1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
42 The \PASCAL\ program that follows defines a standard version
44 of \MP\ that is designed to be highly portable so that identical output
45 will be obtainable on a great variety of computers.
47 The main purpose of the following program is to explain the algorithms of \MP\
48 as clearly as possible. As a result, the program will not necessarily be very
49 efficient when a particular \PASCAL\ compiler has translated it into a
50 particular machine language. However, the program has been written so that it
51 can be tuned to run efficiently in a wide variety of operating environments
52 by making comparatively few changes. Such flexibility is possible because
53 the documentation that follows is written in the \.{WEB} language, which is
54 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
55 to \PASCAL\ is able to introduce most of the necessary refinements.
56 Semi-automatic translation to other languages is also feasible, because the
57 program below does not make extensive use of features that are peculiar to
60 A large piece of software like \MP\ has inherent complexity that cannot
61 be reduced below a certain level of difficulty, although each individual
62 part is fairly simple by itself. The \.{WEB} language is intended to make
63 the algorithms as readable as possible, by reflecting the way the
64 individual program pieces fit together and by providing the
65 cross-references that connect different parts. Detailed comments about
66 what is going on, and about why things were done in certain ways, have
67 been liberally sprinkled throughout the program. These comments explain
68 features of the implementation, but they rarely attempt to explain the
69 \MP\ language itself, since the reader is supposed to be familiar with
70 {\sl The {\logos METAFONT\/}book} as well as the manual
72 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
73 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
74 AT\AM T Bell Laboratories.
76 @ The present implementation is a preliminary version, but the possibilities
77 for new features are limited by the desire to remain as nearly compatible
78 with \MF\ as possible.
80 On the other hand, the \.{WEB} description can be extended without changing
81 the core of the program, and it has been designed so that such
82 extensions are not extremely difficult to make.
83 The |banner| string defined here should be changed whenever \MP\
84 undergoes any modifications, so that it will be clear which version of
85 \MP\ might be the guilty party when a problem arises.
87 @^system dependencies@>
89 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
90 @d metapost_version "1.002"
91 @d mplib_version "0.10"
92 @d version_string " (Cweb version 0.10)"
94 @ Different \PASCAL s have slightly different conventions, and the present
96 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
97 Constructions that apply to
98 this particular compiler, which we shall call \ph, should help the
99 reader see how to make an appropriate interface for other systems
100 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
101 @^Hedrick, Charles Locke@>
102 for the DECsystem-10 that was originally developed at the University of
103 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
104 29--42. The \MP\ program below is intended to be adaptable, without
105 extensive changes, to most other versions of \PASCAL\ and commonly used
106 \PASCAL-to-C translators, so it does not fully
108 use the admirable features of \ph. Indeed, a conscious effort has been
109 made here to avoid using several idiosyncratic features of standard
110 \PASCAL\ itself, so that most of the code can be translated mechanically
111 into other high-level languages. For example, the `\&{with}' and `\\{new}'
112 features are not used, nor are pointer types, set types, or enumerated
113 scalar types; there are no `\&{var}' parameters, except in the case of files;
114 there are no tag fields on variant records; there are no |real| variables;
115 no procedures are declared local to other procedures.)
117 The portions of this program that involve system-dependent code, where
118 changes might be necessary because of differences between \PASCAL\ compilers
119 and/or differences between
120 operating systems, can be identified by looking at the sections whose
121 numbers are listed under `system dependencies' in the index. Furthermore,
122 the index entries for `dirty \PASCAL' list all places where the restrictions
123 of \PASCAL\ have not been followed perfectly, for one reason or another.
124 @^system dependencies@>
127 @ The program begins with a normal \PASCAL\ program heading, whose
128 components will be filled in later, using the conventions of \.{WEB}.
130 For example, the portion of the program called `\X\glob:Global
131 variables\X' below will be replaced by a sequence of variable declarations
132 that starts in $\section\glob$ of this documentation. In this way, we are able
133 to define each individual global variable when we are prepared to
134 understand what it means; we do not have to define all of the globals at
135 once. Cross references in $\section\glob$, where it says ``See also
136 sections \gglob, \dots,'' also make it possible to look at the set of
137 all global variables, if desired. Similar remarks apply to the other
138 portions of the program heading.
140 Actually the heading shown here is not quite normal: The |program| line
141 does not mention any |output| file, because \ph\ would ask the \MP\ user
142 to specify a file name if |output| were specified here.
143 @^system dependencies@>
149 # ifndef LIBAVL_ALLOCATOR
150 # define LIBAVL_ALLOCATOR
151 struct libavl_allocator {
152 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
153 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
156 typedef struct psout_data_struct * psout_data;
157 typedef struct MP_instance * MP;
159 typedef signed int integer;
160 @<Types in the outer block@>
161 typedef struct MP_options {
165 @<Exported function headers@>
168 @<Constants in the outer block@>
169 typedef struct MP_instance {
179 #include <unistd.h> /* for access() */
180 #include <time.h> /* for struct tm \& co */
182 #include "mpmp.h" /* internal header */
183 #include "mppsout.h" /* internal header */
186 @<Basic printing procedures@>
187 @<Error handling procedures@>
189 @ Here are the functions that set up the \MP\ instance.
192 @<Declare |mp_reallocate| functions@>;
193 struct MP_options mp_options (void) {
194 struct MP_options *opt;
195 opt = xmalloc(1,sizeof(MP_options));
196 memset (opt,0,sizeof(MP_options));
199 MP mp_new (struct MP_options opt) {
201 mp = xmalloc(1,sizeof(MP_instance));
202 @<Set |ini_version|@>;
203 @<Allocate or initialize variables@>
204 mp_reallocate_paths(mp,1000);
205 mp_reallocate_fonts(mp,8);
207 mp->term_out = stdout;
210 void mp_free (MP mp) {
211 int k; /* loop variable */
212 @<Dealloc variables@>
217 boolean mp_initialize (MP mp) { /* this procedure gets things started properly */
218 @<Local variables for initialization@>
219 mp->history=fatal_error_stop; /* in case we quit during initialization */
220 t_open_out; /* open the terminal for output */
221 @<Check the ``constant'' values...@>;
223 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
224 "---case %i",(int)mp->bad);
228 @<Set initial values of key variables@>
229 if (mp->ini_version) {
230 @<Run inimpost commands@>;
232 @<Initialize the output routines@>;
233 @<Get the first line of input and prepare to start@>;
234 mp_set_job_id(mp,mp->internal[year],mp->internal[month],
235 mp->internal[day],mp->internal[mp_time]);
236 mp_init_map_file(mp, mp->troff_mode);
237 mp->history=spotless; /* ready to go! */
238 if (mp->troff_mode) {
239 mp->internal[gtroffmode]=unity;
240 mp->internal[prologues]=unity;
242 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
243 mp->cur_sym=mp->start_sym; mp_back_input(mp);
249 @<Exported function headers@>=
250 extern struct MP_options mp_options (void);
251 extern MP mp_new (struct MP_options opt) ;
252 extern void mp_free (MP mp);
253 extern boolean mp_initialize (MP mp);
256 @ The overall \MP\ program begins with the heading just shown, after which
257 comes a bunch of procedure declarations and function declarations.
258 Finally we will get to the main program, which begins with the
259 comment `|start_here|'. If you want to skip down to the
260 main program now, you can look up `|start_here|' in the index.
261 But the author suggests that the best way to understand this program
262 is to follow pretty much the order of \MP's components as they appear in the
263 \.{WEB} description you are now reading, since the present ordering is
264 intended to combine the advantages of the ``bottom up'' and ``top down''
265 approaches to the problem of understanding a somewhat complicated system.
267 @ Some of the code below is intended to be used only when diagnosing the
268 strange behavior that sometimes occurs when \MP\ is being installed or
269 when system wizards are fooling around with \MP\ without quite knowing
270 what they are doing. Such code will not normally be compiled; it is
271 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
273 @ This program has two important variations: (1) There is a long and slow
274 version called \.{INIMP}, which does the extra calculations needed to
276 initialize \MP's internal tables; and (2)~there is a shorter and faster
277 production version, which cuts the initialization to a bare minimum.
279 Which is which is decided at runtime.
281 @ The following parameters can be changed at compile time to extend or
282 reduce \MP's capacity. They may have different values in \.{INIMP} and
283 in production versions of \MP.
285 @^system dependencies@>
288 #define file_name_size 255 /* file names shouldn't be longer than this */
289 #define bistack_size 1500 /* size of stack for bisection algorithms;
290 should probably be left at this value */
292 @ Like the preceding parameters, the following quantities can be changed
293 at compile time to extend or reduce \MP's capacity. But if they are changed,
294 it is necessary to rerun the initialization program \.{INIMP}
296 to generate new tables for the production \MP\ program.
297 One can't simply make helter-skelter changes to the following constants,
298 since certain rather complex initialization
299 numbers are computed from them.
302 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
303 int pool_size; /* maximum number of characters in strings, including all
304 error messages and help texts, and the names of all identifiers */
305 int error_line; /* width of context lines on terminal error messages */
306 int half_error_line; /* width of first lines of contexts in terminal
307 error messages; should be between 30 and |error_line-15| */
308 int max_print_line; /* width of longest text lines output; should be at least 60 */
309 int mem_max; /* greatest index in \MP's internal |mem| array;
310 must be strictly less than |max_halfword|;
311 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
312 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
313 must not be greater than |mem_max| */
314 int hash_size; /* maximum number of symbolic tokens,
315 must be less than |max_halfword-3*param_size| */
316 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
317 int param_size; /* maximum number of simultaneous macro parameters */
318 int max_in_open; /* maximum number of input files and error insertions that
319 can be going on simultaneously */
321 @ @<Option variables@>=
332 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
337 set_value(mp->error_line,opt.error_line,79);
338 set_value(mp->half_error_line,opt.half_error_line,50);
339 set_value(mp->max_print_line,opt.max_print_line,79);
342 if (opt.main_memory>mp->mem_max)
343 mp_reallocate_memory(mp,opt.main_memory);
344 set_value(mp->hash_size,opt.hash_size,9500);
345 set_value(mp->hash_prime,opt.hash_prime,7919);
346 set_value(mp->param_size,opt.param_size,150);
347 set_value(mp->max_in_open,opt.max_in_open,10);
350 @ In case somebody has inadvertently made bad settings of the ``constants,''
351 \MP\ checks them using a global variable called |bad|.
353 This is the first of many sections of \MP\ where global variables are
357 integer bad; /* is some ``constant'' wrong? */
359 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
360 or something similar. (We can't do that until |max_halfword| has been defined.)
362 @<Check the ``constant'' values for consistency@>=
364 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
365 if ( mp->max_print_line<60 ) mp->bad=2;
366 if ( mp->mem_top<=1100 ) mp->bad=4;
367 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
369 @ Labels are given symbolic names by the following definitions, so that
370 occasional |goto| statements will be meaningful. We insert the label
371 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
372 which we have used the `|return|' statement defined below; the label
373 `|restart|' is occasionally used at the very beginning of a procedure; and
374 the label `|reswitch|' is occasionally used just prior to a |case|
375 statement in which some cases change the conditions and we wish to branch
376 to the newly applicable case. Loops that are set up with the |loop|
377 construction defined below are commonly exited by going to `|done|' or to
378 `|found|' or to `|not_found|', and they are sometimes repeated by going to
379 `|continue|'. If two or more parts of a subroutine start differently but
380 end up the same, the shared code may be gathered together at
383 Incidentally, this program never declares a label that isn't actually used,
384 because some fussy \PASCAL\ compilers will complain about redundant labels.
386 @d label_exit 10 /* go here to leave a procedure */
387 @d restart 20 /* go here to start a procedure again */
388 @d reswitch 21 /* go here to start a case statement again */
389 @d continue 22 /* go here to resume a loop */
390 @d done 30 /* go here to exit a loop */
391 @d done1 31 /* like |done|, when there is more than one loop */
392 @d done2 32 /* for exiting the second loop in a long block */
393 @d done3 33 /* for exiting the third loop in a very long block */
394 @d done4 34 /* for exiting the fourth loop in an extremely long block */
395 @d done5 35 /* for exiting the fifth loop in an immense block */
396 @d done6 36 /* for exiting the sixth loop in a block */
397 @d found 40 /* go here when you've found it */
398 @d found1 41 /* like |found|, when there's more than one per routine */
399 @d found2 42 /* like |found|, when there's more than two per routine */
400 @d found3 43 /* like |found|, when there's more than three per routine */
401 @d not_found 45 /* go here when you've found nothing */
402 @d common_ending 50 /* go here when you want to merge with another branch */
404 @ Here are some macros for common programming idioms.
406 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
407 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
408 @d negate(A) (A)=-(A) /* change the sign of a variable */
411 @d do_nothing /* empty statement */
412 @d Return goto exit /* terminate a procedure call */
413 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
415 @* \[2] The character set.
416 In order to make \MP\ readily portable to a wide variety of
417 computers, all of its input text is converted to an internal eight-bit
418 code that includes standard ASCII, the ``American Standard Code for
419 Information Interchange.'' This conversion is done immediately when each
420 character is read in. Conversely, characters are converted from ASCII to
421 the user's external representation just before they are output to a
425 Such an internal code is relevant to users of \MP\ only with respect to
426 the \&{char} and \&{ASCII} operations, and the comparison of strings.
428 @ Characters of text that have been converted to \MP's internal form
429 are said to be of type |ASCII_code|, which is a subrange of the integers.
432 typedef unsigned char ASCII_code; /* eight-bit numbers */
434 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
435 character sets were common, so it did not make provision for lowercase
436 letters. Nowadays, of course, we need to deal with both capital and small
437 letters in a convenient way, especially in a program for font design;
438 so the present specification of \MP\ has been written under the assumption
439 that the \PASCAL\ compiler and run-time system permit the use of text files
440 with more than 64 distinguishable characters. More precisely, we assume that
441 the character set contains at least the letters and symbols associated
442 with ASCII codes 040 through 0176; all of these characters are now
443 available on most computer terminals.
445 Since we are dealing with more characters than were present in the first
446 \PASCAL\ compilers, we have to decide what to call the associated data
447 type. Some \PASCAL s use the original name |char| for the
448 characters in text files, even though there now are more than 64 such
449 characters, while other \PASCAL s consider |char| to be a 64-element
450 subrange of a larger data type that has some other name.
452 In order to accommodate this difference, we shall use the name |text_char|
453 to stand for the data type of the characters that are converted to and
454 from |ASCII_code| when they are input and output. We shall also assume
455 that |text_char| consists of the elements |chr(first_text_char)| through
456 |chr(last_text_char)|, inclusive. The following definitions should be
457 adjusted if necessary.
458 @^system dependencies@>
460 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
461 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
464 typedef unsigned char text_char; /* the data type of characters in text files */
466 @ @<Local variables for init...@>=
469 @ The \MP\ processor converts between ASCII code and
470 the user's external character set by means of arrays |xord| and |xchr|
471 that are analogous to \PASCAL's |ord| and |chr| functions.
474 ASCII_code xord[256]; /* specifies conversion of input characters */
475 text_char xchr[256]; /* specifies conversion of output characters */
477 @ The core system assumes all 8-bit is acceptable. If it is not,
478 a change file has to alter the below section.
479 @^system dependencies@>
481 Additionally, people with extended character sets can
482 assign codes arbitrarily, giving an |xchr| equivalent to whatever
483 characters the users of \MP\ are allowed to have in their input files.
484 Appropriate changes to \MP's |char_class| table should then be made.
485 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
486 codes, called the |char_class|.) Such changes make portability of programs
487 more difficult, so they should be introduced cautiously if at all.
488 @^character set dependencies@>
489 @^system dependencies@>
492 for (i=0;i<=0377;i++) { mp->xchr[i]=i; }
494 @ The following system-independent code makes the |xord| array contain a
495 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
496 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
497 |j| or more; hence, standard ASCII code numbers will be used instead of
498 codes below 040 in case there is a coincidence.
501 for (i=first_text_char;i<=last_text_char;i++) {
502 mp->xord[chr(i)]=0177;
504 for (i=0200;i<=0377;i++) { mp->xord[mp->xchr[i]]=i;}
505 for (i=0;i<=0176;i++) {mp->xord[mp->xchr[i]]=i;}
507 @* \[3] Input and output.
508 The bane of portability is the fact that different operating systems treat
509 input and output quite differently, perhaps because computer scientists
510 have not given sufficient attention to this problem. People have felt somehow
511 that input and output are not part of ``real'' programming. Well, it is true
512 that some kinds of programming are more fun than others. With existing
513 input/output conventions being so diverse and so messy, the only sources of
514 joy in such parts of the code are the rare occasions when one can find a
515 way to make the program a little less bad than it might have been. We have
516 two choices, either to attack I/O now and get it over with, or to postpone
517 I/O until near the end. Neither prospect is very attractive, so let's
520 The basic operations we need to do are (1)~inputting and outputting of
521 text, to or from a file or the user's terminal; (2)~inputting and
522 outputting of eight-bit bytes, to or from a file; (3)~instructing the
523 operating system to initiate (``open'') or to terminate (``close'') input or
524 output from a specified file; (4)~testing whether the end of an input
525 file has been reached; (5)~display of bits on the user's screen.
526 The bit-display operation will be discussed in a later section; we shall
527 deal here only with more traditional kinds of I/O.
529 @ Finding files happens in a slightly roundabout fashion: the \MP\
530 instance object contains a field that holds a function pointer that finds a
531 file, and returns its name, or NULL. For this, it receives three
532 parameters: the non-qualified name |fname|, the intended |fopen|
533 operation type |fmode|, and the type of the file |ftype|.
535 The file types that are passed on in |ftype| can be used to
536 differentiate file searches if a library like kpathsea is used,
537 the fopen mode is passed along for the same reason.
540 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
542 mp_filetype_program = 1, /* \MP\ language input */
543 mp_filetype_log, /* the log file */
544 mp_filetype_postscript, /* the postscript output */
545 mp_filetype_text, /* text files for readfrom and writeto primitives */
546 mp_filetype_memfile, /* memory dumps */
547 mp_filetype_metrics, /* TeX font metric files */
548 mp_filetype_fontmap, /* PostScript font mapping files */
549 mp_filetype_font, /* PostScript type1 font programs */
550 mp_filetype_encoding, /* PostScript font encoding files */
552 typedef char *(*file_finder)(char *, char *, int);
555 file_finder find_file;
557 @ @<Option variables@>=
558 file_finder find_file;
560 @ The default function for finding files is |mp_find_file|. It is
561 pretty stupid: it will only find files in the current directory.
564 char *mp_find_file (char *fname, char *fmode, int ftype) {
565 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
566 return xstrdup(fname);
570 @ This has to be done very early on, so it is best to put it in with
571 the |mp_new| allocations
573 @d set_callback_option(A) do { mp->A = mp_##A;
574 if (opt.A!=NULL) mp->A = opt.A;
577 @<Allocate or initialize ...@>=
578 set_callback_option(find_file);
580 @ Because |mp_find_file| is used so early, it has to be in the helpers
584 char *mp_find_file (char *fname, char *fmode, int ftype) ;
586 @ The function to open files can now be very short.
589 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
590 char *s = (mp->find_file)(fname,fmode,ftype);
592 FILE *f = fopen(s, fmode);
599 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
602 char name_of_file[file_name_size+1]; /* the name of a system file */
603 int name_length;/* this many characters are actually
604 relevant in |name_of_file| (the rest are blank) */
605 boolean print_found_names; /* configuration parameter */
607 @ @<Option variables@>=
608 boolean print_found_names; /* configuration parameter */
610 @ If this parameter is true, the terminal and log will report the found
611 file names for input files instead of the requested ones.
612 It is off by default because it creates an extra filename lookup.
614 @<Allocate or initialize ...@>=
615 mp->print_found_names = (opt.print_found_names>0 ? true : false);
617 @ \MP's file-opening procedures return |false| if no file identified by
618 |name_of_file| could be opened.
620 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
621 It is not used for opening a mem file for read, because that file name
625 if (mp->print_found_names) {
626 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
628 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
629 strncpy(mp->name_of_file,s,file_name_size);
635 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
638 return (*f ? true : false)
641 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
642 /* open a text file for input */
646 boolean mp_w_open_in (MP mp, FILE **f) {
647 /* open a word file for input */
648 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
649 return (*f ? true : false);
652 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
653 /* open a text file for output */
657 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
658 /* open a binary file for output */
662 boolean mp_w_open_out (MP mp, FILE**f) {
663 /* open a word file for output */
664 int ftype = mp_filetype_memfile;
669 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
671 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
672 procedures, so we don't have to make any other special arrangements for
673 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
674 The treatment of text input is more difficult, however, because
675 of the necessary translation to |ASCII_code| values.
676 \MP's conventions should be efficient, and they should
677 blend nicely with the user's operating environment.
679 @ Input from text files is read one line at a time, using a routine called
680 |input_ln|. This function is defined in terms of global variables called
681 |buffer|, |first|, and |last| that will be described in detail later; for
682 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
683 values, and that |first| and |last| are indices into this array
684 representing the beginning and ending of a line of text.
687 size_t buf_size; /* maximum number of characters simultaneously present in
688 current lines of open files */
689 ASCII_code *buffer; /* lines of characters being read */
690 size_t first; /* the first unused position in |buffer| */
691 size_t last; /* end of the line just input to |buffer| */
692 size_t max_buf_stack; /* largest index used in |buffer| */
694 @ @<Allocate or initialize ...@>=
696 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
698 @ @<Dealloc variables@>=
702 void mp_reallocate_buffer(MP mp, size_t l) {
704 if (l>max_halfword) {
705 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
707 buffer = xmalloc((l+1),sizeof(ASCII_code));
708 memcpy(buffer,mp->buffer,(mp->buf_size+1));
710 mp->buffer = buffer ;
714 @ The |input_ln| function brings the next line of input from the specified
715 field into available positions of the buffer array and returns the value
716 |true|, unless the file has already been entirely read, in which case it
717 returns |false| and sets |last:=first|. In general, the |ASCII_code|
718 numbers that represent the next line of the file are input into
719 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
720 global variable |last| is set equal to |first| plus the length of the
721 line. Trailing blanks are removed from the line; thus, either |last=first|
722 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
725 An overflow error is given, however, if the normal actions of |input_ln|
726 would make |last>=buf_size|; this is done so that other parts of \MP\
727 can safely look at the contents of |buffer[last+1]| without overstepping
728 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
729 |first<buf_size| will always hold, so that there is always room for an
732 The variable |max_buf_stack|, which is used to keep track of how large
733 the |buf_size| parameter must be to accommodate the present job, is
734 also kept up to date by |input_ln|.
736 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
737 before looking at the first character of the line; this skips over
738 an |eoln| that was in |f^|. The procedure does not do a |get| when it
739 reaches the end of the line; therefore it can be used to acquire input
740 from the user's terminal as well as from ordinary text files.
742 Standard \PASCAL\ says that a file should have |eoln| immediately
743 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
744 occurs in the middle of a line, the system function |eoln| should return
745 a |true| result (even though |f^| will be undefined).
748 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
749 /* inputs the next line or returns |false| */
750 int last_nonblank; /* |last| with trailing blanks removed */
756 if (c!='\n' && c!='\r') {
760 /* input the first character of the line into |f^| */
761 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
765 last_nonblank=mp->first;
766 while (c!=EOF && c!='\n' && c!='\r') {
767 if ( mp->last>=mp->max_buf_stack ) {
768 mp->max_buf_stack=mp->last+1;
769 if ( mp->max_buf_stack==mp->buf_size ) {
770 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
773 mp->buffer[mp->last]=mp->xord[c];
775 if ( mp->buffer[mp->last-1]!=' ' )
776 last_nonblank=mp->last;
782 mp->last=last_nonblank;
786 @ The user's terminal acts essentially like other files of text, except
787 that it is used both for input and for output. When the terminal is
788 considered an input file, the file variable is called |term_in|, and when it
789 is considered an output file the file variable is |term_out|.
790 @^system dependencies@>
793 FILE * term_in; /* the terminal as an input file */
794 FILE * term_out; /* the terminal as an output file */
796 @ Here is how to open the terminal files. In the default configuration,
797 nothing happens except that the command line (if there is one) is copied
798 to the input buffer. The variable |command_line| will be filled by the
799 |main| procedure. The copying can not be done earlier in the program
800 logic because in the |INI| version, the |buffer| is also used for primitive
803 @^system dependencies@>
805 @d t_open_out /* open the terminal for text output */
806 @d t_open_in do { /* open the terminal for text input */
807 if (mp->command_line!=NULL) {
808 mp->last = strlen(mp->command_line);
809 strncpy((char *)mp->buffer,mp->command_line,mp->last);
810 xfree(mp->command_line);
817 @ @<Option variables@>=
820 @ @<Allocate or initialize ...@>=
821 mp->command_line = mp_xstrdup(opt.command_line);
823 @ Sometimes it is necessary to synchronize the input/output mixture that
824 happens on the user's terminal, and three system-dependent
825 procedures are used for this
826 purpose. The first of these, |update_terminal|, is called when we want
827 to make sure that everything we have output to the terminal so far has
828 actually left the computer's internal buffers and been sent.
829 The second, |clear_terminal|, is called when we wish to cancel any
830 input that the user may have typed ahead (since we are about to
831 issue an unexpected error message). The third, |wake_up_terminal|,
832 is supposed to revive the terminal if the user has disabled it by
833 some instruction to the operating system. The following macros show how
834 these operations can be specified in \ph:
835 @^system dependencies@>
837 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
838 @d clear_terminal do_nothing /* clear the terminal input buffer */
839 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
841 @ We need a special routine to read the first line of \MP\ input from
842 the user's terminal. This line is different because it is read before we
843 have opened the transcript file; there is sort of a ``chicken and
844 egg'' problem here. If the user types `\.{input cmr10}' on the first
845 line, or if some macro invoked by that line does such an \.{input},
846 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
847 commands are performed during the first line of terminal input, the transcript
848 file will acquire its default name `\.{mpout.log}'. (The transcript file
849 will not contain error messages generated by the first line before the
850 first \.{input} command.)
852 The first line is even more special if we are lucky enough to have an operating
853 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
854 program. It's nice to let the user start running a \MP\ job by typing
855 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
856 as if the first line of input were `\.{cmr10}', i.e., the first line will
857 consist of the remainder of the command line, after the part that invoked \MP.
859 @ Different systems have different ways to get started. But regardless of
860 what conventions are adopted, the routine that initializes the terminal
861 should satisfy the following specifications:
863 \yskip\textindent{1)}It should open file |term_in| for input from the
864 terminal. (The file |term_out| will already be open for output to the
867 \textindent{2)}If the user has given a command line, this line should be
868 considered the first line of terminal input. Otherwise the
869 user should be prompted with `\.{**}', and the first line of input
870 should be whatever is typed in response.
872 \textindent{3)}The first line of input, which might or might not be a
873 command line, should appear in locations |first| to |last-1| of the
876 \textindent{4)}The global variable |loc| should be set so that the
877 character to be read next by \MP\ is in |buffer[loc]|. This
878 character should not be blank, and we should have |loc<last|.
880 \yskip\noindent(It may be necessary to prompt the user several times
881 before a non-blank line comes in. The prompt is `\.{**}' instead of the
882 later `\.*' because the meaning is slightly different: `\.{input}' need
883 not be typed immediately after~`\.{**}'.)
885 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
887 @ The following program does the required initialization
888 without retrieving a possible command line.
889 It should be clear how to modify this routine to deal with command lines,
890 if the system permits them.
891 @^system dependencies@>
894 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
901 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
903 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
904 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
905 @.End of file on the terminal@>
909 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
911 if ( loc<(int)mp->last ) {
912 return true; /* return unless the line was all blank */
914 fprintf(mp->term_out,"Please type the name of your input file.\n");
919 boolean mp_init_terminal (MP mp) ;
922 @* \[4] String handling.
923 Symbolic token names and diagnostic messages are variable-length strings
924 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
925 mechanism, \MP\ does all of its string processing by homegrown methods.
927 \MP\ uses strings more extensively than \MF\ does, but the necessary
928 operations can still be handled with a fairly simple data structure.
929 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
930 of the strings, and the array |str_start| contains indices of the starting
931 points of each string. Strings are referred to by integer numbers, so that
932 string number |s| comprises the characters |str_pool[j]| for
933 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
934 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
935 location. The first string number not currently in use is |str_ptr|
936 and |next_str[str_ptr]| begins a list of free string numbers. String
937 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
938 string currently being constructed.
940 String numbers 0 to 255 are reserved for strings that correspond to single
941 ASCII characters. This is in accordance with the conventions of \.{WEB},
943 which converts single-character strings into the ASCII code number of the
944 single character involved, while it converts other strings into integers
945 and builds a string pool file. Thus, when the string constant \.{"."} appears
946 in the program below, \.{WEB} converts it into the integer 46, which is the
947 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
948 into some integer greater than~255. String number 46 will presumably be the
949 single character `\..'\thinspace; but some ASCII codes have no standard visible
950 representation, and \MP\ may need to be able to print an arbitrary
951 ASCII character, so the first 256 strings are used to specify exactly what
952 should be printed for each of the 256 possibilities.
955 typedef int pool_pointer; /* for variables that point into |str_pool| */
956 typedef int str_number; /* for variables that point into |str_start| */
959 ASCII_code *str_pool; /* the characters */
960 pool_pointer *str_start; /* the starting pointers */
961 str_number *next_str; /* for linking strings in order */
962 pool_pointer pool_ptr; /* first unused position in |str_pool| */
963 str_number str_ptr; /* number of the current string being created */
964 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
965 str_number init_str_use; /* the initial number of strings in use */
966 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
967 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
969 @ @<Allocate or initialize ...@>=
970 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
971 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
972 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
974 @ @<Dealloc variables@>=
976 xfree(mp->str_start);
979 @ Most printing is done from |char *|s, but sometimes not. Here are
980 functions that convert an internal string into a |char *| for use
981 by the printing routines, and vice versa.
983 @d str(A) mp_str(mp,A)
984 @d rts(A) mp_rts(mp,A)
986 @<Exported function headers@>=
987 int mp_xstrcmp (const char *a, const char *b);
988 char * mp_str (MP mp, str_number s);
991 str_number mp_rts (MP mp, char *s);
992 str_number mp_make_string (MP mp);
994 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
995 very good: it does not handle nesting over more than one level.
998 int mp_xstrcmp (const char *a, const char *b) {
999 if (a==NULL && b==NULL)
1009 char * mp_str (MP mp, str_number ss) {
1011 int len = length(ss);
1012 s = xmalloc(len+1,sizeof(char));
1013 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1017 str_number mp_rts (MP mp, char *s) {
1018 int r; /* the new string */
1019 int old; /* a possible string in progress */
1023 } else if (strlen(s)==1) {
1027 str_room((integer)strlen(s));
1028 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1029 old = mp_make_string(mp);
1034 r = mp_make_string(mp);
1036 str_room(length(old));
1037 while (i<length(old)) {
1038 append_char((mp->str_start[old]+i));
1040 mp_flush_string(mp,old);
1046 @ Except for |strs_used_up|, the following string statistics are only
1047 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1051 integer strs_used_up; /* strings in use or unused but not reclaimed */
1052 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1053 integer strs_in_use; /* total number of strings actually in use */
1054 integer max_pl_used; /* maximum |pool_in_use| so far */
1055 integer max_strs_used; /* maximum |strs_in_use| so far */
1057 @ Several of the elementary string operations are performed using \.{WEB}
1058 macros instead of \PASCAL\ procedures, because many of the
1059 operations are done quite frequently and we want to avoid the
1060 overhead of procedure calls. For example, here is
1061 a simple macro that computes the length of a string.
1064 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1066 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1068 @ The length of the current string is called |cur_length|. If we decide that
1069 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1070 |cur_length| becomes zero.
1072 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1073 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1075 @ Strings are created by appending character codes to |str_pool|.
1076 The |append_char| macro, defined here, does not check to see if the
1077 value of |pool_ptr| has gotten too high; this test is supposed to be
1078 made before |append_char| is used.
1080 To test if there is room to append |l| more characters to |str_pool|,
1081 we shall write |str_room(l)|, which tries to make sure there is enough room
1082 by compacting the string pool if necessary. If this does not work,
1083 |do_compaction| aborts \MP\ and gives an apologetic error message.
1085 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1086 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1088 @d str_room(A) /* make sure that the pool hasn't overflowed */
1089 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1090 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1091 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1094 @ The following routine is similar to |str_room(1)| but it uses the
1095 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1096 string space is exhausted.
1098 @<Declare the procedure called |unit_str_room|@>=
1099 void mp_unit_str_room (MP mp);
1102 void mp_unit_str_room (MP mp) {
1103 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1104 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1107 @ \MP's string expressions are implemented in a brute-force way: Every
1108 new string or substring that is needed is simply copied into the string pool.
1109 Space is eventually reclaimed by a procedure called |do_compaction| with
1110 the aid of a simple system system of reference counts.
1111 @^reference counts@>
1113 The number of references to string number |s| will be |str_ref[s]|. The
1114 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1115 positive number of references; such strings will never be recycled. If
1116 a string is ever referred to more than 126 times, simultaneously, we
1117 put it in this category. Hence a single byte suffices to store each |str_ref|.
1119 @d max_str_ref 127 /* ``infinite'' number of references */
1120 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1126 @ @<Allocate or initialize ...@>=
1127 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1129 @ @<Dealloc variables@>=
1132 @ Here's what we do when a string reference disappears:
1134 @d delete_str_ref(A) {
1135 if ( mp->str_ref[(A)]<max_str_ref ) {
1136 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1137 else mp_flush_string(mp, (A));
1141 @<Declare the procedure called |flush_string|@>=
1142 void mp_flush_string (MP mp,str_number s) ;
1145 @ We can't flush the first set of static strings at all, so there
1146 is no point in trying
1149 void mp_flush_string (MP mp,str_number s) {
1151 mp->pool_in_use=mp->pool_in_use-length(s);
1152 decr(mp->strs_in_use);
1153 if ( mp->next_str[s]!=mp->str_ptr ) {
1157 decr(mp->strs_used_up);
1159 mp->pool_ptr=mp->str_start[mp->str_ptr];
1163 @ C literals cannot be simply added, they need to be set so they can't
1166 @d intern(A) mp_intern(mp,(A))
1169 str_number mp_intern (MP mp, char *s) {
1172 mp->str_ref[r] = max_str_ref;
1177 str_number mp_intern (MP mp, char *s);
1180 @ Once a sequence of characters has been appended to |str_pool|, it
1181 officially becomes a string when the function |make_string| is called.
1182 This function returns the identification number of the new string as its
1185 When getting the next unused string number from the linked list, we pretend
1187 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1188 are linked sequentially even though the |next_str| entries have not been
1189 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1190 |do_compaction| is responsible for making sure of this.
1193 @<Declare the procedure called |do_compaction|@>;
1194 @<Declare the procedure called |unit_str_room|@>;
1195 str_number mp_make_string (MP mp);
1198 str_number mp_make_string (MP mp) { /* current string enters the pool */
1199 str_number s; /* the new string */
1202 mp->str_ptr=mp->next_str[s];
1203 if ( mp->str_ptr>mp->max_str_ptr ) {
1204 if ( mp->str_ptr==mp->max_strings ) {
1206 mp_do_compaction(mp, 0);
1210 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1211 @:this can't happen s}{\quad \.s@>
1213 mp->max_str_ptr=mp->str_ptr;
1214 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1218 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1219 incr(mp->strs_used_up);
1220 incr(mp->strs_in_use);
1221 mp->pool_in_use=mp->pool_in_use+length(s);
1222 if ( mp->pool_in_use>mp->max_pl_used )
1223 mp->max_pl_used=mp->pool_in_use;
1224 if ( mp->strs_in_use>mp->max_strs_used )
1225 mp->max_strs_used=mp->strs_in_use;
1229 @ The most interesting string operation is string pool compaction. The idea
1230 is to recover unused space in the |str_pool| array by recopying the strings
1231 to close the gaps created when some strings become unused. All string
1232 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1233 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1234 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1235 with |needed=mp->pool_size| supresses all overflow tests.
1237 The compaction process starts with |last_fixed_str| because all lower numbered
1238 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1241 str_number last_fixed_str; /* last permanently allocated string */
1242 str_number fixed_str_use; /* number of permanently allocated strings */
1244 @ @<Declare the procedure called |do_compaction|@>=
1245 void mp_do_compaction (MP mp, pool_pointer needed) ;
1248 void mp_do_compaction (MP mp, pool_pointer needed) {
1249 str_number str_use; /* a count of strings in use */
1250 str_number r,s,t; /* strings being manipulated */
1251 pool_pointer p,q; /* destination and source for copying string characters */
1252 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1253 r=mp->last_fixed_str;
1256 while ( s!=mp->str_ptr ) {
1257 while ( mp->str_ref[s]==0 ) {
1258 @<Advance |s| and add the old |s| to the list of free string numbers;
1259 then |break| if |s=str_ptr|@>;
1261 r=s; s=mp->next_str[s];
1263 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1264 after the end of the string@>;
1266 @<Move the current string back so that it starts at |p|@>;
1267 if ( needed<mp->pool_size ) {
1268 @<Make sure that there is room for another string with |needed| characters@>;
1270 @<Account for the compaction and make sure the statistics agree with the
1272 mp->strs_used_up=str_use;
1275 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1276 t=mp->next_str[mp->last_fixed_str];
1277 while ( (mp->str_ref[t]==max_str_ref)&&(t!=mp->str_ptr) ) {
1278 incr(mp->fixed_str_use);
1279 mp->last_fixed_str=t;
1282 str_use=mp->fixed_str_use
1284 @ Because of the way |flush_string| has been written, it should never be
1285 necessary to |break| here. The extra line of code seems worthwhile to
1286 preserve the generality of |do_compaction|.
1288 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1293 mp->next_str[t]=mp->next_str[mp->str_ptr];
1294 mp->next_str[mp->str_ptr]=t;
1295 if ( s==mp->str_ptr ) break;
1298 @ The string currently starts at |str_start[r]| and ends just before
1299 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1300 to locate the next string.
1302 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1305 while ( q<mp->str_start[s] ) {
1306 mp->str_pool[p]=mp->str_pool[q];
1310 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1311 we do this, anything between them should be moved.
1313 @ @<Move the current string back so that it starts at |p|@>=
1314 q=mp->str_start[mp->str_ptr];
1315 mp->str_start[mp->str_ptr]=p;
1316 while ( q<mp->pool_ptr ) {
1317 mp->str_pool[p]=mp->str_pool[q];
1322 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1324 @<Make sure that there is room for another string with |needed| char...@>=
1325 if ( str_use>=mp->max_strings-1 )
1326 mp_reallocate_strings (mp,str_use);
1327 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1328 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1329 mp->max_pool_ptr=mp->pool_ptr+needed;
1333 void mp_reallocate_strings (MP mp, str_number str_use) ;
1334 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1337 void mp_reallocate_strings (MP mp, str_number str_use) {
1338 while ( str_use>=mp->max_strings-1 ) {
1339 int l = mp->max_strings + (mp->max_strings>>2);
1340 XREALLOC (mp->str_ref, (l+1),sizeof(int));
1341 XREALLOC (mp->str_start, (l+1),sizeof(pool_pointer));
1342 XREALLOC (mp->next_str, (l+1),sizeof(str_number));
1343 mp->max_strings = l;
1346 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1347 while ( needed>mp->pool_size ) {
1348 int l = mp->pool_size + (mp->pool_size>>2);
1349 XREALLOC (mp->str_pool, (l+1),sizeof(ASCII_code));
1354 @ @<Account for the compaction and make sure the statistics agree with...@>=
1355 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1356 mp_confusion(mp, "string");
1357 @:this can't happen string}{\quad string@>
1358 incr(mp->pact_count);
1359 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1360 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1362 s=mp->str_ptr; t=str_use;
1363 while ( s<=mp->max_str_ptr ){
1364 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1365 incr(t); s=mp->next_str[s];
1367 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1370 @ A few more global variables are needed to keep track of statistics when
1371 |stat| $\ldots$ |tats| blocks are not commented out.
1374 integer pact_count; /* number of string pool compactions so far */
1375 integer pact_chars; /* total number of characters moved during compactions */
1376 integer pact_strs; /* total number of strings moved during compactions */
1378 @ @<Initialize compaction statistics@>=
1383 @ The following subroutine compares string |s| with another string of the
1384 same length that appears in |buffer| starting at position |k|;
1385 the result is |true| if and only if the strings are equal.
1388 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1389 /* test equality of strings */
1390 pool_pointer j; /* running index */
1392 while ( j<str_stop(s) ) {
1393 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1399 @ Here is a similar routine, but it compares two strings in the string pool,
1400 and it does not assume that they have the same length. If the first string
1401 is lexicographically greater than, less than, or equal to the second,
1402 the result is respectively positive, negative, or zero.
1405 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1406 /* test equality of strings */
1407 pool_pointer j,k; /* running indices */
1408 integer ls,lt; /* lengths */
1409 integer l; /* length remaining to test */
1410 ls=length(s); lt=length(t);
1411 if ( ls<=lt ) l=ls; else l=lt;
1412 j=mp->str_start[s]; k=mp->str_start[t];
1414 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1415 return (mp->str_pool[j]-mp->str_pool[k]);
1422 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1423 and |str_ptr| are computed by the \.{INIMP} program, based in part
1424 on the information that \.{WEB} has output while processing \MP.
1429 void mp_get_strings_started (MP mp) {
1430 /* initializes the string pool,
1431 but returns |false| if something goes wrong */
1432 int k; /* small indices or counters */
1433 str_number g; /* a new string */
1434 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1437 mp->pool_in_use=0; mp->strs_in_use=0;
1438 mp->max_pl_used=0; mp->max_strs_used=0;
1439 @<Initialize compaction statistics@>;
1441 @<Make the first 256 strings@>;
1442 g=mp_make_string(mp); /* string 256 == "" */
1443 mp->last_fixed_str=mp->str_ptr-1;
1444 mp->fixed_str_use=mp->str_ptr;
1449 void mp_get_strings_started (MP mp);
1451 @ The first 256 strings will consist of a single character only.
1453 @<Make the first 256...@>=
1454 for (k=0;k<=255;k++) {
1456 g=mp_make_string(mp);
1457 mp->str_ref[g]=max_str_ref;
1460 @ The first 128 strings will contain 95 standard ASCII characters, and the
1461 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1462 unless a system-dependent change is made here. Installations that have
1463 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1464 would like string 032 to be printed as the single character 032 instead
1465 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1466 even people with an extended character set will want to represent string
1467 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1468 to produce visible strings instead of tabs or line-feeds or carriage-returns
1469 or bell-rings or characters that are treated anomalously in text files.
1471 Unprintable characters of codes 128--255 are, similarly, rendered
1472 \.{\^\^80}--\.{\^\^ff}.
1474 The boolean expression defined here should be |true| unless \MP\ internal
1475 code number~|k| corresponds to a non-troublesome visible symbol in the
1476 local character set.
1477 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1478 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1480 @^character set dependencies@>
1481 @^system dependencies@>
1483 @<Character |k| cannot be printed@>=
1486 @* \[5] On-line and off-line printing.
1487 Messages that are sent to a user's terminal and to the transcript-log file
1488 are produced by several `|print|' procedures. These procedures will
1489 direct their output to a variety of places, based on the setting of
1490 the global variable |selector|, which has the following possible
1494 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1497 \hang |log_only|, prints only on the transcript file.
1499 \hang |term_only|, prints only on the terminal.
1501 \hang |no_print|, doesn't print at all. This is used only in rare cases
1502 before the transcript file is open.
1504 \hang |ps_file_only| prints only on the \ps\ output file.
1506 \hang |pseudo|, puts output into a cyclic buffer that is used
1507 by the |show_context| routine; when we get to that routine we shall discuss
1508 the reasoning behind this curious mode.
1510 \hang |new_string|, appends the output to the current string in the
1513 \hang |>=write_file| prints on one of the files used for the \&{write}
1514 @:write_}{\&{write} primitive@>
1518 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1519 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1520 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1521 relations are not used when |selector| could be |pseudo|, |new_string|,
1522 or |ps_file_only|. We need not check for unprintable characters when
1525 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1526 and |ps_offset| record the number of characters that have been printed
1527 since they were most recently cleared to zero. We use |tally| to record
1528 the length of (possibly very long) stretches of printing; |term_offset|,
1529 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1530 characters have appeared so far on the current line that has been output
1531 to the terminal, the transcript file, or the \ps\ output file, respectively.
1533 @d new_string 0 /* printing is deflected to the string pool */
1534 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1535 @d pseudo 2 /* special |selector| setting for |show_context| */
1536 @d no_print 3 /* |selector| setting that makes data disappear */
1537 @d term_only 4 /* printing is destined for the terminal only */
1538 @d log_only 5 /* printing is destined for the transcript file only */
1539 @d term_and_log 6 /* normal |selector| setting */
1540 @d write_file 7 /* first write file selector */
1543 FILE * log_file; /* transcript of \MP\ session */
1544 FILE * ps_file; /* the generic font output goes here */
1545 unsigned int selector; /* where to print a message */
1546 unsigned char dig[23]; /* digits in a number being output */
1547 integer tally; /* the number of characters recently printed */
1548 unsigned int term_offset;
1549 /* the number of characters on the current terminal line */
1550 unsigned int file_offset;
1551 /* the number of characters on the current file line */
1553 /* the number of characters on the current \ps\ file line */
1554 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1555 integer trick_count; /* threshold for pseudoprinting, explained later */
1556 integer first_count; /* another variable for pseudoprinting */
1558 @ @<Allocate or initialize ...@>=
1559 memset(mp->dig,0,23);
1560 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1562 @ @<Dealloc variables@>=
1563 xfree(mp->trick_buf);
1565 @ @<Initialize the output routines@>=
1566 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1568 @ Macro abbreviations for output to the terminal and to the log file are
1569 defined here for convenience. Some systems need special conventions
1570 for terminal output, and it is possible to adhere to those conventions
1571 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1572 @^system dependencies@>
1574 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1575 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1576 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1577 @d wterm_cr fprintf(mp->term_out,"\n")
1578 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1579 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1580 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1581 @d wlog_cr fprintf(mp->log_file, "\n")
1582 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1583 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1584 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1585 @d wps_cr fprintf(mp->ps_file,"\n")
1587 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1588 use an array |wr_file| that will be declared later.
1590 @d mp_print_text(A) mp_print_str(mp,text((A)))
1593 void mp_print_ln (MP mp);
1594 void mp_print_visible_char (MP mp, ASCII_code s);
1595 void mp_print_char (MP mp, ASCII_code k);
1596 void mp_print (MP mp, char *s);
1597 void mp_print_str (MP mp, str_number s);
1598 void mp_print_nl (MP mp, char *s);
1599 void mp_print_two (MP mp,scaled x, scaled y) ;
1600 void mp_print_scaled (MP mp,scaled s);
1602 @ @<Basic print...@>=
1603 void mp_print_ln (MP mp) { /* prints an end-of-line */
1604 switch (mp->selector) {
1607 mp->term_offset=0; mp->file_offset=0;
1610 wlog_cr; mp->file_offset=0;
1613 wterm_cr; mp->term_offset=0;
1616 wps_cr; mp->ps_offset=0;
1623 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1625 } /* note that |tally| is not affected */
1627 @ The |print_visible_char| procedure sends one character to the desired
1628 destination, using the |xchr| array to map it into an external character
1629 compatible with |input_ln|. (It assumes that it is always called with
1630 a visible ASCII character.) All printing comes through |print_ln| or
1631 |print_char|, which ultimately calls |print_visible_char|, hence these
1632 routines are the ones that limit lines to at most |max_print_line| characters.
1633 But we must make an exception for the \ps\ output file since it is not safe
1634 to cut up lines arbitrarily in \ps.
1636 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1637 |do_compaction| and |do_compaction| can call the error routines. Actually,
1638 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1640 @<Basic printing...@>=
1641 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1642 switch (mp->selector) {
1644 wterm_chr(mp->xchr[s]); wlog_chr(mp->xchr[s]);
1645 incr(mp->term_offset); incr(mp->file_offset);
1646 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1647 wterm_cr; mp->term_offset=0;
1649 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1650 wlog_cr; mp->file_offset=0;
1654 wlog_chr(mp->xchr[s]); incr(mp->file_offset);
1655 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1658 wterm_chr(mp->xchr[s]); incr(mp->term_offset);
1659 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1663 wps_cr; mp->ps_offset=0;
1665 wps_chr(mp->xchr[s]); incr(mp->ps_offset);
1671 if ( mp->tally<mp->trick_count )
1672 mp->trick_buf[mp->tally % mp->error_line]=s;
1675 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1676 mp_unit_str_room(mp);
1677 if ( mp->pool_ptr>=mp->pool_size )
1678 goto DONE; /* drop characters if string space is full */
1683 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",mp->xchr[s]);
1689 @ The |print_char| procedure sends one character to the desired destination.
1690 File names and string expressions might contain |ASCII_code| values that
1691 can't be printed using |print_visible_char|. These characters will be
1692 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1693 (This procedure assumes that it is safe to bypass all checks for unprintable
1694 characters when |selector| is in the range |0..max_write_files-1| or when
1695 |selector=ps_file_only|. In the former case the user might want to write
1696 unprintable characters, and in the latter case the \ps\ printing routines
1697 check their arguments themselves before calling |print_char| or |print|.)
1699 @d print_lc_hex(A) do { l=(A);
1700 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1703 @<Basic printing...@>=
1704 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1705 int l; /* small index or counter */
1706 if ( mp->selector<pseudo || mp->selector>=write_file) {
1707 mp_print_visible_char(mp, k);
1708 } else if ( @<Character |k| cannot be printed@> ) {
1711 mp_print_visible_char(mp, k+0100);
1712 } else if ( k<0200 ) {
1713 mp_print_visible_char(mp, k-0100);
1715 print_lc_hex(k / 16);
1716 print_lc_hex(k % 16);
1719 mp_print_visible_char(mp, k);
1723 @ An entire string is output by calling |print|. Note that if we are outputting
1724 the single standard ASCII character \.c, we could call |print("c")|, since
1725 |"c"=99| is the number of a single-character string, as explained above. But
1726 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1727 routine when it knows that this is safe. (The present implementation
1728 assumes that it is always safe to print a visible ASCII character.)
1729 @^system dependencies@>
1732 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1735 mp_print_char(mp, ss[j]); incr(j);
1741 void mp_print (MP mp, char *ss) {
1742 mp_do_print(mp, ss, strlen(ss));
1744 void mp_print_str (MP mp, str_number s) {
1745 pool_pointer j; /* current character code position */
1746 if ( (s<0)||(s>mp->max_str_ptr) ) {
1747 mp_do_print(mp,"???",3); /* this can't happen */
1751 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1755 @ Here is the very first thing that \MP\ prints: a headline that identifies
1756 the version number and base name. The |term_offset| variable is temporarily
1757 incorrect, but the discrepancy is not serious since we assume that the banner
1758 and mem identifier together will occupy at most |max_print_line|
1759 character positions.
1761 @<Initialize the output...@>=
1763 wterm (version_string);
1764 if (mp->mem_ident!=NULL)
1765 mp_print(mp,mp->mem_ident);
1769 @ The procedure |print_nl| is like |print|, but it makes sure that the
1770 string appears at the beginning of a new line.
1773 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1774 switch(mp->selector) {
1776 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1779 if ( mp->file_offset>0 ) mp_print_ln(mp);
1782 if ( mp->term_offset>0 ) mp_print_ln(mp);
1785 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1791 } /* there are no other cases */
1795 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1798 void mp_print_the_digs (MP mp, eight_bits k) {
1799 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1801 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1805 @ The following procedure, which prints out the decimal representation of a
1806 given integer |n|, has been written carefully so that it works properly
1807 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1808 to negative arguments, since such operations are not implemented consistently
1809 by all \PASCAL\ compilers.
1812 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1813 integer m; /* used to negate |n| in possibly dangerous cases */
1814 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1816 mp_print_char(mp, '-');
1817 if ( n>-100000000 ) {
1820 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1824 mp->dig[0]=0; incr(n);
1829 mp->dig[k]=n % 10; n=n / 10; incr(k);
1831 mp_print_the_digs(mp, k);
1835 void mp_print_int (MP mp,integer n);
1837 @ \MP\ also makes use of a trivial procedure to print two digits. The
1838 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1841 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1843 mp_print_char(mp, '0'+(n / 10));
1844 mp_print_char(mp, '0'+(n % 10));
1847 @ Here is a procedure that asks the user to type a line of input,
1848 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1849 The input is placed into locations |first| through |last-1| of the
1850 |buffer| array, and echoed on the transcript file if appropriate.
1852 This procedure is never called when |interaction<mp_scroll_mode|.
1854 @d prompt_input(A) do {
1855 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1856 } while (0) /* prints a string and gets a line of input */
1859 void mp_term_input (MP mp) { /* gets a line from the terminal */
1860 size_t k; /* index into |buffer| */
1861 update_terminal; /* Now the user sees the prompt for sure */
1862 if (!mp_input_ln(mp, mp->term_in,true))
1863 mp_fatal_error(mp, "End of file on the terminal!");
1864 @.End of file on the terminal@>
1865 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1866 decr(mp->selector); /* prepare to echo the input */
1867 if ( mp->last!=mp->first ) {
1868 for (k=mp->first;k<=mp->last-1;k++) {
1869 mp_print_char(mp, mp->buffer[k]);
1873 mp->buffer[mp->last]='%';
1874 incr(mp->selector); /* restore previous status */
1877 @* \[6] Reporting errors.
1878 When something anomalous is detected, \MP\ typically does something like this:
1879 $$\vbox{\halign{#\hfil\cr
1880 |print_err("Something anomalous has been detected");|\cr
1881 |help3("This is the first line of my offer to help.")|\cr
1882 |("This is the second line. I'm trying to")|\cr
1883 |("explain the best way for you to proceed.");|\cr
1885 A two-line help message would be given using |help2|, etc.; these informal
1886 helps should use simple vocabulary that complements the words used in the
1887 official error message that was printed. (Outside the U.S.A., the help
1888 messages should preferably be translated into the local vernacular. Each
1889 line of help is at most 60 characters long, in the present implementation,
1890 so that |max_print_line| will not be exceeded.)
1892 The |print_err| procedure supplies a `\.!' before the official message,
1893 and makes sure that the terminal is awake if a stop is going to occur.
1894 The |error| procedure supplies a `\..' after the official message, then it
1895 shows the location of the error; and if |interaction=error_stop_mode|,
1896 it also enters into a dialog with the user, during which time the help
1897 message may be printed.
1898 @^system dependencies@>
1900 @ The global variable |interaction| has four settings, representing increasing
1901 amounts of user interaction:
1905 mp_unspecified_mode=0, /* extra value for command-line switch */
1906 mp_batch_mode, /* omits all stops and omits terminal output */
1907 mp_nonstop_mode, /* omits all stops */
1908 mp_scroll_mode, /* omits error stops */
1909 mp_error_stop_mode, /* stops at every opportunity to interact */
1913 int interaction; /* current level of interaction */
1915 @ @<Option variables@>=
1916 int interaction; /* current level of interaction */
1918 @ Set it here so it can be overwritten by the commandline
1920 @<Allocate or initialize ...@>=
1921 mp->interaction=opt.interaction;
1922 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1923 mp->interaction=mp_error_stop_mode;
1924 if (mp->interaction<mp_unspecified_mode)
1925 mp->interaction=mp_batch_mode;
1929 @d print_err(A) mp_print_err(mp,(A))
1932 void mp_print_err(MP mp, char * A);
1935 void mp_print_err(MP mp, char * A) {
1936 if ( mp->interaction==mp_error_stop_mode )
1938 mp_print_nl(mp, "! ");
1944 @ \MP\ is careful not to call |error| when the print |selector| setting
1945 might be unusual. The only possible values of |selector| at the time of
1948 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1949 and |log_file| not yet open);
1951 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1953 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1955 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1957 @<Initialize the print |selector| based on |interaction|@>=
1958 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1960 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1961 routine is active when |error| is called; this ensures that |get_next|
1962 will never be called recursively.
1965 The global variable |history| records the worst level of error that
1966 has been detected. It has four possible values: |spotless|, |warning_issued|,
1967 |error_message_issued|, and |fatal_error_stop|.
1969 Another global variable, |error_count|, is increased by one when an
1970 |error| occurs without an interactive dialog, and it is reset to zero at
1971 the end of every statement. If |error_count| reaches 100, \MP\ decides
1972 that there is no point in continuing further.
1974 @d spotless 0 /* |history| value when nothing has been amiss yet */
1975 @d warning_issued 1 /* |history| value when |begin_diagnostic| has been called */
1976 @d error_message_issued 2 /* |history| value when |error| has been called */
1977 @d fatal_error_stop 3 /* |history| value when termination was premature */
1980 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
1981 int history; /* has the source input been clean so far? */
1982 int error_count; /* the number of scrolled errors since the last statement ended */
1984 @ The value of |history| is initially |fatal_error_stop|, but it will
1985 be changed to |spotless| if \MP\ survives the initialization process.
1987 @<Allocate or ...@>=
1988 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
1990 @ Since errors can be detected almost anywhere in \MP, we want to declare the
1991 error procedures near the beginning of the program. But the error procedures
1992 in turn use some other procedures, which need to be declared |forward|
1993 before we get to |error| itself.
1995 It is possible for |error| to be called recursively if some error arises
1996 when |get_next| is being used to delete a token, and/or if some fatal error
1997 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
1999 is never more than two levels deep.
2002 void mp_get_next (MP mp);
2003 void mp_term_input (MP mp);
2004 void mp_show_context (MP mp);
2005 void mp_begin_file_reading (MP mp);
2006 void mp_open_log_file (MP mp);
2007 void mp_clear_for_error_prompt (MP mp);
2008 void mp_debug_help (MP mp);
2009 @<Declare the procedure called |flush_string|@>
2012 void mp_normalize_selector (MP mp);
2014 @ Individual lines of help are recorded in the array |help_line|, which
2015 contains entries in positions |0..(help_ptr-1)|. They should be printed
2016 in reverse order, i.e., with |help_line[0]| appearing last.
2018 @d hlp1(A) mp->help_line[0]=(A); }
2019 @d hlp2(A) mp->help_line[1]=(A); hlp1
2020 @d hlp3(A) mp->help_line[2]=(A); hlp2
2021 @d hlp4(A) mp->help_line[3]=(A); hlp3
2022 @d hlp5(A) mp->help_line[4]=(A); hlp4
2023 @d hlp6(A) mp->help_line[5]=(A); hlp5
2024 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2025 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2026 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2027 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2028 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2029 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2030 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2033 char * help_line[6]; /* helps for the next |error| */
2034 unsigned int help_ptr; /* the number of help lines present */
2035 boolean use_err_help; /* should the |err_help| string be shown? */
2036 str_number err_help; /* a string set up by \&{errhelp} */
2037 str_number filename_template; /* a string set up by \&{filenametemplate} */
2039 @ @<Allocate or ...@>=
2040 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2042 @ The |jump_out| procedure just cuts across all active procedure levels and
2043 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2044 whole program. It is used when there is no recovery from a particular error.
2046 Some \PASCAL\ compilers do not implement non-local |goto| statements.
2047 @^system dependencies@>
2048 In such cases the body of |jump_out| should simply be
2049 `|close_files_and_terminate|;\thinspace' followed by a call on some system
2050 procedure that quietly terminates the program.
2053 void mp_jump_out (MP mp) {
2057 @ Here now is the general |error| routine.
2060 void mp_error (MP mp) { /* completes the job of error reporting */
2061 ASCII_code c; /* what the user types */
2062 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2063 pool_pointer j; /* character position being printed */
2064 if ( mp->history<error_message_issued ) mp->history=error_message_issued;
2065 mp_print_char(mp, '.'); mp_show_context(mp);
2066 if ( mp->interaction==mp_error_stop_mode ) {
2067 @<Get user's advice and |return|@>;
2069 incr(mp->error_count);
2070 if ( mp->error_count==100 ) {
2071 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2072 @.That makes 100 errors...@>
2073 mp->history=fatal_error_stop; mp_jump_out(mp);
2075 @<Put help message on the transcript file@>;
2077 void mp_warn (MP mp, char *msg) {
2078 int saved_selector = mp->selector;
2079 mp_normalize_selector(mp);
2080 mp_print_nl(mp,"Warning: ");
2082 mp->selector = saved_selector;
2086 void mp_error (MP mp);
2087 void mp_warn (MP mp, char *msg);
2090 @ @<Get user's advice...@>=
2093 mp_clear_for_error_prompt(mp); prompt_input("? ");
2095 if ( mp->last==mp->first ) return;
2096 c=mp->buffer[mp->first];
2097 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2098 @<Interpret code |c| and |return| if done@>;
2101 @ It is desirable to provide an `\.E' option here that gives the user
2102 an easy way to return from \MP\ to the system editor, with the offending
2103 line ready to be edited. But such an extension requires some system
2104 wizardry, so the present implementation simply types out the name of the
2106 edited and the relevant line number.
2107 @^system dependencies@>
2110 typedef void (*run_editor_command)(MP, char *, int);
2113 run_editor_command run_editor;
2115 @ @<Option variables@>=
2116 run_editor_command run_editor;
2118 @ @<Allocate or initialize ...@>=
2119 set_callback_option(run_editor);
2121 @ @<Exported function headers@>=
2122 void mp_run_editor (MP mp, char *fname, int fline);
2124 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2125 mp_print_nl(mp, "You want to edit file ");
2126 @.You want to edit file x@>
2127 mp_print(mp, fname);
2128 mp_print(mp, " at line ");
2129 mp_print_int(mp, fline);
2130 mp->interaction=mp_scroll_mode;
2135 There is a secret `\.D' option available when the debugging routines haven't
2139 @<Interpret code |c| and |return| if done@>=
2141 case '0': case '1': case '2': case '3': case '4':
2142 case '5': case '6': case '7': case '8': case '9':
2143 if ( mp->deletions_allowed ) {
2144 @<Delete |c-"0"| tokens and |continue|@>;
2149 mp_debug_help(mp); continue;
2153 if ( mp->file_ptr>0 ){
2154 (mp->run_editor)(mp,
2155 str(mp->input_stack[mp->file_ptr].name_field),
2160 @<Print the help information and |continue|@>;
2163 @<Introduce new material from the terminal and |return|@>;
2165 case 'Q': case 'R': case 'S':
2166 @<Change the interaction level and |return|@>;
2169 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2174 @<Print the menu of available options@>
2176 @ @<Print the menu...@>=
2178 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2179 @.Type <return> to proceed...@>
2180 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2181 mp_print_nl(mp, "I to insert something, ");
2182 if ( mp->file_ptr>0 )
2183 mp_print(mp, "E to edit your file,");
2184 if ( mp->deletions_allowed )
2185 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2186 mp_print_nl(mp, "H for help, X to quit.");
2189 @ Here the author of \MP\ apologizes for making use of the numerical
2190 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2191 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2192 @^Knuth, Donald Ervin@>
2194 @<Change the interaction...@>=
2196 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2197 mp_print(mp, "OK, entering ");
2199 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2200 case 'R': mp_print(mp, "nonstopmode"); break;
2201 case 'S': mp_print(mp, "scrollmode"); break;
2202 } /* there are no other cases */
2203 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2206 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2207 contain the material inserted by the user; otherwise another prompt will
2208 be given. In order to understand this part of the program fully, you need
2209 to be familiar with \MP's input stacks.
2211 @<Introduce new material...@>=
2213 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2214 if ( mp->last>mp->first+1 ) {
2215 loc=mp->first+1; mp->buffer[mp->first]=' ';
2217 prompt_input("insert>"); loc=mp->first;
2220 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2223 @ We allow deletion of up to 99 tokens at a time.
2225 @<Delete |c-"0"| tokens...@>=
2227 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2228 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2229 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2233 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2234 @<Decrease the string reference count, if the current token is a string@>;
2237 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2238 help2("I have just deleted some text, as you asked.")
2239 ("You can now delete more, or insert, or whatever.");
2240 mp_show_context(mp);
2244 @ @<Print the help info...@>=
2246 if ( mp->use_err_help ) {
2247 @<Print the string |err_help|, possibly on several lines@>;
2248 mp->use_err_help=false;
2250 if ( mp->help_ptr==0 ) {
2251 help2("Sorry, I don't know how to help in this situation.")
2252 ("Maybe you should try asking a human?");
2255 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2256 } while (mp->help_ptr!=0);
2258 help4("Sorry, I already gave what help I could...")
2259 ("Maybe you should try asking a human?")
2260 ("An error might have occurred before I noticed any problems.")
2261 ("``If all else fails, read the instructions.''");
2265 @ @<Print the string |err_help|, possibly on several lines@>=
2266 j=mp->str_start[mp->err_help];
2267 while ( j<str_stop(mp->err_help) ) {
2268 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2269 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2270 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2271 else { incr(j); mp_print_char(mp, '%'); };
2275 @ @<Put help message on the transcript file@>=
2276 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2277 if ( mp->use_err_help ) {
2278 mp_print_nl(mp, "");
2279 @<Print the string |err_help|, possibly on several lines@>;
2281 while ( mp->help_ptr>0 ){
2282 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2286 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2289 @ In anomalous cases, the print selector might be in an unknown state;
2290 the following subroutine is called to fix things just enough to keep
2291 running a bit longer.
2294 void mp_normalize_selector (MP mp) {
2295 if ( mp->log_opened ) mp->selector=term_and_log;
2296 else mp->selector=term_only;
2297 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2298 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2301 @ The following procedure prints \MP's last words before dying.
2303 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2304 mp->interaction=mp_scroll_mode; /* no more interaction */
2305 if ( mp->log_opened ) mp_error(mp);
2306 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2307 mp->history=fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2311 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2312 mp_normalize_selector(mp);
2313 print_err("Emergency stop"); help1(s); succumb;
2318 void mp_fatal_error (MP mp, char *s);
2321 @ Here is the most dreaded error message.
2324 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2325 mp_normalize_selector(mp);
2326 print_err("MetaPost capacity exceeded, sorry [");
2327 @.MetaPost capacity exceeded ...@>
2328 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2329 help2("If you really absolutely need more capacity,")
2330 ("you can ask a wizard to enlarge me.");
2335 void mp_overflow (MP mp, char *s, integer n);
2337 @ The program might sometime run completely amok, at which point there is
2338 no choice but to stop. If no previous error has been detected, that's bad
2339 news; a message is printed that is really intended for the \MP\
2340 maintenance person instead of the user (unless the user has been
2341 particularly diabolical). The index entries for `this can't happen' may
2342 help to pinpoint the problem.
2346 void mp_confusion (MP mp,char *s);
2348 @ @<Error hand...@>=
2349 void mp_confusion (MP mp,char *s) {
2350 /* consistency check violated; |s| tells where */
2351 mp_normalize_selector(mp);
2352 if ( mp->history<error_message_issued ) {
2353 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2354 @.This can't happen@>
2355 help1("I'm broken. Please show this to someone who can fix can fix");
2357 print_err("I can\'t go on meeting you like this");
2358 @.I can't go on...@>
2359 help2("One of your faux pas seems to have wounded me deeply...")
2360 ("in fact, I'm barely conscious. Please fix it and try again.");
2365 @ Users occasionally want to interrupt \MP\ while it's running.
2366 If the \PASCAL\ runtime system allows this, one can implement
2367 a routine that sets the global variable |interrupt| to some nonzero value
2368 when such an interrupt is signaled. Otherwise there is probably at least
2369 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2370 @^system dependencies@>
2373 @d check_interrupt { if ( mp->interrupt!=0 )
2374 mp_pause_for_instructions(mp); }
2377 integer interrupt; /* should \MP\ pause for instructions? */
2378 boolean OK_to_interrupt; /* should interrupts be observed? */
2380 @ @<Allocate or ...@>=
2381 mp->interrupt=0; mp->OK_to_interrupt=true;
2383 @ When an interrupt has been detected, the program goes into its
2384 highest interaction level and lets the user have the full flexibility of
2385 the |error| routine. \MP\ checks for interrupts only at times when it is
2389 void mp_pause_for_instructions (MP mp) {
2390 if ( mp->OK_to_interrupt ) {
2391 mp->interaction=mp_error_stop_mode;
2392 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2394 print_err("Interruption");
2397 ("Try to insert some instructions for me (e.g.,`I show x'),")
2398 ("unless you just want to quit by typing `X'.");
2399 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2404 @ Many of \MP's error messages state that a missing token has been
2405 inserted behind the scenes. We can save string space and program space
2406 by putting this common code into a subroutine.
2409 void mp_missing_err (MP mp, char *s) {
2410 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2411 @.Missing...inserted@>
2414 @* \[7] Arithmetic with scaled numbers.
2415 The principal computations performed by \MP\ are done entirely in terms of
2416 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2417 program can be carried out in exactly the same way on a wide variety of
2418 computers, including some small ones.
2421 But \PASCAL\ does not define the |div|
2422 operation in the case of negative dividends; for example, the result of
2423 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2424 There are two principal types of arithmetic: ``translation-preserving,''
2425 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2426 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2427 two \MP s, which can produce different results, although the differences
2428 should be negligible when the language is being used properly.
2429 The \TeX\ processor has been defined carefully so that both varieties
2430 of arithmetic will produce identical output, but it would be too
2431 inefficient to constrain \MP\ in a similar way.
2433 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2435 @ One of \MP's most common operations is the calculation of
2436 $\lfloor{a+b\over2}\rfloor$,
2437 the midpoint of two given integers |a| and~|b|. The only decent way to do
2438 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2439 far more efficient to calculate `|(a+b)| right shifted one bit'.
2441 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2442 in this program. If \MP\ is being implemented with languages that permit
2443 binary shifting, the |half| macro should be changed to make this operation
2444 as efficient as possible. Since some languages have shift operators that can
2445 only be trusted to work on positive numbers, there is also a macro |halfp|
2446 that is used only when the quantity being halved is known to be positive
2449 @d half(A) ((A)) / 2
2450 @d halfp(A) ((A)) / 2
2452 @ A single computation might use several subroutine calls, and it is
2453 desirable to avoid producing multiple error messages in case of arithmetic
2454 overflow. So the routines below set the global variable |arith_error| to |true|
2455 instead of reporting errors directly to the user.
2458 boolean arith_error; /* has arithmetic overflow occurred recently? */
2460 @ @<Allocate or ...@>=
2461 mp->arith_error=false;
2463 @ At crucial points the program will say |check_arith|, to test if
2464 an arithmetic error has been detected.
2466 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2469 void mp_clear_arith (MP mp) {
2470 print_err("Arithmetic overflow");
2471 @.Arithmetic overflow@>
2472 help4("Uh, oh. A little while ago one of the quantities that I was")
2473 ("computing got too large, so I'm afraid your answers will be")
2474 ("somewhat askew. You'll probably have to adopt different")
2475 ("tactics next time. But I shall try to carry on anyway.");
2477 mp->arith_error=false;
2480 @ Addition is not always checked to make sure that it doesn't overflow,
2481 but in places where overflow isn't too unlikely the |slow_add| routine
2484 @c integer mp_slow_add (MP mp,integer x, integer y) {
2486 if ( y<=el_gordo-x ) {
2489 mp->arith_error=true;
2492 } else if ( -y<=el_gordo+x ) {
2495 mp->arith_error=true;
2500 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2501 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2502 positions from the right end of a binary computer word.
2504 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2505 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2506 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2507 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2508 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2509 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2512 typedef integer scaled; /* this type is used for scaled integers */
2513 typedef unsigned char small_number; /* this type is self-explanatory */
2515 @ The following function is used to create a scaled integer from a given decimal
2516 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2517 given in |dig[i]|, and the calculation produces a correctly rounded result.
2520 scaled mp_round_decimals (MP mp,small_number k) {
2521 /* converts a decimal fraction */
2522 integer a = 0; /* the accumulator */
2524 a=(a+mp->dig[k]*two) / 10;
2529 @ Conversely, here is a procedure analogous to |print_int|. If the output
2530 of this procedure is subsequently read by \MP\ and converted by the
2531 |round_decimals| routine above, it turns out that the original value will
2532 be reproduced exactly. A decimal point is printed only if the value is
2533 not an integer. If there is more than one way to print the result with
2534 the optimum number of digits following the decimal point, the closest
2535 possible value is given.
2537 The invariant relation in the \&{repeat} loop is that a sequence of
2538 decimal digits yet to be printed will yield the original number if and only if
2539 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2540 We can stop if and only if $f=0$ satisfies this condition; the loop will
2541 terminate before $s$ can possibly become zero.
2543 @<Basic printing...@>=
2544 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2545 scaled delta; /* amount of allowable inaccuracy */
2547 mp_print_char(mp, '-');
2548 negate(s); /* print the sign, if negative */
2550 mp_print_int(mp, s / unity); /* print the integer part */
2554 mp_print_char(mp, '.');
2557 s=s+0100000-(delta / 2); /* round the final digit */
2558 mp_print_char(mp, '0'+(s / unity));
2565 @ We often want to print two scaled quantities in parentheses,
2566 separated by a comma.
2568 @<Basic printing...@>=
2569 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2570 mp_print_char(mp, '(');
2571 mp_print_scaled(mp, x);
2572 mp_print_char(mp, ',');
2573 mp_print_scaled(mp, y);
2574 mp_print_char(mp, ')');
2577 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2578 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2579 arithmetic with 28~significant bits of precision. A |fraction| denotes
2580 a scaled integer whose binary point is assumed to be 28 bit positions
2583 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2584 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2585 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2586 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2587 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2590 typedef integer fraction; /* this type is used for scaled fractions */
2592 @ In fact, the two sorts of scaling discussed above aren't quite
2593 sufficient; \MP\ has yet another, used internally to keep track of angles
2594 in units of $2^{-20}$ degrees.
2596 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2597 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2598 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2599 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2602 typedef integer angle; /* this type is used for scaled angles */
2604 @ The |make_fraction| routine produces the |fraction| equivalent of
2605 |p/q|, given integers |p| and~|q|; it computes the integer
2606 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2607 positive. If |p| and |q| are both of the same scaled type |t|,
2608 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2609 and it's also possible to use the subroutine ``backwards,'' using
2610 the relation |make_fraction(t,fraction)=t| between scaled types.
2612 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2613 sets |arith_error:=true|. Most of \MP's internal computations have
2614 been designed to avoid this sort of error.
2616 If this subroutine were programmed in assembly language on a typical
2617 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2618 double-precision product can often be input to a fixed-point division
2619 instruction. But when we are restricted to \PASCAL\ arithmetic it
2620 is necessary either to resort to multiple-precision maneuvering
2621 or to use a simple but slow iteration. The multiple-precision technique
2622 would be about three times faster than the code adopted here, but it
2623 would be comparatively long and tricky, involving about sixteen
2624 additional multiplications and divisions.
2626 This operation is part of \MP's ``inner loop''; indeed, it will
2627 consume nearly 10\pct! of the running time (exclusive of input and output)
2628 if the code below is left unchanged. A machine-dependent recoding
2629 will therefore make \MP\ run faster. The present implementation
2630 is highly portable, but slow; it avoids multiplication and division
2631 except in the initial stage. System wizards should be careful to
2632 replace it with a routine that is guaranteed to produce identical
2633 results in all cases.
2634 @^system dependencies@>
2636 As noted below, a few more routines should also be replaced by machine-dependent
2637 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2638 such changes aren't advisable; simplicity and robustness are
2639 preferable to trickery, unless the cost is too high.
2643 fraction mp_make_fraction (MP mp,integer p, integer q);
2644 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2646 @ If FIXPT is not defined, we need these preprocessor values
2648 @d ELGORDO 0x7fffffff
2649 @d TWEXP31 2147483648.0
2650 @d TWEXP28 268435456.0
2652 @d TWEXP_16 (1.0/65536.0)
2653 @d TWEXP_28 (1.0/268435456.0)
2657 fraction mp_make_fraction (MP mp,integer p, integer q) {
2659 integer f; /* the fraction bits, with a leading 1 bit */
2660 integer n; /* the integer part of $\vert p/q\vert$ */
2661 integer be_careful; /* disables certain compiler optimizations */
2662 boolean negative = false; /* should the result be negated? */
2664 negate(p); negative=true;
2668 if ( q==0 ) mp_confusion(mp, '/');
2670 @:this can't happen /}{\quad \./@>
2671 negate(q); negative = ! negative;
2675 mp->arith_error=true;
2676 return ( negative ? -el_gordo : el_gordo);
2678 n=(n-1)*fraction_one;
2679 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2680 return (negative ? (-(f+n)) : (f+n));
2686 if (q==0) mp_confusion(mp,'/');
2688 d = TWEXP28 * (double)p /(double)q;
2691 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2693 if (d==i && ( ((q>0 ? -q : q)&077777)
2694 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2697 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2699 if (d==i && ( ((q>0 ? q : -q)&077777)
2700 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2706 @ The |repeat| loop here preserves the following invariant relations
2707 between |f|, |p|, and~|q|:
2708 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2709 $p_0$ is the original value of~$p$.
2711 Notice that the computation specifies
2712 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2713 Let us hope that optimizing compilers do not miss this point; a
2714 special variable |be_careful| is used to emphasize the necessary
2715 order of computation. Optimizing compilers should keep |be_careful|
2716 in a register, not store it in memory.
2719 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2723 be_careful=p-q; p=be_careful+p;
2729 } while (f<fraction_one);
2731 if ( be_careful+p>=0 ) incr(f);
2734 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2735 given integer~|q| by a fraction~|f|. When the operands are positive, it
2736 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2739 This routine is even more ``inner loopy'' than |make_fraction|;
2740 the present implementation consumes almost 20\pct! of \MP's computation
2741 time during typical jobs, so a machine-language substitute is advisable.
2742 @^inner loop@> @^system dependencies@>
2745 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2749 integer mp_take_fraction (MP mp,integer q, fraction f) {
2750 integer p; /* the fraction so far */
2751 boolean negative; /* should the result be negated? */
2752 integer n; /* additional multiple of $q$ */
2753 integer be_careful; /* disables certain compiler optimizations */
2754 @<Reduce to the case that |f>=0| and |q>0|@>;
2755 if ( f<fraction_one ) {
2758 n=f / fraction_one; f=f % fraction_one;
2759 if ( q<=el_gordo / n ) {
2762 mp->arith_error=true; n=el_gordo;
2766 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2767 be_careful=n-el_gordo;
2768 if ( be_careful+p>0 ){
2769 mp->arith_error=true; n=el_gordo-p;
2776 integer mp_take_fraction (MP mp,integer p, fraction q) {
2779 d = (double)p * (double)q * TWEXP_28;
2783 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2784 mp->arith_error = true;
2788 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2792 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2793 mp->arith_error = true;
2797 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2803 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2807 negate( f); negative=true;
2810 negate(q); negative=! negative;
2813 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2814 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2815 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2818 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2819 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2820 if ( q<fraction_four ) {
2822 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2827 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2833 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2834 analogous to |take_fraction| but with a different scaling.
2835 Given positive operands, |take_scaled|
2836 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2838 Once again it is a good idea to use a machine-language replacement if
2839 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2840 when the Computer Modern fonts are being generated.
2845 integer mp_take_scaled (MP mp,integer q, scaled f) {
2846 integer p; /* the fraction so far */
2847 boolean negative; /* should the result be negated? */
2848 integer n; /* additional multiple of $q$ */
2849 integer be_careful; /* disables certain compiler optimizations */
2850 @<Reduce to the case that |f>=0| and |q>0|@>;
2854 n=f / unity; f=f % unity;
2855 if ( q<=el_gordo / n ) {
2858 mp->arith_error=true; n=el_gordo;
2862 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2863 be_careful=n-el_gordo;
2864 if ( be_careful+p>0 ) {
2865 mp->arith_error=true; n=el_gordo-p;
2867 return ( negative ?(-(n+p)) :(n+p));
2869 integer mp_take_scaled (MP mp,integer p, scaled q) {
2872 d = (double)p * (double)q * TWEXP_16;
2876 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2877 mp->arith_error = true;
2881 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2885 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2886 mp->arith_error = true;
2890 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2896 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2897 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2899 if ( q<fraction_four ) {
2901 p = (odd(f) ? halfp(p+q) : halfp(p));
2906 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2911 @ For completeness, there's also |make_scaled|, which computes a
2912 quotient as a |scaled| number instead of as a |fraction|.
2913 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2914 operands are positive. \ (This procedure is not used especially often,
2915 so it is not part of \MP's inner loop.)
2918 scaled mp_make_scaled (MP mp,integer p, integer q) {
2920 integer f; /* the fraction bits, with a leading 1 bit */
2921 integer n; /* the integer part of $\vert p/q\vert$ */
2922 boolean negative; /* should the result be negated? */
2923 integer be_careful; /* disables certain compiler optimizations */
2924 if ( p>=0 ) negative=false;
2925 else { negate(p); negative=true; };
2928 if ( q==0 ) mp_confusion(mp, "/");
2929 @:this can't happen /}{\quad \./@>
2931 negate(q); negative=! negative;
2935 mp->arith_error=true;
2936 return (negative ? (-el_gordo) : el_gordo);
2939 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2940 return ( negative ? (-(f+n)) :(f+n));
2946 if (q==0) mp_confusion(mp,"/");
2948 d = TWEXP16 * (double)p /(double)q;
2951 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2953 if (d==i && ( ((q>0 ? -q : q)&077777)
2954 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2957 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2959 if (d==i && ( ((q>0 ? q : -q)&077777)
2960 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2966 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
2969 be_careful=p-q; p=be_careful+p;
2970 if ( p>=0 ) f=f+f+1;
2971 else { f+=f; p=p+q; };
2974 if ( be_careful+p>=0 ) incr(f)
2976 @ Here is a typical example of how the routines above can be used.
2977 It computes the function
2978 $${1\over3\tau}f(\theta,\phi)=
2979 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
2980 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
2981 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
2982 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
2983 fudge factor for placing the first control point of a curve that starts
2984 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
2985 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
2987 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
2988 (It's a sum of eight terms whose absolute values can be bounded using
2989 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
2990 is positive; and since the tension $\tau$ is constrained to be at least
2991 $3\over4$, the numerator is less than $16\over3$. The denominator is
2992 nonnegative and at most~6. Hence the fixed-point calculations below
2993 are guaranteed to stay within the bounds of a 32-bit computer word.
2995 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
2996 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
2997 $\sin\phi$, and $\cos\phi$, respectively.
3000 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3001 fraction cf, scaled t) {
3002 integer acc,num,denom; /* registers for intermediate calculations */
3003 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3004 acc=mp_take_fraction(mp, acc,ct-cf);
3005 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3006 /* $2^{28}\sqrt2\approx379625062.497$ */
3007 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3008 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3009 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3010 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3011 /* |make_scaled(fraction,scaled)=fraction| */
3012 if ( num / 4>=denom )
3013 return fraction_four;
3015 return mp_make_fraction(mp, num, denom);
3018 @ The following somewhat different subroutine tests rigorously if $ab$ is
3019 greater than, equal to, or less than~$cd$,
3020 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3021 The result is $+1$, 0, or~$-1$ in the three respective cases.
3023 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3026 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3027 integer q,r; /* temporary registers */
3028 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3030 q = a / d; r = c / b;
3032 return ( q>r ? 1 : -1);
3033 q = a % d; r = c % b;
3036 if ( q==0 ) return -1;
3038 } /* now |a>d>0| and |c>b>0| */
3041 @ @<Reduce to the case that |a...@>=
3042 if ( a<0 ) { negate(a); negate(b); };
3043 if ( c<0 ) { negate(c); negate(d); };
3046 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3050 return ( a==0 ? 0 : -1);
3051 q=a; a=c; c=q; q=-b; b=-d; d=q;
3052 } else if ( b<=0 ) {
3053 if ( b<0 ) if ( a>0 ) return -1;
3054 return (c==0 ? 0 : -1);
3057 @ We conclude this set of elementary routines with some simple rounding
3058 and truncation operations that are coded in a machine-independent fashion.
3059 The routines are slightly complicated because we want them to work
3060 without overflow whenever $-2^{31}\L x<2^{31}$.
3063 #define mp_floor_scaled(M,i) ((i)&(-65536))
3064 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3065 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3068 @* \[8] Algebraic and transcendental functions.
3069 \MP\ computes all of the necessary special functions from scratch, without
3070 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3072 @ To get the square root of a |scaled| number |x|, we want to calculate
3073 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3074 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3075 determines $s$ by an iterative method that maintains the invariant
3076 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3077 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3078 might, however, be zero at the start of the first iteration.
3081 scaled mp_square_rt (MP mp,scaled x) ;
3084 scaled mp_square_rt (MP mp,scaled x) {
3085 small_number k; /* iteration control counter */
3086 integer y,q; /* registers for intermediate calculations */
3088 @<Handle square root of zero or negative argument@>;
3091 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3094 if ( x<fraction_four ) y=0;
3095 else { x=x-fraction_four; y=1; };
3097 @<Decrease |k| by 1, maintaining the invariant
3098 relations between |x|, |y|, and~|q|@>;
3104 @ @<Handle square root of zero...@>=
3107 print_err("Square root of ");
3108 @.Square root...replaced by 0@>
3109 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3110 help2("Since I don't take square roots of negative numbers,")
3111 ("I'm zeroing this one. Proceed, with fingers crossed.");
3117 @ @<Decrease |k| by 1, maintaining...@>=
3119 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3120 x=x-fraction_four; incr(y);
3122 x+=x; y=y+y-q; q+=q;
3123 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3124 if ( y>q ){ y=y-q; q=q+2; }
3125 else if ( y<=0 ) { q=q-2; y=y+q; };
3128 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3129 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3130 @^Moler, Cleve Barry@>
3131 @^Morrison, Donald Ross@>
3132 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3133 in such a way that their Pythagorean sum remains invariant, while the
3134 smaller argument decreases.
3137 integer mp_pyth_add (MP mp,integer a, integer b) {
3138 fraction r; /* register used to transform |a| and |b| */
3139 boolean big; /* is the result dangerously near $2^{31}$? */
3141 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3143 if ( a<fraction_two ) {
3146 a=a / 4; b=b / 4; big=true;
3147 }; /* we reduced the precision to avoid arithmetic overflow */
3148 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3150 if ( a<fraction_two ) {
3153 mp->arith_error=true; a=el_gordo;
3160 @ The key idea here is to reflect the vector $(a,b)$ about the
3161 line through $(a,b/2)$.
3163 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3165 r=mp_make_fraction(mp, b,a);
3166 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3168 r=mp_make_fraction(mp, r,fraction_four+r);
3169 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3173 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3174 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3177 integer mp_pyth_sub (MP mp,integer a, integer b) {
3178 fraction r; /* register used to transform |a| and |b| */
3179 boolean big; /* is the input dangerously near $2^{31}$? */
3182 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3184 if ( a<fraction_four ) {
3187 a=halfp(a); b=halfp(b); big=true;
3189 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3195 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3197 r=mp_make_fraction(mp, b,a);
3198 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3200 r=mp_make_fraction(mp, r,fraction_four-r);
3201 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3204 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3207 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3208 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3209 mp_print(mp, " has been replaced by 0");
3211 help2("Since I don't take square roots of negative numbers,")
3212 ("I'm zeroing this one. Proceed, with fingers crossed.");
3218 @ The subroutines for logarithm and exponential involve two tables.
3219 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3220 a bit more calculation, which the author claims to have done correctly:
3221 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3222 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3225 @d two_to_the(A) (1<<(A))
3228 static const integer spec_log[29] = { 0, /* special logarithms */
3229 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3230 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3231 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3233 @ @<Local variables for initialization@>=
3234 integer k; /* all-purpose loop index */
3237 @ Here is the routine that calculates $2^8$ times the natural logarithm
3238 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3239 when |x| is a given positive integer.
3241 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3242 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3243 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3244 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3245 during the calculation, and sixteen auxiliary bits to extend |y| are
3246 kept in~|z| during the initial argument reduction. (We add
3247 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3248 not become negative; also, the actual amount subtracted from~|y| is~96,
3249 not~100, because we want to add~4 for rounding before the final division by~8.)
3252 scaled mp_m_log (MP mp,scaled x) {
3253 integer y,z; /* auxiliary registers */
3254 integer k; /* iteration counter */
3256 @<Handle non-positive logarithm@>;
3258 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3259 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3260 while ( x<fraction_four ) {
3261 x+=x; y=y-93032639; z=z-48782;
3262 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3263 y=y+(z / unity); k=2;
3264 while ( x>fraction_four+4 ) {
3265 @<Increase |k| until |x| can be multiplied by a
3266 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3272 @ @<Increase |k| until |x| can...@>=
3274 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3275 while ( x<fraction_four+z ) { z=halfp(z+1); k=k+1; };
3276 y=y+spec_log[k]; x=x-z;
3279 @ @<Handle non-positive logarithm@>=
3281 print_err("Logarithm of ");
3282 @.Logarithm...replaced by 0@>
3283 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3284 help2("Since I don't take logs of non-positive numbers,")
3285 ("I'm zeroing this one. Proceed, with fingers crossed.");
3290 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3291 when |x| is |scaled|. The result is an integer approximation to
3292 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3295 scaled mp_m_exp (MP mp,scaled x) {
3296 small_number k; /* loop control index */
3297 integer y,z; /* auxiliary registers */
3298 if ( x>174436200 ) {
3299 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3300 mp->arith_error=true;
3302 } else if ( x<-197694359 ) {
3303 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3307 z=-8*x; y=04000000; /* $y=2^{20}$ */
3309 if ( x<=127919879 ) {
3311 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3313 z=8*(174436200-x); /* |z| is always nonnegative */
3317 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3319 return ((y+8) / 16);
3325 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3326 to multiplying |y| by $1-2^{-k}$.
3328 A subtle point (which had to be checked) was that if $x=127919879$, the
3329 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3330 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3331 and by~16 when |k=27|.
3333 @<Multiply |y| by...@>=
3336 while ( z>=spec_log[k] ) {
3338 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3343 @ The trigonometric subroutines use an auxiliary table such that
3344 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3345 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3348 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3349 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3350 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3352 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3353 returns the |angle| whose tangent points in the direction $(x,y)$.
3354 This subroutine first determines the correct octant, then solves the
3355 problem for |0<=y<=x|, then converts the result appropriately to
3356 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3357 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3358 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3360 The octants are represented in a ``Gray code,'' since that turns out
3361 to be computationally simplest.
3367 @d second_octant (first_octant+switch_x_and_y)
3368 @d third_octant (first_octant+switch_x_and_y+negate_x)
3369 @d fourth_octant (first_octant+negate_x)
3370 @d fifth_octant (first_octant+negate_x+negate_y)
3371 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3372 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3373 @d eighth_octant (first_octant+negate_y)
3376 angle mp_n_arg (MP mp,integer x, integer y) {
3377 angle z; /* auxiliary register */
3378 integer t; /* temporary storage */
3379 small_number k; /* loop counter */
3380 int octant; /* octant code */
3382 octant=first_octant;
3384 negate(x); octant=first_octant+negate_x;
3387 negate(y); octant=octant+negate_y;
3390 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3393 @<Handle undefined arg@>;
3395 @<Set variable |z| to the arg of $(x,y)$@>;
3396 @<Return an appropriate answer based on |z| and |octant|@>;
3400 @ @<Handle undefined arg@>=
3402 print_err("angle(0,0) is taken as zero");
3403 @.angle(0,0)...zero@>
3404 help2("The `angle' between two identical points is undefined.")
3405 ("I'm zeroing this one. Proceed, with fingers crossed.");
3410 @ @<Return an appropriate answer...@>=
3412 case first_octant: return z;
3413 case second_octant: return (ninety_deg-z);
3414 case third_octant: return (ninety_deg+z);
3415 case fourth_octant: return (one_eighty_deg-z);
3416 case fifth_octant: return (z-one_eighty_deg);
3417 case sixth_octant: return (-z-ninety_deg);
3418 case seventh_octant: return (z-ninety_deg);
3419 case eighth_octant: return (-z);
3420 }; /* there are no other cases */
3423 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3424 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3427 @<Set variable |z| to the arg...@>=
3428 while ( x>=fraction_two ) {
3429 x=halfp(x); y=halfp(y);
3433 while ( x<fraction_one ) {
3436 @<Increase |z| to the arg of $(x,y)$@>;
3439 @ During the calculations of this section, variables |x| and~|y|
3440 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3441 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3442 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3443 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3444 coordinates whose angle has decreased by~$\phi$; in the special case
3445 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3446 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3447 @^Meggitt, John E.@>
3448 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3450 The initial value of |x| will be multiplied by at most
3451 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3452 there is no chance of integer overflow.
3454 @<Increase |z|...@>=
3459 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3464 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3467 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3468 and cosine of that angle. The results of this routine are
3469 stored in global integer variables |n_sin| and |n_cos|.
3472 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3474 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3475 the purpose of |n_sin_cos(z)| is to set
3476 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3477 for some rather large number~|r|. The maximum of |x| and |y|
3478 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3479 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3482 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3484 small_number k; /* loop control variable */
3485 int q; /* specifies the quadrant */
3486 fraction r; /* magnitude of |(x,y)| */
3487 integer x,y,t; /* temporary registers */
3488 while ( z<0 ) z=z+three_sixty_deg;
3489 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3490 q=z / forty_five_deg; z=z % forty_five_deg;
3491 x=fraction_one; y=x;
3492 if ( ! odd(q) ) z=forty_five_deg-z;
3493 @<Subtract angle |z| from |(x,y)|@>;
3494 @<Convert |(x,y)| to the octant determined by~|q|@>;
3495 r=mp_pyth_add(mp, x,y);
3496 mp->n_cos=mp_make_fraction(mp, x,r);
3497 mp->n_sin=mp_make_fraction(mp, y,r);
3500 @ In this case the octants are numbered sequentially.
3502 @<Convert |(x,...@>=
3505 case 1: t=x; x=y; y=t; break;
3506 case 2: t=x; x=-y; y=t; break;
3507 case 3: negate(x); break;
3508 case 4: negate(x); negate(y); break;
3509 case 5: t=x; x=-y; y=-t; break;
3510 case 6: t=x; x=y; y=-t; break;
3511 case 7: negate(y); break;
3512 } /* there are no other cases */
3514 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3515 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3516 that this loop is guaranteed to terminate before the (nonexistent) value
3517 |spec_atan[27]| would be required.
3519 @<Subtract angle |z|...@>=
3522 if ( z>=spec_atan[k] ) {
3523 z=z-spec_atan[k]; t=x;
3524 x=t+y / two_to_the(k);
3525 y=y-t / two_to_the(k);
3529 if ( y<0 ) y=0 /* this precaution may never be needed */
3531 @ And now let's complete our collection of numeric utility routines
3532 by considering random number generation.
3533 \MP\ generates pseudo-random numbers with the additive scheme recommended
3534 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3535 results are random fractions between 0 and |fraction_one-1|, inclusive.
3537 There's an auxiliary array |randoms| that contains 55 pseudo-random
3538 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3539 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3540 The global variable |j_random| tells which element has most recently
3542 The global variable |sys_random_seed| was introduced in version 0.9,
3543 for the sole reason of stressing the fact that the initial value of the
3544 random seed is system-dependant. The pascal code below will initialize
3545 this variable to |(internal[time] div unity)+internal[day]|, but this is
3546 not good enough on modern fast machines that are capable of running
3547 multiple MetaPost processes within the same second.
3548 @^system dependencies@>
3551 fraction randoms[55]; /* the last 55 random values generated */
3552 int j_random; /* the number of unused |randoms| */
3553 scaled sys_random_seed; /* the default random seed */
3556 typedef scaled (*get_random_seed_command)(MP mp);
3559 get_random_seed_command get_random_seed;
3561 @ @<Option variables@>=
3562 get_random_seed_command get_random_seed;
3564 @ @<Allocate or initialize ...@>=
3565 set_callback_option(get_random_seed);
3567 @ @<Exported function headers@>=
3568 scaled mp_get_random_seed (MP mp);
3571 scaled mp_get_random_seed (MP mp) {
3572 return (mp->internal[mp_time] / unity)+mp->internal[day];
3575 @ To consume a random fraction, the program below will say `|next_random|'
3576 and then it will fetch |randoms[j_random]|.
3578 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3579 else decr(mp->j_random); }
3582 void mp_new_randoms (MP mp) {
3583 int k; /* index into |randoms| */
3584 fraction x; /* accumulator */
3585 for (k=0;k<=23;k++) {
3586 x=mp->randoms[k]-mp->randoms[k+31];
3587 if ( x<0 ) x=x+fraction_one;
3590 for (k=24;k<= 54;k++){
3591 x=mp->randoms[k]-mp->randoms[k-24];
3592 if ( x<0 ) x=x+fraction_one;
3599 void mp_init_randoms (MP mp,scaled seed);
3601 @ To initialize the |randoms| table, we call the following routine.
3604 void mp_init_randoms (MP mp,scaled seed) {
3605 fraction j,jj,k; /* more or less random integers */
3606 int i; /* index into |randoms| */
3608 while ( j>=fraction_one ) j=halfp(j);
3610 for (i=0;i<=54;i++ ){
3612 if ( k<0 ) k=k+fraction_one;
3613 mp->randoms[(i*21)% 55]=j;
3617 mp_new_randoms(mp); /* ``warm up'' the array */
3620 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3621 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3623 Note that the call of |take_fraction| will produce the values 0 and~|x|
3624 with about half the probability that it will produce any other particular
3625 values between 0 and~|x|, because it rounds its answers.
