1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.20"
88 @d version_string " (Cweb version 0.20)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
216 void mp_free (MP mp) {
217 int k; /* loop variable */
218 @<Dealloc variables@>
223 void mp_do_initialize ( MP mp) {
224 @<Local variables for initialization@>
225 @<Set initial values of key variables@>
227 int mp_initialize (MP mp) { /* this procedure gets things started properly */
228 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
229 @<Install and test the non-local jump buffer@>;
230 t_open_out; /* open the terminal for output */
231 @<Check the ``constant'' values...@>;
234 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
235 "---case %i",(int)mp->bad);
236 do_fprintf(mp->err_out,(char *)ss);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,100);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_terminal = 0, /* the terminal */
561 mp_filetype_error, /* the terminal */
562 mp_filetype_program , /* \MP\ language input */
563 mp_filetype_log, /* the log file */
564 mp_filetype_postscript, /* the postscript output */
565 mp_filetype_memfile, /* memory dumps */
566 mp_filetype_metrics, /* TeX font metric files */
567 mp_filetype_fontmap, /* PostScript font mapping files */
568 mp_filetype_font, /* PostScript type1 font programs */
569 mp_filetype_encoding, /* PostScript font encoding files */
570 mp_filetype_text, /* first text file for readfrom and writeto primitives */
572 typedef char *(*mp_file_finder)(char *, char *, int);
573 typedef void *(*mp_file_opener)(char *, char *, int);
574 typedef char *(*mp_file_reader)(void *, size_t *);
575 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
576 typedef void (*mp_file_closer)(void *);
577 typedef int (*mp_file_eoftest)(void *);
578 typedef void (*mp_file_flush)(void *);
579 typedef void (*mp_file_writer)(void *, char *);
580 typedef void (*mp_binfile_writer)(void *, void *, size_t);
584 mp_file_finder find_file;
585 mp_file_opener open_file;
586 mp_file_reader read_ascii_file;
587 mp_binfile_reader read_binary_file;
588 mp_file_closer close_file;
589 mp_file_eoftest eof_file;
590 mp_file_flush flush_file;
591 mp_file_writer write_ascii_file;
592 mp_binfile_writer write_binary_file;
594 @ @<Option variables@>=
595 mp_file_finder find_file;
596 mp_file_opener open_file;
597 mp_file_reader read_ascii_file;
598 mp_binfile_reader read_binary_file;
599 mp_file_closer close_file;
600 mp_file_eoftest eof_file;
601 mp_file_flush flush_file;
602 mp_file_writer write_ascii_file;
603 mp_binfile_writer write_binary_file;
605 @ The default function for finding files is |mp_find_file|. It is
606 pretty stupid: it will only find files in the current directory.
608 This function may disappear altogether, it is currently only
609 used for the default font map file.
612 char *mp_find_file (char *fname, char *fmode, int ftype) {
613 if (fmode[0] != 'r' || access (fname,R_OK) || ftype) {
614 return strdup(fname);
619 @ This has to be done very early on, so it is best to put it in with
620 the |mp_new| allocations
622 @d set_callback_option(A) do { mp->A = mp_##A;
623 if (opt->A!=NULL) mp->A = opt->A;
626 @<Allocate or initialize ...@>=
627 set_callback_option(find_file);
628 set_callback_option(open_file);
629 set_callback_option(read_ascii_file);
630 set_callback_option(read_binary_file);
631 set_callback_option(close_file);
632 set_callback_option(eof_file);
633 set_callback_option(flush_file);
634 set_callback_option(write_ascii_file);
635 set_callback_option(write_binary_file);
637 @ Because |mp_find_file| is used so early, it has to be in the helpers
641 char *mp_find_file (char *fname, char *fmode, int ftype) ;
642 void *mp_open_file (char *fname, char *fmode, int ftype) ;
643 char *mp_read_ascii_file (void *f, size_t *size) ;
644 void mp_read_binary_file (void *f, void **d, size_t *size) ;
645 void mp_close_file (void *f) ;
646 int mp_eof_file (void *f) ;
647 void mp_flush_file (void *f) ;
648 void mp_write_ascii_file (void *f, char *s) ;
649 void mp_write_binary_file (void *f, void *s, size_t t) ;
651 @ The function to open files can now be very short.
654 void *mp_open_file(char *fname, char *fmode, int ftype) {
656 if (ftype==mp_filetype_terminal) {
657 return (fmode[0] == 'r' ? stdin : stdout);
658 } else if (ftype==mp_filetype_error) {
660 } else if (fname != NULL && (fmode[0] != 'r' || access (fname,R_OK))) {
661 return (void *)fopen(fname, fmode);
667 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
670 char name_of_file[file_name_size+1]; /* the name of a system file */
671 int name_length;/* this many characters are actually
672 relevant in |name_of_file| (the rest are blank) */
673 boolean print_found_names; /* configuration parameter */
675 @ @<Option variables@>=
676 int print_found_names; /* configuration parameter */
678 @ If this parameter is true, the terminal and log will report the found
679 file names for input files instead of the requested ones.
680 It is off by default because it creates an extra filename lookup.
682 @<Allocate or initialize ...@>=
683 mp->print_found_names = (opt->print_found_names>0 ? true : false);
685 @ \MP's file-opening procedures return |false| if no file identified by
686 |name_of_file| could be opened.
688 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
689 It is not used for opening a mem file for read, because that file name
693 if (mp->print_found_names) {
694 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
696 *f = (mp->open_file)(mp->name_of_file,A, ftype);
697 strncpy(mp->name_of_file,s,file_name_size);
703 *f = (mp->open_file)(mp->name_of_file,A, ftype);
706 return (*f ? true : false)
709 boolean mp_a_open_in (MP mp, void **f, int ftype) {
710 /* open a text file for input */
714 boolean mp_w_open_in (MP mp, void **f) {
715 /* open a word file for input */
716 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
717 return (*f ? true : false);
720 boolean mp_a_open_out (MP mp, void **f, int ftype) {
721 /* open a text file for output */
725 boolean mp_b_open_out (MP mp, void **f, int ftype) {
726 /* open a binary file for output */
730 boolean mp_w_open_out (MP mp, void **f) {
731 /* open a word file for output */
732 int ftype = mp_filetype_memfile;
737 char *mp_read_ascii_file (void *f, size_t *size) {
739 size_t len = 0, lim = 128;
747 if (s==NULL) return NULL;
748 while (c!=EOF && c!='\n' && c!='\r') {
750 s =realloc(s, (lim+(lim>>2)));
751 if (s==NULL) return NULL;
759 if (c!=EOF && c!='\n')
769 void mp_write_ascii_file (void *f, char *s) {
778 void mp_read_binary_file (void *f, void **data, size_t *size) {
781 len = fread(*data,1,*size,f);
787 void mp_write_binary_file (void *f, void *s, size_t size) {
796 void mp_close_file (void *f) {
803 int mp_eof_file (void *f) {
812 void mp_flush_file (void *f) {
818 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
819 procedures, so we don't have to make any other special arrangements for
820 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
821 The treatment of text input is more difficult, however, because
822 of the necessary translation to |ASCII_code| values.
823 \MP's conventions should be efficient, and they should
824 blend nicely with the user's operating environment.
826 @ Input from text files is read one line at a time, using a routine called
827 |input_ln|. This function is defined in terms of global variables called
828 |buffer|, |first|, and |last| that will be described in detail later; for
829 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
830 values, and that |first| and |last| are indices into this array
831 representing the beginning and ending of a line of text.
834 size_t buf_size; /* maximum number of characters simultaneously present in
835 current lines of open files */
836 ASCII_code *buffer; /* lines of characters being read */
837 size_t first; /* the first unused position in |buffer| */
838 size_t last; /* end of the line just input to |buffer| */
839 size_t max_buf_stack; /* largest index used in |buffer| */
841 @ @<Allocate or initialize ...@>=
843 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
845 @ @<Dealloc variables@>=
849 void mp_reallocate_buffer(MP mp, size_t l) {
851 if (l>max_halfword) {
852 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
854 buffer = xmalloc((l+1),sizeof(ASCII_code));
855 memcpy(buffer,mp->buffer,(mp->buf_size+1));
857 mp->buffer = buffer ;
861 @ The |input_ln| function brings the next line of input from the specified
862 field into available positions of the buffer array and returns the value
863 |true|, unless the file has already been entirely read, in which case it
864 returns |false| and sets |last:=first|. In general, the |ASCII_code|
865 numbers that represent the next line of the file are input into
866 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
867 global variable |last| is set equal to |first| plus the length of the
868 line. Trailing blanks are removed from the line; thus, either |last=first|
869 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
872 The variable |max_buf_stack|, which is used to keep track of how large
873 the |buf_size| parameter must be to accommodate the present job, is
874 also kept up to date by |input_ln|.
877 boolean mp_input_ln (MP mp, void *f ) {
878 /* inputs the next line or returns |false| */
881 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
882 s = (mp->read_ascii_file)(f, &size);
886 mp->last = mp->first+size;
887 if ( mp->last>=mp->max_buf_stack ) {
888 mp->max_buf_stack=mp->last+1;
889 while ( mp->max_buf_stack>=mp->buf_size ) {
890 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
893 memcpy((mp->buffer+mp->first),s,size);
895 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
900 @ The user's terminal acts essentially like other files of text, except
901 that it is used both for input and for output. When the terminal is
902 considered an input file, the file variable is called |term_in|, and when it
903 is considered an output file the file variable is |term_out|.
904 @^system dependencies@>
907 void * term_in; /* the terminal as an input file */
908 void * term_out; /* the terminal as an output file */
909 void * err_out; /* the terminal as an output file */
911 @ Here is how to open the terminal files. In the default configuration,
912 nothing happens except that the command line (if there is one) is copied
913 to the input buffer. The variable |command_line| will be filled by the
914 |main| procedure. The copying can not be done earlier in the program
915 logic because in the |INI| version, the |buffer| is also used for primitive
918 @^system dependencies@>
920 @d t_open_out do {/* open the terminal for text output */
921 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
922 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
924 @d t_open_in do { /* open the terminal for text input */
925 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
926 if (mp->command_line!=NULL) {
927 mp->last = strlen(mp->command_line);
928 strncpy((char *)mp->buffer,mp->command_line,mp->last);
929 xfree(mp->command_line);
936 @ @<Option variables@>=
939 @ @<Allocate or initialize ...@>=
940 mp->command_line = opt->command_line;
942 @ Sometimes it is necessary to synchronize the input/output mixture that
943 happens on the user's terminal, and three system-dependent
944 procedures are used for this
945 purpose. The first of these, |update_terminal|, is called when we want
946 to make sure that everything we have output to the terminal so far has
947 actually left the computer's internal buffers and been sent.
948 The second, |clear_terminal|, is called when we wish to cancel any
949 input that the user may have typed ahead (since we are about to
950 issue an unexpected error message). The third, |wake_up_terminal|,
951 is supposed to revive the terminal if the user has disabled it by
952 some instruction to the operating system. The following macros show how
953 these operations can be specified in \ph:
954 @^system dependencies@>
956 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
957 @d clear_terminal do_nothing /* clear the terminal input buffer */
958 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
960 @ We need a special routine to read the first line of \MP\ input from
961 the user's terminal. This line is different because it is read before we
962 have opened the transcript file; there is sort of a ``chicken and
963 egg'' problem here. If the user types `\.{input cmr10}' on the first
964 line, or if some macro invoked by that line does such an \.{input},
965 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
966 commands are performed during the first line of terminal input, the transcript
967 file will acquire its default name `\.{mpout.log}'. (The transcript file
968 will not contain error messages generated by the first line before the
969 first \.{input} command.)
971 The first line is even more special if we are lucky enough to have an operating
972 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
973 program. It's nice to let the user start running a \MP\ job by typing
974 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
975 as if the first line of input were `\.{cmr10}', i.e., the first line will
976 consist of the remainder of the command line, after the part that invoked \MP.
978 @ Different systems have different ways to get started. But regardless of
979 what conventions are adopted, the routine that initializes the terminal
980 should satisfy the following specifications:
982 \yskip\textindent{1)}It should open file |term_in| for input from the
983 terminal. (The file |term_out| will already be open for output to the
986 \textindent{2)}If the user has given a command line, this line should be
987 considered the first line of terminal input. Otherwise the
988 user should be prompted with `\.{**}', and the first line of input
989 should be whatever is typed in response.
991 \textindent{3)}The first line of input, which might or might not be a
992 command line, should appear in locations |first| to |last-1| of the
995 \textindent{4)}The global variable |loc| should be set so that the
996 character to be read next by \MP\ is in |buffer[loc]|. This
997 character should not be blank, and we should have |loc<last|.
999 \yskip\noindent(It may be necessary to prompt the user several times
1000 before a non-blank line comes in. The prompt is `\.{**}' instead of the
1001 later `\.*' because the meaning is slightly different: `\.{input}' need
1002 not be typed immediately after~`\.{**}'.)
1004 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
1006 @ The following program does the required initialization
1007 without retrieving a possible command line.
1008 It should be clear how to modify this routine to deal with command lines,
1009 if the system permits them.
1010 @^system dependencies@>
1013 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
1016 loc = mp->first = 0;
1020 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
1022 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
1023 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
1024 @.End of file on the terminal@>
1028 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
1030 if ( loc<(int)mp->last ) {
1031 return true; /* return unless the line was all blank */
1033 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
1038 boolean mp_init_terminal (MP mp) ;
1041 @* \[4] String handling.
1042 Symbolic token names and diagnostic messages are variable-length strings
1043 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
1044 mechanism, \MP\ does all of its string processing by homegrown methods.
1046 \MP\ uses strings more extensively than \MF\ does, but the necessary
1047 operations can still be handled with a fairly simple data structure.
1048 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
1049 of the strings, and the array |str_start| contains indices of the starting
1050 points of each string. Strings are referred to by integer numbers, so that
1051 string number |s| comprises the characters |str_pool[j]| for
1052 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
1053 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
1054 location. The first string number not currently in use is |str_ptr|
1055 and |next_str[str_ptr]| begins a list of free string numbers. String
1056 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
1057 string currently being constructed.
1059 String numbers 0 to 255 are reserved for strings that correspond to single
1060 ASCII characters. This is in accordance with the conventions of \.{WEB},
1062 which converts single-character strings into the ASCII code number of the
1063 single character involved, while it converts other strings into integers
1064 and builds a string pool file. Thus, when the string constant \.{"."} appears
1065 in the program below, \.{WEB} converts it into the integer 46, which is the
1066 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1067 into some integer greater than~255. String number 46 will presumably be the
1068 single character `\..'\thinspace; but some ASCII codes have no standard visible
1069 representation, and \MP\ may need to be able to print an arbitrary
1070 ASCII character, so the first 256 strings are used to specify exactly what
1071 should be printed for each of the 256 possibilities.
1074 typedef int pool_pointer; /* for variables that point into |str_pool| */
1075 typedef int str_number; /* for variables that point into |str_start| */
1078 ASCII_code *str_pool; /* the characters */
1079 pool_pointer *str_start; /* the starting pointers */
1080 str_number *next_str; /* for linking strings in order */
1081 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1082 str_number str_ptr; /* number of the current string being created */
1083 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1084 str_number init_str_use; /* the initial number of strings in use */
1085 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1086 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1088 @ @<Allocate or initialize ...@>=
1089 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1090 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1091 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1093 @ @<Dealloc variables@>=
1094 xfree(mp->str_pool);
1095 xfree(mp->str_start);
1096 xfree(mp->next_str);
1098 @ Most printing is done from |char *|s, but sometimes not. Here are
1099 functions that convert an internal string into a |char *| for use
1100 by the printing routines, and vice versa.
1102 @d str(A) mp_str(mp,A)
1103 @d rts(A) mp_rts(mp,A)
1106 int mp_xstrcmp (const char *a, const char *b);
1107 char * mp_str (MP mp, str_number s);
1110 str_number mp_rts (MP mp, char *s);
1111 str_number mp_make_string (MP mp);
1113 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1114 very good: it does not handle nesting over more than one level.
1117 int mp_xstrcmp (const char *a, const char *b) {
1118 if (a==NULL && b==NULL)
1128 char * mp_str (MP mp, str_number ss) {
1131 if (ss==mp->str_ptr) {
1135 s = xmalloc(len+1,sizeof(char));
1136 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1141 str_number mp_rts (MP mp, char *s) {
1142 int r; /* the new string */
1143 int old; /* a possible string in progress */
1147 } else if (strlen(s)==1) {
1151 str_room((integer)strlen(s));
1152 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1153 old = mp_make_string(mp);
1158 r = mp_make_string(mp);
1160 str_room(length(old));
1161 while (i<length(old)) {
1162 append_char((mp->str_start[old]+i));
1164 mp_flush_string(mp,old);
1170 @ Except for |strs_used_up|, the following string statistics are only
1171 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1175 integer strs_used_up; /* strings in use or unused but not reclaimed */
1176 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1177 integer strs_in_use; /* total number of strings actually in use */
1178 integer max_pl_used; /* maximum |pool_in_use| so far */
1179 integer max_strs_used; /* maximum |strs_in_use| so far */
1181 @ Several of the elementary string operations are performed using \.{WEB}
1182 macros instead of \PASCAL\ procedures, because many of the
1183 operations are done quite frequently and we want to avoid the
1184 overhead of procedure calls. For example, here is
1185 a simple macro that computes the length of a string.
1188 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1190 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1192 @ The length of the current string is called |cur_length|. If we decide that
1193 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1194 |cur_length| becomes zero.
1196 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1197 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1199 @ Strings are created by appending character codes to |str_pool|.
1200 The |append_char| macro, defined here, does not check to see if the
1201 value of |pool_ptr| has gotten too high; this test is supposed to be
1202 made before |append_char| is used.
1204 To test if there is room to append |l| more characters to |str_pool|,
1205 we shall write |str_room(l)|, which tries to make sure there is enough room
1206 by compacting the string pool if necessary. If this does not work,
1207 |do_compaction| aborts \MP\ and gives an apologetic error message.
1209 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1210 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1212 @d str_room(A) /* make sure that the pool hasn't overflowed */
1213 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1214 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1215 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1218 @ The following routine is similar to |str_room(1)| but it uses the
1219 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1220 string space is exhausted.
1222 @<Declare the procedure called |unit_str_room|@>=
1223 void mp_unit_str_room (MP mp);
1226 void mp_unit_str_room (MP mp) {
1227 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1228 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1231 @ \MP's string expressions are implemented in a brute-force way: Every
1232 new string or substring that is needed is simply copied into the string pool.
1233 Space is eventually reclaimed by a procedure called |do_compaction| with
1234 the aid of a simple system system of reference counts.
1235 @^reference counts@>
1237 The number of references to string number |s| will be |str_ref[s]|. The
1238 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1239 positive number of references; such strings will never be recycled. If
1240 a string is ever referred to more than 126 times, simultaneously, we
1241 put it in this category. Hence a single byte suffices to store each |str_ref|.
1243 @d max_str_ref 127 /* ``infinite'' number of references */
1244 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1250 @ @<Allocate or initialize ...@>=
1251 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1253 @ @<Dealloc variables@>=
1256 @ Here's what we do when a string reference disappears:
1258 @d delete_str_ref(A) {
1259 if ( mp->str_ref[(A)]<max_str_ref ) {
1260 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1261 else mp_flush_string(mp, (A));
1265 @<Declare the procedure called |flush_string|@>=
1266 void mp_flush_string (MP mp,str_number s) ;
1269 @ We can't flush the first set of static strings at all, so there
1270 is no point in trying
1273 void mp_flush_string (MP mp,str_number s) {
1275 mp->pool_in_use=mp->pool_in_use-length(s);
1276 decr(mp->strs_in_use);
1277 if ( mp->next_str[s]!=mp->str_ptr ) {
1281 decr(mp->strs_used_up);
1283 mp->pool_ptr=mp->str_start[mp->str_ptr];
1287 @ C literals cannot be simply added, they need to be set so they can't
1290 @d intern(A) mp_intern(mp,(A))
1293 str_number mp_intern (MP mp, char *s) {
1296 mp->str_ref[r] = max_str_ref;
1301 str_number mp_intern (MP mp, char *s);
1304 @ Once a sequence of characters has been appended to |str_pool|, it
1305 officially becomes a string when the function |make_string| is called.
1306 This function returns the identification number of the new string as its
1309 When getting the next unused string number from the linked list, we pretend
1311 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1312 are linked sequentially even though the |next_str| entries have not been
1313 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1314 |do_compaction| is responsible for making sure of this.
1317 @<Declare the procedure called |do_compaction|@>;
1318 @<Declare the procedure called |unit_str_room|@>;
1319 str_number mp_make_string (MP mp);
1322 str_number mp_make_string (MP mp) { /* current string enters the pool */
1323 str_number s; /* the new string */
1326 mp->str_ptr=mp->next_str[s];
1327 if ( mp->str_ptr>mp->max_str_ptr ) {
1328 if ( mp->str_ptr==mp->max_strings ) {
1330 mp_do_compaction(mp, 0);
1334 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1335 @:this can't happen s}{\quad \.s@>
1337 mp->max_str_ptr=mp->str_ptr;
1338 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1342 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1343 incr(mp->strs_used_up);
1344 incr(mp->strs_in_use);
1345 mp->pool_in_use=mp->pool_in_use+length(s);
1346 if ( mp->pool_in_use>mp->max_pl_used )
1347 mp->max_pl_used=mp->pool_in_use;
1348 if ( mp->strs_in_use>mp->max_strs_used )
1349 mp->max_strs_used=mp->strs_in_use;
1353 @ The most interesting string operation is string pool compaction. The idea
1354 is to recover unused space in the |str_pool| array by recopying the strings
1355 to close the gaps created when some strings become unused. All string
1356 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1357 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1358 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1359 with |needed=mp->pool_size| supresses all overflow tests.
1361 The compaction process starts with |last_fixed_str| because all lower numbered
1362 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1365 str_number last_fixed_str; /* last permanently allocated string */
1366 str_number fixed_str_use; /* number of permanently allocated strings */
1368 @ @<Declare the procedure called |do_compaction|@>=
1369 void mp_do_compaction (MP mp, pool_pointer needed) ;
1372 void mp_do_compaction (MP mp, pool_pointer needed) {
1373 str_number str_use; /* a count of strings in use */
1374 str_number r,s,t; /* strings being manipulated */
1375 pool_pointer p,q; /* destination and source for copying string characters */
1376 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1377 r=mp->last_fixed_str;
1380 while ( s!=mp->str_ptr ) {
1381 while ( mp->str_ref[s]==0 ) {
1382 @<Advance |s| and add the old |s| to the list of free string numbers;
1383 then |break| if |s=str_ptr|@>;
1385 r=s; s=mp->next_str[s];
1387 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1388 after the end of the string@>;
1390 @<Move the current string back so that it starts at |p|@>;
1391 if ( needed<mp->pool_size ) {
1392 @<Make sure that there is room for another string with |needed| characters@>;
1394 @<Account for the compaction and make sure the statistics agree with the
1396 mp->strs_used_up=str_use;
1399 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1400 t=mp->next_str[mp->last_fixed_str];
1401 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1402 incr(mp->fixed_str_use);
1403 mp->last_fixed_str=t;
1406 str_use=mp->fixed_str_use
1408 @ Because of the way |flush_string| has been written, it should never be
1409 necessary to |break| here. The extra line of code seems worthwhile to
1410 preserve the generality of |do_compaction|.
1412 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1417 mp->next_str[t]=mp->next_str[mp->str_ptr];
1418 mp->next_str[mp->str_ptr]=t;
1419 if ( s==mp->str_ptr ) break;
1422 @ The string currently starts at |str_start[r]| and ends just before
1423 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1424 to locate the next string.
1426 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1429 while ( q<mp->str_start[s] ) {
1430 mp->str_pool[p]=mp->str_pool[q];
1434 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1435 we do this, anything between them should be moved.
1437 @ @<Move the current string back so that it starts at |p|@>=
1438 q=mp->str_start[mp->str_ptr];
1439 mp->str_start[mp->str_ptr]=p;
1440 while ( q<mp->pool_ptr ) {
1441 mp->str_pool[p]=mp->str_pool[q];
1446 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1448 @<Make sure that there is room for another string with |needed| char...@>=
1449 if ( str_use>=mp->max_strings-1 )
1450 mp_reallocate_strings (mp,str_use);
1451 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1452 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1453 mp->max_pool_ptr=mp->pool_ptr+needed;
1457 void mp_reallocate_strings (MP mp, str_number str_use) ;
1458 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1461 void mp_reallocate_strings (MP mp, str_number str_use) {
1462 while ( str_use>=mp->max_strings-1 ) {
1463 int l = mp->max_strings + (mp->max_strings>>2);
1464 XREALLOC (mp->str_ref, l, int);
1465 XREALLOC (mp->str_start, l, pool_pointer);
1466 XREALLOC (mp->next_str, l, str_number);
1467 mp->max_strings = l;
1470 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1471 while ( needed>mp->pool_size ) {
1472 int l = mp->pool_size + (mp->pool_size>>2);
1473 XREALLOC (mp->str_pool, l, ASCII_code);
1478 @ @<Account for the compaction and make sure the statistics agree with...@>=
1479 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1480 mp_confusion(mp, "string");
1481 @:this can't happen string}{\quad string@>
1482 incr(mp->pact_count);
1483 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1484 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1486 s=mp->str_ptr; t=str_use;
1487 while ( s<=mp->max_str_ptr ){
1488 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1489 incr(t); s=mp->next_str[s];
1491 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1494 @ A few more global variables are needed to keep track of statistics when
1495 |stat| $\ldots$ |tats| blocks are not commented out.
1498 integer pact_count; /* number of string pool compactions so far */
1499 integer pact_chars; /* total number of characters moved during compactions */
1500 integer pact_strs; /* total number of strings moved during compactions */
1502 @ @<Initialize compaction statistics@>=
1507 @ The following subroutine compares string |s| with another string of the
1508 same length that appears in |buffer| starting at position |k|;
1509 the result is |true| if and only if the strings are equal.
1512 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1513 /* test equality of strings */
1514 pool_pointer j; /* running index */
1516 while ( j<str_stop(s) ) {
1517 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1523 @ Here is a similar routine, but it compares two strings in the string pool,
1524 and it does not assume that they have the same length. If the first string
1525 is lexicographically greater than, less than, or equal to the second,
1526 the result is respectively positive, negative, or zero.
1529 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1530 /* test equality of strings */
1531 pool_pointer j,k; /* running indices */
1532 integer ls,lt; /* lengths */
1533 integer l; /* length remaining to test */
1534 ls=length(s); lt=length(t);
1535 if ( ls<=lt ) l=ls; else l=lt;
1536 j=mp->str_start[s]; k=mp->str_start[t];
1538 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1539 return (mp->str_pool[j]-mp->str_pool[k]);
1546 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1547 and |str_ptr| are computed by the \.{INIMP} program, based in part
1548 on the information that \.{WEB} has output while processing \MP.
1553 void mp_get_strings_started (MP mp) {
1554 /* initializes the string pool,
1555 but returns |false| if something goes wrong */
1556 int k; /* small indices or counters */
1557 str_number g; /* a new string */
1558 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1561 mp->pool_in_use=0; mp->strs_in_use=0;
1562 mp->max_pl_used=0; mp->max_strs_used=0;
1563 @<Initialize compaction statistics@>;
1565 @<Make the first 256 strings@>;
1566 g=mp_make_string(mp); /* string 256 == "" */
1567 mp->str_ref[g]=max_str_ref;
1568 mp->last_fixed_str=mp->str_ptr-1;
1569 mp->fixed_str_use=mp->str_ptr;
1574 void mp_get_strings_started (MP mp);
1576 @ The first 256 strings will consist of a single character only.
1578 @<Make the first 256...@>=
1579 for (k=0;k<=255;k++) {
1581 g=mp_make_string(mp);
1582 mp->str_ref[g]=max_str_ref;
1585 @ The first 128 strings will contain 95 standard ASCII characters, and the
1586 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1587 unless a system-dependent change is made here. Installations that have
1588 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1589 would like string 032 to be printed as the single character 032 instead
1590 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1591 even people with an extended character set will want to represent string
1592 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1593 to produce visible strings instead of tabs or line-feeds or carriage-returns
1594 or bell-rings or characters that are treated anomalously in text files.
1596 Unprintable characters of codes 128--255 are, similarly, rendered
1597 \.{\^\^80}--\.{\^\^ff}.
1599 The boolean expression defined here should be |true| unless \MP\ internal
1600 code number~|k| corresponds to a non-troublesome visible symbol in the
1601 local character set.
1602 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1603 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1605 @^character set dependencies@>
1606 @^system dependencies@>
1608 @<Character |k| cannot be printed@>=
1611 @* \[5] On-line and off-line printing.
1612 Messages that are sent to a user's terminal and to the transcript-log file
1613 are produced by several `|print|' procedures. These procedures will
1614 direct their output to a variety of places, based on the setting of
1615 the global variable |selector|, which has the following possible
1619 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1622 \hang |log_only|, prints only on the transcript file.
1624 \hang |term_only|, prints only on the terminal.
1626 \hang |no_print|, doesn't print at all. This is used only in rare cases
1627 before the transcript file is open.
1629 \hang |pseudo|, puts output into a cyclic buffer that is used
1630 by the |show_context| routine; when we get to that routine we shall discuss
1631 the reasoning behind this curious mode.
1633 \hang |new_string|, appends the output to the current string in the
1636 \hang |>=write_file| prints on one of the files used for the \&{write}
1637 @:write_}{\&{write} primitive@>
1641 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1642 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1643 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1644 relations are not used when |selector| could be |pseudo|, or |new_string|.
1645 We need not check for unprintable characters when |selector<pseudo|.
1647 Three additional global variables, |tally|, |term_offset| and |file_offset|
1648 record the number of characters that have been printed
1649 since they were most recently cleared to zero. We use |tally| to record
1650 the length of (possibly very long) stretches of printing; |term_offset|,
1651 and |file_offset|, on the other hand, keep track of how many
1652 characters have appeared so far on the current line that has been output
1653 to the terminal, the transcript file, or the \ps\ output file, respectively.
1655 @d new_string 0 /* printing is deflected to the string pool */
1656 @d pseudo 2 /* special |selector| setting for |show_context| */
1657 @d no_print 3 /* |selector| setting that makes data disappear */
1658 @d term_only 4 /* printing is destined for the terminal only */
1659 @d log_only 5 /* printing is destined for the transcript file only */
1660 @d term_and_log 6 /* normal |selector| setting */
1661 @d write_file 7 /* first write file selector */
1664 void * log_file; /* transcript of \MP\ session */
1665 void * ps_file; /* the generic font output goes here */
1666 unsigned int selector; /* where to print a message */
1667 unsigned char dig[23]; /* digits in a number being output */
1668 integer tally; /* the number of characters recently printed */
1669 unsigned int term_offset;
1670 /* the number of characters on the current terminal line */
1671 unsigned int file_offset;
1672 /* the number of characters on the current file line */
1673 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1674 integer trick_count; /* threshold for pseudoprinting, explained later */
1675 integer first_count; /* another variable for pseudoprinting */
1677 @ @<Allocate or initialize ...@>=
1678 memset(mp->dig,0,23);
1679 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1681 @ @<Dealloc variables@>=
1682 xfree(mp->trick_buf);
1684 @ @<Initialize the output routines@>=
1685 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1687 @ Macro abbreviations for output to the terminal and to the log file are
1688 defined here for convenience. Some systems need special conventions
1689 for terminal output, and it is possible to adhere to those conventions
1690 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1691 @^system dependencies@>
1693 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1694 @d wterm(A) do_fprintf(mp->term_out,(A))
1695 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1696 @d wterm_cr do_fprintf(mp->term_out,"\n")
1697 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1698 @d wlog(A) do_fprintf(mp->log_file,(A))
1699 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1700 @d wlog_cr do_fprintf(mp->log_file, "\n")
1701 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1704 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1705 use an array |wr_file| that will be declared later.
1707 @d mp_print_text(A) mp_print_str(mp,text((A)))
1710 void mp_print_ln (MP mp);
1711 void mp_print_visible_char (MP mp, ASCII_code s);
1712 void mp_print_char (MP mp, ASCII_code k);
1713 void mp_print (MP mp, char *s);
1714 void mp_print_str (MP mp, str_number s);
1715 void mp_print_nl (MP mp, char *s);
1716 void mp_print_two (MP mp,scaled x, scaled y) ;
1717 void mp_print_scaled (MP mp,scaled s);
1719 @ @<Basic print...@>=
1720 void mp_print_ln (MP mp) { /* prints an end-of-line */
1721 switch (mp->selector) {
1724 mp->term_offset=0; mp->file_offset=0;
1727 wlog_cr; mp->file_offset=0;
1730 wterm_cr; mp->term_offset=0;
1737 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1739 } /* note that |tally| is not affected */
1741 @ The |print_visible_char| procedure sends one character to the desired
1742 destination, using the |xchr| array to map it into an external character
1743 compatible with |input_ln|. (It assumes that it is always called with
1744 a visible ASCII character.) All printing comes through |print_ln| or
1745 |print_char|, which ultimately calls |print_visible_char|, hence these
1746 routines are the ones that limit lines to at most |max_print_line| characters.
1747 But we must make an exception for the \ps\ output file since it is not safe
1748 to cut up lines arbitrarily in \ps.
1750 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1751 |do_compaction| and |do_compaction| can call the error routines. Actually,
1752 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1754 @<Basic printing...@>=
1755 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1756 switch (mp->selector) {
1758 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1759 incr(mp->term_offset); incr(mp->file_offset);
1760 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1761 wterm_cr; mp->term_offset=0;
1763 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1764 wlog_cr; mp->file_offset=0;
1768 wlog_chr(xchr(s)); incr(mp->file_offset);
1769 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1772 wterm_chr(xchr(s)); incr(mp->term_offset);
1773 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1778 if ( mp->tally<mp->trick_count )
1779 mp->trick_buf[mp->tally % mp->error_line]=s;
1782 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1783 mp_unit_str_room(mp);
1784 if ( mp->pool_ptr>=mp->pool_size )
1785 goto DONE; /* drop characters if string space is full */
1790 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1791 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1798 @ The |print_char| procedure sends one character to the desired destination.
1799 File names and string expressions might contain |ASCII_code| values that
1800 can't be printed using |print_visible_char|. These characters will be
1801 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1802 (This procedure assumes that it is safe to bypass all checks for unprintable
1803 characters when |selector| is in the range |0..max_write_files-1|.
1804 The user might want to write unprintable characters.
1806 @d print_lc_hex(A) do { l=(A);
1807 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1810 @<Basic printing...@>=
1811 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1812 int l; /* small index or counter */
1813 if ( mp->selector<pseudo || mp->selector>=write_file) {
1814 mp_print_visible_char(mp, k);
1815 } else if ( @<Character |k| cannot be printed@> ) {
1818 mp_print_visible_char(mp, k+0100);
1819 } else if ( k<0200 ) {
1820 mp_print_visible_char(mp, k-0100);
1822 print_lc_hex(k / 16);
1823 print_lc_hex(k % 16);
1826 mp_print_visible_char(mp, k);
1830 @ An entire string is output by calling |print|. Note that if we are outputting
1831 the single standard ASCII character \.c, we could call |print("c")|, since
1832 |"c"=99| is the number of a single-character string, as explained above. But
1833 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1834 routine when it knows that this is safe. (The present implementation
1835 assumes that it is always safe to print a visible ASCII character.)
1836 @^system dependencies@>
1839 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1842 mp_print_char(mp, ss[j]); incr(j);
1848 void mp_print (MP mp, char *ss) {
1849 mp_do_print(mp, ss, strlen(ss));
1851 void mp_print_str (MP mp, str_number s) {
1852 pool_pointer j; /* current character code position */
1853 if ( (s<0)||(s>mp->max_str_ptr) ) {
1854 mp_do_print(mp,"???",3); /* this can't happen */
1858 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1862 @ Here is the very first thing that \MP\ prints: a headline that identifies
1863 the version number and base name. The |term_offset| variable is temporarily
1864 incorrect, but the discrepancy is not serious since we assume that the banner
1865 and mem identifier together will occupy at most |max_print_line|
1866 character positions.
1868 @<Initialize the output...@>=
1870 wterm (version_string);
1871 if (mp->mem_ident!=NULL)
1872 mp_print(mp,mp->mem_ident);
1876 @ The procedure |print_nl| is like |print|, but it makes sure that the
1877 string appears at the beginning of a new line.
1880 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1881 switch(mp->selector) {
1883 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1886 if ( mp->file_offset>0 ) mp_print_ln(mp);
1889 if ( mp->term_offset>0 ) mp_print_ln(mp);
1895 } /* there are no other cases */
1899 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1902 void mp_print_the_digs (MP mp, eight_bits k) {
1903 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1905 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1909 @ The following procedure, which prints out the decimal representation of a
1910 given integer |n|, has been written carefully so that it works properly
1911 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1912 to negative arguments, since such operations are not implemented consistently
1913 by all \PASCAL\ compilers.
1916 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1917 integer m; /* used to negate |n| in possibly dangerous cases */
1918 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1920 mp_print_char(mp, '-');
1921 if ( n>-100000000 ) {
1924 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1928 mp->dig[0]=0; incr(n);
1933 mp->dig[k]=n % 10; n=n / 10; incr(k);
1935 mp_print_the_digs(mp, k);
1939 void mp_print_int (MP mp,integer n);
1941 @ \MP\ also makes use of a trivial procedure to print two digits. The
1942 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1945 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1947 mp_print_char(mp, '0'+(n / 10));
1948 mp_print_char(mp, '0'+(n % 10));
1953 void mp_print_dd (MP mp,integer n);
1955 @ Here is a procedure that asks the user to type a line of input,
1956 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1957 The input is placed into locations |first| through |last-1| of the
1958 |buffer| array, and echoed on the transcript file if appropriate.
1960 This procedure is never called when |interaction<mp_scroll_mode|.
1962 @d prompt_input(A) do {
1963 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1964 } while (0) /* prints a string and gets a line of input */
1967 void mp_term_input (MP mp) { /* gets a line from the terminal */
1968 size_t k; /* index into |buffer| */
1969 update_terminal; /* Now the user sees the prompt for sure */
1970 if (!mp_input_ln(mp, mp->term_in ))
1971 mp_fatal_error(mp, "End of file on the terminal!");
1972 @.End of file on the terminal@>
1973 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1974 decr(mp->selector); /* prepare to echo the input */
1975 if ( mp->last!=mp->first ) {
1976 for (k=mp->first;k<=mp->last-1;k++) {
1977 mp_print_char(mp, mp->buffer[k]);
1981 mp->buffer[mp->last]='%';
1982 incr(mp->selector); /* restore previous status */
1985 @* \[6] Reporting errors.
1986 When something anomalous is detected, \MP\ typically does something like this:
1987 $$\vbox{\halign{#\hfil\cr
1988 |print_err("Something anomalous has been detected");|\cr
1989 |help3("This is the first line of my offer to help.")|\cr
1990 |("This is the second line. I'm trying to")|\cr
1991 |("explain the best way for you to proceed.");|\cr
1993 A two-line help message would be given using |help2|, etc.; these informal
1994 helps should use simple vocabulary that complements the words used in the
1995 official error message that was printed. (Outside the U.S.A., the help
1996 messages should preferably be translated into the local vernacular. Each
1997 line of help is at most 60 characters long, in the present implementation,
1998 so that |max_print_line| will not be exceeded.)
2000 The |print_err| procedure supplies a `\.!' before the official message,
2001 and makes sure that the terminal is awake if a stop is going to occur.
2002 The |error| procedure supplies a `\..' after the official message, then it
2003 shows the location of the error; and if |interaction=error_stop_mode|,
2004 it also enters into a dialog with the user, during which time the help
2005 message may be printed.
2006 @^system dependencies@>
2008 @ The global variable |interaction| has four settings, representing increasing
2009 amounts of user interaction:
2012 enum mp_interaction_mode {
2013 mp_unspecified_mode=0, /* extra value for command-line switch */
2014 mp_batch_mode, /* omits all stops and omits terminal output */
2015 mp_nonstop_mode, /* omits all stops */
2016 mp_scroll_mode, /* omits error stops */
2017 mp_error_stop_mode, /* stops at every opportunity to interact */
2021 int interaction; /* current level of interaction */
2023 @ @<Option variables@>=
2024 int interaction; /* current level of interaction */
2026 @ Set it here so it can be overwritten by the commandline
2028 @<Allocate or initialize ...@>=
2029 mp->interaction=opt->interaction;
2030 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
2031 mp->interaction=mp_error_stop_mode;
2032 if (mp->interaction<mp_unspecified_mode)
2033 mp->interaction=mp_batch_mode;
2037 @d print_err(A) mp_print_err(mp,(A))
2040 void mp_print_err(MP mp, char * A);
2043 void mp_print_err(MP mp, char * A) {
2044 if ( mp->interaction==mp_error_stop_mode )
2046 mp_print_nl(mp, "! ");
2052 @ \MP\ is careful not to call |error| when the print |selector| setting
2053 might be unusual. The only possible values of |selector| at the time of
2056 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
2057 and |log_file| not yet open);
2059 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2061 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2063 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2065 @<Initialize the print |selector| based on |interaction|@>=
2066 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2068 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2069 routine is active when |error| is called; this ensures that |get_next|
2070 will never be called recursively.
2073 The global variable |history| records the worst level of error that
2074 has been detected. It has four possible values: |spotless|, |warning_issued|,
2075 |error_message_issued|, and |fatal_error_stop|.
2077 Another global variable, |error_count|, is increased by one when an
2078 |error| occurs without an interactive dialog, and it is reset to zero at
2079 the end of every statement. If |error_count| reaches 100, \MP\ decides
2080 that there is no point in continuing further.
2083 enum mp_history_states {
2084 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2085 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2086 mp_error_message_issued, /* |history| value when |error| has been called */
2087 mp_fatal_error_stop, /* |history| value when termination was premature */
2091 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2092 int history; /* has the source input been clean so far? */
2093 int error_count; /* the number of scrolled errors since the last statement ended */
2095 @ The value of |history| is initially |fatal_error_stop|, but it will
2096 be changed to |spotless| if \MP\ survives the initialization process.
2098 @<Allocate or ...@>=
2099 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2101 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2102 error procedures near the beginning of the program. But the error procedures
2103 in turn use some other procedures, which need to be declared |forward|
2104 before we get to |error| itself.
2106 It is possible for |error| to be called recursively if some error arises
2107 when |get_next| is being used to delete a token, and/or if some fatal error
2108 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2110 is never more than two levels deep.
2113 void mp_get_next (MP mp);
2114 void mp_term_input (MP mp);
2115 void mp_show_context (MP mp);
2116 void mp_begin_file_reading (MP mp);
2117 void mp_open_log_file (MP mp);
2118 void mp_clear_for_error_prompt (MP mp);
2119 void mp_debug_help (MP mp);
2120 @<Declare the procedure called |flush_string|@>
2123 void mp_normalize_selector (MP mp);
2125 @ Individual lines of help are recorded in the array |help_line|, which
2126 contains entries in positions |0..(help_ptr-1)|. They should be printed
2127 in reverse order, i.e., with |help_line[0]| appearing last.
2129 @d hlp1(A) mp->help_line[0]=(A); }
2130 @d hlp2(A) mp->help_line[1]=(A); hlp1
2131 @d hlp3(A) mp->help_line[2]=(A); hlp2
2132 @d hlp4(A) mp->help_line[3]=(A); hlp3
2133 @d hlp5(A) mp->help_line[4]=(A); hlp4
2134 @d hlp6(A) mp->help_line[5]=(A); hlp5
2135 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2136 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2137 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2138 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2139 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2140 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2141 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2144 char * help_line[6]; /* helps for the next |error| */
2145 unsigned int help_ptr; /* the number of help lines present */
2146 boolean use_err_help; /* should the |err_help| string be shown? */
2147 str_number err_help; /* a string set up by \&{errhelp} */
2148 str_number filename_template; /* a string set up by \&{filenametemplate} */
2150 @ @<Allocate or ...@>=
2151 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2153 @ The |jump_out| procedure just cuts across all active procedure levels and
2154 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2155 whole program. It is used when there is no recovery from a particular error.
2157 The program uses a |jump_buf| to handle this, this is initialized at three
2158 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2159 of |mp_run|. Those are the only library enty points.
2161 @^system dependencies@>
2166 @ @<Install and test the non-local jump buffer@>=
2167 if (setjmp(mp->jump_buf) != 0) return mp->history;
2169 @ @<Setup the non-local jump buffer in |mp_new|@>=
2170 if (setjmp(mp->jump_buf) != 0) return NULL;
2172 @ If |mp->internal| is zero, then a crash occured during initialization,
2173 and it is not safe to run |mp_close_files_and_terminate|.
2176 void mp_jump_out (MP mp) {
2177 if(mp->internal!=NULL)
2178 mp_close_files_and_terminate(mp);
2179 longjmp(mp->jump_buf,1);
2182 @ Here now is the general |error| routine.
2185 void mp_error (MP mp) { /* completes the job of error reporting */
2186 ASCII_code c; /* what the user types */
2187 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2188 pool_pointer j; /* character position being printed */
2189 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2190 mp_print_char(mp, '.'); mp_show_context(mp);
2191 if ( mp->interaction==mp_error_stop_mode ) {
2192 @<Get user's advice and |return|@>;
2194 incr(mp->error_count);
2195 if ( mp->error_count==100 ) {
2196 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2197 @.That makes 100 errors...@>
2198 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2200 @<Put help message on the transcript file@>;
2202 void mp_warn (MP mp, char *msg) {
2203 int saved_selector = mp->selector;
2204 mp_normalize_selector(mp);
2205 mp_print_nl(mp,"Warning: ");
2207 mp->selector = saved_selector;
2210 @ @<Exported function ...@>=
2211 void mp_error (MP mp);
2212 void mp_warn (MP mp, char *msg);
2215 @ @<Get user's advice...@>=
2218 mp_clear_for_error_prompt(mp); prompt_input("? ");
2220 if ( mp->last==mp->first ) return;
2221 c=mp->buffer[mp->first];
2222 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2223 @<Interpret code |c| and |return| if done@>;
2226 @ It is desirable to provide an `\.E' option here that gives the user
2227 an easy way to return from \MP\ to the system editor, with the offending
2228 line ready to be edited. But such an extension requires some system
2229 wizardry, so the present implementation simply types out the name of the
2231 edited and the relevant line number.
2232 @^system dependencies@>
2235 typedef void (*mp_run_editor_command)(MP, char *, int);
2238 mp_run_editor_command run_editor;
2240 @ @<Option variables@>=
2241 mp_run_editor_command run_editor;
2243 @ @<Allocate or initialize ...@>=
2244 set_callback_option(run_editor);
2247 void mp_run_editor (MP mp, char *fname, int fline);
2249 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2250 mp_print_nl(mp, "You want to edit file ");
2251 @.You want to edit file x@>
2252 mp_print(mp, fname);
2253 mp_print(mp, " at line ");
2254 mp_print_int(mp, fline);
2255 mp->interaction=mp_scroll_mode;
2260 There is a secret `\.D' option available when the debugging routines haven't
2264 @<Interpret code |c| and |return| if done@>=
2266 case '0': case '1': case '2': case '3': case '4':
2267 case '5': case '6': case '7': case '8': case '9':
2268 if ( mp->deletions_allowed ) {
2269 @<Delete |c-"0"| tokens and |continue|@>;
2274 mp_debug_help(mp); continue;
2278 if ( mp->file_ptr>0 ){
2279 (mp->run_editor)(mp,
2280 str(mp->input_stack[mp->file_ptr].name_field),
2285 @<Print the help information and |continue|@>;
2288 @<Introduce new material from the terminal and |return|@>;
2290 case 'Q': case 'R': case 'S':
2291 @<Change the interaction level and |return|@>;
2294 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2299 @<Print the menu of available options@>
2301 @ @<Print the menu...@>=
2303 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2304 @.Type <return> to proceed...@>
2305 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2306 mp_print_nl(mp, "I to insert something, ");
2307 if ( mp->file_ptr>0 )
2308 mp_print(mp, "E to edit your file,");
2309 if ( mp->deletions_allowed )
2310 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2311 mp_print_nl(mp, "H for help, X to quit.");
2314 @ Here the author of \MP\ apologizes for making use of the numerical
2315 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2316 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2317 @^Knuth, Donald Ervin@>
2319 @<Change the interaction...@>=
2321 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2322 mp_print(mp, "OK, entering ");
2324 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2325 case 'R': mp_print(mp, "nonstopmode"); break;
2326 case 'S': mp_print(mp, "scrollmode"); break;
2327 } /* there are no other cases */
2328 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2331 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2332 contain the material inserted by the user; otherwise another prompt will
2333 be given. In order to understand this part of the program fully, you need
2334 to be familiar with \MP's input stacks.
2336 @<Introduce new material...@>=
2338 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2339 if ( mp->last>mp->first+1 ) {
2340 loc=mp->first+1; mp->buffer[mp->first]=' ';
2342 prompt_input("insert>"); loc=mp->first;
2345 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2348 @ We allow deletion of up to 99 tokens at a time.
2350 @<Delete |c-"0"| tokens...@>=
2352 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2353 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2354 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2358 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2359 @<Decrease the string reference count, if the current token is a string@>;
2362 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2363 help2("I have just deleted some text, as you asked.")
2364 ("You can now delete more, or insert, or whatever.");
2365 mp_show_context(mp);
2369 @ @<Print the help info...@>=
2371 if ( mp->use_err_help ) {
2372 @<Print the string |err_help|, possibly on several lines@>;
2373 mp->use_err_help=false;
2375 if ( mp->help_ptr==0 ) {
2376 help2("Sorry, I don't know how to help in this situation.")
2377 ("Maybe you should try asking a human?");
2380 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2381 } while (mp->help_ptr!=0);
2383 help4("Sorry, I already gave what help I could...")
2384 ("Maybe you should try asking a human?")
2385 ("An error might have occurred before I noticed any problems.")
2386 ("``If all else fails, read the instructions.''");
2390 @ @<Print the string |err_help|, possibly on several lines@>=
2391 j=mp->str_start[mp->err_help];
2392 while ( j<str_stop(mp->err_help) ) {
2393 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2394 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2395 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2396 else { incr(j); mp_print_char(mp, '%'); };
2400 @ @<Put help message on the transcript file@>=
2401 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2402 if ( mp->use_err_help ) {
2403 mp_print_nl(mp, "");
2404 @<Print the string |err_help|, possibly on several lines@>;
2406 while ( mp->help_ptr>0 ){
2407 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2411 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2414 @ In anomalous cases, the print selector might be in an unknown state;
2415 the following subroutine is called to fix things just enough to keep
2416 running a bit longer.
2419 void mp_normalize_selector (MP mp) {
2420 if ( mp->log_opened ) mp->selector=term_and_log;
2421 else mp->selector=term_only;
2422 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2423 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2426 @ The following procedure prints \MP's last words before dying.
2428 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2429 mp->interaction=mp_scroll_mode; /* no more interaction */
2430 if ( mp->log_opened ) mp_error(mp);
2431 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2432 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2436 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2437 mp_normalize_selector(mp);
2438 print_err("Emergency stop"); help1(s); succumb;
2442 @ @<Exported function ...@>=
2443 void mp_fatal_error (MP mp, char *s);
2446 @ Here is the most dreaded error message.
2449 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2450 mp_normalize_selector(mp);
2451 print_err("MetaPost capacity exceeded, sorry [");
2452 @.MetaPost capacity exceeded ...@>
2453 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2454 help2("If you really absolutely need more capacity,")
2455 ("you can ask a wizard to enlarge me.");
2459 @ @<Internal library declarations@>=
2460 void mp_overflow (MP mp, char *s, integer n);
2462 @ The program might sometime run completely amok, at which point there is
2463 no choice but to stop. If no previous error has been detected, that's bad
2464 news; a message is printed that is really intended for the \MP\
2465 maintenance person instead of the user (unless the user has been
2466 particularly diabolical). The index entries for `this can't happen' may
2467 help to pinpoint the problem.
2470 @<Internal library ...@>=
2471 void mp_confusion (MP mp,char *s);
2473 @ @<Error hand...@>=
2474 void mp_confusion (MP mp,char *s) {
2475 /* consistency check violated; |s| tells where */
2476 mp_normalize_selector(mp);
2477 if ( mp->history<mp_error_message_issued ) {
2478 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2479 @.This can't happen@>
2480 help1("I'm broken. Please show this to someone who can fix can fix");
2482 print_err("I can\'t go on meeting you like this");
2483 @.I can't go on...@>
2484 help2("One of your faux pas seems to have wounded me deeply...")
2485 ("in fact, I'm barely conscious. Please fix it and try again.");
2490 @ Users occasionally want to interrupt \MP\ while it's running.
2491 If the \PASCAL\ runtime system allows this, one can implement
2492 a routine that sets the global variable |interrupt| to some nonzero value
2493 when such an interrupt is signaled. Otherwise there is probably at least
2494 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2495 @^system dependencies@>
2498 @d check_interrupt { if ( mp->interrupt!=0 )
2499 mp_pause_for_instructions(mp); }
2502 integer interrupt; /* should \MP\ pause for instructions? */
2503 boolean OK_to_interrupt; /* should interrupts be observed? */
2505 @ @<Allocate or ...@>=
2506 mp->interrupt=0; mp->OK_to_interrupt=true;
2508 @ When an interrupt has been detected, the program goes into its
2509 highest interaction level and lets the user have the full flexibility of
2510 the |error| routine. \MP\ checks for interrupts only at times when it is
2514 void mp_pause_for_instructions (MP mp) {
2515 if ( mp->OK_to_interrupt ) {
2516 mp->interaction=mp_error_stop_mode;
2517 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2519 print_err("Interruption");
2522 ("Try to insert some instructions for me (e.g.,`I show x'),")
2523 ("unless you just want to quit by typing `X'.");
2524 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2529 @ Many of \MP's error messages state that a missing token has been
2530 inserted behind the scenes. We can save string space and program space
2531 by putting this common code into a subroutine.
2534 void mp_missing_err (MP mp, char *s) {
2535 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2536 @.Missing...inserted@>
2539 @* \[7] Arithmetic with scaled numbers.
2540 The principal computations performed by \MP\ are done entirely in terms of
2541 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2542 program can be carried out in exactly the same way on a wide variety of
2543 computers, including some small ones.
2546 But \PASCAL\ does not define the |div|
2547 operation in the case of negative dividends; for example, the result of
2548 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2549 There are two principal types of arithmetic: ``translation-preserving,''
2550 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2551 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2552 two \MP s, which can produce different results, although the differences
2553 should be negligible when the language is being used properly.
2554 The \TeX\ processor has been defined carefully so that both varieties
2555 of arithmetic will produce identical output, but it would be too
2556 inefficient to constrain \MP\ in a similar way.
2558 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2560 @ One of \MP's most common operations is the calculation of
2561 $\lfloor{a+b\over2}\rfloor$,
2562 the midpoint of two given integers |a| and~|b|. The only decent way to do
2563 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2564 far more efficient to calculate `|(a+b)| right shifted one bit'.
2566 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2567 in this program. If \MP\ is being implemented with languages that permit
2568 binary shifting, the |half| macro should be changed to make this operation
2569 as efficient as possible. Since some languages have shift operators that can
2570 only be trusted to work on positive numbers, there is also a macro |halfp|
2571 that is used only when the quantity being halved is known to be positive
2574 @d half(A) ((A) / 2)
2575 @d halfp(A) ((A) / 2)
2577 @ A single computation might use several subroutine calls, and it is
2578 desirable to avoid producing multiple error messages in case of arithmetic
2579 overflow. So the routines below set the global variable |arith_error| to |true|
2580 instead of reporting errors directly to the user.
2583 boolean arith_error; /* has arithmetic overflow occurred recently? */
2585 @ @<Allocate or ...@>=
2586 mp->arith_error=false;
2588 @ At crucial points the program will say |check_arith|, to test if
2589 an arithmetic error has been detected.
2591 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2594 void mp_clear_arith (MP mp) {
2595 print_err("Arithmetic overflow");
2596 @.Arithmetic overflow@>
2597 help4("Uh, oh. A little while ago one of the quantities that I was")
2598 ("computing got too large, so I'm afraid your answers will be")
2599 ("somewhat askew. You'll probably have to adopt different")
2600 ("tactics next time. But I shall try to carry on anyway.");
2602 mp->arith_error=false;
2605 @ Addition is not always checked to make sure that it doesn't overflow,
2606 but in places where overflow isn't too unlikely the |slow_add| routine
2609 @c integer mp_slow_add (MP mp,integer x, integer y) {
2611 if ( y<=el_gordo-x ) {
2614 mp->arith_error=true;
2617 } else if ( -y<=el_gordo+x ) {
2620 mp->arith_error=true;
2625 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2626 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2627 positions from the right end of a binary computer word.
2629 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2630 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2631 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2632 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2633 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2634 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2637 typedef integer scaled; /* this type is used for scaled integers */
2638 typedef unsigned char small_number; /* this type is self-explanatory */
2640 @ The following function is used to create a scaled integer from a given decimal
2641 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2642 given in |dig[i]|, and the calculation produces a correctly rounded result.
2645 scaled mp_round_decimals (MP mp,small_number k) {
2646 /* converts a decimal fraction */
2647 integer a = 0; /* the accumulator */
2649 a=(a+mp->dig[k]*two) / 10;
2654 @ Conversely, here is a procedure analogous to |print_int|. If the output
2655 of this procedure is subsequently read by \MP\ and converted by the
2656 |round_decimals| routine above, it turns out that the original value will
2657 be reproduced exactly. A decimal point is printed only if the value is
2658 not an integer. If there is more than one way to print the result with
2659 the optimum number of digits following the decimal point, the closest
2660 possible value is given.
2662 The invariant relation in the \&{repeat} loop is that a sequence of
2663 decimal digits yet to be printed will yield the original number if and only if
2664 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2665 We can stop if and only if $f=0$ satisfies this condition; the loop will
2666 terminate before $s$ can possibly become zero.
2668 @<Basic printing...@>=
2669 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2670 scaled delta; /* amount of allowable inaccuracy */
2672 mp_print_char(mp, '-');
2673 negate(s); /* print the sign, if negative */
2675 mp_print_int(mp, s / unity); /* print the integer part */
2679 mp_print_char(mp, '.');
2682 s=s+0100000-(delta / 2); /* round the final digit */
2683 mp_print_char(mp, '0'+(s / unity));
2690 @ We often want to print two scaled quantities in parentheses,
2691 separated by a comma.
2693 @<Basic printing...@>=
2694 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2695 mp_print_char(mp, '(');
2696 mp_print_scaled(mp, x);
2697 mp_print_char(mp, ',');
2698 mp_print_scaled(mp, y);
2699 mp_print_char(mp, ')');
2702 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2703 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2704 arithmetic with 28~significant bits of precision. A |fraction| denotes
2705 a scaled integer whose binary point is assumed to be 28 bit positions
2708 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2709 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2710 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2711 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2712 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2715 typedef integer fraction; /* this type is used for scaled fractions */
2717 @ In fact, the two sorts of scaling discussed above aren't quite
2718 sufficient; \MP\ has yet another, used internally to keep track of angles
2719 in units of $2^{-20}$ degrees.
2721 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2722 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2723 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2724 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2727 typedef integer angle; /* this type is used for scaled angles */
2729 @ The |make_fraction| routine produces the |fraction| equivalent of
2730 |p/q|, given integers |p| and~|q|; it computes the integer
2731 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2732 positive. If |p| and |q| are both of the same scaled type |t|,
2733 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2734 and it's also possible to use the subroutine ``backwards,'' using
2735 the relation |make_fraction(t,fraction)=t| between scaled types.
2737 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2738 sets |arith_error:=true|. Most of \MP's internal computations have
2739 been designed to avoid this sort of error.
2741 If this subroutine were programmed in assembly language on a typical
2742 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2743 double-precision product can often be input to a fixed-point division
2744 instruction. But when we are restricted to \PASCAL\ arithmetic it
2745 is necessary either to resort to multiple-precision maneuvering
2746 or to use a simple but slow iteration. The multiple-precision technique
2747 would be about three times faster than the code adopted here, but it
2748 would be comparatively long and tricky, involving about sixteen
2749 additional multiplications and divisions.
2751 This operation is part of \MP's ``inner loop''; indeed, it will
2752 consume nearly 10\pct! of the running time (exclusive of input and output)
2753 if the code below is left unchanged. A machine-dependent recoding
2754 will therefore make \MP\ run faster. The present implementation
2755 is highly portable, but slow; it avoids multiplication and division
2756 except in the initial stage. System wizards should be careful to
2757 replace it with a routine that is guaranteed to produce identical
2758 results in all cases.
2759 @^system dependencies@>
2761 As noted below, a few more routines should also be replaced by machine-dependent
2762 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2763 such changes aren't advisable; simplicity and robustness are
2764 preferable to trickery, unless the cost is too high.
2768 fraction mp_make_fraction (MP mp,integer p, integer q);
2769 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2771 @ If FIXPT is not defined, we need these preprocessor values
2773 @d ELGORDO 0x7fffffff
2774 @d TWEXP31 2147483648.0
2775 @d TWEXP28 268435456.0
2777 @d TWEXP_16 (1.0/65536.0)
2778 @d TWEXP_28 (1.0/268435456.0)
2782 fraction mp_make_fraction (MP mp,integer p, integer q) {
2784 integer f; /* the fraction bits, with a leading 1 bit */
2785 integer n; /* the integer part of $\vert p/q\vert$ */
2786 integer be_careful; /* disables certain compiler optimizations */
2787 boolean negative = false; /* should the result be negated? */
2789 negate(p); negative=true;
2793 if ( q==0 ) mp_confusion(mp, '/');
2795 @:this can't happen /}{\quad \./@>
2796 negate(q); negative = ! negative;
2800 mp->arith_error=true;
2801 return ( negative ? -el_gordo : el_gordo);
2803 n=(n-1)*fraction_one;
2804 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2805 return (negative ? (-(f+n)) : (f+n));
2811 if (q==0) mp_confusion(mp,'/');
2813 d = TWEXP28 * (double)p /(double)q;
2816 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2818 if (d==i && ( ((q>0 ? -q : q)&077777)
2819 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2822 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2824 if (d==i && ( ((q>0 ? q : -q)&077777)
2825 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2831 @ The |repeat| loop here preserves the following invariant relations
2832 between |f|, |p|, and~|q|:
2833 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2834 $p_0$ is the original value of~$p$.
2836 Notice that the computation specifies
2837 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2838 Let us hope that optimizing compilers do not miss this point; a
2839 special variable |be_careful| is used to emphasize the necessary
2840 order of computation. Optimizing compilers should keep |be_careful|
2841 in a register, not store it in memory.
2844 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2848 be_careful=p-q; p=be_careful+p;
2854 } while (f<fraction_one);
2856 if ( be_careful+p>=0 ) incr(f);
2859 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2860 given integer~|q| by a fraction~|f|. When the operands are positive, it
2861 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2864 This routine is even more ``inner loopy'' than |make_fraction|;
2865 the present implementation consumes almost 20\pct! of \MP's computation
2866 time during typical jobs, so a machine-language substitute is advisable.
2867 @^inner loop@> @^system dependencies@>
2870 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2874 integer mp_take_fraction (MP mp,integer q, fraction f) {
2875 integer p; /* the fraction so far */
2876 boolean negative; /* should the result be negated? */
2877 integer n; /* additional multiple of $q$ */
2878 integer be_careful; /* disables certain compiler optimizations */
2879 @<Reduce to the case that |f>=0| and |q>0|@>;
2880 if ( f<fraction_one ) {
2883 n=f / fraction_one; f=f % fraction_one;
2884 if ( q<=el_gordo / n ) {
2887 mp->arith_error=true; n=el_gordo;
2891 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2892 be_careful=n-el_gordo;
2893 if ( be_careful+p>0 ){
2894 mp->arith_error=true; n=el_gordo-p;
2901 integer mp_take_fraction (MP mp,integer p, fraction q) {
2904 d = (double)p * (double)q * TWEXP_28;
2908 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2909 mp->arith_error = true;
2913 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2917 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2918 mp->arith_error = true;
2922 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2928 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2932 negate( f); negative=true;
2935 negate(q); negative=! negative;
2938 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2939 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2940 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2943 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2944 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2945 if ( q<fraction_four ) {
2947 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2952 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2958 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2959 analogous to |take_fraction| but with a different scaling.
2960 Given positive operands, |take_scaled|
2961 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2963 Once again it is a good idea to use a machine-language replacement if
2964 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2965 when the Computer Modern fonts are being generated.
2970 integer mp_take_scaled (MP mp,integer q, scaled f) {
2971 integer p; /* the fraction so far */
2972 boolean negative; /* should the result be negated? */
2973 integer n; /* additional multiple of $q$ */
2974 integer be_careful; /* disables certain compiler optimizations */
2975 @<Reduce to the case that |f>=0| and |q>0|@>;
2979 n=f / unity; f=f % unity;
2980 if ( q<=el_gordo / n ) {
2983 mp->arith_error=true; n=el_gordo;
2987 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2988 be_careful=n-el_gordo;
2989 if ( be_careful+p>0 ) {
2990 mp->arith_error=true; n=el_gordo-p;
2992 return ( negative ?(-(n+p)) :(n+p));
2994 integer mp_take_scaled (MP mp,integer p, scaled q) {
2997 d = (double)p * (double)q * TWEXP_16;
3001 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
3002 mp->arith_error = true;
3006 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
3010 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
3011 mp->arith_error = true;
3015 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
3021 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
3022 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
3024 if ( q<fraction_four ) {
3026 p = (odd(f) ? halfp(p+q) : halfp(p));
3031 p = (odd(f) ? p+halfp(q-p) : halfp(p));
3036 @ For completeness, there's also |make_scaled|, which computes a
3037 quotient as a |scaled| number instead of as a |fraction|.
3038 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
3039 operands are positive. \ (This procedure is not used especially often,
3040 so it is not part of \MP's inner loop.)
3042 @<Internal library ...@>=
3043 scaled mp_make_scaled (MP mp,integer p, integer q) ;
3046 scaled mp_make_scaled (MP mp,integer p, integer q) {
3048 integer f; /* the fraction bits, with a leading 1 bit */
3049 integer n; /* the integer part of $\vert p/q\vert$ */
3050 boolean negative; /* should the result be negated? */
3051 integer be_careful; /* disables certain compiler optimizations */
3052 if ( p>=0 ) negative=false;
3053 else { negate(p); negative=true; };
3056 if ( q==0 ) mp_confusion(mp, "/");
3057 @:this can't happen /}{\quad \./@>
3059 negate(q); negative=! negative;
3063 mp->arith_error=true;
3064 return (negative ? (-el_gordo) : el_gordo);
3067 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3068 return ( negative ? (-(f+n)) :(f+n));
3074 if (q==0) mp_confusion(mp,"/");
3076 d = TWEXP16 * (double)p /(double)q;
3079 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3081 if (d==i && ( ((q>0 ? -q : q)&077777)
3082 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3085 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3087 if (d==i && ( ((q>0 ? q : -q)&077777)
3088 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3094 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3097 be_careful=p-q; p=be_careful+p;
3098 if ( p>=0 ) f=f+f+1;
3099 else { f+=f; p=p+q; };
3102 if ( be_careful+p>=0 ) incr(f)
3104 @ Here is a typical example of how the routines above can be used.
3105 It computes the function
3106 $${1\over3\tau}f(\theta,\phi)=
3107 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3108 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3109 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3110 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3111 fudge factor for placing the first control point of a curve that starts
3112 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3113 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3115 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3116 (It's a sum of eight terms whose absolute values can be bounded using
3117 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3118 is positive; and since the tension $\tau$ is constrained to be at least
3119 $3\over4$, the numerator is less than $16\over3$. The denominator is
3120 nonnegative and at most~6. Hence the fixed-point calculations below
3121 are guaranteed to stay within the bounds of a 32-bit computer word.
3123 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3124 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3125 $\sin\phi$, and $\cos\phi$, respectively.
3128 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3129 fraction cf, scaled t) {
3130 integer acc,num,denom; /* registers for intermediate calculations */
3131 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3132 acc=mp_take_fraction(mp, acc,ct-cf);
3133 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3134 /* $2^{28}\sqrt2\approx379625062.497$ */
3135 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3136 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3137 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3138 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3139 /* |make_scaled(fraction,scaled)=fraction| */
3140 if ( num / 4>=denom )
3141 return fraction_four;
3143 return mp_make_fraction(mp, num, denom);
3146 @ The following somewhat different subroutine tests rigorously if $ab$ is
3147 greater than, equal to, or less than~$cd$,
3148 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3149 The result is $+1$, 0, or~$-1$ in the three respective cases.
3151 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3154 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3155 integer q,r; /* temporary registers */
3156 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3158 q = a / d; r = c / b;
3160 return ( q>r ? 1 : -1);
3161 q = a % d; r = c % b;
3164 if ( q==0 ) return -1;
3166 } /* now |a>d>0| and |c>b>0| */
3169 @ @<Reduce to the case that |a...@>=
3170 if ( a<0 ) { negate(a); negate(b); };
3171 if ( c<0 ) { negate(c); negate(d); };
3174 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3178 return ( a==0 ? 0 : -1);
3179 q=a; a=c; c=q; q=-b; b=-d; d=q;
3180 } else if ( b<=0 ) {
3181 if ( b<0 ) if ( a>0 ) return -1;
3182 return (c==0 ? 0 : -1);
3185 @ We conclude this set of elementary routines with some simple rounding
3186 and truncation operations.
3188 @<Internal library declarations@>=
3189 #define mp_floor_scaled(M,i) ((i)&(-65536))
3190 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3191 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3194 @* \[8] Algebraic and transcendental functions.
3195 \MP\ computes all of the necessary special functions from scratch, without
3196 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3198 @ To get the square root of a |scaled| number |x|, we want to calculate
3199 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3200 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3201 determines $s$ by an iterative method that maintains the invariant
3202 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3203 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3204 might, however, be zero at the start of the first iteration.
3207 scaled mp_square_rt (MP mp,scaled x) ;
3210 scaled mp_square_rt (MP mp,scaled x) {
3211 small_number k; /* iteration control counter */
3212 integer y,q; /* registers for intermediate calculations */
3214 @<Handle square root of zero or negative argument@>;
3217 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3220 if ( x<fraction_four ) y=0;
3221 else { x=x-fraction_four; y=1; };
3223 @<Decrease |k| by 1, maintaining the invariant
3224 relations between |x|, |y|, and~|q|@>;
3230 @ @<Handle square root of zero...@>=
3233 print_err("Square root of ");
3234 @.Square root...replaced by 0@>
3235 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3236 help2("Since I don't take square roots of negative numbers,")
3237 ("I'm zeroing this one. Proceed, with fingers crossed.");
3243 @ @<Decrease |k| by 1, maintaining...@>=
3245 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3246 x=x-fraction_four; incr(y);
3248 x+=x; y=y+y-q; q+=q;
3249 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3250 if ( y>q ){ y=y-q; q=q+2; }
3251 else if ( y<=0 ) { q=q-2; y=y+q; };
3254 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3255 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3256 @^Moler, Cleve Barry@>
3257 @^Morrison, Donald Ross@>
3258 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3259 in such a way that their Pythagorean sum remains invariant, while the
3260 smaller argument decreases.
3262 @<Internal library ...@>=
3263 integer mp_pyth_add (MP mp,integer a, integer b);
3267 integer mp_pyth_add (MP mp,integer a, integer b) {
3268 fraction r; /* register used to transform |a| and |b| */
3269 boolean big; /* is the result dangerously near $2^{31}$? */
3271 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3273 if ( a<fraction_two ) {
3276 a=a / 4; b=b / 4; big=true;
3277 }; /* we reduced the precision to avoid arithmetic overflow */
3278 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3280 if ( a<fraction_two ) {
3283 mp->arith_error=true; a=el_gordo;
3290 @ The key idea here is to reflect the vector $(a,b)$ about the
3291 line through $(a,b/2)$.
3293 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3295 r=mp_make_fraction(mp, b,a);
3296 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3298 r=mp_make_fraction(mp, r,fraction_four+r);
3299 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3303 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3304 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3307 integer mp_pyth_sub (MP mp,integer a, integer b) {
3308 fraction r; /* register used to transform |a| and |b| */
3309 boolean big; /* is the input dangerously near $2^{31}$? */
3312 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3314 if ( a<fraction_four ) {
3317 a=halfp(a); b=halfp(b); big=true;
3319 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3320 if ( big ) double(a);
3325 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3327 r=mp_make_fraction(mp, b,a);
3328 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3330 r=mp_make_fraction(mp, r,fraction_four-r);
3331 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3334 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3337 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3338 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3339 mp_print(mp, " has been replaced by 0");
3341 help2("Since I don't take square roots of negative numbers,")
3342 ("I'm zeroing this one. Proceed, with fingers crossed.");
3348 @ The subroutines for logarithm and exponential involve two tables.
3349 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3350 a bit more calculation, which the author claims to have done correctly:
3351 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3352 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3355 @d two_to_the(A) (1<<(A))
3358 static const integer spec_log[29] = { 0, /* special logarithms */
3359 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3360 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3361 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3363 @ @<Local variables for initialization@>=
3364 integer k; /* all-purpose loop index */
3367 @ Here is the routine that calculates $2^8$ times the natural logarithm
3368 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3369 when |x| is a given positive integer.
3371 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3372 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3373 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3374 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3375 during the calculation, and sixteen auxiliary bits to extend |y| are
3376 kept in~|z| during the initial argument reduction. (We add
3377 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3378 not become negative; also, the actual amount subtracted from~|y| is~96,
3379 not~100, because we want to add~4 for rounding before the final division by~8.)
3382 scaled mp_m_log (MP mp,scaled x) {
3383 integer y,z; /* auxiliary registers */
3384 integer k; /* iteration counter */
3386 @<Handle non-positive logarithm@>;
3388 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3389 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3390 while ( x<fraction_four ) {
3391 double(x); y-=93032639; z-=48782;
3392 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3393 y=y+(z / unity); k=2;
3394 while ( x>fraction_four+4 ) {
3395 @<Increase |k| until |x| can be multiplied by a
3396 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3402 @ @<Increase |k| until |x| can...@>=
3404 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3405 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3406 y+=spec_log[k]; x-=z;
3409 @ @<Handle non-positive logarithm@>=
3411 print_err("Logarithm of ");
3412 @.Logarithm...replaced by 0@>
3413 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3414 help2("Since I don't take logs of non-positive numbers,")
3415 ("I'm zeroing this one. Proceed, with fingers crossed.");
3420 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3421 when |x| is |scaled|. The result is an integer approximation to
3422 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3425 scaled mp_m_exp (MP mp,scaled x) {
3426 small_number k; /* loop control index */
3427 integer y,z; /* auxiliary registers */
3428 if ( x>174436200 ) {
3429 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3430 mp->arith_error=true;
3432 } else if ( x<-197694359 ) {
3433 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3437 z=-8*x; y=04000000; /* $y=2^{20}$ */
3439 if ( x<=127919879 ) {
3441 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3443 z=8*(174436200-x); /* |z| is always nonnegative */
3447 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3449 return ((y+8) / 16);
3455 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3456 to multiplying |y| by $1-2^{-k}$.
3458 A subtle point (which had to be checked) was that if $x=127919879$, the
3459 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3460 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3461 and by~16 when |k=27|.
3463 @<Multiply |y| by...@>=
3466 while ( z>=spec_log[k] ) {
3468 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3473 @ The trigonometric subroutines use an auxiliary table such that
3474 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3475 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3478 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3479 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3480 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3482 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3483 returns the |angle| whose tangent points in the direction $(x,y)$.
3484 This subroutine first determines the correct octant, then solves the
3485 problem for |0<=y<=x|, then converts the result appropriately to
3486 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3487 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3488 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3490 The octants are represented in a ``Gray code,'' since that turns out
3491 to be computationally simplest.
3497 @d second_octant (first_octant+switch_x_and_y)
3498 @d third_octant (first_octant+switch_x_and_y+negate_x)
3499 @d fourth_octant (first_octant+negate_x)
3500 @d fifth_octant (first_octant+negate_x+negate_y)
3501 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3502 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3503 @d eighth_octant (first_octant+negate_y)
3506 angle mp_n_arg (MP mp,integer x, integer y) {
3507 angle z; /* auxiliary register */
3508 integer t; /* temporary storage */
3509 small_number k; /* loop counter */
3510 int octant; /* octant code */
3512 octant=first_octant;
3514 negate(x); octant=first_octant+negate_x;
3517 negate(y); octant=octant+negate_y;
3520 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3523 @<Handle undefined arg@>;
3525 @<Set variable |z| to the arg of $(x,y)$@>;
3526 @<Return an appropriate answer based on |z| and |octant|@>;
3530 @ @<Handle undefined arg@>=
3532 print_err("angle(0,0) is taken as zero");
3533 @.angle(0,0)...zero@>
3534 help2("The `angle' between two identical points is undefined.")
3535 ("I'm zeroing this one. Proceed, with fingers crossed.");
3540 @ @<Return an appropriate answer...@>=
3542 case first_octant: return z;
3543 case second_octant: return (ninety_deg-z);
3544 case third_octant: return (ninety_deg+z);
3545 case fourth_octant: return (one_eighty_deg-z);
3546 case fifth_octant: return (z-one_eighty_deg);
3547 case sixth_octant: return (-z-ninety_deg);
3548 case seventh_octant: return (z-ninety_deg);
3549 case eighth_octant: return (-z);
3550 }; /* there are no other cases */
3553 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3554 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3557 @<Set variable |z| to the arg...@>=
3558 while ( x>=fraction_two ) {
3559 x=halfp(x); y=halfp(y);
3563 while ( x<fraction_one ) {
3566 @<Increase |z| to the arg of $(x,y)$@>;
3569 @ During the calculations of this section, variables |x| and~|y|
3570 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3571 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3572 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3573 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3574 coordinates whose angle has decreased by~$\phi$; in the special case
3575 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3576 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3577 @^Meggitt, John E.@>
3578 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3580 The initial value of |x| will be multiplied by at most
3581 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3582 there is no chance of integer overflow.
3584 @<Increase |z|...@>=
3589 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3594 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3597 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3598 and cosine of that angle. The results of this routine are
3599 stored in global integer variables |n_sin| and |n_cos|.
3602 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3604 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3605 the purpose of |n_sin_cos(z)| is to set
3606 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3607 for some rather large number~|r|. The maximum of |x| and |y|
3608 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3609 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3612 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3614 small_number k; /* loop control variable */
3615 int q; /* specifies the quadrant */
3616 fraction r; /* magnitude of |(x,y)| */
3617 integer x,y,t; /* temporary registers */
3618 while ( z<0 ) z=z+three_sixty_deg;
3619 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3620 q=z / forty_five_deg; z=z % forty_five_deg;
3621 x=fraction_one; y=x;
3622 if ( ! odd(q) ) z=forty_five_deg-z;
3623 @<Subtract angle |z| from |(x,y)|@>;
3624 @<Convert |(x,y)| to the octant determined by~|q|@>;
3625 r=mp_pyth_add(mp, x,y);
3626 mp->n_cos=mp_make_fraction(mp, x,r);
3627 mp->n_sin=mp_make_fraction(mp, y,r);
3630 @ In this case the octants are numbered sequentially.
3632 @<Convert |(x,...@>=
3635 case 1: t=x; x=y; y=t; break;
3636 case 2: t=x; x=-y; y=t; break;
3637 case 3: negate(x); break;
3638 case 4: negate(x); negate(y); break;
3639 case 5: t=x; x=-y; y=-t; break;
3640 case 6: t=x; x=y; y=-t; break;
3641 case 7: negate(y); break;
3642 } /* there are no other cases */
3644 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3645 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3646 that this loop is guaranteed to terminate before the (nonexistent) value
3647 |spec_atan[27]| would be required.
3649 @<Subtract angle |z|...@>=
3652 if ( z>=spec_atan[k] ) {
3653 z=z-spec_atan[k]; t=x;
3654 x=t+y / two_to_the(k);
3655 y=y-t / two_to_the(k);
3659 if ( y<0 ) y=0 /* this precaution may never be needed */
3661 @ And now let's complete our collection of numeric utility routines
3662 by considering random number generation.
3663 \MP\ generates pseudo-random numbers with the additive scheme recommended
3664 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3665 results are random fractions between 0 and |fraction_one-1|, inclusive.
3667 There's an auxiliary array |randoms| that contains 55 pseudo-random
3668 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3669 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3670 The global variable |j_random| tells which element has most recently
3672 The global variable |random_seed| was introduced in version 0.9,
3673 for the sole reason of stressing the fact that the initial value of the
3674 random seed is system-dependant. The initialization code below will initialize
3675 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3676 is not good enough on modern fast machines that are capable of running
3677 multiple MetaPost processes within the same second.
3678 @^system dependencies@>
3681 fraction randoms[55]; /* the last 55 random values generated */
3682 int j_random; /* the number of unused |randoms| */
3683 scaled random_seed; /* the default random seed */
3685 @ @<Option variables@>=
3688 @ @<Allocate or initialize ...@>=
3689 mp->random_seed = (scaled)opt->random_seed;
3691 @ To consume a random fraction, the program below will say `|next_random|'
3692 and then it will fetch |randoms[j_random]|.
3694 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3695 else decr(mp->j_random); }
3698 void mp_new_randoms (MP mp) {
3699 int k; /* index into |randoms| */
3700 fraction x; /* accumulator */
3701 for (k=0;k<=23;k++) {
3702 x=mp->randoms[k]-mp->randoms[k+31];
3703 if ( x<0 ) x=x+fraction_one;
3706 for (k=24;k<= 54;k++){
3707 x=mp->randoms[k]-mp->randoms[k-24];
3708 if ( x<0 ) x=x+fraction_one;
3715 void mp_init_randoms (MP mp,scaled seed);
3717 @ To initialize the |randoms| table, we call the following routine.
3720 void mp_init_randoms (MP mp,scaled seed) {
3721 fraction j,jj,k; /* more or less random integers */
3722 int i; /* index into |randoms| */
3724 while ( j>=fraction_one ) j=halfp(j);
3726 for (i=0;i<=54;i++ ){
3728 if ( k<0 ) k=k+fraction_one;
3729 mp->randoms[(i*21)% 55]=j;
3733 mp_new_randoms(mp); /* ``warm up'' the array */
3736 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3737 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3739 Note that the call of |take_fraction| will produce the values 0 and~|x|
3740 with about half the probability that it will produce any other particular
3741 values between 0 and~|x|, because it rounds its answers.
3744 scaled mp_unif_rand (MP mp,scaled x) {
3745 scaled y; /* trial value */
3746 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3747 if ( y==abs(x) ) return 0;
3748 else if ( x>0 ) return y;
3752 @ Finally, a normal deviate with mean zero and unit standard deviation
3753 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3754 {\sl The Art of Computer Programming\/}).
3757 scaled mp_norm_rand (MP mp) {
3758 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3762 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3763 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3764 next_random; u=mp->randoms[mp->j_random];
3765 } while (abs(x)>=u);
3766 x=mp_make_fraction(mp, x,u);
3767 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3768 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3772 @* \[9] Packed data.
3773 In order to make efficient use of storage space, \MP\ bases its major data
3774 structures on a |memory_word|, which contains either a (signed) integer,
3775 possibly scaled, or a small number of fields that are one half or one
3776 quarter of the size used for storing integers.
3778 If |x| is a variable of type |memory_word|, it contains up to four
3779 fields that can be referred to as follows:
3780 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3781 |x|&.|int|&(an |integer|)\cr
3782 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3783 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3784 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3786 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3787 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3788 This is somewhat cumbersome to write, and not very readable either, but
3789 macros will be used to make the notation shorter and more transparent.
3790 The code below gives a formal definition of |memory_word| and
3791 its subsidiary types, using packed variant records. \MP\ makes no
3792 assumptions about the relative positions of the fields within a word.
3794 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3795 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3797 @ Here are the inequalities that the quarterword and halfword values
3798 must satisfy (or rather, the inequalities that they mustn't satisfy):
3800 @<Check the ``constant''...@>=
3801 if (mp->ini_version) {
3802 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3804 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3806 if ( max_quarterword<255 ) mp->bad=9;
3807 if ( max_halfword<65535 ) mp->bad=10;
3808 if ( max_quarterword>max_halfword ) mp->bad=11;
3809 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3810 if ( mp->max_strings>max_halfword ) mp->bad=13;
3812 @ The macros |qi| and |qo| are used for input to and output
3813 from quarterwords. These are legacy macros.
3814 @^system dependencies@>
3816 @d qo(A) (A) /* to read eight bits from a quarterword */
3817 @d qi(A) (A) /* to store eight bits in a quarterword */
3819 @ The reader should study the following definitions closely:
3820 @^system dependencies@>
3822 @d sc cint /* |scaled| data is equivalent to |integer| */
3825 typedef short quarterword; /* 1/4 of a word */
3826 typedef int halfword; /* 1/2 of a word */
3831 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3838 quarterword B2, B3, B0, B1;
3853 @ When debugging, we may want to print a |memory_word| without knowing
3854 what type it is; so we print it in all modes.
3855 @^dirty \PASCAL@>@^debugging@>
3858 void mp_print_word (MP mp,memory_word w) {
3859 /* prints |w| in all ways */
3860 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3861 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3862 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3863 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3864 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3865 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3866 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3867 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3868 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3869 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3870 mp_print_int(mp, w.qqqq.b3);
3874 @* \[10] Dynamic memory allocation.
3876 The \MP\ system does nearly all of its own memory allocation, so that it
3877 can readily be transported into environments that do not have automatic
3878 facilities for strings, garbage collection, etc., and so that it can be in
3879 control of what error messages the user receives. The dynamic storage
3880 requirements of \MP\ are handled by providing a large array |mem| in
3881 which consecutive blocks of words are used as nodes by the \MP\ routines.
3883 Pointer variables are indices into this array, or into another array
3884 called |eqtb| that will be explained later. A pointer variable might
3885 also be a special flag that lies outside the bounds of |mem|, so we
3886 allow pointers to assume any |halfword| value. The minimum memory
3887 index represents a null pointer.
3889 @d null 0 /* the null pointer */
3890 @d mp_void (null+1) /* a null pointer different from |null| */
3894 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3896 @ The |mem| array is divided into two regions that are allocated separately,
3897 but the dividing line between these two regions is not fixed; they grow
3898 together until finding their ``natural'' size in a particular job.
3899 Locations less than or equal to |lo_mem_max| are used for storing
3900 variable-length records consisting of two or more words each. This region
3901 is maintained using an algorithm similar to the one described in exercise
3902 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3903 appears in the allocated nodes; the program is responsible for knowing the
3904 relevant size when a node is freed. Locations greater than or equal to
3905 |hi_mem_min| are used for storing one-word records; a conventional
3906 \.{AVAIL} stack is used for allocation in this region.
3908 Locations of |mem| between |0| and |mem_top| may be dumped as part
3909 of preloaded format files, by the \.{INIMP} preprocessor.
3911 Production versions of \MP\ may extend the memory at the top end in order to
3912 provide more space; these locations, between |mem_top| and |mem_max|,
3913 are always used for single-word nodes.
3915 The key pointers that govern |mem| allocation have a prescribed order:
3916 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3919 memory_word *mem; /* the big dynamic storage area */
3920 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3921 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3925 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3926 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3927 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3928 @d xstrdup(A) mp_xstrdup(mp,A)
3929 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3931 @<Declare helpers@>=
3932 void mp_xfree (void *x);
3933 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3934 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3935 char *mp_xstrdup(MP mp, const char *s);
3937 @ The |max_size_test| guards against overflow, on the assumption that
3938 |size_t| is at least 31bits wide.
3940 @d max_size_test 0x7FFFFFFF
3943 void mp_xfree (void *x) {
3944 if (x!=NULL) free(x);
3946 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3948 if ((max_size_test/size)<nmem) {
3949 do_fprintf(mp->err_out,"Memory size overflow!\n");
3950 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3952 w = realloc (p,(nmem*size));
3954 do_fprintf(mp->err_out,"Out of memory!\n");
3955 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3959 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3961 if ((max_size_test/size)<nmem) {
3962 do_fprintf(mp->err_out,"Memory size overflow!\n");
3963 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3965 w = malloc (nmem*size);
3967 do_fprintf(mp->err_out,"Out of memory!\n");
3968 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3972 char *mp_xstrdup(MP mp, const char *s) {
3978 do_fprintf(mp->err_out,"Out of memory!\n");
3979 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3986 @<Allocate or initialize ...@>=
3987 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3988 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3990 @ @<Dealloc variables@>=
3993 @ Users who wish to study the memory requirements of particular applications can
3994 can use optional special features that keep track of current and
3995 maximum memory usage. When code between the delimiters |stat| $\ldots$
3996 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3997 report these statistics when |mp_tracing_stats| is positive.
4000 integer var_used; integer dyn_used; /* how much memory is in use */
4002 @ Let's consider the one-word memory region first, since it's the
4003 simplest. The pointer variable |mem_end| holds the highest-numbered location
4004 of |mem| that has ever been used. The free locations of |mem| that
4005 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
4006 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
4007 and |rh| fields of |mem[p]| when it is of this type. The single-word
4008 free locations form a linked list
4009 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
4010 terminated by |null|.
