}@>=
13946 { print_err("Extra etex will be ignored");
13947 help1("There is no btex or verbatimtex for this to match");
13951 @* \[31] Scanning macro definitions.
13952 \MP\ has a variety of ways to tuck tokens away into token lists for later
13953 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
13954 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
13955 All such operations are handled by the routines in this part of the program.
13957 The modifier part of each command code is zero for the ``ending delimiters''
13958 like \&{enddef} and \&{endfor}.
13960 @d start_def 1 /* command modifier for \&{def} */
13961 @d var_def 2 /* command modifier for \&{vardef} */
13962 @d end_def 0 /* command modifier for \&{enddef} */
13963 @d start_forever 1 /* command modifier for \&{forever} */
13964 @d end_for 0 /* command modifier for \&{endfor} */
13967 mp_primitive(mp, "def",macro_def,start_def);
13968 @:def_}{\&{def} primitive@>
13969 mp_primitive(mp, "vardef",macro_def,var_def);
13970 @:var_def_}{\&{vardef} primitive@>
13971 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
13972 @:primary_def_}{\&{primarydef} primitive@>
13973 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
13974 @:secondary_def_}{\&{secondarydef} primitive@>
13975 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
13976 @:tertiary_def_}{\&{tertiarydef} primitive@>
13977 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
13978 @:end_def_}{\&{enddef} primitive@>
13980 mp_primitive(mp, "for",iteration,expr_base);
13981 @:for_}{\&{for} primitive@>
13982 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
13983 @:for_suffixes_}{\&{forsuffixes} primitive@>
13984 mp_primitive(mp, "forever",iteration,start_forever);
13985 @:forever_}{\&{forever} primitive@>
13986 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
13987 @:end_for_}{\&{endfor} primitive@>
13989 @ @<Cases of |print_cmd...@>=
13991 if ( m<=var_def ) {
13992 if ( m==start_def ) mp_print(mp, "def");
13993 else if ( m<start_def ) mp_print(mp, "enddef");
13994 else mp_print(mp, "vardef");
13995 } else if ( m==secondary_primary_macro ) {
13996 mp_print(mp, "primarydef");
13997 } else if ( m==tertiary_secondary_macro ) {
13998 mp_print(mp, "secondarydef");
14000 mp_print(mp, "tertiarydef");
14004 if ( m<=start_forever ) {
14005 if ( m==start_forever ) mp_print(mp, "forever");
14006 else mp_print(mp, "endfor");
14007 } else if ( m==expr_base ) {
14008 mp_print(mp, "for");
14010 mp_print(mp, "forsuffixes");
14014 @ Different macro-absorbing operations have different syntaxes, but they
14015 also have a lot in common. There is a list of special symbols that are to
14016 be replaced by parameter tokens; there is a special command code that
14017 ends the definition; the quotation conventions are identical. Therefore
14018 it makes sense to have most of the work done by a single subroutine. That
14019 subroutine is called |scan_toks|.
14021 The first parameter to |scan_toks| is the command code that will
14022 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14024 The second parameter, |subst_list|, points to a (possibly empty) list
14025 of two-word nodes whose |info| and |value| fields specify symbol tokens
14026 before and after replacement. The list will be returned to free storage
14029 The third parameter is simply appended to the token list that is built.
14030 And the final parameter tells how many of the special operations
14031 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14032 When such parameters are present, they are called \.{(SUFFIX0)},
14033 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14035 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14036 subst_list, pointer tail_end, small_number suffix_count) {
14037 pointer p; /* tail of the token list being built */
14038 pointer q; /* temporary for link management */
14039 integer balance; /* left delimiters minus right delimiters */
14040 p=hold_head; balance=1; link(hold_head)=null;
14043 if ( mp->cur_sym>0 ) {
14044 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14045 if ( mp->cur_cmd==terminator ) {
14046 @<Adjust the balance; |break| if it's zero@>;
14047 } else if ( mp->cur_cmd==macro_special ) {
14048 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14051 link(p)=mp_cur_tok(mp); p=link(p);
14053 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14054 return link(hold_head);
14057 @ @<Substitute for |cur_sym|...@>=
14060 while ( q!=null ) {
14061 if ( info(q)==mp->cur_sym ) {
14062 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14068 @ @<Adjust the balance; |break| if it's zero@>=
14069 if ( mp->cur_mod>0 ) {
14077 @ Four commands are intended to be used only within macro texts: \&{quote},
14078 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14079 code called |macro_special|.
14081 @d quote 0 /* |macro_special| modifier for \&{quote} */
14082 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14083 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14084 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14087 mp_primitive(mp, "quote",macro_special,quote);
14088 @:quote_}{\&{quote} primitive@>
14089 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14090 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14091 mp_primitive(mp, "@@",macro_special,macro_at);
14092 @:]]]\AT!_}{\.{\AT!} primitive@>
14093 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14094 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14096 @ @<Cases of |print_cmd...@>=
14097 case macro_special:
14099 case macro_prefix: mp_print(mp, "#@@"); break;
14100 case macro_at: mp_print_char(mp, '@@'); break;
14101 case macro_suffix: mp_print(mp, "@@#"); break;
14102 default: mp_print(mp, "quote"); break;
14106 @ @<Handle quoted...@>=
14108 if ( mp->cur_mod==quote ) { get_t_next; }
14109 else if ( mp->cur_mod<=suffix_count )
14110 mp->cur_sym=suffix_base-1+mp->cur_mod;
14113 @ Here is a routine that's used whenever a token will be redefined. If
14114 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14115 substituted; the latter is redefinable but essentially impossible to use,
14116 hence \MP's tables won't get fouled up.
14118 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14121 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14122 print_err("Missing symbolic token inserted");
14123 @.Missing symbolic token...@>
14124 help3("Sorry: You can\'t redefine a number, string, or expr.")
14125 ("I've inserted an inaccessible symbol so that your")
14126 ("definition will be completed without mixing me up too badly.");
14127 if ( mp->cur_sym>0 )
14128 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14129 else if ( mp->cur_cmd==string_token )
14130 delete_str_ref(mp->cur_mod);
14131 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14135 @ Before we actually redefine a symbolic token, we need to clear away its
14136 former value, if it was a variable. The following stronger version of
14137 |get_symbol| does that.
14139 @c void mp_get_clear_symbol (MP mp) {
14140 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14143 @ Here's another little subroutine; it checks that an equals sign
14144 or assignment sign comes along at the proper place in a macro definition.
14146 @c void mp_check_equals (MP mp) {
14147 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14148 mp_missing_err(mp, "=");
14150 help5("The next thing in this `def' should have been `=',")
14151 ("because I've already looked at the definition heading.")
14152 ("But don't worry; I'll pretend that an equals sign")
14153 ("was present. Everything from here to `enddef'")
14154 ("will be the replacement text of this macro.");
14159 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14160 handled now that we have |scan_toks|. In this case there are
14161 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14162 |expr_base| and |expr_base+1|).
14164 @c void mp_make_op_def (MP mp) {
14165 command_code m; /* the type of definition */
14166 pointer p,q,r; /* for list manipulation */
14168 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14169 info(q)=mp->cur_sym; value(q)=expr_base;
14170 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14171 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14172 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14173 get_t_next; mp_check_equals(mp);
14174 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14175 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14176 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14177 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14178 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14181 @ Parameters to macros are introduced by the keywords \&{expr},
14182 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14185 mp_primitive(mp, "expr",param_type,expr_base);
14186 @:expr_}{\&{expr} primitive@>
14187 mp_primitive(mp, "suffix",param_type,suffix_base);
14188 @:suffix_}{\&{suffix} primitive@>
14189 mp_primitive(mp, "text",param_type,text_base);
14190 @:text_}{\&{text} primitive@>
14191 mp_primitive(mp, "primary",param_type,primary_macro);
14192 @:primary_}{\&{primary} primitive@>
14193 mp_primitive(mp, "secondary",param_type,secondary_macro);
14194 @:secondary_}{\&{secondary} primitive@>
14195 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14196 @:tertiary_}{\&{tertiary} primitive@>
14198 @ @<Cases of |print_cmd...@>=
14200 if ( m>=expr_base ) {
14201 if ( m==expr_base ) mp_print(mp, "expr");
14202 else if ( m==suffix_base ) mp_print(mp, "suffix");
14203 else mp_print(mp, "text");
14204 } else if ( m<secondary_macro ) {
14205 mp_print(mp, "primary");
14206 } else if ( m==secondary_macro ) {
14207 mp_print(mp, "secondary");
14209 mp_print(mp, "tertiary");
14213 @ Let's turn next to the more complex processing associated with \&{def}
14214 and \&{vardef}. When the following procedure is called, |cur_mod|
14215 should be either |start_def| or |var_def|.
14217 @c @<Declare the procedure called |check_delimiter|@>;
14218 @<Declare the function called |scan_declared_variable|@>;
14219 void mp_scan_def (MP mp) {
14220 int m; /* the type of definition */
14221 int n; /* the number of special suffix parameters */
14222 int k; /* the total number of parameters */
14223 int c; /* the kind of macro we're defining */
14224 pointer r; /* parameter-substitution list */
14225 pointer q; /* tail of the macro token list */
14226 pointer p; /* temporary storage */
14227 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14228 pointer l_delim,r_delim; /* matching delimiters */
14229 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14230 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14231 @<Scan the token or variable to be defined;
14232 set |n|, |scanner_status|, and |warning_info|@>;
14234 if ( mp->cur_cmd==left_delimiter ) {
14235 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14237 if ( mp->cur_cmd==param_type ) {
14238 @<Absorb undelimited parameters, putting them into list |r|@>;
14240 mp_check_equals(mp);
14241 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14242 @<Attach the replacement text to the tail of node |p|@>;
14243 mp->scanner_status=normal; mp_get_x_next(mp);
14246 @ We don't put `|frozen_end_group|' into the replacement text of
14247 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14249 @<Attach the replacement text to the tail of node |p|@>=
14250 if ( m==start_def ) {
14251 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14253 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14254 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14255 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14257 if ( mp->warning_info==bad_vardef )
14258 mp_flush_token_list(mp, value(bad_vardef))
14262 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14264 @ @<Scan the token or variable to be defined;...@>=
14265 if ( m==start_def ) {
14266 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14267 mp->scanner_status=op_defining; n=0;
14268 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14270 p=mp_scan_declared_variable(mp);
14271 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14272 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14273 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14274 mp->scanner_status=var_defining; n=2;
14275 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14278 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14279 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14281 @ @<Change to `\.{a bad variable}'@>=
14283 print_err("This variable already starts with a macro");
14284 @.This variable already...@>
14285 help2("After `vardef a' you can\'t say `vardef a.b'.")
14286 ("So I'll have to discard this definition.");
14287 mp_error(mp); mp->warning_info=bad_vardef;
14290 @ @<Initialize table entries...@>=
14291 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14292 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14294 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14296 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14297 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14300 print_err("Missing parameter type; `expr' will be assumed");
14301 @.Missing parameter type@>
14302 help1("You should've had `expr' or `suffix' or `text' here.");
14303 mp_back_error(mp); base=expr_base;
14305 @<Absorb parameter tokens for type |base|@>;
14306 mp_check_delimiter(mp, l_delim,r_delim);
14308 } while (mp->cur_cmd==left_delimiter)
14310 @ @<Absorb parameter tokens for type |base|@>=
14312 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14313 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14314 value(p)=base+k; info(p)=mp->cur_sym;
14315 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14316 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14317 incr(k); link(p)=r; r=p; get_t_next;
14318 } while (mp->cur_cmd==comma)
14320 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14322 p=mp_get_node(mp, token_node_size);
14323 if ( mp->cur_mod<expr_base ) {
14324 c=mp->cur_mod; value(p)=expr_base+k;
14326 value(p)=mp->cur_mod+k;
14327 if ( mp->cur_mod==expr_base ) c=expr_macro;
14328 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14331 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14332 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14333 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14334 c=of_macro; p=mp_get_node(mp, token_node_size);
14335 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14336 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14337 link(p)=r; r=p; get_t_next;
14341 @* \[32] Expanding the next token.
14342 Only a few command codes |<min_command| can possibly be returned by
14343 |get_t_next|; in increasing order, they are
14344 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14345 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14347 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14348 like |get_t_next| except that it keeps getting more tokens until
14349 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14350 macros and removes conditionals or iterations or input instructions that
14353 It follows that |get_x_next| might invoke itself recursively. In fact,
14354 there is massive recursion, since macro expansion can involve the
14355 scanning of arbitrarily complex expressions, which in turn involve
14356 macro expansion and conditionals, etc.
14359 Therefore it's necessary to declare a whole bunch of |forward|
14360 procedures at this point, and to insert some other procedures
14361 that will be invoked by |get_x_next|.
14364 void mp_scan_primary (MP mp);
14365 void mp_scan_secondary (MP mp);
14366 void mp_scan_tertiary (MP mp);
14367 void mp_scan_expression (MP mp);
14368 void mp_scan_suffix (MP mp);
14369 @<Declare the procedure called |macro_call|@>;
14370 void mp_get_boolean (MP mp);
14371 void mp_pass_text (MP mp);
14372 void mp_conditional (MP mp);
14373 void mp_start_input (MP mp);
14374 void mp_begin_iteration (MP mp);
14375 void mp_resume_iteration (MP mp);
14376 void mp_stop_iteration (MP mp);
14378 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14379 when it has to do exotic expansion commands.
14381 @c void mp_expand (MP mp) {
14382 pointer p; /* for list manipulation */
14383 size_t k; /* something that we hope is |<=buf_size| */
14384 pool_pointer j; /* index into |str_pool| */
14385 if ( mp->internal[tracing_commands]>unity )
14386 if ( mp->cur_cmd!=defined_macro )
14388 switch (mp->cur_cmd) {
14390 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14393 @<Terminate the current conditional and skip to \&{fi}@>;
14396 @<Initiate or terminate input from a file@>;
14399 if ( mp->cur_mod==end_for ) {
14400 @<Scold the user for having an extra \&{endfor}@>;
14402 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14409 @<Exit a loop if the proper time has come@>;
14414 @<Expand the token after the next token@>;
14417 @<Put a string into the input buffer@>;
14419 case defined_macro:
14420 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14422 }; /* there are no other cases */
14425 @ @<Scold the user...@>=
14427 print_err("Extra `endfor'");
14429 help2("I'm not currently working on a for loop,")
14430 ("so I had better not try to end anything.");
14434 @ The processing of \&{input} involves the |start_input| subroutine,
14435 which will be declared later; the processing of \&{endinput} is trivial.
14438 mp_primitive(mp, "input",input,0);
14439 @:input_}{\&{input} primitive@>
14440 mp_primitive(mp, "endinput",input,1);
14441 @:end_input_}{\&{endinput} primitive@>
14443 @ @<Cases of |print_cmd_mod|...@>=
14445 if ( m==0 ) mp_print(mp, "input");
14446 else mp_print(mp, "endinput");
14449 @ @<Initiate or terminate input...@>=
14450 if ( mp->cur_mod>0 ) mp->force_eof=true;
14451 else mp_start_input(mp)
14453 @ We'll discuss the complicated parts of loop operations later. For now
14454 it suffices to know that there's a global variable called |loop_ptr|
14455 that will be |null| if no loop is in progress.
14458 { while ( token_state &&(loc==null) )
14459 mp_end_token_list(mp); /* conserve stack space */
14460 if ( mp->loop_ptr==null ) {
14461 print_err("Lost loop");
14463 help2("I'm confused; after exiting from a loop, I still seem")
14464 ("to want to repeat it. I'll try to forget the problem.");
14467 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14471 @ @<Exit a loop if the proper time has come@>=
14472 { mp_get_boolean(mp);
14473 if ( mp->internal[tracing_commands]>unity )
14474 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14475 if ( mp->cur_exp==true_code ) {
14476 if ( mp->loop_ptr==null ) {
14477 print_err("No loop is in progress");
14478 @.No loop is in progress@>
14479 help1("Why say `exitif' when there's nothing to exit from?");
14480 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14482 @<Exit prematurely from an iteration@>;
14484 } else if ( mp->cur_cmd!=semicolon ) {
14485 mp_missing_err(mp, ";");
14487 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14488 ("I shall pretend that one was there."); mp_back_error(mp);
14492 @ Here we use the fact that |forever_text| is the only |token_type| that
14493 is less than |loop_text|.
14495 @<Exit prematurely...@>=
14498 if ( file_state ) {
14499 mp_end_file_reading(mp);
14501 if ( token_type<=loop_text ) p=start;
14502 mp_end_token_list(mp);
14505 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14507 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14510 @ @<Expand the token after the next token@>=
14512 p=mp_cur_tok(mp); get_t_next;
14513 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14514 else mp_back_input(mp);
14518 @ @<Put a string into the input buffer@>=
14519 { mp_get_x_next(mp); mp_scan_primary(mp);
14520 if ( mp->cur_type!=mp_string_type ) {
14521 mp_disp_err(mp, null,"Not a string");
14523 help2("I'm going to flush this expression, since")
14524 ("scantokens should be followed by a known string.");
14525 mp_put_get_flush_error(mp, 0);
14528 if ( length(mp->cur_exp)>0 )
14529 @<Pretend we're reading a new one-line file@>;
14533 @ @<Pretend we're reading a new one-line file@>=
14534 { mp_begin_file_reading(mp); name=is_scantok;
14535 k=mp->first+length(mp->cur_exp);
14536 if ( k>=mp->max_buf_stack ) {
14537 while ( k>=mp->buf_size ) {
14538 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14540 mp->max_buf_stack=k+1;
14542 j=mp->str_start[mp->cur_exp]; limit=k;
14543 while ( mp->first<(size_t)limit ) {
14544 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14546 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14547 mp_flush_cur_exp(mp, 0);
14550 @ Here finally is |get_x_next|.
14552 The expression scanning routines to be considered later
14553 communicate via the global quantities |cur_type| and |cur_exp|;
14554 we must be very careful to save and restore these quantities while
14555 macros are being expanded.
14559 void mp_get_x_next (MP mp);
14561 @ @c void mp_get_x_next (MP mp) {
14562 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14564 if ( mp->cur_cmd<min_command ) {
14565 save_exp=mp_stash_cur_exp(mp);
14567 if ( mp->cur_cmd==defined_macro )
14568 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14572 } while (mp->cur_cmd<min_command);
14573 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14577 @ Now let's consider the |macro_call| procedure, which is used to start up
14578 all user-defined macros. Since the arguments to a macro might be expressions,
14579 |macro_call| is recursive.
14582 The first parameter to |macro_call| points to the reference count of the
14583 token list that defines the macro. The second parameter contains any
14584 arguments that have already been parsed (see below). The third parameter
14585 points to the symbolic token that names the macro. If the third parameter
14586 is |null|, the macro was defined by \&{vardef}, so its name can be
14587 reconstructed from the prefix and ``at'' arguments found within the
14590 What is this second parameter? It's simply a linked list of one-word items,
14591 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14592 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14593 the first scanned argument, and |link(arg_list)| points to the list of
14594 further arguments (if any).
14596 Arguments of type \&{expr} are so-called capsules, which we will
14597 discuss later when we concentrate on expressions; they can be
14598 recognized easily because their |link| field is |void|. Arguments of type
14599 \&{suffix} and \&{text} are token lists without reference counts.
14601 @ After argument scanning is complete, the arguments are moved to the
14602 |param_stack|. (They can't be put on that stack any sooner, because
14603 the stack is growing and shrinking in unpredictable ways as more arguments
14604 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14605 the replacement text of the macro is placed at the top of the \MP's
14606 input stack, so that |get_t_next| will proceed to read it next.
14608 @<Declare the procedure called |macro_call|@>=
14609 @<Declare the procedure called |print_macro_name|@>;
14610 @<Declare the procedure called |print_arg|@>;
14611 @<Declare the procedure called |scan_text_arg|@>;
14612 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14613 pointer macro_name) ;
14616 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14617 pointer macro_name) {
14618 /* invokes a user-defined control sequence */
14619 pointer r; /* current node in the macro's token list */
14620 pointer p,q; /* for list manipulation */
14621 integer n; /* the number of arguments */
14622 pointer tail = 0; /* tail of the argument list */
14623 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14624 r=link(def_ref); add_mac_ref(def_ref);
14625 if ( arg_list==null ) {
14628 @<Determine the number |n| of arguments already supplied,
14629 and set |tail| to the tail of |arg_list|@>;
14631 if ( mp->internal[tracing_macros]>0 ) {
14632 @<Show the text of the macro being expanded, and the existing arguments@>;
14634 @<Scan the remaining arguments, if any; set |r| to the first token
14635 of the replacement text@>;
14636 @<Feed the arguments and replacement text to the scanner@>;
14639 @ @<Show the text of the macro...@>=
14640 mp_begin_diagnostic(mp); mp_print_ln(mp);
14641 mp_print_macro_name(mp, arg_list,macro_name);
14642 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14643 mp_show_macro(mp, def_ref,null,100000);
14644 if ( arg_list!=null ) {
14648 mp_print_arg(mp, q,n,0);
14649 incr(n); p=link(p);
14652 mp_end_diagnostic(mp, false)
14655 @ @<Declare the procedure called |print_macro_name|@>=
14656 void mp_print_macro_name (MP mp,pointer a, pointer n);
14659 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14660 pointer p,q; /* they traverse the first part of |a| */
14666 mp_print_text(info(info(link(a))));
14669 while ( link(q)!=null ) q=link(q);
14670 link(q)=info(link(a));
14671 mp_show_token_list(mp, p,null,1000,0);
14677 @ @<Declare the procedure called |print_arg|@>=
14678 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14681 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14682 if ( link(q)==diov ) mp_print_nl(mp, "(EXPR");
14683 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14684 else mp_print_nl(mp, "(TEXT");
14685 mp_print_int(mp, n); mp_print(mp, ")<-");
14686 if ( link(q)==diov ) mp_print_exp(mp, q,1);
14687 else mp_show_token_list(mp, q,null,1000,0);
14690 @ @<Determine the number |n| of arguments already supplied...@>=
14692 n=1; tail=arg_list;
14693 while ( link(tail)!=null ) {
14694 incr(n); tail=link(tail);
14698 @ @<Scan the remaining arguments, if any; set |r|...@>=
14699 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14700 while ( info(r)>=expr_base ) {
14701 @<Scan the delimited argument represented by |info(r)|@>;
14704 if ( mp->cur_cmd==comma ) {
14705 print_err("Too many arguments to ");
14706 @.Too many arguments...@>
14707 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14708 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14710 mp_print(mp, "' has been inserted");
14711 help3("I'm going to assume that the comma I just read was a")
14712 ("right delimiter, and then I'll begin expanding the macro.")
14713 ("You might want to delete some tokens before continuing.");
14716 if ( info(r)!=general_macro ) {
14717 @<Scan undelimited argument(s)@>;
14721 @ At this point, the reader will find it advisable to review the explanation
14722 of token list format that was presented earlier, paying special attention to
14723 the conventions that apply only at the beginning of a macro's token list.
14725 On the other hand, the reader will have to take the expression-parsing
14726 aspects of the following program on faith; we will explain |cur_type|
14727 and |cur_exp| later. (Several things in this program depend on each other,
14728 and it's necessary to jump into the circle somewhere.)
14730 @<Scan the delimited argument represented by |info(r)|@>=
14731 if ( mp->cur_cmd!=comma ) {
14733 if ( mp->cur_cmd!=left_delimiter ) {
14734 print_err("Missing argument to ");
14735 @.Missing argument...@>
14736 mp_print_macro_name(mp, arg_list,macro_name);
14737 help3("That macro has more parameters than you thought.")
14738 ("I'll continue by pretending that each missing argument")
14739 ("is either zero or null.");
14740 if ( info(r)>=suffix_base ) {
14741 mp->cur_exp=null; mp->cur_type=mp_token_list;
14743 mp->cur_exp=0; mp->cur_type=mp_known;
14745 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14748 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14750 @<Scan the argument represented by |info(r)|@>;
14751 if ( mp->cur_cmd!=comma )
14752 @<Check that the proper right delimiter was present@>;
14754 @<Append the current expression to |arg_list|@>
14756 @ @<Check that the proper right delim...@>=
14757 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14758 if ( info(link(r))>=expr_base ) {
14759 mp_missing_err(mp, ",");
14761 help3("I've finished reading a macro argument and am about to")
14762 ("read another; the arguments weren't delimited correctly.")
14763 ("You might want to delete some tokens before continuing.");
14764 mp_back_error(mp); mp->cur_cmd=comma;
14766 mp_missing_err(mp, str(text(r_delim)));
14768 help2("I've gotten to the end of the macro parameter list.")
14769 ("You might want to delete some tokens before continuing.");
14774 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14775 a token list pointed to by |cur_exp|, in which case we will have
14776 |cur_type=token_list|.
14778 @<Append the current expression to |arg_list|@>=
14780 p=mp_get_avail(mp);
14781 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14782 else info(p)=mp_stash_cur_exp(mp);
14783 if ( mp->internal[tracing_macros]>0 ) {
14784 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14785 mp_end_diagnostic(mp, false);
14787 if ( arg_list==null ) arg_list=p;
14792 @ @<Scan the argument represented by |info(r)|@>=
14793 if ( info(r)>=text_base ) {
14794 mp_scan_text_arg(mp, l_delim,r_delim);
14797 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14798 else mp_scan_expression(mp);
14801 @ The parameters to |scan_text_arg| are either a pair of delimiters
14802 or zero; the latter case is for undelimited text arguments, which
14803 end with the first semicolon or \&{endgroup} or \&{end} that is not
14804 contained in a group.
14806 @<Declare the procedure called |scan_text_arg|@>=
14807 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14810 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14811 integer balance; /* excess of |l_delim| over |r_delim| */
14812 pointer p; /* list tail */
14813 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14814 p=hold_head; balance=1; link(hold_head)=null;
14817 if ( l_delim==0 ) {
14818 @<Adjust the balance for an undelimited argument; |break| if done@>;
14820 @<Adjust the balance for a delimited argument; |break| if done@>;
14822 link(p)=mp_cur_tok(mp); p=link(p);
14824 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14825 mp->scanner_status=normal;
14828 @ @<Adjust the balance for a delimited argument...@>=
14829 if ( mp->cur_cmd==right_delimiter ) {
14830 if ( mp->cur_mod==l_delim ) {
14832 if ( balance==0 ) break;
14834 } else if ( mp->cur_cmd==left_delimiter ) {
14835 if ( mp->cur_mod==r_delim ) incr(balance);
14838 @ @<Adjust the balance for an undelimited...@>=
14839 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
14840 if ( balance==1 ) { break; }
14841 else { if ( mp->cur_cmd==end_group ) decr(balance); }
14842 } else if ( mp->cur_cmd==begin_group ) {
14846 @ @<Scan undelimited argument(s)@>=
14848 if ( info(r)<text_macro ) {
14850 if ( info(r)!=suffix_macro ) {
14851 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
14855 case primary_macro:mp_scan_primary(mp); break;
14856 case secondary_macro:mp_scan_secondary(mp); break;
14857 case tertiary_macro:mp_scan_tertiary(mp); break;
14858 case expr_macro:mp_scan_expression(mp); break;
14860 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
14863 @<Scan a suffix with optional delimiters@>;
14865 case text_macro:mp_scan_text_arg(mp, 0,0); break;
14866 } /* there are no other cases */
14868 @<Append the current expression to |arg_list|@>;
14871 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
14873 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
14874 if ( mp->internal[tracing_macros]>0 ) {
14875 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
14876 mp_end_diagnostic(mp, false);
14878 if ( arg_list==null ) arg_list=p; else link(tail)=p;
14880 if ( mp->cur_cmd!=of_token ) {
14881 mp_missing_err(mp, "of"); mp_print(mp, " for ");
14883 mp_print_macro_name(mp, arg_list,macro_name);
14884 help1("I've got the first argument; will look now for the other.");
14887 mp_get_x_next(mp); mp_scan_primary(mp);
14890 @ @<Scan a suffix with optional delimiters@>=
14892 if ( mp->cur_cmd!=left_delimiter ) {
14895 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
14897 mp_scan_suffix(mp);
14898 if ( l_delim!=null ) {
14899 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14900 mp_missing_err(mp, str(text(r_delim)));
14902 help2("I've gotten to the end of the macro parameter list.")
14903 ("You might want to delete some tokens before continuing.");
14910 @ Before we put a new token list on the input stack, it is wise to clean off
14911 all token lists that have recently been depleted. Then a user macro that ends
14912 with a call to itself will not require unbounded stack space.
14914 @<Feed the arguments and replacement text to the scanner@>=
14915 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
14916 if ( mp->param_ptr+n>mp->max_param_stack ) {
14917 mp->max_param_stack=mp->param_ptr+n;
14918 if ( mp->max_param_stack>mp->param_size )
14919 mp_overflow(mp, "parameter stack size",mp->param_size);
14920 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14922 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
14926 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
14928 mp_flush_list(mp, arg_list);
14931 @ It's sometimes necessary to put a single argument onto |param_stack|.
14932 The |stack_argument| subroutine does this.
14934 @c void mp_stack_argument (MP mp,pointer p) {
14935 if ( mp->param_ptr==mp->max_param_stack ) {
14936 incr(mp->max_param_stack);
14937 if ( mp->max_param_stack>mp->param_size )
14938 mp_overflow(mp, "parameter stack size",mp->param_size);
14939 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14941 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
14944 @* \[33] Conditional processing.
14945 Let's consider now the way \&{if} commands are handled.
14947 Conditions can be inside conditions, and this nesting has a stack
14948 that is independent of other stacks.
14949 Four global variables represent the top of the condition stack:
14950 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
14951 we are processing \&{if} or \&{elseif}; |if_limit| specifies
14952 the largest code of a |fi_or_else| command that is syntactically legal;
14953 and |if_line| is the line number at which the current conditional began.
14955 If no conditions are currently in progress, the condition stack has the
14956 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
14957 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
14958 |link| fields of the first word contain |if_limit|, |cur_if|, and
14959 |cond_ptr| at the next level, and the second word contains the
14960 corresponding |if_line|.
14962 @d if_node_size 2 /* number of words in stack entry for conditionals */
14963 @d if_line_field(A) mp->mem[(A)+1].cint
14964 @d if_code 1 /* code for \&{if} being evaluated */
14965 @d fi_code 2 /* code for \&{fi} */
14966 @d else_code 3 /* code for \&{else} */
14967 @d else_if_code 4 /* code for \&{elseif} */
14970 pointer cond_ptr; /* top of the condition stack */
14971 integer if_limit; /* upper bound on |fi_or_else| codes */
14972 small_number cur_if; /* type of conditional being worked on */
14973 integer if_line; /* line where that conditional began */
14976 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
14979 mp_primitive(mp, "if",if_test,if_code);
14980 @:if_}{\&{if} primitive@>
14981 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
14982 @:fi_}{\&{fi} primitive@>
14983 mp_primitive(mp, "else",fi_or_else,else_code);
14984 @:else_}{\&{else} primitive@>
14985 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
14986 @:else_if_}{\&{elseif} primitive@>
14988 @ @<Cases of |print_cmd_mod|...@>=
14992 case if_code:mp_print(mp, "if"); break;
14993 case fi_code:mp_print(mp, "fi"); break;
14994 case else_code:mp_print(mp, "else"); break;
14995 default: mp_print(mp, "elseif"); break;
14999 @ Here is a procedure that ignores text until coming to an \&{elseif},
15000 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15001 nesting. After it has acted, |cur_mod| will indicate the token that
15004 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15005 makes the skipping process a bit simpler.
15008 void mp_pass_text (MP mp) {
15010 mp->scanner_status=skipping;
15011 mp->warning_info=mp_true_line(mp);
15014 if ( mp->cur_cmd<=fi_or_else ) {
15015 if ( mp->cur_cmd<fi_or_else ) {
15019 if ( mp->cur_mod==fi_code ) decr(l);
15022 @<Decrease the string reference count,
15023 if the current token is a string@>;
15026 mp->scanner_status=normal;
15029 @ @<Decrease the string reference count...@>=
15030 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15032 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15033 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15034 condition has been evaluated, a colon will be inserted.
15035 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15037 @<Push the condition stack@>=
15038 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15039 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15040 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15041 mp->cur_if=if_code;
15044 @ @<Pop the condition stack@>=
15045 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15046 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15047 mp_free_node(mp, p,if_node_size);
15050 @ Here's a procedure that changes the |if_limit| code corresponding to
15051 a given value of |cond_ptr|.
15053 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15055 if ( p==mp->cond_ptr ) {
15056 mp->if_limit=l; /* that's the easy case */
15060 if ( q==null ) mp_confusion(mp, "if");
15061 @:this can't happen if}{\quad if@>
15062 if ( link(q)==p ) {
15070 @ The user is supposed to put colons into the proper parts of conditional
15071 statements. Therefore, \MP\ has to check for their presence.
15074 void mp_check_colon (MP mp) {
15075 if ( mp->cur_cmd!=colon ) {
15076 mp_missing_err(mp, ":");
15078 help2("There should've been a colon after the condition.")
15079 ("I shall pretend that one was there.");;
15084 @ A condition is started when the |get_x_next| procedure encounters
15085 an |if_test| command; in that case |get_x_next| calls |conditional|,
15086 which is a recursive procedure.
15089 @c void mp_conditional (MP mp) {
15090 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15091 int new_if_limit; /* future value of |if_limit| */
15092 pointer p; /* temporary register */
15093 @<Push the condition stack@>;
15094 save_cond_ptr=mp->cond_ptr;
15096 mp_get_boolean(mp); new_if_limit=else_if_code;
15097 if ( mp->internal[tracing_commands]>unity ) {
15098 @<Display the boolean value of |cur_exp|@>;
15101 mp_check_colon(mp);
15102 if ( mp->cur_exp==true_code ) {
15103 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15104 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15106 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15108 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15109 if ( mp->cur_mod==fi_code ) {
15110 @<Pop the condition stack@>
15111 } else if ( mp->cur_mod==else_if_code ) {
15114 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15119 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15120 \&{else}: \\{bar} \&{fi}', the first \&{else}
15121 that we come to after learning that the \&{if} is false is not the
15122 \&{else} we're looking for. Hence the following curious logic is needed.
15124 @<Skip to \&{elseif}...@>=
15127 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15128 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15132 @ @<Display the boolean value...@>=
15133 { mp_begin_diagnostic(mp);
15134 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15135 else mp_print(mp, "{false}");
15136 mp_end_diagnostic(mp, false);
15139 @ The processing of conditionals is complete except for the following
15140 code, which is actually part of |get_x_next|. It comes into play when
15141 \&{elseif}, \&{else}, or \&{fi} is scanned.
15143 @<Terminate the current conditional and skip to \&{fi}@>=
15144 if ( mp->cur_mod>mp->if_limit ) {
15145 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15146 mp_missing_err(mp, ":");
15148 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15150 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15154 help1("I'm ignoring this; it doesn't match any if.");
15158 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15159 @<Pop the condition stack@>;
15162 @* \[34] Iterations.
15163 To bring our treatment of |get_x_next| to a close, we need to consider what
15164 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15166 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15167 that are currently active. If |loop_ptr=null|, no loops are in progress;
15168 otherwise |info(loop_ptr)| points to the iterative text of the current
15169 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15170 loops that enclose the current one.
15172 A loop-control node also has two other fields, called |loop_type| and
15173 |loop_list|, whose contents depend on the type of loop:
15175 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15176 points to a list of one-word nodes whose |info| fields point to the
15177 remaining argument values of a suffix list and expression list.
15179 \yskip\indent|loop_type(loop_ptr)=diov| means that the current loop is
15182 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15183 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15184 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15187 \yskip\indent|loop_type(loop_ptr)=p>diov| means that |p| points to an edge
15188 header and |loop_list(loop_ptr)| points into the graphical object list for
15191 \yskip\noindent In the case of a progression node, the first word is not used
15192 because the link field of words in the dynamic memory area cannot be arbitrary.
15194 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15195 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15196 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15197 @d loop_node_size 2 /* the number of words in a loop control node */
15198 @d progression_node_size 4 /* the number of words in a progression node */
15199 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15200 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15201 @d progression_flag (null+2)
15202 /* |loop_type| value when |loop_list| points to a progression node */
15205 pointer loop_ptr; /* top of the loop-control-node stack */
15210 @ If the expressions that define an arithmetic progression in
15211 a \&{for} loop don't have known numeric values, the |bad_for|
15212 subroutine screams at the user.
15214 @c void mp_bad_for (MP mp, char * s) {
15215 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15216 @.Improper...replaced by 0@>
15217 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15218 help4("When you say `for x=a step b until c',")
15219 ("the initial value `a' and the step size `b'")
15220 ("and the final value `c' must have known numeric values.")
15221 ("I'm zeroing this one. Proceed, with fingers crossed.");
15222 mp_put_get_flush_error(mp, 0);
15225 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15226 has just been scanned. (This code requires slight familiarity with
15227 expression-parsing routines that we have not yet discussed; but it seems
15228 to belong in the present part of the program, even though the original author
15229 didn't write it until later. The reader may wish to come back to it.)
15231 @c void mp_begin_iteration (MP mp) {
15232 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15233 halfword n; /* hash address of the current symbol */
15234 pointer s; /* the new loop-control node */
15235 pointer p; /* substitution list for |scan_toks| */
15236 pointer q; /* link manipulation register */
15237 pointer pp; /* a new progression node */
15238 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15239 if ( m==start_forever ){
15240 loop_type(s)=diov; p=null; mp_get_x_next(mp);
15242 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15243 info(p)=mp->cur_sym; value(p)=m;
15245 if ( mp->cur_cmd==within_token ) {
15246 @<Set up a picture iteration@>;
15248 @<Check for the |"="| or |":="| in a loop header@>;
15249 @<Scan the values to be used in the loop@>;
15252 @<Check for the presence of a colon@>;
15253 @<Scan the loop text and put it on the loop control stack@>;
15254 mp_resume_iteration(mp);
15257 @ @<Check for the |"="| or |":="| in a loop header@>=
15258 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15259 mp_missing_err(mp, "=");
15261 help3("The next thing in this loop should have been `=' or `:='.")
15262 ("But don't worry; I'll pretend that an equals sign")
15263 ("was present, and I'll look for the values next.");
15267 @ @<Check for the presence of a colon@>=
15268 if ( mp->cur_cmd!=colon ) {
15269 mp_missing_err(mp, ":");
15271 help3("The next thing in this loop should have been a `:'.")
15272 ("So I'll pretend that a colon was present;")
15273 ("everything from here to `endfor' will be iterated.");
15277 @ We append a special |frozen_repeat_loop| token in place of the
15278 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15279 at the proper time to cause the loop to be repeated.
15281 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15282 he will be foiled by the |get_symbol| routine, which keeps frozen
15283 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15284 token, so it won't be lost accidentally.)
15286 @ @<Scan the loop text...@>=
15287 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15288 mp->scanner_status=loop_defining; mp->warning_info=n;
15289 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15290 link(s)=mp->loop_ptr; mp->loop_ptr=s
15292 @ @<Initialize table...@>=
15293 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15294 text(frozen_repeat_loop)=intern(" ENDFOR");
15296 @ The loop text is inserted into \MP's scanning apparatus by the
15297 |resume_iteration| routine.
15299 @c void mp_resume_iteration (MP mp) {
15300 pointer p,q; /* link registers */
15301 p=loop_type(mp->loop_ptr);
15302 if ( p==progression_flag ) {
15303 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15304 mp->cur_exp=value(p);
15305 if ( @<The arithmetic progression has ended@> ) {
15306 mp_stop_iteration(mp);
15309 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15310 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15311 } else if ( p==null ) {
15312 p=loop_list(mp->loop_ptr);
15314 mp_stop_iteration(mp);
15317 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15318 } else if ( p==diov ) {
15319 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15321 @<Make |q| a capsule containing the next picture component from
15322 |loop_list(loop_ptr)| or |goto not_found|@>;
15324 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15325 mp_stack_argument(mp, q);
15326 if ( mp->internal[tracing_commands]>unity ) {
15327 @<Trace the start of a loop@>;
15331 mp_stop_iteration(mp);
15334 @ @<The arithmetic progression has ended@>=
15335 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15336 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15338 @ @<Trace the start of a loop@>=
15340 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15342 if ( (q!=null)&&(link(q)==diov) ) mp_print_exp(mp, q,1);
15343 else mp_show_token_list(mp, q,null,50,0);
15344 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15347 @ @<Make |q| a capsule containing the next picture component from...@>=
15348 { q=loop_list(mp->loop_ptr);
15349 if ( q==null ) goto NOT_FOUND;
15350 skip_component(q) goto NOT_FOUND;
15351 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15352 mp_init_bbox(mp, mp->cur_exp);
15353 mp->cur_type=mp_picture_type;
15354 loop_list(mp->loop_ptr)=q;
15355 q=mp_stash_cur_exp(mp);
15358 @ A level of loop control disappears when |resume_iteration| has decided
15359 not to resume, or when an \&{exitif} construction has removed the loop text
15360 from the input stack.
15362 @c void mp_stop_iteration (MP mp) {
15363 pointer p,q; /* the usual */
15364 p=loop_type(mp->loop_ptr);
15365 if ( p==progression_flag ) {
15366 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15367 } else if ( p==null ){
15368 q=loop_list(mp->loop_ptr);
15369 while ( q!=null ) {
15372 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
15373 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15375 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15378 p=q; q=link(q); free_avail(p);
15380 } else if ( p>progression_flag ) {
15381 delete_edge_ref(p);
15383 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15384 mp_free_node(mp, p,loop_node_size);
15387 @ Now that we know all about loop control, we can finish up
15388 the missing portion of |begin_iteration| and we'll be done.
15390 The following code is performed after the `\.=' has been scanned in
15391 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15392 (if |m=suffix_base|).
15394 @<Scan the values to be used in the loop@>=
15395 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15398 if ( m!=expr_base ) {
15399 mp_scan_suffix(mp);
15401 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15403 mp_scan_expression(mp);
15404 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15405 @<Prepare for step-until construction and |break|@>;
15407 mp->cur_exp=mp_stash_cur_exp(mp);
15409 link(q)=mp_get_avail(mp); q=link(q);
15410 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15413 } while (mp->cur_cmd==comma)
15415 @ @<Prepare for step-until construction and |break|@>=
15417 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15418 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15419 mp_get_x_next(mp); mp_scan_expression(mp);
15420 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15421 step_size(pp)=mp->cur_exp;
15422 if ( mp->cur_cmd!=until_token ) {
15423 mp_missing_err(mp, "until");
15424 @.Missing `until'@>
15425 help2("I assume you meant to say `until' after `step'.")
15426 ("So I'll look for the final value and colon next.");
15429 mp_get_x_next(mp); mp_scan_expression(mp);
15430 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15431 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15432 loop_type(s)=progression_flag;
15436 @ The last case is when we have just seen ``\&{within}'', and we need to
15437 parse a picture expression and prepare to iterate over it.
15439 @<Set up a picture iteration@>=
15440 { mp_get_x_next(mp);
15441 mp_scan_expression(mp);
15442 @<Make sure the current expression is a known picture@>;
15443 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15444 q=link(dummy_loc(mp->cur_exp));
15446 if ( is_start_or_stop(q) )
15447 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15451 @ @<Make sure the current expression is a known picture@>=
15452 if ( mp->cur_type!=mp_picture_type ) {
15453 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15454 help1("When you say `for x in p', p must be a known picture.");
15455 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15456 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15459 @* \[35] File names.
15460 It's time now to fret about file names. Besides the fact that different
15461 operating systems treat files in different ways, we must cope with the
15462 fact that completely different naming conventions are used by different
15463 groups of people. The following programs show what is required for one
15464 particular operating system; similar routines for other systems are not
15465 difficult to devise.
15466 @^system dependencies@>
15468 \MP\ assumes that a file name has three parts: the name proper; its
15469 ``extension''; and a ``file area'' where it is found in an external file
15470 system. The extension of an input file is assumed to be
15471 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15472 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15473 metric files that describe characters in any fonts created by \MP; it is
15474 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15475 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15476 The file area can be arbitrary on input files, but files are usually
15477 output to the user's current area. If an input file cannot be
15478 found on the specified area, \MP\ will look for it on a special system
15479 area; this special area is intended for commonly used input files.
15481 Simple uses of \MP\ refer only to file names that have no explicit
15482 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15483 instead of `\.{input} \.{cmr10.new}'. Simple file
15484 names are best, because they make the \MP\ source files portable;
15485 whenever a file name consists entirely of letters and digits, it should be
15486 treated in the same way by all implementations of \MP. However, users
15487 need the ability to refer to other files in their environment, especially
15488 when responding to error messages concerning unopenable files; therefore
15489 we want to let them use the syntax that appears in their favorite
15492 @ \MP\ uses the same conventions that have proved to be satisfactory for
15493 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15494 @^system dependencies@>
15495 the system-independent parts of \MP\ are expressed in terms
15496 of three system-dependent
15497 procedures called |begin_name|, |more_name|, and |end_name|. In
15498 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15499 the system-independent driver program does the operations
15500 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15502 These three procedures communicate with each other via global variables.
15503 Afterwards the file name will appear in the string pool as three strings
15504 called |cur_name|\penalty10000\hskip-.05em,
15505 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15506 |""|), unless they were explicitly specified by the user.
15508 Actually the situation is slightly more complicated, because \MP\ needs
15509 to know when the file name ends. The |more_name| routine is a function
15510 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15511 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15512 returns |false|; or, it returns |true| and $c_n$ is the last character
15513 on the current input line. In other words,
15514 |more_name| is supposed to return |true| unless it is sure that the
15515 file name has been completely scanned; and |end_name| is supposed to be able
15516 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15517 whether $|more_name|(c_n)$ returned |true| or |false|.
15520 char * cur_name; /* name of file just scanned */
15521 char * cur_area; /* file area just scanned, or \.{""} */
15522 char * cur_ext; /* file extension just scanned, or \.{""} */
15524 @ It is easier to maintain reference counts if we assign initial values.
15527 mp->cur_name=xstrdup("");
15528 mp->cur_area=xstrdup("");
15529 mp->cur_ext=xstrdup("");
15531 @ @<Dealloc variables@>=
15532 xfree(mp->cur_area);
15533 xfree(mp->cur_name);
15534 xfree(mp->cur_ext);
15536 @ The file names we shall deal with for illustrative purposes have the
15537 following structure: If the name contains `\.>' or `\.:', the file area
15538 consists of all characters up to and including the final such character;
15539 otherwise the file area is null. If the remaining file name contains
15540 `\..', the file extension consists of all such characters from the first
15541 remaining `\..' to the end, otherwise the file extension is null.
15542 @^system dependencies@>
15544 We can scan such file names easily by using two global variables that keep track
15545 of the occurrences of area and extension delimiters. Note that these variables
15546 cannot be of type |pool_pointer| because a string pool compaction could occur
15547 while scanning a file name.
15550 integer area_delimiter;
15551 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15552 integer ext_delimiter; /* the relevant `\..', if any */
15554 @ Input files that can't be found in the user's area may appear in standard
15555 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15556 extension is |".mf"|.) The standard system area for font metric files
15557 to be read is |MP_font_area|.