3628 scaled mp_unif_rand (MP mp,scaled x) {
3629 scaled y; /* trial value */
3630 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3631 if ( y==abs(x) ) return 0;
3632 else if ( x>0 ) return y;
3636 @ Finally, a normal deviate with mean zero and unit standard deviation
3637 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3638 {\sl The Art of Computer Programming\/}).
3641 scaled mp_norm_rand (MP mp) {
3642 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3646 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3647 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3648 next_random; u=mp->randoms[mp->j_random];
3649 } while (abs(x)>=u);
3650 x=mp_make_fraction(mp, x,u);
3651 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3652 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3656 @* \[9] Packed data.
3657 In order to make efficient use of storage space, \MP\ bases its major data
3658 structures on a |memory_word|, which contains either a (signed) integer,
3659 possibly scaled, or a small number of fields that are one half or one
3660 quarter of the size used for storing integers.
3662 If |x| is a variable of type |memory_word|, it contains up to four
3663 fields that can be referred to as follows:
3664 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3665 |x|&.|int|&(an |integer|)\cr
3666 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3667 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3668 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3670 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3671 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3672 This is somewhat cumbersome to write, and not very readable either, but
3673 macros will be used to make the notation shorter and more transparent.
3674 The code below gives a formal definition of |memory_word| and
3675 its subsidiary types, using packed variant records. \MP\ makes no
3676 assumptions about the relative positions of the fields within a word.
3678 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3679 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3681 @ Here are the inequalities that the quarterword and halfword values
3682 must satisfy (or rather, the inequalities that they mustn't satisfy):
3684 @<Check the ``constant''...@>=
3685 if (mp->ini_version) {
3686 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3688 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3690 if ( max_quarterword<255 ) mp->bad=9;
3691 if ( max_halfword<65535 ) mp->bad=10;
3692 if ( max_quarterword>max_halfword ) mp->bad=11;
3693 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3694 if ( mp->max_strings>max_halfword ) mp->bad=13;
3696 @ The macros |qi| and |qo| are used for input to and output
3697 from quarterwords. These are legacy macros.
3698 @^system dependencies@>
3700 @d qo(A) (A) /* to read eight bits from a quarterword */
3701 @d qi(A) (A) /* to store eight bits in a quarterword */
3703 @ The reader should study the following definitions closely:
3704 @^system dependencies@>
3706 @d sc cint /* |scaled| data is equivalent to |integer| */
3709 typedef short quarterword; /* 1/4 of a word */
3710 typedef int halfword; /* 1/2 of a word */
3715 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3722 quarterword B2, B3, B0, B1;
3737 @ When debugging, we may want to print a |memory_word| without knowing
3738 what type it is; so we print it in all modes.
3739 @^dirty \PASCAL@>@^debugging@>
3742 void mp_print_word (MP mp,memory_word w) {
3743 /* prints |w| in all ways */
3744 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3745 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3746 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3747 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3748 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3749 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3750 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3751 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3752 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3753 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3754 mp_print_int(mp, w.qqqq.b3);
3758 @* \[10] Dynamic memory allocation.
3760 The \MP\ system does nearly all of its own memory allocation, so that it
3761 can readily be transported into environments that do not have automatic
3762 facilities for strings, garbage collection, etc., and so that it can be in
3763 control of what error messages the user receives. The dynamic storage
3764 requirements of \MP\ are handled by providing a large array |mem| in
3765 which consecutive blocks of words are used as nodes by the \MP\ routines.
3767 Pointer variables are indices into this array, or into another array
3768 called |eqtb| that will be explained later. A pointer variable might
3769 also be a special flag that lies outside the bounds of |mem|, so we
3770 allow pointers to assume any |halfword| value. The minimum memory
3771 index represents a null pointer.
3773 @d null 0 /* the null pointer */
3776 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3778 @ The |mem| array is divided into two regions that are allocated separately,
3779 but the dividing line between these two regions is not fixed; they grow
3780 together until finding their ``natural'' size in a particular job.
3781 Locations less than or equal to |lo_mem_max| are used for storing
3782 variable-length records consisting of two or more words each. This region
3783 is maintained using an algorithm similar to the one described in exercise
3784 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3785 appears in the allocated nodes; the program is responsible for knowing the
3786 relevant size when a node is freed. Locations greater than or equal to
3787 |hi_mem_min| are used for storing one-word records; a conventional
3788 \.{AVAIL} stack is used for allocation in this region.
3790 Locations of |mem| between |0| and |mem_top| may be dumped as part
3791 of preloaded format files, by the \.{INIMP} preprocessor.
3793 Production versions of \MP\ may extend the memory at the top end in order to
3794 provide more space; these locations, between |mem_top| and |mem_max|,
3795 are always used for single-word nodes.
3797 The key pointers that govern |mem| allocation have a prescribed order:
3798 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3801 memory_word *mem; /* the big dynamic storage area */
3802 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3803 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3808 @d xrealloc mp_xrealloc
3809 @d xmalloc mp_xmalloc
3810 @d xstrdup mp_xstrdup
3811 @d XREALLOC(a,b,c) a = xrealloc(a,b,sizeof(c));
3813 @<Declare helpers@>=
3814 void mp_xfree (void *x);
3815 void *mp_xrealloc (void *p, size_t nmem, size_t size) ;
3816 void *mp_xmalloc (size_t nmem, size_t size) ;
3817 char *mp_xstrdup(const char *s);
3819 @ The |max_size_test| guards against overflow, on the assumption that
3820 |size_t| is at least 31bits wide.
3822 @d max_size_test 0x7FFFFFFF
3825 void mp_xfree (void *x) {
3826 if (x!=NULL) free(x);
3828 void *mp_xrealloc (void *p, size_t nmem, size_t size) {
3830 if ((max_size_test/size)<nmem) {
3831 fprintf(stderr,"Memory size overflow!\n");
3834 w = realloc (p,(nmem*size));
3836 fprintf(stderr,"Out of memory!\n");
3841 void *mp_xmalloc (size_t nmem, size_t size) {
3843 if ((max_size_test/size)<nmem) {
3844 fprintf(stderr,"Memory size overflow!\n");
3847 w = malloc (nmem*size);
3849 fprintf(stderr,"Out of memory!\n");
3854 char *mp_xstrdup(const char *s) {
3860 fprintf(stderr,"Out of memory!\n");
3868 @<Allocate or initialize ...@>=
3869 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3871 @ @<Dealloc variables@>=
3874 @ Users who wish to study the memory requirements of particular applications can
3875 can use optional special features that keep track of current and
3876 maximum memory usage. When code between the delimiters |stat| $\ldots$
3877 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3878 report these statistics when |tracing_stats| is positive.
3881 integer var_used; integer dyn_used; /* how much memory is in use */
3883 @ Let's consider the one-word memory region first, since it's the
3884 simplest. The pointer variable |mem_end| holds the highest-numbered location
3885 of |mem| that has ever been used. The free locations of |mem| that
3886 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3887 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3888 and |rh| fields of |mem[p]| when it is of this type. The single-word
3889 free locations form a linked list
3890 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3891 terminated by |null|.
3893 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3894 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3897 pointer avail; /* head of the list of available one-word nodes */
3898 pointer mem_end; /* the last one-word node used in |mem| */
3900 @ If one-word memory is exhausted, it might mean that the user has forgotten
3901 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3902 later that try to help pinpoint the trouble.
3905 @<Declare the procedure called |show_token_list|@>;
3906 @<Declare the procedure called |runaway|@>
3908 @ The function |get_avail| returns a pointer to a new one-word node whose
3909 |link| field is null. However, \MP\ will halt if there is no more room left.
3913 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3914 pointer p; /* the new node being got */
3915 p=mp->avail; /* get top location in the |avail| stack */
3917 mp->avail=link(mp->avail); /* and pop it off */
3918 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3919 incr(mp->mem_end); p=mp->mem_end;
3921 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3922 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3923 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3924 mp_overflow(mp, "main memory size",mp->mem_max);
3925 /* quit; all one-word nodes are busy */
3926 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3929 link(p)=null; /* provide an oft-desired initialization of the new node */
3930 incr(mp->dyn_used);/* maintain statistics */
3934 @ Conversely, a one-word node is recycled by calling |free_avail|.
3936 @d free_avail(A) /* single-word node liberation */
3937 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3939 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3940 overhead at the expense of extra programming. This macro is used in
3941 the places that would otherwise account for the most calls of |get_avail|.
3944 @d fast_get_avail(A) {
3945 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3946 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3947 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3950 @ The available-space list that keeps track of the variable-size portion
3951 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3952 pointed to by the roving pointer |rover|.
3954 Each empty node has size 2 or more; the first word contains the special
3955 value |max_halfword| in its |link| field and the size in its |info| field;
3956 the second word contains the two pointers for double linking.
3958 Each nonempty node also has size 2 or more. Its first word is of type
3959 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3960 Otherwise there is complete flexibility with respect to the contents
3961 of its other fields and its other words.
3963 (We require |mem_max<max_halfword| because terrible things can happen
3964 when |max_halfword| appears in the |link| field of a nonempty node.)
3966 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
3967 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
3968 @d node_size info /* the size field in empty variable-size nodes */
3969 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
3970 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
3973 pointer rover; /* points to some node in the list of empties */
3975 @ A call to |get_node| with argument |s| returns a pointer to a new node
3976 of size~|s|, which must be 2~or more. The |link| field of the first word
3977 of this new node is set to null. An overflow stop occurs if no suitable
3980 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
3981 areas and returns the value |max_halfword|.
3984 pointer mp_get_node (MP mp,integer s) ;
3987 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
3988 pointer p; /* the node currently under inspection */
3989 pointer q; /* the node physically after node |p| */
3990 integer r; /* the newly allocated node, or a candidate for this honor */
3991 integer t,tt; /* temporary registers */
3994 p=mp->rover; /* start at some free node in the ring */
3996 @<Try to allocate within node |p| and its physical successors,
3997 and |goto found| if allocation was possible@>;
3998 p=rlink(p); /* move to the next node in the ring */
3999 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4000 if ( s==010000000000 ) {
4001 return max_halfword;
4003 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4004 if ( mp->lo_mem_max+2<=max_halfword ) {
4005 @<Grow more variable-size memory and |goto restart|@>;
4008 mp_overflow(mp, "main memory size",mp->mem_max);
4009 /* sorry, nothing satisfactory is left */
4010 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4012 link(r)=null; /* this node is now nonempty */
4013 mp->var_used=mp->var_used+s; /* maintain usage statistics */
4017 @ The lower part of |mem| grows by 1000 words at a time, unless
4018 we are very close to going under. When it grows, we simply link
4019 a new node into the available-space list. This method of controlled
4020 growth helps to keep the |mem| usage consecutive when \MP\ is
4021 implemented on ``virtual memory'' systems.
4024 @<Grow more variable-size memory and |goto restart|@>=
4026 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4027 t=mp->lo_mem_max+1000;
4029 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4030 /* |lo_mem_max+2<=t<hi_mem_min| */
4032 if ( t>max_halfword ) t=max_halfword;
4033 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4034 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag; node_size(q)=t-mp->lo_mem_max;
4035 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4040 @ @<Try to allocate...@>=
4041 q=p+node_size(p); /* find the physical successor */
4042 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4043 t=rlink(q); tt=llink(q);
4045 if ( q==mp->rover ) mp->rover=t;
4046 llink(t)=tt; rlink(tt)=t;
4051 @<Allocate from the top of node |p| and |goto found|@>;
4054 if ( rlink(p)!=p ) {
4055 @<Allocate entire node |p| and |goto found|@>;
4058 node_size(p)=q-p /* reset the size in case it grew */
4060 @ @<Allocate from the top...@>=
4062 node_size(p)=r-p; /* store the remaining size */
4063 mp->rover=p; /* start searching here next time */
4067 @ Here we delete node |p| from the ring, and let |rover| rove around.
4069 @<Allocate entire...@>=
4071 mp->rover=rlink(p); t=llink(p);
4072 llink(mp->rover)=t; rlink(t)=mp->rover;
4076 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4077 the operation |free_node(p,s)| will make its words available, by inserting
4078 |p| as a new empty node just before where |rover| now points.
4081 void mp_free_node (MP mp, pointer p, halfword s) ;
4084 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4086 pointer q; /* |llink(rover)| */
4087 node_size(p)=s; link(p)=empty_flag;
4089 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4090 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4091 mp->var_used=mp->var_used-s; /* maintain statistics */
4094 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4095 available space list. The list is probably very short at such times, so a
4096 simple insertion sort is used. The smallest available location will be
4097 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4100 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4102 pointer p,q,r; /* indices into |mem| */
4103 pointer old_rover; /* initial |rover| setting */
4104 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4105 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4106 while ( p!=old_rover ) {
4107 @<Sort |p| into the list starting at |rover|
4108 and advance |p| to |rlink(p)|@>;
4111 while ( rlink(p)!=max_halfword ) {
4112 llink(rlink(p))=p; p=rlink(p);
4114 rlink(p)=mp->rover; llink(mp->rover)=p;
4117 @ The following |while| loop is guaranteed to
4118 terminate, since the list that starts at
4119 |rover| ends with |max_halfword| during the sorting procedure.
4122 if ( p<mp->rover ) {
4123 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4126 while ( rlink(q)<p ) q=rlink(q);
4127 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4130 @* \[11] Memory layout.
4131 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4132 more efficient than dynamic allocation when we can get away with it. For
4133 example, locations |0| to |1| are always used to store a
4134 two-word dummy token whose second word is zero.
4135 The following macro definitions accomplish the static allocation by giving
4136 symbolic names to the fixed positions. Static variable-size nodes appear
4137 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4138 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4140 @d null_dash (2) /* the first two words are reserved for a null value */
4141 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4142 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4143 @d temp_val (zero_val+2) /* two words for a temporary value node */
4144 @d end_attr temp_val /* we use |end_attr+2| only */
4145 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4146 @d test_pen (inf_val+2)
4147 /* nine words for a pen used when testing the turning number */
4148 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4149 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4150 allocated word in the variable-size |mem| */
4152 @d sentinel mp->mem_top /* end of sorted lists */
4153 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4154 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4155 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4156 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4157 the one-word |mem| */
4159 @ The following code gets the dynamic part of |mem| off to a good start,
4160 when \MP\ is initializing itself the slow way.
4162 @<Initialize table entries (done by \.{INIMP} only)@>=
4163 @^data structure assumptions@>
4164 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4165 link(mp->rover)=empty_flag;
4166 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4167 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4168 mp->lo_mem_max=mp->rover+1000; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4169 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4170 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4172 mp->avail=null; mp->mem_end=mp->mem_top;
4173 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4174 mp->var_used=lo_mem_stat_max+1;
4175 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4176 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4178 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4179 nodes that starts at a given position, until coming to |sentinel| or a
4180 pointer that is not in the one-word region. Another procedure,
4181 |flush_node_list|, frees an entire linked list of one-word and two-word
4182 nodes, until coming to a |null| pointer.
4186 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4187 pointer q,r; /* list traversers */
4188 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4193 if ( r<mp->hi_mem_min ) break;
4194 } while (r!=sentinel);
4195 /* now |q| is the last node on the list */
4196 link(q)=mp->avail; mp->avail=p;
4200 void mp_flush_node_list (MP mp,pointer p) {
4201 pointer q; /* the node being recycled */
4204 if ( q<mp->hi_mem_min )
4205 mp_free_node(mp, q,2);
4211 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4212 For example, some pointers might be wrong, or some ``dead'' nodes might not
4213 have been freed when the last reference to them disappeared. Procedures
4214 |check_mem| and |search_mem| are available to help diagnose such
4215 problems. These procedures make use of two arrays called |free| and
4216 |was_free| that are present only if \MP's debugging routines have
4217 been included. (You may want to decrease the size of |mem| while you
4221 Because |boolean|s are typedef-d as ints, it is better to use
4222 unsigned chars here.
4225 unsigned char *free; /* free cells */
4226 unsigned char *was_free; /* previously free cells */
4227 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4228 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4229 boolean panicking; /* do we want to check memory constantly? */
4231 @ @<Allocate or initialize ...@>=
4232 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4233 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4235 @ @<Dealloc variables@>=
4237 xfree(mp->was_free);
4239 @ @<Allocate or ...@>=
4240 mp->was_mem_end=0; /* indicate that everything was previously free */
4241 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4242 mp->panicking=false;
4244 @ @<Declare |mp_reallocate| functions@>=
4245 void mp_reallocate_memory(MP mp, int l) ;
4248 void mp_reallocate_memory(MP mp, int l) {
4249 XREALLOC(mp->free, (l+1), unsigned char);
4250 XREALLOC(mp->was_free, (l+1), unsigned char);
4251 XREALLOC(mp->mem, (l+1), memory_word);
4253 if (mp->ini_version)
4259 @ Procedure |check_mem| makes sure that the available space lists of
4260 |mem| are well formed, and it optionally prints out all locations
4261 that are reserved now but were free the last time this procedure was called.
4264 void mp_check_mem (MP mp,boolean print_locs ) {
4265 pointer p,q,r; /* current locations of interest in |mem| */
4266 boolean clobbered; /* is something amiss? */
4267 for (p=0;p<=mp->lo_mem_max;p++) {
4268 mp->free[p]=false; /* you can probably do this faster */
4270 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4271 mp->free[p]=false; /* ditto */
4273 @<Check single-word |avail| list@>;
4274 @<Check variable-size |avail| list@>;
4275 @<Check flags of unavailable nodes@>;
4276 @<Check the list of linear dependencies@>;
4278 @<Print newly busy locations@>;
4280 for (p=0;p<=mp->lo_mem_max;p++) {
4281 mp->was_free[p]=mp->free[p];
4283 for (p=mp->hi_mem_min;p<=mp->mem_end;p++) {
4284 mp->was_free[p]=mp->free[p];
4286 /* |was_free:=free| might be faster */
4287 mp->was_mem_end=mp->mem_end;
4288 mp->was_lo_max=mp->lo_mem_max;
4289 mp->was_hi_min=mp->hi_mem_min;
4292 @ @<Check single-word...@>=
4293 p=mp->avail; q=null; clobbered=false;
4295 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4296 else if ( mp->free[p] ) clobbered=true;
4298 mp_print_nl(mp, "AVAIL list clobbered at ");
4299 @.AVAIL list clobbered...@>
4300 mp_print_int(mp, q); break;
4302 mp->free[p]=true; q=p; p=link(q);
4305 @ @<Check variable-size...@>=
4306 p=mp->rover; q=null; clobbered=false;
4308 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4309 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4310 else if ( !(is_empty(p))||(node_size(p)<2)||
4311 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4313 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4314 @.Double-AVAIL list clobbered...@>
4315 mp_print_int(mp, q); break;
4317 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4318 if ( mp->free[q] ) {
4319 mp_print_nl(mp, "Doubly free location at ");
4320 @.Doubly free location...@>
4321 mp_print_int(mp, q); break;
4326 } while (p!=mp->rover)
4329 @ @<Check flags...@>=
4331 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4332 if ( is_empty(p) ) {
4333 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4336 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4337 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4340 @ @<Print newly busy...@>=
4342 @<Do intialization required before printing new busy locations@>;
4343 mp_print_nl(mp, "New busy locs:");
4345 for (p=0;p<= mp->lo_mem_max;p++ ) {
4346 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4347 @<Indicate that |p| is a new busy location@>;
4350 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4351 if ( ! mp->free[p] &&
4352 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4353 @<Indicate that |p| is a new busy location@>;
4356 @<Finish printing new busy locations@>;
4359 @ There might be many new busy locations so we are careful to print contiguous
4360 blocks compactly. During this operation |q| is the last new busy location and
4361 |r| is the start of the block containing |q|.
4363 @<Indicate that |p| is a new busy location@>=
4367 mp_print(mp, ".."); mp_print_int(mp, q);
4369 mp_print_char(mp, ' '); mp_print_int(mp, p);
4375 @ @<Do intialization required before printing new busy locations@>=
4376 q=mp->mem_max; r=mp->mem_max
4378 @ @<Finish printing new busy locations@>=
4380 mp_print(mp, ".."); mp_print_int(mp, q);
4383 @ The |search_mem| procedure attempts to answer the question ``Who points
4384 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4385 that might not be of type |two_halves|. Strictly speaking, this is
4387 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4388 point to |p| purely by coincidence). But for debugging purposes, we want
4389 to rule out the places that do {\sl not\/} point to |p|, so a few false
4390 drops are tolerable.
4393 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4394 integer q; /* current position being searched */
4395 for (q=0;q<=mp->lo_mem_max;q++) {
4397 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4400 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4403 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4405 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4408 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4411 @<Search |eqtb| for equivalents equal to |p|@>;
4414 @* \[12] The command codes.
4415 Before we can go much further, we need to define symbolic names for the internal
4416 code numbers that represent the various commands obeyed by \MP. These codes
4417 are somewhat arbitrary, but not completely so. For example,
4418 some codes have been made adjacent so that |case| statements in the
4419 program need not consider cases that are widely spaced, or so that |case|
4420 statements can be replaced by |if| statements. A command can begin an
4421 expression if and only if its code lies between |min_primary_command| and
4422 |max_primary_command|, inclusive. The first token of a statement that doesn't
4423 begin with an expression has a command code between |min_command| and
4424 |max_statement_command|, inclusive. Anything less than |min_command| is
4425 eliminated during macro expansions, and anything no more than |max_pre_command|
4426 is eliminated when expanding \TeX\ material. Ranges such as
4427 |min_secondary_command..max_secondary_command| are used when parsing
4428 expressions, but the relative ordering within such a range is generally not
4431 The ordering of the highest-numbered commands
4432 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4433 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4434 for the smallest two commands. The ordering is also important in the ranges
4435 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4437 At any rate, here is the list, for future reference.
4439 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4440 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4441 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4442 @d max_pre_command mpx_break
4443 @d if_test 4 /* conditional text (\&{if}) */
4444 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4445 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4446 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4447 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4448 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4449 @d relax 10 /* do nothing (\.{\char`\\}) */
4450 @d scan_tokens 11 /* put a string into the input buffer */
4451 @d expand_after 12 /* look ahead one token */
4452 @d defined_macro 13 /* a macro defined by the user */
4453 @d min_command (defined_macro+1)
4454 @d save_command 14 /* save a list of tokens (\&{save}) */
4455 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4456 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4457 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4458 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4459 @d ship_out_command 19 /* output a character (\&{shipout}) */
4460 @d add_to_command 20 /* add to edges (\&{addto}) */
4461 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4462 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4463 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4464 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4465 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4466 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4467 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4468 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4469 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4470 @d special_command 30 /* output special info (\&{special})
4471 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4472 @d write_command 31 /* write text to a file (\&{write}) */
4473 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4474 @d max_statement_command type_name
4475 @d min_primary_command type_name
4476 @d left_delimiter 33 /* the left delimiter of a matching pair */
4477 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4478 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4479 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4480 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4481 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4482 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4483 @d capsule_token 40 /* a value that has been put into a token list */
4484 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4485 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4486 @d min_suffix_token internal_quantity
4487 @d tag_token 43 /* a symbolic token without a primitive meaning */
4488 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4489 @d max_suffix_token numeric_token
4490 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4491 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4492 @d min_tertiary_command plus_or_minus
4493 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4494 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4495 @d max_tertiary_command tertiary_binary
4496 @d left_brace 48 /* the operator `\.{\char`\{}' */
4497 @d min_expression_command left_brace
4498 @d path_join 49 /* the operator `\.{..}' */
4499 @d ampersand 50 /* the operator `\.\&' */
4500 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4501 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4502 @d equals 53 /* the operator `\.=' */
4503 @d max_expression_command equals
4504 @d and_command 54 /* the operator `\&{and}' */
4505 @d min_secondary_command and_command
4506 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4507 @d slash 56 /* the operator `\./' */
4508 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4509 @d max_secondary_command secondary_binary
4510 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4511 @d controls 59 /* specify control points explicitly (\&{controls}) */
4512 @d tension 60 /* specify tension between knots (\&{tension}) */
4513 @d at_least 61 /* bounded tension value (\&{atleast}) */
4514 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4515 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4516 @d right_delimiter 64 /* the right delimiter of a matching pair */
4517 @d left_bracket 65 /* the operator `\.[' */
4518 @d right_bracket 66 /* the operator `\.]' */
4519 @d right_brace 67 /* the operator `\.{\char`\}}' */
4520 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4522 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4523 @d of_token 70 /* the operator `\&{of}' */
4524 @d to_token 71 /* the operator `\&{to}' */
4525 @d step_token 72 /* the operator `\&{step}' */
4526 @d until_token 73 /* the operator `\&{until}' */
4527 @d within_token 74 /* the operator `\&{within}' */
4528 @d lig_kern_token 75
4529 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4530 @d assignment 76 /* the operator `\.{:=}' */
4531 @d skip_to 77 /* the operation `\&{skipto}' */
4532 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4533 @d double_colon 79 /* the operator `\.{::}' */
4534 @d colon 80 /* the operator `\.:' */
4536 @d comma 81 /* the operator `\.,', must be |colon+1| */
4537 @d end_of_statement (mp->cur_cmd>comma)
4538 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4539 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4540 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4541 @d max_command_code stop
4542 @d outer_tag (max_command_code+1) /* protection code added to command code */
4545 typedef int command_code;
4547 @ Variables and capsules in \MP\ have a variety of ``types,''
4548 distinguished by the code numbers defined here. These numbers are also
4549 not completely arbitrary. Things that get expanded must have types
4550 |>mp_independent|; a type remaining after expansion is numeric if and only if
4551 its code number is at least |numeric_type|; objects containing numeric
4552 parts must have types between |transform_type| and |pair_type|;
4553 all other types must be smaller than |transform_type|; and among the types
4554 that are not unknown or vacuous, the smallest two must be |boolean_type|
4555 and |string_type| in that order.
4557 @d undefined 0 /* no type has been declared */
4558 @d unknown_tag 1 /* this constant is added to certain type codes below */
4559 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4560 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4564 mp_vacuous=1, /* no expression was present */
4565 mp_boolean_type, /* \&{boolean} with a known value */
4567 mp_string_type, /* \&{string} with a known value */
4569 mp_pen_type, /* \&{pen} with a known value */
4571 mp_path_type, /* \&{path} with a known value */
4573 mp_picture_type, /* \&{picture} with a known value */
4575 mp_transform_type, /* \&{transform} variable or capsule */
4576 mp_color_type, /* \&{color} variable or capsule */
4577 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4578 mp_pair_type, /* \&{pair} variable or capsule */
4579 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4580 mp_known, /* \&{numeric} with a known value */
4581 mp_dependent, /* a linear combination with |fraction| coefficients */
4582 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4583 mp_independent, /* \&{numeric} with unknown value */
4584 mp_token_list, /* variable name or suffix argument or text argument */
4585 mp_structured, /* variable with subscripts and attributes */
4586 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4587 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4591 void mp_print_type (MP mp,small_number t) ;
4593 @ @<Basic printing procedures@>=
4594 void mp_print_type (MP mp,small_number t) {
4596 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4597 case mp_boolean_type:mp_print(mp, "boolean"); break;
4598 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4599 case mp_string_type:mp_print(mp, "string"); break;
4600 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4601 case mp_pen_type:mp_print(mp, "pen"); break;
4602 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4603 case mp_path_type:mp_print(mp, "path"); break;
4604 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4605 case mp_picture_type:mp_print(mp, "picture"); break;
4606 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4607 case mp_transform_type:mp_print(mp, "transform"); break;
4608 case mp_color_type:mp_print(mp, "color"); break;
4609 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4610 case mp_pair_type:mp_print(mp, "pair"); break;
4611 case mp_known:mp_print(mp, "known numeric"); break;
4612 case mp_dependent:mp_print(mp, "dependent"); break;
4613 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4614 case mp_numeric_type:mp_print(mp, "numeric"); break;
4615 case mp_independent:mp_print(mp, "independent"); break;
4616 case mp_token_list:mp_print(mp, "token list"); break;
4617 case mp_structured:mp_print(mp, "mp_structured"); break;
4618 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4619 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4620 default: mp_print(mp, "undefined"); break;
4624 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4625 as well as a |type|. The possibilities for |name_type| are defined
4626 here; they will be explained in more detail later.
4630 mp_root=0, /* |name_type| at the top level of a variable */
4631 mp_saved_root, /* same, when the variable has been saved */
4632 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4633 mp_subscr, /* |name_type| in a subscript node */
4634 mp_attr, /* |name_type| in an attribute node */
4635 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4636 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4637 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4638 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4639 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4640 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4641 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4642 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4643 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4644 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4645 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4646 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4647 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4648 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4649 mp_capsule, /* |name_type| in stashed-away subexpressions */
4650 mp_token /* |name_type| in a numeric token or string token */
4653 @ Primitive operations that produce values have a secondary identification
4654 code in addition to their command code; it's something like genera and species.
4655 For example, `\.*' has the command code |primary_binary|, and its
4656 secondary identification is |times|. The secondary codes start at 30 so that
4657 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4658 are used as operators as well as type identifications. The relative values
4659 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4660 and |filled_op..bounded_op|. The restrictions are that
4661 |and_op-false_code=or_op-true_code|, that the ordering of
4662 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4663 and the ordering of |filled_op..bounded_op| must match that of the code
4664 values they test for.
4666 @d true_code 30 /* operation code for \.{true} */
4667 @d false_code 31 /* operation code for \.{false} */
4668 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4669 @d null_pen_code 33 /* operation code for \.{nullpen} */
4670 @d job_name_op 34 /* operation code for \.{jobname} */
4671 @d read_string_op 35 /* operation code for \.{readstring} */
4672 @d pen_circle 36 /* operation code for \.{pencircle} */
4673 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4674 @d read_from_op 38 /* operation code for \.{readfrom} */
4675 @d close_from_op 39 /* operation code for \.{closefrom} */
4676 @d odd_op 40 /* operation code for \.{odd} */
4677 @d known_op 41 /* operation code for \.{known} */
4678 @d unknown_op 42 /* operation code for \.{unknown} */
4679 @d not_op 43 /* operation code for \.{not} */
4680 @d decimal 44 /* operation code for \.{decimal} */
4681 @d reverse 45 /* operation code for \.{reverse} */
4682 @d make_path_op 46 /* operation code for \.{makepath} */
4683 @d make_pen_op 47 /* operation code for \.{makepen} */
4684 @d oct_op 48 /* operation code for \.{oct} */
4685 @d hex_op 49 /* operation code for \.{hex} */
4686 @d ASCII_op 50 /* operation code for \.{ASCII} */
4687 @d char_op 51 /* operation code for \.{char} */
4688 @d length_op 52 /* operation code for \.{length} */
4689 @d turning_op 53 /* operation code for \.{turningnumber} */
4690 @d color_model_part 54 /* operation code for \.{colormodel} */
4691 @d x_part 55 /* operation code for \.{xpart} */
4692 @d y_part 56 /* operation code for \.{ypart} */
4693 @d xx_part 57 /* operation code for \.{xxpart} */
4694 @d xy_part 58 /* operation code for \.{xypart} */
4695 @d yx_part 59 /* operation code for \.{yxpart} */
4696 @d yy_part 60 /* operation code for \.{yypart} */
4697 @d red_part 61 /* operation code for \.{redpart} */
4698 @d green_part 62 /* operation code for \.{greenpart} */
4699 @d blue_part 63 /* operation code for \.{bluepart} */
4700 @d cyan_part 64 /* operation code for \.{cyanpart} */
4701 @d magenta_part 65 /* operation code for \.{magentapart} */
4702 @d yellow_part 66 /* operation code for \.{yellowpart} */
4703 @d black_part 67 /* operation code for \.{blackpart} */
4704 @d grey_part 68 /* operation code for \.{greypart} */
4705 @d font_part 69 /* operation code for \.{fontpart} */
4706 @d text_part 70 /* operation code for \.{textpart} */
4707 @d path_part 71 /* operation code for \.{pathpart} */
4708 @d pen_part 72 /* operation code for \.{penpart} */
4709 @d dash_part 73 /* operation code for \.{dashpart} */
4710 @d sqrt_op 74 /* operation code for \.{sqrt} */
4711 @d m_exp_op 75 /* operation code for \.{mexp} */
4712 @d m_log_op 76 /* operation code for \.{mlog} */
4713 @d sin_d_op 77 /* operation code for \.{sind} */
4714 @d cos_d_op 78 /* operation code for \.{cosd} */
4715 @d floor_op 79 /* operation code for \.{floor} */
4716 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4717 @d char_exists_op 81 /* operation code for \.{charexists} */
4718 @d font_size 82 /* operation code for \.{fontsize} */
4719 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4720 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4721 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4722 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4723 @d arc_length 87 /* operation code for \.{arclength} */
4724 @d angle_op 88 /* operation code for \.{angle} */
4725 @d cycle_op 89 /* operation code for \.{cycle} */
4726 @d filled_op 90 /* operation code for \.{filled} */
4727 @d stroked_op 91 /* operation code for \.{stroked} */
4728 @d textual_op 92 /* operation code for \.{textual} */
4729 @d clipped_op 93 /* operation code for \.{clipped} */
4730 @d bounded_op 94 /* operation code for \.{bounded} */
4731 @d plus 95 /* operation code for \.+ */
4732 @d minus 96 /* operation code for \.- */
4733 @d times 97 /* operation code for \.* */
4734 @d over 98 /* operation code for \./ */
4735 @d pythag_add 99 /* operation code for \.{++} */
4736 @d pythag_sub 100 /* operation code for \.{+-+} */
4737 @d or_op 101 /* operation code for \.{or} */
4738 @d and_op 102 /* operation code for \.{and} */
4739 @d less_than 103 /* operation code for \.< */
4740 @d less_or_equal 104 /* operation code for \.{<=} */
4741 @d greater_than 105 /* operation code for \.> */
4742 @d greater_or_equal 106 /* operation code for \.{>=} */
4743 @d equal_to 107 /* operation code for \.= */
4744 @d unequal_to 108 /* operation code for \.{<>} */
4745 @d concatenate 109 /* operation code for \.\& */
4746 @d rotated_by 110 /* operation code for \.{rotated} */
4747 @d slanted_by 111 /* operation code for \.{slanted} */
4748 @d scaled_by 112 /* operation code for \.{scaled} */
4749 @d shifted_by 113 /* operation code for \.{shifted} */
4750 @d transformed_by 114 /* operation code for \.{transformed} */
4751 @d x_scaled 115 /* operation code for \.{xscaled} */
4752 @d y_scaled 116 /* operation code for \.{yscaled} */
4753 @d z_scaled 117 /* operation code for \.{zscaled} */
4754 @d in_font 118 /* operation code for \.{infont} */
4755 @d intersect 119 /* operation code for \.{intersectiontimes} */
4756 @d double_dot 120 /* operation code for improper \.{..} */
4757 @d substring_of 121 /* operation code for \.{substring} */
4758 @d min_of substring_of
4759 @d subpath_of 122 /* operation code for \.{subpath} */
4760 @d direction_time_of 123 /* operation code for \.{directiontime} */
4761 @d point_of 124 /* operation code for \.{point} */
4762 @d precontrol_of 125 /* operation code for \.{precontrol} */
4763 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4764 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4765 @d arc_time_of 128 /* operation code for \.{arctime} */
4766 @d mp_version 129 /* operation code for \.{mpversion} */
4768 @c void mp_print_op (MP mp,quarterword c) {
4769 if (c<=mp_numeric_type ) {
4770 mp_print_type(mp, c);
4773 case true_code:mp_print(mp, "true"); break;
4774 case false_code:mp_print(mp, "false"); break;
4775 case null_picture_code:mp_print(mp, "nullpicture"); break;
4776 case null_pen_code:mp_print(mp, "nullpen"); break;
4777 case job_name_op:mp_print(mp, "jobname"); break;
4778 case read_string_op:mp_print(mp, "readstring"); break;
4779 case pen_circle:mp_print(mp, "pencircle"); break;
4780 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4781 case read_from_op:mp_print(mp, "readfrom"); break;
4782 case close_from_op:mp_print(mp, "closefrom"); break;
4783 case odd_op:mp_print(mp, "odd"); break;
4784 case known_op:mp_print(mp, "known"); break;
4785 case unknown_op:mp_print(mp, "unknown"); break;
4786 case not_op:mp_print(mp, "not"); break;
4787 case decimal:mp_print(mp, "decimal"); break;
4788 case reverse:mp_print(mp, "reverse"); break;
4789 case make_path_op:mp_print(mp, "makepath"); break;
4790 case make_pen_op:mp_print(mp, "makepen"); break;
4791 case oct_op:mp_print(mp, "oct"); break;
4792 case hex_op:mp_print(mp, "hex"); break;
4793 case ASCII_op:mp_print(mp, "ASCII"); break;
4794 case char_op:mp_print(mp, "char"); break;
4795 case length_op:mp_print(mp, "length"); break;
4796 case turning_op:mp_print(mp, "turningnumber"); break;
4797 case x_part:mp_print(mp, "xpart"); break;
4798 case y_part:mp_print(mp, "ypart"); break;
4799 case xx_part:mp_print(mp, "xxpart"); break;
4800 case xy_part:mp_print(mp, "xypart"); break;
4801 case yx_part:mp_print(mp, "yxpart"); break;
4802 case yy_part:mp_print(mp, "yypart"); break;
4803 case red_part:mp_print(mp, "redpart"); break;
4804 case green_part:mp_print(mp, "greenpart"); break;
4805 case blue_part:mp_print(mp, "bluepart"); break;
4806 case cyan_part:mp_print(mp, "cyanpart"); break;
4807 case magenta_part:mp_print(mp, "magentapart"); break;
4808 case yellow_part:mp_print(mp, "yellowpart"); break;
4809 case black_part:mp_print(mp, "blackpart"); break;
4810 case grey_part:mp_print(mp, "greypart"); break;
4811 case color_model_part:mp_print(mp, "colormodel"); break;
4812 case font_part:mp_print(mp, "fontpart"); break;
4813 case text_part:mp_print(mp, "textpart"); break;
4814 case path_part:mp_print(mp, "pathpart"); break;
4815 case pen_part:mp_print(mp, "penpart"); break;
4816 case dash_part:mp_print(mp, "dashpart"); break;
4817 case sqrt_op:mp_print(mp, "sqrt"); break;
4818 case m_exp_op:mp_print(mp, "mexp"); break;
4819 case m_log_op:mp_print(mp, "mlog"); break;
4820 case sin_d_op:mp_print(mp, "sind"); break;
4821 case cos_d_op:mp_print(mp, "cosd"); break;
4822 case floor_op:mp_print(mp, "floor"); break;
4823 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4824 case char_exists_op:mp_print(mp, "charexists"); break;
4825 case font_size:mp_print(mp, "fontsize"); break;
4826 case ll_corner_op:mp_print(mp, "llcorner"); break;
4827 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4828 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4829 case ur_corner_op:mp_print(mp, "urcorner"); break;
4830 case arc_length:mp_print(mp, "arclength"); break;
4831 case angle_op:mp_print(mp, "angle"); break;
4832 case cycle_op:mp_print(mp, "cycle"); break;
4833 case filled_op:mp_print(mp, "filled"); break;
4834 case stroked_op:mp_print(mp, "stroked"); break;
4835 case textual_op:mp_print(mp, "textual"); break;
4836 case clipped_op:mp_print(mp, "clipped"); break;
4837 case bounded_op:mp_print(mp, "bounded"); break;
4838 case plus:mp_print_char(mp, '+'); break;
4839 case minus:mp_print_char(mp, '-'); break;
4840 case times:mp_print_char(mp, '*'); break;
4841 case over:mp_print_char(mp, '/'); break;
4842 case pythag_add:mp_print(mp, "++"); break;
4843 case pythag_sub:mp_print(mp, "+-+"); break;
4844 case or_op:mp_print(mp, "or"); break;
4845 case and_op:mp_print(mp, "and"); break;
4846 case less_than:mp_print_char(mp, '<'); break;
4847 case less_or_equal:mp_print(mp, "<="); break;
4848 case greater_than:mp_print_char(mp, '>'); break;
4849 case greater_or_equal:mp_print(mp, ">="); break;
4850 case equal_to:mp_print_char(mp, '='); break;
4851 case unequal_to:mp_print(mp, "<>"); break;
4852 case concatenate:mp_print(mp, "&"); break;
4853 case rotated_by:mp_print(mp, "rotated"); break;
4854 case slanted_by:mp_print(mp, "slanted"); break;
4855 case scaled_by:mp_print(mp, "scaled"); break;
4856 case shifted_by:mp_print(mp, "shifted"); break;
4857 case transformed_by:mp_print(mp, "transformed"); break;
4858 case x_scaled:mp_print(mp, "xscaled"); break;
4859 case y_scaled:mp_print(mp, "yscaled"); break;
4860 case z_scaled:mp_print(mp, "zscaled"); break;
4861 case in_font:mp_print(mp, "infont"); break;
4862 case intersect:mp_print(mp, "intersectiontimes"); break;
4863 case substring_of:mp_print(mp, "substring"); break;
4864 case subpath_of:mp_print(mp, "subpath"); break;
4865 case direction_time_of:mp_print(mp, "directiontime"); break;
4866 case point_of:mp_print(mp, "point"); break;
4867 case precontrol_of:mp_print(mp, "precontrol"); break;
4868 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4869 case pen_offset_of:mp_print(mp, "penoffset"); break;
4870 case arc_time_of:mp_print(mp, "arctime"); break;
4871 case mp_version:mp_print(mp, "mpversion"); break;
4872 default: mp_print(mp, ".."); break;
4877 @ \MP\ also has a bunch of internal parameters that a user might want to
4878 fuss with. Every such parameter has an identifying code number, defined here.
4880 @d tracing_titles 1 /* show titles online when they appear */
4881 @d tracing_equations 2 /* show each variable when it becomes known */
4882 @d tracing_capsules 3 /* show capsules too */
4883 @d tracing_choices 4 /* show the control points chosen for paths */
4884 @d tracing_specs 5 /* show path subdivision prior to filling with polygonal a pen */
4885 @d tracing_commands 6 /* show commands and operations before they are performed */
4886 @d tracing_restores 7 /* show when a variable or internal is restored */
4887 @d tracing_macros 8 /* show macros before they are expanded */
4888 @d tracing_output 9 /* show digitized edges as they are output */
4889 @d tracing_stats 10 /* show memory usage at end of job */
4890 @d tracing_lost_chars 11 /* show characters that aren't \&{infont} */
4891 @d tracing_online 12 /* show long diagnostics on terminal and in the log file */
4892 @d year 13 /* the current year (e.g., 1984) */
4893 @d month 14 /* the current month (e.g, 3 $\equiv$ March) */
4894 @d day 15 /* the current day of the month */
4895 @d mp_time 16 /* the number of minutes past midnight when this job started */
4896 @d char_code 17 /* the number of the next character to be output */
4897 @d char_ext 18 /* the extension code of the next character to be output */
4898 @d char_wd 19 /* the width of the next character to be output */
4899 @d char_ht 20 /* the height of the next character to be output */
4900 @d char_dp 21 /* the depth of the next character to be output */
4901 @d char_ic 22 /* the italic correction of the next character to be output */
4902 @d design_size 23 /* the unit of measure used for |char_wd..char_ic|, in points */
4903 @d pausing 24 /* positive to display lines on the terminal before they are read */
4904 @d showstopping 25 /* positive to stop after each \&{show} command */
4905 @d fontmaking 26 /* positive if font metric output is to be produced */
4906 @d linejoin 27 /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4907 @d linecap 28 /* as in \ps: 0 for butt, 1 for round, 2 for square */
4908 @d miterlimit 29 /* controls miter length as in \ps */
4909 @d warning_check 30 /* controls error message when variable value is large */
4910 @d boundary_char 31 /* the right boundary character for ligatures */
4911 @d prologues 32 /* positive to output conforming PostScript using built-in fonts */
4912 @d true_corners 33 /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4913 @d default_color_model 34 /* the default color model for unspecified items */
4914 @d restore_clip_color 35
4915 @d mpprocset 36 /* wether or not create PostScript command shortcuts */
4916 @d gtroffmode 37 /* whether the user specified |-troff| on the command line */
4917 @d max_given_internal 37
4920 scaled *internal; /* the values of internal quantities */
4921 char **int_name; /* their names */
4922 int int_ptr; /* the maximum internal quantity defined so far */
4923 int max_internal; /* current maximum number of internal quantities */
4926 @ @<Option variables@>=
4929 @ @<Allocate or initialize ...@>=
4930 mp->max_internal=2*max_given_internal;
4931 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4932 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4933 mp->troff_mode=(opt.troff_mode>0 ? true : false);
4936 int mp_troff_mode(MP mp);
4939 int mp_troff_mode(MP mp) { return mp->troff_mode; }
4941 @ @<Set initial ...@>=
4942 for (k=0;k<= mp->max_internal; k++ ) {
4944 mp->int_name[k]=NULL;
4946 mp->int_ptr=max_given_internal;
4948 @ The symbolic names for internal quantities are put into \MP's hash table
4949 by using a routine called |primitive|, which will be defined later. Let us
4950 enter them now, so that we don't have to list all those names again
4953 @<Put each of \MP's primitives into the hash table@>=
4954 mp_primitive(mp, "tracingtitles",internal_quantity,tracing_titles);
4955 @:tracingtitles_}{\&{tracingtitles} primitive@>
4956 mp_primitive(mp, "tracingequations",internal_quantity,tracing_equations);
4957 @:tracing_equations_}{\&{tracingequations} primitive@>
4958 mp_primitive(mp, "tracingcapsules",internal_quantity,tracing_capsules);
4959 @:tracing_capsules_}{\&{tracingcapsules} primitive@>
4960 mp_primitive(mp, "tracingchoices",internal_quantity,tracing_choices);
4961 @:tracing_choices_}{\&{tracingchoices} primitive@>
4962 mp_primitive(mp, "tracingspecs",internal_quantity,tracing_specs);
4963 @:tracing_specs_}{\&{tracingspecs} primitive@>
4964 mp_primitive(mp, "tracingcommands",internal_quantity,tracing_commands);
4965 @:tracing_commands_}{\&{tracingcommands} primitive@>
4966 mp_primitive(mp, "tracingrestores",internal_quantity,tracing_restores);
4967 @:tracing_restores_}{\&{tracingrestores} primitive@>
4968 mp_primitive(mp, "tracingmacros",internal_quantity,tracing_macros);
4969 @:tracing_macros_}{\&{tracingmacros} primitive@>
4970 mp_primitive(mp, "tracingoutput",internal_quantity,tracing_output);
4971 @:tracing_output_}{\&{tracingoutput} primitive@>
4972 mp_primitive(mp, "tracingstats",internal_quantity,tracing_stats);
4973 @:tracing_stats_}{\&{tracingstats} primitive@>
4974 mp_primitive(mp, "tracinglostchars",internal_quantity,tracing_lost_chars);
4975 @:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
4976 mp_primitive(mp, "tracingonline",internal_quantity,tracing_online);
4977 @:tracing_online_}{\&{tracingonline} primitive@>
4978 mp_primitive(mp, "year",internal_quantity,year);
4979 @:year_}{\&{year} primitive@>
4980 mp_primitive(mp, "month",internal_quantity,month);
4981 @:month_}{\&{month} primitive@>
4982 mp_primitive(mp, "day",internal_quantity,day);
4983 @:day_}{\&{day} primitive@>
4984 mp_primitive(mp, "time",internal_quantity,mp_time);
4985 @:time_}{\&{time} primitive@>
4986 mp_primitive(mp, "charcode",internal_quantity,char_code);
4987 @:char_code_}{\&{charcode} primitive@>
4988 mp_primitive(mp, "charext",internal_quantity,char_ext);
4989 @:char_ext_}{\&{charext} primitive@>
4990 mp_primitive(mp, "charwd",internal_quantity,char_wd);
4991 @:char_wd_}{\&{charwd} primitive@>
4992 mp_primitive(mp, "charht",internal_quantity,char_ht);
4993 @:char_ht_}{\&{charht} primitive@>
4994 mp_primitive(mp, "chardp",internal_quantity,char_dp);
4995 @:char_dp_}{\&{chardp} primitive@>
4996 mp_primitive(mp, "charic",internal_quantity,char_ic);
4997 @:char_ic_}{\&{charic} primitive@>
4998 mp_primitive(mp, "designsize",internal_quantity,design_size);
4999 @:design_size_}{\&{designsize} primitive@>
5000 mp_primitive(mp, "pausing",internal_quantity,pausing);
5001 @:pausing_}{\&{pausing} primitive@>
5002 mp_primitive(mp, "showstopping",internal_quantity,showstopping);
5003 @:showstopping_}{\&{showstopping} primitive@>
5004 mp_primitive(mp, "fontmaking",internal_quantity,fontmaking);
5005 @:fontmaking_}{\&{fontmaking} primitive@>
5006 mp_primitive(mp, "linejoin",internal_quantity,linejoin);
5007 @:linejoin_}{\&{linejoin} primitive@>
5008 mp_primitive(mp, "linecap",internal_quantity,linecap);
5009 @:linecap_}{\&{linecap} primitive@>
5010 mp_primitive(mp, "miterlimit",internal_quantity,miterlimit);
5011 @:miterlimit_}{\&{miterlimit} primitive@>
5012 mp_primitive(mp, "warningcheck",internal_quantity,warning_check);
5013 @:warning_check_}{\&{warningcheck} primitive@>
5014 mp_primitive(mp, "boundarychar",internal_quantity,boundary_char);
5015 @:boundary_char_}{\&{boundarychar} primitive@>
5016 mp_primitive(mp, "prologues",internal_quantity,prologues);
5017 @:prologues_}{\&{prologues} primitive@>
5018 mp_primitive(mp, "truecorners",internal_quantity,true_corners);
5019 @:true_corners_}{\&{truecorners} primitive@>
5020 mp_primitive(mp, "mpprocset",internal_quantity,mpprocset);
5021 @:mpprocset_}{\&{mpprocset} primitive@>
5022 mp_primitive(mp, "troffmode",internal_quantity,gtroffmode);
5023 @:troffmode_}{\&{troffmode} primitive@>
5024 mp_primitive(mp, "defaultcolormodel",internal_quantity,default_color_model);
5025 @:default_color_model_}{\&{defaultcolormodel} primitive@>
5026 mp_primitive(mp, "restoreclipcolor",internal_quantity,restore_clip_color);
5027 @:restore_clip_color_}{\&{restoreclipcolor} primitive@>
5029 @ Colors can be specified in four color models. In the special
5030 case of |no_model|, MetaPost does not output any color operator to
5031 the postscript output.
5033 Note: these values are passed directly on to |with_option|. This only
5034 works because the other possible values passed to |with_option| are
5035 8 and 10 respectively (from |with_pen| and |with_picture|).
5037 There is a first state, that is only used for |gs_colormodel|. It flags
5038 the fact that there has not been any kind of color specification by
5039 the user so far in the game.
5045 @d uninitialized_model 9
5047 @<Initialize table entries (done by \.{INIMP} only)@>=
5048 mp->internal[default_color_model]=(rgb_model*unity);
5049 mp->internal[restore_clip_color]=unity;
5051 @ Well, we do have to list the names one more time, for use in symbolic
5054 @<Initialize table...@>=
5055 mp->int_name[tracing_titles]=xstrdup("tracingtitles");
5056 mp->int_name[tracing_equations]=xstrdup("tracingequations");
5057 mp->int_name[tracing_capsules]=xstrdup("tracingcapsules");
5058 mp->int_name[tracing_choices]=xstrdup("tracingchoices");
5059 mp->int_name[tracing_specs]=xstrdup("tracingspecs");
5060 mp->int_name[tracing_commands]=xstrdup("tracingcommands");
5061 mp->int_name[tracing_restores]=xstrdup("tracingrestores");
5062 mp->int_name[tracing_macros]=xstrdup("tracingmacros");
5063 mp->int_name[tracing_output]=xstrdup("tracingoutput");
5064 mp->int_name[tracing_stats]=xstrdup("tracingstats");
5065 mp->int_name[tracing_lost_chars]=xstrdup("tracinglostchars");
5066 mp->int_name[tracing_online]=xstrdup("tracingonline");
5067 mp->int_name[year]=xstrdup("year");
5068 mp->int_name[month]=xstrdup("month");
5069 mp->int_name[day]=xstrdup("day");
5070 mp->int_name[mp_time]=xstrdup("time");
5071 mp->int_name[char_code]=xstrdup("charcode");
5072 mp->int_name[char_ext]=xstrdup("charext");
5073 mp->int_name[char_wd]=xstrdup("charwd");
5074 mp->int_name[char_ht]=xstrdup("charht");
5075 mp->int_name[char_dp]=xstrdup("chardp");
5076 mp->int_name[char_ic]=xstrdup("charic");
5077 mp->int_name[design_size]=xstrdup("designsize");
5078 mp->int_name[pausing]=xstrdup("pausing");
5079 mp->int_name[showstopping]=xstrdup("showstopping");
5080 mp->int_name[fontmaking]=xstrdup("fontmaking");
5081 mp->int_name[linejoin]=xstrdup("linejoin");
5082 mp->int_name[linecap]=xstrdup("linecap");
5083 mp->int_name[miterlimit]=xstrdup("miterlimit");
5084 mp->int_name[warning_check]=xstrdup("warningcheck");
5085 mp->int_name[boundary_char]=xstrdup("boundarychar");
5086 mp->int_name[prologues]=xstrdup("prologues");
5087 mp->int_name[true_corners]=xstrdup("truecorners");
5088 mp->int_name[default_color_model]=xstrdup("defaultcolormodel");
5089 mp->int_name[mpprocset]=xstrdup("mpprocset");
5090 mp->int_name[gtroffmode]=xstrdup("troffmode");
5091 mp->int_name[restore_clip_color]=xstrdup("restoreclipcolor");
5093 @ The following procedure, which is called just before \MP\ initializes its
5094 input and output, establishes the initial values of the date and time.
5095 @^system dependencies@>
5097 Note that the values are |scaled| integers. Hence \MP\ can no longer
5098 be used after the year 32767.
5101 void mp_fix_date_and_time (MP mp) {
5102 time_t clock = time ((time_t *) 0);
5103 struct tm *tmptr = localtime (&clock);
5104 mp->internal[mp_time]=
5105 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5106 mp->internal[day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5107 mp->internal[month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5108 mp->internal[year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5112 void mp_fix_date_and_time (MP mp) ;
5114 @ \MP\ is occasionally supposed to print diagnostic information that
5115 goes only into the transcript file, unless |tracing_online| is positive.
5116 Now that we have defined |tracing_online| we can define
5117 two routines that adjust the destination of print commands:
5120 void mp_begin_diagnostic (MP mp) ;
5121 void mp_end_diagnostic (MP mp,boolean blank_line);
5122 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5124 @ @<Basic printing...@>=
5125 @<Declare a function called |true_line|@>;
5126 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5127 mp->old_setting=mp->selector;
5128 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5129 if ((mp->internal[tracing_online]<=0)&&(mp->selector==term_and_log)){
5131 if ( mp->history==spotless ) mp->history=warning_issued;
5135 void mp_end_diagnostic (MP mp,boolean blank_line) {
5136 /* restore proper conditions after tracing */
5137 mp_print_nl(mp, "");
5138 if ( blank_line ) mp_print_ln(mp);
5139 mp->selector=mp->old_setting;
5142 @ The global variable |non_ps_setting| is initialized when it is time to print
5146 unsigned int old_setting;
5147 unsigned int non_ps_setting;
5149 @ We will occasionally use |begin_diagnostic| in connection with line-number
5150 printing, as follows. (The parameter |s| is typically |"Path"| or
5151 |"Cycle spec"|, etc.)
5153 @<Basic printing...@>=
5154 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5155 mp_begin_diagnostic(mp);
5156 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5157 mp_print(mp, " at line ");
5158 mp_print_int(mp, mp_true_line(mp));
5159 mp_print(mp, t); mp_print_char(mp, ':');
5162 @ The 256 |ASCII_code| characters are grouped into classes by means of
5163 the |char_class| table. Individual class numbers have no semantic
5164 or syntactic significance, except in a few instances defined here.
5165 There's also |max_class|, which can be used as a basis for additional
5166 class numbers in nonstandard extensions of \MP.
5168 @d digit_class 0 /* the class number of \.{0123456789} */
5169 @d period_class 1 /* the class number of `\..' */
5170 @d space_class 2 /* the class number of spaces and nonstandard characters */
5171 @d percent_class 3 /* the class number of `\.\%' */
5172 @d string_class 4 /* the class number of `\."' */
5173 @d right_paren_class 8 /* the class number of `\.)' */
5174 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5175 @d letter_class 9 /* letters and the underline character */
5176 @d left_bracket_class 17 /* `\.[' */
5177 @d right_bracket_class 18 /* `\.]' */
5178 @d invalid_class 20 /* bad character in the input */
5179 @d max_class 20 /* the largest class number */
5182 int char_class[256]; /* the class numbers */
5184 @ If changes are made to accommodate non-ASCII character sets, they should
5185 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5186 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5187 @^system dependencies@>
5189 @<Set initial ...@>=
5190 for (k='0';k<='9';k++)
5191 mp->char_class[k]=digit_class;
5192 mp->char_class['.']=period_class;
5193 mp->char_class[' ']=space_class;
5194 mp->char_class['%']=percent_class;
5195 mp->char_class['"']=string_class;
5196 mp->char_class[',']=5;
5197 mp->char_class[';']=6;
5198 mp->char_class['(']=7;
5199 mp->char_class[')']=right_paren_class;
5200 for (k='A';k<= 'Z';k++ )
5201 mp->char_class[k]=letter_class;
5202 for (k='a';k<='z';k++)
5203 mp->char_class[k]=letter_class;
5204 mp->char_class['_']=letter_class;
5205 mp->char_class['<']=10;
5206 mp->char_class['=']=10;
5207 mp->char_class['>']=10;
5208 mp->char_class[':']=10;
5209 mp->char_class['|']=10;
5210 mp->char_class['`']=11;
5211 mp->char_class['\'']=11;
5212 mp->char_class['+']=12;
5213 mp->char_class['-']=12;
5214 mp->char_class['/']=13;
5215 mp->char_class['*']=13;
5216 mp->char_class['\\']=13;
5217 mp->char_class['!']=14;
5218 mp->char_class['?']=14;
5219 mp->char_class['#']=15;
5220 mp->char_class['&']=15;
5221 mp->char_class['@@']=15;
5222 mp->char_class['$']=15;
5223 mp->char_class['^']=16;
5224 mp->char_class['~']=16;
5225 mp->char_class['[']=left_bracket_class;
5226 mp->char_class[']']=right_bracket_class;
5227 mp->char_class['{']=19;
5228 mp->char_class['}']=19;
5230 mp->char_class[k]=invalid_class;
5231 mp->char_class['\t']=space_class;
5232 mp->char_class['\f']=space_class;
5233 for (k=127;k<=255;k++)
5234 mp->char_class[k]=invalid_class;
5236 @* \[13] The hash table.
5237 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5238 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5239 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5240 table, it is never removed.
5242 The actual sequence of characters forming a symbolic token is
5243 stored in the |str_pool| array together with all the other strings. An
5244 auxiliary array |hash| consists of items with two halfword fields per
5245 word. The first of these, called |next(p)|, points to the next identifier
5246 belonging to the same coalesced list as the identifier corresponding to~|p|;
5247 and the other, called |text(p)|, points to the |str_start| entry for
5248 |p|'s identifier. If position~|p| of the hash table is empty, we have
5249 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5250 hash list, we have |next(p)=0|.
5252 An auxiliary pointer variable called |hash_used| is maintained in such a
5253 way that all locations |p>=hash_used| are nonempty. The global variable
5254 |st_count| tells how many symbolic tokens have been defined, if statistics
5257 The first 256 locations of |hash| are reserved for symbols of length one.
5259 There's a parallel array called |eqtb| that contains the current equivalent
5260 values of each symbolic token. The entries of this array consist of
5261 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5262 piece of information that qualifies the |eq_type|).
5264 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5265 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5266 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5267 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5268 @d hash_base 257 /* hashing actually starts here */
5269 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5272 pointer hash_used; /* allocation pointer for |hash| */
5273 integer st_count; /* total number of known identifiers */
5275 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5276 since they are used in error recovery.
5278 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5279 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5280 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5281 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5282 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5283 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5284 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5285 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5286 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5287 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5288 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5289 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5290 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5291 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5292 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5293 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5294 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5297 two_halves *hash; /* the hash table */
5298 two_halves *eqtb; /* the equivalents */
5300 @ @<Allocate or initialize ...@>=
5301 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5302 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5304 @ @<Dealloc variables@>=
5309 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5310 for (k=2;k<=hash_end;k++) {
5311 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5314 @ @<Initialize table entries...@>=
5315 mp->hash_used=frozen_inaccessible; /* nothing is used */
5317 text(frozen_bad_vardef)=intern("a bad variable");
5318 text(frozen_etex)=intern("etex");
5319 text(frozen_mpx_break)=intern("mpxbreak");
5320 text(frozen_fi)=intern("fi");
5321 text(frozen_end_group)=intern("endgroup");
5322 text(frozen_end_def)=intern("enddef");
5323 text(frozen_end_for)=intern("endfor");
5324 text(frozen_semicolon)=intern(";");
5325 text(frozen_colon)=intern(":");
5326 text(frozen_slash)=intern("/");
5327 text(frozen_left_bracket)=intern("[");
5328 text(frozen_right_delimiter)=intern(")");
5329 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5330 eq_type(frozen_right_delimiter)=right_delimiter;
5332 @ @<Check the ``constant'' values...@>=
5333 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5335 @ Here is the subroutine that searches the hash table for an identifier
5336 that matches a given string of length~|l| appearing in |buffer[j..
5337 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5338 will always be found, and the corresponding hash table address
5342 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5343 integer h; /* hash code */
5344 pointer p; /* index in |hash| array */
5345 pointer k; /* index in |buffer| array */
5347 @<Treat special case of length 1 and |break|@>;
5349 @<Compute the hash code |h|@>;
5350 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5352 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5355 @<Insert a new symbolic token after |p|, then
5356 make |p| point to it and |break|@>;
5363 @ @<Treat special case of length 1...@>=
5364 p=mp->buffer[j]+1; text(p)=p-1; return p;
5367 @ @<Insert a new symbolic...@>=
5372 mp_overflow(mp, "hash size",mp->hash_size);
5373 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5374 decr(mp->hash_used);
5375 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5376 next(p)=mp->hash_used;
5380 for (k=j;k<=j+l-1;k++) {
5381 append_char(mp->buffer[k]);
5383 text(p)=mp_make_string(mp);
5384 mp->str_ref[text(p)]=max_str_ref;
5390 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5391 should be a prime number. The theory of hashing tells us to expect fewer
5392 than two table probes, on the average, when the search is successful.
5393 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5394 @^Vitter, Jeffrey Scott@>
5396 @<Compute the hash code |h|@>=
5398 for (k=j+1;k<=j+l-1;k++){
5399 h=h+h+mp->buffer[k];
5400 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5403 @ @<Search |eqtb| for equivalents equal to |p|@>=
5404 for (q=1;q<=hash_end;q++) {
5405 if ( equiv(q)==p ) {
5406 mp_print_nl(mp, "EQUIV(");
5407 mp_print_int(mp, q);
5408 mp_print_char(mp, ')');
5412 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5413 table, together with their command code (which will be the |eq_type|)
5414 and an operand (which will be the |equiv|). The |primitive| procedure
5415 does this, in a way that no \MP\ user can. The global value |cur_sym|
5416 contains the new |eqtb| pointer after |primitive| has acted.
5419 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5420 pool_pointer k; /* index into |str_pool| */
5421 small_number j; /* index into |buffer| */
5422 small_number l; /* length of the string */
5425 k=mp->str_start[s]; l=str_stop(s)-k;
5426 /* we will move |s| into the (empty) |buffer| */
5427 for (j=0;j<=l-1;j++) {
5428 mp->buffer[j]=mp->str_pool[k+j];
5430 mp->cur_sym=mp_id_lookup(mp, 0,l);
5431 if ( s>=256 ) { /* we don't want to have the string twice */
5432 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5434 eq_type(mp->cur_sym)=c;
5435 equiv(mp->cur_sym)=o;
5439 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5440 by their |eq_type| alone. These primitives are loaded into the hash table
5443 @<Put each of \MP's primitives into the hash table@>=
5444 mp_primitive(mp, "..",path_join,0);
5445 @:.._}{\.{..} primitive@>
5446 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5447 @:[ }{\.{[} primitive@>
5448 mp_primitive(mp, "]",right_bracket,0);
5449 @:] }{\.{]} primitive@>
5450 mp_primitive(mp, "}",right_brace,0);
5451 @:]]}{\.{\char`\}} primitive@>
5452 mp_primitive(mp, "{",left_brace,0);
5453 @:][}{\.{\char`\{} primitive@>
5454 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5455 @:: }{\.{:} primitive@>
5456 mp_primitive(mp, "::",double_colon,0);
5457 @::: }{\.{::} primitive@>
5458 mp_primitive(mp, "||:",bchar_label,0);
5459 @:::: }{\.{\char'174\char'174:} primitive@>
5460 mp_primitive(mp, ":=",assignment,0);
5461 @::=_}{\.{:=} primitive@>
5462 mp_primitive(mp, ",",comma,0);
5463 @:, }{\., primitive@>
5464 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5465 @:; }{\.; primitive@>
5466 mp_primitive(mp, "\\",relax,0);
5467 @:]]\\}{\.{\char`\\} primitive@>
5469 mp_primitive(mp, "addto",add_to_command,0);
5470 @:add_to_}{\&{addto} primitive@>
5471 mp_primitive(mp, "atleast",at_least,0);
5472 @:at_least_}{\&{atleast} primitive@>
5473 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5474 @:begin_group_}{\&{begingroup} primitive@>
5475 mp_primitive(mp, "controls",controls,0);
5476 @:controls_}{\&{controls} primitive@>
5477 mp_primitive(mp, "curl",curl_command,0);
5478 @:curl_}{\&{curl} primitive@>
5479 mp_primitive(mp, "delimiters",delimiters,0);
5480 @:delimiters_}{\&{delimiters} primitive@>
5481 mp_primitive(mp, "endgroup",end_group,0);
5482 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5483 @:endgroup_}{\&{endgroup} primitive@>
5484 mp_primitive(mp, "everyjob",every_job_command,0);
5485 @:every_job_}{\&{everyjob} primitive@>
5486 mp_primitive(mp, "exitif",exit_test,0);
5487 @:exit_if_}{\&{exitif} primitive@>
5488 mp_primitive(mp, "expandafter",expand_after,0);
5489 @:expand_after_}{\&{expandafter} primitive@>
5490 mp_primitive(mp, "interim",interim_command,0);
5491 @:interim_}{\&{interim} primitive@>
5492 mp_primitive(mp, "let",let_command,0);
5493 @:let_}{\&{let} primitive@>
5494 mp_primitive(mp, "newinternal",new_internal,0);
5495 @:new_internal_}{\&{newinternal} primitive@>
5496 mp_primitive(mp, "of",of_token,0);
5497 @:of_}{\&{of} primitive@>
5498 mp_primitive(mp, "randomseed",random_seed,0);
5499 @:random_seed_}{\&{randomseed} primitive@>
5500 mp_primitive(mp, "save",save_command,0);
5501 @:save_}{\&{save} primitive@>
5502 mp_primitive(mp, "scantokens",scan_tokens,0);
5503 @:scan_tokens_}{\&{scantokens} primitive@>
5504 mp_primitive(mp, "shipout",ship_out_command,0);
5505 @:ship_out_}{\&{shipout} primitive@>
5506 mp_primitive(mp, "skipto",skip_to,0);
5507 @:skip_to_}{\&{skipto} primitive@>
5508 mp_primitive(mp, "special",special_command,0);
5509 @:special}{\&{special} primitive@>
5510 mp_primitive(mp, "fontmapfile",special_command,1);
5511 @:fontmapfile}{\&{fontmapfile} primitive@>
5512 mp_primitive(mp, "fontmapline",special_command,2);
5513 @:fontmapline}{\&{fontmapline} primitive@>
5514 mp_primitive(mp, "step",step_token,0);
5515 @:step_}{\&{step} primitive@>
5516 mp_primitive(mp, "str",str_op,0);
5517 @:str_}{\&{str} primitive@>
5518 mp_primitive(mp, "tension",tension,0);
5519 @:tension_}{\&{tension} primitive@>
5520 mp_primitive(mp, "to",to_token,0);
5521 @:to_}{\&{to} primitive@>
5522 mp_primitive(mp, "until",until_token,0);
5523 @:until_}{\&{until} primitive@>
5524 mp_primitive(mp, "within",within_token,0);
5525 @:within_}{\&{within} primitive@>
5526 mp_primitive(mp, "write",write_command,0);
5527 @:write_}{\&{write} primitive@>
5529 @ Each primitive has a corresponding inverse, so that it is possible to
5530 display the cryptic numeric contents of |eqtb| in symbolic form.
5531 Every call of |primitive| in this program is therefore accompanied by some
5532 straightforward code that forms part of the |print_cmd_mod| routine
5535 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5536 case add_to_command:mp_print(mp, "addto"); break;
5537 case assignment:mp_print(mp, ":="); break;
5538 case at_least:mp_print(mp, "atleast"); break;
5539 case bchar_label:mp_print(mp, "||:"); break;
5540 case begin_group:mp_print(mp, "begingroup"); break;
5541 case colon:mp_print(mp, ":"); break;
5542 case comma:mp_print(mp, ","); break;
5543 case controls:mp_print(mp, "controls"); break;
5544 case curl_command:mp_print(mp, "curl"); break;
5545 case delimiters:mp_print(mp, "delimiters"); break;
5546 case double_colon:mp_print(mp, "::"); break;
5547 case end_group:mp_print(mp, "endgroup"); break;
5548 case every_job_command:mp_print(mp, "everyjob"); break;
5549 case exit_test:mp_print(mp, "exitif"); break;
5550 case expand_after:mp_print(mp, "expandafter"); break;
5551 case interim_command:mp_print(mp, "interim"); break;
5552 case left_brace:mp_print(mp, "{"); break;
5553 case left_bracket:mp_print(mp, "["); break;
5554 case let_command:mp_print(mp, "let"); break;
5555 case new_internal:mp_print(mp, "newinternal"); break;
5556 case of_token:mp_print(mp, "of"); break;
5557 case path_join:mp_print(mp, ".."); break;
5558 case random_seed:mp_print(mp, "randomseed"); break;
5559 case relax:mp_print_char(mp, '\\'); break;
5560 case right_brace:mp_print(mp, "}"); break;
5561 case right_bracket:mp_print(mp, "]"); break;
5562 case save_command:mp_print(mp, "save"); break;
5563 case scan_tokens:mp_print(mp, "scantokens"); break;
5564 case semicolon:mp_print(mp, ";"); break;
5565 case ship_out_command:mp_print(mp, "shipout"); break;
5566 case skip_to:mp_print(mp, "skipto"); break;
5567 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5568 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5569 mp_print(mp, "special"); break;
5570 case step_token:mp_print(mp, "step"); break;
5571 case str_op:mp_print(mp, "str"); break;
5572 case tension:mp_print(mp, "tension"); break;
5573 case to_token:mp_print(mp, "to"); break;
5574 case until_token:mp_print(mp, "until"); break;
5575 case within_token:mp_print(mp, "within"); break;
5576 case write_command:mp_print(mp, "write"); break;
5578 @ We will deal with the other primitives later, at some point in the program
5579 where their |eq_type| and |equiv| values are more meaningful. For example,
5580 the primitives for macro definitions will be loaded when we consider the
5581 routines that define macros.
5582 It is easy to find where each particular
5583 primitive was treated by looking in the index at the end; for example, the
5584 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5586 @* \[14] Token lists.
5587 A \MP\ token is either symbolic or numeric or a string, or it denotes
5588 a macro parameter or capsule; so there are five corresponding ways to encode it
5590 internally: (1)~A symbolic token whose hash code is~|p|
5591 is represented by the number |p|, in the |info| field of a single-word
5592 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5593 represented in a two-word node of~|mem|; the |type| field is |known|,
5594 the |name_type| field is |token|, and the |value| field holds~|v|.
5595 The fact that this token appears in a two-word node rather than a
5596 one-word node is, of course, clear from the node address.
5597 (3)~A string token is also represented in a two-word node; the |type|
5598 field is |mp_string_type|, the |name_type| field is |token|, and the
5599 |value| field holds the corresponding |str_number|. (4)~Capsules have
5600 |name_type=capsule|, and their |type| and |value| fields represent
5601 arbitrary values (in ways to be explained later). (5)~Macro parameters
5602 are like symbolic tokens in that they appear in |info| fields of
5603 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5604 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5605 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5606 Actual values of these parameters are kept in a separate stack, as we will
5607 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5608 of course, chosen so that there will be no confusion between symbolic
5609 tokens and parameters of various types.
5612 the `\\{type}' field of a node has nothing to do with ``type'' in a
5613 printer's sense. It's curious that the same word is used in such different ways.
5615 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5616 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5617 @d token_node_size 2 /* the number of words in a large token node */
5618 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5619 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5620 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5621 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5622 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5624 @<Check the ``constant''...@>=
5625 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5627 @ We have set aside a two word node beginning at |null| so that we can have
5628 |value(null)=0|. We will make use of this coincidence later.
5630 @<Initialize table entries...@>=
5631 link(null)=null; value(null)=0;
5633 @ A numeric token is created by the following trivial routine.
5636 pointer mp_new_num_tok (MP mp,scaled v) {
5637 pointer p; /* the new node */
5638 p=mp_get_node(mp, token_node_size); value(p)=v;
5639 type(p)=mp_known; name_type(p)=mp_token;
5643 @ A token list is a singly linked list of nodes in |mem|, where
5644 each node contains a token and a link. Here's a subroutine that gets rid
5645 of a token list when it is no longer needed.
5648 void mp_token_recycle (MP mp);
5651 @c void mp_flush_token_list (MP mp,pointer p) {
5652 pointer q; /* the node being recycled */
5655 if ( q>=mp->hi_mem_min ) {
5659 case mp_vacuous: case mp_boolean_type: case mp_known:
5661 case mp_string_type:
5662 delete_str_ref(value(q));
5664 case unknown_types: case mp_pen_type: case mp_path_type:
5665 case mp_picture_type: case mp_pair_type: case mp_color_type:
5666 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5667 case mp_proto_dependent: case mp_independent:
5668 mp->g_pointer=q; mp_token_recycle(mp);
5670 default: mp_confusion(mp, "token");
5671 @:this can't happen token}{\quad token@>
5673 mp_free_node(mp, q,token_node_size);
5678 @ The procedure |show_token_list|, which prints a symbolic form of
5679 the token list that starts at a given node |p|, illustrates these
5680 conventions. The token list being displayed should not begin with a reference
5681 count. However, the procedure is intended to be fairly robust, so that if the
5682 memory links are awry or if |p| is not really a pointer to a token list,
5683 almost nothing catastrophic can happen.
5685 An additional parameter |q| is also given; this parameter is either null
5686 or it points to a node in the token list where a certain magic computation
5687 takes place that will be explained later. (Basically, |q| is non-null when
5688 we are printing the two-line context information at the time of an error
5689 message; |q| marks the place corresponding to where the second line
5692 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5693 of printing exceeds a given limit~|l|; the length of printing upon entry is
5694 assumed to be a given amount called |null_tally|. (Note that
5695 |show_token_list| sometimes uses itself recursively to print
5696 variable names within a capsule.)
5699 Unusual entries are printed in the form of all-caps tokens
5700 preceded by a space, e.g., `\.{\char`\ BAD}'.
5703 void mp_print_capsule (MP mp);
5705 @ @<Declare the procedure called |show_token_list|@>=
5706 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5707 integer null_tally) ;
5710 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5711 integer null_tally) {
5712 small_number class,c; /* the |char_class| of previous and new tokens */
5713 integer r,v; /* temporary registers */
5714 class=percent_class;
5715 mp->tally=null_tally;
5716 while ( (p!=null) && (mp->tally<l) ) {
5718 @<Do magic computation@>;
5719 @<Display token |p| and set |c| to its class;
5720 but |return| if there are problems@>;
5724 mp_print(mp, " ETC.");
5729 @ @<Display token |p| and set |c| to its class...@>=
5730 c=letter_class; /* the default */
5731 if ( (p<0)||(p>mp->mem_end) ) {
5732 mp_print(mp, " CLOBBERED"); return;
5735 if ( p<mp->hi_mem_min ) {
5736 @<Display two-word token@>;
5739 if ( r>=expr_base ) {
5740 @<Display a parameter token@>;
5744 @<Display a collective subscript@>
5746 mp_print(mp, " IMPOSSIBLE");
5751 if ( (r<0)||(r>mp->max_str_ptr) ) {
5752 mp_print(mp, " NONEXISTENT");
5755 @<Print string |r| as a symbolic token
5756 and set |c| to its class@>;
5762 @ @<Display two-word token@>=
5763 if ( name_type(p)==mp_token ) {
5764 if ( type(p)==mp_known ) {
5765 @<Display a numeric token@>;
5766 } else if ( type(p)!=mp_string_type ) {
5767 mp_print(mp, " BAD");
5770 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5773 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5774 mp_print(mp, " BAD");
5776 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5779 @ @<Display a numeric token@>=
5780 if ( class==digit_class )
5781 mp_print_char(mp, ' ');
5784 if ( class==left_bracket_class )
5785 mp_print_char(mp, ' ');
5786 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5787 c=right_bracket_class;
5789 mp_print_scaled(mp, v); c=digit_class;
5793 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5794 But we will see later (in the |print_variable_name| routine) that
5795 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5797 @<Display a collective subscript@>=
5799 if ( class==left_bracket_class )
5800 mp_print_char(mp, ' ');
5801 mp_print(mp, "[]"); c=right_bracket_class;
5804 @ @<Display a parameter token@>=
5806 if ( r<suffix_base ) {
5807 mp_print(mp, "(EXPR"); r=r-(expr_base);
5809 } else if ( r<text_base ) {
5810 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5813 mp_print(mp, "(TEXT"); r=r-(text_base);
5816 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5820 @ @<Print string |r| as a symbolic token...@>=
5822 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5825 case letter_class:mp_print_char(mp, '.'); break;
5826 case isolated_classes: break;
5827 default: mp_print_char(mp, ' '); break;
5830 mp_print_str(mp, r);
5833 @ The following procedures have been declared |forward| with no parameters,
5834 because the author dislikes \PASCAL's convention about |forward| procedures
5835 with parameters. It was necessary to do something, because |show_token_list|
5836 is recursive (although the recursion is limited to one level), and because
5837 |flush_token_list| is syntactically (but not semantically) recursive.
5840 @<Declare miscellaneous procedures that were declared |forward|@>=
5841 void mp_print_capsule (MP mp) {
5842 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5845 void mp_token_recycle (MP mp) {
5846 mp_recycle_value(mp, mp->g_pointer);
5850 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5852 @ Macro definitions are kept in \MP's memory in the form of token lists
5853 that have a few extra one-word nodes at the beginning.
5855 The first node contains a reference count that is used to tell when the
5856 list is no longer needed. To emphasize the fact that a reference count is
5857 present, we shall refer to the |info| field of this special node as the
5859 @^reference counts@>
5861 The next node or nodes after the reference count serve to describe the
5862 formal parameters. They either contain a code word that specifies all
5863 of the parameters, or they contain zero or more parameter tokens followed
5864 by the code `|general_macro|'.
5867 /* reference count preceding a macro definition or picture header */
5868 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5869 @d general_macro 0 /* preface to a macro defined with a parameter list */
5870 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5871 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5872 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5873 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5874 @d of_macro 5 /* preface to a macro with
5875 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5876 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5877 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5880 void mp_delete_mac_ref (MP mp,pointer p) {
5881 /* |p| points to the reference count of a macro list that is
5882 losing one reference */
5883 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5884 else decr(ref_count(p));
5887 @ The following subroutine displays a macro, given a pointer to its
5891 @<Declare the procedure called |print_cmd_mod|@>;
5892 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5893 pointer r; /* temporary storage */
5894 p=link(p); /* bypass the reference count */
5895 while ( info(p)>text_macro ){
5896 r=link(p); link(p)=null;
5897 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5898 if ( l>0 ) l=l-mp->tally; else return;
5899 } /* control printing of `\.{ETC.}' */
5903 case general_macro:mp_print(mp, "->"); break;
5905 case primary_macro: case secondary_macro: case tertiary_macro:
5906 mp_print_char(mp, '<');
5907 mp_print_cmd_mod(mp, param_type,info(p));
5908 mp_print(mp, ">->");
5910 case expr_macro:mp_print(mp, "<expr>->"); break;
5911 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5912 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5913 case text_macro:mp_print(mp, "<text>->"); break;
5914 } /* there are no other cases */
5915 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5918 @* \[15] Data structures for variables.
5919 The variables of \MP\ programs can be simple, like `\.x', or they can
5920 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5921 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5922 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5923 things are represented inside of the computer.
5925 Each variable value occupies two consecutive words, either in a two-word
5926 node called a value node, or as a two-word subfield of a larger node. One
5927 of those two words is called the |value| field; it is an integer,
5928 containing either a |scaled| numeric value or the representation of some
5929 other type of quantity. (It might also be subdivided into halfwords, in
5930 which case it is referred to by other names instead of |value|.) The other
5931 word is broken into subfields called |type|, |name_type|, and |link|. The
5932 |type| field is a quarterword that specifies the variable's type, and
5933 |name_type| is a quarterword from which \MP\ can reconstruct the
5934 variable's name (sometimes by using the |link| field as well). Thus, only
5935 1.25 words are actually devoted to the value itself; the other
5936 three-quarters of a word are overhead, but they aren't wasted because they
5937 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5939 In this section we shall be concerned only with the structural aspects of
5940 variables, not their values. Later parts of the program will change the
5941 |type| and |value| fields, but we shall treat those fields as black boxes
5942 whose contents should not be touched.
5944 However, if the |type| field is |mp_structured|, there is no |value| field,
5945 and the second word is broken into two pointer fields called |attr_head|
5946 and |subscr_head|. Those fields point to additional nodes that
5947 contain structural information, as we shall see.
5949 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5950 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5951 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5952 @d value_node_size 2 /* the number of words in a value node */
5954 @ An attribute node is three words long. Two of these words contain |type|
5955 and |value| fields as described above, and the third word contains
5956 additional information: There is an |attr_loc| field, which contains the
5957 hash address of the token that names this attribute; and there's also a
5958 |parent| field, which points to the value node of |mp_structured| type at the
5959 next higher level (i.e., at the level to which this attribute is
5960 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5961 |link| field points to the next attribute with the same parent; these are
5962 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5963 final attribute node links to the constant |end_attr|, whose |attr_loc|
5964 field is greater than any legal hash address. The |attr_head| in the
5965 parent points to a node whose |name_type| is |mp_structured_root|; this
5966 node represents the null attribute, i.e., the variable that is relevant
5967 when no attributes are attached to the parent. The |attr_head| node is either
5968 a value node, a subscript node, or an attribute node, depending on what
5969 the parent would be if it were not structured; but the subscript and
5970 attribute fields are ignored, so it effectively contains only the data of
5971 a value node. The |link| field in this special node points to an attribute
5972 node whose |attr_loc| field is zero; the latter node represents a collective
5973 subscript `\.{[]}' attached to the parent, and its |link| field points to
5974 the first non-special attribute node (or to |end_attr| if there are none).
5976 A subscript node likewise occupies three words, with |type| and |value| fields
5977 plus extra information; its |name_type| is |subscr|. In this case the
5978 third word is called the |subscript| field, which is a |scaled| integer.
5979 The |link| field points to the subscript node with the next larger
5980 subscript, if any; otherwise the |link| points to the attribute node
5981 for collective subscripts at this level. We have seen that the latter node
5982 contains an upward pointer, so that the parent can be deduced.
5984 The |name_type| in a parent-less value node is |root|, and the |link|
5985 is the hash address of the token that names this value.
5987 In other words, variables have a hierarchical structure that includes
5988 enough threads running around so that the program is able to move easily
5989 between siblings, parents, and children. An example should be helpful:
5990 (The reader is advised to draw a picture while reading the following
5991 description, since that will help to firm up the ideas.)
5992 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
5993 and `\.{x20b}' have been mentioned in a user's program, where
5994 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
5995 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
5996 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
5997 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
5998 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
5999 node and |r| to a subscript node. (Are you still following this? Use
6000 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6001 |type(q)| and |value(q)|; furthermore
6002 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6003 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6004 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6005 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6006 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6007 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6008 |name_type(qq)=mp_structured_root|, and
6009 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6010 an attribute node representing `\.{x[][]}', which has never yet
6011 occurred; its |type| field is |undefined|, and its |value| field is
6012 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6013 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6014 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6015 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6016 (Maybe colored lines will help untangle your picture.)
6017 Node |r| is a subscript node with |type| and |value|
6018 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6019 and |link(r)=r1| is another subscript node. To complete the picture,
6020 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6021 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6022 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6023 and we finish things off with three more nodes
6024 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6025 with a larger sheet of paper.) The value of variable \.{x20b}
6026 appears in node~|qqq2|, as you can well imagine.
6028 If the example in the previous paragraph doesn't make things crystal
6029 clear, a glance at some of the simpler subroutines below will reveal how
6030 things work out in practice.
6032 The only really unusual thing about these conventions is the use of
6033 collective subscript attributes. The idea is to avoid repeating a lot of
6034 type information when many elements of an array are identical macros
6035 (for which distinct values need not be stored) or when they don't have
6036 all of the possible attributes. Branches of the structure below collective
6037 subscript attributes do not carry actual values except for macro identifiers;
6038 branches of the structure below subscript nodes do not carry significant
6039 information in their collective subscript attributes.
6041 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6042 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6043 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6044 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6045 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6046 @d attr_node_size 3 /* the number of words in an attribute node */
6047 @d subscr_node_size 3 /* the number of words in a subscript node */
6048 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6050 @<Initialize table...@>=
6051 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6053 @ Variables of type \&{pair} will have values that point to four-word
6054 nodes containing two numeric values. The first of these values has
6055 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6056 the |link| in the first points back to the node whose |value| points
6057 to this four-word node.
6059 Variables of type \&{transform} are similar, but in this case their
6060 |value| points to a 12-word node containing six values, identified by
6061 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6062 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6063 Finally, variables of type \&{color} have three values in six words
6064 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6066 When an entire structured variable is saved, the |root| indication
6067 is temporarily replaced by |saved_root|.
6069 Some variables have no name; they just are used for temporary storage
6070 while expressions are being evaluated. We call them {\sl capsules}.
6072 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6073 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6074 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6075 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6076 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6077 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6078 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6079 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6080 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6081 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6082 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6083 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6084 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6085 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6087 @d pair_node_size 4 /* the number of words in a pair node */
6088 @d transform_node_size 12 /* the number of words in a transform node */
6089 @d color_node_size 6 /* the number of words in a color node */
6090 @d cmykcolor_node_size 8 /* the number of words in a color node */
6093 small_number big_node_size[mp_pair_type+1];
6094 small_number sector0[mp_pair_type+1];
6095 small_number sector_offset[mp_black_part_sector+1];
6097 @ The |sector0| array gives for each big node type, |name_type| values
6098 for its first subfield; the |sector_offset| array gives for each
6099 |name_type| value, the offset from the first subfield in words;
6100 and the |big_node_size| array gives the size in words for each type of
6104 mp->big_node_size[mp_transform_type]=transform_node_size;
6105 mp->big_node_size[mp_pair_type]=pair_node_size;
6106 mp->big_node_size[mp_color_type]=color_node_size;
6107 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6108 mp->sector0[mp_transform_type]=mp_x_part_sector;
6109 mp->sector0[mp_pair_type]=mp_x_part_sector;
6110 mp->sector0[mp_color_type]=mp_red_part_sector;
6111 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6112 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6113 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6115 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6116 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6118 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6119 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6122 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6123 procedure call |init_big_node(p)| will allocate a pair or transform node
6124 for~|p|. The individual parts of such nodes are initially of type
6128 void mp_init_big_node (MP mp,pointer p) {
6129 pointer q; /* the new node */
6130 small_number s; /* its size */
6131 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6134 @<Make variable |q+s| newly independent@>;
6135 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6138 link(q)=p; value(p)=q;
6141 @ The |id_transform| function creates a capsule for the
6142 identity transformation.
6145 pointer mp_id_transform (MP mp) {
6146 pointer p,q,r; /* list manipulation registers */
6147 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6148 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6149 r=q+transform_node_size;
6152 type(r)=mp_known; value(r)=0;
6154 value(xx_part_loc(q))=unity;
6155 value(yy_part_loc(q))=unity;
6159 @ Tokens are of type |tag_token| when they first appear, but they point
6160 to |null| until they are first used as the root of a variable.
6161 The following subroutine establishes the root node on such grand occasions.
6164 void mp_new_root (MP mp,pointer x) {
6165 pointer p; /* the new node */
6166 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6167 link(p)=x; equiv(x)=p;
6170 @ These conventions for variable representation are illustrated by the
6171 |print_variable_name| routine, which displays the full name of a
6172 variable given only a pointer to its two-word value packet.
6175 void mp_print_variable_name (MP mp, pointer p);
6178 void mp_print_variable_name (MP mp, pointer p) {
6179 pointer q; /* a token list that will name the variable's suffix */
6180 pointer r; /* temporary for token list creation */
6181 while ( name_type(p)>=mp_x_part_sector ) {
6182 @<Preface the output with a part specifier; |return| in the
6183 case of a capsule@>;
6186 while ( name_type(p)>mp_saved_root ) {
6187 @<Ascend one level, pushing a token onto list |q|
6188 and replacing |p| by its parent@>;
6190 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6191 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6193 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6194 mp_flush_token_list(mp, r);
6197 @ @<Ascend one level, pushing a token onto list |q|...@>=
6199 if ( name_type(p)==mp_subscr ) {
6200 r=mp_new_num_tok(mp, subscript(p));
6203 } while (name_type(p)!=mp_attr);
6204 } else if ( name_type(p)==mp_structured_root ) {
6205 p=link(p); goto FOUND;
6207 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6208 @:this can't happen var}{\quad var@>
6209 r=mp_get_avail(mp); info(r)=attr_loc(p);
6216 @ @<Preface the output with a part specifier...@>=
6217 { switch (name_type(p)) {
6218 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6219 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6220 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6221 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6222 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6223 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6224 case mp_red_part_sector: mp_print(mp, "red"); break;
6225 case mp_green_part_sector: mp_print(mp, "green"); break;
6226 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6227 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6228 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6229 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6230 case mp_black_part_sector: mp_print(mp, "black"); break;
6231 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6233 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6236 } /* there are no other cases */
6237 mp_print(mp, "part ");
6238 p=link(p-mp->sector_offset[name_type(p)]);
6241 @ The |interesting| function returns |true| if a given variable is not
6242 in a capsule, or if the user wants to trace capsules.
6245 boolean mp_interesting (MP mp,pointer p) {
6246 small_number t; /* a |name_type| */
6247 if ( mp->internal[tracing_capsules]>0 ) {
6251 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6252 t=name_type(link(p-mp->sector_offset[t]));
6253 return (t!=mp_capsule);
6257 @ Now here is a subroutine that converts an unstructured type into an
6258 equivalent structured type, by inserting a |mp_structured| node that is
6259 capable of growing. This operation is done only when |name_type(p)=root|,
6260 |subscr|, or |attr|.
6262 The procedure returns a pointer to the new node that has taken node~|p|'s
6263 place in the structure. Node~|p| itself does not move, nor are its
6264 |value| or |type| fields changed in any way.
6267 pointer mp_new_structure (MP mp,pointer p) {
6268 pointer q,r=0; /* list manipulation registers */
6269 switch (name_type(p)) {
6271 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6274 @<Link a new subscript node |r| in place of node |p|@>;
6277 @<Link a new attribute node |r| in place of node |p|@>;
6280 mp_confusion(mp, "struct");
6281 @:this can't happen struct}{\quad struct@>
6284 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6285 attr_head(r)=p; name_type(p)=mp_structured_root;
6286 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6287 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6288 attr_loc(q)=collective_subscript;
6292 @ @<Link a new subscript node |r| in place of node |p|@>=
6297 } while (name_type(q)!=mp_attr);
6298 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6302 r=mp_get_node(mp, subscr_node_size);
6303 link(q)=r; subscript(r)=subscript(p);
6306 @ If the attribute is |collective_subscript|, there are two pointers to
6307 node~|p|, so we must change both of them.
6309 @<Link a new attribute node |r| in place of node |p|@>=
6311 q=parent(p); r=attr_head(q);
6315 r=mp_get_node(mp, attr_node_size); link(q)=r;
6316 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6317 if ( attr_loc(p)==collective_subscript ) {
6318 q=subscr_head_loc(parent(p));
6319 while ( link(q)!=p ) q=link(q);
6324 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6325 list of suffixes; it returns a pointer to the corresponding two-word
6326 value. For example, if |t| points to token \.x followed by a numeric
6327 token containing the value~7, |find_variable| finds where the value of
6328 \.{x7} is stored in memory. This may seem a simple task, and it
6329 usually is, except when \.{x7} has never been referenced before.
6330 Indeed, \.x may never have even been subscripted before; complexities
6331 arise with respect to updating the collective subscript information.
6333 If a macro type is detected anywhere along path~|t|, or if the first
6334 item on |t| isn't a |tag_token|, the value |null| is returned.
6335 Otherwise |p| will be a non-null pointer to a node such that
6336 |undefined<type(p)<mp_structured|.
6338 @d abort_find { return null; }
6341 pointer mp_find_variable (MP mp,pointer t) {
6342 pointer p,q,r,s; /* nodes in the ``value'' line */
6343 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6344 integer n; /* subscript or attribute */
6345 memory_word save_word; /* temporary storage for a word of |mem| */
6347 p=info(t); t=link(t);
6348 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6349 if ( equiv(p)==null ) mp_new_root(mp, p);
6352 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6353 if ( t<mp->hi_mem_min ) {
6354 @<Descend one level for the subscript |value(t)|@>
6356 @<Descend one level for the attribute |info(t)|@>;
6360 if ( type(pp)>=mp_structured ) {
6361 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6363 if ( type(p)==mp_structured ) p=attr_head(p);
6364 if ( type(p)==undefined ) {
6365 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6366 type(p)=type(pp); value(p)=null;
6371 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6372 |pp|~stays in the collective line while |p|~goes through actual subscript
6375 @<Make sure that both nodes |p| and |pp|...@>=
6376 if ( type(pp)!=mp_structured ) {
6377 if ( type(pp)>mp_structured ) abort_find;
6378 ss=mp_new_structure(mp, pp);
6381 }; /* now |type(pp)=mp_structured| */
6382 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6383 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6385 @ We want this part of the program to be reasonably fast, in case there are
6387 lots of subscripts at the same level of the data structure. Therefore
6388 we store an ``infinite'' value in the word that appears at the end of the
6389 subscript list, even though that word isn't part of a subscript node.
6391 @<Descend one level for the subscript |value(t)|@>=
6394 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6395 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6396 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6399 } while (n>subscript(s));
6400 if ( n==subscript(s) ) {
6403 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6404 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6406 mp->mem[subscript_loc(q)]=save_word;
6409 @ @<Descend one level for the attribute |info(t)|@>=
6415 } while (n>attr_loc(ss));
6416 if ( n<attr_loc(ss) ) {
6417 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6418 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6419 parent(qq)=pp; ss=qq;
6424 pp=ss; s=attr_head(p);
6427 } while (n>attr_loc(s));
6428 if ( n==attr_loc(s) ) {
6431 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6432 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6438 @ Variables lose their former values when they appear in a type declaration,
6439 or when they are defined to be macros or \&{let} equal to something else.
6440 A subroutine will be defined later that recycles the storage associated
6441 with any particular |type| or |value|; our goal now is to study a higher
6442 level process called |flush_variable|, which selectively frees parts of a
6445 This routine has some complexity because of examples such as
6446 `\hbox{\tt numeric x[]a[]b}'
6447 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6448 `\hbox{\tt vardef x[]a[]=...}'
6449 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6450 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6451 to handle such examples is to use recursion; so that's what we~do.
6454 Parameter |p| points to the root information of the variable;
6455 parameter |t| points to a list of one-word nodes that represent
6456 suffixes, with |info=collective_subscript| for subscripts.
6459 @<Declare subroutines for printing expressions@>
6460 @<Declare basic dependency-list subroutines@>
6461 @<Declare the recycling subroutines@>
6462 void mp_flush_cur_exp (MP mp,scaled v) ;
6463 @<Declare the procedure called |flush_below_variable|@>
6466 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6467 pointer q,r; /* list manipulation */
6468 halfword n; /* attribute to match */
6470 if ( type(p)!=mp_structured ) return;
6471 n=info(t); t=link(t);
6472 if ( n==collective_subscript ) {
6473 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6474 while ( name_type(q)==mp_subscr ){
6475 mp_flush_variable(mp, q,t,discard_suffixes);
6477 if ( type(q)==mp_structured ) r=q;
6478 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6488 } while (attr_loc(p)<n);
6489 if ( attr_loc(p)!=n ) return;
6491 if ( discard_suffixes ) {
6492 mp_flush_below_variable(mp, p);
6494 if ( type(p)==mp_structured ) p=attr_head(p);
6495 mp_recycle_value(mp, p);
6499 @ The next procedure is simpler; it wipes out everything but |p| itself,
6500 which becomes undefined.