4012 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
4013 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
4016 pointer avail; /* head of the list of available one-word nodes */
4017 pointer mem_end; /* the last one-word node used in |mem| */
4019 @ If one-word memory is exhausted, it might mean that the user has forgotten
4020 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
4021 later that try to help pinpoint the trouble.
4024 @<Declare the procedure called |show_token_list|@>;
4025 @<Declare the procedure called |runaway|@>
4027 @ The function |get_avail| returns a pointer to a new one-word node whose
4028 |link| field is null. However, \MP\ will halt if there is no more room left.
4032 pointer mp_get_avail (MP mp) { /* single-word node allocation */
4033 pointer p; /* the new node being got */
4034 p=mp->avail; /* get top location in the |avail| stack */
4036 mp->avail=link(mp->avail); /* and pop it off */
4037 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4038 incr(mp->mem_end); p=mp->mem_end;
4040 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4041 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4042 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4043 mp_overflow(mp, "main memory size",mp->mem_max);
4044 /* quit; all one-word nodes are busy */
4045 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4048 link(p)=null; /* provide an oft-desired initialization of the new node */
4049 incr(mp->dyn_used);/* maintain statistics */
4053 @ Conversely, a one-word node is recycled by calling |free_avail|.
4055 @d free_avail(A) /* single-word node liberation */
4056 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4058 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4059 overhead at the expense of extra programming. This macro is used in
4060 the places that would otherwise account for the most calls of |get_avail|.
4063 @d fast_get_avail(A) {
4064 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4065 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4066 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4069 @ The available-space list that keeps track of the variable-size portion
4070 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4071 pointed to by the roving pointer |rover|.
4073 Each empty node has size 2 or more; the first word contains the special
4074 value |max_halfword| in its |link| field and the size in its |info| field;
4075 the second word contains the two pointers for double linking.
4077 Each nonempty node also has size 2 or more. Its first word is of type
4078 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4079 Otherwise there is complete flexibility with respect to the contents
4080 of its other fields and its other words.
4082 (We require |mem_max<max_halfword| because terrible things can happen
4083 when |max_halfword| appears in the |link| field of a nonempty node.)
4085 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4086 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4087 @d node_size info /* the size field in empty variable-size nodes */
4088 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4089 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4092 pointer rover; /* points to some node in the list of empties */
4094 @ A call to |get_node| with argument |s| returns a pointer to a new node
4095 of size~|s|, which must be 2~or more. The |link| field of the first word
4096 of this new node is set to null. An overflow stop occurs if no suitable
4099 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4100 areas and returns the value |max_halfword|.
4102 @<Internal library declarations@>=
4103 pointer mp_get_node (MP mp,integer s) ;
4106 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4107 pointer p; /* the node currently under inspection */
4108 pointer q; /* the node physically after node |p| */
4109 integer r; /* the newly allocated node, or a candidate for this honor */
4110 integer t,tt; /* temporary registers */
4113 p=mp->rover; /* start at some free node in the ring */
4115 @<Try to allocate within node |p| and its physical successors,
4116 and |goto found| if allocation was possible@>;
4117 if (rlink(p)==null || rlink(p)==p) {
4118 print_err("Free list garbled");
4119 help3("I found an entry in the list of free nodes that links")
4120 ("badly. I will try to ignore the broken link, but something")
4121 ("is seriously amiss. It is wise to warn the maintainers.")
4125 p=rlink(p); /* move to the next node in the ring */
4126 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4127 if ( s==010000000000 ) {
4128 return max_halfword;
4130 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4131 if ( mp->lo_mem_max+2<=max_halfword ) {
4132 @<Grow more variable-size memory and |goto restart|@>;
4135 mp_overflow(mp, "main memory size",mp->mem_max);
4136 /* sorry, nothing satisfactory is left */
4137 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4139 link(r)=null; /* this node is now nonempty */
4140 mp->var_used+=s; /* maintain usage statistics */
4144 @ The lower part of |mem| grows by 1000 words at a time, unless
4145 we are very close to going under. When it grows, we simply link
4146 a new node into the available-space list. This method of controlled
4147 growth helps to keep the |mem| usage consecutive when \MP\ is
4148 implemented on ``virtual memory'' systems.
4151 @<Grow more variable-size memory and |goto restart|@>=
4153 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4154 t=mp->lo_mem_max+1000;
4156 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4157 /* |lo_mem_max+2<=t<hi_mem_min| */
4159 if ( t>max_halfword ) t=max_halfword;
4160 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4161 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4162 node_size(q)=t-mp->lo_mem_max;
4163 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4168 @ @<Try to allocate...@>=
4169 q=p+node_size(p); /* find the physical successor */
4170 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4171 t=rlink(q); tt=llink(q);
4173 if ( q==mp->rover ) mp->rover=t;
4174 llink(t)=tt; rlink(tt)=t;
4179 @<Allocate from the top of node |p| and |goto found|@>;
4182 if ( rlink(p)!=p ) {
4183 @<Allocate entire node |p| and |goto found|@>;
4186 node_size(p)=q-p /* reset the size in case it grew */
4188 @ @<Allocate from the top...@>=
4190 node_size(p)=r-p; /* store the remaining size */
4191 mp->rover=p; /* start searching here next time */
4195 @ Here we delete node |p| from the ring, and let |rover| rove around.
4197 @<Allocate entire...@>=
4199 mp->rover=rlink(p); t=llink(p);
4200 llink(mp->rover)=t; rlink(t)=mp->rover;
4204 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4205 the operation |free_node(p,s)| will make its words available, by inserting
4206 |p| as a new empty node just before where |rover| now points.
4208 @<Internal library declarations@>=
4209 void mp_free_node (MP mp, pointer p, halfword s) ;
4212 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4214 pointer q; /* |llink(rover)| */
4215 node_size(p)=s; link(p)=empty_flag;
4217 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4218 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4219 mp->var_used-=s; /* maintain statistics */
4222 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4223 available space list. The list is probably very short at such times, so a
4224 simple insertion sort is used. The smallest available location will be
4225 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4228 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4230 pointer p,q,r; /* indices into |mem| */
4231 pointer old_rover; /* initial |rover| setting */
4232 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4233 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4234 while ( p!=old_rover ) {
4235 @<Sort |p| into the list starting at |rover|
4236 and advance |p| to |rlink(p)|@>;
4239 while ( rlink(p)!=max_halfword ) {
4240 llink(rlink(p))=p; p=rlink(p);
4242 rlink(p)=mp->rover; llink(mp->rover)=p;
4245 @ The following |while| loop is guaranteed to
4246 terminate, since the list that starts at
4247 |rover| ends with |max_halfword| during the sorting procedure.
4250 if ( p<mp->rover ) {
4251 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4254 while ( rlink(q)<p ) q=rlink(q);
4255 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4258 @* \[11] Memory layout.
4259 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4260 more efficient than dynamic allocation when we can get away with it. For
4261 example, locations |0| to |1| are always used to store a
4262 two-word dummy token whose second word is zero.
4263 The following macro definitions accomplish the static allocation by giving
4264 symbolic names to the fixed positions. Static variable-size nodes appear
4265 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4266 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4268 @d null_dash (2) /* the first two words are reserved for a null value */
4269 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4270 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4271 @d temp_val (zero_val+2) /* two words for a temporary value node */
4272 @d end_attr temp_val /* we use |end_attr+2| only */
4273 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4274 @d test_pen (inf_val+2)
4275 /* nine words for a pen used when testing the turning number */
4276 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4277 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4278 allocated word in the variable-size |mem| */
4280 @d sentinel mp->mem_top /* end of sorted lists */
4281 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4282 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4283 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4284 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4285 the one-word |mem| */
4287 @ The following code gets the dynamic part of |mem| off to a good start,
4288 when \MP\ is initializing itself the slow way.
4290 @<Initialize table entries (done by \.{INIMP} only)@>=
4291 @^data structure assumptions@>
4292 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4293 link(mp->rover)=empty_flag;
4294 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4295 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4296 mp->lo_mem_max=mp->rover+1000;
4297 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4298 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4299 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4301 mp->avail=null; mp->mem_end=mp->mem_top;
4302 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4303 mp->var_used=lo_mem_stat_max+1;
4304 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4305 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4307 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4308 nodes that starts at a given position, until coming to |sentinel| or a
4309 pointer that is not in the one-word region. Another procedure,
4310 |flush_node_list|, frees an entire linked list of one-word and two-word
4311 nodes, until coming to a |null| pointer.
4315 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4316 pointer q,r; /* list traversers */
4317 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4322 if ( r<mp->hi_mem_min ) break;
4323 } while (r!=sentinel);
4324 /* now |q| is the last node on the list */
4325 link(q)=mp->avail; mp->avail=p;
4329 void mp_flush_node_list (MP mp,pointer p) {
4330 pointer q; /* the node being recycled */
4333 if ( q<mp->hi_mem_min )
4334 mp_free_node(mp, q,2);
4340 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4341 For example, some pointers might be wrong, or some ``dead'' nodes might not
4342 have been freed when the last reference to them disappeared. Procedures
4343 |check_mem| and |search_mem| are available to help diagnose such
4344 problems. These procedures make use of two arrays called |free| and
4345 |was_free| that are present only if \MP's debugging routines have
4346 been included. (You may want to decrease the size of |mem| while you
4350 Because |boolean|s are typedef-d as ints, it is better to use
4351 unsigned chars here.
4354 unsigned char *free; /* free cells */
4355 unsigned char *was_free; /* previously free cells */
4356 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4357 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4358 boolean panicking; /* do we want to check memory constantly? */
4360 @ @<Allocate or initialize ...@>=
4361 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4362 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4364 @ @<Dealloc variables@>=
4366 xfree(mp->was_free);
4368 @ @<Allocate or ...@>=
4369 mp->was_mem_end=0; /* indicate that everything was previously free */
4370 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4371 mp->panicking=false;
4373 @ @<Declare |mp_reallocate| functions@>=
4374 void mp_reallocate_memory(MP mp, int l) ;
4377 void mp_reallocate_memory(MP mp, int l) {
4378 XREALLOC(mp->free, l, unsigned char);
4379 XREALLOC(mp->was_free, l, unsigned char);
4381 int newarea = l-mp->mem_max;
4382 XREALLOC(mp->mem, l, memory_word);
4383 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4385 XREALLOC(mp->mem, l, memory_word);
4386 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4389 if (mp->ini_version)
4395 @ Procedure |check_mem| makes sure that the available space lists of
4396 |mem| are well formed, and it optionally prints out all locations
4397 that are reserved now but were free the last time this procedure was called.
4400 void mp_check_mem (MP mp,boolean print_locs ) {
4401 pointer p,q,r; /* current locations of interest in |mem| */
4402 boolean clobbered; /* is something amiss? */
4403 for (p=0;p<=mp->lo_mem_max;p++) {
4404 mp->free[p]=false; /* you can probably do this faster */
4406 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4407 mp->free[p]=false; /* ditto */
4409 @<Check single-word |avail| list@>;
4410 @<Check variable-size |avail| list@>;
4411 @<Check flags of unavailable nodes@>;
4412 @<Check the list of linear dependencies@>;
4414 @<Print newly busy locations@>;
4416 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4417 mp->was_mem_end=mp->mem_end;
4418 mp->was_lo_max=mp->lo_mem_max;
4419 mp->was_hi_min=mp->hi_mem_min;
4422 @ @<Check single-word...@>=
4423 p=mp->avail; q=null; clobbered=false;
4425 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4426 else if ( mp->free[p] ) clobbered=true;
4428 mp_print_nl(mp, "AVAIL list clobbered at ");
4429 @.AVAIL list clobbered...@>
4430 mp_print_int(mp, q); break;
4432 mp->free[p]=true; q=p; p=link(q);
4435 @ @<Check variable-size...@>=
4436 p=mp->rover; q=null; clobbered=false;
4438 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4439 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4440 else if ( !(is_empty(p))||(node_size(p)<2)||
4441 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4443 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4444 @.Double-AVAIL list clobbered...@>
4445 mp_print_int(mp, q); break;
4447 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4448 if ( mp->free[q] ) {
4449 mp_print_nl(mp, "Doubly free location at ");
4450 @.Doubly free location...@>
4451 mp_print_int(mp, q); break;
4456 } while (p!=mp->rover)
4459 @ @<Check flags...@>=
4461 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4462 if ( is_empty(p) ) {
4463 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4466 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4467 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4470 @ @<Print newly busy...@>=
4472 @<Do intialization required before printing new busy locations@>;
4473 mp_print_nl(mp, "New busy locs:");
4475 for (p=0;p<= mp->lo_mem_max;p++ ) {
4476 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4477 @<Indicate that |p| is a new busy location@>;
4480 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4481 if ( ! mp->free[p] &&
4482 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4483 @<Indicate that |p| is a new busy location@>;
4486 @<Finish printing new busy locations@>;
4489 @ There might be many new busy locations so we are careful to print contiguous
4490 blocks compactly. During this operation |q| is the last new busy location and
4491 |r| is the start of the block containing |q|.
4493 @<Indicate that |p| is a new busy location@>=
4497 mp_print(mp, ".."); mp_print_int(mp, q);
4499 mp_print_char(mp, ' '); mp_print_int(mp, p);
4505 @ @<Do intialization required before printing new busy locations@>=
4506 q=mp->mem_max; r=mp->mem_max
4508 @ @<Finish printing new busy locations@>=
4510 mp_print(mp, ".."); mp_print_int(mp, q);
4513 @ The |search_mem| procedure attempts to answer the question ``Who points
4514 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4515 that might not be of type |two_halves|. Strictly speaking, this is
4517 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4518 point to |p| purely by coincidence). But for debugging purposes, we want
4519 to rule out the places that do {\sl not\/} point to |p|, so a few false
4520 drops are tolerable.
4523 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4524 integer q; /* current position being searched */
4525 for (q=0;q<=mp->lo_mem_max;q++) {
4527 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4530 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4533 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4535 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4538 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4541 @<Search |eqtb| for equivalents equal to |p|@>;
4544 @* \[12] The command codes.
4545 Before we can go much further, we need to define symbolic names for the internal
4546 code numbers that represent the various commands obeyed by \MP. These codes
4547 are somewhat arbitrary, but not completely so. For example,
4548 some codes have been made adjacent so that |case| statements in the
4549 program need not consider cases that are widely spaced, or so that |case|
4550 statements can be replaced by |if| statements. A command can begin an
4551 expression if and only if its code lies between |min_primary_command| and
4552 |max_primary_command|, inclusive. The first token of a statement that doesn't
4553 begin with an expression has a command code between |min_command| and
4554 |max_statement_command|, inclusive. Anything less than |min_command| is
4555 eliminated during macro expansions, and anything no more than |max_pre_command|
4556 is eliminated when expanding \TeX\ material. Ranges such as
4557 |min_secondary_command..max_secondary_command| are used when parsing
4558 expressions, but the relative ordering within such a range is generally not
4561 The ordering of the highest-numbered commands
4562 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4563 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4564 for the smallest two commands. The ordering is also important in the ranges
4565 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4567 At any rate, here is the list, for future reference.
4569 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4570 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4571 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4572 @d max_pre_command mpx_break
4573 @d if_test 4 /* conditional text (\&{if}) */
4574 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4575 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4576 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4577 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4578 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4579 @d relax 10 /* do nothing (\.{\char`\\}) */
4580 @d scan_tokens 11 /* put a string into the input buffer */
4581 @d expand_after 12 /* look ahead one token */
4582 @d defined_macro 13 /* a macro defined by the user */
4583 @d min_command (defined_macro+1)
4584 @d save_command 14 /* save a list of tokens (\&{save}) */
4585 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4586 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4587 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4588 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4589 @d ship_out_command 19 /* output a character (\&{shipout}) */
4590 @d add_to_command 20 /* add to edges (\&{addto}) */
4591 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4592 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4593 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4594 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4595 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4596 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4597 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4598 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4599 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4600 @d special_command 30 /* output special info (\&{special})
4601 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4602 @d write_command 31 /* write text to a file (\&{write}) */
4603 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4604 @d max_statement_command type_name
4605 @d min_primary_command type_name
4606 @d left_delimiter 33 /* the left delimiter of a matching pair */
4607 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4608 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4609 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4610 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4611 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4612 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4613 @d capsule_token 40 /* a value that has been put into a token list */
4614 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4615 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4616 @d min_suffix_token internal_quantity
4617 @d tag_token 43 /* a symbolic token without a primitive meaning */
4618 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4619 @d max_suffix_token numeric_token
4620 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4621 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4622 @d min_tertiary_command plus_or_minus
4623 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4624 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4625 @d max_tertiary_command tertiary_binary
4626 @d left_brace 48 /* the operator `\.{\char`\{}' */
4627 @d min_expression_command left_brace
4628 @d path_join 49 /* the operator `\.{..}' */
4629 @d ampersand 50 /* the operator `\.\&' */
4630 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4631 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4632 @d equals 53 /* the operator `\.=' */
4633 @d max_expression_command equals
4634 @d and_command 54 /* the operator `\&{and}' */
4635 @d min_secondary_command and_command
4636 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4637 @d slash 56 /* the operator `\./' */
4638 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4639 @d max_secondary_command secondary_binary
4640 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4641 @d controls 59 /* specify control points explicitly (\&{controls}) */
4642 @d tension 60 /* specify tension between knots (\&{tension}) */
4643 @d at_least 61 /* bounded tension value (\&{atleast}) */
4644 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4645 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4646 @d right_delimiter 64 /* the right delimiter of a matching pair */
4647 @d left_bracket 65 /* the operator `\.[' */
4648 @d right_bracket 66 /* the operator `\.]' */
4649 @d right_brace 67 /* the operator `\.{\char`\}}' */
4650 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4652 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4653 @d of_token 70 /* the operator `\&{of}' */
4654 @d to_token 71 /* the operator `\&{to}' */
4655 @d step_token 72 /* the operator `\&{step}' */
4656 @d until_token 73 /* the operator `\&{until}' */
4657 @d within_token 74 /* the operator `\&{within}' */
4658 @d lig_kern_token 75
4659 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4660 @d assignment 76 /* the operator `\.{:=}' */
4661 @d skip_to 77 /* the operation `\&{skipto}' */
4662 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4663 @d double_colon 79 /* the operator `\.{::}' */
4664 @d colon 80 /* the operator `\.:' */
4666 @d comma 81 /* the operator `\.,', must be |colon+1| */
4667 @d end_of_statement (mp->cur_cmd>comma)
4668 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4669 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4670 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4671 @d max_command_code stop
4672 @d outer_tag (max_command_code+1) /* protection code added to command code */
4675 typedef int command_code;
4677 @ Variables and capsules in \MP\ have a variety of ``types,''
4678 distinguished by the code numbers defined here. These numbers are also
4679 not completely arbitrary. Things that get expanded must have types
4680 |>mp_independent|; a type remaining after expansion is numeric if and only if
4681 its code number is at least |numeric_type|; objects containing numeric
4682 parts must have types between |transform_type| and |pair_type|;
4683 all other types must be smaller than |transform_type|; and among the types
4684 that are not unknown or vacuous, the smallest two must be |boolean_type|
4685 and |string_type| in that order.
4687 @d undefined 0 /* no type has been declared */
4688 @d unknown_tag 1 /* this constant is added to certain type codes below */
4689 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4690 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4693 enum mp_variable_type {
4694 mp_vacuous=1, /* no expression was present */
4695 mp_boolean_type, /* \&{boolean} with a known value */
4697 mp_string_type, /* \&{string} with a known value */
4699 mp_pen_type, /* \&{pen} with a known value */
4701 mp_path_type, /* \&{path} with a known value */
4703 mp_picture_type, /* \&{picture} with a known value */
4705 mp_transform_type, /* \&{transform} variable or capsule */
4706 mp_color_type, /* \&{color} variable or capsule */
4707 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4708 mp_pair_type, /* \&{pair} variable or capsule */
4709 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4710 mp_known, /* \&{numeric} with a known value */
4711 mp_dependent, /* a linear combination with |fraction| coefficients */
4712 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4713 mp_independent, /* \&{numeric} with unknown value */
4714 mp_token_list, /* variable name or suffix argument or text argument */
4715 mp_structured, /* variable with subscripts and attributes */
4716 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4717 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4721 void mp_print_type (MP mp,small_number t) ;
4723 @ @<Basic printing procedures@>=
4724 void mp_print_type (MP mp,small_number t) {
4726 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4727 case mp_boolean_type:mp_print(mp, "boolean"); break;
4728 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4729 case mp_string_type:mp_print(mp, "string"); break;
4730 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4731 case mp_pen_type:mp_print(mp, "pen"); break;
4732 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4733 case mp_path_type:mp_print(mp, "path"); break;
4734 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4735 case mp_picture_type:mp_print(mp, "picture"); break;
4736 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4737 case mp_transform_type:mp_print(mp, "transform"); break;
4738 case mp_color_type:mp_print(mp, "color"); break;
4739 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4740 case mp_pair_type:mp_print(mp, "pair"); break;
4741 case mp_known:mp_print(mp, "known numeric"); break;
4742 case mp_dependent:mp_print(mp, "dependent"); break;
4743 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4744 case mp_numeric_type:mp_print(mp, "numeric"); break;
4745 case mp_independent:mp_print(mp, "independent"); break;
4746 case mp_token_list:mp_print(mp, "token list"); break;
4747 case mp_structured:mp_print(mp, "mp_structured"); break;
4748 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4749 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4750 default: mp_print(mp, "undefined"); break;
4754 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4755 as well as a |type|. The possibilities for |name_type| are defined
4756 here; they will be explained in more detail later.
4760 mp_root=0, /* |name_type| at the top level of a variable */
4761 mp_saved_root, /* same, when the variable has been saved */
4762 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4763 mp_subscr, /* |name_type| in a subscript node */
4764 mp_attr, /* |name_type| in an attribute node */
4765 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4766 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4767 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4768 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4769 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4770 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4771 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4772 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4773 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4774 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4775 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4776 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4777 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4778 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4779 mp_capsule, /* |name_type| in stashed-away subexpressions */
4780 mp_token /* |name_type| in a numeric token or string token */
4783 @ Primitive operations that produce values have a secondary identification
4784 code in addition to their command code; it's something like genera and species.
4785 For example, `\.*' has the command code |primary_binary|, and its
4786 secondary identification is |times|. The secondary codes start at 30 so that
4787 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4788 are used as operators as well as type identifications. The relative values
4789 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4790 and |filled_op..bounded_op|. The restrictions are that
4791 |and_op-false_code=or_op-true_code|, that the ordering of
4792 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4793 and the ordering of |filled_op..bounded_op| must match that of the code
4794 values they test for.
4796 @d true_code 30 /* operation code for \.{true} */
4797 @d false_code 31 /* operation code for \.{false} */
4798 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4799 @d null_pen_code 33 /* operation code for \.{nullpen} */
4800 @d job_name_op 34 /* operation code for \.{jobname} */
4801 @d read_string_op 35 /* operation code for \.{readstring} */
4802 @d pen_circle 36 /* operation code for \.{pencircle} */
4803 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4804 @d read_from_op 38 /* operation code for \.{readfrom} */
4805 @d close_from_op 39 /* operation code for \.{closefrom} */
4806 @d odd_op 40 /* operation code for \.{odd} */
4807 @d known_op 41 /* operation code for \.{known} */
4808 @d unknown_op 42 /* operation code for \.{unknown} */
4809 @d not_op 43 /* operation code for \.{not} */
4810 @d decimal 44 /* operation code for \.{decimal} */
4811 @d reverse 45 /* operation code for \.{reverse} */
4812 @d make_path_op 46 /* operation code for \.{makepath} */
4813 @d make_pen_op 47 /* operation code for \.{makepen} */
4814 @d oct_op 48 /* operation code for \.{oct} */
4815 @d hex_op 49 /* operation code for \.{hex} */
4816 @d ASCII_op 50 /* operation code for \.{ASCII} */
4817 @d char_op 51 /* operation code for \.{char} */
4818 @d length_op 52 /* operation code for \.{length} */
4819 @d turning_op 53 /* operation code for \.{turningnumber} */
4820 @d color_model_part 54 /* operation code for \.{colormodel} */
4821 @d x_part 55 /* operation code for \.{xpart} */
4822 @d y_part 56 /* operation code for \.{ypart} */
4823 @d xx_part 57 /* operation code for \.{xxpart} */
4824 @d xy_part 58 /* operation code for \.{xypart} */
4825 @d yx_part 59 /* operation code for \.{yxpart} */
4826 @d yy_part 60 /* operation code for \.{yypart} */
4827 @d red_part 61 /* operation code for \.{redpart} */
4828 @d green_part 62 /* operation code for \.{greenpart} */
4829 @d blue_part 63 /* operation code for \.{bluepart} */
4830 @d cyan_part 64 /* operation code for \.{cyanpart} */
4831 @d magenta_part 65 /* operation code for \.{magentapart} */
4832 @d yellow_part 66 /* operation code for \.{yellowpart} */
4833 @d black_part 67 /* operation code for \.{blackpart} */
4834 @d grey_part 68 /* operation code for \.{greypart} */
4835 @d font_part 69 /* operation code for \.{fontpart} */
4836 @d text_part 70 /* operation code for \.{textpart} */
4837 @d path_part 71 /* operation code for \.{pathpart} */
4838 @d pen_part 72 /* operation code for \.{penpart} */
4839 @d dash_part 73 /* operation code for \.{dashpart} */
4840 @d sqrt_op 74 /* operation code for \.{sqrt} */
4841 @d m_exp_op 75 /* operation code for \.{mexp} */
4842 @d m_log_op 76 /* operation code for \.{mlog} */
4843 @d sin_d_op 77 /* operation code for \.{sind} */
4844 @d cos_d_op 78 /* operation code for \.{cosd} */
4845 @d floor_op 79 /* operation code for \.{floor} */
4846 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4847 @d char_exists_op 81 /* operation code for \.{charexists} */
4848 @d font_size 82 /* operation code for \.{fontsize} */
4849 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4850 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4851 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4852 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4853 @d arc_length 87 /* operation code for \.{arclength} */
4854 @d angle_op 88 /* operation code for \.{angle} */
4855 @d cycle_op 89 /* operation code for \.{cycle} */
4856 @d filled_op 90 /* operation code for \.{filled} */
4857 @d stroked_op 91 /* operation code for \.{stroked} */
4858 @d textual_op 92 /* operation code for \.{textual} */
4859 @d clipped_op 93 /* operation code for \.{clipped} */
4860 @d bounded_op 94 /* operation code for \.{bounded} */
4861 @d plus 95 /* operation code for \.+ */
4862 @d minus 96 /* operation code for \.- */
4863 @d times 97 /* operation code for \.* */
4864 @d over 98 /* operation code for \./ */
4865 @d pythag_add 99 /* operation code for \.{++} */
4866 @d pythag_sub 100 /* operation code for \.{+-+} */
4867 @d or_op 101 /* operation code for \.{or} */
4868 @d and_op 102 /* operation code for \.{and} */
4869 @d less_than 103 /* operation code for \.< */
4870 @d less_or_equal 104 /* operation code for \.{<=} */
4871 @d greater_than 105 /* operation code for \.> */
4872 @d greater_or_equal 106 /* operation code for \.{>=} */
4873 @d equal_to 107 /* operation code for \.= */
4874 @d unequal_to 108 /* operation code for \.{<>} */
4875 @d concatenate 109 /* operation code for \.\& */
4876 @d rotated_by 110 /* operation code for \.{rotated} */
4877 @d slanted_by 111 /* operation code for \.{slanted} */
4878 @d scaled_by 112 /* operation code for \.{scaled} */
4879 @d shifted_by 113 /* operation code for \.{shifted} */
4880 @d transformed_by 114 /* operation code for \.{transformed} */
4881 @d x_scaled 115 /* operation code for \.{xscaled} */
4882 @d y_scaled 116 /* operation code for \.{yscaled} */
4883 @d z_scaled 117 /* operation code for \.{zscaled} */
4884 @d in_font 118 /* operation code for \.{infont} */
4885 @d intersect 119 /* operation code for \.{intersectiontimes} */
4886 @d double_dot 120 /* operation code for improper \.{..} */
4887 @d substring_of 121 /* operation code for \.{substring} */
4888 @d min_of substring_of
4889 @d subpath_of 122 /* operation code for \.{subpath} */
4890 @d direction_time_of 123 /* operation code for \.{directiontime} */
4891 @d point_of 124 /* operation code for \.{point} */
4892 @d precontrol_of 125 /* operation code for \.{precontrol} */
4893 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4894 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4895 @d arc_time_of 128 /* operation code for \.{arctime} */
4896 @d mp_version 129 /* operation code for \.{mpversion} */
4897 @d envelope_of 130 /* operation code for \{.envelope} */
4899 @c void mp_print_op (MP mp,quarterword c) {
4900 if (c<=mp_numeric_type ) {
4901 mp_print_type(mp, c);
4904 case true_code:mp_print(mp, "true"); break;
4905 case false_code:mp_print(mp, "false"); break;
4906 case null_picture_code:mp_print(mp, "nullpicture"); break;
4907 case null_pen_code:mp_print(mp, "nullpen"); break;
4908 case job_name_op:mp_print(mp, "jobname"); break;
4909 case read_string_op:mp_print(mp, "readstring"); break;
4910 case pen_circle:mp_print(mp, "pencircle"); break;
4911 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4912 case read_from_op:mp_print(mp, "readfrom"); break;
4913 case close_from_op:mp_print(mp, "closefrom"); break;
4914 case odd_op:mp_print(mp, "odd"); break;
4915 case known_op:mp_print(mp, "known"); break;
4916 case unknown_op:mp_print(mp, "unknown"); break;
4917 case not_op:mp_print(mp, "not"); break;
4918 case decimal:mp_print(mp, "decimal"); break;
4919 case reverse:mp_print(mp, "reverse"); break;
4920 case make_path_op:mp_print(mp, "makepath"); break;
4921 case make_pen_op:mp_print(mp, "makepen"); break;
4922 case oct_op:mp_print(mp, "oct"); break;
4923 case hex_op:mp_print(mp, "hex"); break;
4924 case ASCII_op:mp_print(mp, "ASCII"); break;
4925 case char_op:mp_print(mp, "char"); break;
4926 case length_op:mp_print(mp, "length"); break;
4927 case turning_op:mp_print(mp, "turningnumber"); break;
4928 case x_part:mp_print(mp, "xpart"); break;
4929 case y_part:mp_print(mp, "ypart"); break;
4930 case xx_part:mp_print(mp, "xxpart"); break;
4931 case xy_part:mp_print(mp, "xypart"); break;
4932 case yx_part:mp_print(mp, "yxpart"); break;
4933 case yy_part:mp_print(mp, "yypart"); break;
4934 case red_part:mp_print(mp, "redpart"); break;
4935 case green_part:mp_print(mp, "greenpart"); break;
4936 case blue_part:mp_print(mp, "bluepart"); break;
4937 case cyan_part:mp_print(mp, "cyanpart"); break;
4938 case magenta_part:mp_print(mp, "magentapart"); break;
4939 case yellow_part:mp_print(mp, "yellowpart"); break;
4940 case black_part:mp_print(mp, "blackpart"); break;
4941 case grey_part:mp_print(mp, "greypart"); break;
4942 case color_model_part:mp_print(mp, "colormodel"); break;
4943 case font_part:mp_print(mp, "fontpart"); break;
4944 case text_part:mp_print(mp, "textpart"); break;
4945 case path_part:mp_print(mp, "pathpart"); break;
4946 case pen_part:mp_print(mp, "penpart"); break;
4947 case dash_part:mp_print(mp, "dashpart"); break;
4948 case sqrt_op:mp_print(mp, "sqrt"); break;
4949 case m_exp_op:mp_print(mp, "mexp"); break;
4950 case m_log_op:mp_print(mp, "mlog"); break;
4951 case sin_d_op:mp_print(mp, "sind"); break;
4952 case cos_d_op:mp_print(mp, "cosd"); break;
4953 case floor_op:mp_print(mp, "floor"); break;
4954 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4955 case char_exists_op:mp_print(mp, "charexists"); break;
4956 case font_size:mp_print(mp, "fontsize"); break;
4957 case ll_corner_op:mp_print(mp, "llcorner"); break;
4958 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4959 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4960 case ur_corner_op:mp_print(mp, "urcorner"); break;
4961 case arc_length:mp_print(mp, "arclength"); break;
4962 case angle_op:mp_print(mp, "angle"); break;
4963 case cycle_op:mp_print(mp, "cycle"); break;
4964 case filled_op:mp_print(mp, "filled"); break;
4965 case stroked_op:mp_print(mp, "stroked"); break;
4966 case textual_op:mp_print(mp, "textual"); break;
4967 case clipped_op:mp_print(mp, "clipped"); break;
4968 case bounded_op:mp_print(mp, "bounded"); break;
4969 case plus:mp_print_char(mp, '+'); break;
4970 case minus:mp_print_char(mp, '-'); break;
4971 case times:mp_print_char(mp, '*'); break;
4972 case over:mp_print_char(mp, '/'); break;
4973 case pythag_add:mp_print(mp, "++"); break;
4974 case pythag_sub:mp_print(mp, "+-+"); break;
4975 case or_op:mp_print(mp, "or"); break;
4976 case and_op:mp_print(mp, "and"); break;
4977 case less_than:mp_print_char(mp, '<'); break;
4978 case less_or_equal:mp_print(mp, "<="); break;
4979 case greater_than:mp_print_char(mp, '>'); break;
4980 case greater_or_equal:mp_print(mp, ">="); break;
4981 case equal_to:mp_print_char(mp, '='); break;
4982 case unequal_to:mp_print(mp, "<>"); break;
4983 case concatenate:mp_print(mp, "&"); break;
4984 case rotated_by:mp_print(mp, "rotated"); break;
4985 case slanted_by:mp_print(mp, "slanted"); break;
4986 case scaled_by:mp_print(mp, "scaled"); break;
4987 case shifted_by:mp_print(mp, "shifted"); break;
4988 case transformed_by:mp_print(mp, "transformed"); break;
4989 case x_scaled:mp_print(mp, "xscaled"); break;
4990 case y_scaled:mp_print(mp, "yscaled"); break;
4991 case z_scaled:mp_print(mp, "zscaled"); break;
4992 case in_font:mp_print(mp, "infont"); break;
4993 case intersect:mp_print(mp, "intersectiontimes"); break;
4994 case substring_of:mp_print(mp, "substring"); break;
4995 case subpath_of:mp_print(mp, "subpath"); break;
4996 case direction_time_of:mp_print(mp, "directiontime"); break;
4997 case point_of:mp_print(mp, "point"); break;
4998 case precontrol_of:mp_print(mp, "precontrol"); break;
4999 case postcontrol_of:mp_print(mp, "postcontrol"); break;
5000 case pen_offset_of:mp_print(mp, "penoffset"); break;
5001 case arc_time_of:mp_print(mp, "arctime"); break;
5002 case mp_version:mp_print(mp, "mpversion"); break;
5003 case envelope_of:mp_print(mp, "envelope"); break;
5004 default: mp_print(mp, ".."); break;
5009 @ \MP\ also has a bunch of internal parameters that a user might want to
5010 fuss with. Every such parameter has an identifying code number, defined here.
5013 enum mp_given_internal {
5014 mp_tracing_titles=1, /* show titles online when they appear */
5015 mp_tracing_equations, /* show each variable when it becomes known */
5016 mp_tracing_capsules, /* show capsules too */
5017 mp_tracing_choices, /* show the control points chosen for paths */
5018 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
5019 mp_tracing_commands, /* show commands and operations before they are performed */
5020 mp_tracing_restores, /* show when a variable or internal is restored */
5021 mp_tracing_macros, /* show macros before they are expanded */
5022 mp_tracing_output, /* show digitized edges as they are output */
5023 mp_tracing_stats, /* show memory usage at end of job */
5024 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
5025 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
5026 mp_year, /* the current year (e.g., 1984) */
5027 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
5028 mp_day, /* the current day of the month */
5029 mp_time, /* the number of minutes past midnight when this job started */
5030 mp_char_code, /* the number of the next character to be output */
5031 mp_char_ext, /* the extension code of the next character to be output */
5032 mp_char_wd, /* the width of the next character to be output */
5033 mp_char_ht, /* the height of the next character to be output */
5034 mp_char_dp, /* the depth of the next character to be output */
5035 mp_char_ic, /* the italic correction of the next character to be output */
5036 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5037 mp_pausing, /* positive to display lines on the terminal before they are read */
5038 mp_showstopping, /* positive to stop after each \&{show} command */
5039 mp_fontmaking, /* positive if font metric output is to be produced */
5040 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5041 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5042 mp_miterlimit, /* controls miter length as in \ps */
5043 mp_warning_check, /* controls error message when variable value is large */
5044 mp_boundary_char, /* the right boundary character for ligatures */
5045 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5046 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5047 mp_default_color_model, /* the default color model for unspecified items */
5048 mp_restore_clip_color,
5049 mp_procset, /* wether or not create PostScript command shortcuts */
5050 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
5055 @d max_given_internal mp_gtroffmode
5058 scaled *internal; /* the values of internal quantities */
5059 char **int_name; /* their names */
5060 int int_ptr; /* the maximum internal quantity defined so far */
5061 int max_internal; /* current maximum number of internal quantities */
5064 @ @<Option variables@>=
5067 @ @<Allocate or initialize ...@>=
5068 mp->max_internal=2*max_given_internal;
5069 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5070 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5071 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5073 @ @<Exported function ...@>=
5074 int mp_troff_mode(MP mp);
5077 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5079 @ @<Set initial ...@>=
5080 for (k=0;k<= mp->max_internal; k++ ) {
5082 mp->int_name[k]=NULL;
5084 mp->int_ptr=max_given_internal;
5086 @ The symbolic names for internal quantities are put into \MP's hash table
5087 by using a routine called |primitive|, which will be defined later. Let us
5088 enter them now, so that we don't have to list all those names again
5091 @<Put each of \MP's primitives into the hash table@>=
5092 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5093 @:tracingtitles_}{\&{tracingtitles} primitive@>
5094 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5095 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5096 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5097 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5098 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5099 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5100 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5101 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5102 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5103 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5104 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5105 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5106 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5107 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5108 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5109 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5110 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5111 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5112 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5113 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5114 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5115 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5116 mp_primitive(mp, "year",internal_quantity,mp_year);
5117 @:mp_year_}{\&{year} primitive@>
5118 mp_primitive(mp, "month",internal_quantity,mp_month);
5119 @:mp_month_}{\&{month} primitive@>
5120 mp_primitive(mp, "day",internal_quantity,mp_day);
5121 @:mp_day_}{\&{day} primitive@>
5122 mp_primitive(mp, "time",internal_quantity,mp_time);
5123 @:time_}{\&{time} primitive@>
5124 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5125 @:mp_char_code_}{\&{charcode} primitive@>
5126 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5127 @:mp_char_ext_}{\&{charext} primitive@>
5128 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5129 @:mp_char_wd_}{\&{charwd} primitive@>
5130 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5131 @:mp_char_ht_}{\&{charht} primitive@>
5132 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5133 @:mp_char_dp_}{\&{chardp} primitive@>
5134 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5135 @:mp_char_ic_}{\&{charic} primitive@>
5136 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5137 @:mp_design_size_}{\&{designsize} primitive@>
5138 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5139 @:mp_pausing_}{\&{pausing} primitive@>
5140 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5141 @:mp_showstopping_}{\&{showstopping} primitive@>
5142 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5143 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5144 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5145 @:mp_linejoin_}{\&{linejoin} primitive@>
5146 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5147 @:mp_linecap_}{\&{linecap} primitive@>
5148 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5149 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5150 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5151 @:mp_warning_check_}{\&{warningcheck} primitive@>
5152 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5153 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5154 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5155 @:mp_prologues_}{\&{prologues} primitive@>
5156 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5157 @:mp_true_corners_}{\&{truecorners} primitive@>
5158 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5159 @:mp_procset_}{\&{mpprocset} primitive@>
5160 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5161 @:troffmode_}{\&{troffmode} primitive@>
5162 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5163 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5164 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5165 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5167 @ Colors can be specified in four color models. In the special
5168 case of |no_model|, MetaPost does not output any color operator to
5169 the postscript output.
5171 Note: these values are passed directly on to |with_option|. This only
5172 works because the other possible values passed to |with_option| are
5173 8 and 10 respectively (from |with_pen| and |with_picture|).
5175 There is a first state, that is only used for |gs_colormodel|. It flags
5176 the fact that there has not been any kind of color specification by
5177 the user so far in the game.
5180 enum mp_color_model {
5185 mp_uninitialized_model=9,
5189 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5190 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5191 mp->internal[mp_restore_clip_color]=unity;
5193 @ Well, we do have to list the names one more time, for use in symbolic
5196 @<Initialize table...@>=
5197 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5198 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5199 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5200 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5201 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5202 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5203 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5204 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5205 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5206 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5207 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5208 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5209 mp->int_name[mp_year]=xstrdup("year");
5210 mp->int_name[mp_month]=xstrdup("month");
5211 mp->int_name[mp_day]=xstrdup("day");
5212 mp->int_name[mp_time]=xstrdup("time");
5213 mp->int_name[mp_char_code]=xstrdup("charcode");
5214 mp->int_name[mp_char_ext]=xstrdup("charext");
5215 mp->int_name[mp_char_wd]=xstrdup("charwd");
5216 mp->int_name[mp_char_ht]=xstrdup("charht");
5217 mp->int_name[mp_char_dp]=xstrdup("chardp");
5218 mp->int_name[mp_char_ic]=xstrdup("charic");
5219 mp->int_name[mp_design_size]=xstrdup("designsize");
5220 mp->int_name[mp_pausing]=xstrdup("pausing");
5221 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5222 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5223 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5224 mp->int_name[mp_linecap]=xstrdup("linecap");
5225 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5226 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5227 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5228 mp->int_name[mp_prologues]=xstrdup("prologues");
5229 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5230 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5231 mp->int_name[mp_procset]=xstrdup("mpprocset");
5232 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5233 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5235 @ The following procedure, which is called just before \MP\ initializes its
5236 input and output, establishes the initial values of the date and time.
5237 @^system dependencies@>
5239 Note that the values are |scaled| integers. Hence \MP\ can no longer
5240 be used after the year 32767.
5243 void mp_fix_date_and_time (MP mp) {
5244 time_t clock = time ((time_t *) 0);
5245 struct tm *tmptr = localtime (&clock);
5246 mp->internal[mp_time]=
5247 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5248 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5249 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5250 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5254 void mp_fix_date_and_time (MP mp) ;
5256 @ \MP\ is occasionally supposed to print diagnostic information that
5257 goes only into the transcript file, unless |mp_tracing_online| is positive.
5258 Now that we have defined |mp_tracing_online| we can define
5259 two routines that adjust the destination of print commands:
5262 void mp_begin_diagnostic (MP mp) ;
5263 void mp_end_diagnostic (MP mp,boolean blank_line);
5264 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5266 @ @<Basic printing...@>=
5267 @<Declare a function called |true_line|@>;
5268 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5269 mp->old_setting=mp->selector;
5270 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5272 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5276 void mp_end_diagnostic (MP mp,boolean blank_line) {
5277 /* restore proper conditions after tracing */
5278 mp_print_nl(mp, "");
5279 if ( blank_line ) mp_print_ln(mp);
5280 mp->selector=mp->old_setting;
5286 unsigned int old_setting;
5288 @ We will occasionally use |begin_diagnostic| in connection with line-number
5289 printing, as follows. (The parameter |s| is typically |"Path"| or
5290 |"Cycle spec"|, etc.)
5292 @<Basic printing...@>=
5293 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5294 mp_begin_diagnostic(mp);
5295 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5296 mp_print(mp, " at line ");
5297 mp_print_int(mp, mp_true_line(mp));
5298 mp_print(mp, t); mp_print_char(mp, ':');
5301 @ The 256 |ASCII_code| characters are grouped into classes by means of
5302 the |char_class| table. Individual class numbers have no semantic
5303 or syntactic significance, except in a few instances defined here.
5304 There's also |max_class|, which can be used as a basis for additional
5305 class numbers in nonstandard extensions of \MP.
5307 @d digit_class 0 /* the class number of \.{0123456789} */
5308 @d period_class 1 /* the class number of `\..' */
5309 @d space_class 2 /* the class number of spaces and nonstandard characters */
5310 @d percent_class 3 /* the class number of `\.\%' */
5311 @d string_class 4 /* the class number of `\."' */
5312 @d right_paren_class 8 /* the class number of `\.)' */
5313 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5314 @d letter_class 9 /* letters and the underline character */
5315 @d left_bracket_class 17 /* `\.[' */
5316 @d right_bracket_class 18 /* `\.]' */
5317 @d invalid_class 20 /* bad character in the input */
5318 @d max_class 20 /* the largest class number */
5321 int char_class[256]; /* the class numbers */
5323 @ If changes are made to accommodate non-ASCII character sets, they should
5324 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5325 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5326 @^system dependencies@>
5328 @<Set initial ...@>=
5329 for (k='0';k<='9';k++)
5330 mp->char_class[k]=digit_class;
5331 mp->char_class['.']=period_class;
5332 mp->char_class[' ']=space_class;
5333 mp->char_class['%']=percent_class;
5334 mp->char_class['"']=string_class;
5335 mp->char_class[',']=5;
5336 mp->char_class[';']=6;
5337 mp->char_class['(']=7;
5338 mp->char_class[')']=right_paren_class;
5339 for (k='A';k<= 'Z';k++ )
5340 mp->char_class[k]=letter_class;
5341 for (k='a';k<='z';k++)
5342 mp->char_class[k]=letter_class;
5343 mp->char_class['_']=letter_class;
5344 mp->char_class['<']=10;
5345 mp->char_class['=']=10;
5346 mp->char_class['>']=10;
5347 mp->char_class[':']=10;
5348 mp->char_class['|']=10;
5349 mp->char_class['`']=11;
5350 mp->char_class['\'']=11;
5351 mp->char_class['+']=12;
5352 mp->char_class['-']=12;
5353 mp->char_class['/']=13;
5354 mp->char_class['*']=13;
5355 mp->char_class['\\']=13;
5356 mp->char_class['!']=14;
5357 mp->char_class['?']=14;
5358 mp->char_class['#']=15;
5359 mp->char_class['&']=15;
5360 mp->char_class['@@']=15;
5361 mp->char_class['$']=15;
5362 mp->char_class['^']=16;
5363 mp->char_class['~']=16;
5364 mp->char_class['[']=left_bracket_class;
5365 mp->char_class[']']=right_bracket_class;
5366 mp->char_class['{']=19;
5367 mp->char_class['}']=19;
5369 mp->char_class[k]=invalid_class;
5370 mp->char_class['\t']=space_class;
5371 mp->char_class['\f']=space_class;
5372 for (k=127;k<=255;k++)
5373 mp->char_class[k]=invalid_class;
5375 @* \[13] The hash table.
5376 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5377 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5378 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5379 table, it is never removed.
5381 The actual sequence of characters forming a symbolic token is
5382 stored in the |str_pool| array together with all the other strings. An
5383 auxiliary array |hash| consists of items with two halfword fields per
5384 word. The first of these, called |next(p)|, points to the next identifier
5385 belonging to the same coalesced list as the identifier corresponding to~|p|;
5386 and the other, called |text(p)|, points to the |str_start| entry for
5387 |p|'s identifier. If position~|p| of the hash table is empty, we have
5388 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5389 hash list, we have |next(p)=0|.
5391 An auxiliary pointer variable called |hash_used| is maintained in such a
5392 way that all locations |p>=hash_used| are nonempty. The global variable
5393 |st_count| tells how many symbolic tokens have been defined, if statistics
5396 The first 256 locations of |hash| are reserved for symbols of length one.
5398 There's a parallel array called |eqtb| that contains the current equivalent
5399 values of each symbolic token. The entries of this array consist of
5400 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5401 piece of information that qualifies the |eq_type|).
5403 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5404 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5405 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5406 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5407 @d hash_base 257 /* hashing actually starts here */
5408 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5411 pointer hash_used; /* allocation pointer for |hash| */
5412 integer st_count; /* total number of known identifiers */
5414 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5415 since they are used in error recovery.
5417 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5418 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5419 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5420 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5421 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5422 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5423 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5424 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5425 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5426 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5427 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5428 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5429 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5430 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5431 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5432 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5433 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5436 two_halves *hash; /* the hash table */
5437 two_halves *eqtb; /* the equivalents */
5439 @ @<Allocate or initialize ...@>=
5440 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5441 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5443 @ @<Dealloc variables@>=
5448 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5449 for (k=2;k<=hash_end;k++) {
5450 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5453 @ @<Initialize table entries...@>=
5454 mp->hash_used=frozen_inaccessible; /* nothing is used */
5456 text(frozen_bad_vardef)=intern("a bad variable");
5457 text(frozen_etex)=intern("etex");
5458 text(frozen_mpx_break)=intern("mpxbreak");
5459 text(frozen_fi)=intern("fi");
5460 text(frozen_end_group)=intern("endgroup");
5461 text(frozen_end_def)=intern("enddef");
5462 text(frozen_end_for)=intern("endfor");
5463 text(frozen_semicolon)=intern(";");
5464 text(frozen_colon)=intern(":");
5465 text(frozen_slash)=intern("/");
5466 text(frozen_left_bracket)=intern("[");
5467 text(frozen_right_delimiter)=intern(")");
5468 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5469 eq_type(frozen_right_delimiter)=right_delimiter;
5471 @ @<Check the ``constant'' values...@>=
5472 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5474 @ Here is the subroutine that searches the hash table for an identifier
5475 that matches a given string of length~|l| appearing in |buffer[j..
5476 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5477 will always be found, and the corresponding hash table address
5481 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5482 integer h; /* hash code */
5483 pointer p; /* index in |hash| array */
5484 pointer k; /* index in |buffer| array */
5486 @<Treat special case of length 1 and |break|@>;
5488 @<Compute the hash code |h|@>;
5489 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5491 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5494 @<Insert a new symbolic token after |p|, then
5495 make |p| point to it and |break|@>;
5502 @ @<Treat special case of length 1...@>=
5503 p=mp->buffer[j]+1; text(p)=p-1; return p;
5506 @ @<Insert a new symbolic...@>=
5511 mp_overflow(mp, "hash size",mp->hash_size);
5512 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5513 decr(mp->hash_used);
5514 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5515 next(p)=mp->hash_used;
5519 for (k=j;k<=j+l-1;k++) {
5520 append_char(mp->buffer[k]);
5522 text(p)=mp_make_string(mp);
5523 mp->str_ref[text(p)]=max_str_ref;
5529 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5530 should be a prime number. The theory of hashing tells us to expect fewer
5531 than two table probes, on the average, when the search is successful.
5532 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5533 @^Vitter, Jeffrey Scott@>
5535 @<Compute the hash code |h|@>=
5537 for (k=j+1;k<=j+l-1;k++){
5538 h=h+h+mp->buffer[k];
5539 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5542 @ @<Search |eqtb| for equivalents equal to |p|@>=
5543 for (q=1;q<=hash_end;q++) {
5544 if ( equiv(q)==p ) {
5545 mp_print_nl(mp, "EQUIV(");
5546 mp_print_int(mp, q);
5547 mp_print_char(mp, ')');
5551 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5552 table, together with their command code (which will be the |eq_type|)
5553 and an operand (which will be the |equiv|). The |primitive| procedure
5554 does this, in a way that no \MP\ user can. The global value |cur_sym|
5555 contains the new |eqtb| pointer after |primitive| has acted.
5558 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5559 pool_pointer k; /* index into |str_pool| */
5560 small_number j; /* index into |buffer| */
5561 small_number l; /* length of the string */
5564 k=mp->str_start[s]; l=str_stop(s)-k;
5565 /* we will move |s| into the (empty) |buffer| */
5566 for (j=0;j<=l-1;j++) {
5567 mp->buffer[j]=mp->str_pool[k+j];
5569 mp->cur_sym=mp_id_lookup(mp, 0,l);
5570 if ( s>=256 ) { /* we don't want to have the string twice */
5571 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5573 eq_type(mp->cur_sym)=c;
5574 equiv(mp->cur_sym)=o;
5578 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5579 by their |eq_type| alone. These primitives are loaded into the hash table
5582 @<Put each of \MP's primitives into the hash table@>=
5583 mp_primitive(mp, "..",path_join,0);
5584 @:.._}{\.{..} primitive@>
5585 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5586 @:[ }{\.{[} primitive@>
5587 mp_primitive(mp, "]",right_bracket,0);
5588 @:] }{\.{]} primitive@>
5589 mp_primitive(mp, "}",right_brace,0);
5590 @:]]}{\.{\char`\}} primitive@>
5591 mp_primitive(mp, "{",left_brace,0);
5592 @:][}{\.{\char`\{} primitive@>
5593 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5594 @:: }{\.{:} primitive@>
5595 mp_primitive(mp, "::",double_colon,0);
5596 @::: }{\.{::} primitive@>
5597 mp_primitive(mp, "||:",bchar_label,0);
5598 @:::: }{\.{\char'174\char'174:} primitive@>
5599 mp_primitive(mp, ":=",assignment,0);
5600 @::=_}{\.{:=} primitive@>
5601 mp_primitive(mp, ",",comma,0);
5602 @:, }{\., primitive@>
5603 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5604 @:; }{\.; primitive@>
5605 mp_primitive(mp, "\\",relax,0);
5606 @:]]\\}{\.{\char`\\} primitive@>
5608 mp_primitive(mp, "addto",add_to_command,0);
5609 @:add_to_}{\&{addto} primitive@>
5610 mp_primitive(mp, "atleast",at_least,0);
5611 @:at_least_}{\&{atleast} primitive@>
5612 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5613 @:begin_group_}{\&{begingroup} primitive@>
5614 mp_primitive(mp, "controls",controls,0);
5615 @:controls_}{\&{controls} primitive@>
5616 mp_primitive(mp, "curl",curl_command,0);
5617 @:curl_}{\&{curl} primitive@>
5618 mp_primitive(mp, "delimiters",delimiters,0);
5619 @:delimiters_}{\&{delimiters} primitive@>
5620 mp_primitive(mp, "endgroup",end_group,0);
5621 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5622 @:endgroup_}{\&{endgroup} primitive@>
5623 mp_primitive(mp, "everyjob",every_job_command,0);
5624 @:every_job_}{\&{everyjob} primitive@>
5625 mp_primitive(mp, "exitif",exit_test,0);
5626 @:exit_if_}{\&{exitif} primitive@>
5627 mp_primitive(mp, "expandafter",expand_after,0);
5628 @:expand_after_}{\&{expandafter} primitive@>
5629 mp_primitive(mp, "interim",interim_command,0);
5630 @:interim_}{\&{interim} primitive@>
5631 mp_primitive(mp, "let",let_command,0);
5632 @:let_}{\&{let} primitive@>
5633 mp_primitive(mp, "newinternal",new_internal,0);
5634 @:new_internal_}{\&{newinternal} primitive@>
5635 mp_primitive(mp, "of",of_token,0);
5636 @:of_}{\&{of} primitive@>
5637 mp_primitive(mp, "randomseed",mp_random_seed,0);
5638 @:mp_random_seed_}{\&{randomseed} primitive@>
5639 mp_primitive(mp, "save",save_command,0);
5640 @:save_}{\&{save} primitive@>
5641 mp_primitive(mp, "scantokens",scan_tokens,0);
5642 @:scan_tokens_}{\&{scantokens} primitive@>
5643 mp_primitive(mp, "shipout",ship_out_command,0);
5644 @:ship_out_}{\&{shipout} primitive@>
5645 mp_primitive(mp, "skipto",skip_to,0);
5646 @:skip_to_}{\&{skipto} primitive@>
5647 mp_primitive(mp, "special",special_command,0);
5648 @:special}{\&{special} primitive@>
5649 mp_primitive(mp, "fontmapfile",special_command,1);
5650 @:fontmapfile}{\&{fontmapfile} primitive@>
5651 mp_primitive(mp, "fontmapline",special_command,2);
5652 @:fontmapline}{\&{fontmapline} primitive@>
5653 mp_primitive(mp, "step",step_token,0);
5654 @:step_}{\&{step} primitive@>
5655 mp_primitive(mp, "str",str_op,0);
5656 @:str_}{\&{str} primitive@>
5657 mp_primitive(mp, "tension",tension,0);
5658 @:tension_}{\&{tension} primitive@>
5659 mp_primitive(mp, "to",to_token,0);
5660 @:to_}{\&{to} primitive@>
5661 mp_primitive(mp, "until",until_token,0);
5662 @:until_}{\&{until} primitive@>
5663 mp_primitive(mp, "within",within_token,0);
5664 @:within_}{\&{within} primitive@>
5665 mp_primitive(mp, "write",write_command,0);
5666 @:write_}{\&{write} primitive@>
5668 @ Each primitive has a corresponding inverse, so that it is possible to
5669 display the cryptic numeric contents of |eqtb| in symbolic form.
5670 Every call of |primitive| in this program is therefore accompanied by some
5671 straightforward code that forms part of the |print_cmd_mod| routine
5674 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5675 case add_to_command:mp_print(mp, "addto"); break;
5676 case assignment:mp_print(mp, ":="); break;
5677 case at_least:mp_print(mp, "atleast"); break;
5678 case bchar_label:mp_print(mp, "||:"); break;
5679 case begin_group:mp_print(mp, "begingroup"); break;
5680 case colon:mp_print(mp, ":"); break;
5681 case comma:mp_print(mp, ","); break;
5682 case controls:mp_print(mp, "controls"); break;
5683 case curl_command:mp_print(mp, "curl"); break;
5684 case delimiters:mp_print(mp, "delimiters"); break;
5685 case double_colon:mp_print(mp, "::"); break;
5686 case end_group:mp_print(mp, "endgroup"); break;
5687 case every_job_command:mp_print(mp, "everyjob"); break;
5688 case exit_test:mp_print(mp, "exitif"); break;
5689 case expand_after:mp_print(mp, "expandafter"); break;
5690 case interim_command:mp_print(mp, "interim"); break;
5691 case left_brace:mp_print(mp, "{"); break;
5692 case left_bracket:mp_print(mp, "["); break;
5693 case let_command:mp_print(mp, "let"); break;
5694 case new_internal:mp_print(mp, "newinternal"); break;
5695 case of_token:mp_print(mp, "of"); break;
5696 case path_join:mp_print(mp, ".."); break;
5697 case mp_random_seed:mp_print(mp, "randomseed"); break;
5698 case relax:mp_print_char(mp, '\\'); break;
5699 case right_brace:mp_print(mp, "}"); break;
5700 case right_bracket:mp_print(mp, "]"); break;
5701 case save_command:mp_print(mp, "save"); break;
5702 case scan_tokens:mp_print(mp, "scantokens"); break;
5703 case semicolon:mp_print(mp, ";"); break;
5704 case ship_out_command:mp_print(mp, "shipout"); break;
5705 case skip_to:mp_print(mp, "skipto"); break;
5706 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5707 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5708 mp_print(mp, "special"); break;
5709 case step_token:mp_print(mp, "step"); break;
5710 case str_op:mp_print(mp, "str"); break;
5711 case tension:mp_print(mp, "tension"); break;
5712 case to_token:mp_print(mp, "to"); break;
5713 case until_token:mp_print(mp, "until"); break;
5714 case within_token:mp_print(mp, "within"); break;
5715 case write_command:mp_print(mp, "write"); break;
5717 @ We will deal with the other primitives later, at some point in the program
5718 where their |eq_type| and |equiv| values are more meaningful. For example,
5719 the primitives for macro definitions will be loaded when we consider the
5720 routines that define macros.
5721 It is easy to find where each particular
5722 primitive was treated by looking in the index at the end; for example, the
5723 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5725 @* \[14] Token lists.
5726 A \MP\ token is either symbolic or numeric or a string, or it denotes
5727 a macro parameter or capsule; so there are five corresponding ways to encode it
5729 internally: (1)~A symbolic token whose hash code is~|p|
5730 is represented by the number |p|, in the |info| field of a single-word
5731 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5732 represented in a two-word node of~|mem|; the |type| field is |known|,
5733 the |name_type| field is |token|, and the |value| field holds~|v|.
5734 The fact that this token appears in a two-word node rather than a
5735 one-word node is, of course, clear from the node address.
5736 (3)~A string token is also represented in a two-word node; the |type|
5737 field is |mp_string_type|, the |name_type| field is |token|, and the
5738 |value| field holds the corresponding |str_number|. (4)~Capsules have
5739 |name_type=capsule|, and their |type| and |value| fields represent
5740 arbitrary values (in ways to be explained later). (5)~Macro parameters
5741 are like symbolic tokens in that they appear in |info| fields of
5742 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5743 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5744 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5745 Actual values of these parameters are kept in a separate stack, as we will
5746 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5747 of course, chosen so that there will be no confusion between symbolic
5748 tokens and parameters of various types.
5751 the `\\{type}' field of a node has nothing to do with ``type'' in a
5752 printer's sense. It's curious that the same word is used in such different ways.
5754 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5755 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5756 @d token_node_size 2 /* the number of words in a large token node */
5757 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5758 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5759 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5760 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5761 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5763 @<Check the ``constant''...@>=
5764 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5766 @ We have set aside a two word node beginning at |null| so that we can have
5767 |value(null)=0|. We will make use of this coincidence later.
5769 @<Initialize table entries...@>=
5770 link(null)=null; value(null)=0;
5772 @ A numeric token is created by the following trivial routine.
5775 pointer mp_new_num_tok (MP mp,scaled v) {
5776 pointer p; /* the new node */
5777 p=mp_get_node(mp, token_node_size); value(p)=v;
5778 type(p)=mp_known; name_type(p)=mp_token;
5782 @ A token list is a singly linked list of nodes in |mem|, where
5783 each node contains a token and a link. Here's a subroutine that gets rid
5784 of a token list when it is no longer needed.
5787 void mp_token_recycle (MP mp);
5790 @c void mp_flush_token_list (MP mp,pointer p) {
5791 pointer q; /* the node being recycled */
5794 if ( q>=mp->hi_mem_min ) {
5798 case mp_vacuous: case mp_boolean_type: case mp_known:
5800 case mp_string_type:
5801 delete_str_ref(value(q));
5803 case unknown_types: case mp_pen_type: case mp_path_type:
5804 case mp_picture_type: case mp_pair_type: case mp_color_type:
5805 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5806 case mp_proto_dependent: case mp_independent:
5807 mp->g_pointer=q; mp_token_recycle(mp);
5809 default: mp_confusion(mp, "token");
5810 @:this can't happen token}{\quad token@>
5812 mp_free_node(mp, q,token_node_size);
5817 @ The procedure |show_token_list|, which prints a symbolic form of
5818 the token list that starts at a given node |p|, illustrates these
5819 conventions. The token list being displayed should not begin with a reference
5820 count. However, the procedure is intended to be fairly robust, so that if the
5821 memory links are awry or if |p| is not really a pointer to a token list,
5822 almost nothing catastrophic can happen.
5824 An additional parameter |q| is also given; this parameter is either null
5825 or it points to a node in the token list where a certain magic computation
5826 takes place that will be explained later. (Basically, |q| is non-null when
5827 we are printing the two-line context information at the time of an error
5828 message; |q| marks the place corresponding to where the second line
5831 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5832 of printing exceeds a given limit~|l|; the length of printing upon entry is
5833 assumed to be a given amount called |null_tally|. (Note that
5834 |show_token_list| sometimes uses itself recursively to print
5835 variable names within a capsule.)
5838 Unusual entries are printed in the form of all-caps tokens
5839 preceded by a space, e.g., `\.{\char`\ BAD}'.
5842 void mp_print_capsule (MP mp);
5844 @ @<Declare the procedure called |show_token_list|@>=
5845 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5846 integer null_tally) ;
5849 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5850 integer null_tally) {
5851 small_number class,c; /* the |char_class| of previous and new tokens */
5852 integer r,v; /* temporary registers */
5853 class=percent_class;
5854 mp->tally=null_tally;
5855 while ( (p!=null) && (mp->tally<l) ) {
5857 @<Do magic computation@>;
5858 @<Display token |p| and set |c| to its class;
5859 but |return| if there are problems@>;
5863 mp_print(mp, " ETC.");
5868 @ @<Display token |p| and set |c| to its class...@>=
5869 c=letter_class; /* the default */
5870 if ( (p<0)||(p>mp->mem_end) ) {
5871 mp_print(mp, " CLOBBERED"); return;
5874 if ( p<mp->hi_mem_min ) {
5875 @<Display two-word token@>;
5878 if ( r>=expr_base ) {
5879 @<Display a parameter token@>;
5883 @<Display a collective subscript@>
5885 mp_print(mp, " IMPOSSIBLE");
5890 if ( (r<0)||(r>mp->max_str_ptr) ) {
5891 mp_print(mp, " NONEXISTENT");
5894 @<Print string |r| as a symbolic token
5895 and set |c| to its class@>;
5901 @ @<Display two-word token@>=
5902 if ( name_type(p)==mp_token ) {
5903 if ( type(p)==mp_known ) {
5904 @<Display a numeric token@>;
5905 } else if ( type(p)!=mp_string_type ) {
5906 mp_print(mp, " BAD");
5909 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5912 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5913 mp_print(mp, " BAD");
5915 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5918 @ @<Display a numeric token@>=
5919 if ( class==digit_class )
5920 mp_print_char(mp, ' ');
5923 if ( class==left_bracket_class )
5924 mp_print_char(mp, ' ');
5925 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5926 c=right_bracket_class;
5928 mp_print_scaled(mp, v); c=digit_class;
5932 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5933 But we will see later (in the |print_variable_name| routine) that
5934 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5936 @<Display a collective subscript@>=
5938 if ( class==left_bracket_class )
5939 mp_print_char(mp, ' ');
5940 mp_print(mp, "[]"); c=right_bracket_class;
5943 @ @<Display a parameter token@>=
5945 if ( r<suffix_base ) {
5946 mp_print(mp, "(EXPR"); r=r-(expr_base);
5948 } else if ( r<text_base ) {
5949 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5952 mp_print(mp, "(TEXT"); r=r-(text_base);
5955 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5959 @ @<Print string |r| as a symbolic token...@>=
5961 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5964 case letter_class:mp_print_char(mp, '.'); break;
5965 case isolated_classes: break;
5966 default: mp_print_char(mp, ' '); break;
5969 mp_print_str(mp, r);
5972 @ The following procedures have been declared |forward| with no parameters,
5973 because the author dislikes \PASCAL's convention about |forward| procedures
5974 with parameters. It was necessary to do something, because |show_token_list|
5975 is recursive (although the recursion is limited to one level), and because
5976 |flush_token_list| is syntactically (but not semantically) recursive.
5979 @<Declare miscellaneous procedures that were declared |forward|@>=
5980 void mp_print_capsule (MP mp) {
5981 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5984 void mp_token_recycle (MP mp) {
5985 mp_recycle_value(mp, mp->g_pointer);
5989 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5991 @ Macro definitions are kept in \MP's memory in the form of token lists
5992 that have a few extra one-word nodes at the beginning.
5994 The first node contains a reference count that is used to tell when the
5995 list is no longer needed. To emphasize the fact that a reference count is
5996 present, we shall refer to the |info| field of this special node as the
5998 @^reference counts@>
6000 The next node or nodes after the reference count serve to describe the
6001 formal parameters. They either contain a code word that specifies all
6002 of the parameters, or they contain zero or more parameter tokens followed
6003 by the code `|general_macro|'.
6006 /* reference count preceding a macro definition or picture header */
6007 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
6008 @d general_macro 0 /* preface to a macro defined with a parameter list */
6009 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
6010 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
6011 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
6012 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
6013 @d of_macro 5 /* preface to a macro with
6014 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
6015 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
6016 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
6019 void mp_delete_mac_ref (MP mp,pointer p) {
6020 /* |p| points to the reference count of a macro list that is
6021 losing one reference */
6022 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
6023 else decr(ref_count(p));
6026 @ The following subroutine displays a macro, given a pointer to its
6030 @<Declare the procedure called |print_cmd_mod|@>;
6031 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
6032 pointer r; /* temporary storage */
6033 p=link(p); /* bypass the reference count */
6034 while ( info(p)>text_macro ){
6035 r=link(p); link(p)=null;
6036 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
6037 if ( l>0 ) l=l-mp->tally; else return;
6038 } /* control printing of `\.{ETC.}' */
6042 case general_macro:mp_print(mp, "->"); break;
6044 case primary_macro: case secondary_macro: case tertiary_macro:
6045 mp_print_char(mp, '<');
6046 mp_print_cmd_mod(mp, param_type,info(p));
6047 mp_print(mp, ">->");
6049 case expr_macro:mp_print(mp, "<expr>->"); break;
6050 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
6051 case suffix_macro:mp_print(mp, "<suffix>->"); break;
6052 case text_macro:mp_print(mp, "<text>->"); break;
6053 } /* there are no other cases */
6054 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
6057 @* \[15] Data structures for variables.
6058 The variables of \MP\ programs can be simple, like `\.x', or they can
6059 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6060 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6061 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
6062 things are represented inside of the computer.
6064 Each variable value occupies two consecutive words, either in a two-word
6065 node called a value node, or as a two-word subfield of a larger node. One
6066 of those two words is called the |value| field; it is an integer,
6067 containing either a |scaled| numeric value or the representation of some
6068 other type of quantity. (It might also be subdivided into halfwords, in
6069 which case it is referred to by other names instead of |value|.) The other
6070 word is broken into subfields called |type|, |name_type|, and |link|. The
6071 |type| field is a quarterword that specifies the variable's type, and
6072 |name_type| is a quarterword from which \MP\ can reconstruct the
6073 variable's name (sometimes by using the |link| field as well). Thus, only
6074 1.25 words are actually devoted to the value itself; the other
6075 three-quarters of a word are overhead, but they aren't wasted because they
6076 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6078 In this section we shall be concerned only with the structural aspects of
6079 variables, not their values. Later parts of the program will change the
6080 |type| and |value| fields, but we shall treat those fields as black boxes
6081 whose contents should not be touched.
6083 However, if the |type| field is |mp_structured|, there is no |value| field,
6084 and the second word is broken into two pointer fields called |attr_head|
6085 and |subscr_head|. Those fields point to additional nodes that
6086 contain structural information, as we shall see.
6088 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6089 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6090 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6091 @d value_node_size 2 /* the number of words in a value node */
6093 @ An attribute node is three words long. Two of these words contain |type|
6094 and |value| fields as described above, and the third word contains
6095 additional information: There is an |attr_loc| field, which contains the
6096 hash address of the token that names this attribute; and there's also a
6097 |parent| field, which points to the value node of |mp_structured| type at the
6098 next higher level (i.e., at the level to which this attribute is
6099 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6100 |link| field points to the next attribute with the same parent; these are
6101 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6102 final attribute node links to the constant |end_attr|, whose |attr_loc|
6103 field is greater than any legal hash address. The |attr_head| in the
6104 parent points to a node whose |name_type| is |mp_structured_root|; this
6105 node represents the null attribute, i.e., the variable that is relevant
6106 when no attributes are attached to the parent. The |attr_head| node is either
6107 a value node, a subscript node, or an attribute node, depending on what
6108 the parent would be if it were not structured; but the subscript and
6109 attribute fields are ignored, so it effectively contains only the data of
6110 a value node. The |link| field in this special node points to an attribute
6111 node whose |attr_loc| field is zero; the latter node represents a collective
6112 subscript `\.{[]}' attached to the parent, and its |link| field points to
6113 the first non-special attribute node (or to |end_attr| if there are none).
6115 A subscript node likewise occupies three words, with |type| and |value| fields
6116 plus extra information; its |name_type| is |subscr|. In this case the
6117 third word is called the |subscript| field, which is a |scaled| integer.
6118 The |link| field points to the subscript node with the next larger
6119 subscript, if any; otherwise the |link| points to the attribute node
6120 for collective subscripts at this level. We have seen that the latter node
6121 contains an upward pointer, so that the parent can be deduced.
6123 The |name_type| in a parent-less value node is |root|, and the |link|
6124 is the hash address of the token that names this value.
6126 In other words, variables have a hierarchical structure that includes
6127 enough threads running around so that the program is able to move easily
6128 between siblings, parents, and children. An example should be helpful:
6129 (The reader is advised to draw a picture while reading the following
6130 description, since that will help to firm up the ideas.)
6131 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6132 and `\.{x20b}' have been mentioned in a user's program, where
6133 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6134 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6135 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6136 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6137 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6138 node and |r| to a subscript node. (Are you still following this? Use
6139 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6140 |type(q)| and |value(q)|; furthermore
6141 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6142 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6143 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6144 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6145 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6146 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6147 |name_type(qq)=mp_structured_root|, and
6148 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6149 an attribute node representing `\.{x[][]}', which has never yet
6150 occurred; its |type| field is |undefined|, and its |value| field is
6151 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6152 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6153 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6154 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6155 (Maybe colored lines will help untangle your picture.)
6156 Node |r| is a subscript node with |type| and |value|
6157 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6158 and |link(r)=r1| is another subscript node. To complete the picture,
6159 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6160 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6161 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6162 and we finish things off with three more nodes
6163 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6164 with a larger sheet of paper.) The value of variable \.{x20b}
6165 appears in node~|qqq2|, as you can well imagine.
6167 If the example in the previous paragraph doesn't make things crystal
6168 clear, a glance at some of the simpler subroutines below will reveal how
6169 things work out in practice.
6171 The only really unusual thing about these conventions is the use of
6172 collective subscript attributes. The idea is to avoid repeating a lot of
6173 type information when many elements of an array are identical macros
6174 (for which distinct values need not be stored) or when they don't have
6175 all of the possible attributes. Branches of the structure below collective
6176 subscript attributes do not carry actual values except for macro identifiers;
6177 branches of the structure below subscript nodes do not carry significant
6178 information in their collective subscript attributes.
6180 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6181 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6182 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6183 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6184 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6185 @d attr_node_size 3 /* the number of words in an attribute node */
6186 @d subscr_node_size 3 /* the number of words in a subscript node */
6187 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6189 @<Initialize table...@>=
6190 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6192 @ Variables of type \&{pair} will have values that point to four-word
6193 nodes containing two numeric values. The first of these values has
6194 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6195 the |link| in the first points back to the node whose |value| points
6196 to this four-word node.
6198 Variables of type \&{transform} are similar, but in this case their
6199 |value| points to a 12-word node containing six values, identified by
6200 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6201 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6202 Finally, variables of type \&{color} have three values in six words
6203 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6205 When an entire structured variable is saved, the |root| indication
6206 is temporarily replaced by |saved_root|.
6208 Some variables have no name; they just are used for temporary storage
6209 while expressions are being evaluated. We call them {\sl capsules}.
6211 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6212 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6213 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6214 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6215 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6216 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6217 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6218 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6219 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6220 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6221 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6222 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6223 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6224 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6226 @d pair_node_size 4 /* the number of words in a pair node */
6227 @d transform_node_size 12 /* the number of words in a transform node */
6228 @d color_node_size 6 /* the number of words in a color node */
6229 @d cmykcolor_node_size 8 /* the number of words in a color node */
6232 small_number big_node_size[mp_pair_type+1];
6233 small_number sector0[mp_pair_type+1];
6234 small_number sector_offset[mp_black_part_sector+1];
6236 @ The |sector0| array gives for each big node type, |name_type| values
6237 for its first subfield; the |sector_offset| array gives for each
6238 |name_type| value, the offset from the first subfield in words;
6239 and the |big_node_size| array gives the size in words for each type of
6243 mp->big_node_size[mp_transform_type]=transform_node_size;
6244 mp->big_node_size[mp_pair_type]=pair_node_size;
6245 mp->big_node_size[mp_color_type]=color_node_size;
6246 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6247 mp->sector0[mp_transform_type]=mp_x_part_sector;
6248 mp->sector0[mp_pair_type]=mp_x_part_sector;
6249 mp->sector0[mp_color_type]=mp_red_part_sector;
6250 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6251 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6252 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6254 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6255 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6257 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6258 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6261 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6262 procedure call |init_big_node(p)| will allocate a pair or transform node
6263 for~|p|. The individual parts of such nodes are initially of type
6267 void mp_init_big_node (MP mp,pointer p) {
6268 pointer q; /* the new node */
6269 small_number s; /* its size */
6270 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6273 @<Make variable |q+s| newly independent@>;
6274 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6277 link(q)=p; value(p)=q;
6280 @ The |id_transform| function creates a capsule for the
6281 identity transformation.
6284 pointer mp_id_transform (MP mp) {
6285 pointer p,q,r; /* list manipulation registers */
6286 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6287 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6288 r=q+transform_node_size;
6291 type(r)=mp_known; value(r)=0;
6293 value(xx_part_loc(q))=unity;
6294 value(yy_part_loc(q))=unity;
6298 @ Tokens are of type |tag_token| when they first appear, but they point
6299 to |null| until they are first used as the root of a variable.
6300 The following subroutine establishes the root node on such grand occasions.
6303 void mp_new_root (MP mp,pointer x) {
6304 pointer p; /* the new node */
6305 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6306 link(p)=x; equiv(x)=p;
6309 @ These conventions for variable representation are illustrated by the
6310 |print_variable_name| routine, which displays the full name of a
6311 variable given only a pointer to its two-word value packet.
6314 void mp_print_variable_name (MP mp, pointer p);
6317 void mp_print_variable_name (MP mp, pointer p) {
6318 pointer q; /* a token list that will name the variable's suffix */
6319 pointer r; /* temporary for token list creation */
6320 while ( name_type(p)>=mp_x_part_sector ) {
6321 @<Preface the output with a part specifier; |return| in the
6322 case of a capsule@>;
6325 while ( name_type(p)>mp_saved_root ) {
6326 @<Ascend one level, pushing a token onto list |q|
6327 and replacing |p| by its parent@>;
6329 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6330 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6332 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6333 mp_flush_token_list(mp, r);
6336 @ @<Ascend one level, pushing a token onto list |q|...@>=
6338 if ( name_type(p)==mp_subscr ) {
6339 r=mp_new_num_tok(mp, subscript(p));
6342 } while (name_type(p)!=mp_attr);
6343 } else if ( name_type(p)==mp_structured_root ) {
6344 p=link(p); goto FOUND;
6346 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6347 @:this can't happen var}{\quad var@>
6348 r=mp_get_avail(mp); info(r)=attr_loc(p);
6355 @ @<Preface the output with a part specifier...@>=
6356 { switch (name_type(p)) {
6357 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6358 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6359 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6360 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6361 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6362 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6363 case mp_red_part_sector: mp_print(mp, "red"); break;
6364 case mp_green_part_sector: mp_print(mp, "green"); break;
6365 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6366 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6367 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6368 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6369 case mp_black_part_sector: mp_print(mp, "black"); break;
6370 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6372 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6375 } /* there are no other cases */
6376 mp_print(mp, "part ");
6377 p=link(p-mp->sector_offset[name_type(p)]);
6380 @ The |interesting| function returns |true| if a given variable is not
6381 in a capsule, or if the user wants to trace capsules.
6384 boolean mp_interesting (MP mp,pointer p) {
6385 small_number t; /* a |name_type| */
6386 if ( mp->internal[mp_tracing_capsules]>0 ) {
6390 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6391 t=name_type(link(p-mp->sector_offset[t]));
6392 return (t!=mp_capsule);
6396 @ Now here is a subroutine that converts an unstructured type into an
6397 equivalent structured type, by inserting a |mp_structured| node that is
6398 capable of growing. This operation is done only when |name_type(p)=root|,
6399 |subscr|, or |attr|.
6401 The procedure returns a pointer to the new node that has taken node~|p|'s
6402 place in the structure. Node~|p| itself does not move, nor are its
6403 |value| or |type| fields changed in any way.
6406 pointer mp_new_structure (MP mp,pointer p) {
6407 pointer q,r=0; /* list manipulation registers */
6408 switch (name_type(p)) {
6410 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6413 @<Link a new subscript node |r| in place of node |p|@>;
6416 @<Link a new attribute node |r| in place of node |p|@>;
6419 mp_confusion(mp, "struct");
6420 @:this can't happen struct}{\quad struct@>
6423 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6424 attr_head(r)=p; name_type(p)=mp_structured_root;
6425 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6426 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6427 attr_loc(q)=collective_subscript;
6431 @ @<Link a new subscript node |r| in place of node |p|@>=
6436 } while (name_type(q)!=mp_attr);
6437 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6441 r=mp_get_node(mp, subscr_node_size);
6442 link(q)=r; subscript(r)=subscript(p);
6445 @ If the attribute is |collective_subscript|, there are two pointers to
6446 node~|p|, so we must change both of them.
6448 @<Link a new attribute node |r| in place of node |p|@>=
6450 q=parent(p); r=attr_head(q);
6454 r=mp_get_node(mp, attr_node_size); link(q)=r;
6455 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6456 if ( attr_loc(p)==collective_subscript ) {
6457 q=subscr_head_loc(parent(p));
6458 while ( link(q)!=p ) q=link(q);
6463 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6464 list of suffixes; it returns a pointer to the corresponding two-word
6465 value. For example, if |t| points to token \.x followed by a numeric
6466 token containing the value~7, |find_variable| finds where the value of
6467 \.{x7} is stored in memory. This may seem a simple task, and it
6468 usually is, except when \.{x7} has never been referenced before.
6469 Indeed, \.x may never have even been subscripted before; complexities
6470 arise with respect to updating the collective subscript information.
6472 If a macro type is detected anywhere along path~|t|, or if the first
6473 item on |t| isn't a |tag_token|, the value |null| is returned.
6474 Otherwise |p| will be a non-null pointer to a node such that
6475 |undefined<type(p)<mp_structured|.
6477 @d abort_find { return null; }
6480 pointer mp_find_variable (MP mp,pointer t) {
6481 pointer p,q,r,s; /* nodes in the ``value'' line */
6482 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6483 integer n; /* subscript or attribute */
6484 memory_word save_word; /* temporary storage for a word of |mem| */
6486 p=info(t); t=link(t);
6487 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6488 if ( equiv(p)==null ) mp_new_root(mp, p);
6491 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6492 if ( t<mp->hi_mem_min ) {
6493 @<Descend one level for the subscript |value(t)|@>
6495 @<Descend one level for the attribute |info(t)|@>;
6499 if ( type(pp)>=mp_structured ) {
6500 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6502 if ( type(p)==mp_structured ) p=attr_head(p);
6503 if ( type(p)==undefined ) {
6504 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6505 type(p)=type(pp); value(p)=null;
6510 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6511 |pp|~stays in the collective line while |p|~goes through actual subscript
6514 @<Make sure that both nodes |p| and |pp|...@>=
6515 if ( type(pp)!=mp_structured ) {
6516 if ( type(pp)>mp_structured ) abort_find;
6517 ss=mp_new_structure(mp, pp);
6520 }; /* now |type(pp)=mp_structured| */
6521 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6522 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6524 @ We want this part of the program to be reasonably fast, in case there are
6526 lots of subscripts at the same level of the data structure. Therefore
6527 we store an ``infinite'' value in the word that appears at the end of the
6528 subscript list, even though that word isn't part of a subscript node.
6530 @<Descend one level for the subscript |value(t)|@>=
6533 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6534 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6535 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6538 } while (n>subscript(s));
6539 if ( n==subscript(s) ) {
6542 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6543 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6545 mp->mem[subscript_loc(q)]=save_word;
6548 @ @<Descend one level for the attribute |info(t)|@>=
6554 } while (n>attr_loc(ss));
6555 if ( n<attr_loc(ss) ) {
6556 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6557 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6558 parent(qq)=pp; ss=qq;
6563 pp=ss; s=attr_head(p);
6566 } while (n>attr_loc(s));
6567 if ( n==attr_loc(s) ) {
6570 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6571 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6577 @ Variables lose their former values when they appear in a type declaration,
6578 or when they are defined to be macros or \&{let} equal to something else.
6579 A subroutine will be defined later that recycles the storage associated
6580 with any particular |type| or |value|; our goal now is to study a higher
6581 level process called |flush_variable|, which selectively frees parts of a
6584 This routine has some complexity because of examples such as
6585 `\hbox{\tt numeric x[]a[]b}'
6586 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6587 `\hbox{\tt vardef x[]a[]=...}'
6588 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6589 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6590 to handle such examples is to use recursion; so that's what we~do.
6593 Parameter |p| points to the root information of the variable;
6594 parameter |t| points to a list of one-word nodes that represent
6595 suffixes, with |info=collective_subscript| for subscripts.
6598 @<Declare subroutines for printing expressions@>
6599 @<Declare basic dependency-list subroutines@>
6600 @<Declare the recycling subroutines@>
6601 void mp_flush_cur_exp (MP mp,scaled v) ;
6602 @<Declare the procedure called |flush_below_variable|@>
6605 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6606 pointer q,r; /* list manipulation */
6607 halfword n; /* attribute to match */
6609 if ( type(p)!=mp_structured ) return;
6610 n=info(t); t=link(t);
6611 if ( n==collective_subscript ) {
6612 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6613 while ( name_type(q)==mp_subscr ){
6614 mp_flush_variable(mp, q,t,discard_suffixes);
6616 if ( type(q)==mp_structured ) r=q;
6617 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6627 } while (attr_loc(p)<n);
6628 if ( attr_loc(p)!=n ) return;
6630 if ( discard_suffixes ) {
6631 mp_flush_below_variable(mp, p);
6633 if ( type(p)==mp_structured ) p=attr_head(p);
6634 mp_recycle_value(mp, p);
6638 @ The next procedure is simpler; it wipes out everything but |p| itself,
6639 which becomes undefined.
6641 @<Declare the procedure called |flush_below_variable|@>=
6642 void mp_flush_below_variable (MP mp, pointer p);
6645 void mp_flush_below_variable (MP mp,pointer p) {
6646 pointer q,r; /* list manipulation registers */
6647 if ( type(p)!=mp_structured ) {
6648 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6651 while ( name_type(q)==mp_subscr ) {
6652 mp_flush_below_variable(mp, q); r=q; q=link(q);
6653 mp_free_node(mp, r,subscr_node_size);
6655 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6656 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6657 else mp_free_node(mp, r,subscr_node_size);
6658 /* we assume that |subscr_node_size=attr_node_size| */
6660 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6661 } while (q!=end_attr);
6666 @ Just before assigning a new value to a variable, we will recycle the
6667 old value and make the old value undefined. The |und_type| routine
6668 determines what type of undefined value should be given, based on
6669 the current type before recycling.
6672 small_number mp_und_type (MP mp,pointer p) {
6674 case undefined: case mp_vacuous:
6676 case mp_boolean_type: case mp_unknown_boolean:
6677 return mp_unknown_boolean;
6678 case mp_string_type: case mp_unknown_string:
6679 return mp_unknown_string;
6680 case mp_pen_type: case mp_unknown_pen:
6681 return mp_unknown_pen;
6682 case mp_path_type: case mp_unknown_path:
6683 return mp_unknown_path;
6684 case mp_picture_type: case mp_unknown_picture:
6685 return mp_unknown_picture;
6686 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6687 case mp_pair_type: case mp_numeric_type:
6689 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6690 return mp_numeric_type;
6691 } /* there are no other cases */
6695 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6696 of a symbolic token. It must remove any variable structure or macro
6697 definition that is currently attached to that symbol. If the |saving|
6698 parameter is true, a subsidiary structure is saved instead of destroyed.
6701 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6702 pointer q; /* |equiv(p)| */
6704 switch (eq_type(p) % outer_tag) {
6706 case secondary_primary_macro:
6707 case tertiary_secondary_macro:
6708 case expression_tertiary_macro:
6709 if ( ! saving ) mp_delete_mac_ref(mp, q);
6714 name_type(q)=mp_saved_root;
6716 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6723 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6726 @* \[16] Saving and restoring equivalents.
6727 The nested structure given by \&{begingroup} and \&{endgroup}
6728 allows |eqtb| entries to be saved and restored, so that temporary changes
6729 can be made without difficulty. When the user requests a current value to
6730 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6731 \&{endgroup} ultimately causes the old values to be removed from the save
6732 stack and put back in their former places.
6734 The save stack is a linked list containing three kinds of entries,
6735 distinguished by their |info| fields. If |p| points to a saved item,
6739 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6740 such an item to the save stack and each \&{endgroup} cuts back the stack
6741 until the most recent such entry has been removed.
6744 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6745 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6746 commands or suitable \&{interim} commands.
6749 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6750 integer to be restored to internal parameter number~|q|. Such entries
6751 are generated by \&{interim} commands.
6754 The global variable |save_ptr| points to the top item on the save stack.
6756 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6757 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6758 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6759 link((A))=mp->save_ptr; mp->save_ptr=(A);
6763 pointer save_ptr; /* the most recently saved item */
6765 @ @<Set init...@>=mp->save_ptr=null;
6767 @ The |save_variable| routine is given a hash address |q|; it salts this
6768 address in the save stack, together with its current equivalent,
6769 then makes token~|q| behave as though it were brand new.
6771 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6772 things from the stack when the program is not inside a group, so there's
6773 no point in wasting the space.
6775 @c void mp_save_variable (MP mp,pointer q) {
6776 pointer p; /* temporary register */
6777 if ( mp->save_ptr!=null ){
6778 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6779 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6781 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6784 @ Similarly, |save_internal| is given the location |q| of an internal
6785 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6788 @c void mp_save_internal (MP mp,halfword q) {
6789 pointer p; /* new item for the save stack */
6790 if ( mp->save_ptr!=null ){
6791 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6792 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6796 @ At the end of a group, the |unsave| routine restores all of the saved
6797 equivalents in reverse order. This routine will be called only when there
6798 is at least one boundary item on the save stack.