15558 This system area name will, of course, vary from place to place.
15559 @^system dependencies@>
15561 @d MP_area "MPinputs:"
15563 @d MF_area "MFinputs:"
15568 @ Here now is the first of the system-dependent routines for file name scanning.
15569 @^system dependencies@>
15571 @<Declare subroutines for parsing file names@>=
15572 void mp_begin_name (MP mp) {
15573 xfree(mp->cur_name);
15574 xfree(mp->cur_area);
15575 xfree(mp->cur_ext);
15576 mp->area_delimiter=-1;
15577 mp->ext_delimiter=-1;
15580 @ And here's the second.
15581 @^system dependencies@>
15583 @<Declare subroutines for parsing file names@>=
15584 boolean mp_more_name (MP mp, ASCII_code c) {
15588 if ( (c=='>')||(c==':') ) {
15589 mp->area_delimiter=mp->pool_ptr;
15590 mp->ext_delimiter=-1;
15591 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15592 mp->ext_delimiter=mp->pool_ptr;
15594 str_room(1); append_char(c); /* contribute |c| to the current string */
15600 @^system dependencies@>
15602 @d copy_pool_segment(A,B,C) {
15603 A = xmalloc(C+1,sizeof(char));
15604 strncpy(A,(char *)(mp->str_pool+B),C);
15607 @<Declare subroutines for parsing file names@>=
15608 void mp_end_name (MP mp) {
15609 pool_pointer s; /* length of area, name, and extension */
15612 s = mp->str_start[mp->str_ptr];
15613 if ( mp->area_delimiter<0 ) {
15614 mp->cur_area=xstrdup("");
15616 len = mp->area_delimiter-s;
15617 copy_pool_segment(mp->cur_area,s,len);
15620 if ( mp->ext_delimiter<0 ) {
15621 mp->cur_ext=xstrdup("");
15622 len = mp->pool_ptr-s;
15624 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15625 len = mp->ext_delimiter-s;
15627 copy_pool_segment(mp->cur_name,s,len);
15628 mp->pool_ptr=s; /* don't need this partial string */
15631 @ Conversely, here is a routine that takes three strings and prints a file
15632 name that might have produced them. (The routine is system dependent, because
15633 some operating systems put the file area last instead of first.)
15634 @^system dependencies@>
15636 @<Basic printing...@>=
15637 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15638 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15641 @ Another system-dependent routine is needed to convert three internal
15643 to the |name_of_file| value that is used to open files. The present code
15644 allows both lowercase and uppercase letters in the file name.
15645 @^system dependencies@>
15647 @d append_to_name(A) { c=(A);
15648 if ( k<file_name_size ) {
15649 mp->name_of_file[k]=mp->xchr[c];
15654 @<Declare subroutines for parsing file names@>=
15655 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15656 integer k; /* number of positions filled in |name_of_file| */
15657 ASCII_code c; /* character being packed */
15658 char *j; /* a character index */
15662 for (j=a;*j;j++) { append_to_name(*j); }
15664 for (j=n;*j;j++) { append_to_name(*j); }
15666 for (j=e;*j;j++) { append_to_name(*j); }
15668 mp->name_of_file[k]=0;
15673 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15675 @ A messier routine is also needed, since mem file names must be scanned
15676 before \MP's string mechanism has been initialized. We shall use the
15677 global variable |MP_mem_default| to supply the text for default system areas
15678 and extensions related to mem files.
15679 @^system dependencies@>
15681 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15682 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15683 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15686 char *MP_mem_default;
15687 char *mem_name; /* for commandline */
15689 @ @<Option variables@>=
15690 char *mem_name; /* for commandline */
15692 @ @<Allocate or initialize ...@>=
15693 mp->MP_mem_default = xstrdup("plain.mem");
15694 mp->mem_name = mp_xstrdup(opt.mem_name);
15696 @^system dependencies@>
15698 @ @<Dealloc variables@>=
15699 xfree(mp->MP_mem_default);
15700 xfree(mp->mem_name);
15702 @ @<Check the ``constant'' values for consistency@>=
15703 if ( mem_default_length>file_name_size ) mp->bad=20;
15705 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15706 from the first |n| characters of |MP_mem_default|, followed by
15707 |buffer[a..b]|, followed by the last |mem_ext_length| characters of
15710 We dare not give error messages here, since \MP\ calls this routine before
15711 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15712 since the error will be detected in another way when a strange file name
15714 @^system dependencies@>
15716 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15718 integer k; /* number of positions filled in |name_of_file| */
15719 ASCII_code c; /* character being packed */
15720 integer j; /* index into |buffer| or |MP_mem_default| */
15721 if ( n+b-a+1+mem_ext_length>file_name_size )
15722 b=a+file_name_size-n-1-mem_ext_length;
15724 for (j=0;j<n;j++) {
15725 append_to_name(mp->xord[(int)mp->MP_mem_default[j]]);
15727 for (j=a;j<=b;j++) {
15728 append_to_name(mp->buffer[j]);
15730 for (j=mem_default_length-mem_ext_length;
15731 j<mem_default_length;j++) {
15732 append_to_name(mp->xord[(int)mp->MP_mem_default[j]]);
15734 mp->name_of_file[k]=0;
15738 @ Here is the only place we use |pack_buffered_name|. This part of the program
15739 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15740 the preliminary initialization, or when the user is substituting another
15741 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15742 contains the first line of input in |buffer[loc..(last-1)]|, where
15743 |loc<last| and |buffer[loc]<>" "|.
15746 boolean mp_open_mem_file (MP mp) ;
15749 boolean mp_open_mem_file (MP mp) {
15750 int j; /* the first space after the file name */
15751 if (mp->mem_name!=NULL) {
15752 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15753 if ( mp->mem_file ) return true;
15756 if ( mp->buffer[loc]=='&' ) {
15757 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15758 while ( mp->buffer[j]!=' ' ) incr(j);
15759 mp_pack_buffered_name(mp, 0,loc,j-1); /* try first without the system file area */
15760 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15762 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15763 @.Sorry, I can't find...@>
15766 /* now pull out all the stops: try for the system \.{plain} file */
15767 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15768 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15770 wterm_ln("I can\'t find the PLAIN mem file!\n");
15771 @.I can't find PLAIN...@>
15776 loc=j; return true;
15779 @ Operating systems often make it possible to determine the exact name (and
15780 possible version number) of a file that has been opened. The following routine,
15781 which simply makes a \MP\ string from the value of |name_of_file|, should
15782 ideally be changed to deduce the full name of file~|f|, which is the file
15783 most recently opened, if it is possible to do this in a \PASCAL\ program.
15784 @^system dependencies@>
15787 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15788 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15789 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15792 str_number mp_make_name_string (MP mp) {
15793 int k; /* index into |name_of_file| */
15794 str_room(mp->name_length);
15795 for (k=0;k<mp->name_length;k++) {
15796 append_char(mp->xord[(int)mp->name_of_file[k]]);
15798 return mp_make_string(mp);
15801 @ Now let's consider the ``driver''
15802 routines by which \MP\ deals with file names
15803 in a system-independent manner. First comes a procedure that looks for a
15804 file name in the input by taking the information from the input buffer.
15805 (We can't use |get_next|, because the conversion to tokens would
15806 destroy necessary information.)
15808 This procedure doesn't allow semicolons or percent signs to be part of
15809 file names, because of other conventions of \MP.
15810 {\sl The {\logos METAFONT\/}book} doesn't
15811 use semicolons or percents immediately after file names, but some users
15812 no doubt will find it natural to do so; therefore system-dependent
15813 changes to allow such characters in file names should probably
15814 be made with reluctance, and only when an entire file name that
15815 includes special characters is ``quoted'' somehow.
15816 @^system dependencies@>
15818 @c void mp_scan_file_name (MP mp) {
15820 while ( mp->buffer[loc]==' ' ) incr(loc);
15822 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15823 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15829 @ Here is another version that takes its input from a string.
15831 @<Declare subroutines for parsing file names@>=
15832 void mp_str_scan_file (MP mp, str_number s) {
15833 pool_pointer p,q; /* current position and stopping point */
15835 p=mp->str_start[s]; q=str_stop(s);
15837 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
15843 @ And one that reads from a |char*|.
15845 @<Declare subroutines for parsing file names@>=
15846 void mp_ptr_scan_file (MP mp, char *s) {
15847 char *p, *q; /* current position and stopping point */
15849 p=s; q=p+strlen(s);
15851 if ( ! mp_more_name(mp, *p)) break;
15858 @ The global variable |job_name| contains the file name that was first
15859 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
15860 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
15863 char *job_name; /* principal file name */
15864 boolean log_opened; /* has the transcript file been opened? */
15865 char *log_name; /* full name of the log file */
15867 @ @<Option variables@>=
15868 char *job_name; /* principal file name */
15870 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
15871 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
15872 except of course for a short time just after |job_name| has become nonzero.
15874 @<Allocate or ...@>=
15875 mp->job_name=mp_xstrdup(opt.job_name);
15876 mp->log_opened=false;
15878 @ @<Dealloc variables@>=
15879 xfree(mp->job_name);
15881 @ Here is a routine that manufactures the output file names, assuming that
15882 |job_name<>0|. It ignores and changes the current settings of |cur_area|
15885 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
15888 void mp_pack_job_name (MP mp, char *s) ;
15890 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
15891 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
15892 xfree(mp->cur_area); mp->cur_area=xstrdup("");
15893 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
15897 @ If some trouble arises when \MP\ tries to open a file, the following
15898 routine calls upon the user to supply another file name. Parameter~|s|
15899 is used in the error message to identify the type of file; parameter~|e|
15900 is the default extension if none is given. Upon exit from the routine,
15901 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
15902 ready for another attempt at file opening.
15905 void mp_prompt_file_name (MP mp,char * s, char * e) ;
15907 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
15908 size_t k; /* index into |buffer| */
15909 char * saved_cur_name;
15910 if ( mp->interaction==mp_scroll_mode )
15912 if (strcmp(s,"input file name")==0) {
15913 print_err("I can\'t find file `");
15914 @.I can't find file x@>
15916 print_err("I can\'t write on file `");
15918 @.I can't write on file x@>
15919 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
15920 mp_print(mp, "'.");
15921 if (strcmp(e,"")==0)
15922 mp_show_context(mp);
15923 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
15925 if ( mp->interaction<mp_scroll_mode )
15926 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
15927 @.job aborted, file error...@>
15928 saved_cur_name = xstrdup(mp->cur_name);
15929 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
15930 if (strcmp(mp->cur_ext,"")==0)
15932 if (strlen(mp->cur_name)==0) {
15933 mp->cur_name=saved_cur_name;
15935 xfree(saved_cur_name);
15940 @ @<Scan file name in the buffer@>=
15942 mp_begin_name(mp); k=mp->first;
15943 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
15945 if ( k==mp->last ) break;
15946 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
15952 @ The |open_log_file| routine is used to open the transcript file and to help
15953 it catch up to what has previously been printed on the terminal.
15955 @c void mp_open_log_file (MP mp) {
15956 int old_setting; /* previous |selector| setting */
15957 int k; /* index into |months| and |buffer| */
15958 int l; /* end of first input line */
15959 integer m; /* the current month */
15960 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
15961 /* abbreviations of month names */
15962 old_setting=mp->selector;
15963 if ( mp->job_name==NULL ) {
15964 mp->job_name=xstrdup("mpout");
15966 mp_pack_job_name(mp,".log");
15967 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
15968 @<Try to get a different log file name@>;
15970 mp->log_name=xstrdup(mp->name_of_file);
15971 mp->selector=log_only; mp->log_opened=true;
15972 @<Print the banner line, including the date and time@>;
15973 mp->input_stack[mp->input_ptr]=mp->cur_input;
15974 /* make sure bottom level is in memory */
15975 mp_print_nl(mp, "**");
15977 l=mp->input_stack[0].limit_field-1; /* last position of first line */
15978 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
15979 mp_print_ln(mp); /* now the transcript file contains the first line of input */
15980 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
15983 @ @<Dealloc variables@>=
15984 xfree(mp->log_name);
15986 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
15987 unable to print error messages or even to |show_context|.
15988 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
15989 routine will not be invoked because |log_opened| will be false.
15991 The normal idea of |mp_batch_mode| is that nothing at all should be written
15992 on the terminal. However, in the unusual case that
15993 no log file could be opened, we make an exception and allow
15994 an explanatory message to be seen.
15996 Incidentally, the program always refers to the log file as a `\.{transcript
15997 file}', because some systems cannot use the extension `\.{.log}' for
16000 @<Try to get a different log file name@>=
16002 mp->selector=term_only;
16003 mp_prompt_file_name(mp, "transcript file name",".log");
16006 @ @<Print the banner...@>=
16009 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16010 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[day]));
16011 mp_print_char(mp, ' ');
16012 m=mp_round_unscaled(mp, mp->internal[month]);
16013 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16014 mp_print_char(mp, ' ');
16015 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year]));
16016 mp_print_char(mp, ' ');
16017 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16018 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16021 @ The |try_extension| function tries to open an input file determined by
16022 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16023 can't find the file in |cur_area| or the appropriate system area.
16025 @c boolean mp_try_extension (MP mp,char *ext) {
16026 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16027 in_name=xstrdup(mp->cur_name);
16028 in_area=xstrdup(mp->cur_area);
16029 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16032 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16033 else in_area=xstrdup(MP_area);
16034 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16035 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16040 @ Let's turn now to the procedure that is used to initiate file reading
16041 when an `\.{input}' command is being processed.
16043 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16044 char *fname = NULL;
16045 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16047 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16048 if ( strlen(mp->cur_ext)==0 ) {
16049 if ( mp_try_extension(mp, ".mp") ) break;
16050 else if ( mp_try_extension(mp, "") ) break;
16051 else if ( mp_try_extension(mp, ".mf") ) break;
16052 /* |else do_nothing; | */
16053 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16056 mp_end_file_reading(mp); /* remove the level that didn't work */
16057 mp_prompt_file_name(mp, "input file name","");
16059 name=mp_a_make_name_string(mp, cur_file);
16060 fname = xstrdup(mp->name_of_file);
16061 if ( mp->job_name==NULL ) {
16062 mp->job_name=xstrdup(mp->cur_name);
16063 mp_open_log_file(mp);
16064 } /* |open_log_file| doesn't |show_context|, so |limit|
16065 and |loc| needn't be set to meaningful values yet */
16066 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16067 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16068 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16071 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16072 @<Read the first line of the new file@>;
16075 @ This code should be omitted if |a_make_name_string| returns something other
16076 than just a copy of its argument and the full file name is needed for opening
16077 \.{MPX} files or implementing the switch-to-editor option.
16078 @^system dependencies@>
16080 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16081 mp_flush_string(mp, name); name=rts(mp->cur_name); mp->cur_name=NULL
16083 @ Here we have to remember to tell the |input_ln| routine not to
16084 start with a |get|. If the file is empty, it is considered to
16085 contain a single blank line.
16086 @^system dependencies@>
16088 @<Read the first line...@>=
16091 (void)mp_input_ln(mp, cur_file,false);
16092 mp_firm_up_the_line(mp);
16093 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16096 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16097 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16098 if ( token_state ) {
16099 print_err("File names can't appear within macros");
16100 @.File names can't...@>
16101 help3("Sorry...I've converted what follows to tokens,")
16102 ("possibly garbaging the name you gave.")
16103 ("Please delete the tokens and insert the name again.");
16106 if ( file_state ) {
16107 mp_scan_file_name(mp);
16109 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16110 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16111 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16114 @ Sometimes we need to deal with two file names at once. This procedure
16115 copies the given string into a special array for an old file name.
16117 @c void mp_copy_old_name (MP mp,str_number s) {
16118 integer k; /* number of positions filled in |old_file_name| */
16119 pool_pointer j; /* index into |str_pool| */
16121 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16123 if ( k<=file_name_size )
16124 mp->old_file_name[k]=mp->xchr[mp->str_pool[j]];
16126 mp->old_file_name[++k] = 0;
16130 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16132 @ The following simple routine starts reading the \.{MPX} file associated
16133 with the current input file.
16135 @c void mp_start_mpx_input (MP mp) {
16136 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16137 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16138 |goto not_found| if there is a problem@>;
16139 mp_begin_file_reading(mp);
16140 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16141 mp_end_file_reading(mp);
16144 name=mp_a_make_name_string(mp, cur_file);
16145 mp->mpx_name[index]=name; add_str_ref(name);
16146 @<Read the first line of the new file@>;
16149 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16152 @ This should ideally be changed to do whatever is necessary to create the
16153 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16154 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16155 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16156 completely different typesetting program if suitable postprocessor is
16157 available to perform the function of \.{DVItoMP}.)
16158 @^system dependencies@>
16161 typedef boolean (*run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16164 run_make_mpx_command run_make_mpx;
16166 @ @<Option variables@>=
16167 run_make_mpx_command run_make_mpx;
16169 @ @<Allocate or initialize ...@>=
16170 set_callback_option(run_make_mpx);
16172 @ @<Exported function headers@>=
16173 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16175 @ The default does nothing.
16177 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16178 if (mp && origname && mtxname) /* for -W */
16185 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16186 |goto not_found| if there is a problem@>=
16187 mp_copy_old_name(mp, name);
16188 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16191 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16192 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16193 mp_print_nl(mp, ">> ");
16194 mp_print(mp, mp->old_file_name);
16195 mp_print_nl(mp, ">> ");
16196 mp_print(mp, mp->name_of_file);
16197 mp_print_nl(mp, "! Unable to make mpx file");
16198 help4("The two files given above are one of your source files")
16199 ("and an auxiliary file I need to read to find out what your")
16200 ("btex..etex blocks mean. If you don't know why I had trouble,")
16201 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16204 @ The last file-opening commands are for files accessed via the \&{readfrom}
16205 @:read_from_}{\&{readfrom} primitive@>
16206 operator and the \&{write} command. Such files are stored in separate arrays.
16207 @:write_}{\&{write} primitive@>
16209 @<Types in the outer block@>=
16210 typedef unsigned int readf_index; /* |0..max_read_files| */
16211 typedef unsigned int write_index; /* |0..max_write_files| */
16214 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16215 FILE ** rd_file; /* \&{readfrom} files */
16216 char ** rd_fname; /* corresponding file name or 0 if file not open */
16217 readf_index read_files; /* number of valid entries in the above arrays */
16218 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16219 FILE ** wr_file; /* \&{write} files */
16220 char ** wr_fname; /* corresponding file name or 0 if file not open */
16221 write_index write_files; /* number of valid entries in the above arrays */
16223 @ @<Allocate or initialize ...@>=
16224 mp->max_read_files=8;
16225 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16226 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16227 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16229 mp->max_write_files=8;
16230 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16231 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16232 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16236 @ This routine starts reading the file named by string~|s| without setting
16237 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16238 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16240 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16241 mp_ptr_scan_file(mp, s);
16243 mp_begin_file_reading(mp);
16244 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16246 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16247 fclose(mp->rd_file[n]);
16250 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16253 mp_end_file_reading(mp);
16257 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16260 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16262 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16263 mp_ptr_scan_file(mp, s);
16265 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16266 mp_prompt_file_name(mp, "file name for write output","");
16267 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16271 @* \[36] Introduction to the parsing routines.
16272 We come now to the central nervous system that sparks many of \MP's activities.
16273 By evaluating expressions, from their primary constituents to ever larger
16274 subexpressions, \MP\ builds the structures that ultimately define complete
16275 pictures or fonts of type.
16277 Four mutually recursive subroutines are involved in this process: We call them
16278 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16279 and |scan_expression|.}$$
16281 Each of them is parameterless and begins with the first token to be scanned
16282 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16283 the value of the primary or secondary or tertiary or expression that was
16284 found will appear in the global variables |cur_type| and |cur_exp|. The
16285 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16288 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16289 backup mechanisms have been added in order to provide reasonable error
16293 small_number cur_type; /* the type of the expression just found */
16294 integer cur_exp; /* the value of the expression just found */
16299 @ Many different kinds of expressions are possible, so it is wise to have
16300 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16303 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16304 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16305 construction in which there was no expression before the \&{endgroup}.
16306 In this case |cur_exp| has some irrelevant value.
16309 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16313 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16314 node that is in the ring of variables equivalent
16315 to at least one undefined boolean variable.
16318 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16319 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16320 includes this particular reference.
16323 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16324 node that is in the ring of variables equivalent
16325 to at least one undefined string variable.
16328 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16329 else points to any of the nodes in this pen. The pen may be polygonal or
16333 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16334 node that is in the ring of variables equivalent
16335 to at least one undefined pen variable.
16338 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16339 a path; nobody else points to this particular path. The control points of
16340 the path will have been chosen.
16343 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16344 node that is in the ring of variables equivalent
16345 to at least one undefined path variable.
16348 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16349 There may be other pointers to this particular set of edges. The header node
16350 contains a reference count that includes this particular reference.
16353 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16354 node that is in the ring of variables equivalent
16355 to at least one undefined picture variable.
16358 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16359 capsule node. The |value| part of this capsule
16360 points to a transform node that contains six numeric values,
16361 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16364 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16365 capsule node. The |value| part of this capsule
16366 points to a color node that contains three numeric values,
16367 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16370 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16371 capsule node. The |value| part of this capsule
16372 points to a color node that contains four numeric values,
16373 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16376 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16377 node whose type is |mp_pair_type|. The |value| part of this capsule
16378 points to a pair node that contains two numeric values,
16379 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16382 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16385 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16386 is |dependent|. The |dep_list| field in this capsule points to the associated
16390 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16391 capsule node. The |dep_list| field in this capsule
16392 points to the associated dependency list.
16395 |cur_type=independent| means that |cur_exp| points to a capsule node
16396 whose type is |independent|. This somewhat unusual case can arise, for
16397 example, in the expression
16398 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16401 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16402 tokens. This case arises only on the left-hand side of an assignment
16403 (`\.{:=}') operation, under very special circumstances.
16405 \smallskip\noindent
16406 The possible settings of |cur_type| have been listed here in increasing
16407 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16408 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16409 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16412 @ Capsules are two-word nodes that have a similar meaning
16413 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16414 and |link<=diov|; and their |type| field is one of the possibilities for
16415 |cur_type| listed above.
16417 The |value| field of a capsule is, in most cases, the value that
16418 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16419 However, when |cur_exp| would point to a capsule,
16420 no extra layer of indirection is present; the |value|
16421 field is what would have been called |value(cur_exp)| if it had not been
16422 encapsulated. Furthermore, if the type is |dependent| or
16423 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16424 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16425 always part of the general |dep_list| structure.
16427 The |get_x_next| routine is careful not to change the values of |cur_type|
16428 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16429 call a macro, which might parse an expression, which might execute lots of
16430 commands in a group; hence it's possible that |cur_type| might change
16431 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16432 |known| or |independent|, during the time |get_x_next| is called. The
16433 programs below are careful to stash sensitive intermediate results in
16434 capsules, so that \MP's generality doesn't cause trouble.
16436 Here's a procedure that illustrates these conventions. It takes
16437 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16438 and stashes them away in a
16439 capsule. It is not used when |cur_type=mp_token_list|.
16440 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16441 copy path lists or to update reference counts, etc.
16443 The special link |diov| is put on the capsule returned by
16444 |stash_cur_exp|, because this procedure is used to store macro parameters
16445 that must be easily distinguishable from token lists.
16447 @<Declare the stashing/unstashing routines@>=
16448 pointer mp_stash_cur_exp (MP mp) {
16449 pointer p; /* the capsule that will be returned */
16450 switch (mp->cur_type) {
16451 case unknown_types:
16452 case mp_transform_type:
16453 case mp_color_type:
16456 case mp_proto_dependent:
16457 case mp_independent:
16458 case mp_cmykcolor_type:
16462 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16463 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16466 mp->cur_type=mp_vacuous; link(p)=diov;
16470 @ The inverse of |stash_cur_exp| is the following procedure, which
16471 deletes an unnecessary capsule and puts its contents into |cur_type|
16474 The program steps of \MP\ can be divided into two categories: those in
16475 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16476 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16477 information or not. It's important not to ignore them when they're alive,
16478 and it's important not to pay attention to them when they're dead.
16480 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16481 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16482 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16483 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16484 only when they are alive or dormant.
16486 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16487 are alive or dormant. The \\{unstash} procedure assumes that they are
16488 dead or dormant; it resuscitates them.
16490 @<Declare the stashing/unstashing...@>=
16491 void mp_unstash_cur_exp (MP mp,pointer p) ;
16494 void mp_unstash_cur_exp (MP mp,pointer p) {
16495 mp->cur_type=type(p);
16496 switch (mp->cur_type) {
16497 case unknown_types:
16498 case mp_transform_type:
16499 case mp_color_type:
16502 case mp_proto_dependent:
16503 case mp_independent:
16504 case mp_cmykcolor_type:
16508 mp->cur_exp=value(p);
16509 mp_free_node(mp, p,value_node_size);
16514 @ The following procedure prints the values of expressions in an
16515 abbreviated format. If its first parameter |p| is null, the value of
16516 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16517 containing the desired value. The second parameter controls the amount of
16518 output. If it is~0, dependency lists will be abbreviated to
16519 `\.{linearform}' unless they consist of a single term. If it is greater
16520 than~1, complicated structures (pens, pictures, and paths) will be displayed
16523 @<Declare subroutines for printing expressions@>=
16524 @<Declare the procedure called |print_dp|@>;
16525 @<Declare the stashing/unstashing routines@>;
16526 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16527 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16528 small_number t; /* the type of the expression */
16529 pointer q; /* a big node being displayed */
16530 integer v=0; /* the value of the expression */
16532 restore_cur_exp=false;
16534 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16537 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16538 @<Print an abbreviated value of |v| with format depending on |t|@>;
16539 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16542 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16544 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16545 case mp_boolean_type:
16546 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16548 case unknown_types: case mp_numeric_type:
16549 @<Display a variable that's been declared but not defined@>;
16551 case mp_string_type:
16552 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16554 case mp_pen_type: case mp_path_type: case mp_picture_type:
16555 @<Display a complex type@>;
16557 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16558 if ( v==null ) mp_print_type(mp, t);
16559 else @<Display a big node@>;
16561 case mp_known:mp_print_scaled(mp, v); break;
16562 case mp_dependent: case mp_proto_dependent:
16563 mp_print_dp(mp, t,v,verbosity);
16565 case mp_independent:mp_print_variable_name(mp, p); break;
16566 default: mp_confusion(mp, "exp"); break;
16567 @:this can't happen exp}{\quad exp@>
16570 @ @<Display a big node@>=
16572 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16574 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16575 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16576 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16578 if ( v!=q ) mp_print_char(mp, ',');
16580 mp_print_char(mp, ')');
16583 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16584 in the log file only, unless the user has given a positive value to
16587 @<Display a complex type@>=
16588 if ( verbosity<=1 ) {
16589 mp_print_type(mp, t);
16591 if ( mp->selector==term_and_log )
16592 if ( mp->internal[tracing_online]<=0 ) {
16593 mp->selector=term_only;
16594 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16595 mp->selector=term_and_log;
16598 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16599 case mp_path_type:mp_print_path(mp, v,"",false); break;
16600 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16601 } /* there are no other cases */
16604 @ @<Declare the procedure called |print_dp|@>=
16605 void mp_print_dp (MP mp,small_number t, pointer p,
16606 small_number verbosity) {
16607 pointer q; /* the node following |p| */
16609 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16610 else mp_print(mp, "linearform");
16613 @ The displayed name of a variable in a ring will not be a capsule unless
16614 the ring consists entirely of capsules.
16616 @<Display a variable that's been declared but not defined@>=
16617 { mp_print_type(mp, t);
16619 { mp_print_char(mp, ' ');
16620 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16621 mp_print_variable_name(mp, v);
16625 @ When errors are detected during parsing, it is often helpful to
16626 display an expression just above the error message, using |exp_err|
16627 or |disp_err| instead of |print_err|.
16629 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16631 @<Declare subroutines for printing expressions@>=
16632 void mp_disp_err (MP mp,pointer p, char *s) {
16633 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16634 mp_print_nl(mp, ">> ");
16636 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16638 mp_print_nl(mp, "! "); mp_print(mp, s);
16643 @ If |cur_type| and |cur_exp| contain relevant information that should
16644 be recycled, we will use the following procedure, which changes |cur_type|
16645 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16646 and |cur_exp| as either alive or dormant after this has been done,
16647 because |cur_exp| will not contain a pointer value.
16649 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16650 switch (mp->cur_type) {
16651 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16652 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16653 mp_recycle_value(mp, mp->cur_exp);
16654 mp_free_node(mp, mp->cur_exp,value_node_size);
16656 case mp_string_type:
16657 delete_str_ref(mp->cur_exp); break;
16658 case mp_pen_type: case mp_path_type:
16659 mp_toss_knot_list(mp, mp->cur_exp); break;
16660 case mp_picture_type:
16661 delete_edge_ref(mp->cur_exp); break;
16665 mp->cur_type=mp_known; mp->cur_exp=v;
16668 @ There's a much more general procedure that is capable of releasing
16669 the storage associated with any two-word value packet.
16671 @<Declare the recycling subroutines@>=
16672 void mp_recycle_value (MP mp,pointer p) ;
16674 @ @c void mp_recycle_value (MP mp,pointer p) {
16675 small_number t; /* a type code */
16676 integer vv; /* another value */
16677 pointer q,r,s,pp; /* link manipulation registers */
16678 integer v=0; /* a value */
16680 if ( t<mp_dependent ) v=value(p);
16682 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16683 case mp_numeric_type:
16685 case unknown_types:
16686 mp_ring_delete(mp, p); break;
16687 case mp_string_type:
16688 delete_str_ref(v); break;
16689 case mp_path_type: case mp_pen_type:
16690 mp_toss_knot_list(mp, v); break;
16691 case mp_picture_type:
16692 delete_edge_ref(v); break;
16693 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16694 case mp_transform_type:
16695 @<Recycle a big node@>; break;
16696 case mp_dependent: case mp_proto_dependent:
16697 @<Recycle a dependency list@>; break;
16698 case mp_independent:
16699 @<Recycle an independent variable@>; break;
16700 case mp_token_list: case mp_structured:
16701 mp_confusion(mp, "recycle"); break;
16702 @:this can't happen recycle}{\quad recycle@>
16703 case mp_unsuffixed_macro: case mp_suffixed_macro:
16704 mp_delete_mac_ref(mp, value(p)); break;
16705 } /* there are no other cases */
16709 @ @<Recycle a big node@>=
16711 q=v+mp->big_node_size[t];
16713 q=q-2; mp_recycle_value(mp, q);
16715 mp_free_node(mp, v,mp->big_node_size[t]);
16718 @ @<Recycle a dependency list@>=
16721 while ( info(q)!=null ) q=link(q);
16722 link(prev_dep(p))=link(q);
16723 prev_dep(link(q))=prev_dep(p);
16724 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16727 @ When an independent variable disappears, it simply fades away, unless
16728 something depends on it. In the latter case, a dependent variable whose
16729 coefficient of dependence is maximal will take its place.
16730 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16731 as part of his Ph.D. thesis (Stanford University, December 1982).
16732 @^Zabala Salelles, Ignacio Andres@>
16734 For example, suppose that variable $x$ is being recycled, and that the
16735 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16736 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16737 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16738 we will print `\.{\#\#\# -2x=-y+a}'.
16740 There's a slight complication, however: An independent variable $x$
16741 can occur both in dependency lists and in proto-dependency lists.
16742 This makes it necessary to be careful when deciding which coefficient
16745 Furthermore, this complication is not so slight when
16746 a proto-dependent variable is chosen to become independent. For example,
16747 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16748 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16749 large coefficient `50'.
16751 In order to deal with these complications without wasting too much time,
16752 we shall link together the occurrences of~$x$ among all the linear
16753 dependencies, maintaining separate lists for the dependent and
16754 proto-dependent cases.
16756 @<Recycle an independent variable@>=
16758 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16759 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16761 while ( q!=dep_head ) {
16762 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16765 if ( info(r)==null ) break;;
16766 if ( info(r)!=p ) {
16769 t=type(q); link(s)=link(r); info(r)=q;
16770 if ( abs(value(r))>mp->max_c[t] ) {
16771 @<Record a new maximum coefficient of type |t|@>;
16773 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16779 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16780 @<Choose a dependent variable to take the place of the disappearing
16781 independent variable, and change all remaining dependencies
16786 @ The code for independency removal makes use of three two-word arrays.
16789 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16790 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16791 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16793 @ @<Record a new maximum coefficient...@>=
16795 if ( mp->max_c[t]>0 ) {
16796 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16798 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16801 @ @<Choose a dependent...@>=
16803 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16806 t=mp_proto_dependent;
16807 @<Determine the dependency list |s| to substitute for the independent
16809 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16810 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16811 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16813 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16814 else { @<Substitute new proto-dependencies in place of |p|@>;}
16815 mp_flush_node_list(mp, s);
16816 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16820 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16821 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16822 whose dependency list we have removed node~|s|. We must reinsert
16823 node~|s| into the dependency list, with coefficient $-1.0$, and with
16824 |pp| as the new independent variable. Since |pp| will have a larger serial
16825 number than any other variable, we can put node |s| at the head of the
16828 @<Determine the dep...@>=
16829 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16830 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16831 r=dep_list(pp); link(s)=r;
16832 while ( info(r)!=null ) r=link(r);
16833 q=link(r); link(r)=null;
16834 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16836 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16837 if ( mp->internal[tracing_equations]>0 ) {
16838 @<Show the transformed dependency@>;
16841 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16842 by the dependency list~|s|.
16844 @<Show the transformed...@>=
16845 if ( mp_interesting(mp, p) ) {
16846 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16847 @:]]]\#\#\#_}{\.{\#\#\#}@>
16848 if ( v>0 ) mp_print_char(mp, '-');
16849 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16850 else vv=mp->max_c[mp_proto_dependent];
16851 if ( vv!=unity ) mp_print_scaled(mp, vv);
16852 mp_print_variable_name(mp, p);
16853 while ( value(p) % s_scale>0 ) {
16854 mp_print(mp, "*4"); value(p)=value(p)-2;
16856 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16857 mp_print_dependency(mp, s,t);
16858 mp_end_diagnostic(mp, false);
16861 @ Finally, there are dependent and proto-dependent variables whose
16862 dependency lists must be brought up to date.
16864 @<Substitute new dependencies...@>=
16865 for (t=mp_dependent;t<=mp_proto_dependent;t++){
16867 while ( r!=null ) {
16869 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16870 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
16871 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16872 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16876 @ @<Substitute new proto...@>=
16877 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
16879 while ( r!=null ) {
16881 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
16882 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
16883 mp->cur_type=mp_proto_dependent;
16884 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
16885 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
16887 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16888 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
16889 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16890 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16894 @ Here are some routines that provide handy combinations of actions
16895 that are often needed during error recovery. For example,
16896 `|flush_error|' flushes the current expression, replaces it by
16897 a given value, and calls |error|.
16899 Errors often are detected after an extra token has already been scanned.
16900 The `\\{put\_get}' routines put that token back before calling |error|;
16901 then they get it back again. (Or perhaps they get another token, if
16902 the user has changed things.)
16905 void mp_flush_error (MP mp,scaled v);
16906 void mp_put_get_error (MP mp);
16907 void mp_put_get_flush_error (MP mp,scaled v) ;
16910 void mp_flush_error (MP mp,scaled v) {
16911 mp_error(mp); mp_flush_cur_exp(mp, v);
16913 void mp_put_get_error (MP mp) {
16914 mp_back_error(mp); mp_get_x_next(mp);
16916 void mp_put_get_flush_error (MP mp,scaled v) {
16917 mp_put_get_error(mp);
16918 mp_flush_cur_exp(mp, v);
16921 @ A global variable |var_flag| is set to a special command code
16922 just before \MP\ calls |scan_expression|, if the expression should be
16923 treated as a variable when this command code immediately follows. For
16924 example, |var_flag| is set to |assignment| at the beginning of a
16925 statement, because we want to know the {\sl location\/} of a variable at
16926 the left of `\.{:=}', not the {\sl value\/} of that variable.
16928 The |scan_expression| subroutine calls |scan_tertiary|,
16929 which calls |scan_secondary|, which calls |scan_primary|, which sets
16930 |var_flag:=0|. In this way each of the scanning routines ``knows''
16931 when it has been called with a special |var_flag|, but |var_flag| is
16934 A variable preceding a command that equals |var_flag| is converted to a
16935 token list rather than a value. Furthermore, an `\.{=}' sign following an
16936 expression with |var_flag=assignment| is not considered to be a relation
16937 that produces boolean expressions.
16941 int var_flag; /* command that wants a variable */
16946 @* \[37] Parsing primary expressions.
16947 The first parsing routine, |scan_primary|, is also the most complicated one,
16948 since it involves so many different cases. But each case---with one
16949 exception---is fairly simple by itself.
16951 When |scan_primary| begins, the first token of the primary to be scanned
16952 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
16953 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
16954 earlier. If |cur_cmd| is not between |min_primary_command| and
16955 |max_primary_command|, inclusive, a syntax error will be signaled.
16957 @<Declare the basic parsing subroutines@>=
16958 void mp_scan_primary (MP mp) {
16959 pointer p,q,r; /* for list manipulation */
16960 quarterword c; /* a primitive operation code */
16961 int my_var_flag; /* initial value of |my_var_flag| */
16962 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
16963 @<Other local variables for |scan_primary|@>;
16964 my_var_flag=mp->var_flag; mp->var_flag=0;
16967 @<Supply diagnostic information, if requested@>;
16968 switch (mp->cur_cmd) {
16969 case left_delimiter:
16970 @<Scan a delimited primary@>; break;
16972 @<Scan a grouped primary@>; break;
16974 @<Scan a string constant@>; break;
16975 case numeric_token:
16976 @<Scan a primary that starts with a numeric token@>; break;
16978 @<Scan a nullary operation@>; break;
16979 case unary: case type_name: case cycle: case plus_or_minus:
16980 @<Scan a unary operation@>; break;
16981 case primary_binary:
16982 @<Scan a binary operation with `\&{of}' between its operands@>; break;
16984 @<Convert a suffix to a string@>; break;
16985 case internal_quantity:
16986 @<Scan an internal numeric quantity@>; break;
16987 case capsule_token:
16988 mp_make_exp_copy(mp, mp->cur_mod); break;
16990 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
16992 mp_bad_exp(mp, "A primary"); goto RESTART; break;
16993 @.A primary expression...@>
16995 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
16997 if ( mp->cur_cmd==left_bracket ) {
16998 if ( mp->cur_type>=mp_known ) {
16999 @<Scan a mediation construction@>;
17006 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17008 @c void mp_bad_exp (MP mp,char * s) {
17010 print_err(s); mp_print(mp, " expression can't begin with `");
17011 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17012 mp_print_char(mp, '\'');
17013 help4("I'm afraid I need some sort of value in order to continue,")
17014 ("so I've tentatively inserted `0'. You may want to")
17015 ("delete this zero and insert something else;")
17016 ("see Chapter 27 of The METAFONTbook for an example.");
17017 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17018 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17019 mp->cur_mod=0; mp_ins_error(mp);
17020 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17021 mp->var_flag=save_flag;
17024 @ @<Supply diagnostic information, if requested@>=
17026 if ( mp->panicking ) mp_check_mem(mp, false);
17028 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17029 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17032 @ @<Scan a delimited primary@>=
17034 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17035 mp_get_x_next(mp); mp_scan_expression(mp);
17036 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17037 @<Scan the rest of a delimited set of numerics@>;
17039 mp_check_delimiter(mp, l_delim,r_delim);
17043 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17044 within a ``big node.''
17046 @c void mp_stash_in (MP mp,pointer p) {
17047 pointer q; /* temporary register */
17048 type(p)=mp->cur_type;
17049 if ( mp->cur_type==mp_known ) {
17050 value(p)=mp->cur_exp;
17052 if ( mp->cur_type==mp_independent ) {
17053 @<Stash an independent |cur_exp| into a big node@>;
17055 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17056 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17057 link(prev_dep(p))=p;
17059 mp_free_node(mp, mp->cur_exp,value_node_size);
17061 mp->cur_type=mp_vacuous;
17064 @ In rare cases the current expression can become |independent|. There
17065 may be many dependency lists pointing to such an independent capsule,
17066 so we can't simply move it into place within a big node. Instead,
17067 we copy it, then recycle it.
17069 @ @<Stash an independent |cur_exp|...@>=
17071 q=mp_single_dependency(mp, mp->cur_exp);
17072 if ( q==mp->dep_final ){
17073 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17075 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17077 mp_recycle_value(mp, mp->cur_exp);
17080 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17081 are synonymous with |x_part_loc| and |y_part_loc|.
17083 @<Scan the rest of a delimited set of numerics@>=
17085 p=mp_stash_cur_exp(mp);
17086 mp_get_x_next(mp); mp_scan_expression(mp);
17087 @<Make sure the second part of a pair or color has a numeric type@>;
17088 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17089 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17090 else type(q)=mp_pair_type;
17091 mp_init_big_node(mp, q); r=value(q);
17092 mp_stash_in(mp, y_part_loc(r));
17093 mp_unstash_cur_exp(mp, p);
17094 mp_stash_in(mp, x_part_loc(r));
17095 if ( mp->cur_cmd==comma ) {
17096 @<Scan the last of a triplet of numerics@>;
17098 if ( mp->cur_cmd==comma ) {
17099 type(q)=mp_cmykcolor_type;
17100 mp_init_big_node(mp, q); t=value(q);
17101 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17102 value(cyan_part_loc(t))=value(red_part_loc(r));
17103 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17104 value(magenta_part_loc(t))=value(green_part_loc(r));
17105 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17106 value(yellow_part_loc(t))=value(blue_part_loc(r));
17107 mp_recycle_value(mp, r);
17109 @<Scan the last of a quartet of numerics@>;
17111 mp_check_delimiter(mp, l_delim,r_delim);
17112 mp->cur_type=type(q);
17116 @ @<Make sure the second part of a pair or color has a numeric type@>=
17117 if ( mp->cur_type<mp_known ) {
17118 exp_err("Nonnumeric ypart has been replaced by 0");
17119 @.Nonnumeric...replaced by 0@>
17120 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17121 ("but after finding a nice `a' I found a `b' that isn't")
17122 ("of numeric type. So I've changed that part to zero.")
17123 ("(The b that I didn't like appears above the error message.)");
17124 mp_put_get_flush_error(mp, 0);
17127 @ @<Scan the last of a triplet of numerics@>=
17129 mp_get_x_next(mp); mp_scan_expression(mp);
17130 if ( mp->cur_type<mp_known ) {
17131 exp_err("Nonnumeric third part has been replaced by 0");
17132 @.Nonnumeric...replaced by 0@>
17133 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17134 ("isn't of numeric type. So I've changed that part to zero.")
17135 ("(The c that I didn't like appears above the error message.)");
17136 mp_put_get_flush_error(mp, 0);
17138 mp_stash_in(mp, blue_part_loc(r));
17141 @ @<Scan the last of a quartet of numerics@>=
17143 mp_get_x_next(mp); mp_scan_expression(mp);
17144 if ( mp->cur_type<mp_known ) {
17145 exp_err("Nonnumeric blackpart has been replaced by 0");
17146 @.Nonnumeric...replaced by 0@>
17147 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17148 ("of numeric type. So I've changed that part to zero.")
17149 ("(The k that I didn't like appears above the error message.)");
17150 mp_put_get_flush_error(mp, 0);
17152 mp_stash_in(mp, black_part_loc(r));
17155 @ The local variable |group_line| keeps track of the line
17156 where a \&{begingroup} command occurred; this will be useful
17157 in an error message if the group doesn't actually end.
17159 @<Other local variables for |scan_primary|@>=
17160 integer group_line; /* where a group began */
17162 @ @<Scan a grouped primary@>=
17164 group_line=mp_true_line(mp);
17165 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17166 save_boundary_item(p);
17168 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17169 } while (! (mp->cur_cmd!=semicolon));
17170 if ( mp->cur_cmd!=end_group ) {
17171 print_err("A group begun on line ");
17172 @.A group...never ended@>
17173 mp_print_int(mp, group_line);
17174 mp_print(mp, " never ended");
17175 help2("I saw a `begingroup' back there that hasn't been matched")
17176 ("by `endgroup'. So I've inserted `endgroup' now.");
17177 mp_back_error(mp); mp->cur_cmd=end_group;
17180 /* this might change |cur_type|, if independent variables are recycled */
17181 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17184 @ @<Scan a string constant@>=
17186 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17189 @ Later we'll come to procedures that perform actual operations like
17190 addition, square root, and so on; our purpose now is to do the parsing.
17191 But we might as well mention those future procedures now, so that the
17192 suspense won't be too bad:
17195 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17196 `\&{true}' or `\&{pencircle}');
17199 |do_unary(c)| applies a primitive operation to the current expression;
17202 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17203 and the current expression.
17205 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17207 @ @<Scan a unary operation@>=
17209 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17210 mp_do_unary(mp, c); goto DONE;
17213 @ A numeric token might be a primary by itself, or it might be the
17214 numerator of a fraction composed solely of numeric tokens, or it might
17215 multiply the primary that follows (provided that the primary doesn't begin
17216 with a plus sign or a minus sign). The code here uses the facts that
17217 |max_primary_command=plus_or_minus| and
17218 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17219 than unity, we try to retain higher precision when we use it in scalar
17222 @<Other local variables for |scan_primary|@>=
17223 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17225 @ @<Scan a primary that starts with a numeric token@>=
17227 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17228 if ( mp->cur_cmd!=slash ) {
17232 if ( mp->cur_cmd!=numeric_token ) {
17234 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17237 num=mp->cur_exp; denom=mp->cur_mod;
17238 if ( denom==0 ) { @<Protest division by zero@>; }
17239 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17240 check_arith; mp_get_x_next(mp);
17242 if ( mp->cur_cmd>=min_primary_command ) {
17243 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17244 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17245 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17246 mp_do_binary(mp, p,times);
17248 mp_frac_mult(mp, num,denom);
17249 mp_free_node(mp, p,value_node_size);
17256 @ @<Protest division...@>=
17258 print_err("Division by zero");
17259 @.Division by zero@>
17260 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17263 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17265 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17266 if ( mp->cur_cmd!=of_token ) {
17267 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17268 mp_print_cmd_mod(mp, primary_binary,c);
17270 help1("I've got the first argument; will look now for the other.");
17273 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17274 mp_do_binary(mp, p,c); goto DONE;
17277 @ @<Convert a suffix to a string@>=
17279 mp_get_x_next(mp); mp_scan_suffix(mp);
17280 mp->old_setting=mp->selector; mp->selector=new_string;
17281 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17282 mp_flush_token_list(mp, mp->cur_exp);
17283 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17284 mp->cur_type=mp_string_type;
17288 @ If an internal quantity appears all by itself on the left of an
17289 assignment, we return a token list of length one, containing the address
17290 of the internal quantity plus |hash_end|. (This accords with the conventions
17291 of the save stack, as described earlier.)
17293 @<Scan an internal...@>=
17296 if ( my_var_flag==assignment ) {
17298 if ( mp->cur_cmd==assignment ) {
17299 mp->cur_exp=mp_get_avail(mp);
17300 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17305 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17308 @ The most difficult part of |scan_primary| has been saved for last, since
17309 it was necessary to build up some confidence first. We can now face the task
17310 of scanning a variable.