6502 @<Declare the procedure called |flush_below_variable|@>=
6503 void mp_flush_below_variable (MP mp, pointer p);
6506 void mp_flush_below_variable (MP mp,pointer p) {
6507 pointer q,r; /* list manipulation registers */
6508 if ( type(p)!=mp_structured ) {
6509 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6512 while ( name_type(q)==mp_subscr ) {
6513 mp_flush_below_variable(mp, q); r=q; q=link(q);
6514 mp_free_node(mp, r,subscr_node_size);
6516 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6517 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6518 else mp_free_node(mp, r,subscr_node_size);
6519 /* we assume that |subscr_node_size=attr_node_size| */
6521 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6522 } while (q!=end_attr);
6527 @ Just before assigning a new value to a variable, we will recycle the
6528 old value and make the old value undefined. The |und_type| routine
6529 determines what type of undefined value should be given, based on
6530 the current type before recycling.
6533 small_number mp_und_type (MP mp,pointer p) {
6535 case undefined: case mp_vacuous:
6537 case mp_boolean_type: case mp_unknown_boolean:
6538 return mp_unknown_boolean;
6539 case mp_string_type: case mp_unknown_string:
6540 return mp_unknown_string;
6541 case mp_pen_type: case mp_unknown_pen:
6542 return mp_unknown_pen;
6543 case mp_path_type: case mp_unknown_path:
6544 return mp_unknown_path;
6545 case mp_picture_type: case mp_unknown_picture:
6546 return mp_unknown_picture;
6547 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6548 case mp_pair_type: case mp_numeric_type:
6550 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6551 return mp_numeric_type;
6552 } /* there are no other cases */
6556 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6557 of a symbolic token. It must remove any variable structure or macro
6558 definition that is currently attached to that symbol. If the |saving|
6559 parameter is true, a subsidiary structure is saved instead of destroyed.
6562 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6563 pointer q; /* |equiv(p)| */
6565 switch (eq_type(p) % outer_tag) {
6567 case secondary_primary_macro:
6568 case tertiary_secondary_macro:
6569 case expression_tertiary_macro:
6570 if ( ! saving ) mp_delete_mac_ref(mp, q);
6575 name_type(q)=mp_saved_root;
6577 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6584 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6587 @* \[16] Saving and restoring equivalents.
6588 The nested structure given by \&{begingroup} and \&{endgroup}
6589 allows |eqtb| entries to be saved and restored, so that temporary changes
6590 can be made without difficulty. When the user requests a current value to
6591 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6592 \&{endgroup} ultimately causes the old values to be removed from the save
6593 stack and put back in their former places.
6595 The save stack is a linked list containing three kinds of entries,
6596 distinguished by their |info| fields. If |p| points to a saved item,
6600 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6601 such an item to the save stack and each \&{endgroup} cuts back the stack
6602 until the most recent such entry has been removed.
6605 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6606 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6607 commands or suitable \&{interim} commands.
6610 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6611 integer to be restored to internal parameter number~|q|. Such entries
6612 are generated by \&{interim} commands.
6615 The global variable |save_ptr| points to the top item on the save stack.
6617 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6618 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6619 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6620 link((A))=mp->save_ptr; mp->save_ptr=(A);
6624 pointer save_ptr; /* the most recently saved item */
6626 @ @<Set init...@>=mp->save_ptr=null;
6628 @ The |save_variable| routine is given a hash address |q|; it salts this
6629 address in the save stack, together with its current equivalent,
6630 then makes token~|q| behave as though it were brand new.
6632 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6633 things from the stack when the program is not inside a group, so there's
6634 no point in wasting the space.
6636 @c void mp_save_variable (MP mp,pointer q) {
6637 pointer p; /* temporary register */
6638 if ( mp->save_ptr!=null ){
6639 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6640 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6642 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6645 @ Similarly, |save_internal| is given the location |q| of an internal
6646 quantity like |tracing_pens|. It creates a save stack entry of the
6649 @c void mp_save_internal (MP mp,halfword q) {
6650 pointer p; /* new item for the save stack */
6651 if ( mp->save_ptr!=null ){
6652 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6653 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6657 @ At the end of a group, the |unsave| routine restores all of the saved
6658 equivalents in reverse order. This routine will be called only when there
6659 is at least one boundary item on the save stack.
6662 void mp_unsave (MP mp) {
6663 pointer q; /* index to saved item */
6664 pointer p; /* temporary register */
6665 while ( info(mp->save_ptr)!=0 ) {
6666 q=info(mp->save_ptr);
6668 if ( mp->internal[tracing_restores]>0 ) {
6669 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6670 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6671 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6672 mp_end_diagnostic(mp, false);
6674 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6676 if ( mp->internal[tracing_restores]>0 ) {
6677 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6678 mp_print_text(q); mp_print_char(mp, '}');
6679 mp_end_diagnostic(mp, false);
6681 mp_clear_symbol(mp, q,false);
6682 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6683 if ( eq_type(q) % outer_tag==tag_token ) {
6685 if ( p!=null ) name_type(p)=mp_root;
6688 p=link(mp->save_ptr);
6689 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6691 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6694 @* \[17] Data structures for paths.
6695 When a \MP\ user specifies a path, \MP\ will create a list of knots
6696 and control points for the associated cubic spline curves. If the
6697 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6698 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6699 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6700 @:Bezier}{B\'ezier, Pierre Etienne@>
6701 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6702 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6705 There is a 8-word node for each knot $z_k$, containing one word of
6706 control information and six words for the |x| and |y| coordinates of
6707 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6708 |left_type| and |right_type| fields, which each occupy a quarter of
6709 the first word in the node; they specify properties of the curve as it
6710 enters and leaves the knot. There's also a halfword |link| field,
6711 which points to the following knot, and a final supplementary word (of
6712 which only a quarter is used).
6714 If the path is a closed contour, knots 0 and |n| are identical;
6715 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6716 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6717 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6718 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6720 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6721 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6722 @d endpoint 0 /* |left_type| at path beginning and |right_type| at path end */
6723 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6724 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6725 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6726 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6727 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6728 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6729 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6730 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6731 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6732 @d left_coord(A) mp->mem[(A)+2].sc
6733 /* coordinate of previous control point given |x_loc| or |y_loc| */
6734 @d right_coord(A) mp->mem[(A)+4].sc
6735 /* coordinate of next control point given |x_loc| or |y_loc| */
6736 @d knot_node_size 8 /* number of words in a knot node */
6738 @ Before the B\'ezier control points have been calculated, the memory
6739 space they will ultimately occupy is taken up by information that can be
6740 used to compute them. There are four cases:
6743 \textindent{$\bullet$} If |right_type=open|, the curve should leave
6744 the knot in the same direction it entered; \MP\ will figure out a
6748 \textindent{$\bullet$} If |right_type=curl|, the curve should leave the
6749 knot in a direction depending on the angle at which it enters the next
6750 knot and on the curl parameter stored in |right_curl|.
6753 \textindent{$\bullet$} If |right_type=given|, the curve should leave the
6754 knot in a nonzero direction stored as an |angle| in |right_given|.
6757 \textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
6758 point for leaving this knot has already been computed; it is in the
6759 |right_x| and |right_y| fields.
6762 The rules for |left_type| are similar, but they refer to the curve entering
6763 the knot, and to \\{left} fields instead of \\{right} fields.
6765 Non-|explicit| control points will be chosen based on ``tension'' parameters
6766 in the |left_tension| and |right_tension| fields. The
6767 `\&{atleast}' option is represented by negative tension values.
6768 @:at_least_}{\&{atleast} primitive@>
6770 For example, the \MP\ path specification
6771 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6773 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6775 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6776 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6777 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6779 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6780 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6781 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6782 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6783 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6784 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6785 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6786 Of course, this example is more complicated than anything a normal user
6789 These types must satisfy certain restrictions because of the form of \MP's
6791 (i)~|open| type never appears in the same node together with |endpoint|,
6793 (ii)~The |right_type| of a node is |explicit| if and only if the
6794 |left_type| of the following node is |explicit|.
6795 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6797 @d left_curl left_x /* curl information when entering this knot */
6798 @d left_given left_x /* given direction when entering this knot */
6799 @d left_tension left_y /* tension information when entering this knot */
6800 @d right_curl right_x /* curl information when leaving this knot */
6801 @d right_given right_x /* given direction when leaving this knot */
6802 @d right_tension right_y /* tension information when leaving this knot */
6803 @d explicit 1 /* |left_type| or |right_type| when control points are known */
6804 @d given 2 /* |left_type| or |right_type| when a direction is given */
6805 @d curl 3 /* |left_type| or |right_type| when a curl is desired */
6806 @d open 4 /* |left_type| or |right_type| when \MP\ should choose the direction */
6808 @ Knots can be user-supplied, or they can be created by program code,
6809 like the |split_cubic| function, or |copy_path|. The distinction is
6810 needed for the cleanup routine that runs after |split_cubic|, because
6811 it should only delete knots it has previously inserted, and never
6812 anything that was user-supplied. In order to be able to differentiate
6813 one knot from another, we will set |originator(p):=metapost_user| when
6814 it appeared in the actual metapost program, and
6815 |originator(p):=program_code| in all other cases.
6817 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6818 @d program_code 0 /* not created by a user */
6819 @d metapost_user 1 /* created by a user */
6821 @ Here is a routine that prints a given knot list
6822 in symbolic form. It illustrates the conventions discussed above,
6823 and checks for anomalies that might arise while \MP\ is being debugged.
6825 @<Declare subroutines for printing expressions@>=
6826 void mp_pr_path (MP mp,pointer h);
6829 void mp_pr_path (MP mp,pointer h) {
6830 pointer p,q; /* for list traversal */
6834 if ( (p==null)||(q==null) ) {
6835 mp_print_nl(mp, "???"); return; /* this won't happen */
6838 @<Print information for adjacent knots |p| and |q|@>;
6841 if ( (p!=h)||(left_type(h)!=endpoint) ) {
6842 @<Print two dots, followed by |given| or |curl| if present@>;
6845 if ( left_type(h)!=endpoint )
6846 mp_print(mp, "cycle");
6849 @ @<Print information for adjacent knots...@>=
6850 mp_print_two(mp, x_coord(p),y_coord(p));
6851 switch (right_type(p)) {
6853 if ( left_type(p)==open ) mp_print(mp, "{open?}"); /* can't happen */
6855 if ( (left_type(q)!=endpoint)||(q!=h) ) q=null; /* force an error */
6859 @<Print control points between |p| and |q|, then |goto done1|@>;
6862 @<Print information for a curve that begins |open|@>;
6866 @<Print information for a curve that begins |curl| or |given|@>;
6869 mp_print(mp, "???"); /* can't happen */
6873 if ( left_type(q)<=explicit ) {
6874 mp_print(mp, "..control?"); /* can't happen */
6876 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6877 @<Print tension between |p| and |q|@>;
6880 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6881 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6883 @<Print two dots...@>=
6885 mp_print_nl(mp, " ..");
6886 if ( left_type(p)==given ) {
6887 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6888 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6889 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6890 } else if ( left_type(p)==curl ){
6891 mp_print(mp, "{curl ");
6892 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6896 @ @<Print tension between |p| and |q|@>=
6898 mp_print(mp, "..tension ");
6899 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6900 mp_print_scaled(mp, abs(right_tension(p)));
6901 if ( right_tension(p)!=left_tension(q) ){
6902 mp_print(mp, " and ");
6903 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6904 mp_print_scaled(mp, abs(left_tension(q)));
6908 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6910 mp_print(mp, "..controls ");
6911 mp_print_two(mp, right_x(p),right_y(p));
6912 mp_print(mp, " and ");
6913 if ( left_type(q)!=explicit ) {
6914 mp_print(mp, "??"); /* can't happen */
6917 mp_print_two(mp, left_x(q),left_y(q));
6922 @ @<Print information for a curve that begins |open|@>=
6923 if ( (left_type(p)!=explicit)&&(left_type(p)!=open) ) {
6924 mp_print(mp, "{open?}"); /* can't happen */
6928 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6929 \MP's default curl is present.
6931 The code here uses the fact that |left_curl==left_given| and
6932 |right_curl==right_given|.
6934 @<Print information for a curve that begins |curl|...@>=
6936 if ( left_type(p)==open )
6937 mp_print(mp, "??"); /* can't happen */
6939 if ( right_type(p)==curl ) {
6940 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6942 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6943 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6944 mp_print_scaled(mp, mp->n_sin);
6946 mp_print_char(mp, '}');
6949 @ It is convenient to have another version of |pr_path| that prints the path
6950 as a diagnostic message.
6952 @<Declare subroutines for printing expressions@>=
6953 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6954 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
6957 mp_end_diagnostic(mp, true);
6960 @ If we want to duplicate a knot node, we can say |copy_knot|:
6963 pointer mp_copy_knot (MP mp,pointer p) {
6964 pointer q; /* the copy */
6965 int k; /* runs through the words of a knot node */
6966 q=mp_get_node(mp, knot_node_size);
6967 for (k=0;k<=knot_node_size-1;k++) {
6968 mp->mem[q+k]=mp->mem[p+k];
6970 originator(q)=originator(p);
6974 @ The |copy_path| routine makes a clone of a given path.
6977 pointer mp_copy_path (MP mp, pointer p) {
6978 pointer q,pp,qq; /* for list manipulation */
6979 q=mp_copy_knot(mp, p);
6982 link(qq)=mp_copy_knot(mp, pp);
6990 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
6991 returns a pointer to the first node of the copy, if the path is a cycle,
6992 but to the final node of a non-cyclic copy. The global
6993 variable |path_tail| will point to the final node of the original path;
6994 this trick makes it easier to implement `\&{doublepath}'.
6996 All node types are assumed to be |endpoint| or |explicit| only.
6999 pointer mp_htap_ypoc (MP mp,pointer p) {
7000 pointer q,pp,qq,rr; /* for list manipulation */
7001 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7004 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7005 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7006 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7007 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7008 originator(qq)=originator(pp);
7009 if ( link(pp)==p ) {
7010 link(q)=qq; mp->path_tail=pp; return q;
7012 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7017 pointer path_tail; /* the node that links to the beginning of a path */
7019 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7020 calling the following subroutine.
7022 @<Declare the recycling subroutines@>=
7023 void mp_toss_knot_list (MP mp,pointer p) ;
7026 void mp_toss_knot_list (MP mp,pointer p) {
7027 pointer q; /* the node being freed */
7028 pointer r; /* the next node */
7032 mp_free_node(mp, q,knot_node_size); q=r;
7036 @* \[18] Choosing control points.
7037 Now we must actually delve into one of \MP's more difficult routines,
7038 the |make_choices| procedure that chooses angles and control points for
7039 the splines of a curve when the user has not specified them explicitly.
7040 The parameter to |make_choices| points to a list of knots and
7041 path information, as described above.
7043 A path decomposes into independent segments at ``breakpoint'' knots,
7044 which are knots whose left and right angles are both prespecified in
7045 some way (i.e., their |left_type| and |right_type| aren't both open).
7048 @<Declare the procedure called |solve_choices|@>;
7049 void mp_make_choices (MP mp,pointer knots) {
7050 pointer h; /* the first breakpoint */
7051 pointer p,q; /* consecutive breakpoints being processed */
7052 @<Other local variables for |make_choices|@>;
7053 check_arith; /* make sure that |arith_error=false| */
7054 if ( mp->internal[tracing_choices]>0 )
7055 mp_print_path(mp, knots,", before choices",true);
7056 @<If consecutive knots are equal, join them explicitly@>;
7057 @<Find the first breakpoint, |h|, on the path;
7058 insert an artificial breakpoint if the path is an unbroken cycle@>;
7061 @<Fill in the control points between |p| and the next breakpoint,
7062 then advance |p| to that breakpoint@>;
7064 if ( mp->internal[tracing_choices]>0 )
7065 mp_print_path(mp, knots,", after choices",true);
7066 if ( mp->arith_error ) {
7067 @<Report an unexpected problem during the choice-making@>;
7071 @ @<Report an unexpected problem during the choice...@>=
7073 print_err("Some number got too big");
7074 @.Some number got too big@>
7075 help2("The path that I just computed is out of range.")
7076 ("So it will probably look funny. Proceed, for a laugh.");
7077 mp_put_get_error(mp); mp->arith_error=false;
7080 @ Two knots in a row with the same coordinates will always be joined
7081 by an explicit ``curve'' whose control points are identical with the
7084 @<If consecutive knots are equal, join them explicitly@>=
7088 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>explicit ) {
7089 right_type(p)=explicit;
7090 if ( left_type(p)==open ) {
7091 left_type(p)=curl; left_curl(p)=unity;
7093 left_type(q)=explicit;
7094 if ( right_type(q)==open ) {
7095 right_type(q)=curl; right_curl(q)=unity;
7097 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7098 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7103 @ If there are no breakpoints, it is necessary to compute the direction
7104 angles around an entire cycle. In this case the |left_type| of the first
7105 node is temporarily changed to |end_cycle|.
7107 @d end_cycle (open+1)
7109 @<Find the first breakpoint, |h|, on the path...@>=
7112 if ( left_type(h)!=open ) break;
7113 if ( right_type(h)!=open ) break;
7116 left_type(h)=end_cycle; break;
7120 @ If |right_type(p)<given| and |q=link(p)|, we must have
7121 |right_type(p)=left_type(q)=explicit| or |endpoint|.
7123 @<Fill in the control points between |p| and the next breakpoint...@>=
7125 if ( right_type(p)>=given ) {
7126 while ( (left_type(q)==open)&&(right_type(q)==open) ) q=link(q);
7127 @<Fill in the control information between
7128 consecutive breakpoints |p| and |q|@>;
7129 } else if ( right_type(p)==endpoint ) {
7130 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7134 @ This step makes it possible to transform an explicitly computed path without
7135 checking the |left_type| and |right_type| fields.
7137 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7139 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7140 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7143 @ Before we can go further into the way choices are made, we need to
7144 consider the underlying theory. The basic ideas implemented in |make_choices|
7145 are due to John Hobby, who introduced the notion of ``mock curvature''
7146 @^Hobby, John Douglas@>
7147 at a knot. Angles are chosen so that they preserve mock curvature when
7148 a knot is passed, and this has been found to produce excellent results.
7150 It is convenient to introduce some notations that simplify the necessary
7151 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7152 between knots |k| and |k+1|; and let
7153 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7154 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7155 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7156 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7157 $$\eqalign{z_k^+&=z_k+
7158 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7160 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7161 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7162 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7163 corresponding ``offset angles.'' These angles satisfy the condition
7164 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7165 whenever the curve leaves an intermediate knot~|k| in the direction that
7168 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7169 the curve at its beginning and ending points. This means that
7170 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7171 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7172 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7173 z\k^-,z\k^{\phantom+};t)$
7176 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7177 \qquad{\rm and}\qquad
7178 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7179 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7181 approximation to this true curvature that arises in the limit for
7182 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7183 The standard velocity function satisfies
7184 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7185 hence the mock curvatures are respectively
7186 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7187 \qquad{\rm and}\qquad
7188 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7190 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7191 determines $\phi_k$ when $\theta_k$ is known, so the task of
7192 angle selection is essentially to choose appropriate values for each
7193 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7194 from $(**)$, we obtain a system of linear equations of the form
7195 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7197 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7198 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7199 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7200 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7201 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7202 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7203 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7204 hence they have a unique solution. Moreover, in most cases the tensions
7205 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7206 solution numerically stable, and there is an exponential damping
7207 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7208 a factor of~$O(2^{-j})$.
7210 @ However, we still must consider the angles at the starting and ending
7211 knots of a non-cyclic path. These angles might be given explicitly, or
7212 they might be specified implicitly in terms of an amount of ``curl.''
7214 Let's assume that angles need to be determined for a non-cyclic path
7215 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7216 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7217 have been given for $0<k<n$, and it will be convenient to introduce
7218 equations of the same form for $k=0$ and $k=n$, where
7219 $$A_0=B_0=C_n=D_n=0.$$
7220 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7221 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7222 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7223 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7224 mock curvature at $z_1$; i.e.,
7225 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7226 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7227 This equation simplifies to
7228 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7229 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7230 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7231 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7232 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7233 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7234 hence the linear equations remain nonsingular.
7236 Similar considerations apply at the right end, when the final angle $\phi_n$
7237 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7238 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7240 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7241 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7242 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7244 When |make_choices| chooses angles, it must compute the coefficients of
7245 these linear equations, then solve the equations. To compute the coefficients,
7246 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7247 When the equations are solved, the chosen directions $\theta_k$ are put
7248 back into the form of control points by essentially computing sines and
7251 @ OK, we are ready to make the hard choices of |make_choices|.
7252 Most of the work is relegated to an auxiliary procedure
7253 called |solve_choices|, which has been introduced to keep
7254 |make_choices| from being extremely long.
7256 @<Fill in the control information between...@>=
7257 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7258 set $n$ to the length of the path@>;
7259 @<Remove |open| types at the breakpoints@>;
7260 mp_solve_choices(mp, p,q,n)
7262 @ It's convenient to precompute quantities that will be needed several
7263 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7264 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7265 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7266 and $z\k-z_k$ will be stored in |psi[k]|.
7269 int path_size; /* maximum number of knots between breakpoints of a path */
7272 scaled *delta; /* knot differences */
7273 angle *psi; /* turning angles */
7275 @ @<Allocate or initialize ...@>=
7281 @ @<Dealloc variables@>=
7287 @ @<Other local variables for |make_choices|@>=
7288 int k,n; /* current and final knot numbers */
7289 pointer s,t; /* registers for list traversal */
7290 scaled delx,dely; /* directions where |open| meets |explicit| */
7291 fraction sine,cosine; /* trig functions of various angles */
7293 @ @<Calculate the turning angles...@>=
7296 k=0; s=p; n=mp->path_size;
7299 mp->delta_x[k]=x_coord(t)-x_coord(s);
7300 mp->delta_y[k]=y_coord(t)-y_coord(s);
7301 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7303 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7304 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7305 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7306 mp_take_fraction(mp, mp->delta_y[k],sine),
7307 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7308 mp_take_fraction(mp, mp->delta_x[k],sine));
7311 if ( k==mp->path_size ) {
7312 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7313 goto RESTART; /* retry, loop size has changed */
7316 } while (! (k>=n)&&(left_type(s)!=end_cycle));
7317 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7320 @ When we get to this point of the code, |right_type(p)| is either
7321 |given| or |curl| or |open|. If it is |open|, we must have
7322 |left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
7323 case, the |open| type is converted to |given|; however, if the
7324 velocity coming into this knot is zero, the |open| type is
7325 converted to a |curl|, since we don't know the incoming direction.
7327 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7328 |end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7330 @<Remove |open| types at the breakpoints@>=
7331 if ( left_type(q)==open ) {
7332 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7333 if ( (delx==0)&&(dely==0) ) {
7334 left_type(q)=curl; left_curl(q)=unity;
7336 left_type(q)=given; left_given(q)=mp_n_arg(mp, delx,dely);
7339 if ( (right_type(p)==open)&&(left_type(p)==explicit) ) {
7340 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7341 if ( (delx==0)&&(dely==0) ) {
7342 right_type(p)=curl; right_curl(p)=unity;
7344 right_type(p)=given; right_given(p)=mp_n_arg(mp, delx,dely);
7348 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7349 and exactly one of the breakpoints involves a curl. The simplest case occurs
7350 when |n=1| and there is a curl at both breakpoints; then we simply draw
7353 But before coding up the simple cases, we might as well face the general case,
7354 since we must deal with it sooner or later, and since the general case
7355 is likely to give some insight into the way simple cases can be handled best.
7357 When there is no cycle, the linear equations to be solved form a tridiagonal
7358 system, and we can apply the standard technique of Gaussian elimination
7359 to convert that system to a sequence of equations of the form
7360 $$\theta_0+u_0\theta_1=v_0,\quad
7361 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7362 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7364 It is possible to do this diagonalization while generating the equations.
7365 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7366 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7368 The procedure is slightly more complex when there is a cycle, but the
7369 basic idea will be nearly the same. In the cyclic case the right-hand
7370 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7371 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7372 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7373 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7374 eliminate the $w$'s from the system, after which the solution can be
7377 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7378 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7379 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7380 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7383 angle *theta; /* values of $\theta_k$ */
7384 fraction *uu; /* values of $u_k$ */
7385 angle *vv; /* values of $v_k$ */
7386 fraction *ww; /* values of $w_k$ */
7388 @ @<Allocate or initialize ...@>=
7394 @ @<Dealloc variables@>=
7400 @ @<Declare |mp_reallocate| functions@>=
7401 void mp_reallocate_paths (MP mp, int l);
7404 void mp_reallocate_paths (MP mp, int l) {
7405 XREALLOC (mp->delta_x, (l+1), scaled);
7406 XREALLOC (mp->delta_y, (l+1), scaled);
7407 XREALLOC (mp->delta, (l+1), scaled);
7408 XREALLOC (mp->psi, (l+1), angle);
7409 XREALLOC (mp->theta, (l+1), angle);
7410 XREALLOC (mp->uu, (l+1), fraction);
7411 XREALLOC (mp->vv, (l+1), angle);
7412 XREALLOC (mp->ww, (l+1), fraction);
7416 @ Our immediate problem is to get the ball rolling by setting up the
7417 first equation or by realizing that no equations are needed, and to fit
7418 this initialization into a framework suitable for the overall computation.
7420 @<Declare the procedure called |solve_choices|@>=
7421 @<Declare subroutines needed by |solve_choices|@>;
7422 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7423 int k; /* current knot number */
7424 pointer r,s,t; /* registers for list traversal */
7425 @<Other local variables for |solve_choices|@>;
7430 @<Get the linear equations started; or |return|
7431 with the control points in place, if linear equations
7434 switch (left_type(s)) {
7435 case end_cycle: case open:
7436 @<Set up equation to match mock curvatures
7437 at $z_k$; then |goto found| with $\theta_n$
7438 adjusted to equal $\theta_0$, if a cycle has ended@>;
7441 @<Set up equation for a curl at $\theta_n$
7445 @<Calculate the given value of $\theta_n$
7448 } /* there are no other cases */
7453 @<Finish choosing angles and assigning control points@>;
7456 @ On the first time through the loop, we have |k=0| and |r| is not yet
7457 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7459 @<Get the linear equations started...@>=
7460 switch (right_type(s)) {
7462 if ( left_type(t)==given ) {
7463 @<Reduce to simple case of two givens and |return|@>
7465 @<Set up the equation for a given value of $\theta_0$@>;
7469 if ( left_type(t)==curl ) {
7470 @<Reduce to simple case of straight line and |return|@>
7472 @<Set up the equation for a curl at $\theta_0$@>;
7476 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7477 /* this begins a cycle */
7479 } /* there are no other cases */
7481 @ The general equation that specifies equality of mock curvature at $z_k$ is
7482 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7483 as derived above. We want to combine this with the already-derived equation
7484 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7486 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7488 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7489 -A_kw_{k-1}\theta_0$$
7490 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7491 fixed-point arithmetic, avoiding the chance of overflow while retaining
7494 The calculations will be performed in several registers that
7495 provide temporary storage for intermediate quantities.
7497 @<Other local variables for |solve_choices|@>=
7498 fraction aa,bb,cc,ff,acc; /* temporary registers */
7499 scaled dd,ee; /* likewise, but |scaled| */
7500 scaled lt,rt; /* tension values */
7502 @ @<Set up equation to match mock curvatures...@>=
7503 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7504 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7505 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7506 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7507 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7508 @<Calculate the values of $v_k$ and $w_k$@>;
7509 if ( left_type(s)==end_cycle ) {
7510 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7514 @ Since tension values are never less than 3/4, the values |aa| and
7515 |bb| computed here are never more than 4/5.
7517 @<Calculate the values $\\{aa}=...@>=
7518 if ( abs(right_tension(r))==unity) {
7519 aa=fraction_half; dd=2*mp->delta[k];
7521 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7522 dd=mp_take_fraction(mp, mp->delta[k],
7523 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7525 if ( abs(left_tension(t))==unity ){
7526 bb=fraction_half; ee=2*mp->delta[k-1];
7528 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7529 ee=mp_take_fraction(mp, mp->delta[k-1],
7530 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7532 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7534 @ The ratio to be calculated in this step can be written in the form
7535 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7536 \\{cc}\cdot\\{dd},$$
7537 because of the quantities just calculated. The values of |dd| and |ee|
7538 will not be needed after this step has been performed.
7540 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7541 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7542 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7544 ff=mp_make_fraction(mp, lt,rt);
7545 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7546 dd=mp_take_fraction(mp, dd,ff);
7548 ff=mp_make_fraction(mp, rt,lt);
7549 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7550 ee=mp_take_fraction(mp, ee,ff);
7553 ff=mp_make_fraction(mp, ee,ee+dd)
7555 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7556 equation was specified by a curl. In that case we must use a special
7557 method of computation to prevent overflow.
7559 Fortunately, the calculations turn out to be even simpler in this ``hard''
7560 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7561 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7563 @<Calculate the values of $v_k$ and $w_k$@>=
7564 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7565 if ( right_type(r)==curl ) {
7567 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7569 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7570 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7571 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7572 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7573 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7574 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7575 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7578 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7579 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7580 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7581 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7584 The idea in the following code is to observe that
7585 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7586 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7587 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7588 so we can solve for $\theta_n=\theta_0$.
7590 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7592 aa=0; bb=fraction_one; /* we have |k=n| */
7595 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7596 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7597 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7598 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7599 mp->theta[n]=aa; mp->vv[0]=aa;
7600 for (k=1;k<=n-1;k++) {
7601 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7606 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7607 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7609 @<Calculate the given value of $\theta_n$...@>=
7611 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7612 reduce_angle(mp->theta[n]);
7616 @ @<Set up the equation for a given value of $\theta_0$@>=
7618 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7619 reduce_angle(mp->vv[0]);
7620 mp->uu[0]=0; mp->ww[0]=0;
7623 @ @<Set up the equation for a curl at $\theta_0$@>=
7624 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7625 if ( (rt==unity)&&(lt==unity) )
7626 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7628 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7629 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7632 @ @<Set up equation for a curl at $\theta_n$...@>=
7633 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7634 if ( (rt==unity)&&(lt==unity) )
7635 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7637 ff=mp_curl_ratio(mp, cc,lt,rt);
7638 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7639 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7643 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7644 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7645 a somewhat tedious program to calculate
7646 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7647 \alpha^3\gamma+(3-\beta)\beta^2},$$
7648 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7649 is necessary only if the curl and tension are both large.)
7650 The values of $\alpha$ and $\beta$ will be at most~4/3.
7652 @<Declare subroutines needed by |solve_choices|@>=
7653 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7655 fraction alpha,beta,num,denom,ff; /* registers */
7656 alpha=mp_make_fraction(mp, unity,a_tension);
7657 beta=mp_make_fraction(mp, unity,b_tension);
7658 if ( alpha<=beta ) {
7659 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7660 gamma=mp_take_fraction(mp, gamma,ff);
7661 beta=beta / 010000; /* convert |fraction| to |scaled| */
7662 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7663 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7665 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7666 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7667 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7668 /* $1365\approx 2^{12}/3$ */
7669 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7671 if ( num>=denom+denom+denom+denom ) return fraction_four;
7672 else return mp_make_fraction(mp, num,denom);
7675 @ We're in the home stretch now.
7677 @<Finish choosing angles and assigning control points@>=
7678 for (k=n-1;k>=0;k--) {
7679 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7684 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7685 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7686 mp_set_controls(mp, s,t,k);
7690 @ The |set_controls| routine actually puts the control points into
7691 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7692 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7693 $\cos\phi$ needed in this calculation.
7699 fraction cf; /* sines and cosines */
7701 @ @<Declare subroutines needed by |solve_choices|@>=
7702 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7703 fraction rr,ss; /* velocities, divided by thrice the tension */
7704 scaled lt,rt; /* tensions */
7705 fraction sine; /* $\sin(\theta+\phi)$ */
7706 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7707 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7708 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7709 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7710 @<Decrease the velocities,
7711 if necessary, to stay inside the bounding triangle@>;
7713 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7714 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7715 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7716 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7717 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7718 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7719 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7720 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7721 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7722 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7723 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7724 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7725 right_type(p)=explicit; left_type(q)=explicit;
7728 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7729 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7730 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7731 there is no ``bounding triangle.''
7732 @:at_least_}{\&{atleast} primitive@>
7734 @<Decrease the velocities, if necessary...@>=
7735 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7736 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7737 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7739 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7740 if ( right_tension(p)<0 )
7741 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7742 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7743 if ( left_tension(q)<0 )
7744 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7745 ss=mp_make_fraction(mp, abs(mp->st),sine);
7749 @ Only the simple cases remain to be handled.
7751 @<Reduce to simple case of two givens and |return|@>=
7753 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7754 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7755 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7756 mp_set_controls(mp, p,q,0); return;
7759 @ @<Reduce to simple case of straight line and |return|@>=
7761 right_type(p)=explicit; left_type(q)=explicit;
7762 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7764 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7765 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7766 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7767 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7769 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7770 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7771 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7774 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7775 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7776 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7777 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7779 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7780 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7781 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7786 @* \[19] Measuring paths.
7787 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7788 allow the user to measure the bounding box of anything that can go into a
7789 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7790 by just finding the bounding box of the knots and the control points. We
7791 need a more accurate version of the bounding box, but we can still use the
7792 easy estimate to save time by focusing on the interesting parts of the path.
7794 @ Computing an accurate bounding box involves a theme that will come up again
7795 and again. Given a Bernshte{\u\i}n polynomial
7796 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7797 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7798 we can conveniently bisect its range as follows:
7801 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7804 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7805 |0<=k<n-j|, for |0<=j<n|.
7809 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7810 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7811 This formula gives us the coefficients of polynomials to use over the ranges
7812 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7814 @ Now here's a subroutine that's handy for all sorts of path computations:
7815 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7816 returns the unique |fraction| value |t| between 0 and~1 at which
7817 $B(a,b,c;t)$ changes from positive to negative, or returns
7818 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7819 is already negative at |t=0|), |crossing_point| returns the value zero.
7821 @d no_crossing { return (fraction_one+1); }
7822 @d one_crossing { return fraction_one; }
7823 @d zero_crossing { return 0; }
7824 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7826 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7827 integer d; /* recursive counter */
7828 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7829 if ( a<0 ) zero_crossing;
7832 if ( c>0 ) { no_crossing; }
7833 else if ( (a==0)&&(b==0) ) { no_crossing;}
7834 else { one_crossing; }
7836 if ( a==0 ) zero_crossing;
7837 } else if ( a==0 ) {
7838 if ( b<=0 ) zero_crossing;
7840 @<Use bisection to find the crossing point, if one exists@>;
7843 @ The general bisection method is quite simple when $n=2$, hence
7844 |crossing_point| does not take much time. At each stage in the
7845 recursion we have a subinterval defined by |l| and~|j| such that
7846 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7847 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7849 It is convenient for purposes of calculation to combine the values
7850 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7851 of bisection then corresponds simply to doubling $d$ and possibly
7852 adding~1. Furthermore it proves to be convenient to modify
7853 our previous conventions for bisection slightly, maintaining the
7854 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7855 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7856 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7858 The following code maintains the invariant relations
7859 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7860 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7861 it has been constructed in such a way that no arithmetic overflow
7862 will occur if the inputs satisfy
7863 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7865 @<Use bisection to find the crossing point...@>=
7866 d=1; x0=a; x1=a-b; x2=b-c;
7877 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7881 } while (d<fraction_one);
7882 return (d-fraction_one)
7884 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7885 a cubic corresponding to the |fraction| value~|t|.
7887 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7888 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7890 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,(A)-(B),t))
7892 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7893 scaled x1,x2,x3; /* intermediate values */
7894 x1=t_of_the_way(knot_coord(p),right_coord(p));
7895 x2=t_of_the_way(right_coord(p),left_coord(q));
7896 x3=t_of_the_way(left_coord(q),knot_coord(q));
7897 x1=t_of_the_way(x1,x2);
7898 x2=t_of_the_way(x2,x3);
7899 return t_of_the_way(x1,x2);
7902 @ The actual bounding box information is stored in global variables.
7903 Since it is convenient to address the $x$ and $y$ information
7904 separately, we define arrays indexed by |x_code..y_code| and use
7905 macros to give them more convenient names.
7909 mp_x_code=0, /* index for |minx| and |maxx| */
7910 mp_y_code /* index for |miny| and |maxy| */
7914 @d minx mp->bbmin[mp_x_code]
7915 @d maxx mp->bbmax[mp_x_code]
7916 @d miny mp->bbmin[mp_y_code]
7917 @d maxy mp->bbmax[mp_y_code]
7920 scaled bbmin[mp_y_code+1];
7921 scaled bbmax[mp_y_code+1];
7922 /* the result of procedures that compute bounding box information */
7924 @ Now we're ready for the key part of the bounding box computation.
7925 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
7926 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
7927 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
7929 for $0<t\le1$. In other words, the procedure adjusts the bounds to
7930 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
7931 The |c| parameter is |x_code| or |y_code|.
7933 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
7934 boolean wavy; /* whether we need to look for extremes */
7935 scaled del1,del2,del3,del,dmax; /* proportional to the control
7936 points of a quadratic derived from a cubic */
7937 fraction t,tt; /* where a quadratic crosses zero */
7938 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
7940 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7941 @<Check the control points against the bounding box and set |wavy:=true|
7942 if any of them lie outside@>;
7944 del1=right_coord(p)-knot_coord(p);
7945 del2=left_coord(q)-right_coord(p);
7946 del3=knot_coord(q)-left_coord(q);
7947 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
7948 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
7950 negate(del1); negate(del2); negate(del3);
7952 t=mp_crossing_point(mp, del1,del2,del3);
7953 if ( t<fraction_one ) {
7954 @<Test the extremes of the cubic against the bounding box@>;
7959 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
7960 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
7961 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
7963 @ @<Check the control points against the bounding box and set...@>=
7965 if ( mp->bbmin[c]<=right_coord(p) )
7966 if ( right_coord(p)<=mp->bbmax[c] )
7967 if ( mp->bbmin[c]<=left_coord(q) )
7968 if ( left_coord(q)<=mp->bbmax[c] )
7971 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
7972 section. We just set |del=0| in that case.
7974 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
7975 if ( del1!=0 ) del=del1;
7976 else if ( del2!=0 ) del=del2;
7980 if ( abs(del2)>dmax ) dmax=abs(del2);
7981 if ( abs(del3)>dmax ) dmax=abs(del3);
7982 while ( dmax<fraction_half ) {
7983 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
7987 @ Since |crossing_point| has tried to choose |t| so that
7988 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
7989 slope, the value of |del2| computed below should not be positive.
7990 But rounding error could make it slightly positive in which case we
7991 must cut it to zero to avoid confusion.
7993 @<Test the extremes of the cubic against the bounding box@>=
7995 x=mp_eval_cubic(mp, p,q,t);
7996 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7997 del2=t_of_the_way(del2,del3);
7998 /* now |0,del2,del3| represent the derivative on the remaining interval */
7999 if ( del2>0 ) del2=0;
8000 tt=mp_crossing_point(mp, 0,-del2,-del3);
8001 if ( tt<fraction_one ) {
8002 @<Test the second extreme against the bounding box@>;
8006 @ @<Test the second extreme against the bounding box@>=
8008 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8009 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8012 @ Finding the bounding box of a path is basically a matter of applying
8013 |bound_cubic| twice for each pair of adjacent knots.
8015 @c void mp_path_bbox (MP mp,pointer h) {
8016 pointer p,q; /* a pair of adjacent knots */
8017 minx=x_coord(h); miny=y_coord(h);
8018 maxx=minx; maxy=miny;
8021 if ( right_type(p)==endpoint ) return;
8023 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8024 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8029 @ Another important way to measure a path is to find its arc length. This
8030 is best done by using the general bisection algorithm to subdivide the path
8031 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8034 Since the arc length is the integral with respect to time of the magnitude of
8035 the velocity, it is natural to use Simpson's rule for the approximation.
8037 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8038 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8039 for the arc length of a path of length~1. For a cubic spline
8040 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8041 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8043 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8045 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8046 is the result of the bisection algorithm.
8048 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8049 This could be done via the theoretical error bound for Simpson's rule,
8051 but this is impractical because it requires an estimate of the fourth
8052 derivative of the quantity being integrated. It is much easier to just perform
8053 a bisection step and see how much the arc length estimate changes. Since the
8054 error for Simpson's rule is proportional to the fourth power of the sample
8055 spacing, the remaining error is typically about $1\over16$ of the amount of
8056 the change. We say ``typically'' because the error has a pseudo-random behavior
8057 that could cause the two estimates to agree when each contain large errors.
8059 To protect against disasters such as undetected cusps, the bisection process
8060 should always continue until all the $dz_i$ vectors belong to a single
8061 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8062 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8063 If such a spline happens to produce an erroneous arc length estimate that
8064 is little changed by bisection, the amount of the error is likely to be fairly
8065 small. We will try to arrange things so that freak accidents of this type do
8066 not destroy the inverse relationship between the \&{arclength} and
8067 \&{arctime} operations.
8068 @:arclength_}{\&{arclength} primitive@>
8069 @:arctime_}{\&{arctime} primitive@>
8071 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8073 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8074 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8075 returns the time when the arc length reaches |a_goal| if there is such a time.
8076 Thus the return value is either an arc length less than |a_goal| or, if the
8077 arc length would be at least |a_goal|, it returns a time value decreased by
8078 |two|. This allows the caller to use the sign of the result to distinguish
8079 between arc lengths and time values. On certain types of overflow, it is
8080 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8081 Otherwise, the result is always less than |a_goal|.
8083 Rather than halving the control point coordinates on each recursive call to
8084 |arc_test|, it is better to keep them proportional to velocity on the original
8085 curve and halve the results instead. This means that recursive calls can
8086 potentially use larger error tolerances in their arc length estimates. How
8087 much larger depends on to what extent the errors behave as though they are
8088 independent of each other. To save computing time, we use optimistic assumptions
8089 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8092 In addition to the tolerance parameter, |arc_test| should also have parameters
8093 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8094 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8095 and they are needed in different instances of |arc_test|.
8097 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8098 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8099 scaled dx2, scaled dy2, scaled v0, scaled v02,
8100 scaled v2, scaled a_goal, scaled tol) {
8101 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8102 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8104 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8105 scaled arc; /* best arc length estimate before recursion */
8106 @<Other local variables in |arc_test|@>;
8107 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8109 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8110 set |arc_test| and |return|@>;
8111 @<Test if the control points are confined to one quadrant or rotating them
8112 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8113 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8114 if ( arc < a_goal ) {
8117 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8118 that time minus |two|@>;
8121 @<Use one or two recursive calls to compute the |arc_test| function@>;
8125 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8126 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8127 |make_fraction| in this inner loop.
8130 @<Use one or two recursive calls to compute the |arc_test| function@>=
8132 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8133 large as possible@>;
8134 tol = tol + halfp(tol);
8135 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8136 halfp(v02), a_new, tol);
8138 return (-halfp(two-a));
8140 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8141 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8142 halfp(v02), v022, v2, a_new, tol);
8144 return (-halfp(-b) - half_unit);
8146 return (a + half(b-a));
8150 @ @<Other local variables in |arc_test|@>=
8151 scaled a,b; /* results of recursive calls */
8152 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8154 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8155 a_aux = el_gordo - a_goal;
8156 if ( a_goal > a_aux ) {
8157 a_aux = a_goal - a_aux;
8160 a_new = a_goal + a_goal;
8164 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8165 to force the additions and subtractions to be done in an order that avoids
8168 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8171 a_new = a_new + a_aux;
8174 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8175 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8176 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8177 this bound. Note that recursive calls will maintain this invariant.
8179 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8180 dx01 = half(dx0 + dx1);
8181 dx12 = half(dx1 + dx2);
8182 dx02 = half(dx01 + dx12);
8183 dy01 = half(dy0 + dy1);
8184 dy12 = half(dy1 + dy2);
8185 dy02 = half(dy01 + dy12)
8187 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8188 |a_goal=el_gordo| is guaranteed to yield the arc length.
8190 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8191 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8192 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8194 arc1 = v002 + half(halfp(v0+tmp) - v002);
8195 arc = v022 + half(halfp(v2+tmp) - v022);
8196 if ( (arc < el_gordo-arc1) ) {
8199 mp->arith_error = true;
8200 if ( a_goal==el_gordo ) return (el_gordo);
8204 @ @<Other local variables in |arc_test|@>=
8205 scaled tmp, tmp2; /* all purpose temporary registers */
8206 scaled arc1; /* arc length estimate for the first half */
8208 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8209 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8210 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8212 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8213 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8215 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8216 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8218 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8219 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8222 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8224 it is appropriate to use the same approximation to decide when the integral
8225 reaches the intermediate value |a_goal|. At this point
8227 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8228 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8229 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8230 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8231 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8235 $$ {\vb\dot B(t)\vb\over 3} \approx
8236 \cases{B\left(\hbox{|v0|},
8237 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8238 {1\over 2}\hbox{|v02|}; 2t \right)&
8239 if $t\le{1\over 2}$\cr
8240 B\left({1\over 2}\hbox{|v02|},
8241 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8242 \hbox{|v2|}; 2t-1 \right)&
8243 if $t\ge{1\over 2}$.\cr}
8246 We can integrate $\vb\dot B(t)\vb$ by using
8247 $$\int 3B(a,b,c;\tau)\,dt =
8248 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8251 This construction allows us to find the time when the arc length reaches
8252 |a_goal| by solving a cubic equation of the form
8253 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8254 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8255 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8256 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8257 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8258 $\tau$ given $a$, $b$, $c$, and $x$.
8260 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8262 tmp = (v02 + 2) / 4;
8263 if ( a_goal<=arc1 ) {
8266 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8269 return ((half_unit - two) +
8270 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8274 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8275 $$ B(0, a, a+b, a+b+c; t) = x. $$
8276 This routine is based on |crossing_point| but is simplified by the
8277 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8278 If rounding error causes this condition to be violated slightly, we just ignore
8279 it and proceed with binary search. This finds a time when the function value
8280 reaches |x| and the slope is positive.
8282 @<Declare subroutines needed by |arc_test|@>=
8283 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8284 scaled ab, bc, ac; /* bisection results */
8285 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8286 integer xx; /* temporary for updating |x| */
8287 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8288 @:this can't happen rising?}{\quad rising?@>
8291 } else if ( x >= a+b+c ) {
8295 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8299 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8300 xx = x - a - ab - ac;
8301 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8302 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8303 } while (t < unity);
8308 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8313 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8315 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8316 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8323 @ It is convenient to have a simpler interface to |arc_test| that requires no
8324 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8325 length less than |fraction_four|.
8327 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8329 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8330 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8331 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8332 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8333 v0 = mp_pyth_add(mp, dx0,dy0);
8334 v1 = mp_pyth_add(mp, dx1,dy1);
8335 v2 = mp_pyth_add(mp, dx2,dy2);
8336 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8337 mp->arith_error = true;
8338 if ( a_goal==el_gordo ) return el_gordo;
8341 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8342 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8343 v0, v02, v2, a_goal, arc_tol));
8347 @ Now it is easy to find the arc length of an entire path.
8349 @c scaled mp_get_arc_length (MP mp,pointer h) {
8350 pointer p,q; /* for traversing the path */
8351 scaled a,a_tot; /* current and total arc lengths */
8354 while ( right_type(p)!=endpoint ){
8356 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8357 left_x(q)-right_x(p), left_y(q)-right_y(p),
8358 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8359 a_tot = mp_slow_add(mp, a, a_tot);
8360 if ( q==h ) break; else p=q;
8366 @ The inverse operation of finding the time on a path~|h| when the arc length
8367 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8368 is required to handle very large times or negative times on cyclic paths. For
8369 non-cyclic paths, |arc0| values that are negative or too large cause
8370 |get_arc_time| to return 0 or the length of path~|h|.
8372 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8373 time value greater than the length of the path. Since it could be much greater,
8374 we must be prepared to compute the arc length of path~|h| and divide this into
8375 |arc0| to find how many multiples of the length of path~|h| to add.
8377 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8378 pointer p,q; /* for traversing the path */
8379 scaled t_tot; /* accumulator for the result */
8380 scaled t; /* the result of |do_arc_test| */
8381 scaled arc; /* portion of |arc0| not used up so far */
8382 integer n; /* number of extra times to go around the cycle */
8384 @<Deal with a negative |arc0| value and |return|@>;
8386 if ( arc0==el_gordo ) decr(arc0);
8390 while ( (right_type(p)!=endpoint) && (arc>0) ) {
8392 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8393 left_x(q)-right_x(p), left_y(q)-right_y(p),
8394 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8395 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8397 @<Update |t_tot| and |arc| to avoid going around the cyclic
8398 path too many times but set |arith_error:=true| and |goto done| on
8407 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8408 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8409 else { t_tot = t_tot + unity; arc = arc - t; }
8411 @ @<Deal with a negative |arc0| value and |return|@>=
8413 if ( left_type(h)==endpoint ) {
8416 p = mp_htap_ypoc(mp, h);
8417 t_tot = -mp_get_arc_time(mp, p, -arc0);
8418 mp_toss_knot_list(mp, p);
8424 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8426 n = arc / (arc0 - arc);
8427 arc = arc - n*(arc0 - arc);
8428 if ( t_tot > el_gordo / (n+1) ) {
8429 mp->arith_error = true;
8433 t_tot = (n + 1)*t_tot;
8436 @* \[20] Data structures for pens.
8437 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8438 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8439 @:stroke}{\&{stroke} command@>
8440 converted into an area fill as described in the next part of this program.
8441 The mathematics behind this process is based on simple aspects of the theory
8442 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8443 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8444 Foundations of Computer Science {\bf 24} (1983), 100--111].
8446 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8447 @:makepen_}{\&{makepen} primitive@>
8448 This path representation is almost sufficient for our purposes except that
8449 a pen path should always be a convex polygon with the vertices in
8450 counter-clockwise order.
8451 Since we will need to scan pen polygons both forward and backward, a pen
8452 should be represented as a doubly linked ring of knot nodes. There is
8453 room for the extra back pointer because we do not need the
8454 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8455 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8456 so that certain procedures can operate on both pens and paths. In particular,
8457 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8460 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8462 @ The |make_pen| procedure turns a path into a pen by initializing
8463 the |knil| pointers and making sure the knots form a convex polygon.
8464 Thus each cubic in the given path becomes a straight line and the control
8465 points are ignored. If the path is not cyclic, the ends are connected by a
8468 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8470 @c @<Declare a function called |convex_hull|@>;
8471 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8472 pointer p,q; /* two consecutive knots */
8479 h=mp_convex_hull(mp, h);
8480 @<Make sure |h| isn't confused with an elliptical pen@>;
8485 @ The only information required about an elliptical pen is the overall
8486 transformation that has been applied to the original \&{pencircle}.
8487 @:pencircle_}{\&{pencircle} primitive@>
8488 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8489 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8490 knot node and transformed as if it were a path.
8492 @d pen_is_elliptical(A) ((A)==link((A)))
8494 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8495 pointer h; /* the knot node to return */
8496 h=mp_get_node(mp, knot_node_size);
8497 link(h)=h; knil(h)=h;
8498 originator(h)=program_code;
8499 x_coord(h)=0; y_coord(h)=0;
8500 left_x(h)=diam; left_y(h)=0;
8501 right_x(h)=0; right_y(h)=diam;
8505 @ If the polygon being returned by |make_pen| has only one vertex, it will
8506 be interpreted as an elliptical pen. This is no problem since a degenerate
8507 polygon can equally well be thought of as a degenerate ellipse. We need only
8508 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8510 @<Make sure |h| isn't confused with an elliptical pen@>=
8511 if ( pen_is_elliptical( h) ){
8512 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8513 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8516 @ We have to cheat a little here but most operations on pens only use
8517 the first three words in each knot node.
8518 @^data structure assumptions@>
8520 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8521 x_coord(test_pen)=-half_unit;
8522 y_coord(test_pen)=0;
8523 x_coord(test_pen+3)=half_unit;
8524 y_coord(test_pen+3)=0;
8525 x_coord(test_pen+6)=0;
8526 y_coord(test_pen+6)=unity;
8527 link(test_pen)=test_pen+3;
8528 link(test_pen+3)=test_pen+6;
8529 link(test_pen+6)=test_pen;
8530 knil(test_pen)=test_pen+6;
8531 knil(test_pen+3)=test_pen;
8532 knil(test_pen+6)=test_pen+3
8534 @ Printing a polygonal pen is very much like printing a path
8536 @<Declare subroutines for printing expressions@>=
8537 void mp_pr_pen (MP mp,pointer h) {
8538 pointer p,q; /* for list traversal */
8539 if ( pen_is_elliptical(h) ) {
8540 @<Print the elliptical pen |h|@>;
8544 mp_print_two(mp, x_coord(p),y_coord(p));
8545 mp_print_nl(mp, " .. ");
8546 @<Advance |p| making sure the links are OK and |return| if there is
8549 mp_print(mp, "cycle");
8553 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8555 if ( (q==null) || (knil(q)!=p) ) {
8556 mp_print_nl(mp, "???"); return; /* this won't happen */
8561 @ @<Print the elliptical pen |h|@>=
8563 mp_print(mp, "pencircle transformed (");
8564 mp_print_scaled(mp, x_coord(h));
8565 mp_print_char(mp, ',');
8566 mp_print_scaled(mp, y_coord(h));
8567 mp_print_char(mp, ',');
8568 mp_print_scaled(mp, left_x(h)-x_coord(h));
8569 mp_print_char(mp, ',');
8570 mp_print_scaled(mp, right_x(h)-x_coord(h));
8571 mp_print_char(mp, ',');
8572 mp_print_scaled(mp, left_y(h)-y_coord(h));
8573 mp_print_char(mp, ',');
8574 mp_print_scaled(mp, right_y(h)-y_coord(h));
8575 mp_print_char(mp, ')');
8578 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8581 @<Declare subroutines for printing expressions@>=
8582 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8583 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8586 mp_end_diagnostic(mp, true);
8589 @ Making a polygonal pen into a path involves restoring the |left_type| and
8590 |right_type| fields and setting the control points so as to make a polygonal
8594 void mp_make_path (MP mp,pointer h) {
8595 pointer p; /* for traversing the knot list */
8596 small_number k; /* a loop counter */
8597 @<Other local variables in |make_path|@>;
8598 if ( pen_is_elliptical(h) ) {
8599 @<Make the elliptical pen |h| into a path@>;
8603 left_type(p)=explicit;
8604 right_type(p)=explicit;
8605 @<copy the coordinates of knot |p| into its control points@>;
8611 @ @<copy the coordinates of knot |p| into its control points@>=
8612 left_x(p)=x_coord(p);
8613 left_y(p)=y_coord(p);
8614 right_x(p)=x_coord(p);
8615 right_y(p)=y_coord(p)
8617 @ We need an eight knot path to get a good approximation to an ellipse.
8619 @<Make the elliptical pen |h| into a path@>=
8621 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8623 for (k=0;k<=7;k++ ) {
8624 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8625 transforming it appropriately@>;
8626 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8631 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8632 center_x=x_coord(h);
8633 center_y=y_coord(h);
8634 width_x=left_x(h)-center_x;
8635 width_y=left_y(h)-center_y;
8636 height_x=right_x(h)-center_x;
8637 height_y=right_y(h)-center_y
8639 @ @<Other local variables in |make_path|@>=
8640 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8641 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8642 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8643 scaled dx,dy; /* the vector from knot |p| to its right control point */
8645 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8647 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8648 find the point $k/8$ of the way around the circle and the direction vector
8651 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8653 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8654 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8655 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8656 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8657 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8658 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8659 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8660 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8661 right_x(p)=x_coord(p)+dx;
8662 right_y(p)=y_coord(p)+dy;
8663 left_x(p)=x_coord(p)-dx;
8664 left_y(p)=y_coord(p)-dy;
8665 left_type(p)=explicit;
8666 right_type(p)=explicit;
8667 originator(p)=program_code
8670 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8671 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8673 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8674 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8675 function for $\theta=\phi=22.5^\circ$. This comes out to be
8676 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8677 \approx 0.132608244919772.
8681 mp->half_cos[0]=fraction_half;
8682 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8684 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8685 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8687 for (k=3;k<= 4;k++ ) {
8688 mp->half_cos[k]=-mp->half_cos[4-k];
8689 mp->d_cos[k]=-mp->d_cos[4-k];
8691 for (k=5;k<= 7;k++ ) {
8692 mp->half_cos[k]=mp->half_cos[8-k];
8693 mp->d_cos[k]=mp->d_cos[8-k];
8696 @ The |convex_hull| function forces a pen polygon to be convex when it is
8697 returned by |make_pen| and after any subsequent transformation where rounding
8698 error might allow the convexity to be lost.
8699 The convex hull algorithm used here is described by F.~P. Preparata and
8700 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8702 @<Declare a function called |convex_hull|@>=
8703 @<Declare a procedure called |move_knot|@>;
8704 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8705 pointer l,r; /* the leftmost and rightmost knots */
8706 pointer p,q; /* knots being scanned */
8707 pointer s; /* the starting point for an upcoming scan */
8708 scaled dx,dy; /* a temporary pointer */
8709 if ( pen_is_elliptical(h) ) {
8712 @<Set |l| to the leftmost knot in polygon~|h|@>;
8713 @<Set |r| to the rightmost knot in polygon~|h|@>;
8716 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8717 move them past~|r|@>;
8718 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8719 move them past~|l|@>;
8720 @<Sort the path from |l| to |r| by increasing $x$@>;
8721 @<Sort the path from |r| to |l| by decreasing $x$@>;
8724 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8730 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8732 @<Set |l| to the leftmost knot in polygon~|h|@>=
8736 if ( x_coord(p)<=x_coord(l) )
8737 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8742 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8746 if ( x_coord(p)>=x_coord(r) )
8747 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8752 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8753 dx=x_coord(r)-x_coord(l);
8754 dy=y_coord(r)-y_coord(l);
8758 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8759 mp_move_knot(mp, p, r);
8763 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8766 @ @<Declare a procedure called |move_knot|@>=
8767 void mp_move_knot (MP mp,pointer p, pointer q) {
8768 link(knil(p))=link(p);
8769 knil(link(p))=knil(p);
8776 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8780 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8781 mp_move_knot(mp, p,l);
8785 @ The list is likely to be in order already so we just do linear insertions.
8786 Secondary comparisons on $y$ ensure that the sort is consistent with the
8787 choice of |l| and |r|.
8789 @<Sort the path from |l| to |r| by increasing $x$@>=
8793 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8794 while ( x_coord(q)==x_coord(p) ) {
8795 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8797 if ( q==knil(p) ) p=link(p);
8798 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8801 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8805 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8806 while ( x_coord(q)==x_coord(p) ) {
8807 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8809 if ( q==knil(p) ) p=link(p);
8810 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8813 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8814 at knot |q|. There usually will be a left turn so we streamline the case
8815 where the |then| clause is not executed.
8817 @<Do a Gramm scan and remove vertices where there...@>=
8821 dx=x_coord(q)-x_coord(p);
8822 dy=y_coord(q)-y_coord(p);
8826 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8827 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8832 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8835 mp_free_node(mp, p,knot_node_size);
8836 link(s)=q; knil(q)=s;
8838 else { p=knil(s); q=s; };
8841 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8842 offset associated with the given direction |(x,y)|. If two different offsets
8843 apply, it chooses one of them.
8846 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8847 pointer p,q; /* consecutive knots */
8849 /* the transformation matrix for an elliptical pen */
8850 fraction xx,yy; /* untransformed offset for an elliptical pen */
8851 fraction d; /* a temporary register */
8852 if ( pen_is_elliptical(h) ) {
8853 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8858 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0);
8861 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0);
8862 mp->cur_x=x_coord(p);
8863 mp->cur_y=y_coord(p);
8869 scaled cur_y; /* all-purpose return value registers */
8871 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8872 if ( (x==0) && (y==0) ) {
8873 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8875 @<Find the non-constant part of the transformation for |h|@>;
8876 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8879 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8880 untransformed version of |(x,y)|@>;
8881 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8882 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8885 @ @<Find the non-constant part of the transformation for |h|@>=
8886 wx=left_x(h)-x_coord(h);
8887 wy=left_y(h)-y_coord(h);
8888 hx=right_x(h)-x_coord(h);
8889 hy=right_y(h)-y_coord(h)
8891 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8892 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8893 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8894 d=mp_pyth_add(mp, xx,yy);
8896 xx=half(mp_make_fraction(mp, xx,d));
8897 yy=half(mp_make_fraction(mp, yy,d));
8900 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8901 But we can handle that case by just calling |find_offset| twice. The answer
8902 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8905 void mp_pen_bbox (MP mp,pointer h) {
8906 pointer p; /* for scanning the knot list */
8907 if ( pen_is_elliptical(h) ) {
8908 @<Find the bounding box of an elliptical pen@>;
8910 minx=x_coord(h); maxx=minx;
8911 miny=y_coord(h); maxy=miny;
8914 if ( x_coord(p)<minx ) minx=x_coord(p);
8915 if ( y_coord(p)<miny ) miny=y_coord(p);
8916 if ( x_coord(p)>maxx ) maxx=x_coord(p);
8917 if ( y_coord(p)>maxy ) maxy=y_coord(p);
8923 @ @<Find the bounding box of an elliptical pen@>=
8925 mp_find_offset(mp, 0,fraction_one,h);
8927 minx=2*x_coord(h)-mp->cur_x;
8928 mp_find_offset(mp, -fraction_one,0,h);
8930 miny=2*y_coord(h)-mp->cur_y;
8933 @* \[21] Edge structures.
8934 Now we come to \MP's internal scheme for representing pictures.
8935 The representation is very different from \MF's edge structures
8936 because \MP\ pictures contain \ps\ graphics objects instead of pixel
8937 images. However, the basic idea is somewhat similar in that shapes
8938 are represented via their boundaries.
8940 The main purpose of edge structures is to keep track of graphical objects
8941 until it is time to translate them into \ps. Since \MP\ does not need to
8942 know anything about an edge structure other than how to translate it into
8943 \ps\ and how to find its bounding box, edge structures can be just linked
8944 lists of graphical objects. \MP\ has no easy way to determine whether
8945 two such objects overlap, but it suffices to draw the first one first and
8946 let the second one overwrite it if necessary.
8948 @ Let's consider the types of graphical objects one at a time.
8949 First of all, a filled contour is represented by a eight-word node. The first
8950 word contains |type| and |link| fields, and the next six words contain a
8951 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
8952 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
8953 give the relevant information.
8955 @d path_p(A) link((A)+1)
8956 /* a pointer to the path that needs filling */
8957 @d pen_p(A) info((A)+1)
8958 /* a pointer to the pen to fill or stroke with */
8959 @d color_model(A) type((A)+2) /* the color model */
8960 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
8961 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
8962 @d obj_grey_loc obj_red_loc /* the location for the color */
8963 @d red_val(A) mp->mem[(A)+3].sc
8964 /* the red component of the color in the range $0\ldots1$ */
8967 @d green_val(A) mp->mem[(A)+4].sc
8968 /* the green component of the color in the range $0\ldots1$ */
8969 @d magenta_val green_val
8970 @d blue_val(A) mp->mem[(A)+5].sc
8971 /* the blue component of the color in the range $0\ldots1$ */
8972 @d yellow_val blue_val
8973 @d black_val(A) mp->mem[(A)+6].sc
8974 /* the blue component of the color in the range $0\ldots1$ */
8975 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
8976 @:linejoin_}{\&{linejoin} primitive@>
8977 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
8978 @:miterlimit_}{\&{miterlimit} primitive@>
8979 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
8980 /* interpret an object pointer that has been offset by |red_part..blue_part| */
8981 @d pre_script(A) mp->mem[(A)+8].hh.lh
8982 @d post_script(A) mp->mem[(A)+8].hh.rh
8987 pointer mp_new_fill_node (MP mp,pointer p) {
8988 /* make a fill node for cyclic path |p| and color black */
8989 pointer t; /* the new node */
8990 t=mp_get_node(mp, fill_node_size);
8993 pen_p(t)=null; /* |null| means don't use a pen */
8998 color_model(t)=uninitialized_model;
9000 post_script(t)=null;
9001 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9005 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9006 if ( mp->internal[linejoin]>unity ) ljoin_val(t)=2;
9007 else if ( mp->internal[linejoin]>0 ) ljoin_val(t)=1;
9008 else ljoin_val(t)=0;
9009 if ( mp->internal[miterlimit]<unity )
9010 miterlim_val(t)=unity;
9012 miterlim_val(t)=mp->internal[miterlimit]
9014 @ A stroked path is represented by an eight-word node that is like a filled
9015 contour node except that it contains the current \&{linecap} value, a scale
9016 factor for the dash pattern, and a pointer that is non-null if the stroke
9017 is to be dashed. The purpose of the scale factor is to allow a picture to
9018 be transformed without touching the picture that |dash_p| points to.
9020 @d dash_p(A) link((A)+9)
9021 /* a pointer to the edge structure that gives the dash pattern */
9022 @d lcap_val(A) type((A)+9)
9023 /* the value of \&{linecap} */
9024 @:linecap_}{\&{linecap} primitive@>
9025 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9026 @d stroked_node_size 11
9030 pointer mp_new_stroked_node (MP mp,pointer p) {
9031 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9032 pointer t; /* the new node */
9033 t=mp_get_node(mp, stroked_node_size);
9034 type(t)=stroked_code;
9035 path_p(t)=p; pen_p(t)=null;
9037 dash_scale(t)=unity;
9042 color_model(t)=uninitialized_model;
9044 post_script(t)=null;
9045 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9046 if ( mp->internal[linecap]>unity ) lcap_val(t)=2;
9047 else if ( mp->internal[linecap]>0 ) lcap_val(t)=1;
9052 @ When a dashed line is computed in a transformed coordinate system, the dash
9053 lengths get scaled like the pen shape and we need to compensate for this. Since
9054 there is no unique scale factor for an arbitrary transformation, we use the
9055 the square root of the determinant. The properties of the determinant make it
9056 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9057 except for the initialization of the scale factor |s|. The factor of 64 is
9058 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9059 to counteract the effect of |take_fraction|.
9061 @<Declare subroutines needed by |print_edges|@>=
9062 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9063 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9064 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9065 @<Initialize |maxabs|@>;
9067 while ( (maxabs<fraction_one) && (s>1) ){
9068 a+=a; b+=b; c+=c; d+=d;
9069 maxabs+=maxabs; s=halfp(s);
9071 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9074 scaled mp_get_pen_scale (MP mp,pointer p) {
9075 return mp_sqrt_det(mp,
9076 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9077 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9080 @ @<Initialize |maxabs|@>=
9082 if ( abs(b)>maxabs ) maxabs=abs(b);
9083 if ( abs(c)>maxabs ) maxabs=abs(c);
9084 if ( abs(d)>maxabs ) maxabs=abs(d)
9086 @ When a picture contains text, this is represented by a fourteen-word node
9087 where the color information and |type| and |link| fields are augmented by
9088 additional fields that describe the text and how it is transformed.
9089 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9090 the font and a string number that gives the text to be displayed.
9091 The |width|, |height|, and |depth| fields
9092 give the dimensions of the text at its design size, and the remaining six
9093 words give a transformation to be applied to the text. The |new_text_node|
9094 function initializes everything to default values so that the text comes out
9095 black with its reference point at the origin.
9097 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9098 @d font_n(A) info((A)+1) /* the font number */
9099 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9100 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9101 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9102 @d text_tx_loc(A) ((A)+11)
9103 /* the first of six locations for transformation parameters */
9104 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9105 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9106 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9107 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9108 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9109 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9110 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9111 /* interpret a text node ponter that has been offset by |x_part..yy_part| */
9112 @d text_node_size 17
9115 @c @<Declare text measuring subroutines@>;
9116 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9117 /* make a text node for font |f| and text string |s| */
9118 pointer t; /* the new node */
9119 t=mp_get_node(mp, text_node_size);
9122 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9127 color_model(t)=uninitialized_model;
9129 post_script(t)=null;
9130 tx_val(t)=0; ty_val(t)=0;
9131 txx_val(t)=unity; txy_val(t)=0;
9132 tyx_val(t)=0; tyy_val(t)=unity;
9133 mp_set_text_box(mp, t); /* this finds the bounding box */
9137 @ The last two types of graphical objects that can occur in an edge structure
9138 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9139 @:set_bounds_}{\&{setbounds} primitive@>
9140 to implement because we must keep track of exactly what is being clipped or
9141 bounded when pictures get merged together. For this reason, each clipping or
9142 \&{setbounds} operation is represented by a pair of nodes: first comes a
9143 two-word node whose |path_p| gives the relevant path, then there is the list
9144 of objects to clip or bound followed by a two-word node whose second word is
9147 Using at least two words for each graphical object node allows them all to be
9148 allocated and deallocated similarly with a global array |gr_object_size| to
9149 give the size in words for each object type.
9151 @d start_clip_size 2
9152 @d start_bounds_size 2
9153 @d stop_clip_size 2 /* the second word is not used here */
9154 @d stop_bounds_size 2 /* the second word is not used here */
9156 @d stop_type(A) ((A)+2)
9157 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9158 @d has_color(A) (type((A))<mp_start_clip_code)
9159 /* does a graphical object have color fields? */
9160 @d has_pen(A) (type((A))<text_code)
9161 /* does a graphical object have a |pen_p| field? */
9162 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9163 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9167 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9168 mp_start_bounds_code, /* |type| of a node that gives a \&{setbounds} path */
9169 mp_stop_clip_code, /* |type| of a node that stops clipping */
9170 mp_stop_bounds_code /* |type| of a node that stops \&{setbounds} */
9174 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9175 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9176 pointer t; /* the new node */
9177 t=mp_get_node(mp, mp->gr_object_size[c]);
9183 @ We need an array to keep track of the sizes of graphical objects.
9186 small_number gr_object_size[mp_stop_bounds_code+1];
9189 mp->gr_object_size[fill_code]=fill_node_size;
9190 mp->gr_object_size[stroked_code]=stroked_node_size;
9191 mp->gr_object_size[text_code]=text_node_size;
9192 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9193 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9194 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9195 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9197 @ All the essential information in an edge structure is encoded as a linked list
9198 of graphical objects as we have just seen, but it is helpful to add some
9199 redundant information. A single edge structure might be used as a dash pattern
9200 many times, and it would be nice to avoid scanning the same structure
9201 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9202 has a header that gives a list of dashes in a sorted order designed for rapid
9203 translation into \ps.
9205 Each dash is represented by a three-word node containing the initial and final
9206 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9207 the dash node with the next higher $x$-coordinates and the final link points
9208 to a special location called |null_dash|. (There should be no overlap between
9209 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9210 the period of repetition, this needs to be stored in the edge header along
9211 with a pointer to the list of dash nodes.
9213 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9214 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9217 /* in an edge header this points to the first dash node */
9218 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9220 @ It is also convenient for an edge header to contain the bounding
9221 box information needed by the \&{llcorner} and \&{urcorner} operators
9222 so that this does not have to be recomputed unnecessarily. This is done by
9223 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9224 how far the bounding box computation has gotten. Thus if the user asks for
9225 the bounding box and then adds some more text to the picture before asking
9226 for more bounding box information, the second computation need only look at
9227 the additional text.
9229 When the bounding box has not been computed, the |bblast| pointer points
9230 to a dummy link at the head of the graphical object list while the |minx_val|
9231 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9232 fields contain |-el_gordo|.
9234 Since the bounding box of pictures containing objects of type
9235 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9236 @:true_corners_}{\&{truecorners} primitive@>
9237 data might not be valid for all values of this parameter. Hence, the |bbtype|
9238 field is needed to keep track of this.
9240 @d minx_val(A) mp->mem[(A)+2].sc
9241 @d miny_val(A) mp->mem[(A)+3].sc
9242 @d maxx_val(A) mp->mem[(A)+4].sc
9243 @d maxy_val(A) mp->mem[(A)+5].sc
9244 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9245 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9246 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9248 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9250 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9252 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9255 void mp_init_bbox (MP mp,pointer h) {
9256 /* Initialize the bounding box information in edge structure |h| */
9257 bblast(h)=dummy_loc(h);
9258 bbtype(h)=no_bounds;
9259 minx_val(h)=el_gordo;
9260 miny_val(h)=el_gordo;
9261 maxx_val(h)=-el_gordo;
9262 maxy_val(h)=-el_gordo;
9265 @ The only other entries in an edge header are a reference count in the first
9266 word and a pointer to the tail of the object list in the last word.
9268 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9269 @d edge_header_size 8
9272 void mp_init_edges (MP mp,pointer h) {
9273 /* initialize an edge header to null values */
9274 dash_list(h)=null_dash;
9275 obj_tail(h)=dummy_loc(h);
9276 link(dummy_loc(h))=null;
9278 mp_init_bbox(mp, h);
9281 @ Here is how edge structures are deleted. The process can be recursive because
9282 of the need to dereference edge structures that are used as dash patterns.
9285 @d add_edge_ref(A) incr(ref_count((A)))
9286 @d delete_edge_ref(A) { if ( ref_count((A))==null ) mp_toss_edges(mp, (A));
9287 else decr(ref_count((A))); }
9289 @<Declare the recycling subroutines@>=
9290 void mp_flush_dash_list (MP mp,pointer h);
9291 pointer mp_toss_gr_object (MP mp,pointer p) ;
9292 void mp_toss_edges (MP mp,pointer h) ;
9294 @ @c void mp_toss_edges (MP mp,pointer h) {
9295 pointer p,q; /* pointers that scan the list being recycled */
9296 pointer r; /* an edge structure that object |p| refers to */
9297 mp_flush_dash_list(mp, h);
9298 q=link(dummy_loc(h));
9299 while ( (q!=null) ) {
9301 r=mp_toss_gr_object(mp, p);
9302 if ( r!=null ) delete_edge_ref(r);
9304 mp_free_node(mp, h,edge_header_size);
9306 void mp_flush_dash_list (MP mp,pointer h) {
9307 pointer p,q; /* pointers that scan the list being recycled */
9309 while ( q!=null_dash ) {
9311 mp_free_node(mp, p,dash_node_size);
9313 dash_list(h)=null_dash;
9315 pointer mp_toss_gr_object (MP mp,pointer p) {
9316 /* returns an edge structure that needs to be dereferenced */
9317 pointer e; /* the edge structure to return */
9319 @<Prepare to recycle graphical object |p|@>;
9320 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9324 @ @<Prepare to recycle graphical object |p|@>=
9327 mp_toss_knot_list(mp, path_p(p));
9328 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9329 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9330 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9333 mp_toss_knot_list(mp, path_p(p));
9334 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9335 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9336 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9340 delete_str_ref(text_p(p));
9341 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9342 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9344 case mp_start_clip_code:
9345 case mp_start_bounds_code:
9346 mp_toss_knot_list(mp, path_p(p));
9348 case mp_stop_clip_code:
9349 case mp_stop_bounds_code:
9351 } /* there are no other cases */
9353 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9354 to be done before making a significant change to an edge structure. Much of
9355 the work is done in a separate routine |copy_objects| that copies a list of
9356 graphical objects into a new edge header.
9358 @c @<Declare a function called |copy_objects|@>;
9359 pointer mp_private_edges (MP mp,pointer h) {
9360 /* make a private copy of the edge structure headed by |h| */
9361 pointer hh; /* the edge header for the new copy */
9362 pointer p,pp; /* pointers for copying the dash list */
9363 if ( ref_count(h)==null ) {
9367 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9368 @<Copy the dash list from |h| to |hh|@>;
9369 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9370 point into the new object list@>;
9375 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9376 @^data structure assumptions@>
9378 @<Copy the dash list from |h| to |hh|@>=
9379 pp=hh; p=dash_list(h);
9380 while ( (p!=null_dash) ) {
9381 link(pp)=mp_get_node(mp, dash_node_size);
9383 start_x(pp)=start_x(p);
9384 stop_x(pp)=stop_x(p);
9388 dash_y(hh)=dash_y(h)
9390 @ @<Copy the bounding box information from |h| to |hh|...@>=
9391 minx_val(hh)=minx_val(h);
9392 miny_val(hh)=miny_val(h);
9393 maxx_val(hh)=maxx_val(h);
9394 maxy_val(hh)=maxy_val(h);
9395 bbtype(hh)=bbtype(h);
9396 p=dummy_loc(h); pp=dummy_loc(hh);
9397 while ((p!=bblast(h)) ) {
9398 if ( p==null ) mp_confusion(mp, "bblast");
9399 @:this can't happen bblast}{\quad bblast@>
9400 p=link(p); pp=link(pp);
9404 @ Here is the promised routine for copying graphical objects into a new edge
9405 structure. It starts copying at object~|p| and stops just before object~|q|.
9406 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9407 structure requires further initialization by |init_bbox|.
9409 @<Declare a function called |copy_objects|@>=
9410 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9411 pointer hh; /* the new edge header */
9412 pointer pp; /* the last newly copied object */
9413 small_number k; /* temporary register */
9414 hh=mp_get_node(mp, edge_header_size);
9415 dash_list(hh)=null_dash;
9419 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9426 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9427 { k=mp->gr_object_size[type(p)];
9428 link(pp)=mp_get_node(mp, k);
9430 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9431 @<Fix anything in graphical object |pp| that should differ from the
9432 corresponding field in |p|@>;
9436 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9438 case mp_start_clip_code:
9439 case mp_start_bounds_code:
9440 path_p(pp)=mp_copy_path(mp, path_p(p));
9443 path_p(pp)=mp_copy_path(mp, path_p(p));
9444 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9447 path_p(pp)=mp_copy_path(mp, path_p(p));
9448 pen_p(pp)=copy_pen(pen_p(p));
9449 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9452 add_str_ref(text_p(pp));
9454 case mp_stop_clip_code:
9455 case mp_stop_bounds_code:
9457 } /* there are no other cases */
9459 @ Here is one way to find an acceptable value for the second argument to
9460 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9461 skips past one picture component, where a ``picture component'' is a single
9462 graphical object, or a start bounds or start clip object and everything up
9463 through the matching stop bounds or stop clip object. The macro version avoids
9464 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9465 unless |p| points to a stop bounds or stop clip node, in which case it executes
9468 @d skip_component(A)
9469 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9470 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9474 pointer mp_skip_1component (MP mp,pointer p) {
9475 integer lev; /* current nesting level */
9478 if ( is_start_or_stop(p) ) {
9479 if ( is_stop(p) ) decr(lev); else incr(lev);
9486 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9488 @<Declare subroutines for printing expressions@>=
9489 @<Declare subroutines needed by |print_edges|@>;
9490 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9491 pointer p; /* a graphical object to be printed */
9492 pointer hh,pp; /* temporary pointers */
9493 scaled scf; /* a scale factor for the dash pattern */
9494 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9495 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9497 while ( link(p)!=null ) {
9501 @<Cases for printing graphical object node |p|@>;
9503 mp_print(mp, "[unknown object type!]");
9507 mp_print_nl(mp, "End edges");
9508 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9510 mp_end_diagnostic(mp, true);
9513 @ @<Cases for printing graphical object node |p|@>=
9515 mp_print(mp, "Filled contour ");
9516 mp_print_obj_color(mp, p);
9517 mp_print_char(mp, ':'); mp_print_ln(mp);
9518 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9519 if ( (pen_p(p)!=null) ) {
9520 @<Print join type for graphical object |p|@>;
9521 mp_print(mp, " with pen"); mp_print_ln(mp);
9522 mp_pr_pen(mp, pen_p(p));
9526 @ @<Print join type for graphical object |p|@>=
9527 switch (ljoin_val(p)) {
9529 mp_print(mp, "mitered joins limited ");
9530 mp_print_scaled(mp, miterlim_val(p));
9533 mp_print(mp, "round joins");
9536 mp_print(mp, "beveled joins");
9539 mp_print(mp, "?? joins");
9544 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9546 @<Print join and cap types for stroked node |p|@>=
9547 switch (lcap_val(p)) {
9548 case 0:mp_print(mp, "butt"); break;
9549 case 1:mp_print(mp, "round"); break;
9550 case 2:mp_print(mp, "square"); break;
9551 default: mp_print(mp, "??"); break;
9554 mp_print(mp, " ends, ");
9555 @<Print join type for graphical object |p|@>
9557 @ Here is a routine that prints the color of a graphical object if it isn't
9558 black (the default color).
9560 @<Declare subroutines needed by |print_edges|@>=
9561 @<Declare a procedure called |print_compact_node|@>;
9562 void mp_print_obj_color (MP mp,pointer p) {
9563 if ( color_model(p)==grey_model ) {
9564 if ( grey_val(p)>0 ) {
9565 mp_print(mp, "greyed ");
9566 mp_print_compact_node(mp, obj_grey_loc(p),1);
9568 } else if ( color_model(p)==cmyk_model ) {
9569 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9570 (yellow_val(p)>0) || (black_val(p)>0) ) {
9571 mp_print(mp, "processcolored ");
9572 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9574 } else if ( color_model(p)==rgb_model ) {
9575 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9576 mp_print(mp, "colored ");
9577 mp_print_compact_node(mp, obj_red_loc(p),3);
9582 @ We also need a procedure for printing consecutive scaled values as if they
9583 were a known big node.
9585 @<Declare a procedure called |print_compact_node|@>=
9586 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9587 pointer q; /* last location to print */
9589 mp_print_char(mp, '(');
9591 mp_print_scaled(mp, mp->mem[p].sc);
9592 if ( p<q ) mp_print_char(mp, ',');
9595 mp_print_char(mp, ')');
9598 @ @<Cases for printing graphical object node |p|@>=
9600 mp_print(mp, "Filled pen stroke ");
9601 mp_print_obj_color(mp, p);
9602 mp_print_char(mp, ':'); mp_print_ln(mp);
9603 mp_pr_path(mp, path_p(p));
9604 if ( dash_p(p)!=null ) {
9605 mp_print_nl(mp, "dashed (");
9606 @<Finish printing the dash pattern that |p| refers to@>;
9609 @<Print join and cap types for stroked node |p|@>;
9610 mp_print(mp, " with pen"); mp_print_ln(mp);
9611 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9613 else mp_pr_pen(mp, pen_p(p));
9616 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9617 when it is not known to define a suitable dash pattern. This is disallowed
9618 here because the |dash_p| field should never point to such an edge header.
9619 Note that memory is allocated for |start_x(null_dash)| and we are free to
9620 give it any convenient value.
9622 @<Finish printing the dash pattern that |p| refers to@>=
9623 ok_to_dash=pen_is_elliptical(pen_p(p));
9624 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9627 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9628 mp_print(mp, " ??");
9629 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9630 while ( pp!=null_dash ) {
9631 mp_print(mp, "on ");
9632 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9633 mp_print(mp, " off ");
9634 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9636 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9638 mp_print(mp, ") shifted ");
9639 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9640 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9643 @ @<Declare subroutines needed by |print_edges|@>=
9644 scaled mp_dash_offset (MP mp,pointer h) {
9645 scaled x; /* the answer */
9646 if ( (dash_list(h)==null_dash) || (dash_y(h)<0) ) mp_confusion(mp, "dash0");
9647 @:this can't happen dash0}{\quad dash0@>
9648 if ( dash_y(h)==0 ) {
9651 x=-(start_x(dash_list(h)) % dash_y(h));
9652 if ( x<0 ) x=x+dash_y(h);
9657 @ @<Cases for printing graphical object node |p|@>=
9659 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9660 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9661 mp_print_char(mp, '"'); mp_print_ln(mp);
9662 mp_print_obj_color(mp, p);
9663 mp_print(mp, "transformed ");
9664 mp_print_compact_node(mp, text_tx_loc(p),6);
9667 @ @<Cases for printing graphical object node |p|@>=
9668 case mp_start_clip_code:
9669 mp_print(mp, "clipping path:");
9671 mp_pr_path(mp, path_p(p));
9673 case mp_stop_clip_code:
9674 mp_print(mp, "stop clipping");
9677 @ @<Cases for printing graphical object node |p|@>=
9678 case mp_start_bounds_code:
9679 mp_print(mp, "setbounds path:");
9681 mp_pr_path(mp, path_p(p));
9683 case mp_stop_bounds_code:
9684 mp_print(mp, "end of setbounds");
9687 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9688 subroutine that scans an edge structure and tries to interpret it as a dash
9689 pattern. This can only be done when there are no filled regions or clipping
9690 paths and all the pen strokes have the same color. The first step is to let
9691 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9692 project all the pen stroke paths onto the line $y=y_0$ and require that there
9693 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9694 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9695 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9697 @c @<Declare a procedure called |x_retrace_error|@>;
9698 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9699 pointer p; /* this scans the stroked nodes in the object list */
9700 pointer p0; /* if not |null| this points to the first stroked node */
9701 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9702 pointer d,dd; /* pointers used to create the dash list */
9703 @<Other local variables in |make_dashes|@>;
9704 scaled y0=0; /* the initial $y$ coordinate */
9705 if ( dash_list(h)!=null_dash )
9708 p=link(dummy_loc(h));
9710 if ( type(p)!=stroked_code ) {
9711 @<Compain that the edge structure contains a node of the wrong type
9712 and |goto not_found|@>;
9715 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9716 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9717 or |goto not_found| if there is an error@>;
9718 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9721 if ( dash_list(h)==null_dash )
9722 goto NOT_FOUND; /* No error message */
9723 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9724 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9727 @<Flush the dash list, recycle |h| and return |null|@>;
9730 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9732 print_err("Picture is too complicated to use as a dash pattern");
9733 help3("When you say `dashed p', picture p should not contain any")
9734 ("text, filled regions, or clipping paths. This time it did")
9735 ("so I'll just make it a solid line instead.");
9736 mp_put_get_error(mp);
9740 @ A similar error occurs when monotonicity fails.
9742 @<Declare a procedure called |x_retrace_error|@>=
9743 void mp_x_retrace_error (MP mp) {
9744 print_err("Picture is too complicated to use as a dash pattern");
9745 help3("When you say `dashed p', every path in p should be monotone")
9746 ("in x and there must be no overlapping. This failed")
9747 ("so I'll just make it a solid line instead.");
9748 mp_put_get_error(mp);
9751 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9752 handle the case where the pen stroke |p| is itself dashed.
9754 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9755 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9758 if ( link(pp)!=pp ) {
9761 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9762 if there is a problem@>;
9763 } while (right_type(rr)!=endpoint);
9765 d=mp_get_node(mp, dash_node_size);
9766 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9767 if ( x_coord(pp)<x_coord(rr) ) {
9768 start_x(d)=x_coord(pp);
9769 stop_x(d)=x_coord(rr);
9771 start_x(d)=x_coord(rr);
9772 stop_x(d)=x_coord(pp);
9775 @ We also need to check for the case where the segment from |qq| to |rr| is
9776 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9778 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9783 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9784 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9785 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9786 mp_x_retrace_error(mp); goto NOT_FOUND;
9790 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9791 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9792 mp_x_retrace_error(mp); goto NOT_FOUND;
9796 @ @<Other local variables in |make_dashes|@>=
9797 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9799 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9800 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9801 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9802 print_err("Picture is too complicated to use as a dash pattern");
9803 help3("When you say `dashed p', everything in picture p should")
9804 ("be the same color. I can\'t handle your color changes")
9805 ("so I'll just make it a solid line instead.");
9806 mp_put_get_error(mp);
9810 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9811 start_x(null_dash)=stop_x(d);
9812 dd=h; /* this makes |link(dd)=dash_list(h)| */
9813 while ( start_x(link(dd))<stop_x(d) )
9816 if ( (stop_x(dd)>start_x(d)) )
9817 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9822 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9824 while ( (link(d)!=null_dash) )
9827 dash_y(h)=stop_x(d)-start_x(dd);
9828 if ( abs(y0)>dash_y(h) ) {
9830 } else if ( d!=dd ) {
9831 dash_list(h)=link(dd);
9832 stop_x(d)=stop_x(dd)+dash_y(h);
9833 mp_free_node(mp, dd,dash_node_size);
9836 @ We get here when the argument is a null picture or when there is an error.
9837 Recovering from an error involves making |dash_list(h)| empty to indicate
9838 that |h| is not known to be a valid dash pattern. We also dereference |h|
9839 since it is not being used for the return value.
9841 @<Flush the dash list, recycle |h| and return |null|@>=
9842 mp_flush_dash_list(mp, h);
9846 @ Having carefully saved the dashed stroked nodes in the
9847 corresponding dash nodes, we must be prepared to break up these dashes into
9850 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9851 d=h; /* now |link(d)=dash_list(h)| */
9852 while ( link(d)!=null_dash ) {
9859 if ( (hh==null) ) mp_confusion(mp, "dash1");
9860 @:this can't happen dash0}{\quad dash1@>
9861 if ( dash_y(hh)==0 ) {
9864 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
9865 @:this can't happen dash0}{\quad dash1@>
9866 @<Replace |link(d)| by a dashed version as determined by edge header
9867 |hh| and scale factor |ds|@>;
9872 @ @<Other local variables in |make_dashes|@>=
9873 pointer dln; /* |link(d)| */
9874 pointer hh; /* an edge header that tells how to break up |dln| */
9875 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
9876 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
9877 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
9879 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
9882 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
9883 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
9884 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
9885 +mp_take_scaled(mp, hsf,dash_y(hh));
9886 stop_x(null_dash)=start_x(null_dash);
9887 @<Advance |dd| until finding the first dash that overlaps |dln| when
9889 while ( start_x(dln)<=stop_x(dln) ) {
9890 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
9891 @<Insert a dash between |d| and |dln| for the overlap with the offset version
9894 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9897 mp_free_node(mp, dln,dash_node_size)
9899 @ The name of this module is a bit of a lie because we actually just find the
9900 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
9901 overlap possible. It could be that the unoffset version of dash |dln| falls
9902 in the gap between |dd| and its predecessor.
9904 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
9905 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
9909 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
9910 if ( dd==null_dash ) {
9912 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
9915 @ At this point we already know that
9916 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
9918 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
9919 if ( xoff+mp_take_scaled(mp, hsf,start_x(dd))<=stop_x(dln) ) {
9920 link(d)=mp_get_node(mp, dash_node_size);
9923 if ( start_x(dln)>xoff+mp_take_scaled(mp, hsf,start_x(dd)))
9924 start_x(d)=start_x(dln);
9926 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9927 if ( stop_x(dln)<xoff+mp_take_scaled(mp, hsf,stop_x(dd)) )
9928 stop_x(d)=stop_x(dln);
9930 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
9933 @ The next major task is to update the bounding box information in an edge
9934 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
9935 header's bounding box to accommodate the box computed by |path_bbox| or
9936 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
9939 @c void mp_adjust_bbox (MP mp,pointer h) {
9940 if ( minx<minx_val(h) ) minx_val(h)=minx;
9941 if ( miny<miny_val(h) ) miny_val(h)=miny;
9942 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
9943 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
9946 @ Here is a special routine for updating the bounding box information in
9947 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
9948 that is to be stroked with the pen~|pp|.
9950 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
9951 pointer q; /* a knot node adjacent to knot |p| */
9952 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
9953 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
9954 scaled z; /* a coordinate being tested against the bounding box */
9955 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
9956 integer i; /* a loop counter */
9957 if ( right_type(p)!=endpoint ) {
9960 @<Make |(dx,dy)| the final direction for the path segment from
9961 |q| to~|p|; set~|d|@>;
9962 d=mp_pyth_add(mp, dx,dy);
9964 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
9965 for (i=1;i<= 2;i++) {
9966 @<Use |(dx,dy)| to generate a vertex of the square end cap and
9967 update the bounding box to accommodate it@>;
9971 if ( right_type(p)==endpoint ) {
9974 @<Advance |p| to the end of the path and make |q| the previous knot@>;
9980 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
9982 dx=x_coord(p)-right_x(p);
9983 dy=y_coord(p)-right_y(p);
9984 if ( (dx==0)&&(dy==0) ) {
9985 dx=x_coord(p)-left_x(q);
9986 dy=y_coord(p)-left_y(q);
9989 dx=x_coord(p)-left_x(p);
9990 dy=y_coord(p)-left_y(p);
9991 if ( (dx==0)&&(dy==0) ) {
9992 dx=x_coord(p)-right_x(q);
9993 dy=y_coord(p)-right_y(q);
9996 dx=x_coord(p)-x_coord(q);
9997 dy=y_coord(p)-y_coord(q)
9999 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10000 dx=mp_make_fraction(mp, dx,d);
10001 dy=mp_make_fraction(mp, dy,d);
10002 mp_find_offset(mp, -dy,dx,pp);
10003 xx=mp->cur_x; yy=mp->cur_y
10005 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10006 mp_find_offset(mp, dx,dy,pp);
10007 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10008 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10009 mp_confusion(mp, "box_ends");
10010 @:this can't happen box ends}{\quad\\{box\_ends}@>
10011 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10012 if ( z<minx_val(h) ) minx_val(h)=z;
10013 if ( z>maxx_val(h) ) maxx_val(h)=z;
10014 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10015 if ( z<miny_val(h) ) miny_val(h)=z;
10016 if ( z>maxy_val(h) ) maxy_val(h)=z
10018 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10022 } while (right_type(p)!=endpoint)
10024 @ The major difficulty in finding the bounding box of an edge structure is the
10025 effect of clipping paths. We treat them conservatively by only clipping to the
10026 clipping path's bounding box, but this still
10027 requires recursive calls to |set_bbox| in order to find the bounding box of
10029 the objects to be clipped. Such calls are distinguished by the fact that the
10030 boolean parameter |top_level| is false.
10032 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10033 pointer p; /* a graphical object being considered */
10034 scaled sminx,sminy,smaxx,smaxy;
10035 /* for saving the bounding box during recursive calls */
10036 scaled x0,x1,y0,y1; /* temporary registers */
10037 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10038 @<Wipe out any existing bounding box information if |bbtype(h)| is
10039 incompatible with |internal[true_corners]|@>;
10040 while ( link(bblast(h))!=null ) {
10044 case mp_stop_clip_code:
10045 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10046 @:this can't happen bbox}{\quad bbox@>
10048 @<Other cases for updating the bounding box based on the type of object |p|@>;
10049 } /* all cases are enumerated above */
10051 if ( ! top_level ) mp_confusion(mp, "bbox");
10054 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10055 switch (bbtype(h)) {
10059 if ( mp->internal[true_corners]>0 ) mp_init_bbox(mp, h);
10062 if ( mp->internal[true_corners]<=0 ) mp_init_bbox(mp, h);
10064 } /* there are no other cases */
10066 @ @<Other cases for updating the bounding box...@>=
10068 mp_path_bbox(mp, path_p(p));
10069 if ( pen_p(p)!=null ) {
10072 mp_pen_bbox(mp, pen_p(p));
10078 mp_adjust_bbox(mp, h);
10081 @ @<Other cases for updating the bounding box...@>=
10082 case mp_start_bounds_code:
10083 if ( mp->internal[true_corners]>0 ) {
10084 bbtype(h)=bounds_unset;
10086 bbtype(h)=bounds_set;
10087 mp_path_bbox(mp, path_p(p));
10088 mp_adjust_bbox(mp, h);
10089 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10093 case mp_stop_bounds_code:
10094 if ( mp->internal[true_corners]<=0 ) mp_confusion(mp, "bbox2");
10095 @:this can't happen bbox2}{\quad bbox2@>
10098 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10101 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10102 @:this can't happen bbox2}{\quad bbox2@>
10104 if ( type(p)==mp_start_bounds_code ) incr(lev);
10105 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10109 @ It saves a lot of grief here to be slightly conservative and not account for
10110 omitted parts of dashed lines. We also don't worry about the material omitted
10111 when using butt end caps. The basic computation is for round end caps and
10112 |box_ends| augments it for square end caps.
10114 @<Other cases for updating the bounding box...@>=
10116 mp_path_bbox(mp, path_p(p));
10119 mp_pen_bbox(mp, pen_p(p));
10124 mp_adjust_bbox(mp, h);
10125 if ( (left_type(path_p(p))==endpoint)&&(lcap_val(p)==2) )
10126 mp_box_ends(mp, path_p(p), pen_p(p), h);
10129 @ The height width and depth information stored in a text node determines a
10130 rectangle that needs to be transformed according to the transformation
10131 parameters stored in the text node.
10133 @<Other cases for updating the bounding box...@>=
10135 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10136 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10137 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10140 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10141 else { minx=minx+y1; maxx=maxx+y0; }
10142 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10143 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10144 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10145 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10148 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10149 else { miny=miny+y1; maxy=maxy+y0; }
10150 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10151 mp_adjust_bbox(mp, h);
10154 @ This case involves a recursive call that advances |bblast(h)| to the node of
10155 type |mp_stop_clip_code| that matches |p|.