6801 void mp_unsave (MP mp) {
6802 pointer q; /* index to saved item */
6803 pointer p; /* temporary register */
6804 while ( info(mp->save_ptr)!=0 ) {
6805 q=info(mp->save_ptr);
6807 if ( mp->internal[mp_tracing_restores]>0 ) {
6808 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6809 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6810 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6811 mp_end_diagnostic(mp, false);
6813 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6815 if ( mp->internal[mp_tracing_restores]>0 ) {
6816 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6817 mp_print_text(q); mp_print_char(mp, '}');
6818 mp_end_diagnostic(mp, false);
6820 mp_clear_symbol(mp, q,false);
6821 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6822 if ( eq_type(q) % outer_tag==tag_token ) {
6824 if ( p!=null ) name_type(p)=mp_root;
6827 p=link(mp->save_ptr);
6828 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6830 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6833 @* \[17] Data structures for paths.
6834 When a \MP\ user specifies a path, \MP\ will create a list of knots
6835 and control points for the associated cubic spline curves. If the
6836 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6837 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6838 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6839 @:Bezier}{B\'ezier, Pierre Etienne@>
6840 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6841 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6844 There is a 8-word node for each knot $z_k$, containing one word of
6845 control information and six words for the |x| and |y| coordinates of
6846 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6847 |left_type| and |right_type| fields, which each occupy a quarter of
6848 the first word in the node; they specify properties of the curve as it
6849 enters and leaves the knot. There's also a halfword |link| field,
6850 which points to the following knot, and a final supplementary word (of
6851 which only a quarter is used).
6853 If the path is a closed contour, knots 0 and |n| are identical;
6854 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6855 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6856 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6857 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6859 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6860 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6861 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6862 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6863 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6864 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6865 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6866 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6867 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6868 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6869 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6870 @d left_coord(A) mp->mem[(A)+2].sc
6871 /* coordinate of previous control point given |x_loc| or |y_loc| */
6872 @d right_coord(A) mp->mem[(A)+4].sc
6873 /* coordinate of next control point given |x_loc| or |y_loc| */
6874 @d knot_node_size 8 /* number of words in a knot node */
6878 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6879 mp_explicit, /* |left_type| or |right_type| when control points are known */
6880 mp_given, /* |left_type| or |right_type| when a direction is given */
6881 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6882 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6886 @ Before the B\'ezier control points have been calculated, the memory
6887 space they will ultimately occupy is taken up by information that can be
6888 used to compute them. There are four cases:
6891 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6892 the knot in the same direction it entered; \MP\ will figure out a
6896 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6897 knot in a direction depending on the angle at which it enters the next
6898 knot and on the curl parameter stored in |right_curl|.
6901 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6902 knot in a nonzero direction stored as an |angle| in |right_given|.
6905 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6906 point for leaving this knot has already been computed; it is in the
6907 |right_x| and |right_y| fields.
6910 The rules for |left_type| are similar, but they refer to the curve entering
6911 the knot, and to \\{left} fields instead of \\{right} fields.
6913 Non-|explicit| control points will be chosen based on ``tension'' parameters
6914 in the |left_tension| and |right_tension| fields. The
6915 `\&{atleast}' option is represented by negative tension values.
6916 @:at_least_}{\&{atleast} primitive@>
6918 For example, the \MP\ path specification
6919 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6921 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6923 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6924 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6925 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6927 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6928 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6929 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6930 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6931 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6932 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6933 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6934 Of course, this example is more complicated than anything a normal user
6937 These types must satisfy certain restrictions because of the form of \MP's
6939 (i)~|open| type never appears in the same node together with |endpoint|,
6941 (ii)~The |right_type| of a node is |explicit| if and only if the
6942 |left_type| of the following node is |explicit|.
6943 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6945 @d left_curl left_x /* curl information when entering this knot */
6946 @d left_given left_x /* given direction when entering this knot */
6947 @d left_tension left_y /* tension information when entering this knot */
6948 @d right_curl right_x /* curl information when leaving this knot */
6949 @d right_given right_x /* given direction when leaving this knot */
6950 @d right_tension right_y /* tension information when leaving this knot */
6952 @ Knots can be user-supplied, or they can be created by program code,
6953 like the |split_cubic| function, or |copy_path|. The distinction is
6954 needed for the cleanup routine that runs after |split_cubic|, because
6955 it should only delete knots it has previously inserted, and never
6956 anything that was user-supplied. In order to be able to differentiate
6957 one knot from another, we will set |originator(p):=mp_metapost_user| when
6958 it appeared in the actual metapost program, and
6959 |originator(p):=mp_program_code| in all other cases.
6961 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6965 mp_program_code=0, /* not created by a user */
6966 mp_metapost_user, /* created by a user */
6969 @ Here is a routine that prints a given knot list
6970 in symbolic form. It illustrates the conventions discussed above,
6971 and checks for anomalies that might arise while \MP\ is being debugged.
6973 @<Declare subroutines for printing expressions@>=
6974 void mp_pr_path (MP mp,pointer h);
6977 void mp_pr_path (MP mp,pointer h) {
6978 pointer p,q; /* for list traversal */
6982 if ( (p==null)||(q==null) ) {
6983 mp_print_nl(mp, "???"); return; /* this won't happen */
6986 @<Print information for adjacent knots |p| and |q|@>;
6989 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6990 @<Print two dots, followed by |given| or |curl| if present@>;
6993 if ( left_type(h)!=mp_endpoint )
6994 mp_print(mp, "cycle");
6997 @ @<Print information for adjacent knots...@>=
6998 mp_print_two(mp, x_coord(p),y_coord(p));
6999 switch (right_type(p)) {
7001 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
7003 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
7007 @<Print control points between |p| and |q|, then |goto done1|@>;
7010 @<Print information for a curve that begins |open|@>;
7014 @<Print information for a curve that begins |curl| or |given|@>;
7017 mp_print(mp, "???"); /* can't happen */
7021 if ( left_type(q)<=mp_explicit ) {
7022 mp_print(mp, "..control?"); /* can't happen */
7024 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
7025 @<Print tension between |p| and |q|@>;
7028 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
7029 were |scaled|, the magnitude of a |given| direction vector will be~4096.
7031 @<Print two dots...@>=
7033 mp_print_nl(mp, " ..");
7034 if ( left_type(p)==mp_given ) {
7035 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
7036 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7037 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
7038 } else if ( left_type(p)==mp_curl ){
7039 mp_print(mp, "{curl ");
7040 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
7044 @ @<Print tension between |p| and |q|@>=
7046 mp_print(mp, "..tension ");
7047 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
7048 mp_print_scaled(mp, abs(right_tension(p)));
7049 if ( right_tension(p)!=left_tension(q) ){
7050 mp_print(mp, " and ");
7051 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
7052 mp_print_scaled(mp, abs(left_tension(q)));
7056 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7058 mp_print(mp, "..controls ");
7059 mp_print_two(mp, right_x(p),right_y(p));
7060 mp_print(mp, " and ");
7061 if ( left_type(q)!=mp_explicit ) {
7062 mp_print(mp, "??"); /* can't happen */
7065 mp_print_two(mp, left_x(q),left_y(q));
7070 @ @<Print information for a curve that begins |open|@>=
7071 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7072 mp_print(mp, "{open?}"); /* can't happen */
7076 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7077 \MP's default curl is present.
7079 The code here uses the fact that |left_curl==left_given| and
7080 |right_curl==right_given|.
7082 @<Print information for a curve that begins |curl|...@>=
7084 if ( left_type(p)==mp_open )
7085 mp_print(mp, "??"); /* can't happen */
7087 if ( right_type(p)==mp_curl ) {
7088 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7090 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7091 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7092 mp_print_scaled(mp, mp->n_sin);
7094 mp_print_char(mp, '}');
7097 @ It is convenient to have another version of |pr_path| that prints the path
7098 as a diagnostic message.
7100 @<Declare subroutines for printing expressions@>=
7101 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7102 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7105 mp_end_diagnostic(mp, true);
7108 @ If we want to duplicate a knot node, we can say |copy_knot|:
7111 pointer mp_copy_knot (MP mp,pointer p) {
7112 pointer q; /* the copy */
7113 int k; /* runs through the words of a knot node */
7114 q=mp_get_node(mp, knot_node_size);
7115 for (k=0;k<knot_node_size;k++) {
7116 mp->mem[q+k]=mp->mem[p+k];
7118 originator(q)=originator(p);
7122 @ The |copy_path| routine makes a clone of a given path.
7125 pointer mp_copy_path (MP mp, pointer p) {
7126 pointer q,pp,qq; /* for list manipulation */
7127 q=mp_copy_knot(mp, p);
7130 link(qq)=mp_copy_knot(mp, pp);
7139 @ Just before |ship_out|, knot lists are exported for printing.
7141 The |gr_XXXX| macros are defined in |mppsout.h|.
7144 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7145 struct mp_knot *q; /* the copy */
7148 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7149 memset(q,0,sizeof (struct mp_knot));
7150 gr_left_type(q) = left_type(p);
7151 gr_right_type(q) = right_type(p);
7152 gr_x_coord(q) = x_coord(p);
7153 gr_y_coord(q) = y_coord(p);
7154 gr_left_x(q) = left_x(p);
7155 gr_left_y(q) = left_y(p);
7156 gr_right_x(q) = right_x(p);
7157 gr_right_y(q) = right_y(p);
7158 gr_originator(q) = originator(p);
7162 @ The |export_knot_list| routine therefore also makes a clone
7166 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7167 struct mp_knot *q, *qq; /* for list manipulation */
7168 pointer pp; /* for list manipulation */
7171 q=mp_export_knot(mp, p);
7174 gr_next_knot(qq)=mp_export_knot(mp, pp);
7175 qq=gr_next_knot(qq);
7183 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7184 returns a pointer to the first node of the copy, if the path is a cycle,
7185 but to the final node of a non-cyclic copy. The global
7186 variable |path_tail| will point to the final node of the original path;
7187 this trick makes it easier to implement `\&{doublepath}'.
7189 All node types are assumed to be |endpoint| or |explicit| only.
7192 pointer mp_htap_ypoc (MP mp,pointer p) {
7193 pointer q,pp,qq,rr; /* for list manipulation */
7194 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7197 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7198 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7199 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7200 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7201 originator(qq)=originator(pp);
7202 if ( link(pp)==p ) {
7203 link(q)=qq; mp->path_tail=pp; return q;
7205 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7210 pointer path_tail; /* the node that links to the beginning of a path */
7212 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7213 calling the following subroutine.
7215 @<Declare the recycling subroutines@>=
7216 void mp_toss_knot_list (MP mp,pointer p) ;
7219 void mp_toss_knot_list (MP mp,pointer p) {
7220 pointer q; /* the node being freed */
7221 pointer r; /* the next node */
7225 mp_free_node(mp, q,knot_node_size); q=r;
7229 @* \[18] Choosing control points.
7230 Now we must actually delve into one of \MP's more difficult routines,
7231 the |make_choices| procedure that chooses angles and control points for
7232 the splines of a curve when the user has not specified them explicitly.
7233 The parameter to |make_choices| points to a list of knots and
7234 path information, as described above.
7236 A path decomposes into independent segments at ``breakpoint'' knots,
7237 which are knots whose left and right angles are both prespecified in
7238 some way (i.e., their |left_type| and |right_type| aren't both open).
7241 @<Declare the procedure called |solve_choices|@>;
7242 void mp_make_choices (MP mp,pointer knots) {
7243 pointer h; /* the first breakpoint */
7244 pointer p,q; /* consecutive breakpoints being processed */
7245 @<Other local variables for |make_choices|@>;
7246 check_arith; /* make sure that |arith_error=false| */
7247 if ( mp->internal[mp_tracing_choices]>0 )
7248 mp_print_path(mp, knots,", before choices",true);
7249 @<If consecutive knots are equal, join them explicitly@>;
7250 @<Find the first breakpoint, |h|, on the path;
7251 insert an artificial breakpoint if the path is an unbroken cycle@>;
7254 @<Fill in the control points between |p| and the next breakpoint,
7255 then advance |p| to that breakpoint@>;
7257 if ( mp->internal[mp_tracing_choices]>0 )
7258 mp_print_path(mp, knots,", after choices",true);
7259 if ( mp->arith_error ) {
7260 @<Report an unexpected problem during the choice-making@>;
7264 @ @<Report an unexpected problem during the choice...@>=
7266 print_err("Some number got too big");
7267 @.Some number got too big@>
7268 help2("The path that I just computed is out of range.")
7269 ("So it will probably look funny. Proceed, for a laugh.");
7270 mp_put_get_error(mp); mp->arith_error=false;
7273 @ Two knots in a row with the same coordinates will always be joined
7274 by an explicit ``curve'' whose control points are identical with the
7277 @<If consecutive knots are equal, join them explicitly@>=
7281 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7282 right_type(p)=mp_explicit;
7283 if ( left_type(p)==mp_open ) {
7284 left_type(p)=mp_curl; left_curl(p)=unity;
7286 left_type(q)=mp_explicit;
7287 if ( right_type(q)==mp_open ) {
7288 right_type(q)=mp_curl; right_curl(q)=unity;
7290 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7291 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7296 @ If there are no breakpoints, it is necessary to compute the direction
7297 angles around an entire cycle. In this case the |left_type| of the first
7298 node is temporarily changed to |end_cycle|.
7300 @<Find the first breakpoint, |h|, on the path...@>=
7303 if ( left_type(h)!=mp_open ) break;
7304 if ( right_type(h)!=mp_open ) break;
7307 left_type(h)=mp_end_cycle; break;
7311 @ If |right_type(p)<given| and |q=link(p)|, we must have
7312 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7314 @<Fill in the control points between |p| and the next breakpoint...@>=
7316 if ( right_type(p)>=mp_given ) {
7317 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7318 @<Fill in the control information between
7319 consecutive breakpoints |p| and |q|@>;
7320 } else if ( right_type(p)==mp_endpoint ) {
7321 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7325 @ This step makes it possible to transform an explicitly computed path without
7326 checking the |left_type| and |right_type| fields.
7328 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7330 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7331 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7334 @ Before we can go further into the way choices are made, we need to
7335 consider the underlying theory. The basic ideas implemented in |make_choices|
7336 are due to John Hobby, who introduced the notion of ``mock curvature''
7337 @^Hobby, John Douglas@>
7338 at a knot. Angles are chosen so that they preserve mock curvature when
7339 a knot is passed, and this has been found to produce excellent results.
7341 It is convenient to introduce some notations that simplify the necessary
7342 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7343 between knots |k| and |k+1|; and let
7344 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7345 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7346 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7347 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7348 $$\eqalign{z_k^+&=z_k+
7349 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7351 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7352 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7353 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7354 corresponding ``offset angles.'' These angles satisfy the condition
7355 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7356 whenever the curve leaves an intermediate knot~|k| in the direction that
7359 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7360 the curve at its beginning and ending points. This means that
7361 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7362 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7363 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7364 z\k^-,z\k^{\phantom+};t)$
7367 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7368 \qquad{\rm and}\qquad
7369 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7370 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7372 approximation to this true curvature that arises in the limit for
7373 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7374 The standard velocity function satisfies
7375 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7376 hence the mock curvatures are respectively
7377 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7378 \qquad{\rm and}\qquad
7379 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7381 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7382 determines $\phi_k$ when $\theta_k$ is known, so the task of
7383 angle selection is essentially to choose appropriate values for each
7384 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7385 from $(**)$, we obtain a system of linear equations of the form
7386 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7388 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7389 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7390 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7391 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7392 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7393 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7394 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7395 hence they have a unique solution. Moreover, in most cases the tensions
7396 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7397 solution numerically stable, and there is an exponential damping
7398 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7399 a factor of~$O(2^{-j})$.
7401 @ However, we still must consider the angles at the starting and ending
7402 knots of a non-cyclic path. These angles might be given explicitly, or
7403 they might be specified implicitly in terms of an amount of ``curl.''
7405 Let's assume that angles need to be determined for a non-cyclic path
7406 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7407 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7408 have been given for $0<k<n$, and it will be convenient to introduce
7409 equations of the same form for $k=0$ and $k=n$, where
7410 $$A_0=B_0=C_n=D_n=0.$$
7411 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7412 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7413 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7414 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7415 mock curvature at $z_1$; i.e.,
7416 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7417 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7418 This equation simplifies to
7419 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7420 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7421 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7422 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7423 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7424 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7425 hence the linear equations remain nonsingular.
7427 Similar considerations apply at the right end, when the final angle $\phi_n$
7428 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7429 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7431 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7432 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7433 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7435 When |make_choices| chooses angles, it must compute the coefficients of
7436 these linear equations, then solve the equations. To compute the coefficients,
7437 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7438 When the equations are solved, the chosen directions $\theta_k$ are put
7439 back into the form of control points by essentially computing sines and
7442 @ OK, we are ready to make the hard choices of |make_choices|.
7443 Most of the work is relegated to an auxiliary procedure
7444 called |solve_choices|, which has been introduced to keep
7445 |make_choices| from being extremely long.
7447 @<Fill in the control information between...@>=
7448 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7449 set $n$ to the length of the path@>;
7450 @<Remove |open| types at the breakpoints@>;
7451 mp_solve_choices(mp, p,q,n)
7453 @ It's convenient to precompute quantities that will be needed several
7454 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7455 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7456 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7457 and $z\k-z_k$ will be stored in |psi[k]|.
7460 int path_size; /* maximum number of knots between breakpoints of a path */
7463 scaled *delta; /* knot differences */
7464 angle *psi; /* turning angles */
7466 @ @<Allocate or initialize ...@>=
7472 @ @<Dealloc variables@>=
7478 @ @<Other local variables for |make_choices|@>=
7479 int k,n; /* current and final knot numbers */
7480 pointer s,t; /* registers for list traversal */
7481 scaled delx,dely; /* directions where |open| meets |explicit| */
7482 fraction sine,cosine; /* trig functions of various angles */
7484 @ @<Calculate the turning angles...@>=
7487 k=0; s=p; n=mp->path_size;
7490 mp->delta_x[k]=x_coord(t)-x_coord(s);
7491 mp->delta_y[k]=y_coord(t)-y_coord(s);
7492 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7494 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7495 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7496 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7497 mp_take_fraction(mp, mp->delta_y[k],sine),
7498 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7499 mp_take_fraction(mp, mp->delta_x[k],sine));
7502 if ( k==mp->path_size ) {
7503 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7504 goto RESTART; /* retry, loop size has changed */
7507 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7508 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7511 @ When we get to this point of the code, |right_type(p)| is either
7512 |given| or |curl| or |open|. If it is |open|, we must have
7513 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7514 case, the |open| type is converted to |given|; however, if the
7515 velocity coming into this knot is zero, the |open| type is
7516 converted to a |curl|, since we don't know the incoming direction.
7518 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7519 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7521 @<Remove |open| types at the breakpoints@>=
7522 if ( left_type(q)==mp_open ) {
7523 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7524 if ( (delx==0)&&(dely==0) ) {
7525 left_type(q)=mp_curl; left_curl(q)=unity;
7527 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7530 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7531 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7532 if ( (delx==0)&&(dely==0) ) {
7533 right_type(p)=mp_curl; right_curl(p)=unity;
7535 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7539 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7540 and exactly one of the breakpoints involves a curl. The simplest case occurs
7541 when |n=1| and there is a curl at both breakpoints; then we simply draw
7544 But before coding up the simple cases, we might as well face the general case,
7545 since we must deal with it sooner or later, and since the general case
7546 is likely to give some insight into the way simple cases can be handled best.
7548 When there is no cycle, the linear equations to be solved form a tridiagonal
7549 system, and we can apply the standard technique of Gaussian elimination
7550 to convert that system to a sequence of equations of the form
7551 $$\theta_0+u_0\theta_1=v_0,\quad
7552 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7553 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7555 It is possible to do this diagonalization while generating the equations.
7556 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7557 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7559 The procedure is slightly more complex when there is a cycle, but the
7560 basic idea will be nearly the same. In the cyclic case the right-hand
7561 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7562 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7563 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7564 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7565 eliminate the $w$'s from the system, after which the solution can be
7568 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7569 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7570 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7571 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7574 angle *theta; /* values of $\theta_k$ */
7575 fraction *uu; /* values of $u_k$ */
7576 angle *vv; /* values of $v_k$ */
7577 fraction *ww; /* values of $w_k$ */
7579 @ @<Allocate or initialize ...@>=
7585 @ @<Dealloc variables@>=
7591 @ @<Declare |mp_reallocate| functions@>=
7592 void mp_reallocate_paths (MP mp, int l);
7595 void mp_reallocate_paths (MP mp, int l) {
7596 XREALLOC (mp->delta_x, l, scaled);
7597 XREALLOC (mp->delta_y, l, scaled);
7598 XREALLOC (mp->delta, l, scaled);
7599 XREALLOC (mp->psi, l, angle);
7600 XREALLOC (mp->theta, l, angle);
7601 XREALLOC (mp->uu, l, fraction);
7602 XREALLOC (mp->vv, l, angle);
7603 XREALLOC (mp->ww, l, fraction);
7607 @ Our immediate problem is to get the ball rolling by setting up the
7608 first equation or by realizing that no equations are needed, and to fit
7609 this initialization into a framework suitable for the overall computation.
7611 @<Declare the procedure called |solve_choices|@>=
7612 @<Declare subroutines needed by |solve_choices|@>;
7613 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7614 int k; /* current knot number */
7615 pointer r,s,t; /* registers for list traversal */
7616 @<Other local variables for |solve_choices|@>;
7621 @<Get the linear equations started; or |return|
7622 with the control points in place, if linear equations
7625 switch (left_type(s)) {
7626 case mp_end_cycle: case mp_open:
7627 @<Set up equation to match mock curvatures
7628 at $z_k$; then |goto found| with $\theta_n$
7629 adjusted to equal $\theta_0$, if a cycle has ended@>;
7632 @<Set up equation for a curl at $\theta_n$
7636 @<Calculate the given value of $\theta_n$
7639 } /* there are no other cases */
7644 @<Finish choosing angles and assigning control points@>;
7647 @ On the first time through the loop, we have |k=0| and |r| is not yet
7648 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7650 @<Get the linear equations started...@>=
7651 switch (right_type(s)) {
7653 if ( left_type(t)==mp_given ) {
7654 @<Reduce to simple case of two givens and |return|@>
7656 @<Set up the equation for a given value of $\theta_0$@>;
7660 if ( left_type(t)==mp_curl ) {
7661 @<Reduce to simple case of straight line and |return|@>
7663 @<Set up the equation for a curl at $\theta_0$@>;
7667 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7668 /* this begins a cycle */
7670 } /* there are no other cases */
7672 @ The general equation that specifies equality of mock curvature at $z_k$ is
7673 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7674 as derived above. We want to combine this with the already-derived equation
7675 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7677 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7679 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7680 -A_kw_{k-1}\theta_0$$
7681 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7682 fixed-point arithmetic, avoiding the chance of overflow while retaining
7685 The calculations will be performed in several registers that
7686 provide temporary storage for intermediate quantities.
7688 @<Other local variables for |solve_choices|@>=
7689 fraction aa,bb,cc,ff,acc; /* temporary registers */
7690 scaled dd,ee; /* likewise, but |scaled| */
7691 scaled lt,rt; /* tension values */
7693 @ @<Set up equation to match mock curvatures...@>=
7694 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7695 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7696 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7697 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7698 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7699 @<Calculate the values of $v_k$ and $w_k$@>;
7700 if ( left_type(s)==mp_end_cycle ) {
7701 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7705 @ Since tension values are never less than 3/4, the values |aa| and
7706 |bb| computed here are never more than 4/5.
7708 @<Calculate the values $\\{aa}=...@>=
7709 if ( abs(right_tension(r))==unity) {
7710 aa=fraction_half; dd=2*mp->delta[k];
7712 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7713 dd=mp_take_fraction(mp, mp->delta[k],
7714 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7716 if ( abs(left_tension(t))==unity ){
7717 bb=fraction_half; ee=2*mp->delta[k-1];
7719 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7720 ee=mp_take_fraction(mp, mp->delta[k-1],
7721 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7723 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7725 @ The ratio to be calculated in this step can be written in the form
7726 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7727 \\{cc}\cdot\\{dd},$$
7728 because of the quantities just calculated. The values of |dd| and |ee|
7729 will not be needed after this step has been performed.
7731 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7732 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7733 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7735 ff=mp_make_fraction(mp, lt,rt);
7736 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7737 dd=mp_take_fraction(mp, dd,ff);
7739 ff=mp_make_fraction(mp, rt,lt);
7740 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7741 ee=mp_take_fraction(mp, ee,ff);
7744 ff=mp_make_fraction(mp, ee,ee+dd)
7746 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7747 equation was specified by a curl. In that case we must use a special
7748 method of computation to prevent overflow.
7750 Fortunately, the calculations turn out to be even simpler in this ``hard''
7751 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7752 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7754 @<Calculate the values of $v_k$ and $w_k$@>=
7755 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7756 if ( right_type(r)==mp_curl ) {
7758 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7760 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7761 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7762 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7763 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7764 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7765 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7766 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7769 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7770 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7771 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7772 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7775 The idea in the following code is to observe that
7776 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7777 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7778 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7779 so we can solve for $\theta_n=\theta_0$.
7781 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7783 aa=0; bb=fraction_one; /* we have |k=n| */
7786 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7787 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7788 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7789 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7790 mp->theta[n]=aa; mp->vv[0]=aa;
7791 for (k=1;k<=n-1;k++) {
7792 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7797 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7798 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7800 @<Calculate the given value of $\theta_n$...@>=
7802 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7803 reduce_angle(mp->theta[n]);
7807 @ @<Set up the equation for a given value of $\theta_0$@>=
7809 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7810 reduce_angle(mp->vv[0]);
7811 mp->uu[0]=0; mp->ww[0]=0;
7814 @ @<Set up the equation for a curl at $\theta_0$@>=
7815 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7816 if ( (rt==unity)&&(lt==unity) )
7817 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7819 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7820 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7823 @ @<Set up equation for a curl at $\theta_n$...@>=
7824 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7825 if ( (rt==unity)&&(lt==unity) )
7826 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7828 ff=mp_curl_ratio(mp, cc,lt,rt);
7829 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7830 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7834 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7835 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7836 a somewhat tedious program to calculate
7837 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7838 \alpha^3\gamma+(3-\beta)\beta^2},$$
7839 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7840 is necessary only if the curl and tension are both large.)
7841 The values of $\alpha$ and $\beta$ will be at most~4/3.
7843 @<Declare subroutines needed by |solve_choices|@>=
7844 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7846 fraction alpha,beta,num,denom,ff; /* registers */
7847 alpha=mp_make_fraction(mp, unity,a_tension);
7848 beta=mp_make_fraction(mp, unity,b_tension);
7849 if ( alpha<=beta ) {
7850 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7851 gamma=mp_take_fraction(mp, gamma,ff);
7852 beta=beta / 010000; /* convert |fraction| to |scaled| */
7853 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7854 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7856 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7857 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7858 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7859 /* $1365\approx 2^{12}/3$ */
7860 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7862 if ( num>=denom+denom+denom+denom ) return fraction_four;
7863 else return mp_make_fraction(mp, num,denom);
7866 @ We're in the home stretch now.
7868 @<Finish choosing angles and assigning control points@>=
7869 for (k=n-1;k>=0;k--) {
7870 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7875 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7876 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7877 mp_set_controls(mp, s,t,k);
7881 @ The |set_controls| routine actually puts the control points into
7882 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7883 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7884 $\cos\phi$ needed in this calculation.
7890 fraction cf; /* sines and cosines */
7892 @ @<Declare subroutines needed by |solve_choices|@>=
7893 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7894 fraction rr,ss; /* velocities, divided by thrice the tension */
7895 scaled lt,rt; /* tensions */
7896 fraction sine; /* $\sin(\theta+\phi)$ */
7897 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7898 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7899 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7900 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7901 @<Decrease the velocities,
7902 if necessary, to stay inside the bounding triangle@>;
7904 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7905 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7906 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7907 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7908 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7909 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7910 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7911 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7912 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7913 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7914 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7915 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7916 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7919 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7920 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7921 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7922 there is no ``bounding triangle.''
7923 @:at_least_}{\&{atleast} primitive@>
7925 @<Decrease the velocities, if necessary...@>=
7926 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7927 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7928 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7930 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7931 if ( right_tension(p)<0 )
7932 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7933 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7934 if ( left_tension(q)<0 )
7935 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7936 ss=mp_make_fraction(mp, abs(mp->st),sine);
7940 @ Only the simple cases remain to be handled.
7942 @<Reduce to simple case of two givens and |return|@>=
7944 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7945 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7946 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7947 mp_set_controls(mp, p,q,0); return;
7950 @ @<Reduce to simple case of straight line and |return|@>=
7952 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7953 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7955 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7956 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7957 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7958 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7960 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7961 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7962 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7965 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7966 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7967 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7968 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7970 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7971 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7972 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7977 @* \[19] Measuring paths.
7978 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7979 allow the user to measure the bounding box of anything that can go into a
7980 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7981 by just finding the bounding box of the knots and the control points. We
7982 need a more accurate version of the bounding box, but we can still use the
7983 easy estimate to save time by focusing on the interesting parts of the path.
7985 @ Computing an accurate bounding box involves a theme that will come up again
7986 and again. Given a Bernshte{\u\i}n polynomial
7987 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7988 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7989 we can conveniently bisect its range as follows:
7992 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7995 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7996 |0<=k<n-j|, for |0<=j<n|.
8000 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
8001 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
8002 This formula gives us the coefficients of polynomials to use over the ranges
8003 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
8005 @ Now here's a subroutine that's handy for all sorts of path computations:
8006 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
8007 returns the unique |fraction| value |t| between 0 and~1 at which
8008 $B(a,b,c;t)$ changes from positive to negative, or returns
8009 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
8010 is already negative at |t=0|), |crossing_point| returns the value zero.
8012 @d no_crossing { return (fraction_one+1); }
8013 @d one_crossing { return fraction_one; }
8014 @d zero_crossing { return 0; }
8015 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
8017 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
8018 integer d; /* recursive counter */
8019 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
8020 if ( a<0 ) zero_crossing;
8023 if ( c>0 ) { no_crossing; }
8024 else if ( (a==0)&&(b==0) ) { no_crossing;}
8025 else { one_crossing; }
8027 if ( a==0 ) zero_crossing;
8028 } else if ( a==0 ) {
8029 if ( b<=0 ) zero_crossing;
8031 @<Use bisection to find the crossing point, if one exists@>;
8034 @ The general bisection method is quite simple when $n=2$, hence
8035 |crossing_point| does not take much time. At each stage in the
8036 recursion we have a subinterval defined by |l| and~|j| such that
8037 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
8038 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
8040 It is convenient for purposes of calculation to combine the values
8041 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
8042 of bisection then corresponds simply to doubling $d$ and possibly
8043 adding~1. Furthermore it proves to be convenient to modify
8044 our previous conventions for bisection slightly, maintaining the
8045 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
8046 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
8047 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
8049 The following code maintains the invariant relations
8050 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
8051 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
8052 it has been constructed in such a way that no arithmetic overflow
8053 will occur if the inputs satisfy
8054 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8056 @<Use bisection to find the crossing point...@>=
8057 d=1; x0=a; x1=a-b; x2=b-c;
8068 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8072 } while (d<fraction_one);
8073 return (d-fraction_one)
8075 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8076 a cubic corresponding to the |fraction| value~|t|.
8078 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8079 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8081 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8083 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8084 scaled x1,x2,x3; /* intermediate values */
8085 x1=t_of_the_way(knot_coord(p),right_coord(p));
8086 x2=t_of_the_way(right_coord(p),left_coord(q));
8087 x3=t_of_the_way(left_coord(q),knot_coord(q));
8088 x1=t_of_the_way(x1,x2);
8089 x2=t_of_the_way(x2,x3);
8090 return t_of_the_way(x1,x2);
8093 @ The actual bounding box information is stored in global variables.
8094 Since it is convenient to address the $x$ and $y$ information
8095 separately, we define arrays indexed by |x_code..y_code| and use
8096 macros to give them more convenient names.
8100 mp_x_code=0, /* index for |minx| and |maxx| */
8101 mp_y_code /* index for |miny| and |maxy| */
8105 @d minx mp->bbmin[mp_x_code]
8106 @d maxx mp->bbmax[mp_x_code]
8107 @d miny mp->bbmin[mp_y_code]
8108 @d maxy mp->bbmax[mp_y_code]
8111 scaled bbmin[mp_y_code+1];
8112 scaled bbmax[mp_y_code+1];
8113 /* the result of procedures that compute bounding box information */
8115 @ Now we're ready for the key part of the bounding box computation.
8116 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8117 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8118 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8120 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8121 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8122 The |c| parameter is |x_code| or |y_code|.
8124 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8125 boolean wavy; /* whether we need to look for extremes */
8126 scaled del1,del2,del3,del,dmax; /* proportional to the control
8127 points of a quadratic derived from a cubic */
8128 fraction t,tt; /* where a quadratic crosses zero */
8129 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8131 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8132 @<Check the control points against the bounding box and set |wavy:=true|
8133 if any of them lie outside@>;
8135 del1=right_coord(p)-knot_coord(p);
8136 del2=left_coord(q)-right_coord(p);
8137 del3=knot_coord(q)-left_coord(q);
8138 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8139 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8141 negate(del1); negate(del2); negate(del3);
8143 t=mp_crossing_point(mp, del1,del2,del3);
8144 if ( t<fraction_one ) {
8145 @<Test the extremes of the cubic against the bounding box@>;
8150 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8151 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8152 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8154 @ @<Check the control points against the bounding box and set...@>=
8156 if ( mp->bbmin[c]<=right_coord(p) )
8157 if ( right_coord(p)<=mp->bbmax[c] )
8158 if ( mp->bbmin[c]<=left_coord(q) )
8159 if ( left_coord(q)<=mp->bbmax[c] )
8162 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8163 section. We just set |del=0| in that case.
8165 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8166 if ( del1!=0 ) del=del1;
8167 else if ( del2!=0 ) del=del2;
8171 if ( abs(del2)>dmax ) dmax=abs(del2);
8172 if ( abs(del3)>dmax ) dmax=abs(del3);
8173 while ( dmax<fraction_half ) {
8174 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8178 @ Since |crossing_point| has tried to choose |t| so that
8179 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8180 slope, the value of |del2| computed below should not be positive.
8181 But rounding error could make it slightly positive in which case we
8182 must cut it to zero to avoid confusion.
8184 @<Test the extremes of the cubic against the bounding box@>=
8186 x=mp_eval_cubic(mp, p,q,t);
8187 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8188 del2=t_of_the_way(del2,del3);
8189 /* now |0,del2,del3| represent the derivative on the remaining interval */
8190 if ( del2>0 ) del2=0;
8191 tt=mp_crossing_point(mp, 0,-del2,-del3);
8192 if ( tt<fraction_one ) {
8193 @<Test the second extreme against the bounding box@>;
8197 @ @<Test the second extreme against the bounding box@>=
8199 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8200 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8203 @ Finding the bounding box of a path is basically a matter of applying
8204 |bound_cubic| twice for each pair of adjacent knots.
8206 @c void mp_path_bbox (MP mp,pointer h) {
8207 pointer p,q; /* a pair of adjacent knots */
8208 minx=x_coord(h); miny=y_coord(h);
8209 maxx=minx; maxy=miny;
8212 if ( right_type(p)==mp_endpoint ) return;
8214 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8215 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8220 @ Another important way to measure a path is to find its arc length. This
8221 is best done by using the general bisection algorithm to subdivide the path
8222 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8225 Since the arc length is the integral with respect to time of the magnitude of
8226 the velocity, it is natural to use Simpson's rule for the approximation.
8228 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8229 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8230 for the arc length of a path of length~1. For a cubic spline
8231 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8232 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8234 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8236 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8237 is the result of the bisection algorithm.
8239 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8240 This could be done via the theoretical error bound for Simpson's rule,
8242 but this is impractical because it requires an estimate of the fourth
8243 derivative of the quantity being integrated. It is much easier to just perform
8244 a bisection step and see how much the arc length estimate changes. Since the
8245 error for Simpson's rule is proportional to the fourth power of the sample
8246 spacing, the remaining error is typically about $1\over16$ of the amount of
8247 the change. We say ``typically'' because the error has a pseudo-random behavior
8248 that could cause the two estimates to agree when each contain large errors.
8250 To protect against disasters such as undetected cusps, the bisection process
8251 should always continue until all the $dz_i$ vectors belong to a single
8252 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8253 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8254 If such a spline happens to produce an erroneous arc length estimate that
8255 is little changed by bisection, the amount of the error is likely to be fairly
8256 small. We will try to arrange things so that freak accidents of this type do
8257 not destroy the inverse relationship between the \&{arclength} and
8258 \&{arctime} operations.
8259 @:arclength_}{\&{arclength} primitive@>
8260 @:arctime_}{\&{arctime} primitive@>
8262 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8264 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8265 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8266 returns the time when the arc length reaches |a_goal| if there is such a time.
8267 Thus the return value is either an arc length less than |a_goal| or, if the
8268 arc length would be at least |a_goal|, it returns a time value decreased by
8269 |two|. This allows the caller to use the sign of the result to distinguish
8270 between arc lengths and time values. On certain types of overflow, it is
8271 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8272 Otherwise, the result is always less than |a_goal|.
8274 Rather than halving the control point coordinates on each recursive call to
8275 |arc_test|, it is better to keep them proportional to velocity on the original
8276 curve and halve the results instead. This means that recursive calls can
8277 potentially use larger error tolerances in their arc length estimates. How
8278 much larger depends on to what extent the errors behave as though they are
8279 independent of each other. To save computing time, we use optimistic assumptions
8280 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8283 In addition to the tolerance parameter, |arc_test| should also have parameters
8284 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8285 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8286 and they are needed in different instances of |arc_test|.
8288 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8289 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8290 scaled dx2, scaled dy2, scaled v0, scaled v02,
8291 scaled v2, scaled a_goal, scaled tol) {
8292 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8293 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8295 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8296 scaled arc; /* best arc length estimate before recursion */
8297 @<Other local variables in |arc_test|@>;
8298 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8300 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8301 set |arc_test| and |return|@>;
8302 @<Test if the control points are confined to one quadrant or rotating them
8303 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8304 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8305 if ( arc < a_goal ) {
8308 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8309 that time minus |two|@>;
8312 @<Use one or two recursive calls to compute the |arc_test| function@>;
8316 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8317 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8318 |make_fraction| in this inner loop.
8321 @<Use one or two recursive calls to compute the |arc_test| function@>=
8323 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8324 large as possible@>;
8325 tol = tol + halfp(tol);
8326 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8327 halfp(v02), a_new, tol);
8329 return (-halfp(two-a));
8331 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8332 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8333 halfp(v02), v022, v2, a_new, tol);
8335 return (-halfp(-b) - half_unit);
8337 return (a + half(b-a));
8341 @ @<Other local variables in |arc_test|@>=
8342 scaled a,b; /* results of recursive calls */
8343 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8345 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8346 a_aux = el_gordo - a_goal;
8347 if ( a_goal > a_aux ) {
8348 a_aux = a_goal - a_aux;
8351 a_new = a_goal + a_goal;
8355 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8356 to force the additions and subtractions to be done in an order that avoids
8359 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8362 a_new = a_new + a_aux;
8365 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8366 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8367 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8368 this bound. Note that recursive calls will maintain this invariant.
8370 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8371 dx01 = half(dx0 + dx1);
8372 dx12 = half(dx1 + dx2);
8373 dx02 = half(dx01 + dx12);
8374 dy01 = half(dy0 + dy1);
8375 dy12 = half(dy1 + dy2);
8376 dy02 = half(dy01 + dy12)
8378 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8379 |a_goal=el_gordo| is guaranteed to yield the arc length.
8381 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8382 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8383 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8385 arc1 = v002 + half(halfp(v0+tmp) - v002);
8386 arc = v022 + half(halfp(v2+tmp) - v022);
8387 if ( (arc < el_gordo-arc1) ) {
8390 mp->arith_error = true;
8391 if ( a_goal==el_gordo ) return (el_gordo);
8395 @ @<Other local variables in |arc_test|@>=
8396 scaled tmp, tmp2; /* all purpose temporary registers */
8397 scaled arc1; /* arc length estimate for the first half */
8399 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8400 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8401 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8403 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8404 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8406 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8407 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8409 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8410 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8413 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8415 it is appropriate to use the same approximation to decide when the integral
8416 reaches the intermediate value |a_goal|. At this point
8418 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8419 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8420 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8421 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8422 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8426 $$ {\vb\dot B(t)\vb\over 3} \approx
8427 \cases{B\left(\hbox{|v0|},
8428 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8429 {1\over 2}\hbox{|v02|}; 2t \right)&
8430 if $t\le{1\over 2}$\cr
8431 B\left({1\over 2}\hbox{|v02|},
8432 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8433 \hbox{|v2|}; 2t-1 \right)&
8434 if $t\ge{1\over 2}$.\cr}
8437 We can integrate $\vb\dot B(t)\vb$ by using
8438 $$\int 3B(a,b,c;\tau)\,dt =
8439 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8442 This construction allows us to find the time when the arc length reaches
8443 |a_goal| by solving a cubic equation of the form
8444 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8445 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8446 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8447 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8448 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8449 $\tau$ given $a$, $b$, $c$, and $x$.
8451 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8453 tmp = (v02 + 2) / 4;
8454 if ( a_goal<=arc1 ) {
8457 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8460 return ((half_unit - two) +
8461 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8465 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8466 $$ B(0, a, a+b, a+b+c; t) = x. $$
8467 This routine is based on |crossing_point| but is simplified by the
8468 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8469 If rounding error causes this condition to be violated slightly, we just ignore
8470 it and proceed with binary search. This finds a time when the function value
8471 reaches |x| and the slope is positive.
8473 @<Declare subroutines needed by |arc_test|@>=
8474 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8475 scaled ab, bc, ac; /* bisection results */
8476 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8477 integer xx; /* temporary for updating |x| */
8478 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8479 @:this can't happen rising?}{\quad rising?@>
8482 } else if ( x >= a+b+c ) {
8486 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8490 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8491 xx = x - a - ab - ac;
8492 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8493 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8494 } while (t < unity);
8499 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8504 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8506 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8507 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8514 @ It is convenient to have a simpler interface to |arc_test| that requires no
8515 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8516 length less than |fraction_four|.
8518 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8520 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8521 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8522 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8523 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8524 v0 = mp_pyth_add(mp, dx0,dy0);
8525 v1 = mp_pyth_add(mp, dx1,dy1);
8526 v2 = mp_pyth_add(mp, dx2,dy2);
8527 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8528 mp->arith_error = true;
8529 if ( a_goal==el_gordo ) return el_gordo;
8532 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8533 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8534 v0, v02, v2, a_goal, arc_tol));
8538 @ Now it is easy to find the arc length of an entire path.
8540 @c scaled mp_get_arc_length (MP mp,pointer h) {
8541 pointer p,q; /* for traversing the path */
8542 scaled a,a_tot; /* current and total arc lengths */
8545 while ( right_type(p)!=mp_endpoint ){
8547 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8548 left_x(q)-right_x(p), left_y(q)-right_y(p),
8549 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8550 a_tot = mp_slow_add(mp, a, a_tot);
8551 if ( q==h ) break; else p=q;
8557 @ The inverse operation of finding the time on a path~|h| when the arc length
8558 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8559 is required to handle very large times or negative times on cyclic paths. For
8560 non-cyclic paths, |arc0| values that are negative or too large cause
8561 |get_arc_time| to return 0 or the length of path~|h|.
8563 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8564 time value greater than the length of the path. Since it could be much greater,
8565 we must be prepared to compute the arc length of path~|h| and divide this into
8566 |arc0| to find how many multiples of the length of path~|h| to add.
8568 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8569 pointer p,q; /* for traversing the path */
8570 scaled t_tot; /* accumulator for the result */
8571 scaled t; /* the result of |do_arc_test| */
8572 scaled arc; /* portion of |arc0| not used up so far */
8573 integer n; /* number of extra times to go around the cycle */
8575 @<Deal with a negative |arc0| value and |return|@>;
8577 if ( arc0==el_gordo ) decr(arc0);
8581 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8583 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8584 left_x(q)-right_x(p), left_y(q)-right_y(p),
8585 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8586 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8588 @<Update |t_tot| and |arc| to avoid going around the cyclic
8589 path too many times but set |arith_error:=true| and |goto done| on
8598 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8599 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8600 else { t_tot = t_tot + unity; arc = arc - t; }
8602 @ @<Deal with a negative |arc0| value and |return|@>=
8604 if ( left_type(h)==mp_endpoint ) {
8607 p = mp_htap_ypoc(mp, h);
8608 t_tot = -mp_get_arc_time(mp, p, -arc0);
8609 mp_toss_knot_list(mp, p);
8615 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8617 n = arc / (arc0 - arc);
8618 arc = arc - n*(arc0 - arc);
8619 if ( t_tot > el_gordo / (n+1) ) {
8620 mp->arith_error = true;
8624 t_tot = (n + 1)*t_tot;
8627 @* \[20] Data structures for pens.
8628 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8629 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8630 @:stroke}{\&{stroke} command@>
8631 converted into an area fill as described in the next part of this program.
8632 The mathematics behind this process is based on simple aspects of the theory
8633 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8634 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8635 Foundations of Computer Science {\bf 24} (1983), 100--111].
8637 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8638 @:makepen_}{\&{makepen} primitive@>
8639 This path representation is almost sufficient for our purposes except that
8640 a pen path should always be a convex polygon with the vertices in
8641 counter-clockwise order.
8642 Since we will need to scan pen polygons both forward and backward, a pen
8643 should be represented as a doubly linked ring of knot nodes. There is
8644 room for the extra back pointer because we do not need the
8645 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8646 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8647 so that certain procedures can operate on both pens and paths. In particular,
8648 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8651 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8653 @ The |make_pen| procedure turns a path into a pen by initializing
8654 the |knil| pointers and making sure the knots form a convex polygon.
8655 Thus each cubic in the given path becomes a straight line and the control
8656 points are ignored. If the path is not cyclic, the ends are connected by a
8659 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8661 @c @<Declare a function called |convex_hull|@>;
8662 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8663 pointer p,q; /* two consecutive knots */
8670 h=mp_convex_hull(mp, h);
8671 @<Make sure |h| isn't confused with an elliptical pen@>;
8676 @ The only information required about an elliptical pen is the overall
8677 transformation that has been applied to the original \&{pencircle}.
8678 @:pencircle_}{\&{pencircle} primitive@>
8679 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8680 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8681 knot node and transformed as if it were a path.
8683 @d pen_is_elliptical(A) ((A)==link((A)))
8685 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8686 pointer h; /* the knot node to return */
8687 h=mp_get_node(mp, knot_node_size);
8688 link(h)=h; knil(h)=h;
8689 originator(h)=mp_program_code;
8690 x_coord(h)=0; y_coord(h)=0;
8691 left_x(h)=diam; left_y(h)=0;
8692 right_x(h)=0; right_y(h)=diam;
8696 @ If the polygon being returned by |make_pen| has only one vertex, it will
8697 be interpreted as an elliptical pen. This is no problem since a degenerate
8698 polygon can equally well be thought of as a degenerate ellipse. We need only
8699 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8701 @<Make sure |h| isn't confused with an elliptical pen@>=
8702 if ( pen_is_elliptical( h) ){
8703 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8704 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8707 @ We have to cheat a little here but most operations on pens only use
8708 the first three words in each knot node.
8709 @^data structure assumptions@>
8711 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8712 x_coord(test_pen)=-half_unit;
8713 y_coord(test_pen)=0;
8714 x_coord(test_pen+3)=half_unit;
8715 y_coord(test_pen+3)=0;
8716 x_coord(test_pen+6)=0;
8717 y_coord(test_pen+6)=unity;
8718 link(test_pen)=test_pen+3;
8719 link(test_pen+3)=test_pen+6;
8720 link(test_pen+6)=test_pen;
8721 knil(test_pen)=test_pen+6;
8722 knil(test_pen+3)=test_pen;
8723 knil(test_pen+6)=test_pen+3
8725 @ Printing a polygonal pen is very much like printing a path
8727 @<Declare subroutines for printing expressions@>=
8728 void mp_pr_pen (MP mp,pointer h) {
8729 pointer p,q; /* for list traversal */
8730 if ( pen_is_elliptical(h) ) {
8731 @<Print the elliptical pen |h|@>;
8735 mp_print_two(mp, x_coord(p),y_coord(p));
8736 mp_print_nl(mp, " .. ");
8737 @<Advance |p| making sure the links are OK and |return| if there is
8740 mp_print(mp, "cycle");
8744 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8746 if ( (q==null) || (knil(q)!=p) ) {
8747 mp_print_nl(mp, "???"); return; /* this won't happen */
8752 @ @<Print the elliptical pen |h|@>=
8754 mp_print(mp, "pencircle transformed (");
8755 mp_print_scaled(mp, x_coord(h));
8756 mp_print_char(mp, ',');
8757 mp_print_scaled(mp, y_coord(h));
8758 mp_print_char(mp, ',');
8759 mp_print_scaled(mp, left_x(h)-x_coord(h));
8760 mp_print_char(mp, ',');
8761 mp_print_scaled(mp, right_x(h)-x_coord(h));
8762 mp_print_char(mp, ',');
8763 mp_print_scaled(mp, left_y(h)-y_coord(h));
8764 mp_print_char(mp, ',');
8765 mp_print_scaled(mp, right_y(h)-y_coord(h));
8766 mp_print_char(mp, ')');
8769 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8772 @<Declare subroutines for printing expressions@>=
8773 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8774 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8777 mp_end_diagnostic(mp, true);
8780 @ Making a polygonal pen into a path involves restoring the |left_type| and
8781 |right_type| fields and setting the control points so as to make a polygonal
8785 void mp_make_path (MP mp,pointer h) {
8786 pointer p; /* for traversing the knot list */
8787 small_number k; /* a loop counter */
8788 @<Other local variables in |make_path|@>;
8789 if ( pen_is_elliptical(h) ) {
8790 @<Make the elliptical pen |h| into a path@>;
8794 left_type(p)=mp_explicit;
8795 right_type(p)=mp_explicit;
8796 @<copy the coordinates of knot |p| into its control points@>;
8802 @ @<copy the coordinates of knot |p| into its control points@>=
8803 left_x(p)=x_coord(p);
8804 left_y(p)=y_coord(p);
8805 right_x(p)=x_coord(p);
8806 right_y(p)=y_coord(p)
8808 @ We need an eight knot path to get a good approximation to an ellipse.
8810 @<Make the elliptical pen |h| into a path@>=
8812 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8814 for (k=0;k<=7;k++ ) {
8815 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8816 transforming it appropriately@>;
8817 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8822 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8823 center_x=x_coord(h);
8824 center_y=y_coord(h);
8825 width_x=left_x(h)-center_x;
8826 width_y=left_y(h)-center_y;
8827 height_x=right_x(h)-center_x;
8828 height_y=right_y(h)-center_y
8830 @ @<Other local variables in |make_path|@>=
8831 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8832 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8833 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8834 scaled dx,dy; /* the vector from knot |p| to its right control point */
8836 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8838 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8839 find the point $k/8$ of the way around the circle and the direction vector
8842 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8844 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8845 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8846 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8847 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8848 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8849 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8850 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8851 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8852 right_x(p)=x_coord(p)+dx;
8853 right_y(p)=y_coord(p)+dy;
8854 left_x(p)=x_coord(p)-dx;
8855 left_y(p)=y_coord(p)-dy;
8856 left_type(p)=mp_explicit;
8857 right_type(p)=mp_explicit;
8858 originator(p)=mp_program_code
8861 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8862 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8864 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8865 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8866 function for $\theta=\phi=22.5^\circ$. This comes out to be
8867 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8868 \approx 0.132608244919772.
8872 mp->half_cos[0]=fraction_half;
8873 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8875 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8876 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8878 for (k=3;k<= 4;k++ ) {
8879 mp->half_cos[k]=-mp->half_cos[4-k];
8880 mp->d_cos[k]=-mp->d_cos[4-k];
8882 for (k=5;k<= 7;k++ ) {
8883 mp->half_cos[k]=mp->half_cos[8-k];
8884 mp->d_cos[k]=mp->d_cos[8-k];
8887 @ The |convex_hull| function forces a pen polygon to be convex when it is
8888 returned by |make_pen| and after any subsequent transformation where rounding
8889 error might allow the convexity to be lost.
8890 The convex hull algorithm used here is described by F.~P. Preparata and
8891 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8893 @<Declare a function called |convex_hull|@>=
8894 @<Declare a procedure called |move_knot|@>;
8895 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8896 pointer l,r; /* the leftmost and rightmost knots */
8897 pointer p,q; /* knots being scanned */
8898 pointer s; /* the starting point for an upcoming scan */
8899 scaled dx,dy; /* a temporary pointer */
8900 if ( pen_is_elliptical(h) ) {
8903 @<Set |l| to the leftmost knot in polygon~|h|@>;
8904 @<Set |r| to the rightmost knot in polygon~|h|@>;
8907 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8908 move them past~|r|@>;
8909 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8910 move them past~|l|@>;
8911 @<Sort the path from |l| to |r| by increasing $x$@>;
8912 @<Sort the path from |r| to |l| by decreasing $x$@>;
8915 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8921 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8923 @<Set |l| to the leftmost knot in polygon~|h|@>=
8927 if ( x_coord(p)<=x_coord(l) )
8928 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8933 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8937 if ( x_coord(p)>=x_coord(r) )
8938 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8943 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8944 dx=x_coord(r)-x_coord(l);
8945 dy=y_coord(r)-y_coord(l);
8949 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8950 mp_move_knot(mp, p, r);
8954 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8957 @ @<Declare a procedure called |move_knot|@>=
8958 void mp_move_knot (MP mp,pointer p, pointer q) {
8959 link(knil(p))=link(p);
8960 knil(link(p))=knil(p);
8967 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8971 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8972 mp_move_knot(mp, p,l);
8976 @ The list is likely to be in order already so we just do linear insertions.
8977 Secondary comparisons on $y$ ensure that the sort is consistent with the
8978 choice of |l| and |r|.
8980 @<Sort the path from |l| to |r| by increasing $x$@>=
8984 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8985 while ( x_coord(q)==x_coord(p) ) {
8986 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8988 if ( q==knil(p) ) p=link(p);
8989 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8992 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8996 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8997 while ( x_coord(q)==x_coord(p) ) {
8998 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
9000 if ( q==knil(p) ) p=link(p);
9001 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9004 @ The condition involving |ab_vs_cd| tests if there is not a left turn
9005 at knot |q|. There usually will be a left turn so we streamline the case
9006 where the |then| clause is not executed.
9008 @<Do a Gramm scan and remove vertices where there...@>=
9012 dx=x_coord(q)-x_coord(p);
9013 dy=y_coord(q)-y_coord(p);
9017 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
9018 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
9023 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
9026 mp_free_node(mp, p,knot_node_size);
9027 link(s)=q; knil(q)=s;
9029 else { p=knil(s); q=s; };
9032 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
9033 offset associated with the given direction |(x,y)|. If two different offsets
9034 apply, it chooses one of them.
9037 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
9038 pointer p,q; /* consecutive knots */
9040 /* the transformation matrix for an elliptical pen */
9041 fraction xx,yy; /* untransformed offset for an elliptical pen */
9042 fraction d; /* a temporary register */
9043 if ( pen_is_elliptical(h) ) {
9044 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
9049 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
9052 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
9053 mp->cur_x=x_coord(p);
9054 mp->cur_y=y_coord(p);
9060 scaled cur_y; /* all-purpose return value registers */
9062 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9063 if ( (x==0) && (y==0) ) {
9064 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9066 @<Find the non-constant part of the transformation for |h|@>;
9067 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9070 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9071 untransformed version of |(x,y)|@>;
9072 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9073 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9076 @ @<Find the non-constant part of the transformation for |h|@>=
9077 wx=left_x(h)-x_coord(h);
9078 wy=left_y(h)-y_coord(h);
9079 hx=right_x(h)-x_coord(h);
9080 hy=right_y(h)-y_coord(h)
9082 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9083 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9084 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9085 d=mp_pyth_add(mp, xx,yy);
9087 xx=half(mp_make_fraction(mp, xx,d));
9088 yy=half(mp_make_fraction(mp, yy,d));
9091 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9092 But we can handle that case by just calling |find_offset| twice. The answer
9093 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9096 void mp_pen_bbox (MP mp,pointer h) {
9097 pointer p; /* for scanning the knot list */
9098 if ( pen_is_elliptical(h) ) {
9099 @<Find the bounding box of an elliptical pen@>;
9101 minx=x_coord(h); maxx=minx;
9102 miny=y_coord(h); maxy=miny;
9105 if ( x_coord(p)<minx ) minx=x_coord(p);
9106 if ( y_coord(p)<miny ) miny=y_coord(p);
9107 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9108 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9114 @ @<Find the bounding box of an elliptical pen@>=
9116 mp_find_offset(mp, 0,fraction_one,h);
9118 minx=2*x_coord(h)-mp->cur_x;
9119 mp_find_offset(mp, -fraction_one,0,h);
9121 miny=2*y_coord(h)-mp->cur_y;
9124 @* \[21] Edge structures.
9125 Now we come to \MP's internal scheme for representing pictures.
9126 The representation is very different from \MF's edge structures
9127 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9128 images. However, the basic idea is somewhat similar in that shapes
9129 are represented via their boundaries.
9131 The main purpose of edge structures is to keep track of graphical objects
9132 until it is time to translate them into \ps. Since \MP\ does not need to
9133 know anything about an edge structure other than how to translate it into
9134 \ps\ and how to find its bounding box, edge structures can be just linked
9135 lists of graphical objects. \MP\ has no easy way to determine whether
9136 two such objects overlap, but it suffices to draw the first one first and
9137 let the second one overwrite it if necessary.
9140 enum mp_graphical_object_code {
9141 @<Graphical object codes@>
9144 @ Let's consider the types of graphical objects one at a time.
9145 First of all, a filled contour is represented by a eight-word node. The first
9146 word contains |type| and |link| fields, and the next six words contain a
9147 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9148 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9149 give the relevant information.
9151 @d path_p(A) link((A)+1)
9152 /* a pointer to the path that needs filling */
9153 @d pen_p(A) info((A)+1)
9154 /* a pointer to the pen to fill or stroke with */
9155 @d color_model(A) type((A)+2) /* the color model */
9156 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9157 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9158 @d obj_grey_loc obj_red_loc /* the location for the color */
9159 @d red_val(A) mp->mem[(A)+3].sc
9160 /* the red component of the color in the range $0\ldots1$ */
9163 @d green_val(A) mp->mem[(A)+4].sc
9164 /* the green component of the color in the range $0\ldots1$ */
9165 @d magenta_val green_val
9166 @d blue_val(A) mp->mem[(A)+5].sc
9167 /* the blue component of the color in the range $0\ldots1$ */
9168 @d yellow_val blue_val
9169 @d black_val(A) mp->mem[(A)+6].sc
9170 /* the blue component of the color in the range $0\ldots1$ */
9171 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9172 @:mp_linejoin_}{\&{linejoin} primitive@>
9173 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9174 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9175 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9176 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9177 @d pre_script(A) mp->mem[(A)+8].hh.lh
9178 @d post_script(A) mp->mem[(A)+8].hh.rh
9181 @ @<Graphical object codes@>=
9185 pointer mp_new_fill_node (MP mp,pointer p) {
9186 /* make a fill node for cyclic path |p| and color black */
9187 pointer t; /* the new node */
9188 t=mp_get_node(mp, fill_node_size);
9189 type(t)=mp_fill_code;
9191 pen_p(t)=null; /* |null| means don't use a pen */
9196 color_model(t)=mp_uninitialized_model;
9198 post_script(t)=null;
9199 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9203 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9204 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9205 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9206 else ljoin_val(t)=0;
9207 if ( mp->internal[mp_miterlimit]<unity )
9208 miterlim_val(t)=unity;
9210 miterlim_val(t)=mp->internal[mp_miterlimit]
9212 @ A stroked path is represented by an eight-word node that is like a filled
9213 contour node except that it contains the current \&{linecap} value, a scale
9214 factor for the dash pattern, and a pointer that is non-null if the stroke
9215 is to be dashed. The purpose of the scale factor is to allow a picture to
9216 be transformed without touching the picture that |dash_p| points to.
9218 @d dash_p(A) link((A)+9)
9219 /* a pointer to the edge structure that gives the dash pattern */
9220 @d lcap_val(A) type((A)+9)
9221 /* the value of \&{linecap} */
9222 @:mp_linecap_}{\&{linecap} primitive@>
9223 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9224 @d stroked_node_size 11
9226 @ @<Graphical object codes@>=
9230 pointer mp_new_stroked_node (MP mp,pointer p) {
9231 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9232 pointer t; /* the new node */
9233 t=mp_get_node(mp, stroked_node_size);
9234 type(t)=mp_stroked_code;
9235 path_p(t)=p; pen_p(t)=null;
9237 dash_scale(t)=unity;
9242 color_model(t)=mp_uninitialized_model;
9244 post_script(t)=null;
9245 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9246 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9247 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9252 @ When a dashed line is computed in a transformed coordinate system, the dash
9253 lengths get scaled like the pen shape and we need to compensate for this. Since
9254 there is no unique scale factor for an arbitrary transformation, we use the
9255 the square root of the determinant. The properties of the determinant make it
9256 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9257 except for the initialization of the scale factor |s|. The factor of 64 is
9258 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9259 to counteract the effect of |take_fraction|.
9261 @<Declare subroutines needed by |print_edges|@>=
9262 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9263 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9264 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9265 @<Initialize |maxabs|@>;
9267 while ( (maxabs<fraction_one) && (s>1) ){
9268 a+=a; b+=b; c+=c; d+=d;
9269 maxabs+=maxabs; s=halfp(s);
9271 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9274 scaled mp_get_pen_scale (MP mp,pointer p) {
9275 return mp_sqrt_det(mp,
9276 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9277 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9280 @ @<Internal library ...@>=
9281 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9284 @ @<Initialize |maxabs|@>=
9286 if ( abs(b)>maxabs ) maxabs=abs(b);
9287 if ( abs(c)>maxabs ) maxabs=abs(c);
9288 if ( abs(d)>maxabs ) maxabs=abs(d)
9290 @ When a picture contains text, this is represented by a fourteen-word node
9291 where the color information and |type| and |link| fields are augmented by
9292 additional fields that describe the text and how it is transformed.
9293 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9294 the font and a string number that gives the text to be displayed.
9295 The |width|, |height|, and |depth| fields
9296 give the dimensions of the text at its design size, and the remaining six
9297 words give a transformation to be applied to the text. The |new_text_node|
9298 function initializes everything to default values so that the text comes out
9299 black with its reference point at the origin.
9301 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9302 @d font_n(A) info((A)+1) /* the font number */
9303 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9304 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9305 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9306 @d text_tx_loc(A) ((A)+11)
9307 /* the first of six locations for transformation parameters */
9308 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9309 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9310 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9311 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9312 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9313 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9314 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9315 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9316 @d text_node_size 17
9318 @ @<Graphical object codes@>=
9321 @ @c @<Declare text measuring subroutines@>;
9322 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9323 /* make a text node for font |f| and text string |s| */
9324 pointer t; /* the new node */
9325 t=mp_get_node(mp, text_node_size);
9326 type(t)=mp_text_code;
9328 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9333 color_model(t)=mp_uninitialized_model;
9335 post_script(t)=null;
9336 tx_val(t)=0; ty_val(t)=0;
9337 txx_val(t)=unity; txy_val(t)=0;
9338 tyx_val(t)=0; tyy_val(t)=unity;
9339 mp_set_text_box(mp, t); /* this finds the bounding box */
9343 @ The last two types of graphical objects that can occur in an edge structure
9344 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9345 @:set_bounds_}{\&{setbounds} primitive@>
9346 to implement because we must keep track of exactly what is being clipped or
9347 bounded when pictures get merged together. For this reason, each clipping or
9348 \&{setbounds} operation is represented by a pair of nodes: first comes a
9349 two-word node whose |path_p| gives the relevant path, then there is the list
9350 of objects to clip or bound followed by a two-word node whose second word is
9353 Using at least two words for each graphical object node allows them all to be
9354 allocated and deallocated similarly with a global array |gr_object_size| to
9355 give the size in words for each object type.
9357 @d start_clip_size 2
9358 @d start_bounds_size 2
9359 @d stop_clip_size 2 /* the second word is not used here */
9360 @d stop_bounds_size 2 /* the second word is not used here */
9362 @d stop_type(A) ((A)+2)
9363 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9364 @d has_color(A) (type((A))<mp_start_clip_code)
9365 /* does a graphical object have color fields? */
9366 @d has_pen(A) (type((A))<mp_text_code)
9367 /* does a graphical object have a |pen_p| field? */
9368 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9369 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9371 @ @<Graphical object codes@>=
9372 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9373 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9374 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9375 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9378 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9379 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9380 pointer t; /* the new node */
9381 t=mp_get_node(mp, mp->gr_object_size[c]);
9387 @ We need an array to keep track of the sizes of graphical objects.
9390 small_number gr_object_size[mp_stop_bounds_code+1];
9393 mp->gr_object_size[mp_fill_code]=fill_node_size;
9394 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9395 mp->gr_object_size[mp_text_code]=text_node_size;
9396 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9397 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9398 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9399 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9401 @ All the essential information in an edge structure is encoded as a linked list
9402 of graphical objects as we have just seen, but it is helpful to add some
9403 redundant information. A single edge structure might be used as a dash pattern
9404 many times, and it would be nice to avoid scanning the same structure
9405 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9406 has a header that gives a list of dashes in a sorted order designed for rapid
9407 translation into \ps.
9409 Each dash is represented by a three-word node containing the initial and final
9410 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9411 the dash node with the next higher $x$-coordinates and the final link points
9412 to a special location called |null_dash|. (There should be no overlap between
9413 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9414 the period of repetition, this needs to be stored in the edge header along
9415 with a pointer to the list of dash nodes.
9417 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9418 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9421 /* in an edge header this points to the first dash node */
9422 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9424 @ It is also convenient for an edge header to contain the bounding
9425 box information needed by the \&{llcorner} and \&{urcorner} operators
9426 so that this does not have to be recomputed unnecessarily. This is done by
9427 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9428 how far the bounding box computation has gotten. Thus if the user asks for
9429 the bounding box and then adds some more text to the picture before asking
9430 for more bounding box information, the second computation need only look at
9431 the additional text.
9433 When the bounding box has not been computed, the |bblast| pointer points
9434 to a dummy link at the head of the graphical object list while the |minx_val|
9435 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9436 fields contain |-el_gordo|.
9438 Since the bounding box of pictures containing objects of type
9439 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9440 @:mp_true_corners_}{\&{truecorners} primitive@>
9441 data might not be valid for all values of this parameter. Hence, the |bbtype|
9442 field is needed to keep track of this.
9444 @d minx_val(A) mp->mem[(A)+2].sc
9445 @d miny_val(A) mp->mem[(A)+3].sc
9446 @d maxx_val(A) mp->mem[(A)+4].sc
9447 @d maxy_val(A) mp->mem[(A)+5].sc
9448 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9449 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9450 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9452 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9454 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9456 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9459 void mp_init_bbox (MP mp,pointer h) {
9460 /* Initialize the bounding box information in edge structure |h| */
9461 bblast(h)=dummy_loc(h);
9462 bbtype(h)=no_bounds;
9463 minx_val(h)=el_gordo;
9464 miny_val(h)=el_gordo;
9465 maxx_val(h)=-el_gordo;
9466 maxy_val(h)=-el_gordo;
9469 @ The only other entries in an edge header are a reference count in the first
9470 word and a pointer to the tail of the object list in the last word.
9472 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9473 @d edge_header_size 8
9476 void mp_init_edges (MP mp,pointer h) {
9477 /* initialize an edge header to null values */
9478 dash_list(h)=null_dash;
9479 obj_tail(h)=dummy_loc(h);
9480 link(dummy_loc(h))=null;
9482 mp_init_bbox(mp, h);
9485 @ Here is how edge structures are deleted. The process can be recursive because
9486 of the need to dereference edge structures that are used as dash patterns.
9489 @d add_edge_ref(A) incr(ref_count(A))
9490 @d delete_edge_ref(A) {
9491 if ( ref_count((A))==null )
9492 mp_toss_edges(mp, A);
9497 @<Declare the recycling subroutines@>=
9498 void mp_flush_dash_list (MP mp,pointer h);
9499 pointer mp_toss_gr_object (MP mp,pointer p) ;
9500 void mp_toss_edges (MP mp,pointer h) ;
9502 @ @c void mp_toss_edges (MP mp,pointer h) {
9503 pointer p,q; /* pointers that scan the list being recycled */
9504 pointer r; /* an edge structure that object |p| refers to */
9505 mp_flush_dash_list(mp, h);
9506 q=link(dummy_loc(h));
9507 while ( (q!=null) ) {
9509 r=mp_toss_gr_object(mp, p);
9510 if ( r!=null ) delete_edge_ref(r);
9512 mp_free_node(mp, h,edge_header_size);
9514 void mp_flush_dash_list (MP mp,pointer h) {
9515 pointer p,q; /* pointers that scan the list being recycled */
9517 while ( q!=null_dash ) {
9519 mp_free_node(mp, p,dash_node_size);
9521 dash_list(h)=null_dash;
9523 pointer mp_toss_gr_object (MP mp,pointer p) {
9524 /* returns an edge structure that needs to be dereferenced */
9525 pointer e; /* the edge structure to return */
9527 @<Prepare to recycle graphical object |p|@>;
9528 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9532 @ @<Prepare to recycle graphical object |p|@>=
9535 mp_toss_knot_list(mp, path_p(p));
9536 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9537 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9538 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9540 case mp_stroked_code:
9541 mp_toss_knot_list(mp, path_p(p));
9542 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9543 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9544 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9548 delete_str_ref(text_p(p));
9549 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9550 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9552 case mp_start_clip_code:
9553 case mp_start_bounds_code:
9554 mp_toss_knot_list(mp, path_p(p));
9556 case mp_stop_clip_code:
9557 case mp_stop_bounds_code:
9559 } /* there are no other cases */
9561 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9562 to be done before making a significant change to an edge structure. Much of
9563 the work is done in a separate routine |copy_objects| that copies a list of
9564 graphical objects into a new edge header.
9566 @c @<Declare a function called |copy_objects|@>;
9567 pointer mp_private_edges (MP mp,pointer h) {
9568 /* make a private copy of the edge structure headed by |h| */
9569 pointer hh; /* the edge header for the new copy */
9570 pointer p,pp; /* pointers for copying the dash list */
9571 if ( ref_count(h)==null ) {
9575 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9576 @<Copy the dash list from |h| to |hh|@>;
9577 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9578 point into the new object list@>;
9583 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9584 @^data structure assumptions@>
9586 @<Copy the dash list from |h| to |hh|@>=
9587 pp=hh; p=dash_list(h);
9588 while ( (p!=null_dash) ) {
9589 link(pp)=mp_get_node(mp, dash_node_size);
9591 start_x(pp)=start_x(p);
9592 stop_x(pp)=stop_x(p);
9596 dash_y(hh)=dash_y(h)
9599 @ |h| is an edge structure
9601 @d gr_start_x(A) (A)->start_x_field
9602 @d gr_stop_x(A) (A)->stop_x_field
9603 @d gr_dash_link(A) (A)->next_field
9605 @d gr_dash_list(A) (A)->list_field
9606 @d gr_dash_y(A) (A)->y_field
9609 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9610 struct mp_dash_list *dl;
9611 struct mp_dash_item *dh, *di;
9613 if (h==null || dash_list(h)==null_dash)
9616 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9617 gr_dash_list(dl) = NULL;
9618 gr_dash_y(dl) = dash_y(h);
9620 while (p != null_dash) {
9621 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9622 gr_dash_link(di) = NULL;
9623 gr_start_x(di) = start_x(p);
9624 gr_stop_x(di) = stop_x(p);
9626 gr_dash_list(dl) = di;
9628 gr_dash_link(dh) = di;
9637 @ @<Copy the bounding box information from |h| to |hh|...@>=
9638 minx_val(hh)=minx_val(h);
9639 miny_val(hh)=miny_val(h);
9640 maxx_val(hh)=maxx_val(h);
9641 maxy_val(hh)=maxy_val(h);
9642 bbtype(hh)=bbtype(h);
9643 p=dummy_loc(h); pp=dummy_loc(hh);
9644 while ((p!=bblast(h)) ) {
9645 if ( p==null ) mp_confusion(mp, "bblast");
9646 @:this can't happen bblast}{\quad bblast@>
9647 p=link(p); pp=link(pp);
9651 @ Here is the promised routine for copying graphical objects into a new edge
9652 structure. It starts copying at object~|p| and stops just before object~|q|.
9653 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9654 structure requires further initialization by |init_bbox|.
9656 @<Declare a function called |copy_objects|@>=
9657 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9658 pointer hh; /* the new edge header */
9659 pointer pp; /* the last newly copied object */
9660 small_number k; /* temporary register */
9661 hh=mp_get_node(mp, edge_header_size);
9662 dash_list(hh)=null_dash;
9666 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9673 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9674 { k=mp->gr_object_size[type(p)];
9675 link(pp)=mp_get_node(mp, k);
9677 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9678 @<Fix anything in graphical object |pp| that should differ from the
9679 corresponding field in |p|@>;
9683 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9685 case mp_start_clip_code:
9686 case mp_start_bounds_code:
9687 path_p(pp)=mp_copy_path(mp, path_p(p));
9690 path_p(pp)=mp_copy_path(mp, path_p(p));
9691 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9693 case mp_stroked_code:
9694 path_p(pp)=mp_copy_path(mp, path_p(p));
9695 pen_p(pp)=copy_pen(pen_p(p));
9696 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9699 add_str_ref(text_p(pp));
9701 case mp_stop_clip_code:
9702 case mp_stop_bounds_code:
9704 } /* there are no other cases */
9706 @ Here is one way to find an acceptable value for the second argument to
9707 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9708 skips past one picture component, where a ``picture component'' is a single
9709 graphical object, or a start bounds or start clip object and everything up
9710 through the matching stop bounds or stop clip object. The macro version avoids
9711 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9712 unless |p| points to a stop bounds or stop clip node, in which case it executes
9715 @d skip_component(A)
9716 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9717 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9721 pointer mp_skip_1component (MP mp,pointer p) {
9722 integer lev; /* current nesting level */
9725 if ( is_start_or_stop(p) ) {
9726 if ( is_stop(p) ) decr(lev); else incr(lev);
9733 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9735 @<Declare subroutines for printing expressions@>=
9736 @<Declare subroutines needed by |print_edges|@>;
9737 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9738 pointer p; /* a graphical object to be printed */
9739 pointer hh,pp; /* temporary pointers */
9740 scaled scf; /* a scale factor for the dash pattern */
9741 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9742 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9744 while ( link(p)!=null ) {
9748 @<Cases for printing graphical object node |p|@>;
9750 mp_print(mp, "[unknown object type!]");
9754 mp_print_nl(mp, "End edges");
9755 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9757 mp_end_diagnostic(mp, true);
9760 @ @<Cases for printing graphical object node |p|@>=
9762 mp_print(mp, "Filled contour ");
9763 mp_print_obj_color(mp, p);
9764 mp_print_char(mp, ':'); mp_print_ln(mp);
9765 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9766 if ( (pen_p(p)!=null) ) {
9767 @<Print join type for graphical object |p|@>;
9768 mp_print(mp, " with pen"); mp_print_ln(mp);
9769 mp_pr_pen(mp, pen_p(p));
9773 @ @<Print join type for graphical object |p|@>=
9774 switch (ljoin_val(p)) {
9776 mp_print(mp, "mitered joins limited ");
9777 mp_print_scaled(mp, miterlim_val(p));
9780 mp_print(mp, "round joins");
9783 mp_print(mp, "beveled joins");
9786 mp_print(mp, "?? joins");
9791 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9793 @<Print join and cap types for stroked node |p|@>=
9794 switch (lcap_val(p)) {
9795 case 0:mp_print(mp, "butt"); break;
9796 case 1:mp_print(mp, "round"); break;
9797 case 2:mp_print(mp, "square"); break;
9798 default: mp_print(mp, "??"); break;
9801 mp_print(mp, " ends, ");
9802 @<Print join type for graphical object |p|@>
9804 @ Here is a routine that prints the color of a graphical object if it isn't
9805 black (the default color).
9807 @<Declare subroutines needed by |print_edges|@>=
9808 @<Declare a procedure called |print_compact_node|@>;
9809 void mp_print_obj_color (MP mp,pointer p) {
9810 if ( color_model(p)==mp_grey_model ) {
9811 if ( grey_val(p)>0 ) {
9812 mp_print(mp, "greyed ");
9813 mp_print_compact_node(mp, obj_grey_loc(p),1);
9815 } else if ( color_model(p)==mp_cmyk_model ) {
9816 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9817 (yellow_val(p)>0) || (black_val(p)>0) ) {
9818 mp_print(mp, "processcolored ");
9819 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9821 } else if ( color_model(p)==mp_rgb_model ) {
9822 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9823 mp_print(mp, "colored ");
9824 mp_print_compact_node(mp, obj_red_loc(p),3);
9829 @ We also need a procedure for printing consecutive scaled values as if they
9830 were a known big node.
9832 @<Declare a procedure called |print_compact_node|@>=
9833 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9834 pointer q; /* last location to print */
9836 mp_print_char(mp, '(');
9838 mp_print_scaled(mp, mp->mem[p].sc);
9839 if ( p<q ) mp_print_char(mp, ',');
9842 mp_print_char(mp, ')');
9845 @ @<Cases for printing graphical object node |p|@>=
9846 case mp_stroked_code:
9847 mp_print(mp, "Filled pen stroke ");
9848 mp_print_obj_color(mp, p);
9849 mp_print_char(mp, ':'); mp_print_ln(mp);
9850 mp_pr_path(mp, path_p(p));
9851 if ( dash_p(p)!=null ) {
9852 mp_print_nl(mp, "dashed (");
9853 @<Finish printing the dash pattern that |p| refers to@>;
9856 @<Print join and cap types for stroked node |p|@>;
9857 mp_print(mp, " with pen"); mp_print_ln(mp);
9858 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9860 else mp_pr_pen(mp, pen_p(p));
9863 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9864 when it is not known to define a suitable dash pattern. This is disallowed
9865 here because the |dash_p| field should never point to such an edge header.
9866 Note that memory is allocated for |start_x(null_dash)| and we are free to
9867 give it any convenient value.
9869 @<Finish printing the dash pattern that |p| refers to@>=
9870 ok_to_dash=pen_is_elliptical(pen_p(p));
9871 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9874 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9875 mp_print(mp, " ??");
9876 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9877 while ( pp!=null_dash ) {
9878 mp_print(mp, "on ");
9879 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9880 mp_print(mp, " off ");
9881 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9883 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9885 mp_print(mp, ") shifted ");
9886 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9887 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9890 @ @<Declare subroutines needed by |print_edges|@>=
9891 scaled mp_dash_offset (MP mp,pointer h) {
9892 scaled x; /* the answer */
9893 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9894 @:this can't happen dash0}{\quad dash0@>
9895 if ( dash_y(h)==0 ) {
9898 x=-(start_x(dash_list(h)) % dash_y(h));
9899 if ( x<0 ) x=x+dash_y(h);
9904 @ @<Cases for printing graphical object node |p|@>=
9906 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9907 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9908 mp_print_char(mp, '"'); mp_print_ln(mp);
9909 mp_print_obj_color(mp, p);
9910 mp_print(mp, "transformed ");
9911 mp_print_compact_node(mp, text_tx_loc(p),6);
9914 @ @<Cases for printing graphical object node |p|@>=
9915 case mp_start_clip_code:
9916 mp_print(mp, "clipping path:");
9918 mp_pr_path(mp, path_p(p));
9920 case mp_stop_clip_code:
9921 mp_print(mp, "stop clipping");
9924 @ @<Cases for printing graphical object node |p|@>=
9925 case mp_start_bounds_code:
9926 mp_print(mp, "setbounds path:");
9928 mp_pr_path(mp, path_p(p));
9930 case mp_stop_bounds_code:
9931 mp_print(mp, "end of setbounds");
9934 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9935 subroutine that scans an edge structure and tries to interpret it as a dash
9936 pattern. This can only be done when there are no filled regions or clipping
9937 paths and all the pen strokes have the same color. The first step is to let
9938 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9939 project all the pen stroke paths onto the line $y=y_0$ and require that there
9940 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9941 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9942 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9944 @c @<Declare a procedure called |x_retrace_error|@>;
9945 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9946 pointer p; /* this scans the stroked nodes in the object list */
9947 pointer p0; /* if not |null| this points to the first stroked node */
9948 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9949 pointer d,dd; /* pointers used to create the dash list */
9950 @<Other local variables in |make_dashes|@>;
9951 scaled y0=0; /* the initial $y$ coordinate */
9952 if ( dash_list(h)!=null_dash )
9955 p=link(dummy_loc(h));
9957 if ( type(p)!=mp_stroked_code ) {
9958 @<Compain that the edge structure contains a node of the wrong type
9959 and |goto not_found|@>;
9962 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9963 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9964 or |goto not_found| if there is an error@>;
9965 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9968 if ( dash_list(h)==null_dash )
9969 goto NOT_FOUND; /* No error message */
9970 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9971 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9974 @<Flush the dash list, recycle |h| and return |null|@>;
9977 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9979 print_err("Picture is too complicated to use as a dash pattern");
9980 help3("When you say `dashed p', picture p should not contain any")
9981 ("text, filled regions, or clipping paths. This time it did")
9982 ("so I'll just make it a solid line instead.");
9983 mp_put_get_error(mp);
9987 @ A similar error occurs when monotonicity fails.
9989 @<Declare a procedure called |x_retrace_error|@>=
9990 void mp_x_retrace_error (MP mp) {
9991 print_err("Picture is too complicated to use as a dash pattern");
9992 help3("When you say `dashed p', every path in p should be monotone")
9993 ("in x and there must be no overlapping. This failed")
9994 ("so I'll just make it a solid line instead.");
9995 mp_put_get_error(mp);
9998 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9999 handle the case where the pen stroke |p| is itself dashed.
10001 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
10002 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
10005 if ( link(pp)!=pp ) {
10007 qq=rr; rr=link(rr);
10008 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
10009 if there is a problem@>;
10010 } while (right_type(rr)!=mp_endpoint);
10012 d=mp_get_node(mp, dash_node_size);
10013 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
10014 if ( x_coord(pp)<x_coord(rr) ) {
10015 start_x(d)=x_coord(pp);
10016 stop_x(d)=x_coord(rr);
10018 start_x(d)=x_coord(rr);
10019 stop_x(d)=x_coord(pp);
10022 @ We also need to check for the case where the segment from |qq| to |rr| is
10023 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
10025 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
10030 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
10031 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
10032 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
10033 mp_x_retrace_error(mp); goto NOT_FOUND;
10037 if ( (x_coord(pp)>x0) || (x0>x3) ) {
10038 if ( (x_coord(pp)<x0) || (x0<x3) ) {
10039 mp_x_retrace_error(mp); goto NOT_FOUND;
10043 @ @<Other local variables in |make_dashes|@>=
10044 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
10046 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
10047 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
10048 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
10049 print_err("Picture is too complicated to use as a dash pattern");
10050 help3("When you say `dashed p', everything in picture p should")
10051 ("be the same color. I can\'t handle your color changes")
10052 ("so I'll just make it a solid line instead.");
10053 mp_put_get_error(mp);
10057 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10058 start_x(null_dash)=stop_x(d);
10059 dd=h; /* this makes |link(dd)=dash_list(h)| */
10060 while ( start_x(link(dd))<stop_x(d) )
10063 if ( (stop_x(dd)>start_x(d)) )
10064 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10069 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10071 while ( (link(d)!=null_dash) )
10074 dash_y(h)=stop_x(d)-start_x(dd);
10075 if ( abs(y0)>dash_y(h) ) {
10077 } else if ( d!=dd ) {
10078 dash_list(h)=link(dd);
10079 stop_x(d)=stop_x(dd)+dash_y(h);
10080 mp_free_node(mp, dd,dash_node_size);
10083 @ We get here when the argument is a null picture or when there is an error.
10084 Recovering from an error involves making |dash_list(h)| empty to indicate
10085 that |h| is not known to be a valid dash pattern. We also dereference |h|
10086 since it is not being used for the return value.
10088 @<Flush the dash list, recycle |h| and return |null|@>=
10089 mp_flush_dash_list(mp, h);
10090 delete_edge_ref(h);
10093 @ Having carefully saved the dashed stroked nodes in the
10094 corresponding dash nodes, we must be prepared to break up these dashes into
10097 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10098 d=h; /* now |link(d)=dash_list(h)| */
10099 while ( link(d)!=null_dash ) {
10105 hsf=dash_scale(ds);
10106 if ( (hh==null) ) mp_confusion(mp, "dash1");
10107 @:this can't happen dash0}{\quad dash1@>
10108 if ( dash_y(hh)==0 ) {
10111 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10112 @:this can't happen dash0}{\quad dash1@>
10113 @<Replace |link(d)| by a dashed version as determined by edge header
10114 |hh| and scale factor |ds|@>;
10119 @ @<Other local variables in |make_dashes|@>=
10120 pointer dln; /* |link(d)| */
10121 pointer hh; /* an edge header that tells how to break up |dln| */
10122 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10123 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10124 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10126 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10129 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10130 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10131 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10132 +mp_take_scaled(mp, hsf,dash_y(hh));
10133 stop_x(null_dash)=start_x(null_dash);
10134 @<Advance |dd| until finding the first dash that overlaps |dln| when
10135 offset by |xoff|@>;
10136 while ( start_x(dln)<=stop_x(dln) ) {
10137 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10138 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10141 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10144 mp_free_node(mp, dln,dash_node_size)
10146 @ The name of this module is a bit of a lie because we actually just find the
10147 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10148 overlap possible. It could be that the unoffset version of dash |dln| falls
10149 in the gap between |dd| and its predecessor.
10151 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10152 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10156 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10157 if ( dd==null_dash ) {
10159 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10162 @ At this point we already know that
10163 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10165 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10166 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10167 link(d)=mp_get_node(mp, dash_node_size);
10170 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10171 start_x(d)=start_x(dln);
10173 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10174 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10175 stop_x(d)=stop_x(dln);
10177 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10180 @ The next major task is to update the bounding box information in an edge
10181 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10182 header's bounding box to accommodate the box computed by |path_bbox| or
10183 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10186 @c void mp_adjust_bbox (MP mp,pointer h) {
10187 if ( minx<minx_val(h) ) minx_val(h)=minx;
10188 if ( miny<miny_val(h) ) miny_val(h)=miny;
10189 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10190 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10193 @ Here is a special routine for updating the bounding box information in
10194 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10195 that is to be stroked with the pen~|pp|.
10197 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10198 pointer q; /* a knot node adjacent to knot |p| */
10199 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10200 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10201 scaled z; /* a coordinate being tested against the bounding box */
10202 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10203 integer i; /* a loop counter */
10204 if ( right_type(p)!=mp_endpoint ) {
10207 @<Make |(dx,dy)| the final direction for the path segment from
10208 |q| to~|p|; set~|d|@>;
10209 d=mp_pyth_add(mp, dx,dy);
10211 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10212 for (i=1;i<= 2;i++) {
10213 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10214 update the bounding box to accommodate it@>;
10218 if ( right_type(p)==mp_endpoint ) {
10221 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10227 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10228 if ( q==link(p) ) {
10229 dx=x_coord(p)-right_x(p);
10230 dy=y_coord(p)-right_y(p);
10231 if ( (dx==0)&&(dy==0) ) {
10232 dx=x_coord(p)-left_x(q);
10233 dy=y_coord(p)-left_y(q);
10236 dx=x_coord(p)-left_x(p);
10237 dy=y_coord(p)-left_y(p);
10238 if ( (dx==0)&&(dy==0) ) {
10239 dx=x_coord(p)-right_x(q);
10240 dy=y_coord(p)-right_y(q);
10243 dx=x_coord(p)-x_coord(q);
10244 dy=y_coord(p)-y_coord(q)
10246 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10247 dx=mp_make_fraction(mp, dx,d);
10248 dy=mp_make_fraction(mp, dy,d);
10249 mp_find_offset(mp, -dy,dx,pp);
10250 xx=mp->cur_x; yy=mp->cur_y
10252 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10253 mp_find_offset(mp, dx,dy,pp);
10254 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10255 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10256 mp_confusion(mp, "box_ends");
10257 @:this can't happen box ends}{\quad\\{box\_ends}@>
10258 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10259 if ( z<minx_val(h) ) minx_val(h)=z;
10260 if ( z>maxx_val(h) ) maxx_val(h)=z;
10261 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10262 if ( z<miny_val(h) ) miny_val(h)=z;
10263 if ( z>maxy_val(h) ) maxy_val(h)=z
10265 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10269 } while (right_type(p)!=mp_endpoint)
10271 @ The major difficulty in finding the bounding box of an edge structure is the
10272 effect of clipping paths. We treat them conservatively by only clipping to the
10273 clipping path's bounding box, but this still
10274 requires recursive calls to |set_bbox| in order to find the bounding box of
10276 the objects to be clipped. Such calls are distinguished by the fact that the
10277 boolean parameter |top_level| is false.