17312 As we scan a variable, we build a token list containing the relevant
17313 names and subscript values, simultaneously following along in the
17314 ``collective'' structure to see if we are actually dealing with a macro
17315 instead of a value.
17317 The local variables |pre_head| and |post_head| will point to the beginning
17318 of the prefix and suffix lists; |tail| will point to the end of the list
17319 that is currently growing.
17321 Another local variable, |tt|, contains partial information about the
17322 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17323 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17324 doesn't bother to update its information about type. And if
17325 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17327 @ @<Other local variables for |scan_primary|@>=
17328 pointer pre_head,post_head,tail;
17329 /* prefix and suffix list variables */
17330 small_number tt; /* approximation to the type of the variable-so-far */
17331 pointer t; /* a token */
17332 pointer macro_ref = 0; /* reference count for a suffixed macro */
17334 @ @<Scan a variable primary...@>=
17336 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17338 t=mp_cur_tok(mp); link(tail)=t;
17339 if ( tt!=undefined ) {
17340 @<Find the approximate type |tt| and corresponding~|q|@>;
17341 if ( tt>=mp_unsuffixed_macro ) {
17342 @<Either begin an unsuffixed macro call or
17343 prepare for a suffixed one@>;
17346 mp_get_x_next(mp); tail=t;
17347 if ( mp->cur_cmd==left_bracket ) {
17348 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17350 if ( mp->cur_cmd>max_suffix_token ) break;
17351 if ( mp->cur_cmd<min_suffix_token ) break;
17352 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17353 @<Handle unusual cases that masquerade as variables, and |goto restart|
17354 or |goto done| if appropriate;
17355 otherwise make a copy of the variable and |goto done|@>;
17358 @ @<Either begin an unsuffixed macro call or...@>=
17361 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17362 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17363 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17365 @<Set up unsuffixed macro call and |goto restart|@>;
17369 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17371 mp_get_x_next(mp); mp_scan_expression(mp);
17372 if ( mp->cur_cmd!=right_bracket ) {
17373 @<Put the left bracket and the expression back to be rescanned@>;
17375 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17376 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17380 @ The left bracket that we thought was introducing a subscript might have
17381 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17382 So we don't issue an error message at this point; but we do want to back up
17383 so as to avoid any embarrassment about our incorrect assumption.
17385 @<Put the left bracket and the expression back to be rescanned@>=
17387 mp_back_input(mp); /* that was the token following the current expression */
17388 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17389 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17392 @ Here's a routine that puts the current expression back to be read again.
17394 @c void mp_back_expr (MP mp) {
17395 pointer p; /* capsule token */
17396 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17399 @ Unknown subscripts lead to the following error message.
17401 @c void mp_bad_subscript (MP mp) {
17402 exp_err("Improper subscript has been replaced by zero");
17403 @.Improper subscript...@>
17404 help3("A bracketed subscript must have a known numeric value;")
17405 ("unfortunately, what I found was the value that appears just")
17406 ("above this error message. So I'll try a zero subscript.");
17407 mp_flush_error(mp, 0);
17410 @ Every time we call |get_x_next|, there's a chance that the variable we've
17411 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17412 into the variable structure; we need to start searching from the root each time.
17414 @<Find the approximate type |tt| and corresponding~|q|@>=
17417 p=link(pre_head); q=info(p); tt=undefined;
17418 if ( eq_type(q) % outer_tag==tag_token ) {
17420 if ( q==null ) goto DONE2;
17424 tt=type(q); goto DONE2;
17426 if ( type(q)!=mp_structured ) goto DONE2;
17427 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17428 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17429 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17430 if ( attr_loc(q)>info(p) ) goto DONE2;
17438 @ How do things stand now? Well, we have scanned an entire variable name,
17439 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17440 |cur_sym| represent the token that follows. If |post_head=null|, a
17441 token list for this variable name starts at |link(pre_head)|, with all
17442 subscripts evaluated. But if |post_head<>null|, the variable turned out
17443 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17444 |post_head| is the head of a token list containing both `\.{\AT!}' and
17447 Our immediate problem is to see if this variable still exists. (Variable
17448 structures can change drastically whenever we call |get_x_next|; users
17449 aren't supposed to do this, but the fact that it is possible means that
17450 we must be cautious.)
17452 The following procedure prints an error message when a variable
17453 unexpectedly disappears. Its help message isn't quite right for
17454 our present purposes, but we'll be able to fix that up.
17457 void mp_obliterated (MP mp,pointer q) {
17458 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17459 mp_print(mp, " has been obliterated");
17460 @.Variable...obliterated@>
17461 help5("It seems you did a nasty thing---probably by accident,")
17462 ("but nevertheless you nearly hornswoggled me...")
17463 ("While I was evaluating the right-hand side of this")
17464 ("command, something happened, and the left-hand side")
17465 ("is no longer a variable! So I won't change anything.");
17468 @ If the variable does exist, we also need to check
17469 for a few other special cases before deciding that a plain old ordinary
17470 variable has, indeed, been scanned.
17472 @<Handle unusual cases that masquerade as variables...@>=
17473 if ( post_head!=null ) {
17474 @<Set up suffixed macro call and |goto restart|@>;
17476 q=link(pre_head); free_avail(pre_head);
17477 if ( mp->cur_cmd==my_var_flag ) {
17478 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17480 p=mp_find_variable(mp, q);
17482 mp_make_exp_copy(mp, p);
17484 mp_obliterated(mp, q);
17485 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17486 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17487 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17488 mp_put_get_flush_error(mp, 0);
17490 mp_flush_node_list(mp, q);
17493 @ The only complication associated with macro calling is that the prefix
17494 and ``at'' parameters must be packaged in an appropriate list of lists.
17496 @<Set up unsuffixed macro call and |goto restart|@>=
17498 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17499 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17504 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17505 we don't care, because we have reserved a pointer (|macro_ref|) to its
17508 @<Set up suffixed macro call and |goto restart|@>=
17510 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17511 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17512 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17513 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17514 mp_get_x_next(mp); goto RESTART;
17517 @ Our remaining job is simply to make a copy of the value that has been
17518 found. Some cases are harder than others, but complexity arises solely
17519 because of the multiplicity of possible cases.
17521 @<Declare the procedure called |make_exp_copy|@>=
17522 @<Declare subroutines needed by |make_exp_copy|@>;
17523 void mp_make_exp_copy (MP mp,pointer p) {
17524 pointer q,r,t; /* registers for list manipulation */
17526 mp->cur_type=type(p);
17527 switch (mp->cur_type) {
17528 case mp_vacuous: case mp_boolean_type: case mp_known:
17529 mp->cur_exp=value(p); break;
17530 case unknown_types:
17531 mp->cur_exp=mp_new_ring_entry(mp, p);
17533 case mp_string_type:
17534 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17536 case mp_picture_type:
17537 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17540 mp->cur_exp=copy_pen(value(p));
17543 mp->cur_exp=mp_copy_path(mp, value(p));
17545 case mp_transform_type: case mp_color_type:
17546 case mp_cmykcolor_type: case mp_pair_type:
17547 @<Copy the big node |p|@>;
17549 case mp_dependent: case mp_proto_dependent:
17550 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17552 case mp_numeric_type:
17553 new_indep(p); goto RESTART;
17555 case mp_independent:
17556 q=mp_single_dependency(mp, p);
17557 if ( q==mp->dep_final ){
17558 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17560 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17564 mp_confusion(mp, "copy");
17565 @:this can't happen copy}{\quad copy@>
17570 @ The |encapsulate| subroutine assumes that |dep_final| is the
17571 tail of dependency list~|p|.
17573 @<Declare subroutines needed by |make_exp_copy|@>=
17574 void mp_encapsulate (MP mp,pointer p) {
17575 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17576 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17579 @ The most tedious case arises when the user refers to a
17580 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17581 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17584 @<Copy the big node |p|@>=
17586 if ( value(p)==null )
17587 mp_init_big_node(mp, p);
17588 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17589 mp_init_big_node(mp, t);
17590 q=value(p)+mp->big_node_size[mp->cur_type];
17591 r=value(t)+mp->big_node_size[mp->cur_type];
17593 q=q-2; r=r-2; mp_install(mp, r,q);
17594 } while (q!=value(p));
17598 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17599 a big node that will be part of a capsule.
17601 @<Declare subroutines needed by |make_exp_copy|@>=
17602 void mp_install (MP mp,pointer r, pointer q) {
17603 pointer p; /* temporary register */
17604 if ( type(q)==mp_known ){
17605 value(r)=value(q); type(r)=mp_known;
17606 } else if ( type(q)==mp_independent ) {
17607 p=mp_single_dependency(mp, q);
17608 if ( p==mp->dep_final ) {
17609 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17611 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17614 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17618 @ Expressions of the form `\.{a[b,c]}' are converted into
17619 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17620 provided that \.a is numeric.
17622 @<Scan a mediation...@>=
17624 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17625 if ( mp->cur_cmd!=comma ) {
17626 @<Put the left bracket and the expression back...@>;
17627 mp_unstash_cur_exp(mp, p);
17629 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17630 if ( mp->cur_cmd!=right_bracket ) {
17631 mp_missing_err(mp, "]");
17633 help3("I've scanned an expression of the form `a[b,c',")
17634 ("so a right bracket should have come next.")
17635 ("I shall pretend that one was there.");
17638 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17639 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17640 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17644 @ Here is a comparatively simple routine that is used to scan the
17645 \&{suffix} parameters of a macro.
17647 @<Declare the basic parsing subroutines@>=
17648 void mp_scan_suffix (MP mp) {
17649 pointer h,t; /* head and tail of the list being built */
17650 pointer p; /* temporary register */
17651 h=mp_get_avail(mp); t=h;
17653 if ( mp->cur_cmd==left_bracket ) {
17654 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17656 if ( mp->cur_cmd==numeric_token ) {
17657 p=mp_new_num_tok(mp, mp->cur_mod);
17658 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17659 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17663 link(t)=p; t=p; mp_get_x_next(mp);
17665 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17668 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17670 mp_get_x_next(mp); mp_scan_expression(mp);
17671 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17672 if ( mp->cur_cmd!=right_bracket ) {
17673 mp_missing_err(mp, "]");
17675 help3("I've seen a `[' and a subscript value, in a suffix,")
17676 ("so a right bracket should have come next.")
17677 ("I shall pretend that one was there.");
17680 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17683 @* \[38] Parsing secondary and higher expressions.
17684 After the intricacies of |scan_primary|\kern-1pt,
17685 the |scan_secondary| routine is
17686 refreshingly simple. It's not trivial, but the operations are relatively
17687 straightforward; the main difficulty is, again, that expressions and data
17688 structures might change drastically every time we call |get_x_next|, so a
17689 cautious approach is mandatory. For example, a macro defined by
17690 \&{primarydef} might have disappeared by the time its second argument has
17691 been scanned; we solve this by increasing the reference count of its token
17692 list, so that the macro can be called even after it has been clobbered.
17694 @<Declare the basic parsing subroutines@>=
17695 void mp_scan_secondary (MP mp) {
17696 pointer p; /* for list manipulation */
17697 halfword c,d; /* operation codes or modifiers */
17698 pointer mac_name; /* token defined with \&{primarydef} */
17700 if ((mp->cur_cmd<min_primary_command)||
17701 (mp->cur_cmd>max_primary_command) )
17702 mp_bad_exp(mp, "A secondary");
17703 @.A secondary expression...@>
17704 mp_scan_primary(mp);
17706 if ( mp->cur_cmd<=max_secondary_command )
17707 if ( mp->cur_cmd>=min_secondary_command ) {
17708 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17709 if ( d==secondary_primary_macro ) {
17710 mac_name=mp->cur_sym; add_mac_ref(c);
17712 mp_get_x_next(mp); mp_scan_primary(mp);
17713 if ( d!=secondary_primary_macro ) {
17714 mp_do_binary(mp, p,c);
17716 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17717 decr(ref_count(c)); mp_get_x_next(mp);
17724 @ The following procedure calls a macro that has two parameters,
17727 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17728 pointer q,r; /* nodes in the parameter list */
17729 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17730 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17731 mp_macro_call(mp, c,q,n);
17734 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17736 @<Declare the basic parsing subroutines@>=
17737 void mp_scan_tertiary (MP mp) {
17738 pointer p; /* for list manipulation */
17739 halfword c,d; /* operation codes or modifiers */
17740 pointer mac_name; /* token defined with \&{secondarydef} */
17742 if ((mp->cur_cmd<min_primary_command)||
17743 (mp->cur_cmd>max_primary_command) )
17744 mp_bad_exp(mp, "A tertiary");
17745 @.A tertiary expression...@>
17746 mp_scan_secondary(mp);
17748 if ( mp->cur_cmd<=max_tertiary_command ) {
17749 if ( mp->cur_cmd>=min_tertiary_command ) {
17750 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17751 if ( d==tertiary_secondary_macro ) {
17752 mac_name=mp->cur_sym; add_mac_ref(c);
17754 mp_get_x_next(mp); mp_scan_secondary(mp);
17755 if ( d!=tertiary_secondary_macro ) {
17756 mp_do_binary(mp, p,c);
17758 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17759 decr(ref_count(c)); mp_get_x_next(mp);
17767 @ Finally we reach the deepest level in our quartet of parsing routines.
17768 This one is much like the others; but it has an extra complication from
17769 paths, which materialize here.
17771 @d continue_path 25 /* a label inside of |scan_expression| */
17772 @d finish_path 26 /* another */
17774 @<Declare the basic parsing subroutines@>=
17775 void mp_scan_expression (MP mp) {
17776 pointer p,q,r,pp,qq; /* for list manipulation */
17777 halfword c,d; /* operation codes or modifiers */
17778 int my_var_flag; /* initial value of |var_flag| */
17779 pointer mac_name; /* token defined with \&{tertiarydef} */
17780 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17781 scaled x,y; /* explicit coordinates or tension at a path join */
17782 int t; /* knot type following a path join */
17784 my_var_flag=mp->var_flag; mac_name=null;
17786 if ((mp->cur_cmd<min_primary_command)||
17787 (mp->cur_cmd>max_primary_command) )
17788 mp_bad_exp(mp, "An");
17789 @.An expression...@>
17790 mp_scan_tertiary(mp);
17792 if ( mp->cur_cmd<=max_expression_command )
17793 if ( mp->cur_cmd>=min_expression_command ) {
17794 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17795 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17796 if ( d==expression_tertiary_macro ) {
17797 mac_name=mp->cur_sym; add_mac_ref(c);
17799 if ( (d<ampersand)||((d==ampersand)&&
17800 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17801 @<Scan a path construction operation;
17802 but |return| if |p| has the wrong type@>;
17804 mp_get_x_next(mp); mp_scan_tertiary(mp);
17805 if ( d!=expression_tertiary_macro ) {
17806 mp_do_binary(mp, p,c);
17808 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17809 decr(ref_count(c)); mp_get_x_next(mp);
17818 @ The reader should review the data structure conventions for paths before
17819 hoping to understand the next part of this code.
17821 @<Scan a path construction operation...@>=
17824 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17825 but |return| if |p| doesn't have a suitable type@>;
17827 @<Determine the path join parameters;
17828 but |goto finish_path| if there's only a direction specifier@>;
17829 if ( mp->cur_cmd==cycle ) {
17830 @<Get ready to close a cycle@>;
17832 mp_scan_tertiary(mp);
17833 @<Convert the right operand, |cur_exp|,
17834 into a partial path from |pp| to~|qq|@>;
17836 @<Join the partial paths and reset |p| and |q| to the head and tail
17838 if ( mp->cur_cmd>=min_expression_command )
17839 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17841 @<Choose control points for the path and put the result into |cur_exp|@>;
17844 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17846 mp_unstash_cur_exp(mp, p);
17847 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17848 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17851 while ( link(q)!=p ) q=link(q);
17852 if ( left_type(p)!=endpoint ) { /* open up a cycle */
17853 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17855 left_type(p)=open; right_type(q)=open;
17858 @ A pair of numeric values is changed into a knot node for a one-point path
17859 when \MP\ discovers that the pair is part of a path.
17861 @c@<Declare the procedure called |known_pair|@>;
17862 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
17863 pointer q; /* the new node */
17864 q=mp_get_node(mp, knot_node_size); left_type(q)=endpoint;
17865 right_type(q)=endpoint; originator(q)=metapost_user; link(q)=q;
17866 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
17870 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
17871 of the current expression, assuming that the current expression is a
17872 pair of known numerics. Unknown components are zeroed, and the
17873 current expression is flushed.
17875 @<Declare the procedure called |known_pair|@>=
17876 void mp_known_pair (MP mp) {
17877 pointer p; /* the pair node */
17878 if ( mp->cur_type!=mp_pair_type ) {
17879 exp_err("Undefined coordinates have been replaced by (0,0)");
17880 @.Undefined coordinates...@>
17881 help5("I need x and y numbers for this part of the path.")
17882 ("The value I found (see above) was no good;")
17883 ("so I'll try to keep going by using zero instead.")
17884 ("(Chapter 27 of The METAFONTbook explains that")
17885 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17886 ("you might want to type `I ??" "?' now.)");
17887 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
17889 p=value(mp->cur_exp);
17890 @<Make sure that both |x| and |y| parts of |p| are known;
17891 copy them into |cur_x| and |cur_y|@>;
17892 mp_flush_cur_exp(mp, 0);
17896 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
17897 if ( type(x_part_loc(p))==mp_known ) {
17898 mp->cur_x=value(x_part_loc(p));
17900 mp_disp_err(mp, x_part_loc(p),
17901 "Undefined x coordinate has been replaced by 0");
17902 @.Undefined coordinates...@>
17903 help5("I need a `known' x value for this part of the path.")
17904 ("The value I found (see above) was no good;")
17905 ("so I'll try to keep going by using zero instead.")
17906 ("(Chapter 27 of The METAFONTbook explains that")
17907 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17908 ("you might want to type `I ??" "?' now.)");
17909 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
17911 if ( type(y_part_loc(p))==mp_known ) {
17912 mp->cur_y=value(y_part_loc(p));
17914 mp_disp_err(mp, y_part_loc(p),
17915 "Undefined y coordinate has been replaced by 0");
17916 help5("I need a `known' y value for this part of the path.")
17917 ("The value I found (see above) was no good;")
17918 ("so I'll try to keep going by using zero instead.")
17919 ("(Chapter 27 of The METAFONTbook explains that")
17920 ("you might want to type `I ??" "?' now.)");
17921 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
17924 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
17926 @<Determine the path join parameters...@>=
17927 if ( mp->cur_cmd==left_brace ) {
17928 @<Put the pre-join direction information into node |q|@>;
17931 if ( d==path_join ) {
17932 @<Determine the tension and/or control points@>;
17933 } else if ( d!=ampersand ) {
17937 if ( mp->cur_cmd==left_brace ) {
17938 @<Put the post-join direction information into |x| and |t|@>;
17939 } else if ( right_type(q)!=explicit ) {
17943 @ The |scan_direction| subroutine looks at the directional information
17944 that is enclosed in braces, and also scans ahead to the following character.
17945 A type code is returned, either |open| (if the direction was $(0,0)$),
17946 or |curl| (if the direction was a curl of known value |cur_exp|), or
17947 |given| (if the direction is given by the |angle| value that now
17948 appears in |cur_exp|).
17950 There's nothing difficult about this subroutine, but the program is rather
17951 lengthy because a variety of potential errors need to be nipped in the bud.
17953 @c small_number mp_scan_direction (MP mp) {
17954 int t; /* the type of information found */
17955 scaled x; /* an |x| coordinate */
17957 if ( mp->cur_cmd==curl_command ) {
17958 @<Scan a curl specification@>;
17960 @<Scan a given direction@>;
17962 if ( mp->cur_cmd!=right_brace ) {
17963 mp_missing_err(mp, "}");
17964 @.Missing `\char`\}'@>
17965 help3("I've scanned a direction spec for part of a path,")
17966 ("so a right brace should have come next.")
17967 ("I shall pretend that one was there.");
17974 @ @<Scan a curl specification@>=
17975 { mp_get_x_next(mp); mp_scan_expression(mp);
17976 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
17977 exp_err("Improper curl has been replaced by 1");
17979 help1("A curl must be a known, nonnegative number.");
17980 mp_put_get_flush_error(mp, unity);
17985 @ @<Scan a given direction@>=
17986 { mp_scan_expression(mp);
17987 if ( mp->cur_type>mp_pair_type ) {
17988 @<Get given directions separated by commas@>;
17992 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=open;
17993 else { t=given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
17996 @ @<Get given directions separated by commas@>=
17998 if ( mp->cur_type!=mp_known ) {
17999 exp_err("Undefined x coordinate has been replaced by 0");
18000 @.Undefined coordinates...@>
18001 help5("I need a `known' x value for this part of the path.")
18002 ("The value I found (see above) was no good;")
18003 ("so I'll try to keep going by using zero instead.")
18004 ("(Chapter 27 of The METAFONTbook explains that")
18005 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18006 ("you might want to type `I ??" "?' now.)");
18007 mp_put_get_flush_error(mp, 0);
18010 if ( mp->cur_cmd!=comma ) {
18011 mp_missing_err(mp, ",");
18013 help2("I've got the x coordinate of a path direction;")
18014 ("will look for the y coordinate next.");
18017 mp_get_x_next(mp); mp_scan_expression(mp);
18018 if ( mp->cur_type!=mp_known ) {
18019 exp_err("Undefined y coordinate has been replaced by 0");
18020 help5("I need a `known' y value for this part of the path.")
18021 ("The value I found (see above) was no good;")
18022 ("so I'll try to keep going by using zero instead.")
18023 ("(Chapter 27 of The METAFONTbook explains that")
18024 ("you might want to type `I ??" "?' now.)");
18025 mp_put_get_flush_error(mp, 0);
18027 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18030 @ At this point |right_type(q)| is usually |open|, but it may have been
18031 set to some other value by a previous splicing operation. We must maintain
18032 the value of |right_type(q)| in unusual cases such as
18033 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18035 @<Put the pre-join...@>=
18037 t=mp_scan_direction(mp);
18039 right_type(q)=t; right_given(q)=mp->cur_exp;
18040 if ( left_type(q)==open ) {
18041 left_type(q)=t; left_given(q)=mp->cur_exp;
18042 } /* note that |left_given(q)=left_curl(q)| */
18046 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18047 and since |left_given| is similarly equivalent to |left_x|, we use
18048 |x| and |y| to hold the given direction and tension information when
18049 there are no explicit control points.
18051 @<Put the post-join...@>=
18053 t=mp_scan_direction(mp);
18054 if ( right_type(q)!=explicit ) x=mp->cur_exp;
18055 else t=explicit; /* the direction information is superfluous */
18058 @ @<Determine the tension and/or...@>=
18061 if ( mp->cur_cmd==tension ) {
18062 @<Set explicit tensions@>;
18063 } else if ( mp->cur_cmd==controls ) {
18064 @<Set explicit control points@>;
18066 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18069 if ( mp->cur_cmd!=path_join ) {
18070 mp_missing_err(mp, "..");
18072 help1("A path join command should end with two dots.");
18079 @ @<Set explicit tensions@>=
18081 mp_get_x_next(mp); y=mp->cur_cmd;
18082 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18083 mp_scan_primary(mp);
18084 @<Make sure that the current expression is a valid tension setting@>;
18085 if ( y==at_least ) negate(mp->cur_exp);
18086 right_tension(q)=mp->cur_exp;
18087 if ( mp->cur_cmd==and_command ) {
18088 mp_get_x_next(mp); y=mp->cur_cmd;
18089 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18090 mp_scan_primary(mp);
18091 @<Make sure that the current expression is a valid tension setting@>;
18092 if ( y==at_least ) negate(mp->cur_exp);
18097 @ @d min_tension three_quarter_unit
18099 @<Make sure that the current expression is a valid tension setting@>=
18100 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18101 exp_err("Improper tension has been set to 1");
18102 @.Improper tension@>
18103 help1("The expression above should have been a number >=3/4.");
18104 mp_put_get_flush_error(mp, unity);
18107 @ @<Set explicit control points@>=
18109 right_type(q)=explicit; t=explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18110 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18111 if ( mp->cur_cmd!=and_command ) {
18112 x=right_x(q); y=right_y(q);
18114 mp_get_x_next(mp); mp_scan_primary(mp);
18115 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18119 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18121 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18122 else pp=mp->cur_exp;
18124 while ( link(qq)!=pp ) qq=link(qq);
18125 if ( left_type(pp)!=endpoint ) { /* open up a cycle */
18126 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18128 left_type(pp)=open; right_type(qq)=open;
18131 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18132 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18133 shouldn't have length zero.
18135 @<Get ready to close a cycle@>=
18137 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18138 if ( d==ampersand ) if ( p==q ) {
18139 d=path_join; right_tension(q)=unity; y=unity;
18143 @ @<Join the partial paths and reset |p| and |q|...@>=
18145 if ( d==ampersand ) {
18146 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18147 print_err("Paths don't touch; `&' will be changed to `..'");
18148 @.Paths don't touch@>
18149 help3("When you join paths `p&q', the ending point of p")
18150 ("must be exactly equal to the starting point of q.")
18151 ("So I'm going to pretend that you said `p..q' instead.");
18152 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18155 @<Plug an opening in |right_type(pp)|, if possible@>;
18156 if ( d==ampersand ) {
18157 @<Splice independent paths together@>;
18159 @<Plug an opening in |right_type(q)|, if possible@>;
18160 link(q)=pp; left_y(pp)=y;
18161 if ( t!=open ) { left_x(pp)=x; left_type(pp)=t; };
18166 @ @<Plug an opening in |right_type(q)|...@>=
18167 if ( right_type(q)==open ) {
18168 if ( (left_type(q)==curl)||(left_type(q)==given) ) {
18169 right_type(q)=left_type(q); right_given(q)=left_given(q);
18173 @ @<Plug an opening in |right_type(pp)|...@>=
18174 if ( right_type(pp)==open ) {
18175 if ( (t==curl)||(t==given) ) {
18176 right_type(pp)=t; right_given(pp)=x;
18180 @ @<Splice independent paths together@>=
18182 if ( left_type(q)==open ) if ( right_type(q)==open ) {
18183 left_type(q)=curl; left_curl(q)=unity;
18185 if ( right_type(pp)==open ) if ( t==open ) {
18186 right_type(pp)=curl; right_curl(pp)=unity;
18188 right_type(q)=right_type(pp); link(q)=link(pp);
18189 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18190 mp_free_node(mp, pp,knot_node_size);
18191 if ( qq==pp ) qq=q;
18194 @ @<Choose control points for the path...@>=
18196 if ( d==ampersand ) p=q;
18198 left_type(p)=endpoint;
18199 if ( right_type(p)==open ) {
18200 right_type(p)=curl; right_curl(p)=unity;
18202 right_type(q)=endpoint;
18203 if ( left_type(q)==open ) {
18204 left_type(q)=curl; left_curl(q)=unity;
18208 mp_make_choices(mp, p);
18209 mp->cur_type=mp_path_type; mp->cur_exp=p
18211 @ Finally, we sometimes need to scan an expression whose value is
18212 supposed to be either |true_code| or |false_code|.
18214 @<Declare the basic parsing subroutines@>=
18215 void mp_get_boolean (MP mp) {
18216 mp_get_x_next(mp); mp_scan_expression(mp);
18217 if ( mp->cur_type!=mp_boolean_type ) {
18218 exp_err("Undefined condition will be treated as `false'");
18219 @.Undefined condition...@>
18220 help2("The expression shown above should have had a definite")
18221 ("true-or-false value. I'm changing it to `false'.");
18222 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18226 @* \[39] Doing the operations.
18227 The purpose of parsing is primarily to permit people to avoid piles of
18228 parentheses. But the real work is done after the structure of an expression
18229 has been recognized; that's when new expressions are generated. We
18230 turn now to the guts of \MP, which handles individual operators that
18231 have come through the parsing mechanism.
18233 We'll start with the easy ones that take no operands, then work our way
18234 up to operators with one and ultimately two arguments. In other words,
18235 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18236 that are invoked periodically by the expression scanners.
18238 First let's make sure that all of the primitive operators are in the
18239 hash table. Although |scan_primary| and its relatives made use of the
18240 \\{cmd} code for these operators, the \\{do} routines base everything
18241 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18242 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18245 mp_primitive(mp, "true",nullary,true_code);
18246 @:true_}{\&{true} primitive@>
18247 mp_primitive(mp, "false",nullary,false_code);
18248 @:false_}{\&{false} primitive@>
18249 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18250 @:null_picture_}{\&{nullpicture} primitive@>
18251 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18252 @:null_pen_}{\&{nullpen} primitive@>
18253 mp_primitive(mp, "jobname",nullary,job_name_op);
18254 @:job_name_}{\&{jobname} primitive@>
18255 mp_primitive(mp, "readstring",nullary,read_string_op);
18256 @:read_string_}{\&{readstring} primitive@>
18257 mp_primitive(mp, "pencircle",nullary,pen_circle);
18258 @:pen_circle_}{\&{pencircle} primitive@>
18259 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18260 @:normal_deviate_}{\&{normaldeviate} primitive@>
18261 mp_primitive(mp, "readfrom",unary,read_from_op);
18262 @:read_from_}{\&{readfrom} primitive@>
18263 mp_primitive(mp, "closefrom",unary,close_from_op);
18264 @:close_from_}{\&{closefrom} primitive@>
18265 mp_primitive(mp, "odd",unary,odd_op);
18266 @:odd_}{\&{odd} primitive@>
18267 mp_primitive(mp, "known",unary,known_op);
18268 @:known_}{\&{known} primitive@>
18269 mp_primitive(mp, "unknown",unary,unknown_op);
18270 @:unknown_}{\&{unknown} primitive@>
18271 mp_primitive(mp, "not",unary,not_op);
18272 @:not_}{\&{not} primitive@>
18273 mp_primitive(mp, "decimal",unary,decimal);
18274 @:decimal_}{\&{decimal} primitive@>
18275 mp_primitive(mp, "reverse",unary,reverse);
18276 @:reverse_}{\&{reverse} primitive@>
18277 mp_primitive(mp, "makepath",unary,make_path_op);
18278 @:make_path_}{\&{makepath} primitive@>
18279 mp_primitive(mp, "makepen",unary,make_pen_op);
18280 @:make_pen_}{\&{makepen} primitive@>
18281 mp_primitive(mp, "oct",unary,oct_op);
18282 @:oct_}{\&{oct} primitive@>
18283 mp_primitive(mp, "hex",unary,hex_op);
18284 @:hex_}{\&{hex} primitive@>
18285 mp_primitive(mp, "ASCII",unary,ASCII_op);
18286 @:ASCII_}{\&{ASCII} primitive@>
18287 mp_primitive(mp, "char",unary,char_op);
18288 @:char_}{\&{char} primitive@>
18289 mp_primitive(mp, "length",unary,length_op);
18290 @:length_}{\&{length} primitive@>
18291 mp_primitive(mp, "turningnumber",unary,turning_op);
18292 @:turning_number_}{\&{turningnumber} primitive@>
18293 mp_primitive(mp, "xpart",unary,x_part);
18294 @:x_part_}{\&{xpart} primitive@>
18295 mp_primitive(mp, "ypart",unary,y_part);
18296 @:y_part_}{\&{ypart} primitive@>
18297 mp_primitive(mp, "xxpart",unary,xx_part);
18298 @:xx_part_}{\&{xxpart} primitive@>
18299 mp_primitive(mp, "xypart",unary,xy_part);
18300 @:xy_part_}{\&{xypart} primitive@>
18301 mp_primitive(mp, "yxpart",unary,yx_part);
18302 @:yx_part_}{\&{yxpart} primitive@>
18303 mp_primitive(mp, "yypart",unary,yy_part);
18304 @:yy_part_}{\&{yypart} primitive@>
18305 mp_primitive(mp, "redpart",unary,red_part);
18306 @:red_part_}{\&{redpart} primitive@>
18307 mp_primitive(mp, "greenpart",unary,green_part);
18308 @:green_part_}{\&{greenpart} primitive@>
18309 mp_primitive(mp, "bluepart",unary,blue_part);
18310 @:blue_part_}{\&{bluepart} primitive@>
18311 mp_primitive(mp, "cyanpart",unary,cyan_part);
18312 @:cyan_part_}{\&{cyanpart} primitive@>
18313 mp_primitive(mp, "magentapart",unary,magenta_part);
18314 @:magenta_part_}{\&{magentapart} primitive@>
18315 mp_primitive(mp, "yellowpart",unary,yellow_part);
18316 @:yellow_part_}{\&{yellowpart} primitive@>
18317 mp_primitive(mp, "blackpart",unary,black_part);
18318 @:black_part_}{\&{blackpart} primitive@>
18319 mp_primitive(mp, "greypart",unary,grey_part);
18320 @:grey_part_}{\&{greypart} primitive@>
18321 mp_primitive(mp, "colormodel",unary,color_model_part);
18322 @:color_model_part_}{\&{colormodel} primitive@>
18323 mp_primitive(mp, "fontpart",unary,font_part);
18324 @:font_part_}{\&{fontpart} primitive@>
18325 mp_primitive(mp, "textpart",unary,text_part);
18326 @:text_part_}{\&{textpart} primitive@>
18327 mp_primitive(mp, "pathpart",unary,path_part);
18328 @:path_part_}{\&{pathpart} primitive@>
18329 mp_primitive(mp, "penpart",unary,pen_part);
18330 @:pen_part_}{\&{penpart} primitive@>
18331 mp_primitive(mp, "dashpart",unary,dash_part);
18332 @:dash_part_}{\&{dashpart} primitive@>
18333 mp_primitive(mp, "sqrt",unary,sqrt_op);
18334 @:sqrt_}{\&{sqrt} primitive@>
18335 mp_primitive(mp, "mexp",unary,m_exp_op);
18336 @:m_exp_}{\&{mexp} primitive@>
18337 mp_primitive(mp, "mlog",unary,m_log_op);
18338 @:m_log_}{\&{mlog} primitive@>
18339 mp_primitive(mp, "sind",unary,sin_d_op);
18340 @:sin_d_}{\&{sind} primitive@>
18341 mp_primitive(mp, "cosd",unary,cos_d_op);
18342 @:cos_d_}{\&{cosd} primitive@>
18343 mp_primitive(mp, "floor",unary,floor_op);
18344 @:floor_}{\&{floor} primitive@>
18345 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18346 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18347 mp_primitive(mp, "charexists",unary,char_exists_op);
18348 @:char_exists_}{\&{charexists} primitive@>
18349 mp_primitive(mp, "fontsize",unary,font_size);
18350 @:font_size_}{\&{fontsize} primitive@>
18351 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18352 @:ll_corner_}{\&{llcorner} primitive@>
18353 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18354 @:lr_corner_}{\&{lrcorner} primitive@>
18355 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18356 @:ul_corner_}{\&{ulcorner} primitive@>
18357 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18358 @:ur_corner_}{\&{urcorner} primitive@>
18359 mp_primitive(mp, "arclength",unary,arc_length);
18360 @:arc_length_}{\&{arclength} primitive@>
18361 mp_primitive(mp, "angle",unary,angle_op);
18362 @:angle_}{\&{angle} primitive@>
18363 mp_primitive(mp, "cycle",cycle,cycle_op);
18364 @:cycle_}{\&{cycle} primitive@>
18365 mp_primitive(mp, "stroked",unary,stroked_op);
18366 @:stroked_}{\&{stroked} primitive@>
18367 mp_primitive(mp, "filled",unary,filled_op);
18368 @:filled_}{\&{filled} primitive@>
18369 mp_primitive(mp, "textual",unary,textual_op);
18370 @:textual_}{\&{textual} primitive@>
18371 mp_primitive(mp, "clipped",unary,clipped_op);
18372 @:clipped_}{\&{clipped} primitive@>
18373 mp_primitive(mp, "bounded",unary,bounded_op);
18374 @:bounded_}{\&{bounded} primitive@>
18375 mp_primitive(mp, "+",plus_or_minus,plus);
18376 @:+ }{\.{+} primitive@>
18377 mp_primitive(mp, "-",plus_or_minus,minus);
18378 @:- }{\.{-} primitive@>
18379 mp_primitive(mp, "*",secondary_binary,times);
18380 @:* }{\.{*} primitive@>
18381 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18382 @:/ }{\.{/} primitive@>
18383 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18384 @:++_}{\.{++} primitive@>
18385 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18386 @:+-+_}{\.{+-+} primitive@>
18387 mp_primitive(mp, "or",tertiary_binary,or_op);
18388 @:or_}{\&{or} primitive@>
18389 mp_primitive(mp, "and",and_command,and_op);
18390 @:and_}{\&{and} primitive@>
18391 mp_primitive(mp, "<",expression_binary,less_than);
18392 @:< }{\.{<} primitive@>
18393 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18394 @:<=_}{\.{<=} primitive@>
18395 mp_primitive(mp, ">",expression_binary,greater_than);
18396 @:> }{\.{>} primitive@>
18397 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18398 @:>=_}{\.{>=} primitive@>
18399 mp_primitive(mp, "=",equals,equal_to);
18400 @:= }{\.{=} primitive@>
18401 mp_primitive(mp, "<>",expression_binary,unequal_to);
18402 @:<>_}{\.{<>} primitive@>
18403 mp_primitive(mp, "substring",primary_binary,substring_of);
18404 @:substring_}{\&{substring} primitive@>
18405 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18406 @:subpath_}{\&{subpath} primitive@>
18407 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18408 @:direction_time_}{\&{directiontime} primitive@>
18409 mp_primitive(mp, "point",primary_binary,point_of);
18410 @:point_}{\&{point} primitive@>
18411 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18412 @:precontrol_}{\&{precontrol} primitive@>
18413 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18414 @:postcontrol_}{\&{postcontrol} primitive@>
18415 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18416 @:pen_offset_}{\&{penoffset} primitive@>
18417 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18418 @:arc_time_of_}{\&{arctime} primitive@>
18419 mp_primitive(mp, "mpversion",nullary,mp_version);
18420 @:mp_verison_}{\&{mpversion} primitive@>
18421 mp_primitive(mp, "&",ampersand,concatenate);
18422 @:!!!}{\.{\&} primitive@>
18423 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18424 @:rotated_}{\&{rotated} primitive@>
18425 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18426 @:slanted_}{\&{slanted} primitive@>
18427 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18428 @:scaled_}{\&{scaled} primitive@>
18429 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18430 @:shifted_}{\&{shifted} primitive@>
18431 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18432 @:transformed_}{\&{transformed} primitive@>
18433 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18434 @:x_scaled_}{\&{xscaled} primitive@>
18435 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18436 @:y_scaled_}{\&{yscaled} primitive@>
18437 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18438 @:z_scaled_}{\&{zscaled} primitive@>
18439 mp_primitive(mp, "infont",secondary_binary,in_font);
18440 @:in_font_}{\&{infont} primitive@>
18441 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18442 @:intersection_times_}{\&{intersectiontimes} primitive@>
18444 @ @<Cases of |print_cmd...@>=
18447 case primary_binary:
18448 case secondary_binary:
18449 case tertiary_binary:
18450 case expression_binary:
18452 case plus_or_minus:
18457 mp_print_op(mp, m);
18460 @ OK, let's look at the simplest \\{do} procedure first.
18462 @c @<Declare nullary action procedure@>;
18463 void mp_do_nullary (MP mp,quarterword c) {
18465 if ( mp->internal[tracing_commands]>two )
18466 mp_show_cmd_mod(mp, nullary,c);
18468 case true_code: case false_code:
18469 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18471 case null_picture_code:
18472 mp->cur_type=mp_picture_type;
18473 mp->cur_exp=mp_get_node(mp, edge_header_size);
18474 mp_init_edges(mp, mp->cur_exp);
18476 case null_pen_code:
18477 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18479 case normal_deviate:
18480 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18483 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18486 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18487 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18490 mp->cur_type=mp_string_type;
18491 mp->cur_exp=intern(metapost_version) ;
18493 case read_string_op:
18494 @<Read a string from the terminal@>;
18496 } /* there are no other cases */
18500 @ @<Read a string...@>=
18502 if ( mp->interaction<=mp_nonstop_mode )
18503 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18504 mp_begin_file_reading(mp); name=is_read;
18505 limit=start; prompt_input("");
18506 mp_finish_read(mp);
18509 @ @<Declare nullary action procedure@>=
18510 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18512 str_room((int)mp->last-start);
18513 for (k=start;k<=mp->last-1;k++) {
18514 append_char(mp->buffer[k]);
18516 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18517 mp->cur_exp=mp_make_string(mp);
18520 @ Things get a bit more interesting when there's an operand. The
18521 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18523 @c @<Declare unary action procedures@>;
18524 void mp_do_unary (MP mp,quarterword c) {
18525 pointer p,q,r; /* for list manipulation */
18526 integer x; /* a temporary register */
18528 if ( mp->internal[tracing_commands]>two )
18529 @<Trace the current unary operation@>;
18532 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18535 @<Negate the current expression@>;
18537 @<Additional cases of unary operators@>;
18538 } /* there are no other cases */
18542 @ The |nice_pair| function returns |true| if both components of a pair
18545 @<Declare unary action procedures@>=
18546 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18547 if ( t==mp_pair_type ) {
18549 if ( type(x_part_loc(p))==mp_known )
18550 if ( type(y_part_loc(p))==mp_known )
18556 @ The |nice_color_or_pair| function is analogous except that it also accepts
18557 fully known colors.
18559 @<Declare unary action procedures@>=
18560 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18561 pointer q,r; /* for scanning the big node */
18562 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18566 r=q+mp->big_node_size[type(p)];
18569 if ( type(r)!=mp_known )
18576 @ @<Declare unary action...@>=
18577 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18578 mp_print_char(mp, '(');
18579 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18580 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18581 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18582 mp_print_type(mp, t);
18584 mp_print_char(mp, ')');
18587 @ @<Declare unary action...@>=
18588 void mp_bad_unary (MP mp,quarterword c) {
18589 exp_err("Not implemented: "); mp_print_op(mp, c);
18590 @.Not implemented...@>
18591 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18592 help3("I'm afraid I don't know how to apply that operation to that")
18593 ("particular type. Continue, and I'll simply return the")
18594 ("argument (shown above) as the result of the operation.");
18595 mp_put_get_error(mp);
18598 @ @<Trace the current unary operation@>=
18600 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18601 mp_print_op(mp, c); mp_print_char(mp, '(');
18602 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18603 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18606 @ Negation is easy except when the current expression
18607 is of type |independent|, or when it is a pair with one or more
18608 |independent| components.
18610 It is tempting to argue that the negative of an independent variable
18611 is an independent variable, hence we don't have to do anything when
18612 negating it. The fallacy is that other dependent variables pointing
18613 to the current expression must change the sign of their
18614 coefficients if we make no change to the current expression.
18616 Instead, we work around the problem by copying the current expression
18617 and recycling it afterwards (cf.~the |stash_in| routine).
18619 @<Negate the current expression@>=
18620 switch (mp->cur_type) {
18621 case mp_color_type:
18622 case mp_cmykcolor_type:
18624 case mp_independent:
18625 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18626 if ( mp->cur_type==mp_dependent ) {
18627 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18628 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18629 p=value(mp->cur_exp);
18630 r=p+mp->big_node_size[mp->cur_type];
18633 if ( type(r)==mp_known ) negate(value(r));
18634 else mp_negate_dep_list(mp, dep_list(r));
18636 } /* if |cur_type=mp_known| then |cur_exp=0| */
18637 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18640 case mp_proto_dependent:
18641 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18644 negate(mp->cur_exp);
18647 mp_bad_unary(mp, minus);
18651 @ @<Declare unary action...@>=
18652 void mp_negate_dep_list (MP mp,pointer p) {
18655 if ( info(p)==null ) return;
18660 @ @<Additional cases of unary operators@>=
18662 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18663 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18666 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18667 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18669 @<Additional cases of unary operators@>=
18676 case uniform_deviate:
18678 case char_exists_op:
18679 if ( mp->cur_type!=mp_known ) {
18680 mp_bad_unary(mp, c);
18683 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18684 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18685 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18688 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18689 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18690 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18692 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18693 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18695 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18696 mp->cur_type=mp_boolean_type;
18698 case char_exists_op:
18699 @<Determine if a character has been shipped out@>;
18701 } /* there are no other cases */
18705 @ @<Additional cases of unary operators@>=
18707 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18708 p=value(mp->cur_exp);
18709 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18710 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18711 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18713 mp_bad_unary(mp, angle_op);
18717 @ If the current expression is a pair, but the context wants it to
18718 be a path, we call |pair_to_path|.
18720 @<Declare unary action...@>=
18721 void mp_pair_to_path (MP mp) {
18722 mp->cur_exp=mp_new_knot(mp);
18723 mp->cur_type=mp_path_type;
18726 @ @<Additional cases of unary operators@>=
18729 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18730 mp_take_part(mp, c);
18731 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18732 else mp_bad_unary(mp, c);
18738 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18739 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18740 else mp_bad_unary(mp, c);
18745 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18746 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18747 else mp_bad_unary(mp, c);
18753 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18754 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18755 else mp_bad_unary(mp, c);
18758 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18759 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18760 else mp_bad_unary(mp, c);
18762 case color_model_part:
18763 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18764 else mp_bad_unary(mp, c);
18767 @ In the following procedure, |cur_exp| points to a capsule, which points to
18768 a big node. We want to delete all but one part of the big node.
18770 @<Declare unary action...@>=
18771 void mp_take_part (MP mp,quarterword c) {
18772 pointer p; /* the big node */
18773 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18774 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18775 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18776 mp_recycle_value(mp, temp_val);
18779 @ @<Initialize table entries...@>=
18780 name_type(temp_val)=mp_capsule;
18782 @ @<Additional cases of unary operators@>=
18788 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18789 else mp_bad_unary(mp, c);
18792 @ @<Declarations@>=
18793 void mp_scale_edges (MP mp);
18795 @ @<Declare unary action...@>=
18796 void mp_take_pict_part (MP mp,quarterword c) {
18797 pointer p; /* first graphical object in |cur_exp| */
18798 p=link(dummy_loc(mp->cur_exp));
18801 case x_part: case y_part: case xx_part:
18802 case xy_part: case yx_part: case yy_part:
18803 if ( type(p)==text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18804 else goto NOT_FOUND;
18806 case red_part: case green_part: case blue_part:
18807 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18808 else goto NOT_FOUND;
18810 case cyan_part: case magenta_part: case yellow_part:
18812 if ( has_color(p) ) {
18813 if ( color_model(p)==uninitialized_model )
18814 mp_flush_cur_exp(mp, unity);
18816 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18817 } else goto NOT_FOUND;
18820 if ( has_color(p) )
18821 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18822 else goto NOT_FOUND;
18824 case color_model_part:
18825 if ( has_color(p) ) {
18826 if ( color_model(p)==uninitialized_model )
18827 mp_flush_cur_exp(mp, mp->internal[default_color_model]);
18829 mp_flush_cur_exp(mp, color_model(p)*unity);
18830 } else goto NOT_FOUND;
18832 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18833 } /* all cases have been enumerated */
18837 @<Convert the current expression to a null value appropriate
18841 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18843 if ( type(p)!=text_code ) goto NOT_FOUND;
18845 mp_flush_cur_exp(mp, text_p(p));
18846 add_str_ref(mp->cur_exp);
18847 mp->cur_type=mp_string_type;
18851 if ( type(p)!=text_code ) goto NOT_FOUND;
18853 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18854 add_str_ref(mp->cur_exp);
18855 mp->cur_type=mp_string_type;
18859 if ( type(p)==text_code ) goto NOT_FOUND;
18860 else if ( is_stop(p) ) mp_confusion(mp, "pict");
18861 @:this can't happen pict}{\quad pict@>
18863 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
18864 mp->cur_type=mp_path_type;
18868 if ( ! has_pen(p) ) goto NOT_FOUND;
18870 if ( pen_p(p)==null ) goto NOT_FOUND;
18871 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
18872 mp->cur_type=mp_pen_type;
18877 if ( type(p)!=stroked_code ) goto NOT_FOUND;
18878 else { if ( dash_p(p)==null ) goto NOT_FOUND;
18879 else { add_edge_ref(dash_p(p));
18880 mp->se_sf=dash_scale(p);
18881 mp->se_pic=dash_p(p);
18882 mp_scale_edges(mp);
18883 mp_flush_cur_exp(mp, mp->se_pic);
18884 mp->cur_type=mp_picture_type;
18889 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
18890 parameterless procedure even though it really takes two arguments and updates
18891 one of them. Hence the following globals are needed.