10157 @<Other cases for updating the bounding box...@>=
10158 case mp_start_clip_code:
10159 mp_path_bbox(mp, path_p(p));
10162 sminx=minx_val(h); sminy=miny_val(h);
10163 smaxx=maxx_val(h); smaxy=maxy_val(h);
10164 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10165 starting at |link(p)|@>;
10166 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10168 minx=sminx; miny=sminy;
10169 maxx=smaxx; maxy=smaxy;
10170 mp_adjust_bbox(mp, h);
10173 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10174 minx_val(h)=el_gordo;
10175 miny_val(h)=el_gordo;
10176 maxx_val(h)=-el_gordo;
10177 maxy_val(h)=-el_gordo;
10178 mp_set_bbox(mp, h,false)
10180 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10181 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10182 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10183 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10184 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10186 @* \[22] Finding an envelope.
10187 When \MP\ has a path and a polygonal pen, it needs to express the desired
10188 shape in terms of things \ps\ can understand. The present task is to compute
10189 a new path that describes the region to be filled. It is convenient to
10190 define this as a two step process where the first step is determining what
10191 offset to use for each segment of the path.
10193 @ Given a pointer |c| to a cyclic path,
10194 and a pointer~|h| to the first knot of a pen polygon,
10195 the |offset_prep| routine changes the path into cubics that are
10196 associated with particular pen offsets. Thus if the cubic between |p|
10197 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10198 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10199 to because |l-k| could be negative.)
10201 After overwriting the type information with offset differences, we no longer
10202 have a true path so we refer to the knot list returned by |offset_prep| as an
10205 Since an envelope spec only determines relative changes in pen offsets,
10206 |offset_prep| sets a global variable |spec_offset| to the relative change from
10207 |h| to the first offset.
10209 @d zero_off 16384 /* added to offset changes to make them positive */
10212 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10214 @ @c @<Declare subroutines needed by |offset_prep|@>;
10215 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10216 halfword n; /* the number of vertices in the pen polygon */
10217 pointer p,q,r,w, ww; /* for list manipulation */
10218 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10219 pointer w0; /* a pointer to pen offset to use just before |p| */
10220 scaled dxin,dyin; /* the direction into knot |p| */
10221 integer turn_amt; /* change in pen offsets for the current cubic */
10222 @<Other local variables for |offset_prep|@>;
10224 @<Initialize the pen size~|n|@>;
10225 @<Initialize the incoming direction and pen offset at |c|@>;
10229 @<Split the cubic between |p| and |q|, if necessary, into cubics
10230 associated with single offsets, after which |q| should
10231 point to the end of the final such cubic@>;
10232 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10233 might have been introduced by the splitting process@>;
10235 @<Fix the offset change in |info(c)| and set the return value of
10239 @ We shall want to keep track of where certain knots on the cyclic path
10240 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10241 knot nodes because some nodes are deleted while removing dead cubics. Thus
10242 |offset_prep| updates the following pointers
10246 pointer spec_p2; /* pointers to distinguished knots */
10249 mp->spec_p1=null; mp->spec_p2=null;
10251 @ @<Initialize the pen size~|n|@>=
10258 @ Since the true incoming direction isn't known yet, we just pick a direction
10259 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10262 @<Initialize the incoming direction and pen offset at |c|@>=
10263 dxin=x_coord(link(h))-x_coord(knil(h));
10264 dyin=y_coord(link(h))-y_coord(knil(h));
10265 if ( (dxin==0)&&(dyin==0) ) {
10266 dxin=y_coord(knil(h))-y_coord(h);
10267 dyin=x_coord(h)-x_coord(knil(h));
10271 @ We must be careful not to remove the only cubic in a cycle.
10273 But we must also be careful for another reason. If the user-supplied
10274 path starts with a set of degenerate cubics, these should not be removed
10275 because at this point we cannot do so cleanly. The relevant bug is
10276 tracker id 267, bugs 52c, reported by Boguslav.
10278 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10280 if ( x_coord(p)==right_x(p) ) if ( y_coord(p)==right_y(p) )
10281 if ( x_coord(p)==left_x(r) ) if ( y_coord(p)==left_y(r) )
10282 if ( x_coord(p)==x_coord(r) ) if ( y_coord(p)==y_coord(r) )
10283 if ( r!=p ) if ( ((r!=q) || (originator(r)!=metapost_user)) ) {
10284 @<Remove the cubic following |p| and update the data structures
10285 to merge |r| into |p|@>;
10290 @ @<Remove the cubic following |p| and update the data structures...@>=
10291 { k_needed=info(p)-zero_off;
10295 info(p)=k_needed+info(r);
10298 if ( r==c ) { info(p)=info(c); c=p; };
10299 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10300 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10301 r=p; mp_remove_cubic(mp, p);
10304 @ Not setting the |info| field of the newly created knot allows the splitting
10305 routine to work for paths.
10307 @<Declare subroutines needed by |offset_prep|@>=
10308 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10309 scaled v; /* an intermediate value */
10310 pointer q,r; /* for list manipulation */
10311 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10312 originator(r)=program_code;
10313 left_type(r)=explicit; right_type(r)=explicit;
10314 v=t_of_the_way(right_x(p),left_x(q));
10315 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10316 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10317 left_x(r)=t_of_the_way(right_x(p),v);
10318 right_x(r)=t_of_the_way(v,left_x(q));
10319 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10320 v=t_of_the_way(right_y(p),left_y(q));
10321 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10322 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10323 left_y(r)=t_of_the_way(right_y(p),v);
10324 right_y(r)=t_of_the_way(v,left_y(q));
10325 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10328 @ This does not set |info(p)| or |right_type(p)|.
10330 @<Declare subroutines needed by |offset_prep|@>=
10331 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10332 pointer q; /* the node that disappears */
10333 q=link(p); link(p)=link(q);
10334 right_x(p)=right_x(q); right_y(p)=right_y(q);
10335 mp_free_node(mp, q,knot_node_size);
10338 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10339 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10340 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10341 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10342 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10343 When listed by increasing $k$, these directions occur in counter-clockwise
10344 order so that $d_k\preceq d\k$ for all~$k$.
10345 The goal of |offset_prep| is to find an offset index~|k| to associate with
10346 each cubic, such that the direction $d(t)$ of the cubic satisfies
10347 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10348 We may have to split a cubic into many pieces before each
10349 piece corresponds to a unique offset.
10351 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10352 info(p)=zero_off+k_needed;
10354 @<Prepare for derivative computations;
10355 |goto not_found| if the current cubic is dead@>;
10356 @<Find the initial direction |(dx,dy)|@>;
10357 @<Update |info(p)| and find the offset $w_k$ such that
10358 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10359 the direction change at |p|@>;
10360 @<Find the final direction |(dxin,dyin)|@>;
10361 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10362 @<Complete the offset splitting process@>;
10363 w0=mp_pen_walk(mp, w0,turn_amt);
10364 NOT_FOUND: do_nothing
10366 @ @<Declare subroutines needed by |offset_prep|@>=
10367 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10368 /* walk |k| steps around a pen from |w| */
10369 while ( k>0 ) { w=link(w); decr(k); };
10370 while ( k<0 ) { w=knil(w); incr(k); };
10374 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10375 calculated from the quadratic polynomials
10376 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10377 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10378 Since we may be calculating directions from several cubics
10379 split from the current one, it is desirable to do these calculations
10380 without losing too much precision. ``Scaled up'' values of the
10381 derivatives, which will be less tainted by accumulated errors than
10382 derivatives found from the cubics themselves, are maintained in
10383 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10384 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10385 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10387 @<Other local variables for |offset_prep|@>=
10388 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10389 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10390 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10391 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10392 integer mp_max_coef; /* used while scaling */
10393 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10394 fraction t; /* where the derivative passes through zero */
10395 fraction s; /* a temporary value */
10397 @ @<Prepare for derivative computations...@>=
10398 x0=right_x(p)-x_coord(p);
10399 x2=x_coord(q)-left_x(q);
10400 x1=left_x(q)-right_x(p);
10401 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10402 y1=left_y(q)-right_y(p);
10403 mp_max_coef=abs(x0);
10404 if ( abs(x1)>mp_max_coef ) mp_max_coef=abs(x1);
10405 if ( abs(x2)>mp_max_coef ) mp_max_coef=abs(x2);
10406 if ( abs(y0)>mp_max_coef ) mp_max_coef=abs(y0);
10407 if ( abs(y1)>mp_max_coef ) mp_max_coef=abs(y1);
10408 if ( abs(y2)>mp_max_coef ) mp_max_coef=abs(y2);
10409 if ( mp_max_coef==0 ) goto NOT_FOUND;
10410 while ( mp_max_coef<fraction_half ) {
10411 mp_max_coef+=mp_max_coef;
10412 x0+=x0; x1+=x1; x2+=x2;
10413 y0+=y0; y1+=y1; y2+=y2;
10416 @ Let us first solve a special case of the problem: Suppose we
10417 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10418 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10419 $d(0)\succ d_{k-1}$.
10420 Then, in a sense, we're halfway done, since one of the two relations
10421 in $(*)$ is satisfied, and the other couldn't be satisfied for
10422 any other value of~|k|.
10424 Actually, the conditions can be relaxed somewhat since a relation such as
10425 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10426 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10427 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10428 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10429 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10430 counterclockwise direction.
10432 The |fin_offset_prep| subroutine solves the stated subproblem.
10433 It has a parameter called |rise| that is |1| in
10434 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10435 the derivative of the cubic following |p|.
10436 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10437 be set properly. The |turn_amt| parameter gives the absolute value of the
10438 overall net change in pen offsets.
10440 @<Declare subroutines needed by |offset_prep|@>=
10441 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10442 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10443 integer rise, integer turn_amt) {
10444 pointer ww; /* for list manipulation */
10445 scaled du,dv; /* for slope calculation */
10446 integer t0,t1,t2; /* test coefficients */
10447 fraction t; /* place where the derivative passes a critical slope */
10448 fraction s; /* slope or reciprocal slope */
10449 integer v; /* intermediate value for updating |x0..y2| */
10450 pointer q; /* original |link(p)| */
10453 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10454 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10455 @<Compute test coefficients |(t0,t1,t2)|
10456 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10457 t=mp_crossing_point(mp, t0,t1,t2);
10458 if ( t>=fraction_one ) {
10459 if ( turn_amt>0 ) t=fraction_one; else return;
10461 @<Split the cubic at $t$,
10462 and split off another cubic if the derivative crosses back@>;
10467 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10468 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10469 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10472 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10473 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10474 if ( abs(du)>=abs(dv) ) {
10475 s=mp_make_fraction(mp, dv,du);
10476 t0=mp_take_fraction(mp, x0,s)-y0;
10477 t1=mp_take_fraction(mp, x1,s)-y1;
10478 t2=mp_take_fraction(mp, x2,s)-y2;
10479 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10481 s=mp_make_fraction(mp, du,dv);
10482 t0=x0-mp_take_fraction(mp, y0,s);
10483 t1=x1-mp_take_fraction(mp, y1,s);
10484 t2=x2-mp_take_fraction(mp, y2,s);
10485 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10487 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10489 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10490 $(*)$, and it might cross again, yielding another solution of $(*)$.
10492 @<Split the cubic at $t$, and split off another...@>=
10494 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10496 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10497 x0=t_of_the_way(v,x1);
10498 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10499 y0=t_of_the_way(v,y1);
10500 if ( turn_amt<0 ) {
10501 t1=t_of_the_way(t1,t2);
10502 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10503 t=mp_crossing_point(mp, 0,-t1,-t2);
10504 if ( t>fraction_one ) t=fraction_one;
10506 if ( (t==fraction_one)&&(link(p)!=q) ) {
10507 info(link(p))=info(link(p))-rise;
10509 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10510 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10511 x2=t_of_the_way(x1,v);
10512 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10513 y2=t_of_the_way(y1,v);
10518 @ Now we must consider the general problem of |offset_prep|, when
10519 nothing is known about a given cubic. We start by finding its
10520 direction in the vicinity of |t=0|.
10522 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10523 has not yet introduced any more numerical errors. Thus we can compute
10524 the true initial direction for the given cubic, even if it is almost
10527 @<Find the initial direction |(dx,dy)|@>=
10529 if ( dx==0 ) if ( dy==0 ) {
10531 if ( dx==0 ) if ( dy==0 ) {
10535 if ( p==c ) { dx0=dx; dy0=dy; }
10537 @ @<Find the final direction |(dxin,dyin)|@>=
10539 if ( dxin==0 ) if ( dyin==0 ) {
10541 if ( dxin==0 ) if ( dyin==0 ) {
10546 @ The next step is to bracket the initial direction between consecutive
10547 edges of the pen polygon. We must be careful to turn clockwise only if
10548 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10549 counter-clockwise in order to make \&{doublepath} envelopes come out
10550 @:double_path_}{\&{doublepath} primitive@>
10551 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10553 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10554 turn_amt=mp_get_turn_amt(mp, w0, dx, dy, mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0);
10555 w=mp_pen_walk(mp, w0, turn_amt);
10557 info(p)=info(p)+turn_amt
10559 @ Decide how many pen offsets to go away from |w| in order to find the offset
10560 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10561 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10562 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10564 If the pen polygon has only two edges, they could both be parallel
10565 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10566 such edge in order to avoid an infinite loop.
10568 @<Declare subroutines needed by |offset_prep|@>=
10569 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10570 scaled dy, boolean ccw) {
10571 pointer ww; /* a neighbor of knot~|w| */
10572 integer s; /* turn amount so far */
10573 integer t; /* |ab_vs_cd| result */
10578 t=mp_ab_vs_cd(mp, dy,x_coord(ww)-x_coord(w),
10579 dx,y_coord(ww)-y_coord(w));
10586 while ( mp_ab_vs_cd(mp, dy,x_coord(w)-x_coord(ww),
10587 dx,y_coord(w)-y_coord(ww))<0 ) {
10595 @ When we're all done, the final offset is |w0| and the final curve direction
10596 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10597 can correct |info(c)| which was erroneously based on an incoming offset
10600 @d fix_by(A) info(c)=info(c)+(A)
10602 @<Fix the offset change in |info(c)| and set the return value of...@>=
10603 mp->spec_offset=info(c)-zero_off;
10604 if ( link(c)==c ) {
10605 info(c)=zero_off+n;
10608 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10609 while ( info(c)<=zero_off-n ) fix_by(n);
10610 while ( info(c)>zero_off ) fix_by(-n);
10611 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10615 @ Finally we want to reduce the general problem to situations that
10616 |fin_offset_prep| can handle. We split the cubic into at most three parts
10617 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10619 @<Complete the offset splitting process@>=
10621 @<Compute test coeff...@>;
10622 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10623 |t:=fraction_one+1|@>;
10624 if ( t>fraction_one ) {
10625 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10627 mp_split_cubic(mp, p,t); r=link(p);
10628 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10629 x2a=t_of_the_way(x1a,x1);
10630 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10631 y2a=t_of_the_way(y1a,y1);
10632 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10633 info(r)=zero_off-1;
10634 if ( turn_amt>=0 ) {
10635 t1=t_of_the_way(t1,t2);
10637 t=mp_crossing_point(mp, 0,-t1,-t2);
10638 if ( t>fraction_one ) t=fraction_one;
10639 @<Split off another rising cubic for |fin_offset_prep|@>;
10640 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10642 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
10646 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10647 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10648 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10649 x0a=t_of_the_way(x1,x1a);
10650 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10651 y0a=t_of_the_way(y1,y1a);
10652 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10655 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10656 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10657 need to decide whether the directions are parallel or antiparallel. We
10658 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10659 should be avoided when the value of |turn_amt| already determines the
10660 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10661 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10662 crossing and the first crossing cannot be antiparallel.
10664 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10665 t=mp_crossing_point(mp, t0,t1,t2);
10666 if ( turn_amt>=0 ) {
10670 u0=t_of_the_way(x0,x1);
10671 u1=t_of_the_way(x1,x2);
10672 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10673 v0=t_of_the_way(y0,y1);
10674 v1=t_of_the_way(y1,y2);
10675 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10676 if ( ss<0 ) t=fraction_one+1;
10678 } else if ( t>fraction_one ) {
10682 @ @<Other local variables for |offset_prep|@>=
10683 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10684 integer ss = 0; /* the part of the dot product computed so far */
10685 int d_sign; /* sign of overall change in direction for this cubic */
10687 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10688 problem to decide which way it loops around but that's OK as long we're
10689 consistent. To make \&{doublepath} envelopes work properly, reversing
10690 the path should always change the sign of |turn_amt|.
10692 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10693 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10696 if ( dy>0 ) d_sign=1; else d_sign=-1;
10697 } else if ( dx>0 ) {
10703 @<Make |ss| negative if and only if the total change in direction is
10704 more than $180^\circ$@>;
10705 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, d_sign>0);
10706 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10708 @ In order to be invariant under path reversal, the result of this computation
10709 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10710 then swapped with |(x2,y2)|. We make use of the identities
10711 |take_fraction(-a,-b)=take_fraction(a,b)| and
10712 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10714 @<Make |ss| negative if and only if the total change in direction is...@>=
10715 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10716 t1=half(mp_take_fraction(mp, x1,y0+y2))-half(mp_take_fraction(mp, y1,x0+x2));
10717 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10719 t=mp_crossing_point(mp, t0,t1,-t0);
10720 u0=t_of_the_way(x0,x1);
10721 u1=t_of_the_way(x1,x2);
10722 v0=t_of_the_way(y0,y1);
10723 v1=t_of_the_way(y1,y2);
10725 t=mp_crossing_point(mp, -t0,t1,t0);
10726 u0=t_of_the_way(x2,x1);
10727 u1=t_of_the_way(x1,x0);
10728 v0=t_of_the_way(y2,y1);
10729 v1=t_of_the_way(y1,y0);
10731 s=mp_take_fraction(mp, x0+x2,t_of_the_way(u0,u1))+
10732 mp_take_fraction(mp, y0+y2,t_of_the_way(v0,v1))
10734 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10735 that the |cur_pen| has not been walked around to the first offset.
10738 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10739 pointer p,q; /* list traversal */
10740 pointer w; /* the current pen offset */
10741 mp_print_diagnostic(mp, "Envelope spec",s,true);
10742 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10744 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10745 mp_print(mp, " % beginning with offset ");
10746 mp_print_two(mp, x_coord(w),y_coord(w));
10750 @<Print the cubic between |p| and |q|@>;
10752 } while (! ((p==cur_spec) || (info(p)!=zero_off)));
10753 if ( info(p)!=zero_off ) {
10754 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10756 } while (p!=cur_spec);
10757 mp_print_nl(mp, " & cycle");
10758 mp_end_diagnostic(mp, true);
10761 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10763 w=mp_pen_walk(mp, w,info(p)-zero_off);
10764 mp_print(mp, " % ");
10765 if ( info(p)>zero_off ) mp_print(mp, "counter");
10766 mp_print(mp, "clockwise to offset ");
10767 mp_print_two(mp, x_coord(w),y_coord(w));
10770 @ @<Print the cubic between |p| and |q|@>=
10772 mp_print_nl(mp, " ..controls ");
10773 mp_print_two(mp, right_x(p),right_y(p));
10774 mp_print(mp, " and ");
10775 mp_print_two(mp, left_x(q),left_y(q));
10776 mp_print_nl(mp, " ..");
10777 mp_print_two(mp, x_coord(q),y_coord(q));
10780 @ Once we have an envelope spec, the remaining task to construct the actual
10781 envelope by offsetting each cubic as determined by the |info| fields in
10782 the knots. First we use |offset_prep| to convert the |c| into an envelope
10783 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10786 The |ljoin| and |miterlim| parameters control the treatment of points where the
10787 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10788 The endpoints are easily located because |c| is given in undoubled form
10789 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10790 track of the endpoints and treat them like very sharp corners.
10791 Butt end caps are treated like beveled joins; round end caps are treated like
10792 round joins; and square end caps are achieved by setting |join_type:=3|.
10794 None of these parameters apply to inside joins where the convolution tracing
10795 has retrograde lines. In such cases we use a simple connect-the-endpoints
10796 approach that is achieved by setting |join_type:=2|.
10798 @c @<Declare a function called |insert_knot|@>;
10799 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10800 small_number lcap, scaled miterlim) {
10801 pointer p,q,r,q0; /* for manipulating the path */
10802 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10803 pointer w,w0; /* the pen knot for the current offset */
10804 scaled qx,qy; /* unshifted coordinates of |q| */
10805 halfword k,k0; /* controls pen edge insertion */
10806 @<Other local variables for |make_envelope|@>;
10807 dxin=0; dyin=0; dxout=0; dyout=0;
10808 mp->spec_p1=null; mp->spec_p2=null;
10809 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10810 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10811 the initial offset@>;
10816 qx=x_coord(q); qy=y_coord(q);
10819 if ( k!=zero_off ) {
10820 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10822 @<Add offset |w| to the cubic from |p| to |q|@>;
10823 while ( k!=zero_off ) {
10824 @<Step |w| and move |k| one step closer to |zero_off|@>;
10825 if ( (join_type==1)||(k==zero_off) )
10826 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10828 if ( q!=link(p) ) {
10829 @<Set |p=link(p)| and add knots between |p| and |q| as
10830 required by |join_type|@>;
10837 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
10838 c=mp_offset_prep(mp, c,h);
10839 if ( mp->internal[tracing_specs]>0 )
10840 mp_print_spec(mp, c,h,"");
10841 h=mp_pen_walk(mp, h,mp->spec_offset)
10843 @ Mitered and squared-off joins depend on path directions that are difficult to
10844 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
10845 have degenerate cubics only if the entire cycle collapses to a single
10846 degenerate cubic. Setting |join_type:=2| in this case makes the computed
10847 envelope degenerate as well.
10849 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
10850 if ( k<zero_off ) {
10853 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
10854 else if ( lcap==2 ) join_type=3;
10855 else join_type=2-lcap;
10856 if ( (join_type==0)||(join_type==3) ) {
10857 @<Set the incoming and outgoing directions at |q|; in case of
10858 degeneracy set |join_type:=2|@>;
10859 if ( join_type==0 ) {
10860 @<If |miterlim| is less than the secant of half the angle at |q|
10861 then set |join_type:=2|@>;
10866 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
10868 tmp=mp_take_fraction(mp, miterlim,fraction_half+
10869 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
10871 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
10874 @ @<Other local variables for |make_envelope|@>=
10875 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
10876 scaled tmp; /* a temporary value */
10878 @ The coordinates of |p| have already been shifted unless |p| is the first
10879 knot in which case they get shifted at the very end.
10881 @<Add offset |w| to the cubic from |p| to |q|@>=
10882 right_x(p)=right_x(p)+x_coord(w);
10883 right_y(p)=right_y(p)+y_coord(w);
10884 left_x(q)=left_x(q)+x_coord(w);
10885 left_y(q)=left_y(q)+y_coord(w);
10886 x_coord(q)=x_coord(q)+x_coord(w);
10887 y_coord(q)=y_coord(q)+y_coord(w);
10888 left_type(q)=explicit;
10889 right_type(q)=explicit
10891 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
10892 if ( k>zero_off ){ w=link(w); decr(k); }
10893 else { w=knil(w); incr(k); }
10895 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
10896 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
10897 case the cubic containing these control points is ``yet to be examined.''
10899 @<Declare a function called |insert_knot|@>=
10900 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
10901 /* returns the inserted knot */
10902 pointer r; /* the new knot */
10903 r=mp_get_node(mp, knot_node_size);
10904 link(r)=link(q); link(q)=r;
10905 right_x(r)=right_x(q);
10906 right_y(r)=right_y(q);
10909 right_x(q)=x_coord(q);
10910 right_y(q)=y_coord(q);
10911 left_x(r)=x_coord(r);
10912 left_y(r)=y_coord(r);
10913 left_type(r)=explicit;
10914 right_type(r)=explicit;
10915 originator(r)=program_code;
10919 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
10921 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
10924 if ( (join_type==0)||(join_type==3) ) {
10925 if ( join_type==0 ) {
10926 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
10928 @<Make |r| the last of two knots inserted between |p| and |q| to form a
10932 right_x(r)=x_coord(r);
10933 right_y(r)=y_coord(r);
10938 @ For very small angles, adding a knot is unnecessary and would cause numerical
10939 problems, so we just set |r:=null| in that case.
10941 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
10943 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
10944 if ( abs(det)<26844 ) {
10945 r=null; /* sine $<10^{-4}$ */
10947 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
10948 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
10949 tmp=mp_make_fraction(mp, tmp,det);
10950 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10951 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10955 @ @<Other local variables for |make_envelope|@>=
10956 fraction det; /* a determinant used for mitered join calculations */
10958 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
10960 ht_x=y_coord(w)-y_coord(w0);
10961 ht_y=x_coord(w0)-x_coord(w);
10962 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
10963 ht_x+=ht_x; ht_y+=ht_y;
10965 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
10966 product with |(ht_x,ht_y)|@>;
10967 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
10968 mp_take_fraction(mp, dyin,ht_y));
10969 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10970 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10971 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
10972 mp_take_fraction(mp, dyout,ht_y));
10973 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
10974 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
10977 @ @<Other local variables for |make_envelope|@>=
10978 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
10979 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
10980 halfword kk; /* keeps track of the pen vertices being scanned */
10981 pointer ww; /* the pen vertex being tested */
10983 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
10984 from zero to |max_ht|.
10986 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
10991 @<Step |ww| and move |kk| one step closer to |k0|@>;
10992 if ( kk==k0 ) break;
10993 tmp=mp_take_fraction(mp, x_coord(ww)-x_coord(w0),ht_x)+
10994 mp_take_fraction(mp, y_coord(ww)-y_coord(w0),ht_y);
10995 if ( tmp>max_ht ) max_ht=tmp;
10999 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11000 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11001 else { ww=knil(ww); incr(kk); }
11003 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11004 if ( left_type(c)==endpoint ) {
11005 mp->spec_p1=mp_htap_ypoc(mp, c);
11006 mp->spec_p2=mp->path_tail;
11007 originator(mp->spec_p1)=program_code;
11008 link(mp->spec_p2)=link(mp->spec_p1);
11009 link(mp->spec_p1)=c;
11010 mp_remove_cubic(mp, mp->spec_p1);
11012 if ( c!=link(c) ) {
11013 originator(mp->spec_p2)=program_code;
11014 mp_remove_cubic(mp, mp->spec_p2);
11016 @<Make |c| look like a cycle of length one@>;
11020 @ @<Make |c| look like a cycle of length one@>=
11022 left_type(c)=explicit; right_type(c)=explicit;
11023 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11024 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11027 @ In degenerate situations we might have to look at the knot preceding~|q|.
11028 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11030 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11031 dxin=x_coord(q)-left_x(q);
11032 dyin=y_coord(q)-left_y(q);
11033 if ( (dxin==0)&&(dyin==0) ) {
11034 dxin=x_coord(q)-right_x(p);
11035 dyin=y_coord(q)-right_y(p);
11036 if ( (dxin==0)&&(dyin==0) ) {
11037 dxin=x_coord(q)-x_coord(p);
11038 dyin=y_coord(q)-y_coord(p);
11039 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11040 dxin=dxin+x_coord(w);
11041 dyin=dyin+y_coord(w);
11045 tmp=mp_pyth_add(mp, dxin,dyin);
11049 dxin=mp_make_fraction(mp, dxin,tmp);
11050 dyin=mp_make_fraction(mp, dyin,tmp);
11051 @<Set the outgoing direction at |q|@>;
11054 @ If |q=c| then the coordinates of |r| and the control points between |q|
11055 and~|r| have already been offset by |h|.
11057 @<Set the outgoing direction at |q|@>=
11058 dxout=right_x(q)-x_coord(q);
11059 dyout=right_y(q)-y_coord(q);
11060 if ( (dxout==0)&&(dyout==0) ) {
11062 dxout=left_x(r)-x_coord(q);
11063 dyout=left_y(r)-y_coord(q);
11064 if ( (dxout==0)&&(dyout==0) ) {
11065 dxout=x_coord(r)-x_coord(q);
11066 dyout=y_coord(r)-y_coord(q);
11070 dxout=dxout-x_coord(h);
11071 dyout=dyout-y_coord(h);
11073 tmp=mp_pyth_add(mp, dxout,dyout);
11074 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11075 @:this can't happen degerate spec}{\quad degenerate spec@>
11076 dxout=mp_make_fraction(mp, dxout,tmp);
11077 dyout=mp_make_fraction(mp, dyout,tmp)
11079 @* \[23] Direction and intersection times.
11080 A path of length $n$ is defined parametrically by functions $x(t)$ and
11081 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11082 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11083 we shall consider operations that determine special times associated with
11084 given paths: the first time that a path travels in a given direction, and
11085 a pair of times at which two paths cross each other.
11087 @ Let's start with the easier task. The function |find_direction_time| is
11088 given a direction |(x,y)| and a path starting at~|h|. If the path never
11089 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11090 it will be nonnegative.
11092 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11093 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11094 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11095 assumed to match any given direction at time~|t|.
11097 The routine solves this problem in nondegenerate cases by rotating the path
11098 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11099 to find when a given path first travels ``due east.''
11102 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11103 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11104 pointer p,q; /* for list traversal */
11105 scaled n; /* the direction time at knot |p| */
11106 scaled tt; /* the direction time within a cubic */
11107 @<Other local variables for |find_direction_time|@>;
11108 @<Normalize the given direction for better accuracy;
11109 but |return| with zero result if it's zero@>;
11112 if ( right_type(p)==endpoint ) break;
11114 @<Rotate the cubic between |p| and |q|; then
11115 |goto found| if the rotated cubic travels due east at some time |tt|;
11116 but |break| if an entire cyclic path has been traversed@>;
11124 @ @<Normalize the given direction for better accuracy...@>=
11125 if ( abs(x)<abs(y) ) {
11126 x=mp_make_fraction(mp, x,abs(y));
11127 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11128 } else if ( x==0 ) {
11131 y=mp_make_fraction(mp, y,abs(x));
11132 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11135 @ Since we're interested in the tangent directions, we work with the
11136 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11137 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11138 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11139 in order to achieve better accuracy.
11141 The given path may turn abruptly at a knot, and it might pass the critical
11142 tangent direction at such a time. Therefore we remember the direction |phi|
11143 in which the previous rotated cubic was traveling. (The value of |phi| will be
11144 undefined on the first cubic, i.e., when |n=0|.)
11146 @<Rotate the cubic between |p| and |q|; then...@>=
11148 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11149 points of the rotated derivatives@>;
11150 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11152 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11155 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11156 @<Exit to |found| if the curve whose derivatives are specified by
11157 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11159 @ @<Other local variables for |find_direction_time|@>=
11160 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11161 angle theta,phi; /* angles of exit and entry at a knot */
11162 fraction t; /* temp storage */
11164 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11165 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11166 x3=x_coord(q)-left_x(q);
11167 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11168 y3=y_coord(q)-left_y(q);
11170 if ( abs(x2)>max ) max=abs(x2);
11171 if ( abs(x3)>max ) max=abs(x3);
11172 if ( abs(y1)>max ) max=abs(y1);
11173 if ( abs(y2)>max ) max=abs(y2);
11174 if ( abs(y3)>max ) max=abs(y3);
11175 if ( max==0 ) goto FOUND;
11176 while ( max<fraction_half ){
11177 max+=max; x1+=x1; x2+=x2; x3+=x3;
11178 y1+=y1; y2+=y2; y3+=y3;
11180 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11181 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11182 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11183 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11184 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11185 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11187 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11188 theta=mp_n_arg(mp, x1,y1);
11189 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11190 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11192 @ In this step we want to use the |crossing_point| routine to find the
11193 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11194 Several complications arise: If the quadratic equation has a double root,
11195 the curve never crosses zero, and |crossing_point| will find nothing;
11196 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11197 equation has simple roots, or only one root, we may have to negate it
11198 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11199 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11202 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11203 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11204 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11205 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11206 either |goto found| or |goto done|@>;
11209 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11210 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11212 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11213 $B(x_1,x_2,x_3;t)\ge0$@>;
11216 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11217 two roots, because we know that it isn't identically zero.
11219 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11220 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11221 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11222 subject to rounding errors. Yet this code optimistically tries to
11223 do the right thing.
11225 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11227 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11228 t=mp_crossing_point(mp, y1,y2,y3);
11229 if ( t>fraction_one ) goto DONE;
11230 y2=t_of_the_way(y2,y3);
11231 x1=t_of_the_way(x1,x2);
11232 x2=t_of_the_way(x2,x3);
11233 x1=t_of_the_way(x1,x2);
11234 if ( x1>=0 ) we_found_it;
11236 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11237 if ( t>fraction_one ) goto DONE;
11238 x1=t_of_the_way(x1,x2);
11239 x2=t_of_the_way(x2,x3);
11240 if ( t_of_the_way(x1,x2)>=0 ) {
11241 t=t_of_the_way(tt,fraction_one); we_found_it;
11244 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11245 either |goto found| or |goto done|@>=
11247 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11248 t=mp_make_fraction(mp, y1,y1-y2);
11249 x1=t_of_the_way(x1,x2);
11250 x2=t_of_the_way(x2,x3);
11251 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11252 } else if ( y3==0 ) {
11254 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11255 } else if ( x3>=0 ) {
11256 tt=unity; goto FOUND;
11262 @ At this point we know that the derivative of |y(t)| is identically zero,
11263 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11266 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11268 t=mp_crossing_point(mp, -x1,-x2,-x3);
11269 if ( t<=fraction_one ) we_found_it;
11270 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11271 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11275 @ The intersection of two cubics can be found by an interesting variant
11276 of the general bisection scheme described in the introduction to
11278 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11279 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11280 if an intersection exists. First we find the smallest rectangle that
11281 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11282 the smallest rectangle that encloses
11283 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11284 But if the rectangles do overlap, we bisect the intervals, getting
11285 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11286 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11287 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11288 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11289 levels of bisection we will have determined the intersection times $t_1$
11290 and~$t_2$ to $l$~bits of accuracy.
11292 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11293 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11294 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11295 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11296 to determine when the enclosing rectangles overlap. Here's why:
11297 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11298 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11299 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11300 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11301 overlap if and only if $u\submin\L x\submax$ and
11302 $x\submin\L u\submax$. Letting
11303 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11304 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11305 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11307 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11308 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11309 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11310 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11311 because of the overlap condition; i.e., we know that $X\submin$,
11312 $X\submax$, and their relatives are bounded, hence $X\submax-
11313 U\submin$ and $X\submin-U\submax$ are bounded.
11315 @ Incidentally, if the given cubics intersect more than once, the process
11316 just sketched will not necessarily find the lexicographically smallest pair
11317 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11318 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11319 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11320 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11321 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11322 Shuffled order agrees with lexicographic order if all pairs of solutions
11323 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11324 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11325 and the bisection algorithm would be substantially less efficient if it were
11326 constrained by lexicographic order.
11328 For example, suppose that an overlap has been found for $l=3$ and
11329 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11330 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11331 Then there is probably an intersection in one of the subintervals
11332 $(.1011,.011x)$; but lexicographic order would require us to explore
11333 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11334 want to store all of the subdivision data for the second path, so the
11335 subdivisions would have to be regenerated many times. Such inefficiencies
11336 would be associated with every `1' in the binary representation of~$t_1$.
11338 @ The subdivision process introduces rounding errors, hence we need to
11339 make a more liberal test for overlap. It is not hard to show that the
11340 computed values of $U_i$ differ from the truth by at most~$l$, on
11341 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11342 If $\beta$ is an upper bound on the absolute error in the computed
11343 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11344 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11345 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11347 More accuracy is obtained if we try the algorithm first with |tol=0|;
11348 the more liberal tolerance is used only if an exact approach fails.
11349 It is convenient to do this double-take by letting `3' in the preceding
11350 paragraph be a parameter, which is first 0, then 3.
11353 unsigned int tol_step; /* either 0 or 3, usually */
11355 @ We shall use an explicit stack to implement the recursive bisection
11356 method described above. The |bisect_stack| array will contain numerous 5-word
11357 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11358 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11360 The following macros define the allocation of stack positions to
11361 the quantities needed for bisection-intersection.
11363 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11364 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11365 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11366 @d stack_min(A) mp->bisect_stack[(A)+3]
11367 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11368 @d stack_max(A) mp->bisect_stack[(A)+4]
11369 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11370 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11372 @d u_packet(A) ((A)-5)
11373 @d v_packet(A) ((A)-10)
11374 @d x_packet(A) ((A)-15)
11375 @d y_packet(A) ((A)-20)
11376 @d l_packets (mp->bisect_ptr-int_packets)
11377 @d r_packets mp->bisect_ptr
11378 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11379 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11380 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11381 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11382 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11383 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11384 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11385 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11387 @d u1l stack_1(ul_packet) /* $U'_1$ */
11388 @d u2l stack_2(ul_packet) /* $U'_2$ */
11389 @d u3l stack_3(ul_packet) /* $U'_3$ */
11390 @d v1l stack_1(vl_packet) /* $V'_1$ */
11391 @d v2l stack_2(vl_packet) /* $V'_2$ */
11392 @d v3l stack_3(vl_packet) /* $V'_3$ */
11393 @d x1l stack_1(xl_packet) /* $X'_1$ */
11394 @d x2l stack_2(xl_packet) /* $X'_2$ */
11395 @d x3l stack_3(xl_packet) /* $X'_3$ */
11396 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11397 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11398 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11399 @d u1r stack_1(ur_packet) /* $U''_1$ */
11400 @d u2r stack_2(ur_packet) /* $U''_2$ */
11401 @d u3r stack_3(ur_packet) /* $U''_3$ */
11402 @d v1r stack_1(vr_packet) /* $V''_1$ */
11403 @d v2r stack_2(vr_packet) /* $V''_2$ */
11404 @d v3r stack_3(vr_packet) /* $V''_3$ */
11405 @d x1r stack_1(xr_packet) /* $X''_1$ */
11406 @d x2r stack_2(xr_packet) /* $X''_2$ */
11407 @d x3r stack_3(xr_packet) /* $X''_3$ */
11408 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11409 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11410 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11412 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11413 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11414 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11415 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11416 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11417 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11420 integer *bisect_stack;
11421 unsigned int bisect_ptr;
11423 @ @<Allocate or initialize ...@>=
11424 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11426 @ @<Dealloc variables@>=
11427 xfree(mp->bisect_stack);
11429 @ @<Check the ``constant''...@>=
11430 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11432 @ Computation of the min and max is a tedious but fairly fast sequence of
11433 instructions; exactly four comparisons are made in each branch.
11436 if ( stack_1((A))<0 ) {
11437 if ( stack_3((A))>=0 ) {
11438 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11439 else stack_min((A))=stack_1((A));
11440 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11441 if ( stack_max((A))<0 ) stack_max((A))=0;
11443 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11444 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11445 stack_max((A))=stack_1((A))+stack_2((A));
11446 if ( stack_max((A))<0 ) stack_max((A))=0;
11448 } else if ( stack_3((A))<=0 ) {
11449 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11450 else stack_max((A))=stack_1((A));
11451 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11452 if ( stack_min((A))>0 ) stack_min((A))=0;
11454 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11455 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11456 stack_min((A))=stack_1((A))+stack_2((A));
11457 if ( stack_min((A))>0 ) stack_min((A))=0;
11460 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11461 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11462 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11463 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11464 plus the |scaled| values of $t_1$ and~$t_2$.
11466 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11467 finds no intersection. The routine gives up and gives an approximate answer
11468 if it has backtracked
11469 more than 5000 times (otherwise there are cases where several minutes
11470 of fruitless computation would be possible).
11472 @d max_patience 5000
11475 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11476 integer time_to_go; /* this many backtracks before giving up */
11477 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11479 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11480 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11481 and |(pp,link(pp))|, respectively.
11483 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11484 pointer q,qq; /* |link(p)|, |link(pp)| */
11485 mp->time_to_go=max_patience; mp->max_t=2;
11486 @<Initialize for intersections at level zero@>;
11489 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11490 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11491 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11492 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11494 if ( mp->cur_t>=mp->max_t ){
11495 if ( mp->max_t==two ) { /* we've done 17 bisections */
11496 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11498 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11500 @<Subdivide for a new level of intersection@>;
11503 if ( mp->time_to_go>0 ) {
11504 decr(mp->time_to_go);
11506 while ( mp->appr_t<unity ) {
11507 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11509 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11511 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11515 @ The following variables are global, although they are used only by
11516 |cubic_intersection|, because it is necessary on some machines to
11517 split |cubic_intersection| up into two procedures.
11520 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11521 integer tol; /* bound on the uncertainly in the overlap test */
11523 unsigned int xy; /* pointers to the current packets of interest */
11524 integer three_l; /* |tol_step| times the bisection level */
11525 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11527 @ We shall assume that the coordinates are sufficiently non-extreme that
11528 integer overflow will not occur.
11530 @<Initialize for intersections at level zero@>=
11531 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11532 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11533 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11534 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11535 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11536 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11537 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11538 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11539 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11540 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11541 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11542 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11544 @ @<Subdivide for a new level of intersection@>=
11545 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11546 stack_uv=mp->uv; stack_xy=mp->xy;
11547 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11548 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11549 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11550 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11551 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11552 u3l=half(u2l+u2r); u1r=u3l;
11553 set_min_max(ul_packet); set_min_max(ur_packet);
11554 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11555 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11556 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11557 v3l=half(v2l+v2r); v1r=v3l;
11558 set_min_max(vl_packet); set_min_max(vr_packet);
11559 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11560 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11561 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11562 x3l=half(x2l+x2r); x1r=x3l;
11563 set_min_max(xl_packet); set_min_max(xr_packet);
11564 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11565 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11566 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11567 y3l=half(y2l+y2r); y1r=y3l;
11568 set_min_max(yl_packet); set_min_max(yr_packet);
11569 mp->uv=l_packets; mp->xy=l_packets;
11570 mp->delx+=mp->delx; mp->dely+=mp->dely;
11571 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11572 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11574 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11576 if ( odd(mp->cur_tt) ) {
11577 if ( odd(mp->cur_t) ) {
11578 @<Descend to the previous level and |goto not_found|@>;
11581 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11582 +stack_3(u_packet(mp->uv));
11583 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11584 +stack_3(v_packet(mp->uv));
11585 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11586 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11587 /* switch from |r_packet| to |l_packet| */
11588 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11589 +stack_3(x_packet(mp->xy));
11590 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11591 +stack_3(y_packet(mp->xy));
11594 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11595 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11596 -stack_3(x_packet(mp->xy));
11597 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11598 -stack_3(y_packet(mp->xy));
11599 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11602 @ @<Descend to the previous level...@>=
11604 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11605 if ( mp->cur_t==0 ) return;
11606 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11607 mp->three_l=mp->three_l-mp->tol_step;
11608 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11609 mp->uv=stack_uv; mp->xy=stack_xy;
11613 @ The |path_intersection| procedure is much simpler.
11614 It invokes |cubic_intersection| in lexicographic order until finding a
11615 pair of cubics that intersect. The final intersection times are placed in
11616 |cur_t| and~|cur_tt|.
11618 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11619 pointer p,pp; /* link registers that traverse the given paths */
11620 integer n,nn; /* integer parts of intersection times, minus |unity| */
11621 @<Change one-point paths into dead cycles@>;
11626 if ( right_type(p)!=endpoint ) {
11629 if ( right_type(pp)!=endpoint ) {
11630 mp_cubic_intersection(mp, p,pp);
11631 if ( mp->cur_t>0 ) {
11632 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11636 nn=nn+unity; pp=link(pp);
11639 n=n+unity; p=link(p);
11641 mp->tol_step=mp->tol_step+3;
11642 } while (mp->tol_step<=3);
11643 mp->cur_t=-unity; mp->cur_tt=-unity;
11646 @ @<Change one-point paths...@>=
11647 if ( right_type(h)==endpoint ) {
11648 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11649 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=explicit;
11651 if ( right_type(hh)==endpoint ) {
11652 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11653 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=explicit;
11656 @* \[24] Dynamic linear equations.
11657 \MP\ users define variables implicitly by stating equations that should be
11658 satisfied; the computer is supposed to be smart enough to solve those equations.
11659 And indeed, the computer tries valiantly to do so, by distinguishing five
11660 different types of numeric values:
11663 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11664 of the variable whose address is~|p|.
11667 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11668 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11669 as a |scaled| number plus a sum of independent variables with |fraction|
11673 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11674 number'' reflecting the time this variable was first used in an equation;
11675 also |0<=m<64|, and each dependent variable
11676 that refers to this one is actually referring to the future value of
11677 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11678 scaling are sometimes needed to keep the coefficients in dependency lists
11679 from getting too large. The value of~|m| will always be even.)
11682 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11683 equation before, but it has been explicitly declared to be numeric.
11686 |type(p)=undefined| means that variable |p| hasn't appeared before.
11688 \smallskip\noindent
11689 We have actually discussed these five types in the reverse order of their
11690 history during a computation: Once |known|, a variable never again
11691 becomes |dependent|; once |dependent|, it almost never again becomes
11692 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11693 and once |mp_numeric_type|, it never again becomes |undefined| (except
11694 of course when the user specifically decides to scrap the old value
11695 and start again). A backward step may, however, take place: Sometimes
11696 a |dependent| variable becomes |mp_independent| again, when one of the
11697 independent variables it depends on is reverting to |undefined|.
11700 The next patch detects overflow of independent-variable serial
11701 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11703 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11704 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11705 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11706 @d new_indep(A) /* create a new independent variable */
11707 { if ( mp->serial_no==max_serial_no )
11708 mp_fatal_error(mp, "variable instance identifiers exhausted");
11709 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11710 value((A))=mp->serial_no;
11714 integer serial_no; /* the most recent serial number, times |s_scale| */
11716 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11718 @ But how are dependency lists represented? It's simple: The linear combination
11719 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11720 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11721 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11722 of $\alpha_1$; and |link(p)| points to the dependency list
11723 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11724 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11725 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11726 they appear in decreasing order of their |value| fields (i.e., of
11727 their serial numbers). \ (It is convenient to use decreasing order,
11728 since |value(null)=0|. If the independent variables were not sorted by
11729 serial number but by some other criterion, such as their location in |mem|,
11730 the equation-solving mechanism would be too system-dependent, because
11731 the ordering can affect the computed results.)
11733 The |link| field in the node that contains the constant term $\beta$ is
11734 called the {\sl final link\/} of the dependency list. \MP\ maintains
11735 a doubly-linked master list of all dependency lists, in terms of a permanently
11737 in |mem| called |dep_head|. If there are no dependencies, we have
11738 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11739 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11740 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11741 points to its dependency list. If the final link of that dependency list
11742 occurs in location~|q|, then |link(q)| points to the next dependent
11743 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11745 @d dep_list(A) link(value_loc((A)))
11746 /* half of the |value| field in a |dependent| variable */
11747 @d prev_dep(A) info(value_loc((A)))
11748 /* the other half; makes a doubly linked list */
11749 @d dep_node_size 2 /* the number of words per dependency node */
11751 @<Initialize table entries...@>= mp->serial_no=0;
11752 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11753 info(dep_head)=null; dep_list(dep_head)=null;
11755 @ Actually the description above contains a little white lie. There's
11756 another kind of variable called |mp_proto_dependent|, which is
11757 just like a |dependent| one except that the $\alpha$ coefficients
11758 in its dependency list are |scaled| instead of being fractions.
11759 Proto-dependency lists are mixed with dependency lists in the
11760 nodes reachable from |dep_head|.
11762 @ Here is a procedure that prints a dependency list in symbolic form.
11763 The second parameter should be either |dependent| or |mp_proto_dependent|,
11764 to indicate the scaling of the coefficients.
11766 @<Declare subroutines for printing expressions@>=
11767 void mp_print_dependency (MP mp,pointer p, small_number t) {
11768 integer v; /* a coefficient */
11769 pointer pp,q; /* for list manipulation */
11772 v=abs(value(p)); q=info(p);
11773 if ( q==null ) { /* the constant term */
11774 if ( (v!=0)||(p==pp) ) {
11775 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11776 mp_print_scaled(mp, value(p));
11780 @<Print the coefficient, unless it's $\pm1.0$@>;
11781 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11782 @:this can't happen dep}{\quad dep@>
11783 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11784 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11789 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11790 if ( value(p)<0 ) mp_print_char(mp, '-');
11791 else if ( p!=pp ) mp_print_char(mp, '+');
11792 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11793 if ( v!=unity ) mp_print_scaled(mp, v)
11795 @ The maximum absolute value of a coefficient in a given dependency list
11796 is returned by the following simple function.
11798 @c fraction mp_max_coef (MP mp,pointer p) {
11799 fraction x; /* the maximum so far */
11801 while ( info(p)!=null ) {
11802 if ( abs(value(p))>x ) x=abs(value(p));
11808 @ One of the main operations needed on dependency lists is to add a multiple
11809 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11810 to dependency lists and |f| is a fraction.
11812 If the coefficient of any independent variable becomes |coef_bound| or
11813 more, in absolute value, this procedure changes the type of that variable
11814 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11815 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11816 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11817 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11818 2.3723$, the safer value 7/3 is taken as the threshold.)
11820 The changes mentioned in the preceding paragraph are actually done only if
11821 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11822 it is |false| only when \MP\ is making a dependency list that will soon
11823 be equated to zero.
11825 Several procedures that act on dependency lists, including |p_plus_fq|,
11826 set the global variable |dep_final| to the final (constant term) node of
11827 the dependency list that they produce.
11829 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11830 @d independent_needing_fix 0
11833 boolean fix_needed; /* does at least one |independent| variable need scaling? */
11834 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
11835 pointer dep_final; /* location of the constant term and final link */
11838 mp->fix_needed=false; mp->watch_coefs=true;
11840 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
11841 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
11842 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
11843 should be |mp_proto_dependent| if |q| is a proto-dependency list.
11845 List |q| is unchanged by the operation; but list |p| is totally destroyed.
11847 The final link of the dependency list or proto-dependency list returned
11848 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
11849 constant term of the result will be located in the same |mem| location
11850 as the original constant term of~|p|.
11852 Coefficients of the result are assumed to be zero if they are less than
11853 a certain threshold. This compensates for inevitable rounding errors,
11854 and tends to make more variables `|known|'. The threshold is approximately
11855 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
11856 proto-dependencies.
11858 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
11859 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
11860 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
11861 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
11863 @<Declare basic dependency-list subroutines@>=
11864 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11865 pointer q, small_number t, small_number tt) ;
11868 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11869 pointer q, small_number t, small_number tt) {
11870 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11871 pointer r,s; /* for list manipulation */
11872 integer mp_threshold; /* defines a neighborhood of zero */
11873 integer v; /* temporary register */
11874 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11875 else mp_threshold=scaled_threshold;
11876 r=temp_head; pp=info(p); qq=info(q);
11882 @<Contribute a term from |p|, plus |f| times the
11883 corresponding term from |q|@>
11885 } else if ( value(pp)<value(qq) ) {
11886 @<Contribute a term from |q|, multiplied by~|f|@>
11888 link(r)=p; r=p; p=link(p); pp=info(p);
11891 if ( t==mp_dependent )
11892 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
11894 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
11895 link(r)=p; mp->dep_final=p;
11896 return link(temp_head);
11899 @ @<Contribute a term from |p|, plus |f|...@>=
11901 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
11902 else v=value(p)+mp_take_scaled(mp, f,value(q));
11903 value(p)=v; s=p; p=link(p);
11904 if ( abs(v)<mp_threshold ) {
11905 mp_free_node(mp, s,dep_node_size);
11907 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11908 type(qq)=independent_needing_fix; mp->fix_needed=true;
11912 pp=info(p); q=link(q); qq=info(q);
11915 @ @<Contribute a term from |q|, multiplied by~|f|@>=
11917 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
11918 else v=mp_take_scaled(mp, f,value(q));
11919 if ( abs(v)>halfp(mp_threshold) ) {
11920 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
11921 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11922 type(qq)=independent_needing_fix; mp->fix_needed=true;
11926 q=link(q); qq=info(q);
11929 @ It is convenient to have another subroutine for the special case
11930 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
11931 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
11933 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
11934 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11935 pointer r,s; /* for list manipulation */
11936 integer mp_threshold; /* defines a neighborhood of zero */
11937 integer v; /* temporary register */
11938 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11939 else mp_threshold=scaled_threshold;
11940 r=temp_head; pp=info(p); qq=info(q);
11946 @<Contribute a term from |p|, plus the
11947 corresponding term from |q|@>
11949 } else if ( value(pp)<value(qq) ) {
11950 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
11951 q=link(q); qq=info(q); link(r)=s; r=s;
11953 link(r)=p; r=p; p=link(p); pp=info(p);
11956 value(p)=mp_slow_add(mp, value(p),value(q));
11957 link(r)=p; mp->dep_final=p;
11958 return link(temp_head);
11961 @ @<Contribute a term from |p|, plus the...@>=
11963 v=value(p)+value(q);
11964 value(p)=v; s=p; p=link(p); pp=info(p);
11965 if ( abs(v)<mp_threshold ) {
11966 mp_free_node(mp, s,dep_node_size);
11968 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
11969 type(qq)=independent_needing_fix; mp->fix_needed=true;
11973 q=link(q); qq=info(q);
11976 @ A somewhat simpler routine will multiply a dependency list
11977 by a given constant~|v|. The constant is either a |fraction| less than
11978 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
11979 convert a dependency list to a proto-dependency list.
11980 Parameters |t0| and |t1| are the list types before and after;
11981 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
11982 and |v_is_scaled=true|.
11984 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
11985 small_number t1, boolean v_is_scaled) {
11986 pointer r,s; /* for list manipulation */
11987 integer w; /* tentative coefficient */
11988 integer mp_threshold;
11989 boolean scaling_down;
11990 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
11991 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
11992 else mp_threshold=half_scaled_threshold;
11994 while ( info(p)!=null ) {
11995 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
11996 else w=mp_take_scaled(mp, v,value(p));
11997 if ( abs(w)<=mp_threshold ) {
11998 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12000 if ( abs(w)>=coef_bound ) {
12001 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12003 link(r)=p; r=p; value(p)=w; p=link(p);
12007 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12008 else value(p)=mp_take_fraction(mp, value(p),v);
12009 return link(temp_head);
12012 @ Similarly, we sometimes need to divide a dependency list
12013 by a given |scaled| constant.
12015 @<Declare basic dependency-list subroutines@>=
12016 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12017 t0, small_number t1) ;
12020 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12021 t0, small_number t1) {
12022 pointer r,s; /* for list manipulation */
12023 integer w; /* tentative coefficient */
12024 integer mp_threshold;
12025 boolean scaling_down;
12026 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12027 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12028 else mp_threshold=half_scaled_threshold;
12030 while ( info( p)!=null ) {
12031 if ( scaling_down ) {
12032 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12033 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12035 w=mp_make_scaled(mp, value(p),v);
12037 if ( abs(w)<=mp_threshold ) {
12038 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12040 if ( abs(w)>=coef_bound ) {
12041 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12043 link(r)=p; r=p; value(p)=w; p=link(p);
12046 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12047 return link(temp_head);
12050 @ Here's another utility routine for dependency lists. When an independent
12051 variable becomes dependent, we want to remove it from all existing
12052 dependencies. The |p_with_x_becoming_q| function computes the
12053 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12055 This procedure has basically the same calling conventions as |p_plus_fq|:
12056 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12057 final link are inherited from~|p|; and the fourth parameter tells whether
12058 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12059 is not altered if |x| does not occur in list~|p|.
12061 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12062 pointer x, pointer q, small_number t) {
12063 pointer r,s; /* for list manipulation */
12064 integer v; /* coefficient of |x| */
12065 integer sx; /* serial number of |x| */
12066 s=p; r=temp_head; sx=value(x);
12067 while ( value(info(s))>sx ) { r=s; s=link(s); };
12068 if ( info(s)!=x ) {
12071 link(temp_head)=p; link(r)=link(s); v=value(s);
12072 mp_free_node(mp, s,dep_node_size);
12073 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12077 @ Here's a simple procedure that reports an error when a variable
12078 has just received a known value that's out of the required range.
12080 @<Declare basic dependency-list subroutines@>=
12081 void mp_val_too_big (MP mp,scaled x) ;
12083 @ @c void mp_val_too_big (MP mp,scaled x) {
12084 if ( mp->internal[warning_check]>0 ) {
12085 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12086 @.Value is too large@>
12087 help4("The equation I just processed has given some variable")
12088 ("a value of 4096 or more. Continue and I'll try to cope")
12089 ("with that big value; but it might be dangerous.")
12090 ("(Set warningcheck:=0 to suppress this message.)");
12095 @ When a dependent variable becomes known, the following routine
12096 removes its dependency list. Here |p| points to the variable, and
12097 |q| points to the dependency list (which is one node long).
12099 @<Declare basic dependency-list subroutines@>=
12100 void mp_make_known (MP mp,pointer p, pointer q) ;
12102 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12103 int t; /* the previous type */
12104 prev_dep(link(q))=prev_dep(p);
12105 link(prev_dep(p))=link(q); t=type(p);
12106 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12107 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12108 if (( mp->internal[tracing_equations]>0) && mp_interesting(mp, p) ) {
12109 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12110 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12111 mp_print_variable_name(mp, p);
12112 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12113 mp_end_diagnostic(mp, false);
12115 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12116 mp->cur_type=mp_known; mp->cur_exp=value(p);
12117 mp_free_node(mp, p,value_node_size);
12121 @ The |fix_dependencies| routine is called into action when |fix_needed|
12122 has been triggered. The program keeps a list~|s| of independent variables
12123 whose coefficients must be divided by~4.
12125 In unusual cases, this fixup process might reduce one or more coefficients
12126 to zero, so that a variable will become known more or less by default.
12128 @<Declare basic dependency-list subroutines@>=
12129 void mp_fix_dependencies (MP mp);
12131 @ @c void mp_fix_dependencies (MP mp) {
12132 pointer p,q,r,s,t; /* list manipulation registers */
12133 pointer x; /* an independent variable */
12134 r=link(dep_head); s=null;
12135 while ( r!=dep_head ){
12137 @<Run through the dependency list for variable |t|, fixing
12138 all nodes, and ending with final link~|q|@>;
12140 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12142 while ( s!=null ) {
12143 p=link(s); x=info(s); free_avail(s); s=p;
12144 type(x)=mp_independent; value(x)=value(x)+2;
12146 mp->fix_needed=false;
12149 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12151 @<Run through the dependency list for variable |t|...@>=
12152 r=value_loc(t); /* |link(r)=dep_list(t)| */
12154 q=link(r); x=info(q);
12155 if ( x==null ) break;
12156 if ( type(x)<=independent_being_fixed ) {
12157 if ( type(x)<independent_being_fixed ) {
12158 p=mp_get_avail(mp); link(p)=s; s=p;
12159 info(s)=x; type(x)=independent_being_fixed;
12161 value(q)=value(q) / 4;
12162 if ( value(q)==0 ) {
12163 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12170 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12171 linking it into the list of all known dependencies. We assume that
12172 |dep_final| points to the final node of list~|p|.
12174 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12175 pointer r; /* what used to be the first dependency */
12176 dep_list(q)=p; prev_dep(q)=dep_head;
12177 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12181 @ Here is one of the ways a dependency list gets started.
12182 The |const_dependency| routine produces a list that has nothing but
12185 @c pointer mp_const_dependency (MP mp, scaled v) {
12186 mp->dep_final=mp_get_node(mp, dep_node_size);
12187 value(mp->dep_final)=v; info(mp->dep_final)=null;
12188 return mp->dep_final;
12191 @ And here's a more interesting way to start a dependency list from scratch:
12192 The parameter to |single_dependency| is the location of an
12193 independent variable~|x|, and the result is the simple dependency list
12196 In the unlikely event that the given independent variable has been doubled so
12197 often that we can't refer to it with a nonzero coefficient,
12198 |single_dependency| returns the simple list `0'. This case can be
12199 recognized by testing that the returned list pointer is equal to
12202 @c pointer mp_single_dependency (MP mp,pointer p) {
12203 pointer q; /* the new dependency list */
12204 integer m; /* the number of doublings */
12205 m=value(p) % s_scale;
12207 return mp_const_dependency(mp, 0);
12209 q=mp_get_node(mp, dep_node_size);
12210 value(q)=two_to_the(28-m); info(q)=p;
12211 link(q)=mp_const_dependency(mp, 0);
12216 @ We sometimes need to make an exact copy of a dependency list.
12218 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12219 pointer q; /* the new dependency list */
12220 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12222 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12223 if ( info(mp->dep_final)==null ) break;
12224 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12225 mp->dep_final=link(mp->dep_final); p=link(p);
12230 @ But how do variables normally become known? Ah, now we get to the heart of the
12231 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12232 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12233 appears. It equates this list to zero, by choosing an independent variable
12234 with the largest coefficient and making it dependent on the others. The
12235 newly dependent variable is eliminated from all current dependencies,
12236 thereby possibly making other dependent variables known.
12238 The given list |p| is, of course, totally destroyed by all this processing.
12240 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12241 pointer q,r,s; /* for link manipulation */
12242 pointer x; /* the variable that loses its independence */
12243 integer n; /* the number of times |x| had been halved */
12244 integer v; /* the coefficient of |x| in list |p| */
12245 pointer prev_r; /* lags one step behind |r| */
12246 pointer final_node; /* the constant term of the new dependency list */
12247 integer w; /* a tentative coefficient */
12248 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12249 x=info(q); n=value(x) % s_scale;
12250 @<Divide list |p| by |-v|, removing node |q|@>;
12251 if ( mp->internal[tracing_equations]>0 ) {
12252 @<Display the new dependency@>;
12254 @<Simplify all existing dependencies by substituting for |x|@>;
12255 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12256 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12259 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12260 q=p; r=link(p); v=value(q);
12261 while ( info(r)!=null ) {
12262 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12266 @ Here we want to change the coefficients from |scaled| to |fraction|,
12267 except in the constant term. In the common case of a trivial equation
12268 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12270 @<Divide list |p| by |-v|, removing node |q|@>=
12271 s=temp_head; link(s)=p; r=p;
12274 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12276 w=mp_make_fraction(mp, value(r),v);
12277 if ( abs(w)<=half_fraction_threshold ) {
12278 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12284 } while (info(r)!=null);
12285 if ( t==mp_proto_dependent ) {
12286 value(r)=-mp_make_scaled(mp, value(r),v);
12287 } else if ( v!=-fraction_one ) {
12288 value(r)=-mp_make_fraction(mp, value(r),v);
12290 final_node=r; p=link(temp_head)
12292 @ @<Display the new dependency@>=
12293 if ( mp_interesting(mp, x) ) {
12294 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12295 mp_print_variable_name(mp, x);
12296 @:]]]\#\#_}{\.{\#\#}@>
12298 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12299 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12300 mp_end_diagnostic(mp, false);
12303 @ @<Simplify all existing dependencies by substituting for |x|@>=
12304 prev_r=dep_head; r=link(dep_head);
12305 while ( r!=dep_head ) {
12306 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12307 if ( info(q)==null ) {
12308 mp_make_known(mp, r,q);
12311 do { q=link(q); } while (info(q)!=null);
12317 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12318 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12319 if ( info(p)==null ) {
12322 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12323 mp_free_node(mp, p,dep_node_size);
12324 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12325 mp->cur_exp=value(x); mp->cur_type=mp_known;
12326 mp_free_node(mp, x,value_node_size);
12329 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12330 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12333 @ @<Divide list |p| by $2^n$@>=
12335 s=temp_head; link(temp_head)=p; r=p;
12338 else w=value(r) / two_to_the(n);
12339 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12341 mp_free_node(mp, r,dep_node_size);
12346 } while (info(s)!=null);
12350 @ The |check_mem| procedure, which is used only when \MP\ is being
12351 debugged, makes sure that the current dependency lists are well formed.
12353 @<Check the list of linear dependencies@>=
12354 q=dep_head; p=link(q);
12355 while ( p!=dep_head ) {
12356 if ( prev_dep(p)!=q ) {
12357 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12362 r=info(p); q=p; p=link(q);
12363 if ( r==null ) break;
12364 if ( value(info(p))>=value(r) ) {
12365 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12366 @.Out of order...@>
12371 @* \[25] Dynamic nonlinear equations.
12372 Variables of numeric type are maintained by the general scheme of
12373 independent, dependent, and known values that we have just studied;
12374 and the components of pair and transform variables are handled in the
12375 same way. But \MP\ also has five other types of values: \&{boolean},
12376 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12378 Equations are allowed between nonlinear quantities, but only in a
12379 simple form. Two variables that haven't yet been assigned values are
12380 either equal to each other, or they're not.
12382 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12383 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12384 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12385 |null| (which means that no other variables are equivalent to this one), or
12386 it points to another variable of the same undefined type. The pointers in the
12387 latter case form a cycle of nodes, which we shall call a ``ring.''
12388 Rings of undefined variables may include capsules, which arise as
12389 intermediate results within expressions or as \&{expr} parameters to macros.
12391 When one member of a ring receives a value, the same value is given to
12392 all the other members. In the case of paths and pictures, this implies
12393 making separate copies of a potentially large data structure; users should
12394 restrain their enthusiasm for such generality, unless they have lots and
12395 lots of memory space.
12397 @ The following procedure is called when a capsule node is being
12398 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12400 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12401 pointer q; /* the new capsule node */
12402 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12404 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12409 @ Conversely, we might delete a capsule or a variable before it becomes known.
12410 The following procedure simply detaches a quantity from its ring,
12411 without recycling the storage.
12413 @<Declare the recycling subroutines@>=
12414 void mp_ring_delete (MP mp,pointer p) {
12417 if ( q!=null ) if ( q!=p ){
12418 while ( value(q)!=p ) q=value(q);
12423 @ Eventually there might be an equation that assigns values to all of the
12424 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12425 propagation of values.
12427 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12428 value, it will soon be recycled.
12430 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12431 small_number t; /* the type of ring |p| */
12432 pointer q,r; /* link manipulation registers */
12433 t=type(p)-unknown_tag; q=value(p);
12434 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12436 r=value(q); type(q)=t;
12438 case mp_boolean_type: value(q)=v; break;
12439 case mp_string_type: value(q)=v; add_str_ref(v); break;
12440 case mp_pen_type: value(q)=copy_pen(v); break;
12441 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12442 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12443 } /* there ain't no more cases */
12448 @ If two members of rings are equated, and if they have the same type,
12449 the |ring_merge| procedure is called on to make them equivalent.
12451 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12452 pointer r; /* traverses one list */
12456 @<Exclaim about a redundant equation@>;
12461 r=value(p); value(p)=value(q); value(q)=r;
12464 @ @<Exclaim about a redundant equation@>=
12466 print_err("Redundant equation");
12467 @.Redundant equation@>
12468 help2("I already knew that this equation was true.")
12469 ("But perhaps no harm has been done; let's continue.");
12470 mp_put_get_error(mp);
12473 @* \[26] Introduction to the syntactic routines.
12474 Let's pause a moment now and try to look at the Big Picture.
12475 The \MP\ program consists of three main parts: syntactic routines,
12476 semantic routines, and output routines. The chief purpose of the
12477 syntactic routines is to deliver the user's input to the semantic routines,
12478 while parsing expressions and locating operators and operands. The
12479 semantic routines act as an interpreter responding to these operators,
12480 which may be regarded as commands. And the output routines are
12481 periodically called on to produce compact font descriptions that can be
12482 used for typesetting or for making interim proof drawings. We have
12483 discussed the basic data structures and many of the details of semantic
12484 operations, so we are good and ready to plunge into the part of \MP\ that
12485 actually controls the activities.
12487 Our current goal is to come to grips with the |get_next| procedure,
12488 which is the keystone of \MP's input mechanism. Each call of |get_next|
12489 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12490 representing the next input token.
12491 $$\vbox{\halign{#\hfil\cr
12492 \hbox{|cur_cmd| denotes a command code from the long list of codes
12494 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12495 \hbox{|cur_sym| is the hash address of the symbolic token that was
12497 \hbox{\qquad or zero in the case of a numeric or string
12498 or capsule token.}\cr}}$$
12499 Underlying this external behavior of |get_next| is all the machinery
12500 necessary to convert from character files to tokens. At a given time we
12501 may be only partially finished with the reading of several files (for
12502 which \&{input} was specified), and partially finished with the expansion
12503 of some user-defined macros and/or some macro parameters, and partially
12504 finished reading some text that the user has inserted online,
12505 and so on. When reading a character file, the characters must be
12506 converted to tokens; comments and blank spaces must
12507 be removed, numeric and string tokens must be evaluated.
12509 To handle these situations, which might all be present simultaneously,
12510 \MP\ uses various stacks that hold information about the incomplete
12511 activities, and there is a finite state control for each level of the
12512 input mechanism. These stacks record the current state of an implicitly
12513 recursive process, but the |get_next| procedure is not recursive.
12516 eight_bits cur_cmd; /* current command set by |get_next| */
12517 integer cur_mod; /* operand of current command */
12518 halfword cur_sym; /* hash address of current symbol */
12520 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12521 command code and its modifier.
12522 It consists of a rather tedious sequence of print
12523 commands, and most of it is essentially an inverse to the |primitive|
12524 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12525 all of this procedure appears elsewhere in the program, together with the
12526 corresponding |primitive| calls.
12528 @<Declare the procedure called |print_cmd_mod|@>=
12529 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12531 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12532 default: mp_print(mp, "[unknown command code!]"); break;
12536 @ Here is a procedure that displays a given command in braces, in the
12537 user's transcript file.
12539 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12542 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12543 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12544 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12545 mp_end_diagnostic(mp, false);
12548 @* \[27] Input stacks and states.
12549 The state of \MP's input mechanism appears in the input stack, whose
12550 entries are records with five fields, called |index|, |start|, |loc|,
12551 |limit|, and |name|. The top element of this stack is maintained in a
12552 global variable for which no subscripting needs to be done; the other
12553 elements of the stack appear in an array. Hence the stack is declared thus:
12557 quarterword index_field;
12558 halfword start_field, loc_field, limit_field, name_field;
12562 in_state_record *input_stack;
12563 integer input_ptr; /* first unused location of |input_stack| */
12564 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12565 in_state_record cur_input; /* the ``top'' input state */
12566 int stack_size; /* maximum number of simultaneous input sources */
12568 @ @<Allocate or initialize ...@>=
12569 mp->stack_size = 300;
12570 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12572 @ @<Dealloc variables@>=
12573 xfree(mp->input_stack);
12575 @ We've already defined the special variable |loc==cur_input.loc_field|
12576 in our discussion of basic input-output routines. The other components of
12577 |cur_input| are defined in the same way:
12579 @d index mp->cur_input.index_field /* reference for buffer information */
12580 @d start mp->cur_input.start_field /* starting position in |buffer| */
12581 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12582 @d name mp->cur_input.name_field /* name of the current file */
12584 @ Let's look more closely now at the five control variables
12585 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12586 assuming that \MP\ is reading a line of characters that have been input
12587 from some file or from the user's terminal. There is an array called
12588 |buffer| that acts as a stack of all lines of characters that are
12589 currently being read from files, including all lines on subsidiary
12590 levels of the input stack that are not yet completed. \MP\ will return to
12591 the other lines when it is finished with the present input file.
12593 (Incidentally, on a machine with byte-oriented addressing, it would be
12594 appropriate to combine |buffer| with the |str_pool| array,
12595 letting the buffer entries grow downward from the top of the string pool
12596 and checking that these two tables don't bump into each other.)
12598 The line we are currently working on begins in position |start| of the
12599 buffer; the next character we are about to read is |buffer[loc]|; and
12600 |limit| is the location of the last character present. We always have
12601 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12602 that the end of a line is easily sensed.
12604 The |name| variable is a string number that designates the name of
12605 the current file, if we are reading an ordinary text file. Special codes
12606 |is_term..max_spec_src| indicate other sources of input text.
12608 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12609 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12610 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12611 @d max_spec_src is_scantok
12613 @ Additional information about the current line is available via the
12614 |index| variable, which counts how many lines of characters are present
12615 in the buffer below the current level. We have |index=0| when reading
12616 from the terminal and prompting the user for each line; then if the user types,
12617 e.g., `\.{input figs}', we will have |index=1| while reading
12618 the file \.{figs.mp}. However, it does not follow that |index| is the
12619 same as the input stack pointer, since many of the levels on the input
12620 stack may come from token lists and some |index| values may correspond
12621 to \.{MPX} files that are not currently on the stack.
12623 The global variable |in_open| is equal to the highest |index| value counting
12624 \.{MPX} files but excluding token-list input levels. Thus, the number of
12625 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12626 when we are not reading a token list.
12628 If we are not currently reading from the terminal,
12629 we are reading from the file variable |input_file[index]|. We use
12630 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12631 and |cur_file| as an abbreviation for |input_file[index]|.
12633 When \MP\ is not reading from the terminal, the global variable |line| contains
12634 the line number in the current file, for use in error messages. More precisely,
12635 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12636 the line number for each file in the |input_file| array.
12638 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12639 array so that the name doesn't get lost when the file is temporarily removed
12640 from the input stack.
12641 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12642 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12643 Since this is not an \.{MPX} file, we have
12644 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12645 This |name| field is set to |finished| when |input_file[k]| is completely
12648 If more information about the input state is needed, it can be
12649 included in small arrays like those shown here. For example,
12650 the current page or segment number in the input file might be put
12651 into a variable |page|, that is really a macro for the current entry
12652 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12653 by analogy with |line_stack|.
12654 @^system dependencies@>
12656 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12657 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12658 @d line mp->line_stack[index] /* current line number in the current source file */
12659 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12660 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12661 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12662 @d mpx_reading (mp->mpx_name[index]>absent)
12663 /* when reading a file, is it an \.{MPX} file? */
12665 /* |name_field| value when the corresponding \.{MPX} file is finished */
12668 integer in_open; /* the number of lines in the buffer, less one */
12669 unsigned int open_parens; /* the number of open text files */
12670 FILE * *input_file ;
12671 integer *line_stack ; /* the line number for each file */
12672 char * *iname_stack; /* used for naming \.{MPX} files */
12673 char * *iarea_stack; /* used for naming \.{MPX} files */
12674 halfword*mpx_name ;
12676 @ @<Allocate or ...@>=
12677 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12678 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12679 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12680 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12681 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12684 for (k=0;k<=mp->max_in_open;k++) {
12685 mp->iname_stack[k] =NULL;
12686 mp->iarea_stack[k] =NULL;
12690 @ @<Dealloc variables@>=
12693 for (l=0;l<=mp->max_in_open;l++) {
12694 xfree(mp->iname_stack[l]);
12695 xfree(mp->iarea_stack[l]);
12698 xfree(mp->input_file);
12699 xfree(mp->line_stack);
12700 xfree(mp->iname_stack);
12701 xfree(mp->iarea_stack);
12702 xfree(mp->mpx_name);
12705 @ However, all this discussion about input state really applies only to the
12706 case that we are inputting from a file. There is another important case,
12707 namely when we are currently getting input from a token list. In this case
12708 |index>max_in_open|, and the conventions about the other state variables
12711 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12712 the node that will be read next. If |loc=null|, the token list has been
12715 \yskip\hang|start| points to the first node of the token list; this node
12716 may or may not contain a reference count, depending on the type of token
12719 \yskip\hang|token_type|, which takes the place of |index| in the
12720 discussion above, is a code number that explains what kind of token list
12723 \yskip\hang|name| points to the |eqtb| address of the control sequence
12724 being expanded, if the current token list is a macro not defined by
12725 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12726 can be deduced by looking at their first two parameters.
12728 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12729 the parameters of the current macro or loop text begin in the |param_stack|.
12731 \yskip\noindent The |token_type| can take several values, depending on
12732 where the current token list came from:
12735 \indent|forever_text|, if the token list being scanned is the body of
12736 a \&{forever} loop;
12738 \indent|loop_text|, if the token list being scanned is the body of
12739 a \&{for} or \&{forsuffixes} loop;
12741 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12743 \indent|backed_up|, if the token list being scanned has been inserted as
12744 `to be read again'.
12746 \indent|inserted|, if the token list being scanned has been inserted as
12747 part of error recovery;
12749 \indent|macro|, if the expansion of a user-defined symbolic token is being
12753 The token list begins with a reference count if and only if |token_type=
12755 @^reference counts@>
12757 @d token_type index /* type of current token list */
12758 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12759 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12760 @d param_start limit /* base of macro parameters in |param_stack| */
12761 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12762 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12763 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12764 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12765 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12766 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12768 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12769 lists for parameters at the current level and subsidiary levels of input.
12770 This stack grows at a different rate from the others.
12773 pointer *param_stack; /* token list pointers for parameters */
12774 integer param_ptr; /* first unused entry in |param_stack| */
12775 integer max_param_stack; /* largest value of |param_ptr| */
12777 @ @<Allocate or initialize ...@>=
12778 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12780 @ @<Dealloc variables@>=
12781 xfree(mp->param_stack);
12783 @ Notice that the |line| isn't valid when |token_state| is true because it
12784 depends on |index|. If we really need to know the line number for the
12785 topmost file in the index stack we use the following function. If a page
12786 number or other information is needed, this routine should be modified to
12787 compute it as well.
12788 @^system dependencies@>
12790 @<Declare a function called |true_line|@>=
12791 integer mp_true_line (MP mp) {
12792 int k; /* an index into the input stack */
12793 if ( file_state && (name>max_spec_src) ) {
12798 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12799 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12802 return mp->line_stack[(k-1)];
12807 @ Thus, the ``current input state'' can be very complicated indeed; there
12808 can be many levels and each level can arise in a variety of ways. The
12809 |show_context| procedure, which is used by \MP's error-reporting routine to
12810 print out the current input state on all levels down to the most recent
12811 line of characters from an input file, illustrates most of these conventions.
12812 The global variable |file_ptr| contains the lowest level that was
12813 displayed by this procedure.
12816 integer file_ptr; /* shallowest level shown by |show_context| */
12818 @ The status at each level is indicated by printing two lines, where the first
12819 line indicates what was read so far and the second line shows what remains
12820 to be read. The context is cropped, if necessary, so that the first line
12821 contains at most |half_error_line| characters, and the second contains
12822 at most |error_line|. Non-current input levels whose |token_type| is
12823 `|backed_up|' are shown only if they have not been fully read.
12825 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12826 int old_setting; /* saved |selector| setting */
12827 @<Local variables for formatting calculations@>
12828 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12829 /* store current state */
12831 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
12832 @<Display the current context@>;
12834 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
12835 decr(mp->file_ptr);
12837 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
12840 @ @<Display the current context@>=
12841 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
12842 (token_type!=backed_up) || (loc!=null) ) {
12843 /* we omit backed-up token lists that have already been read */
12844 mp->tally=0; /* get ready to count characters */
12845 old_setting=mp->selector;
12846 if ( file_state ) {
12847 @<Print location of current line@>;
12848 @<Pseudoprint the line@>;
12850 @<Print type of token list@>;
12851 @<Pseudoprint the token list@>;
12853 mp->selector=old_setting; /* stop pseudoprinting */
12854 @<Print two lines using the tricky pseudoprinted information@>;
12857 @ This routine should be changed, if necessary, to give the best possible
12858 indication of where the current line resides in the input file.
12859 For example, on some systems it is best to print both a page and line number.
12860 @^system dependencies@>
12862 @<Print location of current line@>=
12863 if ( name>max_spec_src ) {
12864 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
12865 } else if ( terminal_input ) {
12866 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
12867 else mp_print_nl(mp, "<insert>");
12868 } else if ( name==is_scantok ) {
12869 mp_print_nl(mp, "<scantokens>");
12871 mp_print_nl(mp, "<read>");
12873 mp_print_char(mp, ' ')
12875 @ Can't use case statement here because the |token_type| is not
12876 a constant expression.
12878 @<Print type of token list@>=
12880 if(token_type==forever_text) {
12881 mp_print_nl(mp, "<forever> ");
12882 } else if (token_type==loop_text) {
12883 @<Print the current loop value@>;
12884 } else if (token_type==parameter) {
12885 mp_print_nl(mp, "<argument> ");
12886 } else if (token_type==backed_up) {
12887 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
12888 else mp_print_nl(mp, "<to be read again> ");
12889 } else if (token_type==inserted) {
12890 mp_print_nl(mp, "<inserted text> ");
12891 } else if (token_type==macro) {
12893 if ( name!=null ) mp_print_text(name);
12894 else @<Print the name of a \&{vardef}'d macro@>;
12895 mp_print(mp, "->");
12897 mp_print_nl(mp, "?");/* this should never happen */
12902 @ The parameter that corresponds to a loop text is either a token list
12903 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
12904 We'll discuss capsules later; for now, all we need to know is that
12905 the |link| field in a capsule parameter is |void| and that
12906 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
12908 @d diov (null+1) /* a null pointer different from |null| */
12910 @<Print the current loop value@>=
12911 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
12913 if ( link(p)==diov ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
12914 else mp_show_token_list(mp, p,null,20,mp->tally);
12916 mp_print(mp, ")> ");
12919 @ The first two parameters of a macro defined by \&{vardef} will be token
12920 lists representing the macro's prefix and ``at point.'' By putting these
12921 together, we get the macro's full name.
12923 @<Print the name of a \&{vardef}'d macro@>=
12924 { p=mp->param_stack[param_start];
12926 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
12929 while ( link(q)!=null ) q=link(q);
12930 link(q)=mp->param_stack[param_start+1];
12931 mp_show_token_list(mp, p,null,20,mp->tally);
12936 @ Now it is necessary to explain a little trick. We don't want to store a long
12937 string that corresponds to a token list, because that string might take up
12938 lots of memory; and we are printing during a time when an error message is
12939 being given, so we dare not do anything that might overflow one of \MP's
12940 tables. So `pseudoprinting' is the answer: We enter a mode of printing
12941 that stores characters into a buffer of length |error_line|, where character
12942 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
12943 |k<trick_count|, otherwise character |k| is dropped. Initially we set
12944 |tally:=0| and |trick_count:=1000000|; then when we reach the
12945 point where transition from line 1 to line 2 should occur, we
12946 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
12947 tally+1+error_line-half_error_line)|. At the end of the
12948 pseudoprinting, the values of |first_count|, |tally|, and
12949 |trick_count| give us all the information we need to print the two lines,
12950 and all of the necessary text is in |trick_buf|.
12952 Namely, let |l| be the length of the descriptive information that appears
12953 on the first line. The length of the context information gathered for that
12954 line is |k=first_count|, and the length of the context information
12955 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
12956 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
12957 descriptive information on line~1, and set |n:=l+k|; here |n| is the
12958 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
12959 and print `\.{...}' followed by
12960 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
12961 where subscripts of |trick_buf| are circular modulo |error_line|. The
12962 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
12963 unless |n+m>error_line|; in the latter case, further cropping is done.
12964 This is easier to program than to explain.
12966 @<Local variables for formatting...@>=
12967 int i; /* index into |buffer| */
12968 integer l; /* length of descriptive information on line 1 */
12969 integer m; /* context information gathered for line 2 */
12970 int n; /* length of line 1 */
12971 integer p; /* starting or ending place in |trick_buf| */
12972 integer q; /* temporary index */
12974 @ The following code tells the print routines to gather
12975 the desired information.
12977 @d begin_pseudoprint {
12978 l=mp->tally; mp->tally=0; mp->selector=pseudo;
12979 mp->trick_count=1000000;
12981 @d set_trick_count {
12982 mp->first_count=mp->tally;
12983 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
12984 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
12987 @ And the following code uses the information after it has been gathered.
12989 @<Print two lines using the tricky pseudoprinted information@>=
12990 if ( mp->trick_count==1000000 ) set_trick_count;
12991 /* |set_trick_count| must be performed */
12992 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
12993 else m=mp->trick_count-mp->first_count; /* context on line 2 */
12994 if ( l+mp->first_count<=mp->half_error_line ) {
12995 p=0; n=l+mp->first_count;
12997 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
12998 n=mp->half_error_line;
13000 for (q=p;q<=mp->first_count-1;q++) {
13001 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13004 for (q=1;q<=n;q++) {
13005 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13007 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13008 else p=mp->first_count+(mp->error_line-n-3);
13009 for (q=mp->first_count;q<=p-1;q++) {
13010 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13012 if ( m+n>mp->error_line ) mp_print(mp, "...")
13014 @ But the trick is distracting us from our current goal, which is to
13015 understand the input state. So let's concentrate on the data structures that
13016 are being pseudoprinted as we finish up the |show_context| procedure.
13018 @<Pseudoprint the line@>=
13021 for (i=start;i<=limit-1;i++) {
13022 if ( i==loc ) set_trick_count;
13023 mp_print_str(mp, mp->buffer[i]);
13027 @ @<Pseudoprint the token list@>=
13029 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13030 else mp_show_macro(mp, start,loc,100000)
13032 @ Here is the missing piece of |show_token_list| that is activated when the
13033 token beginning line~2 is about to be shown:
13035 @<Do magic computation@>=set_trick_count
13037 @* \[28] Maintaining the input stacks.
13038 The following subroutines change the input status in commonly needed ways.
13040 First comes |push_input|, which stores the current state and creates a
13041 new level (having, initially, the same properties as the old).
13043 @d push_input { /* enter a new input level, save the old */
13044 if ( mp->input_ptr>mp->max_in_stack ) {
13045 mp->max_in_stack=mp->input_ptr;
13046 if ( mp->input_ptr==mp->stack_size ) {
13047 int l = (mp->stack_size+(mp->stack_size>>2));
13048 XREALLOC(mp->input_stack, (l+1), in_state_record);
13049 mp->stack_size = l;
13052 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13053 incr(mp->input_ptr);
13056 @ And of course what goes up must come down.
13058 @d pop_input { /* leave an input level, re-enter the old */
13059 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13062 @ Here is a procedure that starts a new level of token-list input, given
13063 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13064 set |name|, reset~|loc|, and increase the macro's reference count.
13066 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13068 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13069 push_input; start=p; token_type=t;
13070 param_start=mp->param_ptr; loc=p;
13073 @ When a token list has been fully scanned, the following computations
13074 should be done as we leave that level of input.
13077 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13078 pointer p; /* temporary register */
13079 if ( token_type>=backed_up ) { /* token list to be deleted */
13080 if ( token_type<=inserted ) {
13081 mp_flush_token_list(mp, start); goto DONE;
13083 mp_delete_mac_ref(mp, start); /* update reference count */
13086 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13087 decr(mp->param_ptr);
13088 p=mp->param_stack[mp->param_ptr];
13090 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
13091 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13093 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13098 pop_input; check_interrupt;
13101 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13102 token by the |cur_tok| routine.
13105 @c @<Declare the procedure called |make_exp_copy|@>;
13106 pointer mp_cur_tok (MP mp) {
13107 pointer p; /* a new token node */
13108 small_number save_type; /* |cur_type| to be restored */
13109 integer save_exp; /* |cur_exp| to be restored */
13110 if ( mp->cur_sym==0 ) {
13111 if ( mp->cur_cmd==capsule_token ) {
13112 save_type=mp->cur_type; save_exp=mp->cur_exp;
13113 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13114 mp->cur_type=save_type; mp->cur_exp=save_exp;
13116 p=mp_get_node(mp, token_node_size);
13117 value(p)=mp->cur_mod; name_type(p)=mp_token;
13118 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13119 else type(p)=mp_string_type;
13122 fast_get_avail(p); info(p)=mp->cur_sym;
13127 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13128 seen. The |back_input| procedure takes care of this by putting the token
13129 just scanned back into the input stream, ready to be read again.
13130 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13133 void mp_back_input (MP mp);
13135 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13136 pointer p; /* a token list of length one */
13138 while ( token_state &&(loc==null) )
13139 mp_end_token_list(mp); /* conserve stack space */
13143 @ The |back_error| routine is used when we want to restore or replace an
13144 offending token just before issuing an error message. We disable interrupts
13145 during the call of |back_input| so that the help message won't be lost.
13148 void mp_error (MP mp);
13149 void mp_back_error (MP mp);
13151 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13152 mp->OK_to_interrupt=false;
13154 mp->OK_to_interrupt=true; mp_error(mp);
13156 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13157 mp->OK_to_interrupt=false;
13158 mp_back_input(mp); token_type=inserted;
13159 mp->OK_to_interrupt=true; mp_error(mp);
13162 @ The |begin_file_reading| procedure starts a new level of input for lines
13163 of characters to be read from a file, or as an insertion from the
13164 terminal. It does not take care of opening the file, nor does it set |loc|
13165 or |limit| or |line|.
13166 @^system dependencies@>
13168 @c void mp_begin_file_reading (MP mp) {
13169 if ( mp->in_open==mp->max_in_open )
13170 mp_overflow(mp, "text input levels",mp->max_in_open);
13171 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13172 if ( mp->first==mp->buf_size )
13173 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13174 incr(mp->in_open); push_input; index=mp->in_open;
13175 mp->mpx_name[index]=absent;
13177 name=is_term; /* |terminal_input| is now |true| */
13180 @ Conversely, the variables must be downdated when such a level of input
13181 is finished. Any associated \.{MPX} file must also be closed and popped
13182 off the file stack.
13184 @c void mp_end_file_reading (MP mp) {
13185 if ( mp->in_open>index ) {
13186 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13187 mp_confusion(mp, "endinput");
13188 @:this can't happen endinput}{\quad endinput@>
13190 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13191 delete_str_ref(mp->mpx_name[mp->in_open]);
13196 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13197 if ( name>max_spec_src ) {
13199 delete_str_ref(name);
13200 xfree(in_name); in_name=NULL;
13201 xfree(in_area); in_area=NULL;
13203 pop_input; decr(mp->in_open);
13206 @ Here is a function that tries to resume input from an \.{MPX} file already
13207 associated with the current input file. It returns |false| if this doesn't
13210 @c boolean mp_begin_mpx_reading (MP mp) {
13211 if ( mp->in_open!=index+1 ) {
13214 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13215 @:this can't happen mpx}{\quad mpx@>
13216 if ( mp->first==mp->buf_size )
13217 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13218 push_input; index=mp->in_open;
13220 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13221 @<Put an empty line in the input buffer@>;
13226 @ This procedure temporarily stops reading an \.{MPX} file.
13228 @c void mp_end_mpx_reading (MP mp) {
13229 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13230 @:this can't happen mpx}{\quad mpx@>
13232 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13238 @ Here we enforce a restriction that simplifies the input stacks considerably.
13239 This should not inconvenience the user because \.{MPX} files are generated
13240 by an auxiliary program called \.{DVItoMP}.
13242 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13244 print_err("`mpxbreak' must be at the end of a line");
13245 help4("This file contains picture expressions for btex...etex")
13246 ("blocks. Such files are normally generated automatically")
13247 ("but this one seems to be messed up. I'm going to ignore")
13248 ("the rest of this line.");
13252 @ In order to keep the stack from overflowing during a long sequence of
13253 inserted `\.{show}' commands, the following routine removes completed
13254 error-inserted lines from memory.
13256 @c void mp_clear_for_error_prompt (MP mp) {
13257 while ( file_state && terminal_input &&
13258 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13259 mp_print_ln(mp); clear_terminal;
13262 @ To get \MP's whole input mechanism going, we perform the following
13265 @<Initialize the input routines@>=
13266 { mp->input_ptr=0; mp->max_in_stack=0;
13267 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13268 mp->param_ptr=0; mp->max_param_stack=0;
13270 start=1; index=0; line=0; name=is_term;
13271 mp->mpx_name[0]=absent;
13272 mp->force_eof=false;
13273 if ( ! mp_init_terminal(mp) ) exit(EXIT_FAILURE);
13274 limit=mp->last; mp->first=mp->last+1;
13275 /* |init_terminal| has set |loc| and |last| */
13278 @* \[29] Getting the next token.
13279 The heart of \MP's input mechanism is the |get_next| procedure, which
13280 we shall develop in the next few sections of the program. Perhaps we
13281 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13282 eyes and mouth, reading the source files and gobbling them up. And it also
13283 helps \MP\ to regurgitate stored token lists that are to be processed again.
13285 The main duty of |get_next| is to input one token and to set |cur_cmd|
13286 and |cur_mod| to that token's command code and modifier. Furthermore, if
13287 the input token is a symbolic token, that token's |hash| address
13288 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13290 Underlying this simple description is a certain amount of complexity
13291 because of all the cases that need to be handled.
13292 However, the inner loop of |get_next| is reasonably short and fast.
13294 @ Before getting into |get_next|, we need to consider a mechanism by which
13295 \MP\ helps keep errors from propagating too far. Whenever the program goes
13296 into a mode where it keeps calling |get_next| repeatedly until a certain
13297 condition is met, it sets |scanner_status| to some value other than |normal|.
13298 Then if an input file ends, or if an `\&{outer}' symbol appears,
13299 an appropriate error recovery will be possible.
13301 The global variable |warning_info| helps in this error recovery by providing
13302 additional information. For example, |warning_info| might indicate the
13303 name of a macro whose replacement text is being scanned.
13305 @d normal 0 /* |scanner_status| at ``quiet times'' */
13306 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13307 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13308 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13309 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13310 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13311 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13312 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13315 integer scanner_status; /* are we scanning at high speed? */
13316 integer warning_info; /* if so, what else do we need to know,
13317 in case an error occurs? */
13319 @ @<Initialize the input routines@>=
13320 mp->scanner_status=normal;
13322 @ The following subroutine
13323 is called when an `\&{outer}' symbolic token has been scanned or
13324 when the end of a file has been reached. These two cases are distinguished
13325 by |cur_sym|, which is zero at the end of a file.
13327 @c boolean mp_check_outer_validity (MP mp) {
13328 pointer p; /* points to inserted token list */
13329 if ( mp->scanner_status==normal ) {
13331 } else if ( mp->scanner_status==tex_flushing ) {
13332 @<Check if the file has ended while flushing \TeX\ material and set the
13333 result value for |check_outer_validity|@>;
13335 mp->deletions_allowed=false;
13336 @<Back up an outer symbolic token so that it can be reread@>;
13337 if ( mp->scanner_status>skipping ) {
13338 @<Tell the user what has run away and try to recover@>;
13340 print_err("Incomplete if; all text was ignored after line ");
13341 @.Incomplete if...@>
13342 mp_print_int(mp, mp->warning_info);
13343 help3("A forbidden `outer' token occurred in skipped text.")
13344 ("This kind of error happens when you say `if...' and forget")
13345 ("the matching `fi'. I've inserted a `fi'; this might work.");
13346 if ( mp->cur_sym==0 )
13347 mp->help_line[2]="The file ended while I was skipping conditional text.";
13348 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13350 mp->deletions_allowed=true;
13355 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13356 if ( mp->cur_sym!=0 ) {
13359 mp->deletions_allowed=false;
13360 print_err("TeX mode didn't end; all text was ignored after line ");
13361 mp_print_int(mp, mp->warning_info);
13362 help2("The file ended while I was looking for the `etex' to")
13363 ("finish this TeX material. I've inserted `etex' now.");
13364 mp->cur_sym = frozen_etex;
13366 mp->deletions_allowed=true;
13370 @ @<Back up an outer symbolic token so that it can be reread@>=
13371 if ( mp->cur_sym!=0 ) {
13372 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13373 back_list(p); /* prepare to read the symbolic token again */
13376 @ @<Tell the user what has run away...@>=
13378 mp_runaway(mp); /* print the definition-so-far */
13379 if ( mp->cur_sym==0 ) {
13380 print_err("File ended");
13381 @.File ended while scanning...@>
13383 print_err("Forbidden token found");
13384 @.Forbidden token found...@>
13386 mp_print(mp, " while scanning ");
13387 help4("I suspect you have forgotten an `enddef',")
13388 ("causing me to read past where you wanted me to stop.")
13389 ("I'll try to recover; but if the error is serious,")
13390 ("you'd better type `E' or `X' now and fix your file.");
13391 switch (mp->scanner_status) {
13392 @<Complete the error message,
13393 and set |cur_sym| to a token that might help recover from the error@>
13394 } /* there are no other cases */
13398 @ As we consider various kinds of errors, it is also appropriate to
13399 change the first line of the help message just given; |help_line[3]|
13400 points to the string that might be changed.
13402 @<Complete the error message,...@>=
13404 mp_print(mp, "to the end of the statement");
13405 mp->help_line[3]="A previous error seems to have propagated,";
13406 mp->cur_sym=frozen_semicolon;
13409 mp_print(mp, "a text argument");
13410 mp->help_line[3]="It seems that a right delimiter was left out,";
13411 if ( mp->warning_info==0 ) {
13412 mp->cur_sym=frozen_end_group;
13414 mp->cur_sym=frozen_right_delimiter;
13415 equiv(frozen_right_delimiter)=mp->warning_info;
13420 mp_print(mp, "the definition of ");
13421 if ( mp->scanner_status==op_defining )
13422 mp_print_text(mp->warning_info);
13424 mp_print_variable_name(mp, mp->warning_info);
13425 mp->cur_sym=frozen_end_def;
13427 case loop_defining:
13428 mp_print(mp, "the text of a ");
13429 mp_print_text(mp->warning_info);
13430 mp_print(mp, " loop");
13431 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13432 mp->cur_sym=frozen_end_for;
13435 @ The |runaway| procedure displays the first part of the text that occurred
13436 when \MP\ began its special |scanner_status|, if that text has been saved.