10279 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10280 pointer p; /* a graphical object being considered */
10281 scaled sminx,sminy,smaxx,smaxy;
10282 /* for saving the bounding box during recursive calls */
10283 scaled x0,x1,y0,y1; /* temporary registers */
10284 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10285 @<Wipe out any existing bounding box information if |bbtype(h)| is
10286 incompatible with |internal[mp_true_corners]|@>;
10287 while ( link(bblast(h))!=null ) {
10291 case mp_stop_clip_code:
10292 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10293 @:this can't happen bbox}{\quad bbox@>
10295 @<Other cases for updating the bounding box based on the type of object |p|@>;
10296 } /* all cases are enumerated above */
10298 if ( ! top_level ) mp_confusion(mp, "bbox");
10301 @ @<Internal library declarations@>=
10302 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10304 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10305 switch (bbtype(h)) {
10309 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10312 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10314 } /* there are no other cases */
10316 @ @<Other cases for updating the bounding box...@>=
10318 mp_path_bbox(mp, path_p(p));
10319 if ( pen_p(p)!=null ) {
10322 mp_pen_bbox(mp, pen_p(p));
10328 mp_adjust_bbox(mp, h);
10331 @ @<Other cases for updating the bounding box...@>=
10332 case mp_start_bounds_code:
10333 if ( mp->internal[mp_true_corners]>0 ) {
10334 bbtype(h)=bounds_unset;
10336 bbtype(h)=bounds_set;
10337 mp_path_bbox(mp, path_p(p));
10338 mp_adjust_bbox(mp, h);
10339 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10343 case mp_stop_bounds_code:
10344 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10345 @:this can't happen bbox2}{\quad bbox2@>
10348 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10351 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10352 @:this can't happen bbox2}{\quad bbox2@>
10354 if ( type(p)==mp_start_bounds_code ) incr(lev);
10355 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10359 @ It saves a lot of grief here to be slightly conservative and not account for
10360 omitted parts of dashed lines. We also don't worry about the material omitted
10361 when using butt end caps. The basic computation is for round end caps and
10362 |box_ends| augments it for square end caps.
10364 @<Other cases for updating the bounding box...@>=
10365 case mp_stroked_code:
10366 mp_path_bbox(mp, path_p(p));
10369 mp_pen_bbox(mp, pen_p(p));
10374 mp_adjust_bbox(mp, h);
10375 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10376 mp_box_ends(mp, path_p(p), pen_p(p), h);
10379 @ The height width and depth information stored in a text node determines a
10380 rectangle that needs to be transformed according to the transformation
10381 parameters stored in the text node.
10383 @<Other cases for updating the bounding box...@>=
10385 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10386 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10387 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10390 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10391 else { minx=minx+y1; maxx=maxx+y0; }
10392 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10393 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10394 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10395 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10398 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10399 else { miny=miny+y1; maxy=maxy+y0; }
10400 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10401 mp_adjust_bbox(mp, h);
10404 @ This case involves a recursive call that advances |bblast(h)| to the node of
10405 type |mp_stop_clip_code| that matches |p|.
10407 @<Other cases for updating the bounding box...@>=
10408 case mp_start_clip_code:
10409 mp_path_bbox(mp, path_p(p));
10412 sminx=minx_val(h); sminy=miny_val(h);
10413 smaxx=maxx_val(h); smaxy=maxy_val(h);
10414 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10415 starting at |link(p)|@>;
10416 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10418 minx=sminx; miny=sminy;
10419 maxx=smaxx; maxy=smaxy;
10420 mp_adjust_bbox(mp, h);
10423 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10424 minx_val(h)=el_gordo;
10425 miny_val(h)=el_gordo;
10426 maxx_val(h)=-el_gordo;
10427 maxy_val(h)=-el_gordo;
10428 mp_set_bbox(mp, h,false)
10430 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10431 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10432 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10433 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10434 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10436 @* \[22] Finding an envelope.
10437 When \MP\ has a path and a polygonal pen, it needs to express the desired
10438 shape in terms of things \ps\ can understand. The present task is to compute
10439 a new path that describes the region to be filled. It is convenient to
10440 define this as a two step process where the first step is determining what
10441 offset to use for each segment of the path.
10443 @ Given a pointer |c| to a cyclic path,
10444 and a pointer~|h| to the first knot of a pen polygon,
10445 the |offset_prep| routine changes the path into cubics that are
10446 associated with particular pen offsets. Thus if the cubic between |p|
10447 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10448 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10449 to because |l-k| could be negative.)
10451 After overwriting the type information with offset differences, we no longer
10452 have a true path so we refer to the knot list returned by |offset_prep| as an
10455 Since an envelope spec only determines relative changes in pen offsets,
10456 |offset_prep| sets a global variable |spec_offset| to the relative change from
10457 |h| to the first offset.
10459 @d zero_off 16384 /* added to offset changes to make them positive */
10462 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10464 @ @c @<Declare subroutines needed by |offset_prep|@>;
10465 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10466 halfword n; /* the number of vertices in the pen polygon */
10467 pointer p,q,q0,r,w, ww; /* for list manipulation */
10468 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10469 pointer w0; /* a pointer to pen offset to use just before |p| */
10470 scaled dxin,dyin; /* the direction into knot |p| */
10471 integer turn_amt; /* change in pen offsets for the current cubic */
10472 @<Other local variables for |offset_prep|@>;
10474 @<Initialize the pen size~|n|@>;
10475 @<Initialize the incoming direction and pen offset at |c|@>;
10479 @<Split the cubic between |p| and |q|, if necessary, into cubics
10480 associated with single offsets, after which |q| should
10481 point to the end of the final such cubic@>;
10483 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10484 might have been introduced by the splitting process@>;
10486 @<Fix the offset change in |info(c)| and set |c| to the return value of
10491 @ We shall want to keep track of where certain knots on the cyclic path
10492 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10493 knot nodes because some nodes are deleted while removing dead cubics. Thus
10494 |offset_prep| updates the following pointers
10498 pointer spec_p2; /* pointers to distinguished knots */
10501 mp->spec_p1=null; mp->spec_p2=null;
10503 @ @<Initialize the pen size~|n|@>=
10510 @ Since the true incoming direction isn't known yet, we just pick a direction
10511 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10514 @<Initialize the incoming direction and pen offset at |c|@>=
10515 dxin=x_coord(link(h))-x_coord(knil(h));
10516 dyin=y_coord(link(h))-y_coord(knil(h));
10517 if ( (dxin==0)&&(dyin==0) ) {
10518 dxin=y_coord(knil(h))-y_coord(h);
10519 dyin=x_coord(h)-x_coord(knil(h));
10523 @ We must be careful not to remove the only cubic in a cycle.
10525 But we must also be careful for another reason. If the user-supplied
10526 path starts with a set of degenerate cubics, the target node |q| can
10527 be collapsed to the initial node |p| which might be the same as the
10528 initial node |c| of the curve. This would cause the |offset_prep| routine
10529 to bail out too early, causing distress later on. (See for example
10530 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10533 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10537 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10538 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10539 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10541 @<Remove the cubic following |p| and update the data structures
10542 to merge |r| into |p|@>;
10546 /* Check if we removed too much */
10550 @ @<Remove the cubic following |p| and update the data structures...@>=
10551 { k_needed=info(p)-zero_off;
10555 info(p)=k_needed+info(r);
10558 if ( r==c ) { info(p)=info(c); c=p; };
10559 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10560 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10561 r=p; mp_remove_cubic(mp, p);
10564 @ Not setting the |info| field of the newly created knot allows the splitting
10565 routine to work for paths.
10567 @<Declare subroutines needed by |offset_prep|@>=
10568 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10569 scaled v; /* an intermediate value */
10570 pointer q,r; /* for list manipulation */
10571 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10572 originator(r)=mp_program_code;
10573 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10574 v=t_of_the_way(right_x(p),left_x(q));
10575 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10576 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10577 left_x(r)=t_of_the_way(right_x(p),v);
10578 right_x(r)=t_of_the_way(v,left_x(q));
10579 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10580 v=t_of_the_way(right_y(p),left_y(q));
10581 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10582 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10583 left_y(r)=t_of_the_way(right_y(p),v);
10584 right_y(r)=t_of_the_way(v,left_y(q));
10585 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10588 @ This does not set |info(p)| or |right_type(p)|.
10590 @<Declare subroutines needed by |offset_prep|@>=
10591 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10592 pointer q; /* the node that disappears */
10593 q=link(p); link(p)=link(q);
10594 right_x(p)=right_x(q); right_y(p)=right_y(q);
10595 mp_free_node(mp, q,knot_node_size);
10598 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10599 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10600 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10601 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10602 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10603 When listed by increasing $k$, these directions occur in counter-clockwise
10604 order so that $d_k\preceq d\k$ for all~$k$.
10605 The goal of |offset_prep| is to find an offset index~|k| to associate with
10606 each cubic, such that the direction $d(t)$ of the cubic satisfies
10607 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10608 We may have to split a cubic into many pieces before each
10609 piece corresponds to a unique offset.
10611 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10612 info(p)=zero_off+k_needed;
10614 @<Prepare for derivative computations;
10615 |goto not_found| if the current cubic is dead@>;
10616 @<Find the initial direction |(dx,dy)|@>;
10617 @<Update |info(p)| and find the offset $w_k$ such that
10618 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10619 the direction change at |p|@>;
10620 @<Find the final direction |(dxin,dyin)|@>;
10621 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10622 @<Complete the offset splitting process@>;
10623 w0=mp_pen_walk(mp, w0,turn_amt)
10625 @ @<Declare subroutines needed by |offset_prep|@>=
10626 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10627 /* walk |k| steps around a pen from |w| */
10628 while ( k>0 ) { w=link(w); decr(k); };
10629 while ( k<0 ) { w=knil(w); incr(k); };
10633 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10634 calculated from the quadratic polynomials
10635 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10636 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10637 Since we may be calculating directions from several cubics
10638 split from the current one, it is desirable to do these calculations
10639 without losing too much precision. ``Scaled up'' values of the
10640 derivatives, which will be less tainted by accumulated errors than
10641 derivatives found from the cubics themselves, are maintained in
10642 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10643 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10644 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10646 @<Other local variables for |offset_prep|@>=
10647 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10648 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10649 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10650 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10651 integer max_coef; /* used while scaling */
10652 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10653 fraction t; /* where the derivative passes through zero */
10654 fraction s; /* a temporary value */
10656 @ @<Prepare for derivative computations...@>=
10657 x0=right_x(p)-x_coord(p);
10658 x2=x_coord(q)-left_x(q);
10659 x1=left_x(q)-right_x(p);
10660 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10661 y1=left_y(q)-right_y(p);
10663 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10664 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10665 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10666 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10667 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10668 if ( max_coef==0 ) goto NOT_FOUND;
10669 while ( max_coef<fraction_half ) {
10671 double(x0); double(x1); double(x2);
10672 double(y0); double(y1); double(y2);
10675 @ Let us first solve a special case of the problem: Suppose we
10676 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10677 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10678 $d(0)\succ d_{k-1}$.
10679 Then, in a sense, we're halfway done, since one of the two relations
10680 in $(*)$ is satisfied, and the other couldn't be satisfied for
10681 any other value of~|k|.
10683 Actually, the conditions can be relaxed somewhat since a relation such as
10684 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10685 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10686 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10687 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10688 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10689 counterclockwise direction.
10691 The |fin_offset_prep| subroutine solves the stated subproblem.
10692 It has a parameter called |rise| that is |1| in
10693 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10694 the derivative of the cubic following |p|.
10695 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10696 be set properly. The |turn_amt| parameter gives the absolute value of the
10697 overall net change in pen offsets.
10699 @<Declare subroutines needed by |offset_prep|@>=
10700 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10701 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10702 integer rise, integer turn_amt) {
10703 pointer ww; /* for list manipulation */
10704 scaled du,dv; /* for slope calculation */
10705 integer t0,t1,t2; /* test coefficients */
10706 fraction t; /* place where the derivative passes a critical slope */
10707 fraction s; /* slope or reciprocal slope */
10708 integer v; /* intermediate value for updating |x0..y2| */
10709 pointer q; /* original |link(p)| */
10712 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10713 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10714 @<Compute test coefficients |(t0,t1,t2)|
10715 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10716 t=mp_crossing_point(mp, t0,t1,t2);
10717 if ( t>=fraction_one ) {
10718 if ( turn_amt>0 ) t=fraction_one; else return;
10720 @<Split the cubic at $t$,
10721 and split off another cubic if the derivative crosses back@>;
10726 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10727 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10728 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10731 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10732 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10733 if ( abs(du)>=abs(dv) ) {
10734 s=mp_make_fraction(mp, dv,du);
10735 t0=mp_take_fraction(mp, x0,s)-y0;
10736 t1=mp_take_fraction(mp, x1,s)-y1;
10737 t2=mp_take_fraction(mp, x2,s)-y2;
10738 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10740 s=mp_make_fraction(mp, du,dv);
10741 t0=x0-mp_take_fraction(mp, y0,s);
10742 t1=x1-mp_take_fraction(mp, y1,s);
10743 t2=x2-mp_take_fraction(mp, y2,s);
10744 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10746 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10748 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10749 $(*)$, and it might cross again, yielding another solution of $(*)$.
10751 @<Split the cubic at $t$, and split off another...@>=
10753 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10755 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10756 x0=t_of_the_way(v,x1);
10757 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10758 y0=t_of_the_way(v,y1);
10759 if ( turn_amt<0 ) {
10760 t1=t_of_the_way(t1,t2);
10761 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10762 t=mp_crossing_point(mp, 0,-t1,-t2);
10763 if ( t>fraction_one ) t=fraction_one;
10765 if ( (t==fraction_one)&&(link(p)!=q) ) {
10766 info(link(p))=info(link(p))-rise;
10768 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10769 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10770 x2=t_of_the_way(x1,v);
10771 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10772 y2=t_of_the_way(y1,v);
10777 @ Now we must consider the general problem of |offset_prep|, when
10778 nothing is known about a given cubic. We start by finding its
10779 direction in the vicinity of |t=0|.
10781 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10782 has not yet introduced any more numerical errors. Thus we can compute
10783 the true initial direction for the given cubic, even if it is almost
10786 @<Find the initial direction |(dx,dy)|@>=
10788 if ( dx==0 && dy==0 ) {
10790 if ( dx==0 && dy==0 ) {
10794 if ( p==c ) { dx0=dx; dy0=dy; }
10796 @ @<Find the final direction |(dxin,dyin)|@>=
10798 if ( dxin==0 && dyin==0 ) {
10800 if ( dxin==0 && dyin==0 ) {
10805 @ The next step is to bracket the initial direction between consecutive
10806 edges of the pen polygon. We must be careful to turn clockwise only if
10807 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10808 counter-clockwise in order to make \&{doublepath} envelopes come out
10809 @:double_path_}{\&{doublepath} primitive@>
10810 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10812 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10813 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10814 w=mp_pen_walk(mp, w0, turn_amt);
10816 info(p)=info(p)+turn_amt
10818 @ Decide how many pen offsets to go away from |w| in order to find the offset
10819 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10820 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10821 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10823 If the pen polygon has only two edges, they could both be parallel
10824 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10825 such edge in order to avoid an infinite loop.
10827 @<Declare subroutines needed by |offset_prep|@>=
10828 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10829 scaled dy, boolean ccw) {
10830 pointer ww; /* a neighbor of knot~|w| */
10831 integer s; /* turn amount so far */
10832 integer t; /* |ab_vs_cd| result */
10837 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10838 dx,(y_coord(ww)-y_coord(w)));
10845 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10846 dx,(y_coord(w)-y_coord(ww))) < 0) {
10854 @ When we're all done, the final offset is |w0| and the final curve direction
10855 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10856 can correct |info(c)| which was erroneously based on an incoming offset
10859 @d fix_by(A) info(c)=info(c)+(A)
10861 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10862 mp->spec_offset=info(c)-zero_off;
10863 if ( link(c)==c ) {
10864 info(c)=zero_off+n;
10867 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10868 while ( info(c)<=zero_off-n ) fix_by(n);
10869 while ( info(c)>zero_off ) fix_by(-n);
10870 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10874 @ Finally we want to reduce the general problem to situations that
10875 |fin_offset_prep| can handle. We split the cubic into at most three parts
10876 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10878 @<Complete the offset splitting process@>=
10880 @<Compute test coeff...@>;
10881 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10882 |t:=fraction_one+1|@>;
10883 if ( t>fraction_one ) {
10884 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10886 mp_split_cubic(mp, p,t); r=link(p);
10887 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10888 x2a=t_of_the_way(x1a,x1);
10889 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10890 y2a=t_of_the_way(y1a,y1);
10891 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10892 info(r)=zero_off-1;
10893 if ( turn_amt>=0 ) {
10894 t1=t_of_the_way(t1,t2);
10896 t=mp_crossing_point(mp, 0,-t1,-t2);
10897 if ( t>fraction_one ) t=fraction_one;
10898 @<Split off another rising cubic for |fin_offset_prep|@>;
10899 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10901 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10905 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10906 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10907 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10908 x0a=t_of_the_way(x1,x1a);
10909 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10910 y0a=t_of_the_way(y1,y1a);
10911 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10914 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10915 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10916 need to decide whether the directions are parallel or antiparallel. We
10917 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10918 should be avoided when the value of |turn_amt| already determines the
10919 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10920 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10921 crossing and the first crossing cannot be antiparallel.
10923 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10924 t=mp_crossing_point(mp, t0,t1,t2);
10925 if ( turn_amt>=0 ) {
10929 u0=t_of_the_way(x0,x1);
10930 u1=t_of_the_way(x1,x2);
10931 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10932 v0=t_of_the_way(y0,y1);
10933 v1=t_of_the_way(y1,y2);
10934 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10935 if ( ss<0 ) t=fraction_one+1;
10937 } else if ( t>fraction_one ) {
10941 @ @<Other local variables for |offset_prep|@>=
10942 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10943 integer ss = 0; /* the part of the dot product computed so far */
10944 int d_sign; /* sign of overall change in direction for this cubic */
10946 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10947 problem to decide which way it loops around but that's OK as long we're
10948 consistent. To make \&{doublepath} envelopes work properly, reversing
10949 the path should always change the sign of |turn_amt|.
10951 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10952 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10954 @<Check rotation direction based on node position@>
10958 if ( dy>0 ) d_sign=1; else d_sign=-1;
10960 if ( dx>0 ) d_sign=1; else d_sign=-1;
10963 @<Make |ss| negative if and only if the total change in direction is
10964 more than $180^\circ$@>;
10965 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10966 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10968 @ We check rotation direction by looking at the vector connecting the current
10969 node with the next. If its angle with incoming and outgoing tangents has the
10970 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10971 Otherwise we proceed to the cusp code.
10973 @<Check rotation direction based on node position@>=
10974 u0=x_coord(q)-x_coord(p);
10975 u1=y_coord(q)-y_coord(p);
10976 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10977 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10979 @ In order to be invariant under path reversal, the result of this computation
10980 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10981 then swapped with |(x2,y2)|. We make use of the identities
10982 |take_fraction(-a,-b)=take_fraction(a,b)| and
10983 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10985 @<Make |ss| negative if and only if the total change in direction is...@>=
10986 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10987 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10988 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10990 t=mp_crossing_point(mp, t0,t1,-t0);
10991 u0=t_of_the_way(x0,x1);
10992 u1=t_of_the_way(x1,x2);
10993 v0=t_of_the_way(y0,y1);
10994 v1=t_of_the_way(y1,y2);
10996 t=mp_crossing_point(mp, -t0,t1,t0);
10997 u0=t_of_the_way(x2,x1);
10998 u1=t_of_the_way(x1,x0);
10999 v0=t_of_the_way(y2,y1);
11000 v1=t_of_the_way(y1,y0);
11002 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
11003 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
11005 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
11006 that the |cur_pen| has not been walked around to the first offset.
11009 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
11010 pointer p,q; /* list traversal */
11011 pointer w; /* the current pen offset */
11012 mp_print_diagnostic(mp, "Envelope spec",s,true);
11013 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
11015 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
11016 mp_print(mp, " % beginning with offset ");
11017 mp_print_two(mp, x_coord(w),y_coord(w));
11021 @<Print the cubic between |p| and |q|@>;
11023 if ((p==cur_spec) || (info(p)!=zero_off))
11026 if ( info(p)!=zero_off ) {
11027 @<Update |w| as indicated by |info(p)| and print an explanation@>;
11029 } while (p!=cur_spec);
11030 mp_print_nl(mp, " & cycle");
11031 mp_end_diagnostic(mp, true);
11034 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
11036 w=mp_pen_walk(mp, w, (info(p)-zero_off));
11037 mp_print(mp, " % ");
11038 if ( info(p)>zero_off ) mp_print(mp, "counter");
11039 mp_print(mp, "clockwise to offset ");
11040 mp_print_two(mp, x_coord(w),y_coord(w));
11043 @ @<Print the cubic between |p| and |q|@>=
11045 mp_print_nl(mp, " ..controls ");
11046 mp_print_two(mp, right_x(p),right_y(p));
11047 mp_print(mp, " and ");
11048 mp_print_two(mp, left_x(q),left_y(q));
11049 mp_print_nl(mp, " ..");
11050 mp_print_two(mp, x_coord(q),y_coord(q));
11053 @ Once we have an envelope spec, the remaining task to construct the actual
11054 envelope by offsetting each cubic as determined by the |info| fields in
11055 the knots. First we use |offset_prep| to convert the |c| into an envelope
11056 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11059 The |ljoin| and |miterlim| parameters control the treatment of points where the
11060 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11061 The endpoints are easily located because |c| is given in undoubled form
11062 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11063 track of the endpoints and treat them like very sharp corners.
11064 Butt end caps are treated like beveled joins; round end caps are treated like
11065 round joins; and square end caps are achieved by setting |join_type:=3|.
11067 None of these parameters apply to inside joins where the convolution tracing
11068 has retrograde lines. In such cases we use a simple connect-the-endpoints
11069 approach that is achieved by setting |join_type:=2|.
11071 @c @<Declare a function called |insert_knot|@>;
11072 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11073 small_number lcap, scaled miterlim) {
11074 pointer p,q,r,q0; /* for manipulating the path */
11075 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11076 pointer w,w0; /* the pen knot for the current offset */
11077 scaled qx,qy; /* unshifted coordinates of |q| */
11078 halfword k,k0; /* controls pen edge insertion */
11079 @<Other local variables for |make_envelope|@>;
11080 dxin=0; dyin=0; dxout=0; dyout=0;
11081 mp->spec_p1=null; mp->spec_p2=null;
11082 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11083 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11084 the initial offset@>;
11089 qx=x_coord(q); qy=y_coord(q);
11092 if ( k!=zero_off ) {
11093 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11095 @<Add offset |w| to the cubic from |p| to |q|@>;
11096 while ( k!=zero_off ) {
11097 @<Step |w| and move |k| one step closer to |zero_off|@>;
11098 if ( (join_type==1)||(k==zero_off) )
11099 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11101 if ( q!=link(p) ) {
11102 @<Set |p=link(p)| and add knots between |p| and |q| as
11103 required by |join_type|@>;
11110 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11111 c=mp_offset_prep(mp, c,h);
11112 if ( mp->internal[mp_tracing_specs]>0 )
11113 mp_print_spec(mp, c,h,"");
11114 h=mp_pen_walk(mp, h,mp->spec_offset)
11116 @ Mitered and squared-off joins depend on path directions that are difficult to
11117 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11118 have degenerate cubics only if the entire cycle collapses to a single
11119 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11120 envelope degenerate as well.
11122 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11123 if ( k<zero_off ) {
11126 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11127 else if ( lcap==2 ) join_type=3;
11128 else join_type=2-lcap;
11129 if ( (join_type==0)||(join_type==3) ) {
11130 @<Set the incoming and outgoing directions at |q|; in case of
11131 degeneracy set |join_type:=2|@>;
11132 if ( join_type==0 ) {
11133 @<If |miterlim| is less than the secant of half the angle at |q|
11134 then set |join_type:=2|@>;
11139 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11141 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11142 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11144 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11147 @ @<Other local variables for |make_envelope|@>=
11148 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11149 scaled tmp; /* a temporary value */
11151 @ The coordinates of |p| have already been shifted unless |p| is the first
11152 knot in which case they get shifted at the very end.
11154 @<Add offset |w| to the cubic from |p| to |q|@>=
11155 right_x(p)=right_x(p)+x_coord(w);
11156 right_y(p)=right_y(p)+y_coord(w);
11157 left_x(q)=left_x(q)+x_coord(w);
11158 left_y(q)=left_y(q)+y_coord(w);
11159 x_coord(q)=x_coord(q)+x_coord(w);
11160 y_coord(q)=y_coord(q)+y_coord(w);
11161 left_type(q)=mp_explicit;
11162 right_type(q)=mp_explicit
11164 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11165 if ( k>zero_off ){ w=link(w); decr(k); }
11166 else { w=knil(w); incr(k); }
11168 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11169 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11170 case the cubic containing these control points is ``yet to be examined.''
11172 @<Declare a function called |insert_knot|@>=
11173 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11174 /* returns the inserted knot */
11175 pointer r; /* the new knot */
11176 r=mp_get_node(mp, knot_node_size);
11177 link(r)=link(q); link(q)=r;
11178 right_x(r)=right_x(q);
11179 right_y(r)=right_y(q);
11182 right_x(q)=x_coord(q);
11183 right_y(q)=y_coord(q);
11184 left_x(r)=x_coord(r);
11185 left_y(r)=y_coord(r);
11186 left_type(r)=mp_explicit;
11187 right_type(r)=mp_explicit;
11188 originator(r)=mp_program_code;
11192 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11194 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11197 if ( (join_type==0)||(join_type==3) ) {
11198 if ( join_type==0 ) {
11199 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11201 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11205 right_x(r)=x_coord(r);
11206 right_y(r)=y_coord(r);
11211 @ For very small angles, adding a knot is unnecessary and would cause numerical
11212 problems, so we just set |r:=null| in that case.
11214 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11216 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11217 if ( abs(det)<26844 ) {
11218 r=null; /* sine $<10^{-4}$ */
11220 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11221 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11222 tmp=mp_make_fraction(mp, tmp,det);
11223 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11224 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11228 @ @<Other local variables for |make_envelope|@>=
11229 fraction det; /* a determinant used for mitered join calculations */
11231 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11233 ht_x=y_coord(w)-y_coord(w0);
11234 ht_y=x_coord(w0)-x_coord(w);
11235 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11236 ht_x+=ht_x; ht_y+=ht_y;
11238 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11239 product with |(ht_x,ht_y)|@>;
11240 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11241 mp_take_fraction(mp, dyin,ht_y));
11242 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11243 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11244 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11245 mp_take_fraction(mp, dyout,ht_y));
11246 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11247 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11250 @ @<Other local variables for |make_envelope|@>=
11251 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11252 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11253 halfword kk; /* keeps track of the pen vertices being scanned */
11254 pointer ww; /* the pen vertex being tested */
11256 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11257 from zero to |max_ht|.
11259 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11264 @<Step |ww| and move |kk| one step closer to |k0|@>;
11265 if ( kk==k0 ) break;
11266 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11267 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11268 if ( tmp>max_ht ) max_ht=tmp;
11272 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11273 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11274 else { ww=knil(ww); incr(kk); }
11276 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11277 if ( left_type(c)==mp_endpoint ) {
11278 mp->spec_p1=mp_htap_ypoc(mp, c);
11279 mp->spec_p2=mp->path_tail;
11280 originator(mp->spec_p1)=mp_program_code;
11281 link(mp->spec_p2)=link(mp->spec_p1);
11282 link(mp->spec_p1)=c;
11283 mp_remove_cubic(mp, mp->spec_p1);
11285 if ( c!=link(c) ) {
11286 originator(mp->spec_p2)=mp_program_code;
11287 mp_remove_cubic(mp, mp->spec_p2);
11289 @<Make |c| look like a cycle of length one@>;
11293 @ @<Make |c| look like a cycle of length one@>=
11295 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11296 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11297 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11300 @ In degenerate situations we might have to look at the knot preceding~|q|.
11301 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11303 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11304 dxin=x_coord(q)-left_x(q);
11305 dyin=y_coord(q)-left_y(q);
11306 if ( (dxin==0)&&(dyin==0) ) {
11307 dxin=x_coord(q)-right_x(p);
11308 dyin=y_coord(q)-right_y(p);
11309 if ( (dxin==0)&&(dyin==0) ) {
11310 dxin=x_coord(q)-x_coord(p);
11311 dyin=y_coord(q)-y_coord(p);
11312 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11313 dxin=dxin+x_coord(w);
11314 dyin=dyin+y_coord(w);
11318 tmp=mp_pyth_add(mp, dxin,dyin);
11322 dxin=mp_make_fraction(mp, dxin,tmp);
11323 dyin=mp_make_fraction(mp, dyin,tmp);
11324 @<Set the outgoing direction at |q|@>;
11327 @ If |q=c| then the coordinates of |r| and the control points between |q|
11328 and~|r| have already been offset by |h|.
11330 @<Set the outgoing direction at |q|@>=
11331 dxout=right_x(q)-x_coord(q);
11332 dyout=right_y(q)-y_coord(q);
11333 if ( (dxout==0)&&(dyout==0) ) {
11335 dxout=left_x(r)-x_coord(q);
11336 dyout=left_y(r)-y_coord(q);
11337 if ( (dxout==0)&&(dyout==0) ) {
11338 dxout=x_coord(r)-x_coord(q);
11339 dyout=y_coord(r)-y_coord(q);
11343 dxout=dxout-x_coord(h);
11344 dyout=dyout-y_coord(h);
11346 tmp=mp_pyth_add(mp, dxout,dyout);
11347 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11348 @:this can't happen degerate spec}{\quad degenerate spec@>
11349 dxout=mp_make_fraction(mp, dxout,tmp);
11350 dyout=mp_make_fraction(mp, dyout,tmp)
11352 @* \[23] Direction and intersection times.
11353 A path of length $n$ is defined parametrically by functions $x(t)$ and
11354 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11355 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11356 we shall consider operations that determine special times associated with
11357 given paths: the first time that a path travels in a given direction, and
11358 a pair of times at which two paths cross each other.
11360 @ Let's start with the easier task. The function |find_direction_time| is
11361 given a direction |(x,y)| and a path starting at~|h|. If the path never
11362 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11363 it will be nonnegative.
11365 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11366 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11367 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11368 assumed to match any given direction at time~|t|.
11370 The routine solves this problem in nondegenerate cases by rotating the path
11371 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11372 to find when a given path first travels ``due east.''
11375 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11376 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11377 pointer p,q; /* for list traversal */
11378 scaled n; /* the direction time at knot |p| */
11379 scaled tt; /* the direction time within a cubic */
11380 @<Other local variables for |find_direction_time|@>;
11381 @<Normalize the given direction for better accuracy;
11382 but |return| with zero result if it's zero@>;
11385 if ( right_type(p)==mp_endpoint ) break;
11387 @<Rotate the cubic between |p| and |q|; then
11388 |goto found| if the rotated cubic travels due east at some time |tt|;
11389 but |break| if an entire cyclic path has been traversed@>;
11397 @ @<Normalize the given direction for better accuracy...@>=
11398 if ( abs(x)<abs(y) ) {
11399 x=mp_make_fraction(mp, x,abs(y));
11400 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11401 } else if ( x==0 ) {
11404 y=mp_make_fraction(mp, y,abs(x));
11405 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11408 @ Since we're interested in the tangent directions, we work with the
11409 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11410 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11411 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11412 in order to achieve better accuracy.
11414 The given path may turn abruptly at a knot, and it might pass the critical
11415 tangent direction at such a time. Therefore we remember the direction |phi|
11416 in which the previous rotated cubic was traveling. (The value of |phi| will be
11417 undefined on the first cubic, i.e., when |n=0|.)
11419 @<Rotate the cubic between |p| and |q|; then...@>=
11421 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11422 points of the rotated derivatives@>;
11423 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11425 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11428 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11429 @<Exit to |found| if the curve whose derivatives are specified by
11430 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11432 @ @<Other local variables for |find_direction_time|@>=
11433 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11434 angle theta,phi; /* angles of exit and entry at a knot */
11435 fraction t; /* temp storage */
11437 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11438 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11439 x3=x_coord(q)-left_x(q);
11440 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11441 y3=y_coord(q)-left_y(q);
11443 if ( abs(x2)>max ) max=abs(x2);
11444 if ( abs(x3)>max ) max=abs(x3);
11445 if ( abs(y1)>max ) max=abs(y1);
11446 if ( abs(y2)>max ) max=abs(y2);
11447 if ( abs(y3)>max ) max=abs(y3);
11448 if ( max==0 ) goto FOUND;
11449 while ( max<fraction_half ){
11450 max+=max; x1+=x1; x2+=x2; x3+=x3;
11451 y1+=y1; y2+=y2; y3+=y3;
11453 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11454 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11455 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11456 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11457 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11458 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11460 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11461 theta=mp_n_arg(mp, x1,y1);
11462 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11463 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11465 @ In this step we want to use the |crossing_point| routine to find the
11466 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11467 Several complications arise: If the quadratic equation has a double root,
11468 the curve never crosses zero, and |crossing_point| will find nothing;
11469 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11470 equation has simple roots, or only one root, we may have to negate it
11471 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11472 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11475 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11476 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11477 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11478 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11479 either |goto found| or |goto done|@>;
11482 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11483 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11485 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11486 $B(x_1,x_2,x_3;t)\ge0$@>;
11489 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11490 two roots, because we know that it isn't identically zero.
11492 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11493 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11494 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11495 subject to rounding errors. Yet this code optimistically tries to
11496 do the right thing.
11498 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11500 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11501 t=mp_crossing_point(mp, y1,y2,y3);
11502 if ( t>fraction_one ) goto DONE;
11503 y2=t_of_the_way(y2,y3);
11504 x1=t_of_the_way(x1,x2);
11505 x2=t_of_the_way(x2,x3);
11506 x1=t_of_the_way(x1,x2);
11507 if ( x1>=0 ) we_found_it;
11509 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11510 if ( t>fraction_one ) goto DONE;
11511 x1=t_of_the_way(x1,x2);
11512 x2=t_of_the_way(x2,x3);
11513 if ( t_of_the_way(x1,x2)>=0 ) {
11514 t=t_of_the_way(tt,fraction_one); we_found_it;
11517 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11518 either |goto found| or |goto done|@>=
11520 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11521 t=mp_make_fraction(mp, y1,y1-y2);
11522 x1=t_of_the_way(x1,x2);
11523 x2=t_of_the_way(x2,x3);
11524 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11525 } else if ( y3==0 ) {
11527 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11528 } else if ( x3>=0 ) {
11529 tt=unity; goto FOUND;
11535 @ At this point we know that the derivative of |y(t)| is identically zero,
11536 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11539 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11541 t=mp_crossing_point(mp, -x1,-x2,-x3);
11542 if ( t<=fraction_one ) we_found_it;
11543 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11544 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11548 @ The intersection of two cubics can be found by an interesting variant
11549 of the general bisection scheme described in the introduction to
11551 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11552 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11553 if an intersection exists. First we find the smallest rectangle that
11554 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11555 the smallest rectangle that encloses
11556 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11557 But if the rectangles do overlap, we bisect the intervals, getting
11558 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11559 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11560 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11561 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11562 levels of bisection we will have determined the intersection times $t_1$
11563 and~$t_2$ to $l$~bits of accuracy.
11565 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11566 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11567 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11568 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11569 to determine when the enclosing rectangles overlap. Here's why:
11570 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11571 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11572 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11573 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11574 overlap if and only if $u\submin\L x\submax$ and
11575 $x\submin\L u\submax$. Letting
11576 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11577 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11578 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11580 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11581 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11582 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11583 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11584 because of the overlap condition; i.e., we know that $X\submin$,
11585 $X\submax$, and their relatives are bounded, hence $X\submax-
11586 U\submin$ and $X\submin-U\submax$ are bounded.
11588 @ Incidentally, if the given cubics intersect more than once, the process
11589 just sketched will not necessarily find the lexicographically smallest pair
11590 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11591 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11592 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11593 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11594 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11595 Shuffled order agrees with lexicographic order if all pairs of solutions
11596 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11597 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11598 and the bisection algorithm would be substantially less efficient if it were
11599 constrained by lexicographic order.
11601 For example, suppose that an overlap has been found for $l=3$ and
11602 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11603 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11604 Then there is probably an intersection in one of the subintervals
11605 $(.1011,.011x)$; but lexicographic order would require us to explore
11606 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11607 want to store all of the subdivision data for the second path, so the
11608 subdivisions would have to be regenerated many times. Such inefficiencies
11609 would be associated with every `1' in the binary representation of~$t_1$.
11611 @ The subdivision process introduces rounding errors, hence we need to
11612 make a more liberal test for overlap. It is not hard to show that the
11613 computed values of $U_i$ differ from the truth by at most~$l$, on
11614 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11615 If $\beta$ is an upper bound on the absolute error in the computed
11616 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11617 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11618 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11620 More accuracy is obtained if we try the algorithm first with |tol=0|;
11621 the more liberal tolerance is used only if an exact approach fails.
11622 It is convenient to do this double-take by letting `3' in the preceding
11623 paragraph be a parameter, which is first 0, then 3.
11626 unsigned int tol_step; /* either 0 or 3, usually */
11628 @ We shall use an explicit stack to implement the recursive bisection
11629 method described above. The |bisect_stack| array will contain numerous 5-word
11630 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11631 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11633 The following macros define the allocation of stack positions to
11634 the quantities needed for bisection-intersection.
11636 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11637 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11638 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11639 @d stack_min(A) mp->bisect_stack[(A)+3]
11640 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11641 @d stack_max(A) mp->bisect_stack[(A)+4]
11642 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11643 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11645 @d u_packet(A) ((A)-5)
11646 @d v_packet(A) ((A)-10)
11647 @d x_packet(A) ((A)-15)
11648 @d y_packet(A) ((A)-20)
11649 @d l_packets (mp->bisect_ptr-int_packets)
11650 @d r_packets mp->bisect_ptr
11651 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11652 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11653 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11654 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11655 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11656 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11657 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11658 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11660 @d u1l stack_1(ul_packet) /* $U'_1$ */
11661 @d u2l stack_2(ul_packet) /* $U'_2$ */
11662 @d u3l stack_3(ul_packet) /* $U'_3$ */
11663 @d v1l stack_1(vl_packet) /* $V'_1$ */
11664 @d v2l stack_2(vl_packet) /* $V'_2$ */
11665 @d v3l stack_3(vl_packet) /* $V'_3$ */
11666 @d x1l stack_1(xl_packet) /* $X'_1$ */
11667 @d x2l stack_2(xl_packet) /* $X'_2$ */
11668 @d x3l stack_3(xl_packet) /* $X'_3$ */
11669 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11670 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11671 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11672 @d u1r stack_1(ur_packet) /* $U''_1$ */
11673 @d u2r stack_2(ur_packet) /* $U''_2$ */
11674 @d u3r stack_3(ur_packet) /* $U''_3$ */
11675 @d v1r stack_1(vr_packet) /* $V''_1$ */
11676 @d v2r stack_2(vr_packet) /* $V''_2$ */
11677 @d v3r stack_3(vr_packet) /* $V''_3$ */
11678 @d x1r stack_1(xr_packet) /* $X''_1$ */
11679 @d x2r stack_2(xr_packet) /* $X''_2$ */
11680 @d x3r stack_3(xr_packet) /* $X''_3$ */
11681 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11682 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11683 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11685 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11686 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11687 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11688 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11689 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11690 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11693 integer *bisect_stack;
11694 unsigned int bisect_ptr;
11696 @ @<Allocate or initialize ...@>=
11697 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11699 @ @<Dealloc variables@>=
11700 xfree(mp->bisect_stack);
11702 @ @<Check the ``constant''...@>=
11703 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11705 @ Computation of the min and max is a tedious but fairly fast sequence of
11706 instructions; exactly four comparisons are made in each branch.
11709 if ( stack_1((A))<0 ) {
11710 if ( stack_3((A))>=0 ) {
11711 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11712 else stack_min((A))=stack_1((A));
11713 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11714 if ( stack_max((A))<0 ) stack_max((A))=0;
11716 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11717 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11718 stack_max((A))=stack_1((A))+stack_2((A));
11719 if ( stack_max((A))<0 ) stack_max((A))=0;
11721 } else if ( stack_3((A))<=0 ) {
11722 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11723 else stack_max((A))=stack_1((A));
11724 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11725 if ( stack_min((A))>0 ) stack_min((A))=0;
11727 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11728 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11729 stack_min((A))=stack_1((A))+stack_2((A));
11730 if ( stack_min((A))>0 ) stack_min((A))=0;
11733 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11734 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11735 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11736 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11737 plus the |scaled| values of $t_1$ and~$t_2$.
11739 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11740 finds no intersection. The routine gives up and gives an approximate answer
11741 if it has backtracked
11742 more than 5000 times (otherwise there are cases where several minutes
11743 of fruitless computation would be possible).
11745 @d max_patience 5000
11748 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11749 integer time_to_go; /* this many backtracks before giving up */
11750 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11752 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11753 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11754 and |(pp,link(pp))|, respectively.
11756 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11757 pointer q,qq; /* |link(p)|, |link(pp)| */
11758 mp->time_to_go=max_patience; mp->max_t=2;
11759 @<Initialize for intersections at level zero@>;
11762 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11763 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11764 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11765 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11767 if ( mp->cur_t>=mp->max_t ){
11768 if ( mp->max_t==two ) { /* we've done 17 bisections */
11769 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11771 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11773 @<Subdivide for a new level of intersection@>;
11776 if ( mp->time_to_go>0 ) {
11777 decr(mp->time_to_go);
11779 while ( mp->appr_t<unity ) {
11780 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11782 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11784 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11788 @ The following variables are global, although they are used only by
11789 |cubic_intersection|, because it is necessary on some machines to
11790 split |cubic_intersection| up into two procedures.
11793 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11794 integer tol; /* bound on the uncertainly in the overlap test */
11796 unsigned int xy; /* pointers to the current packets of interest */
11797 integer three_l; /* |tol_step| times the bisection level */
11798 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11800 @ We shall assume that the coordinates are sufficiently non-extreme that
11801 integer overflow will not occur.
11803 @<Initialize for intersections at level zero@>=
11804 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11805 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11806 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11807 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11808 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11809 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11810 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11811 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11812 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11813 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11814 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11815 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11817 @ @<Subdivide for a new level of intersection@>=
11818 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11819 stack_uv=mp->uv; stack_xy=mp->xy;
11820 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11821 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11822 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11823 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11824 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11825 u3l=half(u2l+u2r); u1r=u3l;
11826 set_min_max(ul_packet); set_min_max(ur_packet);
11827 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11828 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11829 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11830 v3l=half(v2l+v2r); v1r=v3l;
11831 set_min_max(vl_packet); set_min_max(vr_packet);
11832 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11833 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11834 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11835 x3l=half(x2l+x2r); x1r=x3l;
11836 set_min_max(xl_packet); set_min_max(xr_packet);
11837 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11838 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11839 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11840 y3l=half(y2l+y2r); y1r=y3l;
11841 set_min_max(yl_packet); set_min_max(yr_packet);
11842 mp->uv=l_packets; mp->xy=l_packets;
11843 mp->delx+=mp->delx; mp->dely+=mp->dely;
11844 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11845 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11847 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11849 if ( odd(mp->cur_tt) ) {
11850 if ( odd(mp->cur_t) ) {
11851 @<Descend to the previous level and |goto not_found|@>;
11854 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11855 +stack_3(u_packet(mp->uv));
11856 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11857 +stack_3(v_packet(mp->uv));
11858 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11859 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11860 /* switch from |r_packet| to |l_packet| */
11861 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11862 +stack_3(x_packet(mp->xy));
11863 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11864 +stack_3(y_packet(mp->xy));
11867 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11868 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11869 -stack_3(x_packet(mp->xy));
11870 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11871 -stack_3(y_packet(mp->xy));
11872 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11875 @ @<Descend to the previous level...@>=
11877 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11878 if ( mp->cur_t==0 ) return;
11879 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11880 mp->three_l=mp->three_l-mp->tol_step;
11881 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11882 mp->uv=stack_uv; mp->xy=stack_xy;
11886 @ The |path_intersection| procedure is much simpler.
11887 It invokes |cubic_intersection| in lexicographic order until finding a
11888 pair of cubics that intersect. The final intersection times are placed in
11889 |cur_t| and~|cur_tt|.
11891 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11892 pointer p,pp; /* link registers that traverse the given paths */
11893 integer n,nn; /* integer parts of intersection times, minus |unity| */
11894 @<Change one-point paths into dead cycles@>;
11899 if ( right_type(p)!=mp_endpoint ) {
11902 if ( right_type(pp)!=mp_endpoint ) {
11903 mp_cubic_intersection(mp, p,pp);
11904 if ( mp->cur_t>0 ) {
11905 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11909 nn=nn+unity; pp=link(pp);
11912 n=n+unity; p=link(p);
11914 mp->tol_step=mp->tol_step+3;
11915 } while (mp->tol_step<=3);
11916 mp->cur_t=-unity; mp->cur_tt=-unity;
11919 @ @<Change one-point paths...@>=
11920 if ( right_type(h)==mp_endpoint ) {
11921 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11922 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11924 if ( right_type(hh)==mp_endpoint ) {
11925 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11926 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11929 @* \[24] Dynamic linear equations.
11930 \MP\ users define variables implicitly by stating equations that should be
11931 satisfied; the computer is supposed to be smart enough to solve those equations.
11932 And indeed, the computer tries valiantly to do so, by distinguishing five
11933 different types of numeric values:
11936 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11937 of the variable whose address is~|p|.
11940 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11941 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11942 as a |scaled| number plus a sum of independent variables with |fraction|
11946 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11947 number'' reflecting the time this variable was first used in an equation;
11948 also |0<=m<64|, and each dependent variable
11949 that refers to this one is actually referring to the future value of
11950 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11951 scaling are sometimes needed to keep the coefficients in dependency lists
11952 from getting too large. The value of~|m| will always be even.)
11955 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11956 equation before, but it has been explicitly declared to be numeric.
11959 |type(p)=undefined| means that variable |p| hasn't appeared before.
11961 \smallskip\noindent
11962 We have actually discussed these five types in the reverse order of their
11963 history during a computation: Once |known|, a variable never again
11964 becomes |dependent|; once |dependent|, it almost never again becomes
11965 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11966 and once |mp_numeric_type|, it never again becomes |undefined| (except
11967 of course when the user specifically decides to scrap the old value
11968 and start again). A backward step may, however, take place: Sometimes
11969 a |dependent| variable becomes |mp_independent| again, when one of the
11970 independent variables it depends on is reverting to |undefined|.
11973 The next patch detects overflow of independent-variable serial
11974 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11976 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11977 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11978 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11979 @d new_indep(A) /* create a new independent variable */
11980 { if ( mp->serial_no==max_serial_no )
11981 mp_fatal_error(mp, "variable instance identifiers exhausted");
11982 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11983 value((A))=mp->serial_no;
11987 integer serial_no; /* the most recent serial number, times |s_scale| */
11989 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11991 @ But how are dependency lists represented? It's simple: The linear combination
11992 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11993 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11994 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11995 of $\alpha_1$; and |link(p)| points to the dependency list
11996 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11997 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11998 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11999 they appear in decreasing order of their |value| fields (i.e., of
12000 their serial numbers). \ (It is convenient to use decreasing order,
12001 since |value(null)=0|. If the independent variables were not sorted by
12002 serial number but by some other criterion, such as their location in |mem|,
12003 the equation-solving mechanism would be too system-dependent, because
12004 the ordering can affect the computed results.)
12006 The |link| field in the node that contains the constant term $\beta$ is
12007 called the {\sl final link\/} of the dependency list. \MP\ maintains
12008 a doubly-linked master list of all dependency lists, in terms of a permanently
12010 in |mem| called |dep_head|. If there are no dependencies, we have
12011 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
12012 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
12013 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
12014 points to its dependency list. If the final link of that dependency list
12015 occurs in location~|q|, then |link(q)| points to the next dependent
12016 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
12018 @d dep_list(A) link(value_loc((A)))
12019 /* half of the |value| field in a |dependent| variable */
12020 @d prev_dep(A) info(value_loc((A)))
12021 /* the other half; makes a doubly linked list */
12022 @d dep_node_size 2 /* the number of words per dependency node */
12024 @<Initialize table entries...@>= mp->serial_no=0;
12025 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
12026 info(dep_head)=null; dep_list(dep_head)=null;
12028 @ Actually the description above contains a little white lie. There's
12029 another kind of variable called |mp_proto_dependent|, which is
12030 just like a |dependent| one except that the $\alpha$ coefficients
12031 in its dependency list are |scaled| instead of being fractions.
12032 Proto-dependency lists are mixed with dependency lists in the
12033 nodes reachable from |dep_head|.
12035 @ Here is a procedure that prints a dependency list in symbolic form.
12036 The second parameter should be either |dependent| or |mp_proto_dependent|,
12037 to indicate the scaling of the coefficients.
12039 @<Declare subroutines for printing expressions@>=
12040 void mp_print_dependency (MP mp,pointer p, small_number t) {
12041 integer v; /* a coefficient */
12042 pointer pp,q; /* for list manipulation */
12045 v=abs(value(p)); q=info(p);
12046 if ( q==null ) { /* the constant term */
12047 if ( (v!=0)||(p==pp) ) {
12048 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
12049 mp_print_scaled(mp, value(p));
12053 @<Print the coefficient, unless it's $\pm1.0$@>;
12054 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12055 @:this can't happen dep}{\quad dep@>
12056 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12057 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12062 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12063 if ( value(p)<0 ) mp_print_char(mp, '-');
12064 else if ( p!=pp ) mp_print_char(mp, '+');
12065 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12066 if ( v!=unity ) mp_print_scaled(mp, v)
12068 @ The maximum absolute value of a coefficient in a given dependency list
12069 is returned by the following simple function.
12071 @c fraction mp_max_coef (MP mp,pointer p) {
12072 fraction x; /* the maximum so far */
12074 while ( info(p)!=null ) {
12075 if ( abs(value(p))>x ) x=abs(value(p));
12081 @ One of the main operations needed on dependency lists is to add a multiple
12082 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12083 to dependency lists and |f| is a fraction.
12085 If the coefficient of any independent variable becomes |coef_bound| or
12086 more, in absolute value, this procedure changes the type of that variable
12087 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12088 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12089 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12090 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12091 2.3723$, the safer value 7/3 is taken as the threshold.)
12093 The changes mentioned in the preceding paragraph are actually done only if
12094 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12095 it is |false| only when \MP\ is making a dependency list that will soon
12096 be equated to zero.
12098 Several procedures that act on dependency lists, including |p_plus_fq|,
12099 set the global variable |dep_final| to the final (constant term) node of
12100 the dependency list that they produce.
12102 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12103 @d independent_needing_fix 0
12106 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12107 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12108 pointer dep_final; /* location of the constant term and final link */
12111 mp->fix_needed=false; mp->watch_coefs=true;
12113 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12114 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12115 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12116 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12118 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12120 The final link of the dependency list or proto-dependency list returned
12121 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12122 constant term of the result will be located in the same |mem| location
12123 as the original constant term of~|p|.
12125 Coefficients of the result are assumed to be zero if they are less than
12126 a certain threshold. This compensates for inevitable rounding errors,
12127 and tends to make more variables `|known|'. The threshold is approximately
12128 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12129 proto-dependencies.
12131 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12132 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12133 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12134 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12136 @<Declare basic dependency-list subroutines@>=
12137 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12138 pointer q, small_number t, small_number tt) ;
12141 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12142 pointer q, small_number t, small_number tt) {
12143 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12144 pointer r,s; /* for list manipulation */
12145 integer mp_threshold; /* defines a neighborhood of zero */
12146 integer v; /* temporary register */
12147 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12148 else mp_threshold=scaled_threshold;
12149 r=temp_head; pp=info(p); qq=info(q);
12155 @<Contribute a term from |p|, plus |f| times the
12156 corresponding term from |q|@>
12158 } else if ( value(pp)<value(qq) ) {
12159 @<Contribute a term from |q|, multiplied by~|f|@>
12161 link(r)=p; r=p; p=link(p); pp=info(p);
12164 if ( t==mp_dependent )
12165 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12167 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12168 link(r)=p; mp->dep_final=p;
12169 return link(temp_head);
12172 @ @<Contribute a term from |p|, plus |f|...@>=
12174 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12175 else v=value(p)+mp_take_scaled(mp, f,value(q));
12176 value(p)=v; s=p; p=link(p);
12177 if ( abs(v)<mp_threshold ) {
12178 mp_free_node(mp, s,dep_node_size);
12180 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12181 type(qq)=independent_needing_fix; mp->fix_needed=true;
12185 pp=info(p); q=link(q); qq=info(q);
12188 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12190 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12191 else v=mp_take_scaled(mp, f,value(q));
12192 if ( abs(v)>halfp(mp_threshold) ) {
12193 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12194 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12195 type(qq)=independent_needing_fix; mp->fix_needed=true;
12199 q=link(q); qq=info(q);
12202 @ It is convenient to have another subroutine for the special case
12203 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12204 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12206 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12207 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12208 pointer r,s; /* for list manipulation */
12209 integer mp_threshold; /* defines a neighborhood of zero */
12210 integer v; /* temporary register */
12211 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12212 else mp_threshold=scaled_threshold;
12213 r=temp_head; pp=info(p); qq=info(q);
12219 @<Contribute a term from |p|, plus the
12220 corresponding term from |q|@>
12222 } else if ( value(pp)<value(qq) ) {
12223 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12224 q=link(q); qq=info(q); link(r)=s; r=s;
12226 link(r)=p; r=p; p=link(p); pp=info(p);
12229 value(p)=mp_slow_add(mp, value(p),value(q));
12230 link(r)=p; mp->dep_final=p;
12231 return link(temp_head);
12234 @ @<Contribute a term from |p|, plus the...@>=
12236 v=value(p)+value(q);
12237 value(p)=v; s=p; p=link(p); pp=info(p);
12238 if ( abs(v)<mp_threshold ) {
12239 mp_free_node(mp, s,dep_node_size);
12241 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12242 type(qq)=independent_needing_fix; mp->fix_needed=true;
12246 q=link(q); qq=info(q);
12249 @ A somewhat simpler routine will multiply a dependency list
12250 by a given constant~|v|. The constant is either a |fraction| less than
12251 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12252 convert a dependency list to a proto-dependency list.
12253 Parameters |t0| and |t1| are the list types before and after;
12254 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12255 and |v_is_scaled=true|.
12257 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12258 small_number t1, boolean v_is_scaled) {
12259 pointer r,s; /* for list manipulation */
12260 integer w; /* tentative coefficient */
12261 integer mp_threshold;
12262 boolean scaling_down;
12263 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12264 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12265 else mp_threshold=half_scaled_threshold;
12267 while ( info(p)!=null ) {
12268 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12269 else w=mp_take_scaled(mp, v,value(p));
12270 if ( abs(w)<=mp_threshold ) {
12271 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12273 if ( abs(w)>=coef_bound ) {
12274 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12276 link(r)=p; r=p; value(p)=w; p=link(p);
12280 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12281 else value(p)=mp_take_fraction(mp, value(p),v);
12282 return link(temp_head);
12285 @ Similarly, we sometimes need to divide a dependency list
12286 by a given |scaled| constant.
12288 @<Declare basic dependency-list subroutines@>=
12289 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12290 t0, small_number t1) ;
12293 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12294 t0, small_number t1) {
12295 pointer r,s; /* for list manipulation */
12296 integer w; /* tentative coefficient */
12297 integer mp_threshold;
12298 boolean scaling_down;
12299 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12300 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12301 else mp_threshold=half_scaled_threshold;
12303 while ( info( p)!=null ) {
12304 if ( scaling_down ) {
12305 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12306 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12308 w=mp_make_scaled(mp, value(p),v);
12310 if ( abs(w)<=mp_threshold ) {
12311 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12313 if ( abs(w)>=coef_bound ) {
12314 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12316 link(r)=p; r=p; value(p)=w; p=link(p);
12319 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12320 return link(temp_head);
12323 @ Here's another utility routine for dependency lists. When an independent
12324 variable becomes dependent, we want to remove it from all existing
12325 dependencies. The |p_with_x_becoming_q| function computes the
12326 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12328 This procedure has basically the same calling conventions as |p_plus_fq|:
12329 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12330 final link are inherited from~|p|; and the fourth parameter tells whether
12331 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12332 is not altered if |x| does not occur in list~|p|.
12334 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12335 pointer x, pointer q, small_number t) {
12336 pointer r,s; /* for list manipulation */
12337 integer v; /* coefficient of |x| */
12338 integer sx; /* serial number of |x| */
12339 s=p; r=temp_head; sx=value(x);
12340 while ( value(info(s))>sx ) { r=s; s=link(s); };
12341 if ( info(s)!=x ) {
12344 link(temp_head)=p; link(r)=link(s); v=value(s);
12345 mp_free_node(mp, s,dep_node_size);
12346 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12350 @ Here's a simple procedure that reports an error when a variable
12351 has just received a known value that's out of the required range.
12353 @<Declare basic dependency-list subroutines@>=
12354 void mp_val_too_big (MP mp,scaled x) ;
12356 @ @c void mp_val_too_big (MP mp,scaled x) {
12357 if ( mp->internal[mp_warning_check]>0 ) {
12358 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12359 @.Value is too large@>
12360 help4("The equation I just processed has given some variable")
12361 ("a value of 4096 or more. Continue and I'll try to cope")
12362 ("with that big value; but it might be dangerous.")
12363 ("(Set warningcheck:=0 to suppress this message.)");
12368 @ When a dependent variable becomes known, the following routine
12369 removes its dependency list. Here |p| points to the variable, and
12370 |q| points to the dependency list (which is one node long).
12372 @<Declare basic dependency-list subroutines@>=
12373 void mp_make_known (MP mp,pointer p, pointer q) ;
12375 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12376 int t; /* the previous type */
12377 prev_dep(link(q))=prev_dep(p);
12378 link(prev_dep(p))=link(q); t=type(p);
12379 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12380 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12381 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12382 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12383 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12384 mp_print_variable_name(mp, p);
12385 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12386 mp_end_diagnostic(mp, false);
12388 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12389 mp->cur_type=mp_known; mp->cur_exp=value(p);
12390 mp_free_node(mp, p,value_node_size);
12394 @ The |fix_dependencies| routine is called into action when |fix_needed|
12395 has been triggered. The program keeps a list~|s| of independent variables
12396 whose coefficients must be divided by~4.
12398 In unusual cases, this fixup process might reduce one or more coefficients
12399 to zero, so that a variable will become known more or less by default.
12401 @<Declare basic dependency-list subroutines@>=
12402 void mp_fix_dependencies (MP mp);
12404 @ @c void mp_fix_dependencies (MP mp) {
12405 pointer p,q,r,s,t; /* list manipulation registers */
12406 pointer x; /* an independent variable */
12407 r=link(dep_head); s=null;
12408 while ( r!=dep_head ){
12410 @<Run through the dependency list for variable |t|, fixing
12411 all nodes, and ending with final link~|q|@>;
12413 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12415 while ( s!=null ) {
12416 p=link(s); x=info(s); free_avail(s); s=p;
12417 type(x)=mp_independent; value(x)=value(x)+2;
12419 mp->fix_needed=false;
12422 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12424 @<Run through the dependency list for variable |t|...@>=
12425 r=value_loc(t); /* |link(r)=dep_list(t)| */
12427 q=link(r); x=info(q);
12428 if ( x==null ) break;
12429 if ( type(x)<=independent_being_fixed ) {
12430 if ( type(x)<independent_being_fixed ) {
12431 p=mp_get_avail(mp); link(p)=s; s=p;
12432 info(s)=x; type(x)=independent_being_fixed;
12434 value(q)=value(q) / 4;
12435 if ( value(q)==0 ) {
12436 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12443 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12444 linking it into the list of all known dependencies. We assume that
12445 |dep_final| points to the final node of list~|p|.
12447 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12448 pointer r; /* what used to be the first dependency */
12449 dep_list(q)=p; prev_dep(q)=dep_head;
12450 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12454 @ Here is one of the ways a dependency list gets started.
12455 The |const_dependency| routine produces a list that has nothing but
12458 @c pointer mp_const_dependency (MP mp, scaled v) {
12459 mp->dep_final=mp_get_node(mp, dep_node_size);
12460 value(mp->dep_final)=v; info(mp->dep_final)=null;
12461 return mp->dep_final;
12464 @ And here's a more interesting way to start a dependency list from scratch:
12465 The parameter to |single_dependency| is the location of an
12466 independent variable~|x|, and the result is the simple dependency list
12469 In the unlikely event that the given independent variable has been doubled so
12470 often that we can't refer to it with a nonzero coefficient,
12471 |single_dependency| returns the simple list `0'. This case can be
12472 recognized by testing that the returned list pointer is equal to
12475 @c pointer mp_single_dependency (MP mp,pointer p) {
12476 pointer q; /* the new dependency list */
12477 integer m; /* the number of doublings */
12478 m=value(p) % s_scale;
12480 return mp_const_dependency(mp, 0);
12482 q=mp_get_node(mp, dep_node_size);
12483 value(q)=two_to_the(28-m); info(q)=p;
12484 link(q)=mp_const_dependency(mp, 0);
12489 @ We sometimes need to make an exact copy of a dependency list.
12491 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12492 pointer q; /* the new dependency list */
12493 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12495 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12496 if ( info(mp->dep_final)==null ) break;
12497 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12498 mp->dep_final=link(mp->dep_final); p=link(p);
12503 @ But how do variables normally become known? Ah, now we get to the heart of the
12504 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12505 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12506 appears. It equates this list to zero, by choosing an independent variable
12507 with the largest coefficient and making it dependent on the others. The
12508 newly dependent variable is eliminated from all current dependencies,
12509 thereby possibly making other dependent variables known.
12511 The given list |p| is, of course, totally destroyed by all this processing.
12513 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12514 pointer q,r,s; /* for link manipulation */
12515 pointer x; /* the variable that loses its independence */
12516 integer n; /* the number of times |x| had been halved */
12517 integer v; /* the coefficient of |x| in list |p| */
12518 pointer prev_r; /* lags one step behind |r| */
12519 pointer final_node; /* the constant term of the new dependency list */
12520 integer w; /* a tentative coefficient */
12521 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12522 x=info(q); n=value(x) % s_scale;
12523 @<Divide list |p| by |-v|, removing node |q|@>;
12524 if ( mp->internal[mp_tracing_equations]>0 ) {
12525 @<Display the new dependency@>;
12527 @<Simplify all existing dependencies by substituting for |x|@>;
12528 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12529 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12532 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12533 q=p; r=link(p); v=value(q);
12534 while ( info(r)!=null ) {
12535 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12539 @ Here we want to change the coefficients from |scaled| to |fraction|,
12540 except in the constant term. In the common case of a trivial equation
12541 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12543 @<Divide list |p| by |-v|, removing node |q|@>=
12544 s=temp_head; link(s)=p; r=p;
12547 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12549 w=mp_make_fraction(mp, value(r),v);
12550 if ( abs(w)<=half_fraction_threshold ) {
12551 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12557 } while (info(r)!=null);
12558 if ( t==mp_proto_dependent ) {
12559 value(r)=-mp_make_scaled(mp, value(r),v);
12560 } else if ( v!=-fraction_one ) {
12561 value(r)=-mp_make_fraction(mp, value(r),v);
12563 final_node=r; p=link(temp_head)
12565 @ @<Display the new dependency@>=
12566 if ( mp_interesting(mp, x) ) {
12567 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12568 mp_print_variable_name(mp, x);
12569 @:]]]\#\#_}{\.{\#\#}@>
12571 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12572 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12573 mp_end_diagnostic(mp, false);
12576 @ @<Simplify all existing dependencies by substituting for |x|@>=
12577 prev_r=dep_head; r=link(dep_head);
12578 while ( r!=dep_head ) {
12579 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12580 if ( info(q)==null ) {
12581 mp_make_known(mp, r,q);
12584 do { q=link(q); } while (info(q)!=null);
12590 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12591 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12592 if ( info(p)==null ) {
12595 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12596 mp_free_node(mp, p,dep_node_size);
12597 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12598 mp->cur_exp=value(x); mp->cur_type=mp_known;
12599 mp_free_node(mp, x,value_node_size);
12602 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12603 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12606 @ @<Divide list |p| by $2^n$@>=
12608 s=temp_head; link(temp_head)=p; r=p;
12611 else w=value(r) / two_to_the(n);
12612 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12614 mp_free_node(mp, r,dep_node_size);
12619 } while (info(s)!=null);
12623 @ The |check_mem| procedure, which is used only when \MP\ is being
12624 debugged, makes sure that the current dependency lists are well formed.
12626 @<Check the list of linear dependencies@>=
12627 q=dep_head; p=link(q);
12628 while ( p!=dep_head ) {
12629 if ( prev_dep(p)!=q ) {
12630 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12635 r=info(p); q=p; p=link(q);
12636 if ( r==null ) break;
12637 if ( value(info(p))>=value(r) ) {
12638 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12639 @.Out of order...@>
12644 @* \[25] Dynamic nonlinear equations.
12645 Variables of numeric type are maintained by the general scheme of
12646 independent, dependent, and known values that we have just studied;
12647 and the components of pair and transform variables are handled in the
12648 same way. But \MP\ also has five other types of values: \&{boolean},
12649 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12651 Equations are allowed between nonlinear quantities, but only in a
12652 simple form. Two variables that haven't yet been assigned values are
12653 either equal to each other, or they're not.
12655 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12656 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12657 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12658 |null| (which means that no other variables are equivalent to this one), or
12659 it points to another variable of the same undefined type. The pointers in the
12660 latter case form a cycle of nodes, which we shall call a ``ring.''
12661 Rings of undefined variables may include capsules, which arise as
12662 intermediate results within expressions or as \&{expr} parameters to macros.
12664 When one member of a ring receives a value, the same value is given to
12665 all the other members. In the case of paths and pictures, this implies
12666 making separate copies of a potentially large data structure; users should
12667 restrain their enthusiasm for such generality, unless they have lots and
12668 lots of memory space.
12670 @ The following procedure is called when a capsule node is being
12671 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12673 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12674 pointer q; /* the new capsule node */
12675 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12677 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12682 @ Conversely, we might delete a capsule or a variable before it becomes known.
12683 The following procedure simply detaches a quantity from its ring,
12684 without recycling the storage.
12686 @<Declare the recycling subroutines@>=
12687 void mp_ring_delete (MP mp,pointer p) {
12690 if ( q!=null ) if ( q!=p ){
12691 while ( value(q)!=p ) q=value(q);
12696 @ Eventually there might be an equation that assigns values to all of the
12697 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12698 propagation of values.
12700 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12701 value, it will soon be recycled.
12703 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12704 small_number t; /* the type of ring |p| */
12705 pointer q,r; /* link manipulation registers */
12706 t=type(p)-unknown_tag; q=value(p);
12707 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12709 r=value(q); type(q)=t;
12711 case mp_boolean_type: value(q)=v; break;
12712 case mp_string_type: value(q)=v; add_str_ref(v); break;
12713 case mp_pen_type: value(q)=copy_pen(v); break;
12714 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12715 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12716 } /* there ain't no more cases */
12721 @ If two members of rings are equated, and if they have the same type,
12722 the |ring_merge| procedure is called on to make them equivalent.
12724 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12725 pointer r; /* traverses one list */
12729 @<Exclaim about a redundant equation@>;
12734 r=value(p); value(p)=value(q); value(q)=r;
12737 @ @<Exclaim about a redundant equation@>=
12739 print_err("Redundant equation");
12740 @.Redundant equation@>
12741 help2("I already knew that this equation was true.")
12742 ("But perhaps no harm has been done; let's continue.");
12743 mp_put_get_error(mp);
12746 @* \[26] Introduction to the syntactic routines.
12747 Let's pause a moment now and try to look at the Big Picture.
12748 The \MP\ program consists of three main parts: syntactic routines,
12749 semantic routines, and output routines. The chief purpose of the
12750 syntactic routines is to deliver the user's input to the semantic routines,
12751 while parsing expressions and locating operators and operands. The
12752 semantic routines act as an interpreter responding to these operators,
12753 which may be regarded as commands. And the output routines are
12754 periodically called on to produce compact font descriptions that can be
12755 used for typesetting or for making interim proof drawings. We have
12756 discussed the basic data structures and many of the details of semantic
12757 operations, so we are good and ready to plunge into the part of \MP\ that
12758 actually controls the activities.
12760 Our current goal is to come to grips with the |get_next| procedure,
12761 which is the keystone of \MP's input mechanism. Each call of |get_next|
12762 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12763 representing the next input token.
12764 $$\vbox{\halign{#\hfil\cr
12765 \hbox{|cur_cmd| denotes a command code from the long list of codes
12767 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12768 \hbox{|cur_sym| is the hash address of the symbolic token that was
12770 \hbox{\qquad or zero in the case of a numeric or string
12771 or capsule token.}\cr}}$$
12772 Underlying this external behavior of |get_next| is all the machinery
12773 necessary to convert from character files to tokens. At a given time we
12774 may be only partially finished with the reading of several files (for
12775 which \&{input} was specified), and partially finished with the expansion
12776 of some user-defined macros and/or some macro parameters, and partially
12777 finished reading some text that the user has inserted online,
12778 and so on. When reading a character file, the characters must be
12779 converted to tokens; comments and blank spaces must
12780 be removed, numeric and string tokens must be evaluated.
12782 To handle these situations, which might all be present simultaneously,
12783 \MP\ uses various stacks that hold information about the incomplete
12784 activities, and there is a finite state control for each level of the
12785 input mechanism. These stacks record the current state of an implicitly
12786 recursive process, but the |get_next| procedure is not recursive.
12789 eight_bits cur_cmd; /* current command set by |get_next| */
12790 integer cur_mod; /* operand of current command */
12791 halfword cur_sym; /* hash address of current symbol */
12793 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12794 command code and its modifier.
12795 It consists of a rather tedious sequence of print
12796 commands, and most of it is essentially an inverse to the |primitive|
12797 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12798 all of this procedure appears elsewhere in the program, together with the
12799 corresponding |primitive| calls.
12801 @<Declare the procedure called |print_cmd_mod|@>=
12802 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12804 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12805 default: mp_print(mp, "[unknown command code!]"); break;
12809 @ Here is a procedure that displays a given command in braces, in the
12810 user's transcript file.
12812 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12815 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12816 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12817 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12818 mp_end_diagnostic(mp, false);
12821 @* \[27] Input stacks and states.
12822 The state of \MP's input mechanism appears in the input stack, whose
12823 entries are records with five fields, called |index|, |start|, |loc|,
12824 |limit|, and |name|. The top element of this stack is maintained in a
12825 global variable for which no subscripting needs to be done; the other
12826 elements of the stack appear in an array. Hence the stack is declared thus:
12830 quarterword index_field;
12831 halfword start_field, loc_field, limit_field, name_field;
12835 in_state_record *input_stack;
12836 integer input_ptr; /* first unused location of |input_stack| */
12837 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12838 in_state_record cur_input; /* the ``top'' input state */
12839 int stack_size; /* maximum number of simultaneous input sources */
12841 @ @<Allocate or initialize ...@>=
12842 mp->stack_size = 300;
12843 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12845 @ @<Dealloc variables@>=
12846 xfree(mp->input_stack);
12848 @ We've already defined the special variable |loc==cur_input.loc_field|
12849 in our discussion of basic input-output routines. The other components of
12850 |cur_input| are defined in the same way:
12852 @d index mp->cur_input.index_field /* reference for buffer information */
12853 @d start mp->cur_input.start_field /* starting position in |buffer| */
12854 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12855 @d name mp->cur_input.name_field /* name of the current file */
12857 @ Let's look more closely now at the five control variables
12858 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12859 assuming that \MP\ is reading a line of characters that have been input
12860 from some file or from the user's terminal. There is an array called
12861 |buffer| that acts as a stack of all lines of characters that are
12862 currently being read from files, including all lines on subsidiary
12863 levels of the input stack that are not yet completed. \MP\ will return to
12864 the other lines when it is finished with the present input file.
12866 (Incidentally, on a machine with byte-oriented addressing, it would be
12867 appropriate to combine |buffer| with the |str_pool| array,
12868 letting the buffer entries grow downward from the top of the string pool
12869 and checking that these two tables don't bump into each other.)
12871 The line we are currently working on begins in position |start| of the
12872 buffer; the next character we are about to read is |buffer[loc]|; and
12873 |limit| is the location of the last character present. We always have
12874 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12875 that the end of a line is easily sensed.
12877 The |name| variable is a string number that designates the name of
12878 the current file, if we are reading an ordinary text file. Special codes
12879 |is_term..max_spec_src| indicate other sources of input text.
12881 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12882 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12883 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12884 @d max_spec_src is_scantok
12886 @ Additional information about the current line is available via the
12887 |index| variable, which counts how many lines of characters are present
12888 in the buffer below the current level. We have |index=0| when reading
12889 from the terminal and prompting the user for each line; then if the user types,
12890 e.g., `\.{input figs}', we will have |index=1| while reading
12891 the file \.{figs.mp}. However, it does not follow that |index| is the
12892 same as the input stack pointer, since many of the levels on the input
12893 stack may come from token lists and some |index| values may correspond
12894 to \.{MPX} files that are not currently on the stack.
12896 The global variable |in_open| is equal to the highest |index| value counting
12897 \.{MPX} files but excluding token-list input levels. Thus, the number of
12898 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12899 when we are not reading a token list.
12901 If we are not currently reading from the terminal,
12902 we are reading from the file variable |input_file[index]|. We use
12903 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12904 and |cur_file| as an abbreviation for |input_file[index]|.
12906 When \MP\ is not reading from the terminal, the global variable |line| contains
12907 the line number in the current file, for use in error messages. More precisely,
12908 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12909 the line number for each file in the |input_file| array.
12911 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12912 array so that the name doesn't get lost when the file is temporarily removed
12913 from the input stack.
12914 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12915 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12916 Since this is not an \.{MPX} file, we have
12917 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12918 This |name| field is set to |finished| when |input_file[k]| is completely
12921 If more information about the input state is needed, it can be
12922 included in small arrays like those shown here. For example,
12923 the current page or segment number in the input file might be put
12924 into a variable |page|, that is really a macro for the current entry
12925 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12926 by analogy with |line_stack|.
12927 @^system dependencies@>
12929 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12930 @d cur_file mp->input_file[index] /* the current |void *| variable */
12931 @d line mp->line_stack[index] /* current line number in the current source file */
12932 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12933 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12934 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12935 @d mpx_reading (mp->mpx_name[index]>absent)
12936 /* when reading a file, is it an \.{MPX} file? */
12938 /* |name_field| value when the corresponding \.{MPX} file is finished */
12941 integer in_open; /* the number of lines in the buffer, less one */
12942 unsigned int open_parens; /* the number of open text files */
12943 void * *input_file ;
12944 integer *line_stack ; /* the line number for each file */
12945 char * *iname_stack; /* used for naming \.{MPX} files */
12946 char * *iarea_stack; /* used for naming \.{MPX} files */
12947 halfword*mpx_name ;
12949 @ @<Allocate or ...@>=
12950 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12951 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12952 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12953 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12954 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12957 for (k=0;k<=mp->max_in_open;k++) {
12958 mp->iname_stack[k] =NULL;
12959 mp->iarea_stack[k] =NULL;
12963 @ @<Dealloc variables@>=
12966 for (l=0;l<=mp->max_in_open;l++) {
12967 xfree(mp->iname_stack[l]);
12968 xfree(mp->iarea_stack[l]);
12971 xfree(mp->input_file);
12972 xfree(mp->line_stack);
12973 xfree(mp->iname_stack);
12974 xfree(mp->iarea_stack);
12975 xfree(mp->mpx_name);
12978 @ However, all this discussion about input state really applies only to the
12979 case that we are inputting from a file. There is another important case,
12980 namely when we are currently getting input from a token list. In this case
12981 |index>max_in_open|, and the conventions about the other state variables
12984 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12985 the node that will be read next. If |loc=null|, the token list has been
12988 \yskip\hang|start| points to the first node of the token list; this node
12989 may or may not contain a reference count, depending on the type of token
12992 \yskip\hang|token_type|, which takes the place of |index| in the
12993 discussion above, is a code number that explains what kind of token list
12996 \yskip\hang|name| points to the |eqtb| address of the control sequence
12997 being expanded, if the current token list is a macro not defined by
12998 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12999 can be deduced by looking at their first two parameters.
13001 \yskip\hang|param_start|, which takes the place of |limit|, tells where
13002 the parameters of the current macro or loop text begin in the |param_stack|.
13004 \yskip\noindent The |token_type| can take several values, depending on
13005 where the current token list came from:
13008 \indent|forever_text|, if the token list being scanned is the body of
13009 a \&{forever} loop;
13011 \indent|loop_text|, if the token list being scanned is the body of
13012 a \&{for} or \&{forsuffixes} loop;
13014 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
13016 \indent|backed_up|, if the token list being scanned has been inserted as
13017 `to be read again'.
13019 \indent|inserted|, if the token list being scanned has been inserted as
13020 part of error recovery;
13022 \indent|macro|, if the expansion of a user-defined symbolic token is being
13026 The token list begins with a reference count if and only if |token_type=
13028 @^reference counts@>
13030 @d token_type index /* type of current token list */
13031 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
13032 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
13033 @d param_start limit /* base of macro parameters in |param_stack| */
13034 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
13035 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
13036 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
13037 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
13038 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
13039 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
13041 @ The |param_stack| is an auxiliary array used to hold pointers to the token
13042 lists for parameters at the current level and subsidiary levels of input.
13043 This stack grows at a different rate from the others.
13046 pointer *param_stack; /* token list pointers for parameters */
13047 integer param_ptr; /* first unused entry in |param_stack| */
13048 integer max_param_stack; /* largest value of |param_ptr| */
13050 @ @<Allocate or initialize ...@>=
13051 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13053 @ @<Dealloc variables@>=
13054 xfree(mp->param_stack);
13056 @ Notice that the |line| isn't valid when |token_state| is true because it
13057 depends on |index|. If we really need to know the line number for the
13058 topmost file in the index stack we use the following function. If a page
13059 number or other information is needed, this routine should be modified to
13060 compute it as well.
13061 @^system dependencies@>
13063 @<Declare a function called |true_line|@>=
13064 integer mp_true_line (MP mp) {
13065 int k; /* an index into the input stack */
13066 if ( file_state && (name>max_spec_src) ) {
13071 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13072 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13075 return mp->line_stack[(k-1)];
13080 @ Thus, the ``current input state'' can be very complicated indeed; there
13081 can be many levels and each level can arise in a variety of ways. The
13082 |show_context| procedure, which is used by \MP's error-reporting routine to
13083 print out the current input state on all levels down to the most recent
13084 line of characters from an input file, illustrates most of these conventions.
13085 The global variable |file_ptr| contains the lowest level that was
13086 displayed by this procedure.
13089 integer file_ptr; /* shallowest level shown by |show_context| */
13091 @ The status at each level is indicated by printing two lines, where the first
13092 line indicates what was read so far and the second line shows what remains
13093 to be read. The context is cropped, if necessary, so that the first line
13094 contains at most |half_error_line| characters, and the second contains
13095 at most |error_line|. Non-current input levels whose |token_type| is
13096 `|backed_up|' are shown only if they have not been fully read.
13098 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13099 int old_setting; /* saved |selector| setting */
13100 @<Local variables for formatting calculations@>
13101 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13102 /* store current state */
13104 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13105 @<Display the current context@>;
13107 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13108 decr(mp->file_ptr);
13110 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13113 @ @<Display the current context@>=
13114 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13115 (token_type!=backed_up) || (loc!=null) ) {
13116 /* we omit backed-up token lists that have already been read */
13117 mp->tally=0; /* get ready to count characters */
13118 old_setting=mp->selector;
13119 if ( file_state ) {
13120 @<Print location of current line@>;
13121 @<Pseudoprint the line@>;
13123 @<Print type of token list@>;
13124 @<Pseudoprint the token list@>;
13126 mp->selector=old_setting; /* stop pseudoprinting */
13127 @<Print two lines using the tricky pseudoprinted information@>;
13130 @ This routine should be changed, if necessary, to give the best possible
13131 indication of where the current line resides in the input file.
13132 For example, on some systems it is best to print both a page and line number.
13133 @^system dependencies@>
13135 @<Print location of current line@>=
13136 if ( name>max_spec_src ) {
13137 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13138 } else if ( terminal_input ) {
13139 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13140 else mp_print_nl(mp, "<insert>");
13141 } else if ( name==is_scantok ) {
13142 mp_print_nl(mp, "<scantokens>");
13144 mp_print_nl(mp, "<read>");
13146 mp_print_char(mp, ' ')
13148 @ Can't use case statement here because the |token_type| is not
13149 a constant expression.
13151 @<Print type of token list@>=
13153 if(token_type==forever_text) {
13154 mp_print_nl(mp, "<forever> ");
13155 } else if (token_type==loop_text) {
13156 @<Print the current loop value@>;
13157 } else if (token_type==parameter) {
13158 mp_print_nl(mp, "<argument> ");
13159 } else if (token_type==backed_up) {
13160 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13161 else mp_print_nl(mp, "<to be read again> ");
13162 } else if (token_type==inserted) {
13163 mp_print_nl(mp, "<inserted text> ");
13164 } else if (token_type==macro) {
13166 if ( name!=null ) mp_print_text(name);
13167 else @<Print the name of a \&{vardef}'d macro@>;
13168 mp_print(mp, "->");
13170 mp_print_nl(mp, "?");/* this should never happen */
13175 @ The parameter that corresponds to a loop text is either a token list
13176 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13177 We'll discuss capsules later; for now, all we need to know is that
13178 the |link| field in a capsule parameter is |void| and that
13179 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13181 @<Print the current loop value@>=
13182 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13184 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13185 else mp_show_token_list(mp, p,null,20,mp->tally);
13187 mp_print(mp, ")> ");
13190 @ The first two parameters of a macro defined by \&{vardef} will be token
13191 lists representing the macro's prefix and ``at point.'' By putting these
13192 together, we get the macro's full name.
13194 @<Print the name of a \&{vardef}'d macro@>=
13195 { p=mp->param_stack[param_start];
13197 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13200 while ( link(q)!=null ) q=link(q);
13201 link(q)=mp->param_stack[param_start+1];
13202 mp_show_token_list(mp, p,null,20,mp->tally);
13207 @ Now it is necessary to explain a little trick. We don't want to store a long
13208 string that corresponds to a token list, because that string might take up
13209 lots of memory; and we are printing during a time when an error message is
13210 being given, so we dare not do anything that might overflow one of \MP's
13211 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13212 that stores characters into a buffer of length |error_line|, where character
13213 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13214 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13215 |tally:=0| and |trick_count:=1000000|; then when we reach the
13216 point where transition from line 1 to line 2 should occur, we
13217 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13218 tally+1+error_line-half_error_line)|. At the end of the
13219 pseudoprinting, the values of |first_count|, |tally|, and
13220 |trick_count| give us all the information we need to print the two lines,
13221 and all of the necessary text is in |trick_buf|.
13223 Namely, let |l| be the length of the descriptive information that appears
13224 on the first line. The length of the context information gathered for that
13225 line is |k=first_count|, and the length of the context information
13226 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13227 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13228 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13229 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13230 and print `\.{...}' followed by
13231 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13232 where subscripts of |trick_buf| are circular modulo |error_line|. The
13233 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13234 unless |n+m>error_line|; in the latter case, further cropping is done.
13235 This is easier to program than to explain.
13237 @<Local variables for formatting...@>=
13238 int i; /* index into |buffer| */
13239 integer l; /* length of descriptive information on line 1 */
13240 integer m; /* context information gathered for line 2 */
13241 int n; /* length of line 1 */
13242 integer p; /* starting or ending place in |trick_buf| */
13243 integer q; /* temporary index */
13245 @ The following code tells the print routines to gather
13246 the desired information.
13248 @d begin_pseudoprint {
13249 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13250 mp->trick_count=1000000;
13252 @d set_trick_count {
13253 mp->first_count=mp->tally;
13254 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13255 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13258 @ And the following code uses the information after it has been gathered.
13260 @<Print two lines using the tricky pseudoprinted information@>=
13261 if ( mp->trick_count==1000000 ) set_trick_count;
13262 /* |set_trick_count| must be performed */
13263 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13264 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13265 if ( l+mp->first_count<=mp->half_error_line ) {
13266 p=0; n=l+mp->first_count;
13268 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13269 n=mp->half_error_line;
13271 for (q=p;q<=mp->first_count-1;q++) {
13272 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13275 for (q=1;q<=n;q++) {
13276 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13278 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13279 else p=mp->first_count+(mp->error_line-n-3);
13280 for (q=mp->first_count;q<=p-1;q++) {
13281 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13283 if ( m+n>mp->error_line ) mp_print(mp, "...")
13285 @ But the trick is distracting us from our current goal, which is to
13286 understand the input state. So let's concentrate on the data structures that
13287 are being pseudoprinted as we finish up the |show_context| procedure.
13289 @<Pseudoprint the line@>=
13292 for (i=start;i<=limit-1;i++) {
13293 if ( i==loc ) set_trick_count;
13294 mp_print_str(mp, mp->buffer[i]);
13298 @ @<Pseudoprint the token list@>=
13300 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13301 else mp_show_macro(mp, start,loc,100000)
13303 @ Here is the missing piece of |show_token_list| that is activated when the
13304 token beginning line~2 is about to be shown:
13306 @<Do magic computation@>=set_trick_count
13308 @* \[28] Maintaining the input stacks.
13309 The following subroutines change the input status in commonly needed ways.
13311 First comes |push_input|, which stores the current state and creates a
13312 new level (having, initially, the same properties as the old).
13314 @d push_input { /* enter a new input level, save the old */
13315 if ( mp->input_ptr>mp->max_in_stack ) {
13316 mp->max_in_stack=mp->input_ptr;
13317 if ( mp->input_ptr==mp->stack_size ) {
13318 int l = (mp->stack_size+(mp->stack_size>>2));
13319 XREALLOC(mp->input_stack, l, in_state_record);
13320 mp->stack_size = l;
13323 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13324 incr(mp->input_ptr);
13327 @ And of course what goes up must come down.
13329 @d pop_input { /* leave an input level, re-enter the old */
13330 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13333 @ Here is a procedure that starts a new level of token-list input, given
13334 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13335 set |name|, reset~|loc|, and increase the macro's reference count.
13337 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13339 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13340 push_input; start=p; token_type=t;
13341 param_start=mp->param_ptr; loc=p;
13344 @ When a token list has been fully scanned, the following computations
13345 should be done as we leave that level of input.
13348 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13349 pointer p; /* temporary register */
13350 if ( token_type>=backed_up ) { /* token list to be deleted */
13351 if ( token_type<=inserted ) {
13352 mp_flush_token_list(mp, start); goto DONE;
13354 mp_delete_mac_ref(mp, start); /* update reference count */
13357 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13358 decr(mp->param_ptr);
13359 p=mp->param_stack[mp->param_ptr];
13361 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13362 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13364 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13369 pop_input; check_interrupt;
13372 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13373 token by the |cur_tok| routine.
13376 @c @<Declare the procedure called |make_exp_copy|@>;
13377 pointer mp_cur_tok (MP mp) {
13378 pointer p; /* a new token node */
13379 small_number save_type; /* |cur_type| to be restored */
13380 integer save_exp; /* |cur_exp| to be restored */
13381 if ( mp->cur_sym==0 ) {
13382 if ( mp->cur_cmd==capsule_token ) {
13383 save_type=mp->cur_type; save_exp=mp->cur_exp;
13384 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13385 mp->cur_type=save_type; mp->cur_exp=save_exp;
13387 p=mp_get_node(mp, token_node_size);
13388 value(p)=mp->cur_mod; name_type(p)=mp_token;
13389 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13390 else type(p)=mp_string_type;
13393 fast_get_avail(p); info(p)=mp->cur_sym;
13398 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13399 seen. The |back_input| procedure takes care of this by putting the token
13400 just scanned back into the input stream, ready to be read again.
13401 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13404 void mp_back_input (MP mp);
13406 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13407 pointer p; /* a token list of length one */
13409 while ( token_state &&(loc==null) )
13410 mp_end_token_list(mp); /* conserve stack space */
13414 @ The |back_error| routine is used when we want to restore or replace an
13415 offending token just before issuing an error message. We disable interrupts
13416 during the call of |back_input| so that the help message won't be lost.
13419 void mp_error (MP mp);
13420 void mp_back_error (MP mp);
13422 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13423 mp->OK_to_interrupt=false;
13425 mp->OK_to_interrupt=true; mp_error(mp);
13427 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13428 mp->OK_to_interrupt=false;
13429 mp_back_input(mp); token_type=inserted;
13430 mp->OK_to_interrupt=true; mp_error(mp);
13433 @ The |begin_file_reading| procedure starts a new level of input for lines
13434 of characters to be read from a file, or as an insertion from the
13435 terminal. It does not take care of opening the file, nor does it set |loc|
13436 or |limit| or |line|.