18894 pointer se_pic; /* edge header used and updated by |scale_edges| */
18895 scaled se_sf; /* the scale factor argument to |scale_edges| */
18897 @ @<Convert the current expression to a null value appropriate...@>=
18899 case text_part: case font_part:
18900 mp_flush_cur_exp(mp, rts(""));
18901 mp->cur_type=mp_string_type;
18904 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
18905 left_type(mp->cur_exp)=endpoint;
18906 right_type(mp->cur_exp)=endpoint;
18907 link(mp->cur_exp)=mp->cur_exp;
18908 x_coord(mp->cur_exp)=0;
18909 y_coord(mp->cur_exp)=0;
18910 originator(mp->cur_exp)=metapost_user;
18911 mp->cur_type=mp_path_type;
18914 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
18915 mp->cur_type=mp_pen_type;
18918 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
18919 mp_init_edges(mp, mp->cur_exp);
18920 mp->cur_type=mp_picture_type;
18923 mp_flush_cur_exp(mp, 0);
18927 @ @<Additional cases of unary...@>=
18929 if ( mp->cur_type!=mp_known ) {
18930 mp_bad_unary(mp, char_op);
18932 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
18933 mp->cur_type=mp_string_type;
18934 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
18938 if ( mp->cur_type!=mp_known ) {
18939 mp_bad_unary(mp, decimal);
18941 mp->old_setting=mp->selector; mp->selector=new_string;
18942 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
18943 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
18949 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
18950 else mp_str_to_num(mp, c);
18953 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
18954 else @<Find the design size of the font whose name is |cur_exp|@>;
18957 @ @<Declare unary action...@>=
18958 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
18959 integer n; /* accumulator */
18960 ASCII_code m; /* current character */
18961 pool_pointer k; /* index into |str_pool| */
18962 int b; /* radix of conversion */
18963 boolean bad_char; /* did the string contain an invalid digit? */
18964 if ( c==ASCII_op ) {
18965 if ( length(mp->cur_exp)==0 ) n=-1;
18966 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
18968 if ( c==oct_op ) b=8; else b=16;
18969 n=0; bad_char=false;
18970 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
18972 if ( (m>='0')&&(m<='9') ) m=m-'0';
18973 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
18974 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
18975 else { bad_char=true; m=0; };
18976 if ( m>=b ) { bad_char=true; m=0; };
18977 if ( n<32768 / b ) n=n*b+m; else n=32767;
18979 @<Give error messages if |bad_char| or |n>=4096|@>;
18981 mp_flush_cur_exp(mp, n*unity);
18984 @ @<Give error messages if |bad_char|...@>=
18986 exp_err("String contains illegal digits");
18987 @.String contains illegal digits@>
18989 help1("I zeroed out characters that weren't in the range 0..7.");
18991 help1("I zeroed out characters that weren't hex digits.");
18993 mp_put_get_error(mp);
18996 if ( mp->internal[warning_check]>0 ) {
18997 print_err("Number too large (");
18998 mp_print_int(mp, n); mp_print_char(mp, ')');
18999 @.Number too large@>
19000 help2("I have trouble with numbers greater than 4095; watch out.")
19001 ("(Set warningcheck:=0 to suppress this message.)");
19002 mp_put_get_error(mp);
19006 @ The length operation is somewhat unusual in that it applies to a variety
19007 of different types of operands.
19009 @<Additional cases of unary...@>=
19011 switch (mp->cur_type) {
19012 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19013 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19014 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19015 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19017 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19018 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19019 value(x_part_loc(value(mp->cur_exp))),
19020 value(y_part_loc(value(mp->cur_exp)))));
19021 else mp_bad_unary(mp, c);
19026 @ @<Declare unary action...@>=
19027 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19028 scaled n; /* the path length so far */
19029 pointer p; /* traverser */
19031 if ( left_type(p)==endpoint ) n=-unity; else n=0;
19032 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19036 @ @<Declare unary action...@>=
19037 scaled mp_pict_length (MP mp) {
19038 /* counts interior components in picture |cur_exp| */
19039 scaled n; /* the count so far */
19040 pointer p; /* traverser */
19042 p=link(dummy_loc(mp->cur_exp));
19044 if ( is_start_or_stop(p) )
19045 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19046 while ( p!=null ) {
19047 skip_component(p) return n;
19054 @ Implement |turningnumber|
19056 @<Additional cases of unary...@>=
19058 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19059 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19060 else if ( left_type(mp->cur_exp)==endpoint )
19061 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19063 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19066 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19067 argument is |origin|.
19069 @<Declare unary action...@>=
19070 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19071 if ( (! ((xpar==0) && (ypar==0))) )
19072 return mp_n_arg(mp, xpar,ypar);
19077 @ The actual turning number is (for the moment) computed in a C function
19078 that receives eight integers corresponding to the four controlling points,
19079 and returns a single angle. Besides those, we have to account for discrete
19080 moves at the actual points.
19082 @d floor(a) (a>=0 ? a : -(int)(-a))
19083 @d bezier_error (720<<20)+1
19084 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19085 @d print_roots(a) { if (debuglevel>(65536*2))
19086 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19087 @d out ((double)(xo>>20))
19088 @d mid ((double)(xm>>20))
19089 @d in ((double)(xi>>20))
19090 @d divisor (256*256)
19091 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19093 @<Declare unary action...@>=
19094 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19095 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19098 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19099 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19101 integer deltax,deltay;
19102 double ax,ay,bx,by,cx,cy,dx,dy;
19103 angle xi = 0, xo = 0, xm = 0;
19105 ax=AX/divisor; ay=AY/divisor;
19106 bx=BX/divisor; by=BY/divisor;
19107 cx=CX/divisor; cy=CY/divisor;
19108 dx=DX/divisor; dy=DY/divisor;
19110 deltax = (BX-AX); deltay = (BY-AY);
19111 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19112 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19113 xi = mp_an_angle(mp,deltax,deltay);
19115 deltax = (CX-BX); deltay = (CY-BY);
19116 xm = mp_an_angle(mp,deltax,deltay);
19118 deltax = (DX-CX); deltay = (DY-CY);
19119 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19120 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19121 xo = mp_an_angle(mp,deltax,deltay);
19123 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19124 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19125 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19127 if (debuglevel>(65536*2)) {
19129 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19130 ax,ay,bx,by,cx,cy,dx,dy);
19132 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19135 if ((a==0)&&(c==0)) {
19136 res = (b==0 ? 0 : (out-in));
19137 print_roots("no roots (a)");
19138 } else if ((a==0)||(c==0)) {
19139 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19140 res = out-in; /* ? */
19143 else if (res>180.0)
19145 print_roots("no roots (b)");
19147 res = out-in; /* ? */
19148 print_roots("one root (a)");
19150 } else if ((sign(a)*sign(c))<0) {
19151 res = out-in; /* ? */
19154 else if (res>180.0)
19156 print_roots("one root (b)");
19158 if (sign(a) == sign(b)) {
19159 res = out-in; /* ? */
19162 else if (res>180.0)
19164 print_roots("no roots (d)");
19166 if ((b*b) == (4*a*c)) {
19167 res = bezier_error;
19168 print_roots("double root"); /* cusp */
19169 } else if ((b*b) < (4*a*c)) {
19170 res = out-in; /* ? */
19171 if (res<=0.0 &&res>-180.0)
19173 else if (res>=0.0 && res<180.0)
19175 print_roots("no roots (e)");
19180 else if (res>180.0)
19182 print_roots("two roots"); /* two inflections */
19186 return double2angle(res);
19190 @d p_nextnext link(link(p))
19192 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19194 @<Declare unary action...@>=
19195 scaled mp_new_turn_cycles (MP mp,pointer c) {
19196 angle res,ang; /* the angles of intermediate results */
19197 scaled turns; /* the turn counter */
19198 pointer p; /* for running around the path */
19199 integer xp,yp; /* coordinates of next point */
19200 integer x,y; /* helper coordinates */
19201 angle in_angle,out_angle; /* helper angles */
19202 int old_setting; /* saved |selector| setting */
19206 old_setting = mp->selector; mp->selector=term_only;
19207 if ( mp->internal[tracing_commands]>unity ) {
19208 mp_begin_diagnostic(mp);
19209 mp_print_nl(mp, "");
19210 mp_end_diagnostic(mp, false);
19213 xp = x_coord(p_next); yp = y_coord(p_next);
19214 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19215 left_x(p_next), left_y(p_next), xp, yp,
19216 mp->internal[tracing_commands]);
19217 if ( ang>seven_twenty_deg ) {
19218 print_err("Strange path");
19220 mp->selector=old_setting;
19224 if ( res > one_eighty_deg ) {
19225 res = res - three_sixty_deg;
19226 turns = turns + unity;
19228 if ( res <= -one_eighty_deg ) {
19229 res = res + three_sixty_deg;
19230 turns = turns - unity;
19232 /* incoming angle at next point */
19233 x = left_x(p_next); y = left_y(p_next);
19234 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19235 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19236 in_angle = mp_an_angle(mp, xp - x, yp - y);
19237 /* outgoing angle at next point */
19238 x = right_x(p_next); y = right_y(p_next);
19239 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19240 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19241 out_angle = mp_an_angle(mp, x - xp, y- yp);
19242 ang = (out_angle - in_angle);
19246 if ( res >= one_eighty_deg ) {
19247 res = res - three_sixty_deg;
19248 turns = turns + unity;
19250 if ( res <= -one_eighty_deg ) {
19251 res = res + three_sixty_deg;
19252 turns = turns - unity;
19257 mp->selector=old_setting;
19262 @ This code is based on Bogus\l{}av Jackowski's
19263 |emergency_turningnumber| macro, with some minor changes by Taco
19264 Hoekwater. The macro code looked more like this:
19266 vardef turning\_number primary p =
19267 ~~save res, ang, turns;
19269 ~~if length p <= 2:
19270 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19272 ~~~~for t = 0 upto length p-1 :
19273 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19274 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19275 ~~~~~~if angc > 180: angc := angc - 360; fi;
19276 ~~~~~~if angc < -180: angc := angc + 360; fi;
19277 ~~~~~~res := res + angc;
19282 The general idea is to calculate only the sum of the angles of
19283 straight lines between the points, of a path, not worrying about cusps
19284 or self-intersections in the segments at all. If the segment is not
19285 well-behaved, the result is not necesarily correct. But the old code
19286 was not always correct either, and worse, it sometimes failed for
19287 well-behaved paths as well. All known bugs that were triggered by the
19288 original code no longer occur with this code, and it runs roughly 3
19289 times as fast because the algorithm is much simpler.
19291 @ It is possible to overflow the return value of the |turn_cycles|
19292 function when the path is sufficiently long and winding, but I am not
19293 going to bother testing for that. In any case, it would only return
19294 the looped result value, which is not a big problem.
19296 The macro code for the repeat loop was a bit nicer to look
19297 at than the pascal code, because it could use |point -1 of p|. In
19298 pascal, the fastest way to loop around the path is not to look
19299 backward once, but forward twice. These defines help hide the trick.
19301 @d p_to link(link(p))
19305 @<Declare unary action...@>=
19306 scaled mp_turn_cycles (MP mp,pointer c) {
19307 angle res,ang; /* the angles of intermediate results */
19308 scaled turns; /* the turn counter */
19309 pointer p; /* for running around the path */
19310 res=0; turns= 0; p=c;
19312 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19313 y_coord(p_to) - y_coord(p_here))
19314 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19315 y_coord(p_here) - y_coord(p_from));
19318 if ( res >= three_sixty_deg ) {
19319 res = res - three_sixty_deg;
19320 turns = turns + unity;
19322 if ( res <= -three_sixty_deg ) {
19323 res = res + three_sixty_deg;
19324 turns = turns - unity;
19331 @ @<Declare unary action...@>=
19332 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19334 scaled saved_t_o; /* tracing\_online saved */
19335 if ( (link(c)==c)||(link(link(c))==c) ) {
19336 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19341 nval = mp_new_turn_cycles(mp, c);
19342 oval = mp_turn_cycles(mp, c);
19343 if ( nval!=oval ) {
19344 saved_t_o=mp->internal[tracing_online];
19345 mp->internal[tracing_online]=unity;
19346 mp_begin_diagnostic(mp);
19347 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19348 " The current computed value is ");
19349 mp_print_scaled(mp, nval);
19350 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19351 mp_print_scaled(mp, oval);
19352 mp_end_diagnostic(mp, false);
19353 mp->internal[tracing_online]=saved_t_o;
19359 @ @<Declare unary action...@>=
19360 scaled mp_count_turns (MP mp,pointer c) {
19361 pointer p; /* a knot in envelope spec |c| */
19362 integer t; /* total pen offset changes counted */
19365 t=t+info(p)-zero_off;
19368 return ((t / 3)*unity);
19371 @ @d type_range(A,B) {
19372 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19373 mp_flush_cur_exp(mp, true_code);
19374 else mp_flush_cur_exp(mp, false_code);
19375 mp->cur_type=mp_boolean_type;
19378 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19379 else mp_flush_cur_exp(mp, false_code);
19380 mp->cur_type=mp_boolean_type;
19383 @<Additional cases of unary operators@>=
19384 case mp_boolean_type:
19385 type_range(mp_boolean_type,mp_unknown_boolean); break;
19386 case mp_string_type:
19387 type_range(mp_string_type,mp_unknown_string); break;
19389 type_range(mp_pen_type,mp_unknown_pen); break;
19391 type_range(mp_path_type,mp_unknown_path); break;
19392 case mp_picture_type:
19393 type_range(mp_picture_type,mp_unknown_picture); break;
19394 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19396 type_test(c); break;
19397 case mp_numeric_type:
19398 type_range(mp_known,mp_independent); break;
19399 case known_op: case unknown_op:
19400 mp_test_known(mp, c); break;
19402 @ @<Declare unary action procedures@>=
19403 void mp_test_known (MP mp,quarterword c) {
19404 int b; /* is the current expression known? */
19405 pointer p,q; /* locations in a big node */
19407 switch (mp->cur_type) {
19408 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19409 case mp_pen_type: case mp_path_type: case mp_picture_type:
19413 case mp_transform_type:
19414 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19415 p=value(mp->cur_exp);
19416 q=p+mp->big_node_size[mp->cur_type];
19419 if ( type(q)!=mp_known )
19428 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19429 else mp_flush_cur_exp(mp, true_code+false_code-b);
19430 mp->cur_type=mp_boolean_type;
19433 @ @<Additional cases of unary operators@>=
19435 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19436 else if ( left_type(mp->cur_exp)!=endpoint ) mp_flush_cur_exp(mp, true_code);
19437 else mp_flush_cur_exp(mp, false_code);
19438 mp->cur_type=mp_boolean_type;
19441 @ @<Additional cases of unary operators@>=
19443 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19444 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19445 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19448 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19450 @^data structure assumptions@>
19452 @<Additional cases of unary operators@>=
19458 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19459 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19460 else if ( type(link(dummy_loc(mp->cur_exp)))==c+fill_code-filled_op )
19461 mp_flush_cur_exp(mp, true_code);
19462 else mp_flush_cur_exp(mp, false_code);
19463 mp->cur_type=mp_boolean_type;
19466 @ @<Additional cases of unary operators@>=
19468 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19469 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19471 mp->cur_type=mp_pen_type;
19472 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19476 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19478 mp->cur_type=mp_path_type;
19479 mp_make_path(mp, mp->cur_exp);
19483 if ( mp->cur_type==mp_path_type ) {
19484 p=mp_htap_ypoc(mp, mp->cur_exp);
19485 if ( right_type(p)==endpoint ) p=link(p);
19486 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19487 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19488 else mp_bad_unary(mp, reverse);
19491 @ The |pair_value| routine changes the current expression to a
19492 given ordered pair of values.
19494 @<Declare unary action procedures@>=
19495 void mp_pair_value (MP mp,scaled x, scaled y) {
19496 pointer p; /* a pair node */
19497 p=mp_get_node(mp, value_node_size);
19498 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19499 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19501 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19502 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19505 @ @<Additional cases of unary operators@>=
19507 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19508 else mp_pair_value(mp, minx,miny);
19511 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19512 else mp_pair_value(mp, maxx,miny);
19515 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19516 else mp_pair_value(mp, minx,maxy);
19519 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19520 else mp_pair_value(mp, maxx,maxy);
19523 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19524 box of the current expression. The boolean result is |false| if the expression
19525 has the wrong type.
19527 @<Declare unary action procedures@>=
19528 boolean mp_get_cur_bbox (MP mp) {
19529 switch (mp->cur_type) {
19530 case mp_picture_type:
19531 mp_set_bbox(mp, mp->cur_exp,true);
19532 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19533 minx=0; maxx=0; miny=0; maxy=0;
19535 minx=minx_val(mp->cur_exp);
19536 maxx=maxx_val(mp->cur_exp);
19537 miny=miny_val(mp->cur_exp);
19538 maxy=maxy_val(mp->cur_exp);
19542 mp_path_bbox(mp, mp->cur_exp);
19545 mp_pen_bbox(mp, mp->cur_exp);
19553 @ @<Additional cases of unary operators@>=
19555 case close_from_op:
19556 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19557 else mp_do_read_or_close(mp,c);
19560 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19561 a line from the file or to close the file.
19563 @d close_file 46 /* go here when closing the file */
19565 @<Declare unary action procedures@>=
19566 void mp_do_read_or_close (MP mp,quarterword c) {
19567 readf_index n,n0; /* indices for searching |rd_fname| */
19568 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19569 call |start_read_input| and |goto found| or |not_found|@>;
19570 mp_begin_file_reading(mp);
19572 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19574 mp_end_file_reading(mp);
19576 @<Record the end of file and set |cur_exp| to a dummy value@>;
19579 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19582 mp_flush_cur_exp(mp, 0);
19583 mp_finish_read(mp);
19586 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19589 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19594 fn = str(mp->cur_exp);
19595 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19598 } else if ( c==close_from_op ) {
19601 if ( n0==mp->read_files ) {
19602 if ( mp->read_files<mp->max_read_files ) {
19603 incr(mp->read_files);
19608 l = mp->max_read_files + (mp->max_read_files>>2);
19609 rd_file = xmalloc((l+1), sizeof(FILE *));
19610 rd_fname = xmalloc((l+1), sizeof(char *));
19611 for (k=0;k<=l;k++) {
19612 if (k<=mp->max_read_files) {
19613 rd_file[k]=mp->rd_file[k];
19614 rd_fname[k]=mp->rd_fname[k];
19620 xfree(mp->rd_file); xfree(mp->rd_fname);
19621 mp->max_read_files = l;
19622 mp->rd_file = rd_file;
19623 mp->rd_fname = rd_fname;
19627 if ( mp_start_read_input(mp,fn,n) )
19632 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19634 if ( c==close_from_op ) {
19635 fclose(mp->rd_file[n]);
19640 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19641 xfree(mp->rd_fname[n]);
19642 mp->rd_fname[n]=NULL;
19643 if ( n==mp->read_files-1 ) mp->read_files=n;
19644 if ( c==close_from_op )
19646 mp_flush_cur_exp(mp, mp->eof_line);
19647 mp->cur_type=mp_string_type
19649 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19652 str_number eof_line;
19657 @ Finally, we have the operations that combine a capsule~|p|
19658 with the current expression.
19660 @c @<Declare binary action procedures@>;
19661 void mp_do_binary (MP mp,pointer p, quarterword c) {
19662 pointer q,r,rr; /* for list manipulation */
19663 pointer old_p,old_exp; /* capsules to recycle */
19664 integer v; /* for numeric manipulation */
19666 if ( mp->internal[tracing_commands]>two ) {
19667 @<Trace the current binary operation@>;
19669 @<Sidestep |independent| cases in capsule |p|@>;
19670 @<Sidestep |independent| cases in the current expression@>;
19672 case plus: case minus:
19673 @<Add or subtract the current expression from |p|@>;
19675 @<Additional cases of binary operators@>;
19676 }; /* there are no other cases */
19677 mp_recycle_value(mp, p);
19678 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19680 @<Recycle any sidestepped |independent| capsules@>;
19683 @ @<Declare binary action...@>=
19684 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19685 mp_disp_err(mp, p,"");
19686 exp_err("Not implemented: ");
19687 @.Not implemented...@>
19688 if ( c>=min_of ) mp_print_op(mp, c);
19689 mp_print_known_or_unknown_type(mp, type(p),p);
19690 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19691 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19692 help3("I'm afraid I don't know how to apply that operation to that")
19693 ("combination of types. Continue, and I'll return the second")
19694 ("argument (see above) as the result of the operation.");
19695 mp_put_get_error(mp);
19698 @ @<Trace the current binary operation@>=
19700 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19701 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19702 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19703 mp_print_exp(mp,null,0); mp_print(mp,")}");
19704 mp_end_diagnostic(mp, false);
19707 @ Several of the binary operations are potentially complicated by the
19708 fact that |independent| values can sneak into capsules. For example,
19709 we've seen an instance of this difficulty in the unary operation
19710 of negation. In order to reduce the number of cases that need to be
19711 handled, we first change the two operands (if necessary)
19712 to rid them of |independent| components. The original operands are
19713 put into capsules called |old_p| and |old_exp|, which will be
19714 recycled after the binary operation has been safely carried out.
19716 @<Recycle any sidestepped |independent| capsules@>=
19717 if ( old_p!=null ) {
19718 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19720 if ( old_exp!=null ) {
19721 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19724 @ A big node is considered to be ``tarnished'' if it contains at least one
19725 independent component. We will define a simple function called `|tarnished|'
19726 that returns |null| if and only if its argument is not tarnished.
19728 @<Sidestep |independent| cases in capsule |p|@>=
19730 case mp_transform_type:
19731 case mp_color_type:
19732 case mp_cmykcolor_type:
19734 old_p=mp_tarnished(mp, p);
19736 case mp_independent: old_p=diov; break;
19737 default: old_p=null; break;
19739 if ( old_p!=null ) {
19740 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19741 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19744 @ @<Sidestep |independent| cases in the current expression@>=
19745 switch (mp->cur_type) {
19746 case mp_transform_type:
19747 case mp_color_type:
19748 case mp_cmykcolor_type:
19750 old_exp=mp_tarnished(mp, mp->cur_exp);
19752 case mp_independent:old_exp=diov; break;
19753 default: old_exp=null; break;
19755 if ( old_exp!=null ) {
19756 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19759 @ @<Declare binary action...@>=
19760 pointer mp_tarnished (MP mp,pointer p) {
19761 pointer q; /* beginning of the big node */
19762 pointer r; /* current position in the big node */
19763 q=value(p); r=q+mp->big_node_size[type(p)];
19766 if ( type(r)==mp_independent ) return diov;
19771 @ @<Add or subtract the current expression from |p|@>=
19772 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19773 mp_bad_binary(mp, p,c);
19775 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19776 mp_add_or_subtract(mp, p,null,c);
19778 if ( mp->cur_type!=type(p) ) {
19779 mp_bad_binary(mp, p,c);
19781 q=value(p); r=value(mp->cur_exp);
19782 rr=r+mp->big_node_size[mp->cur_type];
19784 mp_add_or_subtract(mp, q,r,c);
19791 @ The first argument to |add_or_subtract| is the location of a value node
19792 in a capsule or pair node that will soon be recycled. The second argument
19793 is either a location within a pair or transform node of |cur_exp|,
19794 or it is null (which means that |cur_exp| itself should be the second
19795 argument). The third argument is either |plus| or |minus|.
19797 The sum or difference of the numeric quantities will replace the second
19798 operand. Arithmetic overflow may go undetected; users aren't supposed to
19799 be monkeying around with really big values.
19801 @<Declare binary action...@>=
19802 @<Declare the procedure called |dep_finish|@>;
19803 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19804 small_number s,t; /* operand types */
19805 pointer r; /* list traverser */
19806 integer v; /* second operand value */
19809 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19812 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19814 if ( t==mp_known ) {
19815 if ( c==minus ) negate(v);
19816 if ( type(p)==mp_known ) {
19817 v=mp_slow_add(mp, value(p),v);
19818 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19821 @<Add a known value to the constant term of |dep_list(p)|@>;
19823 if ( c==minus ) mp_negate_dep_list(mp, v);
19824 @<Add operand |p| to the dependency list |v|@>;
19828 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19830 while ( info(r)!=null ) r=link(r);
19831 value(r)=mp_slow_add(mp, value(r),v);
19833 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19834 name_type(q)=mp_capsule;
19836 dep_list(q)=dep_list(p); type(q)=type(p);
19837 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19838 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19840 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19841 nice to retain the extra accuracy of |fraction| coefficients.
19842 But we have to handle both kinds, and mixtures too.
19844 @<Add operand |p| to the dependency list |v|@>=
19845 if ( type(p)==mp_known ) {
19846 @<Add the known |value(p)| to the constant term of |v|@>;
19848 s=type(p); r=dep_list(p);
19849 if ( t==mp_dependent ) {
19850 if ( s==mp_dependent ) {
19851 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19852 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19853 } /* |fix_needed| will necessarily be false */
19854 t=mp_proto_dependent;
19855 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19857 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
19858 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
19860 @<Output the answer, |v| (which might have become |known|)@>;
19863 @ @<Add the known |value(p)| to the constant term of |v|@>=
19865 while ( info(v)!=null ) v=link(v);
19866 value(v)=mp_slow_add(mp, value(p),value(v));
19869 @ @<Output the answer, |v| (which might have become |known|)@>=
19870 if ( q!=null ) mp_dep_finish(mp, v,q,t);
19871 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
19873 @ Here's the current situation: The dependency list |v| of type |t|
19874 should either be put into the current expression (if |q=null|) or
19875 into location |q| within a pair node (otherwise). The destination (|cur_exp|
19876 or |q|) formerly held a dependency list with the same
19877 final pointer as the list |v|.
19879 @<Declare the procedure called |dep_finish|@>=
19880 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
19881 pointer p; /* the destination */
19882 scaled vv; /* the value, if it is |known| */
19883 if ( q==null ) p=mp->cur_exp; else p=q;
19884 dep_list(p)=v; type(p)=t;
19885 if ( info(v)==null ) {
19888 mp_flush_cur_exp(mp, vv);
19890 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
19892 } else if ( q==null ) {
19895 if ( mp->fix_needed ) mp_fix_dependencies(mp);
19898 @ Let's turn now to the six basic relations of comparison.
19900 @<Additional cases of binary operators@>=
19901 case less_than: case less_or_equal: case greater_than:
19902 case greater_or_equal: case equal_to: case unequal_to:
19903 check_arith; /* at this point |arith_error| should be |false|? */
19904 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19905 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
19906 } else if ( mp->cur_type!=type(p) ) {
19907 mp_bad_binary(mp, p,c); goto DONE;
19908 } else if ( mp->cur_type==mp_string_type ) {
19909 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
19910 } else if ((mp->cur_type==mp_unknown_string)||
19911 (mp->cur_type==mp_unknown_boolean) ) {
19912 @<Check if unknowns have been equated@>;
19913 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
19914 @<Reduce comparison of big nodes to comparison of scalars@>;
19915 } else if ( mp->cur_type==mp_boolean_type ) {
19916 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
19918 mp_bad_binary(mp, p,c); goto DONE;
19920 @<Compare the current expression with zero@>;
19922 mp->arith_error=false; /* ignore overflow in comparisons */
19925 @ @<Compare the current expression with zero@>=
19926 if ( mp->cur_type!=mp_known ) {
19927 if ( mp->cur_type<mp_known ) {
19928 mp_disp_err(mp, p,"");
19929 help1("The quantities shown above have not been equated.")
19931 help2("Oh dear. I can\'t decide if the expression above is positive,")
19932 ("negative, or zero. So this comparison test won't be `true'.");
19934 exp_err("Unknown relation will be considered false");
19935 @.Unknown relation...@>
19936 mp_put_get_flush_error(mp, false_code);
19939 case less_than: boolean_reset(mp->cur_exp<0); break;
19940 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
19941 case greater_than: boolean_reset(mp->cur_exp>0); break;
19942 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
19943 case equal_to: boolean_reset(mp->cur_exp==0); break;
19944 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
19945 }; /* there are no other cases */
19947 mp->cur_type=mp_boolean_type
19949 @ When two unknown strings are in the same ring, we know that they are
19950 equal. Otherwise, we don't know whether they are equal or not, so we
19953 @<Check if unknowns have been equated@>=
19955 q=value(mp->cur_exp);
19956 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
19957 if ( q==p ) mp_flush_cur_exp(mp, 0);
19960 @ @<Reduce comparison of big nodes to comparison of scalars@>=
19962 q=value(p); r=value(mp->cur_exp);
19963 rr=r+mp->big_node_size[mp->cur_type]-2;
19964 while (1) { mp_add_or_subtract(mp, q,r,minus);
19965 if ( type(r)!=mp_known ) break;
19966 if ( value(r)!=0 ) break;
19967 if ( r==rr ) break;
19970 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
19973 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
19975 @<Additional cases of binary operators@>=
19978 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
19979 mp_bad_binary(mp, p,c);
19980 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
19983 @ @<Additional cases of binary operators@>=
19985 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19986 mp_bad_binary(mp, p,times);
19987 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
19988 @<Multiply when at least one operand is known@>;
19989 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
19990 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
19991 (type(p)>mp_pair_type)) ) {
19992 mp_hard_times(mp, p); return;
19994 mp_bad_binary(mp, p,times);
19998 @ @<Multiply when at least one operand is known@>=
20000 if ( type(p)==mp_known ) {
20001 v=value(p); mp_free_node(mp, p,value_node_size);
20003 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20005 if ( mp->cur_type==mp_known ) {
20006 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20007 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20008 (mp->cur_type==mp_cmykcolor_type) ) {
20009 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20011 p=p-2; mp_dep_mult(mp, p,v,true);
20012 } while (p!=value(mp->cur_exp));
20014 mp_dep_mult(mp, null,v,true);
20019 @ @<Declare binary action...@>=
20020 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20021 pointer q; /* the dependency list being multiplied by |v| */
20022 small_number s,t; /* its type, before and after */
20025 } else if ( type(p)!=mp_known ) {
20028 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20029 else value(p)=mp_take_fraction(mp, value(p),v);
20032 t=type(q); q=dep_list(q); s=t;
20033 if ( t==mp_dependent ) if ( v_is_scaled )
20034 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20035 t=mp_proto_dependent;
20036 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20037 mp_dep_finish(mp, q,p,t);
20040 @ Here is a routine that is similar to |times|; but it is invoked only
20041 internally, when |v| is a |fraction| whose magnitude is at most~1,
20042 and when |cur_type>=mp_color_type|.
20044 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20045 /* multiplies |cur_exp| by |n/d| */
20046 pointer p; /* a pair node */
20047 pointer old_exp; /* a capsule to recycle */
20048 fraction v; /* |n/d| */
20049 if ( mp->internal[tracing_commands]>two ) {
20050 @<Trace the fraction multiplication@>;
20052 switch (mp->cur_type) {
20053 case mp_transform_type:
20054 case mp_color_type:
20055 case mp_cmykcolor_type:
20057 old_exp=mp_tarnished(mp, mp->cur_exp);
20059 case mp_independent: old_exp=diov; break;
20060 default: old_exp=null; break;
20062 if ( old_exp!=null ) {
20063 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20065 v=mp_make_fraction(mp, n,d);
20066 if ( mp->cur_type==mp_known ) {
20067 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20068 } else if ( mp->cur_type<=mp_pair_type ) {
20069 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20072 mp_dep_mult(mp, p,v,false);
20073 } while (p!=value(mp->cur_exp));
20075 mp_dep_mult(mp, null,v,false);
20077 if ( old_exp!=null ) {
20078 mp_recycle_value(mp, old_exp);
20079 mp_free_node(mp, old_exp,value_node_size);
20083 @ @<Trace the fraction multiplication@>=
20085 mp_begin_diagnostic(mp);
20086 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20087 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20089 mp_end_diagnostic(mp, false);
20092 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20094 @<Declare binary action procedures@>=
20095 void mp_hard_times (MP mp,pointer p) {
20096 pointer q; /* a copy of the dependent variable |p| */
20097 pointer r; /* a component of the big node for the nice color or pair */
20098 scaled v; /* the known value for |r| */
20099 if ( type(p)<=mp_pair_type ) {
20100 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20101 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20102 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20107 if ( r==value(mp->cur_exp) )
20109 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20110 mp_dep_mult(mp, r,v,true);
20112 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20113 link(prev_dep(p))=r;
20114 mp_free_node(mp, p,value_node_size);
20115 mp_dep_mult(mp, r,v,true);
20118 @ @<Additional cases of binary operators@>=
20120 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20121 mp_bad_binary(mp, p,over);
20123 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20125 @<Squeal about division by zero@>;
20127 if ( mp->cur_type==mp_known ) {
20128 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20129 } else if ( mp->cur_type<=mp_pair_type ) {
20130 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20132 p=p-2; mp_dep_div(mp, p,v);
20133 } while (p!=value(mp->cur_exp));
20135 mp_dep_div(mp, null,v);
20142 @ @<Declare binary action...@>=
20143 void mp_dep_div (MP mp,pointer p, scaled v) {
20144 pointer q; /* the dependency list being divided by |v| */
20145 small_number s,t; /* its type, before and after */
20146 if ( p==null ) q=mp->cur_exp;
20147 else if ( type(p)!=mp_known ) q=p;
20148 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20149 t=type(q); q=dep_list(q); s=t;
20150 if ( t==mp_dependent )
20151 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20152 t=mp_proto_dependent;
20153 q=mp_p_over_v(mp, q,v,s,t);
20154 mp_dep_finish(mp, q,p,t);
20157 @ @<Squeal about division by zero@>=
20159 exp_err("Division by zero");
20160 @.Division by zero@>
20161 help2("You're trying to divide the quantity shown above the error")
20162 ("message by zero. I'm going to divide it by one instead.");
20163 mp_put_get_error(mp);
20166 @ @<Additional cases of binary operators@>=
20169 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20170 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20171 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20172 } else mp_bad_binary(mp, p,c);
20175 @ The next few sections of the program deal with affine transformations
20176 of coordinate data.
20178 @<Additional cases of binary operators@>=
20179 case rotated_by: case slanted_by:
20180 case scaled_by: case shifted_by: case transformed_by:
20181 case x_scaled: case y_scaled: case z_scaled:
20182 if ( type(p)==mp_path_type ) {
20183 path_trans(c,p); return;
20184 } else if ( type(p)==mp_pen_type ) {
20186 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20187 /* rounding error could destroy convexity */
20189 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20190 mp_big_trans(mp, p,c);
20191 } else if ( type(p)==mp_picture_type ) {
20192 mp_do_edges_trans(mp, p,c); return;
20194 mp_bad_binary(mp, p,c);
20198 @ Let |c| be one of the eight transform operators. The procedure call
20199 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20200 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20201 change at all if |c=transformed_by|.)
20203 Then, if all components of the resulting transform are |known|, they are
20204 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20205 and |cur_exp| is changed to the known value zero.
20207 @<Declare binary action...@>=
20208 void mp_set_up_trans (MP mp,quarterword c) {
20209 pointer p,q,r; /* list manipulation registers */
20210 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20211 @<Put the current transform into |cur_exp|@>;
20213 @<If the current transform is entirely known, stash it in global variables;
20214 otherwise |return|@>;
20223 scaled ty; /* current transform coefficients */
20225 @ @<Put the current transform...@>=
20227 p=mp_stash_cur_exp(mp);
20228 mp->cur_exp=mp_id_transform(mp);
20229 mp->cur_type=mp_transform_type;
20230 q=value(mp->cur_exp);
20232 @<For each of the eight cases, change the relevant fields of |cur_exp|
20234 but do nothing if capsule |p| doesn't have the appropriate type@>;
20235 }; /* there are no other cases */
20236 mp_disp_err(mp, p,"Improper transformation argument");
20237 @.Improper transformation argument@>
20238 help3("The expression shown above has the wrong type,")
20239 ("so I can\'t transform anything using it.")
20240 ("Proceed, and I'll omit the transformation.");
20241 mp_put_get_error(mp);
20243 mp_recycle_value(mp, p);
20244 mp_free_node(mp, p,value_node_size);
20247 @ @<If the current transform is entirely known, ...@>=
20248 q=value(mp->cur_exp); r=q+transform_node_size;
20251 if ( type(r)!=mp_known ) return;
20253 mp->txx=value(xx_part_loc(q));
20254 mp->txy=value(xy_part_loc(q));
20255 mp->tyx=value(yx_part_loc(q));
20256 mp->tyy=value(yy_part_loc(q));
20257 mp->tx=value(x_part_loc(q));
20258 mp->ty=value(y_part_loc(q));
20259 mp_flush_cur_exp(mp, 0)
20261 @ @<For each of the eight cases...@>=
20263 if ( type(p)==mp_known )
20264 @<Install sines and cosines, then |goto done|@>;
20267 if ( type(p)>mp_pair_type ) {
20268 mp_install(mp, xy_part_loc(q),p); goto DONE;
20272 if ( type(p)>mp_pair_type ) {
20273 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20278 if ( type(p)==mp_pair_type ) {
20279 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20280 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20284 if ( type(p)>mp_pair_type ) {
20285 mp_install(mp, xx_part_loc(q),p); goto DONE;
20289 if ( type(p)>mp_pair_type ) {
20290 mp_install(mp, yy_part_loc(q),p); goto DONE;
20294 if ( type(p)==mp_pair_type )
20295 @<Install a complex multiplier, then |goto done|@>;
20297 case transformed_by:
20301 @ @<Install sines and cosines, then |goto done|@>=
20302 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20303 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20304 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20305 value(xy_part_loc(q))=-value(yx_part_loc(q));
20306 value(yy_part_loc(q))=value(xx_part_loc(q));
20310 @ @<Install a complex multiplier, then |goto done|@>=
20313 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20314 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20315 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20316 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20317 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20318 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20322 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20323 insists that the transformation be entirely known.
20325 @<Declare binary action...@>=
20326 void mp_set_up_known_trans (MP mp,quarterword c) {
20327 mp_set_up_trans(mp, c);
20328 if ( mp->cur_type!=mp_known ) {
20329 exp_err("Transform components aren't all known");
20330 @.Transform components...@>
20331 help3("I'm unable to apply a partially specified transformation")
20332 ("except to a fully known pair or transform.")
20333 ("Proceed, and I'll omit the transformation.");
20334 mp_put_get_flush_error(mp, 0);
20335 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20336 mp->tx=0; mp->ty=0;
20340 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20341 coordinates in locations |p| and~|q|.
20343 @<Declare binary action...@>=
20344 void mp_trans (MP mp,pointer p, pointer q) {
20345 scaled v; /* the new |x| value */
20346 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20347 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20348 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20349 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20353 @ The simplest transformation procedure applies a transform to all
20354 coordinates of a path. The |path_trans(c)(p)| macro applies
20355 a transformation defined by |cur_exp| and the transform operator |c|
20358 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20359 mp_unstash_cur_exp(mp, (B));
20360 mp_do_path_trans(mp, mp->cur_exp); }
20362 @<Declare binary action...@>=
20363 void mp_do_path_trans (MP mp,pointer p) {
20364 pointer q; /* list traverser */
20367 if ( left_type(q)!=endpoint )
20368 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20369 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20370 if ( right_type(q)!=endpoint )
20371 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20372 @^data structure assumptions@>
20377 @ Transforming a pen is very similar, except that there are no |left_type|
20378 and |right_type| fields.
20380 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20381 mp_unstash_cur_exp(mp, (B));
20382 mp_do_pen_trans(mp, mp->cur_exp); }
20384 @<Declare binary action...@>=
20385 void mp_do_pen_trans (MP mp,pointer p) {
20386 pointer q; /* list traverser */
20387 if ( pen_is_elliptical(p) ) {
20388 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20389 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20393 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20394 @^data structure assumptions@>
20399 @ The next transformation procedure applies to edge structures. It will do
20400 any transformation, but the results may be substandard if the picture contains
20401 text that uses downloaded bitmap fonts. The binary action procedure is
20402 |do_edges_trans|, but we also need a function that just scales a picture.
20403 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20404 should be thought of as procedures that update an edge structure |h|, except
20405 that they have to return a (possibly new) structure because of the need to call
20408 @<Declare binary action...@>=
20409 pointer mp_edges_trans (MP mp, pointer h) {
20410 pointer q; /* the object being transformed */
20411 pointer r,s; /* for list manipulation */
20412 scaled sx,sy; /* saved transformation parameters */
20413 scaled sqdet; /* square root of determinant for |dash_scale| */
20414 integer sgndet; /* sign of the determinant */
20415 scaled v; /* a temporary value */
20416 h=mp_private_edges(mp, h);
20417 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20418 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20419 if ( dash_list(h)!=null_dash ) {
20420 @<Try to transform the dash list of |h|@>;
20422 @<Make the bounding box of |h| unknown if it can't be updated properly
20423 without scanning the whole structure@>;
20424 q=link(dummy_loc(h));
20425 while ( q!=null ) {
20426 @<Transform graphical object |q|@>;
20431 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20432 mp_set_up_known_trans(mp, c);
20433 value(p)=mp_edges_trans(mp, value(p));
20434 mp_unstash_cur_exp(mp, p);
20436 void mp_scale_edges (MP mp) {
20437 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20438 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20439 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20442 @ @<Try to transform the dash list of |h|@>=
20443 if ( (mp->txy!=0)||(mp->tyx!=0)||
20444 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20445 mp_flush_dash_list(mp, h);
20447 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20448 @<Scale the dash list by |txx| and shift it by |tx|@>;
20449 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20452 @ @<Reverse the dash list of |h|@>=
20455 dash_list(h)=null_dash;
20456 while ( r!=null_dash ) {
20458 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20459 link(s)=dash_list(h);
20464 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20466 while ( r!=null_dash ) {
20467 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20468 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20472 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20473 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20474 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20475 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20476 mp_init_bbox(mp, h);
20479 if ( minx_val(h)<=maxx_val(h) ) {
20480 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20487 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20489 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20490 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20493 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20496 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20498 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20499 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20500 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20501 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20502 if ( mp->txx+mp->txy<0 ) {
20503 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20505 if ( mp->tyx+mp->tyy<0 ) {
20506 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20510 @ Now we ready for the main task of transforming the graphical objects in edge
20513 @<Transform graphical object |q|@>=
20515 case fill_code: case stroked_code:
20516 mp_do_path_trans(mp, path_p(q));
20517 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20519 case mp_start_clip_code: case mp_start_bounds_code:
20520 mp_do_path_trans(mp, path_p(q));
20524 @<Transform the compact transformation starting at |r|@>;
20526 case mp_stop_clip_code: case mp_stop_bounds_code:
20528 } /* there are no other cases */
20530 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20531 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20532 since the \ps\ output procedures will try to compensate for the transformation
20533 we are applying to |pen_p(q)|. Since this compensation is based on the square
20534 root of the determinant, |sqdet| is the appropriate factor.
20536 @<Transform |pen_p(q)|, making sure...@>=
20537 if ( pen_p(q)!=null ) {
20538 sx=mp->tx; sy=mp->ty;
20539 mp->tx=0; mp->ty=0;
20540 mp_do_pen_trans(mp, pen_p(q));
20541 if ( ((type(q)==stroked_code)&&(dash_p(q)!=null)) )
20542 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20543 if ( ! pen_is_elliptical(pen_p(q)) )
20545 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20546 /* this unreverses the pen */
20547 mp->tx=sx; mp->ty=sy;
20550 @ This uses the fact that transformations are stored in the order
20551 |(tx,ty,txx,txy,tyx,tyy)|.
20552 @^data structure assumptions@>
20554 @<Transform the compact transformation starting at |r|@>=
20555 mp_trans(mp, r,r+1);
20556 sx=mp->tx; sy=mp->ty;
20557 mp->tx=0; mp->ty=0;
20558 mp_trans(mp, r+2,r+4);
20559 mp_trans(mp, r+3,r+5);
20560 mp->tx=sx; mp->ty=sy
20562 @ The hard cases of transformation occur when big nodes are involved,
20563 and when some of their components are unknown.
20565 @<Declare binary action...@>=
20566 @<Declare subroutines needed by |big_trans|@>;
20567 void mp_big_trans (MP mp,pointer p, quarterword c) {
20568 pointer q,r,pp,qq; /* list manipulation registers */
20569 small_number s; /* size of a big node */
20570 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20573 if ( type(r)!=mp_known ) {
20574 @<Transform an unknown big node and |return|@>;
20577 @<Transform a known big node@>;
20578 }; /* node |p| will now be recycled by |do_binary| */
20580 @ @<Transform an unknown big node and |return|@>=
20582 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20583 r=value(mp->cur_exp);
20584 if ( mp->cur_type==mp_transform_type ) {
20585 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20586 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20587 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20588 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20590 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20591 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20595 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20596 and let |q| point to a another value field. The |bilin1| procedure
20597 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20599 @<Declare subroutines needed by |big_trans|@>=
20600 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20601 scaled u, scaled delta) {
20602 pointer r; /* list traverser */
20603 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20605 if ( type(q)==mp_known ) {
20606 delta+=mp_take_scaled(mp, value(q),u);
20608 @<Ensure that |type(p)=mp_proto_dependent|@>;
20609 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20610 mp_proto_dependent,type(q));
20613 if ( type(p)==mp_known ) {
20617 while ( info(r)!=null ) r=link(r);
20619 if ( r!=dep_list(p) ) value(r)=delta;
20620 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20622 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20625 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20626 if ( type(p)!=mp_proto_dependent ) {
20627 if ( type(p)==mp_known )
20628 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20630 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20631 mp_proto_dependent,true);
20632 type(p)=mp_proto_dependent;
20635 @ @<Transform a known big node@>=
20636 mp_set_up_trans(mp, c);
20637 if ( mp->cur_type==mp_known ) {
20638 @<Transform known by known@>;
20640 pp=mp_stash_cur_exp(mp); qq=value(pp);
20641 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20642 if ( mp->cur_type==mp_transform_type ) {
20643 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20644 value(xy_part_loc(q)),yx_part_loc(qq),null);
20645 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20646 value(xx_part_loc(q)),yx_part_loc(qq),null);
20647 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20648 value(yy_part_loc(q)),xy_part_loc(qq),null);
20649 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20650 value(yx_part_loc(q)),xy_part_loc(qq),null);
20652 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20653 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20654 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20655 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20656 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20659 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20660 at |dep_final|. The following procedure adds |v| times another
20661 numeric quantity to~|p|.