13438 @<Declare the procedure called |runaway|@>=
13439 void mp_runaway (MP mp) {
13440 if ( mp->scanner_status>flushing ) {
13441 mp_print_nl(mp, "Runaway ");
13442 switch (mp->scanner_status) {
13443 case absorbing: mp_print(mp, "text?"); break;
13445 case op_defining: mp_print(mp,"definition?"); break;
13446 case loop_defining: mp_print(mp, "loop?"); break;
13447 } /* there are no other cases */
13449 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13453 @ We need to mention a procedure that may be called by |get_next|.
13456 void mp_firm_up_the_line (MP mp);
13458 @ And now we're ready to take the plunge into |get_next| itself.
13459 Note that the behavior depends on the |scanner_status| because percent signs
13460 and double quotes need to be passed over when skipping TeX material.
13463 void mp_get_next (MP mp) {
13464 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13466 /*restart*/ /* go here to get the next input token */
13467 /*exit*/ /* go here when the next input token has been got */
13468 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13469 /*found*/ /* go here when the end of a symbolic token has been found */
13470 /*switch*/ /* go here to branch on the class of an input character */
13471 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13472 /* go here at crucial stages when scanning a number */
13473 int k; /* an index into |buffer| */
13474 ASCII_code c; /* the current character in the buffer */
13475 ASCII_code class; /* its class number */
13476 integer n,f; /* registers for decimal-to-binary conversion */
13479 if ( file_state ) {
13480 @<Input from external file; |goto restart| if no input found,
13481 or |return| if a non-symbolic token is found@>;
13483 @<Input from token list; |goto restart| if end of list or
13484 if a parameter needs to be expanded,
13485 or |return| if a non-symbolic token is found@>;
13488 @<Finish getting the symbolic token in |cur_sym|;
13489 |goto restart| if it is illegal@>;
13492 @ When a symbolic token is declared to be `\&{outer}', its command code
13493 is increased by |outer_tag|.
13496 @<Finish getting the symbolic token in |cur_sym|...@>=
13497 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13498 if ( mp->cur_cmd>=outer_tag ) {
13499 if ( mp_check_outer_validity(mp) )
13500 mp->cur_cmd=mp->cur_cmd-outer_tag;
13505 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13506 to have a special test for end-of-line.
13509 @<Input from external file;...@>=
13512 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13514 case digit_class: goto START_NUMERIC_TOKEN; break;
13516 class=mp->char_class[mp->buffer[loc]];
13517 if ( class>period_class ) {
13519 } else if ( class<period_class ) { /* |class=digit_class| */
13520 n=0; goto START_DECIMAL_TOKEN;
13524 case space_class: goto SWITCH; break;
13525 case percent_class:
13526 if ( mp->scanner_status==tex_flushing ) {
13527 if ( loc<limit ) goto SWITCH;
13529 @<Move to next line of file, or |goto restart| if there is no next line@>;
13534 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13535 else @<Get a string token and |return|@>;
13537 case isolated_classes:
13538 k=loc-1; goto FOUND; break;
13539 case invalid_class:
13540 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13541 else @<Decry the invalid character and |goto restart|@>;
13543 default: break; /* letters, etc. */
13546 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13548 START_NUMERIC_TOKEN:
13549 @<Get the integer part |n| of a numeric token;
13550 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13551 START_DECIMAL_TOKEN:
13552 @<Get the fraction part |f| of a numeric token@>;
13554 @<Pack the numeric and fraction parts of a numeric token
13557 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13560 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13561 |token_list| after the error has been dealt with
13562 (cf.\ |clear_for_error_prompt|).
13564 @<Decry the invalid...@>=
13566 print_err("Text line contains an invalid character");
13567 @.Text line contains...@>
13568 help2("A funny symbol that I can\'t read has just been input.")
13569 ("Continue, and I'll forget that it ever happened.");
13570 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13574 @ @<Get a string token and |return|@>=
13576 if ( mp->buffer[loc]=='"' ) {
13577 mp->cur_mod=rts("");
13579 k=loc; mp->buffer[limit+1]='"';
13582 } while (mp->buffer[loc]!='"');
13584 @<Decry the missing string delimiter and |goto restart|@>;
13587 mp->cur_mod=mp->buffer[k];
13591 append_char(mp->buffer[k]); incr(k);
13593 mp->cur_mod=mp_make_string(mp);
13596 incr(loc); mp->cur_cmd=string_token;
13600 @ We go to |restart| after this error message, not to |SWITCH|,
13601 because the |clear_for_error_prompt| routine might have reinstated
13602 |token_state| after |error| has finished.
13604 @<Decry the missing string delimiter and |goto restart|@>=
13606 loc=limit; /* the next character to be read on this line will be |"%"| */
13607 print_err("Incomplete string token has been flushed");
13608 @.Incomplete string token...@>
13609 help3("Strings should finish on the same line as they began.")
13610 ("I've deleted the partial string; you might want to")
13611 ("insert another by typing, e.g., `I\"new string\"'.");
13612 mp->deletions_allowed=false; mp_error(mp);
13613 mp->deletions_allowed=true;
13617 @ @<Get the integer part |n| of a numeric token...@>=
13619 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13620 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13623 if ( mp->buffer[loc]=='.' )
13624 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13627 goto FIN_NUMERIC_TOKEN;
13630 @ @<Get the fraction part |f| of a numeric token@>=
13633 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13634 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13637 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13638 f=mp_round_decimals(mp, k);
13643 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13645 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13646 } else if ( mp->scanner_status!=tex_flushing ) {
13647 print_err("Enormous number has been reduced");
13648 @.Enormous number...@>
13649 help2("I can\'t handle numbers bigger than 32767.99998;")
13650 ("so I've changed your constant to that maximum amount.");
13651 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13652 mp->cur_mod=el_gordo;
13654 mp->cur_cmd=numeric_token; return
13656 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13658 mp->cur_mod=n*unity+f;
13659 if ( mp->cur_mod>=fraction_one ) {
13660 if ( (mp->internal[warning_check]>0) &&
13661 (mp->scanner_status!=tex_flushing) ) {
13662 print_err("Number is too large (");
13663 mp_print_scaled(mp, mp->cur_mod);
13664 mp_print_char(mp, ')');
13665 help3("It is at least 4096. Continue and I'll try to cope")
13666 ("with that big value; but it might be dangerous.")
13667 ("(Set warningcheck:=0 to suppress this message.)");
13673 @ Let's consider now what happens when |get_next| is looking at a token list.
13676 @<Input from token list;...@>=
13677 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13678 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13679 if ( mp->cur_sym>=expr_base ) {
13680 if ( mp->cur_sym>=suffix_base ) {
13681 @<Insert a suffix or text parameter and |goto restart|@>;
13683 mp->cur_cmd=capsule_token;
13684 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13685 mp->cur_sym=0; return;
13688 } else if ( loc>null ) {
13689 @<Get a stored numeric or string or capsule token and |return|@>
13690 } else { /* we are done with this token list */
13691 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13694 @ @<Insert a suffix or text parameter...@>=
13696 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13697 /* |param_size=text_base-suffix_base| */
13698 mp_begin_token_list(mp,
13699 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13704 @ @<Get a stored numeric or string or capsule token...@>=
13706 if ( name_type(loc)==mp_token ) {
13707 mp->cur_mod=value(loc);
13708 if ( type(loc)==mp_known ) {
13709 mp->cur_cmd=numeric_token;
13711 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13714 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13716 loc=link(loc); return;
13719 @ All of the easy branches of |get_next| have now been taken care of.
13720 There is one more branch.
13722 @<Move to next line of file, or |goto restart|...@>=
13723 if ( name>max_spec_src ) {
13724 @<Read next line of file into |buffer|, or
13725 |goto restart| if the file has ended@>;
13727 if ( mp->input_ptr>0 ) {
13728 /* text was inserted during error recovery or by \&{scantokens} */
13729 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13731 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13732 if ( mp->interaction>mp_nonstop_mode ) {
13733 if ( limit==start ) /* previous line was empty */
13734 mp_print_nl(mp, "(Please type a command or say `end')");
13736 mp_print_ln(mp); mp->first=start;
13737 prompt_input("*"); /* input on-line into |buffer| */
13739 limit=mp->last; mp->buffer[limit]='%';
13740 mp->first=limit+1; loc=start;
13742 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13744 /* nonstop mode, which is intended for overnight batch processing,
13745 never waits for on-line input */
13749 @ The global variable |force_eof| is normally |false|; it is set |true|
13750 by an \&{endinput} command.
13753 boolean force_eof; /* should the next \&{input} be aborted early? */
13755 @ We must decrement |loc| in order to leave the buffer in a valid state
13756 when an error condition causes us to |goto restart| without calling
13757 |end_file_reading|.
13759 @<Read next line of file into |buffer|, or
13760 |goto restart| if the file has ended@>=
13762 incr(line); mp->first=start;
13763 if ( ! mp->force_eof ) {
13764 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13765 mp_firm_up_the_line(mp); /* this sets |limit| */
13767 mp->force_eof=true;
13769 if ( mp->force_eof ) {
13770 mp->force_eof=false;
13772 if ( mpx_reading ) {
13773 @<Complain that the \.{MPX} file ended unexpectly; then set
13774 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13776 mp_print_char(mp, ')'); decr(mp->open_parens);
13777 update_terminal; /* show user that file has been read */
13778 mp_end_file_reading(mp); /* resume previous level */
13779 if ( mp_check_outer_validity(mp) ) goto RESTART;
13783 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13786 @ We should never actually come to the end of an \.{MPX} file because such
13787 files should have an \&{mpxbreak} after the translation of the last
13788 \&{btex}$\,\ldots\,$\&{etex} block.
13790 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13792 mp->mpx_name[index]=finished;
13793 print_err("mpx file ended unexpectedly");
13794 help4("The file had too few picture expressions for btex...etex")
13795 ("blocks. Such files are normally generated automatically")
13796 ("but this one got messed up. You might want to insert a")
13797 ("picture expression now.");
13798 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13799 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13802 @ Sometimes we want to make it look as though we have just read a blank line
13803 without really doing so.
13805 @<Put an empty line in the input buffer@>=
13806 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13807 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13809 @ If the user has set the |pausing| parameter to some positive value,
13810 and if nonstop mode has not been selected, each line of input is displayed
13811 on the terminal and the transcript file, followed by `\.{=>}'.
13812 \MP\ waits for a response. If the response is null (i.e., if nothing is
13813 typed except perhaps a few blank spaces), the original
13814 line is accepted as it stands; otherwise the line typed is
13815 used instead of the line in the file.
13817 @c void mp_firm_up_the_line (MP mp) {
13818 size_t k; /* an index into |buffer| */
13820 if ( mp->internal[pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
13821 wake_up_terminal; mp_print_ln(mp);
13822 if ( start<limit ) {
13823 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13824 mp_print_str(mp, mp->buffer[k]);
13827 mp->first=limit; prompt_input("=>"); /* wait for user response */
13829 if ( mp->last>mp->first ) {
13830 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13831 mp->buffer[k+start-mp->first]=mp->buffer[k];
13833 limit=start+mp->last-mp->first;
13838 @* \[30] Dealing with \TeX\ material.
13839 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
13840 features need to be implemented at a low level in the scanning process
13841 so that \MP\ can stay in synch with the a preprocessor that treats
13842 blocks of \TeX\ material as they occur in the input file without trying
13843 to expand \MP\ macros. Thus we need a special version of |get_next|
13844 that does not expand macros and such but does handle \&{btex},
13845 \&{verbatimtex}, etc.
13847 The special version of |get_next| is called |get_t_next|. It works by flushing
13848 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
13849 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
13850 \&{btex}, and switching back when it sees \&{mpxbreak}.
13856 mp_primitive(mp, "btex",start_tex,btex_code);
13857 @:btex_}{\&{btex} primitive@>
13858 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
13859 @:verbatimtex_}{\&{verbatimtex} primitive@>
13860 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
13861 @:etex_}{\&{etex} primitive@>
13862 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
13863 @:mpx_break_}{\&{mpxbreak} primitive@>
13865 @ @<Cases of |print_cmd...@>=
13866 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
13867 else mp_print(mp, "verbatimtex"); break;
13868 case etex_marker: mp_print(mp, "etex"); break;
13869 case mpx_break: mp_print(mp, "mpxbreak"); break;
13871 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
13872 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
13875 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
13878 void mp_start_mpx_input (MP mp);
13881 void mp_t_next (MP mp) {
13882 int old_status; /* saves the |scanner_status| */
13883 integer old_info; /* saves the |warning_info| */
13884 while ( mp->cur_cmd<=max_pre_command ) {
13885 if ( mp->cur_cmd==mpx_break ) {
13886 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
13887 @<Complain about a misplaced \&{mpxbreak}@>;
13889 mp_end_mpx_reading(mp);
13892 } else if ( mp->cur_cmd==start_tex ) {
13893 if ( token_state || (name<=max_spec_src) ) {
13894 @<Complain that we are not reading a file@>;
13895 } else if ( mpx_reading ) {
13896 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
13897 } else if ( (mp->cur_mod!=verbatim_code)&&
13898 (mp->mpx_name[index]!=finished) ) {
13899 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
13904 @<Complain about a misplaced \&{etex}@>;
13906 goto COMMON_ENDING;
13908 @<Flush the \TeX\ material@>;
13914 @ We could be in the middle of an operation such as skipping false conditional
13915 text when \TeX\ material is encountered, so we must be careful to save the
13918 @<Flush the \TeX\ material@>=
13919 old_status=mp->scanner_status;
13920 old_info=mp->warning_info;
13921 mp->scanner_status=tex_flushing;
13922 mp->warning_info=line;
13923 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
13924 mp->scanner_status=old_status;
13925 mp->warning_info=old_info
13927 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
13928 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
13929 help4("This file contains picture expressions for btex...etex")
13930 ("blocks. Such files are normally generated automatically")
13931 ("but this one seems to be messed up. I'll just keep going")
13932 ("and hope for the best.");
13936 @ @<Complain that we are not reading a file@>=
13937 { print_err("You can only use `btex' or `verbatimtex' in a file");
13938 help3("I'll have to ignore this preprocessor command because it")
13939 ("only works when there is a file to preprocess. You might")
13940 ("want to delete everything up to the next `etex`.");
13944 @ @<Complain about a misplaced \&{mpxbreak}@>=
13945 { print_err("Misplaced mpxbreak");
13946 help2("I'll ignore this preprocessor command because it")
13947 ("doesn't belong here");
13951 @ @<Complain about a misplaced \&{etex}@>=
13952 { print_err("Extra etex will be ignored");
13953 help1("There is no btex or verbatimtex for this to match");
13957 @* \[31] Scanning macro definitions.
13958 \MP\ has a variety of ways to tuck tokens away into token lists for later
13959 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
13960 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
13961 All such operations are handled by the routines in this part of the program.
13963 The modifier part of each command code is zero for the ``ending delimiters''
13964 like \&{enddef} and \&{endfor}.
13966 @d start_def 1 /* command modifier for \&{def} */
13967 @d var_def 2 /* command modifier for \&{vardef} */
13968 @d end_def 0 /* command modifier for \&{enddef} */
13969 @d start_forever 1 /* command modifier for \&{forever} */
13970 @d end_for 0 /* command modifier for \&{endfor} */
13973 mp_primitive(mp, "def",macro_def,start_def);
13974 @:def_}{\&{def} primitive@>
13975 mp_primitive(mp, "vardef",macro_def,var_def);
13976 @:var_def_}{\&{vardef} primitive@>
13977 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
13978 @:primary_def_}{\&{primarydef} primitive@>
13979 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
13980 @:secondary_def_}{\&{secondarydef} primitive@>
13981 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
13982 @:tertiary_def_}{\&{tertiarydef} primitive@>
13983 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
13984 @:end_def_}{\&{enddef} primitive@>
13986 mp_primitive(mp, "for",iteration,expr_base);
13987 @:for_}{\&{for} primitive@>
13988 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
13989 @:for_suffixes_}{\&{forsuffixes} primitive@>
13990 mp_primitive(mp, "forever",iteration,start_forever);
13991 @:forever_}{\&{forever} primitive@>
13992 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
13993 @:end_for_}{\&{endfor} primitive@>
13995 @ @<Cases of |print_cmd...@>=
13997 if ( m<=var_def ) {
13998 if ( m==start_def ) mp_print(mp, "def");
13999 else if ( m<start_def ) mp_print(mp, "enddef");
14000 else mp_print(mp, "vardef");
14001 } else if ( m==secondary_primary_macro ) {
14002 mp_print(mp, "primarydef");
14003 } else if ( m==tertiary_secondary_macro ) {
14004 mp_print(mp, "secondarydef");
14006 mp_print(mp, "tertiarydef");
14010 if ( m<=start_forever ) {
14011 if ( m==start_forever ) mp_print(mp, "forever");
14012 else mp_print(mp, "endfor");
14013 } else if ( m==expr_base ) {
14014 mp_print(mp, "for");
14016 mp_print(mp, "forsuffixes");
14020 @ Different macro-absorbing operations have different syntaxes, but they
14021 also have a lot in common. There is a list of special symbols that are to
14022 be replaced by parameter tokens; there is a special command code that
14023 ends the definition; the quotation conventions are identical. Therefore
14024 it makes sense to have most of the work done by a single subroutine. That
14025 subroutine is called |scan_toks|.
14027 The first parameter to |scan_toks| is the command code that will
14028 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14030 The second parameter, |subst_list|, points to a (possibly empty) list
14031 of two-word nodes whose |info| and |value| fields specify symbol tokens
14032 before and after replacement. The list will be returned to free storage
14035 The third parameter is simply appended to the token list that is built.
14036 And the final parameter tells how many of the special operations
14037 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14038 When such parameters are present, they are called \.{(SUFFIX0)},
14039 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14041 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14042 subst_list, pointer tail_end, small_number suffix_count) {
14043 pointer p; /* tail of the token list being built */
14044 pointer q; /* temporary for link management */
14045 integer balance; /* left delimiters minus right delimiters */
14046 p=hold_head; balance=1; link(hold_head)=null;
14049 if ( mp->cur_sym>0 ) {
14050 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14051 if ( mp->cur_cmd==terminator ) {
14052 @<Adjust the balance; |break| if it's zero@>;
14053 } else if ( mp->cur_cmd==macro_special ) {
14054 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14057 link(p)=mp_cur_tok(mp); p=link(p);
14059 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14060 return link(hold_head);
14063 @ @<Substitute for |cur_sym|...@>=
14066 while ( q!=null ) {
14067 if ( info(q)==mp->cur_sym ) {
14068 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14074 @ @<Adjust the balance; |break| if it's zero@>=
14075 if ( mp->cur_mod>0 ) {
14083 @ Four commands are intended to be used only within macro texts: \&{quote},
14084 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14085 code called |macro_special|.
14087 @d quote 0 /* |macro_special| modifier for \&{quote} */
14088 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14089 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14090 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14093 mp_primitive(mp, "quote",macro_special,quote);
14094 @:quote_}{\&{quote} primitive@>
14095 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14096 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14097 mp_primitive(mp, "@@",macro_special,macro_at);
14098 @:]]]\AT!_}{\.{\AT!} primitive@>
14099 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14100 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14102 @ @<Cases of |print_cmd...@>=
14103 case macro_special:
14105 case macro_prefix: mp_print(mp, "#@@"); break;
14106 case macro_at: mp_print_char(mp, '@@'); break;
14107 case macro_suffix: mp_print(mp, "@@#"); break;
14108 default: mp_print(mp, "quote"); break;
14112 @ @<Handle quoted...@>=
14114 if ( mp->cur_mod==quote ) { get_t_next; }
14115 else if ( mp->cur_mod<=suffix_count )
14116 mp->cur_sym=suffix_base-1+mp->cur_mod;
14119 @ Here is a routine that's used whenever a token will be redefined. If
14120 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14121 substituted; the latter is redefinable but essentially impossible to use,
14122 hence \MP's tables won't get fouled up.
14124 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14127 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14128 print_err("Missing symbolic token inserted");
14129 @.Missing symbolic token...@>
14130 help3("Sorry: You can\'t redefine a number, string, or expr.")
14131 ("I've inserted an inaccessible symbol so that your")
14132 ("definition will be completed without mixing me up too badly.");
14133 if ( mp->cur_sym>0 )
14134 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14135 else if ( mp->cur_cmd==string_token )
14136 delete_str_ref(mp->cur_mod);
14137 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14141 @ Before we actually redefine a symbolic token, we need to clear away its
14142 former value, if it was a variable. The following stronger version of
14143 |get_symbol| does that.
14145 @c void mp_get_clear_symbol (MP mp) {
14146 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14149 @ Here's another little subroutine; it checks that an equals sign
14150 or assignment sign comes along at the proper place in a macro definition.
14152 @c void mp_check_equals (MP mp) {
14153 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14154 mp_missing_err(mp, "=");
14156 help5("The next thing in this `def' should have been `=',")
14157 ("because I've already looked at the definition heading.")
14158 ("But don't worry; I'll pretend that an equals sign")
14159 ("was present. Everything from here to `enddef'")
14160 ("will be the replacement text of this macro.");
14165 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14166 handled now that we have |scan_toks|. In this case there are
14167 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14168 |expr_base| and |expr_base+1|).
14170 @c void mp_make_op_def (MP mp) {
14171 command_code m; /* the type of definition */
14172 pointer p,q,r; /* for list manipulation */
14174 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14175 info(q)=mp->cur_sym; value(q)=expr_base;
14176 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14177 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14178 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14179 get_t_next; mp_check_equals(mp);
14180 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14181 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14182 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14183 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14184 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14187 @ Parameters to macros are introduced by the keywords \&{expr},
14188 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14191 mp_primitive(mp, "expr",param_type,expr_base);
14192 @:expr_}{\&{expr} primitive@>
14193 mp_primitive(mp, "suffix",param_type,suffix_base);
14194 @:suffix_}{\&{suffix} primitive@>
14195 mp_primitive(mp, "text",param_type,text_base);
14196 @:text_}{\&{text} primitive@>
14197 mp_primitive(mp, "primary",param_type,primary_macro);
14198 @:primary_}{\&{primary} primitive@>
14199 mp_primitive(mp, "secondary",param_type,secondary_macro);
14200 @:secondary_}{\&{secondary} primitive@>
14201 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14202 @:tertiary_}{\&{tertiary} primitive@>
14204 @ @<Cases of |print_cmd...@>=
14206 if ( m>=expr_base ) {
14207 if ( m==expr_base ) mp_print(mp, "expr");
14208 else if ( m==suffix_base ) mp_print(mp, "suffix");
14209 else mp_print(mp, "text");
14210 } else if ( m<secondary_macro ) {
14211 mp_print(mp, "primary");
14212 } else if ( m==secondary_macro ) {
14213 mp_print(mp, "secondary");
14215 mp_print(mp, "tertiary");
14219 @ Let's turn next to the more complex processing associated with \&{def}
14220 and \&{vardef}. When the following procedure is called, |cur_mod|
14221 should be either |start_def| or |var_def|.
14223 @c @<Declare the procedure called |check_delimiter|@>;
14224 @<Declare the function called |scan_declared_variable|@>;
14225 void mp_scan_def (MP mp) {
14226 int m; /* the type of definition */
14227 int n; /* the number of special suffix parameters */
14228 int k; /* the total number of parameters */
14229 int c; /* the kind of macro we're defining */
14230 pointer r; /* parameter-substitution list */
14231 pointer q; /* tail of the macro token list */
14232 pointer p; /* temporary storage */
14233 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14234 pointer l_delim,r_delim; /* matching delimiters */
14235 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14236 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14237 @<Scan the token or variable to be defined;
14238 set |n|, |scanner_status|, and |warning_info|@>;
14240 if ( mp->cur_cmd==left_delimiter ) {
14241 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14243 if ( mp->cur_cmd==param_type ) {
14244 @<Absorb undelimited parameters, putting them into list |r|@>;
14246 mp_check_equals(mp);
14247 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14248 @<Attach the replacement text to the tail of node |p|@>;
14249 mp->scanner_status=normal; mp_get_x_next(mp);
14252 @ We don't put `|frozen_end_group|' into the replacement text of
14253 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14255 @<Attach the replacement text to the tail of node |p|@>=
14256 if ( m==start_def ) {
14257 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14259 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14260 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14261 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14263 if ( mp->warning_info==bad_vardef )
14264 mp_flush_token_list(mp, value(bad_vardef))
14268 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14270 @ @<Scan the token or variable to be defined;...@>=
14271 if ( m==start_def ) {
14272 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14273 mp->scanner_status=op_defining; n=0;
14274 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14276 p=mp_scan_declared_variable(mp);
14277 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14278 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14279 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14280 mp->scanner_status=var_defining; n=2;
14281 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14284 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14285 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14287 @ @<Change to `\.{a bad variable}'@>=
14289 print_err("This variable already starts with a macro");
14290 @.This variable already...@>
14291 help2("After `vardef a' you can\'t say `vardef a.b'.")
14292 ("So I'll have to discard this definition.");
14293 mp_error(mp); mp->warning_info=bad_vardef;
14296 @ @<Initialize table entries...@>=
14297 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14298 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14300 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14302 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14303 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14306 print_err("Missing parameter type; `expr' will be assumed");
14307 @.Missing parameter type@>
14308 help1("You should've had `expr' or `suffix' or `text' here.");
14309 mp_back_error(mp); base=expr_base;
14311 @<Absorb parameter tokens for type |base|@>;
14312 mp_check_delimiter(mp, l_delim,r_delim);
14314 } while (mp->cur_cmd==left_delimiter)
14316 @ @<Absorb parameter tokens for type |base|@>=
14318 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14319 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14320 value(p)=base+k; info(p)=mp->cur_sym;
14321 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14322 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14323 incr(k); link(p)=r; r=p; get_t_next;
14324 } while (mp->cur_cmd==comma)
14326 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14328 p=mp_get_node(mp, token_node_size);
14329 if ( mp->cur_mod<expr_base ) {
14330 c=mp->cur_mod; value(p)=expr_base+k;
14332 value(p)=mp->cur_mod+k;
14333 if ( mp->cur_mod==expr_base ) c=expr_macro;
14334 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14337 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14338 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14339 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14340 c=of_macro; p=mp_get_node(mp, token_node_size);
14341 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14342 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14343 link(p)=r; r=p; get_t_next;
14347 @* \[32] Expanding the next token.
14348 Only a few command codes |<min_command| can possibly be returned by
14349 |get_t_next|; in increasing order, they are
14350 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14351 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14353 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14354 like |get_t_next| except that it keeps getting more tokens until
14355 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14356 macros and removes conditionals or iterations or input instructions that
14359 It follows that |get_x_next| might invoke itself recursively. In fact,
14360 there is massive recursion, since macro expansion can involve the
14361 scanning of arbitrarily complex expressions, which in turn involve
14362 macro expansion and conditionals, etc.
14365 Therefore it's necessary to declare a whole bunch of |forward|
14366 procedures at this point, and to insert some other procedures
14367 that will be invoked by |get_x_next|.
14370 void mp_scan_primary (MP mp);
14371 void mp_scan_secondary (MP mp);
14372 void mp_scan_tertiary (MP mp);
14373 void mp_scan_expression (MP mp);
14374 void mp_scan_suffix (MP mp);
14375 @<Declare the procedure called |macro_call|@>;
14376 void mp_get_boolean (MP mp);
14377 void mp_pass_text (MP mp);
14378 void mp_conditional (MP mp);
14379 void mp_start_input (MP mp);
14380 void mp_begin_iteration (MP mp);
14381 void mp_resume_iteration (MP mp);
14382 void mp_stop_iteration (MP mp);
14384 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14385 when it has to do exotic expansion commands.
14387 @c void mp_expand (MP mp) {
14388 pointer p; /* for list manipulation */
14389 size_t k; /* something that we hope is |<=buf_size| */
14390 pool_pointer j; /* index into |str_pool| */
14391 if ( mp->internal[tracing_commands]>unity )
14392 if ( mp->cur_cmd!=defined_macro )
14394 switch (mp->cur_cmd) {
14396 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14399 @<Terminate the current conditional and skip to \&{fi}@>;
14402 @<Initiate or terminate input from a file@>;
14405 if ( mp->cur_mod==end_for ) {
14406 @<Scold the user for having an extra \&{endfor}@>;
14408 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14415 @<Exit a loop if the proper time has come@>;
14420 @<Expand the token after the next token@>;
14423 @<Put a string into the input buffer@>;
14425 case defined_macro:
14426 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14428 }; /* there are no other cases */
14431 @ @<Scold the user...@>=
14433 print_err("Extra `endfor'");
14435 help2("I'm not currently working on a for loop,")
14436 ("so I had better not try to end anything.");
14440 @ The processing of \&{input} involves the |start_input| subroutine,
14441 which will be declared later; the processing of \&{endinput} is trivial.
14444 mp_primitive(mp, "input",input,0);
14445 @:input_}{\&{input} primitive@>
14446 mp_primitive(mp, "endinput",input,1);
14447 @:end_input_}{\&{endinput} primitive@>
14449 @ @<Cases of |print_cmd_mod|...@>=
14451 if ( m==0 ) mp_print(mp, "input");
14452 else mp_print(mp, "endinput");
14455 @ @<Initiate or terminate input...@>=
14456 if ( mp->cur_mod>0 ) mp->force_eof=true;
14457 else mp_start_input(mp)
14459 @ We'll discuss the complicated parts of loop operations later. For now
14460 it suffices to know that there's a global variable called |loop_ptr|
14461 that will be |null| if no loop is in progress.
14464 { while ( token_state &&(loc==null) )
14465 mp_end_token_list(mp); /* conserve stack space */
14466 if ( mp->loop_ptr==null ) {
14467 print_err("Lost loop");
14469 help2("I'm confused; after exiting from a loop, I still seem")
14470 ("to want to repeat it. I'll try to forget the problem.");
14473 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14477 @ @<Exit a loop if the proper time has come@>=
14478 { mp_get_boolean(mp);
14479 if ( mp->internal[tracing_commands]>unity )
14480 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14481 if ( mp->cur_exp==true_code ) {
14482 if ( mp->loop_ptr==null ) {
14483 print_err("No loop is in progress");
14484 @.No loop is in progress@>
14485 help1("Why say `exitif' when there's nothing to exit from?");
14486 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14488 @<Exit prematurely from an iteration@>;
14490 } else if ( mp->cur_cmd!=semicolon ) {
14491 mp_missing_err(mp, ";");
14493 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14494 ("I shall pretend that one was there."); mp_back_error(mp);
14498 @ Here we use the fact that |forever_text| is the only |token_type| that
14499 is less than |loop_text|.
14501 @<Exit prematurely...@>=
14504 if ( file_state ) {
14505 mp_end_file_reading(mp);
14507 if ( token_type<=loop_text ) p=start;
14508 mp_end_token_list(mp);
14511 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14513 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14516 @ @<Expand the token after the next token@>=
14518 p=mp_cur_tok(mp); get_t_next;
14519 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14520 else mp_back_input(mp);
14524 @ @<Put a string into the input buffer@>=
14525 { mp_get_x_next(mp); mp_scan_primary(mp);
14526 if ( mp->cur_type!=mp_string_type ) {
14527 mp_disp_err(mp, null,"Not a string");
14529 help2("I'm going to flush this expression, since")
14530 ("scantokens should be followed by a known string.");
14531 mp_put_get_flush_error(mp, 0);
14534 if ( length(mp->cur_exp)>0 )
14535 @<Pretend we're reading a new one-line file@>;
14539 @ @<Pretend we're reading a new one-line file@>=
14540 { mp_begin_file_reading(mp); name=is_scantok;
14541 k=mp->first+length(mp->cur_exp);
14542 if ( k>=mp->max_buf_stack ) {
14543 while ( k>=mp->buf_size ) {
14544 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14546 mp->max_buf_stack=k+1;
14548 j=mp->str_start[mp->cur_exp]; limit=k;
14549 while ( mp->first<(size_t)limit ) {
14550 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14552 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14553 mp_flush_cur_exp(mp, 0);
14556 @ Here finally is |get_x_next|.
14558 The expression scanning routines to be considered later
14559 communicate via the global quantities |cur_type| and |cur_exp|;
14560 we must be very careful to save and restore these quantities while
14561 macros are being expanded.
14565 void mp_get_x_next (MP mp);
14567 @ @c void mp_get_x_next (MP mp) {
14568 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14570 if ( mp->cur_cmd<min_command ) {
14571 save_exp=mp_stash_cur_exp(mp);
14573 if ( mp->cur_cmd==defined_macro )
14574 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14578 } while (mp->cur_cmd<min_command);
14579 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14583 @ Now let's consider the |macro_call| procedure, which is used to start up
14584 all user-defined macros. Since the arguments to a macro might be expressions,
14585 |macro_call| is recursive.
14588 The first parameter to |macro_call| points to the reference count of the
14589 token list that defines the macro. The second parameter contains any
14590 arguments that have already been parsed (see below). The third parameter
14591 points to the symbolic token that names the macro. If the third parameter
14592 is |null|, the macro was defined by \&{vardef}, so its name can be
14593 reconstructed from the prefix and ``at'' arguments found within the
14596 What is this second parameter? It's simply a linked list of one-word items,
14597 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14598 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14599 the first scanned argument, and |link(arg_list)| points to the list of
14600 further arguments (if any).
14602 Arguments of type \&{expr} are so-called capsules, which we will
14603 discuss later when we concentrate on expressions; they can be
14604 recognized easily because their |link| field is |void|. Arguments of type
14605 \&{suffix} and \&{text} are token lists without reference counts.
14607 @ After argument scanning is complete, the arguments are moved to the
14608 |param_stack|. (They can't be put on that stack any sooner, because
14609 the stack is growing and shrinking in unpredictable ways as more arguments
14610 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14611 the replacement text of the macro is placed at the top of the \MP's
14612 input stack, so that |get_t_next| will proceed to read it next.
14614 @<Declare the procedure called |macro_call|@>=
14615 @<Declare the procedure called |print_macro_name|@>;
14616 @<Declare the procedure called |print_arg|@>;
14617 @<Declare the procedure called |scan_text_arg|@>;
14618 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14619 pointer macro_name) ;
14622 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14623 pointer macro_name) {
14624 /* invokes a user-defined control sequence */
14625 pointer r; /* current node in the macro's token list */
14626 pointer p,q; /* for list manipulation */
14627 integer n; /* the number of arguments */
14628 pointer tail = 0; /* tail of the argument list */
14629 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14630 r=link(def_ref); add_mac_ref(def_ref);
14631 if ( arg_list==null ) {
14634 @<Determine the number |n| of arguments already supplied,
14635 and set |tail| to the tail of |arg_list|@>;
14637 if ( mp->internal[tracing_macros]>0 ) {
14638 @<Show the text of the macro being expanded, and the existing arguments@>;
14640 @<Scan the remaining arguments, if any; set |r| to the first token
14641 of the replacement text@>;
14642 @<Feed the arguments and replacement text to the scanner@>;
14645 @ @<Show the text of the macro...@>=
14646 mp_begin_diagnostic(mp); mp_print_ln(mp);
14647 mp_print_macro_name(mp, arg_list,macro_name);
14648 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14649 mp_show_macro(mp, def_ref,null,100000);
14650 if ( arg_list!=null ) {
14654 mp_print_arg(mp, q,n,0);
14655 incr(n); p=link(p);
14658 mp_end_diagnostic(mp, false)
14661 @ @<Declare the procedure called |print_macro_name|@>=
14662 void mp_print_macro_name (MP mp,pointer a, pointer n);
14665 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14666 pointer p,q; /* they traverse the first part of |a| */
14672 mp_print_text(info(info(link(a))));
14675 while ( link(q)!=null ) q=link(q);
14676 link(q)=info(link(a));
14677 mp_show_token_list(mp, p,null,1000,0);
14683 @ @<Declare the procedure called |print_arg|@>=
14684 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14687 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14688 if ( link(q)==diov ) mp_print_nl(mp, "(EXPR");
14689 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14690 else mp_print_nl(mp, "(TEXT");
14691 mp_print_int(mp, n); mp_print(mp, ")<-");
14692 if ( link(q)==diov ) mp_print_exp(mp, q,1);
14693 else mp_show_token_list(mp, q,null,1000,0);
14696 @ @<Determine the number |n| of arguments already supplied...@>=
14698 n=1; tail=arg_list;
14699 while ( link(tail)!=null ) {
14700 incr(n); tail=link(tail);
14704 @ @<Scan the remaining arguments, if any; set |r|...@>=
14705 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14706 while ( info(r)>=expr_base ) {
14707 @<Scan the delimited argument represented by |info(r)|@>;
14710 if ( mp->cur_cmd==comma ) {
14711 print_err("Too many arguments to ");
14712 @.Too many arguments...@>
14713 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14714 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14716 mp_print(mp, "' has been inserted");
14717 help3("I'm going to assume that the comma I just read was a")
14718 ("right delimiter, and then I'll begin expanding the macro.")
14719 ("You might want to delete some tokens before continuing.");
14722 if ( info(r)!=general_macro ) {
14723 @<Scan undelimited argument(s)@>;
14727 @ At this point, the reader will find it advisable to review the explanation
14728 of token list format that was presented earlier, paying special attention to
14729 the conventions that apply only at the beginning of a macro's token list.
14731 On the other hand, the reader will have to take the expression-parsing
14732 aspects of the following program on faith; we will explain |cur_type|
14733 and |cur_exp| later. (Several things in this program depend on each other,
14734 and it's necessary to jump into the circle somewhere.)
14736 @<Scan the delimited argument represented by |info(r)|@>=
14737 if ( mp->cur_cmd!=comma ) {
14739 if ( mp->cur_cmd!=left_delimiter ) {
14740 print_err("Missing argument to ");
14741 @.Missing argument...@>
14742 mp_print_macro_name(mp, arg_list,macro_name);
14743 help3("That macro has more parameters than you thought.")
14744 ("I'll continue by pretending that each missing argument")
14745 ("is either zero or null.");
14746 if ( info(r)>=suffix_base ) {
14747 mp->cur_exp=null; mp->cur_type=mp_token_list;
14749 mp->cur_exp=0; mp->cur_type=mp_known;
14751 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14754 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14756 @<Scan the argument represented by |info(r)|@>;
14757 if ( mp->cur_cmd!=comma )
14758 @<Check that the proper right delimiter was present@>;
14760 @<Append the current expression to |arg_list|@>
14762 @ @<Check that the proper right delim...@>=
14763 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14764 if ( info(link(r))>=expr_base ) {
14765 mp_missing_err(mp, ",");
14767 help3("I've finished reading a macro argument and am about to")
14768 ("read another; the arguments weren't delimited correctly.")
14769 ("You might want to delete some tokens before continuing.");
14770 mp_back_error(mp); mp->cur_cmd=comma;
14772 mp_missing_err(mp, str(text(r_delim)));
14774 help2("I've gotten to the end of the macro parameter list.")
14775 ("You might want to delete some tokens before continuing.");
14780 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14781 a token list pointed to by |cur_exp|, in which case we will have
14782 |cur_type=token_list|.
14784 @<Append the current expression to |arg_list|@>=
14786 p=mp_get_avail(mp);
14787 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14788 else info(p)=mp_stash_cur_exp(mp);
14789 if ( mp->internal[tracing_macros]>0 ) {
14790 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14791 mp_end_diagnostic(mp, false);
14793 if ( arg_list==null ) arg_list=p;
14798 @ @<Scan the argument represented by |info(r)|@>=
14799 if ( info(r)>=text_base ) {
14800 mp_scan_text_arg(mp, l_delim,r_delim);
14803 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14804 else mp_scan_expression(mp);
14807 @ The parameters to |scan_text_arg| are either a pair of delimiters
14808 or zero; the latter case is for undelimited text arguments, which
14809 end with the first semicolon or \&{endgroup} or \&{end} that is not
14810 contained in a group.
14812 @<Declare the procedure called |scan_text_arg|@>=
14813 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14816 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14817 integer balance; /* excess of |l_delim| over |r_delim| */
14818 pointer p; /* list tail */
14819 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14820 p=hold_head; balance=1; link(hold_head)=null;
14823 if ( l_delim==0 ) {
14824 @<Adjust the balance for an undelimited argument; |break| if done@>;
14826 @<Adjust the balance for a delimited argument; |break| if done@>;
14828 link(p)=mp_cur_tok(mp); p=link(p);
14830 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14831 mp->scanner_status=normal;
14834 @ @<Adjust the balance for a delimited argument...@>=
14835 if ( mp->cur_cmd==right_delimiter ) {
14836 if ( mp->cur_mod==l_delim ) {
14838 if ( balance==0 ) break;
14840 } else if ( mp->cur_cmd==left_delimiter ) {
14841 if ( mp->cur_mod==r_delim ) incr(balance);
14844 @ @<Adjust the balance for an undelimited...@>=
14845 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
14846 if ( balance==1 ) { break; }
14847 else { if ( mp->cur_cmd==end_group ) decr(balance); }
14848 } else if ( mp->cur_cmd==begin_group ) {
14852 @ @<Scan undelimited argument(s)@>=
14854 if ( info(r)<text_macro ) {
14856 if ( info(r)!=suffix_macro ) {
14857 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
14861 case primary_macro:mp_scan_primary(mp); break;
14862 case secondary_macro:mp_scan_secondary(mp); break;
14863 case tertiary_macro:mp_scan_tertiary(mp); break;
14864 case expr_macro:mp_scan_expression(mp); break;
14866 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
14869 @<Scan a suffix with optional delimiters@>;
14871 case text_macro:mp_scan_text_arg(mp, 0,0); break;
14872 } /* there are no other cases */
14874 @<Append the current expression to |arg_list|@>;
14877 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
14879 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
14880 if ( mp->internal[tracing_macros]>0 ) {
14881 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
14882 mp_end_diagnostic(mp, false);
14884 if ( arg_list==null ) arg_list=p; else link(tail)=p;
14886 if ( mp->cur_cmd!=of_token ) {
14887 mp_missing_err(mp, "of"); mp_print(mp, " for ");
14889 mp_print_macro_name(mp, arg_list,macro_name);
14890 help1("I've got the first argument; will look now for the other.");
14893 mp_get_x_next(mp); mp_scan_primary(mp);
14896 @ @<Scan a suffix with optional delimiters@>=
14898 if ( mp->cur_cmd!=left_delimiter ) {
14901 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
14903 mp_scan_suffix(mp);
14904 if ( l_delim!=null ) {
14905 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14906 mp_missing_err(mp, str(text(r_delim)));
14908 help2("I've gotten to the end of the macro parameter list.")
14909 ("You might want to delete some tokens before continuing.");
14916 @ Before we put a new token list on the input stack, it is wise to clean off
14917 all token lists that have recently been depleted. Then a user macro that ends
14918 with a call to itself will not require unbounded stack space.
14920 @<Feed the arguments and replacement text to the scanner@>=
14921 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
14922 if ( mp->param_ptr+n>mp->max_param_stack ) {
14923 mp->max_param_stack=mp->param_ptr+n;
14924 if ( mp->max_param_stack>mp->param_size )
14925 mp_overflow(mp, "parameter stack size",mp->param_size);
14926 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14928 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
14932 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
14934 mp_flush_list(mp, arg_list);
14937 @ It's sometimes necessary to put a single argument onto |param_stack|.
14938 The |stack_argument| subroutine does this.
14940 @c void mp_stack_argument (MP mp,pointer p) {
14941 if ( mp->param_ptr==mp->max_param_stack ) {
14942 incr(mp->max_param_stack);
14943 if ( mp->max_param_stack>mp->param_size )
14944 mp_overflow(mp, "parameter stack size",mp->param_size);
14945 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14947 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
14950 @* \[33] Conditional processing.
14951 Let's consider now the way \&{if} commands are handled.
14953 Conditions can be inside conditions, and this nesting has a stack
14954 that is independent of other stacks.
14955 Four global variables represent the top of the condition stack:
14956 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
14957 we are processing \&{if} or \&{elseif}; |if_limit| specifies
14958 the largest code of a |fi_or_else| command that is syntactically legal;
14959 and |if_line| is the line number at which the current conditional began.
14961 If no conditions are currently in progress, the condition stack has the
14962 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
14963 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
14964 |link| fields of the first word contain |if_limit|, |cur_if|, and
14965 |cond_ptr| at the next level, and the second word contains the
14966 corresponding |if_line|.
14968 @d if_node_size 2 /* number of words in stack entry for conditionals */
14969 @d if_line_field(A) mp->mem[(A)+1].cint
14970 @d if_code 1 /* code for \&{if} being evaluated */
14971 @d fi_code 2 /* code for \&{fi} */
14972 @d else_code 3 /* code for \&{else} */
14973 @d else_if_code 4 /* code for \&{elseif} */
14976 pointer cond_ptr; /* top of the condition stack */
14977 integer if_limit; /* upper bound on |fi_or_else| codes */
14978 small_number cur_if; /* type of conditional being worked on */
14979 integer if_line; /* line where that conditional began */
14982 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
14985 mp_primitive(mp, "if",if_test,if_code);
14986 @:if_}{\&{if} primitive@>
14987 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
14988 @:fi_}{\&{fi} primitive@>
14989 mp_primitive(mp, "else",fi_or_else,else_code);
14990 @:else_}{\&{else} primitive@>
14991 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
14992 @:else_if_}{\&{elseif} primitive@>
14994 @ @<Cases of |print_cmd_mod|...@>=
14998 case if_code:mp_print(mp, "if"); break;
14999 case fi_code:mp_print(mp, "fi"); break;
15000 case else_code:mp_print(mp, "else"); break;
15001 default: mp_print(mp, "elseif"); break;
15005 @ Here is a procedure that ignores text until coming to an \&{elseif},
15006 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15007 nesting. After it has acted, |cur_mod| will indicate the token that
15010 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15011 makes the skipping process a bit simpler.
15014 void mp_pass_text (MP mp) {
15016 mp->scanner_status=skipping;
15017 mp->warning_info=mp_true_line(mp);
15020 if ( mp->cur_cmd<=fi_or_else ) {
15021 if ( mp->cur_cmd<fi_or_else ) {
15025 if ( mp->cur_mod==fi_code ) decr(l);
15028 @<Decrease the string reference count,
15029 if the current token is a string@>;
15032 mp->scanner_status=normal;
15035 @ @<Decrease the string reference count...@>=
15036 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15038 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15039 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15040 condition has been evaluated, a colon will be inserted.
15041 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15043 @<Push the condition stack@>=
15044 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15045 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15046 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15047 mp->cur_if=if_code;
15050 @ @<Pop the condition stack@>=
15051 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15052 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15053 mp_free_node(mp, p,if_node_size);
15056 @ Here's a procedure that changes the |if_limit| code corresponding to
15057 a given value of |cond_ptr|.
15059 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15061 if ( p==mp->cond_ptr ) {
15062 mp->if_limit=l; /* that's the easy case */
15066 if ( q==null ) mp_confusion(mp, "if");
15067 @:this can't happen if}{\quad if@>
15068 if ( link(q)==p ) {
15076 @ The user is supposed to put colons into the proper parts of conditional
15077 statements. Therefore, \MP\ has to check for their presence.
15080 void mp_check_colon (MP mp) {
15081 if ( mp->cur_cmd!=colon ) {
15082 mp_missing_err(mp, ":");
15084 help2("There should've been a colon after the condition.")
15085 ("I shall pretend that one was there.");;
15090 @ A condition is started when the |get_x_next| procedure encounters
15091 an |if_test| command; in that case |get_x_next| calls |conditional|,
15092 which is a recursive procedure.
15095 @c void mp_conditional (MP mp) {
15096 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15097 int new_if_limit; /* future value of |if_limit| */
15098 pointer p; /* temporary register */
15099 @<Push the condition stack@>;
15100 save_cond_ptr=mp->cond_ptr;
15102 mp_get_boolean(mp); new_if_limit=else_if_code;
15103 if ( mp->internal[tracing_commands]>unity ) {
15104 @<Display the boolean value of |cur_exp|@>;
15107 mp_check_colon(mp);
15108 if ( mp->cur_exp==true_code ) {
15109 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15110 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15112 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15114 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15115 if ( mp->cur_mod==fi_code ) {
15116 @<Pop the condition stack@>
15117 } else if ( mp->cur_mod==else_if_code ) {
15120 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15125 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15126 \&{else}: \\{bar} \&{fi}', the first \&{else}
15127 that we come to after learning that the \&{if} is false is not the
15128 \&{else} we're looking for. Hence the following curious logic is needed.
15130 @<Skip to \&{elseif}...@>=
15133 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15134 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15138 @ @<Display the boolean value...@>=
15139 { mp_begin_diagnostic(mp);
15140 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15141 else mp_print(mp, "{false}");
15142 mp_end_diagnostic(mp, false);
15145 @ The processing of conditionals is complete except for the following
15146 code, which is actually part of |get_x_next|. It comes into play when
15147 \&{elseif}, \&{else}, or \&{fi} is scanned.
15149 @<Terminate the current conditional and skip to \&{fi}@>=
15150 if ( mp->cur_mod>mp->if_limit ) {
15151 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15152 mp_missing_err(mp, ":");
15154 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15156 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15160 help1("I'm ignoring this; it doesn't match any if.");
15164 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15165 @<Pop the condition stack@>;
15168 @* \[34] Iterations.
15169 To bring our treatment of |get_x_next| to a close, we need to consider what
15170 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15172 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15173 that are currently active. If |loop_ptr=null|, no loops are in progress;
15174 otherwise |info(loop_ptr)| points to the iterative text of the current
15175 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15176 loops that enclose the current one.
15178 A loop-control node also has two other fields, called |loop_type| and
15179 |loop_list|, whose contents depend on the type of loop:
15181 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15182 points to a list of one-word nodes whose |info| fields point to the
15183 remaining argument values of a suffix list and expression list.
15185 \yskip\indent|loop_type(loop_ptr)=diov| means that the current loop is
15188 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15189 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15190 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15193 \yskip\indent|loop_type(loop_ptr)=p>diov| means that |p| points to an edge
15194 header and |loop_list(loop_ptr)| points into the graphical object list for
15197 \yskip\noindent In the case of a progression node, the first word is not used
15198 because the link field of words in the dynamic memory area cannot be arbitrary.
15200 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15201 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15202 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15203 @d loop_node_size 2 /* the number of words in a loop control node */
15204 @d progression_node_size 4 /* the number of words in a progression node */
15205 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15206 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15207 @d progression_flag (null+2)
15208 /* |loop_type| value when |loop_list| points to a progression node */
15211 pointer loop_ptr; /* top of the loop-control-node stack */
15216 @ If the expressions that define an arithmetic progression in
15217 a \&{for} loop don't have known numeric values, the |bad_for|
15218 subroutine screams at the user.
15220 @c void mp_bad_for (MP mp, char * s) {
15221 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15222 @.Improper...replaced by 0@>
15223 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15224 help4("When you say `for x=a step b until c',")
15225 ("the initial value `a' and the step size `b'")
15226 ("and the final value `c' must have known numeric values.")
15227 ("I'm zeroing this one. Proceed, with fingers crossed.");
15228 mp_put_get_flush_error(mp, 0);
15231 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15232 has just been scanned. (This code requires slight familiarity with
15233 expression-parsing routines that we have not yet discussed; but it seems
15234 to belong in the present part of the program, even though the original author
15235 didn't write it until later. The reader may wish to come back to it.)
15237 @c void mp_begin_iteration (MP mp) {
15238 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15239 halfword n; /* hash address of the current symbol */
15240 pointer s; /* the new loop-control node */
15241 pointer p; /* substitution list for |scan_toks| */
15242 pointer q; /* link manipulation register */
15243 pointer pp; /* a new progression node */
15244 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15245 if ( m==start_forever ){
15246 loop_type(s)=diov; p=null; mp_get_x_next(mp);
15248 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15249 info(p)=mp->cur_sym; value(p)=m;
15251 if ( mp->cur_cmd==within_token ) {
15252 @<Set up a picture iteration@>;
15254 @<Check for the |"="| or |":="| in a loop header@>;
15255 @<Scan the values to be used in the loop@>;
15258 @<Check for the presence of a colon@>;
15259 @<Scan the loop text and put it on the loop control stack@>;
15260 mp_resume_iteration(mp);
15263 @ @<Check for the |"="| or |":="| in a loop header@>=
15264 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15265 mp_missing_err(mp, "=");
15267 help3("The next thing in this loop should have been `=' or `:='.")
15268 ("But don't worry; I'll pretend that an equals sign")
15269 ("was present, and I'll look for the values next.");
15273 @ @<Check for the presence of a colon@>=
15274 if ( mp->cur_cmd!=colon ) {
15275 mp_missing_err(mp, ":");
15277 help3("The next thing in this loop should have been a `:'.")
15278 ("So I'll pretend that a colon was present;")
15279 ("everything from here to `endfor' will be iterated.");
15283 @ We append a special |frozen_repeat_loop| token in place of the
15284 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15285 at the proper time to cause the loop to be repeated.
15287 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15288 he will be foiled by the |get_symbol| routine, which keeps frozen
15289 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15290 token, so it won't be lost accidentally.)
15292 @ @<Scan the loop text...@>=
15293 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15294 mp->scanner_status=loop_defining; mp->warning_info=n;
15295 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15296 link(s)=mp->loop_ptr; mp->loop_ptr=s
15298 @ @<Initialize table...@>=
15299 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15300 text(frozen_repeat_loop)=intern(" ENDFOR");
15302 @ The loop text is inserted into \MP's scanning apparatus by the
15303 |resume_iteration| routine.
15305 @c void mp_resume_iteration (MP mp) {
15306 pointer p,q; /* link registers */
15307 p=loop_type(mp->loop_ptr);
15308 if ( p==progression_flag ) {
15309 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15310 mp->cur_exp=value(p);
15311 if ( @<The arithmetic progression has ended@> ) {
15312 mp_stop_iteration(mp);
15315 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15316 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15317 } else if ( p==null ) {
15318 p=loop_list(mp->loop_ptr);
15320 mp_stop_iteration(mp);
15323 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15324 } else if ( p==diov ) {
15325 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15327 @<Make |q| a capsule containing the next picture component from
15328 |loop_list(loop_ptr)| or |goto not_found|@>;
15330 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15331 mp_stack_argument(mp, q);
15332 if ( mp->internal[tracing_commands]>unity ) {
15333 @<Trace the start of a loop@>;
15337 mp_stop_iteration(mp);
15340 @ @<The arithmetic progression has ended@>=
15341 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15342 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15344 @ @<Trace the start of a loop@>=
15346 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15348 if ( (q!=null)&&(link(q)==diov) ) mp_print_exp(mp, q,1);
15349 else mp_show_token_list(mp, q,null,50,0);
15350 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15353 @ @<Make |q| a capsule containing the next picture component from...@>=
15354 { q=loop_list(mp->loop_ptr);
15355 if ( q==null ) goto NOT_FOUND;
15356 skip_component(q) goto NOT_FOUND;
15357 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15358 mp_init_bbox(mp, mp->cur_exp);
15359 mp->cur_type=mp_picture_type;
15360 loop_list(mp->loop_ptr)=q;
15361 q=mp_stash_cur_exp(mp);
15364 @ A level of loop control disappears when |resume_iteration| has decided
15365 not to resume, or when an \&{exitif} construction has removed the loop text
15366 from the input stack.
15368 @c void mp_stop_iteration (MP mp) {
15369 pointer p,q; /* the usual */
15370 p=loop_type(mp->loop_ptr);
15371 if ( p==progression_flag ) {
15372 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15373 } else if ( p==null ){
15374 q=loop_list(mp->loop_ptr);
15375 while ( q!=null ) {
15378 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
15379 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15381 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15384 p=q; q=link(q); free_avail(p);
15386 } else if ( p>progression_flag ) {
15387 delete_edge_ref(p);
15389 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15390 mp_free_node(mp, p,loop_node_size);
15393 @ Now that we know all about loop control, we can finish up
15394 the missing portion of |begin_iteration| and we'll be done.
15396 The following code is performed after the `\.=' has been scanned in
15397 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15398 (if |m=suffix_base|).
15400 @<Scan the values to be used in the loop@>=
15401 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15404 if ( m!=expr_base ) {
15405 mp_scan_suffix(mp);
15407 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15409 mp_scan_expression(mp);
15410 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15411 @<Prepare for step-until construction and |break|@>;
15413 mp->cur_exp=mp_stash_cur_exp(mp);
15415 link(q)=mp_get_avail(mp); q=link(q);
15416 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15419 } while (mp->cur_cmd==comma)
15421 @ @<Prepare for step-until construction and |break|@>=
15423 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15424 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15425 mp_get_x_next(mp); mp_scan_expression(mp);
15426 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15427 step_size(pp)=mp->cur_exp;
15428 if ( mp->cur_cmd!=until_token ) {
15429 mp_missing_err(mp, "until");
15430 @.Missing `until'@>
15431 help2("I assume you meant to say `until' after `step'.")
15432 ("So I'll look for the final value and colon next.");
15435 mp_get_x_next(mp); mp_scan_expression(mp);
15436 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15437 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15438 loop_type(s)=progression_flag;
15442 @ The last case is when we have just seen ``\&{within}'', and we need to
15443 parse a picture expression and prepare to iterate over it.
15445 @<Set up a picture iteration@>=
15446 { mp_get_x_next(mp);
15447 mp_scan_expression(mp);
15448 @<Make sure the current expression is a known picture@>;
15449 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15450 q=link(dummy_loc(mp->cur_exp));
15452 if ( is_start_or_stop(q) )
15453 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15457 @ @<Make sure the current expression is a known picture@>=
15458 if ( mp->cur_type!=mp_picture_type ) {
15459 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15460 help1("When you say `for x in p', p must be a known picture.");
15461 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15462 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15465 @* \[35] File names.
15466 It's time now to fret about file names. Besides the fact that different
15467 operating systems treat files in different ways, we must cope with the
15468 fact that completely different naming conventions are used by different
15469 groups of people. The following programs show what is required for one
15470 particular operating system; similar routines for other systems are not
15471 difficult to devise.
15472 @^system dependencies@>
15474 \MP\ assumes that a file name has three parts: the name proper; its
15475 ``extension''; and a ``file area'' where it is found in an external file
15476 system. The extension of an input file is assumed to be
15477 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15478 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15479 metric files that describe characters in any fonts created by \MP; it is
15480 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15481 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15482 The file area can be arbitrary on input files, but files are usually
15483 output to the user's current area. If an input file cannot be
15484 found on the specified area, \MP\ will look for it on a special system
15485 area; this special area is intended for commonly used input files.
15487 Simple uses of \MP\ refer only to file names that have no explicit
15488 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15489 instead of `\.{input} \.{cmr10.new}'. Simple file
15490 names are best, because they make the \MP\ source files portable;
15491 whenever a file name consists entirely of letters and digits, it should be
15492 treated in the same way by all implementations of \MP. However, users
15493 need the ability to refer to other files in their environment, especially
15494 when responding to error messages concerning unopenable files; therefore
15495 we want to let them use the syntax that appears in their favorite
15498 @ \MP\ uses the same conventions that have proved to be satisfactory for
15499 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15500 @^system dependencies@>
15501 the system-independent parts of \MP\ are expressed in terms
15502 of three system-dependent
15503 procedures called |begin_name|, |more_name|, and |end_name|. In
15504 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15505 the system-independent driver program does the operations
15506 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15508 These three procedures communicate with each other via global variables.
15509 Afterwards the file name will appear in the string pool as three strings
15510 called |cur_name|\penalty10000\hskip-.05em,
15511 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15512 |""|), unless they were explicitly specified by the user.
15514 Actually the situation is slightly more complicated, because \MP\ needs
15515 to know when the file name ends. The |more_name| routine is a function
15516 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15517 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15518 returns |false|; or, it returns |true| and $c_n$ is the last character
15519 on the current input line. In other words,
15520 |more_name| is supposed to return |true| unless it is sure that the
15521 file name has been completely scanned; and |end_name| is supposed to be able
15522 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15523 whether $|more_name|(c_n)$ returned |true| or |false|.
15526 char * cur_name; /* name of file just scanned */
15527 char * cur_area; /* file area just scanned, or \.{""} */
15528 char * cur_ext; /* file extension just scanned, or \.{""} */
15530 @ It is easier to maintain reference counts if we assign initial values.
15533 mp->cur_name=xstrdup("");
15534 mp->cur_area=xstrdup("");
15535 mp->cur_ext=xstrdup("");
15537 @ @<Dealloc variables@>=
15538 xfree(mp->cur_area);
15539 xfree(mp->cur_name);
15540 xfree(mp->cur_ext);
15542 @ The file names we shall deal with for illustrative purposes have the
15543 following structure: If the name contains `\.>' or `\.:', the file area
15544 consists of all characters up to and including the final such character;
15545 otherwise the file area is null. If the remaining file name contains
15546 `\..', the file extension consists of all such characters from the first
15547 remaining `\..' to the end, otherwise the file extension is null.
15548 @^system dependencies@>
15550 We can scan such file names easily by using two global variables that keep track
15551 of the occurrences of area and extension delimiters. Note that these variables
15552 cannot be of type |pool_pointer| because a string pool compaction could occur
15553 while scanning a file name.
15556 integer area_delimiter;
15557 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15558 integer ext_delimiter; /* the relevant `\..', if any */
15560 @ Input files that can't be found in the user's area may appear in standard
15561 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15562 extension is |".mf"|.) The standard system area for font metric files
15563 to be read is |MP_font_area|.
15564 This system area name will, of course, vary from place to place.
15565 @^system dependencies@>
15567 @d MP_area "MPinputs:"
15569 @d MF_area "MFinputs:"
15574 @ Here now is the first of the system-dependent routines for file name scanning.
15575 @^system dependencies@>
15577 @<Declare subroutines for parsing file names@>=
15578 void mp_begin_name (MP mp) {
15579 xfree(mp->cur_name);
15580 xfree(mp->cur_area);
15581 xfree(mp->cur_ext);
15582 mp->area_delimiter=-1;
15583 mp->ext_delimiter=-1;
15586 @ And here's the second.
15587 @^system dependencies@>
15589 @<Declare subroutines for parsing file names@>=
15590 boolean mp_more_name (MP mp, ASCII_code c) {
15594 if ( (c=='>')||(c==':') ) {
15595 mp->area_delimiter=mp->pool_ptr;
15596 mp->ext_delimiter=-1;
15597 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15598 mp->ext_delimiter=mp->pool_ptr;
15600 str_room(1); append_char(c); /* contribute |c| to the current string */
15606 @^system dependencies@>
15608 @d copy_pool_segment(A,B,C) {
15609 A = xmalloc(C+1,sizeof(char));
15610 strncpy(A,(char *)(mp->str_pool+B),C);
15613 @<Declare subroutines for parsing file names@>=
15614 void mp_end_name (MP mp) {
15615 pool_pointer s; /* length of area, name, and extension */
15618 s = mp->str_start[mp->str_ptr];
15619 if ( mp->area_delimiter<0 ) {
15620 mp->cur_area=xstrdup("");
15622 len = mp->area_delimiter-s;
15623 copy_pool_segment(mp->cur_area,s,len);
15626 if ( mp->ext_delimiter<0 ) {
15627 mp->cur_ext=xstrdup("");
15628 len = mp->pool_ptr-s;
15630 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15631 len = mp->ext_delimiter-s;
15633 copy_pool_segment(mp->cur_name,s,len);
15634 mp->pool_ptr=s; /* don't need this partial string */
15637 @ Conversely, here is a routine that takes three strings and prints a file
15638 name that might have produced them. (The routine is system dependent, because
15639 some operating systems put the file area last instead of first.)
15640 @^system dependencies@>
15642 @<Basic printing...@>=
15643 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15644 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15647 @ Another system-dependent routine is needed to convert three internal
15649 to the |name_of_file| value that is used to open files. The present code
15650 allows both lowercase and uppercase letters in the file name.
15651 @^system dependencies@>
15653 @d append_to_name(A) { c=(A);
15654 if ( k<file_name_size ) {
15655 mp->name_of_file[k]=mp->xchr[c];
15660 @<Declare subroutines for parsing file names@>=
15661 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15662 integer k; /* number of positions filled in |name_of_file| */
15663 ASCII_code c; /* character being packed */
15664 char *j; /* a character index */
15668 for (j=a;*j;j++) { append_to_name(*j); }
15670 for (j=n;*j;j++) { append_to_name(*j); }
15672 for (j=e;*j;j++) { append_to_name(*j); }
15674 mp->name_of_file[k]=0;
15679 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15681 @ A messier routine is also needed, since mem file names must be scanned
15682 before \MP's string mechanism has been initialized. We shall use the
15683 global variable |MP_mem_default| to supply the text for default system areas
15684 and extensions related to mem files.
15685 @^system dependencies@>
15687 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15688 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15689 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15692 char *MP_mem_default;
15693 char *mem_name; /* for commandline */
15695 @ @<Option variables@>=
15696 char *mem_name; /* for commandline */
15698 @ @<Allocate or initialize ...@>=
15699 mp->MP_mem_default = xstrdup("plain.mem");
15700 mp->mem_name = mp_xstrdup(opt.mem_name);
15702 @^system dependencies@>
15704 @ @<Dealloc variables@>=
15705 xfree(mp->MP_mem_default);
15706 xfree(mp->mem_name);
15708 @ @<Check the ``constant'' values for consistency@>=
15709 if ( mem_default_length>file_name_size ) mp->bad=20;
15711 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15712 from the first |n| characters of |MP_mem_default|, followed by
15713 |buffer[a..b]|, followed by the last |mem_ext_length| characters of
15716 We dare not give error messages here, since \MP\ calls this routine before
15717 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15718 since the error will be detected in another way when a strange file name
15720 @^system dependencies@>
15722 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15724 integer k; /* number of positions filled in |name_of_file| */
15725 ASCII_code c; /* character being packed */
15726 integer j; /* index into |buffer| or |MP_mem_default| */
15727 if ( n+b-a+1+mem_ext_length>file_name_size )
15728 b=a+file_name_size-n-1-mem_ext_length;
15730 for (j=0;j<n;j++) {
15731 append_to_name(mp->xord[(int)mp->MP_mem_default[j]]);
15733 for (j=a;j<=b;j++) {
15734 append_to_name(mp->buffer[j]);
15736 for (j=mem_default_length-mem_ext_length;
15737 j<mem_default_length;j++) {
15738 append_to_name(mp->xord[(int)mp->MP_mem_default[j]]);
15740 mp->name_of_file[k]=0;
15744 @ Here is the only place we use |pack_buffered_name|. This part of the program
15745 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15746 the preliminary initialization, or when the user is substituting another
15747 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15748 contains the first line of input in |buffer[loc..(last-1)]|, where
15749 |loc<last| and |buffer[loc]<>" "|.
15752 boolean mp_open_mem_file (MP mp) ;
15755 boolean mp_open_mem_file (MP mp) {
15756 int j; /* the first space after the file name */
15757 if (mp->mem_name!=NULL) {
15758 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15759 if ( mp->mem_file ) return true;
15762 if ( mp->buffer[loc]=='&' ) {
15763 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15764 while ( mp->buffer[j]!=' ' ) incr(j);
15765 mp_pack_buffered_name(mp, 0,loc,j-1); /* try first without the system file area */
15766 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15768 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15769 @.Sorry, I can't find...@>
15772 /* now pull out all the stops: try for the system \.{plain} file */
15773 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15774 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15776 wterm_ln("I can\'t find the PLAIN mem file!\n");
15777 @.I can't find PLAIN...@>
15782 loc=j; return true;
15785 @ Operating systems often make it possible to determine the exact name (and
15786 possible version number) of a file that has been opened. The following routine,
15787 which simply makes a \MP\ string from the value of |name_of_file|, should
15788 ideally be changed to deduce the full name of file~|f|, which is the file
15789 most recently opened, if it is possible to do this in a \PASCAL\ program.
15790 @^system dependencies@>
15793 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15794 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15795 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15798 str_number mp_make_name_string (MP mp) {
15799 int k; /* index into |name_of_file| */
15800 str_room(mp->name_length);
15801 for (k=0;k<mp->name_length;k++) {
15802 append_char(mp->xord[(int)mp->name_of_file[k]]);
15804 return mp_make_string(mp);
15807 @ Now let's consider the ``driver''
15808 routines by which \MP\ deals with file names
15809 in a system-independent manner. First comes a procedure that looks for a
15810 file name in the input by taking the information from the input buffer.
15811 (We can't use |get_next|, because the conversion to tokens would
15812 destroy necessary information.)
15814 This procedure doesn't allow semicolons or percent signs to be part of
15815 file names, because of other conventions of \MP.
15816 {\sl The {\logos METAFONT\/}book} doesn't
15817 use semicolons or percents immediately after file names, but some users
15818 no doubt will find it natural to do so; therefore system-dependent
15819 changes to allow such characters in file names should probably
15820 be made with reluctance, and only when an entire file name that
15821 includes special characters is ``quoted'' somehow.
15822 @^system dependencies@>
15824 @c void mp_scan_file_name (MP mp) {
15826 while ( mp->buffer[loc]==' ' ) incr(loc);
15828 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15829 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15835 @ Here is another version that takes its input from a string.
15837 @<Declare subroutines for parsing file names@>=
15838 void mp_str_scan_file (MP mp, str_number s) {
15839 pool_pointer p,q; /* current position and stopping point */
15841 p=mp->str_start[s]; q=str_stop(s);
15843 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
15849 @ And one that reads from a |char*|.
15851 @<Declare subroutines for parsing file names@>=
15852 void mp_ptr_scan_file (MP mp, char *s) {
15853 char *p, *q; /* current position and stopping point */
15855 p=s; q=p+strlen(s);
15857 if ( ! mp_more_name(mp, *p)) break;
15864 @ The global variable |job_name| contains the file name that was first
15865 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
15866 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
15869 char *job_name; /* principal file name */
15870 boolean log_opened; /* has the transcript file been opened? */
15871 char *log_name; /* full name of the log file */
15873 @ @<Option variables@>=
15874 char *job_name; /* principal file name */
15876 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
15877 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
15878 except of course for a short time just after |job_name| has become nonzero.
15880 @<Allocate or ...@>=
15881 mp->job_name=mp_xstrdup(opt.job_name);
15882 mp->log_opened=false;
15884 @ @<Dealloc variables@>=
15885 xfree(mp->job_name);
15887 @ Here is a routine that manufactures the output file names, assuming that
15888 |job_name<>0|. It ignores and changes the current settings of |cur_area|
15891 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
15894 void mp_pack_job_name (MP mp, char *s) ;
15896 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
15897 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
15898 xfree(mp->cur_area); mp->cur_area=xstrdup("");
15899 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
15903 @ If some trouble arises when \MP\ tries to open a file, the following
15904 routine calls upon the user to supply another file name. Parameter~|s|
15905 is used in the error message to identify the type of file; parameter~|e|
15906 is the default extension if none is given. Upon exit from the routine,
15907 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
15908 ready for another attempt at file opening.
15911 void mp_prompt_file_name (MP mp,char * s, char * e) ;
15913 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
15914 size_t k; /* index into |buffer| */
15915 char * saved_cur_name;
15916 if ( mp->interaction==mp_scroll_mode )
15918 if (strcmp(s,"input file name")==0) {
15919 print_err("I can\'t find file `");
15920 @.I can't find file x@>
15922 print_err("I can\'t write on file `");
15924 @.I can't write on file x@>
15925 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
15926 mp_print(mp, "'.");
15927 if (strcmp(e,"")==0)
15928 mp_show_context(mp);
15929 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
15931 if ( mp->interaction<mp_scroll_mode )
15932 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
15933 @.job aborted, file error...@>
15934 saved_cur_name = xstrdup(mp->cur_name);
15935 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
15936 if (strcmp(mp->cur_ext,"")==0)
15938 if (strlen(mp->cur_name)==0) {
15939 mp->cur_name=saved_cur_name;
15941 xfree(saved_cur_name);
15946 @ @<Scan file name in the buffer@>=
15948 mp_begin_name(mp); k=mp->first;
15949 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
15951 if ( k==mp->last ) break;
15952 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
15958 @ The |open_log_file| routine is used to open the transcript file and to help
15959 it catch up to what has previously been printed on the terminal.
15961 @c void mp_open_log_file (MP mp) {
15962 int old_setting; /* previous |selector| setting */
15963 int k; /* index into |months| and |buffer| */
15964 int l; /* end of first input line */
15965 integer m; /* the current month */
15966 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
15967 /* abbreviations of month names */
15968 old_setting=mp->selector;
15969 if ( mp->job_name==NULL ) {
15970 mp->job_name=xstrdup("mpout");
15972 mp_pack_job_name(mp,".log");
15973 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
15974 @<Try to get a different log file name@>;
15976 mp->log_name=xstrdup(mp->name_of_file);
15977 mp->selector=log_only; mp->log_opened=true;
15978 @<Print the banner line, including the date and time@>;
15979 mp->input_stack[mp->input_ptr]=mp->cur_input;
15980 /* make sure bottom level is in memory */
15981 mp_print_nl(mp, "**");
15983 l=mp->input_stack[0].limit_field-1; /* last position of first line */
15984 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
15985 mp_print_ln(mp); /* now the transcript file contains the first line of input */
15986 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
15989 @ @<Dealloc variables@>=
15990 xfree(mp->log_name);
15992 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
15993 unable to print error messages or even to |show_context|.
15994 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
15995 routine will not be invoked because |log_opened| will be false.
15997 The normal idea of |mp_batch_mode| is that nothing at all should be written
15998 on the terminal. However, in the unusual case that
15999 no log file could be opened, we make an exception and allow
16000 an explanatory message to be seen.
16002 Incidentally, the program always refers to the log file as a `\.{transcript
16003 file}', because some systems cannot use the extension `\.{.log}' for
16006 @<Try to get a different log file name@>=
16008 mp->selector=term_only;
16009 mp_prompt_file_name(mp, "transcript file name",".log");
16012 @ @<Print the banner...@>=
16015 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16016 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[day]));
16017 mp_print_char(mp, ' ');
16018 m=mp_round_unscaled(mp, mp->internal[month]);
16019 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16020 mp_print_char(mp, ' ');
16021 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year]));
16022 mp_print_char(mp, ' ');
16023 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16024 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16027 @ The |try_extension| function tries to open an input file determined by
16028 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16029 can't find the file in |cur_area| or the appropriate system area.
16031 @c boolean mp_try_extension (MP mp,char *ext) {
16032 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16033 in_name=xstrdup(mp->cur_name);
16034 in_area=xstrdup(mp->cur_area);
16035 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16038 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16039 else in_area=xstrdup(MP_area);
16040 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16041 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16046 @ Let's turn now to the procedure that is used to initiate file reading
16047 when an `\.{input}' command is being processed.
16049 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16050 char *fname = NULL;
16051 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16053 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16054 if ( strlen(mp->cur_ext)==0 ) {
16055 if ( mp_try_extension(mp, ".mp") ) break;
16056 else if ( mp_try_extension(mp, "") ) break;
16057 else if ( mp_try_extension(mp, ".mf") ) break;
16058 /* |else do_nothing; | */
16059 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16062 mp_end_file_reading(mp); /* remove the level that didn't work */
16063 mp_prompt_file_name(mp, "input file name","");
16065 name=mp_a_make_name_string(mp, cur_file);
16066 fname = xstrdup(mp->name_of_file);
16067 if ( mp->job_name==NULL ) {
16068 mp->job_name=xstrdup(mp->cur_name);
16069 mp_open_log_file(mp);
16070 } /* |open_log_file| doesn't |show_context|, so |limit|
16071 and |loc| needn't be set to meaningful values yet */
16072 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16073 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16074 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16077 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16078 @<Read the first line of the new file@>;
16081 @ This code should be omitted if |a_make_name_string| returns something other
16082 than just a copy of its argument and the full file name is needed for opening
16083 \.{MPX} files or implementing the switch-to-editor option.
16084 @^system dependencies@>
16086 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16087 mp_flush_string(mp, name); name=rts(mp->cur_name); mp->cur_name=NULL
16089 @ Here we have to remember to tell the |input_ln| routine not to
16090 start with a |get|. If the file is empty, it is considered to
16091 contain a single blank line.
16092 @^system dependencies@>
16094 @<Read the first line...@>=
16097 (void)mp_input_ln(mp, cur_file,false);
16098 mp_firm_up_the_line(mp);
16099 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16102 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16103 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16104 if ( token_state ) {
16105 print_err("File names can't appear within macros");
16106 @.File names can't...@>
16107 help3("Sorry...I've converted what follows to tokens,")
16108 ("possibly garbaging the name you gave.")
16109 ("Please delete the tokens and insert the name again.");
16112 if ( file_state ) {
16113 mp_scan_file_name(mp);
16115 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16116 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16117 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16120 @ Sometimes we need to deal with two file names at once. This procedure
16121 copies the given string into a special array for an old file name.
16123 @c void mp_copy_old_name (MP mp,str_number s) {
16124 integer k; /* number of positions filled in |old_file_name| */
16125 pool_pointer j; /* index into |str_pool| */
16127 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16129 if ( k<=file_name_size )
16130 mp->old_file_name[k]=mp->xchr[mp->str_pool[j]];
16132 mp->old_file_name[++k] = 0;
16136 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16138 @ The following simple routine starts reading the \.{MPX} file associated
16139 with the current input file.
16141 @c void mp_start_mpx_input (MP mp) {
16142 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16143 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16144 |goto not_found| if there is a problem@>;
16145 mp_begin_file_reading(mp);
16146 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16147 mp_end_file_reading(mp);
16150 name=mp_a_make_name_string(mp, cur_file);
16151 mp->mpx_name[index]=name; add_str_ref(name);
16152 @<Read the first line of the new file@>;
16155 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16158 @ This should ideally be changed to do whatever is necessary to create the
16159 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16160 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16161 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16162 completely different typesetting program if suitable postprocessor is
16163 available to perform the function of \.{DVItoMP}.)
16164 @^system dependencies@>
16167 typedef boolean (*run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16170 run_make_mpx_command run_make_mpx;
16172 @ @<Option variables@>=
16173 run_make_mpx_command run_make_mpx;
16175 @ @<Allocate or initialize ...@>=
16176 set_callback_option(run_make_mpx);
16178 @ @<Exported function headers@>=
16179 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16181 @ The default does nothing.
16183 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16184 if (mp && origname && mtxname) /* for -W */
16191 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16192 |goto not_found| if there is a problem@>=
16193 mp_copy_old_name(mp, name);
16194 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16197 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16198 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16199 mp_print_nl(mp, ">> ");
16200 mp_print(mp, mp->old_file_name);
16201 mp_print_nl(mp, ">> ");
16202 mp_print(mp, mp->name_of_file);
16203 mp_print_nl(mp, "! Unable to make mpx file");
16204 help4("The two files given above are one of your source files")
16205 ("and an auxiliary file I need to read to find out what your")
16206 ("btex..etex blocks mean. If you don't know why I had trouble,")
16207 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16210 @ The last file-opening commands are for files accessed via the \&{readfrom}
16211 @:read_from_}{\&{readfrom} primitive@>
16212 operator and the \&{write} command. Such files are stored in separate arrays.
16213 @:write_}{\&{write} primitive@>
16215 @<Types in the outer block@>=
16216 typedef unsigned int readf_index; /* |0..max_read_files| */
16217 typedef unsigned int write_index; /* |0..max_write_files| */
16220 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16221 FILE ** rd_file; /* \&{readfrom} files */
16222 char ** rd_fname; /* corresponding file name or 0 if file not open */
16223 readf_index read_files; /* number of valid entries in the above arrays */
16224 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16225 FILE ** wr_file; /* \&{write} files */
16226 char ** wr_fname; /* corresponding file name or 0 if file not open */
16227 write_index write_files; /* number of valid entries in the above arrays */
16229 @ @<Allocate or initialize ...@>=
16230 mp->max_read_files=8;
16231 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16232 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16233 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16235 mp->max_write_files=8;
16236 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16237 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16238 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16242 @ This routine starts reading the file named by string~|s| without setting
16243 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16244 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16246 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16247 mp_ptr_scan_file(mp, s);
16249 mp_begin_file_reading(mp);
16250 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16252 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16253 fclose(mp->rd_file[n]);
16256 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16259 mp_end_file_reading(mp);
16263 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16266 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16268 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16269 mp_ptr_scan_file(mp, s);
16271 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16272 mp_prompt_file_name(mp, "file name for write output","");
16273 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16277 @* \[36] Introduction to the parsing routines.
16278 We come now to the central nervous system that sparks many of \MP's activities.
16279 By evaluating expressions, from their primary constituents to ever larger
16280 subexpressions, \MP\ builds the structures that ultimately define complete
16281 pictures or fonts of type.
16283 Four mutually recursive subroutines are involved in this process: We call them
16284 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16285 and |scan_expression|.}$$
16287 Each of them is parameterless and begins with the first token to be scanned
16288 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16289 the value of the primary or secondary or tertiary or expression that was
16290 found will appear in the global variables |cur_type| and |cur_exp|. The
16291 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16294 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16295 backup mechanisms have been added in order to provide reasonable error
16299 small_number cur_type; /* the type of the expression just found */
16300 integer cur_exp; /* the value of the expression just found */
16305 @ Many different kinds of expressions are possible, so it is wise to have
16306 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16309 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16310 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16311 construction in which there was no expression before the \&{endgroup}.
16312 In this case |cur_exp| has some irrelevant value.
16315 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16319 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16320 node that is in the ring of variables equivalent
16321 to at least one undefined boolean variable.
16324 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16325 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16326 includes this particular reference.
16329 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16330 node that is in the ring of variables equivalent
16331 to at least one undefined string variable.
16334 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16335 else points to any of the nodes in this pen. The pen may be polygonal or
16339 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16340 node that is in the ring of variables equivalent
16341 to at least one undefined pen variable.
16344 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16345 a path; nobody else points to this particular path. The control points of
16346 the path will have been chosen.
16349 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16350 node that is in the ring of variables equivalent
16351 to at least one undefined path variable.
16354 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16355 There may be other pointers to this particular set of edges. The header node
16356 contains a reference count that includes this particular reference.
16359 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16360 node that is in the ring of variables equivalent
16361 to at least one undefined picture variable.
16364 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16365 capsule node. The |value| part of this capsule
16366 points to a transform node that contains six numeric values,
16367 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16370 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16371 capsule node. The |value| part of this capsule
16372 points to a color node that contains three numeric values,
16373 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16376 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16377 capsule node. The |value| part of this capsule
16378 points to a color node that contains four numeric values,
16379 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16382 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16383 node whose type is |mp_pair_type|. The |value| part of this capsule
16384 points to a pair node that contains two numeric values,
16385 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16388 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16391 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16392 is |dependent|. The |dep_list| field in this capsule points to the associated
16396 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16397 capsule node. The |dep_list| field in this capsule
16398 points to the associated dependency list.
16401 |cur_type=independent| means that |cur_exp| points to a capsule node
16402 whose type is |independent|. This somewhat unusual case can arise, for
16403 example, in the expression
16404 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16407 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16408 tokens. This case arises only on the left-hand side of an assignment
16409 (`\.{:=}') operation, under very special circumstances.
16411 \smallskip\noindent
16412 The possible settings of |cur_type| have been listed here in increasing
16413 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16414 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16415 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16418 @ Capsules are two-word nodes that have a similar meaning
16419 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16420 and |link<=diov|; and their |type| field is one of the possibilities for
16421 |cur_type| listed above.
16423 The |value| field of a capsule is, in most cases, the value that
16424 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16425 However, when |cur_exp| would point to a capsule,
16426 no extra layer of indirection is present; the |value|
16427 field is what would have been called |value(cur_exp)| if it had not been
16428 encapsulated. Furthermore, if the type is |dependent| or
16429 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16430 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16431 always part of the general |dep_list| structure.
16433 The |get_x_next| routine is careful not to change the values of |cur_type|
16434 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16435 call a macro, which might parse an expression, which might execute lots of
16436 commands in a group; hence it's possible that |cur_type| might change
16437 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16438 |known| or |independent|, during the time |get_x_next| is called. The
16439 programs below are careful to stash sensitive intermediate results in
16440 capsules, so that \MP's generality doesn't cause trouble.
16442 Here's a procedure that illustrates these conventions. It takes
16443 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16444 and stashes them away in a
16445 capsule. It is not used when |cur_type=mp_token_list|.
16446 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16447 copy path lists or to update reference counts, etc.
16449 The special link |diov| is put on the capsule returned by
16450 |stash_cur_exp|, because this procedure is used to store macro parameters
16451 that must be easily distinguishable from token lists.
16453 @<Declare the stashing/unstashing routines@>=
16454 pointer mp_stash_cur_exp (MP mp) {
16455 pointer p; /* the capsule that will be returned */
16456 switch (mp->cur_type) {
16457 case unknown_types:
16458 case mp_transform_type:
16459 case mp_color_type:
16462 case mp_proto_dependent:
16463 case mp_independent:
16464 case mp_cmykcolor_type:
16468 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16469 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16472 mp->cur_type=mp_vacuous; link(p)=diov;
16476 @ The inverse of |stash_cur_exp| is the following procedure, which
16477 deletes an unnecessary capsule and puts its contents into |cur_type|
16480 The program steps of \MP\ can be divided into two categories: those in
16481 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16482 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16483 information or not. It's important not to ignore them when they're alive,
16484 and it's important not to pay attention to them when they're dead.
16486 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16487 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16488 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16489 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16490 only when they are alive or dormant.
16492 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16493 are alive or dormant. The \\{unstash} procedure assumes that they are
16494 dead or dormant; it resuscitates them.
16496 @<Declare the stashing/unstashing...@>=
16497 void mp_unstash_cur_exp (MP mp,pointer p) ;
16500 void mp_unstash_cur_exp (MP mp,pointer p) {
16501 mp->cur_type=type(p);
16502 switch (mp->cur_type) {
16503 case unknown_types:
16504 case mp_transform_type:
16505 case mp_color_type:
16508 case mp_proto_dependent:
16509 case mp_independent:
16510 case mp_cmykcolor_type:
16514 mp->cur_exp=value(p);
16515 mp_free_node(mp, p,value_node_size);
16520 @ The following procedure prints the values of expressions in an
16521 abbreviated format. If its first parameter |p| is null, the value of
16522 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16523 containing the desired value. The second parameter controls the amount of
16524 output. If it is~0, dependency lists will be abbreviated to
16525 `\.{linearform}' unless they consist of a single term. If it is greater
16526 than~1, complicated structures (pens, pictures, and paths) will be displayed
16529 @<Declare subroutines for printing expressions@>=
16530 @<Declare the procedure called |print_dp|@>;
16531 @<Declare the stashing/unstashing routines@>;
16532 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16533 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16534 small_number t; /* the type of the expression */
16535 pointer q; /* a big node being displayed */
16536 integer v=0; /* the value of the expression */
16538 restore_cur_exp=false;
16540 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16543 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16544 @<Print an abbreviated value of |v| with format depending on |t|@>;
16545 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16548 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16550 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16551 case mp_boolean_type:
16552 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16554 case unknown_types: case mp_numeric_type:
16555 @<Display a variable that's been declared but not defined@>;
16557 case mp_string_type:
16558 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16560 case mp_pen_type: case mp_path_type: case mp_picture_type:
16561 @<Display a complex type@>;
16563 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16564 if ( v==null ) mp_print_type(mp, t);
16565 else @<Display a big node@>;
16567 case mp_known:mp_print_scaled(mp, v); break;
16568 case mp_dependent: case mp_proto_dependent:
16569 mp_print_dp(mp, t,v,verbosity);
16571 case mp_independent:mp_print_variable_name(mp, p); break;
16572 default: mp_confusion(mp, "exp"); break;
16573 @:this can't happen exp}{\quad exp@>
16576 @ @<Display a big node@>=
16578 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16580 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16581 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16582 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16584 if ( v!=q ) mp_print_char(mp, ',');
16586 mp_print_char(mp, ')');
16589 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16590 in the log file only, unless the user has given a positive value to
16593 @<Display a complex type@>=
16594 if ( verbosity<=1 ) {
16595 mp_print_type(mp, t);
16597 if ( mp->selector==term_and_log )
16598 if ( mp->internal[tracing_online]<=0 ) {
16599 mp->selector=term_only;
16600 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16601 mp->selector=term_and_log;
16604 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16605 case mp_path_type:mp_print_path(mp, v,"",false); break;
16606 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16607 } /* there are no other cases */
16610 @ @<Declare the procedure called |print_dp|@>=
16611 void mp_print_dp (MP mp,small_number t, pointer p,
16612 small_number verbosity) {
16613 pointer q; /* the node following |p| */
16615 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16616 else mp_print(mp, "linearform");
16619 @ The displayed name of a variable in a ring will not be a capsule unless
16620 the ring consists entirely of capsules.
16622 @<Display a variable that's been declared but not defined@>=
16623 { mp_print_type(mp, t);
16625 { mp_print_char(mp, ' ');
16626 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16627 mp_print_variable_name(mp, v);
16631 @ When errors are detected during parsing, it is often helpful to
16632 display an expression just above the error message, using |exp_err|
16633 or |disp_err| instead of |print_err|.
16635 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16637 @<Declare subroutines for printing expressions@>=
16638 void mp_disp_err (MP mp,pointer p, char *s) {
16639 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16640 mp_print_nl(mp, ">> ");
16642 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16644 mp_print_nl(mp, "! "); mp_print(mp, s);
16649 @ If |cur_type| and |cur_exp| contain relevant information that should
16650 be recycled, we will use the following procedure, which changes |cur_type|
16651 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16652 and |cur_exp| as either alive or dormant after this has been done,
16653 because |cur_exp| will not contain a pointer value.
16655 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16656 switch (mp->cur_type) {
16657 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16658 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16659 mp_recycle_value(mp, mp->cur_exp);
16660 mp_free_node(mp, mp->cur_exp,value_node_size);
16662 case mp_string_type:
16663 delete_str_ref(mp->cur_exp); break;
16664 case mp_pen_type: case mp_path_type:
16665 mp_toss_knot_list(mp, mp->cur_exp); break;
16666 case mp_picture_type:
16667 delete_edge_ref(mp->cur_exp); break;
16671 mp->cur_type=mp_known; mp->cur_exp=v;
16674 @ There's a much more general procedure that is capable of releasing
16675 the storage associated with any two-word value packet.
16677 @<Declare the recycling subroutines@>=
16678 void mp_recycle_value (MP mp,pointer p) ;
16680 @ @c void mp_recycle_value (MP mp,pointer p) {
16681 small_number t; /* a type code */
16682 integer vv; /* another value */
16683 pointer q,r,s,pp; /* link manipulation registers */
16684 integer v=0; /* a value */
16686 if ( t<mp_dependent ) v=value(p);
16688 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16689 case mp_numeric_type:
16691 case unknown_types:
16692 mp_ring_delete(mp, p); break;
16693 case mp_string_type:
16694 delete_str_ref(v); break;
16695 case mp_path_type: case mp_pen_type:
16696 mp_toss_knot_list(mp, v); break;
16697 case mp_picture_type:
16698 delete_edge_ref(v); break;
16699 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16700 case mp_transform_type:
16701 @<Recycle a big node@>; break;
16702 case mp_dependent: case mp_proto_dependent:
16703 @<Recycle a dependency list@>; break;
16704 case mp_independent:
16705 @<Recycle an independent variable@>; break;
16706 case mp_token_list: case mp_structured:
16707 mp_confusion(mp, "recycle"); break;
16708 @:this can't happen recycle}{\quad recycle@>
16709 case mp_unsuffixed_macro: case mp_suffixed_macro:
16710 mp_delete_mac_ref(mp, value(p)); break;
16711 } /* there are no other cases */
16715 @ @<Recycle a big node@>=
16717 q=v+mp->big_node_size[t];
16719 q=q-2; mp_recycle_value(mp, q);
16721 mp_free_node(mp, v,mp->big_node_size[t]);
16724 @ @<Recycle a dependency list@>=
16727 while ( info(q)!=null ) q=link(q);
16728 link(prev_dep(p))=link(q);
16729 prev_dep(link(q))=prev_dep(p);
16730 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16733 @ When an independent variable disappears, it simply fades away, unless
16734 something depends on it. In the latter case, a dependent variable whose
16735 coefficient of dependence is maximal will take its place.
16736 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16737 as part of his Ph.D. thesis (Stanford University, December 1982).
16738 @^Zabala Salelles, Ignacio Andres@>
16740 For example, suppose that variable $x$ is being recycled, and that the
16741 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16742 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16743 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16744 we will print `\.{\#\#\# -2x=-y+a}'.
16746 There's a slight complication, however: An independent variable $x$
16747 can occur both in dependency lists and in proto-dependency lists.
16748 This makes it necessary to be careful when deciding which coefficient
16751 Furthermore, this complication is not so slight when
16752 a proto-dependent variable is chosen to become independent. For example,
16753 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16754 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16755 large coefficient `50'.
16757 In order to deal with these complications without wasting too much time,
16758 we shall link together the occurrences of~$x$ among all the linear
16759 dependencies, maintaining separate lists for the dependent and
16760 proto-dependent cases.
16762 @<Recycle an independent variable@>=
16764 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16765 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16767 while ( q!=dep_head ) {
16768 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16771 if ( info(r)==null ) break;;
16772 if ( info(r)!=p ) {
16775 t=type(q); link(s)=link(r); info(r)=q;
16776 if ( abs(value(r))>mp->max_c[t] ) {
16777 @<Record a new maximum coefficient of type |t|@>;
16779 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16785 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16786 @<Choose a dependent variable to take the place of the disappearing
16787 independent variable, and change all remaining dependencies
16792 @ The code for independency removal makes use of three two-word arrays.
16795 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16796 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16797 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16799 @ @<Record a new maximum coefficient...@>=
16801 if ( mp->max_c[t]>0 ) {
16802 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16804 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16807 @ @<Choose a dependent...@>=
16809 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16812 t=mp_proto_dependent;
16813 @<Determine the dependency list |s| to substitute for the independent
16815 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16816 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16817 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16819 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16820 else { @<Substitute new proto-dependencies in place of |p|@>;}
16821 mp_flush_node_list(mp, s);
16822 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16826 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16827 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16828 whose dependency list we have removed node~|s|. We must reinsert
16829 node~|s| into the dependency list, with coefficient $-1.0$, and with
16830 |pp| as the new independent variable. Since |pp| will have a larger serial
16831 number than any other variable, we can put node |s| at the head of the
16834 @<Determine the dep...@>=
16835 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16836 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16837 r=dep_list(pp); link(s)=r;
16838 while ( info(r)!=null ) r=link(r);
16839 q=link(r); link(r)=null;
16840 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16842 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16843 if ( mp->internal[tracing_equations]>0 ) {
16844 @<Show the transformed dependency@>;
16847 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16848 by the dependency list~|s|.
16850 @<Show the transformed...@>=
16851 if ( mp_interesting(mp, p) ) {
16852 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16853 @:]]]\#\#\#_}{\.{\#\#\#}@>
16854 if ( v>0 ) mp_print_char(mp, '-');
16855 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16856 else vv=mp->max_c[mp_proto_dependent];
16857 if ( vv!=unity ) mp_print_scaled(mp, vv);
16858 mp_print_variable_name(mp, p);
16859 while ( value(p) % s_scale>0 ) {
16860 mp_print(mp, "*4"); value(p)=value(p)-2;
16862 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16863 mp_print_dependency(mp, s,t);
16864 mp_end_diagnostic(mp, false);
16867 @ Finally, there are dependent and proto-dependent variables whose
16868 dependency lists must be brought up to date.
16870 @<Substitute new dependencies...@>=
16871 for (t=mp_dependent;t<=mp_proto_dependent;t++){
16873 while ( r!=null ) {
16875 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16876 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
16877 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16878 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16882 @ @<Substitute new proto...@>=
16883 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
16885 while ( r!=null ) {
16887 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
16888 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
16889 mp->cur_type=mp_proto_dependent;
16890 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
16891 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
16893 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16894 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
16895 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16896 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16900 @ Here are some routines that provide handy combinations of actions
16901 that are often needed during error recovery. For example,
16902 `|flush_error|' flushes the current expression, replaces it by
16903 a given value, and calls |error|.
16905 Errors often are detected after an extra token has already been scanned.
16906 The `\\{put\_get}' routines put that token back before calling |error|;
16907 then they get it back again. (Or perhaps they get another token, if
16908 the user has changed things.)
16911 void mp_flush_error (MP mp,scaled v);
16912 void mp_put_get_error (MP mp);
16913 void mp_put_get_flush_error (MP mp,scaled v) ;
16916 void mp_flush_error (MP mp,scaled v) {
16917 mp_error(mp); mp_flush_cur_exp(mp, v);
16919 void mp_put_get_error (MP mp) {
16920 mp_back_error(mp); mp_get_x_next(mp);
16922 void mp_put_get_flush_error (MP mp,scaled v) {
16923 mp_put_get_error(mp);
16924 mp_flush_cur_exp(mp, v);
16927 @ A global variable |var_flag| is set to a special command code
16928 just before \MP\ calls |scan_expression|, if the expression should be
16929 treated as a variable when this command code immediately follows. For
16930 example, |var_flag| is set to |assignment| at the beginning of a
16931 statement, because we want to know the {\sl location\/} of a variable at
16932 the left of `\.{:=}', not the {\sl value\/} of that variable.