13437 @^system dependencies@>
13439 @c void mp_begin_file_reading (MP mp) {
13440 if ( mp->in_open==mp->max_in_open )
13441 mp_overflow(mp, "text input levels",mp->max_in_open);
13442 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13443 if ( mp->first==mp->buf_size )
13444 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13445 incr(mp->in_open); push_input; index=mp->in_open;
13446 mp->mpx_name[index]=absent;
13448 name=is_term; /* |terminal_input| is now |true| */
13451 @ Conversely, the variables must be downdated when such a level of input
13452 is finished. Any associated \.{MPX} file must also be closed and popped
13453 off the file stack.
13455 @c void mp_end_file_reading (MP mp) {
13456 if ( mp->in_open>index ) {
13457 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13458 mp_confusion(mp, "endinput");
13459 @:this can't happen endinput}{\quad endinput@>
13461 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13462 delete_str_ref(mp->mpx_name[mp->in_open]);
13467 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13468 if ( name>max_spec_src ) {
13469 (mp->close_file)(cur_file);
13470 delete_str_ref(name);
13474 pop_input; decr(mp->in_open);
13477 @ Here is a function that tries to resume input from an \.{MPX} file already
13478 associated with the current input file. It returns |false| if this doesn't
13481 @c boolean mp_begin_mpx_reading (MP mp) {
13482 if ( mp->in_open!=index+1 ) {
13485 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13486 @:this can't happen mpx}{\quad mpx@>
13487 if ( mp->first==mp->buf_size )
13488 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13489 push_input; index=mp->in_open;
13491 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13492 @<Put an empty line in the input buffer@>;
13497 @ This procedure temporarily stops reading an \.{MPX} file.
13499 @c void mp_end_mpx_reading (MP mp) {
13500 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13501 @:this can't happen mpx}{\quad mpx@>
13503 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13509 @ Here we enforce a restriction that simplifies the input stacks considerably.
13510 This should not inconvenience the user because \.{MPX} files are generated
13511 by an auxiliary program called \.{DVItoMP}.
13513 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13515 print_err("`mpxbreak' must be at the end of a line");
13516 help4("This file contains picture expressions for btex...etex")
13517 ("blocks. Such files are normally generated automatically")
13518 ("but this one seems to be messed up. I'm going to ignore")
13519 ("the rest of this line.");
13523 @ In order to keep the stack from overflowing during a long sequence of
13524 inserted `\.{show}' commands, the following routine removes completed
13525 error-inserted lines from memory.
13527 @c void mp_clear_for_error_prompt (MP mp) {
13528 while ( file_state && terminal_input &&
13529 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13530 mp_print_ln(mp); clear_terminal;
13533 @ To get \MP's whole input mechanism going, we perform the following
13536 @<Initialize the input routines@>=
13537 { mp->input_ptr=0; mp->max_in_stack=0;
13538 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13539 mp->param_ptr=0; mp->max_param_stack=0;
13541 start=1; index=0; line=0; name=is_term;
13542 mp->mpx_name[0]=absent;
13543 mp->force_eof=false;
13544 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13545 limit=mp->last; mp->first=mp->last+1;
13546 /* |init_terminal| has set |loc| and |last| */
13549 @* \[29] Getting the next token.
13550 The heart of \MP's input mechanism is the |get_next| procedure, which
13551 we shall develop in the next few sections of the program. Perhaps we
13552 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13553 eyes and mouth, reading the source files and gobbling them up. And it also
13554 helps \MP\ to regurgitate stored token lists that are to be processed again.
13556 The main duty of |get_next| is to input one token and to set |cur_cmd|
13557 and |cur_mod| to that token's command code and modifier. Furthermore, if
13558 the input token is a symbolic token, that token's |hash| address
13559 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13561 Underlying this simple description is a certain amount of complexity
13562 because of all the cases that need to be handled.
13563 However, the inner loop of |get_next| is reasonably short and fast.
13565 @ Before getting into |get_next|, we need to consider a mechanism by which
13566 \MP\ helps keep errors from propagating too far. Whenever the program goes
13567 into a mode where it keeps calling |get_next| repeatedly until a certain
13568 condition is met, it sets |scanner_status| to some value other than |normal|.
13569 Then if an input file ends, or if an `\&{outer}' symbol appears,
13570 an appropriate error recovery will be possible.
13572 The global variable |warning_info| helps in this error recovery by providing
13573 additional information. For example, |warning_info| might indicate the
13574 name of a macro whose replacement text is being scanned.
13576 @d normal 0 /* |scanner_status| at ``quiet times'' */
13577 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13578 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13579 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13580 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13581 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13582 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13583 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13586 integer scanner_status; /* are we scanning at high speed? */
13587 integer warning_info; /* if so, what else do we need to know,
13588 in case an error occurs? */
13590 @ @<Initialize the input routines@>=
13591 mp->scanner_status=normal;
13593 @ The following subroutine
13594 is called when an `\&{outer}' symbolic token has been scanned or
13595 when the end of a file has been reached. These two cases are distinguished
13596 by |cur_sym|, which is zero at the end of a file.
13598 @c boolean mp_check_outer_validity (MP mp) {
13599 pointer p; /* points to inserted token list */
13600 if ( mp->scanner_status==normal ) {
13602 } else if ( mp->scanner_status==tex_flushing ) {
13603 @<Check if the file has ended while flushing \TeX\ material and set the
13604 result value for |check_outer_validity|@>;
13606 mp->deletions_allowed=false;
13607 @<Back up an outer symbolic token so that it can be reread@>;
13608 if ( mp->scanner_status>skipping ) {
13609 @<Tell the user what has run away and try to recover@>;
13611 print_err("Incomplete if; all text was ignored after line ");
13612 @.Incomplete if...@>
13613 mp_print_int(mp, mp->warning_info);
13614 help3("A forbidden `outer' token occurred in skipped text.")
13615 ("This kind of error happens when you say `if...' and forget")
13616 ("the matching `fi'. I've inserted a `fi'; this might work.");
13617 if ( mp->cur_sym==0 )
13618 mp->help_line[2]="The file ended while I was skipping conditional text.";
13619 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13621 mp->deletions_allowed=true;
13626 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13627 if ( mp->cur_sym!=0 ) {
13630 mp->deletions_allowed=false;
13631 print_err("TeX mode didn't end; all text was ignored after line ");
13632 mp_print_int(mp, mp->warning_info);
13633 help2("The file ended while I was looking for the `etex' to")
13634 ("finish this TeX material. I've inserted `etex' now.");
13635 mp->cur_sym = frozen_etex;
13637 mp->deletions_allowed=true;
13641 @ @<Back up an outer symbolic token so that it can be reread@>=
13642 if ( mp->cur_sym!=0 ) {
13643 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13644 back_list(p); /* prepare to read the symbolic token again */
13647 @ @<Tell the user what has run away...@>=
13649 mp_runaway(mp); /* print the definition-so-far */
13650 if ( mp->cur_sym==0 ) {
13651 print_err("File ended");
13652 @.File ended while scanning...@>
13654 print_err("Forbidden token found");
13655 @.Forbidden token found...@>
13657 mp_print(mp, " while scanning ");
13658 help4("I suspect you have forgotten an `enddef',")
13659 ("causing me to read past where you wanted me to stop.")
13660 ("I'll try to recover; but if the error is serious,")
13661 ("you'd better type `E' or `X' now and fix your file.");
13662 switch (mp->scanner_status) {
13663 @<Complete the error message,
13664 and set |cur_sym| to a token that might help recover from the error@>
13665 } /* there are no other cases */
13669 @ As we consider various kinds of errors, it is also appropriate to
13670 change the first line of the help message just given; |help_line[3]|
13671 points to the string that might be changed.
13673 @<Complete the error message,...@>=
13675 mp_print(mp, "to the end of the statement");
13676 mp->help_line[3]="A previous error seems to have propagated,";
13677 mp->cur_sym=frozen_semicolon;
13680 mp_print(mp, "a text argument");
13681 mp->help_line[3]="It seems that a right delimiter was left out,";
13682 if ( mp->warning_info==0 ) {
13683 mp->cur_sym=frozen_end_group;
13685 mp->cur_sym=frozen_right_delimiter;
13686 equiv(frozen_right_delimiter)=mp->warning_info;
13691 mp_print(mp, "the definition of ");
13692 if ( mp->scanner_status==op_defining )
13693 mp_print_text(mp->warning_info);
13695 mp_print_variable_name(mp, mp->warning_info);
13696 mp->cur_sym=frozen_end_def;
13698 case loop_defining:
13699 mp_print(mp, "the text of a ");
13700 mp_print_text(mp->warning_info);
13701 mp_print(mp, " loop");
13702 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13703 mp->cur_sym=frozen_end_for;
13706 @ The |runaway| procedure displays the first part of the text that occurred
13707 when \MP\ began its special |scanner_status|, if that text has been saved.
13709 @<Declare the procedure called |runaway|@>=
13710 void mp_runaway (MP mp) {
13711 if ( mp->scanner_status>flushing ) {
13712 mp_print_nl(mp, "Runaway ");
13713 switch (mp->scanner_status) {
13714 case absorbing: mp_print(mp, "text?"); break;
13716 case op_defining: mp_print(mp,"definition?"); break;
13717 case loop_defining: mp_print(mp, "loop?"); break;
13718 } /* there are no other cases */
13720 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13724 @ We need to mention a procedure that may be called by |get_next|.
13727 void mp_firm_up_the_line (MP mp);
13729 @ And now we're ready to take the plunge into |get_next| itself.
13730 Note that the behavior depends on the |scanner_status| because percent signs
13731 and double quotes need to be passed over when skipping TeX material.
13734 void mp_get_next (MP mp) {
13735 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13737 /*restart*/ /* go here to get the next input token */
13738 /*exit*/ /* go here when the next input token has been got */
13739 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13740 /*found*/ /* go here when the end of a symbolic token has been found */
13741 /*switch*/ /* go here to branch on the class of an input character */
13742 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13743 /* go here at crucial stages when scanning a number */
13744 int k; /* an index into |buffer| */
13745 ASCII_code c; /* the current character in the buffer */
13746 ASCII_code class; /* its class number */
13747 integer n,f; /* registers for decimal-to-binary conversion */
13750 if ( file_state ) {
13751 @<Input from external file; |goto restart| if no input found,
13752 or |return| if a non-symbolic token is found@>;
13754 @<Input from token list; |goto restart| if end of list or
13755 if a parameter needs to be expanded,
13756 or |return| if a non-symbolic token is found@>;
13759 @<Finish getting the symbolic token in |cur_sym|;
13760 |goto restart| if it is illegal@>;
13763 @ When a symbolic token is declared to be `\&{outer}', its command code
13764 is increased by |outer_tag|.
13767 @<Finish getting the symbolic token in |cur_sym|...@>=
13768 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13769 if ( mp->cur_cmd>=outer_tag ) {
13770 if ( mp_check_outer_validity(mp) )
13771 mp->cur_cmd=mp->cur_cmd-outer_tag;
13776 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13777 to have a special test for end-of-line.
13780 @<Input from external file;...@>=
13783 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13785 case digit_class: goto START_NUMERIC_TOKEN; break;
13787 class=mp->char_class[mp->buffer[loc]];
13788 if ( class>period_class ) {
13790 } else if ( class<period_class ) { /* |class=digit_class| */
13791 n=0; goto START_DECIMAL_TOKEN;
13795 case space_class: goto SWITCH; break;
13796 case percent_class:
13797 if ( mp->scanner_status==tex_flushing ) {
13798 if ( loc<limit ) goto SWITCH;
13800 @<Move to next line of file, or |goto restart| if there is no next line@>;
13805 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13806 else @<Get a string token and |return|@>;
13808 case isolated_classes:
13809 k=loc-1; goto FOUND; break;
13810 case invalid_class:
13811 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13812 else @<Decry the invalid character and |goto restart|@>;
13814 default: break; /* letters, etc. */
13817 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13819 START_NUMERIC_TOKEN:
13820 @<Get the integer part |n| of a numeric token;
13821 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13822 START_DECIMAL_TOKEN:
13823 @<Get the fraction part |f| of a numeric token@>;
13825 @<Pack the numeric and fraction parts of a numeric token
13828 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13831 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13832 |token_list| after the error has been dealt with
13833 (cf.\ |clear_for_error_prompt|).
13835 @<Decry the invalid...@>=
13837 print_err("Text line contains an invalid character");
13838 @.Text line contains...@>
13839 help2("A funny symbol that I can\'t read has just been input.")
13840 ("Continue, and I'll forget that it ever happened.");
13841 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13845 @ @<Get a string token and |return|@>=
13847 if ( mp->buffer[loc]=='"' ) {
13848 mp->cur_mod=rts("");
13850 k=loc; mp->buffer[limit+1]='"';
13853 } while (mp->buffer[loc]!='"');
13855 @<Decry the missing string delimiter and |goto restart|@>;
13858 mp->cur_mod=mp->buffer[k];
13862 append_char(mp->buffer[k]); incr(k);
13864 mp->cur_mod=mp_make_string(mp);
13867 incr(loc); mp->cur_cmd=string_token;
13871 @ We go to |restart| after this error message, not to |SWITCH|,
13872 because the |clear_for_error_prompt| routine might have reinstated
13873 |token_state| after |error| has finished.
13875 @<Decry the missing string delimiter and |goto restart|@>=
13877 loc=limit; /* the next character to be read on this line will be |"%"| */
13878 print_err("Incomplete string token has been flushed");
13879 @.Incomplete string token...@>
13880 help3("Strings should finish on the same line as they began.")
13881 ("I've deleted the partial string; you might want to")
13882 ("insert another by typing, e.g., `I\"new string\"'.");
13883 mp->deletions_allowed=false; mp_error(mp);
13884 mp->deletions_allowed=true;
13888 @ @<Get the integer part |n| of a numeric token...@>=
13890 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13891 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13894 if ( mp->buffer[loc]=='.' )
13895 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13898 goto FIN_NUMERIC_TOKEN;
13901 @ @<Get the fraction part |f| of a numeric token@>=
13904 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13905 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13908 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13909 f=mp_round_decimals(mp, k);
13914 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13916 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13917 } else if ( mp->scanner_status!=tex_flushing ) {
13918 print_err("Enormous number has been reduced");
13919 @.Enormous number...@>
13920 help2("I can\'t handle numbers bigger than 32767.99998;")
13921 ("so I've changed your constant to that maximum amount.");
13922 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13923 mp->cur_mod=el_gordo;
13925 mp->cur_cmd=numeric_token; return
13927 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13929 mp->cur_mod=n*unity+f;
13930 if ( mp->cur_mod>=fraction_one ) {
13931 if ( (mp->internal[mp_warning_check]>0) &&
13932 (mp->scanner_status!=tex_flushing) ) {
13933 print_err("Number is too large (");
13934 mp_print_scaled(mp, mp->cur_mod);
13935 mp_print_char(mp, ')');
13936 help3("It is at least 4096. Continue and I'll try to cope")
13937 ("with that big value; but it might be dangerous.")
13938 ("(Set warningcheck:=0 to suppress this message.)");
13944 @ Let's consider now what happens when |get_next| is looking at a token list.
13947 @<Input from token list;...@>=
13948 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13949 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13950 if ( mp->cur_sym>=expr_base ) {
13951 if ( mp->cur_sym>=suffix_base ) {
13952 @<Insert a suffix or text parameter and |goto restart|@>;
13954 mp->cur_cmd=capsule_token;
13955 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13956 mp->cur_sym=0; return;
13959 } else if ( loc>null ) {
13960 @<Get a stored numeric or string or capsule token and |return|@>
13961 } else { /* we are done with this token list */
13962 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13965 @ @<Insert a suffix or text parameter...@>=
13967 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13968 /* |param_size=text_base-suffix_base| */
13969 mp_begin_token_list(mp,
13970 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13975 @ @<Get a stored numeric or string or capsule token...@>=
13977 if ( name_type(loc)==mp_token ) {
13978 mp->cur_mod=value(loc);
13979 if ( type(loc)==mp_known ) {
13980 mp->cur_cmd=numeric_token;
13982 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13985 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13987 loc=link(loc); return;
13990 @ All of the easy branches of |get_next| have now been taken care of.
13991 There is one more branch.
13993 @<Move to next line of file, or |goto restart|...@>=
13994 if ( name>max_spec_src ) {
13995 @<Read next line of file into |buffer|, or
13996 |goto restart| if the file has ended@>;
13998 if ( mp->input_ptr>0 ) {
13999 /* text was inserted during error recovery or by \&{scantokens} */
14000 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
14002 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
14003 if ( mp->interaction>mp_nonstop_mode ) {
14004 if ( limit==start ) /* previous line was empty */
14005 mp_print_nl(mp, "(Please type a command or say `end')");
14007 mp_print_ln(mp); mp->first=start;
14008 prompt_input("*"); /* input on-line into |buffer| */
14010 limit=mp->last; mp->buffer[limit]='%';
14011 mp->first=limit+1; loc=start;
14013 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
14015 /* nonstop mode, which is intended for overnight batch processing,
14016 never waits for on-line input */
14020 @ The global variable |force_eof| is normally |false|; it is set |true|
14021 by an \&{endinput} command.
14024 boolean force_eof; /* should the next \&{input} be aborted early? */
14026 @ We must decrement |loc| in order to leave the buffer in a valid state
14027 when an error condition causes us to |goto restart| without calling
14028 |end_file_reading|.
14030 @<Read next line of file into |buffer|, or
14031 |goto restart| if the file has ended@>=
14033 incr(line); mp->first=start;
14034 if ( ! mp->force_eof ) {
14035 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
14036 mp_firm_up_the_line(mp); /* this sets |limit| */
14038 mp->force_eof=true;
14040 if ( mp->force_eof ) {
14041 mp->force_eof=false;
14043 if ( mpx_reading ) {
14044 @<Complain that the \.{MPX} file ended unexpectly; then set
14045 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
14047 mp_print_char(mp, ')'); decr(mp->open_parens);
14048 update_terminal; /* show user that file has been read */
14049 mp_end_file_reading(mp); /* resume previous level */
14050 if ( mp_check_outer_validity(mp) ) goto RESTART;
14054 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14057 @ We should never actually come to the end of an \.{MPX} file because such
14058 files should have an \&{mpxbreak} after the translation of the last
14059 \&{btex}$\,\ldots\,$\&{etex} block.
14061 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14063 mp->mpx_name[index]=finished;
14064 print_err("mpx file ended unexpectedly");
14065 help4("The file had too few picture expressions for btex...etex")
14066 ("blocks. Such files are normally generated automatically")
14067 ("but this one got messed up. You might want to insert a")
14068 ("picture expression now.");
14069 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14070 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14073 @ Sometimes we want to make it look as though we have just read a blank line
14074 without really doing so.
14076 @<Put an empty line in the input buffer@>=
14077 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14078 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14080 @ If the user has set the |mp_pausing| parameter to some positive value,
14081 and if nonstop mode has not been selected, each line of input is displayed
14082 on the terminal and the transcript file, followed by `\.{=>}'.
14083 \MP\ waits for a response. If the response is null (i.e., if nothing is
14084 typed except perhaps a few blank spaces), the original
14085 line is accepted as it stands; otherwise the line typed is
14086 used instead of the line in the file.
14088 @c void mp_firm_up_the_line (MP mp) {
14089 size_t k; /* an index into |buffer| */
14091 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14092 wake_up_terminal; mp_print_ln(mp);
14093 if ( start<limit ) {
14094 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14095 mp_print_str(mp, mp->buffer[k]);
14098 mp->first=limit; prompt_input("=>"); /* wait for user response */
14100 if ( mp->last>mp->first ) {
14101 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14102 mp->buffer[k+start-mp->first]=mp->buffer[k];
14104 limit=start+mp->last-mp->first;
14109 @* \[30] Dealing with \TeX\ material.
14110 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14111 features need to be implemented at a low level in the scanning process
14112 so that \MP\ can stay in synch with the a preprocessor that treats
14113 blocks of \TeX\ material as they occur in the input file without trying
14114 to expand \MP\ macros. Thus we need a special version of |get_next|
14115 that does not expand macros and such but does handle \&{btex},
14116 \&{verbatimtex}, etc.
14118 The special version of |get_next| is called |get_t_next|. It works by flushing
14119 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14120 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14121 \&{btex}, and switching back when it sees \&{mpxbreak}.
14127 mp_primitive(mp, "btex",start_tex,btex_code);
14128 @:btex_}{\&{btex} primitive@>
14129 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14130 @:verbatimtex_}{\&{verbatimtex} primitive@>
14131 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14132 @:etex_}{\&{etex} primitive@>
14133 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14134 @:mpx_break_}{\&{mpxbreak} primitive@>
14136 @ @<Cases of |print_cmd...@>=
14137 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14138 else mp_print(mp, "verbatimtex"); break;
14139 case etex_marker: mp_print(mp, "etex"); break;
14140 case mpx_break: mp_print(mp, "mpxbreak"); break;
14142 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14143 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14146 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14149 void mp_start_mpx_input (MP mp);
14152 void mp_t_next (MP mp) {
14153 int old_status; /* saves the |scanner_status| */
14154 integer old_info; /* saves the |warning_info| */
14155 while ( mp->cur_cmd<=max_pre_command ) {
14156 if ( mp->cur_cmd==mpx_break ) {
14157 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14158 @<Complain about a misplaced \&{mpxbreak}@>;
14160 mp_end_mpx_reading(mp);
14163 } else if ( mp->cur_cmd==start_tex ) {
14164 if ( token_state || (name<=max_spec_src) ) {
14165 @<Complain that we are not reading a file@>;
14166 } else if ( mpx_reading ) {
14167 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14168 } else if ( (mp->cur_mod!=verbatim_code)&&
14169 (mp->mpx_name[index]!=finished) ) {
14170 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14175 @<Complain about a misplaced \&{etex}@>;
14177 goto COMMON_ENDING;
14179 @<Flush the \TeX\ material@>;
14185 @ We could be in the middle of an operation such as skipping false conditional
14186 text when \TeX\ material is encountered, so we must be careful to save the
14189 @<Flush the \TeX\ material@>=
14190 old_status=mp->scanner_status;
14191 old_info=mp->warning_info;
14192 mp->scanner_status=tex_flushing;
14193 mp->warning_info=line;
14194 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14195 mp->scanner_status=old_status;
14196 mp->warning_info=old_info
14198 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14199 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14200 help4("This file contains picture expressions for btex...etex")
14201 ("blocks. Such files are normally generated automatically")
14202 ("but this one seems to be messed up. I'll just keep going")
14203 ("and hope for the best.");
14207 @ @<Complain that we are not reading a file@>=
14208 { print_err("You can only use `btex' or `verbatimtex' in a file");
14209 help3("I'll have to ignore this preprocessor command because it")
14210 ("only works when there is a file to preprocess. You might")
14211 ("want to delete everything up to the next `etex`.");
14215 @ @<Complain about a misplaced \&{mpxbreak}@>=
14216 { print_err("Misplaced mpxbreak");
14217 help2("I'll ignore this preprocessor command because it")
14218 ("doesn't belong here");
14222 @ @<Complain about a misplaced \&{etex}@>=
14223 { print_err("Extra etex will be ignored");
14224 help1("There is no btex or verbatimtex for this to match");
14228 @* \[31] Scanning macro definitions.
14229 \MP\ has a variety of ways to tuck tokens away into token lists for later
14230 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14231 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14232 All such operations are handled by the routines in this part of the program.
14234 The modifier part of each command code is zero for the ``ending delimiters''
14235 like \&{enddef} and \&{endfor}.
14237 @d start_def 1 /* command modifier for \&{def} */
14238 @d var_def 2 /* command modifier for \&{vardef} */
14239 @d end_def 0 /* command modifier for \&{enddef} */
14240 @d start_forever 1 /* command modifier for \&{forever} */
14241 @d end_for 0 /* command modifier for \&{endfor} */
14244 mp_primitive(mp, "def",macro_def,start_def);
14245 @:def_}{\&{def} primitive@>
14246 mp_primitive(mp, "vardef",macro_def,var_def);
14247 @:var_def_}{\&{vardef} primitive@>
14248 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14249 @:primary_def_}{\&{primarydef} primitive@>
14250 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14251 @:secondary_def_}{\&{secondarydef} primitive@>
14252 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14253 @:tertiary_def_}{\&{tertiarydef} primitive@>
14254 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14255 @:end_def_}{\&{enddef} primitive@>
14257 mp_primitive(mp, "for",iteration,expr_base);
14258 @:for_}{\&{for} primitive@>
14259 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14260 @:for_suffixes_}{\&{forsuffixes} primitive@>
14261 mp_primitive(mp, "forever",iteration,start_forever);
14262 @:forever_}{\&{forever} primitive@>
14263 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14264 @:end_for_}{\&{endfor} primitive@>
14266 @ @<Cases of |print_cmd...@>=
14268 if ( m<=var_def ) {
14269 if ( m==start_def ) mp_print(mp, "def");
14270 else if ( m<start_def ) mp_print(mp, "enddef");
14271 else mp_print(mp, "vardef");
14272 } else if ( m==secondary_primary_macro ) {
14273 mp_print(mp, "primarydef");
14274 } else if ( m==tertiary_secondary_macro ) {
14275 mp_print(mp, "secondarydef");
14277 mp_print(mp, "tertiarydef");
14281 if ( m<=start_forever ) {
14282 if ( m==start_forever ) mp_print(mp, "forever");
14283 else mp_print(mp, "endfor");
14284 } else if ( m==expr_base ) {
14285 mp_print(mp, "for");
14287 mp_print(mp, "forsuffixes");
14291 @ Different macro-absorbing operations have different syntaxes, but they
14292 also have a lot in common. There is a list of special symbols that are to
14293 be replaced by parameter tokens; there is a special command code that
14294 ends the definition; the quotation conventions are identical. Therefore
14295 it makes sense to have most of the work done by a single subroutine. That
14296 subroutine is called |scan_toks|.
14298 The first parameter to |scan_toks| is the command code that will
14299 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14301 The second parameter, |subst_list|, points to a (possibly empty) list
14302 of two-word nodes whose |info| and |value| fields specify symbol tokens
14303 before and after replacement. The list will be returned to free storage
14306 The third parameter is simply appended to the token list that is built.
14307 And the final parameter tells how many of the special operations
14308 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14309 When such parameters are present, they are called \.{(SUFFIX0)},
14310 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14312 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14313 subst_list, pointer tail_end, small_number suffix_count) {
14314 pointer p; /* tail of the token list being built */
14315 pointer q; /* temporary for link management */
14316 integer balance; /* left delimiters minus right delimiters */
14317 p=hold_head; balance=1; link(hold_head)=null;
14320 if ( mp->cur_sym>0 ) {
14321 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14322 if ( mp->cur_cmd==terminator ) {
14323 @<Adjust the balance; |break| if it's zero@>;
14324 } else if ( mp->cur_cmd==macro_special ) {
14325 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14328 link(p)=mp_cur_tok(mp); p=link(p);
14330 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14331 return link(hold_head);
14334 @ @<Substitute for |cur_sym|...@>=
14337 while ( q!=null ) {
14338 if ( info(q)==mp->cur_sym ) {
14339 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14345 @ @<Adjust the balance; |break| if it's zero@>=
14346 if ( mp->cur_mod>0 ) {
14354 @ Four commands are intended to be used only within macro texts: \&{quote},
14355 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14356 code called |macro_special|.
14358 @d quote 0 /* |macro_special| modifier for \&{quote} */
14359 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14360 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14361 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14364 mp_primitive(mp, "quote",macro_special,quote);
14365 @:quote_}{\&{quote} primitive@>
14366 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14367 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14368 mp_primitive(mp, "@@",macro_special,macro_at);
14369 @:]]]\AT!_}{\.{\AT!} primitive@>
14370 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14371 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14373 @ @<Cases of |print_cmd...@>=
14374 case macro_special:
14376 case macro_prefix: mp_print(mp, "#@@"); break;
14377 case macro_at: mp_print_char(mp, '@@'); break;
14378 case macro_suffix: mp_print(mp, "@@#"); break;
14379 default: mp_print(mp, "quote"); break;
14383 @ @<Handle quoted...@>=
14385 if ( mp->cur_mod==quote ) { get_t_next; }
14386 else if ( mp->cur_mod<=suffix_count )
14387 mp->cur_sym=suffix_base-1+mp->cur_mod;
14390 @ Here is a routine that's used whenever a token will be redefined. If
14391 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14392 substituted; the latter is redefinable but essentially impossible to use,
14393 hence \MP's tables won't get fouled up.
14395 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14398 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14399 print_err("Missing symbolic token inserted");
14400 @.Missing symbolic token...@>
14401 help3("Sorry: You can\'t redefine a number, string, or expr.")
14402 ("I've inserted an inaccessible symbol so that your")
14403 ("definition will be completed without mixing me up too badly.");
14404 if ( mp->cur_sym>0 )
14405 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14406 else if ( mp->cur_cmd==string_token )
14407 delete_str_ref(mp->cur_mod);
14408 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14412 @ Before we actually redefine a symbolic token, we need to clear away its
14413 former value, if it was a variable. The following stronger version of
14414 |get_symbol| does that.
14416 @c void mp_get_clear_symbol (MP mp) {
14417 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14420 @ Here's another little subroutine; it checks that an equals sign
14421 or assignment sign comes along at the proper place in a macro definition.
14423 @c void mp_check_equals (MP mp) {
14424 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14425 mp_missing_err(mp, "=");
14427 help5("The next thing in this `def' should have been `=',")
14428 ("because I've already looked at the definition heading.")
14429 ("But don't worry; I'll pretend that an equals sign")
14430 ("was present. Everything from here to `enddef'")
14431 ("will be the replacement text of this macro.");
14436 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14437 handled now that we have |scan_toks|. In this case there are
14438 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14439 |expr_base| and |expr_base+1|).
14441 @c void mp_make_op_def (MP mp) {
14442 command_code m; /* the type of definition */
14443 pointer p,q,r; /* for list manipulation */
14445 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14446 info(q)=mp->cur_sym; value(q)=expr_base;
14447 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14448 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14449 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14450 get_t_next; mp_check_equals(mp);
14451 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14452 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14453 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14454 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14455 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14458 @ Parameters to macros are introduced by the keywords \&{expr},
14459 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14462 mp_primitive(mp, "expr",param_type,expr_base);
14463 @:expr_}{\&{expr} primitive@>
14464 mp_primitive(mp, "suffix",param_type,suffix_base);
14465 @:suffix_}{\&{suffix} primitive@>
14466 mp_primitive(mp, "text",param_type,text_base);
14467 @:text_}{\&{text} primitive@>
14468 mp_primitive(mp, "primary",param_type,primary_macro);
14469 @:primary_}{\&{primary} primitive@>
14470 mp_primitive(mp, "secondary",param_type,secondary_macro);
14471 @:secondary_}{\&{secondary} primitive@>
14472 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14473 @:tertiary_}{\&{tertiary} primitive@>
14475 @ @<Cases of |print_cmd...@>=
14477 if ( m>=expr_base ) {
14478 if ( m==expr_base ) mp_print(mp, "expr");
14479 else if ( m==suffix_base ) mp_print(mp, "suffix");
14480 else mp_print(mp, "text");
14481 } else if ( m<secondary_macro ) {
14482 mp_print(mp, "primary");
14483 } else if ( m==secondary_macro ) {
14484 mp_print(mp, "secondary");
14486 mp_print(mp, "tertiary");
14490 @ Let's turn next to the more complex processing associated with \&{def}
14491 and \&{vardef}. When the following procedure is called, |cur_mod|
14492 should be either |start_def| or |var_def|.
14494 @c @<Declare the procedure called |check_delimiter|@>;
14495 @<Declare the function called |scan_declared_variable|@>;
14496 void mp_scan_def (MP mp) {
14497 int m; /* the type of definition */
14498 int n; /* the number of special suffix parameters */
14499 int k; /* the total number of parameters */
14500 int c; /* the kind of macro we're defining */
14501 pointer r; /* parameter-substitution list */
14502 pointer q; /* tail of the macro token list */
14503 pointer p; /* temporary storage */
14504 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14505 pointer l_delim,r_delim; /* matching delimiters */
14506 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14507 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14508 @<Scan the token or variable to be defined;
14509 set |n|, |scanner_status|, and |warning_info|@>;
14511 if ( mp->cur_cmd==left_delimiter ) {
14512 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14514 if ( mp->cur_cmd==param_type ) {
14515 @<Absorb undelimited parameters, putting them into list |r|@>;
14517 mp_check_equals(mp);
14518 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14519 @<Attach the replacement text to the tail of node |p|@>;
14520 mp->scanner_status=normal; mp_get_x_next(mp);
14523 @ We don't put `|frozen_end_group|' into the replacement text of
14524 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14526 @<Attach the replacement text to the tail of node |p|@>=
14527 if ( m==start_def ) {
14528 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14530 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14531 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14532 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14534 if ( mp->warning_info==bad_vardef )
14535 mp_flush_token_list(mp, value(bad_vardef))
14539 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14541 @ @<Scan the token or variable to be defined;...@>=
14542 if ( m==start_def ) {
14543 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14544 mp->scanner_status=op_defining; n=0;
14545 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14547 p=mp_scan_declared_variable(mp);
14548 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14549 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14550 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14551 mp->scanner_status=var_defining; n=2;
14552 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14555 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14556 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14558 @ @<Change to `\.{a bad variable}'@>=
14560 print_err("This variable already starts with a macro");
14561 @.This variable already...@>
14562 help2("After `vardef a' you can\'t say `vardef a.b'.")
14563 ("So I'll have to discard this definition.");
14564 mp_error(mp); mp->warning_info=bad_vardef;
14567 @ @<Initialize table entries...@>=
14568 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14569 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14571 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14573 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14574 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14577 print_err("Missing parameter type; `expr' will be assumed");
14578 @.Missing parameter type@>
14579 help1("You should've had `expr' or `suffix' or `text' here.");
14580 mp_back_error(mp); base=expr_base;
14582 @<Absorb parameter tokens for type |base|@>;
14583 mp_check_delimiter(mp, l_delim,r_delim);
14585 } while (mp->cur_cmd==left_delimiter)
14587 @ @<Absorb parameter tokens for type |base|@>=
14589 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14590 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14591 value(p)=base+k; info(p)=mp->cur_sym;
14592 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14593 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14594 incr(k); link(p)=r; r=p; get_t_next;
14595 } while (mp->cur_cmd==comma)
14597 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14599 p=mp_get_node(mp, token_node_size);
14600 if ( mp->cur_mod<expr_base ) {
14601 c=mp->cur_mod; value(p)=expr_base+k;
14603 value(p)=mp->cur_mod+k;
14604 if ( mp->cur_mod==expr_base ) c=expr_macro;
14605 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14608 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14609 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14610 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14611 c=of_macro; p=mp_get_node(mp, token_node_size);
14612 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14613 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14614 link(p)=r; r=p; get_t_next;
14618 @* \[32] Expanding the next token.
14619 Only a few command codes |<min_command| can possibly be returned by
14620 |get_t_next|; in increasing order, they are
14621 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14622 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14624 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14625 like |get_t_next| except that it keeps getting more tokens until
14626 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14627 macros and removes conditionals or iterations or input instructions that
14630 It follows that |get_x_next| might invoke itself recursively. In fact,
14631 there is massive recursion, since macro expansion can involve the
14632 scanning of arbitrarily complex expressions, which in turn involve
14633 macro expansion and conditionals, etc.
14636 Therefore it's necessary to declare a whole bunch of |forward|
14637 procedures at this point, and to insert some other procedures
14638 that will be invoked by |get_x_next|.
14641 void mp_scan_primary (MP mp);
14642 void mp_scan_secondary (MP mp);
14643 void mp_scan_tertiary (MP mp);
14644 void mp_scan_expression (MP mp);
14645 void mp_scan_suffix (MP mp);
14646 @<Declare the procedure called |macro_call|@>;
14647 void mp_get_boolean (MP mp);
14648 void mp_pass_text (MP mp);
14649 void mp_conditional (MP mp);
14650 void mp_start_input (MP mp);
14651 void mp_begin_iteration (MP mp);
14652 void mp_resume_iteration (MP mp);
14653 void mp_stop_iteration (MP mp);
14655 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14656 when it has to do exotic expansion commands.
14658 @c void mp_expand (MP mp) {
14659 pointer p; /* for list manipulation */
14660 size_t k; /* something that we hope is |<=buf_size| */
14661 pool_pointer j; /* index into |str_pool| */
14662 if ( mp->internal[mp_tracing_commands]>unity )
14663 if ( mp->cur_cmd!=defined_macro )
14665 switch (mp->cur_cmd) {
14667 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14670 @<Terminate the current conditional and skip to \&{fi}@>;
14673 @<Initiate or terminate input from a file@>;
14676 if ( mp->cur_mod==end_for ) {
14677 @<Scold the user for having an extra \&{endfor}@>;
14679 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14686 @<Exit a loop if the proper time has come@>;
14691 @<Expand the token after the next token@>;
14694 @<Put a string into the input buffer@>;
14696 case defined_macro:
14697 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14699 }; /* there are no other cases */
14702 @ @<Scold the user...@>=
14704 print_err("Extra `endfor'");
14706 help2("I'm not currently working on a for loop,")
14707 ("so I had better not try to end anything.");
14711 @ The processing of \&{input} involves the |start_input| subroutine,
14712 which will be declared later; the processing of \&{endinput} is trivial.
14715 mp_primitive(mp, "input",input,0);
14716 @:input_}{\&{input} primitive@>
14717 mp_primitive(mp, "endinput",input,1);
14718 @:end_input_}{\&{endinput} primitive@>
14720 @ @<Cases of |print_cmd_mod|...@>=
14722 if ( m==0 ) mp_print(mp, "input");
14723 else mp_print(mp, "endinput");
14726 @ @<Initiate or terminate input...@>=
14727 if ( mp->cur_mod>0 ) mp->force_eof=true;
14728 else mp_start_input(mp)
14730 @ We'll discuss the complicated parts of loop operations later. For now
14731 it suffices to know that there's a global variable called |loop_ptr|
14732 that will be |null| if no loop is in progress.
14735 { while ( token_state &&(loc==null) )
14736 mp_end_token_list(mp); /* conserve stack space */
14737 if ( mp->loop_ptr==null ) {
14738 print_err("Lost loop");
14740 help2("I'm confused; after exiting from a loop, I still seem")
14741 ("to want to repeat it. I'll try to forget the problem.");
14744 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14748 @ @<Exit a loop if the proper time has come@>=
14749 { mp_get_boolean(mp);
14750 if ( mp->internal[mp_tracing_commands]>unity )
14751 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14752 if ( mp->cur_exp==true_code ) {
14753 if ( mp->loop_ptr==null ) {
14754 print_err("No loop is in progress");
14755 @.No loop is in progress@>
14756 help1("Why say `exitif' when there's nothing to exit from?");
14757 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14759 @<Exit prematurely from an iteration@>;
14761 } else if ( mp->cur_cmd!=semicolon ) {
14762 mp_missing_err(mp, ";");
14764 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14765 ("I shall pretend that one was there."); mp_back_error(mp);
14769 @ Here we use the fact that |forever_text| is the only |token_type| that
14770 is less than |loop_text|.
14772 @<Exit prematurely...@>=
14775 if ( file_state ) {
14776 mp_end_file_reading(mp);
14778 if ( token_type<=loop_text ) p=start;
14779 mp_end_token_list(mp);
14782 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14784 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14787 @ @<Expand the token after the next token@>=
14789 p=mp_cur_tok(mp); get_t_next;
14790 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14791 else mp_back_input(mp);
14795 @ @<Put a string into the input buffer@>=
14796 { mp_get_x_next(mp); mp_scan_primary(mp);
14797 if ( mp->cur_type!=mp_string_type ) {
14798 mp_disp_err(mp, null,"Not a string");
14800 help2("I'm going to flush this expression, since")
14801 ("scantokens should be followed by a known string.");
14802 mp_put_get_flush_error(mp, 0);
14805 if ( length(mp->cur_exp)>0 )
14806 @<Pretend we're reading a new one-line file@>;
14810 @ @<Pretend we're reading a new one-line file@>=
14811 { mp_begin_file_reading(mp); name=is_scantok;
14812 k=mp->first+length(mp->cur_exp);
14813 if ( k>=mp->max_buf_stack ) {
14814 while ( k>=mp->buf_size ) {
14815 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14817 mp->max_buf_stack=k+1;
14819 j=mp->str_start[mp->cur_exp]; limit=k;
14820 while ( mp->first<(size_t)limit ) {
14821 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14823 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14824 mp_flush_cur_exp(mp, 0);
14827 @ Here finally is |get_x_next|.
14829 The expression scanning routines to be considered later
14830 communicate via the global quantities |cur_type| and |cur_exp|;
14831 we must be very careful to save and restore these quantities while
14832 macros are being expanded.
14836 void mp_get_x_next (MP mp);
14838 @ @c void mp_get_x_next (MP mp) {
14839 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14841 if ( mp->cur_cmd<min_command ) {
14842 save_exp=mp_stash_cur_exp(mp);
14844 if ( mp->cur_cmd==defined_macro )
14845 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14849 } while (mp->cur_cmd<min_command);
14850 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14854 @ Now let's consider the |macro_call| procedure, which is used to start up
14855 all user-defined macros. Since the arguments to a macro might be expressions,
14856 |macro_call| is recursive.
14859 The first parameter to |macro_call| points to the reference count of the
14860 token list that defines the macro. The second parameter contains any
14861 arguments that have already been parsed (see below). The third parameter
14862 points to the symbolic token that names the macro. If the third parameter
14863 is |null|, the macro was defined by \&{vardef}, so its name can be
14864 reconstructed from the prefix and ``at'' arguments found within the
14867 What is this second parameter? It's simply a linked list of one-word items,
14868 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14869 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14870 the first scanned argument, and |link(arg_list)| points to the list of
14871 further arguments (if any).
14873 Arguments of type \&{expr} are so-called capsules, which we will
14874 discuss later when we concentrate on expressions; they can be
14875 recognized easily because their |link| field is |void|. Arguments of type
14876 \&{suffix} and \&{text} are token lists without reference counts.
14878 @ After argument scanning is complete, the arguments are moved to the
14879 |param_stack|. (They can't be put on that stack any sooner, because
14880 the stack is growing and shrinking in unpredictable ways as more arguments
14881 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14882 the replacement text of the macro is placed at the top of the \MP's
14883 input stack, so that |get_t_next| will proceed to read it next.
14885 @<Declare the procedure called |macro_call|@>=
14886 @<Declare the procedure called |print_macro_name|@>;
14887 @<Declare the procedure called |print_arg|@>;
14888 @<Declare the procedure called |scan_text_arg|@>;
14889 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14890 pointer macro_name) ;
14893 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14894 pointer macro_name) {
14895 /* invokes a user-defined control sequence */
14896 pointer r; /* current node in the macro's token list */
14897 pointer p,q; /* for list manipulation */
14898 integer n; /* the number of arguments */
14899 pointer tail = 0; /* tail of the argument list */
14900 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14901 r=link(def_ref); add_mac_ref(def_ref);
14902 if ( arg_list==null ) {
14905 @<Determine the number |n| of arguments already supplied,
14906 and set |tail| to the tail of |arg_list|@>;
14908 if ( mp->internal[mp_tracing_macros]>0 ) {
14909 @<Show the text of the macro being expanded, and the existing arguments@>;
14911 @<Scan the remaining arguments, if any; set |r| to the first token
14912 of the replacement text@>;
14913 @<Feed the arguments and replacement text to the scanner@>;
14916 @ @<Show the text of the macro...@>=
14917 mp_begin_diagnostic(mp); mp_print_ln(mp);
14918 mp_print_macro_name(mp, arg_list,macro_name);
14919 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14920 mp_show_macro(mp, def_ref,null,100000);
14921 if ( arg_list!=null ) {
14925 mp_print_arg(mp, q,n,0);
14926 incr(n); p=link(p);
14929 mp_end_diagnostic(mp, false)
14932 @ @<Declare the procedure called |print_macro_name|@>=
14933 void mp_print_macro_name (MP mp,pointer a, pointer n);
14936 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14937 pointer p,q; /* they traverse the first part of |a| */
14943 mp_print_text(info(info(link(a))));
14946 while ( link(q)!=null ) q=link(q);
14947 link(q)=info(link(a));
14948 mp_show_token_list(mp, p,null,1000,0);
14954 @ @<Declare the procedure called |print_arg|@>=
14955 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14958 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14959 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14960 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14961 else mp_print_nl(mp, "(TEXT");
14962 mp_print_int(mp, n); mp_print(mp, ")<-");
14963 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14964 else mp_show_token_list(mp, q,null,1000,0);
14967 @ @<Determine the number |n| of arguments already supplied...@>=
14969 n=1; tail=arg_list;
14970 while ( link(tail)!=null ) {
14971 incr(n); tail=link(tail);
14975 @ @<Scan the remaining arguments, if any; set |r|...@>=
14976 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14977 while ( info(r)>=expr_base ) {
14978 @<Scan the delimited argument represented by |info(r)|@>;
14981 if ( mp->cur_cmd==comma ) {
14982 print_err("Too many arguments to ");
14983 @.Too many arguments...@>
14984 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14985 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14987 mp_print(mp, "' has been inserted");
14988 help3("I'm going to assume that the comma I just read was a")
14989 ("right delimiter, and then I'll begin expanding the macro.")
14990 ("You might want to delete some tokens before continuing.");
14993 if ( info(r)!=general_macro ) {
14994 @<Scan undelimited argument(s)@>;
14998 @ At this point, the reader will find it advisable to review the explanation
14999 of token list format that was presented earlier, paying special attention to
15000 the conventions that apply only at the beginning of a macro's token list.
15002 On the other hand, the reader will have to take the expression-parsing
15003 aspects of the following program on faith; we will explain |cur_type|
15004 and |cur_exp| later. (Several things in this program depend on each other,
15005 and it's necessary to jump into the circle somewhere.)
15007 @<Scan the delimited argument represented by |info(r)|@>=
15008 if ( mp->cur_cmd!=comma ) {
15010 if ( mp->cur_cmd!=left_delimiter ) {
15011 print_err("Missing argument to ");
15012 @.Missing argument...@>
15013 mp_print_macro_name(mp, arg_list,macro_name);
15014 help3("That macro has more parameters than you thought.")
15015 ("I'll continue by pretending that each missing argument")
15016 ("is either zero or null.");
15017 if ( info(r)>=suffix_base ) {
15018 mp->cur_exp=null; mp->cur_type=mp_token_list;
15020 mp->cur_exp=0; mp->cur_type=mp_known;
15022 mp_back_error(mp); mp->cur_cmd=right_delimiter;
15025 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
15027 @<Scan the argument represented by |info(r)|@>;
15028 if ( mp->cur_cmd!=comma )
15029 @<Check that the proper right delimiter was present@>;
15031 @<Append the current expression to |arg_list|@>
15033 @ @<Check that the proper right delim...@>=
15034 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15035 if ( info(link(r))>=expr_base ) {
15036 mp_missing_err(mp, ",");
15038 help3("I've finished reading a macro argument and am about to")
15039 ("read another; the arguments weren't delimited correctly.")
15040 ("You might want to delete some tokens before continuing.");
15041 mp_back_error(mp); mp->cur_cmd=comma;
15043 mp_missing_err(mp, str(text(r_delim)));
15045 help2("I've gotten to the end of the macro parameter list.")
15046 ("You might want to delete some tokens before continuing.");
15051 @ A \&{suffix} or \&{text} parameter will be have been scanned as
15052 a token list pointed to by |cur_exp|, in which case we will have
15053 |cur_type=token_list|.
15055 @<Append the current expression to |arg_list|@>=
15057 p=mp_get_avail(mp);
15058 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15059 else info(p)=mp_stash_cur_exp(mp);
15060 if ( mp->internal[mp_tracing_macros]>0 ) {
15061 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15062 mp_end_diagnostic(mp, false);
15064 if ( arg_list==null ) arg_list=p;
15069 @ @<Scan the argument represented by |info(r)|@>=
15070 if ( info(r)>=text_base ) {
15071 mp_scan_text_arg(mp, l_delim,r_delim);
15074 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15075 else mp_scan_expression(mp);
15078 @ The parameters to |scan_text_arg| are either a pair of delimiters
15079 or zero; the latter case is for undelimited text arguments, which
15080 end with the first semicolon or \&{endgroup} or \&{end} that is not
15081 contained in a group.
15083 @<Declare the procedure called |scan_text_arg|@>=
15084 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15087 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15088 integer balance; /* excess of |l_delim| over |r_delim| */
15089 pointer p; /* list tail */
15090 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15091 p=hold_head; balance=1; link(hold_head)=null;
15094 if ( l_delim==0 ) {
15095 @<Adjust the balance for an undelimited argument; |break| if done@>;
15097 @<Adjust the balance for a delimited argument; |break| if done@>;
15099 link(p)=mp_cur_tok(mp); p=link(p);
15101 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15102 mp->scanner_status=normal;
15105 @ @<Adjust the balance for a delimited argument...@>=
15106 if ( mp->cur_cmd==right_delimiter ) {
15107 if ( mp->cur_mod==l_delim ) {
15109 if ( balance==0 ) break;
15111 } else if ( mp->cur_cmd==left_delimiter ) {
15112 if ( mp->cur_mod==r_delim ) incr(balance);
15115 @ @<Adjust the balance for an undelimited...@>=
15116 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15117 if ( balance==1 ) { break; }
15118 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15119 } else if ( mp->cur_cmd==begin_group ) {
15123 @ @<Scan undelimited argument(s)@>=
15125 if ( info(r)<text_macro ) {
15127 if ( info(r)!=suffix_macro ) {
15128 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15132 case primary_macro:mp_scan_primary(mp); break;
15133 case secondary_macro:mp_scan_secondary(mp); break;
15134 case tertiary_macro:mp_scan_tertiary(mp); break;
15135 case expr_macro:mp_scan_expression(mp); break;
15137 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15140 @<Scan a suffix with optional delimiters@>;
15142 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15143 } /* there are no other cases */
15145 @<Append the current expression to |arg_list|@>;
15148 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15150 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15151 if ( mp->internal[mp_tracing_macros]>0 ) {
15152 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15153 mp_end_diagnostic(mp, false);
15155 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15157 if ( mp->cur_cmd!=of_token ) {
15158 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15160 mp_print_macro_name(mp, arg_list,macro_name);
15161 help1("I've got the first argument; will look now for the other.");
15164 mp_get_x_next(mp); mp_scan_primary(mp);
15167 @ @<Scan a suffix with optional delimiters@>=
15169 if ( mp->cur_cmd!=left_delimiter ) {
15172 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15174 mp_scan_suffix(mp);
15175 if ( l_delim!=null ) {
15176 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15177 mp_missing_err(mp, str(text(r_delim)));
15179 help2("I've gotten to the end of the macro parameter list.")
15180 ("You might want to delete some tokens before continuing.");
15187 @ Before we put a new token list on the input stack, it is wise to clean off
15188 all token lists that have recently been depleted. Then a user macro that ends
15189 with a call to itself will not require unbounded stack space.
15191 @<Feed the arguments and replacement text to the scanner@>=
15192 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15193 if ( mp->param_ptr+n>mp->max_param_stack ) {
15194 mp->max_param_stack=mp->param_ptr+n;
15195 if ( mp->max_param_stack>mp->param_size )
15196 mp_overflow(mp, "parameter stack size",mp->param_size);
15197 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15199 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15203 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15205 mp_flush_list(mp, arg_list);
15208 @ It's sometimes necessary to put a single argument onto |param_stack|.
15209 The |stack_argument| subroutine does this.
15211 @c void mp_stack_argument (MP mp,pointer p) {
15212 if ( mp->param_ptr==mp->max_param_stack ) {
15213 incr(mp->max_param_stack);
15214 if ( mp->max_param_stack>mp->param_size )
15215 mp_overflow(mp, "parameter stack size",mp->param_size);
15216 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15218 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15221 @* \[33] Conditional processing.
15222 Let's consider now the way \&{if} commands are handled.
15224 Conditions can be inside conditions, and this nesting has a stack
15225 that is independent of other stacks.
15226 Four global variables represent the top of the condition stack:
15227 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15228 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15229 the largest code of a |fi_or_else| command that is syntactically legal;
15230 and |if_line| is the line number at which the current conditional began.
15232 If no conditions are currently in progress, the condition stack has the
15233 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15234 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15235 |link| fields of the first word contain |if_limit|, |cur_if|, and
15236 |cond_ptr| at the next level, and the second word contains the
15237 corresponding |if_line|.
15239 @d if_node_size 2 /* number of words in stack entry for conditionals */
15240 @d if_line_field(A) mp->mem[(A)+1].cint
15241 @d if_code 1 /* code for \&{if} being evaluated */
15242 @d fi_code 2 /* code for \&{fi} */
15243 @d else_code 3 /* code for \&{else} */
15244 @d else_if_code 4 /* code for \&{elseif} */
15247 pointer cond_ptr; /* top of the condition stack */
15248 integer if_limit; /* upper bound on |fi_or_else| codes */
15249 small_number cur_if; /* type of conditional being worked on */
15250 integer if_line; /* line where that conditional began */
15253 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15256 mp_primitive(mp, "if",if_test,if_code);
15257 @:if_}{\&{if} primitive@>
15258 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15259 @:fi_}{\&{fi} primitive@>
15260 mp_primitive(mp, "else",fi_or_else,else_code);
15261 @:else_}{\&{else} primitive@>
15262 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15263 @:else_if_}{\&{elseif} primitive@>
15265 @ @<Cases of |print_cmd_mod|...@>=
15269 case if_code:mp_print(mp, "if"); break;
15270 case fi_code:mp_print(mp, "fi"); break;
15271 case else_code:mp_print(mp, "else"); break;
15272 default: mp_print(mp, "elseif"); break;
15276 @ Here is a procedure that ignores text until coming to an \&{elseif},
15277 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15278 nesting. After it has acted, |cur_mod| will indicate the token that
15281 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15282 makes the skipping process a bit simpler.
15285 void mp_pass_text (MP mp) {
15287 mp->scanner_status=skipping;
15288 mp->warning_info=mp_true_line(mp);
15291 if ( mp->cur_cmd<=fi_or_else ) {
15292 if ( mp->cur_cmd<fi_or_else ) {
15296 if ( mp->cur_mod==fi_code ) decr(l);
15299 @<Decrease the string reference count,
15300 if the current token is a string@>;
15303 mp->scanner_status=normal;
15306 @ @<Decrease the string reference count...@>=
15307 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15309 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15310 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15311 condition has been evaluated, a colon will be inserted.
15312 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15314 @<Push the condition stack@>=
15315 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15316 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15317 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15318 mp->cur_if=if_code;
15321 @ @<Pop the condition stack@>=
15322 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15323 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15324 mp_free_node(mp, p,if_node_size);
15327 @ Here's a procedure that changes the |if_limit| code corresponding to
15328 a given value of |cond_ptr|.
15330 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15332 if ( p==mp->cond_ptr ) {
15333 mp->if_limit=l; /* that's the easy case */
15337 if ( q==null ) mp_confusion(mp, "if");
15338 @:this can't happen if}{\quad if@>
15339 if ( link(q)==p ) {
15347 @ The user is supposed to put colons into the proper parts of conditional
15348 statements. Therefore, \MP\ has to check for their presence.
15351 void mp_check_colon (MP mp) {
15352 if ( mp->cur_cmd!=colon ) {
15353 mp_missing_err(mp, ":");
15355 help2("There should've been a colon after the condition.")
15356 ("I shall pretend that one was there.");;
15361 @ A condition is started when the |get_x_next| procedure encounters
15362 an |if_test| command; in that case |get_x_next| calls |conditional|,
15363 which is a recursive procedure.
15366 @c void mp_conditional (MP mp) {
15367 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15368 int new_if_limit; /* future value of |if_limit| */
15369 pointer p; /* temporary register */
15370 @<Push the condition stack@>;
15371 save_cond_ptr=mp->cond_ptr;
15373 mp_get_boolean(mp); new_if_limit=else_if_code;
15374 if ( mp->internal[mp_tracing_commands]>unity ) {
15375 @<Display the boolean value of |cur_exp|@>;
15378 mp_check_colon(mp);
15379 if ( mp->cur_exp==true_code ) {
15380 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15381 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15383 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15385 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15386 if ( mp->cur_mod==fi_code ) {
15387 @<Pop the condition stack@>
15388 } else if ( mp->cur_mod==else_if_code ) {
15391 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15396 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15397 \&{else}: \\{bar} \&{fi}', the first \&{else}
15398 that we come to after learning that the \&{if} is false is not the
15399 \&{else} we're looking for. Hence the following curious logic is needed.
15401 @<Skip to \&{elseif}...@>=
15404 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15405 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15409 @ @<Display the boolean value...@>=
15410 { mp_begin_diagnostic(mp);
15411 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15412 else mp_print(mp, "{false}");
15413 mp_end_diagnostic(mp, false);
15416 @ The processing of conditionals is complete except for the following
15417 code, which is actually part of |get_x_next|. It comes into play when
15418 \&{elseif}, \&{else}, or \&{fi} is scanned.
15420 @<Terminate the current conditional and skip to \&{fi}@>=
15421 if ( mp->cur_mod>mp->if_limit ) {
15422 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15423 mp_missing_err(mp, ":");
15425 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15427 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15431 help1("I'm ignoring this; it doesn't match any if.");
15435 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15436 @<Pop the condition stack@>;
15439 @* \[34] Iterations.
15440 To bring our treatment of |get_x_next| to a close, we need to consider what
15441 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15443 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15444 that are currently active. If |loop_ptr=null|, no loops are in progress;
15445 otherwise |info(loop_ptr)| points to the iterative text of the current
15446 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15447 loops that enclose the current one.
15449 A loop-control node also has two other fields, called |loop_type| and
15450 |loop_list|, whose contents depend on the type of loop:
15452 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15453 points to a list of one-word nodes whose |info| fields point to the
15454 remaining argument values of a suffix list and expression list.
15456 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15459 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15460 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15461 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15464 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15465 header and |loop_list(loop_ptr)| points into the graphical object list for
15468 \yskip\noindent In the case of a progression node, the first word is not used
15469 because the link field of words in the dynamic memory area cannot be arbitrary.
15471 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15472 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15473 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15474 @d loop_node_size 2 /* the number of words in a loop control node */
15475 @d progression_node_size 4 /* the number of words in a progression node */
15476 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15477 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15478 @d progression_flag (null+2)
15479 /* |loop_type| value when |loop_list| points to a progression node */
15482 pointer loop_ptr; /* top of the loop-control-node stack */
15487 @ If the expressions that define an arithmetic progression in
15488 a \&{for} loop don't have known numeric values, the |bad_for|
15489 subroutine screams at the user.
15491 @c void mp_bad_for (MP mp, char * s) {
15492 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15493 @.Improper...replaced by 0@>
15494 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15495 help4("When you say `for x=a step b until c',")
15496 ("the initial value `a' and the step size `b'")
15497 ("and the final value `c' must have known numeric values.")
15498 ("I'm zeroing this one. Proceed, with fingers crossed.");
15499 mp_put_get_flush_error(mp, 0);
15502 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15503 has just been scanned. (This code requires slight familiarity with
15504 expression-parsing routines that we have not yet discussed; but it seems
15505 to belong in the present part of the program, even though the original author
15506 didn't write it until later. The reader may wish to come back to it.)
15508 @c void mp_begin_iteration (MP mp) {
15509 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15510 halfword n; /* hash address of the current symbol */
15511 pointer s; /* the new loop-control node */
15512 pointer p; /* substitution list for |scan_toks| */
15513 pointer q; /* link manipulation register */
15514 pointer pp; /* a new progression node */
15515 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15516 if ( m==start_forever ){
15517 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15519 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15520 info(p)=mp->cur_sym; value(p)=m;
15522 if ( mp->cur_cmd==within_token ) {
15523 @<Set up a picture iteration@>;
15525 @<Check for the |"="| or |":="| in a loop header@>;
15526 @<Scan the values to be used in the loop@>;
15529 @<Check for the presence of a colon@>;
15530 @<Scan the loop text and put it on the loop control stack@>;
15531 mp_resume_iteration(mp);
15534 @ @<Check for the |"="| or |":="| in a loop header@>=
15535 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15536 mp_missing_err(mp, "=");
15538 help3("The next thing in this loop should have been `=' or `:='.")
15539 ("But don't worry; I'll pretend that an equals sign")
15540 ("was present, and I'll look for the values next.");
15544 @ @<Check for the presence of a colon@>=
15545 if ( mp->cur_cmd!=colon ) {
15546 mp_missing_err(mp, ":");
15548 help3("The next thing in this loop should have been a `:'.")
15549 ("So I'll pretend that a colon was present;")
15550 ("everything from here to `endfor' will be iterated.");
15554 @ We append a special |frozen_repeat_loop| token in place of the
15555 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15556 at the proper time to cause the loop to be repeated.
15558 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15559 he will be foiled by the |get_symbol| routine, which keeps frozen
15560 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15561 token, so it won't be lost accidentally.)
15563 @ @<Scan the loop text...@>=
15564 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15565 mp->scanner_status=loop_defining; mp->warning_info=n;
15566 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15567 link(s)=mp->loop_ptr; mp->loop_ptr=s
15569 @ @<Initialize table...@>=
15570 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15571 text(frozen_repeat_loop)=intern(" ENDFOR");
15573 @ The loop text is inserted into \MP's scanning apparatus by the
15574 |resume_iteration| routine.
15576 @c void mp_resume_iteration (MP mp) {
15577 pointer p,q; /* link registers */
15578 p=loop_type(mp->loop_ptr);
15579 if ( p==progression_flag ) {
15580 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15581 mp->cur_exp=value(p);
15582 if ( @<The arithmetic progression has ended@> ) {
15583 mp_stop_iteration(mp);
15586 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15587 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15588 } else if ( p==null ) {
15589 p=loop_list(mp->loop_ptr);
15591 mp_stop_iteration(mp);
15594 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15595 } else if ( p==mp_void ) {
15596 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15598 @<Make |q| a capsule containing the next picture component from
15599 |loop_list(loop_ptr)| or |goto not_found|@>;
15601 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15602 mp_stack_argument(mp, q);
15603 if ( mp->internal[mp_tracing_commands]>unity ) {
15604 @<Trace the start of a loop@>;
15608 mp_stop_iteration(mp);
15611 @ @<The arithmetic progression has ended@>=
15612 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15613 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15615 @ @<Trace the start of a loop@>=
15617 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15619 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15620 else mp_show_token_list(mp, q,null,50,0);
15621 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15624 @ @<Make |q| a capsule containing the next picture component from...@>=
15625 { q=loop_list(mp->loop_ptr);
15626 if ( q==null ) goto NOT_FOUND;
15627 skip_component(q) goto NOT_FOUND;
15628 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15629 mp_init_bbox(mp, mp->cur_exp);
15630 mp->cur_type=mp_picture_type;
15631 loop_list(mp->loop_ptr)=q;
15632 q=mp_stash_cur_exp(mp);
15635 @ A level of loop control disappears when |resume_iteration| has decided
15636 not to resume, or when an \&{exitif} construction has removed the loop text
15637 from the input stack.
15639 @c void mp_stop_iteration (MP mp) {
15640 pointer p,q; /* the usual */
15641 p=loop_type(mp->loop_ptr);
15642 if ( p==progression_flag ) {
15643 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15644 } else if ( p==null ){
15645 q=loop_list(mp->loop_ptr);
15646 while ( q!=null ) {
15649 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15650 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15652 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15655 p=q; q=link(q); free_avail(p);
15657 } else if ( p>progression_flag ) {
15658 delete_edge_ref(p);
15660 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15661 mp_free_node(mp, p,loop_node_size);
15664 @ Now that we know all about loop control, we can finish up
15665 the missing portion of |begin_iteration| and we'll be done.
15667 The following code is performed after the `\.=' has been scanned in
15668 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15669 (if |m=suffix_base|).
15671 @<Scan the values to be used in the loop@>=
15672 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15675 if ( m!=expr_base ) {
15676 mp_scan_suffix(mp);
15678 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15680 mp_scan_expression(mp);
15681 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15682 @<Prepare for step-until construction and |break|@>;
15684 mp->cur_exp=mp_stash_cur_exp(mp);
15686 link(q)=mp_get_avail(mp); q=link(q);
15687 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15690 } while (mp->cur_cmd==comma)
15692 @ @<Prepare for step-until construction and |break|@>=
15694 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15695 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15696 mp_get_x_next(mp); mp_scan_expression(mp);
15697 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15698 step_size(pp)=mp->cur_exp;
15699 if ( mp->cur_cmd!=until_token ) {
15700 mp_missing_err(mp, "until");
15701 @.Missing `until'@>
15702 help2("I assume you meant to say `until' after `step'.")
15703 ("So I'll look for the final value and colon next.");
15706 mp_get_x_next(mp); mp_scan_expression(mp);
15707 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15708 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15709 loop_type(s)=progression_flag;
15713 @ The last case is when we have just seen ``\&{within}'', and we need to
15714 parse a picture expression and prepare to iterate over it.
15716 @<Set up a picture iteration@>=
15717 { mp_get_x_next(mp);
15718 mp_scan_expression(mp);
15719 @<Make sure the current expression is a known picture@>;
15720 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15721 q=link(dummy_loc(mp->cur_exp));
15723 if ( is_start_or_stop(q) )
15724 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15728 @ @<Make sure the current expression is a known picture@>=
15729 if ( mp->cur_type!=mp_picture_type ) {
15730 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15731 help1("When you say `for x in p', p must be a known picture.");
15732 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15733 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15736 @* \[35] File names.
15737 It's time now to fret about file names. Besides the fact that different
15738 operating systems treat files in different ways, we must cope with the
15739 fact that completely different naming conventions are used by different
15740 groups of people. The following programs show what is required for one
15741 particular operating system; similar routines for other systems are not
15742 difficult to devise.
15743 @^system dependencies@>
15745 \MP\ assumes that a file name has three parts: the name proper; its
15746 ``extension''; and a ``file area'' where it is found in an external file
15747 system. The extension of an input file is assumed to be
15748 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15749 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15750 metric files that describe characters in any fonts created by \MP; it is
15751 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15752 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15753 The file area can be arbitrary on input files, but files are usually
15754 output to the user's current area. If an input file cannot be
15755 found on the specified area, \MP\ will look for it on a special system
15756 area; this special area is intended for commonly used input files.
15758 Simple uses of \MP\ refer only to file names that have no explicit
15759 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15760 instead of `\.{input} \.{cmr10.new}'. Simple file
15761 names are best, because they make the \MP\ source files portable;
15762 whenever a file name consists entirely of letters and digits, it should be
15763 treated in the same way by all implementations of \MP. However, users
15764 need the ability to refer to other files in their environment, especially
15765 when responding to error messages concerning unopenable files; therefore
15766 we want to let them use the syntax that appears in their favorite
15769 @ \MP\ uses the same conventions that have proved to be satisfactory for
15770 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15771 @^system dependencies@>
15772 the system-independent parts of \MP\ are expressed in terms
15773 of three system-dependent
15774 procedures called |begin_name|, |more_name|, and |end_name|. In
15775 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15776 the system-independent driver program does the operations
15777 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15779 These three procedures communicate with each other via global variables.
15780 Afterwards the file name will appear in the string pool as three strings
15781 called |cur_name|\penalty10000\hskip-.05em,
15782 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15783 |""|), unless they were explicitly specified by the user.
15785 Actually the situation is slightly more complicated, because \MP\ needs
15786 to know when the file name ends. The |more_name| routine is a function
15787 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15788 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15789 returns |false|; or, it returns |true| and $c_n$ is the last character
15790 on the current input line. In other words,
15791 |more_name| is supposed to return |true| unless it is sure that the
15792 file name has been completely scanned; and |end_name| is supposed to be able
15793 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15794 whether $|more_name|(c_n)$ returned |true| or |false|.
15797 char * cur_name; /* name of file just scanned */
15798 char * cur_area; /* file area just scanned, or \.{""} */
15799 char * cur_ext; /* file extension just scanned, or \.{""} */
15801 @ It is easier to maintain reference counts if we assign initial values.
15804 mp->cur_name=xstrdup("");
15805 mp->cur_area=xstrdup("");
15806 mp->cur_ext=xstrdup("");
15808 @ @<Dealloc variables@>=
15809 xfree(mp->cur_area);
15810 xfree(mp->cur_name);
15811 xfree(mp->cur_ext);
15813 @ The file names we shall deal with for illustrative purposes have the
15814 following structure: If the name contains `\.>' or `\.:', the file area
15815 consists of all characters up to and including the final such character;
15816 otherwise the file area is null. If the remaining file name contains
15817 `\..', the file extension consists of all such characters from the first
15818 remaining `\..' to the end, otherwise the file extension is null.
15819 @^system dependencies@>
15821 We can scan such file names easily by using two global variables that keep track
15822 of the occurrences of area and extension delimiters. Note that these variables
15823 cannot be of type |pool_pointer| because a string pool compaction could occur
15824 while scanning a file name.
15827 integer area_delimiter;
15828 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15829 integer ext_delimiter; /* the relevant `\..', if any */
15831 @ Input files that can't be found in the user's area may appear in standard
15832 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15833 extension is |".mf"|.) The standard system area for font metric files
15834 to be read is |MP_font_area|.
15835 This system area name will, of course, vary from place to place.
15836 @^system dependencies@>
15838 @d MP_area "MPinputs:"
15840 @d MF_area "MFinputs:"
15845 @ Here now is the first of the system-dependent routines for file name scanning.
15846 @^system dependencies@>
15848 @<Declare subroutines for parsing file names@>=
15849 void mp_begin_name (MP mp) {
15850 xfree(mp->cur_name);
15851 xfree(mp->cur_area);
15852 xfree(mp->cur_ext);
15853 mp->area_delimiter=-1;
15854 mp->ext_delimiter=-1;
15857 @ And here's the second.
15858 @^system dependencies@>
15860 @<Declare subroutines for parsing file names@>=
15861 boolean mp_more_name (MP mp, ASCII_code c) {
15865 if ( (c=='>')||(c==':') ) {
15866 mp->area_delimiter=mp->pool_ptr;
15867 mp->ext_delimiter=-1;
15868 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15869 mp->ext_delimiter=mp->pool_ptr;
15871 str_room(1); append_char(c); /* contribute |c| to the current string */
15877 @^system dependencies@>
15879 @d copy_pool_segment(A,B,C) {
15880 A = xmalloc(C+1,sizeof(char));
15881 strncpy(A,(char *)(mp->str_pool+B),C);
15884 @<Declare subroutines for parsing file names@>=
15885 void mp_end_name (MP mp) {
15886 pool_pointer s; /* length of area, name, and extension */
15889 s = mp->str_start[mp->str_ptr];
15890 if ( mp->area_delimiter<0 ) {
15891 mp->cur_area=xstrdup("");
15893 len = mp->area_delimiter-s;
15894 copy_pool_segment(mp->cur_area,s,len);
15897 if ( mp->ext_delimiter<0 ) {
15898 mp->cur_ext=xstrdup("");
15899 len = mp->pool_ptr-s;
15901 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15902 len = mp->ext_delimiter-s;
15904 copy_pool_segment(mp->cur_name,s,len);
15905 mp->pool_ptr=s; /* don't need this partial string */
15908 @ Conversely, here is a routine that takes three strings and prints a file
15909 name that might have produced them. (The routine is system dependent, because
15910 some operating systems put the file area last instead of first.)
15911 @^system dependencies@>
15913 @<Basic printing...@>=
15914 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15915 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15918 @ Another system-dependent routine is needed to convert three internal
15920 to the |name_of_file| value that is used to open files. The present code
15921 allows both lowercase and uppercase letters in the file name.
15922 @^system dependencies@>
15924 @d append_to_name(A) { c=(A);
15925 if ( k<file_name_size ) {
15926 mp->name_of_file[k]=xchr(c);
15931 @<Declare subroutines for parsing file names@>=
15932 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15933 integer k; /* number of positions filled in |name_of_file| */
15934 ASCII_code c; /* character being packed */
15935 char *j; /* a character index */
15939 for (j=a;*j;j++) { append_to_name(*j); }
15941 for (j=n;*j;j++) { append_to_name(*j); }
15943 for (j=e;*j;j++) { append_to_name(*j); }
15945 mp->name_of_file[k]=0;
15949 @ @<Internal library declarations@>=
15950 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15952 @ A messier routine is also needed, since mem file names must be scanned
15953 before \MP's string mechanism has been initialized. We shall use the
15954 global variable |MP_mem_default| to supply the text for default system areas
15955 and extensions related to mem files.
15956 @^system dependencies@>
15958 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15959 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15960 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15963 char *MP_mem_default;
15964 char *mem_name; /* for commandline */
15966 @ @<Option variables@>=
15967 char *mem_name; /* for commandline */
15969 @ @<Allocate or initialize ...@>=
15970 mp->MP_mem_default = xstrdup("plain.mem");
15971 mp->mem_name = xstrdup(opt->mem_name);
15973 @^system dependencies@>
15975 @ @<Dealloc variables@>=
15976 xfree(mp->MP_mem_default);
15977 xfree(mp->mem_name);
15979 @ @<Check the ``constant'' values for consistency@>=
15980 if ( mem_default_length>file_name_size ) mp->bad=20;
15982 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15983 from the first |n| characters of |MP_mem_default|, followed by
15984 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15987 We dare not give error messages here, since \MP\ calls this routine before
15988 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15989 since the error will be detected in another way when a strange file name
15991 @^system dependencies@>
15993 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15995 integer k; /* number of positions filled in |name_of_file| */
15996 ASCII_code c; /* character being packed */
15997 integer j; /* index into |buffer| or |MP_mem_default| */
15998 if ( n+b-a+1+mem_ext_length>file_name_size )
15999 b=a+file_name_size-n-1-mem_ext_length;
16001 for (j=0;j<n;j++) {
16002 append_to_name(xord((int)mp->MP_mem_default[j]));
16004 for (j=a;j<b;j++) {
16005 append_to_name(mp->buffer[j]);
16007 for (j=mem_default_length-mem_ext_length;
16008 j<mem_default_length;j++) {
16009 append_to_name(xord((int)mp->MP_mem_default[j]));
16011 mp->name_of_file[k]=0;
16015 @ Here is the only place we use |pack_buffered_name|. This part of the program
16016 becomes active when a ``virgin'' \MP\ is trying to get going, just after
16017 the preliminary initialization, or when the user is substituting another
16018 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
16019 contains the first line of input in |buffer[loc..(last-1)]|, where
16020 |loc<last| and |buffer[loc]<>" "|.
16023 boolean mp_open_mem_file (MP mp) ;
16026 boolean mp_open_mem_file (MP mp) {
16027 int j; /* the first space after the file name */
16028 if (mp->mem_name!=NULL) {
16029 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
16030 if ( mp->mem_file ) return true;
16033 if ( mp->buffer[loc]=='&' ) {
16034 incr(loc); j=loc; mp->buffer[mp->last]=' ';
16035 while ( mp->buffer[j]!=' ' ) incr(j);
16036 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
16037 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
16039 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
16040 @.Sorry, I can't find...@>
16043 /* now pull out all the stops: try for the system \.{plain} file */
16044 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
16045 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
16047 wterm_ln("I can\'t find the PLAIN mem file!\n");
16048 @.I can't find PLAIN...@>
16053 loc=j; return true;
16056 @ Operating systems often make it possible to determine the exact name (and
16057 possible version number) of a file that has been opened. The following routine,
16058 which simply makes a \MP\ string from the value of |name_of_file|, should
16059 ideally be changed to deduce the full name of file~|f|, which is the file
16060 most recently opened, if it is possible to do this in a \PASCAL\ program.
16061 @^system dependencies@>
16064 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16065 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16066 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16069 str_number mp_make_name_string (MP mp) {
16070 int k; /* index into |name_of_file| */
16071 str_room(mp->name_length);
16072 for (k=0;k<mp->name_length;k++) {
16073 append_char(xord((int)mp->name_of_file[k]));
16075 return mp_make_string(mp);
16078 @ Now let's consider the ``driver''
16079 routines by which \MP\ deals with file names
16080 in a system-independent manner. First comes a procedure that looks for a
16081 file name in the input by taking the information from the input buffer.
16082 (We can't use |get_next|, because the conversion to tokens would
16083 destroy necessary information.)
16085 This procedure doesn't allow semicolons or percent signs to be part of
16086 file names, because of other conventions of \MP.
16087 {\sl The {\logos METAFONT\/}book} doesn't
16088 use semicolons or percents immediately after file names, but some users
16089 no doubt will find it natural to do so; therefore system-dependent
16090 changes to allow such characters in file names should probably
16091 be made with reluctance, and only when an entire file name that
16092 includes special characters is ``quoted'' somehow.
16093 @^system dependencies@>
16095 @c void mp_scan_file_name (MP mp) {
16097 while ( mp->buffer[loc]==' ' ) incr(loc);
16099 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16100 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16106 @ Here is another version that takes its input from a string.
16108 @<Declare subroutines for parsing file names@>=
16109 void mp_str_scan_file (MP mp, str_number s) {
16110 pool_pointer p,q; /* current position and stopping point */
16112 p=mp->str_start[s]; q=str_stop(s);
16114 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16120 @ And one that reads from a |char*|.
16122 @<Declare subroutines for parsing file names@>=
16123 void mp_ptr_scan_file (MP mp, char *s) {
16124 char *p, *q; /* current position and stopping point */
16126 p=s; q=p+strlen(s);
16128 if ( ! mp_more_name(mp, *p)) break;
16135 @ The global variable |job_name| contains the file name that was first
16136 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16137 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16140 char *job_name; /* principal file name */
16141 boolean log_opened; /* has the transcript file been opened? */
16142 char *log_name; /* full name of the log file */
16144 @ @<Option variables@>=
16145 char *job_name; /* principal file name */
16147 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16148 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16149 except of course for a short time just after |job_name| has become nonzero.
16151 @<Allocate or ...@>=
16152 mp->job_name=opt->job_name;
16153 mp->log_opened=false;
16155 @ @<Dealloc variables@>=
16156 xfree(mp->job_name);
16158 @ Here is a routine that manufactures the output file names, assuming that
16159 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16162 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16165 void mp_pack_job_name (MP mp, char *s) ;
16167 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16168 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16169 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16170 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16174 @ If some trouble arises when \MP\ tries to open a file, the following
16175 routine calls upon the user to supply another file name. Parameter~|s|
16176 is used in the error message to identify the type of file; parameter~|e|
16177 is the default extension if none is given. Upon exit from the routine,
16178 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16179 ready for another attempt at file opening.
16182 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16184 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16185 size_t k; /* index into |buffer| */
16186 char * saved_cur_name;
16187 if ( mp->interaction==mp_scroll_mode )
16189 if (strcmp(s,"input file name")==0) {
16190 print_err("I can\'t find file `");
16191 @.I can't find file x@>
16193 print_err("I can\'t write on file `");
16195 @.I can't write on file x@>
16196 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16197 mp_print(mp, "'.");
16198 if (strcmp(e,"")==0)
16199 mp_show_context(mp);
16200 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16202 if ( mp->interaction<mp_scroll_mode )
16203 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16204 @.job aborted, file error...@>
16205 saved_cur_name = xstrdup(mp->cur_name);
16206 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16207 if (strcmp(mp->cur_ext,"")==0)
16209 if (strlen(mp->cur_name)==0) {
16210 mp->cur_name=saved_cur_name;
16212 xfree(saved_cur_name);
16217 @ @<Scan file name in the buffer@>=
16219 mp_begin_name(mp); k=mp->first;
16220 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16222 if ( k==mp->last ) break;
16223 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16229 @ The |open_log_file| routine is used to open the transcript file and to help
16230 it catch up to what has previously been printed on the terminal.
16232 @c void mp_open_log_file (MP mp) {
16233 int old_setting; /* previous |selector| setting */
16234 int k; /* index into |months| and |buffer| */
16235 int l; /* end of first input line */
16236 integer m; /* the current month */
16237 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16238 /* abbreviations of month names */
16239 old_setting=mp->selector;
16240 if ( mp->job_name==NULL ) {
16241 mp->job_name=xstrdup("mpout");
16243 mp_pack_job_name(mp,".log");
16244 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16245 @<Try to get a different log file name@>;
16247 mp->log_name=xstrdup(mp->name_of_file);
16248 mp->selector=log_only; mp->log_opened=true;
16249 @<Print the banner line, including the date and time@>;
16250 mp->input_stack[mp->input_ptr]=mp->cur_input;
16251 /* make sure bottom level is in memory */
16252 mp_print_nl(mp, "**");
16254 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16255 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16256 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16257 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16260 @ @<Dealloc variables@>=
16261 xfree(mp->log_name);
16263 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16264 unable to print error messages or even to |show_context|.
16265 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16266 routine will not be invoked because |log_opened| will be false.
16268 The normal idea of |mp_batch_mode| is that nothing at all should be written
16269 on the terminal. However, in the unusual case that
16270 no log file could be opened, we make an exception and allow
16271 an explanatory message to be seen.
16273 Incidentally, the program always refers to the log file as a `\.{transcript
16274 file}', because some systems cannot use the extension `\.{.log}' for
16277 @<Try to get a different log file name@>=
16279 mp->selector=term_only;
16280 mp_prompt_file_name(mp, "transcript file name",".log");
16283 @ @<Print the banner...@>=
16286 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16287 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16288 mp_print_char(mp, ' ');
16289 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16290 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16291 mp_print_char(mp, ' ');
16292 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16293 mp_print_char(mp, ' ');
16294 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16295 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16298 @ The |try_extension| function tries to open an input file determined by
16299 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16300 can't find the file in |cur_area| or the appropriate system area.
16302 @c boolean mp_try_extension (MP mp,char *ext) {
16303 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16304 in_name=xstrdup(mp->cur_name);
16305 in_area=xstrdup(mp->cur_area);
16306 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16309 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16310 else in_area=xstrdup(MP_area);
16311 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16312 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16317 @ Let's turn now to the procedure that is used to initiate file reading
16318 when an `\.{input}' command is being processed.
16320 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16321 char *fname = NULL;
16322 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16324 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16325 if ( strlen(mp->cur_ext)==0 ) {
16326 if ( mp_try_extension(mp, ".mp") ) break;
16327 else if ( mp_try_extension(mp, "") ) break;
16328 else if ( mp_try_extension(mp, ".mf") ) break;
16329 /* |else do_nothing; | */
16330 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16333 mp_end_file_reading(mp); /* remove the level that didn't work */
16334 mp_prompt_file_name(mp, "input file name","");
16336 name=mp_a_make_name_string(mp, cur_file);
16337 fname = xstrdup(mp->name_of_file);
16338 if ( mp->job_name==NULL ) {
16339 mp->job_name=xstrdup(mp->cur_name);
16340 mp_open_log_file(mp);
16341 } /* |open_log_file| doesn't |show_context|, so |limit|
16342 and |loc| needn't be set to meaningful values yet */
16343 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16344 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16345 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16348 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16349 @<Read the first line of the new file@>;
16352 @ This code should be omitted if |a_make_name_string| returns something other
16353 than just a copy of its argument and the full file name is needed for opening
16354 \.{MPX} files or implementing the switch-to-editor option.
16355 @^system dependencies@>
16357 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16358 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16360 @ If the file is empty, it is considered to contain a single blank line,
16361 so there is no need to test the return value.
16363 @<Read the first line...@>=
16366 (void)mp_input_ln(mp, cur_file );
16367 mp_firm_up_the_line(mp);
16368 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16371 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16372 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16373 if ( token_state ) {
16374 print_err("File names can't appear within macros");
16375 @.File names can't...@>
16376 help3("Sorry...I've converted what follows to tokens,")
16377 ("possibly garbaging the name you gave.")
16378 ("Please delete the tokens and insert the name again.");
16381 if ( file_state ) {
16382 mp_scan_file_name(mp);
16384 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16385 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16386 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16389 @ Sometimes we need to deal with two file names at once. This procedure
16390 copies the given string into a special array for an old file name.
16392 @c void mp_copy_old_name (MP mp,str_number s) {
16393 integer k; /* number of positions filled in |old_file_name| */
16394 pool_pointer j; /* index into |str_pool| */
16396 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16398 if ( k<=file_name_size )
16399 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16401 mp->old_file_name[++k] = 0;
16405 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16407 @ The following simple routine starts reading the \.{MPX} file associated
16408 with the current input file.
16410 @c void mp_start_mpx_input (MP mp) {
16411 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16412 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16413 |goto not_found| if there is a problem@>;
16414 mp_begin_file_reading(mp);
16415 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16416 mp_end_file_reading(mp);
16419 name=mp_a_make_name_string(mp, cur_file);
16420 mp->mpx_name[index]=name; add_str_ref(name);
16421 @<Read the first line of the new file@>;
16424 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16427 @ This should ideally be changed to do whatever is necessary to create the
16428 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16429 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16430 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16431 completely different typesetting program if suitable postprocessor is
16432 available to perform the function of \.{DVItoMP}.)
16433 @^system dependencies@>
16435 @ @<Exported types@>=
16436 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16439 mp_run_make_mpx_command run_make_mpx;
16441 @ @<Option variables@>=
16442 mp_run_make_mpx_command run_make_mpx;
16444 @ @<Allocate or initialize ...@>=
16445 set_callback_option(run_make_mpx);
16447 @ @<Internal library declarations@>=
16448 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16450 @ The default does nothing.
16452 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16453 if (mp && origname && mtxname) /* for -W */
16460 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16461 |goto not_found| if there is a problem@>=
16462 mp_copy_old_name(mp, name);
16463 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16466 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16467 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16468 mp_print_nl(mp, ">> ");
16469 mp_print(mp, mp->old_file_name);
16470 mp_print_nl(mp, ">> ");
16471 mp_print(mp, mp->name_of_file);
16472 mp_print_nl(mp, "! Unable to make mpx file");
16473 help4("The two files given above are one of your source files")
16474 ("and an auxiliary file I need to read to find out what your")
16475 ("btex..etex blocks mean. If you don't know why I had trouble,")
16476 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16479 @ The last file-opening commands are for files accessed via the \&{readfrom}
16480 @:read_from_}{\&{readfrom} primitive@>
16481 operator and the \&{write} command. Such files are stored in separate arrays.
16482 @:write_}{\&{write} primitive@>
16484 @<Types in the outer block@>=
16485 typedef unsigned int readf_index; /* |0..max_read_files| */
16486 typedef unsigned int write_index; /* |0..max_write_files| */
16489 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16490 void ** rd_file; /* \&{readfrom} files */
16491 char ** rd_fname; /* corresponding file name or 0 if file not open */
16492 readf_index read_files; /* number of valid entries in the above arrays */
16493 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16494 void ** wr_file; /* \&{write} files */
16495 char ** wr_fname; /* corresponding file name or 0 if file not open */
16496 write_index write_files; /* number of valid entries in the above arrays */
16498 @ @<Allocate or initialize ...@>=
16499 mp->max_read_files=8;
16500 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16501 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16502 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16504 mp->max_write_files=8;
16505 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16506 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16507 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16511 @ This routine starts reading the file named by string~|s| without setting
16512 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16513 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16515 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16516 mp_ptr_scan_file(mp, s);
16518 mp_begin_file_reading(mp);
16519 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16521 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16522 (mp->close_file)(mp->rd_file[n]);
16525 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16528 mp_end_file_reading(mp);
16532 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16535 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16537 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16538 mp_ptr_scan_file(mp, s);
16540 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16541 mp_prompt_file_name(mp, "file name for write output","");
16542 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16546 @* \[36] Introduction to the parsing routines.
16547 We come now to the central nervous system that sparks many of \MP's activities.
16548 By evaluating expressions, from their primary constituents to ever larger
16549 subexpressions, \MP\ builds the structures that ultimately define complete
16550 pictures or fonts of type.
16552 Four mutually recursive subroutines are involved in this process: We call them
16553 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16554 and |scan_expression|.}$$
16556 Each of them is parameterless and begins with the first token to be scanned
16557 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16558 the value of the primary or secondary or tertiary or expression that was
16559 found will appear in the global variables |cur_type| and |cur_exp|. The
16560 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16563 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16564 backup mechanisms have been added in order to provide reasonable error
16568 small_number cur_type; /* the type of the expression just found */
16569 integer cur_exp; /* the value of the expression just found */
16574 @ Many different kinds of expressions are possible, so it is wise to have
16575 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16578 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16579 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16580 construction in which there was no expression before the \&{endgroup}.
16581 In this case |cur_exp| has some irrelevant value.
16584 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16588 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16589 node that is in the ring of variables equivalent
16590 to at least one undefined boolean variable.
16593 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16594 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16595 includes this particular reference.
16598 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16599 node that is in the ring of variables equivalent
16600 to at least one undefined string variable.
16603 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16604 else points to any of the nodes in this pen. The pen may be polygonal or
16608 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16609 node that is in the ring of variables equivalent
16610 to at least one undefined pen variable.
16613 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16614 a path; nobody else points to this particular path. The control points of
16615 the path will have been chosen.
16618 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16619 node that is in the ring of variables equivalent
16620 to at least one undefined path variable.
16623 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16624 There may be other pointers to this particular set of edges. The header node
16625 contains a reference count that includes this particular reference.