20663 @<Declare subroutines needed by |big_trans|@>=
20664 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20665 if ( type(r)==mp_known ) {
20666 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20668 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20669 mp_proto_dependent,type(r));
20670 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20674 @ The |bilin2| procedure is something like |bilin1|, but with known
20675 and unknown quantities reversed. Parameter |p| points to a value field
20676 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20677 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20678 unless it is |null| (which stands for zero). Location~|p| will be
20679 replaced by $p\cdot t+v\cdot u+q$.
20681 @<Declare subroutines needed by |big_trans|@>=
20682 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20683 pointer u, pointer q) {
20684 scaled vv; /* temporary storage for |value(p)| */
20685 vv=value(p); type(p)=mp_proto_dependent;
20686 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20688 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20689 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20690 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20691 if ( dep_list(p)==mp->dep_final ) {
20692 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20693 type(p)=mp_known; value(p)=vv;
20697 @ @<Transform known by known@>=
20699 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20700 if ( mp->cur_type==mp_transform_type ) {
20701 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20702 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20703 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20704 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20706 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20707 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20710 @ Finally, in |bilin3| everything is |known|.
20712 @<Declare subroutines needed by |big_trans|@>=
20713 void mp_bilin3 (MP mp,pointer p, scaled t,
20714 scaled v, scaled u, scaled delta) {
20716 delta+=mp_take_scaled(mp, value(p),t);
20719 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20720 else value(p)=delta;
20723 @ @<Additional cases of binary operators@>=
20725 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20726 else mp_bad_binary(mp, p,concatenate);
20729 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20730 mp_chop_string(mp, value(p));
20731 else mp_bad_binary(mp, p,substring_of);
20734 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20735 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20736 mp_chop_path(mp, value(p));
20737 else mp_bad_binary(mp, p,subpath_of);
20740 @ @<Declare binary action...@>=
20741 void mp_cat (MP mp,pointer p) {
20742 str_number a,b; /* the strings being concatenated */
20743 pool_pointer k; /* index into |str_pool| */
20744 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20745 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20746 append_char(mp->str_pool[k]);
20748 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20749 append_char(mp->str_pool[k]);
20751 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20754 @ @<Declare binary action...@>=
20755 void mp_chop_string (MP mp,pointer p) {
20756 integer a, b; /* start and stop points */
20757 integer l; /* length of the original string */
20758 integer k; /* runs from |a| to |b| */
20759 str_number s; /* the original string */
20760 boolean reversed; /* was |a>b|? */
20761 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20762 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20763 if ( a<=b ) reversed=false;
20764 else { reversed=true; k=a; a=b; b=k; };
20765 s=mp->cur_exp; l=length(s);
20776 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20777 append_char(mp->str_pool[k]);
20780 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20781 append_char(mp->str_pool[k]);
20784 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20787 @ @<Declare binary action...@>=
20788 void mp_chop_path (MP mp,pointer p) {
20789 pointer q; /* a knot in the original path */
20790 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20791 scaled a,b,k,l; /* indices for chopping */
20792 boolean reversed; /* was |a>b|? */
20793 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20794 if ( a<=b ) reversed=false;
20795 else { reversed=true; k=a; a=b; b=k; };
20796 @<Dispense with the cases |a<0| and/or |b>l|@>;
20798 while ( a>=unity ) {
20799 q=link(q); a=a-unity; b=b-unity;
20802 @<Construct a path from |pp| to |qq| of length zero@>;
20804 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20806 left_type(pp)=endpoint; right_type(qq)=endpoint; link(qq)=pp;
20807 mp_toss_knot_list(mp, mp->cur_exp);
20809 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20815 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20817 if ( left_type(mp->cur_exp)==endpoint ) {
20818 a=0; if ( b<0 ) b=0;
20820 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20824 if ( left_type(mp->cur_exp)==endpoint ) {
20825 b=l; if ( a>l ) a=l;
20833 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20835 pp=mp_copy_knot(mp, q); qq=pp;
20837 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20840 ss=pp; pp=link(pp);
20841 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20842 mp_free_node(mp, ss,knot_node_size);
20844 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20848 mp_split_cubic(mp, rr,(b+unity)*010000);
20849 mp_free_node(mp, qq,knot_node_size);
20854 @ @<Construct a path from |pp| to |qq| of length zero@>=
20856 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20857 pp=mp_copy_knot(mp, q); qq=pp;
20860 @ @<Additional cases of binary operators@>=
20861 case point_of: case precontrol_of: case postcontrol_of:
20862 if ( mp->cur_type==mp_pair_type )
20863 mp_pair_to_path(mp);
20864 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20865 mp_find_point(mp, value(p),c);
20867 mp_bad_binary(mp, p,c);
20869 case pen_offset_of:
20870 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
20871 mp_set_up_offset(mp, value(p));
20873 mp_bad_binary(mp, p,pen_offset_of);
20875 case direction_time_of:
20876 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20877 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
20878 mp_set_up_direction_time(mp, value(p));
20880 mp_bad_binary(mp, p,direction_time_of);
20883 @ @<Declare binary action...@>=
20884 void mp_set_up_offset (MP mp,pointer p) {
20885 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
20886 mp_pair_value(mp, mp->cur_x,mp->cur_y);
20888 void mp_set_up_direction_time (MP mp,pointer p) {
20889 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
20890 value(y_part_loc(p)),mp->cur_exp));
20893 @ @<Declare binary action...@>=
20894 void mp_find_point (MP mp,scaled v, quarterword c) {
20895 pointer p; /* the path */
20896 scaled n; /* its length */
20898 if ( left_type(p)==endpoint ) n=-unity; else n=0;
20899 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
20902 } else if ( v<0 ) {
20903 if ( left_type(p)==endpoint ) v=0;
20904 else v=n-1-((-v-1) % n);
20905 } else if ( v>n ) {
20906 if ( left_type(p)==endpoint ) v=n;
20910 while ( v>=unity ) { p=link(p); v=v-unity; };
20912 @<Insert a fractional node by splitting the cubic@>;
20914 @<Set the current expression to the desired path coordinates@>;
20917 @ @<Insert a fractional node...@>=
20918 { mp_split_cubic(mp, p,v*010000); p=link(p); }
20920 @ @<Set the current expression to the desired path coordinates...@>=
20923 mp_pair_value(mp, x_coord(p),y_coord(p));
20925 case precontrol_of:
20926 if ( left_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20927 else mp_pair_value(mp, left_x(p),left_y(p));
20929 case postcontrol_of:
20930 if ( right_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20931 else mp_pair_value(mp, right_x(p),right_y(p));
20933 } /* there are no other cases */
20935 @ @<Additional cases of binary operators@>=
20937 if ( mp->cur_type==mp_pair_type )
20938 mp_pair_to_path(mp);
20939 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20940 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
20942 mp_bad_binary(mp, p,c);
20945 @ @<Additional cases of bin...@>=
20947 if ( type(p)==mp_pair_type ) {
20948 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
20949 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20951 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20952 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
20953 mp_path_intersection(mp, value(p),mp->cur_exp);
20954 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
20956 mp_bad_binary(mp, p,intersect);
20960 @ @<Additional cases of bin...@>=
20962 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
20963 mp_bad_binary(mp, p,in_font);
20964 else { mp_do_infont(mp, p); return; }
20967 @ Function |new_text_node| owns the reference count for its second argument
20968 (the text string) but not its first (the font name).
20970 @<Declare binary action...@>=
20971 void mp_do_infont (MP mp,pointer p) {
20973 q=mp_get_node(mp, edge_header_size);
20974 mp_init_edges(mp, q);
20975 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
20976 obj_tail(q)=link(obj_tail(q));
20977 mp_free_node(mp, p,value_node_size);
20978 mp_flush_cur_exp(mp, q);
20979 mp->cur_type=mp_picture_type;
20982 @* \[40] Statements and commands.
20983 The chief executive of \MP\ is the |do_statement| routine, which
20984 contains the master switch that causes all the various pieces of \MP\
20985 to do their things, in the right order.
20987 In a sense, this is the grand climax of the program: It applies all the
20988 tools that we have worked so hard to construct. In another sense, this is
20989 the messiest part of the program: It necessarily refers to other pieces
20990 of code all over the place, so that a person can't fully understand what is
20991 going on without paging back and forth to be reminded of conventions that
20992 are defined elsewhere. We are now at the hub of the web.
20994 The structure of |do_statement| itself is quite simple. The first token
20995 of the statement is fetched using |get_x_next|. If it can be the first
20996 token of an expression, we look for an equation, an assignment, or a
20997 title. Otherwise we use a \&{case} construction to branch at high speed to
20998 the appropriate routine for various and sundry other types of commands,
20999 each of which has an ``action procedure'' that does the necessary work.
21001 The program uses the fact that
21002 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21003 to interpret a statement that starts with, e.g., `\&{string}',
21004 as a type declaration rather than a boolean expression.
21006 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21007 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21008 if ( mp->cur_cmd>max_primary_command ) {
21009 @<Worry about bad statement@>;
21010 } else if ( mp->cur_cmd>max_statement_command ) {
21011 @<Do an equation, assignment, title, or
21012 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21014 @<Do a statement that doesn't begin with an expression@>;
21016 if ( mp->cur_cmd<semicolon )
21017 @<Flush unparsable junk that was found after the statement@>;
21021 @ @<Declarations@>=
21022 @<Declare action procedures for use by |do_statement|@>;
21024 @ The only command codes |>max_primary_command| that can be present
21025 at the beginning of a statement are |semicolon| and higher; these
21026 occur when the statement is null.
21028 @<Worry about bad statement@>=
21030 if ( mp->cur_cmd<semicolon ) {
21031 print_err("A statement can't begin with `");
21032 @.A statement can't begin with x@>
21033 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21034 help5("I was looking for the beginning of a new statement.")
21035 ("If you just proceed without changing anything, I'll ignore")
21036 ("everything up to the next `;'. Please insert a semicolon")
21037 ("now in front of anything that you don't want me to delete.")
21038 ("(See Chapter 27 of The METAFONTbook for an example.)");
21039 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21040 mp_back_error(mp); mp_get_x_next(mp);
21044 @ The help message printed here says that everything is flushed up to
21045 a semicolon, but actually the commands |end_group| and |stop| will
21046 also terminate a statement.
21048 @<Flush unparsable junk that was found after the statement@>=
21050 print_err("Extra tokens will be flushed");
21051 @.Extra tokens will be flushed@>
21052 help6("I've just read as much of that statement as I could fathom,")
21053 ("so a semicolon should have been next. It's very puzzling...")
21054 ("but I'll try to get myself back together, by ignoring")
21055 ("everything up to the next `;'. Please insert a semicolon")
21056 ("now in front of anything that you don't want me to delete.")
21057 ("(See Chapter 27 of The METAFONTbook for an example.)");
21058 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21059 mp_back_error(mp); mp->scanner_status=flushing;
21062 @<Decrease the string reference count...@>;
21063 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21064 mp->scanner_status=normal;
21067 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21068 |cur_type=mp_vacuous| unless the statement was simply an expression;
21069 in the latter case, |cur_type| and |cur_exp| should represent that
21072 @<Do a statement that doesn't...@>=
21074 if ( mp->internal[tracing_commands]>0 )
21076 switch (mp->cur_cmd ) {
21077 case type_name:mp_do_type_declaration(mp); break;
21079 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21080 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21082 @<Cases of |do_statement| that invoke particular commands@>;
21083 } /* there are no other cases */
21084 mp->cur_type=mp_vacuous;
21087 @ The most important statements begin with expressions.
21089 @<Do an equation, assignment, title, or...@>=
21091 mp->var_flag=assignment; mp_scan_expression(mp);
21092 if ( mp->cur_cmd<end_group ) {
21093 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21094 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21095 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21096 else if ( mp->cur_type!=mp_vacuous ){
21097 exp_err("Isolated expression");
21098 @.Isolated expression@>
21099 help3("I couldn't find an `=' or `:=' after the")
21100 ("expression that is shown above this error message,")
21101 ("so I guess I'll just ignore it and carry on.");
21102 mp_put_get_error(mp);
21104 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21110 if ( mp->internal[tracing_titles]>0 ) {
21111 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21115 @ Equations and assignments are performed by the pair of mutually recursive
21117 routines |do_equation| and |do_assignment|. These routines are called when
21118 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21119 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21120 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21121 will be equal to the right-hand side (which will normally be equal
21122 to the left-hand side).
21124 @<Declare action procedures for use by |do_statement|@>=
21125 @<Declare the procedure called |try_eq|@>;
21126 @<Declare the procedure called |make_eq|@>;
21127 void mp_do_equation (MP mp) ;
21130 void mp_do_equation (MP mp) {
21131 pointer lhs; /* capsule for the left-hand side */
21132 pointer p; /* temporary register */
21133 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21134 mp->var_flag=assignment; mp_scan_expression(mp);
21135 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21136 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21137 if ( mp->internal[tracing_commands]>two )
21138 @<Trace the current equation@>;
21139 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21140 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21141 }; /* in this case |make_eq| will change the pair to a path */
21142 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21145 @ And |do_assignment| is similar to |do_expression|:
21148 void mp_do_assignment (MP mp);
21150 @ @<Declare action procedures for use by |do_statement|@>=
21151 void mp_do_assignment (MP mp) ;
21154 void mp_do_assignment (MP mp) {
21155 pointer lhs; /* token list for the left-hand side */
21156 pointer p; /* where the left-hand value is stored */
21157 pointer q; /* temporary capsule for the right-hand value */
21158 if ( mp->cur_type!=mp_token_list ) {
21159 exp_err("Improper `:=' will be changed to `='");
21161 help2("I didn't find a variable name at the left of the `:=',")
21162 ("so I'm going to pretend that you said `=' instead.");
21163 mp_error(mp); mp_do_equation(mp);
21165 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21166 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21167 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21168 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21169 if ( mp->internal[tracing_commands]>two )
21170 @<Trace the current assignment@>;
21171 if ( info(lhs)>hash_end ) {
21172 @<Assign the current expression to an internal variable@>;
21174 @<Assign the current expression to the variable |lhs|@>;
21176 mp_flush_node_list(mp, lhs);
21180 @ @<Trace the current equation@>=
21182 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21183 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21184 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21187 @ @<Trace the current assignment@>=
21189 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21190 if ( info(lhs)>hash_end )
21191 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21193 mp_show_token_list(mp, lhs,null,1000,0);
21194 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21195 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21198 @ @<Assign the current expression to an internal variable@>=
21199 if ( mp->cur_type==mp_known ) {
21200 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21202 exp_err("Internal quantity `");
21203 @.Internal quantity...@>
21204 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21205 mp_print(mp, "' must receive a known value");
21206 help2("I can\'t set an internal quantity to anything but a known")
21207 ("numeric value, so I'll have to ignore this assignment.");
21208 mp_put_get_error(mp);
21211 @ @<Assign the current expression to the variable |lhs|@>=
21213 p=mp_find_variable(mp, lhs);
21215 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21216 mp_recycle_value(mp, p);
21217 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21218 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21220 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21225 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21226 a pointer to a capsule that is to be equated to the current expression.
21228 @<Declare the procedure called |make_eq|@>=
21229 void mp_make_eq (MP mp,pointer lhs) ;
21233 @c void mp_make_eq (MP mp,pointer lhs) {
21234 small_number t; /* type of the left-hand side */
21235 pointer p,q; /* pointers inside of big nodes */
21236 integer v=0; /* value of the left-hand side */
21239 if ( t<=mp_pair_type ) v=value(lhs);
21241 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21242 is incompatible with~|t|@>;
21243 } /* all cases have been listed */
21244 @<Announce that the equation cannot be performed@>;
21246 check_arith; mp_recycle_value(mp, lhs);
21247 mp_free_node(mp, lhs,value_node_size);
21250 @ @<Announce that the equation cannot be performed@>=
21251 mp_disp_err(mp, lhs,"");
21252 exp_err("Equation cannot be performed (");
21253 @.Equation cannot be performed@>
21254 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21255 else mp_print(mp, "numeric");
21256 mp_print_char(mp, '=');
21257 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21258 else mp_print(mp, "numeric");
21259 mp_print_char(mp, ')');
21260 help2("I'm sorry, but I don't know how to make such things equal.")
21261 ("(See the two expressions just above the error message.)");
21262 mp_put_get_error(mp)
21264 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21265 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21266 case mp_path_type: case mp_picture_type:
21267 if ( mp->cur_type==t+unknown_tag ) {
21268 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21269 } else if ( mp->cur_type==t ) {
21270 @<Report redundant or inconsistent equation and |goto done|@>;
21273 case unknown_types:
21274 if ( mp->cur_type==t-unknown_tag ) {
21275 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21276 } else if ( mp->cur_type==t ) {
21277 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21278 } else if ( mp->cur_type==mp_pair_type ) {
21279 if ( t==mp_unknown_path ) {
21280 mp_pair_to_path(mp); goto RESTART;
21284 case mp_transform_type: case mp_color_type:
21285 case mp_cmykcolor_type: case mp_pair_type:
21286 if ( mp->cur_type==t ) {
21287 @<Do multiple equations and |goto done|@>;
21290 case mp_known: case mp_dependent:
21291 case mp_proto_dependent: case mp_independent:
21292 if ( mp->cur_type>=mp_known ) {
21293 mp_try_eq(mp, lhs,null); goto DONE;
21299 @ @<Report redundant or inconsistent equation and |goto done|@>=
21301 if ( mp->cur_type<=mp_string_type ) {
21302 if ( mp->cur_type==mp_string_type ) {
21303 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21306 } else if ( v!=mp->cur_exp ) {
21309 @<Exclaim about a redundant equation@>; goto DONE;
21311 print_err("Redundant or inconsistent equation");
21312 @.Redundant or inconsistent equation@>
21313 help2("An equation between already-known quantities can't help.")
21314 ("But don't worry; continue and I'll just ignore it.");
21315 mp_put_get_error(mp); goto DONE;
21317 print_err("Inconsistent equation");
21318 @.Inconsistent equation@>
21319 help2("The equation I just read contradicts what was said before.")
21320 ("But don't worry; continue and I'll just ignore it.");
21321 mp_put_get_error(mp); goto DONE;
21324 @ @<Do multiple equations and |goto done|@>=
21326 p=v+mp->big_node_size[t];
21327 q=value(mp->cur_exp)+mp->big_node_size[t];
21329 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21334 @ The first argument to |try_eq| is the location of a value node
21335 in a capsule that will soon be recycled. The second argument is
21336 either a location within a pair or transform node pointed to by
21337 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21338 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21339 but to equate the two operands.
21341 @<Declare the procedure called |try_eq|@>=
21342 void mp_try_eq (MP mp,pointer l, pointer r) ;
21345 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21346 pointer p; /* dependency list for right operand minus left operand */
21347 int t; /* the type of list |p| */
21348 pointer q; /* the constant term of |p| is here */
21349 pointer pp; /* dependency list for right operand */
21350 int tt; /* the type of list |pp| */
21351 boolean copied; /* have we copied a list that ought to be recycled? */
21352 @<Remove the left operand from its container, negate it, and
21353 put it into dependency list~|p| with constant term~|q|@>;
21354 @<Add the right operand to list |p|@>;
21355 if ( info(p)==null ) {
21356 @<Deal with redundant or inconsistent equation@>;
21358 mp_linear_eq(mp, p,t);
21359 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21360 if ( type(mp->cur_exp)==mp_known ) {
21361 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21362 mp_free_node(mp, pp,value_node_size);
21368 @ @<Remove the left operand from its container, negate it, and...@>=
21370 if ( t==mp_known ) {
21371 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21372 } else if ( t==mp_independent ) {
21373 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21376 p=dep_list(l); q=p;
21379 if ( info(q)==null ) break;
21382 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21386 @ @<Deal with redundant or inconsistent equation@>=
21388 if ( abs(value(p))>64 ) { /* off by .001 or more */
21389 print_err("Inconsistent equation");
21390 @.Inconsistent equation@>
21391 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21392 mp_print_char(mp, ')');
21393 help2("The equation I just read contradicts what was said before.")
21394 ("But don't worry; continue and I'll just ignore it.");
21395 mp_put_get_error(mp);
21396 } else if ( r==null ) {
21397 @<Exclaim about a redundant equation@>;
21399 mp_free_node(mp, p,dep_node_size);
21402 @ @<Add the right operand to list |p|@>=
21404 if ( mp->cur_type==mp_known ) {
21405 value(q)=value(q)+mp->cur_exp; goto DONE1;
21408 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21409 else pp=dep_list(mp->cur_exp);
21412 if ( type(r)==mp_known ) {
21413 value(q)=value(q)+value(r); goto DONE1;
21416 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21417 else pp=dep_list(r);
21420 if ( tt!=mp_independent ) copied=false;
21421 else { copied=true; tt=mp_dependent; };
21422 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21423 if ( copied ) mp_flush_node_list(mp, pp);
21426 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21427 mp->watch_coefs=false;
21429 p=mp_p_plus_q(mp, p,pp,t);
21430 } else if ( t==mp_proto_dependent ) {
21431 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21434 while ( info(q)!=null ) {
21435 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21437 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21439 mp->watch_coefs=true;
21441 @ Our next goal is to process type declarations. For this purpose it's
21442 convenient to have a procedure that scans a $\langle\,$declared
21443 variable$\,\rangle$ and returns the corresponding token list. After the
21444 following procedure has acted, the token after the declared variable
21445 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21448 @<Declare the function called |scan_declared_variable|@>=
21449 pointer mp_scan_declared_variable (MP mp) {
21450 pointer x; /* hash address of the variable's root */
21451 pointer h,t; /* head and tail of the token list to be returned */
21452 pointer l; /* hash address of left bracket */
21453 mp_get_symbol(mp); x=mp->cur_sym;
21454 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21455 h=mp_get_avail(mp); info(h)=x; t=h;
21458 if ( mp->cur_sym==0 ) break;
21459 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21460 if ( mp->cur_cmd==left_bracket ) {
21461 @<Descend past a collective subscript@>;
21466 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21468 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21469 if ( equiv(x)==null ) mp_new_root(mp, x);
21473 @ If the subscript isn't collective, we don't accept it as part of the
21476 @<Descend past a collective subscript@>=
21478 l=mp->cur_sym; mp_get_x_next(mp);
21479 if ( mp->cur_cmd!=right_bracket ) {
21480 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21482 mp->cur_sym=collective_subscript;
21486 @ Type declarations are introduced by the following primitive operations.
21489 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21490 @:numeric_}{\&{numeric} primitive@>
21491 mp_primitive(mp, "string",type_name,mp_string_type);
21492 @:string_}{\&{string} primitive@>
21493 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21494 @:boolean_}{\&{boolean} primitive@>
21495 mp_primitive(mp, "path",type_name,mp_path_type);
21496 @:path_}{\&{path} primitive@>
21497 mp_primitive(mp, "pen",type_name,mp_pen_type);
21498 @:pen_}{\&{pen} primitive@>
21499 mp_primitive(mp, "picture",type_name,mp_picture_type);
21500 @:picture_}{\&{picture} primitive@>
21501 mp_primitive(mp, "transform",type_name,mp_transform_type);
21502 @:transform_}{\&{transform} primitive@>
21503 mp_primitive(mp, "color",type_name,mp_color_type);
21504 @:color_}{\&{color} primitive@>
21505 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21506 @:color_}{\&{rgbcolor} primitive@>
21507 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21508 @:color_}{\&{cmykcolor} primitive@>
21509 mp_primitive(mp, "pair",type_name,mp_pair_type);
21510 @:pair_}{\&{pair} primitive@>
21512 @ @<Cases of |print_cmd...@>=
21513 case type_name: mp_print_type(mp, m); break;
21515 @ Now we are ready to handle type declarations, assuming that a
21516 |type_name| has just been scanned.
21518 @<Declare action procedures for use by |do_statement|@>=
21519 void mp_do_type_declaration (MP mp) ;
21522 void mp_do_type_declaration (MP mp) {
21523 small_number t; /* the type being declared */
21524 pointer p; /* token list for a declared variable */
21525 pointer q; /* value node for the variable */
21526 if ( mp->cur_mod>=mp_transform_type )
21529 t=mp->cur_mod+unknown_tag;
21531 p=mp_scan_declared_variable(mp);
21532 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21533 q=mp_find_variable(mp, p);
21535 type(q)=t; value(q)=null;
21537 print_err("Declared variable conflicts with previous vardef");
21538 @.Declared variable conflicts...@>
21539 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21540 ("Proceed, and I'll ignore the illegal redeclaration.");
21541 mp_put_get_error(mp);
21543 mp_flush_list(mp, p);
21544 if ( mp->cur_cmd<comma ) {
21545 @<Flush spurious symbols after the declared variable@>;
21547 } while (! end_of_statement);
21550 @ @<Flush spurious symbols after the declared variable@>=
21552 print_err("Illegal suffix of declared variable will be flushed");
21553 @.Illegal suffix...flushed@>
21554 help5("Variables in declarations must consist entirely of")
21555 ("names and collective subscripts, e.g., `x[]a'.")
21556 ("Are you trying to use a reserved word in a variable name?")
21557 ("I'm going to discard the junk I found here,")
21558 ("up to the next comma or the end of the declaration.");
21559 if ( mp->cur_cmd==numeric_token )
21560 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21561 mp_put_get_error(mp); mp->scanner_status=flushing;
21564 @<Decrease the string reference count...@>;
21565 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21566 mp->scanner_status=normal;
21569 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21570 until coming to the end of the user's program.
21571 Each execution of |do_statement| concludes with
21572 |cur_cmd=semicolon|, |end_group|, or |stop|.
21574 @c void mp_main_control (MP mp) {
21576 mp_do_statement(mp);
21577 if ( mp->cur_cmd==end_group ) {
21578 print_err("Extra `endgroup'");
21579 @.Extra `endgroup'@>
21580 help2("I'm not currently working on a `begingroup',")
21581 ("so I had better not try to end anything.");
21582 mp_flush_error(mp, 0);
21584 } while (mp->cur_cmd!=stop);
21586 void mp_run (MP mp) {
21587 mp_main_control(mp); /* come to life */
21588 mp_final_cleanup(mp); /* prepare for death */
21589 mp_close_files_and_terminate(mp);
21591 char * mp_mplib_version (MP mp) {
21593 return mplib_version;
21595 char * mp_metapost_version (MP mp) {
21597 return metapost_version;
21600 @ @<Exported function headers@>=
21601 void mp_run (MP mp);
21602 char * mp_mplib_version (MP mp);
21603 char * mp_metapost_version (MP mp);
21606 mp_primitive(mp, "end",stop,0);
21607 @:end_}{\&{end} primitive@>
21608 mp_primitive(mp, "dump",stop,1);
21609 @:dump_}{\&{dump} primitive@>
21611 @ @<Cases of |print_cmd...@>=
21613 if ( m==0 ) mp_print(mp, "end");
21614 else mp_print(mp, "dump");
21618 Let's turn now to statements that are classified as ``commands'' because
21619 of their imperative nature. We'll begin with simple ones, so that it
21620 will be clear how to hook command processing into the |do_statement| routine;
21621 then we'll tackle the tougher commands.
21623 Here's one of the simplest:
21625 @<Cases of |do_statement|...@>=
21626 case random_seed: mp_do_random_seed(mp); break;
21628 @ @<Declare action procedures for use by |do_statement|@>=
21629 void mp_do_random_seed (MP mp) ;
21631 @ @c void mp_do_random_seed (MP mp) {
21633 if ( mp->cur_cmd!=assignment ) {
21634 mp_missing_err(mp, ":=");
21636 help1("Always say `randomseed:=<numeric expression>'.");
21639 mp_get_x_next(mp); mp_scan_expression(mp);
21640 if ( mp->cur_type!=mp_known ) {
21641 exp_err("Unknown value will be ignored");
21642 @.Unknown value...ignored@>
21643 help2("Your expression was too random for me to handle,")
21644 ("so I won't change the random seed just now.");
21645 mp_put_get_flush_error(mp, 0);
21647 @<Initialize the random seed to |cur_exp|@>;
21651 @ @<Initialize the random seed to |cur_exp|@>=
21653 mp_init_randoms(mp, mp->cur_exp);
21654 if ( mp->selector>=log_only && mp->selector<write_file) {
21655 mp->old_setting=mp->selector; mp->selector=log_only;
21656 mp_print_nl(mp, "{randomseed:=");
21657 mp_print_scaled(mp, mp->cur_exp);
21658 mp_print_char(mp, '}');
21659 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21663 @ And here's another simple one (somewhat different in flavor):
21665 @<Cases of |do_statement|...@>=
21667 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21668 @<Initialize the print |selector| based on |interaction|@>;
21669 if ( mp->log_opened ) mp->selector=mp->selector+2;
21674 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21675 @:mp_batch_mode_}{\&{batchmode} primitive@>
21676 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21677 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21678 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21679 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21680 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21681 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21683 @ @<Cases of |print_cmd_mod|...@>=
21686 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21687 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21688 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21689 default: mp_print(mp, "errorstopmode"); break;
21693 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21695 @<Cases of |do_statement|...@>=
21696 case protection_command: mp_do_protection(mp); break;
21699 mp_primitive(mp, "inner",protection_command,0);
21700 @:inner_}{\&{inner} primitive@>
21701 mp_primitive(mp, "outer",protection_command,1);
21702 @:outer_}{\&{outer} primitive@>
21704 @ @<Cases of |print_cmd...@>=
21705 case protection_command:
21706 if ( m==0 ) mp_print(mp, "inner");
21707 else mp_print(mp, "outer");
21710 @ @<Declare action procedures for use by |do_statement|@>=
21711 void mp_do_protection (MP mp) ;
21713 @ @c void mp_do_protection (MP mp) {
21714 int m; /* 0 to unprotect, 1 to protect */
21715 halfword t; /* the |eq_type| before we change it */
21718 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21720 if ( t>=outer_tag )
21721 eq_type(mp->cur_sym)=t-outer_tag;
21722 } else if ( t<outer_tag ) {
21723 eq_type(mp->cur_sym)=t+outer_tag;
21726 } while (mp->cur_cmd==comma);
21729 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21730 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21731 declaration assigns the command code |left_delimiter| to `\.{(}' and
21732 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21733 hash address of its mate.
21735 @<Cases of |do_statement|...@>=
21736 case delimiters: mp_def_delims(mp); break;
21738 @ @<Declare action procedures for use by |do_statement|@>=
21739 void mp_def_delims (MP mp) ;
21741 @ @c void mp_def_delims (MP mp) {
21742 pointer l_delim,r_delim; /* the new delimiter pair */
21743 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21744 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21745 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21746 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21750 @ Here is a procedure that is called when \MP\ has reached a point
21751 where some right delimiter is mandatory.
21753 @<Declare the procedure called |check_delimiter|@>=
21754 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21755 if ( mp->cur_cmd==right_delimiter )
21756 if ( mp->cur_mod==l_delim )
21758 if ( mp->cur_sym!=r_delim ) {
21759 mp_missing_err(mp, str(text(r_delim)));
21761 help2("I found no right delimiter to match a left one. So I've")
21762 ("put one in, behind the scenes; this may fix the problem.");
21765 print_err("The token `"); mp_print_text(r_delim);
21766 @.The token...delimiter@>
21767 mp_print(mp, "' is no longer a right delimiter");
21768 help3("Strange: This token has lost its former meaning!")
21769 ("I'll read it as a right delimiter this time;")
21770 ("but watch out, I'll probably miss it later.");
21775 @ The next four commands save or change the values associated with tokens.
21777 @<Cases of |do_statement|...@>=
21780 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21781 } while (mp->cur_cmd==comma);
21783 case interim_command: mp_do_interim(mp); break;
21784 case let_command: mp_do_let(mp); break;
21785 case new_internal: mp_do_new_internal(mp); break;
21787 @ @<Declare action procedures for use by |do_statement|@>=
21788 void mp_do_statement (MP mp);
21789 void mp_do_interim (MP mp);
21791 @ @c void mp_do_interim (MP mp) {
21793 if ( mp->cur_cmd!=internal_quantity ) {
21794 print_err("The token `");
21795 @.The token...quantity@>
21796 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
21797 else mp_print_text(mp->cur_sym);
21798 mp_print(mp, "' isn't an internal quantity");
21799 help1("Something like `tracingonline' should follow `interim'.");
21802 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
21804 mp_do_statement(mp);
21807 @ The following procedure is careful not to undefine the left-hand symbol
21808 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
21810 @<Declare action procedures for use by |do_statement|@>=
21811 void mp_do_let (MP mp) ;
21813 @ @c void mp_do_let (MP mp) {
21814 pointer l; /* hash location of the left-hand symbol */
21815 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
21816 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
21817 mp_missing_err(mp, "=");
21819 help3("You should have said `let symbol = something'.")
21820 ("But don't worry; I'll pretend that an equals sign")
21821 ("was present. The next token I read will be `something'.");
21825 switch (mp->cur_cmd) {
21826 case defined_macro: case secondary_primary_macro:
21827 case tertiary_secondary_macro: case expression_tertiary_macro:
21828 add_mac_ref(mp->cur_mod);
21833 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
21834 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
21835 else equiv(l)=mp->cur_mod;
21839 @ @<Declarations@>=
21840 void mp_grow_internals (MP mp, int l);
21841 void mp_do_new_internal (MP mp) ;
21844 void mp_grow_internals (MP mp, int l) {
21848 if ( hash_end+l>max_halfword ) {
21849 mp_confusion(mp, "out of memory space"); /* can't be reached */
21851 int_name = xmalloc ((l+1),sizeof(char *));
21852 internal = xmalloc ((l+1),sizeof(scaled));
21853 for (k=0;k<=l; k++ ) {
21854 if (k<=mp->max_internal) {
21855 internal[k]=mp->internal[k];
21856 int_name[k]=mp->int_name[k];
21862 xfree(mp->internal); xfree(mp->int_name);
21863 mp->int_name = int_name;
21864 mp->internal = internal;
21865 mp->max_internal = l;
21869 void mp_do_new_internal (MP mp) {
21871 if ( mp->int_ptr==mp->max_internal ) {
21872 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
21874 mp_get_clear_symbol(mp); incr(mp->int_ptr);
21875 eq_type(mp->cur_sym)=internal_quantity;
21876 equiv(mp->cur_sym)=mp->int_ptr;
21877 if(mp->int_name[mp->int_ptr]!=NULL)
21878 xfree(mp->int_name[mp->int_ptr]);
21879 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
21880 mp->internal[mp->int_ptr]=0;
21882 } while (mp->cur_cmd==comma);
21885 @ @<Dealloc variables@>=
21886 for (k=0;k<=mp->max_internal;k++) {
21887 xfree(mp->int_name[k]);
21889 xfree(mp->internal);
21890 xfree(mp->int_name);
21893 @ The various `\&{show}' commands are distinguished by modifier fields
21896 @d show_token_code 0 /* show the meaning of a single token */
21897 @d show_stats_code 1 /* show current memory and string usage */
21898 @d show_code 2 /* show a list of expressions */
21899 @d show_var_code 3 /* show a variable and its descendents */
21900 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
21903 mp_primitive(mp, "showtoken",show_command,show_token_code);
21904 @:show_token_}{\&{showtoken} primitive@>
21905 mp_primitive(mp, "showstats",show_command,show_stats_code);
21906 @:show_stats_}{\&{showstats} primitive@>
21907 mp_primitive(mp, "show",show_command,show_code);
21908 @:show_}{\&{show} primitive@>
21909 mp_primitive(mp, "showvariable",show_command,show_var_code);
21910 @:show_var_}{\&{showvariable} primitive@>
21911 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
21912 @:show_dependencies_}{\&{showdependencies} primitive@>
21914 @ @<Cases of |print_cmd...@>=
21917 case show_token_code:mp_print(mp, "showtoken"); break;
21918 case show_stats_code:mp_print(mp, "showstats"); break;
21919 case show_code:mp_print(mp, "show"); break;
21920 case show_var_code:mp_print(mp, "showvariable"); break;
21921 default: mp_print(mp, "showdependencies"); break;
21925 @ @<Cases of |do_statement|...@>=
21926 case show_command:mp_do_show_whatever(mp); break;
21928 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
21929 if it's |show_code|, complicated structures are abbreviated, otherwise
21932 @<Declare action procedures for use by |do_statement|@>=
21933 void mp_do_show (MP mp) ;
21935 @ @c void mp_do_show (MP mp) {
21937 mp_get_x_next(mp); mp_scan_expression(mp);
21938 mp_print_nl(mp, ">> ");
21940 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
21941 } while (mp->cur_cmd==comma);
21944 @ @<Declare action procedures for use by |do_statement|@>=
21945 void mp_disp_token (MP mp) ;
21947 @ @c void mp_disp_token (MP mp) {
21948 mp_print_nl(mp, "> ");
21950 if ( mp->cur_sym==0 ) {
21951 @<Show a numeric or string or capsule token@>;
21953 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
21954 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
21955 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
21956 if ( mp->cur_cmd==defined_macro ) {
21957 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
21958 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
21963 @ @<Show a numeric or string or capsule token@>=
21965 if ( mp->cur_cmd==numeric_token ) {
21966 mp_print_scaled(mp, mp->cur_mod);
21967 } else if ( mp->cur_cmd==capsule_token ) {
21968 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
21970 mp_print_char(mp, '"');
21971 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
21972 delete_str_ref(mp->cur_mod);
21976 @ The following cases of |print_cmd_mod| might arise in connection
21977 with |disp_token|, although they don't correspond to any
21980 @<Cases of |print_cmd_...@>=
21981 case left_delimiter:
21982 case right_delimiter:
21983 if ( c==left_delimiter ) mp_print(mp, "left");
21984 else mp_print(mp, "right");
21985 mp_print(mp, " delimiter that matches ");
21989 if ( m==null ) mp_print(mp, "tag");
21990 else mp_print(mp, "variable");
21992 case defined_macro:
21993 mp_print(mp, "macro:");
21995 case secondary_primary_macro:
21996 case tertiary_secondary_macro:
21997 case expression_tertiary_macro:
21998 mp_print_cmd_mod(mp, macro_def,c);
21999 mp_print(mp, "'d macro:");
22000 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22003 mp_print(mp, "[repeat the loop]");
22005 case internal_quantity:
22006 mp_print(mp, mp->int_name[m]);
22009 @ @<Declare action procedures for use by |do_statement|@>=
22010 void mp_do_show_token (MP mp) ;
22012 @ @c void mp_do_show_token (MP mp) {
22014 get_t_next; mp_disp_token(mp);
22016 } while (mp->cur_cmd==comma);
22019 @ @<Declare action procedures for use by |do_statement|@>=
22020 void mp_do_show_stats (MP mp) ;
22022 @ @c void mp_do_show_stats (MP mp) {
22023 mp_print_nl(mp, "Memory usage ");
22024 @.Memory usage...@>
22025 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22027 mp_print(mp, "unknown");
22028 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22029 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22030 mp_print_nl(mp, "String usage ");
22031 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22032 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22034 mp_print(mp, "unknown");
22035 mp_print(mp, " (");
22036 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22037 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22038 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22042 @ Here's a recursive procedure that gives an abbreviated account
22043 of a variable, for use by |do_show_var|.
22045 @<Declare action procedures for use by |do_statement|@>=
22046 void mp_disp_var (MP mp,pointer p) ;
22048 @ @c void mp_disp_var (MP mp,pointer p) {
22049 pointer q; /* traverses attributes and subscripts */
22050 int n; /* amount of macro text to show */
22051 if ( type(p)==mp_structured ) {
22052 @<Descend the structure@>;
22053 } else if ( type(p)>=mp_unsuffixed_macro ) {
22054 @<Display a variable macro@>;
22055 } else if ( type(p)!=undefined ){
22056 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22057 mp_print_char(mp, '=');
22058 mp_print_exp(mp, p,0);
22062 @ @<Descend the structure@>=
22065 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22067 while ( name_type(q)==mp_subscr ) {
22068 mp_disp_var(mp, q); q=link(q);
22072 @ @<Display a variable macro@>=
22074 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22075 if ( type(p)>mp_unsuffixed_macro )
22076 mp_print(mp, "@@#"); /* |suffixed_macro| */
22077 mp_print(mp, "=macro:");
22078 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22079 else n=mp->max_print_line-mp->file_offset-15;
22080 mp_show_macro(mp, value(p),null,n);
22083 @ @<Declare action procedures for use by |do_statement|@>=
22084 void mp_do_show_var (MP mp) ;
22086 @ @c void mp_do_show_var (MP mp) {
22089 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22090 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22091 mp_disp_var(mp, mp->cur_mod); goto DONE;
22096 } while (mp->cur_cmd==comma);
22099 @ @<Declare action procedures for use by |do_statement|@>=
22100 void mp_do_show_dependencies (MP mp) ;
22102 @ @c void mp_do_show_dependencies (MP mp) {
22103 pointer p; /* link that runs through all dependencies */
22105 while ( p!=dep_head ) {
22106 if ( mp_interesting(mp, p) ) {
22107 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22108 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22109 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22110 mp_print_dependency(mp, dep_list(p),type(p));
22113 while ( info(p)!=null ) p=link(p);
22119 @ Finally we are ready for the procedure that governs all of the
22122 @<Declare action procedures for use by |do_statement|@>=
22123 void mp_do_show_whatever (MP mp) ;
22125 @ @c void mp_do_show_whatever (MP mp) {
22126 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22127 switch (mp->cur_mod) {
22128 case show_token_code:mp_do_show_token(mp); break;
22129 case show_stats_code:mp_do_show_stats(mp); break;
22130 case show_code:mp_do_show(mp); break;
22131 case show_var_code:mp_do_show_var(mp); break;
22132 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22133 } /* there are no other cases */
22134 if ( mp->internal[showstopping]>0 ){
22137 if ( mp->interaction<mp_error_stop_mode ) {
22138 help0; decr(mp->error_count);
22140 help1("This isn't an error message; I'm just showing something.");
22142 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22143 else mp_put_get_error(mp);
22147 @ The `\&{addto}' command needs the following additional primitives:
22149 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22150 @d contour_code 1 /* command modifier for `\&{contour}' */
22151 @d also_code 2 /* command modifier for `\&{also}' */
22153 @ Pre and postscripts need two new identifiers:
22155 @d with_pre_script 11
22156 @d with_post_script 13
22159 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22160 @:double_path_}{\&{doublepath} primitive@>
22161 mp_primitive(mp, "contour",thing_to_add,contour_code);
22162 @:contour_}{\&{contour} primitive@>
22163 mp_primitive(mp, "also",thing_to_add,also_code);
22164 @:also_}{\&{also} primitive@>
22165 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22166 @:with_pen_}{\&{withpen} primitive@>
22167 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22168 @:dashed_}{\&{dashed} primitive@>
22169 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22170 @:with_pre_script_}{\&{withprescript} primitive@>
22171 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22172 @:with_post_script_}{\&{withpostscript} primitive@>
22173 mp_primitive(mp, "withoutcolor",with_option,no_model);
22174 @:with_color_}{\&{withoutcolor} primitive@>
22175 mp_primitive(mp, "withgreyscale",with_option,grey_model);
22176 @:with_color_}{\&{withgreyscale} primitive@>
22177 mp_primitive(mp, "withcolor",with_option,uninitialized_model);
22178 @:with_color_}{\&{withcolor} primitive@>
22179 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22180 mp_primitive(mp, "withrgbcolor",with_option,rgb_model);
22181 @:with_color_}{\&{withrgbcolor} primitive@>
22182 mp_primitive(mp, "withcmykcolor",with_option,cmyk_model);
22183 @:with_color_}{\&{withcmykcolor} primitive@>
22185 @ @<Cases of |print_cmd...@>=
22187 if ( m==contour_code ) mp_print(mp, "contour");
22188 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22189 else mp_print(mp, "also");
22192 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22193 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22194 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22195 else if ( m==no_model ) mp_print(mp, "withoutcolor");
22196 else if ( m==rgb_model ) mp_print(mp, "withrgbcolor");
22197 else if ( m==uninitialized_model ) mp_print(mp, "withcolor");
22198 else if ( m==cmyk_model ) mp_print(mp, "withcmykcolor");
22199 else if ( m==grey_model ) mp_print(mp, "withgreyscale");
22200 else mp_print(mp, "dashed");
22203 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22204 updates the list of graphical objects starting at |p|. Each $\langle$with
22205 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22206 Other objects are ignored.
22208 @<Declare action procedures for use by |do_statement|@>=
22209 void mp_scan_with_list (MP mp,pointer p) ;
22211 @ @c void mp_scan_with_list (MP mp,pointer p) {
22212 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22213 pointer q; /* for list manipulation */
22214 int old_setting; /* saved |selector| setting */
22215 pointer k; /* for finding the near-last item in a list */
22216 str_number s; /* for string cleanup after combining */
22217 pointer cp,pp,dp,ap,bp;
22218 /* objects being updated; |void| initially; |null| to suppress update */
22219 cp=diov; pp=diov; dp=diov; ap=diov; bp=diov;
22221 while ( mp->cur_cmd==with_option ){
22224 if ( t!=no_model ) mp_scan_expression(mp);
22225 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22226 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22227 ((t==uninitialized_model)&&
22228 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22229 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22230 ((t==cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22231 ((t==rgb_model)&&(mp->cur_type!=mp_color_type))||
22232 ((t==grey_model)&&(mp->cur_type!=mp_known))||
22233 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22234 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22235 @<Complain about improper type@>;
22236 } else if ( t==uninitialized_model ) {
22237 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22239 @<Transfer a color from the current expression to object~|cp|@>;
22240 mp_flush_cur_exp(mp, 0);
22241 } else if ( t==rgb_model ) {
22242 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22244 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22245 mp_flush_cur_exp(mp, 0);
22246 } else if ( t==cmyk_model ) {
22247 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22249 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22250 mp_flush_cur_exp(mp, 0);
22251 } else if ( t==grey_model ) {
22252 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22254 @<Transfer a greyscale from the current expression to object~|cp|@>;
22255 mp_flush_cur_exp(mp, 0);
22256 } else if ( t==no_model ) {
22257 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22259 @<Transfer a noncolor from the current expression to object~|cp|@>;
22260 } else if ( t==mp_pen_type ) {
22261 if ( pp==diov ) @<Make |pp| an object in list~|p| that needs a pen@>;
22263 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22264 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22266 } else if ( t==with_pre_script ) {
22269 while ( (ap!=null)&&(! has_color(ap)) )
22272 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22274 old_setting=mp->selector;
22275 mp->selector=new_string;
22276 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22277 mp_print_str(mp, mp->cur_exp);
22278 append_char(13); /* a forced \ps\ newline */
22279 mp_print_str(mp, pre_script(ap));
22280 pre_script(ap)=mp_make_string(mp);
22282 mp->selector=old_setting;
22284 pre_script(ap)=mp->cur_exp;
22286 mp->cur_type=mp_vacuous;
22288 } else if ( t==with_post_script ) {
22292 while ( link(k)!=null ) {
22294 if ( has_color(k) ) bp=k;
22297 if ( post_script(bp)!=null ) {
22299 old_setting=mp->selector;
22300 mp->selector=new_string;
22301 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22302 mp_print_str(mp, post_script(bp));
22303 append_char(13); /* a forced \ps\ newline */
22304 mp_print_str(mp, mp->cur_exp);
22305 post_script(bp)=mp_make_string(mp);
22307 mp->selector=old_setting;
22309 post_script(bp)=mp->cur_exp;
22311 mp->cur_type=mp_vacuous;
22315 @<Make |dp| a stroked node in list~|p|@>;
22317 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22318 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22319 dash_scale(dp)=unity;
22320 mp->cur_type=mp_vacuous;
22324 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22328 @ @<Complain about improper type@>=
22329 { exp_err("Improper type");
22331 help2("Next time say `withpen <known pen expression>';")
22332 ("I'll ignore the bad `with' clause and look for another.");
22333 if ( t==with_pre_script )
22334 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22335 else if ( t==with_post_script )
22336 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22337 else if ( t==mp_picture_type )
22338 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22339 else if ( t==uninitialized_model )
22340 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22341 else if ( t==rgb_model )
22342 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22343 else if ( t==cmyk_model )
22344 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22345 else if ( t==grey_model )
22346 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22347 mp_put_get_flush_error(mp, 0);
22350 @ Forcing the color to be between |0| and |unity| here guarantees that no
22351 picture will ever contain a color outside the legal range for \ps\ graphics.