16934 The |scan_expression| subroutine calls |scan_tertiary|,
16935 which calls |scan_secondary|, which calls |scan_primary|, which sets
16936 |var_flag:=0|. In this way each of the scanning routines ``knows''
16937 when it has been called with a special |var_flag|, but |var_flag| is
16940 A variable preceding a command that equals |var_flag| is converted to a
16941 token list rather than a value. Furthermore, an `\.{=}' sign following an
16942 expression with |var_flag=assignment| is not considered to be a relation
16943 that produces boolean expressions.
16947 int var_flag; /* command that wants a variable */
16952 @* \[37] Parsing primary expressions.
16953 The first parsing routine, |scan_primary|, is also the most complicated one,
16954 since it involves so many different cases. But each case---with one
16955 exception---is fairly simple by itself.
16957 When |scan_primary| begins, the first token of the primary to be scanned
16958 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
16959 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
16960 earlier. If |cur_cmd| is not between |min_primary_command| and
16961 |max_primary_command|, inclusive, a syntax error will be signaled.
16963 @<Declare the basic parsing subroutines@>=
16964 void mp_scan_primary (MP mp) {
16965 pointer p,q,r; /* for list manipulation */
16966 quarterword c; /* a primitive operation code */
16967 int my_var_flag; /* initial value of |my_var_flag| */
16968 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
16969 @<Other local variables for |scan_primary|@>;
16970 my_var_flag=mp->var_flag; mp->var_flag=0;
16973 @<Supply diagnostic information, if requested@>;
16974 switch (mp->cur_cmd) {
16975 case left_delimiter:
16976 @<Scan a delimited primary@>; break;
16978 @<Scan a grouped primary@>; break;
16980 @<Scan a string constant@>; break;
16981 case numeric_token:
16982 @<Scan a primary that starts with a numeric token@>; break;
16984 @<Scan a nullary operation@>; break;
16985 case unary: case type_name: case cycle: case plus_or_minus:
16986 @<Scan a unary operation@>; break;
16987 case primary_binary:
16988 @<Scan a binary operation with `\&{of}' between its operands@>; break;
16990 @<Convert a suffix to a string@>; break;
16991 case internal_quantity:
16992 @<Scan an internal numeric quantity@>; break;
16993 case capsule_token:
16994 mp_make_exp_copy(mp, mp->cur_mod); break;
16996 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
16998 mp_bad_exp(mp, "A primary"); goto RESTART; break;
16999 @.A primary expression...@>
17001 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17003 if ( mp->cur_cmd==left_bracket ) {
17004 if ( mp->cur_type>=mp_known ) {
17005 @<Scan a mediation construction@>;
17012 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17014 @c void mp_bad_exp (MP mp,char * s) {
17016 print_err(s); mp_print(mp, " expression can't begin with `");
17017 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17018 mp_print_char(mp, '\'');
17019 help4("I'm afraid I need some sort of value in order to continue,")
17020 ("so I've tentatively inserted `0'. You may want to")
17021 ("delete this zero and insert something else;")
17022 ("see Chapter 27 of The METAFONTbook for an example.");
17023 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17024 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17025 mp->cur_mod=0; mp_ins_error(mp);
17026 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17027 mp->var_flag=save_flag;
17030 @ @<Supply diagnostic information, if requested@>=
17032 if ( mp->panicking ) mp_check_mem(mp, false);
17034 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17035 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17038 @ @<Scan a delimited primary@>=
17040 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17041 mp_get_x_next(mp); mp_scan_expression(mp);
17042 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17043 @<Scan the rest of a delimited set of numerics@>;
17045 mp_check_delimiter(mp, l_delim,r_delim);
17049 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17050 within a ``big node.''
17052 @c void mp_stash_in (MP mp,pointer p) {
17053 pointer q; /* temporary register */
17054 type(p)=mp->cur_type;
17055 if ( mp->cur_type==mp_known ) {
17056 value(p)=mp->cur_exp;
17058 if ( mp->cur_type==mp_independent ) {
17059 @<Stash an independent |cur_exp| into a big node@>;
17061 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17062 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17063 link(prev_dep(p))=p;
17065 mp_free_node(mp, mp->cur_exp,value_node_size);
17067 mp->cur_type=mp_vacuous;
17070 @ In rare cases the current expression can become |independent|. There
17071 may be many dependency lists pointing to such an independent capsule,
17072 so we can't simply move it into place within a big node. Instead,
17073 we copy it, then recycle it.
17075 @ @<Stash an independent |cur_exp|...@>=
17077 q=mp_single_dependency(mp, mp->cur_exp);
17078 if ( q==mp->dep_final ){
17079 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17081 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17083 mp_recycle_value(mp, mp->cur_exp);
17086 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17087 are synonymous with |x_part_loc| and |y_part_loc|.
17089 @<Scan the rest of a delimited set of numerics@>=
17091 p=mp_stash_cur_exp(mp);
17092 mp_get_x_next(mp); mp_scan_expression(mp);
17093 @<Make sure the second part of a pair or color has a numeric type@>;
17094 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17095 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17096 else type(q)=mp_pair_type;
17097 mp_init_big_node(mp, q); r=value(q);
17098 mp_stash_in(mp, y_part_loc(r));
17099 mp_unstash_cur_exp(mp, p);
17100 mp_stash_in(mp, x_part_loc(r));
17101 if ( mp->cur_cmd==comma ) {
17102 @<Scan the last of a triplet of numerics@>;
17104 if ( mp->cur_cmd==comma ) {
17105 type(q)=mp_cmykcolor_type;
17106 mp_init_big_node(mp, q); t=value(q);
17107 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17108 value(cyan_part_loc(t))=value(red_part_loc(r));
17109 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17110 value(magenta_part_loc(t))=value(green_part_loc(r));
17111 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17112 value(yellow_part_loc(t))=value(blue_part_loc(r));
17113 mp_recycle_value(mp, r);
17115 @<Scan the last of a quartet of numerics@>;
17117 mp_check_delimiter(mp, l_delim,r_delim);
17118 mp->cur_type=type(q);
17122 @ @<Make sure the second part of a pair or color has a numeric type@>=
17123 if ( mp->cur_type<mp_known ) {
17124 exp_err("Nonnumeric ypart has been replaced by 0");
17125 @.Nonnumeric...replaced by 0@>
17126 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17127 ("but after finding a nice `a' I found a `b' that isn't")
17128 ("of numeric type. So I've changed that part to zero.")
17129 ("(The b that I didn't like appears above the error message.)");
17130 mp_put_get_flush_error(mp, 0);
17133 @ @<Scan the last of a triplet of numerics@>=
17135 mp_get_x_next(mp); mp_scan_expression(mp);
17136 if ( mp->cur_type<mp_known ) {
17137 exp_err("Nonnumeric third part has been replaced by 0");
17138 @.Nonnumeric...replaced by 0@>
17139 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17140 ("isn't of numeric type. So I've changed that part to zero.")
17141 ("(The c that I didn't like appears above the error message.)");
17142 mp_put_get_flush_error(mp, 0);
17144 mp_stash_in(mp, blue_part_loc(r));
17147 @ @<Scan the last of a quartet of numerics@>=
17149 mp_get_x_next(mp); mp_scan_expression(mp);
17150 if ( mp->cur_type<mp_known ) {
17151 exp_err("Nonnumeric blackpart has been replaced by 0");
17152 @.Nonnumeric...replaced by 0@>
17153 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17154 ("of numeric type. So I've changed that part to zero.")
17155 ("(The k that I didn't like appears above the error message.)");
17156 mp_put_get_flush_error(mp, 0);
17158 mp_stash_in(mp, black_part_loc(r));
17161 @ The local variable |group_line| keeps track of the line
17162 where a \&{begingroup} command occurred; this will be useful
17163 in an error message if the group doesn't actually end.
17165 @<Other local variables for |scan_primary|@>=
17166 integer group_line; /* where a group began */
17168 @ @<Scan a grouped primary@>=
17170 group_line=mp_true_line(mp);
17171 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17172 save_boundary_item(p);
17174 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17175 } while (! (mp->cur_cmd!=semicolon));
17176 if ( mp->cur_cmd!=end_group ) {
17177 print_err("A group begun on line ");
17178 @.A group...never ended@>
17179 mp_print_int(mp, group_line);
17180 mp_print(mp, " never ended");
17181 help2("I saw a `begingroup' back there that hasn't been matched")
17182 ("by `endgroup'. So I've inserted `endgroup' now.");
17183 mp_back_error(mp); mp->cur_cmd=end_group;
17186 /* this might change |cur_type|, if independent variables are recycled */
17187 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17190 @ @<Scan a string constant@>=
17192 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17195 @ Later we'll come to procedures that perform actual operations like
17196 addition, square root, and so on; our purpose now is to do the parsing.
17197 But we might as well mention those future procedures now, so that the
17198 suspense won't be too bad:
17201 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17202 `\&{true}' or `\&{pencircle}');
17205 |do_unary(c)| applies a primitive operation to the current expression;
17208 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17209 and the current expression.
17211 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17213 @ @<Scan a unary operation@>=
17215 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17216 mp_do_unary(mp, c); goto DONE;
17219 @ A numeric token might be a primary by itself, or it might be the
17220 numerator of a fraction composed solely of numeric tokens, or it might
17221 multiply the primary that follows (provided that the primary doesn't begin
17222 with a plus sign or a minus sign). The code here uses the facts that
17223 |max_primary_command=plus_or_minus| and
17224 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17225 than unity, we try to retain higher precision when we use it in scalar
17228 @<Other local variables for |scan_primary|@>=
17229 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17231 @ @<Scan a primary that starts with a numeric token@>=
17233 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17234 if ( mp->cur_cmd!=slash ) {
17238 if ( mp->cur_cmd!=numeric_token ) {
17240 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17243 num=mp->cur_exp; denom=mp->cur_mod;
17244 if ( denom==0 ) { @<Protest division by zero@>; }
17245 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17246 check_arith; mp_get_x_next(mp);
17248 if ( mp->cur_cmd>=min_primary_command ) {
17249 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17250 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17251 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17252 mp_do_binary(mp, p,times);
17254 mp_frac_mult(mp, num,denom);
17255 mp_free_node(mp, p,value_node_size);
17262 @ @<Protest division...@>=
17264 print_err("Division by zero");
17265 @.Division by zero@>
17266 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17269 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17271 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17272 if ( mp->cur_cmd!=of_token ) {
17273 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17274 mp_print_cmd_mod(mp, primary_binary,c);
17276 help1("I've got the first argument; will look now for the other.");
17279 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17280 mp_do_binary(mp, p,c); goto DONE;
17283 @ @<Convert a suffix to a string@>=
17285 mp_get_x_next(mp); mp_scan_suffix(mp);
17286 mp->old_setting=mp->selector; mp->selector=new_string;
17287 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17288 mp_flush_token_list(mp, mp->cur_exp);
17289 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17290 mp->cur_type=mp_string_type;
17294 @ If an internal quantity appears all by itself on the left of an
17295 assignment, we return a token list of length one, containing the address
17296 of the internal quantity plus |hash_end|. (This accords with the conventions
17297 of the save stack, as described earlier.)
17299 @<Scan an internal...@>=
17302 if ( my_var_flag==assignment ) {
17304 if ( mp->cur_cmd==assignment ) {
17305 mp->cur_exp=mp_get_avail(mp);
17306 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17311 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17314 @ The most difficult part of |scan_primary| has been saved for last, since
17315 it was necessary to build up some confidence first. We can now face the task
17316 of scanning a variable.
17318 As we scan a variable, we build a token list containing the relevant
17319 names and subscript values, simultaneously following along in the
17320 ``collective'' structure to see if we are actually dealing with a macro
17321 instead of a value.
17323 The local variables |pre_head| and |post_head| will point to the beginning
17324 of the prefix and suffix lists; |tail| will point to the end of the list
17325 that is currently growing.
17327 Another local variable, |tt|, contains partial information about the
17328 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17329 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17330 doesn't bother to update its information about type. And if
17331 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17333 @ @<Other local variables for |scan_primary|@>=
17334 pointer pre_head,post_head,tail;
17335 /* prefix and suffix list variables */
17336 small_number tt; /* approximation to the type of the variable-so-far */
17337 pointer t; /* a token */
17338 pointer macro_ref = 0; /* reference count for a suffixed macro */
17340 @ @<Scan a variable primary...@>=
17342 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17344 t=mp_cur_tok(mp); link(tail)=t;
17345 if ( tt!=undefined ) {
17346 @<Find the approximate type |tt| and corresponding~|q|@>;
17347 if ( tt>=mp_unsuffixed_macro ) {
17348 @<Either begin an unsuffixed macro call or
17349 prepare for a suffixed one@>;
17352 mp_get_x_next(mp); tail=t;
17353 if ( mp->cur_cmd==left_bracket ) {
17354 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17356 if ( mp->cur_cmd>max_suffix_token ) break;
17357 if ( mp->cur_cmd<min_suffix_token ) break;
17358 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17359 @<Handle unusual cases that masquerade as variables, and |goto restart|
17360 or |goto done| if appropriate;
17361 otherwise make a copy of the variable and |goto done|@>;
17364 @ @<Either begin an unsuffixed macro call or...@>=
17367 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17368 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17369 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17371 @<Set up unsuffixed macro call and |goto restart|@>;
17375 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17377 mp_get_x_next(mp); mp_scan_expression(mp);
17378 if ( mp->cur_cmd!=right_bracket ) {
17379 @<Put the left bracket and the expression back to be rescanned@>;
17381 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17382 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17386 @ The left bracket that we thought was introducing a subscript might have
17387 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17388 So we don't issue an error message at this point; but we do want to back up
17389 so as to avoid any embarrassment about our incorrect assumption.
17391 @<Put the left bracket and the expression back to be rescanned@>=
17393 mp_back_input(mp); /* that was the token following the current expression */
17394 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17395 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17398 @ Here's a routine that puts the current expression back to be read again.
17400 @c void mp_back_expr (MP mp) {
17401 pointer p; /* capsule token */
17402 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17405 @ Unknown subscripts lead to the following error message.
17407 @c void mp_bad_subscript (MP mp) {
17408 exp_err("Improper subscript has been replaced by zero");
17409 @.Improper subscript...@>
17410 help3("A bracketed subscript must have a known numeric value;")
17411 ("unfortunately, what I found was the value that appears just")
17412 ("above this error message. So I'll try a zero subscript.");
17413 mp_flush_error(mp, 0);
17416 @ Every time we call |get_x_next|, there's a chance that the variable we've
17417 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17418 into the variable structure; we need to start searching from the root each time.
17420 @<Find the approximate type |tt| and corresponding~|q|@>=
17423 p=link(pre_head); q=info(p); tt=undefined;
17424 if ( eq_type(q) % outer_tag==tag_token ) {
17426 if ( q==null ) goto DONE2;
17430 tt=type(q); goto DONE2;
17432 if ( type(q)!=mp_structured ) goto DONE2;
17433 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17434 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17435 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17436 if ( attr_loc(q)>info(p) ) goto DONE2;
17444 @ How do things stand now? Well, we have scanned an entire variable name,
17445 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17446 |cur_sym| represent the token that follows. If |post_head=null|, a
17447 token list for this variable name starts at |link(pre_head)|, with all
17448 subscripts evaluated. But if |post_head<>null|, the variable turned out
17449 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17450 |post_head| is the head of a token list containing both `\.{\AT!}' and
17453 Our immediate problem is to see if this variable still exists. (Variable
17454 structures can change drastically whenever we call |get_x_next|; users
17455 aren't supposed to do this, but the fact that it is possible means that
17456 we must be cautious.)
17458 The following procedure prints an error message when a variable
17459 unexpectedly disappears. Its help message isn't quite right for
17460 our present purposes, but we'll be able to fix that up.
17463 void mp_obliterated (MP mp,pointer q) {
17464 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17465 mp_print(mp, " has been obliterated");
17466 @.Variable...obliterated@>
17467 help5("It seems you did a nasty thing---probably by accident,")
17468 ("but nevertheless you nearly hornswoggled me...")
17469 ("While I was evaluating the right-hand side of this")
17470 ("command, something happened, and the left-hand side")
17471 ("is no longer a variable! So I won't change anything.");
17474 @ If the variable does exist, we also need to check
17475 for a few other special cases before deciding that a plain old ordinary
17476 variable has, indeed, been scanned.
17478 @<Handle unusual cases that masquerade as variables...@>=
17479 if ( post_head!=null ) {
17480 @<Set up suffixed macro call and |goto restart|@>;
17482 q=link(pre_head); free_avail(pre_head);
17483 if ( mp->cur_cmd==my_var_flag ) {
17484 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17486 p=mp_find_variable(mp, q);
17488 mp_make_exp_copy(mp, p);
17490 mp_obliterated(mp, q);
17491 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17492 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17493 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17494 mp_put_get_flush_error(mp, 0);
17496 mp_flush_node_list(mp, q);
17499 @ The only complication associated with macro calling is that the prefix
17500 and ``at'' parameters must be packaged in an appropriate list of lists.
17502 @<Set up unsuffixed macro call and |goto restart|@>=
17504 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17505 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17510 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17511 we don't care, because we have reserved a pointer (|macro_ref|) to its
17514 @<Set up suffixed macro call and |goto restart|@>=
17516 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17517 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17518 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17519 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17520 mp_get_x_next(mp); goto RESTART;
17523 @ Our remaining job is simply to make a copy of the value that has been
17524 found. Some cases are harder than others, but complexity arises solely
17525 because of the multiplicity of possible cases.
17527 @<Declare the procedure called |make_exp_copy|@>=
17528 @<Declare subroutines needed by |make_exp_copy|@>;
17529 void mp_make_exp_copy (MP mp,pointer p) {
17530 pointer q,r,t; /* registers for list manipulation */
17532 mp->cur_type=type(p);
17533 switch (mp->cur_type) {
17534 case mp_vacuous: case mp_boolean_type: case mp_known:
17535 mp->cur_exp=value(p); break;
17536 case unknown_types:
17537 mp->cur_exp=mp_new_ring_entry(mp, p);
17539 case mp_string_type:
17540 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17542 case mp_picture_type:
17543 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17546 mp->cur_exp=copy_pen(value(p));
17549 mp->cur_exp=mp_copy_path(mp, value(p));
17551 case mp_transform_type: case mp_color_type:
17552 case mp_cmykcolor_type: case mp_pair_type:
17553 @<Copy the big node |p|@>;
17555 case mp_dependent: case mp_proto_dependent:
17556 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17558 case mp_numeric_type:
17559 new_indep(p); goto RESTART;
17561 case mp_independent:
17562 q=mp_single_dependency(mp, p);
17563 if ( q==mp->dep_final ){
17564 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17566 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17570 mp_confusion(mp, "copy");
17571 @:this can't happen copy}{\quad copy@>
17576 @ The |encapsulate| subroutine assumes that |dep_final| is the
17577 tail of dependency list~|p|.
17579 @<Declare subroutines needed by |make_exp_copy|@>=
17580 void mp_encapsulate (MP mp,pointer p) {
17581 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17582 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17585 @ The most tedious case arises when the user refers to a
17586 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17587 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17590 @<Copy the big node |p|@>=
17592 if ( value(p)==null )
17593 mp_init_big_node(mp, p);
17594 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17595 mp_init_big_node(mp, t);
17596 q=value(p)+mp->big_node_size[mp->cur_type];
17597 r=value(t)+mp->big_node_size[mp->cur_type];
17599 q=q-2; r=r-2; mp_install(mp, r,q);
17600 } while (q!=value(p));
17604 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17605 a big node that will be part of a capsule.
17607 @<Declare subroutines needed by |make_exp_copy|@>=
17608 void mp_install (MP mp,pointer r, pointer q) {
17609 pointer p; /* temporary register */
17610 if ( type(q)==mp_known ){
17611 value(r)=value(q); type(r)=mp_known;
17612 } else if ( type(q)==mp_independent ) {
17613 p=mp_single_dependency(mp, q);
17614 if ( p==mp->dep_final ) {
17615 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17617 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17620 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17624 @ Expressions of the form `\.{a[b,c]}' are converted into
17625 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17626 provided that \.a is numeric.
17628 @<Scan a mediation...@>=
17630 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17631 if ( mp->cur_cmd!=comma ) {
17632 @<Put the left bracket and the expression back...@>;
17633 mp_unstash_cur_exp(mp, p);
17635 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17636 if ( mp->cur_cmd!=right_bracket ) {
17637 mp_missing_err(mp, "]");
17639 help3("I've scanned an expression of the form `a[b,c',")
17640 ("so a right bracket should have come next.")
17641 ("I shall pretend that one was there.");
17644 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17645 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17646 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17650 @ Here is a comparatively simple routine that is used to scan the
17651 \&{suffix} parameters of a macro.
17653 @<Declare the basic parsing subroutines@>=
17654 void mp_scan_suffix (MP mp) {
17655 pointer h,t; /* head and tail of the list being built */
17656 pointer p; /* temporary register */
17657 h=mp_get_avail(mp); t=h;
17659 if ( mp->cur_cmd==left_bracket ) {
17660 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17662 if ( mp->cur_cmd==numeric_token ) {
17663 p=mp_new_num_tok(mp, mp->cur_mod);
17664 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17665 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17669 link(t)=p; t=p; mp_get_x_next(mp);
17671 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17674 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17676 mp_get_x_next(mp); mp_scan_expression(mp);
17677 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17678 if ( mp->cur_cmd!=right_bracket ) {
17679 mp_missing_err(mp, "]");
17681 help3("I've seen a `[' and a subscript value, in a suffix,")
17682 ("so a right bracket should have come next.")
17683 ("I shall pretend that one was there.");
17686 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17689 @* \[38] Parsing secondary and higher expressions.
17690 After the intricacies of |scan_primary|\kern-1pt,
17691 the |scan_secondary| routine is
17692 refreshingly simple. It's not trivial, but the operations are relatively
17693 straightforward; the main difficulty is, again, that expressions and data
17694 structures might change drastically every time we call |get_x_next|, so a
17695 cautious approach is mandatory. For example, a macro defined by
17696 \&{primarydef} might have disappeared by the time its second argument has
17697 been scanned; we solve this by increasing the reference count of its token
17698 list, so that the macro can be called even after it has been clobbered.
17700 @<Declare the basic parsing subroutines@>=
17701 void mp_scan_secondary (MP mp) {
17702 pointer p; /* for list manipulation */
17703 halfword c,d; /* operation codes or modifiers */
17704 pointer mac_name; /* token defined with \&{primarydef} */
17706 if ((mp->cur_cmd<min_primary_command)||
17707 (mp->cur_cmd>max_primary_command) )
17708 mp_bad_exp(mp, "A secondary");
17709 @.A secondary expression...@>
17710 mp_scan_primary(mp);
17712 if ( mp->cur_cmd<=max_secondary_command )
17713 if ( mp->cur_cmd>=min_secondary_command ) {
17714 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17715 if ( d==secondary_primary_macro ) {
17716 mac_name=mp->cur_sym; add_mac_ref(c);
17718 mp_get_x_next(mp); mp_scan_primary(mp);
17719 if ( d!=secondary_primary_macro ) {
17720 mp_do_binary(mp, p,c);
17722 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17723 decr(ref_count(c)); mp_get_x_next(mp);
17730 @ The following procedure calls a macro that has two parameters,
17733 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17734 pointer q,r; /* nodes in the parameter list */
17735 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17736 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17737 mp_macro_call(mp, c,q,n);
17740 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17742 @<Declare the basic parsing subroutines@>=
17743 void mp_scan_tertiary (MP mp) {
17744 pointer p; /* for list manipulation */
17745 halfword c,d; /* operation codes or modifiers */
17746 pointer mac_name; /* token defined with \&{secondarydef} */
17748 if ((mp->cur_cmd<min_primary_command)||
17749 (mp->cur_cmd>max_primary_command) )
17750 mp_bad_exp(mp, "A tertiary");
17751 @.A tertiary expression...@>
17752 mp_scan_secondary(mp);
17754 if ( mp->cur_cmd<=max_tertiary_command ) {
17755 if ( mp->cur_cmd>=min_tertiary_command ) {
17756 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17757 if ( d==tertiary_secondary_macro ) {
17758 mac_name=mp->cur_sym; add_mac_ref(c);
17760 mp_get_x_next(mp); mp_scan_secondary(mp);
17761 if ( d!=tertiary_secondary_macro ) {
17762 mp_do_binary(mp, p,c);
17764 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17765 decr(ref_count(c)); mp_get_x_next(mp);
17773 @ Finally we reach the deepest level in our quartet of parsing routines.
17774 This one is much like the others; but it has an extra complication from
17775 paths, which materialize here.
17777 @d continue_path 25 /* a label inside of |scan_expression| */
17778 @d finish_path 26 /* another */
17780 @<Declare the basic parsing subroutines@>=
17781 void mp_scan_expression (MP mp) {
17782 pointer p,q,r,pp,qq; /* for list manipulation */
17783 halfword c,d; /* operation codes or modifiers */
17784 int my_var_flag; /* initial value of |var_flag| */
17785 pointer mac_name; /* token defined with \&{tertiarydef} */
17786 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17787 scaled x,y; /* explicit coordinates or tension at a path join */
17788 int t; /* knot type following a path join */
17790 my_var_flag=mp->var_flag; mac_name=null;
17792 if ((mp->cur_cmd<min_primary_command)||
17793 (mp->cur_cmd>max_primary_command) )
17794 mp_bad_exp(mp, "An");
17795 @.An expression...@>
17796 mp_scan_tertiary(mp);
17798 if ( mp->cur_cmd<=max_expression_command )
17799 if ( mp->cur_cmd>=min_expression_command ) {
17800 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17801 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17802 if ( d==expression_tertiary_macro ) {
17803 mac_name=mp->cur_sym; add_mac_ref(c);
17805 if ( (d<ampersand)||((d==ampersand)&&
17806 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17807 @<Scan a path construction operation;
17808 but |return| if |p| has the wrong type@>;
17810 mp_get_x_next(mp); mp_scan_tertiary(mp);
17811 if ( d!=expression_tertiary_macro ) {
17812 mp_do_binary(mp, p,c);
17814 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17815 decr(ref_count(c)); mp_get_x_next(mp);
17824 @ The reader should review the data structure conventions for paths before
17825 hoping to understand the next part of this code.
17827 @<Scan a path construction operation...@>=
17830 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17831 but |return| if |p| doesn't have a suitable type@>;
17833 @<Determine the path join parameters;
17834 but |goto finish_path| if there's only a direction specifier@>;
17835 if ( mp->cur_cmd==cycle ) {
17836 @<Get ready to close a cycle@>;
17838 mp_scan_tertiary(mp);
17839 @<Convert the right operand, |cur_exp|,
17840 into a partial path from |pp| to~|qq|@>;
17842 @<Join the partial paths and reset |p| and |q| to the head and tail
17844 if ( mp->cur_cmd>=min_expression_command )
17845 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17847 @<Choose control points for the path and put the result into |cur_exp|@>;
17850 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17852 mp_unstash_cur_exp(mp, p);
17853 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17854 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17857 while ( link(q)!=p ) q=link(q);
17858 if ( left_type(p)!=endpoint ) { /* open up a cycle */
17859 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17861 left_type(p)=open; right_type(q)=open;
17864 @ A pair of numeric values is changed into a knot node for a one-point path
17865 when \MP\ discovers that the pair is part of a path.
17867 @c@<Declare the procedure called |known_pair|@>;
17868 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
17869 pointer q; /* the new node */
17870 q=mp_get_node(mp, knot_node_size); left_type(q)=endpoint;
17871 right_type(q)=endpoint; originator(q)=metapost_user; link(q)=q;
17872 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
17876 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
17877 of the current expression, assuming that the current expression is a
17878 pair of known numerics. Unknown components are zeroed, and the
17879 current expression is flushed.
17881 @<Declare the procedure called |known_pair|@>=
17882 void mp_known_pair (MP mp) {
17883 pointer p; /* the pair node */
17884 if ( mp->cur_type!=mp_pair_type ) {
17885 exp_err("Undefined coordinates have been replaced by (0,0)");
17886 @.Undefined coordinates...@>
17887 help5("I need x and y numbers for this part of the path.")
17888 ("The value I found (see above) was no good;")
17889 ("so I'll try to keep going by using zero instead.")
17890 ("(Chapter 27 of The METAFONTbook explains that")
17891 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17892 ("you might want to type `I ??" "?' now.)");
17893 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
17895 p=value(mp->cur_exp);
17896 @<Make sure that both |x| and |y| parts of |p| are known;
17897 copy them into |cur_x| and |cur_y|@>;
17898 mp_flush_cur_exp(mp, 0);
17902 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
17903 if ( type(x_part_loc(p))==mp_known ) {
17904 mp->cur_x=value(x_part_loc(p));
17906 mp_disp_err(mp, x_part_loc(p),
17907 "Undefined x coordinate has been replaced by 0");
17908 @.Undefined coordinates...@>
17909 help5("I need a `known' x value for this part of the path.")
17910 ("The value I found (see above) was no good;")
17911 ("so I'll try to keep going by using zero instead.")
17912 ("(Chapter 27 of The METAFONTbook explains that")
17913 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17914 ("you might want to type `I ??" "?' now.)");
17915 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
17917 if ( type(y_part_loc(p))==mp_known ) {
17918 mp->cur_y=value(y_part_loc(p));
17920 mp_disp_err(mp, y_part_loc(p),
17921 "Undefined y coordinate has been replaced by 0");
17922 help5("I need a `known' y value for this part of the path.")
17923 ("The value I found (see above) was no good;")
17924 ("so I'll try to keep going by using zero instead.")
17925 ("(Chapter 27 of The METAFONTbook explains that")
17926 ("you might want to type `I ??" "?' now.)");
17927 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
17930 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
17932 @<Determine the path join parameters...@>=
17933 if ( mp->cur_cmd==left_brace ) {
17934 @<Put the pre-join direction information into node |q|@>;
17937 if ( d==path_join ) {
17938 @<Determine the tension and/or control points@>;
17939 } else if ( d!=ampersand ) {
17943 if ( mp->cur_cmd==left_brace ) {
17944 @<Put the post-join direction information into |x| and |t|@>;
17945 } else if ( right_type(q)!=explicit ) {
17949 @ The |scan_direction| subroutine looks at the directional information
17950 that is enclosed in braces, and also scans ahead to the following character.
17951 A type code is returned, either |open| (if the direction was $(0,0)$),
17952 or |curl| (if the direction was a curl of known value |cur_exp|), or
17953 |given| (if the direction is given by the |angle| value that now
17954 appears in |cur_exp|).
17956 There's nothing difficult about this subroutine, but the program is rather
17957 lengthy because a variety of potential errors need to be nipped in the bud.
17959 @c small_number mp_scan_direction (MP mp) {
17960 int t; /* the type of information found */
17961 scaled x; /* an |x| coordinate */
17963 if ( mp->cur_cmd==curl_command ) {
17964 @<Scan a curl specification@>;
17966 @<Scan a given direction@>;
17968 if ( mp->cur_cmd!=right_brace ) {
17969 mp_missing_err(mp, "}");
17970 @.Missing `\char`\}'@>
17971 help3("I've scanned a direction spec for part of a path,")
17972 ("so a right brace should have come next.")
17973 ("I shall pretend that one was there.");
17980 @ @<Scan a curl specification@>=
17981 { mp_get_x_next(mp); mp_scan_expression(mp);
17982 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
17983 exp_err("Improper curl has been replaced by 1");
17985 help1("A curl must be a known, nonnegative number.");
17986 mp_put_get_flush_error(mp, unity);
17991 @ @<Scan a given direction@>=
17992 { mp_scan_expression(mp);
17993 if ( mp->cur_type>mp_pair_type ) {
17994 @<Get given directions separated by commas@>;
17998 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=open;
17999 else { t=given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18002 @ @<Get given directions separated by commas@>=
18004 if ( mp->cur_type!=mp_known ) {
18005 exp_err("Undefined x coordinate has been replaced by 0");
18006 @.Undefined coordinates...@>
18007 help5("I need a `known' x value for this part of the path.")
18008 ("The value I found (see above) was no good;")
18009 ("so I'll try to keep going by using zero instead.")
18010 ("(Chapter 27 of The METAFONTbook explains that")
18011 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18012 ("you might want to type `I ??" "?' now.)");
18013 mp_put_get_flush_error(mp, 0);
18016 if ( mp->cur_cmd!=comma ) {
18017 mp_missing_err(mp, ",");
18019 help2("I've got the x coordinate of a path direction;")
18020 ("will look for the y coordinate next.");
18023 mp_get_x_next(mp); mp_scan_expression(mp);
18024 if ( mp->cur_type!=mp_known ) {
18025 exp_err("Undefined y coordinate has been replaced by 0");
18026 help5("I need a `known' y value for this part of the path.")
18027 ("The value I found (see above) was no good;")
18028 ("so I'll try to keep going by using zero instead.")
18029 ("(Chapter 27 of The METAFONTbook explains that")
18030 ("you might want to type `I ??" "?' now.)");
18031 mp_put_get_flush_error(mp, 0);
18033 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18036 @ At this point |right_type(q)| is usually |open|, but it may have been
18037 set to some other value by a previous splicing operation. We must maintain
18038 the value of |right_type(q)| in unusual cases such as
18039 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18041 @<Put the pre-join...@>=
18043 t=mp_scan_direction(mp);
18045 right_type(q)=t; right_given(q)=mp->cur_exp;
18046 if ( left_type(q)==open ) {
18047 left_type(q)=t; left_given(q)=mp->cur_exp;
18048 } /* note that |left_given(q)=left_curl(q)| */
18052 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18053 and since |left_given| is similarly equivalent to |left_x|, we use
18054 |x| and |y| to hold the given direction and tension information when
18055 there are no explicit control points.
18057 @<Put the post-join...@>=
18059 t=mp_scan_direction(mp);
18060 if ( right_type(q)!=explicit ) x=mp->cur_exp;
18061 else t=explicit; /* the direction information is superfluous */
18064 @ @<Determine the tension and/or...@>=
18067 if ( mp->cur_cmd==tension ) {
18068 @<Set explicit tensions@>;
18069 } else if ( mp->cur_cmd==controls ) {
18070 @<Set explicit control points@>;
18072 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18075 if ( mp->cur_cmd!=path_join ) {
18076 mp_missing_err(mp, "..");
18078 help1("A path join command should end with two dots.");
18085 @ @<Set explicit tensions@>=
18087 mp_get_x_next(mp); y=mp->cur_cmd;
18088 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18089 mp_scan_primary(mp);
18090 @<Make sure that the current expression is a valid tension setting@>;
18091 if ( y==at_least ) negate(mp->cur_exp);
18092 right_tension(q)=mp->cur_exp;
18093 if ( mp->cur_cmd==and_command ) {
18094 mp_get_x_next(mp); y=mp->cur_cmd;
18095 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18096 mp_scan_primary(mp);
18097 @<Make sure that the current expression is a valid tension setting@>;
18098 if ( y==at_least ) negate(mp->cur_exp);
18103 @ @d min_tension three_quarter_unit
18105 @<Make sure that the current expression is a valid tension setting@>=
18106 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18107 exp_err("Improper tension has been set to 1");
18108 @.Improper tension@>
18109 help1("The expression above should have been a number >=3/4.");
18110 mp_put_get_flush_error(mp, unity);
18113 @ @<Set explicit control points@>=
18115 right_type(q)=explicit; t=explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18116 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18117 if ( mp->cur_cmd!=and_command ) {
18118 x=right_x(q); y=right_y(q);
18120 mp_get_x_next(mp); mp_scan_primary(mp);
18121 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18125 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18127 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18128 else pp=mp->cur_exp;
18130 while ( link(qq)!=pp ) qq=link(qq);
18131 if ( left_type(pp)!=endpoint ) { /* open up a cycle */
18132 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18134 left_type(pp)=open; right_type(qq)=open;
18137 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18138 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18139 shouldn't have length zero.
18141 @<Get ready to close a cycle@>=
18143 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18144 if ( d==ampersand ) if ( p==q ) {
18145 d=path_join; right_tension(q)=unity; y=unity;
18149 @ @<Join the partial paths and reset |p| and |q|...@>=
18151 if ( d==ampersand ) {
18152 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18153 print_err("Paths don't touch; `&' will be changed to `..'");
18154 @.Paths don't touch@>
18155 help3("When you join paths `p&q', the ending point of p")
18156 ("must be exactly equal to the starting point of q.")
18157 ("So I'm going to pretend that you said `p..q' instead.");
18158 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18161 @<Plug an opening in |right_type(pp)|, if possible@>;
18162 if ( d==ampersand ) {
18163 @<Splice independent paths together@>;
18165 @<Plug an opening in |right_type(q)|, if possible@>;
18166 link(q)=pp; left_y(pp)=y;
18167 if ( t!=open ) { left_x(pp)=x; left_type(pp)=t; };
18172 @ @<Plug an opening in |right_type(q)|...@>=
18173 if ( right_type(q)==open ) {
18174 if ( (left_type(q)==curl)||(left_type(q)==given) ) {
18175 right_type(q)=left_type(q); right_given(q)=left_given(q);
18179 @ @<Plug an opening in |right_type(pp)|...@>=
18180 if ( right_type(pp)==open ) {
18181 if ( (t==curl)||(t==given) ) {
18182 right_type(pp)=t; right_given(pp)=x;
18186 @ @<Splice independent paths together@>=
18188 if ( left_type(q)==open ) if ( right_type(q)==open ) {
18189 left_type(q)=curl; left_curl(q)=unity;
18191 if ( right_type(pp)==open ) if ( t==open ) {
18192 right_type(pp)=curl; right_curl(pp)=unity;
18194 right_type(q)=right_type(pp); link(q)=link(pp);
18195 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18196 mp_free_node(mp, pp,knot_node_size);
18197 if ( qq==pp ) qq=q;
18200 @ @<Choose control points for the path...@>=
18202 if ( d==ampersand ) p=q;
18204 left_type(p)=endpoint;
18205 if ( right_type(p)==open ) {
18206 right_type(p)=curl; right_curl(p)=unity;
18208 right_type(q)=endpoint;
18209 if ( left_type(q)==open ) {
18210 left_type(q)=curl; left_curl(q)=unity;
18214 mp_make_choices(mp, p);
18215 mp->cur_type=mp_path_type; mp->cur_exp=p
18217 @ Finally, we sometimes need to scan an expression whose value is
18218 supposed to be either |true_code| or |false_code|.
18220 @<Declare the basic parsing subroutines@>=
18221 void mp_get_boolean (MP mp) {
18222 mp_get_x_next(mp); mp_scan_expression(mp);
18223 if ( mp->cur_type!=mp_boolean_type ) {
18224 exp_err("Undefined condition will be treated as `false'");
18225 @.Undefined condition...@>
18226 help2("The expression shown above should have had a definite")
18227 ("true-or-false value. I'm changing it to `false'.");
18228 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18232 @* \[39] Doing the operations.
18233 The purpose of parsing is primarily to permit people to avoid piles of
18234 parentheses. But the real work is done after the structure of an expression
18235 has been recognized; that's when new expressions are generated. We
18236 turn now to the guts of \MP, which handles individual operators that
18237 have come through the parsing mechanism.
18239 We'll start with the easy ones that take no operands, then work our way
18240 up to operators with one and ultimately two arguments. In other words,
18241 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18242 that are invoked periodically by the expression scanners.
18244 First let's make sure that all of the primitive operators are in the
18245 hash table. Although |scan_primary| and its relatives made use of the
18246 \\{cmd} code for these operators, the \\{do} routines base everything
18247 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18248 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18251 mp_primitive(mp, "true",nullary,true_code);
18252 @:true_}{\&{true} primitive@>
18253 mp_primitive(mp, "false",nullary,false_code);
18254 @:false_}{\&{false} primitive@>
18255 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18256 @:null_picture_}{\&{nullpicture} primitive@>
18257 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18258 @:null_pen_}{\&{nullpen} primitive@>
18259 mp_primitive(mp, "jobname",nullary,job_name_op);
18260 @:job_name_}{\&{jobname} primitive@>
18261 mp_primitive(mp, "readstring",nullary,read_string_op);
18262 @:read_string_}{\&{readstring} primitive@>
18263 mp_primitive(mp, "pencircle",nullary,pen_circle);
18264 @:pen_circle_}{\&{pencircle} primitive@>
18265 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18266 @:normal_deviate_}{\&{normaldeviate} primitive@>
18267 mp_primitive(mp, "readfrom",unary,read_from_op);
18268 @:read_from_}{\&{readfrom} primitive@>
18269 mp_primitive(mp, "closefrom",unary,close_from_op);
18270 @:close_from_}{\&{closefrom} primitive@>
18271 mp_primitive(mp, "odd",unary,odd_op);
18272 @:odd_}{\&{odd} primitive@>
18273 mp_primitive(mp, "known",unary,known_op);
18274 @:known_}{\&{known} primitive@>
18275 mp_primitive(mp, "unknown",unary,unknown_op);
18276 @:unknown_}{\&{unknown} primitive@>
18277 mp_primitive(mp, "not",unary,not_op);
18278 @:not_}{\&{not} primitive@>
18279 mp_primitive(mp, "decimal",unary,decimal);
18280 @:decimal_}{\&{decimal} primitive@>
18281 mp_primitive(mp, "reverse",unary,reverse);
18282 @:reverse_}{\&{reverse} primitive@>
18283 mp_primitive(mp, "makepath",unary,make_path_op);
18284 @:make_path_}{\&{makepath} primitive@>
18285 mp_primitive(mp, "makepen",unary,make_pen_op);
18286 @:make_pen_}{\&{makepen} primitive@>
18287 mp_primitive(mp, "oct",unary,oct_op);
18288 @:oct_}{\&{oct} primitive@>
18289 mp_primitive(mp, "hex",unary,hex_op);
18290 @:hex_}{\&{hex} primitive@>
18291 mp_primitive(mp, "ASCII",unary,ASCII_op);
18292 @:ASCII_}{\&{ASCII} primitive@>
18293 mp_primitive(mp, "char",unary,char_op);
18294 @:char_}{\&{char} primitive@>
18295 mp_primitive(mp, "length",unary,length_op);
18296 @:length_}{\&{length} primitive@>
18297 mp_primitive(mp, "turningnumber",unary,turning_op);
18298 @:turning_number_}{\&{turningnumber} primitive@>
18299 mp_primitive(mp, "xpart",unary,x_part);
18300 @:x_part_}{\&{xpart} primitive@>
18301 mp_primitive(mp, "ypart",unary,y_part);
18302 @:y_part_}{\&{ypart} primitive@>
18303 mp_primitive(mp, "xxpart",unary,xx_part);
18304 @:xx_part_}{\&{xxpart} primitive@>
18305 mp_primitive(mp, "xypart",unary,xy_part);
18306 @:xy_part_}{\&{xypart} primitive@>
18307 mp_primitive(mp, "yxpart",unary,yx_part);
18308 @:yx_part_}{\&{yxpart} primitive@>
18309 mp_primitive(mp, "yypart",unary,yy_part);
18310 @:yy_part_}{\&{yypart} primitive@>
18311 mp_primitive(mp, "redpart",unary,red_part);
18312 @:red_part_}{\&{redpart} primitive@>
18313 mp_primitive(mp, "greenpart",unary,green_part);
18314 @:green_part_}{\&{greenpart} primitive@>
18315 mp_primitive(mp, "bluepart",unary,blue_part);
18316 @:blue_part_}{\&{bluepart} primitive@>
18317 mp_primitive(mp, "cyanpart",unary,cyan_part);
18318 @:cyan_part_}{\&{cyanpart} primitive@>
18319 mp_primitive(mp, "magentapart",unary,magenta_part);
18320 @:magenta_part_}{\&{magentapart} primitive@>
18321 mp_primitive(mp, "yellowpart",unary,yellow_part);
18322 @:yellow_part_}{\&{yellowpart} primitive@>
18323 mp_primitive(mp, "blackpart",unary,black_part);
18324 @:black_part_}{\&{blackpart} primitive@>
18325 mp_primitive(mp, "greypart",unary,grey_part);
18326 @:grey_part_}{\&{greypart} primitive@>
18327 mp_primitive(mp, "colormodel",unary,color_model_part);
18328 @:color_model_part_}{\&{colormodel} primitive@>
18329 mp_primitive(mp, "fontpart",unary,font_part);
18330 @:font_part_}{\&{fontpart} primitive@>
18331 mp_primitive(mp, "textpart",unary,text_part);
18332 @:text_part_}{\&{textpart} primitive@>
18333 mp_primitive(mp, "pathpart",unary,path_part);
18334 @:path_part_}{\&{pathpart} primitive@>
18335 mp_primitive(mp, "penpart",unary,pen_part);
18336 @:pen_part_}{\&{penpart} primitive@>
18337 mp_primitive(mp, "dashpart",unary,dash_part);
18338 @:dash_part_}{\&{dashpart} primitive@>
18339 mp_primitive(mp, "sqrt",unary,sqrt_op);
18340 @:sqrt_}{\&{sqrt} primitive@>
18341 mp_primitive(mp, "mexp",unary,m_exp_op);
18342 @:m_exp_}{\&{mexp} primitive@>
18343 mp_primitive(mp, "mlog",unary,m_log_op);
18344 @:m_log_}{\&{mlog} primitive@>
18345 mp_primitive(mp, "sind",unary,sin_d_op);
18346 @:sin_d_}{\&{sind} primitive@>
18347 mp_primitive(mp, "cosd",unary,cos_d_op);
18348 @:cos_d_}{\&{cosd} primitive@>
18349 mp_primitive(mp, "floor",unary,floor_op);
18350 @:floor_}{\&{floor} primitive@>
18351 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18352 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18353 mp_primitive(mp, "charexists",unary,char_exists_op);
18354 @:char_exists_}{\&{charexists} primitive@>
18355 mp_primitive(mp, "fontsize",unary,font_size);
18356 @:font_size_}{\&{fontsize} primitive@>
18357 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18358 @:ll_corner_}{\&{llcorner} primitive@>
18359 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18360 @:lr_corner_}{\&{lrcorner} primitive@>
18361 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18362 @:ul_corner_}{\&{ulcorner} primitive@>
18363 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18364 @:ur_corner_}{\&{urcorner} primitive@>
18365 mp_primitive(mp, "arclength",unary,arc_length);
18366 @:arc_length_}{\&{arclength} primitive@>
18367 mp_primitive(mp, "angle",unary,angle_op);
18368 @:angle_}{\&{angle} primitive@>
18369 mp_primitive(mp, "cycle",cycle,cycle_op);
18370 @:cycle_}{\&{cycle} primitive@>
18371 mp_primitive(mp, "stroked",unary,stroked_op);
18372 @:stroked_}{\&{stroked} primitive@>
18373 mp_primitive(mp, "filled",unary,filled_op);
18374 @:filled_}{\&{filled} primitive@>
18375 mp_primitive(mp, "textual",unary,textual_op);
18376 @:textual_}{\&{textual} primitive@>
18377 mp_primitive(mp, "clipped",unary,clipped_op);
18378 @:clipped_}{\&{clipped} primitive@>
18379 mp_primitive(mp, "bounded",unary,bounded_op);
18380 @:bounded_}{\&{bounded} primitive@>
18381 mp_primitive(mp, "+",plus_or_minus,plus);
18382 @:+ }{\.{+} primitive@>
18383 mp_primitive(mp, "-",plus_or_minus,minus);
18384 @:- }{\.{-} primitive@>
18385 mp_primitive(mp, "*",secondary_binary,times);
18386 @:* }{\.{*} primitive@>
18387 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18388 @:/ }{\.{/} primitive@>
18389 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18390 @:++_}{\.{++} primitive@>
18391 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18392 @:+-+_}{\.{+-+} primitive@>
18393 mp_primitive(mp, "or",tertiary_binary,or_op);
18394 @:or_}{\&{or} primitive@>
18395 mp_primitive(mp, "and",and_command,and_op);
18396 @:and_}{\&{and} primitive@>
18397 mp_primitive(mp, "<",expression_binary,less_than);
18398 @:< }{\.{<} primitive@>
18399 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18400 @:<=_}{\.{<=} primitive@>
18401 mp_primitive(mp, ">",expression_binary,greater_than);
18402 @:> }{\.{>} primitive@>
18403 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18404 @:>=_}{\.{>=} primitive@>
18405 mp_primitive(mp, "=",equals,equal_to);
18406 @:= }{\.{=} primitive@>
18407 mp_primitive(mp, "<>",expression_binary,unequal_to);
18408 @:<>_}{\.{<>} primitive@>
18409 mp_primitive(mp, "substring",primary_binary,substring_of);
18410 @:substring_}{\&{substring} primitive@>
18411 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18412 @:subpath_}{\&{subpath} primitive@>
18413 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18414 @:direction_time_}{\&{directiontime} primitive@>
18415 mp_primitive(mp, "point",primary_binary,point_of);
18416 @:point_}{\&{point} primitive@>
18417 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18418 @:precontrol_}{\&{precontrol} primitive@>
18419 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18420 @:postcontrol_}{\&{postcontrol} primitive@>
18421 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18422 @:pen_offset_}{\&{penoffset} primitive@>
18423 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18424 @:arc_time_of_}{\&{arctime} primitive@>
18425 mp_primitive(mp, "mpversion",nullary,mp_version);
18426 @:mp_verison_}{\&{mpversion} primitive@>
18427 mp_primitive(mp, "&",ampersand,concatenate);
18428 @:!!!}{\.{\&} primitive@>
18429 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18430 @:rotated_}{\&{rotated} primitive@>
18431 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18432 @:slanted_}{\&{slanted} primitive@>
18433 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18434 @:scaled_}{\&{scaled} primitive@>
18435 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18436 @:shifted_}{\&{shifted} primitive@>
18437 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18438 @:transformed_}{\&{transformed} primitive@>
18439 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18440 @:x_scaled_}{\&{xscaled} primitive@>
18441 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18442 @:y_scaled_}{\&{yscaled} primitive@>
18443 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18444 @:z_scaled_}{\&{zscaled} primitive@>
18445 mp_primitive(mp, "infont",secondary_binary,in_font);
18446 @:in_font_}{\&{infont} primitive@>
18447 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18448 @:intersection_times_}{\&{intersectiontimes} primitive@>
18450 @ @<Cases of |print_cmd...@>=
18453 case primary_binary:
18454 case secondary_binary:
18455 case tertiary_binary:
18456 case expression_binary:
18458 case plus_or_minus:
18463 mp_print_op(mp, m);
18466 @ OK, let's look at the simplest \\{do} procedure first.
18468 @c @<Declare nullary action procedure@>;
18469 void mp_do_nullary (MP mp,quarterword c) {
18471 if ( mp->internal[tracing_commands]>two )
18472 mp_show_cmd_mod(mp, nullary,c);
18474 case true_code: case false_code:
18475 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18477 case null_picture_code:
18478 mp->cur_type=mp_picture_type;
18479 mp->cur_exp=mp_get_node(mp, edge_header_size);
18480 mp_init_edges(mp, mp->cur_exp);
18482 case null_pen_code:
18483 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18485 case normal_deviate:
18486 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18489 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18492 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18493 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18496 mp->cur_type=mp_string_type;
18497 mp->cur_exp=intern(metapost_version) ;
18499 case read_string_op:
18500 @<Read a string from the terminal@>;
18502 } /* there are no other cases */
18506 @ @<Read a string...@>=
18508 if ( mp->interaction<=mp_nonstop_mode )
18509 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18510 mp_begin_file_reading(mp); name=is_read;
18511 limit=start; prompt_input("");
18512 mp_finish_read(mp);
18515 @ @<Declare nullary action procedure@>=
18516 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18518 str_room((int)mp->last-start);
18519 for (k=start;k<=mp->last-1;k++) {
18520 append_char(mp->buffer[k]);
18522 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18523 mp->cur_exp=mp_make_string(mp);
18526 @ Things get a bit more interesting when there's an operand. The
18527 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18529 @c @<Declare unary action procedures@>;
18530 void mp_do_unary (MP mp,quarterword c) {
18531 pointer p,q,r; /* for list manipulation */
18532 integer x; /* a temporary register */
18534 if ( mp->internal[tracing_commands]>two )
18535 @<Trace the current unary operation@>;
18538 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18541 @<Negate the current expression@>;
18543 @<Additional cases of unary operators@>;
18544 } /* there are no other cases */
18548 @ The |nice_pair| function returns |true| if both components of a pair
18551 @<Declare unary action procedures@>=
18552 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18553 if ( t==mp_pair_type ) {
18555 if ( type(x_part_loc(p))==mp_known )
18556 if ( type(y_part_loc(p))==mp_known )
18562 @ The |nice_color_or_pair| function is analogous except that it also accepts
18563 fully known colors.
18565 @<Declare unary action procedures@>=
18566 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18567 pointer q,r; /* for scanning the big node */
18568 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18572 r=q+mp->big_node_size[type(p)];
18575 if ( type(r)!=mp_known )
18582 @ @<Declare unary action...@>=
18583 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18584 mp_print_char(mp, '(');
18585 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18586 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18587 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18588 mp_print_type(mp, t);
18590 mp_print_char(mp, ')');
18593 @ @<Declare unary action...@>=
18594 void mp_bad_unary (MP mp,quarterword c) {
18595 exp_err("Not implemented: "); mp_print_op(mp, c);
18596 @.Not implemented...@>
18597 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18598 help3("I'm afraid I don't know how to apply that operation to that")
18599 ("particular type. Continue, and I'll simply return the")
18600 ("argument (shown above) as the result of the operation.");
18601 mp_put_get_error(mp);
18604 @ @<Trace the current unary operation@>=
18606 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18607 mp_print_op(mp, c); mp_print_char(mp, '(');
18608 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18609 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18612 @ Negation is easy except when the current expression
18613 is of type |independent|, or when it is a pair with one or more
18614 |independent| components.
18616 It is tempting to argue that the negative of an independent variable
18617 is an independent variable, hence we don't have to do anything when
18618 negating it. The fallacy is that other dependent variables pointing
18619 to the current expression must change the sign of their
18620 coefficients if we make no change to the current expression.
18622 Instead, we work around the problem by copying the current expression
18623 and recycling it afterwards (cf.~the |stash_in| routine).
18625 @<Negate the current expression@>=
18626 switch (mp->cur_type) {
18627 case mp_color_type:
18628 case mp_cmykcolor_type:
18630 case mp_independent:
18631 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18632 if ( mp->cur_type==mp_dependent ) {
18633 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18634 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18635 p=value(mp->cur_exp);
18636 r=p+mp->big_node_size[mp->cur_type];
18639 if ( type(r)==mp_known ) negate(value(r));
18640 else mp_negate_dep_list(mp, dep_list(r));
18642 } /* if |cur_type=mp_known| then |cur_exp=0| */
18643 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18646 case mp_proto_dependent:
18647 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18650 negate(mp->cur_exp);
18653 mp_bad_unary(mp, minus);
18657 @ @<Declare unary action...@>=
18658 void mp_negate_dep_list (MP mp,pointer p) {
18661 if ( info(p)==null ) return;
18666 @ @<Additional cases of unary operators@>=
18668 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18669 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18672 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18673 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18675 @<Additional cases of unary operators@>=
18682 case uniform_deviate:
18684 case char_exists_op:
18685 if ( mp->cur_type!=mp_known ) {
18686 mp_bad_unary(mp, c);
18689 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18690 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18691 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18694 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18695 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18696 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18698 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18699 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18701 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18702 mp->cur_type=mp_boolean_type;
18704 case char_exists_op:
18705 @<Determine if a character has been shipped out@>;
18707 } /* there are no other cases */
18711 @ @<Additional cases of unary operators@>=
18713 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18714 p=value(mp->cur_exp);
18715 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18716 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18717 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18719 mp_bad_unary(mp, angle_op);
18723 @ If the current expression is a pair, but the context wants it to
18724 be a path, we call |pair_to_path|.
18726 @<Declare unary action...@>=
18727 void mp_pair_to_path (MP mp) {
18728 mp->cur_exp=mp_new_knot(mp);
18729 mp->cur_type=mp_path_type;
18732 @ @<Additional cases of unary operators@>=
18735 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18736 mp_take_part(mp, c);
18737 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18738 else mp_bad_unary(mp, c);
18744 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18745 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18746 else mp_bad_unary(mp, c);
18751 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18752 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18753 else mp_bad_unary(mp, c);
18759 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18760 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18761 else mp_bad_unary(mp, c);
18764 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18765 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18766 else mp_bad_unary(mp, c);
18768 case color_model_part:
18769 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18770 else mp_bad_unary(mp, c);
18773 @ In the following procedure, |cur_exp| points to a capsule, which points to
18774 a big node. We want to delete all but one part of the big node.
18776 @<Declare unary action...@>=
18777 void mp_take_part (MP mp,quarterword c) {
18778 pointer p; /* the big node */
18779 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18780 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18781 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18782 mp_recycle_value(mp, temp_val);
18785 @ @<Initialize table entries...@>=
18786 name_type(temp_val)=mp_capsule;
18788 @ @<Additional cases of unary operators@>=
18794 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18795 else mp_bad_unary(mp, c);
18798 @ @<Declarations@>=
18799 void mp_scale_edges (MP mp);
18801 @ @<Declare unary action...@>=
18802 void mp_take_pict_part (MP mp,quarterword c) {
18803 pointer p; /* first graphical object in |cur_exp| */
18804 p=link(dummy_loc(mp->cur_exp));
18807 case x_part: case y_part: case xx_part:
18808 case xy_part: case yx_part: case yy_part:
18809 if ( type(p)==text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18810 else goto NOT_FOUND;
18812 case red_part: case green_part: case blue_part:
18813 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18814 else goto NOT_FOUND;
18816 case cyan_part: case magenta_part: case yellow_part:
18818 if ( has_color(p) ) {
18819 if ( color_model(p)==uninitialized_model )
18820 mp_flush_cur_exp(mp, unity);
18822 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18823 } else goto NOT_FOUND;
18826 if ( has_color(p) )
18827 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18828 else goto NOT_FOUND;
18830 case color_model_part:
18831 if ( has_color(p) ) {
18832 if ( color_model(p)==uninitialized_model )
18833 mp_flush_cur_exp(mp, mp->internal[default_color_model]);
18835 mp_flush_cur_exp(mp, color_model(p)*unity);
18836 } else goto NOT_FOUND;
18838 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18839 } /* all cases have been enumerated */
18843 @<Convert the current expression to a null value appropriate
18847 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18849 if ( type(p)!=text_code ) goto NOT_FOUND;
18851 mp_flush_cur_exp(mp, text_p(p));
18852 add_str_ref(mp->cur_exp);
18853 mp->cur_type=mp_string_type;
18857 if ( type(p)!=text_code ) goto NOT_FOUND;
18859 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18860 add_str_ref(mp->cur_exp);
18861 mp->cur_type=mp_string_type;
18865 if ( type(p)==text_code ) goto NOT_FOUND;
18866 else if ( is_stop(p) ) mp_confusion(mp, "pict");
18867 @:this can't happen pict}{\quad pict@>
18869 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
18870 mp->cur_type=mp_path_type;
18874 if ( ! has_pen(p) ) goto NOT_FOUND;
18876 if ( pen_p(p)==null ) goto NOT_FOUND;
18877 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
18878 mp->cur_type=mp_pen_type;
18883 if ( type(p)!=stroked_code ) goto NOT_FOUND;
18884 else { if ( dash_p(p)==null ) goto NOT_FOUND;
18885 else { add_edge_ref(dash_p(p));
18886 mp->se_sf=dash_scale(p);
18887 mp->se_pic=dash_p(p);
18888 mp_scale_edges(mp);
18889 mp_flush_cur_exp(mp, mp->se_pic);
18890 mp->cur_type=mp_picture_type;
18895 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
18896 parameterless procedure even though it really takes two arguments and updates
18897 one of them. Hence the following globals are needed.
18900 pointer se_pic; /* edge header used and updated by |scale_edges| */
18901 scaled se_sf; /* the scale factor argument to |scale_edges| */
18903 @ @<Convert the current expression to a null value appropriate...@>=
18905 case text_part: case font_part:
18906 mp_flush_cur_exp(mp, rts(""));
18907 mp->cur_type=mp_string_type;
18910 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
18911 left_type(mp->cur_exp)=endpoint;
18912 right_type(mp->cur_exp)=endpoint;
18913 link(mp->cur_exp)=mp->cur_exp;
18914 x_coord(mp->cur_exp)=0;
18915 y_coord(mp->cur_exp)=0;
18916 originator(mp->cur_exp)=metapost_user;
18917 mp->cur_type=mp_path_type;
18920 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
18921 mp->cur_type=mp_pen_type;
18924 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
18925 mp_init_edges(mp, mp->cur_exp);
18926 mp->cur_type=mp_picture_type;
18929 mp_flush_cur_exp(mp, 0);
18933 @ @<Additional cases of unary...@>=
18935 if ( mp->cur_type!=mp_known ) {
18936 mp_bad_unary(mp, char_op);
18938 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
18939 mp->cur_type=mp_string_type;
18940 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
18944 if ( mp->cur_type!=mp_known ) {
18945 mp_bad_unary(mp, decimal);
18947 mp->old_setting=mp->selector; mp->selector=new_string;
18948 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
18949 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
18955 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
18956 else mp_str_to_num(mp, c);
18959 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
18960 else @<Find the design size of the font whose name is |cur_exp|@>;
18963 @ @<Declare unary action...@>=
18964 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
18965 integer n; /* accumulator */
18966 ASCII_code m; /* current character */
18967 pool_pointer k; /* index into |str_pool| */
18968 int b; /* radix of conversion */
18969 boolean bad_char; /* did the string contain an invalid digit? */
18970 if ( c==ASCII_op ) {
18971 if ( length(mp->cur_exp)==0 ) n=-1;
18972 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
18974 if ( c==oct_op ) b=8; else b=16;
18975 n=0; bad_char=false;
18976 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
18978 if ( (m>='0')&&(m<='9') ) m=m-'0';
18979 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
18980 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
18981 else { bad_char=true; m=0; };
18982 if ( m>=b ) { bad_char=true; m=0; };
18983 if ( n<32768 / b ) n=n*b+m; else n=32767;
18985 @<Give error messages if |bad_char| or |n>=4096|@>;
18987 mp_flush_cur_exp(mp, n*unity);
18990 @ @<Give error messages if |bad_char|...@>=
18992 exp_err("String contains illegal digits");
18993 @.String contains illegal digits@>
18995 help1("I zeroed out characters that weren't in the range 0..7.");
18997 help1("I zeroed out characters that weren't hex digits.");
18999 mp_put_get_error(mp);
19002 if ( mp->internal[warning_check]>0 ) {
19003 print_err("Number too large (");
19004 mp_print_int(mp, n); mp_print_char(mp, ')');
19005 @.Number too large@>
19006 help2("I have trouble with numbers greater than 4095; watch out.")
19007 ("(Set warningcheck:=0 to suppress this message.)");
19008 mp_put_get_error(mp);
19012 @ The length operation is somewhat unusual in that it applies to a variety
19013 of different types of operands.
19015 @<Additional cases of unary...@>=
19017 switch (mp->cur_type) {
19018 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19019 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19020 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19021 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19023 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19024 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19025 value(x_part_loc(value(mp->cur_exp))),
19026 value(y_part_loc(value(mp->cur_exp)))));
19027 else mp_bad_unary(mp, c);
19032 @ @<Declare unary action...@>=
19033 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19034 scaled n; /* the path length so far */
19035 pointer p; /* traverser */
19037 if ( left_type(p)==endpoint ) n=-unity; else n=0;
19038 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19042 @ @<Declare unary action...@>=
19043 scaled mp_pict_length (MP mp) {
19044 /* counts interior components in picture |cur_exp| */
19045 scaled n; /* the count so far */
19046 pointer p; /* traverser */
19048 p=link(dummy_loc(mp->cur_exp));
19050 if ( is_start_or_stop(p) )
19051 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19052 while ( p!=null ) {
19053 skip_component(p) return n;
19060 @ Implement |turningnumber|
19062 @<Additional cases of unary...@>=
19064 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19065 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19066 else if ( left_type(mp->cur_exp)==endpoint )
19067 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19069 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19072 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19073 argument is |origin|.
19075 @<Declare unary action...@>=
19076 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19077 if ( (! ((xpar==0) && (ypar==0))) )
19078 return mp_n_arg(mp, xpar,ypar);
19083 @ The actual turning number is (for the moment) computed in a C function
19084 that receives eight integers corresponding to the four controlling points,
19085 and returns a single angle. Besides those, we have to account for discrete
19086 moves at the actual points.
19088 @d floor(a) (a>=0 ? a : -(int)(-a))
19089 @d bezier_error (720<<20)+1
19090 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19091 @d print_roots(a) { if (debuglevel>(65536*2))
19092 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19093 @d out ((double)(xo>>20))
19094 @d mid ((double)(xm>>20))
19095 @d in ((double)(xi>>20))
19096 @d divisor (256*256)
19097 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19099 @<Declare unary action...@>=
19100 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19101 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19104 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19105 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19107 integer deltax,deltay;
19108 double ax,ay,bx,by,cx,cy,dx,dy;
19109 angle xi = 0, xo = 0, xm = 0;
19111 ax=AX/divisor; ay=AY/divisor;
19112 bx=BX/divisor; by=BY/divisor;
19113 cx=CX/divisor; cy=CY/divisor;
19114 dx=DX/divisor; dy=DY/divisor;
19116 deltax = (BX-AX); deltay = (BY-AY);
19117 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19118 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19119 xi = mp_an_angle(mp,deltax,deltay);
19121 deltax = (CX-BX); deltay = (CY-BY);
19122 xm = mp_an_angle(mp,deltax,deltay);
19124 deltax = (DX-CX); deltay = (DY-CY);
19125 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19126 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19127 xo = mp_an_angle(mp,deltax,deltay);
19129 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19130 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19131 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19133 if (debuglevel>(65536*2)) {
19135 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19136 ax,ay,bx,by,cx,cy,dx,dy);
19138 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19141 if ((a==0)&&(c==0)) {
19142 res = (b==0 ? 0 : (out-in));
19143 print_roots("no roots (a)");
19144 } else if ((a==0)||(c==0)) {
19145 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19146 res = out-in; /* ? */
19149 else if (res>180.0)
19151 print_roots("no roots (b)");
19153 res = out-in; /* ? */
19154 print_roots("one root (a)");
19156 } else if ((sign(a)*sign(c))<0) {
19157 res = out-in; /* ? */
19160 else if (res>180.0)
19162 print_roots("one root (b)");
19164 if (sign(a) == sign(b)) {
19165 res = out-in; /* ? */
19168 else if (res>180.0)
19170 print_roots("no roots (d)");
19172 if ((b*b) == (4*a*c)) {
19173 res = bezier_error;
19174 print_roots("double root"); /* cusp */
19175 } else if ((b*b) < (4*a*c)) {
19176 res = out-in; /* ? */
19177 if (res<=0.0 &&res>-180.0)
19179 else if (res>=0.0 && res<180.0)
19181 print_roots("no roots (e)");
19186 else if (res>180.0)
19188 print_roots("two roots"); /* two inflections */
19192 return double2angle(res);
19196 @d p_nextnext link(link(p))
19198 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19200 @<Declare unary action...@>=
19201 scaled mp_new_turn_cycles (MP mp,pointer c) {
19202 angle res,ang; /* the angles of intermediate results */
19203 scaled turns; /* the turn counter */
19204 pointer p; /* for running around the path */
19205 integer xp,yp; /* coordinates of next point */
19206 integer x,y; /* helper coordinates */
19207 angle in_angle,out_angle; /* helper angles */
19208 int old_setting; /* saved |selector| setting */
19212 old_setting = mp->selector; mp->selector=term_only;
19213 if ( mp->internal[tracing_commands]>unity ) {
19214 mp_begin_diagnostic(mp);
19215 mp_print_nl(mp, "");
19216 mp_end_diagnostic(mp, false);
19219 xp = x_coord(p_next); yp = y_coord(p_next);
19220 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19221 left_x(p_next), left_y(p_next), xp, yp,
19222 mp->internal[tracing_commands]);
19223 if ( ang>seven_twenty_deg ) {
19224 print_err("Strange path");
19226 mp->selector=old_setting;
19230 if ( res > one_eighty_deg ) {
19231 res = res - three_sixty_deg;
19232 turns = turns + unity;
19234 if ( res <= -one_eighty_deg ) {
19235 res = res + three_sixty_deg;
19236 turns = turns - unity;
19238 /* incoming angle at next point */
19239 x = left_x(p_next); y = left_y(p_next);
19240 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19241 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19242 in_angle = mp_an_angle(mp, xp - x, yp - y);
19243 /* outgoing angle at next point */
19244 x = right_x(p_next); y = right_y(p_next);
19245 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19246 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19247 out_angle = mp_an_angle(mp, x - xp, y- yp);
19248 ang = (out_angle - in_angle);
19252 if ( res >= one_eighty_deg ) {
19253 res = res - three_sixty_deg;
19254 turns = turns + unity;
19256 if ( res <= -one_eighty_deg ) {
19257 res = res + three_sixty_deg;
19258 turns = turns - unity;
19263 mp->selector=old_setting;
19268 @ This code is based on Bogus\l{}av Jackowski's
19269 |emergency_turningnumber| macro, with some minor changes by Taco
19270 Hoekwater. The macro code looked more like this:
19272 vardef turning\_number primary p =
19273 ~~save res, ang, turns;
19275 ~~if length p <= 2:
19276 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19278 ~~~~for t = 0 upto length p-1 :
19279 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19280 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19281 ~~~~~~if angc > 180: angc := angc - 360; fi;
19282 ~~~~~~if angc < -180: angc := angc + 360; fi;
19283 ~~~~~~res := res + angc;
19288 The general idea is to calculate only the sum of the angles of
19289 straight lines between the points, of a path, not worrying about cusps
19290 or self-intersections in the segments at all. If the segment is not
19291 well-behaved, the result is not necesarily correct. But the old code
19292 was not always correct either, and worse, it sometimes failed for
19293 well-behaved paths as well. All known bugs that were triggered by the
19294 original code no longer occur with this code, and it runs roughly 3
19295 times as fast because the algorithm is much simpler.
19297 @ It is possible to overflow the return value of the |turn_cycles|
19298 function when the path is sufficiently long and winding, but I am not
19299 going to bother testing for that. In any case, it would only return
19300 the looped result value, which is not a big problem.
19302 The macro code for the repeat loop was a bit nicer to look
19303 at than the pascal code, because it could use |point -1 of p|. In
19304 pascal, the fastest way to loop around the path is not to look
19305 backward once, but forward twice. These defines help hide the trick.
19307 @d p_to link(link(p))
19311 @<Declare unary action...@>=
19312 scaled mp_turn_cycles (MP mp,pointer c) {
19313 angle res,ang; /* the angles of intermediate results */
19314 scaled turns; /* the turn counter */
19315 pointer p; /* for running around the path */
19316 res=0; turns= 0; p=c;
19318 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19319 y_coord(p_to) - y_coord(p_here))
19320 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19321 y_coord(p_here) - y_coord(p_from));
19324 if ( res >= three_sixty_deg ) {
19325 res = res - three_sixty_deg;
19326 turns = turns + unity;
19328 if ( res <= -three_sixty_deg ) {
19329 res = res + three_sixty_deg;
19330 turns = turns - unity;
19337 @ @<Declare unary action...@>=
19338 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19340 scaled saved_t_o; /* tracing\_online saved */
19341 if ( (link(c)==c)||(link(link(c))==c) ) {
19342 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19347 nval = mp_new_turn_cycles(mp, c);
19348 oval = mp_turn_cycles(mp, c);
19349 if ( nval!=oval ) {
19350 saved_t_o=mp->internal[tracing_online];
19351 mp->internal[tracing_online]=unity;
19352 mp_begin_diagnostic(mp);
19353 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19354 " The current computed value is ");
19355 mp_print_scaled(mp, nval);
19356 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19357 mp_print_scaled(mp, oval);
19358 mp_end_diagnostic(mp, false);
19359 mp->internal[tracing_online]=saved_t_o;
19365 @ @<Declare unary action...@>=
19366 scaled mp_count_turns (MP mp,pointer c) {
19367 pointer p; /* a knot in envelope spec |c| */
19368 integer t; /* total pen offset changes counted */
19371 t=t+info(p)-zero_off;
19374 return ((t / 3)*unity);
19377 @ @d type_range(A,B) {
19378 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19379 mp_flush_cur_exp(mp, true_code);
19380 else mp_flush_cur_exp(mp, false_code);
19381 mp->cur_type=mp_boolean_type;
19384 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19385 else mp_flush_cur_exp(mp, false_code);
19386 mp->cur_type=mp_boolean_type;
19389 @<Additional cases of unary operators@>=
19390 case mp_boolean_type:
19391 type_range(mp_boolean_type,mp_unknown_boolean); break;
19392 case mp_string_type:
19393 type_range(mp_string_type,mp_unknown_string); break;
19395 type_range(mp_pen_type,mp_unknown_pen); break;
19397 type_range(mp_path_type,mp_unknown_path); break;
19398 case mp_picture_type:
19399 type_range(mp_picture_type,mp_unknown_picture); break;
19400 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19402 type_test(c); break;
19403 case mp_numeric_type:
19404 type_range(mp_known,mp_independent); break;
19405 case known_op: case unknown_op:
19406 mp_test_known(mp, c); break;
19408 @ @<Declare unary action procedures@>=
19409 void mp_test_known (MP mp,quarterword c) {
19410 int b; /* is the current expression known? */
19411 pointer p,q; /* locations in a big node */
19413 switch (mp->cur_type) {
19414 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19415 case mp_pen_type: case mp_path_type: case mp_picture_type:
19419 case mp_transform_type:
19420 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19421 p=value(mp->cur_exp);
19422 q=p+mp->big_node_size[mp->cur_type];
19425 if ( type(q)!=mp_known )
19434 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19435 else mp_flush_cur_exp(mp, true_code+false_code-b);
19436 mp->cur_type=mp_boolean_type;
19439 @ @<Additional cases of unary operators@>=
19441 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19442 else if ( left_type(mp->cur_exp)!=endpoint ) mp_flush_cur_exp(mp, true_code);
19443 else mp_flush_cur_exp(mp, false_code);
19444 mp->cur_type=mp_boolean_type;
19447 @ @<Additional cases of unary operators@>=
19449 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19450 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19451 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19454 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19456 @^data structure assumptions@>
19458 @<Additional cases of unary operators@>=
19464 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19465 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19466 else if ( type(link(dummy_loc(mp->cur_exp)))==c+fill_code-filled_op )
19467 mp_flush_cur_exp(mp, true_code);
19468 else mp_flush_cur_exp(mp, false_code);
19469 mp->cur_type=mp_boolean_type;
19472 @ @<Additional cases of unary operators@>=
19474 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19475 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19477 mp->cur_type=mp_pen_type;
19478 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19482 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19484 mp->cur_type=mp_path_type;
19485 mp_make_path(mp, mp->cur_exp);
19489 if ( mp->cur_type==mp_path_type ) {
19490 p=mp_htap_ypoc(mp, mp->cur_exp);
19491 if ( right_type(p)==endpoint ) p=link(p);
19492 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19493 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19494 else mp_bad_unary(mp, reverse);
19497 @ The |pair_value| routine changes the current expression to a
19498 given ordered pair of values.
19500 @<Declare unary action procedures@>=
19501 void mp_pair_value (MP mp,scaled x, scaled y) {
19502 pointer p; /* a pair node */
19503 p=mp_get_node(mp, value_node_size);
19504 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19505 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19507 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19508 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19511 @ @<Additional cases of unary operators@>=
19513 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19514 else mp_pair_value(mp, minx,miny);
19517 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19518 else mp_pair_value(mp, maxx,miny);
19521 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19522 else mp_pair_value(mp, minx,maxy);
19525 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19526 else mp_pair_value(mp, maxx,maxy);
19529 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19530 box of the current expression. The boolean result is |false| if the expression
19531 has the wrong type.
19533 @<Declare unary action procedures@>=
19534 boolean mp_get_cur_bbox (MP mp) {
19535 switch (mp->cur_type) {
19536 case mp_picture_type:
19537 mp_set_bbox(mp, mp->cur_exp,true);
19538 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19539 minx=0; maxx=0; miny=0; maxy=0;
19541 minx=minx_val(mp->cur_exp);
19542 maxx=maxx_val(mp->cur_exp);
19543 miny=miny_val(mp->cur_exp);
19544 maxy=maxy_val(mp->cur_exp);
19548 mp_path_bbox(mp, mp->cur_exp);
19551 mp_pen_bbox(mp, mp->cur_exp);
19559 @ @<Additional cases of unary operators@>=
19561 case close_from_op:
19562 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19563 else mp_do_read_or_close(mp,c);
19566 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19567 a line from the file or to close the file.
19569 @d close_file 46 /* go here when closing the file */
19571 @<Declare unary action procedures@>=
19572 void mp_do_read_or_close (MP mp,quarterword c) {
19573 readf_index n,n0; /* indices for searching |rd_fname| */
19574 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19575 call |start_read_input| and |goto found| or |not_found|@>;
19576 mp_begin_file_reading(mp);
19578 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19580 mp_end_file_reading(mp);
19582 @<Record the end of file and set |cur_exp| to a dummy value@>;
19585 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19588 mp_flush_cur_exp(mp, 0);
19589 mp_finish_read(mp);
19592 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19595 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19600 fn = str(mp->cur_exp);
19601 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19604 } else if ( c==close_from_op ) {
19607 if ( n0==mp->read_files ) {
19608 if ( mp->read_files<mp->max_read_files ) {
19609 incr(mp->read_files);
19614 l = mp->max_read_files + (mp->max_read_files>>2);
19615 rd_file = xmalloc((l+1), sizeof(FILE *));
19616 rd_fname = xmalloc((l+1), sizeof(char *));
19617 for (k=0;k<=l;k++) {
19618 if (k<=mp->max_read_files) {
19619 rd_file[k]=mp->rd_file[k];
19620 rd_fname[k]=mp->rd_fname[k];
19626 xfree(mp->rd_file); xfree(mp->rd_fname);
19627 mp->max_read_files = l;
19628 mp->rd_file = rd_file;
19629 mp->rd_fname = rd_fname;
19633 if ( mp_start_read_input(mp,fn,n) )
19638 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19640 if ( c==close_from_op ) {
19641 fclose(mp->rd_file[n]);
19646 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19647 xfree(mp->rd_fname[n]);
19648 mp->rd_fname[n]=NULL;
19649 if ( n==mp->read_files-1 ) mp->read_files=n;
19650 if ( c==close_from_op )
19652 mp_flush_cur_exp(mp, mp->eof_line);
19653 mp->cur_type=mp_string_type
19655 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19658 str_number eof_line;
19663 @ Finally, we have the operations that combine a capsule~|p|
19664 with the current expression.
19666 @c @<Declare binary action procedures@>;
19667 void mp_do_binary (MP mp,pointer p, quarterword c) {
19668 pointer q,r,rr; /* for list manipulation */
19669 pointer old_p,old_exp; /* capsules to recycle */
19670 integer v; /* for numeric manipulation */
19672 if ( mp->internal[tracing_commands]>two ) {
19673 @<Trace the current binary operation@>;
19675 @<Sidestep |independent| cases in capsule |p|@>;
19676 @<Sidestep |independent| cases in the current expression@>;
19678 case plus: case minus:
19679 @<Add or subtract the current expression from |p|@>;
19681 @<Additional cases of binary operators@>;
19682 }; /* there are no other cases */
19683 mp_recycle_value(mp, p);
19684 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19686 @<Recycle any sidestepped |independent| capsules@>;
19689 @ @<Declare binary action...@>=
19690 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19691 mp_disp_err(mp, p,"");
19692 exp_err("Not implemented: ");
19693 @.Not implemented...@>
19694 if ( c>=min_of ) mp_print_op(mp, c);
19695 mp_print_known_or_unknown_type(mp, type(p),p);
19696 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19697 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19698 help3("I'm afraid I don't know how to apply that operation to that")
19699 ("combination of types. Continue, and I'll return the second")
19700 ("argument (see above) as the result of the operation.");
19701 mp_put_get_error(mp);
19704 @ @<Trace the current binary operation@>=
19706 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19707 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19708 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19709 mp_print_exp(mp,null,0); mp_print(mp,")}");
19710 mp_end_diagnostic(mp, false);
19713 @ Several of the binary operations are potentially complicated by the
19714 fact that |independent| values can sneak into capsules. For example,
19715 we've seen an instance of this difficulty in the unary operation
19716 of negation. In order to reduce the number of cases that need to be
19717 handled, we first change the two operands (if necessary)
19718 to rid them of |independent| components. The original operands are
19719 put into capsules called |old_p| and |old_exp|, which will be
19720 recycled after the binary operation has been safely carried out.
19722 @<Recycle any sidestepped |independent| capsules@>=
19723 if ( old_p!=null ) {
19724 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19726 if ( old_exp!=null ) {
19727 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19730 @ A big node is considered to be ``tarnished'' if it contains at least one
19731 independent component. We will define a simple function called `|tarnished|'
19732 that returns |null| if and only if its argument is not tarnished.
19734 @<Sidestep |independent| cases in capsule |p|@>=
19736 case mp_transform_type:
19737 case mp_color_type:
19738 case mp_cmykcolor_type:
19740 old_p=mp_tarnished(mp, p);
19742 case mp_independent: old_p=diov; break;
19743 default: old_p=null; break;
19745 if ( old_p!=null ) {
19746 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19747 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19750 @ @<Sidestep |independent| cases in the current expression@>=
19751 switch (mp->cur_type) {
19752 case mp_transform_type:
19753 case mp_color_type:
19754 case mp_cmykcolor_type:
19756 old_exp=mp_tarnished(mp, mp->cur_exp);
19758 case mp_independent:old_exp=diov; break;
19759 default: old_exp=null; break;
19761 if ( old_exp!=null ) {
19762 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19765 @ @<Declare binary action...@>=
19766 pointer mp_tarnished (MP mp,pointer p) {
19767 pointer q; /* beginning of the big node */
19768 pointer r; /* current position in the big node */
19769 q=value(p); r=q+mp->big_node_size[type(p)];
19772 if ( type(r)==mp_independent ) return diov;
19777 @ @<Add or subtract the current expression from |p|@>=
19778 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19779 mp_bad_binary(mp, p,c);
19781 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19782 mp_add_or_subtract(mp, p,null,c);
19784 if ( mp->cur_type!=type(p) ) {
19785 mp_bad_binary(mp, p,c);
19787 q=value(p); r=value(mp->cur_exp);
19788 rr=r+mp->big_node_size[mp->cur_type];
19790 mp_add_or_subtract(mp, q,r,c);
19797 @ The first argument to |add_or_subtract| is the location of a value node
19798 in a capsule or pair node that will soon be recycled. The second argument
19799 is either a location within a pair or transform node of |cur_exp|,
19800 or it is null (which means that |cur_exp| itself should be the second
19801 argument). The third argument is either |plus| or |minus|.
19803 The sum or difference of the numeric quantities will replace the second
19804 operand. Arithmetic overflow may go undetected; users aren't supposed to
19805 be monkeying around with really big values.
19807 @<Declare binary action...@>=
19808 @<Declare the procedure called |dep_finish|@>;
19809 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19810 small_number s,t; /* operand types */
19811 pointer r; /* list traverser */
19812 integer v; /* second operand value */
19815 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19818 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19820 if ( t==mp_known ) {
19821 if ( c==minus ) negate(v);
19822 if ( type(p)==mp_known ) {
19823 v=mp_slow_add(mp, value(p),v);
19824 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19827 @<Add a known value to the constant term of |dep_list(p)|@>;
19829 if ( c==minus ) mp_negate_dep_list(mp, v);
19830 @<Add operand |p| to the dependency list |v|@>;
19834 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19836 while ( info(r)!=null ) r=link(r);
19837 value(r)=mp_slow_add(mp, value(r),v);
19839 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19840 name_type(q)=mp_capsule;
19842 dep_list(q)=dep_list(p); type(q)=type(p);
19843 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19844 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19846 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19847 nice to retain the extra accuracy of |fraction| coefficients.
19848 But we have to handle both kinds, and mixtures too.
19850 @<Add operand |p| to the dependency list |v|@>=
19851 if ( type(p)==mp_known ) {
19852 @<Add the known |value(p)| to the constant term of |v|@>;
19854 s=type(p); r=dep_list(p);
19855 if ( t==mp_dependent ) {
19856 if ( s==mp_dependent ) {
19857 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19858 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19859 } /* |fix_needed| will necessarily be false */
19860 t=mp_proto_dependent;
19861 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19863 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
19864 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
19866 @<Output the answer, |v| (which might have become |known|)@>;
19869 @ @<Add the known |value(p)| to the constant term of |v|@>=
19871 while ( info(v)!=null ) v=link(v);
19872 value(v)=mp_slow_add(mp, value(p),value(v));
19875 @ @<Output the answer, |v| (which might have become |known|)@>=
19876 if ( q!=null ) mp_dep_finish(mp, v,q,t);
19877 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
19879 @ Here's the current situation: The dependency list |v| of type |t|
19880 should either be put into the current expression (if |q=null|) or
19881 into location |q| within a pair node (otherwise). The destination (|cur_exp|
19882 or |q|) formerly held a dependency list with the same
19883 final pointer as the list |v|.
19885 @<Declare the procedure called |dep_finish|@>=
19886 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
19887 pointer p; /* the destination */
19888 scaled vv; /* the value, if it is |known| */
19889 if ( q==null ) p=mp->cur_exp; else p=q;
19890 dep_list(p)=v; type(p)=t;
19891 if ( info(v)==null ) {
19894 mp_flush_cur_exp(mp, vv);
19896 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
19898 } else if ( q==null ) {
19901 if ( mp->fix_needed ) mp_fix_dependencies(mp);
19904 @ Let's turn now to the six basic relations of comparison.
19906 @<Additional cases of binary operators@>=
19907 case less_than: case less_or_equal: case greater_than:
19908 case greater_or_equal: case equal_to: case unequal_to:
19909 check_arith; /* at this point |arith_error| should be |false|? */
19910 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19911 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
19912 } else if ( mp->cur_type!=type(p) ) {
19913 mp_bad_binary(mp, p,c); goto DONE;
19914 } else if ( mp->cur_type==mp_string_type ) {
19915 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
19916 } else if ((mp->cur_type==mp_unknown_string)||
19917 (mp->cur_type==mp_unknown_boolean) ) {
19918 @<Check if unknowns have been equated@>;
19919 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
19920 @<Reduce comparison of big nodes to comparison of scalars@>;
19921 } else if ( mp->cur_type==mp_boolean_type ) {
19922 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
19924 mp_bad_binary(mp, p,c); goto DONE;
19926 @<Compare the current expression with zero@>;
19928 mp->arith_error=false; /* ignore overflow in comparisons */
19931 @ @<Compare the current expression with zero@>=
19932 if ( mp->cur_type!=mp_known ) {
19933 if ( mp->cur_type<mp_known ) {
19934 mp_disp_err(mp, p,"");
19935 help1("The quantities shown above have not been equated.")
19937 help2("Oh dear. I can\'t decide if the expression above is positive,")
19938 ("negative, or zero. So this comparison test won't be `true'.");
19940 exp_err("Unknown relation will be considered false");
19941 @.Unknown relation...@>
19942 mp_put_get_flush_error(mp, false_code);
19945 case less_than: boolean_reset(mp->cur_exp<0); break;
19946 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
19947 case greater_than: boolean_reset(mp->cur_exp>0); break;
19948 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
19949 case equal_to: boolean_reset(mp->cur_exp==0); break;
19950 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
19951 }; /* there are no other cases */
19953 mp->cur_type=mp_boolean_type
19955 @ When two unknown strings are in the same ring, we know that they are
19956 equal. Otherwise, we don't know whether they are equal or not, so we
19959 @<Check if unknowns have been equated@>=
19961 q=value(mp->cur_exp);
19962 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
19963 if ( q==p ) mp_flush_cur_exp(mp, 0);
19966 @ @<Reduce comparison of big nodes to comparison of scalars@>=
19968 q=value(p); r=value(mp->cur_exp);
19969 rr=r+mp->big_node_size[mp->cur_type]-2;
19970 while (1) { mp_add_or_subtract(mp, q,r,minus);
19971 if ( type(r)!=mp_known ) break;
19972 if ( value(r)!=0 ) break;
19973 if ( r==rr ) break;
19976 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
19979 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
19981 @<Additional cases of binary operators@>=
19984 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
19985 mp_bad_binary(mp, p,c);
19986 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
19989 @ @<Additional cases of binary operators@>=
19991 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19992 mp_bad_binary(mp, p,times);
19993 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
19994 @<Multiply when at least one operand is known@>;
19995 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
19996 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
19997 (type(p)>mp_pair_type)) ) {
19998 mp_hard_times(mp, p); return;
20000 mp_bad_binary(mp, p,times);
20004 @ @<Multiply when at least one operand is known@>=
20006 if ( type(p)==mp_known ) {
20007 v=value(p); mp_free_node(mp, p,value_node_size);
20009 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20011 if ( mp->cur_type==mp_known ) {
20012 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20013 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20014 (mp->cur_type==mp_cmykcolor_type) ) {
20015 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20017 p=p-2; mp_dep_mult(mp, p,v,true);
20018 } while (p!=value(mp->cur_exp));
20020 mp_dep_mult(mp, null,v,true);
20025 @ @<Declare binary action...@>=
20026 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20027 pointer q; /* the dependency list being multiplied by |v| */
20028 small_number s,t; /* its type, before and after */
20031 } else if ( type(p)!=mp_known ) {
20034 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20035 else value(p)=mp_take_fraction(mp, value(p),v);
20038 t=type(q); q=dep_list(q); s=t;
20039 if ( t==mp_dependent ) if ( v_is_scaled )
20040 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20041 t=mp_proto_dependent;
20042 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20043 mp_dep_finish(mp, q,p,t);
20046 @ Here is a routine that is similar to |times|; but it is invoked only
20047 internally, when |v| is a |fraction| whose magnitude is at most~1,
20048 and when |cur_type>=mp_color_type|.
20050 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20051 /* multiplies |cur_exp| by |n/d| */
20052 pointer p; /* a pair node */
20053 pointer old_exp; /* a capsule to recycle */
20054 fraction v; /* |n/d| */
20055 if ( mp->internal[tracing_commands]>two ) {
20056 @<Trace the fraction multiplication@>;
20058 switch (mp->cur_type) {
20059 case mp_transform_type:
20060 case mp_color_type:
20061 case mp_cmykcolor_type:
20063 old_exp=mp_tarnished(mp, mp->cur_exp);
20065 case mp_independent: old_exp=diov; break;
20066 default: old_exp=null; break;
20068 if ( old_exp!=null ) {
20069 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20071 v=mp_make_fraction(mp, n,d);
20072 if ( mp->cur_type==mp_known ) {
20073 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20074 } else if ( mp->cur_type<=mp_pair_type ) {
20075 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20078 mp_dep_mult(mp, p,v,false);
20079 } while (p!=value(mp->cur_exp));
20081 mp_dep_mult(mp, null,v,false);
20083 if ( old_exp!=null ) {
20084 mp_recycle_value(mp, old_exp);
20085 mp_free_node(mp, old_exp,value_node_size);
20089 @ @<Trace the fraction multiplication@>=
20091 mp_begin_diagnostic(mp);
20092 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20093 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20095 mp_end_diagnostic(mp, false);
20098 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20100 @<Declare binary action procedures@>=
20101 void mp_hard_times (MP mp,pointer p) {
20102 pointer q; /* a copy of the dependent variable |p| */
20103 pointer r; /* a component of the big node for the nice color or pair */
20104 scaled v; /* the known value for |r| */
20105 if ( type(p)<=mp_pair_type ) {
20106 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20107 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20108 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20113 if ( r==value(mp->cur_exp) )
20115 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20116 mp_dep_mult(mp, r,v,true);
20118 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20119 link(prev_dep(p))=r;
20120 mp_free_node(mp, p,value_node_size);
20121 mp_dep_mult(mp, r,v,true);
20124 @ @<Additional cases of binary operators@>=
20126 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20127 mp_bad_binary(mp, p,over);
20129 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20131 @<Squeal about division by zero@>;
20133 if ( mp->cur_type==mp_known ) {
20134 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20135 } else if ( mp->cur_type<=mp_pair_type ) {
20136 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20138 p=p-2; mp_dep_div(mp, p,v);
20139 } while (p!=value(mp->cur_exp));
20141 mp_dep_div(mp, null,v);
20148 @ @<Declare binary action...@>=
20149 void mp_dep_div (MP mp,pointer p, scaled v) {
20150 pointer q; /* the dependency list being divided by |v| */
20151 small_number s,t; /* its type, before and after */
20152 if ( p==null ) q=mp->cur_exp;
20153 else if ( type(p)!=mp_known ) q=p;
20154 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20155 t=type(q); q=dep_list(q); s=t;
20156 if ( t==mp_dependent )
20157 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20158 t=mp_proto_dependent;
20159 q=mp_p_over_v(mp, q,v,s,t);
20160 mp_dep_finish(mp, q,p,t);
20163 @ @<Squeal about division by zero@>=
20165 exp_err("Division by zero");
20166 @.Division by zero@>
20167 help2("You're trying to divide the quantity shown above the error")
20168 ("message by zero. I'm going to divide it by one instead.");
20169 mp_put_get_error(mp);
20172 @ @<Additional cases of binary operators@>=
20175 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20176 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20177 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20178 } else mp_bad_binary(mp, p,c);
20181 @ The next few sections of the program deal with affine transformations
20182 of coordinate data.
20184 @<Additional cases of binary operators@>=
20185 case rotated_by: case slanted_by:
20186 case scaled_by: case shifted_by: case transformed_by:
20187 case x_scaled: case y_scaled: case z_scaled:
20188 if ( type(p)==mp_path_type ) {
20189 path_trans(c,p); return;
20190 } else if ( type(p)==mp_pen_type ) {
20192 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20193 /* rounding error could destroy convexity */
20195 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20196 mp_big_trans(mp, p,c);
20197 } else if ( type(p)==mp_picture_type ) {
20198 mp_do_edges_trans(mp, p,c); return;
20200 mp_bad_binary(mp, p,c);
20204 @ Let |c| be one of the eight transform operators. The procedure call
20205 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20206 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20207 change at all if |c=transformed_by|.)
20209 Then, if all components of the resulting transform are |known|, they are
20210 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20211 and |cur_exp| is changed to the known value zero.
20213 @<Declare binary action...@>=
20214 void mp_set_up_trans (MP mp,quarterword c) {
20215 pointer p,q,r; /* list manipulation registers */
20216 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20217 @<Put the current transform into |cur_exp|@>;
20219 @<If the current transform is entirely known, stash it in global variables;
20220 otherwise |return|@>;
20229 scaled ty; /* current transform coefficients */
20231 @ @<Put the current transform...@>=
20233 p=mp_stash_cur_exp(mp);
20234 mp->cur_exp=mp_id_transform(mp);
20235 mp->cur_type=mp_transform_type;
20236 q=value(mp->cur_exp);
20238 @<For each of the eight cases, change the relevant fields of |cur_exp|
20240 but do nothing if capsule |p| doesn't have the appropriate type@>;
20241 }; /* there are no other cases */
20242 mp_disp_err(mp, p,"Improper transformation argument");
20243 @.Improper transformation argument@>
20244 help3("The expression shown above has the wrong type,")
20245 ("so I can\'t transform anything using it.")
20246 ("Proceed, and I'll omit the transformation.");
20247 mp_put_get_error(mp);
20249 mp_recycle_value(mp, p);
20250 mp_free_node(mp, p,value_node_size);
20253 @ @<If the current transform is entirely known, ...@>=
20254 q=value(mp->cur_exp); r=q+transform_node_size;
20257 if ( type(r)!=mp_known ) return;
20259 mp->txx=value(xx_part_loc(q));
20260 mp->txy=value(xy_part_loc(q));
20261 mp->tyx=value(yx_part_loc(q));
20262 mp->tyy=value(yy_part_loc(q));
20263 mp->tx=value(x_part_loc(q));
20264 mp->ty=value(y_part_loc(q));
20265 mp_flush_cur_exp(mp, 0)
20267 @ @<For each of the eight cases...@>=
20269 if ( type(p)==mp_known )
20270 @<Install sines and cosines, then |goto done|@>;
20273 if ( type(p)>mp_pair_type ) {
20274 mp_install(mp, xy_part_loc(q),p); goto DONE;
20278 if ( type(p)>mp_pair_type ) {
20279 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20284 if ( type(p)==mp_pair_type ) {
20285 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20286 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20290 if ( type(p)>mp_pair_type ) {
20291 mp_install(mp, xx_part_loc(q),p); goto DONE;
20295 if ( type(p)>mp_pair_type ) {
20296 mp_install(mp, yy_part_loc(q),p); goto DONE;
20300 if ( type(p)==mp_pair_type )
20301 @<Install a complex multiplier, then |goto done|@>;
20303 case transformed_by:
20307 @ @<Install sines and cosines, then |goto done|@>=
20308 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20309 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20310 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20311 value(xy_part_loc(q))=-value(yx_part_loc(q));
20312 value(yy_part_loc(q))=value(xx_part_loc(q));
20316 @ @<Install a complex multiplier, then |goto done|@>=
20319 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20320 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20321 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20322 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20323 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20324 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20328 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20329 insists that the transformation be entirely known.