16628 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16629 node that is in the ring of variables equivalent
16630 to at least one undefined picture variable.
16633 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16634 capsule node. The |value| part of this capsule
16635 points to a transform node that contains six numeric values,
16636 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16639 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16640 capsule node. The |value| part of this capsule
16641 points to a color node that contains three numeric values,
16642 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16645 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16646 capsule node. The |value| part of this capsule
16647 points to a color node that contains four numeric values,
16648 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16651 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16652 node whose type is |mp_pair_type|. The |value| part of this capsule
16653 points to a pair node that contains two numeric values,
16654 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16657 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16660 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16661 is |dependent|. The |dep_list| field in this capsule points to the associated
16665 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16666 capsule node. The |dep_list| field in this capsule
16667 points to the associated dependency list.
16670 |cur_type=independent| means that |cur_exp| points to a capsule node
16671 whose type is |independent|. This somewhat unusual case can arise, for
16672 example, in the expression
16673 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16676 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16677 tokens. This case arises only on the left-hand side of an assignment
16678 (`\.{:=}') operation, under very special circumstances.
16680 \smallskip\noindent
16681 The possible settings of |cur_type| have been listed here in increasing
16682 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16683 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16684 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16687 @ Capsules are two-word nodes that have a similar meaning
16688 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16689 and |link<=mp_void|; and their |type| field is one of the possibilities for
16690 |cur_type| listed above.
16692 The |value| field of a capsule is, in most cases, the value that
16693 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16694 However, when |cur_exp| would point to a capsule,
16695 no extra layer of indirection is present; the |value|
16696 field is what would have been called |value(cur_exp)| if it had not been
16697 encapsulated. Furthermore, if the type is |dependent| or
16698 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16699 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16700 always part of the general |dep_list| structure.
16702 The |get_x_next| routine is careful not to change the values of |cur_type|
16703 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16704 call a macro, which might parse an expression, which might execute lots of
16705 commands in a group; hence it's possible that |cur_type| might change
16706 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16707 |known| or |independent|, during the time |get_x_next| is called. The
16708 programs below are careful to stash sensitive intermediate results in
16709 capsules, so that \MP's generality doesn't cause trouble.
16711 Here's a procedure that illustrates these conventions. It takes
16712 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16713 and stashes them away in a
16714 capsule. It is not used when |cur_type=mp_token_list|.
16715 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16716 copy path lists or to update reference counts, etc.
16718 The special link |mp_void| is put on the capsule returned by
16719 |stash_cur_exp|, because this procedure is used to store macro parameters
16720 that must be easily distinguishable from token lists.
16722 @<Declare the stashing/unstashing routines@>=
16723 pointer mp_stash_cur_exp (MP mp) {
16724 pointer p; /* the capsule that will be returned */
16725 switch (mp->cur_type) {
16726 case unknown_types:
16727 case mp_transform_type:
16728 case mp_color_type:
16731 case mp_proto_dependent:
16732 case mp_independent:
16733 case mp_cmykcolor_type:
16737 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16738 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16741 mp->cur_type=mp_vacuous; link(p)=mp_void;
16745 @ The inverse of |stash_cur_exp| is the following procedure, which
16746 deletes an unnecessary capsule and puts its contents into |cur_type|
16749 The program steps of \MP\ can be divided into two categories: those in
16750 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16751 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16752 information or not. It's important not to ignore them when they're alive,
16753 and it's important not to pay attention to them when they're dead.
16755 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16756 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16757 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16758 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16759 only when they are alive or dormant.
16761 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16762 are alive or dormant. The \\{unstash} procedure assumes that they are
16763 dead or dormant; it resuscitates them.
16765 @<Declare the stashing/unstashing...@>=
16766 void mp_unstash_cur_exp (MP mp,pointer p) ;
16769 void mp_unstash_cur_exp (MP mp,pointer p) {
16770 mp->cur_type=type(p);
16771 switch (mp->cur_type) {
16772 case unknown_types:
16773 case mp_transform_type:
16774 case mp_color_type:
16777 case mp_proto_dependent:
16778 case mp_independent:
16779 case mp_cmykcolor_type:
16783 mp->cur_exp=value(p);
16784 mp_free_node(mp, p,value_node_size);
16789 @ The following procedure prints the values of expressions in an
16790 abbreviated format. If its first parameter |p| is null, the value of
16791 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16792 containing the desired value. The second parameter controls the amount of
16793 output. If it is~0, dependency lists will be abbreviated to
16794 `\.{linearform}' unless they consist of a single term. If it is greater
16795 than~1, complicated structures (pens, pictures, and paths) will be displayed
16798 @<Declare subroutines for printing expressions@>=
16799 @<Declare the procedure called |print_dp|@>;
16800 @<Declare the stashing/unstashing routines@>;
16801 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16802 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16803 small_number t; /* the type of the expression */
16804 pointer q; /* a big node being displayed */
16805 integer v=0; /* the value of the expression */
16807 restore_cur_exp=false;
16809 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16812 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16813 @<Print an abbreviated value of |v| with format depending on |t|@>;
16814 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16817 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16819 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16820 case mp_boolean_type:
16821 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16823 case unknown_types: case mp_numeric_type:
16824 @<Display a variable that's been declared but not defined@>;
16826 case mp_string_type:
16827 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16829 case mp_pen_type: case mp_path_type: case mp_picture_type:
16830 @<Display a complex type@>;
16832 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16833 if ( v==null ) mp_print_type(mp, t);
16834 else @<Display a big node@>;
16836 case mp_known:mp_print_scaled(mp, v); break;
16837 case mp_dependent: case mp_proto_dependent:
16838 mp_print_dp(mp, t,v,verbosity);
16840 case mp_independent:mp_print_variable_name(mp, p); break;
16841 default: mp_confusion(mp, "exp"); break;
16842 @:this can't happen exp}{\quad exp@>
16845 @ @<Display a big node@>=
16847 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16849 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16850 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16851 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16853 if ( v!=q ) mp_print_char(mp, ',');
16855 mp_print_char(mp, ')');
16858 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16859 in the log file only, unless the user has given a positive value to
16862 @<Display a complex type@>=
16863 if ( verbosity<=1 ) {
16864 mp_print_type(mp, t);
16866 if ( mp->selector==term_and_log )
16867 if ( mp->internal[mp_tracing_online]<=0 ) {
16868 mp->selector=term_only;
16869 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16870 mp->selector=term_and_log;
16873 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16874 case mp_path_type:mp_print_path(mp, v,"",false); break;
16875 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16876 } /* there are no other cases */
16879 @ @<Declare the procedure called |print_dp|@>=
16880 void mp_print_dp (MP mp,small_number t, pointer p,
16881 small_number verbosity) {
16882 pointer q; /* the node following |p| */
16884 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16885 else mp_print(mp, "linearform");
16888 @ The displayed name of a variable in a ring will not be a capsule unless
16889 the ring consists entirely of capsules.
16891 @<Display a variable that's been declared but not defined@>=
16892 { mp_print_type(mp, t);
16894 { mp_print_char(mp, ' ');
16895 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16896 mp_print_variable_name(mp, v);
16900 @ When errors are detected during parsing, it is often helpful to
16901 display an expression just above the error message, using |exp_err|
16902 or |disp_err| instead of |print_err|.
16904 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16906 @<Declare subroutines for printing expressions@>=
16907 void mp_disp_err (MP mp,pointer p, char *s) {
16908 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16909 mp_print_nl(mp, ">> ");
16911 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16913 mp_print_nl(mp, "! "); mp_print(mp, s);
16918 @ If |cur_type| and |cur_exp| contain relevant information that should
16919 be recycled, we will use the following procedure, which changes |cur_type|
16920 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16921 and |cur_exp| as either alive or dormant after this has been done,
16922 because |cur_exp| will not contain a pointer value.
16924 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16925 switch (mp->cur_type) {
16926 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16927 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16928 mp_recycle_value(mp, mp->cur_exp);
16929 mp_free_node(mp, mp->cur_exp,value_node_size);
16931 case mp_string_type:
16932 delete_str_ref(mp->cur_exp); break;
16933 case mp_pen_type: case mp_path_type:
16934 mp_toss_knot_list(mp, mp->cur_exp); break;
16935 case mp_picture_type:
16936 delete_edge_ref(mp->cur_exp); break;
16940 mp->cur_type=mp_known; mp->cur_exp=v;
16943 @ There's a much more general procedure that is capable of releasing
16944 the storage associated with any two-word value packet.
16946 @<Declare the recycling subroutines@>=
16947 void mp_recycle_value (MP mp,pointer p) ;
16949 @ @c void mp_recycle_value (MP mp,pointer p) {
16950 small_number t; /* a type code */
16951 integer vv; /* another value */
16952 pointer q,r,s,pp; /* link manipulation registers */
16953 integer v=0; /* a value */
16955 if ( t<mp_dependent ) v=value(p);
16957 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16958 case mp_numeric_type:
16960 case unknown_types:
16961 mp_ring_delete(mp, p); break;
16962 case mp_string_type:
16963 delete_str_ref(v); break;
16964 case mp_path_type: case mp_pen_type:
16965 mp_toss_knot_list(mp, v); break;
16966 case mp_picture_type:
16967 delete_edge_ref(v); break;
16968 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16969 case mp_transform_type:
16970 @<Recycle a big node@>; break;
16971 case mp_dependent: case mp_proto_dependent:
16972 @<Recycle a dependency list@>; break;
16973 case mp_independent:
16974 @<Recycle an independent variable@>; break;
16975 case mp_token_list: case mp_structured:
16976 mp_confusion(mp, "recycle"); break;
16977 @:this can't happen recycle}{\quad recycle@>
16978 case mp_unsuffixed_macro: case mp_suffixed_macro:
16979 mp_delete_mac_ref(mp, value(p)); break;
16980 } /* there are no other cases */
16984 @ @<Recycle a big node@>=
16986 q=v+mp->big_node_size[t];
16988 q=q-2; mp_recycle_value(mp, q);
16990 mp_free_node(mp, v,mp->big_node_size[t]);
16993 @ @<Recycle a dependency list@>=
16996 while ( info(q)!=null ) q=link(q);
16997 link(prev_dep(p))=link(q);
16998 prev_dep(link(q))=prev_dep(p);
16999 link(q)=null; mp_flush_node_list(mp, dep_list(p));
17002 @ When an independent variable disappears, it simply fades away, unless
17003 something depends on it. In the latter case, a dependent variable whose
17004 coefficient of dependence is maximal will take its place.
17005 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
17006 as part of his Ph.D. thesis (Stanford University, December 1982).
17007 @^Zabala Salelles, Ignacio Andres@>
17009 For example, suppose that variable $x$ is being recycled, and that the
17010 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
17011 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
17012 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
17013 we will print `\.{\#\#\# -2x=-y+a}'.
17015 There's a slight complication, however: An independent variable $x$
17016 can occur both in dependency lists and in proto-dependency lists.
17017 This makes it necessary to be careful when deciding which coefficient
17020 Furthermore, this complication is not so slight when
17021 a proto-dependent variable is chosen to become independent. For example,
17022 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
17023 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
17024 large coefficient `50'.
17026 In order to deal with these complications without wasting too much time,
17027 we shall link together the occurrences of~$x$ among all the linear
17028 dependencies, maintaining separate lists for the dependent and
17029 proto-dependent cases.
17031 @<Recycle an independent variable@>=
17033 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
17034 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
17036 while ( q!=dep_head ) {
17037 s=value_loc(q); /* now |link(s)=dep_list(q)| */
17040 if ( info(r)==null ) break;;
17041 if ( info(r)!=p ) {
17044 t=type(q); link(s)=link(r); info(r)=q;
17045 if ( abs(value(r))>mp->max_c[t] ) {
17046 @<Record a new maximum coefficient of type |t|@>;
17048 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17054 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17055 @<Choose a dependent variable to take the place of the disappearing
17056 independent variable, and change all remaining dependencies
17061 @ The code for independency removal makes use of three two-word arrays.
17064 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17065 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17066 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17068 @ @<Record a new maximum coefficient...@>=
17070 if ( mp->max_c[t]>0 ) {
17071 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17073 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17076 @ @<Choose a dependent...@>=
17078 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17081 t=mp_proto_dependent;
17082 @<Determine the dependency list |s| to substitute for the independent
17084 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17085 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17086 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17088 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17089 else { @<Substitute new proto-dependencies in place of |p|@>;}
17090 mp_flush_node_list(mp, s);
17091 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17095 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17096 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17097 whose dependency list we have removed node~|s|. We must reinsert
17098 node~|s| into the dependency list, with coefficient $-1.0$, and with
17099 |pp| as the new independent variable. Since |pp| will have a larger serial
17100 number than any other variable, we can put node |s| at the head of the
17103 @<Determine the dep...@>=
17104 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17105 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17106 r=dep_list(pp); link(s)=r;
17107 while ( info(r)!=null ) r=link(r);
17108 q=link(r); link(r)=null;
17109 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17111 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17112 if ( mp->internal[mp_tracing_equations]>0 ) {
17113 @<Show the transformed dependency@>;
17116 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17117 by the dependency list~|s|.
17119 @<Show the transformed...@>=
17120 if ( mp_interesting(mp, p) ) {
17121 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17122 @:]]]\#\#\#_}{\.{\#\#\#}@>
17123 if ( v>0 ) mp_print_char(mp, '-');
17124 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17125 else vv=mp->max_c[mp_proto_dependent];
17126 if ( vv!=unity ) mp_print_scaled(mp, vv);
17127 mp_print_variable_name(mp, p);
17128 while ( value(p) % s_scale>0 ) {
17129 mp_print(mp, "*4"); value(p)=value(p)-2;
17131 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17132 mp_print_dependency(mp, s,t);
17133 mp_end_diagnostic(mp, false);
17136 @ Finally, there are dependent and proto-dependent variables whose
17137 dependency lists must be brought up to date.
17139 @<Substitute new dependencies...@>=
17140 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17142 while ( r!=null ) {
17144 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17145 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17146 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17147 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17151 @ @<Substitute new proto...@>=
17152 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17154 while ( r!=null ) {
17156 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17157 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17158 mp->cur_type=mp_proto_dependent;
17159 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17160 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17162 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17163 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17164 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17165 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17169 @ Here are some routines that provide handy combinations of actions
17170 that are often needed during error recovery. For example,
17171 `|flush_error|' flushes the current expression, replaces it by
17172 a given value, and calls |error|.
17174 Errors often are detected after an extra token has already been scanned.
17175 The `\\{put\_get}' routines put that token back before calling |error|;
17176 then they get it back again. (Or perhaps they get another token, if
17177 the user has changed things.)
17180 void mp_flush_error (MP mp,scaled v);
17181 void mp_put_get_error (MP mp);
17182 void mp_put_get_flush_error (MP mp,scaled v) ;
17185 void mp_flush_error (MP mp,scaled v) {
17186 mp_error(mp); mp_flush_cur_exp(mp, v);
17188 void mp_put_get_error (MP mp) {
17189 mp_back_error(mp); mp_get_x_next(mp);
17191 void mp_put_get_flush_error (MP mp,scaled v) {
17192 mp_put_get_error(mp);
17193 mp_flush_cur_exp(mp, v);
17196 @ A global variable |var_flag| is set to a special command code
17197 just before \MP\ calls |scan_expression|, if the expression should be
17198 treated as a variable when this command code immediately follows. For
17199 example, |var_flag| is set to |assignment| at the beginning of a
17200 statement, because we want to know the {\sl location\/} of a variable at
17201 the left of `\.{:=}', not the {\sl value\/} of that variable.
17203 The |scan_expression| subroutine calls |scan_tertiary|,
17204 which calls |scan_secondary|, which calls |scan_primary|, which sets
17205 |var_flag:=0|. In this way each of the scanning routines ``knows''
17206 when it has been called with a special |var_flag|, but |var_flag| is
17209 A variable preceding a command that equals |var_flag| is converted to a
17210 token list rather than a value. Furthermore, an `\.{=}' sign following an
17211 expression with |var_flag=assignment| is not considered to be a relation
17212 that produces boolean expressions.
17216 int var_flag; /* command that wants a variable */
17221 @* \[37] Parsing primary expressions.
17222 The first parsing routine, |scan_primary|, is also the most complicated one,
17223 since it involves so many different cases. But each case---with one
17224 exception---is fairly simple by itself.
17226 When |scan_primary| begins, the first token of the primary to be scanned
17227 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17228 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17229 earlier. If |cur_cmd| is not between |min_primary_command| and
17230 |max_primary_command|, inclusive, a syntax error will be signaled.
17232 @<Declare the basic parsing subroutines@>=
17233 void mp_scan_primary (MP mp) {
17234 pointer p,q,r; /* for list manipulation */
17235 quarterword c; /* a primitive operation code */
17236 int my_var_flag; /* initial value of |my_var_flag| */
17237 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17238 @<Other local variables for |scan_primary|@>;
17239 my_var_flag=mp->var_flag; mp->var_flag=0;
17242 @<Supply diagnostic information, if requested@>;
17243 switch (mp->cur_cmd) {
17244 case left_delimiter:
17245 @<Scan a delimited primary@>; break;
17247 @<Scan a grouped primary@>; break;
17249 @<Scan a string constant@>; break;
17250 case numeric_token:
17251 @<Scan a primary that starts with a numeric token@>; break;
17253 @<Scan a nullary operation@>; break;
17254 case unary: case type_name: case cycle: case plus_or_minus:
17255 @<Scan a unary operation@>; break;
17256 case primary_binary:
17257 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17259 @<Convert a suffix to a string@>; break;
17260 case internal_quantity:
17261 @<Scan an internal numeric quantity@>; break;
17262 case capsule_token:
17263 mp_make_exp_copy(mp, mp->cur_mod); break;
17265 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17267 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17268 @.A primary expression...@>
17270 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17272 if ( mp->cur_cmd==left_bracket ) {
17273 if ( mp->cur_type>=mp_known ) {
17274 @<Scan a mediation construction@>;
17281 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17283 @c void mp_bad_exp (MP mp,char * s) {
17285 print_err(s); mp_print(mp, " expression can't begin with `");
17286 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17287 mp_print_char(mp, '\'');
17288 help4("I'm afraid I need some sort of value in order to continue,")
17289 ("so I've tentatively inserted `0'. You may want to")
17290 ("delete this zero and insert something else;")
17291 ("see Chapter 27 of The METAFONTbook for an example.");
17292 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17293 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17294 mp->cur_mod=0; mp_ins_error(mp);
17295 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17296 mp->var_flag=save_flag;
17299 @ @<Supply diagnostic information, if requested@>=
17301 if ( mp->panicking ) mp_check_mem(mp, false);
17303 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17304 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17307 @ @<Scan a delimited primary@>=
17309 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17310 mp_get_x_next(mp); mp_scan_expression(mp);
17311 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17312 @<Scan the rest of a delimited set of numerics@>;
17314 mp_check_delimiter(mp, l_delim,r_delim);
17318 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17319 within a ``big node.''
17321 @c void mp_stash_in (MP mp,pointer p) {
17322 pointer q; /* temporary register */
17323 type(p)=mp->cur_type;
17324 if ( mp->cur_type==mp_known ) {
17325 value(p)=mp->cur_exp;
17327 if ( mp->cur_type==mp_independent ) {
17328 @<Stash an independent |cur_exp| into a big node@>;
17330 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17331 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17332 link(prev_dep(p))=p;
17334 mp_free_node(mp, mp->cur_exp,value_node_size);
17336 mp->cur_type=mp_vacuous;
17339 @ In rare cases the current expression can become |independent|. There
17340 may be many dependency lists pointing to such an independent capsule,
17341 so we can't simply move it into place within a big node. Instead,
17342 we copy it, then recycle it.
17344 @ @<Stash an independent |cur_exp|...@>=
17346 q=mp_single_dependency(mp, mp->cur_exp);
17347 if ( q==mp->dep_final ){
17348 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17350 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17352 mp_recycle_value(mp, mp->cur_exp);
17355 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17356 are synonymous with |x_part_loc| and |y_part_loc|.
17358 @<Scan the rest of a delimited set of numerics@>=
17360 p=mp_stash_cur_exp(mp);
17361 mp_get_x_next(mp); mp_scan_expression(mp);
17362 @<Make sure the second part of a pair or color has a numeric type@>;
17363 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17364 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17365 else type(q)=mp_pair_type;
17366 mp_init_big_node(mp, q); r=value(q);
17367 mp_stash_in(mp, y_part_loc(r));
17368 mp_unstash_cur_exp(mp, p);
17369 mp_stash_in(mp, x_part_loc(r));
17370 if ( mp->cur_cmd==comma ) {
17371 @<Scan the last of a triplet of numerics@>;
17373 if ( mp->cur_cmd==comma ) {
17374 type(q)=mp_cmykcolor_type;
17375 mp_init_big_node(mp, q); t=value(q);
17376 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17377 value(cyan_part_loc(t))=value(red_part_loc(r));
17378 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17379 value(magenta_part_loc(t))=value(green_part_loc(r));
17380 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17381 value(yellow_part_loc(t))=value(blue_part_loc(r));
17382 mp_recycle_value(mp, r);
17384 @<Scan the last of a quartet of numerics@>;
17386 mp_check_delimiter(mp, l_delim,r_delim);
17387 mp->cur_type=type(q);
17391 @ @<Make sure the second part of a pair or color has a numeric type@>=
17392 if ( mp->cur_type<mp_known ) {
17393 exp_err("Nonnumeric ypart has been replaced by 0");
17394 @.Nonnumeric...replaced by 0@>
17395 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17396 ("but after finding a nice `a' I found a `b' that isn't")
17397 ("of numeric type. So I've changed that part to zero.")
17398 ("(The b that I didn't like appears above the error message.)");
17399 mp_put_get_flush_error(mp, 0);
17402 @ @<Scan the last of a triplet of numerics@>=
17404 mp_get_x_next(mp); mp_scan_expression(mp);
17405 if ( mp->cur_type<mp_known ) {
17406 exp_err("Nonnumeric third part has been replaced by 0");
17407 @.Nonnumeric...replaced by 0@>
17408 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17409 ("isn't of numeric type. So I've changed that part to zero.")
17410 ("(The c that I didn't like appears above the error message.)");
17411 mp_put_get_flush_error(mp, 0);
17413 mp_stash_in(mp, blue_part_loc(r));
17416 @ @<Scan the last of a quartet of numerics@>=
17418 mp_get_x_next(mp); mp_scan_expression(mp);
17419 if ( mp->cur_type<mp_known ) {
17420 exp_err("Nonnumeric blackpart has been replaced by 0");
17421 @.Nonnumeric...replaced by 0@>
17422 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17423 ("of numeric type. So I've changed that part to zero.")
17424 ("(The k that I didn't like appears above the error message.)");
17425 mp_put_get_flush_error(mp, 0);
17427 mp_stash_in(mp, black_part_loc(r));
17430 @ The local variable |group_line| keeps track of the line
17431 where a \&{begingroup} command occurred; this will be useful
17432 in an error message if the group doesn't actually end.
17434 @<Other local variables for |scan_primary|@>=
17435 integer group_line; /* where a group began */
17437 @ @<Scan a grouped primary@>=
17439 group_line=mp_true_line(mp);
17440 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17441 save_boundary_item(p);
17443 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17444 } while (! (mp->cur_cmd!=semicolon));
17445 if ( mp->cur_cmd!=end_group ) {
17446 print_err("A group begun on line ");
17447 @.A group...never ended@>
17448 mp_print_int(mp, group_line);
17449 mp_print(mp, " never ended");
17450 help2("I saw a `begingroup' back there that hasn't been matched")
17451 ("by `endgroup'. So I've inserted `endgroup' now.");
17452 mp_back_error(mp); mp->cur_cmd=end_group;
17455 /* this might change |cur_type|, if independent variables are recycled */
17456 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17459 @ @<Scan a string constant@>=
17461 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17464 @ Later we'll come to procedures that perform actual operations like
17465 addition, square root, and so on; our purpose now is to do the parsing.
17466 But we might as well mention those future procedures now, so that the
17467 suspense won't be too bad:
17470 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17471 `\&{true}' or `\&{pencircle}');
17474 |do_unary(c)| applies a primitive operation to the current expression;
17477 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17478 and the current expression.
17480 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17482 @ @<Scan a unary operation@>=
17484 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17485 mp_do_unary(mp, c); goto DONE;
17488 @ A numeric token might be a primary by itself, or it might be the
17489 numerator of a fraction composed solely of numeric tokens, or it might
17490 multiply the primary that follows (provided that the primary doesn't begin
17491 with a plus sign or a minus sign). The code here uses the facts that
17492 |max_primary_command=plus_or_minus| and
17493 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17494 than unity, we try to retain higher precision when we use it in scalar
17497 @<Other local variables for |scan_primary|@>=
17498 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17500 @ @<Scan a primary that starts with a numeric token@>=
17502 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17503 if ( mp->cur_cmd!=slash ) {
17507 if ( mp->cur_cmd!=numeric_token ) {
17509 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17512 num=mp->cur_exp; denom=mp->cur_mod;
17513 if ( denom==0 ) { @<Protest division by zero@>; }
17514 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17515 check_arith; mp_get_x_next(mp);
17517 if ( mp->cur_cmd>=min_primary_command ) {
17518 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17519 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17520 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17521 mp_do_binary(mp, p,times);
17523 mp_frac_mult(mp, num,denom);
17524 mp_free_node(mp, p,value_node_size);
17531 @ @<Protest division...@>=
17533 print_err("Division by zero");
17534 @.Division by zero@>
17535 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17538 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17540 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17541 if ( mp->cur_cmd!=of_token ) {
17542 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17543 mp_print_cmd_mod(mp, primary_binary,c);
17545 help1("I've got the first argument; will look now for the other.");
17548 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17549 mp_do_binary(mp, p,c); goto DONE;
17552 @ @<Convert a suffix to a string@>=
17554 mp_get_x_next(mp); mp_scan_suffix(mp);
17555 mp->old_setting=mp->selector; mp->selector=new_string;
17556 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17557 mp_flush_token_list(mp, mp->cur_exp);
17558 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17559 mp->cur_type=mp_string_type;
17563 @ If an internal quantity appears all by itself on the left of an
17564 assignment, we return a token list of length one, containing the address
17565 of the internal quantity plus |hash_end|. (This accords with the conventions
17566 of the save stack, as described earlier.)
17568 @<Scan an internal...@>=
17571 if ( my_var_flag==assignment ) {
17573 if ( mp->cur_cmd==assignment ) {
17574 mp->cur_exp=mp_get_avail(mp);
17575 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17580 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17583 @ The most difficult part of |scan_primary| has been saved for last, since
17584 it was necessary to build up some confidence first. We can now face the task
17585 of scanning a variable.
17587 As we scan a variable, we build a token list containing the relevant
17588 names and subscript values, simultaneously following along in the
17589 ``collective'' structure to see if we are actually dealing with a macro
17590 instead of a value.
17592 The local variables |pre_head| and |post_head| will point to the beginning
17593 of the prefix and suffix lists; |tail| will point to the end of the list
17594 that is currently growing.
17596 Another local variable, |tt|, contains partial information about the
17597 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17598 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17599 doesn't bother to update its information about type. And if
17600 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17602 @ @<Other local variables for |scan_primary|@>=
17603 pointer pre_head,post_head,tail;
17604 /* prefix and suffix list variables */
17605 small_number tt; /* approximation to the type of the variable-so-far */
17606 pointer t; /* a token */
17607 pointer macro_ref = 0; /* reference count for a suffixed macro */
17609 @ @<Scan a variable primary...@>=
17611 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17613 t=mp_cur_tok(mp); link(tail)=t;
17614 if ( tt!=undefined ) {
17615 @<Find the approximate type |tt| and corresponding~|q|@>;
17616 if ( tt>=mp_unsuffixed_macro ) {
17617 @<Either begin an unsuffixed macro call or
17618 prepare for a suffixed one@>;
17621 mp_get_x_next(mp); tail=t;
17622 if ( mp->cur_cmd==left_bracket ) {
17623 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17625 if ( mp->cur_cmd>max_suffix_token ) break;
17626 if ( mp->cur_cmd<min_suffix_token ) break;
17627 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17628 @<Handle unusual cases that masquerade as variables, and |goto restart|
17629 or |goto done| if appropriate;
17630 otherwise make a copy of the variable and |goto done|@>;
17633 @ @<Either begin an unsuffixed macro call or...@>=
17636 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17637 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17638 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17640 @<Set up unsuffixed macro call and |goto restart|@>;
17644 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17646 mp_get_x_next(mp); mp_scan_expression(mp);
17647 if ( mp->cur_cmd!=right_bracket ) {
17648 @<Put the left bracket and the expression back to be rescanned@>;
17650 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17651 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17655 @ The left bracket that we thought was introducing a subscript might have
17656 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17657 So we don't issue an error message at this point; but we do want to back up
17658 so as to avoid any embarrassment about our incorrect assumption.
17660 @<Put the left bracket and the expression back to be rescanned@>=
17662 mp_back_input(mp); /* that was the token following the current expression */
17663 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17664 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17667 @ Here's a routine that puts the current expression back to be read again.
17669 @c void mp_back_expr (MP mp) {
17670 pointer p; /* capsule token */
17671 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17674 @ Unknown subscripts lead to the following error message.
17676 @c void mp_bad_subscript (MP mp) {
17677 exp_err("Improper subscript has been replaced by zero");
17678 @.Improper subscript...@>
17679 help3("A bracketed subscript must have a known numeric value;")
17680 ("unfortunately, what I found was the value that appears just")
17681 ("above this error message. So I'll try a zero subscript.");
17682 mp_flush_error(mp, 0);
17685 @ Every time we call |get_x_next|, there's a chance that the variable we've
17686 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17687 into the variable structure; we need to start searching from the root each time.
17689 @<Find the approximate type |tt| and corresponding~|q|@>=
17692 p=link(pre_head); q=info(p); tt=undefined;
17693 if ( eq_type(q) % outer_tag==tag_token ) {
17695 if ( q==null ) goto DONE2;
17699 tt=type(q); goto DONE2;
17701 if ( type(q)!=mp_structured ) goto DONE2;
17702 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17703 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17704 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17705 if ( attr_loc(q)>info(p) ) goto DONE2;
17713 @ How do things stand now? Well, we have scanned an entire variable name,
17714 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17715 |cur_sym| represent the token that follows. If |post_head=null|, a
17716 token list for this variable name starts at |link(pre_head)|, with all
17717 subscripts evaluated. But if |post_head<>null|, the variable turned out
17718 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17719 |post_head| is the head of a token list containing both `\.{\AT!}' and
17722 Our immediate problem is to see if this variable still exists. (Variable
17723 structures can change drastically whenever we call |get_x_next|; users
17724 aren't supposed to do this, but the fact that it is possible means that
17725 we must be cautious.)
17727 The following procedure prints an error message when a variable
17728 unexpectedly disappears. Its help message isn't quite right for
17729 our present purposes, but we'll be able to fix that up.
17732 void mp_obliterated (MP mp,pointer q) {
17733 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17734 mp_print(mp, " has been obliterated");
17735 @.Variable...obliterated@>
17736 help5("It seems you did a nasty thing---probably by accident,")
17737 ("but nevertheless you nearly hornswoggled me...")
17738 ("While I was evaluating the right-hand side of this")
17739 ("command, something happened, and the left-hand side")
17740 ("is no longer a variable! So I won't change anything.");
17743 @ If the variable does exist, we also need to check
17744 for a few other special cases before deciding that a plain old ordinary
17745 variable has, indeed, been scanned.
17747 @<Handle unusual cases that masquerade as variables...@>=
17748 if ( post_head!=null ) {
17749 @<Set up suffixed macro call and |goto restart|@>;
17751 q=link(pre_head); free_avail(pre_head);
17752 if ( mp->cur_cmd==my_var_flag ) {
17753 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17755 p=mp_find_variable(mp, q);
17757 mp_make_exp_copy(mp, p);
17759 mp_obliterated(mp, q);
17760 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17761 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17762 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17763 mp_put_get_flush_error(mp, 0);
17765 mp_flush_node_list(mp, q);
17768 @ The only complication associated with macro calling is that the prefix
17769 and ``at'' parameters must be packaged in an appropriate list of lists.
17771 @<Set up unsuffixed macro call and |goto restart|@>=
17773 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17774 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17779 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17780 we don't care, because we have reserved a pointer (|macro_ref|) to its
17783 @<Set up suffixed macro call and |goto restart|@>=
17785 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17786 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17787 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17788 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17789 mp_get_x_next(mp); goto RESTART;
17792 @ Our remaining job is simply to make a copy of the value that has been
17793 found. Some cases are harder than others, but complexity arises solely
17794 because of the multiplicity of possible cases.
17796 @<Declare the procedure called |make_exp_copy|@>=
17797 @<Declare subroutines needed by |make_exp_copy|@>;
17798 void mp_make_exp_copy (MP mp,pointer p) {
17799 pointer q,r,t; /* registers for list manipulation */
17801 mp->cur_type=type(p);
17802 switch (mp->cur_type) {
17803 case mp_vacuous: case mp_boolean_type: case mp_known:
17804 mp->cur_exp=value(p); break;
17805 case unknown_types:
17806 mp->cur_exp=mp_new_ring_entry(mp, p);
17808 case mp_string_type:
17809 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17811 case mp_picture_type:
17812 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17815 mp->cur_exp=copy_pen(value(p));
17818 mp->cur_exp=mp_copy_path(mp, value(p));
17820 case mp_transform_type: case mp_color_type:
17821 case mp_cmykcolor_type: case mp_pair_type:
17822 @<Copy the big node |p|@>;
17824 case mp_dependent: case mp_proto_dependent:
17825 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17827 case mp_numeric_type:
17828 new_indep(p); goto RESTART;
17830 case mp_independent:
17831 q=mp_single_dependency(mp, p);
17832 if ( q==mp->dep_final ){
17833 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17835 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17839 mp_confusion(mp, "copy");
17840 @:this can't happen copy}{\quad copy@>
17845 @ The |encapsulate| subroutine assumes that |dep_final| is the
17846 tail of dependency list~|p|.
17848 @<Declare subroutines needed by |make_exp_copy|@>=
17849 void mp_encapsulate (MP mp,pointer p) {
17850 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17851 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17854 @ The most tedious case arises when the user refers to a
17855 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17856 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17859 @<Copy the big node |p|@>=
17861 if ( value(p)==null )
17862 mp_init_big_node(mp, p);
17863 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17864 mp_init_big_node(mp, t);
17865 q=value(p)+mp->big_node_size[mp->cur_type];
17866 r=value(t)+mp->big_node_size[mp->cur_type];
17868 q=q-2; r=r-2; mp_install(mp, r,q);
17869 } while (q!=value(p));
17873 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17874 a big node that will be part of a capsule.
17876 @<Declare subroutines needed by |make_exp_copy|@>=
17877 void mp_install (MP mp,pointer r, pointer q) {
17878 pointer p; /* temporary register */
17879 if ( type(q)==mp_known ){
17880 value(r)=value(q); type(r)=mp_known;
17881 } else if ( type(q)==mp_independent ) {
17882 p=mp_single_dependency(mp, q);
17883 if ( p==mp->dep_final ) {
17884 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17886 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17889 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17893 @ Expressions of the form `\.{a[b,c]}' are converted into
17894 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17895 provided that \.a is numeric.
17897 @<Scan a mediation...@>=
17899 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17900 if ( mp->cur_cmd!=comma ) {
17901 @<Put the left bracket and the expression back...@>;
17902 mp_unstash_cur_exp(mp, p);
17904 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17905 if ( mp->cur_cmd!=right_bracket ) {
17906 mp_missing_err(mp, "]");
17908 help3("I've scanned an expression of the form `a[b,c',")
17909 ("so a right bracket should have come next.")
17910 ("I shall pretend that one was there.");
17913 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17914 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17915 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17919 @ Here is a comparatively simple routine that is used to scan the
17920 \&{suffix} parameters of a macro.
17922 @<Declare the basic parsing subroutines@>=
17923 void mp_scan_suffix (MP mp) {
17924 pointer h,t; /* head and tail of the list being built */
17925 pointer p; /* temporary register */
17926 h=mp_get_avail(mp); t=h;
17928 if ( mp->cur_cmd==left_bracket ) {
17929 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17931 if ( mp->cur_cmd==numeric_token ) {
17932 p=mp_new_num_tok(mp, mp->cur_mod);
17933 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17934 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17938 link(t)=p; t=p; mp_get_x_next(mp);
17940 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17943 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17945 mp_get_x_next(mp); mp_scan_expression(mp);
17946 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17947 if ( mp->cur_cmd!=right_bracket ) {
17948 mp_missing_err(mp, "]");
17950 help3("I've seen a `[' and a subscript value, in a suffix,")
17951 ("so a right bracket should have come next.")
17952 ("I shall pretend that one was there.");
17955 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17958 @* \[38] Parsing secondary and higher expressions.
17959 After the intricacies of |scan_primary|\kern-1pt,
17960 the |scan_secondary| routine is
17961 refreshingly simple. It's not trivial, but the operations are relatively
17962 straightforward; the main difficulty is, again, that expressions and data
17963 structures might change drastically every time we call |get_x_next|, so a
17964 cautious approach is mandatory. For example, a macro defined by
17965 \&{primarydef} might have disappeared by the time its second argument has
17966 been scanned; we solve this by increasing the reference count of its token
17967 list, so that the macro can be called even after it has been clobbered.
17969 @<Declare the basic parsing subroutines@>=
17970 void mp_scan_secondary (MP mp) {
17971 pointer p; /* for list manipulation */
17972 halfword c,d; /* operation codes or modifiers */
17973 pointer mac_name; /* token defined with \&{primarydef} */
17975 if ((mp->cur_cmd<min_primary_command)||
17976 (mp->cur_cmd>max_primary_command) )
17977 mp_bad_exp(mp, "A secondary");
17978 @.A secondary expression...@>
17979 mp_scan_primary(mp);
17981 if ( mp->cur_cmd<=max_secondary_command )
17982 if ( mp->cur_cmd>=min_secondary_command ) {
17983 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17984 if ( d==secondary_primary_macro ) {
17985 mac_name=mp->cur_sym; add_mac_ref(c);
17987 mp_get_x_next(mp); mp_scan_primary(mp);
17988 if ( d!=secondary_primary_macro ) {
17989 mp_do_binary(mp, p,c);
17991 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17992 decr(ref_count(c)); mp_get_x_next(mp);
17999 @ The following procedure calls a macro that has two parameters,
18002 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
18003 pointer q,r; /* nodes in the parameter list */
18004 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
18005 info(q)=p; info(r)=mp_stash_cur_exp(mp);
18006 mp_macro_call(mp, c,q,n);
18009 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
18011 @<Declare the basic parsing subroutines@>=
18012 void mp_scan_tertiary (MP mp) {
18013 pointer p; /* for list manipulation */
18014 halfword c,d; /* operation codes or modifiers */
18015 pointer mac_name; /* token defined with \&{secondarydef} */
18017 if ((mp->cur_cmd<min_primary_command)||
18018 (mp->cur_cmd>max_primary_command) )
18019 mp_bad_exp(mp, "A tertiary");
18020 @.A tertiary expression...@>
18021 mp_scan_secondary(mp);
18023 if ( mp->cur_cmd<=max_tertiary_command ) {
18024 if ( mp->cur_cmd>=min_tertiary_command ) {
18025 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18026 if ( d==tertiary_secondary_macro ) {
18027 mac_name=mp->cur_sym; add_mac_ref(c);
18029 mp_get_x_next(mp); mp_scan_secondary(mp);
18030 if ( d!=tertiary_secondary_macro ) {
18031 mp_do_binary(mp, p,c);
18033 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18034 decr(ref_count(c)); mp_get_x_next(mp);
18042 @ Finally we reach the deepest level in our quartet of parsing routines.
18043 This one is much like the others; but it has an extra complication from
18044 paths, which materialize here.
18046 @d continue_path 25 /* a label inside of |scan_expression| */
18047 @d finish_path 26 /* another */
18049 @<Declare the basic parsing subroutines@>=
18050 void mp_scan_expression (MP mp) {
18051 pointer p,q,r,pp,qq; /* for list manipulation */
18052 halfword c,d; /* operation codes or modifiers */
18053 int my_var_flag; /* initial value of |var_flag| */
18054 pointer mac_name; /* token defined with \&{tertiarydef} */
18055 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18056 scaled x,y; /* explicit coordinates or tension at a path join */
18057 int t; /* knot type following a path join */
18059 my_var_flag=mp->var_flag; mac_name=null;
18061 if ((mp->cur_cmd<min_primary_command)||
18062 (mp->cur_cmd>max_primary_command) )
18063 mp_bad_exp(mp, "An");
18064 @.An expression...@>
18065 mp_scan_tertiary(mp);
18067 if ( mp->cur_cmd<=max_expression_command )
18068 if ( mp->cur_cmd>=min_expression_command ) {
18069 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18070 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18071 if ( d==expression_tertiary_macro ) {
18072 mac_name=mp->cur_sym; add_mac_ref(c);
18074 if ( (d<ampersand)||((d==ampersand)&&
18075 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18076 @<Scan a path construction operation;
18077 but |return| if |p| has the wrong type@>;
18079 mp_get_x_next(mp); mp_scan_tertiary(mp);
18080 if ( d!=expression_tertiary_macro ) {
18081 mp_do_binary(mp, p,c);
18083 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18084 decr(ref_count(c)); mp_get_x_next(mp);
18093 @ The reader should review the data structure conventions for paths before
18094 hoping to understand the next part of this code.
18096 @<Scan a path construction operation...@>=
18099 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18100 but |return| if |p| doesn't have a suitable type@>;
18102 @<Determine the path join parameters;
18103 but |goto finish_path| if there's only a direction specifier@>;
18104 if ( mp->cur_cmd==cycle ) {
18105 @<Get ready to close a cycle@>;
18107 mp_scan_tertiary(mp);
18108 @<Convert the right operand, |cur_exp|,
18109 into a partial path from |pp| to~|qq|@>;
18111 @<Join the partial paths and reset |p| and |q| to the head and tail
18113 if ( mp->cur_cmd>=min_expression_command )
18114 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18116 @<Choose control points for the path and put the result into |cur_exp|@>;
18119 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18121 mp_unstash_cur_exp(mp, p);
18122 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18123 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18126 while ( link(q)!=p ) q=link(q);
18127 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18128 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18130 left_type(p)=mp_open; right_type(q)=mp_open;
18133 @ A pair of numeric values is changed into a knot node for a one-point path
18134 when \MP\ discovers that the pair is part of a path.
18136 @c@<Declare the procedure called |known_pair|@>;
18137 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18138 pointer q; /* the new node */
18139 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18140 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18141 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18145 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18146 of the current expression, assuming that the current expression is a
18147 pair of known numerics. Unknown components are zeroed, and the
18148 current expression is flushed.
18150 @<Declare the procedure called |known_pair|@>=
18151 void mp_known_pair (MP mp) {
18152 pointer p; /* the pair node */
18153 if ( mp->cur_type!=mp_pair_type ) {
18154 exp_err("Undefined coordinates have been replaced by (0,0)");
18155 @.Undefined coordinates...@>
18156 help5("I need x and y numbers for this part of the path.")
18157 ("The value I found (see above) was no good;")
18158 ("so I'll try to keep going by using zero instead.")
18159 ("(Chapter 27 of The METAFONTbook explains that")
18160 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18161 ("you might want to type `I ??" "?' now.)");
18162 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18164 p=value(mp->cur_exp);
18165 @<Make sure that both |x| and |y| parts of |p| are known;
18166 copy them into |cur_x| and |cur_y|@>;
18167 mp_flush_cur_exp(mp, 0);
18171 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18172 if ( type(x_part_loc(p))==mp_known ) {
18173 mp->cur_x=value(x_part_loc(p));
18175 mp_disp_err(mp, x_part_loc(p),
18176 "Undefined x coordinate has been replaced by 0");
18177 @.Undefined coordinates...@>
18178 help5("I need a `known' x value for this part of the path.")
18179 ("The value I found (see above) was no good;")
18180 ("so I'll try to keep going by using zero instead.")
18181 ("(Chapter 27 of The METAFONTbook explains that")
18182 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18183 ("you might want to type `I ??" "?' now.)");
18184 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18186 if ( type(y_part_loc(p))==mp_known ) {
18187 mp->cur_y=value(y_part_loc(p));
18189 mp_disp_err(mp, y_part_loc(p),
18190 "Undefined y coordinate has been replaced by 0");
18191 help5("I need a `known' y value for this part of the path.")
18192 ("The value I found (see above) was no good;")
18193 ("so I'll try to keep going by using zero instead.")
18194 ("(Chapter 27 of The METAFONTbook explains that")
18195 ("you might want to type `I ??" "?' now.)");
18196 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18199 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18201 @<Determine the path join parameters...@>=
18202 if ( mp->cur_cmd==left_brace ) {
18203 @<Put the pre-join direction information into node |q|@>;
18206 if ( d==path_join ) {
18207 @<Determine the tension and/or control points@>;
18208 } else if ( d!=ampersand ) {
18212 if ( mp->cur_cmd==left_brace ) {
18213 @<Put the post-join direction information into |x| and |t|@>;
18214 } else if ( right_type(q)!=mp_explicit ) {
18218 @ The |scan_direction| subroutine looks at the directional information
18219 that is enclosed in braces, and also scans ahead to the following character.
18220 A type code is returned, either |open| (if the direction was $(0,0)$),
18221 or |curl| (if the direction was a curl of known value |cur_exp|), or
18222 |given| (if the direction is given by the |angle| value that now
18223 appears in |cur_exp|).
18225 There's nothing difficult about this subroutine, but the program is rather
18226 lengthy because a variety of potential errors need to be nipped in the bud.
18228 @c small_number mp_scan_direction (MP mp) {
18229 int t; /* the type of information found */
18230 scaled x; /* an |x| coordinate */
18232 if ( mp->cur_cmd==curl_command ) {
18233 @<Scan a curl specification@>;
18235 @<Scan a given direction@>;
18237 if ( mp->cur_cmd!=right_brace ) {
18238 mp_missing_err(mp, "}");
18239 @.Missing `\char`\}'@>
18240 help3("I've scanned a direction spec for part of a path,")
18241 ("so a right brace should have come next.")
18242 ("I shall pretend that one was there.");
18249 @ @<Scan a curl specification@>=
18250 { mp_get_x_next(mp); mp_scan_expression(mp);
18251 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18252 exp_err("Improper curl has been replaced by 1");
18254 help1("A curl must be a known, nonnegative number.");
18255 mp_put_get_flush_error(mp, unity);
18260 @ @<Scan a given direction@>=
18261 { mp_scan_expression(mp);
18262 if ( mp->cur_type>mp_pair_type ) {
18263 @<Get given directions separated by commas@>;
18267 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18268 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18271 @ @<Get given directions separated by commas@>=
18273 if ( mp->cur_type!=mp_known ) {
18274 exp_err("Undefined x coordinate has been replaced by 0");
18275 @.Undefined coordinates...@>
18276 help5("I need a `known' x value for this part of the path.")
18277 ("The value I found (see above) was no good;")
18278 ("so I'll try to keep going by using zero instead.")
18279 ("(Chapter 27 of The METAFONTbook explains that")
18280 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18281 ("you might want to type `I ??" "?' now.)");
18282 mp_put_get_flush_error(mp, 0);
18285 if ( mp->cur_cmd!=comma ) {
18286 mp_missing_err(mp, ",");
18288 help2("I've got the x coordinate of a path direction;")
18289 ("will look for the y coordinate next.");
18292 mp_get_x_next(mp); mp_scan_expression(mp);
18293 if ( mp->cur_type!=mp_known ) {
18294 exp_err("Undefined y coordinate has been replaced by 0");
18295 help5("I need a `known' y value for this part of the path.")
18296 ("The value I found (see above) was no good;")
18297 ("so I'll try to keep going by using zero instead.")
18298 ("(Chapter 27 of The METAFONTbook explains that")
18299 ("you might want to type `I ??" "?' now.)");
18300 mp_put_get_flush_error(mp, 0);
18302 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18305 @ At this point |right_type(q)| is usually |open|, but it may have been
18306 set to some other value by a previous splicing operation. We must maintain
18307 the value of |right_type(q)| in unusual cases such as
18308 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18310 @<Put the pre-join...@>=
18312 t=mp_scan_direction(mp);
18313 if ( t!=mp_open ) {
18314 right_type(q)=t; right_given(q)=mp->cur_exp;
18315 if ( left_type(q)==mp_open ) {
18316 left_type(q)=t; left_given(q)=mp->cur_exp;
18317 } /* note that |left_given(q)=left_curl(q)| */
18321 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18322 and since |left_given| is similarly equivalent to |left_x|, we use
18323 |x| and |y| to hold the given direction and tension information when
18324 there are no explicit control points.
18326 @<Put the post-join...@>=
18328 t=mp_scan_direction(mp);
18329 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18330 else t=mp_explicit; /* the direction information is superfluous */
18333 @ @<Determine the tension and/or...@>=
18336 if ( mp->cur_cmd==tension ) {
18337 @<Set explicit tensions@>;
18338 } else if ( mp->cur_cmd==controls ) {
18339 @<Set explicit control points@>;
18341 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18344 if ( mp->cur_cmd!=path_join ) {
18345 mp_missing_err(mp, "..");
18347 help1("A path join command should end with two dots.");
18354 @ @<Set explicit tensions@>=
18356 mp_get_x_next(mp); y=mp->cur_cmd;
18357 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18358 mp_scan_primary(mp);
18359 @<Make sure that the current expression is a valid tension setting@>;
18360 if ( y==at_least ) negate(mp->cur_exp);
18361 right_tension(q)=mp->cur_exp;
18362 if ( mp->cur_cmd==and_command ) {
18363 mp_get_x_next(mp); y=mp->cur_cmd;
18364 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18365 mp_scan_primary(mp);
18366 @<Make sure that the current expression is a valid tension setting@>;
18367 if ( y==at_least ) negate(mp->cur_exp);
18372 @ @d min_tension three_quarter_unit
18374 @<Make sure that the current expression is a valid tension setting@>=
18375 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18376 exp_err("Improper tension has been set to 1");
18377 @.Improper tension@>
18378 help1("The expression above should have been a number >=3/4.");
18379 mp_put_get_flush_error(mp, unity);
18382 @ @<Set explicit control points@>=
18384 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18385 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18386 if ( mp->cur_cmd!=and_command ) {
18387 x=right_x(q); y=right_y(q);
18389 mp_get_x_next(mp); mp_scan_primary(mp);
18390 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18394 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18396 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18397 else pp=mp->cur_exp;
18399 while ( link(qq)!=pp ) qq=link(qq);
18400 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18401 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18403 left_type(pp)=mp_open; right_type(qq)=mp_open;
18406 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18407 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18408 shouldn't have length zero.
18410 @<Get ready to close a cycle@>=
18412 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18413 if ( d==ampersand ) if ( p==q ) {
18414 d=path_join; right_tension(q)=unity; y=unity;
18418 @ @<Join the partial paths and reset |p| and |q|...@>=
18420 if ( d==ampersand ) {
18421 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18422 print_err("Paths don't touch; `&' will be changed to `..'");
18423 @.Paths don't touch@>
18424 help3("When you join paths `p&q', the ending point of p")
18425 ("must be exactly equal to the starting point of q.")
18426 ("So I'm going to pretend that you said `p..q' instead.");
18427 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18430 @<Plug an opening in |right_type(pp)|, if possible@>;
18431 if ( d==ampersand ) {
18432 @<Splice independent paths together@>;
18434 @<Plug an opening in |right_type(q)|, if possible@>;
18435 link(q)=pp; left_y(pp)=y;
18436 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18441 @ @<Plug an opening in |right_type(q)|...@>=
18442 if ( right_type(q)==mp_open ) {
18443 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18444 right_type(q)=left_type(q); right_given(q)=left_given(q);
18448 @ @<Plug an opening in |right_type(pp)|...@>=
18449 if ( right_type(pp)==mp_open ) {
18450 if ( (t==mp_curl)||(t==mp_given) ) {
18451 right_type(pp)=t; right_given(pp)=x;
18455 @ @<Splice independent paths together@>=
18457 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18458 left_type(q)=mp_curl; left_curl(q)=unity;
18460 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18461 right_type(pp)=mp_curl; right_curl(pp)=unity;
18463 right_type(q)=right_type(pp); link(q)=link(pp);
18464 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18465 mp_free_node(mp, pp,knot_node_size);
18466 if ( qq==pp ) qq=q;
18469 @ @<Choose control points for the path...@>=
18471 if ( d==ampersand ) p=q;
18473 left_type(p)=mp_endpoint;
18474 if ( right_type(p)==mp_open ) {
18475 right_type(p)=mp_curl; right_curl(p)=unity;
18477 right_type(q)=mp_endpoint;
18478 if ( left_type(q)==mp_open ) {
18479 left_type(q)=mp_curl; left_curl(q)=unity;
18483 mp_make_choices(mp, p);
18484 mp->cur_type=mp_path_type; mp->cur_exp=p
18486 @ Finally, we sometimes need to scan an expression whose value is
18487 supposed to be either |true_code| or |false_code|.
18489 @<Declare the basic parsing subroutines@>=
18490 void mp_get_boolean (MP mp) {
18491 mp_get_x_next(mp); mp_scan_expression(mp);
18492 if ( mp->cur_type!=mp_boolean_type ) {
18493 exp_err("Undefined condition will be treated as `false'");
18494 @.Undefined condition...@>
18495 help2("The expression shown above should have had a definite")
18496 ("true-or-false value. I'm changing it to `false'.");
18497 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18501 @* \[39] Doing the operations.
18502 The purpose of parsing is primarily to permit people to avoid piles of
18503 parentheses. But the real work is done after the structure of an expression
18504 has been recognized; that's when new expressions are generated. We
18505 turn now to the guts of \MP, which handles individual operators that
18506 have come through the parsing mechanism.
18508 We'll start with the easy ones that take no operands, then work our way
18509 up to operators with one and ultimately two arguments. In other words,
18510 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18511 that are invoked periodically by the expression scanners.
18513 First let's make sure that all of the primitive operators are in the
18514 hash table. Although |scan_primary| and its relatives made use of the
18515 \\{cmd} code for these operators, the \\{do} routines base everything
18516 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18517 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18520 mp_primitive(mp, "true",nullary,true_code);
18521 @:true_}{\&{true} primitive@>
18522 mp_primitive(mp, "false",nullary,false_code);
18523 @:false_}{\&{false} primitive@>
18524 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18525 @:null_picture_}{\&{nullpicture} primitive@>
18526 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18527 @:null_pen_}{\&{nullpen} primitive@>
18528 mp_primitive(mp, "jobname",nullary,job_name_op);
18529 @:job_name_}{\&{jobname} primitive@>
18530 mp_primitive(mp, "readstring",nullary,read_string_op);
18531 @:read_string_}{\&{readstring} primitive@>
18532 mp_primitive(mp, "pencircle",nullary,pen_circle);
18533 @:pen_circle_}{\&{pencircle} primitive@>
18534 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18535 @:normal_deviate_}{\&{normaldeviate} primitive@>
18536 mp_primitive(mp, "readfrom",unary,read_from_op);
18537 @:read_from_}{\&{readfrom} primitive@>
18538 mp_primitive(mp, "closefrom",unary,close_from_op);
18539 @:close_from_}{\&{closefrom} primitive@>
18540 mp_primitive(mp, "odd",unary,odd_op);
18541 @:odd_}{\&{odd} primitive@>
18542 mp_primitive(mp, "known",unary,known_op);
18543 @:known_}{\&{known} primitive@>
18544 mp_primitive(mp, "unknown",unary,unknown_op);
18545 @:unknown_}{\&{unknown} primitive@>
18546 mp_primitive(mp, "not",unary,not_op);
18547 @:not_}{\&{not} primitive@>
18548 mp_primitive(mp, "decimal",unary,decimal);
18549 @:decimal_}{\&{decimal} primitive@>
18550 mp_primitive(mp, "reverse",unary,reverse);
18551 @:reverse_}{\&{reverse} primitive@>
18552 mp_primitive(mp, "makepath",unary,make_path_op);
18553 @:make_path_}{\&{makepath} primitive@>
18554 mp_primitive(mp, "makepen",unary,make_pen_op);
18555 @:make_pen_}{\&{makepen} primitive@>
18556 mp_primitive(mp, "oct",unary,oct_op);
18557 @:oct_}{\&{oct} primitive@>
18558 mp_primitive(mp, "hex",unary,hex_op);
18559 @:hex_}{\&{hex} primitive@>
18560 mp_primitive(mp, "ASCII",unary,ASCII_op);
18561 @:ASCII_}{\&{ASCII} primitive@>
18562 mp_primitive(mp, "char",unary,char_op);
18563 @:char_}{\&{char} primitive@>
18564 mp_primitive(mp, "length",unary,length_op);
18565 @:length_}{\&{length} primitive@>
18566 mp_primitive(mp, "turningnumber",unary,turning_op);
18567 @:turning_number_}{\&{turningnumber} primitive@>
18568 mp_primitive(mp, "xpart",unary,x_part);
18569 @:x_part_}{\&{xpart} primitive@>
18570 mp_primitive(mp, "ypart",unary,y_part);
18571 @:y_part_}{\&{ypart} primitive@>
18572 mp_primitive(mp, "xxpart",unary,xx_part);
18573 @:xx_part_}{\&{xxpart} primitive@>
18574 mp_primitive(mp, "xypart",unary,xy_part);
18575 @:xy_part_}{\&{xypart} primitive@>
18576 mp_primitive(mp, "yxpart",unary,yx_part);
18577 @:yx_part_}{\&{yxpart} primitive@>
18578 mp_primitive(mp, "yypart",unary,yy_part);
18579 @:yy_part_}{\&{yypart} primitive@>
18580 mp_primitive(mp, "redpart",unary,red_part);
18581 @:red_part_}{\&{redpart} primitive@>
18582 mp_primitive(mp, "greenpart",unary,green_part);
18583 @:green_part_}{\&{greenpart} primitive@>
18584 mp_primitive(mp, "bluepart",unary,blue_part);
18585 @:blue_part_}{\&{bluepart} primitive@>
18586 mp_primitive(mp, "cyanpart",unary,cyan_part);
18587 @:cyan_part_}{\&{cyanpart} primitive@>
18588 mp_primitive(mp, "magentapart",unary,magenta_part);
18589 @:magenta_part_}{\&{magentapart} primitive@>
18590 mp_primitive(mp, "yellowpart",unary,yellow_part);
18591 @:yellow_part_}{\&{yellowpart} primitive@>
18592 mp_primitive(mp, "blackpart",unary,black_part);
18593 @:black_part_}{\&{blackpart} primitive@>
18594 mp_primitive(mp, "greypart",unary,grey_part);
18595 @:grey_part_}{\&{greypart} primitive@>
18596 mp_primitive(mp, "colormodel",unary,color_model_part);
18597 @:color_model_part_}{\&{colormodel} primitive@>
18598 mp_primitive(mp, "fontpart",unary,font_part);
18599 @:font_part_}{\&{fontpart} primitive@>
18600 mp_primitive(mp, "textpart",unary,text_part);
18601 @:text_part_}{\&{textpart} primitive@>
18602 mp_primitive(mp, "pathpart",unary,path_part);
18603 @:path_part_}{\&{pathpart} primitive@>
18604 mp_primitive(mp, "penpart",unary,pen_part);
18605 @:pen_part_}{\&{penpart} primitive@>
18606 mp_primitive(mp, "dashpart",unary,dash_part);
18607 @:dash_part_}{\&{dashpart} primitive@>
18608 mp_primitive(mp, "sqrt",unary,sqrt_op);
18609 @:sqrt_}{\&{sqrt} primitive@>
18610 mp_primitive(mp, "mexp",unary,m_exp_op);
18611 @:m_exp_}{\&{mexp} primitive@>
18612 mp_primitive(mp, "mlog",unary,m_log_op);
18613 @:m_log_}{\&{mlog} primitive@>
18614 mp_primitive(mp, "sind",unary,sin_d_op);
18615 @:sin_d_}{\&{sind} primitive@>
18616 mp_primitive(mp, "cosd",unary,cos_d_op);
18617 @:cos_d_}{\&{cosd} primitive@>
18618 mp_primitive(mp, "floor",unary,floor_op);
18619 @:floor_}{\&{floor} primitive@>
18620 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18621 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18622 mp_primitive(mp, "charexists",unary,char_exists_op);
18623 @:char_exists_}{\&{charexists} primitive@>
18624 mp_primitive(mp, "fontsize",unary,font_size);
18625 @:font_size_}{\&{fontsize} primitive@>
18626 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18627 @:ll_corner_}{\&{llcorner} primitive@>
18628 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18629 @:lr_corner_}{\&{lrcorner} primitive@>
18630 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18631 @:ul_corner_}{\&{ulcorner} primitive@>
18632 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18633 @:ur_corner_}{\&{urcorner} primitive@>
18634 mp_primitive(mp, "arclength",unary,arc_length);
18635 @:arc_length_}{\&{arclength} primitive@>
18636 mp_primitive(mp, "angle",unary,angle_op);
18637 @:angle_}{\&{angle} primitive@>
18638 mp_primitive(mp, "cycle",cycle,cycle_op);
18639 @:cycle_}{\&{cycle} primitive@>
18640 mp_primitive(mp, "stroked",unary,stroked_op);
18641 @:stroked_}{\&{stroked} primitive@>
18642 mp_primitive(mp, "filled",unary,filled_op);
18643 @:filled_}{\&{filled} primitive@>
18644 mp_primitive(mp, "textual",unary,textual_op);
18645 @:textual_}{\&{textual} primitive@>
18646 mp_primitive(mp, "clipped",unary,clipped_op);
18647 @:clipped_}{\&{clipped} primitive@>
18648 mp_primitive(mp, "bounded",unary,bounded_op);
18649 @:bounded_}{\&{bounded} primitive@>
18650 mp_primitive(mp, "+",plus_or_minus,plus);
18651 @:+ }{\.{+} primitive@>
18652 mp_primitive(mp, "-",plus_or_minus,minus);
18653 @:- }{\.{-} primitive@>
18654 mp_primitive(mp, "*",secondary_binary,times);
18655 @:* }{\.{*} primitive@>
18656 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18657 @:/ }{\.{/} primitive@>
18658 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18659 @:++_}{\.{++} primitive@>
18660 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18661 @:+-+_}{\.{+-+} primitive@>
18662 mp_primitive(mp, "or",tertiary_binary,or_op);
18663 @:or_}{\&{or} primitive@>
18664 mp_primitive(mp, "and",and_command,and_op);
18665 @:and_}{\&{and} primitive@>
18666 mp_primitive(mp, "<",expression_binary,less_than);
18667 @:< }{\.{<} primitive@>
18668 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18669 @:<=_}{\.{<=} primitive@>
18670 mp_primitive(mp, ">",expression_binary,greater_than);
18671 @:> }{\.{>} primitive@>
18672 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18673 @:>=_}{\.{>=} primitive@>
18674 mp_primitive(mp, "=",equals,equal_to);
18675 @:= }{\.{=} primitive@>
18676 mp_primitive(mp, "<>",expression_binary,unequal_to);
18677 @:<>_}{\.{<>} primitive@>
18678 mp_primitive(mp, "substring",primary_binary,substring_of);
18679 @:substring_}{\&{substring} primitive@>
18680 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18681 @:subpath_}{\&{subpath} primitive@>
18682 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18683 @:direction_time_}{\&{directiontime} primitive@>
18684 mp_primitive(mp, "point",primary_binary,point_of);
18685 @:point_}{\&{point} primitive@>
18686 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18687 @:precontrol_}{\&{precontrol} primitive@>
18688 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18689 @:postcontrol_}{\&{postcontrol} primitive@>
18690 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18691 @:pen_offset_}{\&{penoffset} primitive@>
18692 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18693 @:arc_time_of_}{\&{arctime} primitive@>
18694 mp_primitive(mp, "mpversion",nullary,mp_version);
18695 @:mp_verison_}{\&{mpversion} primitive@>
18696 mp_primitive(mp, "&",ampersand,concatenate);
18697 @:!!!}{\.{\&} primitive@>
18698 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18699 @:rotated_}{\&{rotated} primitive@>
18700 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18701 @:slanted_}{\&{slanted} primitive@>
18702 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18703 @:scaled_}{\&{scaled} primitive@>
18704 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18705 @:shifted_}{\&{shifted} primitive@>
18706 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18707 @:transformed_}{\&{transformed} primitive@>
18708 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18709 @:x_scaled_}{\&{xscaled} primitive@>
18710 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18711 @:y_scaled_}{\&{yscaled} primitive@>
18712 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18713 @:z_scaled_}{\&{zscaled} primitive@>
18714 mp_primitive(mp, "infont",secondary_binary,in_font);
18715 @:in_font_}{\&{infont} primitive@>
18716 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18717 @:intersection_times_}{\&{intersectiontimes} primitive@>
18718 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18719 @:envelope_}{\&{envelope} primitive@>
18721 @ @<Cases of |print_cmd...@>=
18724 case primary_binary:
18725 case secondary_binary:
18726 case tertiary_binary:
18727 case expression_binary:
18729 case plus_or_minus:
18734 mp_print_op(mp, m);
18737 @ OK, let's look at the simplest \\{do} procedure first.
18739 @c @<Declare nullary action procedure@>;
18740 void mp_do_nullary (MP mp,quarterword c) {
18742 if ( mp->internal[mp_tracing_commands]>two )
18743 mp_show_cmd_mod(mp, nullary,c);
18745 case true_code: case false_code:
18746 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18748 case null_picture_code:
18749 mp->cur_type=mp_picture_type;
18750 mp->cur_exp=mp_get_node(mp, edge_header_size);
18751 mp_init_edges(mp, mp->cur_exp);
18753 case null_pen_code:
18754 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18756 case normal_deviate:
18757 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18760 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18763 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18764 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18767 mp->cur_type=mp_string_type;
18768 mp->cur_exp=intern(metapost_version) ;
18770 case read_string_op:
18771 @<Read a string from the terminal@>;
18773 } /* there are no other cases */
18777 @ @<Read a string...@>=
18779 if ( mp->interaction<=mp_nonstop_mode )
18780 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18781 mp_begin_file_reading(mp); name=is_read;
18782 limit=start; prompt_input("");
18783 mp_finish_read(mp);
18786 @ @<Declare nullary action procedure@>=
18787 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18789 str_room((int)mp->last-start);
18790 for (k=start;k<=mp->last-1;k++) {
18791 append_char(mp->buffer[k]);
18793 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18794 mp->cur_exp=mp_make_string(mp);
18797 @ Things get a bit more interesting when there's an operand. The
18798 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18800 @c @<Declare unary action procedures@>;
18801 void mp_do_unary (MP mp,quarterword c) {
18802 pointer p,q,r; /* for list manipulation */
18803 integer x; /* a temporary register */
18805 if ( mp->internal[mp_tracing_commands]>two )
18806 @<Trace the current unary operation@>;
18809 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18812 @<Negate the current expression@>;
18814 @<Additional cases of unary operators@>;
18815 } /* there are no other cases */
18819 @ The |nice_pair| function returns |true| if both components of a pair
18822 @<Declare unary action procedures@>=
18823 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18824 if ( t==mp_pair_type ) {
18826 if ( type(x_part_loc(p))==mp_known )
18827 if ( type(y_part_loc(p))==mp_known )
18833 @ The |nice_color_or_pair| function is analogous except that it also accepts
18834 fully known colors.
18836 @<Declare unary action procedures@>=
18837 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18838 pointer q,r; /* for scanning the big node */
18839 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18843 r=q+mp->big_node_size[type(p)];
18846 if ( type(r)!=mp_known )
18853 @ @<Declare unary action...@>=
18854 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18855 mp_print_char(mp, '(');
18856 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18857 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18858 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18859 mp_print_type(mp, t);
18861 mp_print_char(mp, ')');
18864 @ @<Declare unary action...@>=
18865 void mp_bad_unary (MP mp,quarterword c) {
18866 exp_err("Not implemented: "); mp_print_op(mp, c);
18867 @.Not implemented...@>
18868 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18869 help3("I'm afraid I don't know how to apply that operation to that")
18870 ("particular type. Continue, and I'll simply return the")
18871 ("argument (shown above) as the result of the operation.");
18872 mp_put_get_error(mp);
18875 @ @<Trace the current unary operation@>=
18877 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18878 mp_print_op(mp, c); mp_print_char(mp, '(');
18879 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18880 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18883 @ Negation is easy except when the current expression
18884 is of type |independent|, or when it is a pair with one or more
18885 |independent| components.
18887 It is tempting to argue that the negative of an independent variable
18888 is an independent variable, hence we don't have to do anything when
18889 negating it. The fallacy is that other dependent variables pointing
18890 to the current expression must change the sign of their
18891 coefficients if we make no change to the current expression.
18893 Instead, we work around the problem by copying the current expression
18894 and recycling it afterwards (cf.~the |stash_in| routine).
18896 @<Negate the current expression@>=
18897 switch (mp->cur_type) {
18898 case mp_color_type:
18899 case mp_cmykcolor_type:
18901 case mp_independent:
18902 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18903 if ( mp->cur_type==mp_dependent ) {
18904 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18905 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18906 p=value(mp->cur_exp);
18907 r=p+mp->big_node_size[mp->cur_type];
18910 if ( type(r)==mp_known ) negate(value(r));
18911 else mp_negate_dep_list(mp, dep_list(r));
18913 } /* if |cur_type=mp_known| then |cur_exp=0| */
18914 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18917 case mp_proto_dependent:
18918 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18921 negate(mp->cur_exp);
18924 mp_bad_unary(mp, minus);
18928 @ @<Declare unary action...@>=
18929 void mp_negate_dep_list (MP mp,pointer p) {
18932 if ( info(p)==null ) return;
18937 @ @<Additional cases of unary operators@>=
18939 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18940 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18943 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18944 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18946 @<Additional cases of unary operators@>=
18953 case uniform_deviate:
18955 case char_exists_op:
18956 if ( mp->cur_type!=mp_known ) {
18957 mp_bad_unary(mp, c);
18960 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18961 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18962 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18965 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18966 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18967 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18969 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18970 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18972 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18973 mp->cur_type=mp_boolean_type;
18975 case char_exists_op:
18976 @<Determine if a character has been shipped out@>;
18978 } /* there are no other cases */
18982 @ @<Additional cases of unary operators@>=
18984 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18985 p=value(mp->cur_exp);
18986 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18987 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18988 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18990 mp_bad_unary(mp, angle_op);
18994 @ If the current expression is a pair, but the context wants it to
18995 be a path, we call |pair_to_path|.
18997 @<Declare unary action...@>=
18998 void mp_pair_to_path (MP mp) {
18999 mp->cur_exp=mp_new_knot(mp);
19000 mp->cur_type=mp_path_type;
19003 @ @<Additional cases of unary operators@>=
19006 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
19007 mp_take_part(mp, c);
19008 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19009 else mp_bad_unary(mp, c);
19015 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
19016 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19017 else mp_bad_unary(mp, c);
19022 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
19023 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19024 else mp_bad_unary(mp, c);
19030 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
19031 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19032 else mp_bad_unary(mp, c);
19035 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
19036 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19037 else mp_bad_unary(mp, c);
19039 case color_model_part:
19040 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19041 else mp_bad_unary(mp, c);
19044 @ In the following procedure, |cur_exp| points to a capsule, which points to
19045 a big node. We want to delete all but one part of the big node.
19047 @<Declare unary action...@>=
19048 void mp_take_part (MP mp,quarterword c) {
19049 pointer p; /* the big node */
19050 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19051 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19052 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19053 mp_recycle_value(mp, temp_val);
19056 @ @<Initialize table entries...@>=
19057 name_type(temp_val)=mp_capsule;
19059 @ @<Additional cases of unary operators@>=
19065 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19066 else mp_bad_unary(mp, c);
19069 @ @<Declarations@>=
19070 void mp_scale_edges (MP mp);
19072 @ @<Declare unary action...@>=
19073 void mp_take_pict_part (MP mp,quarterword c) {
19074 pointer p; /* first graphical object in |cur_exp| */
19075 p=link(dummy_loc(mp->cur_exp));
19078 case x_part: case y_part: case xx_part:
19079 case xy_part: case yx_part: case yy_part:
19080 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19081 else goto NOT_FOUND;
19083 case red_part: case green_part: case blue_part:
19084 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19085 else goto NOT_FOUND;
19087 case cyan_part: case magenta_part: case yellow_part:
19089 if ( has_color(p) ) {
19090 if ( color_model(p)==mp_uninitialized_model )
19091 mp_flush_cur_exp(mp, unity);
19093 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19094 } else goto NOT_FOUND;
19097 if ( has_color(p) )
19098 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19099 else goto NOT_FOUND;
19101 case color_model_part:
19102 if ( has_color(p) ) {
19103 if ( color_model(p)==mp_uninitialized_model )
19104 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19106 mp_flush_cur_exp(mp, color_model(p)*unity);
19107 } else goto NOT_FOUND;
19109 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19110 } /* all cases have been enumerated */
19114 @<Convert the current expression to a null value appropriate
19118 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19120 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19122 mp_flush_cur_exp(mp, text_p(p));
19123 add_str_ref(mp->cur_exp);
19124 mp->cur_type=mp_string_type;
19128 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19130 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19131 add_str_ref(mp->cur_exp);
19132 mp->cur_type=mp_string_type;
19136 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19137 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19138 @:this can't happen pict}{\quad pict@>
19140 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19141 mp->cur_type=mp_path_type;
19145 if ( ! has_pen(p) ) goto NOT_FOUND;
19147 if ( pen_p(p)==null ) goto NOT_FOUND;
19148 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19149 mp->cur_type=mp_pen_type;
19154 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19155 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19156 else { add_edge_ref(dash_p(p));
19157 mp->se_sf=dash_scale(p);
19158 mp->se_pic=dash_p(p);
19159 mp_scale_edges(mp);
19160 mp_flush_cur_exp(mp, mp->se_pic);
19161 mp->cur_type=mp_picture_type;
19166 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19167 parameterless procedure even though it really takes two arguments and updates
19168 one of them. Hence the following globals are needed.
19171 pointer se_pic; /* edge header used and updated by |scale_edges| */
19172 scaled se_sf; /* the scale factor argument to |scale_edges| */
19174 @ @<Convert the current expression to a null value appropriate...@>=
19176 case text_part: case font_part:
19177 mp_flush_cur_exp(mp, rts(""));
19178 mp->cur_type=mp_string_type;
19181 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19182 left_type(mp->cur_exp)=mp_endpoint;
19183 right_type(mp->cur_exp)=mp_endpoint;
19184 link(mp->cur_exp)=mp->cur_exp;
19185 x_coord(mp->cur_exp)=0;
19186 y_coord(mp->cur_exp)=0;
19187 originator(mp->cur_exp)=mp_metapost_user;
19188 mp->cur_type=mp_path_type;
19191 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19192 mp->cur_type=mp_pen_type;
19195 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19196 mp_init_edges(mp, mp->cur_exp);
19197 mp->cur_type=mp_picture_type;
19200 mp_flush_cur_exp(mp, 0);
19204 @ @<Additional cases of unary...@>=
19206 if ( mp->cur_type!=mp_known ) {
19207 mp_bad_unary(mp, char_op);
19209 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19210 mp->cur_type=mp_string_type;
19211 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19215 if ( mp->cur_type!=mp_known ) {
19216 mp_bad_unary(mp, decimal);
19218 mp->old_setting=mp->selector; mp->selector=new_string;
19219 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19220 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19226 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19227 else mp_str_to_num(mp, c);
19230 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19231 else @<Find the design size of the font whose name is |cur_exp|@>;
19234 @ @<Declare unary action...@>=
19235 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19236 integer n; /* accumulator */
19237 ASCII_code m; /* current character */
19238 pool_pointer k; /* index into |str_pool| */
19239 int b; /* radix of conversion */
19240 boolean bad_char; /* did the string contain an invalid digit? */
19241 if ( c==ASCII_op ) {
19242 if ( length(mp->cur_exp)==0 ) n=-1;
19243 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19245 if ( c==oct_op ) b=8; else b=16;
19246 n=0; bad_char=false;
19247 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19249 if ( (m>='0')&&(m<='9') ) m=m-'0';
19250 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19251 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19252 else { bad_char=true; m=0; };
19253 if ( m>=b ) { bad_char=true; m=0; };
19254 if ( n<32768 / b ) n=n*b+m; else n=32767;
19256 @<Give error messages if |bad_char| or |n>=4096|@>;
19258 mp_flush_cur_exp(mp, n*unity);
19261 @ @<Give error messages if |bad_char|...@>=
19263 exp_err("String contains illegal digits");
19264 @.String contains illegal digits@>
19266 help1("I zeroed out characters that weren't in the range 0..7.");
19268 help1("I zeroed out characters that weren't hex digits.");
19270 mp_put_get_error(mp);
19273 if ( mp->internal[mp_warning_check]>0 ) {
19274 print_err("Number too large (");
19275 mp_print_int(mp, n); mp_print_char(mp, ')');
19276 @.Number too large@>
19277 help2("I have trouble with numbers greater than 4095; watch out.")
19278 ("(Set warningcheck:=0 to suppress this message.)");
19279 mp_put_get_error(mp);
19283 @ The length operation is somewhat unusual in that it applies to a variety
19284 of different types of operands.
19286 @<Additional cases of unary...@>=
19288 switch (mp->cur_type) {
19289 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19290 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19291 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19292 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19294 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19295 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19296 value(x_part_loc(value(mp->cur_exp))),
19297 value(y_part_loc(value(mp->cur_exp)))));
19298 else mp_bad_unary(mp, c);
19303 @ @<Declare unary action...@>=
19304 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19305 scaled n; /* the path length so far */
19306 pointer p; /* traverser */
19308 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19309 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19313 @ @<Declare unary action...@>=
19314 scaled mp_pict_length (MP mp) {
19315 /* counts interior components in picture |cur_exp| */
19316 scaled n; /* the count so far */
19317 pointer p; /* traverser */
19319 p=link(dummy_loc(mp->cur_exp));
19321 if ( is_start_or_stop(p) )
19322 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19323 while ( p!=null ) {
19324 skip_component(p) return n;
19331 @ Implement |turningnumber|
19333 @<Additional cases of unary...@>=
19335 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19336 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19337 else if ( left_type(mp->cur_exp)==mp_endpoint )
19338 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19340 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19343 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19344 argument is |origin|.
19346 @<Declare unary action...@>=
19347 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19348 if ( (! ((xpar==0) && (ypar==0))) )
19349 return mp_n_arg(mp, xpar,ypar);
19354 @ The actual turning number is (for the moment) computed in a C function
19355 that receives eight integers corresponding to the four controlling points,
19356 and returns a single angle. Besides those, we have to account for discrete
19357 moves at the actual points.
19359 @d floor(a) (a>=0 ? a : -(int)(-a))
19360 @d bezier_error (720<<20)+1
19361 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19363 @d out ((double)(xo>>20))
19364 @d mid ((double)(xm>>20))
19365 @d in ((double)(xi>>20))
19366 @d divisor (256*256)
19367 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19369 @<Declare unary action...@>=
19370 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19371 integer CX,integer CY,integer DX,integer DY);
19374 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19375 integer CX,integer CY,integer DX,integer DY) {
19377 integer deltax,deltay;
19378 double ax,ay,bx,by,cx,cy,dx,dy;
19379 angle xi = 0, xo = 0, xm = 0;
19381 ax=AX/divisor; ay=AY/divisor;
19382 bx=BX/divisor; by=BY/divisor;
19383 cx=CX/divisor; cy=CY/divisor;
19384 dx=DX/divisor; dy=DY/divisor;
19386 deltax = (BX-AX); deltay = (BY-AY);
19387 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19388 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19389 xi = mp_an_angle(mp,deltax,deltay);
19391 deltax = (CX-BX); deltay = (CY-BY);
19392 xm = mp_an_angle(mp,deltax,deltay);
19394 deltax = (DX-CX); deltay = (DY-CY);
19395 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19396 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19397 xo = mp_an_angle(mp,deltax,deltay);
19399 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19400 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19401 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19403 if ((a==0)&&(c==0)) {
19404 res = (b==0 ? 0 : (out-in));
19405 print_roots("no roots (a)");
19406 } else if ((a==0)||(c==0)) {
19407 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19408 res = out-in; /* ? */
19411 else if (res>180.0)
19413 print_roots("no roots (b)");
19415 res = out-in; /* ? */
19416 print_roots("one root (a)");
19418 } else if ((sign(a)*sign(c))<0) {
19419 res = out-in; /* ? */
19422 else if (res>180.0)
19424 print_roots("one root (b)");
19426 if (sign(a) == sign(b)) {
19427 res = out-in; /* ? */
19430 else if (res>180.0)
19432 print_roots("no roots (d)");
19434 if ((b*b) == (4*a*c)) {
19435 res = bezier_error;
19436 print_roots("double root"); /* cusp */
19437 } else if ((b*b) < (4*a*c)) {
19438 res = out-in; /* ? */
19439 if (res<=0.0 &&res>-180.0)
19441 else if (res>=0.0 && res<180.0)
19443 print_roots("no roots (e)");
19448 else if (res>180.0)
19450 print_roots("two roots"); /* two inflections */
19454 return double2angle(res);
19458 @d p_nextnext link(link(p))
19460 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19462 @<Declare unary action...@>=
19463 scaled mp_new_turn_cycles (MP mp,pointer c) {
19464 angle res,ang; /* the angles of intermediate results */
19465 scaled turns; /* the turn counter */
19466 pointer p; /* for running around the path */
19467 integer xp,yp; /* coordinates of next point */
19468 integer x,y; /* helper coordinates */
19469 angle in_angle,out_angle; /* helper angles */
19470 int old_setting; /* saved |selector| setting */
19474 old_setting = mp->selector; mp->selector=term_only;
19475 if ( mp->internal[mp_tracing_commands]>unity ) {
19476 mp_begin_diagnostic(mp);
19477 mp_print_nl(mp, "");
19478 mp_end_diagnostic(mp, false);
19481 xp = x_coord(p_next); yp = y_coord(p_next);
19482 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19483 left_x(p_next), left_y(p_next), xp, yp);
19484 if ( ang>seven_twenty_deg ) {
19485 print_err("Strange path");
19487 mp->selector=old_setting;
19491 if ( res > one_eighty_deg ) {
19492 res = res - three_sixty_deg;
19493 turns = turns + unity;
19495 if ( res <= -one_eighty_deg ) {
19496 res = res + three_sixty_deg;
19497 turns = turns - unity;
19499 /* incoming angle at next point */
19500 x = left_x(p_next); y = left_y(p_next);
19501 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19502 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19503 in_angle = mp_an_angle(mp, xp - x, yp - y);
19504 /* outgoing angle at next point */
19505 x = right_x(p_next); y = right_y(p_next);
19506 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19507 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19508 out_angle = mp_an_angle(mp, x - xp, y- yp);
19509 ang = (out_angle - in_angle);
19513 if ( res >= one_eighty_deg ) {
19514 res = res - three_sixty_deg;
19515 turns = turns + unity;
19517 if ( res <= -one_eighty_deg ) {
19518 res = res + three_sixty_deg;
19519 turns = turns - unity;
19524 mp->selector=old_setting;
19529 @ This code is based on Bogus\l{}av Jackowski's
19530 |emergency_turningnumber| macro, with some minor changes by Taco
19531 Hoekwater. The macro code looked more like this:
19533 vardef turning\_number primary p =
19534 ~~save res, ang, turns;
19536 ~~if length p <= 2:
19537 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19539 ~~~~for t = 0 upto length p-1 :
19540 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19541 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19542 ~~~~~~if angc > 180: angc := angc - 360; fi;
19543 ~~~~~~if angc < -180: angc := angc + 360; fi;
19544 ~~~~~~res := res + angc;
19549 The general idea is to calculate only the sum of the angles of
19550 straight lines between the points, of a path, not worrying about cusps
19551 or self-intersections in the segments at all. If the segment is not
19552 well-behaved, the result is not necesarily correct. But the old code
19553 was not always correct either, and worse, it sometimes failed for
19554 well-behaved paths as well. All known bugs that were triggered by the
19555 original code no longer occur with this code, and it runs roughly 3
19556 times as fast because the algorithm is much simpler.
19558 @ It is possible to overflow the return value of the |turn_cycles|
19559 function when the path is sufficiently long and winding, but I am not
19560 going to bother testing for that. In any case, it would only return
19561 the looped result value, which is not a big problem.
19563 The macro code for the repeat loop was a bit nicer to look
19564 at than the pascal code, because it could use |point -1 of p|. In
19565 pascal, the fastest way to loop around the path is not to look
19566 backward once, but forward twice. These defines help hide the trick.
19568 @d p_to link(link(p))
19572 @<Declare unary action...@>=
19573 scaled mp_turn_cycles (MP mp,pointer c) {
19574 angle res,ang; /* the angles of intermediate results */
19575 scaled turns; /* the turn counter */
19576 pointer p; /* for running around the path */
19577 res=0; turns= 0; p=c;
19579 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19580 y_coord(p_to) - y_coord(p_here))
19581 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19582 y_coord(p_here) - y_coord(p_from));
19585 if ( res >= three_sixty_deg ) {
19586 res = res - three_sixty_deg;
19587 turns = turns + unity;
19589 if ( res <= -three_sixty_deg ) {
19590 res = res + three_sixty_deg;
19591 turns = turns - unity;
19598 @ @<Declare unary action...@>=
19599 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19601 scaled saved_t_o; /* tracing\_online saved */
19602 if ( (link(c)==c)||(link(link(c))==c) ) {
19603 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19608 nval = mp_new_turn_cycles(mp, c);
19609 oval = mp_turn_cycles(mp, c);
19610 if ( nval!=oval ) {
19611 saved_t_o=mp->internal[mp_tracing_online];
19612 mp->internal[mp_tracing_online]=unity;
19613 mp_begin_diagnostic(mp);
19614 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19615 " The current computed value is ");
19616 mp_print_scaled(mp, nval);
19617 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19618 mp_print_scaled(mp, oval);
19619 mp_end_diagnostic(mp, false);
19620 mp->internal[mp_tracing_online]=saved_t_o;
19626 @ @<Declare unary action...@>=
19627 scaled mp_count_turns (MP mp,pointer c) {
19628 pointer p; /* a knot in envelope spec |c| */
19629 integer t; /* total pen offset changes counted */
19632 t=t+info(p)-zero_off;
19635 return ((t / 3)*unity);
19638 @ @d type_range(A,B) {
19639 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19640 mp_flush_cur_exp(mp, true_code);
19641 else mp_flush_cur_exp(mp, false_code);
19642 mp->cur_type=mp_boolean_type;
19645 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19646 else mp_flush_cur_exp(mp, false_code);
19647 mp->cur_type=mp_boolean_type;
19650 @<Additional cases of unary operators@>=
19651 case mp_boolean_type:
19652 type_range(mp_boolean_type,mp_unknown_boolean); break;
19653 case mp_string_type:
19654 type_range(mp_string_type,mp_unknown_string); break;
19656 type_range(mp_pen_type,mp_unknown_pen); break;
19658 type_range(mp_path_type,mp_unknown_path); break;
19659 case mp_picture_type:
19660 type_range(mp_picture_type,mp_unknown_picture); break;
19661 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19663 type_test(c); break;
19664 case mp_numeric_type:
19665 type_range(mp_known,mp_independent); break;
19666 case known_op: case unknown_op:
19667 mp_test_known(mp, c); break;
19669 @ @<Declare unary action procedures@>=
19670 void mp_test_known (MP mp,quarterword c) {
19671 int b; /* is the current expression known? */
19672 pointer p,q; /* locations in a big node */
19674 switch (mp->cur_type) {
19675 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19676 case mp_pen_type: case mp_path_type: case mp_picture_type:
19680 case mp_transform_type:
19681 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19682 p=value(mp->cur_exp);
19683 q=p+mp->big_node_size[mp->cur_type];
19686 if ( type(q)!=mp_known )
19695 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19696 else mp_flush_cur_exp(mp, true_code+false_code-b);
19697 mp->cur_type=mp_boolean_type;
19700 @ @<Additional cases of unary operators@>=
19702 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19703 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19704 else mp_flush_cur_exp(mp, false_code);
19705 mp->cur_type=mp_boolean_type;
19708 @ @<Additional cases of unary operators@>=
19710 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19711 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19712 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19715 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19717 @^data structure assumptions@>
19719 @<Additional cases of unary operators@>=
19725 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19726 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19727 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19728 mp_flush_cur_exp(mp, true_code);
19729 else mp_flush_cur_exp(mp, false_code);
19730 mp->cur_type=mp_boolean_type;
19733 @ @<Additional cases of unary operators@>=
19735 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19736 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19738 mp->cur_type=mp_pen_type;
19739 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19743 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19745 mp->cur_type=mp_path_type;
19746 mp_make_path(mp, mp->cur_exp);
19750 if ( mp->cur_type==mp_path_type ) {
19751 p=mp_htap_ypoc(mp, mp->cur_exp);
19752 if ( right_type(p)==mp_endpoint ) p=link(p);
19753 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19754 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19755 else mp_bad_unary(mp, reverse);
19758 @ The |pair_value| routine changes the current expression to a
19759 given ordered pair of values.