22353 @<Transfer a color from the current expression to object~|cp|@>=
22354 { if ( mp->cur_type==mp_color_type )
22355 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22356 else if ( mp->cur_type==mp_cmykcolor_type )
22357 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22358 else if ( mp->cur_type==mp_known )
22359 @<Transfer a greyscale from the current expression to object~|cp|@>
22360 else if ( mp->cur_exp==false_code )
22361 @<Transfer a noncolor from the current expression to object~|cp|@>;
22364 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22365 { q=value(mp->cur_exp);
22370 red_val(cp)=value(red_part_loc(q));
22371 green_val(cp)=value(green_part_loc(q));
22372 blue_val(cp)=value(blue_part_loc(q));
22373 color_model(cp)=rgb_model;
22374 if ( red_val(cp)<0 ) red_val(cp)=0;
22375 if ( green_val(cp)<0 ) green_val(cp)=0;
22376 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22377 if ( red_val(cp)>unity ) red_val(cp)=unity;
22378 if ( green_val(cp)>unity ) green_val(cp)=unity;
22379 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22382 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22383 { q=value(mp->cur_exp);
22384 cyan_val(cp)=value(cyan_part_loc(q));
22385 magenta_val(cp)=value(magenta_part_loc(q));
22386 yellow_val(cp)=value(yellow_part_loc(q));
22387 black_val(cp)=value(black_part_loc(q));
22388 color_model(cp)=cmyk_model;
22389 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22390 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22391 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22392 if ( black_val(cp)<0 ) black_val(cp)=0;
22393 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22394 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22395 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22396 if ( black_val(cp)>unity ) black_val(cp)=unity;
22399 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22406 color_model(cp)=grey_model;
22407 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22408 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22411 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22418 color_model(cp)=no_model;
22421 @ @<Make |cp| a colored object in object list~|p|@>=
22423 while ( cp!=null ){
22424 if ( has_color(cp) ) break;
22429 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22431 while ( pp!=null ) {
22432 if ( has_pen(pp) ) break;
22437 @ @<Make |dp| a stroked node in list~|p|@>=
22439 while ( dp!=null ) {
22440 if ( type(dp)==stroked_code ) break;
22445 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22446 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22448 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22449 if ( dp>diov ) @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
22451 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22453 while ( q!=null ) {
22454 if ( has_color(q) ) {
22455 red_val(q)=red_val(cp);
22456 green_val(q)=green_val(cp);
22457 blue_val(q)=blue_val(cp);
22458 black_val(q)=black_val(cp);
22459 color_model(q)=color_model(cp);
22465 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22467 while ( q!=null ) {
22468 if ( has_pen(q) ) {
22469 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22470 pen_p(q)=copy_pen(pen_p(pp));
22476 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22478 while ( q!=null ) {
22479 if ( type(q)==stroked_code ) {
22480 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22481 dash_p(q)=dash_p(dp);
22482 dash_scale(q)=unity;
22483 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22489 @ One of the things we need to do when we've parsed an \&{addto} or
22490 similar command is find the header of a supposed \&{picture} variable, given
22491 a token list for that variable. Since the edge structure is about to be
22492 updated, we use |private_edges| to make sure that this is possible.
22494 @<Declare action procedures for use by |do_statement|@>=
22495 pointer mp_find_edges_var (MP mp, pointer t) ;
22497 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22499 pointer cur_edges; /* the return value */
22500 p=mp_find_variable(mp, t); cur_edges=null;
22502 mp_obliterated(mp, t); mp_put_get_error(mp);
22503 } else if ( type(p)!=mp_picture_type ) {
22504 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22505 @.Variable x is the wrong type@>
22506 mp_print(mp, " is the wrong type (");
22507 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22508 help2("I was looking for a \"known\" picture variable.")
22509 ("So I'll not change anything just now.");
22510 mp_put_get_error(mp);
22512 value(p)=mp_private_edges(mp, value(p));
22513 cur_edges=value(p);
22515 mp_flush_node_list(mp, t);
22519 @ @<Cases of |do_statement|...@>=
22520 case add_to_command: mp_do_add_to(mp); break;
22521 case bounds_command:mp_do_bounds(mp); break;
22524 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22525 @:clip_}{\&{clip} primitive@>
22526 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22527 @:set_bounds_}{\&{setbounds} primitive@>
22529 @ @<Cases of |print_cmd...@>=
22530 case bounds_command:
22531 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22532 else mp_print(mp, "setbounds");
22535 @ The following function parses the beginning of an \&{addto} or \&{clip}
22536 command: it expects a variable name followed by a token with |cur_cmd=sep|
22537 and then an expression. The function returns the token list for the variable
22538 and stores the command modifier for the separator token in the global variable
22539 |last_add_type|. We must be careful because this variable might get overwritten
22540 any time we call |get_x_next|.
22543 quarterword last_add_type;
22544 /* command modifier that identifies the last \&{addto} command */
22546 @ @<Declare action procedures for use by |do_statement|@>=
22547 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22549 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22550 pointer lhv; /* variable to add to left */
22551 quarterword add_type=0; /* value to be returned in |last_add_type| */
22553 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22554 if ( mp->cur_type!=mp_token_list ) {
22555 @<Abandon edges command because there's no variable@>;
22557 lhv=mp->cur_exp; add_type=mp->cur_mod;
22558 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22560 mp->last_add_type=add_type;
22564 @ @<Abandon edges command because there's no variable@>=
22565 { exp_err("Not a suitable variable");
22566 @.Not a suitable variable@>
22567 help4("At this point I needed to see the name of a picture variable.")
22568 ("(Or perhaps you have indeed presented me with one; I might")
22569 ("have missed it, if it wasn't followed by the proper token.)")
22570 ("So I'll not change anything just now.");
22571 mp_put_get_flush_error(mp, 0);
22574 @ Here is an example of how to use |start_draw_cmd|.
22576 @<Declare action procedures for use by |do_statement|@>=
22577 void mp_do_bounds (MP mp) ;
22579 @ @c void mp_do_bounds (MP mp) {
22580 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22581 pointer p; /* for list manipulation */
22582 integer m; /* initial value of |cur_mod| */
22584 lhv=mp_start_draw_cmd(mp, to_token);
22586 lhe=mp_find_edges_var(mp, lhv);
22588 mp_flush_cur_exp(mp, 0);
22589 } else if ( mp->cur_type!=mp_path_type ) {
22590 exp_err("Improper `clip'");
22591 @.Improper `addto'@>
22592 help2("This expression should have specified a known path.")
22593 ("So I'll not change anything just now.");
22594 mp_put_get_flush_error(mp, 0);
22595 } else if ( left_type(mp->cur_exp)==endpoint ) {
22596 @<Complain about a non-cycle@>;
22598 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22603 @ @<Complain about a non-cycle@>=
22604 { print_err("Not a cycle");
22606 help2("That contour should have ended with `..cycle' or `&cycle'.")
22607 ("So I'll not change anything just now."); mp_put_get_error(mp);
22610 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22611 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22612 link(p)=link(dummy_loc(lhe));
22613 link(dummy_loc(lhe))=p;
22614 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22615 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22616 type(p)=stop_type(m);
22617 link(obj_tail(lhe))=p;
22619 mp_init_bbox(mp, lhe);
22622 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22623 cases to deal with.
22625 @<Declare action procedures for use by |do_statement|@>=
22626 void mp_do_add_to (MP mp) ;
22628 @ @c void mp_do_add_to (MP mp) {
22629 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22630 pointer p; /* the graphical object or list for |scan_with_list| to update */
22631 pointer e; /* an edge structure to be merged */
22632 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22633 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22635 if ( add_type==also_code ) {
22636 @<Make sure the current expression is a suitable picture and set |e| and |p|
22639 @<Create a graphical object |p| based on |add_type| and the current
22642 mp_scan_with_list(mp, p);
22643 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22647 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22648 setting |e:=null| prevents anything from being added to |lhe|.
22650 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22653 if ( mp->cur_type!=mp_picture_type ) {
22654 exp_err("Improper `addto'");
22655 @.Improper `addto'@>
22656 help2("This expression should have specified a known picture.")
22657 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22659 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22660 p=link(dummy_loc(e));
22664 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22665 attempts to add to the edge structure.
22667 @<Create a graphical object |p| based on |add_type| and the current...@>=
22669 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22670 if ( mp->cur_type!=mp_path_type ) {
22671 exp_err("Improper `addto'");
22672 @.Improper `addto'@>
22673 help2("This expression should have specified a known path.")
22674 ("So I'll not change anything just now.");
22675 mp_put_get_flush_error(mp, 0);
22676 } else if ( add_type==contour_code ) {
22677 if ( left_type(mp->cur_exp)==endpoint ) {
22678 @<Complain about a non-cycle@>;
22680 p=mp_new_fill_node(mp, mp->cur_exp);
22681 mp->cur_type=mp_vacuous;
22684 p=mp_new_stroked_node(mp, mp->cur_exp);
22685 mp->cur_type=mp_vacuous;
22689 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22690 lhe=mp_find_edges_var(mp, lhv);
22692 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22693 if ( e!=null ) delete_edge_ref(e);
22694 } else if ( add_type==also_code ) {
22696 @<Merge |e| into |lhe| and delete |e|@>;
22700 } else if ( p!=null ) {
22701 link(obj_tail(lhe))=p;
22703 if ( add_type==double_path_code )
22704 if ( pen_p(p)==null )
22705 pen_p(p)=mp_get_pen_circle(mp, 0);
22708 @ @<Merge |e| into |lhe| and delete |e|@>=
22709 { if ( link(dummy_loc(e))!=null ) {
22710 link(obj_tail(lhe))=link(dummy_loc(e));
22711 obj_tail(lhe)=obj_tail(e);
22712 obj_tail(e)=dummy_loc(e);
22713 link(dummy_loc(e))=null;
22714 mp_flush_dash_list(mp, lhe);
22716 mp_toss_edges(mp, e);
22719 @ @<Cases of |do_statement|...@>=
22720 case ship_out_command: mp_do_ship_out(mp); break;
22722 @ @<Declare action procedures for use by |do_statement|@>=
22723 @<Declare the function called |tfm_check|@>;
22724 @<Declare the \ps\ output procedures@>;
22725 void mp_do_ship_out (MP mp) ;
22727 @ @c void mp_do_ship_out (MP mp) {
22728 integer c; /* the character code */
22729 mp_get_x_next(mp); mp_scan_expression(mp);
22730 if ( mp->cur_type!=mp_picture_type ) {
22731 @<Complain that it's not a known picture@>;
22733 c=mp_round_unscaled(mp, mp->internal[char_code]) % 256;
22734 if ( c<0 ) c=c+256;
22735 @<Store the width information for character code~|c|@>;
22736 mp_ship_out(mp, mp->cur_exp);
22737 mp_flush_cur_exp(mp, 0);
22741 @ @<Complain that it's not a known picture@>=
22743 exp_err("Not a known picture");
22744 help1("I can only output known pictures.");
22745 mp_put_get_flush_error(mp, 0);
22748 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22751 @<Cases of |do_statement|...@>=
22752 case every_job_command:
22753 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22757 halfword start_sym; /* a symbolic token to insert at beginning of job */
22762 @ Finally, we have only the ``message'' commands remaining.
22765 @d err_message_code 1
22767 @d filename_template_code 3
22768 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22769 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22771 mp->pool_ptr = mp->pool_ptr - g;
22773 mp_print_char(mp, '0');
22776 mp_print_int(mp, (A));
22781 mp_primitive(mp, "message",message_command,message_code);
22782 @:message_}{\&{message} primitive@>
22783 mp_primitive(mp, "errmessage",message_command,err_message_code);
22784 @:err_message_}{\&{errmessage} primitive@>
22785 mp_primitive(mp, "errhelp",message_command,err_help_code);
22786 @:err_help_}{\&{errhelp} primitive@>
22787 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
22788 @:filename_template_}{\&{filenametemplate} primitive@>
22790 @ @<Cases of |print_cmd...@>=
22791 case message_command:
22792 if ( m<err_message_code ) mp_print(mp, "message");
22793 else if ( m==err_message_code ) mp_print(mp, "errmessage");
22794 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
22795 else mp_print(mp, "errhelp");
22798 @ @<Cases of |do_statement|...@>=
22799 case message_command: mp_do_message(mp); break;
22801 @ @<Declare action procedures for use by |do_statement|@>=
22802 @<Declare a procedure called |no_string_err|@>;
22803 void mp_do_message (MP mp) ;
22806 @c void mp_do_message (MP mp) {
22807 int m; /* the type of message */
22808 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
22809 if ( mp->cur_type!=mp_string_type )
22810 mp_no_string_err(mp, "A message should be a known string expression.");
22814 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
22816 case err_message_code:
22817 @<Print string |cur_exp| as an error message@>;
22819 case err_help_code:
22820 @<Save string |cur_exp| as the |err_help|@>;
22822 case filename_template_code:
22823 @<Save the filename template@>;
22825 } /* there are no other cases */
22827 mp_flush_cur_exp(mp, 0);
22830 @ @<Declare a procedure called |no_string_err|@>=
22831 void mp_no_string_err (MP mp,char *s) {
22832 exp_err("Not a string");
22835 mp_put_get_error(mp);
22838 @ The global variable |err_help| is zero when the user has most recently
22839 given an empty help string, or if none has ever been given.
22841 @<Save string |cur_exp| as the |err_help|@>=
22843 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
22844 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
22845 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
22848 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
22849 \&{errhelp}, we don't want to give a long help message each time. So we
22850 give a verbose explanation only once.
22853 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
22855 @ @<Set init...@>=mp->long_help_seen=false;
22857 @ @<Print string |cur_exp| as an error message@>=
22859 print_err(""); mp_print_str(mp, mp->cur_exp);
22860 if ( mp->err_help!=0 ) {
22861 mp->use_err_help=true;
22862 } else if ( mp->long_help_seen ) {
22863 help1("(That was another `errmessage'.)") ;
22865 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
22866 help4("This error message was generated by an `errmessage'")
22867 ("command, so I can\'t give any explicit help.")
22868 ("Pretend that you're Miss Marple: Examine all clues,")
22870 ("and deduce the truth by inspired guesses.");
22872 mp_put_get_error(mp); mp->use_err_help=false;
22875 @ @<Cases of |do_statement|...@>=
22876 case write_command: mp_do_write(mp); break;
22878 @ @<Declare action procedures for use by |do_statement|@>=
22879 void mp_do_write (MP mp) ;
22881 @ @c void mp_do_write (MP mp) {
22882 str_number t; /* the line of text to be written */
22883 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
22884 int old_setting; /* for saving |selector| during output */
22886 mp_scan_expression(mp);
22887 if ( mp->cur_type!=mp_string_type ) {
22888 mp_no_string_err(mp, "The text to be written should be a known string expression");
22889 } else if ( mp->cur_cmd!=to_token ) {
22890 print_err("Missing `to' clause");
22891 help1("A write command should end with `to <filename>'");
22892 mp_put_get_error(mp);
22894 t=mp->cur_exp; mp->cur_type=mp_vacuous;
22896 mp_scan_expression(mp);
22897 if ( mp->cur_type!=mp_string_type )
22898 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
22900 @<Write |t| to the file named by |cur_exp|@>;
22904 mp_flush_cur_exp(mp, 0);
22907 @ @<Write |t| to the file named by |cur_exp|@>=
22909 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
22910 |cur_exp| must be inserted@>;
22911 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
22912 @<Record the end of file on |wr_file[n]|@>;
22914 old_setting=mp->selector;
22915 mp->selector=n+write_file;
22916 mp_print_str(mp, t); mp_print_ln(mp);
22917 mp->selector = old_setting;
22921 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
22923 char *fn = str(mp->cur_exp);
22925 n0=mp->write_files;
22926 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
22927 if ( n==0 ) { /* bottom reached */
22928 if ( n0==mp->write_files ) {
22929 if ( mp->write_files<mp->max_write_files ) {
22930 incr(mp->write_files);
22935 l = mp->max_write_files + (mp->max_write_files>>2);
22936 wr_file = xmalloc((l+1),sizeof(FILE *));
22937 wr_fname = xmalloc((l+1),sizeof(char *));
22938 for (k=0;k<=l;k++) {
22939 if (k<=mp->max_write_files) {
22940 wr_file[k]=mp->wr_file[k];
22941 wr_fname[k]=mp->wr_fname[k];
22947 xfree(mp->wr_file); xfree(mp->wr_fname);
22948 mp->max_write_files = l;
22949 mp->wr_file = wr_file;
22950 mp->wr_fname = wr_fname;
22954 mp_open_write_file(mp, fn ,n);
22957 if ( mp->wr_fname[n]==NULL ) n0=n;
22962 @ @<Record the end of file on |wr_file[n]|@>=
22963 { fclose(mp->wr_file[n]);
22964 xfree(mp->wr_fname[n]);
22965 mp->wr_fname[n]=NULL;
22966 if ( n==mp->write_files-1 ) mp->write_files=n;
22970 @* \[42] Writing font metric data.
22971 \TeX\ gets its knowledge about fonts from font metric files, also called
22972 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
22973 but other programs know about them too. One of \MP's duties is to
22974 write \.{TFM} files so that the user's fonts can readily be
22975 applied to typesetting.
22976 @:TFM files}{\.{TFM} files@>
22977 @^font metric files@>
22979 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
22980 Since the number of bytes is always a multiple of~4, we could
22981 also regard the file as a sequence of 32-bit words, but \MP\ uses the
22982 byte interpretation. The format of \.{TFM} files was designed by
22983 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
22984 @^Ramshaw, Lyle Harold@>
22985 of information in a compact but useful form.
22988 FILE * tfm_file; /* the font metric output goes here */
22989 char * metric_file_name; /* full name of the font metric file */
22991 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
22992 integers that give the lengths of the various subsequent portions
22993 of the file. These twelve integers are, in order:
22994 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
22995 |lf|&length of the entire file, in words;\cr
22996 |lh|&length of the header data, in words;\cr
22997 |bc|&smallest character code in the font;\cr
22998 |ec|&largest character code in the font;\cr
22999 |nw|&number of words in the width table;\cr
23000 |nh|&number of words in the height table;\cr
23001 |nd|&number of words in the depth table;\cr
23002 |ni|&number of words in the italic correction table;\cr
23003 |nl|&number of words in the lig/kern table;\cr
23004 |nk|&number of words in the kern table;\cr
23005 |ne|&number of words in the extensible character table;\cr
23006 |np|&number of font parameter words.\cr}}$$
23007 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23009 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23010 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23011 and as few as 0 characters (if |bc=ec+1|).
23013 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23014 16 or more bits, the most significant bytes appear first in the file.
23015 This is called BigEndian order.
23016 @^BigEndian order@>
23018 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23021 The most important data type used here is a |fix_word|, which is
23022 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23023 quantity, with the two's complement of the entire word used to represent
23024 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23025 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23026 the smallest is $-2048$. We will see below, however, that all but two of
23027 the |fix_word| values must lie between $-16$ and $+16$.
23029 @ The first data array is a block of header information, which contains
23030 general facts about the font. The header must contain at least two words,
23031 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23032 header information of use to other software routines might also be
23033 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23034 For example, 16 more words of header information are in use at the Xerox
23035 Palo Alto Research Center; the first ten specify the character coding
23036 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23037 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23038 last gives the ``face byte.''
23040 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23041 the \.{GF} output file. This helps ensure consistency between files,
23042 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23043 should match the check sums on actual fonts that are used. The actual
23044 relation between this check sum and the rest of the \.{TFM} file is not
23045 important; the check sum is simply an identification number with the
23046 property that incompatible fonts almost always have distinct check sums.
23049 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23050 font, in units of \TeX\ points. This number must be at least 1.0; it is
23051 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23052 font, i.e., a font that was designed to look best at a 10-point size,
23053 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23054 $\delta$ \.{pt}', the effect is to override the design size and replace it
23055 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23056 the font image by a factor of $\delta$ divided by the design size. {\sl
23057 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23058 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23059 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23060 since many fonts have a design size equal to one em. The other dimensions
23061 must be less than 16 design-size units in absolute value; thus,
23062 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23063 \.{TFM} file whose first byte might be something besides 0 or 255.
23065 @ Next comes the |char_info| array, which contains one |char_info_word|
23066 per character. Each word in this part of the file contains six fields
23067 packed into four bytes as follows.
23069 \yskip\hang first byte: |width_index| (8 bits)\par
23070 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23072 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23074 \hang fourth byte: |remainder| (8 bits)\par
23076 The actual width of a character is \\{width}|[width_index]|, in design-size
23077 units; this is a device for compressing information, since many characters
23078 have the same width. Since it is quite common for many characters
23079 to have the same height, depth, or italic correction, the \.{TFM} format
23080 imposes a limit of 16 different heights, 16 different depths, and
23081 64 different italic corrections.
23083 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23084 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23085 value of zero. The |width_index| should never be zero unless the
23086 character does not exist in the font, since a character is valid if and
23087 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23089 @ The |tag| field in a |char_info_word| has four values that explain how to
23090 interpret the |remainder| field.
23092 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23093 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23094 program starting at location |remainder| in the |lig_kern| array.\par
23095 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23096 characters of ascending sizes, and not the largest in the chain. The
23097 |remainder| field gives the character code of the next larger character.\par
23098 \hang|tag=3| (|ext_tag|) means that this character code represents an
23099 extensible character, i.e., a character that is built up of smaller pieces
23100 so that it can be made arbitrarily large. The pieces are specified in
23101 |exten[remainder]|.\par
23103 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23104 unless they are used in special circumstances in math formulas. For example,
23105 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23106 operation looks for both |list_tag| and |ext_tag|.
23108 @d no_tag 0 /* vanilla character */
23109 @d lig_tag 1 /* character has a ligature/kerning program */
23110 @d list_tag 2 /* character has a successor in a charlist */
23111 @d ext_tag 3 /* character is extensible */
23113 @ The |lig_kern| array contains instructions in a simple programming language
23114 that explains what to do for special letter pairs. Each word in this array is a
23115 |lig_kern_command| of four bytes.
23117 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23118 step if the byte is 128 or more, otherwise the next step is obtained by
23119 skipping this number of intervening steps.\par
23120 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23121 then perform the operation and stop, otherwise continue.''\par
23122 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23123 a kern step otherwise.\par
23124 \hang fourth byte: |remainder|.\par
23127 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23128 between the current character and |next_char|. This amount is
23129 often negative, so that the characters are brought closer together
23130 by kerning; but it might be positive.
23132 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23133 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23134 |remainder| is inserted between the current character and |next_char|;
23135 then the current character is deleted if $b=0$, and |next_char| is
23136 deleted if $c=0$; then we pass over $a$~characters to reach the next
23137 current character (which may have a ligature/kerning program of its own).
23139 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23140 the |next_char| byte is the so-called right boundary character of this font;
23141 the value of |next_char| need not lie between |bc| and~|ec|.
23142 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23143 there is a special ligature/kerning program for a left boundary character,
23144 beginning at location |256*op_byte+remainder|.
23145 The interpretation is that \TeX\ puts implicit boundary characters
23146 before and after each consecutive string of characters from the same font.
23147 These implicit characters do not appear in the output, but they can affect
23148 ligatures and kerning.
23150 If the very first instruction of a character's |lig_kern| program has
23151 |skip_byte>128|, the program actually begins in location
23152 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23153 arrays, because the first instruction must otherwise
23154 appear in a location |<=255|.
23156 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23158 $$\hbox{|256*op_byte+remainder<nl|.}$$
23159 If such an instruction is encountered during
23160 normal program execution, it denotes an unconditional halt; no ligature
23161 command is performed.
23164 /* value indicating `\.{STOP}' in a lig/kern program */
23165 @d kern_flag (128) /* op code for a kern step */
23166 @d skip_byte(A) mp->lig_kern[(A)].b0
23167 @d next_char(A) mp->lig_kern[(A)].b1
23168 @d op_byte(A) mp->lig_kern[(A)].b2
23169 @d rem_byte(A) mp->lig_kern[(A)].b3
23171 @ Extensible characters are specified by an |extensible_recipe|, which
23172 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23173 order). These bytes are the character codes of individual pieces used to
23174 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23175 present in the built-up result. For example, an extensible vertical line is
23176 like an extensible bracket, except that the top and bottom pieces are missing.
23178 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23179 if the piece isn't present. Then the extensible characters have the form
23180 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23181 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23182 The width of the extensible character is the width of $R$; and the
23183 height-plus-depth is the sum of the individual height-plus-depths of the
23184 components used, since the pieces are butted together in a vertical list.
23186 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23187 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23188 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23189 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23191 @ The final portion of a \.{TFM} file is the |param| array, which is another
23192 sequence of |fix_word| values.
23194 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23195 to help position accents. For example, |slant=.25| means that when you go
23196 up one unit, you also go .25 units to the right. The |slant| is a pure
23197 number; it is the only |fix_word| other than the design size itself that is
23198 not scaled by the design size.
23200 \hang|param[2]=space| is the normal spacing between words in text.
23201 Note that character 040 in the font need not have anything to do with
23204 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23206 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23208 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23209 the height of letters for which accents don't have to be raised or lowered.
23211 \hang|param[6]=quad| is the size of one em in the font.
23213 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23217 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23222 @d space_stretch_code 3
23223 @d space_shrink_code 4
23226 @d extra_space_code 7
23228 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23229 information, and it does this all at once at the end of a job.
23230 In order to prepare for such frenetic activity, it squirrels away the
23231 necessary facts in various arrays as information becomes available.
23233 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23234 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23235 |tfm_ital_corr|. Other information about a character (e.g., about
23236 its ligatures or successors) is accessible via the |char_tag| and
23237 |char_remainder| arrays. Other information about the font as a whole
23238 is kept in additional arrays called |header_byte|, |lig_kern|,
23239 |kern|, |exten|, and |param|.
23241 @d max_tfm_int 32510
23242 @d undefined_label max_tfm_int /* an undefined local label */
23245 #define TFM_ITEMS 257
23247 eight_bits ec; /* smallest and largest character codes shipped out */
23248 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23249 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23250 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23251 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23252 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23253 int char_tag[TFM_ITEMS]; /* |remainder| category */
23254 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23255 char *header_byte; /* bytes of the \.{TFM} header */
23256 int header_last; /* last initialized \.{TFM} header byte */
23257 int header_size; /* size of the \.{TFM} header */
23258 four_quarters *lig_kern; /* the ligature/kern table */
23259 short nl; /* the number of ligature/kern steps so far */
23260 scaled *kern; /* distinct kerning amounts */
23261 short nk; /* the number of distinct kerns so far */
23262 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23263 short ne; /* the number of extensible characters so far */
23264 scaled *param; /* \&{fontinfo} parameters */
23265 short np; /* the largest \&{fontinfo} parameter specified so far */
23266 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23267 short skip_table[TFM_ITEMS]; /* local label status */
23268 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23269 integer bchar; /* right boundary character */
23270 short bch_label; /* left boundary starting location */
23271 short ll;short lll; /* registers used for lig/kern processing */
23272 short label_loc[257]; /* lig/kern starting addresses */
23273 eight_bits label_char[257]; /* characters for |label_loc| */
23274 short label_ptr; /* highest position occupied in |label_loc| */
23276 @ @<Allocate or initialize ...@>=
23277 mp->header_last = 0; mp->header_size = 128; /* just for init */
23278 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23279 mp->lig_kern = NULL; /* allocated when needed */
23280 mp->kern = NULL; /* allocated when needed */
23281 mp->param = NULL; /* allocated when needed */
23283 @ @<Dealloc variables@>=
23284 xfree(mp->header_byte);
23285 xfree(mp->lig_kern);
23290 for (k=0;k<= 255;k++ ) {
23291 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23292 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23293 mp->skip_table[k]=undefined_label;
23295 memset(mp->header_byte,0,mp->header_size);
23296 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23297 mp->internal[boundary_char]=-unity;
23298 mp->bch_label=undefined_label;
23299 mp->label_loc[0]=-1; mp->label_ptr=0;
23301 @ @<Declarations@>=
23302 scaled mp_tfm_check (MP mp,small_number m) ;
23304 @ @<Declare the function called |tfm_check|@>=
23305 scaled mp_tfm_check (MP mp,small_number m) {
23306 if ( abs(mp->internal[m])>=fraction_half ) {
23307 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23308 @.Enormous charwd...@>
23309 @.Enormous chardp...@>
23310 @.Enormous charht...@>
23311 @.Enormous charic...@>
23312 @.Enormous designsize...@>
23313 mp_print(mp, " has been reduced");
23314 help1("Font metric dimensions must be less than 2048pt.");
23315 mp_put_get_error(mp);
23316 if ( mp->internal[m]>0 ) return (fraction_half-1);
23317 else return (1-fraction_half);
23319 return mp->internal[m];
23323 @ @<Store the width information for character code~|c|@>=
23324 if ( c<mp->bc ) mp->bc=c;
23325 if ( c>mp->ec ) mp->ec=c;
23326 mp->char_exists[c]=true;
23327 mp->tfm_width[c]=mp_tfm_check(mp, char_wd);
23328 mp->tfm_height[c]=mp_tfm_check(mp, char_ht);
23329 mp->tfm_depth[c]=mp_tfm_check(mp, char_dp);
23330 mp->tfm_ital_corr[c]=mp_tfm_check(mp, char_ic)
23332 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23334 @<Cases of |do_statement|...@>=
23335 case tfm_command: mp_do_tfm_command(mp); break;
23337 @ @d char_list_code 0
23338 @d lig_table_code 1
23339 @d extensible_code 2
23340 @d header_byte_code 3
23341 @d font_dimen_code 4
23344 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23345 @:char_list_}{\&{charlist} primitive@>
23346 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23347 @:lig_table_}{\&{ligtable} primitive@>
23348 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23349 @:extensible_}{\&{extensible} primitive@>
23350 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23351 @:header_byte_}{\&{headerbyte} primitive@>
23352 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23353 @:font_dimen_}{\&{fontdimen} primitive@>
23355 @ @<Cases of |print_cmd...@>=
23358 case char_list_code:mp_print(mp, "charlist"); break;
23359 case lig_table_code:mp_print(mp, "ligtable"); break;
23360 case extensible_code:mp_print(mp, "extensible"); break;
23361 case header_byte_code:mp_print(mp, "headerbyte"); break;
23362 default: mp_print(mp, "fontdimen"); break;
23366 @ @<Declare action procedures for use by |do_statement|@>=
23367 eight_bits mp_get_code (MP mp) ;
23369 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23370 integer c; /* the code value found */
23371 mp_get_x_next(mp); mp_scan_expression(mp);
23372 if ( mp->cur_type==mp_known ) {
23373 c=mp_round_unscaled(mp, mp->cur_exp);
23374 if ( c>=0 ) if ( c<256 ) return c;
23375 } else if ( mp->cur_type==mp_string_type ) {
23376 if ( length(mp->cur_exp)==1 ) {
23377 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23381 exp_err("Invalid code has been replaced by 0");
23382 @.Invalid code...@>
23383 help2("I was looking for a number between 0 and 255, or for a")
23384 ("string of length 1. Didn't find it; will use 0 instead.");
23385 mp_put_get_flush_error(mp, 0); c=0;
23389 @ @<Declare action procedures for use by |do_statement|@>=
23390 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23392 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23393 if ( mp->char_tag[c]==no_tag ) {
23394 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23396 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23397 mp->label_char[mp->label_ptr]=c;
23400 @<Complain about a character tag conflict@>;
23404 @ @<Complain about a character tag conflict@>=
23406 print_err("Character ");
23407 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23408 else if ( c==256 ) mp_print(mp, "||");
23409 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23410 mp_print(mp, " is already ");
23411 @.Character c is already...@>
23412 switch (mp->char_tag[c]) {
23413 case lig_tag: mp_print(mp, "in a ligtable"); break;
23414 case list_tag: mp_print(mp, "in a charlist"); break;
23415 case ext_tag: mp_print(mp, "extensible"); break;
23416 } /* there are no other cases */
23417 help2("It's not legal to label a character more than once.")
23418 ("So I'll not change anything just now.");
23419 mp_put_get_error(mp);
23422 @ @<Declare action procedures for use by |do_statement|@>=
23423 void mp_do_tfm_command (MP mp) ;
23425 @ @c void mp_do_tfm_command (MP mp) {
23426 int c,cc; /* character codes */
23427 int k; /* index into the |kern| array */
23428 int j; /* index into |header_byte| or |param| */
23429 switch (mp->cur_mod) {
23430 case char_list_code:
23432 /* we will store a list of character successors */
23433 while ( mp->cur_cmd==colon ) {
23434 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23437 case lig_table_code:
23438 if (mp->lig_kern==NULL)
23439 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23440 if (mp->kern==NULL)
23441 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23442 @<Store a list of ligature/kern steps@>;
23444 case extensible_code:
23445 @<Define an extensible recipe@>;
23447 case header_byte_code:
23448 case font_dimen_code:
23449 c=mp->cur_mod; mp_get_x_next(mp);
23450 mp_scan_expression(mp);
23451 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23452 exp_err("Improper location");
23453 @.Improper location@>
23454 help2("I was looking for a known, positive number.")
23455 ("For safety's sake I'll ignore the present command.");
23456 mp_put_get_error(mp);
23458 j=mp_round_unscaled(mp, mp->cur_exp);
23459 if ( mp->cur_cmd!=colon ) {
23460 mp_missing_err(mp, ":");
23462 help1("A colon should follow a headerbyte or fontinfo location.");
23465 if ( c==header_byte_code ) {
23466 @<Store a list of header bytes@>;
23468 if (mp->param==NULL)
23469 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23470 @<Store a list of font dimensions@>;
23474 } /* there are no other cases */
23477 @ @<Store a list of ligature/kern steps@>=
23479 mp->lk_started=false;
23482 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23483 @<Process a |skip_to| command and |goto done|@>;
23484 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23485 else { mp_back_input(mp); c=mp_get_code(mp); };
23486 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23487 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23489 if ( mp->cur_cmd==lig_kern_token ) {
23490 @<Compile a ligature/kern command@>;
23492 print_err("Illegal ligtable step");
23493 @.Illegal ligtable step@>
23494 help1("I was looking for `=:' or `kern' here.");
23495 mp_back_error(mp); next_char(mp->nl)=qi(0);
23496 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23497 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23499 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23501 if ( mp->cur_cmd==comma ) goto CONTINUE;
23502 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23507 mp_primitive(mp, "=:",lig_kern_token,0);
23508 @:=:_}{\.{=:} primitive@>
23509 mp_primitive(mp, "=:|",lig_kern_token,1);
23510 @:=:/_}{\.{=:\char'174} primitive@>
23511 mp_primitive(mp, "=:|>",lig_kern_token,5);
23512 @:=:/>_}{\.{=:\char'174>} primitive@>
23513 mp_primitive(mp, "|=:",lig_kern_token,2);
23514 @:=:/_}{\.{\char'174=:} primitive@>
23515 mp_primitive(mp, "|=:>",lig_kern_token,6);
23516 @:=:/>_}{\.{\char'174=:>} primitive@>
23517 mp_primitive(mp, "|=:|",lig_kern_token,3);
23518 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23519 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23520 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23521 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23522 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23523 mp_primitive(mp, "kern",lig_kern_token,128);
23524 @:kern_}{\&{kern} primitive@>
23526 @ @<Cases of |print_cmd...@>=
23527 case lig_kern_token:
23529 case 0:mp_print(mp, "=:"); break;
23530 case 1:mp_print(mp, "=:|"); break;
23531 case 2:mp_print(mp, "|=:"); break;
23532 case 3:mp_print(mp, "|=:|"); break;
23533 case 5:mp_print(mp, "=:|>"); break;
23534 case 6:mp_print(mp, "|=:>"); break;
23535 case 7:mp_print(mp, "|=:|>"); break;
23536 case 11:mp_print(mp, "|=:|>>"); break;
23537 default: mp_print(mp, "kern"); break;
23541 @ Local labels are implemented by maintaining the |skip_table| array,
23542 where |skip_table[c]| is either |undefined_label| or the address of the
23543 most recent lig/kern instruction that skips to local label~|c|. In the
23544 latter case, the |skip_byte| in that instruction will (temporarily)
23545 be zero if there were no prior skips to this label, or it will be the
23546 distance to the prior skip.
23548 We may need to cancel skips that span more than 127 lig/kern steps.
23550 @d cancel_skips(A) mp->ll=(A);
23552 mp->lll=qo(skip_byte(mp->ll));
23553 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23554 } while (mp->lll!=0)
23555 @d skip_error(A) { print_err("Too far to skip");
23556 @.Too far to skip@>
23557 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23558 mp_error(mp); cancel_skips((A));
23561 @<Process a |skip_to| command and |goto done|@>=
23564 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23565 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23567 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23568 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23569 mp->skip_table[c]=mp->nl-1; goto DONE;
23572 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23574 if ( mp->cur_cmd==colon ) {
23575 if ( c==256 ) mp->bch_label=mp->nl;
23576 else mp_set_tag(mp, c,lig_tag,mp->nl);
23577 } else if ( mp->skip_table[c]<undefined_label ) {
23578 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23580 mp->lll=qo(skip_byte(mp->ll));
23581 if ( mp->nl-mp->ll>128 ) {
23582 skip_error(mp->ll); goto CONTINUE;
23584 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23585 } while (mp->lll!=0);
23590 @ @<Compile a ligature/kern...@>=
23592 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23593 if ( mp->cur_mod<128 ) { /* ligature op */
23594 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23596 mp_get_x_next(mp); mp_scan_expression(mp);
23597 if ( mp->cur_type!=mp_known ) {
23598 exp_err("Improper kern");
23600 help2("The amount of kern should be a known numeric value.")
23601 ("I'm zeroing this one. Proceed, with fingers crossed.");
23602 mp_put_get_flush_error(mp, 0);
23604 mp->kern[mp->nk]=mp->cur_exp;
23606 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23608 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23611 op_byte(mp->nl)=kern_flag+(k / 256);
23612 rem_byte(mp->nl)=qi((k % 256));
23614 mp->lk_started=true;
23617 @ @d missing_extensible_punctuation(A)
23618 { mp_missing_err(mp, (A));
23619 @.Missing `\char`\#'@>
23620 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23623 @<Define an extensible recipe@>=
23625 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23626 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23627 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23628 ext_top(mp->ne)=qi(mp_get_code(mp));
23629 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23630 ext_mid(mp->ne)=qi(mp_get_code(mp));
23631 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23632 ext_bot(mp->ne)=qi(mp_get_code(mp));
23633 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23634 ext_rep(mp->ne)=qi(mp_get_code(mp));
23638 @ The header could contain ASCII zeroes, so can't use |strdup|.
23640 @<Store a list of header bytes@>=
23642 if ( j>=mp->header_size ) {
23643 int l = mp->header_size + (mp->header_size >> 2);
23644 char *t = xmalloc(l,sizeof(char));
23646 memcpy(t,mp->header_byte,mp->header_size);
23647 xfree (mp->header_byte);
23648 mp->header_byte = t;
23649 mp->header_size = l;
23651 mp->header_byte[j]=mp_get_code(mp);
23652 incr(j); incr(mp->header_last);
23653 } while (mp->cur_cmd==comma)
23655 @ @<Store a list of font dimensions@>=
23657 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23658 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23659 mp_get_x_next(mp); mp_scan_expression(mp);
23660 if ( mp->cur_type!=mp_known ){
23661 exp_err("Improper font parameter");
23662 @.Improper font parameter@>
23663 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23664 mp_put_get_flush_error(mp, 0);
23666 mp->param[j]=mp->cur_exp; incr(j);
23667 } while (mp->cur_cmd==comma)
23669 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23670 All that remains is to output it in the correct format.
23672 An interesting problem needs to be solved in this connection, because
23673 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23674 and 64~italic corrections. If the data has more distinct values than
23675 this, we want to meet the necessary restrictions by perturbing the
23676 given values as little as possible.
23678 \MP\ solves this problem in two steps. First the values of a given
23679 kind (widths, heights, depths, or italic corrections) are sorted;
23680 then the list of sorted values is perturbed, if necessary.
23682 The sorting operation is facilitated by having a special node of
23683 essentially infinite |value| at the end of the current list.
23685 @<Initialize table entries...@>=
23686 value(inf_val)=fraction_four;
23688 @ Straight linear insertion is good enough for sorting, since the lists
23689 are usually not terribly long. As we work on the data, the current list
23690 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23691 list will be in increasing order of their |value| fields.
23693 Given such a list, the |sort_in| function takes a value and returns a pointer
23694 to where that value can be found in the list. The value is inserted in
23695 the proper place, if necessary.
23697 At the time we need to do these operations, most of \MP's work has been
23698 completed, so we will have plenty of memory to play with. The value nodes
23699 that are allocated for sorting will never be returned to free storage.
23701 @d clear_the_list link(temp_head)=inf_val
23703 @c pointer mp_sort_in (MP mp,scaled v) {
23704 pointer p,q,r; /* list manipulation registers */
23708 if ( v<=value(q) ) break;
23711 if ( v<value(q) ) {
23712 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23717 @ Now we come to the interesting part, where we reduce the list if necessary
23718 until it has the required size. The |min_cover| routine is basic to this
23719 process; it computes the minimum number~|m| such that the values of the
23720 current sorted list can be covered by |m|~intervals of width~|d|. It
23721 also sets the global value |perturbation| to the smallest value $d'>d$
23722 such that the covering found by this algorithm would be different.
23724 In particular, |min_cover(0)| returns the number of distinct values in the
23725 current list and sets |perturbation| to the minimum distance between
23728 @c integer mp_min_cover (MP mp,scaled d) {
23729 pointer p; /* runs through the current list */
23730 scaled l; /* the least element covered by the current interval */
23731 integer m; /* lower bound on the size of the minimum cover */
23732 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23733 while ( p!=inf_val ){
23734 incr(m); l=value(p);
23735 do { p=link(p); } while (value(p)<=l+d);
23736 if ( value(p)-l<mp->perturbation )
23737 mp->perturbation=value(p)-l;
23743 scaled perturbation; /* quantity related to \.{TFM} rounding */
23744 integer excess; /* the list is this much too long */
23746 @ The smallest |d| such that a given list can be covered with |m| intervals
23747 is determined by the |threshold| routine, which is sort of an inverse
23748 to |min_cover|. The idea is to increase the interval size rapidly until
23749 finding the range, then to go sequentially until the exact borderline has
23752 @c scaled mp_threshold (MP mp,integer m) {
23753 scaled d; /* lower bound on the smallest interval size */
23754 mp->excess=mp_min_cover(mp, 0)-m;
23755 if ( mp->excess<=0 ) {
23759 d=mp->perturbation;
23760 } while (mp_min_cover(mp, d+d)>m);
23761 while ( mp_min_cover(mp, d)>m )
23762 d=mp->perturbation;
23767 @ The |skimp| procedure reduces the current list to at most |m| entries,
23768 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23769 is the |k|th distinct value on the resulting list, and it sets
23770 |perturbation| to the maximum amount by which a |value| field has
23771 been changed. The size of the resulting list is returned as the
23774 @c integer mp_skimp (MP mp,integer m) {
23775 scaled d; /* the size of intervals being coalesced */
23776 pointer p,q,r; /* list manipulation registers */
23777 scaled l; /* the least value in the current interval */
23778 scaled v; /* a compromise value */
23779 d=mp_threshold(mp, m); mp->perturbation=0;
23780 q=temp_head; m=0; p=link(temp_head);
23781 while ( p!=inf_val ) {
23782 incr(m); l=value(p); info(p)=m;
23783 if ( value(link(p))<=l+d ) {
23784 @<Replace an interval of values by its midpoint@>;
23791 @ @<Replace an interval...@>=
23794 p=link(p); info(p)=m;
23795 decr(mp->excess); if ( mp->excess==0 ) d=0;
23796 } while (value(link(p))<=l+d);
23797 v=l+halfp(value(p)-l);
23798 if ( value(p)-v>mp->perturbation )
23799 mp->perturbation=value(p)-v;
23802 r=link(r); value(r)=v;
23804 link(q)=p; /* remove duplicate values from the current list */
23807 @ A warning message is issued whenever something is perturbed by
23808 more than 1/16\thinspace pt.
23810 @c void mp_tfm_warning (MP mp,small_number m) {
23811 mp_print_nl(mp, "(some ");
23812 mp_print(mp, mp->int_name[m]);
23813 @.some charwds...@>
23814 @.some chardps...@>
23815 @.some charhts...@>
23816 @.some charics...@>
23817 mp_print(mp, " values had to be adjusted by as much as ");
23818 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
23821 @ Here's an example of how we use these routines.
23822 The width data needs to be perturbed only if there are 256 distinct
23823 widths, but \MP\ must check for this case even though it is
23826 An integer variable |k| will be defined when we use this code.
23827 The |dimen_head| array will contain pointers to the sorted
23828 lists of dimensions.
23830 @<Massage the \.{TFM} widths@>=
23832 for (k=mp->bc;k<=mp->ec;k++) {
23833 if ( mp->char_exists[k] )
23834 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
23836 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
23837 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_wd)
23840 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
23842 @ Heights, depths, and italic corrections are different from widths
23843 not only because their list length is more severely restricted, but
23844 also because zero values do not need to be put into the lists.