20331 @<Declare binary action...@>=
20332 void mp_set_up_known_trans (MP mp,quarterword c) {
20333 mp_set_up_trans(mp, c);
20334 if ( mp->cur_type!=mp_known ) {
20335 exp_err("Transform components aren't all known");
20336 @.Transform components...@>
20337 help3("I'm unable to apply a partially specified transformation")
20338 ("except to a fully known pair or transform.")
20339 ("Proceed, and I'll omit the transformation.");
20340 mp_put_get_flush_error(mp, 0);
20341 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20342 mp->tx=0; mp->ty=0;
20346 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20347 coordinates in locations |p| and~|q|.
20349 @<Declare binary action...@>=
20350 void mp_trans (MP mp,pointer p, pointer q) {
20351 scaled v; /* the new |x| value */
20352 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20353 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20354 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20355 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20359 @ The simplest transformation procedure applies a transform to all
20360 coordinates of a path. The |path_trans(c)(p)| macro applies
20361 a transformation defined by |cur_exp| and the transform operator |c|
20364 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20365 mp_unstash_cur_exp(mp, (B));
20366 mp_do_path_trans(mp, mp->cur_exp); }
20368 @<Declare binary action...@>=
20369 void mp_do_path_trans (MP mp,pointer p) {
20370 pointer q; /* list traverser */
20373 if ( left_type(q)!=endpoint )
20374 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20375 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20376 if ( right_type(q)!=endpoint )
20377 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20378 @^data structure assumptions@>
20383 @ Transforming a pen is very similar, except that there are no |left_type|
20384 and |right_type| fields.
20386 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20387 mp_unstash_cur_exp(mp, (B));
20388 mp_do_pen_trans(mp, mp->cur_exp); }
20390 @<Declare binary action...@>=
20391 void mp_do_pen_trans (MP mp,pointer p) {
20392 pointer q; /* list traverser */
20393 if ( pen_is_elliptical(p) ) {
20394 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20395 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20399 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20400 @^data structure assumptions@>
20405 @ The next transformation procedure applies to edge structures. It will do
20406 any transformation, but the results may be substandard if the picture contains
20407 text that uses downloaded bitmap fonts. The binary action procedure is
20408 |do_edges_trans|, but we also need a function that just scales a picture.
20409 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20410 should be thought of as procedures that update an edge structure |h|, except
20411 that they have to return a (possibly new) structure because of the need to call
20414 @<Declare binary action...@>=
20415 pointer mp_edges_trans (MP mp, pointer h) {
20416 pointer q; /* the object being transformed */
20417 pointer r,s; /* for list manipulation */
20418 scaled sx,sy; /* saved transformation parameters */
20419 scaled sqdet; /* square root of determinant for |dash_scale| */
20420 integer sgndet; /* sign of the determinant */
20421 scaled v; /* a temporary value */
20422 h=mp_private_edges(mp, h);
20423 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20424 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20425 if ( dash_list(h)!=null_dash ) {
20426 @<Try to transform the dash list of |h|@>;
20428 @<Make the bounding box of |h| unknown if it can't be updated properly
20429 without scanning the whole structure@>;
20430 q=link(dummy_loc(h));
20431 while ( q!=null ) {
20432 @<Transform graphical object |q|@>;
20437 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20438 mp_set_up_known_trans(mp, c);
20439 value(p)=mp_edges_trans(mp, value(p));
20440 mp_unstash_cur_exp(mp, p);
20442 void mp_scale_edges (MP mp) {
20443 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20444 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20445 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20448 @ @<Try to transform the dash list of |h|@>=
20449 if ( (mp->txy!=0)||(mp->tyx!=0)||
20450 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20451 mp_flush_dash_list(mp, h);
20453 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20454 @<Scale the dash list by |txx| and shift it by |tx|@>;
20455 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20458 @ @<Reverse the dash list of |h|@>=
20461 dash_list(h)=null_dash;
20462 while ( r!=null_dash ) {
20464 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20465 link(s)=dash_list(h);
20470 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20472 while ( r!=null_dash ) {
20473 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20474 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20478 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20479 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20480 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20481 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20482 mp_init_bbox(mp, h);
20485 if ( minx_val(h)<=maxx_val(h) ) {
20486 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20493 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20495 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20496 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20499 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20502 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20504 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20505 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20506 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20507 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20508 if ( mp->txx+mp->txy<0 ) {
20509 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20511 if ( mp->tyx+mp->tyy<0 ) {
20512 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20516 @ Now we ready for the main task of transforming the graphical objects in edge
20519 @<Transform graphical object |q|@>=
20521 case fill_code: case stroked_code:
20522 mp_do_path_trans(mp, path_p(q));
20523 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20525 case mp_start_clip_code: case mp_start_bounds_code:
20526 mp_do_path_trans(mp, path_p(q));
20530 @<Transform the compact transformation starting at |r|@>;
20532 case mp_stop_clip_code: case mp_stop_bounds_code:
20534 } /* there are no other cases */
20536 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20537 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20538 since the \ps\ output procedures will try to compensate for the transformation
20539 we are applying to |pen_p(q)|. Since this compensation is based on the square
20540 root of the determinant, |sqdet| is the appropriate factor.
20542 @<Transform |pen_p(q)|, making sure...@>=
20543 if ( pen_p(q)!=null ) {
20544 sx=mp->tx; sy=mp->ty;
20545 mp->tx=0; mp->ty=0;
20546 mp_do_pen_trans(mp, pen_p(q));
20547 if ( ((type(q)==stroked_code)&&(dash_p(q)!=null)) )
20548 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20549 if ( ! pen_is_elliptical(pen_p(q)) )
20551 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20552 /* this unreverses the pen */
20553 mp->tx=sx; mp->ty=sy;
20556 @ This uses the fact that transformations are stored in the order
20557 |(tx,ty,txx,txy,tyx,tyy)|.
20558 @^data structure assumptions@>
20560 @<Transform the compact transformation starting at |r|@>=
20561 mp_trans(mp, r,r+1);
20562 sx=mp->tx; sy=mp->ty;
20563 mp->tx=0; mp->ty=0;
20564 mp_trans(mp, r+2,r+4);
20565 mp_trans(mp, r+3,r+5);
20566 mp->tx=sx; mp->ty=sy
20568 @ The hard cases of transformation occur when big nodes are involved,
20569 and when some of their components are unknown.
20571 @<Declare binary action...@>=
20572 @<Declare subroutines needed by |big_trans|@>;
20573 void mp_big_trans (MP mp,pointer p, quarterword c) {
20574 pointer q,r,pp,qq; /* list manipulation registers */
20575 small_number s; /* size of a big node */
20576 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20579 if ( type(r)!=mp_known ) {
20580 @<Transform an unknown big node and |return|@>;
20583 @<Transform a known big node@>;
20584 }; /* node |p| will now be recycled by |do_binary| */
20586 @ @<Transform an unknown big node and |return|@>=
20588 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20589 r=value(mp->cur_exp);
20590 if ( mp->cur_type==mp_transform_type ) {
20591 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20592 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20593 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20594 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20596 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20597 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20601 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20602 and let |q| point to a another value field. The |bilin1| procedure
20603 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20605 @<Declare subroutines needed by |big_trans|@>=
20606 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20607 scaled u, scaled delta) {
20608 pointer r; /* list traverser */
20609 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20611 if ( type(q)==mp_known ) {
20612 delta+=mp_take_scaled(mp, value(q),u);
20614 @<Ensure that |type(p)=mp_proto_dependent|@>;
20615 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20616 mp_proto_dependent,type(q));
20619 if ( type(p)==mp_known ) {
20623 while ( info(r)!=null ) r=link(r);
20625 if ( r!=dep_list(p) ) value(r)=delta;
20626 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20628 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20631 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20632 if ( type(p)!=mp_proto_dependent ) {
20633 if ( type(p)==mp_known )
20634 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20636 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20637 mp_proto_dependent,true);
20638 type(p)=mp_proto_dependent;
20641 @ @<Transform a known big node@>=
20642 mp_set_up_trans(mp, c);
20643 if ( mp->cur_type==mp_known ) {
20644 @<Transform known by known@>;
20646 pp=mp_stash_cur_exp(mp); qq=value(pp);
20647 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20648 if ( mp->cur_type==mp_transform_type ) {
20649 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20650 value(xy_part_loc(q)),yx_part_loc(qq),null);
20651 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20652 value(xx_part_loc(q)),yx_part_loc(qq),null);
20653 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20654 value(yy_part_loc(q)),xy_part_loc(qq),null);
20655 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20656 value(yx_part_loc(q)),xy_part_loc(qq),null);
20658 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20659 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20660 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20661 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20662 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20665 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20666 at |dep_final|. The following procedure adds |v| times another
20667 numeric quantity to~|p|.
20669 @<Declare subroutines needed by |big_trans|@>=
20670 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20671 if ( type(r)==mp_known ) {
20672 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20674 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20675 mp_proto_dependent,type(r));
20676 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20680 @ The |bilin2| procedure is something like |bilin1|, but with known
20681 and unknown quantities reversed. Parameter |p| points to a value field
20682 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20683 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20684 unless it is |null| (which stands for zero). Location~|p| will be
20685 replaced by $p\cdot t+v\cdot u+q$.
20687 @<Declare subroutines needed by |big_trans|@>=
20688 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20689 pointer u, pointer q) {
20690 scaled vv; /* temporary storage for |value(p)| */
20691 vv=value(p); type(p)=mp_proto_dependent;
20692 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20694 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20695 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20696 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20697 if ( dep_list(p)==mp->dep_final ) {
20698 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20699 type(p)=mp_known; value(p)=vv;
20703 @ @<Transform known by known@>=
20705 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20706 if ( mp->cur_type==mp_transform_type ) {
20707 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20708 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20709 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20710 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20712 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20713 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20716 @ Finally, in |bilin3| everything is |known|.
20718 @<Declare subroutines needed by |big_trans|@>=
20719 void mp_bilin3 (MP mp,pointer p, scaled t,
20720 scaled v, scaled u, scaled delta) {
20722 delta+=mp_take_scaled(mp, value(p),t);
20725 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20726 else value(p)=delta;
20729 @ @<Additional cases of binary operators@>=
20731 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20732 else mp_bad_binary(mp, p,concatenate);
20735 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20736 mp_chop_string(mp, value(p));
20737 else mp_bad_binary(mp, p,substring_of);
20740 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20741 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20742 mp_chop_path(mp, value(p));
20743 else mp_bad_binary(mp, p,subpath_of);
20746 @ @<Declare binary action...@>=
20747 void mp_cat (MP mp,pointer p) {
20748 str_number a,b; /* the strings being concatenated */
20749 pool_pointer k; /* index into |str_pool| */
20750 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20751 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20752 append_char(mp->str_pool[k]);
20754 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20755 append_char(mp->str_pool[k]);
20757 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20760 @ @<Declare binary action...@>=
20761 void mp_chop_string (MP mp,pointer p) {
20762 integer a, b; /* start and stop points */
20763 integer l; /* length of the original string */
20764 integer k; /* runs from |a| to |b| */
20765 str_number s; /* the original string */
20766 boolean reversed; /* was |a>b|? */
20767 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20768 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20769 if ( a<=b ) reversed=false;
20770 else { reversed=true; k=a; a=b; b=k; };
20771 s=mp->cur_exp; l=length(s);
20782 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20783 append_char(mp->str_pool[k]);
20786 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20787 append_char(mp->str_pool[k]);
20790 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20793 @ @<Declare binary action...@>=
20794 void mp_chop_path (MP mp,pointer p) {
20795 pointer q; /* a knot in the original path */
20796 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20797 scaled a,b,k,l; /* indices for chopping */
20798 boolean reversed; /* was |a>b|? */
20799 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20800 if ( a<=b ) reversed=false;
20801 else { reversed=true; k=a; a=b; b=k; };
20802 @<Dispense with the cases |a<0| and/or |b>l|@>;
20804 while ( a>=unity ) {
20805 q=link(q); a=a-unity; b=b-unity;
20808 @<Construct a path from |pp| to |qq| of length zero@>;
20810 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20812 left_type(pp)=endpoint; right_type(qq)=endpoint; link(qq)=pp;
20813 mp_toss_knot_list(mp, mp->cur_exp);
20815 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20821 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20823 if ( left_type(mp->cur_exp)==endpoint ) {
20824 a=0; if ( b<0 ) b=0;
20826 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20830 if ( left_type(mp->cur_exp)==endpoint ) {
20831 b=l; if ( a>l ) a=l;
20839 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20841 pp=mp_copy_knot(mp, q); qq=pp;
20843 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20846 ss=pp; pp=link(pp);
20847 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20848 mp_free_node(mp, ss,knot_node_size);
20850 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20854 mp_split_cubic(mp, rr,(b+unity)*010000);
20855 mp_free_node(mp, qq,knot_node_size);
20860 @ @<Construct a path from |pp| to |qq| of length zero@>=
20862 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20863 pp=mp_copy_knot(mp, q); qq=pp;
20866 @ @<Additional cases of binary operators@>=
20867 case point_of: case precontrol_of: case postcontrol_of:
20868 if ( mp->cur_type==mp_pair_type )
20869 mp_pair_to_path(mp);
20870 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20871 mp_find_point(mp, value(p),c);
20873 mp_bad_binary(mp, p,c);
20875 case pen_offset_of:
20876 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
20877 mp_set_up_offset(mp, value(p));
20879 mp_bad_binary(mp, p,pen_offset_of);
20881 case direction_time_of:
20882 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20883 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
20884 mp_set_up_direction_time(mp, value(p));
20886 mp_bad_binary(mp, p,direction_time_of);
20889 @ @<Declare binary action...@>=
20890 void mp_set_up_offset (MP mp,pointer p) {
20891 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
20892 mp_pair_value(mp, mp->cur_x,mp->cur_y);
20894 void mp_set_up_direction_time (MP mp,pointer p) {
20895 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
20896 value(y_part_loc(p)),mp->cur_exp));
20899 @ @<Declare binary action...@>=
20900 void mp_find_point (MP mp,scaled v, quarterword c) {
20901 pointer p; /* the path */
20902 scaled n; /* its length */
20904 if ( left_type(p)==endpoint ) n=-unity; else n=0;
20905 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
20908 } else if ( v<0 ) {
20909 if ( left_type(p)==endpoint ) v=0;
20910 else v=n-1-((-v-1) % n);
20911 } else if ( v>n ) {
20912 if ( left_type(p)==endpoint ) v=n;
20916 while ( v>=unity ) { p=link(p); v=v-unity; };
20918 @<Insert a fractional node by splitting the cubic@>;
20920 @<Set the current expression to the desired path coordinates@>;
20923 @ @<Insert a fractional node...@>=
20924 { mp_split_cubic(mp, p,v*010000); p=link(p); }
20926 @ @<Set the current expression to the desired path coordinates...@>=
20929 mp_pair_value(mp, x_coord(p),y_coord(p));
20931 case precontrol_of:
20932 if ( left_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20933 else mp_pair_value(mp, left_x(p),left_y(p));
20935 case postcontrol_of:
20936 if ( right_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20937 else mp_pair_value(mp, right_x(p),right_y(p));
20939 } /* there are no other cases */
20941 @ @<Additional cases of binary operators@>=
20943 if ( mp->cur_type==mp_pair_type )
20944 mp_pair_to_path(mp);
20945 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20946 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
20948 mp_bad_binary(mp, p,c);
20951 @ @<Additional cases of bin...@>=
20953 if ( type(p)==mp_pair_type ) {
20954 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
20955 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20957 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20958 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
20959 mp_path_intersection(mp, value(p),mp->cur_exp);
20960 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
20962 mp_bad_binary(mp, p,intersect);
20966 @ @<Additional cases of bin...@>=
20968 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
20969 mp_bad_binary(mp, p,in_font);
20970 else { mp_do_infont(mp, p); return; }
20973 @ Function |new_text_node| owns the reference count for its second argument
20974 (the text string) but not its first (the font name).
20976 @<Declare binary action...@>=
20977 void mp_do_infont (MP mp,pointer p) {
20979 q=mp_get_node(mp, edge_header_size);
20980 mp_init_edges(mp, q);
20981 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
20982 obj_tail(q)=link(obj_tail(q));
20983 mp_free_node(mp, p,value_node_size);
20984 mp_flush_cur_exp(mp, q);
20985 mp->cur_type=mp_picture_type;
20988 @* \[40] Statements and commands.
20989 The chief executive of \MP\ is the |do_statement| routine, which
20990 contains the master switch that causes all the various pieces of \MP\
20991 to do their things, in the right order.
20993 In a sense, this is the grand climax of the program: It applies all the
20994 tools that we have worked so hard to construct. In another sense, this is
20995 the messiest part of the program: It necessarily refers to other pieces
20996 of code all over the place, so that a person can't fully understand what is
20997 going on without paging back and forth to be reminded of conventions that
20998 are defined elsewhere. We are now at the hub of the web.
21000 The structure of |do_statement| itself is quite simple. The first token
21001 of the statement is fetched using |get_x_next|. If it can be the first
21002 token of an expression, we look for an equation, an assignment, or a
21003 title. Otherwise we use a \&{case} construction to branch at high speed to
21004 the appropriate routine for various and sundry other types of commands,
21005 each of which has an ``action procedure'' that does the necessary work.
21007 The program uses the fact that
21008 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21009 to interpret a statement that starts with, e.g., `\&{string}',
21010 as a type declaration rather than a boolean expression.
21012 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21013 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21014 if ( mp->cur_cmd>max_primary_command ) {
21015 @<Worry about bad statement@>;
21016 } else if ( mp->cur_cmd>max_statement_command ) {
21017 @<Do an equation, assignment, title, or
21018 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21020 @<Do a statement that doesn't begin with an expression@>;
21022 if ( mp->cur_cmd<semicolon )
21023 @<Flush unparsable junk that was found after the statement@>;
21027 @ @<Declarations@>=
21028 @<Declare action procedures for use by |do_statement|@>;
21030 @ The only command codes |>max_primary_command| that can be present
21031 at the beginning of a statement are |semicolon| and higher; these
21032 occur when the statement is null.
21034 @<Worry about bad statement@>=
21036 if ( mp->cur_cmd<semicolon ) {
21037 print_err("A statement can't begin with `");
21038 @.A statement can't begin with x@>
21039 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21040 help5("I was looking for the beginning of a new statement.")
21041 ("If you just proceed without changing anything, I'll ignore")
21042 ("everything up to the next `;'. Please insert a semicolon")
21043 ("now in front of anything that you don't want me to delete.")
21044 ("(See Chapter 27 of The METAFONTbook for an example.)");
21045 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21046 mp_back_error(mp); mp_get_x_next(mp);
21050 @ The help message printed here says that everything is flushed up to
21051 a semicolon, but actually the commands |end_group| and |stop| will
21052 also terminate a statement.
21054 @<Flush unparsable junk that was found after the statement@>=
21056 print_err("Extra tokens will be flushed");
21057 @.Extra tokens will be flushed@>
21058 help6("I've just read as much of that statement as I could fathom,")
21059 ("so a semicolon should have been next. It's very puzzling...")
21060 ("but I'll try to get myself back together, by ignoring")
21061 ("everything up to the next `;'. Please insert a semicolon")
21062 ("now in front of anything that you don't want me to delete.")
21063 ("(See Chapter 27 of The METAFONTbook for an example.)");
21064 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21065 mp_back_error(mp); mp->scanner_status=flushing;
21068 @<Decrease the string reference count...@>;
21069 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21070 mp->scanner_status=normal;
21073 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21074 |cur_type=mp_vacuous| unless the statement was simply an expression;
21075 in the latter case, |cur_type| and |cur_exp| should represent that
21078 @<Do a statement that doesn't...@>=
21080 if ( mp->internal[tracing_commands]>0 )
21082 switch (mp->cur_cmd ) {
21083 case type_name:mp_do_type_declaration(mp); break;
21085 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21086 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21088 @<Cases of |do_statement| that invoke particular commands@>;
21089 } /* there are no other cases */
21090 mp->cur_type=mp_vacuous;
21093 @ The most important statements begin with expressions.
21095 @<Do an equation, assignment, title, or...@>=
21097 mp->var_flag=assignment; mp_scan_expression(mp);
21098 if ( mp->cur_cmd<end_group ) {
21099 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21100 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21101 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21102 else if ( mp->cur_type!=mp_vacuous ){
21103 exp_err("Isolated expression");
21104 @.Isolated expression@>
21105 help3("I couldn't find an `=' or `:=' after the")
21106 ("expression that is shown above this error message,")
21107 ("so I guess I'll just ignore it and carry on.");
21108 mp_put_get_error(mp);
21110 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21116 if ( mp->internal[tracing_titles]>0 ) {
21117 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21121 @ Equations and assignments are performed by the pair of mutually recursive
21123 routines |do_equation| and |do_assignment|. These routines are called when
21124 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21125 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21126 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21127 will be equal to the right-hand side (which will normally be equal
21128 to the left-hand side).
21130 @<Declare action procedures for use by |do_statement|@>=
21131 @<Declare the procedure called |try_eq|@>;
21132 @<Declare the procedure called |make_eq|@>;
21133 void mp_do_equation (MP mp) ;
21136 void mp_do_equation (MP mp) {
21137 pointer lhs; /* capsule for the left-hand side */
21138 pointer p; /* temporary register */
21139 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21140 mp->var_flag=assignment; mp_scan_expression(mp);
21141 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21142 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21143 if ( mp->internal[tracing_commands]>two )
21144 @<Trace the current equation@>;
21145 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21146 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21147 }; /* in this case |make_eq| will change the pair to a path */
21148 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21151 @ And |do_assignment| is similar to |do_expression|:
21154 void mp_do_assignment (MP mp);
21156 @ @<Declare action procedures for use by |do_statement|@>=
21157 void mp_do_assignment (MP mp) ;
21160 void mp_do_assignment (MP mp) {
21161 pointer lhs; /* token list for the left-hand side */
21162 pointer p; /* where the left-hand value is stored */
21163 pointer q; /* temporary capsule for the right-hand value */
21164 if ( mp->cur_type!=mp_token_list ) {
21165 exp_err("Improper `:=' will be changed to `='");
21167 help2("I didn't find a variable name at the left of the `:=',")
21168 ("so I'm going to pretend that you said `=' instead.");
21169 mp_error(mp); mp_do_equation(mp);
21171 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21172 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21173 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21174 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21175 if ( mp->internal[tracing_commands]>two )
21176 @<Trace the current assignment@>;
21177 if ( info(lhs)>hash_end ) {
21178 @<Assign the current expression to an internal variable@>;
21180 @<Assign the current expression to the variable |lhs|@>;
21182 mp_flush_node_list(mp, lhs);
21186 @ @<Trace the current equation@>=
21188 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21189 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21190 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21193 @ @<Trace the current assignment@>=
21195 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21196 if ( info(lhs)>hash_end )
21197 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21199 mp_show_token_list(mp, lhs,null,1000,0);
21200 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21201 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21204 @ @<Assign the current expression to an internal variable@>=
21205 if ( mp->cur_type==mp_known ) {
21206 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21208 exp_err("Internal quantity `");
21209 @.Internal quantity...@>
21210 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21211 mp_print(mp, "' must receive a known value");
21212 help2("I can\'t set an internal quantity to anything but a known")
21213 ("numeric value, so I'll have to ignore this assignment.");
21214 mp_put_get_error(mp);
21217 @ @<Assign the current expression to the variable |lhs|@>=
21219 p=mp_find_variable(mp, lhs);
21221 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21222 mp_recycle_value(mp, p);
21223 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21224 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21226 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21231 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21232 a pointer to a capsule that is to be equated to the current expression.
21234 @<Declare the procedure called |make_eq|@>=
21235 void mp_make_eq (MP mp,pointer lhs) ;
21239 @c void mp_make_eq (MP mp,pointer lhs) {
21240 small_number t; /* type of the left-hand side */
21241 pointer p,q; /* pointers inside of big nodes */
21242 integer v=0; /* value of the left-hand side */
21245 if ( t<=mp_pair_type ) v=value(lhs);
21247 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21248 is incompatible with~|t|@>;
21249 } /* all cases have been listed */
21250 @<Announce that the equation cannot be performed@>;
21252 check_arith; mp_recycle_value(mp, lhs);
21253 mp_free_node(mp, lhs,value_node_size);
21256 @ @<Announce that the equation cannot be performed@>=
21257 mp_disp_err(mp, lhs,"");
21258 exp_err("Equation cannot be performed (");
21259 @.Equation cannot be performed@>
21260 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21261 else mp_print(mp, "numeric");
21262 mp_print_char(mp, '=');
21263 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21264 else mp_print(mp, "numeric");
21265 mp_print_char(mp, ')');
21266 help2("I'm sorry, but I don't know how to make such things equal.")
21267 ("(See the two expressions just above the error message.)");
21268 mp_put_get_error(mp)
21270 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21271 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21272 case mp_path_type: case mp_picture_type:
21273 if ( mp->cur_type==t+unknown_tag ) {
21274 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21275 } else if ( mp->cur_type==t ) {
21276 @<Report redundant or inconsistent equation and |goto done|@>;
21279 case unknown_types:
21280 if ( mp->cur_type==t-unknown_tag ) {
21281 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21282 } else if ( mp->cur_type==t ) {
21283 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21284 } else if ( mp->cur_type==mp_pair_type ) {
21285 if ( t==mp_unknown_path ) {
21286 mp_pair_to_path(mp); goto RESTART;
21290 case mp_transform_type: case mp_color_type:
21291 case mp_cmykcolor_type: case mp_pair_type:
21292 if ( mp->cur_type==t ) {
21293 @<Do multiple equations and |goto done|@>;
21296 case mp_known: case mp_dependent:
21297 case mp_proto_dependent: case mp_independent:
21298 if ( mp->cur_type>=mp_known ) {
21299 mp_try_eq(mp, lhs,null); goto DONE;
21305 @ @<Report redundant or inconsistent equation and |goto done|@>=
21307 if ( mp->cur_type<=mp_string_type ) {
21308 if ( mp->cur_type==mp_string_type ) {
21309 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21312 } else if ( v!=mp->cur_exp ) {
21315 @<Exclaim about a redundant equation@>; goto DONE;
21317 print_err("Redundant or inconsistent equation");
21318 @.Redundant or inconsistent equation@>
21319 help2("An equation between already-known quantities can't help.")
21320 ("But don't worry; continue and I'll just ignore it.");
21321 mp_put_get_error(mp); goto DONE;
21323 print_err("Inconsistent equation");
21324 @.Inconsistent equation@>
21325 help2("The equation I just read contradicts what was said before.")
21326 ("But don't worry; continue and I'll just ignore it.");
21327 mp_put_get_error(mp); goto DONE;
21330 @ @<Do multiple equations and |goto done|@>=
21332 p=v+mp->big_node_size[t];
21333 q=value(mp->cur_exp)+mp->big_node_size[t];
21335 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21340 @ The first argument to |try_eq| is the location of a value node
21341 in a capsule that will soon be recycled. The second argument is
21342 either a location within a pair or transform node pointed to by
21343 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21344 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21345 but to equate the two operands.
21347 @<Declare the procedure called |try_eq|@>=
21348 void mp_try_eq (MP mp,pointer l, pointer r) ;
21351 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21352 pointer p; /* dependency list for right operand minus left operand */
21353 int t; /* the type of list |p| */
21354 pointer q; /* the constant term of |p| is here */
21355 pointer pp; /* dependency list for right operand */
21356 int tt; /* the type of list |pp| */
21357 boolean copied; /* have we copied a list that ought to be recycled? */
21358 @<Remove the left operand from its container, negate it, and
21359 put it into dependency list~|p| with constant term~|q|@>;
21360 @<Add the right operand to list |p|@>;
21361 if ( info(p)==null ) {
21362 @<Deal with redundant or inconsistent equation@>;
21364 mp_linear_eq(mp, p,t);
21365 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21366 if ( type(mp->cur_exp)==mp_known ) {
21367 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21368 mp_free_node(mp, pp,value_node_size);
21374 @ @<Remove the left operand from its container, negate it, and...@>=
21376 if ( t==mp_known ) {
21377 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21378 } else if ( t==mp_independent ) {
21379 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21382 p=dep_list(l); q=p;
21385 if ( info(q)==null ) break;
21388 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21392 @ @<Deal with redundant or inconsistent equation@>=
21394 if ( abs(value(p))>64 ) { /* off by .001 or more */
21395 print_err("Inconsistent equation");
21396 @.Inconsistent equation@>
21397 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21398 mp_print_char(mp, ')');
21399 help2("The equation I just read contradicts what was said before.")
21400 ("But don't worry; continue and I'll just ignore it.");
21401 mp_put_get_error(mp);
21402 } else if ( r==null ) {
21403 @<Exclaim about a redundant equation@>;
21405 mp_free_node(mp, p,dep_node_size);
21408 @ @<Add the right operand to list |p|@>=
21410 if ( mp->cur_type==mp_known ) {
21411 value(q)=value(q)+mp->cur_exp; goto DONE1;
21414 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21415 else pp=dep_list(mp->cur_exp);
21418 if ( type(r)==mp_known ) {
21419 value(q)=value(q)+value(r); goto DONE1;
21422 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21423 else pp=dep_list(r);
21426 if ( tt!=mp_independent ) copied=false;
21427 else { copied=true; tt=mp_dependent; };
21428 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21429 if ( copied ) mp_flush_node_list(mp, pp);
21432 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21433 mp->watch_coefs=false;
21435 p=mp_p_plus_q(mp, p,pp,t);
21436 } else if ( t==mp_proto_dependent ) {
21437 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21440 while ( info(q)!=null ) {
21441 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21443 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21445 mp->watch_coefs=true;
21447 @ Our next goal is to process type declarations. For this purpose it's
21448 convenient to have a procedure that scans a $\langle\,$declared
21449 variable$\,\rangle$ and returns the corresponding token list. After the
21450 following procedure has acted, the token after the declared variable
21451 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21454 @<Declare the function called |scan_declared_variable|@>=
21455 pointer mp_scan_declared_variable (MP mp) {
21456 pointer x; /* hash address of the variable's root */
21457 pointer h,t; /* head and tail of the token list to be returned */
21458 pointer l; /* hash address of left bracket */
21459 mp_get_symbol(mp); x=mp->cur_sym;
21460 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21461 h=mp_get_avail(mp); info(h)=x; t=h;
21464 if ( mp->cur_sym==0 ) break;
21465 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21466 if ( mp->cur_cmd==left_bracket ) {
21467 @<Descend past a collective subscript@>;
21472 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21474 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21475 if ( equiv(x)==null ) mp_new_root(mp, x);
21479 @ If the subscript isn't collective, we don't accept it as part of the
21482 @<Descend past a collective subscript@>=
21484 l=mp->cur_sym; mp_get_x_next(mp);
21485 if ( mp->cur_cmd!=right_bracket ) {
21486 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21488 mp->cur_sym=collective_subscript;
21492 @ Type declarations are introduced by the following primitive operations.
21495 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21496 @:numeric_}{\&{numeric} primitive@>
21497 mp_primitive(mp, "string",type_name,mp_string_type);
21498 @:string_}{\&{string} primitive@>
21499 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21500 @:boolean_}{\&{boolean} primitive@>
21501 mp_primitive(mp, "path",type_name,mp_path_type);
21502 @:path_}{\&{path} primitive@>
21503 mp_primitive(mp, "pen",type_name,mp_pen_type);
21504 @:pen_}{\&{pen} primitive@>
21505 mp_primitive(mp, "picture",type_name,mp_picture_type);
21506 @:picture_}{\&{picture} primitive@>
21507 mp_primitive(mp, "transform",type_name,mp_transform_type);
21508 @:transform_}{\&{transform} primitive@>
21509 mp_primitive(mp, "color",type_name,mp_color_type);
21510 @:color_}{\&{color} primitive@>
21511 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21512 @:color_}{\&{rgbcolor} primitive@>
21513 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21514 @:color_}{\&{cmykcolor} primitive@>
21515 mp_primitive(mp, "pair",type_name,mp_pair_type);
21516 @:pair_}{\&{pair} primitive@>
21518 @ @<Cases of |print_cmd...@>=
21519 case type_name: mp_print_type(mp, m); break;
21521 @ Now we are ready to handle type declarations, assuming that a
21522 |type_name| has just been scanned.
21524 @<Declare action procedures for use by |do_statement|@>=
21525 void mp_do_type_declaration (MP mp) ;
21528 void mp_do_type_declaration (MP mp) {
21529 small_number t; /* the type being declared */
21530 pointer p; /* token list for a declared variable */
21531 pointer q; /* value node for the variable */
21532 if ( mp->cur_mod>=mp_transform_type )
21535 t=mp->cur_mod+unknown_tag;
21537 p=mp_scan_declared_variable(mp);
21538 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21539 q=mp_find_variable(mp, p);
21541 type(q)=t; value(q)=null;
21543 print_err("Declared variable conflicts with previous vardef");
21544 @.Declared variable conflicts...@>
21545 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21546 ("Proceed, and I'll ignore the illegal redeclaration.");
21547 mp_put_get_error(mp);
21549 mp_flush_list(mp, p);
21550 if ( mp->cur_cmd<comma ) {
21551 @<Flush spurious symbols after the declared variable@>;
21553 } while (! end_of_statement);
21556 @ @<Flush spurious symbols after the declared variable@>=
21558 print_err("Illegal suffix of declared variable will be flushed");
21559 @.Illegal suffix...flushed@>
21560 help5("Variables in declarations must consist entirely of")
21561 ("names and collective subscripts, e.g., `x[]a'.")
21562 ("Are you trying to use a reserved word in a variable name?")
21563 ("I'm going to discard the junk I found here,")
21564 ("up to the next comma or the end of the declaration.");
21565 if ( mp->cur_cmd==numeric_token )
21566 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21567 mp_put_get_error(mp); mp->scanner_status=flushing;
21570 @<Decrease the string reference count...@>;
21571 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21572 mp->scanner_status=normal;
21575 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21576 until coming to the end of the user's program.
21577 Each execution of |do_statement| concludes with
21578 |cur_cmd=semicolon|, |end_group|, or |stop|.
21580 @c void mp_main_control (MP mp) {
21582 mp_do_statement(mp);
21583 if ( mp->cur_cmd==end_group ) {
21584 print_err("Extra `endgroup'");
21585 @.Extra `endgroup'@>
21586 help2("I'm not currently working on a `begingroup',")
21587 ("so I had better not try to end anything.");
21588 mp_flush_error(mp, 0);
21590 } while (mp->cur_cmd!=stop);
21592 int mp_run (MP mp) {
21593 mp_main_control(mp); /* come to life */
21594 mp_final_cleanup(mp); /* prepare for death */
21595 mp_close_files_and_terminate(mp);
21596 return mp->history;
21598 char * mp_mplib_version (MP mp) {
21600 return mplib_version;
21602 char * mp_metapost_version (MP mp) {
21604 return metapost_version;
21607 @ @<Exported function headers@>=
21608 int mp_run (MP mp);
21609 char * mp_mplib_version (MP mp);
21610 char * mp_metapost_version (MP mp);
21613 mp_primitive(mp, "end",stop,0);
21614 @:end_}{\&{end} primitive@>
21615 mp_primitive(mp, "dump",stop,1);
21616 @:dump_}{\&{dump} primitive@>
21618 @ @<Cases of |print_cmd...@>=
21620 if ( m==0 ) mp_print(mp, "end");
21621 else mp_print(mp, "dump");
21625 Let's turn now to statements that are classified as ``commands'' because
21626 of their imperative nature. We'll begin with simple ones, so that it
21627 will be clear how to hook command processing into the |do_statement| routine;
21628 then we'll tackle the tougher commands.
21630 Here's one of the simplest:
21632 @<Cases of |do_statement|...@>=
21633 case random_seed: mp_do_random_seed(mp); break;
21635 @ @<Declare action procedures for use by |do_statement|@>=
21636 void mp_do_random_seed (MP mp) ;
21638 @ @c void mp_do_random_seed (MP mp) {
21640 if ( mp->cur_cmd!=assignment ) {
21641 mp_missing_err(mp, ":=");
21643 help1("Always say `randomseed:=<numeric expression>'.");
21646 mp_get_x_next(mp); mp_scan_expression(mp);
21647 if ( mp->cur_type!=mp_known ) {
21648 exp_err("Unknown value will be ignored");
21649 @.Unknown value...ignored@>
21650 help2("Your expression was too random for me to handle,")
21651 ("so I won't change the random seed just now.");
21652 mp_put_get_flush_error(mp, 0);
21654 @<Initialize the random seed to |cur_exp|@>;
21658 @ @<Initialize the random seed to |cur_exp|@>=
21660 mp_init_randoms(mp, mp->cur_exp);
21661 if ( mp->selector>=log_only && mp->selector<write_file) {
21662 mp->old_setting=mp->selector; mp->selector=log_only;
21663 mp_print_nl(mp, "{randomseed:=");
21664 mp_print_scaled(mp, mp->cur_exp);
21665 mp_print_char(mp, '}');
21666 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21670 @ And here's another simple one (somewhat different in flavor):
21672 @<Cases of |do_statement|...@>=
21674 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21675 @<Initialize the print |selector| based on |interaction|@>;
21676 if ( mp->log_opened ) mp->selector=mp->selector+2;
21681 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21682 @:mp_batch_mode_}{\&{batchmode} primitive@>
21683 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21684 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21685 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21686 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21687 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21688 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21690 @ @<Cases of |print_cmd_mod|...@>=
21693 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21694 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21695 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21696 default: mp_print(mp, "errorstopmode"); break;
21700 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21702 @<Cases of |do_statement|...@>=
21703 case protection_command: mp_do_protection(mp); break;
21706 mp_primitive(mp, "inner",protection_command,0);
21707 @:inner_}{\&{inner} primitive@>
21708 mp_primitive(mp, "outer",protection_command,1);
21709 @:outer_}{\&{outer} primitive@>
21711 @ @<Cases of |print_cmd...@>=
21712 case protection_command:
21713 if ( m==0 ) mp_print(mp, "inner");
21714 else mp_print(mp, "outer");
21717 @ @<Declare action procedures for use by |do_statement|@>=
21718 void mp_do_protection (MP mp) ;
21720 @ @c void mp_do_protection (MP mp) {
21721 int m; /* 0 to unprotect, 1 to protect */
21722 halfword t; /* the |eq_type| before we change it */
21725 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21727 if ( t>=outer_tag )
21728 eq_type(mp->cur_sym)=t-outer_tag;
21729 } else if ( t<outer_tag ) {
21730 eq_type(mp->cur_sym)=t+outer_tag;
21733 } while (mp->cur_cmd==comma);
21736 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21737 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21738 declaration assigns the command code |left_delimiter| to `\.{(}' and
21739 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21740 hash address of its mate.
21742 @<Cases of |do_statement|...@>=
21743 case delimiters: mp_def_delims(mp); break;
21745 @ @<Declare action procedures for use by |do_statement|@>=
21746 void mp_def_delims (MP mp) ;
21748 @ @c void mp_def_delims (MP mp) {
21749 pointer l_delim,r_delim; /* the new delimiter pair */
21750 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21751 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21752 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21753 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21757 @ Here is a procedure that is called when \MP\ has reached a point
21758 where some right delimiter is mandatory.
21760 @<Declare the procedure called |check_delimiter|@>=
21761 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21762 if ( mp->cur_cmd==right_delimiter )
21763 if ( mp->cur_mod==l_delim )
21765 if ( mp->cur_sym!=r_delim ) {
21766 mp_missing_err(mp, str(text(r_delim)));
21768 help2("I found no right delimiter to match a left one. So I've")
21769 ("put one in, behind the scenes; this may fix the problem.");
21772 print_err("The token `"); mp_print_text(r_delim);
21773 @.The token...delimiter@>
21774 mp_print(mp, "' is no longer a right delimiter");
21775 help3("Strange: This token has lost its former meaning!")
21776 ("I'll read it as a right delimiter this time;")
21777 ("but watch out, I'll probably miss it later.");
21782 @ The next four commands save or change the values associated with tokens.
21784 @<Cases of |do_statement|...@>=
21787 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21788 } while (mp->cur_cmd==comma);
21790 case interim_command: mp_do_interim(mp); break;
21791 case let_command: mp_do_let(mp); break;
21792 case new_internal: mp_do_new_internal(mp); break;
21794 @ @<Declare action procedures for use by |do_statement|@>=
21795 void mp_do_statement (MP mp);
21796 void mp_do_interim (MP mp);
21798 @ @c void mp_do_interim (MP mp) {
21800 if ( mp->cur_cmd!=internal_quantity ) {
21801 print_err("The token `");
21802 @.The token...quantity@>
21803 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
21804 else mp_print_text(mp->cur_sym);
21805 mp_print(mp, "' isn't an internal quantity");
21806 help1("Something like `tracingonline' should follow `interim'.");
21809 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
21811 mp_do_statement(mp);
21814 @ The following procedure is careful not to undefine the left-hand symbol
21815 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
21817 @<Declare action procedures for use by |do_statement|@>=
21818 void mp_do_let (MP mp) ;
21820 @ @c void mp_do_let (MP mp) {
21821 pointer l; /* hash location of the left-hand symbol */
21822 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
21823 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
21824 mp_missing_err(mp, "=");
21826 help3("You should have said `let symbol = something'.")
21827 ("But don't worry; I'll pretend that an equals sign")
21828 ("was present. The next token I read will be `something'.");
21832 switch (mp->cur_cmd) {
21833 case defined_macro: case secondary_primary_macro:
21834 case tertiary_secondary_macro: case expression_tertiary_macro:
21835 add_mac_ref(mp->cur_mod);
21840 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
21841 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
21842 else equiv(l)=mp->cur_mod;
21846 @ @<Declarations@>=
21847 void mp_grow_internals (MP mp, int l);
21848 void mp_do_new_internal (MP mp) ;
21851 void mp_grow_internals (MP mp, int l) {
21855 if ( hash_end+l>max_halfword ) {
21856 mp_confusion(mp, "out of memory space"); /* can't be reached */
21858 int_name = xmalloc ((l+1),sizeof(char *));
21859 internal = xmalloc ((l+1),sizeof(scaled));
21860 for (k=0;k<=l; k++ ) {
21861 if (k<=mp->max_internal) {
21862 internal[k]=mp->internal[k];
21863 int_name[k]=mp->int_name[k];
21869 xfree(mp->internal); xfree(mp->int_name);
21870 mp->int_name = int_name;
21871 mp->internal = internal;
21872 mp->max_internal = l;
21876 void mp_do_new_internal (MP mp) {
21878 if ( mp->int_ptr==mp->max_internal ) {
21879 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
21881 mp_get_clear_symbol(mp); incr(mp->int_ptr);
21882 eq_type(mp->cur_sym)=internal_quantity;
21883 equiv(mp->cur_sym)=mp->int_ptr;
21884 if(mp->int_name[mp->int_ptr]!=NULL)
21885 xfree(mp->int_name[mp->int_ptr]);
21886 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
21887 mp->internal[mp->int_ptr]=0;
21889 } while (mp->cur_cmd==comma);
21892 @ @<Dealloc variables@>=
21893 for (k=0;k<=mp->max_internal;k++) {
21894 xfree(mp->int_name[k]);
21896 xfree(mp->internal);
21897 xfree(mp->int_name);
21900 @ The various `\&{show}' commands are distinguished by modifier fields
21903 @d show_token_code 0 /* show the meaning of a single token */
21904 @d show_stats_code 1 /* show current memory and string usage */
21905 @d show_code 2 /* show a list of expressions */
21906 @d show_var_code 3 /* show a variable and its descendents */
21907 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
21910 mp_primitive(mp, "showtoken",show_command,show_token_code);
21911 @:show_token_}{\&{showtoken} primitive@>
21912 mp_primitive(mp, "showstats",show_command,show_stats_code);
21913 @:show_stats_}{\&{showstats} primitive@>
21914 mp_primitive(mp, "show",show_command,show_code);
21915 @:show_}{\&{show} primitive@>
21916 mp_primitive(mp, "showvariable",show_command,show_var_code);
21917 @:show_var_}{\&{showvariable} primitive@>
21918 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
21919 @:show_dependencies_}{\&{showdependencies} primitive@>
21921 @ @<Cases of |print_cmd...@>=
21924 case show_token_code:mp_print(mp, "showtoken"); break;
21925 case show_stats_code:mp_print(mp, "showstats"); break;
21926 case show_code:mp_print(mp, "show"); break;
21927 case show_var_code:mp_print(mp, "showvariable"); break;
21928 default: mp_print(mp, "showdependencies"); break;
21932 @ @<Cases of |do_statement|...@>=
21933 case show_command:mp_do_show_whatever(mp); break;
21935 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
21936 if it's |show_code|, complicated structures are abbreviated, otherwise
21939 @<Declare action procedures for use by |do_statement|@>=
21940 void mp_do_show (MP mp) ;
21942 @ @c void mp_do_show (MP mp) {
21944 mp_get_x_next(mp); mp_scan_expression(mp);
21945 mp_print_nl(mp, ">> ");
21947 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
21948 } while (mp->cur_cmd==comma);
21951 @ @<Declare action procedures for use by |do_statement|@>=
21952 void mp_disp_token (MP mp) ;
21954 @ @c void mp_disp_token (MP mp) {
21955 mp_print_nl(mp, "> ");
21957 if ( mp->cur_sym==0 ) {
21958 @<Show a numeric or string or capsule token@>;
21960 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
21961 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
21962 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
21963 if ( mp->cur_cmd==defined_macro ) {
21964 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
21965 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
21970 @ @<Show a numeric or string or capsule token@>=
21972 if ( mp->cur_cmd==numeric_token ) {
21973 mp_print_scaled(mp, mp->cur_mod);
21974 } else if ( mp->cur_cmd==capsule_token ) {
21975 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
21977 mp_print_char(mp, '"');
21978 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
21979 delete_str_ref(mp->cur_mod);
21983 @ The following cases of |print_cmd_mod| might arise in connection
21984 with |disp_token|, although they don't correspond to any
21987 @<Cases of |print_cmd_...@>=
21988 case left_delimiter:
21989 case right_delimiter:
21990 if ( c==left_delimiter ) mp_print(mp, "left");
21991 else mp_print(mp, "right");
21992 mp_print(mp, " delimiter that matches ");
21996 if ( m==null ) mp_print(mp, "tag");
21997 else mp_print(mp, "variable");
21999 case defined_macro:
22000 mp_print(mp, "macro:");
22002 case secondary_primary_macro:
22003 case tertiary_secondary_macro:
22004 case expression_tertiary_macro:
22005 mp_print_cmd_mod(mp, macro_def,c);
22006 mp_print(mp, "'d macro:");
22007 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22010 mp_print(mp, "[repeat the loop]");
22012 case internal_quantity:
22013 mp_print(mp, mp->int_name[m]);
22016 @ @<Declare action procedures for use by |do_statement|@>=
22017 void mp_do_show_token (MP mp) ;
22019 @ @c void mp_do_show_token (MP mp) {
22021 get_t_next; mp_disp_token(mp);
22023 } while (mp->cur_cmd==comma);
22026 @ @<Declare action procedures for use by |do_statement|@>=
22027 void mp_do_show_stats (MP mp) ;
22029 @ @c void mp_do_show_stats (MP mp) {
22030 mp_print_nl(mp, "Memory usage ");
22031 @.Memory usage...@>
22032 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22034 mp_print(mp, "unknown");
22035 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22036 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22037 mp_print_nl(mp, "String usage ");
22038 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22039 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22041 mp_print(mp, "unknown");
22042 mp_print(mp, " (");
22043 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22044 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22045 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22049 @ Here's a recursive procedure that gives an abbreviated account
22050 of a variable, for use by |do_show_var|.
22052 @<Declare action procedures for use by |do_statement|@>=
22053 void mp_disp_var (MP mp,pointer p) ;
22055 @ @c void mp_disp_var (MP mp,pointer p) {
22056 pointer q; /* traverses attributes and subscripts */
22057 int n; /* amount of macro text to show */
22058 if ( type(p)==mp_structured ) {
22059 @<Descend the structure@>;
22060 } else if ( type(p)>=mp_unsuffixed_macro ) {
22061 @<Display a variable macro@>;
22062 } else if ( type(p)!=undefined ){
22063 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22064 mp_print_char(mp, '=');
22065 mp_print_exp(mp, p,0);
22069 @ @<Descend the structure@>=
22072 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22074 while ( name_type(q)==mp_subscr ) {
22075 mp_disp_var(mp, q); q=link(q);
22079 @ @<Display a variable macro@>=
22081 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22082 if ( type(p)>mp_unsuffixed_macro )
22083 mp_print(mp, "@@#"); /* |suffixed_macro| */
22084 mp_print(mp, "=macro:");
22085 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22086 else n=mp->max_print_line-mp->file_offset-15;
22087 mp_show_macro(mp, value(p),null,n);
22090 @ @<Declare action procedures for use by |do_statement|@>=
22091 void mp_do_show_var (MP mp) ;
22093 @ @c void mp_do_show_var (MP mp) {
22096 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22097 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22098 mp_disp_var(mp, mp->cur_mod); goto DONE;
22103 } while (mp->cur_cmd==comma);
22106 @ @<Declare action procedures for use by |do_statement|@>=
22107 void mp_do_show_dependencies (MP mp) ;
22109 @ @c void mp_do_show_dependencies (MP mp) {
22110 pointer p; /* link that runs through all dependencies */
22112 while ( p!=dep_head ) {
22113 if ( mp_interesting(mp, p) ) {
22114 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22115 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22116 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22117 mp_print_dependency(mp, dep_list(p),type(p));
22120 while ( info(p)!=null ) p=link(p);
22126 @ Finally we are ready for the procedure that governs all of the
22129 @<Declare action procedures for use by |do_statement|@>=
22130 void mp_do_show_whatever (MP mp) ;
22132 @ @c void mp_do_show_whatever (MP mp) {
22133 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22134 switch (mp->cur_mod) {
22135 case show_token_code:mp_do_show_token(mp); break;
22136 case show_stats_code:mp_do_show_stats(mp); break;
22137 case show_code:mp_do_show(mp); break;
22138 case show_var_code:mp_do_show_var(mp); break;
22139 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22140 } /* there are no other cases */
22141 if ( mp->internal[showstopping]>0 ){
22144 if ( mp->interaction<mp_error_stop_mode ) {
22145 help0; decr(mp->error_count);
22147 help1("This isn't an error message; I'm just showing something.");
22149 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22150 else mp_put_get_error(mp);
22154 @ The `\&{addto}' command needs the following additional primitives:
22156 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22157 @d contour_code 1 /* command modifier for `\&{contour}' */
22158 @d also_code 2 /* command modifier for `\&{also}' */
22160 @ Pre and postscripts need two new identifiers:
22162 @d with_pre_script 11
22163 @d with_post_script 13
22166 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22167 @:double_path_}{\&{doublepath} primitive@>
22168 mp_primitive(mp, "contour",thing_to_add,contour_code);
22169 @:contour_}{\&{contour} primitive@>
22170 mp_primitive(mp, "also",thing_to_add,also_code);
22171 @:also_}{\&{also} primitive@>
22172 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22173 @:with_pen_}{\&{withpen} primitive@>
22174 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22175 @:dashed_}{\&{dashed} primitive@>
22176 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22177 @:with_pre_script_}{\&{withprescript} primitive@>
22178 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22179 @:with_post_script_}{\&{withpostscript} primitive@>
22180 mp_primitive(mp, "withoutcolor",with_option,no_model);
22181 @:with_color_}{\&{withoutcolor} primitive@>
22182 mp_primitive(mp, "withgreyscale",with_option,grey_model);
22183 @:with_color_}{\&{withgreyscale} primitive@>
22184 mp_primitive(mp, "withcolor",with_option,uninitialized_model);
22185 @:with_color_}{\&{withcolor} primitive@>
22186 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22187 mp_primitive(mp, "withrgbcolor",with_option,rgb_model);
22188 @:with_color_}{\&{withrgbcolor} primitive@>
22189 mp_primitive(mp, "withcmykcolor",with_option,cmyk_model);
22190 @:with_color_}{\&{withcmykcolor} primitive@>
22192 @ @<Cases of |print_cmd...@>=
22194 if ( m==contour_code ) mp_print(mp, "contour");
22195 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22196 else mp_print(mp, "also");
22199 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22200 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22201 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22202 else if ( m==no_model ) mp_print(mp, "withoutcolor");
22203 else if ( m==rgb_model ) mp_print(mp, "withrgbcolor");
22204 else if ( m==uninitialized_model ) mp_print(mp, "withcolor");
22205 else if ( m==cmyk_model ) mp_print(mp, "withcmykcolor");
22206 else if ( m==grey_model ) mp_print(mp, "withgreyscale");
22207 else mp_print(mp, "dashed");
22210 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22211 updates the list of graphical objects starting at |p|. Each $\langle$with
22212 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22213 Other objects are ignored.
22215 @<Declare action procedures for use by |do_statement|@>=
22216 void mp_scan_with_list (MP mp,pointer p) ;
22218 @ @c void mp_scan_with_list (MP mp,pointer p) {
22219 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22220 pointer q; /* for list manipulation */
22221 int old_setting; /* saved |selector| setting */
22222 pointer k; /* for finding the near-last item in a list */
22223 str_number s; /* for string cleanup after combining */
22224 pointer cp,pp,dp,ap,bp;
22225 /* objects being updated; |void| initially; |null| to suppress update */
22226 cp=diov; pp=diov; dp=diov; ap=diov; bp=diov;
22228 while ( mp->cur_cmd==with_option ){
22231 if ( t!=no_model ) mp_scan_expression(mp);
22232 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22233 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22234 ((t==uninitialized_model)&&
22235 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22236 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22237 ((t==cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22238 ((t==rgb_model)&&(mp->cur_type!=mp_color_type))||
22239 ((t==grey_model)&&(mp->cur_type!=mp_known))||
22240 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22241 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22242 @<Complain about improper type@>;
22243 } else if ( t==uninitialized_model ) {
22244 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22246 @<Transfer a color from the current expression to object~|cp|@>;
22247 mp_flush_cur_exp(mp, 0);
22248 } else if ( t==rgb_model ) {
22249 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22251 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22252 mp_flush_cur_exp(mp, 0);
22253 } else if ( t==cmyk_model ) {
22254 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22256 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22257 mp_flush_cur_exp(mp, 0);
22258 } else if ( t==grey_model ) {
22259 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22261 @<Transfer a greyscale from the current expression to object~|cp|@>;
22262 mp_flush_cur_exp(mp, 0);
22263 } else if ( t==no_model ) {
22264 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22266 @<Transfer a noncolor from the current expression to object~|cp|@>;
22267 } else if ( t==mp_pen_type ) {
22268 if ( pp==diov ) @<Make |pp| an object in list~|p| that needs a pen@>;
22270 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22271 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22273 } else if ( t==with_pre_script ) {
22276 while ( (ap!=null)&&(! has_color(ap)) )
22279 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22281 old_setting=mp->selector;
22282 mp->selector=new_string;
22283 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22284 mp_print_str(mp, mp->cur_exp);
22285 append_char(13); /* a forced \ps\ newline */
22286 mp_print_str(mp, pre_script(ap));
22287 pre_script(ap)=mp_make_string(mp);
22289 mp->selector=old_setting;
22291 pre_script(ap)=mp->cur_exp;
22293 mp->cur_type=mp_vacuous;
22295 } else if ( t==with_post_script ) {
22299 while ( link(k)!=null ) {
22301 if ( has_color(k) ) bp=k;
22304 if ( post_script(bp)!=null ) {
22306 old_setting=mp->selector;
22307 mp->selector=new_string;
22308 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22309 mp_print_str(mp, post_script(bp));
22310 append_char(13); /* a forced \ps\ newline */
22311 mp_print_str(mp, mp->cur_exp);
22312 post_script(bp)=mp_make_string(mp);
22314 mp->selector=old_setting;
22316 post_script(bp)=mp->cur_exp;
22318 mp->cur_type=mp_vacuous;
22322 @<Make |dp| a stroked node in list~|p|@>;
22324 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22325 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22326 dash_scale(dp)=unity;
22327 mp->cur_type=mp_vacuous;
22331 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22335 @ @<Complain about improper type@>=
22336 { exp_err("Improper type");
22338 help2("Next time say `withpen <known pen expression>';")
22339 ("I'll ignore the bad `with' clause and look for another.");
22340 if ( t==with_pre_script )
22341 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22342 else if ( t==with_post_script )
22343 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22344 else if ( t==mp_picture_type )
22345 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22346 else if ( t==uninitialized_model )
22347 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22348 else if ( t==rgb_model )
22349 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22350 else if ( t==cmyk_model )
22351 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22352 else if ( t==grey_model )
22353 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22354 mp_put_get_flush_error(mp, 0);
22357 @ Forcing the color to be between |0| and |unity| here guarantees that no
22358 picture will ever contain a color outside the legal range for \ps\ graphics.
22360 @<Transfer a color from the current expression to object~|cp|@>=
22361 { if ( mp->cur_type==mp_color_type )
22362 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22363 else if ( mp->cur_type==mp_cmykcolor_type )
22364 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22365 else if ( mp->cur_type==mp_known )
22366 @<Transfer a greyscale from the current expression to object~|cp|@>
22367 else if ( mp->cur_exp==false_code )
22368 @<Transfer a noncolor from the current expression to object~|cp|@>;
22371 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22372 { q=value(mp->cur_exp);
22377 red_val(cp)=value(red_part_loc(q));
22378 green_val(cp)=value(green_part_loc(q));
22379 blue_val(cp)=value(blue_part_loc(q));
22380 color_model(cp)=rgb_model;
22381 if ( red_val(cp)<0 ) red_val(cp)=0;
22382 if ( green_val(cp)<0 ) green_val(cp)=0;
22383 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22384 if ( red_val(cp)>unity ) red_val(cp)=unity;
22385 if ( green_val(cp)>unity ) green_val(cp)=unity;
22386 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22389 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22390 { q=value(mp->cur_exp);
22391 cyan_val(cp)=value(cyan_part_loc(q));
22392 magenta_val(cp)=value(magenta_part_loc(q));
22393 yellow_val(cp)=value(yellow_part_loc(q));
22394 black_val(cp)=value(black_part_loc(q));
22395 color_model(cp)=cmyk_model;
22396 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22397 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22398 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22399 if ( black_val(cp)<0 ) black_val(cp)=0;
22400 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22401 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22402 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22403 if ( black_val(cp)>unity ) black_val(cp)=unity;
22406 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22413 color_model(cp)=grey_model;
22414 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22415 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22418 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22425 color_model(cp)=no_model;
22428 @ @<Make |cp| a colored object in object list~|p|@>=
22430 while ( cp!=null ){
22431 if ( has_color(cp) ) break;
22436 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22438 while ( pp!=null ) {
22439 if ( has_pen(pp) ) break;
22444 @ @<Make |dp| a stroked node in list~|p|@>=
22446 while ( dp!=null ) {
22447 if ( type(dp)==stroked_code ) break;
22452 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22453 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22455 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22456 if ( dp>diov ) @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
22458 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22460 while ( q!=null ) {
22461 if ( has_color(q) ) {
22462 red_val(q)=red_val(cp);
22463 green_val(q)=green_val(cp);
22464 blue_val(q)=blue_val(cp);
22465 black_val(q)=black_val(cp);
22466 color_model(q)=color_model(cp);
22472 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22474 while ( q!=null ) {
22475 if ( has_pen(q) ) {
22476 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22477 pen_p(q)=copy_pen(pen_p(pp));
22483 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22485 while ( q!=null ) {
22486 if ( type(q)==stroked_code ) {
22487 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22488 dash_p(q)=dash_p(dp);
22489 dash_scale(q)=unity;
22490 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22496 @ One of the things we need to do when we've parsed an \&{addto} or
22497 similar command is find the header of a supposed \&{picture} variable, given
22498 a token list for that variable. Since the edge structure is about to be
22499 updated, we use |private_edges| to make sure that this is possible.
22501 @<Declare action procedures for use by |do_statement|@>=
22502 pointer mp_find_edges_var (MP mp, pointer t) ;
22504 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22506 pointer cur_edges; /* the return value */
22507 p=mp_find_variable(mp, t); cur_edges=null;
22509 mp_obliterated(mp, t); mp_put_get_error(mp);
22510 } else if ( type(p)!=mp_picture_type ) {
22511 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22512 @.Variable x is the wrong type@>
22513 mp_print(mp, " is the wrong type (");
22514 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22515 help2("I was looking for a \"known\" picture variable.")
22516 ("So I'll not change anything just now.");
22517 mp_put_get_error(mp);
22519 value(p)=mp_private_edges(mp, value(p));
22520 cur_edges=value(p);
22522 mp_flush_node_list(mp, t);
22526 @ @<Cases of |do_statement|...@>=
22527 case add_to_command: mp_do_add_to(mp); break;
22528 case bounds_command:mp_do_bounds(mp); break;
22531 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22532 @:clip_}{\&{clip} primitive@>
22533 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22534 @:set_bounds_}{\&{setbounds} primitive@>
22536 @ @<Cases of |print_cmd...@>=
22537 case bounds_command:
22538 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22539 else mp_print(mp, "setbounds");
22542 @ The following function parses the beginning of an \&{addto} or \&{clip}
22543 command: it expects a variable name followed by a token with |cur_cmd=sep|
22544 and then an expression. The function returns the token list for the variable
22545 and stores the command modifier for the separator token in the global variable
22546 |last_add_type|. We must be careful because this variable might get overwritten
22547 any time we call |get_x_next|.
22550 quarterword last_add_type;
22551 /* command modifier that identifies the last \&{addto} command */
22553 @ @<Declare action procedures for use by |do_statement|@>=
22554 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22556 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22557 pointer lhv; /* variable to add to left */
22558 quarterword add_type=0; /* value to be returned in |last_add_type| */
22560 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22561 if ( mp->cur_type!=mp_token_list ) {
22562 @<Abandon edges command because there's no variable@>;
22564 lhv=mp->cur_exp; add_type=mp->cur_mod;
22565 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22567 mp->last_add_type=add_type;
22571 @ @<Abandon edges command because there's no variable@>=
22572 { exp_err("Not a suitable variable");
22573 @.Not a suitable variable@>
22574 help4("At this point I needed to see the name of a picture variable.")
22575 ("(Or perhaps you have indeed presented me with one; I might")
22576 ("have missed it, if it wasn't followed by the proper token.)")
22577 ("So I'll not change anything just now.");
22578 mp_put_get_flush_error(mp, 0);
22581 @ Here is an example of how to use |start_draw_cmd|.
22583 @<Declare action procedures for use by |do_statement|@>=
22584 void mp_do_bounds (MP mp) ;
22586 @ @c void mp_do_bounds (MP mp) {
22587 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22588 pointer p; /* for list manipulation */
22589 integer m; /* initial value of |cur_mod| */
22591 lhv=mp_start_draw_cmd(mp, to_token);
22593 lhe=mp_find_edges_var(mp, lhv);
22595 mp_flush_cur_exp(mp, 0);
22596 } else if ( mp->cur_type!=mp_path_type ) {
22597 exp_err("Improper `clip'");
22598 @.Improper `addto'@>
22599 help2("This expression should have specified a known path.")
22600 ("So I'll not change anything just now.");
22601 mp_put_get_flush_error(mp, 0);
22602 } else if ( left_type(mp->cur_exp)==endpoint ) {
22603 @<Complain about a non-cycle@>;
22605 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22610 @ @<Complain about a non-cycle@>=
22611 { print_err("Not a cycle");
22613 help2("That contour should have ended with `..cycle' or `&cycle'.")
22614 ("So I'll not change anything just now."); mp_put_get_error(mp);
22617 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22618 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22619 link(p)=link(dummy_loc(lhe));
22620 link(dummy_loc(lhe))=p;
22621 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22622 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22623 type(p)=stop_type(m);
22624 link(obj_tail(lhe))=p;
22626 mp_init_bbox(mp, lhe);
22629 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22630 cases to deal with.
22632 @<Declare action procedures for use by |do_statement|@>=
22633 void mp_do_add_to (MP mp) ;
22635 @ @c void mp_do_add_to (MP mp) {
22636 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22637 pointer p; /* the graphical object or list for |scan_with_list| to update */
22638 pointer e; /* an edge structure to be merged */
22639 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22640 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22642 if ( add_type==also_code ) {
22643 @<Make sure the current expression is a suitable picture and set |e| and |p|
22646 @<Create a graphical object |p| based on |add_type| and the current
22649 mp_scan_with_list(mp, p);
22650 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22654 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22655 setting |e:=null| prevents anything from being added to |lhe|.
22657 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22660 if ( mp->cur_type!=mp_picture_type ) {
22661 exp_err("Improper `addto'");
22662 @.Improper `addto'@>
22663 help2("This expression should have specified a known picture.")
22664 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22666 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22667 p=link(dummy_loc(e));
22671 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22672 attempts to add to the edge structure.
22674 @<Create a graphical object |p| based on |add_type| and the current...@>=
22676 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22677 if ( mp->cur_type!=mp_path_type ) {
22678 exp_err("Improper `addto'");
22679 @.Improper `addto'@>
22680 help2("This expression should have specified a known path.")
22681 ("So I'll not change anything just now.");
22682 mp_put_get_flush_error(mp, 0);
22683 } else if ( add_type==contour_code ) {
22684 if ( left_type(mp->cur_exp)==endpoint ) {
22685 @<Complain about a non-cycle@>;
22687 p=mp_new_fill_node(mp, mp->cur_exp);
22688 mp->cur_type=mp_vacuous;
22691 p=mp_new_stroked_node(mp, mp->cur_exp);
22692 mp->cur_type=mp_vacuous;
22696 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22697 lhe=mp_find_edges_var(mp, lhv);
22699 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22700 if ( e!=null ) delete_edge_ref(e);
22701 } else if ( add_type==also_code ) {
22703 @<Merge |e| into |lhe| and delete |e|@>;
22707 } else if ( p!=null ) {
22708 link(obj_tail(lhe))=p;
22710 if ( add_type==double_path_code )
22711 if ( pen_p(p)==null )
22712 pen_p(p)=mp_get_pen_circle(mp, 0);
22715 @ @<Merge |e| into |lhe| and delete |e|@>=
22716 { if ( link(dummy_loc(e))!=null ) {
22717 link(obj_tail(lhe))=link(dummy_loc(e));
22718 obj_tail(lhe)=obj_tail(e);
22719 obj_tail(e)=dummy_loc(e);
22720 link(dummy_loc(e))=null;
22721 mp_flush_dash_list(mp, lhe);
22723 mp_toss_edges(mp, e);
22726 @ @<Cases of |do_statement|...@>=
22727 case ship_out_command: mp_do_ship_out(mp); break;
22729 @ @<Declare action procedures for use by |do_statement|@>=
22730 @<Declare the function called |tfm_check|@>;
22731 @<Declare the \ps\ output procedures@>;
22732 void mp_do_ship_out (MP mp) ;
22734 @ @c void mp_do_ship_out (MP mp) {
22735 integer c; /* the character code */
22736 mp_get_x_next(mp); mp_scan_expression(mp);
22737 if ( mp->cur_type!=mp_picture_type ) {
22738 @<Complain that it's not a known picture@>;
22740 c=mp_round_unscaled(mp, mp->internal[char_code]) % 256;
22741 if ( c<0 ) c=c+256;
22742 @<Store the width information for character code~|c|@>;
22743 mp_ship_out(mp, mp->cur_exp);
22744 mp_flush_cur_exp(mp, 0);
22748 @ @<Complain that it's not a known picture@>=
22750 exp_err("Not a known picture");
22751 help1("I can only output known pictures.");
22752 mp_put_get_flush_error(mp, 0);
22755 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22758 @<Cases of |do_statement|...@>=
22759 case every_job_command:
22760 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22764 halfword start_sym; /* a symbolic token to insert at beginning of job */
22769 @ Finally, we have only the ``message'' commands remaining.
22772 @d err_message_code 1
22774 @d filename_template_code 3
22775 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22776 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22778 mp->pool_ptr = mp->pool_ptr - g;
22780 mp_print_char(mp, '0');
22783 mp_print_int(mp, (A));
22788 mp_primitive(mp, "message",message_command,message_code);
22789 @:message_}{\&{message} primitive@>
22790 mp_primitive(mp, "errmessage",message_command,err_message_code);
22791 @:err_message_}{\&{errmessage} primitive@>
22792 mp_primitive(mp, "errhelp",message_command,err_help_code);
22793 @:err_help_}{\&{errhelp} primitive@>
22794 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
22795 @:filename_template_}{\&{filenametemplate} primitive@>
22797 @ @<Cases of |print_cmd...@>=
22798 case message_command:
22799 if ( m<err_message_code ) mp_print(mp, "message");
22800 else if ( m==err_message_code ) mp_print(mp, "errmessage");
22801 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
22802 else mp_print(mp, "errhelp");
22805 @ @<Cases of |do_statement|...@>=
22806 case message_command: mp_do_message(mp); break;
22808 @ @<Declare action procedures for use by |do_statement|@>=
22809 @<Declare a procedure called |no_string_err|@>;
22810 void mp_do_message (MP mp) ;
22813 @c void mp_do_message (MP mp) {
22814 int m; /* the type of message */
22815 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
22816 if ( mp->cur_type!=mp_string_type )
22817 mp_no_string_err(mp, "A message should be a known string expression.");
22821 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
22823 case err_message_code:
22824 @<Print string |cur_exp| as an error message@>;
22826 case err_help_code:
22827 @<Save string |cur_exp| as the |err_help|@>;
22829 case filename_template_code:
22830 @<Save the filename template@>;
22832 } /* there are no other cases */
22834 mp_flush_cur_exp(mp, 0);
22837 @ @<Declare a procedure called |no_string_err|@>=
22838 void mp_no_string_err (MP mp,char *s) {
22839 exp_err("Not a string");
22842 mp_put_get_error(mp);
22845 @ The global variable |err_help| is zero when the user has most recently
22846 given an empty help string, or if none has ever been given.
22848 @<Save string |cur_exp| as the |err_help|@>=
22850 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
22851 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
22852 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
22855 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
22856 \&{errhelp}, we don't want to give a long help message each time. So we
22857 give a verbose explanation only once.
22860 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
22862 @ @<Set init...@>=mp->long_help_seen=false;
22864 @ @<Print string |cur_exp| as an error message@>=
22866 print_err(""); mp_print_str(mp, mp->cur_exp);
22867 if ( mp->err_help!=0 ) {
22868 mp->use_err_help=true;
22869 } else if ( mp->long_help_seen ) {
22870 help1("(That was another `errmessage'.)") ;
22872 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
22873 help4("This error message was generated by an `errmessage'")
22874 ("command, so I can\'t give any explicit help.")
22875 ("Pretend that you're Miss Marple: Examine all clues,")
22877 ("and deduce the truth by inspired guesses.");
22879 mp_put_get_error(mp); mp->use_err_help=false;
22882 @ @<Cases of |do_statement|...@>=
22883 case write_command: mp_do_write(mp); break;
22885 @ @<Declare action procedures for use by |do_statement|@>=
22886 void mp_do_write (MP mp) ;
22888 @ @c void mp_do_write (MP mp) {
22889 str_number t; /* the line of text to be written */
22890 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
22891 int old_setting; /* for saving |selector| during output */
22893 mp_scan_expression(mp);
22894 if ( mp->cur_type!=mp_string_type ) {
22895 mp_no_string_err(mp, "The text to be written should be a known string expression");
22896 } else if ( mp->cur_cmd!=to_token ) {
22897 print_err("Missing `to' clause");
22898 help1("A write command should end with `to <filename>'");
22899 mp_put_get_error(mp);
22901 t=mp->cur_exp; mp->cur_type=mp_vacuous;
22903 mp_scan_expression(mp);
22904 if ( mp->cur_type!=mp_string_type )
22905 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
22907 @<Write |t| to the file named by |cur_exp|@>;
22911 mp_flush_cur_exp(mp, 0);
22914 @ @<Write |t| to the file named by |cur_exp|@>=
22916 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
22917 |cur_exp| must be inserted@>;
22918 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
22919 @<Record the end of file on |wr_file[n]|@>;
22921 old_setting=mp->selector;
22922 mp->selector=n+write_file;
22923 mp_print_str(mp, t); mp_print_ln(mp);
22924 mp->selector = old_setting;
22928 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
22930 char *fn = str(mp->cur_exp);
22932 n0=mp->write_files;
22933 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
22934 if ( n==0 ) { /* bottom reached */
22935 if ( n0==mp->write_files ) {
22936 if ( mp->write_files<mp->max_write_files ) {
22937 incr(mp->write_files);
22942 l = mp->max_write_files + (mp->max_write_files>>2);
22943 wr_file = xmalloc((l+1),sizeof(FILE *));
22944 wr_fname = xmalloc((l+1),sizeof(char *));
22945 for (k=0;k<=l;k++) {
22946 if (k<=mp->max_write_files) {
22947 wr_file[k]=mp->wr_file[k];
22948 wr_fname[k]=mp->wr_fname[k];
22954 xfree(mp->wr_file); xfree(mp->wr_fname);
22955 mp->max_write_files = l;
22956 mp->wr_file = wr_file;
22957 mp->wr_fname = wr_fname;
22961 mp_open_write_file(mp, fn ,n);
22964 if ( mp->wr_fname[n]==NULL ) n0=n;
22969 @ @<Record the end of file on |wr_file[n]|@>=
22970 { fclose(mp->wr_file[n]);
22971 xfree(mp->wr_fname[n]);
22972 mp->wr_fname[n]=NULL;
22973 if ( n==mp->write_files-1 ) mp->write_files=n;
22977 @* \[42] Writing font metric data.
22978 \TeX\ gets its knowledge about fonts from font metric files, also called
22979 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
22980 but other programs know about them too. One of \MP's duties is to
22981 write \.{TFM} files so that the user's fonts can readily be
22982 applied to typesetting.
22983 @:TFM files}{\.{TFM} files@>
22984 @^font metric files@>
22986 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
22987 Since the number of bytes is always a multiple of~4, we could
22988 also regard the file as a sequence of 32-bit words, but \MP\ uses the
22989 byte interpretation. The format of \.{TFM} files was designed by
22990 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
22991 @^Ramshaw, Lyle Harold@>
22992 of information in a compact but useful form.
22995 FILE * tfm_file; /* the font metric output goes here */
22996 char * metric_file_name; /* full name of the font metric file */
22998 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
22999 integers that give the lengths of the various subsequent portions
23000 of the file. These twelve integers are, in order:
23001 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23002 |lf|&length of the entire file, in words;\cr
23003 |lh|&length of the header data, in words;\cr
23004 |bc|&smallest character code in the font;\cr
23005 |ec|&largest character code in the font;\cr
23006 |nw|&number of words in the width table;\cr
23007 |nh|&number of words in the height table;\cr
23008 |nd|&number of words in the depth table;\cr
23009 |ni|&number of words in the italic correction table;\cr
23010 |nl|&number of words in the lig/kern table;\cr
23011 |nk|&number of words in the kern table;\cr
23012 |ne|&number of words in the extensible character table;\cr
23013 |np|&number of font parameter words.\cr}}$$
23014 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23016 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23017 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23018 and as few as 0 characters (if |bc=ec+1|).
23020 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23021 16 or more bits, the most significant bytes appear first in the file.
23022 This is called BigEndian order.
23023 @^BigEndian order@>
23025 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23028 The most important data type used here is a |fix_word|, which is
23029 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23030 quantity, with the two's complement of the entire word used to represent
23031 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23032 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23033 the smallest is $-2048$. We will see below, however, that all but two of
23034 the |fix_word| values must lie between $-16$ and $+16$.
23036 @ The first data array is a block of header information, which contains
23037 general facts about the font. The header must contain at least two words,
23038 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23039 header information of use to other software routines might also be
23040 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23041 For example, 16 more words of header information are in use at the Xerox
23042 Palo Alto Research Center; the first ten specify the character coding
23043 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23044 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23045 last gives the ``face byte.''
23047 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23048 the \.{GF} output file. This helps ensure consistency between files,
23049 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23050 should match the check sums on actual fonts that are used. The actual
23051 relation between this check sum and the rest of the \.{TFM} file is not
23052 important; the check sum is simply an identification number with the
23053 property that incompatible fonts almost always have distinct check sums.
23056 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23057 font, in units of \TeX\ points. This number must be at least 1.0; it is
23058 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23059 font, i.e., a font that was designed to look best at a 10-point size,
23060 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23061 $\delta$ \.{pt}', the effect is to override the design size and replace it
23062 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23063 the font image by a factor of $\delta$ divided by the design size. {\sl
23064 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23065 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23066 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23067 since many fonts have a design size equal to one em. The other dimensions
23068 must be less than 16 design-size units in absolute value; thus,
23069 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23070 \.{TFM} file whose first byte might be something besides 0 or 255.
23072 @ Next comes the |char_info| array, which contains one |char_info_word|
23073 per character. Each word in this part of the file contains six fields
23074 packed into four bytes as follows.
23076 \yskip\hang first byte: |width_index| (8 bits)\par
23077 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23079 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23081 \hang fourth byte: |remainder| (8 bits)\par
23083 The actual width of a character is \\{width}|[width_index]|, in design-size
23084 units; this is a device for compressing information, since many characters
23085 have the same width. Since it is quite common for many characters
23086 to have the same height, depth, or italic correction, the \.{TFM} format
23087 imposes a limit of 16 different heights, 16 different depths, and
23088 64 different italic corrections.
23090 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23091 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23092 value of zero. The |width_index| should never be zero unless the
23093 character does not exist in the font, since a character is valid if and
23094 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23096 @ The |tag| field in a |char_info_word| has four values that explain how to
23097 interpret the |remainder| field.
23099 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23100 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23101 program starting at location |remainder| in the |lig_kern| array.\par
23102 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23103 characters of ascending sizes, and not the largest in the chain. The
23104 |remainder| field gives the character code of the next larger character.\par
23105 \hang|tag=3| (|ext_tag|) means that this character code represents an
23106 extensible character, i.e., a character that is built up of smaller pieces
23107 so that it can be made arbitrarily large. The pieces are specified in
23108 |exten[remainder]|.\par
23110 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23111 unless they are used in special circumstances in math formulas. For example,
23112 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23113 operation looks for both |list_tag| and |ext_tag|.
23115 @d no_tag 0 /* vanilla character */
23116 @d lig_tag 1 /* character has a ligature/kerning program */
23117 @d list_tag 2 /* character has a successor in a charlist */
23118 @d ext_tag 3 /* character is extensible */
23120 @ The |lig_kern| array contains instructions in a simple programming language
23121 that explains what to do for special letter pairs. Each word in this array is a
23122 |lig_kern_command| of four bytes.
23124 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23125 step if the byte is 128 or more, otherwise the next step is obtained by
23126 skipping this number of intervening steps.\par
23127 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23128 then perform the operation and stop, otherwise continue.''\par
23129 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23130 a kern step otherwise.\par
23131 \hang fourth byte: |remainder|.\par
23134 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23135 between the current character and |next_char|. This amount is
23136 often negative, so that the characters are brought closer together
23137 by kerning; but it might be positive.
23139 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23140 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23141 |remainder| is inserted between the current character and |next_char|;
23142 then the current character is deleted if $b=0$, and |next_char| is
23143 deleted if $c=0$; then we pass over $a$~characters to reach the next
23144 current character (which may have a ligature/kerning program of its own).
23146 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23147 the |next_char| byte is the so-called right boundary character of this font;
23148 the value of |next_char| need not lie between |bc| and~|ec|.
23149 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23150 there is a special ligature/kerning program for a left boundary character,
23151 beginning at location |256*op_byte+remainder|.
23152 The interpretation is that \TeX\ puts implicit boundary characters
23153 before and after each consecutive string of characters from the same font.
23154 These implicit characters do not appear in the output, but they can affect
23155 ligatures and kerning.
23157 If the very first instruction of a character's |lig_kern| program has
23158 |skip_byte>128|, the program actually begins in location
23159 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23160 arrays, because the first instruction must otherwise
23161 appear in a location |<=255|.
23163 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23165 $$\hbox{|256*op_byte+remainder<nl|.}$$
23166 If such an instruction is encountered during
23167 normal program execution, it denotes an unconditional halt; no ligature
23168 command is performed.
23171 /* value indicating `\.{STOP}' in a lig/kern program */
23172 @d kern_flag (128) /* op code for a kern step */
23173 @d skip_byte(A) mp->lig_kern[(A)].b0
23174 @d next_char(A) mp->lig_kern[(A)].b1
23175 @d op_byte(A) mp->lig_kern[(A)].b2
23176 @d rem_byte(A) mp->lig_kern[(A)].b3
23178 @ Extensible characters are specified by an |extensible_recipe|, which
23179 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23180 order). These bytes are the character codes of individual pieces used to
23181 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23182 present in the built-up result. For example, an extensible vertical line is
23183 like an extensible bracket, except that the top and bottom pieces are missing.
23185 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23186 if the piece isn't present. Then the extensible characters have the form
23187 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23188 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23189 The width of the extensible character is the width of $R$; and the
23190 height-plus-depth is the sum of the individual height-plus-depths of the
23191 components used, since the pieces are butted together in a vertical list.
23193 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23194 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23195 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23196 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23198 @ The final portion of a \.{TFM} file is the |param| array, which is another
23199 sequence of |fix_word| values.
23201 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23202 to help position accents. For example, |slant=.25| means that when you go
23203 up one unit, you also go .25 units to the right. The |slant| is a pure
23204 number; it is the only |fix_word| other than the design size itself that is
23205 not scaled by the design size.
23207 \hang|param[2]=space| is the normal spacing between words in text.
23208 Note that character 040 in the font need not have anything to do with
23211 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23213 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23215 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23216 the height of letters for which accents don't have to be raised or lowered.
23218 \hang|param[6]=quad| is the size of one em in the font.
23220 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23224 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23229 @d space_stretch_code 3
23230 @d space_shrink_code 4
23233 @d extra_space_code 7
23235 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23236 information, and it does this all at once at the end of a job.
23237 In order to prepare for such frenetic activity, it squirrels away the
23238 necessary facts in various arrays as information becomes available.
23240 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23241 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23242 |tfm_ital_corr|. Other information about a character (e.g., about
23243 its ligatures or successors) is accessible via the |char_tag| and
23244 |char_remainder| arrays. Other information about the font as a whole
23245 is kept in additional arrays called |header_byte|, |lig_kern|,
23246 |kern|, |exten|, and |param|.
23248 @d max_tfm_int 32510
23249 @d undefined_label max_tfm_int /* an undefined local label */
23252 #define TFM_ITEMS 257
23254 eight_bits ec; /* smallest and largest character codes shipped out */
23255 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23256 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23257 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23258 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23259 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23260 int char_tag[TFM_ITEMS]; /* |remainder| category */
23261 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23262 char *header_byte; /* bytes of the \.{TFM} header */
23263 int header_last; /* last initialized \.{TFM} header byte */
23264 int header_size; /* size of the \.{TFM} header */
23265 four_quarters *lig_kern; /* the ligature/kern table */
23266 short nl; /* the number of ligature/kern steps so far */
23267 scaled *kern; /* distinct kerning amounts */
23268 short nk; /* the number of distinct kerns so far */
23269 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23270 short ne; /* the number of extensible characters so far */
23271 scaled *param; /* \&{fontinfo} parameters */
23272 short np; /* the largest \&{fontinfo} parameter specified so far */
23273 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23274 short skip_table[TFM_ITEMS]; /* local label status */
23275 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23276 integer bchar; /* right boundary character */
23277 short bch_label; /* left boundary starting location */
23278 short ll;short lll; /* registers used for lig/kern processing */
23279 short label_loc[257]; /* lig/kern starting addresses */
23280 eight_bits label_char[257]; /* characters for |label_loc| */
23281 short label_ptr; /* highest position occupied in |label_loc| */
23283 @ @<Allocate or initialize ...@>=
23284 mp->header_last = 0; mp->header_size = 128; /* just for init */
23285 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23286 mp->lig_kern = NULL; /* allocated when needed */
23287 mp->kern = NULL; /* allocated when needed */
23288 mp->param = NULL; /* allocated when needed */
23290 @ @<Dealloc variables@>=
23291 xfree(mp->header_byte);
23292 xfree(mp->lig_kern);
23297 for (k=0;k<= 255;k++ ) {
23298 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23299 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23300 mp->skip_table[k]=undefined_label;
23302 memset(mp->header_byte,0,mp->header_size);
23303 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23304 mp->internal[boundary_char]=-unity;
23305 mp->bch_label=undefined_label;
23306 mp->label_loc[0]=-1; mp->label_ptr=0;
23308 @ @<Declarations@>=
23309 scaled mp_tfm_check (MP mp,small_number m) ;
23311 @ @<Declare the function called |tfm_check|@>=
23312 scaled mp_tfm_check (MP mp,small_number m) {
23313 if ( abs(mp->internal[m])>=fraction_half ) {
23314 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23315 @.Enormous charwd...@>
23316 @.Enormous chardp...@>
23317 @.Enormous charht...@>
23318 @.Enormous charic...@>
23319 @.Enormous designsize...@>
23320 mp_print(mp, " has been reduced");
23321 help1("Font metric dimensions must be less than 2048pt.");
23322 mp_put_get_error(mp);
23323 if ( mp->internal[m]>0 ) return (fraction_half-1);
23324 else return (1-fraction_half);
23326 return mp->internal[m];
23330 @ @<Store the width information for character code~|c|@>=
23331 if ( c<mp->bc ) mp->bc=c;
23332 if ( c>mp->ec ) mp->ec=c;
23333 mp->char_exists[c]=true;
23334 mp->tfm_width[c]=mp_tfm_check(mp, char_wd);
23335 mp->tfm_height[c]=mp_tfm_check(mp, char_ht);
23336 mp->tfm_depth[c]=mp_tfm_check(mp, char_dp);
23337 mp->tfm_ital_corr[c]=mp_tfm_check(mp, char_ic)
23339 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23341 @<Cases of |do_statement|...@>=
23342 case tfm_command: mp_do_tfm_command(mp); break;
23344 @ @d char_list_code 0
23345 @d lig_table_code 1
23346 @d extensible_code 2
23347 @d header_byte_code 3
23348 @d font_dimen_code 4
23351 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23352 @:char_list_}{\&{charlist} primitive@>
23353 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23354 @:lig_table_}{\&{ligtable} primitive@>
23355 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23356 @:extensible_}{\&{extensible} primitive@>
23357 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23358 @:header_byte_}{\&{headerbyte} primitive@>
23359 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23360 @:font_dimen_}{\&{fontdimen} primitive@>
23362 @ @<Cases of |print_cmd...@>=
23365 case char_list_code:mp_print(mp, "charlist"); break;
23366 case lig_table_code:mp_print(mp, "ligtable"); break;
23367 case extensible_code:mp_print(mp, "extensible"); break;
23368 case header_byte_code:mp_print(mp, "headerbyte"); break;
23369 default: mp_print(mp, "fontdimen"); break;
23373 @ @<Declare action procedures for use by |do_statement|@>=
23374 eight_bits mp_get_code (MP mp) ;
23376 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23377 integer c; /* the code value found */
23378 mp_get_x_next(mp); mp_scan_expression(mp);
23379 if ( mp->cur_type==mp_known ) {
23380 c=mp_round_unscaled(mp, mp->cur_exp);
23381 if ( c>=0 ) if ( c<256 ) return c;
23382 } else if ( mp->cur_type==mp_string_type ) {
23383 if ( length(mp->cur_exp)==1 ) {
23384 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23388 exp_err("Invalid code has been replaced by 0");
23389 @.Invalid code...@>
23390 help2("I was looking for a number between 0 and 255, or for a")
23391 ("string of length 1. Didn't find it; will use 0 instead.");
23392 mp_put_get_flush_error(mp, 0); c=0;
23396 @ @<Declare action procedures for use by |do_statement|@>=
23397 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23399 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23400 if ( mp->char_tag[c]==no_tag ) {
23401 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23403 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23404 mp->label_char[mp->label_ptr]=c;
23407 @<Complain about a character tag conflict@>;
23411 @ @<Complain about a character tag conflict@>=
23413 print_err("Character ");
23414 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23415 else if ( c==256 ) mp_print(mp, "||");
23416 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23417 mp_print(mp, " is already ");
23418 @.Character c is already...@>
23419 switch (mp->char_tag[c]) {
23420 case lig_tag: mp_print(mp, "in a ligtable"); break;
23421 case list_tag: mp_print(mp, "in a charlist"); break;
23422 case ext_tag: mp_print(mp, "extensible"); break;
23423 } /* there are no other cases */
23424 help2("It's not legal to label a character more than once.")
23425 ("So I'll not change anything just now.");
23426 mp_put_get_error(mp);
23429 @ @<Declare action procedures for use by |do_statement|@>=
23430 void mp_do_tfm_command (MP mp) ;
23432 @ @c void mp_do_tfm_command (MP mp) {
23433 int c,cc; /* character codes */
23434 int k; /* index into the |kern| array */
23435 int j; /* index into |header_byte| or |param| */
23436 switch (mp->cur_mod) {
23437 case char_list_code:
23439 /* we will store a list of character successors */
23440 while ( mp->cur_cmd==colon ) {
23441 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23444 case lig_table_code:
23445 if (mp->lig_kern==NULL)
23446 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23447 if (mp->kern==NULL)
23448 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23449 @<Store a list of ligature/kern steps@>;
23451 case extensible_code:
23452 @<Define an extensible recipe@>;
23454 case header_byte_code:
23455 case font_dimen_code:
23456 c=mp->cur_mod; mp_get_x_next(mp);
23457 mp_scan_expression(mp);
23458 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23459 exp_err("Improper location");
23460 @.Improper location@>
23461 help2("I was looking for a known, positive number.")
23462 ("For safety's sake I'll ignore the present command.");
23463 mp_put_get_error(mp);
23465 j=mp_round_unscaled(mp, mp->cur_exp);
23466 if ( mp->cur_cmd!=colon ) {
23467 mp_missing_err(mp, ":");
23469 help1("A colon should follow a headerbyte or fontinfo location.");
23472 if ( c==header_byte_code ) {
23473 @<Store a list of header bytes@>;
23475 if (mp->param==NULL)
23476 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23477 @<Store a list of font dimensions@>;
23481 } /* there are no other cases */
23484 @ @<Store a list of ligature/kern steps@>=
23486 mp->lk_started=false;
23489 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23490 @<Process a |skip_to| command and |goto done|@>;
23491 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23492 else { mp_back_input(mp); c=mp_get_code(mp); };
23493 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23494 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23496 if ( mp->cur_cmd==lig_kern_token ) {
23497 @<Compile a ligature/kern command@>;
23499 print_err("Illegal ligtable step");
23500 @.Illegal ligtable step@>
23501 help1("I was looking for `=:' or `kern' here.");
23502 mp_back_error(mp); next_char(mp->nl)=qi(0);
23503 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23504 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23506 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23508 if ( mp->cur_cmd==comma ) goto CONTINUE;
23509 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23514 mp_primitive(mp, "=:",lig_kern_token,0);
23515 @:=:_}{\.{=:} primitive@>
23516 mp_primitive(mp, "=:|",lig_kern_token,1);
23517 @:=:/_}{\.{=:\char'174} primitive@>
23518 mp_primitive(mp, "=:|>",lig_kern_token,5);
23519 @:=:/>_}{\.{=:\char'174>} primitive@>
23520 mp_primitive(mp, "|=:",lig_kern_token,2);
23521 @:=:/_}{\.{\char'174=:} primitive@>
23522 mp_primitive(mp, "|=:>",lig_kern_token,6);
23523 @:=:/>_}{\.{\char'174=:>} primitive@>
23524 mp_primitive(mp, "|=:|",lig_kern_token,3);
23525 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23526 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23527 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23528 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23529 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23530 mp_primitive(mp, "kern",lig_kern_token,128);
23531 @:kern_}{\&{kern} primitive@>
23533 @ @<Cases of |print_cmd...@>=
23534 case lig_kern_token:
23536 case 0:mp_print(mp, "=:"); break;
23537 case 1:mp_print(mp, "=:|"); break;
23538 case 2:mp_print(mp, "|=:"); break;
23539 case 3:mp_print(mp, "|=:|"); break;
23540 case 5:mp_print(mp, "=:|>"); break;
23541 case 6:mp_print(mp, "|=:>"); break;
23542 case 7:mp_print(mp, "|=:|>"); break;
23543 case 11:mp_print(mp, "|=:|>>"); break;
23544 default: mp_print(mp, "kern"); break;
23548 @ Local labels are implemented by maintaining the |skip_table| array,
23549 where |skip_table[c]| is either |undefined_label| or the address of the
23550 most recent lig/kern instruction that skips to local label~|c|. In the
23551 latter case, the |skip_byte| in that instruction will (temporarily)
23552 be zero if there were no prior skips to this label, or it will be the
23553 distance to the prior skip.
23555 We may need to cancel skips that span more than 127 lig/kern steps.
23557 @d cancel_skips(A) mp->ll=(A);
23559 mp->lll=qo(skip_byte(mp->ll));
23560 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23561 } while (mp->lll!=0)
23562 @d skip_error(A) { print_err("Too far to skip");
23563 @.Too far to skip@>
23564 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23565 mp_error(mp); cancel_skips((A));
23568 @<Process a |skip_to| command and |goto done|@>=
23571 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23572 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23574 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23575 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23576 mp->skip_table[c]=mp->nl-1; goto DONE;
23579 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23581 if ( mp->cur_cmd==colon ) {
23582 if ( c==256 ) mp->bch_label=mp->nl;
23583 else mp_set_tag(mp, c,lig_tag,mp->nl);
23584 } else if ( mp->skip_table[c]<undefined_label ) {
23585 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23587 mp->lll=qo(skip_byte(mp->ll));
23588 if ( mp->nl-mp->ll>128 ) {
23589 skip_error(mp->ll); goto CONTINUE;
23591 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23592 } while (mp->lll!=0);
23597 @ @<Compile a ligature/kern...@>=
23599 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23600 if ( mp->cur_mod<128 ) { /* ligature op */
23601 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23603 mp_get_x_next(mp); mp_scan_expression(mp);
23604 if ( mp->cur_type!=mp_known ) {
23605 exp_err("Improper kern");
23607 help2("The amount of kern should be a known numeric value.")
23608 ("I'm zeroing this one. Proceed, with fingers crossed.");
23609 mp_put_get_flush_error(mp, 0);
23611 mp->kern[mp->nk]=mp->cur_exp;
23613 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23615 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23618 op_byte(mp->nl)=kern_flag+(k / 256);
23619 rem_byte(mp->nl)=qi((k % 256));
23621 mp->lk_started=true;
23624 @ @d missing_extensible_punctuation(A)
23625 { mp_missing_err(mp, (A));
23626 @.Missing `\char`\#'@>
23627 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23630 @<Define an extensible recipe@>=
23632 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23633 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23634 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23635 ext_top(mp->ne)=qi(mp_get_code(mp));
23636 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23637 ext_mid(mp->ne)=qi(mp_get_code(mp));
23638 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23639 ext_bot(mp->ne)=qi(mp_get_code(mp));
23640 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23641 ext_rep(mp->ne)=qi(mp_get_code(mp));
23645 @ The header could contain ASCII zeroes, so can't use |strdup|.
23647 @<Store a list of header bytes@>=
23649 if ( j>=mp->header_size ) {
23650 int l = mp->header_size + (mp->header_size >> 2);
23651 char *t = xmalloc(l,sizeof(char));
23653 memcpy(t,mp->header_byte,mp->header_size);
23654 xfree (mp->header_byte);
23655 mp->header_byte = t;
23656 mp->header_size = l;
23658 mp->header_byte[j]=mp_get_code(mp);
23659 incr(j); incr(mp->header_last);
23660 } while (mp->cur_cmd==comma)
23662 @ @<Store a list of font dimensions@>=
23664 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23665 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23666 mp_get_x_next(mp); mp_scan_expression(mp);
23667 if ( mp->cur_type!=mp_known ){
23668 exp_err("Improper font parameter");
23669 @.Improper font parameter@>
23670 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23671 mp_put_get_flush_error(mp, 0);
23673 mp->param[j]=mp->cur_exp; incr(j);
23674 } while (mp->cur_cmd==comma)
23676 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23677 All that remains is to output it in the correct format.
23679 An interesting problem needs to be solved in this connection, because
23680 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23681 and 64~italic corrections. If the data has more distinct values than
23682 this, we want to meet the necessary restrictions by perturbing the
23683 given values as little as possible.
23685 \MP\ solves this problem in two steps. First the values of a given
23686 kind (widths, heights, depths, or italic corrections) are sorted;
23687 then the list of sorted values is perturbed, if necessary.
23689 The sorting operation is facilitated by having a special node of
23690 essentially infinite |value| at the end of the current list.
23692 @<Initialize table entries...@>=
23693 value(inf_val)=fraction_four;
23695 @ Straight linear insertion is good enough for sorting, since the lists
23696 are usually not terribly long. As we work on the data, the current list
23697 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23698 list will be in increasing order of their |value| fields.
23700 Given such a list, the |sort_in| function takes a value and returns a pointer
23701 to where that value can be found in the list. The value is inserted in
23702 the proper place, if necessary.