19761 @<Declare unary action procedures@>=
19762 void mp_pair_value (MP mp,scaled x, scaled y) {
19763 pointer p; /* a pair node */
19764 p=mp_get_node(mp, value_node_size);
19765 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19766 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19768 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19769 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19772 @ @<Additional cases of unary operators@>=
19774 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19775 else mp_pair_value(mp, minx,miny);
19778 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19779 else mp_pair_value(mp, maxx,miny);
19782 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19783 else mp_pair_value(mp, minx,maxy);
19786 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19787 else mp_pair_value(mp, maxx,maxy);
19790 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19791 box of the current expression. The boolean result is |false| if the expression
19792 has the wrong type.
19794 @<Declare unary action procedures@>=
19795 boolean mp_get_cur_bbox (MP mp) {
19796 switch (mp->cur_type) {
19797 case mp_picture_type:
19798 mp_set_bbox(mp, mp->cur_exp,true);
19799 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19800 minx=0; maxx=0; miny=0; maxy=0;
19802 minx=minx_val(mp->cur_exp);
19803 maxx=maxx_val(mp->cur_exp);
19804 miny=miny_val(mp->cur_exp);
19805 maxy=maxy_val(mp->cur_exp);
19809 mp_path_bbox(mp, mp->cur_exp);
19812 mp_pen_bbox(mp, mp->cur_exp);
19820 @ @<Additional cases of unary operators@>=
19822 case close_from_op:
19823 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19824 else mp_do_read_or_close(mp,c);
19827 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19828 a line from the file or to close the file.
19830 @<Declare unary action procedures@>=
19831 void mp_do_read_or_close (MP mp,quarterword c) {
19832 readf_index n,n0; /* indices for searching |rd_fname| */
19833 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19834 call |start_read_input| and |goto found| or |not_found|@>;
19835 mp_begin_file_reading(mp);
19837 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19839 mp_end_file_reading(mp);
19841 @<Record the end of file and set |cur_exp| to a dummy value@>;
19844 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19847 mp_flush_cur_exp(mp, 0);
19848 mp_finish_read(mp);
19851 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19854 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19859 fn = str(mp->cur_exp);
19860 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19863 } else if ( c==close_from_op ) {
19866 if ( n0==mp->read_files ) {
19867 if ( mp->read_files<mp->max_read_files ) {
19868 incr(mp->read_files);
19873 l = mp->max_read_files + (mp->max_read_files>>2);
19874 rd_file = xmalloc((l+1), sizeof(void *));
19875 rd_fname = xmalloc((l+1), sizeof(char *));
19876 for (k=0;k<=l;k++) {
19877 if (k<=mp->max_read_files) {
19878 rd_file[k]=mp->rd_file[k];
19879 rd_fname[k]=mp->rd_fname[k];
19885 xfree(mp->rd_file); xfree(mp->rd_fname);
19886 mp->max_read_files = l;
19887 mp->rd_file = rd_file;
19888 mp->rd_fname = rd_fname;
19892 if ( mp_start_read_input(mp,fn,n) )
19897 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19899 if ( c==close_from_op ) {
19900 (mp->close_file)(mp->rd_file[n]);
19905 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19906 xfree(mp->rd_fname[n]);
19907 mp->rd_fname[n]=NULL;
19908 if ( n==mp->read_files-1 ) mp->read_files=n;
19909 if ( c==close_from_op )
19911 mp_flush_cur_exp(mp, mp->eof_line);
19912 mp->cur_type=mp_string_type
19914 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19917 str_number eof_line;
19922 @ Finally, we have the operations that combine a capsule~|p|
19923 with the current expression.
19925 @c @<Declare binary action procedures@>;
19926 void mp_do_binary (MP mp,pointer p, quarterword c) {
19927 pointer q,r,rr; /* for list manipulation */
19928 pointer old_p,old_exp; /* capsules to recycle */
19929 integer v; /* for numeric manipulation */
19931 if ( mp->internal[mp_tracing_commands]>two ) {
19932 @<Trace the current binary operation@>;
19934 @<Sidestep |independent| cases in capsule |p|@>;
19935 @<Sidestep |independent| cases in the current expression@>;
19937 case plus: case minus:
19938 @<Add or subtract the current expression from |p|@>;
19940 @<Additional cases of binary operators@>;
19941 }; /* there are no other cases */
19942 mp_recycle_value(mp, p);
19943 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19945 @<Recycle any sidestepped |independent| capsules@>;
19948 @ @<Declare binary action...@>=
19949 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19950 mp_disp_err(mp, p,"");
19951 exp_err("Not implemented: ");
19952 @.Not implemented...@>
19953 if ( c>=min_of ) mp_print_op(mp, c);
19954 mp_print_known_or_unknown_type(mp, type(p),p);
19955 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19956 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19957 help3("I'm afraid I don't know how to apply that operation to that")
19958 ("combination of types. Continue, and I'll return the second")
19959 ("argument (see above) as the result of the operation.");
19960 mp_put_get_error(mp);
19962 void mp_bad_envelope_pen (MP mp) {
19963 mp_disp_err(mp, null,"");
19964 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19965 @.Not implemented...@>
19966 help3("I'm afraid I don't know how to apply that operation to that")
19967 ("combination of types. Continue, and I'll return the second")
19968 ("argument (see above) as the result of the operation.");
19969 mp_put_get_error(mp);
19972 @ @<Trace the current binary operation@>=
19974 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19975 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19976 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19977 mp_print_exp(mp,null,0); mp_print(mp,")}");
19978 mp_end_diagnostic(mp, false);
19981 @ Several of the binary operations are potentially complicated by the
19982 fact that |independent| values can sneak into capsules. For example,
19983 we've seen an instance of this difficulty in the unary operation
19984 of negation. In order to reduce the number of cases that need to be
19985 handled, we first change the two operands (if necessary)
19986 to rid them of |independent| components. The original operands are
19987 put into capsules called |old_p| and |old_exp|, which will be
19988 recycled after the binary operation has been safely carried out.
19990 @<Recycle any sidestepped |independent| capsules@>=
19991 if ( old_p!=null ) {
19992 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19994 if ( old_exp!=null ) {
19995 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19998 @ A big node is considered to be ``tarnished'' if it contains at least one
19999 independent component. We will define a simple function called `|tarnished|'
20000 that returns |null| if and only if its argument is not tarnished.
20002 @<Sidestep |independent| cases in capsule |p|@>=
20004 case mp_transform_type:
20005 case mp_color_type:
20006 case mp_cmykcolor_type:
20008 old_p=mp_tarnished(mp, p);
20010 case mp_independent: old_p=mp_void; break;
20011 default: old_p=null; break;
20013 if ( old_p!=null ) {
20014 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
20015 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20018 @ @<Sidestep |independent| cases in the current expression@>=
20019 switch (mp->cur_type) {
20020 case mp_transform_type:
20021 case mp_color_type:
20022 case mp_cmykcolor_type:
20024 old_exp=mp_tarnished(mp, mp->cur_exp);
20026 case mp_independent:old_exp=mp_void; break;
20027 default: old_exp=null; break;
20029 if ( old_exp!=null ) {
20030 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20033 @ @<Declare binary action...@>=
20034 pointer mp_tarnished (MP mp,pointer p) {
20035 pointer q; /* beginning of the big node */
20036 pointer r; /* current position in the big node */
20037 q=value(p); r=q+mp->big_node_size[type(p)];
20040 if ( type(r)==mp_independent ) return mp_void;
20045 @ @<Add or subtract the current expression from |p|@>=
20046 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20047 mp_bad_binary(mp, p,c);
20049 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20050 mp_add_or_subtract(mp, p,null,c);
20052 if ( mp->cur_type!=type(p) ) {
20053 mp_bad_binary(mp, p,c);
20055 q=value(p); r=value(mp->cur_exp);
20056 rr=r+mp->big_node_size[mp->cur_type];
20058 mp_add_or_subtract(mp, q,r,c);
20065 @ The first argument to |add_or_subtract| is the location of a value node
20066 in a capsule or pair node that will soon be recycled. The second argument
20067 is either a location within a pair or transform node of |cur_exp|,
20068 or it is null (which means that |cur_exp| itself should be the second
20069 argument). The third argument is either |plus| or |minus|.
20071 The sum or difference of the numeric quantities will replace the second
20072 operand. Arithmetic overflow may go undetected; users aren't supposed to
20073 be monkeying around with really big values.
20075 @<Declare binary action...@>=
20076 @<Declare the procedure called |dep_finish|@>;
20077 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20078 small_number s,t; /* operand types */
20079 pointer r; /* list traverser */
20080 integer v; /* second operand value */
20083 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20086 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20088 if ( t==mp_known ) {
20089 if ( c==minus ) negate(v);
20090 if ( type(p)==mp_known ) {
20091 v=mp_slow_add(mp, value(p),v);
20092 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20095 @<Add a known value to the constant term of |dep_list(p)|@>;
20097 if ( c==minus ) mp_negate_dep_list(mp, v);
20098 @<Add operand |p| to the dependency list |v|@>;
20102 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20104 while ( info(r)!=null ) r=link(r);
20105 value(r)=mp_slow_add(mp, value(r),v);
20107 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20108 name_type(q)=mp_capsule;
20110 dep_list(q)=dep_list(p); type(q)=type(p);
20111 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20112 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20114 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20115 nice to retain the extra accuracy of |fraction| coefficients.
20116 But we have to handle both kinds, and mixtures too.
20118 @<Add operand |p| to the dependency list |v|@>=
20119 if ( type(p)==mp_known ) {
20120 @<Add the known |value(p)| to the constant term of |v|@>;
20122 s=type(p); r=dep_list(p);
20123 if ( t==mp_dependent ) {
20124 if ( s==mp_dependent ) {
20125 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20126 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20127 } /* |fix_needed| will necessarily be false */
20128 t=mp_proto_dependent;
20129 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20131 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20132 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20134 @<Output the answer, |v| (which might have become |known|)@>;
20137 @ @<Add the known |value(p)| to the constant term of |v|@>=
20139 while ( info(v)!=null ) v=link(v);
20140 value(v)=mp_slow_add(mp, value(p),value(v));
20143 @ @<Output the answer, |v| (which might have become |known|)@>=
20144 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20145 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20147 @ Here's the current situation: The dependency list |v| of type |t|
20148 should either be put into the current expression (if |q=null|) or
20149 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20150 or |q|) formerly held a dependency list with the same
20151 final pointer as the list |v|.
20153 @<Declare the procedure called |dep_finish|@>=
20154 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20155 pointer p; /* the destination */
20156 scaled vv; /* the value, if it is |known| */
20157 if ( q==null ) p=mp->cur_exp; else p=q;
20158 dep_list(p)=v; type(p)=t;
20159 if ( info(v)==null ) {
20162 mp_flush_cur_exp(mp, vv);
20164 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20166 } else if ( q==null ) {
20169 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20172 @ Let's turn now to the six basic relations of comparison.
20174 @<Additional cases of binary operators@>=
20175 case less_than: case less_or_equal: case greater_than:
20176 case greater_or_equal: case equal_to: case unequal_to:
20177 check_arith; /* at this point |arith_error| should be |false|? */
20178 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20179 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20180 } else if ( mp->cur_type!=type(p) ) {
20181 mp_bad_binary(mp, p,c); goto DONE;
20182 } else if ( mp->cur_type==mp_string_type ) {
20183 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20184 } else if ((mp->cur_type==mp_unknown_string)||
20185 (mp->cur_type==mp_unknown_boolean) ) {
20186 @<Check if unknowns have been equated@>;
20187 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20188 @<Reduce comparison of big nodes to comparison of scalars@>;
20189 } else if ( mp->cur_type==mp_boolean_type ) {
20190 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20192 mp_bad_binary(mp, p,c); goto DONE;
20194 @<Compare the current expression with zero@>;
20196 mp->arith_error=false; /* ignore overflow in comparisons */
20199 @ @<Compare the current expression with zero@>=
20200 if ( mp->cur_type!=mp_known ) {
20201 if ( mp->cur_type<mp_known ) {
20202 mp_disp_err(mp, p,"");
20203 help1("The quantities shown above have not been equated.")
20205 help2("Oh dear. I can\'t decide if the expression above is positive,")
20206 ("negative, or zero. So this comparison test won't be `true'.");
20208 exp_err("Unknown relation will be considered false");
20209 @.Unknown relation...@>
20210 mp_put_get_flush_error(mp, false_code);
20213 case less_than: boolean_reset(mp->cur_exp<0); break;
20214 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20215 case greater_than: boolean_reset(mp->cur_exp>0); break;
20216 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20217 case equal_to: boolean_reset(mp->cur_exp==0); break;
20218 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20219 }; /* there are no other cases */
20221 mp->cur_type=mp_boolean_type
20223 @ When two unknown strings are in the same ring, we know that they are
20224 equal. Otherwise, we don't know whether they are equal or not, so we
20227 @<Check if unknowns have been equated@>=
20229 q=value(mp->cur_exp);
20230 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20231 if ( q==p ) mp_flush_cur_exp(mp, 0);
20234 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20236 q=value(p); r=value(mp->cur_exp);
20237 rr=r+mp->big_node_size[mp->cur_type]-2;
20238 while (1) { mp_add_or_subtract(mp, q,r,minus);
20239 if ( type(r)!=mp_known ) break;
20240 if ( value(r)!=0 ) break;
20241 if ( r==rr ) break;
20244 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20247 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20249 @<Additional cases of binary operators@>=
20252 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20253 mp_bad_binary(mp, p,c);
20254 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20257 @ @<Additional cases of binary operators@>=
20259 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20260 mp_bad_binary(mp, p,times);
20261 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20262 @<Multiply when at least one operand is known@>;
20263 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20264 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20265 (type(p)>mp_pair_type)) ) {
20266 mp_hard_times(mp, p); return;
20268 mp_bad_binary(mp, p,times);
20272 @ @<Multiply when at least one operand is known@>=
20274 if ( type(p)==mp_known ) {
20275 v=value(p); mp_free_node(mp, p,value_node_size);
20277 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20279 if ( mp->cur_type==mp_known ) {
20280 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20281 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20282 (mp->cur_type==mp_cmykcolor_type) ) {
20283 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20285 p=p-2; mp_dep_mult(mp, p,v,true);
20286 } while (p!=value(mp->cur_exp));
20288 mp_dep_mult(mp, null,v,true);
20293 @ @<Declare binary action...@>=
20294 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20295 pointer q; /* the dependency list being multiplied by |v| */
20296 small_number s,t; /* its type, before and after */
20299 } else if ( type(p)!=mp_known ) {
20302 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20303 else value(p)=mp_take_fraction(mp, value(p),v);
20306 t=type(q); q=dep_list(q); s=t;
20307 if ( t==mp_dependent ) if ( v_is_scaled )
20308 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20309 t=mp_proto_dependent;
20310 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20311 mp_dep_finish(mp, q,p,t);
20314 @ Here is a routine that is similar to |times|; but it is invoked only
20315 internally, when |v| is a |fraction| whose magnitude is at most~1,
20316 and when |cur_type>=mp_color_type|.
20318 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20319 /* multiplies |cur_exp| by |n/d| */
20320 pointer p; /* a pair node */
20321 pointer old_exp; /* a capsule to recycle */
20322 fraction v; /* |n/d| */
20323 if ( mp->internal[mp_tracing_commands]>two ) {
20324 @<Trace the fraction multiplication@>;
20326 switch (mp->cur_type) {
20327 case mp_transform_type:
20328 case mp_color_type:
20329 case mp_cmykcolor_type:
20331 old_exp=mp_tarnished(mp, mp->cur_exp);
20333 case mp_independent: old_exp=mp_void; break;
20334 default: old_exp=null; break;
20336 if ( old_exp!=null ) {
20337 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20339 v=mp_make_fraction(mp, n,d);
20340 if ( mp->cur_type==mp_known ) {
20341 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20342 } else if ( mp->cur_type<=mp_pair_type ) {
20343 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20346 mp_dep_mult(mp, p,v,false);
20347 } while (p!=value(mp->cur_exp));
20349 mp_dep_mult(mp, null,v,false);
20351 if ( old_exp!=null ) {
20352 mp_recycle_value(mp, old_exp);
20353 mp_free_node(mp, old_exp,value_node_size);
20357 @ @<Trace the fraction multiplication@>=
20359 mp_begin_diagnostic(mp);
20360 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20361 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20363 mp_end_diagnostic(mp, false);
20366 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20368 @<Declare binary action procedures@>=
20369 void mp_hard_times (MP mp,pointer p) {
20370 pointer q; /* a copy of the dependent variable |p| */
20371 pointer r; /* a component of the big node for the nice color or pair */
20372 scaled v; /* the known value for |r| */
20373 if ( type(p)<=mp_pair_type ) {
20374 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20375 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20376 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20381 if ( r==value(mp->cur_exp) )
20383 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20384 mp_dep_mult(mp, r,v,true);
20386 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20387 link(prev_dep(p))=r;
20388 mp_free_node(mp, p,value_node_size);
20389 mp_dep_mult(mp, r,v,true);
20392 @ @<Additional cases of binary operators@>=
20394 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20395 mp_bad_binary(mp, p,over);
20397 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20399 @<Squeal about division by zero@>;
20401 if ( mp->cur_type==mp_known ) {
20402 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20403 } else if ( mp->cur_type<=mp_pair_type ) {
20404 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20406 p=p-2; mp_dep_div(mp, p,v);
20407 } while (p!=value(mp->cur_exp));
20409 mp_dep_div(mp, null,v);
20416 @ @<Declare binary action...@>=
20417 void mp_dep_div (MP mp,pointer p, scaled v) {
20418 pointer q; /* the dependency list being divided by |v| */
20419 small_number s,t; /* its type, before and after */
20420 if ( p==null ) q=mp->cur_exp;
20421 else if ( type(p)!=mp_known ) q=p;
20422 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20423 t=type(q); q=dep_list(q); s=t;
20424 if ( t==mp_dependent )
20425 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20426 t=mp_proto_dependent;
20427 q=mp_p_over_v(mp, q,v,s,t);
20428 mp_dep_finish(mp, q,p,t);
20431 @ @<Squeal about division by zero@>=
20433 exp_err("Division by zero");
20434 @.Division by zero@>
20435 help2("You're trying to divide the quantity shown above the error")
20436 ("message by zero. I'm going to divide it by one instead.");
20437 mp_put_get_error(mp);
20440 @ @<Additional cases of binary operators@>=
20443 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20444 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20445 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20446 } else mp_bad_binary(mp, p,c);
20449 @ The next few sections of the program deal with affine transformations
20450 of coordinate data.
20452 @<Additional cases of binary operators@>=
20453 case rotated_by: case slanted_by:
20454 case scaled_by: case shifted_by: case transformed_by:
20455 case x_scaled: case y_scaled: case z_scaled:
20456 if ( type(p)==mp_path_type ) {
20457 path_trans(c,p); return;
20458 } else if ( type(p)==mp_pen_type ) {
20460 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20461 /* rounding error could destroy convexity */
20463 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20464 mp_big_trans(mp, p,c);
20465 } else if ( type(p)==mp_picture_type ) {
20466 mp_do_edges_trans(mp, p,c); return;
20468 mp_bad_binary(mp, p,c);
20472 @ Let |c| be one of the eight transform operators. The procedure call
20473 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20474 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20475 change at all if |c=transformed_by|.)
20477 Then, if all components of the resulting transform are |known|, they are
20478 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20479 and |cur_exp| is changed to the known value zero.
20481 @<Declare binary action...@>=
20482 void mp_set_up_trans (MP mp,quarterword c) {
20483 pointer p,q,r; /* list manipulation registers */
20484 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20485 @<Put the current transform into |cur_exp|@>;
20487 @<If the current transform is entirely known, stash it in global variables;
20488 otherwise |return|@>;
20497 scaled ty; /* current transform coefficients */
20499 @ @<Put the current transform...@>=
20501 p=mp_stash_cur_exp(mp);
20502 mp->cur_exp=mp_id_transform(mp);
20503 mp->cur_type=mp_transform_type;
20504 q=value(mp->cur_exp);
20506 @<For each of the eight cases, change the relevant fields of |cur_exp|
20508 but do nothing if capsule |p| doesn't have the appropriate type@>;
20509 }; /* there are no other cases */
20510 mp_disp_err(mp, p,"Improper transformation argument");
20511 @.Improper transformation argument@>
20512 help3("The expression shown above has the wrong type,")
20513 ("so I can\'t transform anything using it.")
20514 ("Proceed, and I'll omit the transformation.");
20515 mp_put_get_error(mp);
20517 mp_recycle_value(mp, p);
20518 mp_free_node(mp, p,value_node_size);
20521 @ @<If the current transform is entirely known, ...@>=
20522 q=value(mp->cur_exp); r=q+transform_node_size;
20525 if ( type(r)!=mp_known ) return;
20527 mp->txx=value(xx_part_loc(q));
20528 mp->txy=value(xy_part_loc(q));
20529 mp->tyx=value(yx_part_loc(q));
20530 mp->tyy=value(yy_part_loc(q));
20531 mp->tx=value(x_part_loc(q));
20532 mp->ty=value(y_part_loc(q));
20533 mp_flush_cur_exp(mp, 0)
20535 @ @<For each of the eight cases...@>=
20537 if ( type(p)==mp_known )
20538 @<Install sines and cosines, then |goto done|@>;
20541 if ( type(p)>mp_pair_type ) {
20542 mp_install(mp, xy_part_loc(q),p); goto DONE;
20546 if ( type(p)>mp_pair_type ) {
20547 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20552 if ( type(p)==mp_pair_type ) {
20553 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20554 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20558 if ( type(p)>mp_pair_type ) {
20559 mp_install(mp, xx_part_loc(q),p); goto DONE;
20563 if ( type(p)>mp_pair_type ) {
20564 mp_install(mp, yy_part_loc(q),p); goto DONE;
20568 if ( type(p)==mp_pair_type )
20569 @<Install a complex multiplier, then |goto done|@>;
20571 case transformed_by:
20575 @ @<Install sines and cosines, then |goto done|@>=
20576 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20577 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20578 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20579 value(xy_part_loc(q))=-value(yx_part_loc(q));
20580 value(yy_part_loc(q))=value(xx_part_loc(q));
20584 @ @<Install a complex multiplier, then |goto done|@>=
20587 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20588 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20589 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20590 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20591 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20592 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20596 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20597 insists that the transformation be entirely known.
20599 @<Declare binary action...@>=
20600 void mp_set_up_known_trans (MP mp,quarterword c) {
20601 mp_set_up_trans(mp, c);
20602 if ( mp->cur_type!=mp_known ) {
20603 exp_err("Transform components aren't all known");
20604 @.Transform components...@>
20605 help3("I'm unable to apply a partially specified transformation")
20606 ("except to a fully known pair or transform.")
20607 ("Proceed, and I'll omit the transformation.");
20608 mp_put_get_flush_error(mp, 0);
20609 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20610 mp->tx=0; mp->ty=0;
20614 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20615 coordinates in locations |p| and~|q|.
20617 @<Declare binary action...@>=
20618 void mp_trans (MP mp,pointer p, pointer q) {
20619 scaled v; /* the new |x| value */
20620 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20621 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20622 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20623 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20627 @ The simplest transformation procedure applies a transform to all
20628 coordinates of a path. The |path_trans(c)(p)| macro applies
20629 a transformation defined by |cur_exp| and the transform operator |c|
20632 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20633 mp_unstash_cur_exp(mp, (B));
20634 mp_do_path_trans(mp, mp->cur_exp); }
20636 @<Declare binary action...@>=
20637 void mp_do_path_trans (MP mp,pointer p) {
20638 pointer q; /* list traverser */
20641 if ( left_type(q)!=mp_endpoint )
20642 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20643 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20644 if ( right_type(q)!=mp_endpoint )
20645 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20646 @^data structure assumptions@>
20651 @ Transforming a pen is very similar, except that there are no |left_type|
20652 and |right_type| fields.
20654 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20655 mp_unstash_cur_exp(mp, (B));
20656 mp_do_pen_trans(mp, mp->cur_exp); }
20658 @<Declare binary action...@>=
20659 void mp_do_pen_trans (MP mp,pointer p) {
20660 pointer q; /* list traverser */
20661 if ( pen_is_elliptical(p) ) {
20662 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20663 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20667 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20668 @^data structure assumptions@>
20673 @ The next transformation procedure applies to edge structures. It will do
20674 any transformation, but the results may be substandard if the picture contains
20675 text that uses downloaded bitmap fonts. The binary action procedure is
20676 |do_edges_trans|, but we also need a function that just scales a picture.
20677 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20678 should be thought of as procedures that update an edge structure |h|, except
20679 that they have to return a (possibly new) structure because of the need to call
20682 @<Declare binary action...@>=
20683 pointer mp_edges_trans (MP mp, pointer h) {
20684 pointer q; /* the object being transformed */
20685 pointer r,s; /* for list manipulation */
20686 scaled sx,sy; /* saved transformation parameters */
20687 scaled sqdet; /* square root of determinant for |dash_scale| */
20688 integer sgndet; /* sign of the determinant */
20689 scaled v; /* a temporary value */
20690 h=mp_private_edges(mp, h);
20691 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20692 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20693 if ( dash_list(h)!=null_dash ) {
20694 @<Try to transform the dash list of |h|@>;
20696 @<Make the bounding box of |h| unknown if it can't be updated properly
20697 without scanning the whole structure@>;
20698 q=link(dummy_loc(h));
20699 while ( q!=null ) {
20700 @<Transform graphical object |q|@>;
20705 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20706 mp_set_up_known_trans(mp, c);
20707 value(p)=mp_edges_trans(mp, value(p));
20708 mp_unstash_cur_exp(mp, p);
20710 void mp_scale_edges (MP mp) {
20711 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20712 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20713 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20716 @ @<Try to transform the dash list of |h|@>=
20717 if ( (mp->txy!=0)||(mp->tyx!=0)||
20718 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20719 mp_flush_dash_list(mp, h);
20721 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20722 @<Scale the dash list by |txx| and shift it by |tx|@>;
20723 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20726 @ @<Reverse the dash list of |h|@>=
20729 dash_list(h)=null_dash;
20730 while ( r!=null_dash ) {
20732 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20733 link(s)=dash_list(h);
20738 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20740 while ( r!=null_dash ) {
20741 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20742 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20746 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20747 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20748 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20749 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20750 mp_init_bbox(mp, h);
20753 if ( minx_val(h)<=maxx_val(h) ) {
20754 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20761 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20763 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20764 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20767 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20770 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20772 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20773 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20774 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20775 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20776 if ( mp->txx+mp->txy<0 ) {
20777 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20779 if ( mp->tyx+mp->tyy<0 ) {
20780 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20784 @ Now we ready for the main task of transforming the graphical objects in edge
20787 @<Transform graphical object |q|@>=
20789 case mp_fill_code: case mp_stroked_code:
20790 mp_do_path_trans(mp, path_p(q));
20791 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20793 case mp_start_clip_code: case mp_start_bounds_code:
20794 mp_do_path_trans(mp, path_p(q));
20798 @<Transform the compact transformation starting at |r|@>;
20800 case mp_stop_clip_code: case mp_stop_bounds_code:
20802 } /* there are no other cases */
20804 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20805 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20806 since the \ps\ output procedures will try to compensate for the transformation
20807 we are applying to |pen_p(q)|. Since this compensation is based on the square
20808 root of the determinant, |sqdet| is the appropriate factor.
20810 @<Transform |pen_p(q)|, making sure...@>=
20811 if ( pen_p(q)!=null ) {
20812 sx=mp->tx; sy=mp->ty;
20813 mp->tx=0; mp->ty=0;
20814 mp_do_pen_trans(mp, pen_p(q));
20815 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20816 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20817 if ( ! pen_is_elliptical(pen_p(q)) )
20819 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20820 /* this unreverses the pen */
20821 mp->tx=sx; mp->ty=sy;
20824 @ This uses the fact that transformations are stored in the order
20825 |(tx,ty,txx,txy,tyx,tyy)|.
20826 @^data structure assumptions@>
20828 @<Transform the compact transformation starting at |r|@>=
20829 mp_trans(mp, r,r+1);
20830 sx=mp->tx; sy=mp->ty;
20831 mp->tx=0; mp->ty=0;
20832 mp_trans(mp, r+2,r+4);
20833 mp_trans(mp, r+3,r+5);
20834 mp->tx=sx; mp->ty=sy
20836 @ The hard cases of transformation occur when big nodes are involved,
20837 and when some of their components are unknown.
20839 @<Declare binary action...@>=
20840 @<Declare subroutines needed by |big_trans|@>;
20841 void mp_big_trans (MP mp,pointer p, quarterword c) {
20842 pointer q,r,pp,qq; /* list manipulation registers */
20843 small_number s; /* size of a big node */
20844 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20847 if ( type(r)!=mp_known ) {
20848 @<Transform an unknown big node and |return|@>;
20851 @<Transform a known big node@>;
20852 }; /* node |p| will now be recycled by |do_binary| */
20854 @ @<Transform an unknown big node and |return|@>=
20856 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20857 r=value(mp->cur_exp);
20858 if ( mp->cur_type==mp_transform_type ) {
20859 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20860 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20861 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20862 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20864 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20865 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20869 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20870 and let |q| point to a another value field. The |bilin1| procedure
20871 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20873 @<Declare subroutines needed by |big_trans|@>=
20874 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20875 scaled u, scaled delta) {
20876 pointer r; /* list traverser */
20877 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20879 if ( type(q)==mp_known ) {
20880 delta+=mp_take_scaled(mp, value(q),u);
20882 @<Ensure that |type(p)=mp_proto_dependent|@>;
20883 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20884 mp_proto_dependent,type(q));
20887 if ( type(p)==mp_known ) {
20891 while ( info(r)!=null ) r=link(r);
20893 if ( r!=dep_list(p) ) value(r)=delta;
20894 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20896 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20899 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20900 if ( type(p)!=mp_proto_dependent ) {
20901 if ( type(p)==mp_known )
20902 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20904 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20905 mp_proto_dependent,true);
20906 type(p)=mp_proto_dependent;
20909 @ @<Transform a known big node@>=
20910 mp_set_up_trans(mp, c);
20911 if ( mp->cur_type==mp_known ) {
20912 @<Transform known by known@>;
20914 pp=mp_stash_cur_exp(mp); qq=value(pp);
20915 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20916 if ( mp->cur_type==mp_transform_type ) {
20917 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20918 value(xy_part_loc(q)),yx_part_loc(qq),null);
20919 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20920 value(xx_part_loc(q)),yx_part_loc(qq),null);
20921 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20922 value(yy_part_loc(q)),xy_part_loc(qq),null);
20923 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20924 value(yx_part_loc(q)),xy_part_loc(qq),null);
20926 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20927 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20928 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20929 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20930 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20933 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20934 at |dep_final|. The following procedure adds |v| times another
20935 numeric quantity to~|p|.
20937 @<Declare subroutines needed by |big_trans|@>=
20938 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20939 if ( type(r)==mp_known ) {
20940 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20942 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20943 mp_proto_dependent,type(r));
20944 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20948 @ The |bilin2| procedure is something like |bilin1|, but with known
20949 and unknown quantities reversed. Parameter |p| points to a value field
20950 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20951 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20952 unless it is |null| (which stands for zero). Location~|p| will be
20953 replaced by $p\cdot t+v\cdot u+q$.
20955 @<Declare subroutines needed by |big_trans|@>=
20956 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20957 pointer u, pointer q) {
20958 scaled vv; /* temporary storage for |value(p)| */
20959 vv=value(p); type(p)=mp_proto_dependent;
20960 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20962 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20963 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20964 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20965 if ( dep_list(p)==mp->dep_final ) {
20966 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20967 type(p)=mp_known; value(p)=vv;
20971 @ @<Transform known by known@>=
20973 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20974 if ( mp->cur_type==mp_transform_type ) {
20975 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20976 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20977 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20978 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20980 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20981 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20984 @ Finally, in |bilin3| everything is |known|.
20986 @<Declare subroutines needed by |big_trans|@>=
20987 void mp_bilin3 (MP mp,pointer p, scaled t,
20988 scaled v, scaled u, scaled delta) {
20990 delta+=mp_take_scaled(mp, value(p),t);
20993 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20994 else value(p)=delta;
20997 @ @<Additional cases of binary operators@>=
20999 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
21000 else mp_bad_binary(mp, p,concatenate);
21003 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
21004 mp_chop_string(mp, value(p));
21005 else mp_bad_binary(mp, p,substring_of);
21008 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21009 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
21010 mp_chop_path(mp, value(p));
21011 else mp_bad_binary(mp, p,subpath_of);
21014 @ @<Declare binary action...@>=
21015 void mp_cat (MP mp,pointer p) {
21016 str_number a,b; /* the strings being concatenated */
21017 pool_pointer k; /* index into |str_pool| */
21018 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
21019 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
21020 append_char(mp->str_pool[k]);
21022 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
21023 append_char(mp->str_pool[k]);
21025 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21028 @ @<Declare binary action...@>=
21029 void mp_chop_string (MP mp,pointer p) {
21030 integer a, b; /* start and stop points */
21031 integer l; /* length of the original string */
21032 integer k; /* runs from |a| to |b| */
21033 str_number s; /* the original string */
21034 boolean reversed; /* was |a>b|? */
21035 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21036 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21037 if ( a<=b ) reversed=false;
21038 else { reversed=true; k=a; a=b; b=k; };
21039 s=mp->cur_exp; l=length(s);
21050 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21051 append_char(mp->str_pool[k]);
21054 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21055 append_char(mp->str_pool[k]);
21058 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21061 @ @<Declare binary action...@>=
21062 void mp_chop_path (MP mp,pointer p) {
21063 pointer q; /* a knot in the original path */
21064 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21065 scaled a,b,k,l; /* indices for chopping */
21066 boolean reversed; /* was |a>b|? */
21067 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21068 if ( a<=b ) reversed=false;
21069 else { reversed=true; k=a; a=b; b=k; };
21070 @<Dispense with the cases |a<0| and/or |b>l|@>;
21072 while ( a>=unity ) {
21073 q=link(q); a=a-unity; b=b-unity;
21076 @<Construct a path from |pp| to |qq| of length zero@>;
21078 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21080 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21081 mp_toss_knot_list(mp, mp->cur_exp);
21083 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21089 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21091 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21092 a=0; if ( b<0 ) b=0;
21094 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21098 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21099 b=l; if ( a>l ) a=l;
21107 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21109 pp=mp_copy_knot(mp, q); qq=pp;
21111 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21114 ss=pp; pp=link(pp);
21115 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21116 mp_free_node(mp, ss,knot_node_size);
21118 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21122 mp_split_cubic(mp, rr,(b+unity)*010000);
21123 mp_free_node(mp, qq,knot_node_size);
21128 @ @<Construct a path from |pp| to |qq| of length zero@>=
21130 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21131 pp=mp_copy_knot(mp, q); qq=pp;
21134 @ @<Additional cases of binary operators@>=
21135 case point_of: case precontrol_of: case postcontrol_of:
21136 if ( mp->cur_type==mp_pair_type )
21137 mp_pair_to_path(mp);
21138 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21139 mp_find_point(mp, value(p),c);
21141 mp_bad_binary(mp, p,c);
21143 case pen_offset_of:
21144 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21145 mp_set_up_offset(mp, value(p));
21147 mp_bad_binary(mp, p,pen_offset_of);
21149 case direction_time_of:
21150 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21151 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21152 mp_set_up_direction_time(mp, value(p));
21154 mp_bad_binary(mp, p,direction_time_of);
21157 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21158 mp_bad_binary(mp, p,envelope_of);
21160 mp_set_up_envelope(mp, p);
21163 @ @<Declare binary action...@>=
21164 void mp_set_up_offset (MP mp,pointer p) {
21165 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21166 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21168 void mp_set_up_direction_time (MP mp,pointer p) {
21169 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21170 value(y_part_loc(p)),mp->cur_exp));
21172 void mp_set_up_envelope (MP mp,pointer p) {
21173 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21174 /* TODO: accept elliptical pens for straight paths */
21175 if (pen_is_elliptical(value(p))) {
21176 mp_bad_envelope_pen(mp);
21178 mp->cur_type = mp_path_type;
21181 small_number ljoin, lcap;
21183 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21184 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21186 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21187 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21189 if ( mp->internal[mp_miterlimit]<unity )
21192 miterlim=mp->internal[mp_miterlimit];
21193 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21194 mp->cur_type = mp_path_type;
21197 @ @<Declare binary action...@>=
21198 void mp_find_point (MP mp,scaled v, quarterword c) {
21199 pointer p; /* the path */
21200 scaled n; /* its length */
21202 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21203 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21206 } else if ( v<0 ) {
21207 if ( left_type(p)==mp_endpoint ) v=0;
21208 else v=n-1-((-v-1) % n);
21209 } else if ( v>n ) {
21210 if ( left_type(p)==mp_endpoint ) v=n;
21214 while ( v>=unity ) { p=link(p); v=v-unity; };
21216 @<Insert a fractional node by splitting the cubic@>;
21218 @<Set the current expression to the desired path coordinates@>;
21221 @ @<Insert a fractional node...@>=
21222 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21224 @ @<Set the current expression to the desired path coordinates...@>=
21227 mp_pair_value(mp, x_coord(p),y_coord(p));
21229 case precontrol_of:
21230 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21231 else mp_pair_value(mp, left_x(p),left_y(p));
21233 case postcontrol_of:
21234 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21235 else mp_pair_value(mp, right_x(p),right_y(p));
21237 } /* there are no other cases */
21239 @ @<Additional cases of binary operators@>=
21241 if ( mp->cur_type==mp_pair_type )
21242 mp_pair_to_path(mp);
21243 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21244 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21246 mp_bad_binary(mp, p,c);
21249 @ @<Additional cases of bin...@>=
21251 if ( type(p)==mp_pair_type ) {
21252 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21253 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21255 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21256 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21257 mp_path_intersection(mp, value(p),mp->cur_exp);
21258 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21260 mp_bad_binary(mp, p,intersect);
21264 @ @<Additional cases of bin...@>=
21266 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21267 mp_bad_binary(mp, p,in_font);
21268 else { mp_do_infont(mp, p); return; }
21271 @ Function |new_text_node| owns the reference count for its second argument
21272 (the text string) but not its first (the font name).
21274 @<Declare binary action...@>=
21275 void mp_do_infont (MP mp,pointer p) {
21277 q=mp_get_node(mp, edge_header_size);
21278 mp_init_edges(mp, q);
21279 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21280 obj_tail(q)=link(obj_tail(q));
21281 mp_free_node(mp, p,value_node_size);
21282 mp_flush_cur_exp(mp, q);
21283 mp->cur_type=mp_picture_type;
21286 @* \[40] Statements and commands.
21287 The chief executive of \MP\ is the |do_statement| routine, which
21288 contains the master switch that causes all the various pieces of \MP\
21289 to do their things, in the right order.
21291 In a sense, this is the grand climax of the program: It applies all the
21292 tools that we have worked so hard to construct. In another sense, this is
21293 the messiest part of the program: It necessarily refers to other pieces
21294 of code all over the place, so that a person can't fully understand what is
21295 going on without paging back and forth to be reminded of conventions that
21296 are defined elsewhere. We are now at the hub of the web.
21298 The structure of |do_statement| itself is quite simple. The first token
21299 of the statement is fetched using |get_x_next|. If it can be the first
21300 token of an expression, we look for an equation, an assignment, or a
21301 title. Otherwise we use a \&{case} construction to branch at high speed to
21302 the appropriate routine for various and sundry other types of commands,
21303 each of which has an ``action procedure'' that does the necessary work.
21305 The program uses the fact that
21306 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21307 to interpret a statement that starts with, e.g., `\&{string}',
21308 as a type declaration rather than a boolean expression.
21310 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21311 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21312 if ( mp->cur_cmd>max_primary_command ) {
21313 @<Worry about bad statement@>;
21314 } else if ( mp->cur_cmd>max_statement_command ) {
21315 @<Do an equation, assignment, title, or
21316 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21318 @<Do a statement that doesn't begin with an expression@>;
21320 if ( mp->cur_cmd<semicolon )
21321 @<Flush unparsable junk that was found after the statement@>;
21325 @ @<Declarations@>=
21326 @<Declare action procedures for use by |do_statement|@>;
21328 @ The only command codes |>max_primary_command| that can be present
21329 at the beginning of a statement are |semicolon| and higher; these
21330 occur when the statement is null.
21332 @<Worry about bad statement@>=
21334 if ( mp->cur_cmd<semicolon ) {
21335 print_err("A statement can't begin with `");
21336 @.A statement can't begin with x@>
21337 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21338 help5("I was looking for the beginning of a new statement.")
21339 ("If you just proceed without changing anything, I'll ignore")
21340 ("everything up to the next `;'. Please insert a semicolon")
21341 ("now in front of anything that you don't want me to delete.")
21342 ("(See Chapter 27 of The METAFONTbook for an example.)");
21343 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21344 mp_back_error(mp); mp_get_x_next(mp);
21348 @ The help message printed here says that everything is flushed up to
21349 a semicolon, but actually the commands |end_group| and |stop| will
21350 also terminate a statement.
21352 @<Flush unparsable junk that was found after the statement@>=
21354 print_err("Extra tokens will be flushed");
21355 @.Extra tokens will be flushed@>
21356 help6("I've just read as much of that statement as I could fathom,")
21357 ("so a semicolon should have been next. It's very puzzling...")
21358 ("but I'll try to get myself back together, by ignoring")
21359 ("everything up to the next `;'. Please insert a semicolon")
21360 ("now in front of anything that you don't want me to delete.")
21361 ("(See Chapter 27 of The METAFONTbook for an example.)");
21362 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21363 mp_back_error(mp); mp->scanner_status=flushing;
21366 @<Decrease the string reference count...@>;
21367 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21368 mp->scanner_status=normal;
21371 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21372 |cur_type=mp_vacuous| unless the statement was simply an expression;
21373 in the latter case, |cur_type| and |cur_exp| should represent that
21376 @<Do a statement that doesn't...@>=
21378 if ( mp->internal[mp_tracing_commands]>0 )
21380 switch (mp->cur_cmd ) {
21381 case type_name:mp_do_type_declaration(mp); break;
21383 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21384 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21386 @<Cases of |do_statement| that invoke particular commands@>;
21387 } /* there are no other cases */
21388 mp->cur_type=mp_vacuous;
21391 @ The most important statements begin with expressions.
21393 @<Do an equation, assignment, title, or...@>=
21395 mp->var_flag=assignment; mp_scan_expression(mp);
21396 if ( mp->cur_cmd<end_group ) {
21397 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21398 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21399 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21400 else if ( mp->cur_type!=mp_vacuous ){
21401 exp_err("Isolated expression");
21402 @.Isolated expression@>
21403 help3("I couldn't find an `=' or `:=' after the")
21404 ("expression that is shown above this error message,")
21405 ("so I guess I'll just ignore it and carry on.");
21406 mp_put_get_error(mp);
21408 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21414 if ( mp->internal[mp_tracing_titles]>0 ) {
21415 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21419 @ Equations and assignments are performed by the pair of mutually recursive
21421 routines |do_equation| and |do_assignment|. These routines are called when
21422 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21423 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21424 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21425 will be equal to the right-hand side (which will normally be equal
21426 to the left-hand side).
21428 @<Declare action procedures for use by |do_statement|@>=
21429 @<Declare the procedure called |try_eq|@>;
21430 @<Declare the procedure called |make_eq|@>;
21431 void mp_do_equation (MP mp) ;
21434 void mp_do_equation (MP mp) {
21435 pointer lhs; /* capsule for the left-hand side */
21436 pointer p; /* temporary register */
21437 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21438 mp->var_flag=assignment; mp_scan_expression(mp);
21439 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21440 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21441 if ( mp->internal[mp_tracing_commands]>two )
21442 @<Trace the current equation@>;
21443 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21444 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21445 }; /* in this case |make_eq| will change the pair to a path */
21446 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21449 @ And |do_assignment| is similar to |do_expression|:
21452 void mp_do_assignment (MP mp);
21454 @ @<Declare action procedures for use by |do_statement|@>=
21455 void mp_do_assignment (MP mp) ;
21458 void mp_do_assignment (MP mp) {
21459 pointer lhs; /* token list for the left-hand side */
21460 pointer p; /* where the left-hand value is stored */
21461 pointer q; /* temporary capsule for the right-hand value */
21462 if ( mp->cur_type!=mp_token_list ) {
21463 exp_err("Improper `:=' will be changed to `='");
21465 help2("I didn't find a variable name at the left of the `:=',")
21466 ("so I'm going to pretend that you said `=' instead.");
21467 mp_error(mp); mp_do_equation(mp);
21469 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21470 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21471 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21472 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21473 if ( mp->internal[mp_tracing_commands]>two )
21474 @<Trace the current assignment@>;
21475 if ( info(lhs)>hash_end ) {
21476 @<Assign the current expression to an internal variable@>;
21478 @<Assign the current expression to the variable |lhs|@>;
21480 mp_flush_node_list(mp, lhs);
21484 @ @<Trace the current equation@>=
21486 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21487 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21488 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21491 @ @<Trace the current assignment@>=
21493 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21494 if ( info(lhs)>hash_end )
21495 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21497 mp_show_token_list(mp, lhs,null,1000,0);
21498 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21499 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21502 @ @<Assign the current expression to an internal variable@>=
21503 if ( mp->cur_type==mp_known ) {
21504 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21506 exp_err("Internal quantity `");
21507 @.Internal quantity...@>
21508 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21509 mp_print(mp, "' must receive a known value");
21510 help2("I can\'t set an internal quantity to anything but a known")
21511 ("numeric value, so I'll have to ignore this assignment.");
21512 mp_put_get_error(mp);
21515 @ @<Assign the current expression to the variable |lhs|@>=
21517 p=mp_find_variable(mp, lhs);
21519 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21520 mp_recycle_value(mp, p);
21521 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21522 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21524 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21529 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21530 a pointer to a capsule that is to be equated to the current expression.
21532 @<Declare the procedure called |make_eq|@>=
21533 void mp_make_eq (MP mp,pointer lhs) ;
21537 @c void mp_make_eq (MP mp,pointer lhs) {
21538 small_number t; /* type of the left-hand side */
21539 pointer p,q; /* pointers inside of big nodes */
21540 integer v=0; /* value of the left-hand side */
21543 if ( t<=mp_pair_type ) v=value(lhs);
21545 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21546 is incompatible with~|t|@>;
21547 } /* all cases have been listed */
21548 @<Announce that the equation cannot be performed@>;
21550 check_arith; mp_recycle_value(mp, lhs);
21551 mp_free_node(mp, lhs,value_node_size);
21554 @ @<Announce that the equation cannot be performed@>=
21555 mp_disp_err(mp, lhs,"");
21556 exp_err("Equation cannot be performed (");
21557 @.Equation cannot be performed@>
21558 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21559 else mp_print(mp, "numeric");
21560 mp_print_char(mp, '=');
21561 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21562 else mp_print(mp, "numeric");
21563 mp_print_char(mp, ')');
21564 help2("I'm sorry, but I don't know how to make such things equal.")
21565 ("(See the two expressions just above the error message.)");
21566 mp_put_get_error(mp)
21568 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21569 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21570 case mp_path_type: case mp_picture_type:
21571 if ( mp->cur_type==t+unknown_tag ) {
21572 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21573 } else if ( mp->cur_type==t ) {
21574 @<Report redundant or inconsistent equation and |goto done|@>;
21577 case unknown_types:
21578 if ( mp->cur_type==t-unknown_tag ) {
21579 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21580 } else if ( mp->cur_type==t ) {
21581 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21582 } else if ( mp->cur_type==mp_pair_type ) {
21583 if ( t==mp_unknown_path ) {
21584 mp_pair_to_path(mp); goto RESTART;
21588 case mp_transform_type: case mp_color_type:
21589 case mp_cmykcolor_type: case mp_pair_type:
21590 if ( mp->cur_type==t ) {
21591 @<Do multiple equations and |goto done|@>;
21594 case mp_known: case mp_dependent:
21595 case mp_proto_dependent: case mp_independent:
21596 if ( mp->cur_type>=mp_known ) {
21597 mp_try_eq(mp, lhs,null); goto DONE;
21603 @ @<Report redundant or inconsistent equation and |goto done|@>=
21605 if ( mp->cur_type<=mp_string_type ) {
21606 if ( mp->cur_type==mp_string_type ) {
21607 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21610 } else if ( v!=mp->cur_exp ) {
21613 @<Exclaim about a redundant equation@>; goto DONE;
21615 print_err("Redundant or inconsistent equation");
21616 @.Redundant or inconsistent equation@>
21617 help2("An equation between already-known quantities can't help.")
21618 ("But don't worry; continue and I'll just ignore it.");
21619 mp_put_get_error(mp); goto DONE;
21621 print_err("Inconsistent equation");
21622 @.Inconsistent equation@>
21623 help2("The equation I just read contradicts what was said before.")
21624 ("But don't worry; continue and I'll just ignore it.");
21625 mp_put_get_error(mp); goto DONE;
21628 @ @<Do multiple equations and |goto done|@>=
21630 p=v+mp->big_node_size[t];
21631 q=value(mp->cur_exp)+mp->big_node_size[t];
21633 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21638 @ The first argument to |try_eq| is the location of a value node
21639 in a capsule that will soon be recycled. The second argument is
21640 either a location within a pair or transform node pointed to by
21641 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21642 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21643 but to equate the two operands.
21645 @<Declare the procedure called |try_eq|@>=
21646 void mp_try_eq (MP mp,pointer l, pointer r) ;
21649 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21650 pointer p; /* dependency list for right operand minus left operand */
21651 int t; /* the type of list |p| */
21652 pointer q; /* the constant term of |p| is here */
21653 pointer pp; /* dependency list for right operand */
21654 int tt; /* the type of list |pp| */
21655 boolean copied; /* have we copied a list that ought to be recycled? */
21656 @<Remove the left operand from its container, negate it, and
21657 put it into dependency list~|p| with constant term~|q|@>;
21658 @<Add the right operand to list |p|@>;
21659 if ( info(p)==null ) {
21660 @<Deal with redundant or inconsistent equation@>;
21662 mp_linear_eq(mp, p,t);
21663 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21664 if ( type(mp->cur_exp)==mp_known ) {
21665 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21666 mp_free_node(mp, pp,value_node_size);
21672 @ @<Remove the left operand from its container, negate it, and...@>=
21674 if ( t==mp_known ) {
21675 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21676 } else if ( t==mp_independent ) {
21677 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21680 p=dep_list(l); q=p;
21683 if ( info(q)==null ) break;
21686 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21690 @ @<Deal with redundant or inconsistent equation@>=
21692 if ( abs(value(p))>64 ) { /* off by .001 or more */
21693 print_err("Inconsistent equation");
21694 @.Inconsistent equation@>
21695 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21696 mp_print_char(mp, ')');
21697 help2("The equation I just read contradicts what was said before.")
21698 ("But don't worry; continue and I'll just ignore it.");
21699 mp_put_get_error(mp);
21700 } else if ( r==null ) {
21701 @<Exclaim about a redundant equation@>;
21703 mp_free_node(mp, p,dep_node_size);
21706 @ @<Add the right operand to list |p|@>=
21708 if ( mp->cur_type==mp_known ) {
21709 value(q)=value(q)+mp->cur_exp; goto DONE1;
21712 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21713 else pp=dep_list(mp->cur_exp);
21716 if ( type(r)==mp_known ) {
21717 value(q)=value(q)+value(r); goto DONE1;
21720 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21721 else pp=dep_list(r);
21724 if ( tt!=mp_independent ) copied=false;
21725 else { copied=true; tt=mp_dependent; };
21726 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21727 if ( copied ) mp_flush_node_list(mp, pp);
21730 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21731 mp->watch_coefs=false;
21733 p=mp_p_plus_q(mp, p,pp,t);
21734 } else if ( t==mp_proto_dependent ) {
21735 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21738 while ( info(q)!=null ) {
21739 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21741 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21743 mp->watch_coefs=true;
21745 @ Our next goal is to process type declarations. For this purpose it's
21746 convenient to have a procedure that scans a $\langle\,$declared
21747 variable$\,\rangle$ and returns the corresponding token list. After the
21748 following procedure has acted, the token after the declared variable
21749 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21752 @<Declare the function called |scan_declared_variable|@>=
21753 pointer mp_scan_declared_variable (MP mp) {
21754 pointer x; /* hash address of the variable's root */
21755 pointer h,t; /* head and tail of the token list to be returned */
21756 pointer l; /* hash address of left bracket */
21757 mp_get_symbol(mp); x=mp->cur_sym;
21758 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21759 h=mp_get_avail(mp); info(h)=x; t=h;
21762 if ( mp->cur_sym==0 ) break;
21763 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21764 if ( mp->cur_cmd==left_bracket ) {
21765 @<Descend past a collective subscript@>;
21770 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21772 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21773 if ( equiv(x)==null ) mp_new_root(mp, x);
21777 @ If the subscript isn't collective, we don't accept it as part of the
21780 @<Descend past a collective subscript@>=
21782 l=mp->cur_sym; mp_get_x_next(mp);
21783 if ( mp->cur_cmd!=right_bracket ) {
21784 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21786 mp->cur_sym=collective_subscript;
21790 @ Type declarations are introduced by the following primitive operations.
21793 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21794 @:numeric_}{\&{numeric} primitive@>
21795 mp_primitive(mp, "string",type_name,mp_string_type);
21796 @:string_}{\&{string} primitive@>
21797 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21798 @:boolean_}{\&{boolean} primitive@>
21799 mp_primitive(mp, "path",type_name,mp_path_type);
21800 @:path_}{\&{path} primitive@>
21801 mp_primitive(mp, "pen",type_name,mp_pen_type);
21802 @:pen_}{\&{pen} primitive@>
21803 mp_primitive(mp, "picture",type_name,mp_picture_type);
21804 @:picture_}{\&{picture} primitive@>
21805 mp_primitive(mp, "transform",type_name,mp_transform_type);
21806 @:transform_}{\&{transform} primitive@>
21807 mp_primitive(mp, "color",type_name,mp_color_type);
21808 @:color_}{\&{color} primitive@>
21809 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21810 @:color_}{\&{rgbcolor} primitive@>
21811 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21812 @:color_}{\&{cmykcolor} primitive@>
21813 mp_primitive(mp, "pair",type_name,mp_pair_type);
21814 @:pair_}{\&{pair} primitive@>
21816 @ @<Cases of |print_cmd...@>=
21817 case type_name: mp_print_type(mp, m); break;
21819 @ Now we are ready to handle type declarations, assuming that a
21820 |type_name| has just been scanned.
21822 @<Declare action procedures for use by |do_statement|@>=
21823 void mp_do_type_declaration (MP mp) ;
21826 void mp_do_type_declaration (MP mp) {
21827 small_number t; /* the type being declared */
21828 pointer p; /* token list for a declared variable */
21829 pointer q; /* value node for the variable */
21830 if ( mp->cur_mod>=mp_transform_type )
21833 t=mp->cur_mod+unknown_tag;
21835 p=mp_scan_declared_variable(mp);
21836 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21837 q=mp_find_variable(mp, p);
21839 type(q)=t; value(q)=null;
21841 print_err("Declared variable conflicts with previous vardef");
21842 @.Declared variable conflicts...@>
21843 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21844 ("Proceed, and I'll ignore the illegal redeclaration.");
21845 mp_put_get_error(mp);
21847 mp_flush_list(mp, p);
21848 if ( mp->cur_cmd<comma ) {
21849 @<Flush spurious symbols after the declared variable@>;
21851 } while (! end_of_statement);
21854 @ @<Flush spurious symbols after the declared variable@>=
21856 print_err("Illegal suffix of declared variable will be flushed");
21857 @.Illegal suffix...flushed@>
21858 help5("Variables in declarations must consist entirely of")
21859 ("names and collective subscripts, e.g., `x[]a'.")
21860 ("Are you trying to use a reserved word in a variable name?")
21861 ("I'm going to discard the junk I found here,")
21862 ("up to the next comma or the end of the declaration.");
21863 if ( mp->cur_cmd==numeric_token )
21864 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21865 mp_put_get_error(mp); mp->scanner_status=flushing;
21868 @<Decrease the string reference count...@>;
21869 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21870 mp->scanner_status=normal;
21873 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21874 until coming to the end of the user's program.
21875 Each execution of |do_statement| concludes with
21876 |cur_cmd=semicolon|, |end_group|, or |stop|.
21878 @c void mp_main_control (MP mp) {
21880 mp_do_statement(mp);
21881 if ( mp->cur_cmd==end_group ) {
21882 print_err("Extra `endgroup'");
21883 @.Extra `endgroup'@>
21884 help2("I'm not currently working on a `begingroup',")
21885 ("so I had better not try to end anything.");
21886 mp_flush_error(mp, 0);
21888 } while (mp->cur_cmd!=stop);
21890 int mp_run (MP mp) {
21891 @<Install and test the non-local jump buffer@>;
21892 mp_main_control(mp); /* come to life */
21893 mp_final_cleanup(mp); /* prepare for death */
21894 mp_close_files_and_terminate(mp);
21895 return mp->history;
21897 char * mp_mplib_version (MP mp) {
21899 return mplib_version;
21901 char * mp_metapost_version (MP mp) {
21903 return metapost_version;
21906 @ @<Exported function headers@>=
21907 int mp_run (MP mp);
21908 char * mp_mplib_version (MP mp);
21909 char * mp_metapost_version (MP mp);
21912 mp_primitive(mp, "end",stop,0);
21913 @:end_}{\&{end} primitive@>
21914 mp_primitive(mp, "dump",stop,1);
21915 @:dump_}{\&{dump} primitive@>
21917 @ @<Cases of |print_cmd...@>=
21919 if ( m==0 ) mp_print(mp, "end");
21920 else mp_print(mp, "dump");
21924 Let's turn now to statements that are classified as ``commands'' because
21925 of their imperative nature. We'll begin with simple ones, so that it
21926 will be clear how to hook command processing into the |do_statement| routine;
21927 then we'll tackle the tougher commands.
21929 Here's one of the simplest:
21931 @<Cases of |do_statement|...@>=
21932 case mp_random_seed: mp_do_random_seed(mp); break;
21934 @ @<Declare action procedures for use by |do_statement|@>=
21935 void mp_do_random_seed (MP mp) ;
21937 @ @c void mp_do_random_seed (MP mp) {
21939 if ( mp->cur_cmd!=assignment ) {
21940 mp_missing_err(mp, ":=");
21942 help1("Always say `randomseed:=<numeric expression>'.");
21945 mp_get_x_next(mp); mp_scan_expression(mp);
21946 if ( mp->cur_type!=mp_known ) {
21947 exp_err("Unknown value will be ignored");
21948 @.Unknown value...ignored@>
21949 help2("Your expression was too random for me to handle,")
21950 ("so I won't change the random seed just now.");
21951 mp_put_get_flush_error(mp, 0);
21953 @<Initialize the random seed to |cur_exp|@>;
21957 @ @<Initialize the random seed to |cur_exp|@>=
21959 mp_init_randoms(mp, mp->cur_exp);
21960 if ( mp->selector>=log_only && mp->selector<write_file) {
21961 mp->old_setting=mp->selector; mp->selector=log_only;
21962 mp_print_nl(mp, "{randomseed:=");
21963 mp_print_scaled(mp, mp->cur_exp);
21964 mp_print_char(mp, '}');
21965 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21969 @ And here's another simple one (somewhat different in flavor):
21971 @<Cases of |do_statement|...@>=
21973 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21974 @<Initialize the print |selector| based on |interaction|@>;
21975 if ( mp->log_opened ) mp->selector=mp->selector+2;
21980 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21981 @:mp_batch_mode_}{\&{batchmode} primitive@>
21982 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21983 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21984 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21985 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21986 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21987 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21989 @ @<Cases of |print_cmd_mod|...@>=
21992 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21993 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21994 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21995 default: mp_print(mp, "errorstopmode"); break;
21999 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22001 @<Cases of |do_statement|...@>=
22002 case protection_command: mp_do_protection(mp); break;
22005 mp_primitive(mp, "inner",protection_command,0);
22006 @:inner_}{\&{inner} primitive@>
22007 mp_primitive(mp, "outer",protection_command,1);
22008 @:outer_}{\&{outer} primitive@>
22010 @ @<Cases of |print_cmd...@>=
22011 case protection_command:
22012 if ( m==0 ) mp_print(mp, "inner");
22013 else mp_print(mp, "outer");
22016 @ @<Declare action procedures for use by |do_statement|@>=
22017 void mp_do_protection (MP mp) ;
22019 @ @c void mp_do_protection (MP mp) {
22020 int m; /* 0 to unprotect, 1 to protect */
22021 halfword t; /* the |eq_type| before we change it */
22024 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22026 if ( t>=outer_tag )
22027 eq_type(mp->cur_sym)=t-outer_tag;
22028 } else if ( t<outer_tag ) {
22029 eq_type(mp->cur_sym)=t+outer_tag;
22032 } while (mp->cur_cmd==comma);
22035 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22036 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22037 declaration assigns the command code |left_delimiter| to `\.{(}' and
22038 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22039 hash address of its mate.
22041 @<Cases of |do_statement|...@>=
22042 case delimiters: mp_def_delims(mp); break;
22044 @ @<Declare action procedures for use by |do_statement|@>=
22045 void mp_def_delims (MP mp) ;
22047 @ @c void mp_def_delims (MP mp) {
22048 pointer l_delim,r_delim; /* the new delimiter pair */
22049 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22050 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22051 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22052 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22056 @ Here is a procedure that is called when \MP\ has reached a point
22057 where some right delimiter is mandatory.
22059 @<Declare the procedure called |check_delimiter|@>=
22060 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22061 if ( mp->cur_cmd==right_delimiter )
22062 if ( mp->cur_mod==l_delim )
22064 if ( mp->cur_sym!=r_delim ) {
22065 mp_missing_err(mp, str(text(r_delim)));
22067 help2("I found no right delimiter to match a left one. So I've")
22068 ("put one in, behind the scenes; this may fix the problem.");
22071 print_err("The token `"); mp_print_text(r_delim);
22072 @.The token...delimiter@>
22073 mp_print(mp, "' is no longer a right delimiter");
22074 help3("Strange: This token has lost its former meaning!")
22075 ("I'll read it as a right delimiter this time;")
22076 ("but watch out, I'll probably miss it later.");
22081 @ The next four commands save or change the values associated with tokens.
22083 @<Cases of |do_statement|...@>=
22086 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22087 } while (mp->cur_cmd==comma);
22089 case interim_command: mp_do_interim(mp); break;
22090 case let_command: mp_do_let(mp); break;
22091 case new_internal: mp_do_new_internal(mp); break;
22093 @ @<Declare action procedures for use by |do_statement|@>=
22094 void mp_do_statement (MP mp);
22095 void mp_do_interim (MP mp);
22097 @ @c void mp_do_interim (MP mp) {
22099 if ( mp->cur_cmd!=internal_quantity ) {
22100 print_err("The token `");
22101 @.The token...quantity@>
22102 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22103 else mp_print_text(mp->cur_sym);
22104 mp_print(mp, "' isn't an internal quantity");
22105 help1("Something like `tracingonline' should follow `interim'.");
22108 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22110 mp_do_statement(mp);
22113 @ The following procedure is careful not to undefine the left-hand symbol
22114 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22116 @<Declare action procedures for use by |do_statement|@>=
22117 void mp_do_let (MP mp) ;
22119 @ @c void mp_do_let (MP mp) {
22120 pointer l; /* hash location of the left-hand symbol */
22121 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22122 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22123 mp_missing_err(mp, "=");
22125 help3("You should have said `let symbol = something'.")
22126 ("But don't worry; I'll pretend that an equals sign")
22127 ("was present. The next token I read will be `something'.");
22131 switch (mp->cur_cmd) {
22132 case defined_macro: case secondary_primary_macro:
22133 case tertiary_secondary_macro: case expression_tertiary_macro:
22134 add_mac_ref(mp->cur_mod);
22139 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22140 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22141 else equiv(l)=mp->cur_mod;
22145 @ @<Declarations@>=
22146 void mp_grow_internals (MP mp, int l);
22147 void mp_do_new_internal (MP mp) ;
22150 void mp_grow_internals (MP mp, int l) {
22154 if ( hash_end+l>max_halfword ) {
22155 mp_confusion(mp, "out of memory space"); /* can't be reached */
22157 int_name = xmalloc ((l+1),sizeof(char *));
22158 internal = xmalloc ((l+1),sizeof(scaled));
22159 for (k=0;k<=l; k++ ) {
22160 if (k<=mp->max_internal) {
22161 internal[k]=mp->internal[k];
22162 int_name[k]=mp->int_name[k];
22168 xfree(mp->internal); xfree(mp->int_name);
22169 mp->int_name = int_name;
22170 mp->internal = internal;
22171 mp->max_internal = l;
22175 void mp_do_new_internal (MP mp) {
22177 if ( mp->int_ptr==mp->max_internal ) {
22178 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22180 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22181 eq_type(mp->cur_sym)=internal_quantity;
22182 equiv(mp->cur_sym)=mp->int_ptr;
22183 if(mp->int_name[mp->int_ptr]!=NULL)
22184 xfree(mp->int_name[mp->int_ptr]);
22185 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22186 mp->internal[mp->int_ptr]=0;
22188 } while (mp->cur_cmd==comma);
22191 @ @<Dealloc variables@>=
22192 for (k=0;k<=mp->max_internal;k++) {
22193 xfree(mp->int_name[k]);
22195 xfree(mp->internal);
22196 xfree(mp->int_name);
22199 @ The various `\&{show}' commands are distinguished by modifier fields
22202 @d show_token_code 0 /* show the meaning of a single token */
22203 @d show_stats_code 1 /* show current memory and string usage */
22204 @d show_code 2 /* show a list of expressions */
22205 @d show_var_code 3 /* show a variable and its descendents */
22206 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22209 mp_primitive(mp, "showtoken",show_command,show_token_code);
22210 @:show_token_}{\&{showtoken} primitive@>
22211 mp_primitive(mp, "showstats",show_command,show_stats_code);
22212 @:show_stats_}{\&{showstats} primitive@>
22213 mp_primitive(mp, "show",show_command,show_code);
22214 @:show_}{\&{show} primitive@>
22215 mp_primitive(mp, "showvariable",show_command,show_var_code);
22216 @:show_var_}{\&{showvariable} primitive@>
22217 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22218 @:show_dependencies_}{\&{showdependencies} primitive@>
22220 @ @<Cases of |print_cmd...@>=
22223 case show_token_code:mp_print(mp, "showtoken"); break;
22224 case show_stats_code:mp_print(mp, "showstats"); break;
22225 case show_code:mp_print(mp, "show"); break;
22226 case show_var_code:mp_print(mp, "showvariable"); break;
22227 default: mp_print(mp, "showdependencies"); break;
22231 @ @<Cases of |do_statement|...@>=
22232 case show_command:mp_do_show_whatever(mp); break;
22234 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22235 if it's |show_code|, complicated structures are abbreviated, otherwise
22238 @<Declare action procedures for use by |do_statement|@>=
22239 void mp_do_show (MP mp) ;
22241 @ @c void mp_do_show (MP mp) {
22243 mp_get_x_next(mp); mp_scan_expression(mp);
22244 mp_print_nl(mp, ">> ");
22246 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22247 } while (mp->cur_cmd==comma);
22250 @ @<Declare action procedures for use by |do_statement|@>=
22251 void mp_disp_token (MP mp) ;
22253 @ @c void mp_disp_token (MP mp) {
22254 mp_print_nl(mp, "> ");
22256 if ( mp->cur_sym==0 ) {
22257 @<Show a numeric or string or capsule token@>;
22259 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22260 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22261 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22262 if ( mp->cur_cmd==defined_macro ) {
22263 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22264 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22269 @ @<Show a numeric or string or capsule token@>=
22271 if ( mp->cur_cmd==numeric_token ) {
22272 mp_print_scaled(mp, mp->cur_mod);
22273 } else if ( mp->cur_cmd==capsule_token ) {
22274 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22276 mp_print_char(mp, '"');
22277 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22278 delete_str_ref(mp->cur_mod);
22282 @ The following cases of |print_cmd_mod| might arise in connection
22283 with |disp_token|, although they don't correspond to any
22286 @<Cases of |print_cmd_...@>=
22287 case left_delimiter:
22288 case right_delimiter:
22289 if ( c==left_delimiter ) mp_print(mp, "left");
22290 else mp_print(mp, "right");
22291 mp_print(mp, " delimiter that matches ");
22295 if ( m==null ) mp_print(mp, "tag");
22296 else mp_print(mp, "variable");
22298 case defined_macro:
22299 mp_print(mp, "macro:");
22301 case secondary_primary_macro:
22302 case tertiary_secondary_macro:
22303 case expression_tertiary_macro:
22304 mp_print_cmd_mod(mp, macro_def,c);
22305 mp_print(mp, "'d macro:");
22306 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22309 mp_print(mp, "[repeat the loop]");
22311 case internal_quantity:
22312 mp_print(mp, mp->int_name[m]);
22315 @ @<Declare action procedures for use by |do_statement|@>=
22316 void mp_do_show_token (MP mp) ;
22318 @ @c void mp_do_show_token (MP mp) {
22320 get_t_next; mp_disp_token(mp);
22322 } while (mp->cur_cmd==comma);
22325 @ @<Declare action procedures for use by |do_statement|@>=
22326 void mp_do_show_stats (MP mp) ;
22328 @ @c void mp_do_show_stats (MP mp) {
22329 mp_print_nl(mp, "Memory usage ");
22330 @.Memory usage...@>
22331 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22333 mp_print(mp, "unknown");
22334 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22335 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22336 mp_print_nl(mp, "String usage ");
22337 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22338 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22340 mp_print(mp, "unknown");
22341 mp_print(mp, " (");
22342 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22343 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22344 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22348 @ Here's a recursive procedure that gives an abbreviated account
22349 of a variable, for use by |do_show_var|.
22351 @<Declare action procedures for use by |do_statement|@>=
22352 void mp_disp_var (MP mp,pointer p) ;
22354 @ @c void mp_disp_var (MP mp,pointer p) {
22355 pointer q; /* traverses attributes and subscripts */
22356 int n; /* amount of macro text to show */
22357 if ( type(p)==mp_structured ) {
22358 @<Descend the structure@>;
22359 } else if ( type(p)>=mp_unsuffixed_macro ) {
22360 @<Display a variable macro@>;
22361 } else if ( type(p)!=undefined ){
22362 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22363 mp_print_char(mp, '=');
22364 mp_print_exp(mp, p,0);
22368 @ @<Descend the structure@>=
22371 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22373 while ( name_type(q)==mp_subscr ) {
22374 mp_disp_var(mp, q); q=link(q);
22378 @ @<Display a variable macro@>=
22380 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22381 if ( type(p)>mp_unsuffixed_macro )
22382 mp_print(mp, "@@#"); /* |suffixed_macro| */
22383 mp_print(mp, "=macro:");
22384 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22385 else n=mp->max_print_line-mp->file_offset-15;
22386 mp_show_macro(mp, value(p),null,n);
22389 @ @<Declare action procedures for use by |do_statement|@>=
22390 void mp_do_show_var (MP mp) ;
22392 @ @c void mp_do_show_var (MP mp) {
22395 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22396 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22397 mp_disp_var(mp, mp->cur_mod); goto DONE;
22402 } while (mp->cur_cmd==comma);
22405 @ @<Declare action procedures for use by |do_statement|@>=
22406 void mp_do_show_dependencies (MP mp) ;
22408 @ @c void mp_do_show_dependencies (MP mp) {
22409 pointer p; /* link that runs through all dependencies */
22411 while ( p!=dep_head ) {
22412 if ( mp_interesting(mp, p) ) {
22413 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22414 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22415 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22416 mp_print_dependency(mp, dep_list(p),type(p));
22419 while ( info(p)!=null ) p=link(p);
22425 @ Finally we are ready for the procedure that governs all of the
22428 @<Declare action procedures for use by |do_statement|@>=
22429 void mp_do_show_whatever (MP mp) ;
22431 @ @c void mp_do_show_whatever (MP mp) {
22432 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22433 switch (mp->cur_mod) {
22434 case show_token_code:mp_do_show_token(mp); break;
22435 case show_stats_code:mp_do_show_stats(mp); break;
22436 case show_code:mp_do_show(mp); break;
22437 case show_var_code:mp_do_show_var(mp); break;
22438 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22439 } /* there are no other cases */
22440 if ( mp->internal[mp_showstopping]>0 ){
22443 if ( mp->interaction<mp_error_stop_mode ) {
22444 help0; decr(mp->error_count);
22446 help1("This isn't an error message; I'm just showing something.");
22448 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22449 else mp_put_get_error(mp);
22453 @ The `\&{addto}' command needs the following additional primitives:
22455 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22456 @d contour_code 1 /* command modifier for `\&{contour}' */
22457 @d also_code 2 /* command modifier for `\&{also}' */
22459 @ Pre and postscripts need two new identifiers:
22461 @d with_pre_script 11
22462 @d with_post_script 13
22465 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22466 @:double_path_}{\&{doublepath} primitive@>
22467 mp_primitive(mp, "contour",thing_to_add,contour_code);
22468 @:contour_}{\&{contour} primitive@>
22469 mp_primitive(mp, "also",thing_to_add,also_code);
22470 @:also_}{\&{also} primitive@>
22471 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22472 @:with_pen_}{\&{withpen} primitive@>
22473 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22474 @:dashed_}{\&{dashed} primitive@>
22475 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22476 @:with_pre_script_}{\&{withprescript} primitive@>
22477 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22478 @:with_post_script_}{\&{withpostscript} primitive@>
22479 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22480 @:with_color_}{\&{withoutcolor} primitive@>
22481 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22482 @:with_color_}{\&{withgreyscale} primitive@>
22483 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22484 @:with_color_}{\&{withcolor} primitive@>
22485 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22486 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22487 @:with_color_}{\&{withrgbcolor} primitive@>
22488 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22489 @:with_color_}{\&{withcmykcolor} primitive@>
22491 @ @<Cases of |print_cmd...@>=
22493 if ( m==contour_code ) mp_print(mp, "contour");
22494 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22495 else mp_print(mp, "also");
22498 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22499 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22500 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22501 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22502 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22503 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22504 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22505 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22506 else mp_print(mp, "dashed");
22509 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22510 updates the list of graphical objects starting at |p|. Each $\langle$with
22511 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22512 Other objects are ignored.
22514 @<Declare action procedures for use by |do_statement|@>=
22515 void mp_scan_with_list (MP mp,pointer p) ;
22517 @ @c void mp_scan_with_list (MP mp,pointer p) {
22518 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22519 pointer q; /* for list manipulation */
22520 int old_setting; /* saved |selector| setting */
22521 pointer k; /* for finding the near-last item in a list */
22522 str_number s; /* for string cleanup after combining */
22523 pointer cp,pp,dp,ap,bp;
22524 /* objects being updated; |void| initially; |null| to suppress update */
22525 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22527 while ( mp->cur_cmd==with_option ){
22530 if ( t!=mp_no_model ) mp_scan_expression(mp);
22531 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22532 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22533 ((t==mp_uninitialized_model)&&
22534 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22535 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22536 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22537 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22538 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22539 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22540 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22541 @<Complain about improper type@>;
22542 } else if ( t==mp_uninitialized_model ) {
22543 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22545 @<Transfer a color from the current expression to object~|cp|@>;
22546 mp_flush_cur_exp(mp, 0);
22547 } else if ( t==mp_rgb_model ) {
22548 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22550 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22551 mp_flush_cur_exp(mp, 0);
22552 } else if ( t==mp_cmyk_model ) {
22553 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22555 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22556 mp_flush_cur_exp(mp, 0);
22557 } else if ( t==mp_grey_model ) {
22558 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22560 @<Transfer a greyscale from the current expression to object~|cp|@>;
22561 mp_flush_cur_exp(mp, 0);
22562 } else if ( t==mp_no_model ) {
22563 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22565 @<Transfer a noncolor from the current expression to object~|cp|@>;
22566 } else if ( t==mp_pen_type ) {
22567 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22569 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22570 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22572 } else if ( t==with_pre_script ) {
22575 while ( (ap!=null)&&(! has_color(ap)) )
22578 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22580 old_setting=mp->selector;
22581 mp->selector=new_string;
22582 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22583 mp_print_str(mp, mp->cur_exp);
22584 append_char(13); /* a forced \ps\ newline */
22585 mp_print_str(mp, pre_script(ap));
22586 pre_script(ap)=mp_make_string(mp);
22588 mp->selector=old_setting;
22590 pre_script(ap)=mp->cur_exp;
22592 mp->cur_type=mp_vacuous;
22594 } else if ( t==with_post_script ) {
22598 while ( link(k)!=null ) {
22600 if ( has_color(k) ) bp=k;
22603 if ( post_script(bp)!=null ) {
22605 old_setting=mp->selector;
22606 mp->selector=new_string;
22607 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22608 mp_print_str(mp, post_script(bp));
22609 append_char(13); /* a forced \ps\ newline */
22610 mp_print_str(mp, mp->cur_exp);
22611 post_script(bp)=mp_make_string(mp);
22613 mp->selector=old_setting;
22615 post_script(bp)=mp->cur_exp;
22617 mp->cur_type=mp_vacuous;
22620 if ( dp==mp_void ) {
22621 @<Make |dp| a stroked node in list~|p|@>;
22624 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22625 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22626 dash_scale(dp)=unity;
22627 mp->cur_type=mp_vacuous;
22631 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22635 @ @<Complain about improper type@>=
22636 { exp_err("Improper type");
22638 help2("Next time say `withpen <known pen expression>';")
22639 ("I'll ignore the bad `with' clause and look for another.");
22640 if ( t==with_pre_script )
22641 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22642 else if ( t==with_post_script )
22643 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22644 else if ( t==mp_picture_type )
22645 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22646 else if ( t==mp_uninitialized_model )
22647 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22648 else if ( t==mp_rgb_model )
22649 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22650 else if ( t==mp_cmyk_model )
22651 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22652 else if ( t==mp_grey_model )
22653 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22654 mp_put_get_flush_error(mp, 0);
22657 @ Forcing the color to be between |0| and |unity| here guarantees that no
22658 picture will ever contain a color outside the legal range for \ps\ graphics.
22660 @<Transfer a color from the current expression to object~|cp|@>=
22661 { if ( mp->cur_type==mp_color_type )
22662 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22663 else if ( mp->cur_type==mp_cmykcolor_type )
22664 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22665 else if ( mp->cur_type==mp_known )
22666 @<Transfer a greyscale from the current expression to object~|cp|@>
22667 else if ( mp->cur_exp==false_code )
22668 @<Transfer a noncolor from the current expression to object~|cp|@>;
22671 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22672 { q=value(mp->cur_exp);
22677 red_val(cp)=value(red_part_loc(q));
22678 green_val(cp)=value(green_part_loc(q));
22679 blue_val(cp)=value(blue_part_loc(q));
22680 color_model(cp)=mp_rgb_model;
22681 if ( red_val(cp)<0 ) red_val(cp)=0;
22682 if ( green_val(cp)<0 ) green_val(cp)=0;
22683 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22684 if ( red_val(cp)>unity ) red_val(cp)=unity;
22685 if ( green_val(cp)>unity ) green_val(cp)=unity;
22686 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22689 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22690 { q=value(mp->cur_exp);
22691 cyan_val(cp)=value(cyan_part_loc(q));
22692 magenta_val(cp)=value(magenta_part_loc(q));
22693 yellow_val(cp)=value(yellow_part_loc(q));
22694 black_val(cp)=value(black_part_loc(q));
22695 color_model(cp)=mp_cmyk_model;
22696 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22697 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22698 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22699 if ( black_val(cp)<0 ) black_val(cp)=0;
22700 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22701 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22702 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22703 if ( black_val(cp)>unity ) black_val(cp)=unity;
22706 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22713 color_model(cp)=mp_grey_model;
22714 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22715 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22718 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22725 color_model(cp)=mp_no_model;
22728 @ @<Make |cp| a colored object in object list~|p|@>=
22730 while ( cp!=null ){
22731 if ( has_color(cp) ) break;
22736 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22738 while ( pp!=null ) {
22739 if ( has_pen(pp) ) break;
22744 @ @<Make |dp| a stroked node in list~|p|@>=
22746 while ( dp!=null ) {
22747 if ( type(dp)==mp_stroked_code ) break;
22752 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22753 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22754 if ( pp>mp_void ) {
22755 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22757 if ( dp>mp_void ) {
22758 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22762 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22764 while ( q!=null ) {
22765 if ( has_color(q) ) {
22766 red_val(q)=red_val(cp);
22767 green_val(q)=green_val(cp);
22768 blue_val(q)=blue_val(cp);
22769 black_val(q)=black_val(cp);
22770 color_model(q)=color_model(cp);
22776 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22778 while ( q!=null ) {
22779 if ( has_pen(q) ) {
22780 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22781 pen_p(q)=copy_pen(pen_p(pp));
22787 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22789 while ( q!=null ) {
22790 if ( type(q)==mp_stroked_code ) {
22791 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22792 dash_p(q)=dash_p(dp);
22793 dash_scale(q)=unity;
22794 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22800 @ One of the things we need to do when we've parsed an \&{addto} or
22801 similar command is find the header of a supposed \&{picture} variable, given
22802 a token list for that variable. Since the edge structure is about to be
22803 updated, we use |private_edges| to make sure that this is possible.
22805 @<Declare action procedures for use by |do_statement|@>=
22806 pointer mp_find_edges_var (MP mp, pointer t) ;
22808 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22810 pointer cur_edges; /* the return value */
22811 p=mp_find_variable(mp, t); cur_edges=null;
22813 mp_obliterated(mp, t); mp_put_get_error(mp);
22814 } else if ( type(p)!=mp_picture_type ) {
22815 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22816 @.Variable x is the wrong type@>
22817 mp_print(mp, " is the wrong type (");
22818 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22819 help2("I was looking for a \"known\" picture variable.")
22820 ("So I'll not change anything just now.");
22821 mp_put_get_error(mp);
22823 value(p)=mp_private_edges(mp, value(p));
22824 cur_edges=value(p);
22826 mp_flush_node_list(mp, t);
22830 @ @<Cases of |do_statement|...@>=
22831 case add_to_command: mp_do_add_to(mp); break;
22832 case bounds_command:mp_do_bounds(mp); break;
22835 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22836 @:clip_}{\&{clip} primitive@>
22837 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22838 @:set_bounds_}{\&{setbounds} primitive@>
22840 @ @<Cases of |print_cmd...@>=
22841 case bounds_command:
22842 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22843 else mp_print(mp, "setbounds");
22846 @ The following function parses the beginning of an \&{addto} or \&{clip}
22847 command: it expects a variable name followed by a token with |cur_cmd=sep|
22848 and then an expression. The function returns the token list for the variable
22849 and stores the command modifier for the separator token in the global variable
22850 |last_add_type|. We must be careful because this variable might get overwritten
22851 any time we call |get_x_next|.
22854 quarterword last_add_type;
22855 /* command modifier that identifies the last \&{addto} command */
22857 @ @<Declare action procedures for use by |do_statement|@>=
22858 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22860 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22861 pointer lhv; /* variable to add to left */
22862 quarterword add_type=0; /* value to be returned in |last_add_type| */
22864 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22865 if ( mp->cur_type!=mp_token_list ) {
22866 @<Abandon edges command because there's no variable@>;
22868 lhv=mp->cur_exp; add_type=mp->cur_mod;
22869 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22871 mp->last_add_type=add_type;
22875 @ @<Abandon edges command because there's no variable@>=
22876 { exp_err("Not a suitable variable");
22877 @.Not a suitable variable@>
22878 help4("At this point I needed to see the name of a picture variable.")
22879 ("(Or perhaps you have indeed presented me with one; I might")
22880 ("have missed it, if it wasn't followed by the proper token.)")
22881 ("So I'll not change anything just now.");
22882 mp_put_get_flush_error(mp, 0);
22885 @ Here is an example of how to use |start_draw_cmd|.
22887 @<Declare action procedures for use by |do_statement|@>=
22888 void mp_do_bounds (MP mp) ;
22890 @ @c void mp_do_bounds (MP mp) {
22891 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22892 pointer p; /* for list manipulation */
22893 integer m; /* initial value of |cur_mod| */
22895 lhv=mp_start_draw_cmd(mp, to_token);
22897 lhe=mp_find_edges_var(mp, lhv);
22899 mp_flush_cur_exp(mp, 0);
22900 } else if ( mp->cur_type!=mp_path_type ) {
22901 exp_err("Improper `clip'");
22902 @.Improper `addto'@>
22903 help2("This expression should have specified a known path.")
22904 ("So I'll not change anything just now.");
22905 mp_put_get_flush_error(mp, 0);
22906 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22907 @<Complain about a non-cycle@>;
22909 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22914 @ @<Complain about a non-cycle@>=
22915 { print_err("Not a cycle");
22917 help2("That contour should have ended with `..cycle' or `&cycle'.")
22918 ("So I'll not change anything just now."); mp_put_get_error(mp);
22921 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22922 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22923 link(p)=link(dummy_loc(lhe));
22924 link(dummy_loc(lhe))=p;
22925 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22926 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22927 type(p)=stop_type(m);
22928 link(obj_tail(lhe))=p;
22930 mp_init_bbox(mp, lhe);
22933 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22934 cases to deal with.
22936 @<Declare action procedures for use by |do_statement|@>=
22937 void mp_do_add_to (MP mp) ;
22939 @ @c void mp_do_add_to (MP mp) {
22940 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22941 pointer p; /* the graphical object or list for |scan_with_list| to update */
22942 pointer e; /* an edge structure to be merged */
22943 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22944 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22946 if ( add_type==also_code ) {
22947 @<Make sure the current expression is a suitable picture and set |e| and |p|
22950 @<Create a graphical object |p| based on |add_type| and the current
22953 mp_scan_with_list(mp, p);
22954 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22958 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22959 setting |e:=null| prevents anything from being added to |lhe|.
22961 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22964 if ( mp->cur_type!=mp_picture_type ) {
22965 exp_err("Improper `addto'");
22966 @.Improper `addto'@>
22967 help2("This expression should have specified a known picture.")
22968 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22970 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22971 p=link(dummy_loc(e));
22975 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22976 attempts to add to the edge structure.
22978 @<Create a graphical object |p| based on |add_type| and the current...@>=
22980 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22981 if ( mp->cur_type!=mp_path_type ) {
22982 exp_err("Improper `addto'");
22983 @.Improper `addto'@>
22984 help2("This expression should have specified a known path.")
22985 ("So I'll not change anything just now.");
22986 mp_put_get_flush_error(mp, 0);
22987 } else if ( add_type==contour_code ) {
22988 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22989 @<Complain about a non-cycle@>;
22991 p=mp_new_fill_node(mp, mp->cur_exp);
22992 mp->cur_type=mp_vacuous;
22995 p=mp_new_stroked_node(mp, mp->cur_exp);
22996 mp->cur_type=mp_vacuous;
23000 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23001 lhe=mp_find_edges_var(mp, lhv);
23003 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23004 if ( e!=null ) delete_edge_ref(e);
23005 } else if ( add_type==also_code ) {
23007 @<Merge |e| into |lhe| and delete |e|@>;
23011 } else if ( p!=null ) {
23012 link(obj_tail(lhe))=p;
23014 if ( add_type==double_path_code )
23015 if ( pen_p(p)==null )
23016 pen_p(p)=mp_get_pen_circle(mp, 0);
23019 @ @<Merge |e| into |lhe| and delete |e|@>=
23020 { if ( link(dummy_loc(e))!=null ) {
23021 link(obj_tail(lhe))=link(dummy_loc(e));
23022 obj_tail(lhe)=obj_tail(e);
23023 obj_tail(e)=dummy_loc(e);
23024 link(dummy_loc(e))=null;
23025 mp_flush_dash_list(mp, lhe);
23027 mp_toss_edges(mp, e);
23030 @ @<Cases of |do_statement|...@>=
23031 case ship_out_command: mp_do_ship_out(mp); break;
23033 @ @<Declare action procedures for use by |do_statement|@>=
23034 @<Declare the function called |tfm_check|@>;
23035 @<Declare the \ps\ output procedures@>;
23036 void mp_do_ship_out (MP mp) ;
23038 @ @c void mp_do_ship_out (MP mp) {
23039 integer c; /* the character code */
23040 mp_get_x_next(mp); mp_scan_expression(mp);
23041 if ( mp->cur_type!=mp_picture_type ) {
23042 @<Complain that it's not a known picture@>;
23044 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23045 if ( c<0 ) c=c+256;
23046 @<Store the width information for character code~|c|@>;
23047 mp_ship_out(mp, mp->cur_exp);
23048 mp_flush_cur_exp(mp, 0);
23052 @ @<Complain that it's not a known picture@>=
23054 exp_err("Not a known picture");
23055 help1("I can only output known pictures.");
23056 mp_put_get_flush_error(mp, 0);
23059 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23062 @<Cases of |do_statement|...@>=
23063 case every_job_command:
23064 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23068 halfword start_sym; /* a symbolic token to insert at beginning of job */
23073 @ Finally, we have only the ``message'' commands remaining.