23846 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
23848 for (k=mp->bc;k<=mp->ec;k++) {
23849 if ( mp->char_exists[k] ) {
23850 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
23851 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
23854 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
23855 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ht);
23857 for (k=mp->bc;k<=mp->ec;k++) {
23858 if ( mp->char_exists[k] ) {
23859 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
23860 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
23863 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
23864 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_dp);
23866 for (k=mp->bc;k<=mp->ec;k++) {
23867 if ( mp->char_exists[k] ) {
23868 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
23869 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
23872 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
23873 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ic)
23875 @ @<Initialize table entries...@>=
23876 value(zero_val)=0; info(zero_val)=0;
23878 @ Bytes 5--8 of the header are set to the design size, unless the user has
23879 some crazy reason for specifying them differently.
23881 Error messages are not allowed at the time this procedure is called,
23882 so a warning is printed instead.
23884 The value of |max_tfm_dimen| is calculated so that
23885 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
23886 < \\{three\_bytes}.$$
23888 @d three_bytes 0100000000 /* $2^{24}$ */
23891 void mp_fix_design_size (MP mp) {
23892 scaled d; /* the design size */
23893 d=mp->internal[design_size];
23894 if ( (d<unity)||(d>=fraction_half) ) {
23896 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
23897 @.illegal design size...@>
23898 d=040000000; mp->internal[design_size]=d;
23900 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
23901 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
23902 mp->header_byte[4]=d / 04000000;
23903 mp->header_byte[5]=(d / 4096) % 256;
23904 mp->header_byte[6]=(d / 16) % 256;
23905 mp->header_byte[7]=(d % 16)*16;
23907 mp->max_tfm_dimen=16*mp->internal[design_size]-mp->internal[design_size] / 010000000;
23908 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
23911 @ The |dimen_out| procedure computes a |fix_word| relative to the
23912 design size. If the data was out of range, it is corrected and the
23913 global variable |tfm_changed| is increased by~one.
23915 @c integer mp_dimen_out (MP mp,scaled x) {
23916 if ( abs(x)>mp->max_tfm_dimen ) {
23917 incr(mp->tfm_changed);
23918 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
23920 x=mp_make_scaled(mp, x*16,mp->internal[design_size]);
23926 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
23927 integer tfm_changed; /* the number of data entries that were out of bounds */
23929 @ If the user has not specified any of the first four header bytes,
23930 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
23931 from the |tfm_width| data relative to the design size.
23934 @c void mp_fix_check_sum (MP mp) {
23935 eight_bits k; /* runs through character codes */
23936 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
23937 integer x; /* hash value used in check sum computation */
23938 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
23939 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
23940 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
23941 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
23942 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
23947 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
23948 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
23949 for (k=mp->bc;k<=mp->ec;k++) {
23950 if ( mp->char_exists[k] ) {
23951 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
23952 B1=(B1+B1+x) % 255;
23953 B2=(B2+B2+x) % 253;
23954 B3=(B3+B3+x) % 251;
23955 B4=(B4+B4+x) % 247;
23959 @ Finally we're ready to actually write the \.{TFM} information.
23960 Here are some utility routines for this purpose.
23962 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
23964 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
23965 tfm_out(x / 256); tfm_out(x % 256);
23967 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
23968 if ( x>=0 ) tfm_out(x / three_bytes);
23970 x=x+010000000000; /* use two's complement for negative values */
23972 tfm_out((x / three_bytes) + 128);
23974 x=x % three_bytes; tfm_out(x / unity);
23975 x=x % unity; tfm_out(x / 0400);
23978 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
23979 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
23980 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
23983 @ @<Finish the \.{TFM} file@>=
23984 if ( mp->job_name==NULL ) mp_open_log_file(mp);
23985 mp_pack_job_name(mp, ".tfm");
23986 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
23987 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
23988 mp->metric_file_name=xstrdup(mp->name_of_file);
23989 @<Output the subfile sizes and header bytes@>;
23990 @<Output the character information bytes, then
23991 output the dimensions themselves@>;
23992 @<Output the ligature/kern program@>;
23993 @<Output the extensible character recipes and the font metric parameters@>;
23994 if ( mp->internal[tracing_stats]>0 )
23995 @<Log the subfile sizes of the \.{TFM} file@>;
23996 mp_print_nl(mp, "Font metrics written on ");
23997 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
23998 @.Font metrics written...@>
23999 fclose(mp->tfm_file)
24001 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24004 @<Output the subfile sizes and header bytes@>=
24006 LH=(k+3) / 4; /* this is the number of header words */
24007 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24008 @<Compute the ligature/kern program offset and implant the
24009 left boundary label@>;
24010 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24011 +lk_offset+mp->nk+mp->ne+mp->np);
24012 /* this is the total number of file words that will be output */
24013 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24014 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24015 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24016 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24017 mp_tfm_two(mp, mp->np);
24018 for (k=0;k< 4*LH;k++) {
24019 tfm_out(mp->header_byte[k]);
24022 @ @<Output the character information bytes...@>=
24023 for (k=mp->bc;k<=mp->ec;k++) {
24024 if ( ! mp->char_exists[k] ) {
24025 mp_tfm_four(mp, 0);
24027 tfm_out(info(mp->tfm_width[k])); /* the width index */
24028 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24029 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24030 tfm_out(mp->char_remainder[k]);
24034 for (k=1;k<=4;k++) {
24035 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24036 while ( p!=inf_val ) {
24037 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24042 @ We need to output special instructions at the beginning of the
24043 |lig_kern| array in order to specify the right boundary character
24044 and/or to handle starting addresses that exceed 255. The |label_loc|
24045 and |label_char| arrays have been set up to record all the
24046 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24047 \le|label_loc|[|label_ptr]|$.
24049 @<Compute the ligature/kern program offset...@>=
24050 mp->bchar=mp_round_unscaled(mp, mp->internal[boundary_char]);
24051 if ((mp->bchar<0)||(mp->bchar>255))
24052 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24053 else { mp->lk_started=true; lk_offset=1; };
24054 @<Find the minimum |lk_offset| and adjust all remainders@>;
24055 if ( mp->bch_label<undefined_label )
24056 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24057 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24058 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24059 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24062 @ @<Find the minimum |lk_offset|...@>=
24063 k=mp->label_ptr; /* pointer to the largest unallocated label */
24064 if ( mp->label_loc[k]+lk_offset>255 ) {
24065 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24067 mp->char_remainder[mp->label_char[k]]=lk_offset;
24068 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24069 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24071 incr(lk_offset); decr(k);
24072 } while (! (lk_offset+mp->label_loc[k]<256));
24073 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24075 if ( lk_offset>0 ) {
24077 mp->char_remainder[mp->label_char[k]]
24078 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24083 @ @<Output the ligature/kern program@>=
24084 for (k=0;k<= 255;k++ ) {
24085 if ( mp->skip_table[k]<undefined_label ) {
24086 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24087 @.local label l:: was missing@>
24088 cancel_skips(mp->skip_table[k]);
24091 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24092 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24094 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24095 mp->ll=mp->label_loc[mp->label_ptr];
24096 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24097 else { tfm_out(255); tfm_out(mp->bchar); };
24098 mp_tfm_two(mp, mp->ll+lk_offset);
24100 decr(mp->label_ptr);
24101 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24104 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24105 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24107 @ @<Output the extensible character recipes...@>=
24108 for (k=0;k<=mp->ne-1;k++)
24109 mp_tfm_qqqq(mp, mp->exten[k]);
24110 for (k=1;k<=mp->np;k++) {
24112 if ( abs(mp->param[1])<fraction_half ) {
24113 mp_tfm_four(mp, mp->param[1]*16);
24115 incr(mp->tfm_changed);
24116 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24117 else mp_tfm_four(mp, -el_gordo);
24120 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24123 if ( mp->tfm_changed>0 ) {
24124 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24125 @.a font metric dimension...@>
24127 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24128 @.font metric dimensions...@>
24129 mp_print(mp, " font metric dimensions");
24131 mp_print(mp, " had to be decreased)");
24134 @ @<Log the subfile sizes of the \.{TFM} file@>=
24138 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24139 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24140 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24144 @* \[43] Reading font metric data.
24146 \MP\ isn't a typesetting program but it does need to find the bounding box
24147 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24148 well as write them.
24153 @ All the width, height, and depth information is stored in an array called
24154 |font_info|. This array is allocated sequentially and each font is stored
24155 as a series of |char_info| words followed by the width, height, and depth
24156 tables. Since |font_name| entries are permanent, their |str_ref| values are
24157 set to |max_str_ref|.
24160 typedef unsigned int font_number; /* |0..font_max| */
24162 @ The |font_info| array is indexed via a group directory arrays.
24163 For example, the |char_info| data for character~|c| in font~|f| will be
24164 in |font_info[char_base[f]+c].qqqq|.
24167 font_number font_max; /* maximum font number for included text fonts */
24168 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24169 memory_word *font_info; /* height, width, and depth data */
24170 char **font_enc_name; /* encoding names, if any */
24171 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24172 int next_fmem; /* next unused entry in |font_info| */
24173 font_number last_fnum; /* last font number used so far */
24174 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24175 char **font_name; /* name as specified in the \&{infont} command */
24176 char **font_ps_name; /* PostScript name for use when |internal[prologues]>0| */
24177 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24178 eight_bits *font_bc;
24179 eight_bits *font_ec; /* first and last character code */
24180 int *char_base; /* base address for |char_info| */
24181 int *width_base; /* index for zeroth character width */
24182 int *height_base; /* index for zeroth character height */
24183 int *depth_base; /* index for zeroth character depth */
24184 pointer *font_sizes;
24186 @ @<Allocate or initialize ...@>=
24187 mp->font_mem_size = 10000;
24188 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24189 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24190 mp->font_enc_name = NULL;
24191 mp->font_ps_name_fixed = NULL;
24192 mp->font_dsize = NULL;
24193 mp->font_name = NULL;
24194 mp->font_ps_name = NULL;
24195 mp->font_bc = NULL;
24196 mp->font_ec = NULL;
24197 mp->last_fnum = null_font;
24198 mp->char_base = NULL;
24199 mp->width_base = NULL;
24200 mp->height_base = NULL;
24201 mp->depth_base = NULL;
24202 mp->font_sizes = null;
24204 @ @<Dealloc variables@>=
24205 xfree(mp->font_info);
24206 xfree(mp->font_enc_name);
24207 xfree(mp->font_ps_name_fixed);
24208 xfree(mp->font_dsize);
24209 xfree(mp->font_name);
24210 xfree(mp->font_ps_name);
24211 xfree(mp->font_bc);
24212 xfree(mp->font_ec);
24213 xfree(mp->char_base);
24214 xfree(mp->width_base);
24215 xfree(mp->height_base);
24216 xfree(mp->depth_base);
24217 xfree(mp->font_sizes);
24221 void mp_reallocate_fonts (MP mp, font_number l) {
24223 XREALLOC(mp->font_enc_name, (l+1), char *);
24224 XREALLOC(mp->font_ps_name_fixed, (l+1), boolean);
24225 XREALLOC(mp->font_dsize, (l+1), scaled);
24226 XREALLOC(mp->font_name, (l+1), char *);
24227 XREALLOC(mp->font_ps_name, (l+1), char *);
24228 XREALLOC(mp->font_bc, (l+1), eight_bits);
24229 XREALLOC(mp->font_ec, (l+1), eight_bits);
24230 XREALLOC(mp->char_base, (l+1), int);
24231 XREALLOC(mp->width_base, (l+1), int);
24232 XREALLOC(mp->height_base, (l+1), int);
24233 XREALLOC(mp->depth_base, (l+1), int);
24234 XREALLOC(mp->font_sizes, (l+1), pointer);
24235 for (f=(mp->last_fnum+1);f<=l;f++) {
24236 mp->font_enc_name[f]=NULL;
24237 mp->font_ps_name_fixed[f] = false;
24238 mp->font_name[f]=NULL;
24239 mp->font_ps_name[f]=NULL;
24240 mp->font_sizes[f]=null;
24245 @ @<Declare |mp_reallocate| functions@>=
24246 void mp_reallocate_fonts (MP mp, font_number l);
24249 @ A |null_font| containing no characters is useful for error recovery. Its
24250 |font_name| entry starts out empty but is reset each time an erroneous font is
24251 found. This helps to cut down on the number of duplicate error messages without
24252 wasting a lot of space.
24254 @d null_font 0 /* the |font_number| for an empty font */
24256 @<Set initial...@>=
24257 mp->font_dsize[null_font]=0;
24258 mp->font_bc[null_font]=1;
24259 mp->font_ec[null_font]=0;
24260 mp->char_base[null_font]=0;
24261 mp->width_base[null_font]=0;
24262 mp->height_base[null_font]=0;
24263 mp->depth_base[null_font]=0;
24265 mp->last_fnum=null_font;
24266 mp->last_ps_fnum=null_font;
24267 mp->font_name[null_font]="nullfont";
24268 mp->font_ps_name[null_font]="";
24270 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24271 the |width index|; the |b1| field contains the height
24272 index; the |b2| fields contains the depth index, and the |b3| field used only
24273 for temporary storage. (It is used to keep track of which characters occur in
24274 an edge structure that is being shipped out.)
24275 The corresponding words in the width, height, and depth tables are stored as
24276 |scaled| values in units of \ps\ points.
24278 With the macros below, the |char_info| word for character~|c| in font~|f| is
24279 |char_info(f)(c)| and the width is
24280 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24282 @d char_info_end(A) (A)].qqqq
24283 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24284 @d char_width_end(A) (A).b0].sc
24285 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24286 @d char_height_end(A) (A).b1].sc
24287 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24288 @d char_depth_end(A) (A).b2].sc
24289 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24290 @d ichar_exists(A) ((A).b0>0)
24292 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24293 A preliminary name is obtained here from the \.{TFM} name as given in the
24294 |fname| argument. This gets updated later from an external table if necessary.
24296 @<Declare text measuring subroutines@>=
24297 @<Declare subroutines for parsing file names@>;
24298 font_number mp_read_font_info (MP mp, char*fname) {
24299 boolean file_opened; /* has |tfm_infile| been opened? */
24300 font_number n; /* the number to return */
24301 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24302 size_t whd_size; /* words needed for heights, widths, and depths */
24303 int i,ii; /* |font_info| indices */
24304 int jj; /* counts bytes to be ignored */
24305 scaled z; /* used to compute the design size */
24307 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24308 eight_bits h_and_d; /* height and depth indices being unpacked */
24309 int tfbyte; /* a byte read from the file */
24311 @<Open |tfm_infile| for input@>;
24312 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24313 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24315 @<Complain that the \.{TFM} file is bad@>;
24317 if ( file_opened ) fclose(mp->tfm_infile);
24318 if ( n!=null_font ) {
24319 mp->font_ps_name[n]=fname;
24320 mp->font_name[n]=fname;
24325 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24326 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24327 @.TFtoPL@> @.PLtoTF@>
24328 and \.{PLtoTF} can be used to debug \.{TFM} files.
24330 @<Complain that the \.{TFM} file is bad@>=
24331 print_err("Font ");
24332 mp_print(mp, fname);
24333 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24334 else mp_print(mp, " not usable: TFM file not found");
24335 help3("I wasn't able to read the size data for this font so this")
24336 ("`infont' operation won't produce anything. If the font name")
24337 ("is right, you might ask an expert to make a TFM file");
24339 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24342 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24343 @<Read the \.{TFM} size fields@>;
24344 @<Use the size fields to allocate space in |font_info|@>;
24345 @<Read the \.{TFM} header@>;
24346 @<Read the character data and the width, height, and depth tables and
24349 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24350 might try to read past the end of the file if this happens. Changes will be
24351 needed if it causes a system error to refer to |tfm_infile^| or call
24352 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24353 @^system dependencies@>
24354 of |tfget| could be changed to
24355 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24357 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24358 @d read_two(A) { (A)=tfbyte;
24359 if ( (A)>127 ) goto BAD_TFM;
24360 tfget; (A)=(A)*0400+tfbyte;
24362 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24364 @<Read the \.{TFM} size fields@>=
24365 tfget; read_two(lf);
24366 tfget; read_two(tfm_lh);
24367 tfget; read_two(bc);
24368 tfget; read_two(ec);
24369 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24370 tfget; read_two(nw);
24371 tfget; read_two(nh);
24372 tfget; read_two(nd);
24373 whd_size=(ec+1-bc)+nw+nh+nd;
24374 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24377 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24378 necessary to apply the |so| and |qo| macros when looking up the width of a
24379 character in the string pool. In order to ensure nonnegative |char_base|
24380 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24383 @<Use the size fields to allocate space in |font_info|@>=
24384 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24385 if (mp->last_fnum==mp->font_max)
24386 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24387 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24388 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24389 memory_word *font_info;
24390 font_info = xmalloc ((l+1),sizeof(memory_word));
24391 memset (font_info,0,sizeof(memory_word)*(l+1));
24392 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24393 xfree(mp->font_info);
24394 mp->font_info = font_info;
24395 mp->font_mem_size = l;
24397 incr(mp->last_fnum);
24401 mp->char_base[n]=mp->next_fmem-bc;
24402 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24403 mp->height_base[n]=mp->width_base[n]+nw;
24404 mp->depth_base[n]=mp->height_base[n]+nh;
24405 mp->next_fmem=mp->next_fmem+whd_size;
24408 @ @<Read the \.{TFM} header@>=
24409 if ( tfm_lh<2 ) goto BAD_TFM;
24411 tfget; read_two(z);
24412 tfget; z=z*0400+tfbyte;
24413 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24414 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24415 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24416 tf_ignore(4*(tfm_lh-2))
24418 @ @<Read the character data and the width, height, and depth tables...@>=
24419 ii=mp->width_base[n];
24420 i=mp->char_base[n]+bc;
24422 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24423 tfget; h_and_d=tfbyte;
24424 mp->font_info[i].qqqq.b1=h_and_d / 16;
24425 mp->font_info[i].qqqq.b2=h_and_d % 16;
24429 while ( i<mp->next_fmem ) {
24430 @<Read a four byte dimension, scale it by the design size, store it in
24431 |font_info[i]|, and increment |i|@>;
24433 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24436 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24437 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24438 we can multiply it by sixteen and think of it as a |fraction| that has been
24439 divided by sixteen. This cancels the extra scale factor contained in
24442 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24445 if ( d>=0200 ) d=d-0400;
24446 tfget; d=d*0400+tfbyte;
24447 tfget; d=d*0400+tfbyte;
24448 tfget; d=d*0400+tfbyte;
24449 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24453 @ This function does no longer use the file name parser, because |fname| is
24454 a C string already.
24455 @<Open |tfm_infile| for input@>=
24457 mp_ptr_scan_file(mp, fname);
24458 if ( strlen(mp->cur_area)==0 ) mp->cur_area=xstrdup(MP_font_area);
24459 if ( strlen(mp->cur_ext)==0 ) mp->cur_ext=xstrdup(".tfm");
24460 mp->tfm_infile = mp_open_file(mp, fname, "rb",mp_filetype_metrics);
24461 if ( !mp->tfm_infile ) goto BAD_TFM;
24464 @ When we have a font name and we don't know whether it has been loaded yet,
24465 we scan the |font_name| array before calling |read_font_info|.
24467 @<Declare text measuring subroutines@>=
24468 font_number mp_find_font (MP mp, char *f) {
24470 for (n=0;n<=mp->last_fnum;n++) {
24471 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24474 return mp_read_font_info(mp, f);
24477 @ One simple application of |find_font| is the implementation of the |font_size|
24478 operator that gets the design size for a given font name.
24480 @<Find the design size of the font whose name is |cur_exp|@>=
24481 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24483 @ If we discover that the font doesn't have a requested character, we omit it
24484 from the bounding box computation and expect the \ps\ interpreter to drop it.
24485 This routine issues a warning message if the user has asked for it.
24487 @<Declare text measuring subroutines@>=
24488 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24489 if ( mp->internal[tracing_lost_chars]>0 ) {
24490 mp_begin_diagnostic(mp);
24491 if ( mp->selector==log_only ) incr(mp->selector);
24492 mp_print_nl(mp, "Missing character: There is no ");
24493 @.Missing character@>
24494 mp_print_str(mp, mp->str_pool[k]);
24495 mp_print(mp, " in font ");
24496 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24497 mp_end_diagnostic(mp, false);
24501 @ The whole purpose of saving the height, width, and depth information is to be
24502 able to find the bounding box of an item of text in an edge structure. The
24503 |set_text_box| procedure takes a text node and adds this information.
24505 @<Declare text measuring subroutines@>=
24506 void mp_set_text_box (MP mp,pointer p) {
24507 font_number f; /* |font_n(p)| */
24508 ASCII_code bc,ec; /* range of valid characters for font |f| */
24509 pool_pointer k,kk; /* current character and character to stop at */
24510 four_quarters cc; /* the |char_info| for the current character */
24511 scaled h,d; /* dimensions of the current character */
24513 height_val(p)=-el_gordo;
24514 depth_val(p)=-el_gordo;
24518 kk=str_stop(text_p(p));
24519 k=mp->str_start[text_p(p)];
24521 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24523 @<Set the height and depth to zero if the bounding box is empty@>;
24526 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24528 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24529 mp_lost_warning(mp, f,k);
24531 cc=char_info(f)(mp->str_pool[k]);
24532 if ( ! ichar_exists(cc) ) {
24533 mp_lost_warning(mp, f,k);
24535 width_val(p)=width_val(p)+char_width(f)(cc);
24536 h=char_height(f)(cc);
24537 d=char_depth(f)(cc);
24538 if ( h>height_val(p) ) height_val(p)=h;
24539 if ( d>depth_val(p) ) depth_val(p)=d;
24545 @ Let's hope modern compilers do comparisons correctly when the difference would
24548 @<Set the height and depth to zero if the bounding box is empty@>=
24549 if ( height_val(p)<-depth_val(p) ) {
24554 @ The new primitives fontmapfile and fontmapline.
24556 @<Declare action procedures for use by |do_statement|@>=
24557 void mp_do_mapfile (MP mp) ;
24558 void mp_do_mapline (MP mp) ;
24560 @ @c void mp_do_mapfile (MP mp) {
24561 mp_get_x_next(mp); mp_scan_expression(mp);
24562 if ( mp->cur_type!=mp_string_type ) {
24563 @<Complain about improper map operation@>;
24565 mp_map_file(mp,mp->cur_exp);
24568 void mp_do_mapline (MP mp) {
24569 mp_get_x_next(mp); mp_scan_expression(mp);
24570 if ( mp->cur_type!=mp_string_type ) {
24571 @<Complain about improper map operation@>;
24573 mp_map_line(mp,mp->cur_exp);
24577 @ @<Complain about improper map operation@>=
24579 exp_err("Unsuitable expression");
24580 help1("Only known strings can be map files or map lines.");
24581 mp_put_get_error(mp);
24585 @<Declare the \ps\ output procedures@>=
24586 void mp_ps_print_cmd (MP mp, char *l, char *s) {
24587 if ( mp->internal[mpprocset]>0 ) { ps_room(strlen(s)); mp_print(mp,s); }
24588 else { ps_room(strlen(l)); mp_print(mp, l); };
24590 void mp_print_cmd (MP mp,char *l, char *s) {
24591 if ( mp->internal[mpprocset]>0 ) mp_print(mp, s);
24592 else mp_print(mp, l);
24595 @ To print |scaled| value to PDF output we need some subroutines to ensure
24598 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24601 scaled one_bp; /* scaled value corresponds to 1bp */
24602 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24603 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24604 integer ten_pow[10]; /* $10^0..10^9$ */
24605 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24608 mp->one_bp = 65782; /* 65781.76 */
24609 mp->one_hundred_bp = 6578176;
24610 mp->one_hundred_inch = 473628672;
24611 mp->ten_pow[0] = 1;
24612 for (i = 1;i<= 9; i++ ) {
24613 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24616 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24618 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24622 if ( s < 0 ) { sign = -sign; s = -s; }
24623 if ( m < 0 ) { sign = -sign; m = -m; }
24625 mp_confusion(mp, "arithmetic: divided by zero");
24626 else if ( m >= (max_integer / 10) )
24627 mp_confusion(mp, "arithmetic: number too big");
24630 for (i = 1;i<=dd;i++) {
24631 q = 10*q + (10*r) / m;
24634 if ( 2*r >= m ) { incr(q); r = r - m; }
24635 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24639 @* \[44] Shipping pictures out.
24640 The |ship_out| procedure, to be described below, is given a pointer to
24641 an edge structure. Its mission is to output a file containing the \ps\
24642 description of an edge structure.
24644 @ Each time an edge structure is shipped out we write a new \ps\ output
24645 file named according to the current \&{charcode}.
24646 @:char_code_}{\&{charcode} primitive@>
24648 @<Declare the \ps\ output procedures@>=
24649 void mp_open_output_file (MP mp) ;
24651 @ @c void mp_open_output_file (MP mp) {
24652 integer c; /* \&{charcode} rounded to the nearest integer */
24653 int old_setting; /* previous |selector| setting */
24654 pool_pointer i; /* indexes into |filename_template| */
24655 integer cc; /* a temporary integer for template building */
24656 integer f,g=0; /* field widths */
24657 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24658 c=mp_round_unscaled(mp, mp->internal[char_code]);
24659 if ( mp->filename_template==0 ) {
24660 char *s; /* a file extension derived from |c| */
24664 @<Use |c| to compute the file extension |s|@>;
24665 mp_pack_job_name(mp, s);
24667 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24668 mp_prompt_file_name(mp, "file name for output",s);
24669 } else { /* initializations */
24670 str_number s, n; /* a file extension derived from |c| */
24671 old_setting=mp->selector;
24672 mp->selector=new_string;
24674 i = mp->str_start[mp->filename_template];
24675 n = rts(""); /* initialize */
24676 while ( i<str_stop(mp->filename_template) ) {
24677 if ( mp->str_pool[i]=='%' ) {
24680 if ( i<str_stop(mp->filename_template) ) {
24681 if ( mp->str_pool[i]=='j' ) {
24682 mp_print(mp, mp->job_name);
24683 } else if ( mp->str_pool[i]=='d' ) {
24684 cc= mp_round_unscaled(mp, mp->internal[day]);
24685 print_with_leading_zeroes(cc);
24686 } else if ( mp->str_pool[i]=='m' ) {
24687 cc= mp_round_unscaled(mp, mp->internal[month]);
24688 print_with_leading_zeroes(cc);
24689 } else if ( mp->str_pool[i]=='y' ) {
24690 cc= mp_round_unscaled(mp, mp->internal[year]);
24691 print_with_leading_zeroes(cc);
24692 } else if ( mp->str_pool[i]=='H' ) {
24693 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24694 print_with_leading_zeroes(cc);
24695 } else if ( mp->str_pool[i]=='M' ) {
24696 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24697 print_with_leading_zeroes(cc);
24698 } else if ( mp->str_pool[i]=='c' ) {
24699 if ( c<0 ) mp_print(mp, "ps");
24700 else print_with_leading_zeroes(c);
24701 } else if ( (mp->str_pool[i]>='0') &&
24702 (mp->str_pool[i]<='9') ) {
24704 f = (f*10) + mp->str_pool[i]-'0';
24707 mp_print_str(mp, mp->str_pool[i]);
24711 if ( mp->str_pool[i]=='.' )
24713 n = mp_make_string(mp);
24714 mp_print_str(mp, mp->str_pool[i]);
24718 s = mp_make_string(mp);
24719 mp->selector= old_setting;
24720 if (length(n)==0) {
24724 mp_pack_file_name(mp, str(n),"",str(s));
24725 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24726 mp_prompt_file_name(mp, "file name for output",str(s));
24730 @<Store the true output file name if appropriate@>;
24731 @<Begin the progress report for the output of picture~|c|@>;
24734 @ The file extension created here could be up to five characters long in
24735 extreme cases so it may have to be shortened on some systems.
24736 @^system dependencies@>
24738 @<Use |c| to compute the file extension |s|@>=
24741 snprintf(s,7,".%i",(int)c);
24744 @ The user won't want to see all the output file names so we only save the
24745 first and last ones and a count of how many there were. For this purpose
24746 files are ordered primarily by \&{charcode} and secondarily by order of
24748 @:char_code_}{\&{charcode} primitive@>
24750 @<Store the true output file name if appropriate@>=
24751 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24752 mp->first_output_code=c;
24753 xfree(mp->first_file_name);
24754 mp->first_file_name=xstrdup(mp->name_of_file);
24756 if ( c>=mp->last_output_code ) {
24757 mp->last_output_code=c;
24758 xfree(mp->last_file_name);
24759 mp->last_file_name=xstrdup(mp->name_of_file);
24763 char * first_file_name;
24764 char * last_file_name; /* full file names */
24765 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24766 @:char_code_}{\&{charcode} primitive@>
24767 integer total_shipped; /* total number of |ship_out| operations completed */
24770 mp->first_file_name=xstrdup("");
24771 mp->last_file_name=xstrdup("");
24772 mp->first_output_code=32768;
24773 mp->last_output_code=-32768;
24774 mp->total_shipped=0;
24776 @ @<Dealloc variables@>=
24777 xfree(mp->first_file_name);
24778 xfree(mp->last_file_name);
24780 @ @<Begin the progress report for the output of picture~|c|@>=
24781 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
24782 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
24783 mp_print_char(mp, '[');
24784 if ( c>=0 ) mp_print_int(mp, c)
24786 @ @<End progress report@>=
24787 mp_print_char(mp, ']');
24789 incr(mp->total_shipped)
24791 @ @<Explain what output files were written@>=
24792 if ( mp->total_shipped>0 ) {
24793 mp_print_nl(mp, "");
24794 mp_print_int(mp, mp->total_shipped);
24795 mp_print(mp, " output file");
24796 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
24797 mp_print(mp, " written: ");
24798 mp_print(mp, mp->first_file_name);
24799 if ( mp->total_shipped>1 ) {
24800 if ( 31+strlen(mp->first_file_name)+
24801 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
24803 mp_print(mp, " .. ");
24804 mp_print(mp, mp->last_file_name);
24808 @ We often need to print a pair of coordinates.
24810 @d ps_room(A) if ( (mp->ps_offset+(int)(A))>mp->max_print_line )
24811 mp_print_ln(mp) /* optional line break */
24813 @<Declare the \ps\ output procedures@>=
24814 void mp_ps_pair_out (MP mp,scaled x, scaled y) {
24816 mp_print_scaled(mp, x); mp_print_char(mp, ' ');
24817 mp_print_scaled(mp, y); mp_print_char(mp, ' ');
24820 @ @<Declare the \ps\ output procedures@>=
24821 void mp_ps_print (MP mp,char *s) {
24822 ps_room(strlen(s));
24827 void mp_ps_print (MP mp,char *s) ;
24830 @ The most important output procedure is the one that gives the \ps\ version of
24833 @<Declare the \ps\ output procedures@>=
24834 void mp_ps_path_out (MP mp,pointer h) {
24835 pointer p,q; /* for scanning the path */
24836 scaled d; /* a temporary value */
24837 boolean curved; /* |true| unless the cubic is almost straight */
24839 if ( mp->need_newpath )
24840 mp_print_cmd(mp, "newpath ","n ");
24841 mp->need_newpath=true;
24842 mp_ps_pair_out(mp, x_coord(h),y_coord(h));
24843 mp_print_cmd(mp, "moveto","m");
24846 if ( right_type(p)==endpoint ) {
24847 if ( p==h ) mp_ps_print_cmd(mp, " 0 0 rlineto"," 0 0 r");
24851 @<Start a new line and print the \ps\ commands for the curve from
24855 mp_ps_print_cmd(mp, " closepath"," p");
24859 boolean need_newpath;
24860 /* will |ps_path_out| need to issue a \&{newpath} command next time */
24861 @:newpath_}{\&{newpath} command@>
24863 @ @<Start a new line and print the \ps\ commands for the curve from...@>=
24865 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
24868 mp_ps_pair_out(mp, right_x(p),right_y(p));
24869 mp_ps_pair_out(mp, left_x(q),left_y(q));
24870 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24871 mp_ps_print_cmd(mp, "curveto","c");
24872 } else if ( q!=h ){
24873 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24874 mp_ps_print_cmd(mp, "lineto","l");
24877 @ Two types of straight lines come up often in \MP\ paths:
24878 cubics with zero initial and final velocity as created by |make_path| or
24879 |make_envelope|, and cubics with control points uniformly spaced on a line
24880 as created by |make_choices|.
24882 @d bend_tolerance 131 /* allow rounding error of $2\cdot10^{-3}$ */
24884 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
24885 if ( right_x(p)==x_coord(p) )
24886 if ( right_y(p)==y_coord(p) )
24887 if ( left_x(q)==x_coord(q) )
24888 if ( left_y(q)==y_coord(q) ) curved=false;
24889 d=left_x(q)-right_x(p);
24890 if ( abs(right_x(p)-x_coord(p)-d)<=bend_tolerance )
24891 if ( abs(x_coord(q)-left_x(q)-d)<=bend_tolerance )
24892 { d=left_y(q)-right_y(p);
24893 if ( abs(right_y(p)-y_coord(p)-d)<=bend_tolerance )
24894 if ( abs(y_coord(q)-left_y(q)-d)<=bend_tolerance ) curved=false;
24897 @ We need to keep track of several parameters from the \ps\ graphics state.
24899 This allows us to be sure that \ps\ has the correct values when they are
24900 needed without wasting time and space setting them unnecessarily.
24903 @d gs_red mp->mem[mp->gs_state+1].sc
24904 @d gs_green mp->mem[mp->gs_state+2].sc
24905 @d gs_blue mp->mem[mp->gs_state+3].sc
24906 @d gs_black mp->mem[mp->gs_state+4].sc
24907 /* color from the last \&{setcmykcolor} or \&{setrgbcolor} or \&{setgray} command */
24908 @d gs_colormodel mp->mem[mp->gs_state+5].qqqq.b0
24909 /* the current colormodel */
24910 @d gs_ljoin mp->mem[mp->gs_state+5].qqqq.b1
24911 @d gs_lcap mp->mem[mp->gs_state+5].qqqq.b2
24912 /* values from the last \&{setlinejoin} and \&{setlinecap} commands */
24913 @d gs_adj_wx mp->mem[mp->gs_state+5].qqqq.b3
24914 /* what resolution-dependent adjustment applies to the width */
24915 @d gs_miterlim mp->mem[mp->gs_state+6].sc
24916 /* the value from the last \&{setmiterlimit} command */
24917 @d gs_dash_p mp->mem[mp->gs_state+7].hh.lh
24918 /* edge structure for last \&{setdash} command */
24919 @d gs_previous mp->mem[mp->gs_state+7].hh.rh
24920 /* backlink to the previous |gs_state| structure */
24921 @d gs_dash_sc mp->mem[mp->gs_state+8].sc
24922 /* scale factor used with |gs_dash_p| */
24923 @d gs_width mp->mem[mp->gs_state+9].sc
24924 /* width setting or $-1$ if no \&{setlinewidth} command so far */
24932 @ To avoid making undue assumptions about the initial graphics state, these
24933 parameters are given special values that are guaranteed not to match anything
24934 in the edge structure being shipped out. On the other hand, the initial color
24935 should be black so that the translation of an all-black picture will have no
24936 \&{setcolor} commands. (These would be undesirable in a font application.)
24937 Hence we use |c=0| when initializing the graphics state and we use |c<0|
24938 to recover from a situation where we have lost track of the graphics state.
24940 @<Declare the \ps\ output procedures@>=
24941 void mp_unknown_graphics_state (MP mp,scaled c) ;
24943 @ @c void mp_unknown_graphics_state (MP mp,scaled c) {
24944 pointer p; /* to shift graphic states around */
24945 quarterword k; /* a loop index for copying the |gs_state| */
24946 if ( (c==0)||(c==-1) ) {
24947 if ( mp->gs_state==null ) {
24948 mp->gs_state = mp_get_node(mp, gs_node_size);
24951 while ( gs_previous!=null ) {
24953 mp_free_node(mp, mp->gs_state,gs_node_size);
24957 gs_red=c; gs_green=c; gs_blue=c; gs_black=c;
24958 gs_colormodel=uninitialized_model;
24965 } else if ( c==1 ) {
24967 mp->gs_state = mp_get_node(mp, gs_node_size);
24968 for (k=1;k<=gs_node_size-1;k++)
24969 mp->mem[mp->gs_state+k]=mp->mem[p+k];
24971 } else if ( c==2 ) {
24973 mp_free_node(mp, mp->gs_state,gs_node_size);
24978 @ When it is time to output a graphical object, |fix_graphics_state| ensures
24979 that \ps's idea of the graphics state agrees with what is stored in the object.
24981 @<Declare the \ps\ output procedures@>=
24982 @<Declare subroutines needed by |fix_graphics_state|@>;
24983 void mp_fix_graphics_state (MP mp, pointer p) ;
24986 void mp_fix_graphics_state (MP mp, pointer p) {
24987 /* get ready to output graphical object |p| */
24988 pointer hh,pp; /* for list manipulation */
24989 scaled wx,wy,ww; /* dimensions of pen bounding box */
24990 boolean adj_wx; /* whether pixel rounding should be based on |wx| or |wy| */
24991 integer tx,ty; /* temporaries for computing |adj_wx| */
24992 scaled scf; /* a scale factor for the dash pattern */
24993 if ( has_color(p) )
24994 @<Make sure \ps\ will use the right color for object~|p|@>;
24995 if ( (type(p)==fill_code)||(type(p)==stroked_code) )
24996 if ( pen_p(p)!=null )
24997 if ( pen_is_elliptical(pen_p(p)) ) {
24998 @<Generate \ps\ code that sets the stroke width to the
24999 appropriate rounded value@>;
25000 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
25001 @<Decide whether the line cap parameter matters and set it if necessary@>;
25002 @<Set the other numeric parameters as needed for object~|p|@>;
25004 if ( mp->ps_offset>0 ) mp_print_ln(mp);
25007 @ @<Decide whether the line cap parameter matters and set it if necessary@>=
25008 if ( type(p)==stroked_code )
25009 if ( (left_type(path_p(p))==endpoint)||(dash_p(p)!=null) )
25010 if ( gs_lcap!=lcap_val(p) ) {
25012 mp_print_char(mp, ' ');
25013 mp_print_char(mp, '0'+lcap_val(p));
25014 mp_print_cmd(mp, " setlinecap"," lc");
25015 gs_lcap=lcap_val(p);
25018 @ @<Set the other numeric parameters as needed for object~|p|@>=
25019 if ( gs_ljoin!=ljoin_val(p) ) {
25021 mp_print_char(mp, ' ');
25022 mp_print_char(mp, '0'+ljoin_val(p)); mp_print_cmd(mp, " setlinejoin"," lj");
25023 gs_ljoin=ljoin_val(p);
25025 if ( gs_miterlim!=miterlim_val(p) ) {
25027 mp_print_char(mp, ' ');
25028 mp_print_scaled(mp, miterlim_val(p)); mp_print_cmd(mp, " setmiterlimit"," ml");
25029 gs_miterlim=miterlim_val(p);
25032 @ @<Make sure \ps\ will use the right color for object~|p|@>=
25034 if ( (color_model(p)==rgb_model)||
25035 ((color_model(p)==uninitialized_model)&&
25036 ((mp->internal[default_color_model] / unity)==rgb_model)) ) {
25037 if ( (gs_colormodel!=rgb_model)||(gs_red!=red_val(p))||
25038 (gs_green!=green_val(p))||(gs_blue!=blue_val(p)) ) {
25040 gs_green=green_val(p);
25041 gs_blue=blue_val(p);
25043 gs_colormodel=rgb_model;
25045 mp_print_char(mp, ' ');
25046 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25047 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25048 mp_print_scaled(mp, gs_blue);
25049 mp_print_cmd(mp, " setrgbcolor", " R");
25052 } else if ( (color_model(p)==cmyk_model)||
25053 ((color_model(p)==uninitialized_model)&&
25054 ((mp->internal[default_color_model] / unity)==cmyk_model)) ) {
25055 if ( (gs_red!=cyan_val(p))||(gs_green!=magenta_val(p))||
25056 (gs_blue!=yellow_val(p))||(gs_black!=black_val(p))||
25057 (gs_colormodel!=cmyk_model) ) {
25058 if ( color_model(p)==uninitialized_model ) {
25064 gs_red=cyan_val(p);
25065 gs_green=magenta_val(p);
25066 gs_blue=yellow_val(p);
25067 gs_black=black_val(p);
25069 gs_colormodel=cmyk_model;
25071 mp_print_char(mp, ' ');
25072 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25073 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25074 mp_print_scaled(mp, gs_blue); mp_print_char(mp, ' ');
25075 mp_print_scaled(mp, gs_black);
25076 mp_print_cmd(mp, " setcmykcolor"," C");
25079 } else if ( (color_model(p)==grey_model)||
25080 ((color_model(p)==uninitialized_model)&&
25081 ((mp->internal[default_color_model] / unity)==grey_model)) ) {
25082 if ( (gs_red!=grey_val(p))||(gs_colormodel!=grey_model) ) {
25083 gs_red = grey_val(p);
25087 gs_colormodel=grey_model;
25089 mp_print_char(mp, ' ');
25090 mp_print_scaled(mp, gs_red);
25091 mp_print_cmd(mp, " setgray"," G");
25095 if ( color_model(p)==no_model )
25096 gs_colormodel=no_model;
25099 @ In order to get consistent widths for horizontal and vertical pen strokes, we
25100 want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
25101 @:setwidth}{\&{setwidth}command@>
25102 We set |gs_width| to the ideal horizontal or vertical stroke width and then
25103 generate \ps\ code that computes the rounded value. For non-circular pens, the
25104 pen shape will be rescaled so that horizontal or vertical parts of the stroke
25105 have the computed width.
25107 Rounding the width to whole pixels is not likely to improve the appearance of
25108 diagonal or curved strokes, but we do it anyway for consistency. The
25109 \&{truncate} command generated here tends to make all the strokes a little
25110 @:truncate}{\&{truncate} command@>
25111 thinner, but this is appropriate for \ps's scan-conversion rules. Even with
25112 truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
25113 It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
25116 @<Generate \ps\ code that sets the stroke width...@>=
25117 @<Set |wx| and |wy| to the width and height of the bounding box for
25119 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
25120 important and set |adj_wx| and |ww| accordingly@>;
25121 if ( (ww!=gs_width) || (adj_wx!=gs_adj_wx) ) {
25124 mp_print_char(mp, ' '); mp_print_scaled(mp, ww);
25125 mp_ps_print_cmd(mp,
25126 " 0 dtransform exch truncate exch idtransform pop setlinewidth"," hlw");
25128 if ( mp->internal[mpprocset]>0 ) {
25130 mp_print_char(mp, ' ');
25131 mp_print_scaled(mp, ww);
25132 mp_ps_print(mp, " vlw");
25135 mp_print(mp, " 0 "); mp_print_scaled(mp, ww);
25136 mp_ps_print(mp, " dtransform truncate idtransform setlinewidth pop");
25140 gs_adj_wx = adj_wx;
25143 @ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
25145 if ( (right_x(pp)==x_coord(pp)) && (left_y(pp)==y_coord(pp)) ) {
25146 wx = abs(left_x(pp) - x_coord(pp));
25147 wy = abs(right_y(pp) - y_coord(pp));
25149 wx = mp_pyth_add(mp, left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
25150 wy = mp_pyth_add(mp, left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
25153 @ The path is considered ``essentially horizontal'' if its range of
25154 $y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
25155 vertical'' paths are detected similarly. This code ensures that no component
25156 of the pen transformation is more that |aspect_bound*(ww+1)|.
25158 @d aspect_bound 10 /* ``less important'' of |wx|, |wy| cannot exceed the other by
25159 more than this factor */
25161 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
25163 if ( mp_coord_rangeOK(mp, path_p(p), y_loc(0), wy) ) tx=aspect_bound;
25164 else if ( mp_coord_rangeOK(mp, path_p(p), x_loc(0), wx) ) ty=aspect_bound;
25165 if ( wy / ty>=wx / tx ) { ww=wy; adj_wx=false; }
25166 else { ww=wx; adj_wx=true; }
25168 @ This routine quickly tests if path |h| is ``essentially horizontal'' or
25169 ``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
25170 allowable range for $x$ or~$y$. We do not need and cannot afford a full
25171 bounding-box computation.
25173 @<Declare subroutines needed by |fix_graphics_state|@>=
25174 boolean mp_coord_rangeOK (MP mp,pointer h,
25175 small_number zoff, scaled dz) {
25176 pointer p; /* for scanning the path form |h| */
25177 scaled zlo,zhi; /* coordinate range so far */
25178 scaled z; /* coordinate currently being tested */
25179 zlo=knot_coord(h+zoff);
25182 while ( right_type(p)!=endpoint ) {
25183 z=right_coord(p+zoff);
25184 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25186 z=left_coord(p+zoff);
25187 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25188 z=knot_coord(p+zoff);
25189 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25195 @ @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>=
25196 if ( z<zlo ) zlo=z;
25197 else if ( z>zhi ) zhi=z;
25198 if ( zhi-zlo>dz ) return false
25200 @ Filling with an elliptical pen is implemented via a combination of \&{stroke}
25201 and \&{fill} commands and a nontrivial dash pattern would interfere with this.
25202 @:stroke}{\&{stroke} command@>
25203 @:fill}{\&{fill} command@>
25204 Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
25207 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
25208 if ( type(p)==fill_code ) {
25212 scf=mp_get_pen_scale(mp, pen_p(p));
25214 if ( gs_width==0 ) scf=dash_scale(p); else hh=null;
25216 scf=mp_make_scaled(mp, gs_width,scf);
25217 scf=mp_take_scaled(mp, scf,dash_scale(p));
25221 if ( gs_dash_p!=null ) {
25222 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25225 } else if ( (gs_dash_sc!=scf) || ! mp_same_dashes(mp, gs_dash_p,hh) ) {
25226 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>;
25229 @ Translating a dash list into \ps\ is very similar to printing it symbolically
25230 in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
25231 ignored. The same fate applies in the bizarre case of a dash pattern that
25232 cannot be printed without overflow.
25234 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
25237 if ( (dash_y(hh)==0) || (abs(dash_y(hh)) / unity >= el_gordo / scf)){
25238 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25241 start_x(null_dash)=start_x(pp)+dash_y(hh);
25243 mp_print(mp, " [");
25244 while ( pp!=null_dash ) {
25245 mp_ps_pair_out(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf),
25246 mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
25250 mp_print(mp, "] ");
25251 mp_print_scaled(mp, mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
25252 mp_print_cmd(mp, " setdash"," sd");
25256 @ @<Declare subroutines needed by |fix_graphics_state|@>=
25257 boolean mp_same_dashes (MP mp,pointer h, pointer hh) ;
25260 boolean mp_same_dashes (MP mp,pointer h, pointer hh) {
25261 /* do |h| and |hh| represent the same dash pattern? */
25262 pointer p,pp; /* dash nodes being compared */
25263 if ( h==hh ) return true;
25264 else if ( (h<=diov)||(hh<=diov) ) return false;
25265 else if ( dash_y(h)!=dash_y(hh) ) return false;
25266 else { @<Compare |dash_list(h)| and |dash_list(hh)|@>; }
25267 return false; /* can't happen */
25270 @ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
25273 while ( (p!=null_dash)&&(pp!=null_dash) ) {
25274 if ( (start_x(p)!=start_x(pp))||(stop_x(p)!=stop_x(pp)) ) {
25284 @ When stroking a path with an elliptical pen, it is necessary to transform
25285 the coordinate system so that a unit circular pen will have the desired shape.
25286 To keep this transformation local, we enclose it in a
25287 $$\&{gsave}\ldots\&{grestore}$$
25288 block. Any translation component must be applied to the path being stroked
25289 while the rest of the transformation must apply only to the pen.
25290 If |fill_also=true|, the path is to be filled as well as stroked so we must
25291 insert commands to do this after giving the path.
25293 @<Declare the \ps\ output procedures@>=
25294 void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) ;
25297 @c void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) {
25298 /* generate an elliptical pen stroke from object |h| */
25299 scaled txx,txy,tyx,tyy; /* transformation parameters */
25300 pointer p; /* the pen to stroke with */
25301 scaled d1,det; /* for tweaking transformation parameters */
25302 integer s; /* also for tweaking transformation paramters */
25303 boolean transformed; /* keeps track of whether gsave/grestore are needed */
25305 @<Use |pen_p(h)| to set the transformation parameters and give the initial
25307 @<Tweak the transformation parameters so the transformation is nonsingular@>;
25308 mp_ps_path_out(mp, path_p(h));
25309 if ( mp->internal[mpprocset]==0 ) {
25310 if ( fill_also ) mp_print_nl(mp, "gsave fill grestore");
25311 @<Issue \ps\ commands to transform the coordinate system@>;
25312 mp_ps_print(mp, " stroke");
25313 if ( transformed ) mp_ps_print(mp, " grestore");
25315 if ( fill_also ) mp_print_nl(mp, "B"); else mp_print_ln(mp);
25316 if ( (txy!=0)||(tyx!=0) ) {
25317 mp_print(mp, " [");
25318 mp_ps_pair_out(mp, txx,tyx);
25319 mp_ps_pair_out(mp, txy,tyy);
25320 mp_ps_print(mp, "0 0] t");
25321 } else if ((txx!=unity)||(tyy!=unity) ) {
25322 mp_ps_pair_out(mp,txx,tyy);
25323 mp_print(mp, " s");
25325 mp_ps_print(mp, " S");
25326 if ( transformed ) mp_ps_print(mp, " Q");
25331 @ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
25337 if ( (x_coord(p)!=0)||(y_coord(p)!=0) ) {
25338 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25339 mp_ps_pair_out(mp, x_coord(p),y_coord(p));
25340 mp_ps_print(mp, "translate ");
25347 mp_print_nl(mp, "");
25349 @<Adjust the transformation to account for |gs_width| and output the
25350 initial \&{gsave} if |transformed| should be |true|@>
25352 @ @<Adjust the transformation to account for |gs_width| and output the...@>=
25353 if ( gs_width!=unity ) {
25354 if ( gs_width==0 ) {
25355 txx=unity; tyy=unity;
25357 txx=mp_make_scaled(mp, txx,gs_width);
25358 txy=mp_make_scaled(mp, txy,gs_width);
25359 tyx=mp_make_scaled(mp, tyx,gs_width);
25360 tyy=mp_make_scaled(mp, tyy,gs_width);
25363 if ( (txy!=0)||(tyx!=0)||(txx!=unity)||(tyy!=unity) ) {
25364 if ( (! transformed) ){
25365 mp_ps_print_cmd(mp, "gsave ","q ");
25370 @ @<Issue \ps\ commands to transform the coordinate system@>=
25371 if ( (txy!=0)||(tyx!=0) ){
25373 mp_print_char(mp, '[');
25374 mp_ps_pair_out(mp, txx,tyx);
25375 mp_ps_pair_out(mp, txy,tyy);
25376 mp_ps_print(mp, "0 0] concat");
25377 } else if ( (txx!=unity)||(tyy!=unity) ){
25379 mp_ps_pair_out(mp, txx,tyy);
25380 mp_print(mp, "scale");
25383 @ The \ps\ interpreter will probably abort if it encounters a singular
25384 transformation matrix. The determinant must be large enough to ensure that
25385 the printed representation will be nonsingular. Since the printed
25386 representation is always within $2^{-17}$ of the internal |scaled| value, the
25387 total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
25388 the magnitudes of |txx/65536|, |txy/65536|, etc.
25390 The |aspect_bound*(gs_width+1)| bound on the components of the pen
25391 transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
25393 @<Tweak the transformation parameters so the transformation is nonsingular@>=
25394 det=mp_take_scaled(mp, txx,tyy) - mp_take_scaled(mp, txy,tyx);
25395 d1=4*aspect_bound+1;
25396 if ( abs(det)<d1 ) {
25397 if ( det>=0 ) { d1=d1-det; s=1; }
25398 else { d1=-d1-det; s=-1; };
25400 if ( abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) ) {
25401 if ( abs(txx)>abs(tyy) ) tyy=tyy+(d1+s*abs(txx)) / txx;
25402 else txx=txx+(d1+s*abs(tyy)) / tyy;
25404 if ( abs(txy)>abs(tyx) ) tyx=tyx+(d1+s*abs(txy)) / txy;
25405 else txy=txy+(d1+s*abs(tyx)) / tyx;
25409 @ Here is a simple routine that just fills a cycle.
25411 @<Declare the \ps\ output procedures@>=
25412 void mp_ps_fill_out (MP mp,pointer p) ;
25415 void mp_ps_fill_out (MP mp,pointer p) { /* fill cyclic path~|p| */
25416 mp_ps_path_out(mp, p);
25417 mp_ps_print_cmd(mp, " fill"," F");
25421 @ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
25422 procedure fills the cycle generated by |make_envelope|. It need not do
25423 anything unless some region has positive winding number with respect to~|p|,
25424 but it does not seem worthwhile to for test this.
25426 @<Declare the \ps\ output procedures@>=
25427 void mp_do_outer_envelope (MP mp,pointer p, pointer h) ;
25430 void mp_do_outer_envelope (MP mp,pointer p, pointer h) {
25431 p=mp_make_envelope(mp, p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
25432 mp_ps_fill_out(mp, p);
25433 mp_toss_knot_list(mp, p);
25436 @ A text node may specify an arbitrary transformation but the usual case
25437 involves only shifting, scaling, and occasionally rotation. The purpose
25438 of |choose_scale| is to select a scale factor so that the remaining
25439 transformation is as ``nice'' as possible. The definition of ``nice''
25440 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25441 nice because they work out well for bitmap fonts. The code here selects
25442 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25443 non-shifting part of the transformation matrix. It is careful to avoid
25444 additions that might cause undetected overflow.
25446 @<Declare the \ps\ output procedures@>=
25447 scaled mp_choose_scale (MP mp,pointer p) ;
25449 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25450 /* |p| should point to a text node */
25451 scaled a,b,c,d,ad,bc; /* temporary values */
25456 if ( (a<0) ) negate(a);
25457 if ( (b<0) ) negate(b);
25458 if ( (c<0) ) negate(c);
25459 if ( (d<0) ) negate(d);
25462 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25465 @ @<Declare the \ps\ output procedures@>=
25466 void mp_ps_string_out (MP mp, char *s) {
25467 char *i; /* current character code position */
25468 ASCII_code k; /* bits to be converted to octal */
25472 if ( mp->ps_offset+5>mp->max_print_line ) {
25473 mp_print_char(mp, '\\');
25477 if ( (@<Character |k| is not allowed in PostScript output@>) ) {
25478 mp_print_char(mp, '\\');
25479 mp_print_char(mp, '0'+(k / 64));
25480 mp_print_char(mp, '0'+((k / 8) % 8));
25481 mp_print_char(mp, '0'+(k % 8));
25483 if ( (k=='(')||(k==')')||(k=='\\') ) mp_print_char(mp, '\\');
25484 mp_print_char(mp, k);
25488 mp_print_char(mp, ')');
25492 @d mp_is_ps_name(M,A) mp_do_is_ps_name(A)
25494 @<Declare the \ps\ output procedures@>=
25495 boolean mp_do_is_ps_name (char *s) {
25496 char *i; /* current character code position */
25497 ASCII_code k; /* the character being checked */
25501 if ( (k<=' ')||(k>'~') ) return false;
25502 if ( (k=='(')||(k==')')||(k=='<')||(k=='>')||
25503 (k=='{')||(k=='}')||(k=='/')||(k=='%') ) return false;
25510 void mp_ps_name_out (MP mp, char *s, boolean lit) ;
25513 void mp_ps_name_out (MP mp, char *s, boolean lit) {
25514 ps_room(strlen(s)+2);
25515 mp_print_char(mp, ' ');
25516 if ( mp_is_ps_name(mp, s) ) {
25517 if ( lit ) mp_print_char(mp, '/');
25520 mp_ps_string_out(mp, s);
25521 if ( ! lit ) mp_ps_print(mp, "cvx ");
25522 mp_ps_print(mp, "cvn");
25526 @ @<Declare the \ps\ output procedures@>=
25527 void mp_mark_string_chars (MP mp,font_number f, str_number s) ;
25530 void mp_mark_string_chars (MP mp,font_number f, str_number s) {
25531 integer b; /* |char_base[f]| */
25532 ASCII_code bc,ec; /* only characters between these bounds are marked */
25533 pool_pointer k; /* an index into string |s| */
25534 b=mp->char_base[f];
25538 while ( k>mp->str_start[s] ){
25540 if ( (mp->str_pool[k]>=bc)&&(mp->str_pool[k]<=ec) )
25541 mp->font_info[b+mp->str_pool[k]].qqqq.b3=used;
25545 @ There may be many sizes of one font and we need to keep track of the
25546 characters used for each size. This is done by keeping a linked list of
25547 sizes for each font with a counter in each text node giving the appropriate
25548 position in the size list for its font.
25550 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25551 @d font_size_size 2 /* size of a font size node */
25554 boolean mp_has_font_size(MP mp, font_number f );
25557 boolean mp_has_font_size(MP mp, font_number f ) {
25558 return (mp->font_sizes[f]!=null);
25562 @ The overflow here is caused by the fact the returned value
25563 has to fit in a |name_type|, which is a quarterword.
25565 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25567 @<Declare the \ps\ output procedures@>=
25568 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25569 pointer p,q; /* the previous and current font size nodes */
25570 quarterword i; /* the size index for |q| */
25571 q=mp->font_sizes[f];
25573 while ( q!=null ) {
25574 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25577 { p=q; q=link(q); incr(i); };
25578 if ( i==max_quarterword )
25579 mp_overflow(mp, "sizes per font",max_quarterword);
25580 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25582 q=mp_get_node(mp, font_size_size);
25584 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25588 @ @<Declare the \ps\ output procedures@>=
25589 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25590 pointer p; /* a font size node */
25591 quarterword i; /* the size index for |p| */
25592 p=mp->font_sizes[f];
25594 if ( p==null ) mp_confusion(mp, "size");
25596 incr(i); p=link(p);
25597 if ( p==null ) mp_confusion(mp, "size");
25599 return sc_factor(p);
25602 @ @<Declare the \ps\ output procedures@>=
25603 void mp_clear_sizes (MP mp) ;
25605 @ @c void mp_clear_sizes (MP mp) {
25606 font_number f; /* the font whose size list is being cleared */
25607 pointer p; /* current font size nodes */
25608 for (f=null_font+1;f<=mp->last_fnum;f++) {
25609 while ( mp->font_sizes[f]!=null ) {
25610 p=mp->font_sizes[f];
25611 mp->font_sizes[f]=link(p);
25612 mp_free_node(mp, p,font_size_size);
25617 @ The \&{special} command saves up lines of text to be printed during the next
25618 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25621 pointer last_pending; /* the last token in a list of pending specials */
25624 mp->last_pending=spec_head;
25626 @ @<Cases of |do_statement|...@>=
25627 case special_command:
25628 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25629 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25633 @ @<Declare action procedures for use by |do_statement|@>=
25634 void mp_do_special (MP mp) ;
25636 @ @c void mp_do_special (MP mp) {
25637 mp_get_x_next(mp); mp_scan_expression(mp);
25638 if ( mp->cur_type!=mp_string_type ) {
25639 @<Complain about improper special operation@>;
25641 link(mp->last_pending)=mp_stash_cur_exp(mp);
25642 mp->last_pending=link(mp->last_pending);
25643 link(mp->last_pending)=null;
25647 @ @<Complain about improper special operation@>=
25649 exp_err("Unsuitable expression");
25650 help1("Only known strings are allowed for output as specials.");
25651 mp_put_get_error(mp);
25654 @ @<Print any pending specials@>=
25656 while ( t!=null ) {
25657 mp_print_str(mp, value(t));
25661 mp_flush_token_list(mp, link(spec_head));
25662 link(spec_head)=null;
25663 mp->last_pending=spec_head
25665 @ We are now ready for the main output procedure. Note that the |selector|
25666 setting is saved in a global variable so that |begin_diagnostic| can access it.
25668 @<Declare the \ps\ output procedures@>=
25669 void mp_ship_out (MP mp, pointer h) ;
25672 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25673 pointer p; /* the current graphical object */
25674 pointer q; /* something that |p| points to */
25675 integer t; /* a temporary value */
25676 font_number f; /* fonts used in a text node or as loop counters */
25678 scaled ds,scf; /* design size and scale factor for a text node */
25679 boolean transformed; /* is the coordinate system being transformed? */
25680 mp_open_output_file(mp);
25681 mp->non_ps_setting=mp->selector; mp->selector=ps_file_only;
25682 if ( (mp->internal[prologues]==two)||(mp->internal[prologues]==three) ) {
25683 @<Print improved initial comment and bounding box for edge structure~|h|@>;
25684 @<Scan all the text nodes and mark the used characters@>;
25685 mp_load_encodings(mp,mp->last_fnum);
25686 @<Update encoding names@>;
25687 @<Print the improved prologue and setup@>;
25688 @<Print any pending specials@>;
25689 mp_unknown_graphics_state(mp, 0);
25690 mp->need_newpath=true;
25691 p=link(dummy_loc(h));
25692 while ( p!=null ) {
25693 if ( has_color(p) ) {
25694 if ( (pre_script(p))!=null ) {
25695 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25698 mp_fix_graphics_state(mp, p);
25700 @<Cases for translating graphical object~|p| into \ps@>;
25701 case mp_start_bounds_code:
25702 case mp_stop_bounds_code:
25704 } /* all cases are enumerated */
25707 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25708 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25709 fclose(mp->ps_file);
25710 mp->selector=mp->non_ps_setting;
25711 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25712 @<End progress report@>;
25714 @<Print the initial comment and give the bounding box for edge structure~|h|@>;
25715 if ( (mp->internal[prologues]>0) && (mp->last_ps_fnum<mp->last_fnum) )
25716 mp_read_psname_table(mp);
25717 mp_print_prologue(mp, (mp->internal[prologues]>>16), (mp->internal[mpprocset]>>16), ldf);
25718 mp_print_nl(mp, "%%Page: 1 1"); mp_print_ln(mp);
25719 @<Print any pending specials@>;
25720 mp_unknown_graphics_state(mp, 0);
25721 mp->need_newpath=true;
25722 p=link(dummy_loc(h));
25723 while ( p!=null ) {
25724 if ( has_color(p) ) {
25725 if ( (pre_script(p))!=null ) {
25726 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25729 mp_fix_graphics_state(mp, p);
25731 @<Cases for translating graphical object~|p| into \ps@>;
25732 case mp_start_bounds_code:
25733 case mp_stop_bounds_code:
25735 } /* all cases are enumerated */
25738 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25739 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25740 fclose(mp->ps_file);
25741 mp->selector=mp->non_ps_setting;
25742 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25743 @<End progress report@>;
25745 if ( mp->internal[tracing_output]>0 )
25746 mp_print_edges(mp, h," (just shipped out)",true);
25750 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25753 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25755 p=link(dummy_loc(h));
25756 while ( p!=null ) {
25757 if ( type(p)==text_code )
25758 if ( font_n(p)!=null_font )
25759 if ( name_type(p)==next_size )
25760 mp_mark_string_chars(mp, font_n(p),text_p(p));
25766 @<Print the improved prologue and setup@>=
25768 mp_print_improved_prologue(mp, (mp->internal[prologues]>>16),(mp->internal[mpprocset]>>16),
25769 (mp->internal[gtroffmode]>>16), null, h);
25773 @<Print improved initial comment and bounding box for edge...@>=
25774 mp_print(mp, "%!PS-Adobe-3.0 EPSF-3.0");
25775 mp_print_nl(mp, "%%BoundingBox: ");
25776 mp_set_bbox(mp, h,true);
25777 if ( minx_val(h)>maxx_val(h) ) {
25778 mp_print(mp, "0 0 0 0");
25780 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25781 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25783 mp_print_nl(mp, "%%HiResBoundingBox: ");
25784 if ( minx_val(h)>maxx_val(h) ) {
25785 mp_print(mp, "0 0 0 0");
25787 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25788 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25790 mp_print_nl(mp, "%%Creator: MetaPost ");
25791 mp_print(mp, metapost_version);
25792 mp_print_nl(mp, "%%CreationDate: ");
25793 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25794 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25795 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25796 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25797 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25798 mp_print_nl(mp, "%%Pages: 1");
25802 @ @<Scan all the text nodes and mark the used ...@>=
25803 for (f=null_font+1;f<=mp->last_fnum;f++) {
25804 if ( mp->font_sizes[f]!=null ) {
25805 mp_unmark_font(mp, f);
25806 mp->font_sizes[f]=null;
25808 if ( mp->font_enc_name[f]!=NULL )
25809 xfree(mp->font_enc_name[f]);
25810 mp->font_enc_name[f] = NULL;
25812 for (f=null_font+1;f<=mp->last_fnum;f++) {
25813 p=link(dummy_loc(h));
25814 while ( p!=null ) {
25815 if ( type(p)==text_code ) {
25816 if ( font_n(p)!=null_font ) {
25817 mp->font_sizes[font_n(p)] = diov;
25818 mp_mark_string_chars(mp, font_n(p),text_p(p));
25819 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25820 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25827 @ @<Update encoding names@>=
25828 for (f=null_font+1;f<=mp->last_fnum;f++) {
25829 p=link(dummy_loc(h));
25830 while ( p!=null ) {
25831 if ( type(p)==text_code )
25832 if ( font_n(p)!=null_font )
25833 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25834 if ( mp->font_enc_name[font_n(p)]==NULL )
25835 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25840 @ These special comments described in the {\sl PostScript Language Reference
25841 Manual}, 2nd.~edition are understood by some \ps-reading programs.
25842 We can't normally output ``conforming'' \ps\ because
25843 the structuring conventions don't allow us to say ``Please make sure the
25844 following characters are downloaded and define the \.{fshow} macro to access
25847 The exact bounding box is written out if |prologues<0|, although this
25848 is not standard \ps, since it allows \TeX\ to calculate the box dimensions
25849 accurately. (Overfull boxes are avoided if an illustration is made to
25850 match a given \.{\char`\\hsize}.)
25852 @<Print the initial comment and give the bounding box for edge...@>=
25853 mp_print(mp, "%!PS");
25854 if ( mp->internal[prologues]>0 ) mp_print(mp, "-Adobe-3.0 EPSF-3.0");
25855 mp_print_nl(mp, "%%BoundingBox: ");
25856 mp_set_bbox(mp, h,true);
25857 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25858 else if ( mp->internal[prologues]<0 ) {
25859 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25860 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25862 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25863 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25865 mp_print_nl(mp, "%%HiResBoundingBox: ");
25866 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25868 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25869 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25871 mp_print_nl(mp, "%%Creator: MetaPost ");
25872 mp_print(mp, metapost_version);
25873 mp_print_nl(mp, "%%CreationDate: ");
25874 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25875 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25876 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25877 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25878 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25879 mp_print_nl(mp, "%%Pages: 1");
25880 @<List all the fonts and magnifications for edge structure~|h|@>;
25883 @ @<List all the fonts and magnifications for edge structure~|h|@>=
25884 @<Scan all the text nodes and set the |font_sizes| lists;
25885 if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
25886 apply |unmark_font| to each font encountered, and call |mark_string|
25887 whenever the size index is zero@>;
25888 ldf = mp_print_font_comments (mp, (mp->internal[prologues]>>16), null, h)
25890 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25891 for (f=null_font+1;f<=mp->last_fnum;f++)
25892 mp->font_sizes[f]=null;
25893 p=link(dummy_loc(h));
25894 while ( p!=null ) {
25895 if ( type(p)==text_code ) {
25896 if ( font_n(p)!=null_font ) {
25898 if ( mp->internal[prologues]>0 ) {
25899 mp->font_sizes[f]=diov;
25901 if ( mp->font_sizes[f]==null ) mp_unmark_font(mp, f);
25902 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25903 if ( name_type(p)==0 )
25904 mp_mark_string_chars(mp, f,text_p(p));
25911 @ @<Cases for translating graphical object~|p| into \ps@>=
25912 case mp_start_clip_code:
25913 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25914 mp_ps_path_out(mp, path_p(p));
25915 mp_ps_print_cmd(mp, " clip"," W");
25917 if ( mp->internal[restore_clip_color]>0 )
25918 mp_unknown_graphics_state(mp, 1);
25920 case mp_stop_clip_code:
25921 mp_print_nl(mp, ""); mp_print_cmd(mp, "grestore","Q");
25923 if ( mp->internal[restore_clip_color]>0 )
25924 mp_unknown_graphics_state(mp, 2);
25926 mp_unknown_graphics_state(mp, -1);
25929 @ @<Cases for translating graphical object~|p| into \ps@>=
25931 if ( pen_p(p)==null ) mp_ps_fill_out(mp, path_p(p));
25932 else if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,true);
25934 mp_do_outer_envelope(mp, mp_copy_path(mp, path_p(p)), p);
25935 mp_do_outer_envelope(mp, mp_htap_ypoc(mp, path_p(p)), p);
25937 if ( (post_script(p))!=null ) {
25938 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25942 if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,false);
25944 q=mp_copy_path(mp, path_p(p));
25946 @<Break the cycle and set |t:=1| if path |q| is cyclic@>;
25947 q=mp_make_envelope(mp, q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25948 mp_ps_fill_out(mp, q);
25949 mp_toss_knot_list(mp, q);
25951 if ( (post_script(p))!=null ) {
25952 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25956 @ The envelope of a cyclic path~|q| could be computed by calling
25957 |make_envelope| once for |q| and once for its reversal. We don't do this
25958 because it would fail color regions that are covered by the pen regardless
25959 of where it is placed on~|q|.
25961 @<Break the cycle and set |t:=1| if path |q| is cyclic@>=
25962 if ( left_type(q)!=endpoint ) {
25963 left_type(mp_insert_knot(mp, q,x_coord(q),y_coord(q)))=endpoint;
25964 right_type(q)=endpoint;
25969 @ @<Cases for translating graphical object~|p| into \ps@>=
25971 if ( (font_n(p)!=null_font) && (length(text_p(p))>0) ) {
25972 if ( mp->internal[prologues]>0 )
25973 scf=mp_choose_scale(mp, p);
25975 scf=mp_indexed_size(mp, font_n(p), name_type(p));
25976 @<Shift or transform as necessary before outputting text node~|p| at scale
25977 factor~|scf|; set |transformed:=true| if the original transformation must
25979 mp_ps_string_out(mp, str(text_p(p)));
25980 mp_ps_name_out(mp, mp->font_name[font_n(p)],false);
25981 @<Print the size information and \ps\ commands for text node~|p|@>;
25984 if ( (post_script(p))!=null ) {
25985 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25989 @ @<Print the size information and \ps\ commands for text node~|p|@>=
25991 mp_print_char(mp, ' ');
25992 ds=(mp->font_dsize[font_n(p)]+8) / 16;
25993 mp_print_scaled(mp, mp_take_scaled(mp, ds,scf));
25994 mp_print(mp, " fshow");
25996 mp_ps_print_cmd(mp, " grestore"," Q")
25998 @ @<Shift or transform as necessary before outputting text node~|p| at...@>=
25999 transformed=(txx_val(p)!=scf)||(tyy_val(p)!=scf)||
26000 (txy_val(p)!=0)||(tyx_val(p)!=0);
26001 if ( transformed ) {
26002 mp_print_cmd(mp, "gsave [", "q [");
26003 mp_ps_pair_out(mp, mp_make_scaled(mp, txx_val(p),scf),
26004 mp_make_scaled(mp, tyx_val(p),scf));
26005 mp_ps_pair_out(mp, mp_make_scaled(mp, txy_val(p),scf),
26006 mp_make_scaled(mp, tyy_val(p),scf));
26007 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26008 mp_ps_print_cmd(mp, "] concat 0 0 moveto","] t 0 0 m");
26010 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26011 mp_ps_print_cmd(mp, "moveto","m");
26015 @ Now that we've finished |ship_out|, let's look at the other commands
26016 by which a user can send things to the \.{GF} file.
26018 @ @<Determine if a character has been shipped out@>=
26020 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
26021 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
26022 boolean_reset(mp->char_exists[mp->cur_exp]);
26023 mp->cur_type=mp_boolean_type;
26029 @ @<Allocate or initialize ...@>=
26030 mp_backend_initialize(mp);
26033 mp_backend_free(mp);
26036 @* \[45] Dumping and undumping the tables.
26037 After \.{INIMP} has seen a collection of macros, it
26038 can write all the necessary information on an auxiliary file so
26039 that production versions of \MP\ are able to initialize their
26040 memory at high speed. The present section of the program takes
26041 care of such output and input. We shall consider simultaneously
26042 the processes of storing and restoring,
26043 so that the inverse relation between them is clear.
26046 The global variable |mem_ident| is a string that is printed right
26047 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
26048 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
26049 for example, `\.{(mem=plain 90.4.14)}', showing the year,
26050 month, and day that the mem file was created. We have |mem_ident=0|
26051 before \MP's tables are loaded.
26057 mp->mem_ident=NULL;
26059 @ @<Initialize table entries...@>=
26060 if (mp->ini_version)
26061 mp->mem_ident=xstrdup(" (INIMP)");
26063 @ @<Declare act...@>=
26064 void mp_store_mem_file (MP mp) ;
26066 @ @c void mp_store_mem_file (MP mp) {
26067 integer k; /* all-purpose index */
26068 pointer p,q; /* all-purpose pointers */
26069 integer x; /* something to dump */
26070 four_quarters w; /* four ASCII codes */
26072 @<Create the |mem_ident|, open the mem file,
26073 and inform the user that dumping has begun@>;
26074 @<Dump constants for consistency check@>;
26075 @<Dump the string pool@>;
26076 @<Dump the dynamic memory@>;
26077 @<Dump the table of equivalents and the hash table@>;
26078 @<Dump a few more things and the closing check word@>;
26079 @<Close the mem file@>;
26082 @ Corresponding to the procedure that dumps a mem file, we also have a function
26083 that reads~one~in. The function returns |false| if the dumped mem is
26084 incompatible with the present \MP\ table sizes, etc.
26086 @d off_base 6666 /* go here if the mem file is unacceptable */
26087 @d too_small(A) { wake_up_terminal;
26088 wterm_ln("---! Must increase the "); wterm((A));
26089 @.Must increase the x@>
26094 boolean mp_load_mem_file (MP mp) {
26095 integer k; /* all-purpose index */
26096 pointer p,q; /* all-purpose pointers */
26097 integer x; /* something undumped */
26098 str_number s; /* some temporary string */
26099 four_quarters w; /* four ASCII codes */
26101 @<Undump constants for consistency check@>;
26102 @<Undump the string pool@>;
26103 @<Undump the dynamic memory@>;
26104 @<Undump the table of equivalents and the hash table@>;
26105 @<Undump a few more things and the closing check word@>;
26106 return true; /* it worked! */
26109 wterm_ln("(Fatal mem file error; I'm stymied)\n");
26110 @.Fatal mem file error@>
26114 @ @<Declarations@>=
26115 boolean mp_load_mem_file (MP mp) ;
26117 @ Mem files consist of |memory_word| items, and we use the following
26118 macros to dump words of different types:
26120 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26121 @d dump_int(A) { WW.cint=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26122 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26123 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26124 @d dump_string(A) { dump_int(strlen(A)+1);
26125 fwrite(A,strlen(A)+1,1,mp->mem_file); }
26128 FILE * mem_file; /* for input or output of mem information */
26130 @ The inverse macros are slightly more complicated, since we need to check
26131 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
26132 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
26134 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW; }
26135 @d undump_int(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.cint; }
26136 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.hh; }
26137 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.qqqq; }
26138 @d undump_strings(A,B,C) {
26139 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else (C)=str(x); }
26140 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else (C)=x; }
26141 @d undump_size(A,B,C,D) { undump_int(x);
26142 if (x<(A)) goto OFF_BASE;
26143 if (x>(B)) { too_small((C)); } else {(D)=x;} }
26144 @d undump_string(A) { integer XX=0; undump_int(XX);
26145 A = xmalloc(XX,sizeof(char));
26146 fread(A,XX,1,mp->mem_file); }
26148 @ The next few sections of the program should make it clear how we use the
26149 dump/undump macros.
26151 @<Dump constants for consistency check@>=
26152 dump_int(mp->mem_top);
26153 dump_int(mp->hash_size);
26154 dump_int(mp->hash_prime)
26155 dump_int(mp->param_size);
26156 dump_int(mp->max_in_open);
26158 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
26159 strings to the string pool; therefore \.{INIMP} and \MP\ will have
26160 the same strings. (And it is, of course, a good thing that they do.)
26164 @<Undump constants for consistency check@>=
26165 undump_int(x); mp->mem_top = x;
26166 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
26167 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
26168 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
26169 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
26171 @ We do string pool compaction to avoid dumping unused strings.
26174 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
26175 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
26178 @<Dump the string pool@>=
26179 mp_do_compaction(mp, mp->pool_size);
26180 dump_int(mp->pool_ptr);
26181 dump_int(mp->max_str_ptr);
26182 dump_int(mp->str_ptr);
26184 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
26187 while ( k<=mp->max_str_ptr ) {
26188 dump_int(mp->next_str[k]); incr(k);
26192 dump_int((mp->str_start[k]));
26193 if ( k==mp->str_ptr ) {
26200 while (k+4<mp->pool_ptr ) {
26201 dump_four_ASCII; k=k+4;
26203 k=mp->pool_ptr-4; dump_four_ASCII;
26204 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
26205 mp_print(mp, " strings of total length ");
26206 mp_print_int(mp, mp->pool_ptr)
26208 @ @d undump_four_ASCII
26210 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
26211 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
26213 @<Undump the string pool@>=
26214 undump_int(mp->pool_ptr);
26215 mp_reallocate_pool(mp, mp->pool_ptr) ;
26216 undump_int(mp->max_str_ptr);
26217 mp_reallocate_strings (mp,mp->max_str_ptr) ;
26218 undump(0,mp->max_str_ptr,mp->str_ptr);
26219 undump(0,mp->max_str_ptr+1,s);
26220 for (k=0;k<=s-1;k++)
26221 mp->next_str[k]=k+1;
26222 for (k=s;k<=mp->max_str_ptr;k++)
26223 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
26224 mp->fixed_str_use=0;
26227 undump(0,mp->pool_ptr,mp->str_start[k]);
26228 if ( k==mp->str_ptr ) break;
26229 mp->str_ref[k]=max_str_ref;
26230 incr(mp->fixed_str_use);
26231 mp->last_fixed_str=k; k=mp->next_str[k];
26234 while ( k+4<mp->pool_ptr ) {
26235 undump_four_ASCII; k=k+4;
26237 k=mp->pool_ptr-4; undump_four_ASCII;
26238 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
26239 mp->max_pool_ptr=mp->pool_ptr;
26240 mp->strs_used_up=mp->fixed_str_use;
26241 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
26242 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
26243 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
26245 @ By sorting the list of available spaces in the variable-size portion of
26246 |mem|, we are usually able to get by without having to dump very much
26247 of the dynamic memory.
26249 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
26250 information even when it has not been gathering statistics.
26252 @<Dump the dynamic memory@>=
26253 mp_sort_avail(mp); mp->var_used=0;
26254 dump_int(mp->lo_mem_max); dump_int(mp->rover);
26255 p=0; q=mp->rover; x=0;
26257 for (k=p;k<= q+1;k++)
26258 dump_wd(mp->mem[k]);
26259 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
26260 p=q+node_size(q); q=rlink(q);
26261 } while (q!=mp->rover);
26262 mp->var_used=mp->var_used+mp->lo_mem_max-p;
26263 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
26264 for (k=p;k<= mp->lo_mem_max;k++ )
26265 dump_wd(mp->mem[k]);
26266 x=x+mp->lo_mem_max+1-p;
26267 dump_int(mp->hi_mem_min); dump_int(mp->avail);
26268 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
26269 dump_wd(mp->mem[k]);
26270 x=x+mp->mem_end+1-mp->hi_mem_min;
26272 while ( p!=null ) {
26273 decr(mp->dyn_used); p=link(p);
26275 dump_int(mp->var_used); dump_int(mp->dyn_used);
26276 mp_print_ln(mp); mp_print_int(mp, x);
26277 mp_print(mp, " memory locations dumped; current usage is ");
26278 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
26280 @ @<Undump the dynamic memory@>=
26281 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
26282 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
26285 for (k=p;k<= q+1; k++)
26286 undump_wd(mp->mem[k]);
26288 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
26291 } while (q!=mp->rover);
26292 for (k=p;k<=mp->lo_mem_max;k++ )
26293 undump_wd(mp->mem[k]);
26294 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
26295 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
26296 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
26297 undump_wd(mp->mem[k]);
26298 undump_int(mp->var_used); undump_int(mp->dyn_used)
26300 @ A different scheme is used to compress the hash table, since its lower region
26301 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
26302 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
26303 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
26305 @<Dump the table of equivalents and the hash table@>=
26306 dump_int(mp->hash_used);
26307 mp->st_count=frozen_inaccessible-1-mp->hash_used;
26308 for (p=1;p<=mp->hash_used;p++) {
26309 if ( text(p)!=0 ) {
26310 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
26313 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
26314 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
26316 dump_int(mp->st_count);
26317 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
26319 @ @<Undump the table of equivalents and the hash table@>=
26320 undump(1,frozen_inaccessible,mp->hash_used);
26323 undump(p+1,mp->hash_used,p);
26324 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26325 } while (p!=mp->hash_used);
26326 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
26327 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26329 undump_int(mp->st_count)
26331 @ We have already printed a lot of statistics, so we set |tracing_stats:=0|
26332 to prevent them appearing again.
26334 @<Dump a few more things and the closing check word@>=
26335 dump_int(mp->max_internal);
26336 dump_int(mp->int_ptr);
26337 for (k=1;k<= mp->int_ptr;k++ ) {
26338 dump_int(mp->internal[k]);
26339 dump_string(mp->int_name[k]);
26341 dump_int(mp->start_sym);
26342 dump_int(mp->interaction);
26343 dump_string(mp->mem_ident);
26344 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
26345 mp->internal[tracing_stats]=0
26347 @ @<Undump a few more things and the closing check word@>=
26349 if (x>mp->max_internal) mp_grow_internals(mp,x);
26350 undump_int(mp->int_ptr);
26351 for (k=1;k<= mp->int_ptr;k++) {
26352 undump_int(mp->internal[k]);
26353 undump_string(mp->int_name[k]);
26355 undump(0,frozen_inaccessible,mp->start_sym);
26356 if (mp->interaction==mp_unspecified_mode) {
26357 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
26359 undump(mp_unspecified_mode,mp_error_stop_mode,x);
26361 undump_string(mp->mem_ident);
26362 undump(1,hash_end,mp->bg_loc);
26363 undump(1,hash_end,mp->eg_loc);
26364 undump_int(mp->serial_no);
26366 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
26368 @ @<Create the |mem_ident|...@>=
26370 xfree(mp->mem_ident);
26371 mp->mem_ident = xmalloc(256,1);
26372 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
26374 (int)(mp_round_unscaled(mp, mp->internal[year]) % 100),
26375 (int)mp_round_unscaled(mp, mp->internal[month]),
26376 (int)mp_round_unscaled(mp, mp->internal[day]));
26377 mp_pack_job_name(mp, mem_extension);
26378 while (! mp_w_open_out(mp, &mp->mem_file) )
26379 mp_prompt_file_name(mp, "mem file name", mem_extension);
26380 mp_print_nl(mp, "Beginning to dump on file ");
26381 @.Beginning to dump...@>
26382 mp_print(mp, mp->name_of_file);
26383 mp_print_nl(mp, mp->mem_ident);
26386 @ @<Dealloc variables@>=
26387 xfree(mp->mem_ident);
26389 @ @<Close the mem file@>=
26390 fclose(mp->mem_file)
26392 @* \[46] The main program.
26393 This is it: the part of \MP\ that executes all those procedures we have
26396 Well---almost. We haven't put the parsing subroutines into the
26397 program yet; and we'd better leave space for a few more routines that may
26398 have been forgotten.
26400 @c @<Declare the basic parsing subroutines@>;
26401 @<Declare miscellaneous procedures that were declared |forward|@>;
26402 @<Last-minute procedures@>
26404 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
26406 has to be run first; it initializes everything from scratch, without
26407 reading a mem file, and it has the capability of dumping a mem file.
26408 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
26410 to input a mem file in order to get started. \.{VIRMP} typically has
26411 a bit more memory capacity than \.{INIMP}, because it does not need the
26412 space consumed by the dumping/undumping routines and the numerous calls on
26415 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
26416 the best implementations therefore allow for production versions of \MP\ that
26417 not only avoid the loading routine for \PASCAL\ object code, they also have
26418 a mem file pre-loaded.
26421 boolean ini_version; /* are we iniMP? */
26423 @ @<Option variables@>=
26424 boolean ini_version; /* are we iniMP? */
26426 @ @<Set |ini_version|@>=
26427 mp->ini_version = (opt.ini_version ? true : false);
26429 @ Here we do whatever is needed to complete \MP's job gracefully on the
26430 local operating system. The code here might come into play after a fatal
26431 error; it must therefore consist entirely of ``safe'' operations that
26432 cannot produce error messages. For example, it would be a mistake to call
26433 |str_room| or |make_string| at this time, because a call on |overflow|
26434 might lead to an infinite loop.
26435 @^system dependencies@>
26437 This program doesn't bother to close the input files that may still be open.
26439 @<Last-minute...@>=
26440 void mp_close_files_and_terminate (MP mp) {
26441 integer k; /* all-purpose index */
26442 integer LH; /* the length of the \.{TFM} header, in words */
26443 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
26444 pointer p; /* runs through a list of \.{TFM} dimensions */
26445 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
26446 if ( mp->internal[tracing_stats]>0 )
26447 @<Output statistics about this job@>;
26449 @<Do all the finishing work on the \.{TFM} file@>;
26450 @<Explain what output files were written@>;
26451 if ( mp->log_opened ){
26453 fclose(mp->log_file); mp->selector=mp->selector-2;
26454 if ( mp->selector==term_only ) {
26455 mp_print_nl(mp, "Transcript written on ");
26456 @.Transcript written...@>
26457 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
26463 @ @<Declarations@>=
26464 void mp_close_files_and_terminate (MP mp) ;
26466 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26467 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26468 if ( mp->rd_fname[k]!=NULL ) fclose(mp->rd_file[k]);
26470 for (k=0;k<=(int)mp->write_files-1;k++) {
26471 if ( mp->wr_fname[k]!=NULL ) fclose(mp->wr_file[k]);
26474 @ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
26476 We reclaim all of the variable-size memory at this point, so that
26477 there is no chance of another memory overflow after the memory capacity
26478 has already been exceeded.
26480 @<Do all the finishing work on the \.{TFM} file@>=
26481 if ( mp->internal[fontmaking]>0 ) {
26482 @<Make the dynamic memory into one big available node@>;
26483 @<Massage the \.{TFM} widths@>;
26484 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26485 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26486 mp->internal[fontmaking]=0; /* avoid loop in case of fatal error */
26487 @<Finish the \.{TFM} file@>;
26490 @ @<Make the dynamic memory into one big available node@>=
26491 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26492 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26493 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26494 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
26495 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
26497 @ The present section goes directly to the log file instead of using
26498 |print| commands, because there's no need for these strings to take
26499 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26501 @<Output statistics...@>=
26502 if ( mp->log_opened ) {
26505 wlog_ln("Here is how much of MetaPost's memory you used:");
26506 @.Here is how much...@>
26507 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26508 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26509 (int)(mp->max_strings-1-mp->init_str_use));
26511 snprintf(s,128," %i string characters out of %i",
26512 (int)mp->max_pl_used-mp->init_pool_ptr,
26513 (int)mp->pool_size-mp->init_pool_ptr);
26515 snprintf(s,128," %i words of memory out of %i",
26516 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26517 (int)mp->mem_end+1);
26519 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26521 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
26522 (int)mp->max_in_stack,(int)mp->int_ptr,
26523 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26524 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26526 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26527 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26531 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26534 @<Last-minute...@>=
26535 void mp_final_cleanup (MP mp) {
26536 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
26538 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26539 while ( mp->input_ptr>0 ) {
26540 if ( token_state ) mp_end_token_list(mp);
26541 else mp_end_file_reading(mp);
26543 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26544 while ( mp->open_parens>0 ) {
26545 mp_print(mp, " )"); decr(mp->open_parens);
26547 while ( mp->cond_ptr!=null ) {
26548 mp_print_nl(mp, "(end occurred when ");
26549 @.end occurred...@>
26550 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26551 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26552 if ( mp->if_line!=0 ) {
26553 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26555 mp_print(mp, " was incomplete)");
26556 mp->if_line=if_line_field(mp->cond_ptr);
26557 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26559 if ( mp->history!=spotless )
26560 if ( ((mp->history==warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26561 if ( mp->selector==term_and_log ) {
26562 mp->selector=term_only;
26563 mp_print_nl(mp, "(see the transcript file for additional information)");
26564 @.see the transcript file...@>
26565 mp->selector=term_and_log;
26568 if (mp->ini_version) {
26569 mp_store_mem_file(mp); return;
26571 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26572 @.dump...only by INIMP@>
26576 @ @<Declarations@>=
26577 void mp_final_cleanup (MP mp) ;
26578 void mp_init_prim (MP mp) ;
26579 void mp_init_tab (MP mp) ;
26581 @ @<Last-minute...@>=
26582 void mp_init_prim (MP mp) { /* initialize all the primitives */
26586 void mp_init_tab (MP mp) { /* initialize other tables */
26587 integer k; /* all-purpose index */
26588 @<Initialize table entries (done by \.{INIMP} only)@>;
26592 @ When we begin the following code, \MP's tables may still contain garbage;
26593 the strings might not even be present. Thus we must proceed cautiously to get
26596 But when we finish this part of the program, \MP\ is ready to call on the
26597 |main_control| routine to do its work.
26599 @<Get the first line...@>=
26601 @<Initialize the input routines@>;
26602 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26603 if ( mp->mem_ident!=NULL ) mp_initialize(mp); /* erase preloaded mem */
26604 if ( ! mp_open_mem_file(mp) ) return false;
26605 if ( ! mp_load_mem_file(mp) ) {
26606 fclose( mp->mem_file); return false;
26608 fclose( mp->mem_file);
26609 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26611 mp->buffer[limit]='%';
26612 mp_fix_date_and_time(mp);
26613 mp->sys_random_seed = (mp->get_random_seed)(mp);
26614 mp_init_randoms(mp, mp->sys_random_seed);
26615 @<Initialize the print |selector|...@>;
26616 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26617 mp_start_input(mp); /* \&{input} assumed */
26620 @ @<Run inimpost commands@>=
26622 mp_get_strings_started(mp);
26623 mp_init_tab(mp); /* initialize the tables */
26624 mp_init_prim(mp); /* call |primitive| for each primitive */
26625 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26626 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26627 mp_fix_date_and_time(mp);
26631 @* \[47] Debugging.
26632 Once \MP\ is working, you should be able to diagnose most errors with
26633 the \.{show} commands and other diagnostic features. But for the initial
26634 stages of debugging, and for the revelation of really deep mysteries, you
26635 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26636 checks and its debugger. An additional routine called |debug_help|
26637 will also come into play when you type `\.D' after an error message;
26638 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26640 @^system dependencies@>
26642 The interface to |debug_help| is primitive, but it is good enough when used
26643 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26644 variables and change their values. After getting the prompt `\.{debug \#}', you
26645 type either a negative number (this exits |debug_help|), or zero (this
26646 goes to a location where you can set a breakpoint, thereby entering into
26647 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26648 an argument |n|. The meaning of |m| and |n| will be clear from the
26649 program below. (If |m=13|, there is an additional argument, |l|.)
26652 @<Last-minute...@>=
26653 void mp_debug_help (MP mp) { /* routine to display various things */
26658 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26661 fscanf(mp->term_in,"%i",&m);
26665 fscanf(mp->term_in,"%i",&n);
26667 @<Numbered cases for |debug_help|@>;
26668 default: mp_print(mp, "?"); break;
26673 @ @<Numbered cases...@>=
26674 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26676 case 2: mp_print_int(mp, info(n));
26678 case 3: mp_print_int(mp, link(n));
26680 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26682 case 5: mp_print_variable_name(mp, n);
26684 case 6: mp_print_int(mp, mp->internal[n]);
26686 case 7: mp_do_show_dependencies(mp);
26688 case 9: mp_show_token_list(mp, n,null,100000,0);
26690 case 10: mp_print_str(mp, n);
26692 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26694 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26696 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26698 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26700 case 15: mp->panicking=! mp->panicking;
26704 @ \MP\ used to have one single routine to print to both `write' files
26705 and the PostScript output. Web2c redefines ``Character |k| cannot be
26706 printed'', and that resulted in some bugs where 8-bit characters were
26707 written to the PostScript file (reported by Wlodek Bzyl).
26709 Also, Hans Hagen requested spaces to be output as "\\040" instead of
26710 a plain space, since that makes it easier to parse the result file
26711 for postprocessing.
26713 @<Character |k| is not allowed in PostScript output@>=
26716 @ Saving the filename template
26718 @<Save the filename template@>=
26720 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26721 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26723 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26727 @* \[48] System-dependent changes.
26728 This section should be replaced, if necessary, by any special
26729 modification of the program
26730 that are necessary to make \MP\ work at a particular installation.
26731 It is usually best to design your change file so that all changes to
26732 previous sections preserve the section numbering; then everybody's version
26733 will be consistent with the published program. More extensive changes,
26734 which introduce new sections, can be inserted here; then only the index
26735 itself will get a new section number.
26736 @^system dependencies@>
26739 Here is where you can find all uses of each identifier in the program,
26740 with underlined entries pointing to where the identifier was defined.
26741 If the identifier is only one letter long, however, you get to see only
26742 the underlined entries. {\sl All references are to section numbers instead of
26745 This index also lists error messages and other aspects of the program
26746 that you might want to look up some day. For example, the entry
26747 for ``system dependencies'' lists all sections that should receive
26748 special attention from people who are installing \MP\ in a new
26749 operating environment. A list of various things that can't happen appears
26750 under ``this can't happen''.
26751 Approximately 25 sections are listed under ``inner loop''; these account
26752 for more than 60\pct! of \MP's running time, exclusive of input and output.