23076 @d err_message_code 1
23078 @d filename_template_code 3
23079 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23080 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23082 mp->pool_ptr = mp->pool_ptr - g;
23084 mp_print_char(mp, '0');
23087 mp_print_int(mp, (A));
23092 mp_primitive(mp, "message",message_command,message_code);
23093 @:message_}{\&{message} primitive@>
23094 mp_primitive(mp, "errmessage",message_command,err_message_code);
23095 @:err_message_}{\&{errmessage} primitive@>
23096 mp_primitive(mp, "errhelp",message_command,err_help_code);
23097 @:err_help_}{\&{errhelp} primitive@>
23098 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23099 @:filename_template_}{\&{filenametemplate} primitive@>
23101 @ @<Cases of |print_cmd...@>=
23102 case message_command:
23103 if ( m<err_message_code ) mp_print(mp, "message");
23104 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23105 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23106 else mp_print(mp, "errhelp");
23109 @ @<Cases of |do_statement|...@>=
23110 case message_command: mp_do_message(mp); break;
23112 @ @<Declare action procedures for use by |do_statement|@>=
23113 @<Declare a procedure called |no_string_err|@>;
23114 void mp_do_message (MP mp) ;
23117 @c void mp_do_message (MP mp) {
23118 int m; /* the type of message */
23119 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23120 if ( mp->cur_type!=mp_string_type )
23121 mp_no_string_err(mp, "A message should be a known string expression.");
23125 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23127 case err_message_code:
23128 @<Print string |cur_exp| as an error message@>;
23130 case err_help_code:
23131 @<Save string |cur_exp| as the |err_help|@>;
23133 case filename_template_code:
23134 @<Save the filename template@>;
23136 } /* there are no other cases */
23138 mp_flush_cur_exp(mp, 0);
23141 @ @<Declare a procedure called |no_string_err|@>=
23142 void mp_no_string_err (MP mp,char *s) {
23143 exp_err("Not a string");
23146 mp_put_get_error(mp);
23149 @ The global variable |err_help| is zero when the user has most recently
23150 given an empty help string, or if none has ever been given.
23152 @<Save string |cur_exp| as the |err_help|@>=
23154 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23155 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23156 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23159 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23160 \&{errhelp}, we don't want to give a long help message each time. So we
23161 give a verbose explanation only once.
23164 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23166 @ @<Set init...@>=mp->long_help_seen=false;
23168 @ @<Print string |cur_exp| as an error message@>=
23170 print_err(""); mp_print_str(mp, mp->cur_exp);
23171 if ( mp->err_help!=0 ) {
23172 mp->use_err_help=true;
23173 } else if ( mp->long_help_seen ) {
23174 help1("(That was another `errmessage'.)") ;
23176 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23177 help4("This error message was generated by an `errmessage'")
23178 ("command, so I can\'t give any explicit help.")
23179 ("Pretend that you're Miss Marple: Examine all clues,")
23181 ("and deduce the truth by inspired guesses.");
23183 mp_put_get_error(mp); mp->use_err_help=false;
23186 @ @<Cases of |do_statement|...@>=
23187 case write_command: mp_do_write(mp); break;
23189 @ @<Declare action procedures for use by |do_statement|@>=
23190 void mp_do_write (MP mp) ;
23192 @ @c void mp_do_write (MP mp) {
23193 str_number t; /* the line of text to be written */
23194 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23195 int old_setting; /* for saving |selector| during output */
23197 mp_scan_expression(mp);
23198 if ( mp->cur_type!=mp_string_type ) {
23199 mp_no_string_err(mp, "The text to be written should be a known string expression");
23200 } else if ( mp->cur_cmd!=to_token ) {
23201 print_err("Missing `to' clause");
23202 help1("A write command should end with `to <filename>'");
23203 mp_put_get_error(mp);
23205 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23207 mp_scan_expression(mp);
23208 if ( mp->cur_type!=mp_string_type )
23209 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23211 @<Write |t| to the file named by |cur_exp|@>;
23215 mp_flush_cur_exp(mp, 0);
23218 @ @<Write |t| to the file named by |cur_exp|@>=
23220 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23221 |cur_exp| must be inserted@>;
23222 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23223 @<Record the end of file on |wr_file[n]|@>;
23225 old_setting=mp->selector;
23226 mp->selector=n+write_file;
23227 mp_print_str(mp, t); mp_print_ln(mp);
23228 mp->selector = old_setting;
23232 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23234 char *fn = str(mp->cur_exp);
23236 n0=mp->write_files;
23237 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23238 if ( n==0 ) { /* bottom reached */
23239 if ( n0==mp->write_files ) {
23240 if ( mp->write_files<mp->max_write_files ) {
23241 incr(mp->write_files);
23246 l = mp->max_write_files + (mp->max_write_files>>2);
23247 wr_file = xmalloc((l+1),sizeof(void *));
23248 wr_fname = xmalloc((l+1),sizeof(char *));
23249 for (k=0;k<=l;k++) {
23250 if (k<=mp->max_write_files) {
23251 wr_file[k]=mp->wr_file[k];
23252 wr_fname[k]=mp->wr_fname[k];
23258 xfree(mp->wr_file); xfree(mp->wr_fname);
23259 mp->max_write_files = l;
23260 mp->wr_file = wr_file;
23261 mp->wr_fname = wr_fname;
23265 mp_open_write_file(mp, fn ,n);
23268 if ( mp->wr_fname[n]==NULL ) n0=n;
23273 @ @<Record the end of file on |wr_file[n]|@>=
23274 { (mp->close_file)(mp->wr_file[n]);
23275 xfree(mp->wr_fname[n]);
23276 mp->wr_fname[n]=NULL;
23277 if ( n==mp->write_files-1 ) mp->write_files=n;
23281 @* \[42] Writing font metric data.
23282 \TeX\ gets its knowledge about fonts from font metric files, also called
23283 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23284 but other programs know about them too. One of \MP's duties is to
23285 write \.{TFM} files so that the user's fonts can readily be
23286 applied to typesetting.
23287 @:TFM files}{\.{TFM} files@>
23288 @^font metric files@>
23290 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23291 Since the number of bytes is always a multiple of~4, we could
23292 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23293 byte interpretation. The format of \.{TFM} files was designed by
23294 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23295 @^Ramshaw, Lyle Harold@>
23296 of information in a compact but useful form.
23299 void * tfm_file; /* the font metric output goes here */
23300 char * metric_file_name; /* full name of the font metric file */
23302 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23303 integers that give the lengths of the various subsequent portions
23304 of the file. These twelve integers are, in order:
23305 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23306 |lf|&length of the entire file, in words;\cr
23307 |lh|&length of the header data, in words;\cr
23308 |bc|&smallest character code in the font;\cr
23309 |ec|&largest character code in the font;\cr
23310 |nw|&number of words in the width table;\cr
23311 |nh|&number of words in the height table;\cr
23312 |nd|&number of words in the depth table;\cr
23313 |ni|&number of words in the italic correction table;\cr
23314 |nl|&number of words in the lig/kern table;\cr
23315 |nk|&number of words in the kern table;\cr
23316 |ne|&number of words in the extensible character table;\cr
23317 |np|&number of font parameter words.\cr}}$$
23318 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23320 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23321 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23322 and as few as 0 characters (if |bc=ec+1|).
23324 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23325 16 or more bits, the most significant bytes appear first in the file.
23326 This is called BigEndian order.
23327 @^BigEndian order@>
23329 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23332 The most important data type used here is a |fix_word|, which is
23333 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23334 quantity, with the two's complement of the entire word used to represent
23335 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23336 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23337 the smallest is $-2048$. We will see below, however, that all but two of
23338 the |fix_word| values must lie between $-16$ and $+16$.
23340 @ The first data array is a block of header information, which contains
23341 general facts about the font. The header must contain at least two words,
23342 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23343 header information of use to other software routines might also be
23344 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23345 For example, 16 more words of header information are in use at the Xerox
23346 Palo Alto Research Center; the first ten specify the character coding
23347 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23348 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23349 last gives the ``face byte.''
23351 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23352 the \.{GF} output file. This helps ensure consistency between files,
23353 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23354 should match the check sums on actual fonts that are used. The actual
23355 relation between this check sum and the rest of the \.{TFM} file is not
23356 important; the check sum is simply an identification number with the
23357 property that incompatible fonts almost always have distinct check sums.
23360 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23361 font, in units of \TeX\ points. This number must be at least 1.0; it is
23362 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23363 font, i.e., a font that was designed to look best at a 10-point size,
23364 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23365 $\delta$ \.{pt}', the effect is to override the design size and replace it
23366 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23367 the font image by a factor of $\delta$ divided by the design size. {\sl
23368 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23369 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23370 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23371 since many fonts have a design size equal to one em. The other dimensions
23372 must be less than 16 design-size units in absolute value; thus,
23373 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23374 \.{TFM} file whose first byte might be something besides 0 or 255.
23376 @ Next comes the |char_info| array, which contains one |char_info_word|
23377 per character. Each word in this part of the file contains six fields
23378 packed into four bytes as follows.
23380 \yskip\hang first byte: |width_index| (8 bits)\par
23381 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23383 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23385 \hang fourth byte: |remainder| (8 bits)\par
23387 The actual width of a character is \\{width}|[width_index]|, in design-size
23388 units; this is a device for compressing information, since many characters
23389 have the same width. Since it is quite common for many characters
23390 to have the same height, depth, or italic correction, the \.{TFM} format
23391 imposes a limit of 16 different heights, 16 different depths, and
23392 64 different italic corrections.
23394 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23395 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23396 value of zero. The |width_index| should never be zero unless the
23397 character does not exist in the font, since a character is valid if and
23398 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23400 @ The |tag| field in a |char_info_word| has four values that explain how to
23401 interpret the |remainder| field.
23403 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23404 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23405 program starting at location |remainder| in the |lig_kern| array.\par
23406 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23407 characters of ascending sizes, and not the largest in the chain. The
23408 |remainder| field gives the character code of the next larger character.\par
23409 \hang|tag=3| (|ext_tag|) means that this character code represents an
23410 extensible character, i.e., a character that is built up of smaller pieces
23411 so that it can be made arbitrarily large. The pieces are specified in
23412 |exten[remainder]|.\par
23414 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23415 unless they are used in special circumstances in math formulas. For example,
23416 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23417 operation looks for both |list_tag| and |ext_tag|.
23419 @d no_tag 0 /* vanilla character */
23420 @d lig_tag 1 /* character has a ligature/kerning program */
23421 @d list_tag 2 /* character has a successor in a charlist */
23422 @d ext_tag 3 /* character is extensible */
23424 @ The |lig_kern| array contains instructions in a simple programming language
23425 that explains what to do for special letter pairs. Each word in this array is a
23426 |lig_kern_command| of four bytes.
23428 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23429 step if the byte is 128 or more, otherwise the next step is obtained by
23430 skipping this number of intervening steps.\par
23431 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23432 then perform the operation and stop, otherwise continue.''\par
23433 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23434 a kern step otherwise.\par
23435 \hang fourth byte: |remainder|.\par
23438 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23439 between the current character and |next_char|. This amount is
23440 often negative, so that the characters are brought closer together
23441 by kerning; but it might be positive.
23443 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23444 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23445 |remainder| is inserted between the current character and |next_char|;
23446 then the current character is deleted if $b=0$, and |next_char| is
23447 deleted if $c=0$; then we pass over $a$~characters to reach the next
23448 current character (which may have a ligature/kerning program of its own).
23450 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23451 the |next_char| byte is the so-called right boundary character of this font;
23452 the value of |next_char| need not lie between |bc| and~|ec|.
23453 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23454 there is a special ligature/kerning program for a left boundary character,
23455 beginning at location |256*op_byte+remainder|.
23456 The interpretation is that \TeX\ puts implicit boundary characters
23457 before and after each consecutive string of characters from the same font.
23458 These implicit characters do not appear in the output, but they can affect
23459 ligatures and kerning.
23461 If the very first instruction of a character's |lig_kern| program has
23462 |skip_byte>128|, the program actually begins in location
23463 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23464 arrays, because the first instruction must otherwise
23465 appear in a location |<=255|.
23467 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23469 $$\hbox{|256*op_byte+remainder<nl|.}$$
23470 If such an instruction is encountered during
23471 normal program execution, it denotes an unconditional halt; no ligature
23472 command is performed.
23475 /* value indicating `\.{STOP}' in a lig/kern program */
23476 @d kern_flag (128) /* op code for a kern step */
23477 @d skip_byte(A) mp->lig_kern[(A)].b0
23478 @d next_char(A) mp->lig_kern[(A)].b1
23479 @d op_byte(A) mp->lig_kern[(A)].b2
23480 @d rem_byte(A) mp->lig_kern[(A)].b3
23482 @ Extensible characters are specified by an |extensible_recipe|, which
23483 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23484 order). These bytes are the character codes of individual pieces used to
23485 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23486 present in the built-up result. For example, an extensible vertical line is
23487 like an extensible bracket, except that the top and bottom pieces are missing.
23489 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23490 if the piece isn't present. Then the extensible characters have the form
23491 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23492 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23493 The width of the extensible character is the width of $R$; and the
23494 height-plus-depth is the sum of the individual height-plus-depths of the
23495 components used, since the pieces are butted together in a vertical list.
23497 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23498 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23499 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23500 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23502 @ The final portion of a \.{TFM} file is the |param| array, which is another
23503 sequence of |fix_word| values.
23505 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23506 to help position accents. For example, |slant=.25| means that when you go
23507 up one unit, you also go .25 units to the right. The |slant| is a pure
23508 number; it is the only |fix_word| other than the design size itself that is
23509 not scaled by the design size.
23511 \hang|param[2]=space| is the normal spacing between words in text.
23512 Note that character 040 in the font need not have anything to do with
23515 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23517 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23519 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23520 the height of letters for which accents don't have to be raised or lowered.
23522 \hang|param[6]=quad| is the size of one em in the font.
23524 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23528 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23533 @d space_stretch_code 3
23534 @d space_shrink_code 4
23537 @d extra_space_code 7
23539 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23540 information, and it does this all at once at the end of a job.
23541 In order to prepare for such frenetic activity, it squirrels away the
23542 necessary facts in various arrays as information becomes available.
23544 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23545 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23546 |tfm_ital_corr|. Other information about a character (e.g., about
23547 its ligatures or successors) is accessible via the |char_tag| and
23548 |char_remainder| arrays. Other information about the font as a whole
23549 is kept in additional arrays called |header_byte|, |lig_kern|,
23550 |kern|, |exten|, and |param|.
23552 @d max_tfm_int 32510
23553 @d undefined_label max_tfm_int /* an undefined local label */
23556 #define TFM_ITEMS 257
23558 eight_bits ec; /* smallest and largest character codes shipped out */
23559 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23560 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23561 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23562 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23563 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23564 int char_tag[TFM_ITEMS]; /* |remainder| category */
23565 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23566 char *header_byte; /* bytes of the \.{TFM} header */
23567 int header_last; /* last initialized \.{TFM} header byte */
23568 int header_size; /* size of the \.{TFM} header */
23569 four_quarters *lig_kern; /* the ligature/kern table */
23570 short nl; /* the number of ligature/kern steps so far */
23571 scaled *kern; /* distinct kerning amounts */
23572 short nk; /* the number of distinct kerns so far */
23573 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23574 short ne; /* the number of extensible characters so far */
23575 scaled *param; /* \&{fontinfo} parameters */
23576 short np; /* the largest \&{fontinfo} parameter specified so far */
23577 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23578 short skip_table[TFM_ITEMS]; /* local label status */
23579 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23580 integer bchar; /* right boundary character */
23581 short bch_label; /* left boundary starting location */
23582 short ll;short lll; /* registers used for lig/kern processing */
23583 short label_loc[257]; /* lig/kern starting addresses */
23584 eight_bits label_char[257]; /* characters for |label_loc| */
23585 short label_ptr; /* highest position occupied in |label_loc| */
23587 @ @<Allocate or initialize ...@>=
23588 mp->header_last = 0; mp->header_size = 128; /* just for init */
23589 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23590 mp->lig_kern = NULL; /* allocated when needed */
23591 mp->kern = NULL; /* allocated when needed */
23592 mp->param = NULL; /* allocated when needed */
23594 @ @<Dealloc variables@>=
23595 xfree(mp->header_byte);
23596 xfree(mp->lig_kern);
23601 for (k=0;k<= 255;k++ ) {
23602 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23603 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23604 mp->skip_table[k]=undefined_label;
23606 memset(mp->header_byte,0,mp->header_size);
23607 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23608 mp->internal[mp_boundary_char]=-unity;
23609 mp->bch_label=undefined_label;
23610 mp->label_loc[0]=-1; mp->label_ptr=0;
23612 @ @<Declarations@>=
23613 scaled mp_tfm_check (MP mp,small_number m) ;
23615 @ @<Declare the function called |tfm_check|@>=
23616 scaled mp_tfm_check (MP mp,small_number m) {
23617 if ( abs(mp->internal[m])>=fraction_half ) {
23618 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23619 @.Enormous charwd...@>
23620 @.Enormous chardp...@>
23621 @.Enormous charht...@>
23622 @.Enormous charic...@>
23623 @.Enormous designsize...@>
23624 mp_print(mp, " has been reduced");
23625 help1("Font metric dimensions must be less than 2048pt.");
23626 mp_put_get_error(mp);
23627 if ( mp->internal[m]>0 ) return (fraction_half-1);
23628 else return (1-fraction_half);
23630 return mp->internal[m];
23634 @ @<Store the width information for character code~|c|@>=
23635 if ( c<mp->bc ) mp->bc=c;
23636 if ( c>mp->ec ) mp->ec=c;
23637 mp->char_exists[c]=true;
23638 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23639 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23640 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23641 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23643 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23645 @<Cases of |do_statement|...@>=
23646 case tfm_command: mp_do_tfm_command(mp); break;
23648 @ @d char_list_code 0
23649 @d lig_table_code 1
23650 @d extensible_code 2
23651 @d header_byte_code 3
23652 @d font_dimen_code 4
23655 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23656 @:char_list_}{\&{charlist} primitive@>
23657 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23658 @:lig_table_}{\&{ligtable} primitive@>
23659 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23660 @:extensible_}{\&{extensible} primitive@>
23661 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23662 @:header_byte_}{\&{headerbyte} primitive@>
23663 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23664 @:font_dimen_}{\&{fontdimen} primitive@>
23666 @ @<Cases of |print_cmd...@>=
23669 case char_list_code:mp_print(mp, "charlist"); break;
23670 case lig_table_code:mp_print(mp, "ligtable"); break;
23671 case extensible_code:mp_print(mp, "extensible"); break;
23672 case header_byte_code:mp_print(mp, "headerbyte"); break;
23673 default: mp_print(mp, "fontdimen"); break;
23677 @ @<Declare action procedures for use by |do_statement|@>=
23678 eight_bits mp_get_code (MP mp) ;
23680 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23681 integer c; /* the code value found */
23682 mp_get_x_next(mp); mp_scan_expression(mp);
23683 if ( mp->cur_type==mp_known ) {
23684 c=mp_round_unscaled(mp, mp->cur_exp);
23685 if ( c>=0 ) if ( c<256 ) return c;
23686 } else if ( mp->cur_type==mp_string_type ) {
23687 if ( length(mp->cur_exp)==1 ) {
23688 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23692 exp_err("Invalid code has been replaced by 0");
23693 @.Invalid code...@>
23694 help2("I was looking for a number between 0 and 255, or for a")
23695 ("string of length 1. Didn't find it; will use 0 instead.");
23696 mp_put_get_flush_error(mp, 0); c=0;
23700 @ @<Declare action procedures for use by |do_statement|@>=
23701 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23703 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23704 if ( mp->char_tag[c]==no_tag ) {
23705 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23707 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23708 mp->label_char[mp->label_ptr]=c;
23711 @<Complain about a character tag conflict@>;
23715 @ @<Complain about a character tag conflict@>=
23717 print_err("Character ");
23718 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23719 else if ( c==256 ) mp_print(mp, "||");
23720 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23721 mp_print(mp, " is already ");
23722 @.Character c is already...@>
23723 switch (mp->char_tag[c]) {
23724 case lig_tag: mp_print(mp, "in a ligtable"); break;
23725 case list_tag: mp_print(mp, "in a charlist"); break;
23726 case ext_tag: mp_print(mp, "extensible"); break;
23727 } /* there are no other cases */
23728 help2("It's not legal to label a character more than once.")
23729 ("So I'll not change anything just now.");
23730 mp_put_get_error(mp);
23733 @ @<Declare action procedures for use by |do_statement|@>=
23734 void mp_do_tfm_command (MP mp) ;
23736 @ @c void mp_do_tfm_command (MP mp) {
23737 int c,cc; /* character codes */
23738 int k; /* index into the |kern| array */
23739 int j; /* index into |header_byte| or |param| */
23740 switch (mp->cur_mod) {
23741 case char_list_code:
23743 /* we will store a list of character successors */
23744 while ( mp->cur_cmd==colon ) {
23745 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23748 case lig_table_code:
23749 if (mp->lig_kern==NULL)
23750 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23751 if (mp->kern==NULL)
23752 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23753 @<Store a list of ligature/kern steps@>;
23755 case extensible_code:
23756 @<Define an extensible recipe@>;
23758 case header_byte_code:
23759 case font_dimen_code:
23760 c=mp->cur_mod; mp_get_x_next(mp);
23761 mp_scan_expression(mp);
23762 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23763 exp_err("Improper location");
23764 @.Improper location@>
23765 help2("I was looking for a known, positive number.")
23766 ("For safety's sake I'll ignore the present command.");
23767 mp_put_get_error(mp);
23769 j=mp_round_unscaled(mp, mp->cur_exp);
23770 if ( mp->cur_cmd!=colon ) {
23771 mp_missing_err(mp, ":");
23773 help1("A colon should follow a headerbyte or fontinfo location.");
23776 if ( c==header_byte_code ) {
23777 @<Store a list of header bytes@>;
23779 if (mp->param==NULL)
23780 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23781 @<Store a list of font dimensions@>;
23785 } /* there are no other cases */
23788 @ @<Store a list of ligature/kern steps@>=
23790 mp->lk_started=false;
23793 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23794 @<Process a |skip_to| command and |goto done|@>;
23795 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23796 else { mp_back_input(mp); c=mp_get_code(mp); };
23797 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23798 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23800 if ( mp->cur_cmd==lig_kern_token ) {
23801 @<Compile a ligature/kern command@>;
23803 print_err("Illegal ligtable step");
23804 @.Illegal ligtable step@>
23805 help1("I was looking for `=:' or `kern' here.");
23806 mp_back_error(mp); next_char(mp->nl)=qi(0);
23807 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23808 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23810 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23812 if ( mp->cur_cmd==comma ) goto CONTINUE;
23813 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23818 mp_primitive(mp, "=:",lig_kern_token,0);
23819 @:=:_}{\.{=:} primitive@>
23820 mp_primitive(mp, "=:|",lig_kern_token,1);
23821 @:=:/_}{\.{=:\char'174} primitive@>
23822 mp_primitive(mp, "=:|>",lig_kern_token,5);
23823 @:=:/>_}{\.{=:\char'174>} primitive@>
23824 mp_primitive(mp, "|=:",lig_kern_token,2);
23825 @:=:/_}{\.{\char'174=:} primitive@>
23826 mp_primitive(mp, "|=:>",lig_kern_token,6);
23827 @:=:/>_}{\.{\char'174=:>} primitive@>
23828 mp_primitive(mp, "|=:|",lig_kern_token,3);
23829 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23830 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23831 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23832 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23833 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23834 mp_primitive(mp, "kern",lig_kern_token,128);
23835 @:kern_}{\&{kern} primitive@>
23837 @ @<Cases of |print_cmd...@>=
23838 case lig_kern_token:
23840 case 0:mp_print(mp, "=:"); break;
23841 case 1:mp_print(mp, "=:|"); break;
23842 case 2:mp_print(mp, "|=:"); break;
23843 case 3:mp_print(mp, "|=:|"); break;
23844 case 5:mp_print(mp, "=:|>"); break;
23845 case 6:mp_print(mp, "|=:>"); break;
23846 case 7:mp_print(mp, "|=:|>"); break;
23847 case 11:mp_print(mp, "|=:|>>"); break;
23848 default: mp_print(mp, "kern"); break;
23852 @ Local labels are implemented by maintaining the |skip_table| array,
23853 where |skip_table[c]| is either |undefined_label| or the address of the
23854 most recent lig/kern instruction that skips to local label~|c|. In the
23855 latter case, the |skip_byte| in that instruction will (temporarily)
23856 be zero if there were no prior skips to this label, or it will be the
23857 distance to the prior skip.
23859 We may need to cancel skips that span more than 127 lig/kern steps.
23861 @d cancel_skips(A) mp->ll=(A);
23863 mp->lll=qo(skip_byte(mp->ll));
23864 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23865 } while (mp->lll!=0)
23866 @d skip_error(A) { print_err("Too far to skip");
23867 @.Too far to skip@>
23868 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23869 mp_error(mp); cancel_skips((A));
23872 @<Process a |skip_to| command and |goto done|@>=
23875 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23876 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23878 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23879 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23880 mp->skip_table[c]=mp->nl-1; goto DONE;
23883 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23885 if ( mp->cur_cmd==colon ) {
23886 if ( c==256 ) mp->bch_label=mp->nl;
23887 else mp_set_tag(mp, c,lig_tag,mp->nl);
23888 } else if ( mp->skip_table[c]<undefined_label ) {
23889 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23891 mp->lll=qo(skip_byte(mp->ll));
23892 if ( mp->nl-mp->ll>128 ) {
23893 skip_error(mp->ll); goto CONTINUE;
23895 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23896 } while (mp->lll!=0);
23901 @ @<Compile a ligature/kern...@>=
23903 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23904 if ( mp->cur_mod<128 ) { /* ligature op */
23905 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23907 mp_get_x_next(mp); mp_scan_expression(mp);
23908 if ( mp->cur_type!=mp_known ) {
23909 exp_err("Improper kern");
23911 help2("The amount of kern should be a known numeric value.")
23912 ("I'm zeroing this one. Proceed, with fingers crossed.");
23913 mp_put_get_flush_error(mp, 0);
23915 mp->kern[mp->nk]=mp->cur_exp;
23917 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23919 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23922 op_byte(mp->nl)=kern_flag+(k / 256);
23923 rem_byte(mp->nl)=qi((k % 256));
23925 mp->lk_started=true;
23928 @ @d missing_extensible_punctuation(A)
23929 { mp_missing_err(mp, (A));
23930 @.Missing `\char`\#'@>
23931 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23934 @<Define an extensible recipe@>=
23936 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23937 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23938 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23939 ext_top(mp->ne)=qi(mp_get_code(mp));
23940 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23941 ext_mid(mp->ne)=qi(mp_get_code(mp));
23942 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23943 ext_bot(mp->ne)=qi(mp_get_code(mp));
23944 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23945 ext_rep(mp->ne)=qi(mp_get_code(mp));
23949 @ The header could contain ASCII zeroes, so can't use |strdup|.
23951 @<Store a list of header bytes@>=
23953 if ( j>=mp->header_size ) {
23954 int l = mp->header_size + (mp->header_size >> 2);
23955 char *t = xmalloc(l,sizeof(char));
23957 memcpy(t,mp->header_byte,mp->header_size);
23958 xfree (mp->header_byte);
23959 mp->header_byte = t;
23960 mp->header_size = l;
23962 mp->header_byte[j]=mp_get_code(mp);
23963 incr(j); incr(mp->header_last);
23964 } while (mp->cur_cmd==comma)
23966 @ @<Store a list of font dimensions@>=
23968 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23969 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23970 mp_get_x_next(mp); mp_scan_expression(mp);
23971 if ( mp->cur_type!=mp_known ){
23972 exp_err("Improper font parameter");
23973 @.Improper font parameter@>
23974 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23975 mp_put_get_flush_error(mp, 0);
23977 mp->param[j]=mp->cur_exp; incr(j);
23978 } while (mp->cur_cmd==comma)
23980 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23981 All that remains is to output it in the correct format.
23983 An interesting problem needs to be solved in this connection, because
23984 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23985 and 64~italic corrections. If the data has more distinct values than
23986 this, we want to meet the necessary restrictions by perturbing the
23987 given values as little as possible.
23989 \MP\ solves this problem in two steps. First the values of a given
23990 kind (widths, heights, depths, or italic corrections) are sorted;
23991 then the list of sorted values is perturbed, if necessary.
23993 The sorting operation is facilitated by having a special node of
23994 essentially infinite |value| at the end of the current list.
23996 @<Initialize table entries...@>=
23997 value(inf_val)=fraction_four;
23999 @ Straight linear insertion is good enough for sorting, since the lists
24000 are usually not terribly long. As we work on the data, the current list
24001 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
24002 list will be in increasing order of their |value| fields.
24004 Given such a list, the |sort_in| function takes a value and returns a pointer
24005 to where that value can be found in the list. The value is inserted in
24006 the proper place, if necessary.
24008 At the time we need to do these operations, most of \MP's work has been
24009 completed, so we will have plenty of memory to play with. The value nodes
24010 that are allocated for sorting will never be returned to free storage.
24012 @d clear_the_list link(temp_head)=inf_val
24014 @c pointer mp_sort_in (MP mp,scaled v) {
24015 pointer p,q,r; /* list manipulation registers */
24019 if ( v<=value(q) ) break;
24022 if ( v<value(q) ) {
24023 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24028 @ Now we come to the interesting part, where we reduce the list if necessary
24029 until it has the required size. The |min_cover| routine is basic to this
24030 process; it computes the minimum number~|m| such that the values of the
24031 current sorted list can be covered by |m|~intervals of width~|d|. It
24032 also sets the global value |perturbation| to the smallest value $d'>d$
24033 such that the covering found by this algorithm would be different.
24035 In particular, |min_cover(0)| returns the number of distinct values in the
24036 current list and sets |perturbation| to the minimum distance between
24039 @c integer mp_min_cover (MP mp,scaled d) {
24040 pointer p; /* runs through the current list */
24041 scaled l; /* the least element covered by the current interval */
24042 integer m; /* lower bound on the size of the minimum cover */
24043 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24044 while ( p!=inf_val ){
24045 incr(m); l=value(p);
24046 do { p=link(p); } while (value(p)<=l+d);
24047 if ( value(p)-l<mp->perturbation )
24048 mp->perturbation=value(p)-l;
24054 scaled perturbation; /* quantity related to \.{TFM} rounding */
24055 integer excess; /* the list is this much too long */
24057 @ The smallest |d| such that a given list can be covered with |m| intervals
24058 is determined by the |threshold| routine, which is sort of an inverse
24059 to |min_cover|. The idea is to increase the interval size rapidly until
24060 finding the range, then to go sequentially until the exact borderline has
24063 @c scaled mp_threshold (MP mp,integer m) {
24064 scaled d; /* lower bound on the smallest interval size */
24065 mp->excess=mp_min_cover(mp, 0)-m;
24066 if ( mp->excess<=0 ) {
24070 d=mp->perturbation;
24071 } while (mp_min_cover(mp, d+d)>m);
24072 while ( mp_min_cover(mp, d)>m )
24073 d=mp->perturbation;
24078 @ The |skimp| procedure reduces the current list to at most |m| entries,
24079 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24080 is the |k|th distinct value on the resulting list, and it sets
24081 |perturbation| to the maximum amount by which a |value| field has
24082 been changed. The size of the resulting list is returned as the
24085 @c integer mp_skimp (MP mp,integer m) {
24086 scaled d; /* the size of intervals being coalesced */
24087 pointer p,q,r; /* list manipulation registers */
24088 scaled l; /* the least value in the current interval */
24089 scaled v; /* a compromise value */
24090 d=mp_threshold(mp, m); mp->perturbation=0;
24091 q=temp_head; m=0; p=link(temp_head);
24092 while ( p!=inf_val ) {
24093 incr(m); l=value(p); info(p)=m;
24094 if ( value(link(p))<=l+d ) {
24095 @<Replace an interval of values by its midpoint@>;
24102 @ @<Replace an interval...@>=
24105 p=link(p); info(p)=m;
24106 decr(mp->excess); if ( mp->excess==0 ) d=0;
24107 } while (value(link(p))<=l+d);
24108 v=l+halfp(value(p)-l);
24109 if ( value(p)-v>mp->perturbation )
24110 mp->perturbation=value(p)-v;
24113 r=link(r); value(r)=v;
24115 link(q)=p; /* remove duplicate values from the current list */
24118 @ A warning message is issued whenever something is perturbed by
24119 more than 1/16\thinspace pt.
24121 @c void mp_tfm_warning (MP mp,small_number m) {
24122 mp_print_nl(mp, "(some ");
24123 mp_print(mp, mp->int_name[m]);
24124 @.some charwds...@>
24125 @.some chardps...@>
24126 @.some charhts...@>
24127 @.some charics...@>
24128 mp_print(mp, " values had to be adjusted by as much as ");
24129 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24132 @ Here's an example of how we use these routines.
24133 The width data needs to be perturbed only if there are 256 distinct
24134 widths, but \MP\ must check for this case even though it is
24137 An integer variable |k| will be defined when we use this code.
24138 The |dimen_head| array will contain pointers to the sorted
24139 lists of dimensions.
24141 @<Massage the \.{TFM} widths@>=
24143 for (k=mp->bc;k<=mp->ec;k++) {
24144 if ( mp->char_exists[k] )
24145 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24147 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24148 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24151 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24153 @ Heights, depths, and italic corrections are different from widths
24154 not only because their list length is more severely restricted, but
24155 also because zero values do not need to be put into the lists.
24157 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24159 for (k=mp->bc;k<=mp->ec;k++) {
24160 if ( mp->char_exists[k] ) {
24161 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24162 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24165 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24166 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24168 for (k=mp->bc;k<=mp->ec;k++) {
24169 if ( mp->char_exists[k] ) {
24170 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24171 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24174 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24175 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24177 for (k=mp->bc;k<=mp->ec;k++) {
24178 if ( mp->char_exists[k] ) {
24179 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24180 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24183 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24184 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24186 @ @<Initialize table entries...@>=
24187 value(zero_val)=0; info(zero_val)=0;
24189 @ Bytes 5--8 of the header are set to the design size, unless the user has
24190 some crazy reason for specifying them differently.
24192 Error messages are not allowed at the time this procedure is called,
24193 so a warning is printed instead.
24195 The value of |max_tfm_dimen| is calculated so that
24196 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24197 < \\{three\_bytes}.$$
24199 @d three_bytes 0100000000 /* $2^{24}$ */
24202 void mp_fix_design_size (MP mp) {
24203 scaled d; /* the design size */
24204 d=mp->internal[mp_design_size];
24205 if ( (d<unity)||(d>=fraction_half) ) {
24207 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24208 @.illegal design size...@>
24209 d=040000000; mp->internal[mp_design_size]=d;
24211 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24212 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24213 mp->header_byte[4]=d / 04000000;
24214 mp->header_byte[5]=(d / 4096) % 256;
24215 mp->header_byte[6]=(d / 16) % 256;
24216 mp->header_byte[7]=(d % 16)*16;
24218 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24219 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24222 @ The |dimen_out| procedure computes a |fix_word| relative to the
24223 design size. If the data was out of range, it is corrected and the
24224 global variable |tfm_changed| is increased by~one.
24226 @c integer mp_dimen_out (MP mp,scaled x) {
24227 if ( abs(x)>mp->max_tfm_dimen ) {
24228 incr(mp->tfm_changed);
24229 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24231 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24237 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24238 integer tfm_changed; /* the number of data entries that were out of bounds */
24240 @ If the user has not specified any of the first four header bytes,
24241 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24242 from the |tfm_width| data relative to the design size.
24245 @c void mp_fix_check_sum (MP mp) {
24246 eight_bits k; /* runs through character codes */
24247 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24248 integer x; /* hash value used in check sum computation */
24249 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24250 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24251 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24252 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24253 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24258 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24259 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24260 for (k=mp->bc;k<=mp->ec;k++) {
24261 if ( mp->char_exists[k] ) {
24262 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24263 B1=(B1+B1+x) % 255;
24264 B2=(B2+B2+x) % 253;
24265 B3=(B3+B3+x) % 251;
24266 B4=(B4+B4+x) % 247;
24270 @ Finally we're ready to actually write the \.{TFM} information.
24271 Here are some utility routines for this purpose.
24273 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24274 unsigned char s=(A);
24275 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24278 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24279 tfm_out(x / 256); tfm_out(x % 256);
24281 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24282 if ( x>=0 ) tfm_out(x / three_bytes);
24284 x=x+010000000000; /* use two's complement for negative values */
24286 tfm_out((x / three_bytes) + 128);
24288 x=x % three_bytes; tfm_out(x / unity);
24289 x=x % unity; tfm_out(x / 0400);
24292 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24293 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24294 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24297 @ @<Finish the \.{TFM} file@>=
24298 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24299 mp_pack_job_name(mp, ".tfm");
24300 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24301 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24302 mp->metric_file_name=xstrdup(mp->name_of_file);
24303 @<Output the subfile sizes and header bytes@>;
24304 @<Output the character information bytes, then
24305 output the dimensions themselves@>;
24306 @<Output the ligature/kern program@>;
24307 @<Output the extensible character recipes and the font metric parameters@>;
24308 if ( mp->internal[mp_tracing_stats]>0 )
24309 @<Log the subfile sizes of the \.{TFM} file@>;
24310 mp_print_nl(mp, "Font metrics written on ");
24311 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24312 @.Font metrics written...@>
24313 (mp->close_file)(mp->tfm_file)
24315 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24318 @<Output the subfile sizes and header bytes@>=
24320 LH=(k+3) / 4; /* this is the number of header words */
24321 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24322 @<Compute the ligature/kern program offset and implant the
24323 left boundary label@>;
24324 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24325 +lk_offset+mp->nk+mp->ne+mp->np);
24326 /* this is the total number of file words that will be output */
24327 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24328 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24329 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24330 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24331 mp_tfm_two(mp, mp->np);
24332 for (k=0;k< 4*LH;k++) {
24333 tfm_out(mp->header_byte[k]);
24336 @ @<Output the character information bytes...@>=
24337 for (k=mp->bc;k<=mp->ec;k++) {
24338 if ( ! mp->char_exists[k] ) {
24339 mp_tfm_four(mp, 0);
24341 tfm_out(info(mp->tfm_width[k])); /* the width index */
24342 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24343 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24344 tfm_out(mp->char_remainder[k]);
24348 for (k=1;k<=4;k++) {
24349 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24350 while ( p!=inf_val ) {
24351 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24356 @ We need to output special instructions at the beginning of the
24357 |lig_kern| array in order to specify the right boundary character
24358 and/or to handle starting addresses that exceed 255. The |label_loc|
24359 and |label_char| arrays have been set up to record all the
24360 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24361 \le|label_loc|[|label_ptr]|$.
24363 @<Compute the ligature/kern program offset...@>=
24364 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24365 if ((mp->bchar<0)||(mp->bchar>255))
24366 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24367 else { mp->lk_started=true; lk_offset=1; };
24368 @<Find the minimum |lk_offset| and adjust all remainders@>;
24369 if ( mp->bch_label<undefined_label )
24370 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24371 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24372 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24373 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24376 @ @<Find the minimum |lk_offset|...@>=
24377 k=mp->label_ptr; /* pointer to the largest unallocated label */
24378 if ( mp->label_loc[k]+lk_offset>255 ) {
24379 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24381 mp->char_remainder[mp->label_char[k]]=lk_offset;
24382 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24383 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24385 incr(lk_offset); decr(k);
24386 } while (! (lk_offset+mp->label_loc[k]<256));
24387 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24389 if ( lk_offset>0 ) {
24391 mp->char_remainder[mp->label_char[k]]
24392 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24397 @ @<Output the ligature/kern program@>=
24398 for (k=0;k<= 255;k++ ) {
24399 if ( mp->skip_table[k]<undefined_label ) {
24400 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24401 @.local label l:: was missing@>
24402 cancel_skips(mp->skip_table[k]);
24405 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24406 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24408 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24409 mp->ll=mp->label_loc[mp->label_ptr];
24410 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24411 else { tfm_out(255); tfm_out(mp->bchar); };
24412 mp_tfm_two(mp, mp->ll+lk_offset);
24414 decr(mp->label_ptr);
24415 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24418 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24419 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24421 @ @<Output the extensible character recipes...@>=
24422 for (k=0;k<=mp->ne-1;k++)
24423 mp_tfm_qqqq(mp, mp->exten[k]);
24424 for (k=1;k<=mp->np;k++) {
24426 if ( abs(mp->param[1])<fraction_half ) {
24427 mp_tfm_four(mp, mp->param[1]*16);
24429 incr(mp->tfm_changed);
24430 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24431 else mp_tfm_four(mp, -el_gordo);
24434 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24437 if ( mp->tfm_changed>0 ) {
24438 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24439 @.a font metric dimension...@>
24441 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24442 @.font metric dimensions...@>
24443 mp_print(mp, " font metric dimensions");
24445 mp_print(mp, " had to be decreased)");
24448 @ @<Log the subfile sizes of the \.{TFM} file@>=
24452 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24453 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24454 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24458 @* \[43] Reading font metric data.
24460 \MP\ isn't a typesetting program but it does need to find the bounding box
24461 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24462 well as write them.
24467 @ All the width, height, and depth information is stored in an array called
24468 |font_info|. This array is allocated sequentially and each font is stored
24469 as a series of |char_info| words followed by the width, height, and depth
24470 tables. Since |font_name| entries are permanent, their |str_ref| values are
24471 set to |max_str_ref|.
24474 typedef unsigned int font_number; /* |0..font_max| */
24476 @ The |font_info| array is indexed via a group directory arrays.
24477 For example, the |char_info| data for character~|c| in font~|f| will be
24478 in |font_info[char_base[f]+c].qqqq|.
24481 font_number font_max; /* maximum font number for included text fonts */
24482 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24483 memory_word *font_info; /* height, width, and depth data */
24484 char **font_enc_name; /* encoding names, if any */
24485 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24486 int next_fmem; /* next unused entry in |font_info| */
24487 font_number last_fnum; /* last font number used so far */
24488 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24489 char **font_name; /* name as specified in the \&{infont} command */
24490 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24491 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24492 eight_bits *font_bc;
24493 eight_bits *font_ec; /* first and last character code */
24494 int *char_base; /* base address for |char_info| */
24495 int *width_base; /* index for zeroth character width */
24496 int *height_base; /* index for zeroth character height */
24497 int *depth_base; /* index for zeroth character depth */
24498 pointer *font_sizes;
24500 @ @<Allocate or initialize ...@>=
24501 mp->font_mem_size = 10000;
24502 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24503 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24504 mp->font_enc_name = NULL;
24505 mp->font_ps_name_fixed = NULL;
24506 mp->font_dsize = NULL;
24507 mp->font_name = NULL;
24508 mp->font_ps_name = NULL;
24509 mp->font_bc = NULL;
24510 mp->font_ec = NULL;
24511 mp->last_fnum = null_font;
24512 mp->char_base = NULL;
24513 mp->width_base = NULL;
24514 mp->height_base = NULL;
24515 mp->depth_base = NULL;
24516 mp->font_sizes = null;
24518 @ @<Dealloc variables@>=
24519 xfree(mp->font_info);
24520 xfree(mp->font_enc_name);
24521 xfree(mp->font_ps_name_fixed);
24522 xfree(mp->font_dsize);
24523 xfree(mp->font_name);
24524 xfree(mp->font_ps_name);
24525 xfree(mp->font_bc);
24526 xfree(mp->font_ec);
24527 xfree(mp->char_base);
24528 xfree(mp->width_base);
24529 xfree(mp->height_base);
24530 xfree(mp->depth_base);
24531 xfree(mp->font_sizes);
24535 void mp_reallocate_fonts (MP mp, font_number l) {
24537 XREALLOC(mp->font_enc_name, l, char *);
24538 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24539 XREALLOC(mp->font_dsize, l, scaled);
24540 XREALLOC(mp->font_name, l, char *);
24541 XREALLOC(mp->font_ps_name, l, char *);
24542 XREALLOC(mp->font_bc, l, eight_bits);
24543 XREALLOC(mp->font_ec, l, eight_bits);
24544 XREALLOC(mp->char_base, l, int);
24545 XREALLOC(mp->width_base, l, int);
24546 XREALLOC(mp->height_base, l, int);
24547 XREALLOC(mp->depth_base, l, int);
24548 XREALLOC(mp->font_sizes, l, pointer);
24549 for (f=(mp->last_fnum+1);f<=l;f++) {
24550 mp->font_enc_name[f]=NULL;
24551 mp->font_ps_name_fixed[f] = false;
24552 mp->font_name[f]=NULL;
24553 mp->font_ps_name[f]=NULL;
24554 mp->font_sizes[f]=null;
24559 @ @<Declare |mp_reallocate| functions@>=
24560 void mp_reallocate_fonts (MP mp, font_number l);
24563 @ A |null_font| containing no characters is useful for error recovery. Its
24564 |font_name| entry starts out empty but is reset each time an erroneous font is
24565 found. This helps to cut down on the number of duplicate error messages without
24566 wasting a lot of space.
24568 @d null_font 0 /* the |font_number| for an empty font */
24570 @<Set initial...@>=
24571 mp->font_dsize[null_font]=0;
24572 mp->font_bc[null_font]=1;
24573 mp->font_ec[null_font]=0;
24574 mp->char_base[null_font]=0;
24575 mp->width_base[null_font]=0;
24576 mp->height_base[null_font]=0;
24577 mp->depth_base[null_font]=0;
24579 mp->last_fnum=null_font;
24580 mp->last_ps_fnum=null_font;
24581 mp->font_name[null_font]="nullfont";
24582 mp->font_ps_name[null_font]="";
24584 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24585 the |width index|; the |b1| field contains the height
24586 index; the |b2| fields contains the depth index, and the |b3| field used only
24587 for temporary storage. (It is used to keep track of which characters occur in
24588 an edge structure that is being shipped out.)
24589 The corresponding words in the width, height, and depth tables are stored as
24590 |scaled| values in units of \ps\ points.
24592 With the macros below, the |char_info| word for character~|c| in font~|f| is
24593 |char_info(f)(c)| and the width is
24594 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24596 @d char_info_end(A) (A)].qqqq
24597 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24598 @d char_width_end(A) (A).b0].sc
24599 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24600 @d char_height_end(A) (A).b1].sc
24601 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24602 @d char_depth_end(A) (A).b2].sc
24603 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24604 @d ichar_exists(A) ((A).b0>0)
24606 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24607 A preliminary name is obtained here from the \.{TFM} name as given in the
24608 |fname| argument. This gets updated later from an external table if necessary.
24610 @<Declare text measuring subroutines@>=
24611 @<Declare subroutines for parsing file names@>;
24612 font_number mp_read_font_info (MP mp, char*fname) {
24613 boolean file_opened; /* has |tfm_infile| been opened? */
24614 font_number n; /* the number to return */
24615 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24616 size_t whd_size; /* words needed for heights, widths, and depths */
24617 int i,ii; /* |font_info| indices */
24618 int jj; /* counts bytes to be ignored */
24619 scaled z; /* used to compute the design size */
24621 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24622 eight_bits h_and_d; /* height and depth indices being unpacked */
24623 unsigned char tfbyte; /* a byte read from the file */
24625 @<Open |tfm_infile| for input@>;
24626 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24627 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24629 @<Complain that the \.{TFM} file is bad@>;
24631 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24632 if ( n!=null_font ) {
24633 mp->font_ps_name[n]=fname;
24634 mp->font_name[n]=fname;
24639 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24640 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24641 @.TFtoPL@> @.PLtoTF@>
24642 and \.{PLtoTF} can be used to debug \.{TFM} files.
24644 @<Complain that the \.{TFM} file is bad@>=
24645 print_err("Font ");
24646 mp_print(mp, fname);
24647 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24648 else mp_print(mp, " not usable: TFM file not found");
24649 help3("I wasn't able to read the size data for this font so this")
24650 ("`infont' operation won't produce anything. If the font name")
24651 ("is right, you might ask an expert to make a TFM file");
24653 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24656 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24657 @<Read the \.{TFM} size fields@>;
24658 @<Use the size fields to allocate space in |font_info|@>;
24659 @<Read the \.{TFM} header@>;
24660 @<Read the character data and the width, height, and depth tables and
24663 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24664 might try to read past the end of the file if this happens. Changes will be
24665 needed if it causes a system error to refer to |tfm_infile^| or call
24666 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24667 @^system dependencies@>
24668 of |tfget| could be changed to
24669 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24673 void *tfbyte_ptr = &tfbyte;
24674 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24675 if (wanted==0) goto BAD_TFM;
24677 @d read_two(A) { (A)=tfbyte;
24678 if ( (A)>127 ) goto BAD_TFM;
24679 tfget; (A)=(A)*0400+tfbyte;
24681 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24683 @<Read the \.{TFM} size fields@>=
24684 tfget; read_two(lf);
24685 tfget; read_two(tfm_lh);
24686 tfget; read_two(bc);
24687 tfget; read_two(ec);
24688 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24689 tfget; read_two(nw);
24690 tfget; read_two(nh);
24691 tfget; read_two(nd);
24692 whd_size=(ec+1-bc)+nw+nh+nd;
24693 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24696 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24697 necessary to apply the |so| and |qo| macros when looking up the width of a
24698 character in the string pool. In order to ensure nonnegative |char_base|
24699 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24702 @<Use the size fields to allocate space in |font_info|@>=
24703 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24704 if (mp->last_fnum==mp->font_max)
24705 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24706 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24707 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24708 memory_word *font_info;
24709 font_info = xmalloc ((l+1),sizeof(memory_word));
24710 memset (font_info,0,sizeof(memory_word)*(l+1));
24711 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24712 xfree(mp->font_info);
24713 mp->font_info = font_info;
24714 mp->font_mem_size = l;
24716 incr(mp->last_fnum);
24720 mp->char_base[n]=mp->next_fmem-bc;
24721 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24722 mp->height_base[n]=mp->width_base[n]+nw;
24723 mp->depth_base[n]=mp->height_base[n]+nh;
24724 mp->next_fmem=mp->next_fmem+whd_size;
24727 @ @<Read the \.{TFM} header@>=
24728 if ( tfm_lh<2 ) goto BAD_TFM;
24730 tfget; read_two(z);
24731 tfget; z=z*0400+tfbyte;
24732 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24733 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24734 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24735 tf_ignore(4*(tfm_lh-2))
24737 @ @<Read the character data and the width, height, and depth tables...@>=
24738 ii=mp->width_base[n];
24739 i=mp->char_base[n]+bc;
24741 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24742 tfget; h_and_d=tfbyte;
24743 mp->font_info[i].qqqq.b1=h_and_d / 16;
24744 mp->font_info[i].qqqq.b2=h_and_d % 16;
24748 while ( i<mp->next_fmem ) {
24749 @<Read a four byte dimension, scale it by the design size, store it in
24750 |font_info[i]|, and increment |i|@>;
24754 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24755 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24756 we can multiply it by sixteen and think of it as a |fraction| that has been
24757 divided by sixteen. This cancels the extra scale factor contained in
24760 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24763 if ( d>=0200 ) d=d-0400;
24764 tfget; d=d*0400+tfbyte;
24765 tfget; d=d*0400+tfbyte;
24766 tfget; d=d*0400+tfbyte;
24767 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24771 @ This function does no longer use the file name parser, because |fname| is
24772 a C string already.
24773 @<Open |tfm_infile| for input@>=
24775 mp_ptr_scan_file(mp, fname);
24776 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24777 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24779 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24780 if ( !mp->tfm_infile ) goto BAD_TFM;
24783 @ When we have a font name and we don't know whether it has been loaded yet,
24784 we scan the |font_name| array before calling |read_font_info|.
24786 @<Declare text measuring subroutines@>=
24787 font_number mp_find_font (MP mp, char *f) {
24789 for (n=0;n<=mp->last_fnum;n++) {
24790 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24793 return mp_read_font_info(mp, f);
24796 @ One simple application of |find_font| is the implementation of the |font_size|
24797 operator that gets the design size for a given font name.
24799 @<Find the design size of the font whose name is |cur_exp|@>=
24800 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24802 @ If we discover that the font doesn't have a requested character, we omit it
24803 from the bounding box computation and expect the \ps\ interpreter to drop it.
24804 This routine issues a warning message if the user has asked for it.
24806 @<Declare text measuring subroutines@>=
24807 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24808 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24809 mp_begin_diagnostic(mp);
24810 if ( mp->selector==log_only ) incr(mp->selector);
24811 mp_print_nl(mp, "Missing character: There is no ");
24812 @.Missing character@>
24813 mp_print_str(mp, mp->str_pool[k]);
24814 mp_print(mp, " in font ");
24815 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24816 mp_end_diagnostic(mp, false);
24820 @ The whole purpose of saving the height, width, and depth information is to be
24821 able to find the bounding box of an item of text in an edge structure. The
24822 |set_text_box| procedure takes a text node and adds this information.
24824 @<Declare text measuring subroutines@>=
24825 void mp_set_text_box (MP mp,pointer p) {
24826 font_number f; /* |font_n(p)| */
24827 ASCII_code bc,ec; /* range of valid characters for font |f| */
24828 pool_pointer k,kk; /* current character and character to stop at */
24829 four_quarters cc; /* the |char_info| for the current character */
24830 scaled h,d; /* dimensions of the current character */
24832 height_val(p)=-el_gordo;
24833 depth_val(p)=-el_gordo;
24837 kk=str_stop(text_p(p));
24838 k=mp->str_start[text_p(p)];
24840 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24842 @<Set the height and depth to zero if the bounding box is empty@>;
24845 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24847 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24848 mp_lost_warning(mp, f,k);
24850 cc=char_info(f)(mp->str_pool[k]);
24851 if ( ! ichar_exists(cc) ) {
24852 mp_lost_warning(mp, f,k);
24854 width_val(p)=width_val(p)+char_width(f)(cc);
24855 h=char_height(f)(cc);
24856 d=char_depth(f)(cc);
24857 if ( h>height_val(p) ) height_val(p)=h;
24858 if ( d>depth_val(p) ) depth_val(p)=d;
24864 @ Let's hope modern compilers do comparisons correctly when the difference would
24867 @<Set the height and depth to zero if the bounding box is empty@>=
24868 if ( height_val(p)<-depth_val(p) ) {
24873 @ The new primitives fontmapfile and fontmapline.
24875 @<Declare action procedures for use by |do_statement|@>=
24876 void mp_do_mapfile (MP mp) ;
24877 void mp_do_mapline (MP mp) ;
24879 @ @c void mp_do_mapfile (MP mp) {
24880 mp_get_x_next(mp); mp_scan_expression(mp);
24881 if ( mp->cur_type!=mp_string_type ) {
24882 @<Complain about improper map operation@>;
24884 mp_map_file(mp,mp->cur_exp);
24887 void mp_do_mapline (MP mp) {
24888 mp_get_x_next(mp); mp_scan_expression(mp);
24889 if ( mp->cur_type!=mp_string_type ) {
24890 @<Complain about improper map operation@>;
24892 mp_map_line(mp,mp->cur_exp);
24896 @ @<Complain about improper map operation@>=
24898 exp_err("Unsuitable expression");
24899 help1("Only known strings can be map files or map lines.");
24900 mp_put_get_error(mp);
24903 @ To print |scaled| value to PDF output we need some subroutines to ensure
24906 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24909 scaled one_bp; /* scaled value corresponds to 1bp */
24910 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24911 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24912 integer ten_pow[10]; /* $10^0..10^9$ */
24913 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24916 mp->one_bp = 65782; /* 65781.76 */
24917 mp->one_hundred_bp = 6578176;
24918 mp->one_hundred_inch = 473628672;
24919 mp->ten_pow[0] = 1;
24920 for (i = 1;i<= 9; i++ ) {
24921 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24924 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24926 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24930 if ( s < 0 ) { sign = -sign; s = -s; }
24931 if ( m < 0 ) { sign = -sign; m = -m; }
24933 mp_confusion(mp, "arithmetic: divided by zero");
24934 else if ( m >= (max_integer / 10) )
24935 mp_confusion(mp, "arithmetic: number too big");
24938 for (i = 1;i<=dd;i++) {
24939 q = 10*q + (10*r) / m;
24942 if ( 2*r >= m ) { incr(q); r = r - m; }
24943 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24947 @* \[44] Shipping pictures out.
24948 The |ship_out| procedure, to be described below, is given a pointer to
24949 an edge structure. Its mission is to output a file containing the \ps\
24950 description of an edge structure.
24952 @ Each time an edge structure is shipped out we write a new \ps\ output
24953 file named according to the current \&{charcode}.
24954 @:char_code_}{\&{charcode} primitive@>
24956 This is the only backend function that remains in the main |mpost.w| file.
24957 There are just too many variable accesses needed for status reporting
24958 etcetera to make it worthwile to move the code to |psout.w|.
24960 @<Internal library declarations@>=
24961 void mp_open_output_file (MP mp) ;
24963 @ @c void mp_open_output_file (MP mp) {
24964 integer c; /* \&{charcode} rounded to the nearest integer */
24965 int old_setting; /* previous |selector| setting */
24966 pool_pointer i; /* indexes into |filename_template| */
24967 integer cc; /* a temporary integer for template building */
24968 integer f,g=0; /* field widths */
24969 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24970 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24971 if ( mp->filename_template==0 ) {
24972 char *s; /* a file extension derived from |c| */
24976 @<Use |c| to compute the file extension |s|@>;
24977 mp_pack_job_name(mp, s);
24979 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24980 mp_prompt_file_name(mp, "file name for output",s);
24981 } else { /* initializations */
24982 str_number s, n; /* a file extension derived from |c| */
24983 old_setting=mp->selector;
24984 mp->selector=new_string;
24986 i = mp->str_start[mp->filename_template];
24987 n = rts(""); /* initialize */
24988 while ( i<str_stop(mp->filename_template) ) {
24989 if ( mp->str_pool[i]=='%' ) {
24992 if ( i<str_stop(mp->filename_template) ) {
24993 if ( mp->str_pool[i]=='j' ) {
24994 mp_print(mp, mp->job_name);
24995 } else if ( mp->str_pool[i]=='d' ) {
24996 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24997 print_with_leading_zeroes(cc);
24998 } else if ( mp->str_pool[i]=='m' ) {
24999 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25000 print_with_leading_zeroes(cc);
25001 } else if ( mp->str_pool[i]=='y' ) {
25002 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25003 print_with_leading_zeroes(cc);
25004 } else if ( mp->str_pool[i]=='H' ) {
25005 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25006 print_with_leading_zeroes(cc);
25007 } else if ( mp->str_pool[i]=='M' ) {
25008 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25009 print_with_leading_zeroes(cc);
25010 } else if ( mp->str_pool[i]=='c' ) {
25011 if ( c<0 ) mp_print(mp, "ps");
25012 else print_with_leading_zeroes(c);
25013 } else if ( (mp->str_pool[i]>='0') &&
25014 (mp->str_pool[i]<='9') ) {
25016 f = (f*10) + mp->str_pool[i]-'0';
25019 mp_print_str(mp, mp->str_pool[i]);
25023 if ( mp->str_pool[i]=='.' )
25025 n = mp_make_string(mp);
25026 mp_print_str(mp, mp->str_pool[i]);
25030 s = mp_make_string(mp);
25031 mp->selector= old_setting;
25032 if (length(n)==0) {
25036 mp_pack_file_name(mp, str(n),"",str(s));
25037 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25038 mp_prompt_file_name(mp, "file name for output",str(s));
25042 @<Store the true output file name if appropriate@>;
25043 @<Begin the progress report for the output of picture~|c|@>;
25046 @ The file extension created here could be up to five characters long in
25047 extreme cases so it may have to be shortened on some systems.
25048 @^system dependencies@>
25050 @<Use |c| to compute the file extension |s|@>=
25053 snprintf(s,7,".%i",(int)c);
25056 @ The user won't want to see all the output file names so we only save the
25057 first and last ones and a count of how many there were. For this purpose
25058 files are ordered primarily by \&{charcode} and secondarily by order of
25060 @:char_code_}{\&{charcode} primitive@>
25062 @<Store the true output file name if appropriate@>=
25063 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25064 mp->first_output_code=c;
25065 xfree(mp->first_file_name);
25066 mp->first_file_name=xstrdup(mp->name_of_file);
25068 if ( c>=mp->last_output_code ) {
25069 mp->last_output_code=c;
25070 xfree(mp->last_file_name);
25071 mp->last_file_name=xstrdup(mp->name_of_file);
25075 char * first_file_name;
25076 char * last_file_name; /* full file names */
25077 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25078 @:char_code_}{\&{charcode} primitive@>
25079 integer total_shipped; /* total number of |ship_out| operations completed */
25082 mp->first_file_name=xstrdup("");
25083 mp->last_file_name=xstrdup("");
25084 mp->first_output_code=32768;
25085 mp->last_output_code=-32768;
25086 mp->total_shipped=0;
25088 @ @<Dealloc variables@>=
25089 xfree(mp->first_file_name);
25090 xfree(mp->last_file_name);
25092 @ @<Begin the progress report for the output of picture~|c|@>=
25093 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25094 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25095 mp_print_char(mp, '[');
25096 if ( c>=0 ) mp_print_int(mp, c)
25098 @ @<End progress report@>=
25099 mp_print_char(mp, ']');
25101 incr(mp->total_shipped)
25103 @ @<Explain what output files were written@>=
25104 if ( mp->total_shipped>0 ) {
25105 mp_print_nl(mp, "");
25106 mp_print_int(mp, mp->total_shipped);
25107 mp_print(mp, " output file");
25108 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25109 mp_print(mp, " written: ");
25110 mp_print(mp, mp->first_file_name);
25111 if ( mp->total_shipped>1 ) {
25112 if ( 31+strlen(mp->first_file_name)+
25113 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25115 mp_print(mp, " .. ");
25116 mp_print(mp, mp->last_file_name);
25120 @ @<Internal library declarations@>=
25121 boolean mp_has_font_size(MP mp, font_number f );
25124 boolean mp_has_font_size(MP mp, font_number f ) {
25125 return (mp->font_sizes[f]!=null);
25128 @ The \&{special} command saves up lines of text to be printed during the next
25129 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25132 pointer last_pending; /* the last token in a list of pending specials */
25135 mp->last_pending=spec_head;
25137 @ @<Cases of |do_statement|...@>=
25138 case special_command:
25139 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25140 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25144 @ @<Declare action procedures for use by |do_statement|@>=
25145 void mp_do_special (MP mp) ;
25147 @ @c void mp_do_special (MP mp) {
25148 mp_get_x_next(mp); mp_scan_expression(mp);
25149 if ( mp->cur_type!=mp_string_type ) {
25150 @<Complain about improper special operation@>;
25152 link(mp->last_pending)=mp_stash_cur_exp(mp);
25153 mp->last_pending=link(mp->last_pending);
25154 link(mp->last_pending)=null;
25158 @ @<Complain about improper special operation@>=
25160 exp_err("Unsuitable expression");
25161 help1("Only known strings are allowed for output as specials.");
25162 mp_put_get_error(mp);
25165 @ On the export side, we need an extra object type for special strings.
25167 @<Graphical object codes@>=
25170 @ @<Export pending specials@>=
25172 while ( p!=null ) {
25173 hq = mp_new_graphic_object(mp,mp_special_code);
25174 gr_pre_script(hq) = str(value(p));
25175 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25179 mp_flush_token_list(mp, link(spec_head));
25180 link(spec_head)=null;
25181 mp->last_pending=spec_head
25183 @ We are now ready for the main output procedure. Note that the |selector|
25184 setting is saved in a global variable so that |begin_diagnostic| can access it.
25186 @<Declare the \ps\ output procedures@>=
25187 void mp_ship_out (MP mp, pointer h) ;
25189 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25192 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25193 pointer p; /* the current graphical object */
25194 integer t; /* a temporary value */
25195 struct mp_edge_object *hh; /* the first graphical object */
25196 struct mp_graphic_object *hp; /* the current graphical object */
25197 struct mp_graphic_object *hq; /* something |hp| points to */
25198 mp_set_bbox(mp, h, true);
25199 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25201 hh->_minx = minx_val(h);
25202 hh->_miny = miny_val(h);
25203 hh->_maxx = maxx_val(h);
25204 hh->_maxy = maxy_val(h);
25205 @<Export pending specials@>;
25206 p=link(dummy_loc(h));
25207 while ( p!=null ) {
25208 hq = mp_new_graphic_object(mp,type(p));
25211 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25212 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25213 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25216 pc = mp_copy_path(mp, path_p(p));
25217 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25218 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25219 mp_toss_knot_list(mp, pp);
25220 pc = mp_htap_ypoc(mp, path_p(p));
25221 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25222 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25223 mp_toss_knot_list(mp, pp);
25225 @<Export object color@>;
25226 @<Export object scripts@>;
25227 gr_ljoin_val(hq) = ljoin_val(p);
25228 gr_miterlim_val(hq) = miterlim_val(p);
25230 case mp_stroked_code:
25231 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25232 if (pen_is_elliptical(pen_p(p))) {
25233 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25236 pc=mp_copy_path(mp, path_p(p));
25238 if ( left_type(pc)!=mp_endpoint ) {
25239 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25240 right_type(pc)=mp_endpoint;
25244 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25245 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25246 mp_toss_knot_list(mp, pc);
25248 @<Export object color@>;
25249 @<Export object scripts@>;
25250 gr_ljoin_val(hq) = ljoin_val(p);
25251 gr_miterlim_val(hq) = miterlim_val(p);
25252 gr_lcap_val(hq) = lcap_val(p);
25253 gr_dash_scale(hq) = dash_scale(p);
25254 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25257 gr_text_p(hq) = str(text_p(p));
25258 gr_font_n(hq) = font_n(p);
25259 @<Export object color@>;
25260 @<Export object scripts@>;
25261 gr_width_val(hq) = width_val(p);
25262 gr_height_val(hq) = height_val(p);
25263 gr_depth_val(hq) = depth_val(p);
25264 gr_tx_val(hq) = tx_val(p);
25265 gr_ty_val(hq) = ty_val(p);
25266 gr_txx_val(hq) = txx_val(p);
25267 gr_txy_val(hq) = txy_val(p);
25268 gr_tyx_val(hq) = tyx_val(p);
25269 gr_tyy_val(hq) = tyy_val(p);
25271 case mp_start_clip_code:
25272 case mp_start_bounds_code:
25273 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25275 case mp_stop_clip_code:
25276 case mp_stop_bounds_code:
25277 /* nothing to do here */
25280 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25287 @ This function is now nearly trivial.
25290 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25291 struct mp_edge_object *hh; /* the first graphical object */
25292 hh = mp_gr_export(mp,h);
25293 mp_gr_ship_out (mp, hh);
25295 @<End progress report@>;
25296 if ( mp->internal[mp_tracing_output]>0 )
25297 mp_print_edges(mp, h," (just shipped out)",true);
25301 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25303 @<Export object color@>=
25304 gr_color_model(hq) = color_model(p);
25305 gr_cyan_val(hq) = cyan_val(p);
25306 gr_magenta_val(hq) = magenta_val(p);
25307 gr_yellow_val(hq) = yellow_val(p);
25308 gr_black_val(hq) = black_val(p);
25309 gr_red_val(hq) = red_val(p);
25310 gr_green_val(hq) = green_val(p);
25311 gr_blue_val(hq) = blue_val(p);
25312 gr_grey_val(hq) = grey_val(p)
25315 @ @<Export object scripts@>=
25316 if (pre_script(p)!=null)
25317 gr_pre_script(hq) = str(pre_script(p));
25318 if (post_script(p)!=null)
25319 gr_post_script(hq) = str(post_script(p));
25321 @ Now that we've finished |ship_out|, let's look at the other commands
25322 by which a user can send things to the \.{GF} file.
25324 @ @<Determine if a character has been shipped out@>=
25326 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25327 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25328 boolean_reset(mp->char_exists[mp->cur_exp]);
25329 mp->cur_type=mp_boolean_type;
25335 @ @<Allocate or initialize ...@>=
25336 mp_backend_initialize(mp);
25339 mp_backend_free(mp);
25342 @* \[45] Dumping and undumping the tables.
25343 After \.{INIMP} has seen a collection of macros, it
25344 can write all the necessary information on an auxiliary file so
25345 that production versions of \MP\ are able to initialize their
25346 memory at high speed. The present section of the program takes
25347 care of such output and input. We shall consider simultaneously
25348 the processes of storing and restoring,
25349 so that the inverse relation between them is clear.
25352 The global variable |mem_ident| is a string that is printed right
25353 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25354 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25355 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25356 month, and day that the mem file was created. We have |mem_ident=0|
25357 before \MP's tables are loaded.
25363 mp->mem_ident=NULL;
25365 @ @<Initialize table entries...@>=
25366 mp->mem_ident=xstrdup(" (INIMP)");
25368 @ @<Declare act...@>=
25369 void mp_store_mem_file (MP mp) ;
25371 @ @c void mp_store_mem_file (MP mp) {
25372 integer k; /* all-purpose index */
25373 pointer p,q; /* all-purpose pointers */
25374 integer x; /* something to dump */
25375 four_quarters w; /* four ASCII codes */
25377 @<Create the |mem_ident|, open the mem file,
25378 and inform the user that dumping has begun@>;
25379 @<Dump constants for consistency check@>;
25380 @<Dump the string pool@>;
25381 @<Dump the dynamic memory@>;
25382 @<Dump the table of equivalents and the hash table@>;
25383 @<Dump a few more things and the closing check word@>;
25384 @<Close the mem file@>;
25387 @ Corresponding to the procedure that dumps a mem file, we also have a function
25388 that reads~one~in. The function returns |false| if the dumped mem is
25389 incompatible with the present \MP\ table sizes, etc.
25391 @d off_base 6666 /* go here if the mem file is unacceptable */
25392 @d too_small(A) { wake_up_terminal;
25393 wterm_ln("---! Must increase the "); wterm((A));
25394 @.Must increase the x@>
25399 boolean mp_load_mem_file (MP mp) {
25400 integer k; /* all-purpose index */
25401 pointer p,q; /* all-purpose pointers */
25402 integer x; /* something undumped */
25403 str_number s; /* some temporary string */
25404 four_quarters w; /* four ASCII codes */
25406 @<Undump constants for consistency check@>;
25407 @<Undump the string pool@>;
25408 @<Undump the dynamic memory@>;
25409 @<Undump the table of equivalents and the hash table@>;
25410 @<Undump a few more things and the closing check word@>;
25411 return true; /* it worked! */
25414 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25415 @.Fatal mem file error@>
25419 @ @<Declarations@>=
25420 boolean mp_load_mem_file (MP mp) ;
25422 @ Mem files consist of |memory_word| items, and we use the following
25423 macros to dump words of different types:
25425 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25426 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25427 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25428 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25429 @d dump_string(A) { dump_int(strlen(A)+1);
25430 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25433 void * mem_file; /* for input or output of mem information */
25435 @ The inverse macros are slightly more complicated, since we need to check
25436 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25437 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25440 size_t wanted = sizeof(A);
25442 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25443 if (wanted!=sizeof(A)) goto OFF_BASE;
25447 size_t wanted = sizeof(A);
25449 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25450 if (wanted!=sizeof(A)) goto OFF_BASE;
25453 @d undump_wd(A) { mgetw(WW); A=WW; }
25454 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25455 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25456 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25457 @d undump_strings(A,B,C) {
25458 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25459 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25460 @d undump_size(A,B,C,D) { undump_int(x);
25461 if (x<(A)) goto OFF_BASE;
25462 if (x>(B)) { too_small((C)); } else { D=x;} }
25463 @d undump_string(A) do {
25468 A = xmalloc(XX,sizeof(char));
25469 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25470 if (wanted!=(size_t)XX) goto OFF_BASE;
25473 @ The next few sections of the program should make it clear how we use the
25474 dump/undump macros.
25476 @<Dump constants for consistency check@>=
25477 dump_int(mp->mem_top);
25478 dump_int(mp->hash_size);
25479 dump_int(mp->hash_prime)
25480 dump_int(mp->param_size);
25481 dump_int(mp->max_in_open);
25483 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25484 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25485 the same strings. (And it is, of course, a good thing that they do.)
25489 @<Undump constants for consistency check@>=
25490 undump_int(x); mp->mem_top = x;
25491 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25492 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25493 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25494 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25496 @ We do string pool compaction to avoid dumping unused strings.
25499 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25500 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25503 @<Dump the string pool@>=
25504 mp_do_compaction(mp, mp->pool_size);
25505 dump_int(mp->pool_ptr);
25506 dump_int(mp->max_str_ptr);
25507 dump_int(mp->str_ptr);
25509 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25512 while ( k<=mp->max_str_ptr ) {
25513 dump_int(mp->next_str[k]); incr(k);
25517 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25518 if ( k==mp->str_ptr ) {
25525 while (k+4<mp->pool_ptr ) {
25526 dump_four_ASCII; k=k+4;
25528 k=mp->pool_ptr-4; dump_four_ASCII;
25529 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25530 mp_print(mp, " strings of total length ");
25531 mp_print_int(mp, mp->pool_ptr)
25533 @ @d undump_four_ASCII
25535 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25536 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25538 @<Undump the string pool@>=
25539 undump_int(mp->pool_ptr);
25540 mp_reallocate_pool(mp, mp->pool_ptr) ;
25541 undump_int(mp->max_str_ptr);
25542 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25543 undump(0,mp->max_str_ptr,mp->str_ptr);
25544 undump(0,mp->max_str_ptr+1,s);
25545 for (k=0;k<=s-1;k++)
25546 mp->next_str[k]=k+1;
25547 for (k=s;k<=mp->max_str_ptr;k++)
25548 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25549 mp->fixed_str_use=0;
25552 undump(0,mp->pool_ptr,mp->str_start[k]);
25553 if ( k==mp->str_ptr ) break;
25554 mp->str_ref[k]=max_str_ref;
25555 incr(mp->fixed_str_use);
25556 mp->last_fixed_str=k; k=mp->next_str[k];
25559 while ( k+4<mp->pool_ptr ) {
25560 undump_four_ASCII; k=k+4;
25562 k=mp->pool_ptr-4; undump_four_ASCII;
25563 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25564 mp->max_pool_ptr=mp->pool_ptr;
25565 mp->strs_used_up=mp->fixed_str_use;
25566 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25567 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25568 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25570 @ By sorting the list of available spaces in the variable-size portion of
25571 |mem|, we are usually able to get by without having to dump very much
25572 of the dynamic memory.
25574 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25575 information even when it has not been gathering statistics.
25577 @<Dump the dynamic memory@>=
25578 mp_sort_avail(mp); mp->var_used=0;
25579 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25580 p=0; q=mp->rover; x=0;
25582 for (k=p;k<= q+1;k++)
25583 dump_wd(mp->mem[k]);
25584 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25585 p=q+node_size(q); q=rlink(q);
25586 } while (q!=mp->rover);
25587 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25588 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25589 for (k=p;k<= mp->lo_mem_max;k++ )
25590 dump_wd(mp->mem[k]);
25591 x=x+mp->lo_mem_max+1-p;
25592 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25593 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25594 dump_wd(mp->mem[k]);
25595 x=x+mp->mem_end+1-mp->hi_mem_min;
25597 while ( p!=null ) {
25598 decr(mp->dyn_used); p=link(p);
25600 dump_int(mp->var_used); dump_int(mp->dyn_used);
25601 mp_print_ln(mp); mp_print_int(mp, x);
25602 mp_print(mp, " memory locations dumped; current usage is ");
25603 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25605 @ @<Undump the dynamic memory@>=
25606 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25607 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25610 for (k=p;k<= q+1; k++)
25611 undump_wd(mp->mem[k]);
25613 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25616 } while (q!=mp->rover);
25617 for (k=p;k<=mp->lo_mem_max;k++ )
25618 undump_wd(mp->mem[k]);
25619 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25620 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25621 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25622 undump_wd(mp->mem[k]);
25623 undump_int(mp->var_used); undump_int(mp->dyn_used)
25625 @ A different scheme is used to compress the hash table, since its lower region
25626 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25627 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25628 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25630 @<Dump the table of equivalents and the hash table@>=
25631 dump_int(mp->hash_used);
25632 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25633 for (p=1;p<=mp->hash_used;p++) {
25634 if ( text(p)!=0 ) {
25635 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25638 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25639 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25641 dump_int(mp->st_count);
25642 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25644 @ @<Undump the table of equivalents and the hash table@>=
25645 undump(1,frozen_inaccessible,mp->hash_used);
25648 undump(p+1,mp->hash_used,p);
25649 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25650 } while (p!=mp->hash_used);
25651 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25652 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25654 undump_int(mp->st_count)
25656 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25657 to prevent them appearing again.
25659 @<Dump a few more things and the closing check word@>=
25660 dump_int(mp->max_internal);
25661 dump_int(mp->int_ptr);
25662 for (k=1;k<= mp->int_ptr;k++ ) {
25663 dump_int(mp->internal[k]);
25664 dump_string(mp->int_name[k]);
25666 dump_int(mp->start_sym);
25667 dump_int(mp->interaction);
25668 dump_string(mp->mem_ident);
25669 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25670 mp->internal[mp_tracing_stats]=0
25672 @ @<Undump a few more things and the closing check word@>=
25674 if (x>mp->max_internal) mp_grow_internals(mp,x);
25675 undump_int(mp->int_ptr);
25676 for (k=1;k<= mp->int_ptr;k++) {
25677 undump_int(mp->internal[k]);
25678 undump_string(mp->int_name[k]);
25680 undump(0,frozen_inaccessible,mp->start_sym);
25681 if (mp->interaction==mp_unspecified_mode) {
25682 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25684 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25686 undump_string(mp->mem_ident);
25687 undump(1,hash_end,mp->bg_loc);
25688 undump(1,hash_end,mp->eg_loc);
25689 undump_int(mp->serial_no);
25691 if (x!=69073) goto OFF_BASE
25693 @ @<Create the |mem_ident|...@>=
25695 xfree(mp->mem_ident);
25696 mp->mem_ident = xmalloc(256,1);
25697 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25699 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25700 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25701 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25702 mp_pack_job_name(mp, mem_extension);
25703 while (! mp_w_open_out(mp, &mp->mem_file) )
25704 mp_prompt_file_name(mp, "mem file name", mem_extension);
25705 mp_print_nl(mp, "Beginning to dump on file ");
25706 @.Beginning to dump...@>
25707 mp_print(mp, mp->name_of_file);
25708 mp_print_nl(mp, mp->mem_ident);
25711 @ @<Dealloc variables@>=
25712 xfree(mp->mem_ident);
25714 @ @<Close the mem file@>=
25715 (mp->close_file)(mp->mem_file)
25717 @* \[46] The main program.
25718 This is it: the part of \MP\ that executes all those procedures we have
25721 Well---almost. We haven't put the parsing subroutines into the
25722 program yet; and we'd better leave space for a few more routines that may
25723 have been forgotten.
25725 @c @<Declare the basic parsing subroutines@>;
25726 @<Declare miscellaneous procedures that were declared |forward|@>;
25727 @<Last-minute procedures@>
25729 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25731 has to be run first; it initializes everything from scratch, without
25732 reading a mem file, and it has the capability of dumping a mem file.
25733 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25735 to input a mem file in order to get started. \.{VIRMP} typically has
25736 a bit more memory capacity than \.{INIMP}, because it does not need the
25737 space consumed by the dumping/undumping routines and the numerous calls on
25740 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25741 the best implementations therefore allow for production versions of \MP\ that
25742 not only avoid the loading routine for \PASCAL\ object code, they also have
25743 a mem file pre-loaded.
25746 boolean ini_version; /* are we iniMP? */
25748 @ @<Option variables@>=
25749 int ini_version; /* are we iniMP? */
25751 @ @<Set |ini_version|@>=
25752 mp->ini_version = (opt->ini_version ? true : false);
25754 @ Here we do whatever is needed to complete \MP's job gracefully on the
25755 local operating system. The code here might come into play after a fatal
25756 error; it must therefore consist entirely of ``safe'' operations that
25757 cannot produce error messages. For example, it would be a mistake to call
25758 |str_room| or |make_string| at this time, because a call on |overflow|
25759 might lead to an infinite loop.
25760 @^system dependencies@>
25762 This program doesn't bother to close the input files that may still be open.
25764 @<Last-minute...@>=
25765 void mp_close_files_and_terminate (MP mp) {
25766 integer k; /* all-purpose index */
25767 integer LH; /* the length of the \.{TFM} header, in words */
25768 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25769 pointer p; /* runs through a list of \.{TFM} dimensions */
25770 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25771 if ( mp->internal[mp_tracing_stats]>0 )
25772 @<Output statistics about this job@>;
25774 @<Do all the finishing work on the \.{TFM} file@>;
25775 @<Explain what output files were written@>;
25776 if ( mp->log_opened ){
25778 (mp->close_file)(mp->log_file);
25779 mp->selector=mp->selector-2;
25780 if ( mp->selector==term_only ) {
25781 mp_print_nl(mp, "Transcript written on ");
25782 @.Transcript written...@>
25783 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25789 @ @<Declarations@>=
25790 void mp_close_files_and_terminate (MP mp) ;
25792 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25793 if (mp->rd_fname!=NULL) {
25794 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25795 if ( mp->rd_fname[k]!=NULL ) {
25796 (mp->close_file)(mp->rd_file[k]);
25800 if (mp->wr_fname!=NULL) {
25801 for (k=0;k<=(int)mp->write_files-1;k++) {
25802 if ( mp->wr_fname[k]!=NULL ) {
25803 (mp->close_file)(mp->wr_file[k]);
25809 for (k=0;k<(int)mp->max_read_files;k++ ) {
25810 if ( mp->rd_fname[k]!=NULL ) {
25811 (mp->close_file)(mp->rd_file[k]);
25812 mp_xfree(mp->rd_fname[k]);
25815 mp_xfree(mp->rd_file);
25816 mp_xfree(mp->rd_fname);
25817 for (k=0;k<(int)mp->max_write_files;k++) {
25818 if ( mp->wr_fname[k]!=NULL ) {
25819 (mp->close_file)(mp->wr_file[k]);
25820 mp_xfree(mp->wr_fname[k]);
25823 mp_xfree(mp->wr_file);
25824 mp_xfree(mp->wr_fname);
25827 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25829 We reclaim all of the variable-size memory at this point, so that
25830 there is no chance of another memory overflow after the memory capacity
25831 has already been exceeded.
25833 @<Do all the finishing work on the \.{TFM} file@>=
25834 if ( mp->internal[mp_fontmaking]>0 ) {
25835 @<Make the dynamic memory into one big available node@>;
25836 @<Massage the \.{TFM} widths@>;
25837 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25838 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25839 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25840 @<Finish the \.{TFM} file@>;
25843 @ @<Make the dynamic memory into one big available node@>=
25844 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25845 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25846 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25847 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25848 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25850 @ The present section goes directly to the log file instead of using
25851 |print| commands, because there's no need for these strings to take
25852 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25854 @<Output statistics...@>=
25855 if ( mp->log_opened ) {
25858 wlog_ln("Here is how much of MetaPost's memory you used:");
25859 @.Here is how much...@>
25860 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25861 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25862 (int)(mp->max_strings-1-mp->init_str_use));
25864 snprintf(s,128," %i string characters out of %i",
25865 (int)mp->max_pl_used-mp->init_pool_ptr,
25866 (int)mp->pool_size-mp->init_pool_ptr);
25868 snprintf(s,128," %i words of memory out of %i",
25869 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25870 (int)mp->mem_end+1);
25872 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25874 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25875 (int)mp->max_in_stack,(int)mp->int_ptr,
25876 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25877 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25879 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25880 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25884 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25887 @<Last-minute...@>=
25888 void mp_final_cleanup (MP mp) {
25889 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25891 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25892 while ( mp->input_ptr>0 ) {
25893 if ( token_state ) mp_end_token_list(mp);
25894 else mp_end_file_reading(mp);
25896 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25897 while ( mp->open_parens>0 ) {
25898 mp_print(mp, " )"); decr(mp->open_parens);
25900 while ( mp->cond_ptr!=null ) {
25901 mp_print_nl(mp, "(end occurred when ");
25902 @.end occurred...@>
25903 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25904 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25905 if ( mp->if_line!=0 ) {
25906 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25908 mp_print(mp, " was incomplete)");
25909 mp->if_line=if_line_field(mp->cond_ptr);
25910 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25912 if ( mp->history!=mp_spotless )
25913 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25914 if ( mp->selector==term_and_log ) {
25915 mp->selector=term_only;
25916 mp_print_nl(mp, "(see the transcript file for additional information)");
25917 @.see the transcript file...@>
25918 mp->selector=term_and_log;
25921 if (mp->ini_version) {
25922 mp_store_mem_file(mp); return;
25924 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25925 @.dump...only by INIMP@>
25929 @ @<Declarations@>=
25930 void mp_final_cleanup (MP mp) ;
25931 void mp_init_prim (MP mp) ;
25932 void mp_init_tab (MP mp) ;
25934 @ @<Last-minute...@>=
25935 void mp_init_prim (MP mp) { /* initialize all the primitives */
25939 void mp_init_tab (MP mp) { /* initialize other tables */
25940 integer k; /* all-purpose index */
25941 @<Initialize table entries (done by \.{INIMP} only)@>;
25945 @ When we begin the following code, \MP's tables may still contain garbage;
25946 the strings might not even be present. Thus we must proceed cautiously to get
25949 But when we finish this part of the program, \MP\ is ready to call on the
25950 |main_control| routine to do its work.
25952 @<Get the first line...@>=
25954 @<Initialize the input routines@>;
25955 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25956 if ( mp->mem_ident!=NULL ) {
25957 mp_do_initialize(mp); /* erase preloaded mem */
25959 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25960 if ( ! mp_load_mem_file(mp) ) {
25961 (mp->close_file)(mp->mem_file);
25962 return mp_fatal_error_stop;
25964 (mp->close_file)( mp->mem_file);
25965 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25967 mp->buffer[limit]='%';
25968 mp_fix_date_and_time(mp);
25969 if (mp->random_seed==0)
25970 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
25971 mp_init_randoms(mp, mp->random_seed);
25972 @<Initialize the print |selector|...@>;
25973 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25974 mp_start_input(mp); /* \&{input} assumed */
25977 @ @<Run inimpost commands@>=
25979 mp_get_strings_started(mp);
25980 mp_init_tab(mp); /* initialize the tables */
25981 mp_init_prim(mp); /* call |primitive| for each primitive */
25982 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25983 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25984 mp_fix_date_and_time(mp);
25988 @* \[47] Debugging.
25989 Once \MP\ is working, you should be able to diagnose most errors with
25990 the \.{show} commands and other diagnostic features. But for the initial
25991 stages of debugging, and for the revelation of really deep mysteries, you
25992 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
25993 checks and its debugger. An additional routine called |debug_help|
25994 will also come into play when you type `\.D' after an error message;
25995 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
25997 @^system dependencies@>
25999 The interface to |debug_help| is primitive, but it is good enough when used
26000 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26001 variables and change their values. After getting the prompt `\.{debug \#}', you
26002 type either a negative number (this exits |debug_help|), or zero (this
26003 goes to a location where you can set a breakpoint, thereby entering into
26004 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26005 an argument |n|. The meaning of |m| and |n| will be clear from the
26006 program below. (If |m=13|, there is an additional argument, |l|.)
26009 @<Last-minute...@>=
26010 void mp_debug_help (MP mp) { /* routine to display various things */
26017 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26020 aline = (mp->read_ascii_file)(mp->term_in, &len);
26021 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26025 aline = (mp->read_ascii_file)(mp->term_in, &len);
26026 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26028 @<Numbered cases for |debug_help|@>;
26029 default: mp_print(mp, "?"); break;
26034 @ @<Numbered cases...@>=
26035 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26037 case 2: mp_print_int(mp, info(n));
26039 case 3: mp_print_int(mp, link(n));
26041 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26043 case 5: mp_print_variable_name(mp, n);
26045 case 6: mp_print_int(mp, mp->internal[n]);
26047 case 7: mp_do_show_dependencies(mp);
26049 case 9: mp_show_token_list(mp, n,null,100000,0);
26051 case 10: mp_print_str(mp, n);
26053 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26055 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26059 aline = (mp->read_ascii_file)(mp->term_in, &len);
26060 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26061 mp_print_cmd_mod(mp, n,l);
26063 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26065 case 15: mp->panicking=! mp->panicking;
26069 @ Saving the filename template
26071 @<Save the filename template@>=
26073 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26074 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26076 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26080 @* \[48] System-dependent changes.
26081 This section should be replaced, if necessary, by any special
26082 modification of the program
26083 that are necessary to make \MP\ work at a particular installation.
26084 It is usually best to design your change file so that all changes to
26085 previous sections preserve the section numbering; then everybody's version
26086 will be consistent with the published program. More extensive changes,
26087 which introduce new sections, can be inserted here; then only the index
26088 itself will get a new section number.
26089 @^system dependencies@>
26092 Here is where you can find all uses of each identifier in the program,
26093 with underlined entries pointing to where the identifier was defined.
26094 If the identifier is only one letter long, however, you get to see only
26095 the underlined entries. {\sl All references are to section numbers instead of
26098 This index also lists error messages and other aspects of the program
26099 that you might want to look up some day. For example, the entry
26100 for ``system dependencies'' lists all sections that should receive
26101 special attention from people who are installing \MP\ in a new
26102 operating environment. A list of various things that can't happen appears
26103 under ``this can't happen''.
26104 Approximately 25 sections are listed under ``inner loop''; these account
26105 for more than 60\pct! of \MP's running time, exclusive of input and output.