23704 At the time we need to do these operations, most of \MP's work has been
23705 completed, so we will have plenty of memory to play with. The value nodes
23706 that are allocated for sorting will never be returned to free storage.
23708 @d clear_the_list link(temp_head)=inf_val
23710 @c pointer mp_sort_in (MP mp,scaled v) {
23711 pointer p,q,r; /* list manipulation registers */
23715 if ( v<=value(q) ) break;
23718 if ( v<value(q) ) {
23719 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23724 @ Now we come to the interesting part, where we reduce the list if necessary
23725 until it has the required size. The |min_cover| routine is basic to this
23726 process; it computes the minimum number~|m| such that the values of the
23727 current sorted list can be covered by |m|~intervals of width~|d|. It
23728 also sets the global value |perturbation| to the smallest value $d'>d$
23729 such that the covering found by this algorithm would be different.
23731 In particular, |min_cover(0)| returns the number of distinct values in the
23732 current list and sets |perturbation| to the minimum distance between
23735 @c integer mp_min_cover (MP mp,scaled d) {
23736 pointer p; /* runs through the current list */
23737 scaled l; /* the least element covered by the current interval */
23738 integer m; /* lower bound on the size of the minimum cover */
23739 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23740 while ( p!=inf_val ){
23741 incr(m); l=value(p);
23742 do { p=link(p); } while (value(p)<=l+d);
23743 if ( value(p)-l<mp->perturbation )
23744 mp->perturbation=value(p)-l;
23750 scaled perturbation; /* quantity related to \.{TFM} rounding */
23751 integer excess; /* the list is this much too long */
23753 @ The smallest |d| such that a given list can be covered with |m| intervals
23754 is determined by the |threshold| routine, which is sort of an inverse
23755 to |min_cover|. The idea is to increase the interval size rapidly until
23756 finding the range, then to go sequentially until the exact borderline has
23759 @c scaled mp_threshold (MP mp,integer m) {
23760 scaled d; /* lower bound on the smallest interval size */
23761 mp->excess=mp_min_cover(mp, 0)-m;
23762 if ( mp->excess<=0 ) {
23766 d=mp->perturbation;
23767 } while (mp_min_cover(mp, d+d)>m);
23768 while ( mp_min_cover(mp, d)>m )
23769 d=mp->perturbation;
23774 @ The |skimp| procedure reduces the current list to at most |m| entries,
23775 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23776 is the |k|th distinct value on the resulting list, and it sets
23777 |perturbation| to the maximum amount by which a |value| field has
23778 been changed. The size of the resulting list is returned as the
23781 @c integer mp_skimp (MP mp,integer m) {
23782 scaled d; /* the size of intervals being coalesced */
23783 pointer p,q,r; /* list manipulation registers */
23784 scaled l; /* the least value in the current interval */
23785 scaled v; /* a compromise value */
23786 d=mp_threshold(mp, m); mp->perturbation=0;
23787 q=temp_head; m=0; p=link(temp_head);
23788 while ( p!=inf_val ) {
23789 incr(m); l=value(p); info(p)=m;
23790 if ( value(link(p))<=l+d ) {
23791 @<Replace an interval of values by its midpoint@>;
23798 @ @<Replace an interval...@>=
23801 p=link(p); info(p)=m;
23802 decr(mp->excess); if ( mp->excess==0 ) d=0;
23803 } while (value(link(p))<=l+d);
23804 v=l+halfp(value(p)-l);
23805 if ( value(p)-v>mp->perturbation )
23806 mp->perturbation=value(p)-v;
23809 r=link(r); value(r)=v;
23811 link(q)=p; /* remove duplicate values from the current list */
23814 @ A warning message is issued whenever something is perturbed by
23815 more than 1/16\thinspace pt.
23817 @c void mp_tfm_warning (MP mp,small_number m) {
23818 mp_print_nl(mp, "(some ");
23819 mp_print(mp, mp->int_name[m]);
23820 @.some charwds...@>
23821 @.some chardps...@>
23822 @.some charhts...@>
23823 @.some charics...@>
23824 mp_print(mp, " values had to be adjusted by as much as ");
23825 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
23828 @ Here's an example of how we use these routines.
23829 The width data needs to be perturbed only if there are 256 distinct
23830 widths, but \MP\ must check for this case even though it is
23833 An integer variable |k| will be defined when we use this code.
23834 The |dimen_head| array will contain pointers to the sorted
23835 lists of dimensions.
23837 @<Massage the \.{TFM} widths@>=
23839 for (k=mp->bc;k<=mp->ec;k++) {
23840 if ( mp->char_exists[k] )
23841 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
23843 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
23844 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_wd)
23847 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
23849 @ Heights, depths, and italic corrections are different from widths
23850 not only because their list length is more severely restricted, but
23851 also because zero values do not need to be put into the lists.
23853 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
23855 for (k=mp->bc;k<=mp->ec;k++) {
23856 if ( mp->char_exists[k] ) {
23857 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
23858 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
23861 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
23862 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ht);
23864 for (k=mp->bc;k<=mp->ec;k++) {
23865 if ( mp->char_exists[k] ) {
23866 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
23867 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
23870 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
23871 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_dp);
23873 for (k=mp->bc;k<=mp->ec;k++) {
23874 if ( mp->char_exists[k] ) {
23875 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
23876 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
23879 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
23880 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ic)
23882 @ @<Initialize table entries...@>=
23883 value(zero_val)=0; info(zero_val)=0;
23885 @ Bytes 5--8 of the header are set to the design size, unless the user has
23886 some crazy reason for specifying them differently.
23888 Error messages are not allowed at the time this procedure is called,
23889 so a warning is printed instead.
23891 The value of |max_tfm_dimen| is calculated so that
23892 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
23893 < \\{three\_bytes}.$$
23895 @d three_bytes 0100000000 /* $2^{24}$ */
23898 void mp_fix_design_size (MP mp) {
23899 scaled d; /* the design size */
23900 d=mp->internal[design_size];
23901 if ( (d<unity)||(d>=fraction_half) ) {
23903 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
23904 @.illegal design size...@>
23905 d=040000000; mp->internal[design_size]=d;
23907 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
23908 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
23909 mp->header_byte[4]=d / 04000000;
23910 mp->header_byte[5]=(d / 4096) % 256;
23911 mp->header_byte[6]=(d / 16) % 256;
23912 mp->header_byte[7]=(d % 16)*16;
23914 mp->max_tfm_dimen=16*mp->internal[design_size]-mp->internal[design_size] / 010000000;
23915 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
23918 @ The |dimen_out| procedure computes a |fix_word| relative to the
23919 design size. If the data was out of range, it is corrected and the
23920 global variable |tfm_changed| is increased by~one.
23922 @c integer mp_dimen_out (MP mp,scaled x) {
23923 if ( abs(x)>mp->max_tfm_dimen ) {
23924 incr(mp->tfm_changed);
23925 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
23927 x=mp_make_scaled(mp, x*16,mp->internal[design_size]);
23933 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
23934 integer tfm_changed; /* the number of data entries that were out of bounds */
23936 @ If the user has not specified any of the first four header bytes,
23937 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
23938 from the |tfm_width| data relative to the design size.
23941 @c void mp_fix_check_sum (MP mp) {
23942 eight_bits k; /* runs through character codes */
23943 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
23944 integer x; /* hash value used in check sum computation */
23945 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
23946 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
23947 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
23948 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
23949 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
23954 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
23955 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
23956 for (k=mp->bc;k<=mp->ec;k++) {
23957 if ( mp->char_exists[k] ) {
23958 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
23959 B1=(B1+B1+x) % 255;
23960 B2=(B2+B2+x) % 253;
23961 B3=(B3+B3+x) % 251;
23962 B4=(B4+B4+x) % 247;
23966 @ Finally we're ready to actually write the \.{TFM} information.
23967 Here are some utility routines for this purpose.
23969 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
23971 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
23972 tfm_out(x / 256); tfm_out(x % 256);
23974 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
23975 if ( x>=0 ) tfm_out(x / three_bytes);
23977 x=x+010000000000; /* use two's complement for negative values */
23979 tfm_out((x / three_bytes) + 128);
23981 x=x % three_bytes; tfm_out(x / unity);
23982 x=x % unity; tfm_out(x / 0400);
23985 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
23986 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
23987 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
23990 @ @<Finish the \.{TFM} file@>=
23991 if ( mp->job_name==NULL ) mp_open_log_file(mp);
23992 mp_pack_job_name(mp, ".tfm");
23993 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
23994 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
23995 mp->metric_file_name=xstrdup(mp->name_of_file);
23996 @<Output the subfile sizes and header bytes@>;
23997 @<Output the character information bytes, then
23998 output the dimensions themselves@>;
23999 @<Output the ligature/kern program@>;
24000 @<Output the extensible character recipes and the font metric parameters@>;
24001 if ( mp->internal[tracing_stats]>0 )
24002 @<Log the subfile sizes of the \.{TFM} file@>;
24003 mp_print_nl(mp, "Font metrics written on ");
24004 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24005 @.Font metrics written...@>
24006 fclose(mp->tfm_file)
24008 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24011 @<Output the subfile sizes and header bytes@>=
24013 LH=(k+3) / 4; /* this is the number of header words */
24014 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24015 @<Compute the ligature/kern program offset and implant the
24016 left boundary label@>;
24017 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24018 +lk_offset+mp->nk+mp->ne+mp->np);
24019 /* this is the total number of file words that will be output */
24020 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24021 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24022 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24023 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24024 mp_tfm_two(mp, mp->np);
24025 for (k=0;k< 4*LH;k++) {
24026 tfm_out(mp->header_byte[k]);
24029 @ @<Output the character information bytes...@>=
24030 for (k=mp->bc;k<=mp->ec;k++) {
24031 if ( ! mp->char_exists[k] ) {
24032 mp_tfm_four(mp, 0);
24034 tfm_out(info(mp->tfm_width[k])); /* the width index */
24035 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24036 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24037 tfm_out(mp->char_remainder[k]);
24041 for (k=1;k<=4;k++) {
24042 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24043 while ( p!=inf_val ) {
24044 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24049 @ We need to output special instructions at the beginning of the
24050 |lig_kern| array in order to specify the right boundary character
24051 and/or to handle starting addresses that exceed 255. The |label_loc|
24052 and |label_char| arrays have been set up to record all the
24053 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24054 \le|label_loc|[|label_ptr]|$.
24056 @<Compute the ligature/kern program offset...@>=
24057 mp->bchar=mp_round_unscaled(mp, mp->internal[boundary_char]);
24058 if ((mp->bchar<0)||(mp->bchar>255))
24059 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24060 else { mp->lk_started=true; lk_offset=1; };
24061 @<Find the minimum |lk_offset| and adjust all remainders@>;
24062 if ( mp->bch_label<undefined_label )
24063 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24064 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24065 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24066 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24069 @ @<Find the minimum |lk_offset|...@>=
24070 k=mp->label_ptr; /* pointer to the largest unallocated label */
24071 if ( mp->label_loc[k]+lk_offset>255 ) {
24072 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24074 mp->char_remainder[mp->label_char[k]]=lk_offset;
24075 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24076 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24078 incr(lk_offset); decr(k);
24079 } while (! (lk_offset+mp->label_loc[k]<256));
24080 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24082 if ( lk_offset>0 ) {
24084 mp->char_remainder[mp->label_char[k]]
24085 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24090 @ @<Output the ligature/kern program@>=
24091 for (k=0;k<= 255;k++ ) {
24092 if ( mp->skip_table[k]<undefined_label ) {
24093 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24094 @.local label l:: was missing@>
24095 cancel_skips(mp->skip_table[k]);
24098 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24099 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24101 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24102 mp->ll=mp->label_loc[mp->label_ptr];
24103 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24104 else { tfm_out(255); tfm_out(mp->bchar); };
24105 mp_tfm_two(mp, mp->ll+lk_offset);
24107 decr(mp->label_ptr);
24108 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24111 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24112 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24114 @ @<Output the extensible character recipes...@>=
24115 for (k=0;k<=mp->ne-1;k++)
24116 mp_tfm_qqqq(mp, mp->exten[k]);
24117 for (k=1;k<=mp->np;k++) {
24119 if ( abs(mp->param[1])<fraction_half ) {
24120 mp_tfm_four(mp, mp->param[1]*16);
24122 incr(mp->tfm_changed);
24123 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24124 else mp_tfm_four(mp, -el_gordo);
24127 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24130 if ( mp->tfm_changed>0 ) {
24131 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24132 @.a font metric dimension...@>
24134 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24135 @.font metric dimensions...@>
24136 mp_print(mp, " font metric dimensions");
24138 mp_print(mp, " had to be decreased)");
24141 @ @<Log the subfile sizes of the \.{TFM} file@>=
24145 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24146 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24147 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24151 @* \[43] Reading font metric data.
24153 \MP\ isn't a typesetting program but it does need to find the bounding box
24154 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24155 well as write them.
24160 @ All the width, height, and depth information is stored in an array called
24161 |font_info|. This array is allocated sequentially and each font is stored
24162 as a series of |char_info| words followed by the width, height, and depth
24163 tables. Since |font_name| entries are permanent, their |str_ref| values are
24164 set to |max_str_ref|.
24167 typedef unsigned int font_number; /* |0..font_max| */
24169 @ The |font_info| array is indexed via a group directory arrays.
24170 For example, the |char_info| data for character~|c| in font~|f| will be
24171 in |font_info[char_base[f]+c].qqqq|.
24174 font_number font_max; /* maximum font number for included text fonts */
24175 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24176 memory_word *font_info; /* height, width, and depth data */
24177 char **font_enc_name; /* encoding names, if any */
24178 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24179 int next_fmem; /* next unused entry in |font_info| */
24180 font_number last_fnum; /* last font number used so far */
24181 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24182 char **font_name; /* name as specified in the \&{infont} command */
24183 char **font_ps_name; /* PostScript name for use when |internal[prologues]>0| */
24184 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24185 eight_bits *font_bc;
24186 eight_bits *font_ec; /* first and last character code */
24187 int *char_base; /* base address for |char_info| */
24188 int *width_base; /* index for zeroth character width */
24189 int *height_base; /* index for zeroth character height */
24190 int *depth_base; /* index for zeroth character depth */
24191 pointer *font_sizes;
24193 @ @<Allocate or initialize ...@>=
24194 mp->font_mem_size = 10000;
24195 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24196 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24197 mp->font_enc_name = NULL;
24198 mp->font_ps_name_fixed = NULL;
24199 mp->font_dsize = NULL;
24200 mp->font_name = NULL;
24201 mp->font_ps_name = NULL;
24202 mp->font_bc = NULL;
24203 mp->font_ec = NULL;
24204 mp->last_fnum = null_font;
24205 mp->char_base = NULL;
24206 mp->width_base = NULL;
24207 mp->height_base = NULL;
24208 mp->depth_base = NULL;
24209 mp->font_sizes = null;
24211 @ @<Dealloc variables@>=
24212 xfree(mp->font_info);
24213 xfree(mp->font_enc_name);
24214 xfree(mp->font_ps_name_fixed);
24215 xfree(mp->font_dsize);
24216 xfree(mp->font_name);
24217 xfree(mp->font_ps_name);
24218 xfree(mp->font_bc);
24219 xfree(mp->font_ec);
24220 xfree(mp->char_base);
24221 xfree(mp->width_base);
24222 xfree(mp->height_base);
24223 xfree(mp->depth_base);
24224 xfree(mp->font_sizes);
24228 void mp_reallocate_fonts (MP mp, font_number l) {
24230 XREALLOC(mp->font_enc_name, (l+1), char *);
24231 XREALLOC(mp->font_ps_name_fixed, (l+1), boolean);
24232 XREALLOC(mp->font_dsize, (l+1), scaled);
24233 XREALLOC(mp->font_name, (l+1), char *);
24234 XREALLOC(mp->font_ps_name, (l+1), char *);
24235 XREALLOC(mp->font_bc, (l+1), eight_bits);
24236 XREALLOC(mp->font_ec, (l+1), eight_bits);
24237 XREALLOC(mp->char_base, (l+1), int);
24238 XREALLOC(mp->width_base, (l+1), int);
24239 XREALLOC(mp->height_base, (l+1), int);
24240 XREALLOC(mp->depth_base, (l+1), int);
24241 XREALLOC(mp->font_sizes, (l+1), pointer);
24242 for (f=(mp->last_fnum+1);f<=l;f++) {
24243 mp->font_enc_name[f]=NULL;
24244 mp->font_ps_name_fixed[f] = false;
24245 mp->font_name[f]=NULL;
24246 mp->font_ps_name[f]=NULL;
24247 mp->font_sizes[f]=null;
24252 @ @<Declare |mp_reallocate| functions@>=
24253 void mp_reallocate_fonts (MP mp, font_number l);
24256 @ A |null_font| containing no characters is useful for error recovery. Its
24257 |font_name| entry starts out empty but is reset each time an erroneous font is
24258 found. This helps to cut down on the number of duplicate error messages without
24259 wasting a lot of space.
24261 @d null_font 0 /* the |font_number| for an empty font */
24263 @<Set initial...@>=
24264 mp->font_dsize[null_font]=0;
24265 mp->font_bc[null_font]=1;
24266 mp->font_ec[null_font]=0;
24267 mp->char_base[null_font]=0;
24268 mp->width_base[null_font]=0;
24269 mp->height_base[null_font]=0;
24270 mp->depth_base[null_font]=0;
24272 mp->last_fnum=null_font;
24273 mp->last_ps_fnum=null_font;
24274 mp->font_name[null_font]="nullfont";
24275 mp->font_ps_name[null_font]="";
24277 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24278 the |width index|; the |b1| field contains the height
24279 index; the |b2| fields contains the depth index, and the |b3| field used only
24280 for temporary storage. (It is used to keep track of which characters occur in
24281 an edge structure that is being shipped out.)
24282 The corresponding words in the width, height, and depth tables are stored as
24283 |scaled| values in units of \ps\ points.
24285 With the macros below, the |char_info| word for character~|c| in font~|f| is
24286 |char_info(f)(c)| and the width is
24287 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24289 @d char_info_end(A) (A)].qqqq
24290 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24291 @d char_width_end(A) (A).b0].sc
24292 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24293 @d char_height_end(A) (A).b1].sc
24294 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24295 @d char_depth_end(A) (A).b2].sc
24296 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24297 @d ichar_exists(A) ((A).b0>0)
24299 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24300 A preliminary name is obtained here from the \.{TFM} name as given in the
24301 |fname| argument. This gets updated later from an external table if necessary.
24303 @<Declare text measuring subroutines@>=
24304 @<Declare subroutines for parsing file names@>;
24305 font_number mp_read_font_info (MP mp, char*fname) {
24306 boolean file_opened; /* has |tfm_infile| been opened? */
24307 font_number n; /* the number to return */
24308 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24309 size_t whd_size; /* words needed for heights, widths, and depths */
24310 int i,ii; /* |font_info| indices */
24311 int jj; /* counts bytes to be ignored */
24312 scaled z; /* used to compute the design size */
24314 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24315 eight_bits h_and_d; /* height and depth indices being unpacked */
24316 int tfbyte; /* a byte read from the file */
24318 @<Open |tfm_infile| for input@>;
24319 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24320 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24322 @<Complain that the \.{TFM} file is bad@>;
24324 if ( file_opened ) fclose(mp->tfm_infile);
24325 if ( n!=null_font ) {
24326 mp->font_ps_name[n]=fname;
24327 mp->font_name[n]=fname;
24332 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24333 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24334 @.TFtoPL@> @.PLtoTF@>
24335 and \.{PLtoTF} can be used to debug \.{TFM} files.
24337 @<Complain that the \.{TFM} file is bad@>=
24338 print_err("Font ");
24339 mp_print(mp, fname);
24340 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24341 else mp_print(mp, " not usable: TFM file not found");
24342 help3("I wasn't able to read the size data for this font so this")
24343 ("`infont' operation won't produce anything. If the font name")
24344 ("is right, you might ask an expert to make a TFM file");
24346 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24349 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24350 @<Read the \.{TFM} size fields@>;
24351 @<Use the size fields to allocate space in |font_info|@>;
24352 @<Read the \.{TFM} header@>;
24353 @<Read the character data and the width, height, and depth tables and
24356 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24357 might try to read past the end of the file if this happens. Changes will be
24358 needed if it causes a system error to refer to |tfm_infile^| or call
24359 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24360 @^system dependencies@>
24361 of |tfget| could be changed to
24362 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24364 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24365 @d read_two(A) { (A)=tfbyte;
24366 if ( (A)>127 ) goto BAD_TFM;
24367 tfget; (A)=(A)*0400+tfbyte;
24369 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24371 @<Read the \.{TFM} size fields@>=
24372 tfget; read_two(lf);
24373 tfget; read_two(tfm_lh);
24374 tfget; read_two(bc);
24375 tfget; read_two(ec);
24376 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24377 tfget; read_two(nw);
24378 tfget; read_two(nh);
24379 tfget; read_two(nd);
24380 whd_size=(ec+1-bc)+nw+nh+nd;
24381 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24384 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24385 necessary to apply the |so| and |qo| macros when looking up the width of a
24386 character in the string pool. In order to ensure nonnegative |char_base|
24387 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24390 @<Use the size fields to allocate space in |font_info|@>=
24391 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24392 if (mp->last_fnum==mp->font_max)
24393 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24394 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24395 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24396 memory_word *font_info;
24397 font_info = xmalloc ((l+1),sizeof(memory_word));
24398 memset (font_info,0,sizeof(memory_word)*(l+1));
24399 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24400 xfree(mp->font_info);
24401 mp->font_info = font_info;
24402 mp->font_mem_size = l;
24404 incr(mp->last_fnum);
24408 mp->char_base[n]=mp->next_fmem-bc;
24409 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24410 mp->height_base[n]=mp->width_base[n]+nw;
24411 mp->depth_base[n]=mp->height_base[n]+nh;
24412 mp->next_fmem=mp->next_fmem+whd_size;
24415 @ @<Read the \.{TFM} header@>=
24416 if ( tfm_lh<2 ) goto BAD_TFM;
24418 tfget; read_two(z);
24419 tfget; z=z*0400+tfbyte;
24420 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24421 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24422 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24423 tf_ignore(4*(tfm_lh-2))
24425 @ @<Read the character data and the width, height, and depth tables...@>=
24426 ii=mp->width_base[n];
24427 i=mp->char_base[n]+bc;
24429 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24430 tfget; h_and_d=tfbyte;
24431 mp->font_info[i].qqqq.b1=h_and_d / 16;
24432 mp->font_info[i].qqqq.b2=h_and_d % 16;
24436 while ( i<mp->next_fmem ) {
24437 @<Read a four byte dimension, scale it by the design size, store it in
24438 |font_info[i]|, and increment |i|@>;
24440 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24443 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24444 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24445 we can multiply it by sixteen and think of it as a |fraction| that has been
24446 divided by sixteen. This cancels the extra scale factor contained in
24449 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24452 if ( d>=0200 ) d=d-0400;
24453 tfget; d=d*0400+tfbyte;
24454 tfget; d=d*0400+tfbyte;
24455 tfget; d=d*0400+tfbyte;
24456 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24460 @ This function does no longer use the file name parser, because |fname| is
24461 a C string already.
24462 @<Open |tfm_infile| for input@>=
24464 mp_ptr_scan_file(mp, fname);
24465 if ( strlen(mp->cur_area)==0 ) mp->cur_area=xstrdup(MP_font_area);
24466 if ( strlen(mp->cur_ext)==0 ) mp->cur_ext=xstrdup(".tfm");
24467 mp->tfm_infile = mp_open_file(mp, fname, "rb",mp_filetype_metrics);
24468 if ( !mp->tfm_infile ) goto BAD_TFM;
24471 @ When we have a font name and we don't know whether it has been loaded yet,
24472 we scan the |font_name| array before calling |read_font_info|.
24474 @<Declare text measuring subroutines@>=
24475 font_number mp_find_font (MP mp, char *f) {
24477 for (n=0;n<=mp->last_fnum;n++) {
24478 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24481 return mp_read_font_info(mp, f);
24484 @ One simple application of |find_font| is the implementation of the |font_size|
24485 operator that gets the design size for a given font name.
24487 @<Find the design size of the font whose name is |cur_exp|@>=
24488 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24490 @ If we discover that the font doesn't have a requested character, we omit it
24491 from the bounding box computation and expect the \ps\ interpreter to drop it.
24492 This routine issues a warning message if the user has asked for it.
24494 @<Declare text measuring subroutines@>=
24495 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24496 if ( mp->internal[tracing_lost_chars]>0 ) {
24497 mp_begin_diagnostic(mp);
24498 if ( mp->selector==log_only ) incr(mp->selector);
24499 mp_print_nl(mp, "Missing character: There is no ");
24500 @.Missing character@>
24501 mp_print_str(mp, mp->str_pool[k]);
24502 mp_print(mp, " in font ");
24503 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24504 mp_end_diagnostic(mp, false);
24508 @ The whole purpose of saving the height, width, and depth information is to be
24509 able to find the bounding box of an item of text in an edge structure. The
24510 |set_text_box| procedure takes a text node and adds this information.
24512 @<Declare text measuring subroutines@>=
24513 void mp_set_text_box (MP mp,pointer p) {
24514 font_number f; /* |font_n(p)| */
24515 ASCII_code bc,ec; /* range of valid characters for font |f| */
24516 pool_pointer k,kk; /* current character and character to stop at */
24517 four_quarters cc; /* the |char_info| for the current character */
24518 scaled h,d; /* dimensions of the current character */
24520 height_val(p)=-el_gordo;
24521 depth_val(p)=-el_gordo;
24525 kk=str_stop(text_p(p));
24526 k=mp->str_start[text_p(p)];
24528 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24530 @<Set the height and depth to zero if the bounding box is empty@>;
24533 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24535 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24536 mp_lost_warning(mp, f,k);
24538 cc=char_info(f)(mp->str_pool[k]);
24539 if ( ! ichar_exists(cc) ) {
24540 mp_lost_warning(mp, f,k);
24542 width_val(p)=width_val(p)+char_width(f)(cc);
24543 h=char_height(f)(cc);
24544 d=char_depth(f)(cc);
24545 if ( h>height_val(p) ) height_val(p)=h;
24546 if ( d>depth_val(p) ) depth_val(p)=d;
24552 @ Let's hope modern compilers do comparisons correctly when the difference would
24555 @<Set the height and depth to zero if the bounding box is empty@>=
24556 if ( height_val(p)<-depth_val(p) ) {
24561 @ The new primitives fontmapfile and fontmapline.
24563 @<Declare action procedures for use by |do_statement|@>=
24564 void mp_do_mapfile (MP mp) ;
24565 void mp_do_mapline (MP mp) ;
24567 @ @c void mp_do_mapfile (MP mp) {
24568 mp_get_x_next(mp); mp_scan_expression(mp);
24569 if ( mp->cur_type!=mp_string_type ) {
24570 @<Complain about improper map operation@>;
24572 mp_map_file(mp,mp->cur_exp);
24575 void mp_do_mapline (MP mp) {
24576 mp_get_x_next(mp); mp_scan_expression(mp);
24577 if ( mp->cur_type!=mp_string_type ) {
24578 @<Complain about improper map operation@>;
24580 mp_map_line(mp,mp->cur_exp);
24584 @ @<Complain about improper map operation@>=
24586 exp_err("Unsuitable expression");
24587 help1("Only known strings can be map files or map lines.");
24588 mp_put_get_error(mp);
24592 @<Declare the \ps\ output procedures@>=
24593 void mp_ps_print_cmd (MP mp, char *l, char *s) {
24594 if ( mp->internal[mpprocset]>0 ) { ps_room(strlen(s)); mp_print(mp,s); }
24595 else { ps_room(strlen(l)); mp_print(mp, l); };
24597 void mp_print_cmd (MP mp,char *l, char *s) {
24598 if ( mp->internal[mpprocset]>0 ) mp_print(mp, s);
24599 else mp_print(mp, l);
24602 @ To print |scaled| value to PDF output we need some subroutines to ensure
24605 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24608 scaled one_bp; /* scaled value corresponds to 1bp */
24609 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24610 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24611 integer ten_pow[10]; /* $10^0..10^9$ */
24612 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24615 mp->one_bp = 65782; /* 65781.76 */
24616 mp->one_hundred_bp = 6578176;
24617 mp->one_hundred_inch = 473628672;
24618 mp->ten_pow[0] = 1;
24619 for (i = 1;i<= 9; i++ ) {
24620 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24623 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24625 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24629 if ( s < 0 ) { sign = -sign; s = -s; }
24630 if ( m < 0 ) { sign = -sign; m = -m; }
24632 mp_confusion(mp, "arithmetic: divided by zero");
24633 else if ( m >= (max_integer / 10) )
24634 mp_confusion(mp, "arithmetic: number too big");
24637 for (i = 1;i<=dd;i++) {
24638 q = 10*q + (10*r) / m;
24641 if ( 2*r >= m ) { incr(q); r = r - m; }
24642 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24646 @* \[44] Shipping pictures out.
24647 The |ship_out| procedure, to be described below, is given a pointer to
24648 an edge structure. Its mission is to output a file containing the \ps\
24649 description of an edge structure.
24651 @ Each time an edge structure is shipped out we write a new \ps\ output
24652 file named according to the current \&{charcode}.
24653 @:char_code_}{\&{charcode} primitive@>
24655 @<Declare the \ps\ output procedures@>=
24656 void mp_open_output_file (MP mp) ;
24658 @ @c void mp_open_output_file (MP mp) {
24659 integer c; /* \&{charcode} rounded to the nearest integer */
24660 int old_setting; /* previous |selector| setting */
24661 pool_pointer i; /* indexes into |filename_template| */
24662 integer cc; /* a temporary integer for template building */
24663 integer f,g=0; /* field widths */
24664 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24665 c=mp_round_unscaled(mp, mp->internal[char_code]);
24666 if ( mp->filename_template==0 ) {
24667 char *s; /* a file extension derived from |c| */
24671 @<Use |c| to compute the file extension |s|@>;
24672 mp_pack_job_name(mp, s);
24674 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24675 mp_prompt_file_name(mp, "file name for output",s);
24676 } else { /* initializations */
24677 str_number s, n; /* a file extension derived from |c| */
24678 old_setting=mp->selector;
24679 mp->selector=new_string;
24681 i = mp->str_start[mp->filename_template];
24682 n = rts(""); /* initialize */
24683 while ( i<str_stop(mp->filename_template) ) {
24684 if ( mp->str_pool[i]=='%' ) {
24687 if ( i<str_stop(mp->filename_template) ) {
24688 if ( mp->str_pool[i]=='j' ) {
24689 mp_print(mp, mp->job_name);
24690 } else if ( mp->str_pool[i]=='d' ) {
24691 cc= mp_round_unscaled(mp, mp->internal[day]);
24692 print_with_leading_zeroes(cc);
24693 } else if ( mp->str_pool[i]=='m' ) {
24694 cc= mp_round_unscaled(mp, mp->internal[month]);
24695 print_with_leading_zeroes(cc);
24696 } else if ( mp->str_pool[i]=='y' ) {
24697 cc= mp_round_unscaled(mp, mp->internal[year]);
24698 print_with_leading_zeroes(cc);
24699 } else if ( mp->str_pool[i]=='H' ) {
24700 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24701 print_with_leading_zeroes(cc);
24702 } else if ( mp->str_pool[i]=='M' ) {
24703 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24704 print_with_leading_zeroes(cc);
24705 } else if ( mp->str_pool[i]=='c' ) {
24706 if ( c<0 ) mp_print(mp, "ps");
24707 else print_with_leading_zeroes(c);
24708 } else if ( (mp->str_pool[i]>='0') &&
24709 (mp->str_pool[i]<='9') ) {
24711 f = (f*10) + mp->str_pool[i]-'0';
24714 mp_print_str(mp, mp->str_pool[i]);
24718 if ( mp->str_pool[i]=='.' )
24720 n = mp_make_string(mp);
24721 mp_print_str(mp, mp->str_pool[i]);
24725 s = mp_make_string(mp);
24726 mp->selector= old_setting;
24727 if (length(n)==0) {
24731 mp_pack_file_name(mp, str(n),"",str(s));
24732 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24733 mp_prompt_file_name(mp, "file name for output",str(s));
24737 @<Store the true output file name if appropriate@>;
24738 @<Begin the progress report for the output of picture~|c|@>;
24741 @ The file extension created here could be up to five characters long in
24742 extreme cases so it may have to be shortened on some systems.
24743 @^system dependencies@>
24745 @<Use |c| to compute the file extension |s|@>=
24748 snprintf(s,7,".%i",(int)c);
24751 @ The user won't want to see all the output file names so we only save the
24752 first and last ones and a count of how many there were. For this purpose
24753 files are ordered primarily by \&{charcode} and secondarily by order of
24755 @:char_code_}{\&{charcode} primitive@>
24757 @<Store the true output file name if appropriate@>=
24758 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24759 mp->first_output_code=c;
24760 xfree(mp->first_file_name);
24761 mp->first_file_name=xstrdup(mp->name_of_file);
24763 if ( c>=mp->last_output_code ) {
24764 mp->last_output_code=c;
24765 xfree(mp->last_file_name);
24766 mp->last_file_name=xstrdup(mp->name_of_file);
24770 char * first_file_name;
24771 char * last_file_name; /* full file names */
24772 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24773 @:char_code_}{\&{charcode} primitive@>
24774 integer total_shipped; /* total number of |ship_out| operations completed */
24777 mp->first_file_name=xstrdup("");
24778 mp->last_file_name=xstrdup("");
24779 mp->first_output_code=32768;
24780 mp->last_output_code=-32768;
24781 mp->total_shipped=0;
24783 @ @<Dealloc variables@>=
24784 xfree(mp->first_file_name);
24785 xfree(mp->last_file_name);
24787 @ @<Begin the progress report for the output of picture~|c|@>=
24788 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
24789 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
24790 mp_print_char(mp, '[');
24791 if ( c>=0 ) mp_print_int(mp, c)
24793 @ @<End progress report@>=
24794 mp_print_char(mp, ']');
24796 incr(mp->total_shipped)
24798 @ @<Explain what output files were written@>=
24799 if ( mp->total_shipped>0 ) {
24800 mp_print_nl(mp, "");
24801 mp_print_int(mp, mp->total_shipped);
24802 mp_print(mp, " output file");
24803 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
24804 mp_print(mp, " written: ");
24805 mp_print(mp, mp->first_file_name);
24806 if ( mp->total_shipped>1 ) {
24807 if ( 31+strlen(mp->first_file_name)+
24808 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
24810 mp_print(mp, " .. ");
24811 mp_print(mp, mp->last_file_name);
24815 @ We often need to print a pair of coordinates.
24817 @d ps_room(A) if ( (mp->ps_offset+(int)(A))>mp->max_print_line )
24818 mp_print_ln(mp) /* optional line break */
24820 @<Declare the \ps\ output procedures@>=
24821 void mp_ps_pair_out (MP mp,scaled x, scaled y) {
24823 mp_print_scaled(mp, x); mp_print_char(mp, ' ');
24824 mp_print_scaled(mp, y); mp_print_char(mp, ' ');
24827 @ @<Declare the \ps\ output procedures@>=
24828 void mp_ps_print (MP mp,char *s) {
24829 ps_room(strlen(s));
24834 void mp_ps_print (MP mp,char *s) ;
24837 @ The most important output procedure is the one that gives the \ps\ version of
24840 @<Declare the \ps\ output procedures@>=
24841 void mp_ps_path_out (MP mp,pointer h) {
24842 pointer p,q; /* for scanning the path */
24843 scaled d; /* a temporary value */
24844 boolean curved; /* |true| unless the cubic is almost straight */
24846 if ( mp->need_newpath )
24847 mp_print_cmd(mp, "newpath ","n ");
24848 mp->need_newpath=true;
24849 mp_ps_pair_out(mp, x_coord(h),y_coord(h));
24850 mp_print_cmd(mp, "moveto","m");
24853 if ( right_type(p)==endpoint ) {
24854 if ( p==h ) mp_ps_print_cmd(mp, " 0 0 rlineto"," 0 0 r");
24858 @<Start a new line and print the \ps\ commands for the curve from
24862 mp_ps_print_cmd(mp, " closepath"," p");
24866 boolean need_newpath;
24867 /* will |ps_path_out| need to issue a \&{newpath} command next time */
24868 @:newpath_}{\&{newpath} command@>
24870 @ @<Start a new line and print the \ps\ commands for the curve from...@>=
24872 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
24875 mp_ps_pair_out(mp, right_x(p),right_y(p));
24876 mp_ps_pair_out(mp, left_x(q),left_y(q));
24877 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24878 mp_ps_print_cmd(mp, "curveto","c");
24879 } else if ( q!=h ){
24880 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24881 mp_ps_print_cmd(mp, "lineto","l");
24884 @ Two types of straight lines come up often in \MP\ paths:
24885 cubics with zero initial and final velocity as created by |make_path| or
24886 |make_envelope|, and cubics with control points uniformly spaced on a line
24887 as created by |make_choices|.
24889 @d bend_tolerance 131 /* allow rounding error of $2\cdot10^{-3}$ */
24891 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
24892 if ( right_x(p)==x_coord(p) )
24893 if ( right_y(p)==y_coord(p) )
24894 if ( left_x(q)==x_coord(q) )
24895 if ( left_y(q)==y_coord(q) ) curved=false;
24896 d=left_x(q)-right_x(p);
24897 if ( abs(right_x(p)-x_coord(p)-d)<=bend_tolerance )
24898 if ( abs(x_coord(q)-left_x(q)-d)<=bend_tolerance )
24899 { d=left_y(q)-right_y(p);
24900 if ( abs(right_y(p)-y_coord(p)-d)<=bend_tolerance )
24901 if ( abs(y_coord(q)-left_y(q)-d)<=bend_tolerance ) curved=false;
24904 @ We need to keep track of several parameters from the \ps\ graphics state.
24906 This allows us to be sure that \ps\ has the correct values when they are
24907 needed without wasting time and space setting them unnecessarily.
24910 @d gs_red mp->mem[mp->gs_state+1].sc
24911 @d gs_green mp->mem[mp->gs_state+2].sc
24912 @d gs_blue mp->mem[mp->gs_state+3].sc
24913 @d gs_black mp->mem[mp->gs_state+4].sc
24914 /* color from the last \&{setcmykcolor} or \&{setrgbcolor} or \&{setgray} command */
24915 @d gs_colormodel mp->mem[mp->gs_state+5].qqqq.b0
24916 /* the current colormodel */
24917 @d gs_ljoin mp->mem[mp->gs_state+5].qqqq.b1
24918 @d gs_lcap mp->mem[mp->gs_state+5].qqqq.b2
24919 /* values from the last \&{setlinejoin} and \&{setlinecap} commands */
24920 @d gs_adj_wx mp->mem[mp->gs_state+5].qqqq.b3
24921 /* what resolution-dependent adjustment applies to the width */
24922 @d gs_miterlim mp->mem[mp->gs_state+6].sc
24923 /* the value from the last \&{setmiterlimit} command */
24924 @d gs_dash_p mp->mem[mp->gs_state+7].hh.lh
24925 /* edge structure for last \&{setdash} command */
24926 @d gs_previous mp->mem[mp->gs_state+7].hh.rh
24927 /* backlink to the previous |gs_state| structure */
24928 @d gs_dash_sc mp->mem[mp->gs_state+8].sc
24929 /* scale factor used with |gs_dash_p| */
24930 @d gs_width mp->mem[mp->gs_state+9].sc
24931 /* width setting or $-1$ if no \&{setlinewidth} command so far */
24939 @ To avoid making undue assumptions about the initial graphics state, these
24940 parameters are given special values that are guaranteed not to match anything
24941 in the edge structure being shipped out. On the other hand, the initial color
24942 should be black so that the translation of an all-black picture will have no
24943 \&{setcolor} commands. (These would be undesirable in a font application.)
24944 Hence we use |c=0| when initializing the graphics state and we use |c<0|
24945 to recover from a situation where we have lost track of the graphics state.
24947 @<Declare the \ps\ output procedures@>=
24948 void mp_unknown_graphics_state (MP mp,scaled c) ;
24950 @ @c void mp_unknown_graphics_state (MP mp,scaled c) {
24951 pointer p; /* to shift graphic states around */
24952 quarterword k; /* a loop index for copying the |gs_state| */
24953 if ( (c==0)||(c==-1) ) {
24954 if ( mp->gs_state==null ) {
24955 mp->gs_state = mp_get_node(mp, gs_node_size);
24958 while ( gs_previous!=null ) {
24960 mp_free_node(mp, mp->gs_state,gs_node_size);
24964 gs_red=c; gs_green=c; gs_blue=c; gs_black=c;
24965 gs_colormodel=uninitialized_model;
24972 } else if ( c==1 ) {
24974 mp->gs_state = mp_get_node(mp, gs_node_size);
24975 for (k=1;k<=gs_node_size-1;k++)
24976 mp->mem[mp->gs_state+k]=mp->mem[p+k];
24978 } else if ( c==2 ) {
24980 mp_free_node(mp, mp->gs_state,gs_node_size);
24985 @ When it is time to output a graphical object, |fix_graphics_state| ensures
24986 that \ps's idea of the graphics state agrees with what is stored in the object.
24988 @<Declare the \ps\ output procedures@>=
24989 @<Declare subroutines needed by |fix_graphics_state|@>;
24990 void mp_fix_graphics_state (MP mp, pointer p) ;
24993 void mp_fix_graphics_state (MP mp, pointer p) {
24994 /* get ready to output graphical object |p| */
24995 pointer hh,pp; /* for list manipulation */
24996 scaled wx,wy,ww; /* dimensions of pen bounding box */
24997 boolean adj_wx; /* whether pixel rounding should be based on |wx| or |wy| */
24998 integer tx,ty; /* temporaries for computing |adj_wx| */
24999 scaled scf; /* a scale factor for the dash pattern */
25000 if ( has_color(p) )
25001 @<Make sure \ps\ will use the right color for object~|p|@>;
25002 if ( (type(p)==fill_code)||(type(p)==stroked_code) )
25003 if ( pen_p(p)!=null )
25004 if ( pen_is_elliptical(pen_p(p)) ) {
25005 @<Generate \ps\ code that sets the stroke width to the
25006 appropriate rounded value@>;
25007 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
25008 @<Decide whether the line cap parameter matters and set it if necessary@>;
25009 @<Set the other numeric parameters as needed for object~|p|@>;
25011 if ( mp->ps_offset>0 ) mp_print_ln(mp);
25014 @ @<Decide whether the line cap parameter matters and set it if necessary@>=
25015 if ( type(p)==stroked_code )
25016 if ( (left_type(path_p(p))==endpoint)||(dash_p(p)!=null) )
25017 if ( gs_lcap!=lcap_val(p) ) {
25019 mp_print_char(mp, ' ');
25020 mp_print_char(mp, '0'+lcap_val(p));
25021 mp_print_cmd(mp, " setlinecap"," lc");
25022 gs_lcap=lcap_val(p);
25025 @ @<Set the other numeric parameters as needed for object~|p|@>=
25026 if ( gs_ljoin!=ljoin_val(p) ) {
25028 mp_print_char(mp, ' ');
25029 mp_print_char(mp, '0'+ljoin_val(p)); mp_print_cmd(mp, " setlinejoin"," lj");
25030 gs_ljoin=ljoin_val(p);
25032 if ( gs_miterlim!=miterlim_val(p) ) {
25034 mp_print_char(mp, ' ');
25035 mp_print_scaled(mp, miterlim_val(p)); mp_print_cmd(mp, " setmiterlimit"," ml");
25036 gs_miterlim=miterlim_val(p);
25039 @ @<Make sure \ps\ will use the right color for object~|p|@>=
25041 if ( (color_model(p)==rgb_model)||
25042 ((color_model(p)==uninitialized_model)&&
25043 ((mp->internal[default_color_model] / unity)==rgb_model)) ) {
25044 if ( (gs_colormodel!=rgb_model)||(gs_red!=red_val(p))||
25045 (gs_green!=green_val(p))||(gs_blue!=blue_val(p)) ) {
25047 gs_green=green_val(p);
25048 gs_blue=blue_val(p);
25050 gs_colormodel=rgb_model;
25052 mp_print_char(mp, ' ');
25053 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25054 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25055 mp_print_scaled(mp, gs_blue);
25056 mp_print_cmd(mp, " setrgbcolor", " R");
25059 } else if ( (color_model(p)==cmyk_model)||
25060 ((color_model(p)==uninitialized_model)&&
25061 ((mp->internal[default_color_model] / unity)==cmyk_model)) ) {
25062 if ( (gs_red!=cyan_val(p))||(gs_green!=magenta_val(p))||
25063 (gs_blue!=yellow_val(p))||(gs_black!=black_val(p))||
25064 (gs_colormodel!=cmyk_model) ) {
25065 if ( color_model(p)==uninitialized_model ) {
25071 gs_red=cyan_val(p);
25072 gs_green=magenta_val(p);
25073 gs_blue=yellow_val(p);
25074 gs_black=black_val(p);
25076 gs_colormodel=cmyk_model;
25078 mp_print_char(mp, ' ');
25079 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25080 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25081 mp_print_scaled(mp, gs_blue); mp_print_char(mp, ' ');
25082 mp_print_scaled(mp, gs_black);
25083 mp_print_cmd(mp, " setcmykcolor"," C");
25086 } else if ( (color_model(p)==grey_model)||
25087 ((color_model(p)==uninitialized_model)&&
25088 ((mp->internal[default_color_model] / unity)==grey_model)) ) {
25089 if ( (gs_red!=grey_val(p))||(gs_colormodel!=grey_model) ) {
25090 gs_red = grey_val(p);
25094 gs_colormodel=grey_model;
25096 mp_print_char(mp, ' ');
25097 mp_print_scaled(mp, gs_red);
25098 mp_print_cmd(mp, " setgray"," G");
25102 if ( color_model(p)==no_model )
25103 gs_colormodel=no_model;
25106 @ In order to get consistent widths for horizontal and vertical pen strokes, we
25107 want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
25108 @:setwidth}{\&{setwidth}command@>
25109 We set |gs_width| to the ideal horizontal or vertical stroke width and then
25110 generate \ps\ code that computes the rounded value. For non-circular pens, the
25111 pen shape will be rescaled so that horizontal or vertical parts of the stroke
25112 have the computed width.
25114 Rounding the width to whole pixels is not likely to improve the appearance of
25115 diagonal or curved strokes, but we do it anyway for consistency. The
25116 \&{truncate} command generated here tends to make all the strokes a little
25117 @:truncate}{\&{truncate} command@>
25118 thinner, but this is appropriate for \ps's scan-conversion rules. Even with
25119 truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
25120 It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
25123 @<Generate \ps\ code that sets the stroke width...@>=
25124 @<Set |wx| and |wy| to the width and height of the bounding box for
25126 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
25127 important and set |adj_wx| and |ww| accordingly@>;
25128 if ( (ww!=gs_width) || (adj_wx!=gs_adj_wx) ) {
25131 mp_print_char(mp, ' '); mp_print_scaled(mp, ww);
25132 mp_ps_print_cmd(mp,
25133 " 0 dtransform exch truncate exch idtransform pop setlinewidth"," hlw");
25135 if ( mp->internal[mpprocset]>0 ) {
25137 mp_print_char(mp, ' ');
25138 mp_print_scaled(mp, ww);
25139 mp_ps_print(mp, " vlw");
25142 mp_print(mp, " 0 "); mp_print_scaled(mp, ww);
25143 mp_ps_print(mp, " dtransform truncate idtransform setlinewidth pop");
25147 gs_adj_wx = adj_wx;
25150 @ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
25152 if ( (right_x(pp)==x_coord(pp)) && (left_y(pp)==y_coord(pp)) ) {
25153 wx = abs(left_x(pp) - x_coord(pp));
25154 wy = abs(right_y(pp) - y_coord(pp));
25156 wx = mp_pyth_add(mp, left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
25157 wy = mp_pyth_add(mp, left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
25160 @ The path is considered ``essentially horizontal'' if its range of
25161 $y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
25162 vertical'' paths are detected similarly. This code ensures that no component
25163 of the pen transformation is more that |aspect_bound*(ww+1)|.
25165 @d aspect_bound 10 /* ``less important'' of |wx|, |wy| cannot exceed the other by
25166 more than this factor */
25168 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
25170 if ( mp_coord_rangeOK(mp, path_p(p), y_loc(0), wy) ) tx=aspect_bound;
25171 else if ( mp_coord_rangeOK(mp, path_p(p), x_loc(0), wx) ) ty=aspect_bound;
25172 if ( wy / ty>=wx / tx ) { ww=wy; adj_wx=false; }
25173 else { ww=wx; adj_wx=true; }
25175 @ This routine quickly tests if path |h| is ``essentially horizontal'' or
25176 ``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
25177 allowable range for $x$ or~$y$. We do not need and cannot afford a full
25178 bounding-box computation.
25180 @<Declare subroutines needed by |fix_graphics_state|@>=
25181 boolean mp_coord_rangeOK (MP mp,pointer h,
25182 small_number zoff, scaled dz) {
25183 pointer p; /* for scanning the path form |h| */
25184 scaled zlo,zhi; /* coordinate range so far */
25185 scaled z; /* coordinate currently being tested */
25186 zlo=knot_coord(h+zoff);
25189 while ( right_type(p)!=endpoint ) {
25190 z=right_coord(p+zoff);
25191 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25193 z=left_coord(p+zoff);
25194 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25195 z=knot_coord(p+zoff);
25196 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25202 @ @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>=
25203 if ( z<zlo ) zlo=z;
25204 else if ( z>zhi ) zhi=z;
25205 if ( zhi-zlo>dz ) return false
25207 @ Filling with an elliptical pen is implemented via a combination of \&{stroke}
25208 and \&{fill} commands and a nontrivial dash pattern would interfere with this.
25209 @:stroke}{\&{stroke} command@>
25210 @:fill}{\&{fill} command@>
25211 Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
25214 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
25215 if ( type(p)==fill_code ) {
25219 scf=mp_get_pen_scale(mp, pen_p(p));
25221 if ( gs_width==0 ) scf=dash_scale(p); else hh=null;
25223 scf=mp_make_scaled(mp, gs_width,scf);
25224 scf=mp_take_scaled(mp, scf,dash_scale(p));
25228 if ( gs_dash_p!=null ) {
25229 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25232 } else if ( (gs_dash_sc!=scf) || ! mp_same_dashes(mp, gs_dash_p,hh) ) {
25233 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>;
25236 @ Translating a dash list into \ps\ is very similar to printing it symbolically
25237 in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
25238 ignored. The same fate applies in the bizarre case of a dash pattern that
25239 cannot be printed without overflow.
25241 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
25244 if ( (dash_y(hh)==0) || (abs(dash_y(hh)) / unity >= el_gordo / scf)){
25245 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25248 start_x(null_dash)=start_x(pp)+dash_y(hh);
25250 mp_print(mp, " [");
25251 while ( pp!=null_dash ) {
25252 mp_ps_pair_out(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf),
25253 mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
25257 mp_print(mp, "] ");
25258 mp_print_scaled(mp, mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
25259 mp_print_cmd(mp, " setdash"," sd");
25263 @ @<Declare subroutines needed by |fix_graphics_state|@>=
25264 boolean mp_same_dashes (MP mp,pointer h, pointer hh) ;
25267 boolean mp_same_dashes (MP mp,pointer h, pointer hh) {
25268 /* do |h| and |hh| represent the same dash pattern? */
25269 pointer p,pp; /* dash nodes being compared */
25270 if ( h==hh ) return true;
25271 else if ( (h<=diov)||(hh<=diov) ) return false;
25272 else if ( dash_y(h)!=dash_y(hh) ) return false;
25273 else { @<Compare |dash_list(h)| and |dash_list(hh)|@>; }
25274 return false; /* can't happen */
25277 @ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
25280 while ( (p!=null_dash)&&(pp!=null_dash) ) {
25281 if ( (start_x(p)!=start_x(pp))||(stop_x(p)!=stop_x(pp)) ) {
25291 @ When stroking a path with an elliptical pen, it is necessary to transform
25292 the coordinate system so that a unit circular pen will have the desired shape.
25293 To keep this transformation local, we enclose it in a
25294 $$\&{gsave}\ldots\&{grestore}$$
25295 block. Any translation component must be applied to the path being stroked
25296 while the rest of the transformation must apply only to the pen.
25297 If |fill_also=true|, the path is to be filled as well as stroked so we must
25298 insert commands to do this after giving the path.
25300 @<Declare the \ps\ output procedures@>=
25301 void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) ;
25304 @c void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) {
25305 /* generate an elliptical pen stroke from object |h| */
25306 scaled txx,txy,tyx,tyy; /* transformation parameters */
25307 pointer p; /* the pen to stroke with */
25308 scaled d1,det; /* for tweaking transformation parameters */
25309 integer s; /* also for tweaking transformation paramters */
25310 boolean transformed; /* keeps track of whether gsave/grestore are needed */
25312 @<Use |pen_p(h)| to set the transformation parameters and give the initial
25314 @<Tweak the transformation parameters so the transformation is nonsingular@>;
25315 mp_ps_path_out(mp, path_p(h));
25316 if ( mp->internal[mpprocset]==0 ) {
25317 if ( fill_also ) mp_print_nl(mp, "gsave fill grestore");
25318 @<Issue \ps\ commands to transform the coordinate system@>;
25319 mp_ps_print(mp, " stroke");
25320 if ( transformed ) mp_ps_print(mp, " grestore");
25322 if ( fill_also ) mp_print_nl(mp, "B"); else mp_print_ln(mp);
25323 if ( (txy!=0)||(tyx!=0) ) {
25324 mp_print(mp, " [");
25325 mp_ps_pair_out(mp, txx,tyx);
25326 mp_ps_pair_out(mp, txy,tyy);
25327 mp_ps_print(mp, "0 0] t");
25328 } else if ((txx!=unity)||(tyy!=unity) ) {
25329 mp_ps_pair_out(mp,txx,tyy);
25330 mp_print(mp, " s");
25332 mp_ps_print(mp, " S");
25333 if ( transformed ) mp_ps_print(mp, " Q");
25338 @ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
25344 if ( (x_coord(p)!=0)||(y_coord(p)!=0) ) {
25345 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25346 mp_ps_pair_out(mp, x_coord(p),y_coord(p));
25347 mp_ps_print(mp, "translate ");
25354 mp_print_nl(mp, "");
25356 @<Adjust the transformation to account for |gs_width| and output the
25357 initial \&{gsave} if |transformed| should be |true|@>
25359 @ @<Adjust the transformation to account for |gs_width| and output the...@>=
25360 if ( gs_width!=unity ) {
25361 if ( gs_width==0 ) {
25362 txx=unity; tyy=unity;
25364 txx=mp_make_scaled(mp, txx,gs_width);
25365 txy=mp_make_scaled(mp, txy,gs_width);
25366 tyx=mp_make_scaled(mp, tyx,gs_width);
25367 tyy=mp_make_scaled(mp, tyy,gs_width);
25370 if ( (txy!=0)||(tyx!=0)||(txx!=unity)||(tyy!=unity) ) {
25371 if ( (! transformed) ){
25372 mp_ps_print_cmd(mp, "gsave ","q ");
25377 @ @<Issue \ps\ commands to transform the coordinate system@>=
25378 if ( (txy!=0)||(tyx!=0) ){
25380 mp_print_char(mp, '[');
25381 mp_ps_pair_out(mp, txx,tyx);
25382 mp_ps_pair_out(mp, txy,tyy);
25383 mp_ps_print(mp, "0 0] concat");
25384 } else if ( (txx!=unity)||(tyy!=unity) ){
25386 mp_ps_pair_out(mp, txx,tyy);
25387 mp_print(mp, "scale");
25390 @ The \ps\ interpreter will probably abort if it encounters a singular
25391 transformation matrix. The determinant must be large enough to ensure that
25392 the printed representation will be nonsingular. Since the printed
25393 representation is always within $2^{-17}$ of the internal |scaled| value, the
25394 total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
25395 the magnitudes of |txx/65536|, |txy/65536|, etc.
25397 The |aspect_bound*(gs_width+1)| bound on the components of the pen
25398 transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
25400 @<Tweak the transformation parameters so the transformation is nonsingular@>=
25401 det=mp_take_scaled(mp, txx,tyy) - mp_take_scaled(mp, txy,tyx);
25402 d1=4*aspect_bound+1;
25403 if ( abs(det)<d1 ) {
25404 if ( det>=0 ) { d1=d1-det; s=1; }
25405 else { d1=-d1-det; s=-1; };
25407 if ( abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) ) {
25408 if ( abs(txx)>abs(tyy) ) tyy=tyy+(d1+s*abs(txx)) / txx;
25409 else txx=txx+(d1+s*abs(tyy)) / tyy;
25411 if ( abs(txy)>abs(tyx) ) tyx=tyx+(d1+s*abs(txy)) / txy;
25412 else txy=txy+(d1+s*abs(tyx)) / tyx;
25416 @ Here is a simple routine that just fills a cycle.
25418 @<Declare the \ps\ output procedures@>=
25419 void mp_ps_fill_out (MP mp,pointer p) ;
25422 void mp_ps_fill_out (MP mp,pointer p) { /* fill cyclic path~|p| */
25423 mp_ps_path_out(mp, p);
25424 mp_ps_print_cmd(mp, " fill"," F");
25428 @ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
25429 procedure fills the cycle generated by |make_envelope|. It need not do
25430 anything unless some region has positive winding number with respect to~|p|,
25431 but it does not seem worthwhile to for test this.
25433 @<Declare the \ps\ output procedures@>=
25434 void mp_do_outer_envelope (MP mp,pointer p, pointer h) ;
25437 void mp_do_outer_envelope (MP mp,pointer p, pointer h) {
25438 p=mp_make_envelope(mp, p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
25439 mp_ps_fill_out(mp, p);
25440 mp_toss_knot_list(mp, p);
25443 @ A text node may specify an arbitrary transformation but the usual case
25444 involves only shifting, scaling, and occasionally rotation. The purpose
25445 of |choose_scale| is to select a scale factor so that the remaining
25446 transformation is as ``nice'' as possible. The definition of ``nice''
25447 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25448 nice because they work out well for bitmap fonts. The code here selects
25449 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25450 non-shifting part of the transformation matrix. It is careful to avoid
25451 additions that might cause undetected overflow.
25453 @<Declare the \ps\ output procedures@>=
25454 scaled mp_choose_scale (MP mp,pointer p) ;
25456 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25457 /* |p| should point to a text node */
25458 scaled a,b,c,d,ad,bc; /* temporary values */
25463 if ( (a<0) ) negate(a);
25464 if ( (b<0) ) negate(b);
25465 if ( (c<0) ) negate(c);
25466 if ( (d<0) ) negate(d);
25469 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25472 @ @<Declare the \ps\ output procedures@>=
25473 void mp_ps_string_out (MP mp, char *s) {
25474 char *i; /* current character code position */
25475 ASCII_code k; /* bits to be converted to octal */
25479 if ( mp->ps_offset+5>mp->max_print_line ) {
25480 mp_print_char(mp, '\\');
25484 if ( (@<Character |k| is not allowed in PostScript output@>) ) {
25485 mp_print_char(mp, '\\');
25486 mp_print_char(mp, '0'+(k / 64));
25487 mp_print_char(mp, '0'+((k / 8) % 8));
25488 mp_print_char(mp, '0'+(k % 8));
25490 if ( (k=='(')||(k==')')||(k=='\\') ) mp_print_char(mp, '\\');
25491 mp_print_char(mp, k);
25495 mp_print_char(mp, ')');
25499 @d mp_is_ps_name(M,A) mp_do_is_ps_name(A)
25501 @<Declare the \ps\ output procedures@>=
25502 boolean mp_do_is_ps_name (char *s) {
25503 char *i; /* current character code position */
25504 ASCII_code k; /* the character being checked */
25508 if ( (k<=' ')||(k>'~') ) return false;
25509 if ( (k=='(')||(k==')')||(k=='<')||(k=='>')||
25510 (k=='{')||(k=='}')||(k=='/')||(k=='%') ) return false;
25517 void mp_ps_name_out (MP mp, char *s, boolean lit) ;
25520 void mp_ps_name_out (MP mp, char *s, boolean lit) {
25521 ps_room(strlen(s)+2);
25522 mp_print_char(mp, ' ');
25523 if ( mp_is_ps_name(mp, s) ) {
25524 if ( lit ) mp_print_char(mp, '/');
25527 mp_ps_string_out(mp, s);
25528 if ( ! lit ) mp_ps_print(mp, "cvx ");
25529 mp_ps_print(mp, "cvn");
25533 @ @<Declare the \ps\ output procedures@>=
25534 void mp_mark_string_chars (MP mp,font_number f, str_number s) ;
25537 void mp_mark_string_chars (MP mp,font_number f, str_number s) {
25538 integer b; /* |char_base[f]| */
25539 ASCII_code bc,ec; /* only characters between these bounds are marked */
25540 pool_pointer k; /* an index into string |s| */
25541 b=mp->char_base[f];
25545 while ( k>mp->str_start[s] ){
25547 if ( (mp->str_pool[k]>=bc)&&(mp->str_pool[k]<=ec) )
25548 mp->font_info[b+mp->str_pool[k]].qqqq.b3=used;
25552 @ There may be many sizes of one font and we need to keep track of the
25553 characters used for each size. This is done by keeping a linked list of
25554 sizes for each font with a counter in each text node giving the appropriate
25555 position in the size list for its font.
25557 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25558 @d font_size_size 2 /* size of a font size node */
25561 boolean mp_has_font_size(MP mp, font_number f );
25564 boolean mp_has_font_size(MP mp, font_number f ) {
25565 return (mp->font_sizes[f]!=null);
25569 @ The overflow here is caused by the fact the returned value
25570 has to fit in a |name_type|, which is a quarterword.
25572 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25574 @<Declare the \ps\ output procedures@>=
25575 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25576 pointer p,q; /* the previous and current font size nodes */
25577 quarterword i; /* the size index for |q| */
25578 q=mp->font_sizes[f];
25580 while ( q!=null ) {
25581 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25584 { p=q; q=link(q); incr(i); };
25585 if ( i==max_quarterword )
25586 mp_overflow(mp, "sizes per font",max_quarterword);
25587 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25589 q=mp_get_node(mp, font_size_size);
25591 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25595 @ @<Declare the \ps\ output procedures@>=
25596 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25597 pointer p; /* a font size node */
25598 quarterword i; /* the size index for |p| */
25599 p=mp->font_sizes[f];
25601 if ( p==null ) mp_confusion(mp, "size");
25603 incr(i); p=link(p);
25604 if ( p==null ) mp_confusion(mp, "size");
25606 return sc_factor(p);
25609 @ @<Declare the \ps\ output procedures@>=
25610 void mp_clear_sizes (MP mp) ;
25612 @ @c void mp_clear_sizes (MP mp) {
25613 font_number f; /* the font whose size list is being cleared */
25614 pointer p; /* current font size nodes */
25615 for (f=null_font+1;f<=mp->last_fnum;f++) {
25616 while ( mp->font_sizes[f]!=null ) {
25617 p=mp->font_sizes[f];
25618 mp->font_sizes[f]=link(p);
25619 mp_free_node(mp, p,font_size_size);
25624 @ The \&{special} command saves up lines of text to be printed during the next
25625 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25628 pointer last_pending; /* the last token in a list of pending specials */
25631 mp->last_pending=spec_head;
25633 @ @<Cases of |do_statement|...@>=
25634 case special_command:
25635 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25636 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25640 @ @<Declare action procedures for use by |do_statement|@>=
25641 void mp_do_special (MP mp) ;
25643 @ @c void mp_do_special (MP mp) {
25644 mp_get_x_next(mp); mp_scan_expression(mp);
25645 if ( mp->cur_type!=mp_string_type ) {
25646 @<Complain about improper special operation@>;
25648 link(mp->last_pending)=mp_stash_cur_exp(mp);
25649 mp->last_pending=link(mp->last_pending);
25650 link(mp->last_pending)=null;
25654 @ @<Complain about improper special operation@>=
25656 exp_err("Unsuitable expression");
25657 help1("Only known strings are allowed for output as specials.");
25658 mp_put_get_error(mp);
25661 @ @<Print any pending specials@>=
25663 while ( t!=null ) {
25664 mp_print_str(mp, value(t));
25668 mp_flush_token_list(mp, link(spec_head));
25669 link(spec_head)=null;
25670 mp->last_pending=spec_head
25672 @ We are now ready for the main output procedure. Note that the |selector|
25673 setting is saved in a global variable so that |begin_diagnostic| can access it.
25675 @<Declare the \ps\ output procedures@>=
25676 void mp_ship_out (MP mp, pointer h) ;
25679 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25680 pointer p; /* the current graphical object */
25681 pointer q; /* something that |p| points to */
25682 integer t; /* a temporary value */
25683 font_number f; /* fonts used in a text node or as loop counters */
25685 scaled ds,scf; /* design size and scale factor for a text node */
25686 boolean transformed; /* is the coordinate system being transformed? */
25687 mp_open_output_file(mp);
25688 mp->non_ps_setting=mp->selector; mp->selector=ps_file_only;
25689 if ( (mp->internal[prologues]==two)||(mp->internal[prologues]==three) ) {
25690 @<Print improved initial comment and bounding box for edge structure~|h|@>;
25691 @<Scan all the text nodes and mark the used characters@>;
25692 mp_load_encodings(mp,mp->last_fnum);
25693 @<Update encoding names@>;
25694 @<Print the improved prologue and setup@>;
25695 @<Print any pending specials@>;
25696 mp_unknown_graphics_state(mp, 0);
25697 mp->need_newpath=true;
25698 p=link(dummy_loc(h));
25699 while ( p!=null ) {
25700 if ( has_color(p) ) {
25701 if ( (pre_script(p))!=null ) {
25702 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25705 mp_fix_graphics_state(mp, p);
25707 @<Cases for translating graphical object~|p| into \ps@>;
25708 case mp_start_bounds_code:
25709 case mp_stop_bounds_code:
25711 } /* all cases are enumerated */
25714 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25715 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25716 fclose(mp->ps_file);
25717 mp->selector=mp->non_ps_setting;
25718 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25719 @<End progress report@>;
25721 @<Print the initial comment and give the bounding box for edge structure~|h|@>;
25722 if ( (mp->internal[prologues]>0) && (mp->last_ps_fnum<mp->last_fnum) )
25723 mp_read_psname_table(mp);
25724 mp_print_prologue(mp, (mp->internal[prologues]>>16), (mp->internal[mpprocset]>>16), ldf);
25725 mp_print_nl(mp, "%%Page: 1 1"); mp_print_ln(mp);
25726 @<Print any pending specials@>;
25727 mp_unknown_graphics_state(mp, 0);
25728 mp->need_newpath=true;
25729 p=link(dummy_loc(h));
25730 while ( p!=null ) {
25731 if ( has_color(p) ) {
25732 if ( (pre_script(p))!=null ) {
25733 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25736 mp_fix_graphics_state(mp, p);
25738 @<Cases for translating graphical object~|p| into \ps@>;
25739 case mp_start_bounds_code:
25740 case mp_stop_bounds_code:
25742 } /* all cases are enumerated */
25745 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25746 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25747 fclose(mp->ps_file);
25748 mp->selector=mp->non_ps_setting;
25749 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25750 @<End progress report@>;
25752 if ( mp->internal[tracing_output]>0 )
25753 mp_print_edges(mp, h," (just shipped out)",true);
25757 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25760 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25762 p=link(dummy_loc(h));
25763 while ( p!=null ) {
25764 if ( type(p)==text_code )
25765 if ( font_n(p)!=null_font )
25766 if ( name_type(p)==next_size )
25767 mp_mark_string_chars(mp, font_n(p),text_p(p));
25773 @<Print the improved prologue and setup@>=
25775 mp_print_improved_prologue(mp, (mp->internal[prologues]>>16),(mp->internal[mpprocset]>>16),
25776 (mp->internal[gtroffmode]>>16), null, h);
25780 @<Print improved initial comment and bounding box for edge...@>=
25781 mp_print(mp, "%!PS-Adobe-3.0 EPSF-3.0");
25782 mp_print_nl(mp, "%%BoundingBox: ");
25783 mp_set_bbox(mp, h,true);
25784 if ( minx_val(h)>maxx_val(h) ) {
25785 mp_print(mp, "0 0 0 0");
25787 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25788 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25790 mp_print_nl(mp, "%%HiResBoundingBox: ");
25791 if ( minx_val(h)>maxx_val(h) ) {
25792 mp_print(mp, "0 0 0 0");
25794 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25795 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25797 mp_print_nl(mp, "%%Creator: MetaPost ");
25798 mp_print(mp, metapost_version);
25799 mp_print_nl(mp, "%%CreationDate: ");
25800 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25801 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25802 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25803 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25804 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25805 mp_print_nl(mp, "%%Pages: 1");
25809 @ @<Scan all the text nodes and mark the used ...@>=
25810 for (f=null_font+1;f<=mp->last_fnum;f++) {
25811 if ( mp->font_sizes[f]!=null ) {
25812 mp_unmark_font(mp, f);
25813 mp->font_sizes[f]=null;
25815 if ( mp->font_enc_name[f]!=NULL )
25816 xfree(mp->font_enc_name[f]);
25817 mp->font_enc_name[f] = NULL;
25819 for (f=null_font+1;f<=mp->last_fnum;f++) {
25820 p=link(dummy_loc(h));
25821 while ( p!=null ) {
25822 if ( type(p)==text_code ) {
25823 if ( font_n(p)!=null_font ) {
25824 mp->font_sizes[font_n(p)] = diov;
25825 mp_mark_string_chars(mp, font_n(p),text_p(p));
25826 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25827 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25834 @ @<Update encoding names@>=
25835 for (f=null_font+1;f<=mp->last_fnum;f++) {
25836 p=link(dummy_loc(h));
25837 while ( p!=null ) {
25838 if ( type(p)==text_code )
25839 if ( font_n(p)!=null_font )
25840 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25841 if ( mp->font_enc_name[font_n(p)]==NULL )
25842 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25847 @ These special comments described in the {\sl PostScript Language Reference
25848 Manual}, 2nd.~edition are understood by some \ps-reading programs.
25849 We can't normally output ``conforming'' \ps\ because
25850 the structuring conventions don't allow us to say ``Please make sure the
25851 following characters are downloaded and define the \.{fshow} macro to access
25854 The exact bounding box is written out if |prologues<0|, although this
25855 is not standard \ps, since it allows \TeX\ to calculate the box dimensions
25856 accurately. (Overfull boxes are avoided if an illustration is made to
25857 match a given \.{\char`\\hsize}.)
25859 @<Print the initial comment and give the bounding box for edge...@>=
25860 mp_print(mp, "%!PS");
25861 if ( mp->internal[prologues]>0 ) mp_print(mp, "-Adobe-3.0 EPSF-3.0");
25862 mp_print_nl(mp, "%%BoundingBox: ");
25863 mp_set_bbox(mp, h,true);
25864 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25865 else if ( mp->internal[prologues]<0 ) {
25866 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25867 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25869 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25870 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25872 mp_print_nl(mp, "%%HiResBoundingBox: ");
25873 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25875 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25876 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25878 mp_print_nl(mp, "%%Creator: MetaPost ");
25879 mp_print(mp, metapost_version);
25880 mp_print_nl(mp, "%%CreationDate: ");
25881 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25882 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25883 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25884 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25885 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25886 mp_print_nl(mp, "%%Pages: 1");
25887 @<List all the fonts and magnifications for edge structure~|h|@>;
25890 @ @<List all the fonts and magnifications for edge structure~|h|@>=
25891 @<Scan all the text nodes and set the |font_sizes| lists;
25892 if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
25893 apply |unmark_font| to each font encountered, and call |mark_string|
25894 whenever the size index is zero@>;
25895 ldf = mp_print_font_comments (mp, (mp->internal[prologues]>>16), null, h)
25897 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25898 for (f=null_font+1;f<=mp->last_fnum;f++)
25899 mp->font_sizes[f]=null;
25900 p=link(dummy_loc(h));
25901 while ( p!=null ) {
25902 if ( type(p)==text_code ) {
25903 if ( font_n(p)!=null_font ) {
25905 if ( mp->internal[prologues]>0 ) {
25906 mp->font_sizes[f]=diov;
25908 if ( mp->font_sizes[f]==null ) mp_unmark_font(mp, f);
25909 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25910 if ( name_type(p)==0 )
25911 mp_mark_string_chars(mp, f,text_p(p));
25918 @ @<Cases for translating graphical object~|p| into \ps@>=
25919 case mp_start_clip_code:
25920 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25921 mp_ps_path_out(mp, path_p(p));
25922 mp_ps_print_cmd(mp, " clip"," W");
25924 if ( mp->internal[restore_clip_color]>0 )
25925 mp_unknown_graphics_state(mp, 1);
25927 case mp_stop_clip_code:
25928 mp_print_nl(mp, ""); mp_print_cmd(mp, "grestore","Q");
25930 if ( mp->internal[restore_clip_color]>0 )
25931 mp_unknown_graphics_state(mp, 2);
25933 mp_unknown_graphics_state(mp, -1);
25936 @ @<Cases for translating graphical object~|p| into \ps@>=
25938 if ( pen_p(p)==null ) mp_ps_fill_out(mp, path_p(p));
25939 else if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,true);
25941 mp_do_outer_envelope(mp, mp_copy_path(mp, path_p(p)), p);
25942 mp_do_outer_envelope(mp, mp_htap_ypoc(mp, path_p(p)), p);
25944 if ( (post_script(p))!=null ) {
25945 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25949 if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,false);
25951 q=mp_copy_path(mp, path_p(p));
25953 @<Break the cycle and set |t:=1| if path |q| is cyclic@>;
25954 q=mp_make_envelope(mp, q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25955 mp_ps_fill_out(mp, q);
25956 mp_toss_knot_list(mp, q);
25958 if ( (post_script(p))!=null ) {
25959 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25963 @ The envelope of a cyclic path~|q| could be computed by calling
25964 |make_envelope| once for |q| and once for its reversal. We don't do this
25965 because it would fail color regions that are covered by the pen regardless
25966 of where it is placed on~|q|.
25968 @<Break the cycle and set |t:=1| if path |q| is cyclic@>=
25969 if ( left_type(q)!=endpoint ) {
25970 left_type(mp_insert_knot(mp, q,x_coord(q),y_coord(q)))=endpoint;
25971 right_type(q)=endpoint;
25976 @ @<Cases for translating graphical object~|p| into \ps@>=
25978 if ( (font_n(p)!=null_font) && (length(text_p(p))>0) ) {
25979 if ( mp->internal[prologues]>0 )
25980 scf=mp_choose_scale(mp, p);
25982 scf=mp_indexed_size(mp, font_n(p), name_type(p));
25983 @<Shift or transform as necessary before outputting text node~|p| at scale
25984 factor~|scf|; set |transformed:=true| if the original transformation must
25986 mp_ps_string_out(mp, str(text_p(p)));
25987 mp_ps_name_out(mp, mp->font_name[font_n(p)],false);
25988 @<Print the size information and \ps\ commands for text node~|p|@>;
25991 if ( (post_script(p))!=null ) {
25992 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25996 @ @<Print the size information and \ps\ commands for text node~|p|@>=
25998 mp_print_char(mp, ' ');
25999 ds=(mp->font_dsize[font_n(p)]+8) / 16;
26000 mp_print_scaled(mp, mp_take_scaled(mp, ds,scf));
26001 mp_print(mp, " fshow");
26003 mp_ps_print_cmd(mp, " grestore"," Q")
26005 @ @<Shift or transform as necessary before outputting text node~|p| at...@>=
26006 transformed=(txx_val(p)!=scf)||(tyy_val(p)!=scf)||
26007 (txy_val(p)!=0)||(tyx_val(p)!=0);
26008 if ( transformed ) {
26009 mp_print_cmd(mp, "gsave [", "q [");
26010 mp_ps_pair_out(mp, mp_make_scaled(mp, txx_val(p),scf),
26011 mp_make_scaled(mp, tyx_val(p),scf));
26012 mp_ps_pair_out(mp, mp_make_scaled(mp, txy_val(p),scf),
26013 mp_make_scaled(mp, tyy_val(p),scf));
26014 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26015 mp_ps_print_cmd(mp, "] concat 0 0 moveto","] t 0 0 m");
26017 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26018 mp_ps_print_cmd(mp, "moveto","m");
26022 @ Now that we've finished |ship_out|, let's look at the other commands
26023 by which a user can send things to the \.{GF} file.
26025 @ @<Determine if a character has been shipped out@>=
26027 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
26028 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
26029 boolean_reset(mp->char_exists[mp->cur_exp]);
26030 mp->cur_type=mp_boolean_type;
26036 @ @<Allocate or initialize ...@>=
26037 mp_backend_initialize(mp);
26040 mp_backend_free(mp);
26043 @* \[45] Dumping and undumping the tables.
26044 After \.{INIMP} has seen a collection of macros, it
26045 can write all the necessary information on an auxiliary file so
26046 that production versions of \MP\ are able to initialize their
26047 memory at high speed. The present section of the program takes
26048 care of such output and input. We shall consider simultaneously
26049 the processes of storing and restoring,
26050 so that the inverse relation between them is clear.
26053 The global variable |mem_ident| is a string that is printed right
26054 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
26055 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
26056 for example, `\.{(mem=plain 90.4.14)}', showing the year,
26057 month, and day that the mem file was created. We have |mem_ident=0|
26058 before \MP's tables are loaded.
26064 mp->mem_ident=NULL;
26066 @ @<Initialize table entries...@>=
26067 if (mp->ini_version)
26068 mp->mem_ident=xstrdup(" (INIMP)");
26070 @ @<Declare act...@>=
26071 void mp_store_mem_file (MP mp) ;
26073 @ @c void mp_store_mem_file (MP mp) {
26074 integer k; /* all-purpose index */
26075 pointer p,q; /* all-purpose pointers */
26076 integer x; /* something to dump */
26077 four_quarters w; /* four ASCII codes */
26079 @<Create the |mem_ident|, open the mem file,
26080 and inform the user that dumping has begun@>;
26081 @<Dump constants for consistency check@>;
26082 @<Dump the string pool@>;
26083 @<Dump the dynamic memory@>;
26084 @<Dump the table of equivalents and the hash table@>;
26085 @<Dump a few more things and the closing check word@>;
26086 @<Close the mem file@>;
26089 @ Corresponding to the procedure that dumps a mem file, we also have a function
26090 that reads~one~in. The function returns |false| if the dumped mem is
26091 incompatible with the present \MP\ table sizes, etc.
26093 @d off_base 6666 /* go here if the mem file is unacceptable */
26094 @d too_small(A) { wake_up_terminal;
26095 wterm_ln("---! Must increase the "); wterm((A));
26096 @.Must increase the x@>
26101 boolean mp_load_mem_file (MP mp) {
26102 integer k; /* all-purpose index */
26103 pointer p,q; /* all-purpose pointers */
26104 integer x; /* something undumped */
26105 str_number s; /* some temporary string */
26106 four_quarters w; /* four ASCII codes */
26108 @<Undump constants for consistency check@>;
26109 @<Undump the string pool@>;
26110 @<Undump the dynamic memory@>;
26111 @<Undump the table of equivalents and the hash table@>;
26112 @<Undump a few more things and the closing check word@>;
26113 return true; /* it worked! */
26116 wterm_ln("(Fatal mem file error; I'm stymied)\n");
26117 @.Fatal mem file error@>
26121 @ @<Declarations@>=
26122 boolean mp_load_mem_file (MP mp) ;
26124 @ Mem files consist of |memory_word| items, and we use the following
26125 macros to dump words of different types:
26127 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26128 @d dump_int(A) { WW.cint=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26129 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26130 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26131 @d dump_string(A) { dump_int(strlen(A)+1);
26132 fwrite(A,strlen(A)+1,1,mp->mem_file); }
26135 FILE * mem_file; /* for input or output of mem information */
26137 @ The inverse macros are slightly more complicated, since we need to check
26138 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
26139 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
26141 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW; }
26142 @d undump_int(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.cint; }
26143 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.hh; }
26144 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.qqqq; }
26145 @d undump_strings(A,B,C) {
26146 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else (C)=str(x); }
26147 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else (C)=x; }
26148 @d undump_size(A,B,C,D) { undump_int(x);
26149 if (x<(A)) goto OFF_BASE;
26150 if (x>(B)) { too_small((C)); } else {(D)=x;} }
26151 @d undump_string(A) { integer XX=0; undump_int(XX);
26152 A = xmalloc(XX,sizeof(char));
26153 fread(A,XX,1,mp->mem_file); }
26155 @ The next few sections of the program should make it clear how we use the
26156 dump/undump macros.
26158 @<Dump constants for consistency check@>=
26159 dump_int(mp->mem_top);
26160 dump_int(mp->hash_size);
26161 dump_int(mp->hash_prime)
26162 dump_int(mp->param_size);
26163 dump_int(mp->max_in_open);
26165 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
26166 strings to the string pool; therefore \.{INIMP} and \MP\ will have
26167 the same strings. (And it is, of course, a good thing that they do.)
26171 @<Undump constants for consistency check@>=
26172 undump_int(x); mp->mem_top = x;
26173 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
26174 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
26175 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
26176 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
26178 @ We do string pool compaction to avoid dumping unused strings.
26181 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
26182 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
26185 @<Dump the string pool@>=
26186 mp_do_compaction(mp, mp->pool_size);
26187 dump_int(mp->pool_ptr);
26188 dump_int(mp->max_str_ptr);
26189 dump_int(mp->str_ptr);
26191 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
26194 while ( k<=mp->max_str_ptr ) {
26195 dump_int(mp->next_str[k]); incr(k);
26199 dump_int((mp->str_start[k]));
26200 if ( k==mp->str_ptr ) {
26207 while (k+4<mp->pool_ptr ) {
26208 dump_four_ASCII; k=k+4;
26210 k=mp->pool_ptr-4; dump_four_ASCII;
26211 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
26212 mp_print(mp, " strings of total length ");
26213 mp_print_int(mp, mp->pool_ptr)
26215 @ @d undump_four_ASCII
26217 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
26218 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
26220 @<Undump the string pool@>=
26221 undump_int(mp->pool_ptr);
26222 mp_reallocate_pool(mp, mp->pool_ptr) ;
26223 undump_int(mp->max_str_ptr);
26224 mp_reallocate_strings (mp,mp->max_str_ptr) ;
26225 undump(0,mp->max_str_ptr,mp->str_ptr);
26226 undump(0,mp->max_str_ptr+1,s);
26227 for (k=0;k<=s-1;k++)
26228 mp->next_str[k]=k+1;
26229 for (k=s;k<=mp->max_str_ptr;k++)
26230 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
26231 mp->fixed_str_use=0;
26234 undump(0,mp->pool_ptr,mp->str_start[k]);
26235 if ( k==mp->str_ptr ) break;
26236 mp->str_ref[k]=max_str_ref;
26237 incr(mp->fixed_str_use);
26238 mp->last_fixed_str=k; k=mp->next_str[k];
26241 while ( k+4<mp->pool_ptr ) {
26242 undump_four_ASCII; k=k+4;
26244 k=mp->pool_ptr-4; undump_four_ASCII;
26245 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
26246 mp->max_pool_ptr=mp->pool_ptr;
26247 mp->strs_used_up=mp->fixed_str_use;
26248 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
26249 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
26250 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
26252 @ By sorting the list of available spaces in the variable-size portion of
26253 |mem|, we are usually able to get by without having to dump very much
26254 of the dynamic memory.
26256 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
26257 information even when it has not been gathering statistics.
26259 @<Dump the dynamic memory@>=
26260 mp_sort_avail(mp); mp->var_used=0;
26261 dump_int(mp->lo_mem_max); dump_int(mp->rover);
26262 p=0; q=mp->rover; x=0;
26264 for (k=p;k<= q+1;k++)
26265 dump_wd(mp->mem[k]);
26266 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
26267 p=q+node_size(q); q=rlink(q);
26268 } while (q!=mp->rover);
26269 mp->var_used=mp->var_used+mp->lo_mem_max-p;
26270 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
26271 for (k=p;k<= mp->lo_mem_max;k++ )
26272 dump_wd(mp->mem[k]);
26273 x=x+mp->lo_mem_max+1-p;
26274 dump_int(mp->hi_mem_min); dump_int(mp->avail);
26275 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
26276 dump_wd(mp->mem[k]);
26277 x=x+mp->mem_end+1-mp->hi_mem_min;
26279 while ( p!=null ) {
26280 decr(mp->dyn_used); p=link(p);
26282 dump_int(mp->var_used); dump_int(mp->dyn_used);
26283 mp_print_ln(mp); mp_print_int(mp, x);
26284 mp_print(mp, " memory locations dumped; current usage is ");
26285 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
26287 @ @<Undump the dynamic memory@>=
26288 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
26289 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
26292 for (k=p;k<= q+1; k++)
26293 undump_wd(mp->mem[k]);
26295 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
26298 } while (q!=mp->rover);
26299 for (k=p;k<=mp->lo_mem_max;k++ )
26300 undump_wd(mp->mem[k]);
26301 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
26302 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
26303 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
26304 undump_wd(mp->mem[k]);
26305 undump_int(mp->var_used); undump_int(mp->dyn_used)
26307 @ A different scheme is used to compress the hash table, since its lower region
26308 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
26309 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
26310 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
26312 @<Dump the table of equivalents and the hash table@>=
26313 dump_int(mp->hash_used);
26314 mp->st_count=frozen_inaccessible-1-mp->hash_used;
26315 for (p=1;p<=mp->hash_used;p++) {
26316 if ( text(p)!=0 ) {
26317 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
26320 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
26321 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
26323 dump_int(mp->st_count);
26324 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
26326 @ @<Undump the table of equivalents and the hash table@>=
26327 undump(1,frozen_inaccessible,mp->hash_used);
26330 undump(p+1,mp->hash_used,p);
26331 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26332 } while (p!=mp->hash_used);
26333 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
26334 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26336 undump_int(mp->st_count)
26338 @ We have already printed a lot of statistics, so we set |tracing_stats:=0|
26339 to prevent them appearing again.
26341 @<Dump a few more things and the closing check word@>=
26342 dump_int(mp->max_internal);
26343 dump_int(mp->int_ptr);
26344 for (k=1;k<= mp->int_ptr;k++ ) {
26345 dump_int(mp->internal[k]);
26346 dump_string(mp->int_name[k]);
26348 dump_int(mp->start_sym);
26349 dump_int(mp->interaction);
26350 dump_string(mp->mem_ident);
26351 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
26352 mp->internal[tracing_stats]=0
26354 @ @<Undump a few more things and the closing check word@>=
26356 if (x>mp->max_internal) mp_grow_internals(mp,x);
26357 undump_int(mp->int_ptr);
26358 for (k=1;k<= mp->int_ptr;k++) {
26359 undump_int(mp->internal[k]);
26360 undump_string(mp->int_name[k]);
26362 undump(0,frozen_inaccessible,mp->start_sym);
26363 if (mp->interaction==mp_unspecified_mode) {
26364 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
26366 undump(mp_unspecified_mode,mp_error_stop_mode,x);
26368 undump_string(mp->mem_ident);
26369 undump(1,hash_end,mp->bg_loc);
26370 undump(1,hash_end,mp->eg_loc);
26371 undump_int(mp->serial_no);
26373 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
26375 @ @<Create the |mem_ident|...@>=
26377 xfree(mp->mem_ident);
26378 mp->mem_ident = xmalloc(256,1);
26379 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
26381 (int)(mp_round_unscaled(mp, mp->internal[year]) % 100),
26382 (int)mp_round_unscaled(mp, mp->internal[month]),
26383 (int)mp_round_unscaled(mp, mp->internal[day]));
26384 mp_pack_job_name(mp, mem_extension);
26385 while (! mp_w_open_out(mp, &mp->mem_file) )
26386 mp_prompt_file_name(mp, "mem file name", mem_extension);
26387 mp_print_nl(mp, "Beginning to dump on file ");
26388 @.Beginning to dump...@>
26389 mp_print(mp, mp->name_of_file);
26390 mp_print_nl(mp, mp->mem_ident);
26393 @ @<Dealloc variables@>=
26394 xfree(mp->mem_ident);
26396 @ @<Close the mem file@>=
26397 fclose(mp->mem_file)
26399 @* \[46] The main program.
26400 This is it: the part of \MP\ that executes all those procedures we have
26403 Well---almost. We haven't put the parsing subroutines into the
26404 program yet; and we'd better leave space for a few more routines that may
26405 have been forgotten.
26407 @c @<Declare the basic parsing subroutines@>;
26408 @<Declare miscellaneous procedures that were declared |forward|@>;
26409 @<Last-minute procedures@>
26411 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
26413 has to be run first; it initializes everything from scratch, without
26414 reading a mem file, and it has the capability of dumping a mem file.
26415 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
26417 to input a mem file in order to get started. \.{VIRMP} typically has
26418 a bit more memory capacity than \.{INIMP}, because it does not need the
26419 space consumed by the dumping/undumping routines and the numerous calls on
26422 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
26423 the best implementations therefore allow for production versions of \MP\ that
26424 not only avoid the loading routine for \PASCAL\ object code, they also have
26425 a mem file pre-loaded.
26428 boolean ini_version; /* are we iniMP? */
26430 @ @<Option variables@>=
26431 boolean ini_version; /* are we iniMP? */
26433 @ @<Set |ini_version|@>=
26434 mp->ini_version = (opt.ini_version ? true : false);
26436 @ Here we do whatever is needed to complete \MP's job gracefully on the
26437 local operating system. The code here might come into play after a fatal
26438 error; it must therefore consist entirely of ``safe'' operations that
26439 cannot produce error messages. For example, it would be a mistake to call
26440 |str_room| or |make_string| at this time, because a call on |overflow|
26441 might lead to an infinite loop.
26442 @^system dependencies@>
26444 This program doesn't bother to close the input files that may still be open.
26446 @<Last-minute...@>=
26447 void mp_close_files_and_terminate (MP mp) {
26448 integer k; /* all-purpose index */
26449 integer LH; /* the length of the \.{TFM} header, in words */
26450 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
26451 pointer p; /* runs through a list of \.{TFM} dimensions */
26452 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
26453 if ( mp->internal[tracing_stats]>0 )
26454 @<Output statistics about this job@>;
26456 @<Do all the finishing work on the \.{TFM} file@>;
26457 @<Explain what output files were written@>;
26458 if ( mp->log_opened ){
26460 fclose(mp->log_file); mp->selector=mp->selector-2;
26461 if ( mp->selector==term_only ) {
26462 mp_print_nl(mp, "Transcript written on ");
26463 @.Transcript written...@>
26464 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
26470 @ @<Declarations@>=
26471 void mp_close_files_and_terminate (MP mp) ;
26473 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26474 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26475 if ( mp->rd_fname[k]!=NULL ) fclose(mp->rd_file[k]);
26477 for (k=0;k<=(int)mp->write_files-1;k++) {
26478 if ( mp->wr_fname[k]!=NULL ) fclose(mp->wr_file[k]);
26481 @ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
26483 We reclaim all of the variable-size memory at this point, so that
26484 there is no chance of another memory overflow after the memory capacity
26485 has already been exceeded.
26487 @<Do all the finishing work on the \.{TFM} file@>=
26488 if ( mp->internal[fontmaking]>0 ) {
26489 @<Make the dynamic memory into one big available node@>;
26490 @<Massage the \.{TFM} widths@>;
26491 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26492 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26493 mp->internal[fontmaking]=0; /* avoid loop in case of fatal error */
26494 @<Finish the \.{TFM} file@>;
26497 @ @<Make the dynamic memory into one big available node@>=
26498 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26499 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26500 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26501 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
26502 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
26504 @ The present section goes directly to the log file instead of using
26505 |print| commands, because there's no need for these strings to take
26506 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26508 @<Output statistics...@>=
26509 if ( mp->log_opened ) {
26512 wlog_ln("Here is how much of MetaPost's memory you used:");
26513 @.Here is how much...@>
26514 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26515 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26516 (int)(mp->max_strings-1-mp->init_str_use));
26518 snprintf(s,128," %i string characters out of %i",
26519 (int)mp->max_pl_used-mp->init_pool_ptr,
26520 (int)mp->pool_size-mp->init_pool_ptr);
26522 snprintf(s,128," %i words of memory out of %i",
26523 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26524 (int)mp->mem_end+1);
26526 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26528 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
26529 (int)mp->max_in_stack,(int)mp->int_ptr,
26530 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26531 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26533 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26534 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26538 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26541 @<Last-minute...@>=
26542 void mp_final_cleanup (MP mp) {
26543 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
26545 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26546 while ( mp->input_ptr>0 ) {
26547 if ( token_state ) mp_end_token_list(mp);
26548 else mp_end_file_reading(mp);
26550 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26551 while ( mp->open_parens>0 ) {
26552 mp_print(mp, " )"); decr(mp->open_parens);
26554 while ( mp->cond_ptr!=null ) {
26555 mp_print_nl(mp, "(end occurred when ");
26556 @.end occurred...@>
26557 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26558 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26559 if ( mp->if_line!=0 ) {
26560 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26562 mp_print(mp, " was incomplete)");
26563 mp->if_line=if_line_field(mp->cond_ptr);
26564 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26566 if ( mp->history!=spotless )
26567 if ( ((mp->history==warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26568 if ( mp->selector==term_and_log ) {
26569 mp->selector=term_only;
26570 mp_print_nl(mp, "(see the transcript file for additional information)");
26571 @.see the transcript file...@>
26572 mp->selector=term_and_log;
26575 if (mp->ini_version) {
26576 mp_store_mem_file(mp); return;
26578 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26579 @.dump...only by INIMP@>
26583 @ @<Declarations@>=
26584 void mp_final_cleanup (MP mp) ;
26585 void mp_init_prim (MP mp) ;
26586 void mp_init_tab (MP mp) ;
26588 @ @<Last-minute...@>=
26589 void mp_init_prim (MP mp) { /* initialize all the primitives */
26593 void mp_init_tab (MP mp) { /* initialize other tables */
26594 integer k; /* all-purpose index */
26595 @<Initialize table entries (done by \.{INIMP} only)@>;
26599 @ When we begin the following code, \MP's tables may still contain garbage;
26600 the strings might not even be present. Thus we must proceed cautiously to get
26603 But when we finish this part of the program, \MP\ is ready to call on the
26604 |main_control| routine to do its work.
26606 @<Get the first line...@>=
26608 @<Initialize the input routines@>;
26609 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26610 if ( mp->mem_ident!=NULL ) mp_initialize(mp); /* erase preloaded mem */
26611 if ( ! mp_open_mem_file(mp) ) return false;
26612 if ( ! mp_load_mem_file(mp) ) {
26613 fclose( mp->mem_file); return false;
26615 fclose( mp->mem_file);
26616 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26618 mp->buffer[limit]='%';
26619 mp_fix_date_and_time(mp);
26620 mp->sys_random_seed = (mp->get_random_seed)(mp);
26621 mp_init_randoms(mp, mp->sys_random_seed);
26622 @<Initialize the print |selector|...@>;
26623 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26624 mp_start_input(mp); /* \&{input} assumed */
26627 @ @<Run inimpost commands@>=
26629 mp_get_strings_started(mp);
26630 mp_init_tab(mp); /* initialize the tables */
26631 mp_init_prim(mp); /* call |primitive| for each primitive */
26632 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26633 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26634 mp_fix_date_and_time(mp);
26638 @* \[47] Debugging.
26639 Once \MP\ is working, you should be able to diagnose most errors with
26640 the \.{show} commands and other diagnostic features. But for the initial
26641 stages of debugging, and for the revelation of really deep mysteries, you
26642 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26643 checks and its debugger. An additional routine called |debug_help|
26644 will also come into play when you type `\.D' after an error message;
26645 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26647 @^system dependencies@>
26649 The interface to |debug_help| is primitive, but it is good enough when used
26650 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26651 variables and change their values. After getting the prompt `\.{debug \#}', you
26652 type either a negative number (this exits |debug_help|), or zero (this
26653 goes to a location where you can set a breakpoint, thereby entering into
26654 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26655 an argument |n|. The meaning of |m| and |n| will be clear from the
26656 program below. (If |m=13|, there is an additional argument, |l|.)
26659 @<Last-minute...@>=
26660 void mp_debug_help (MP mp) { /* routine to display various things */
26665 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26668 fscanf(mp->term_in,"%i",&m);
26672 fscanf(mp->term_in,"%i",&n);
26674 @<Numbered cases for |debug_help|@>;
26675 default: mp_print(mp, "?"); break;
26680 @ @<Numbered cases...@>=
26681 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26683 case 2: mp_print_int(mp, info(n));
26685 case 3: mp_print_int(mp, link(n));
26687 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26689 case 5: mp_print_variable_name(mp, n);
26691 case 6: mp_print_int(mp, mp->internal[n]);
26693 case 7: mp_do_show_dependencies(mp);
26695 case 9: mp_show_token_list(mp, n,null,100000,0);
26697 case 10: mp_print_str(mp, n);
26699 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26701 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26703 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26705 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26707 case 15: mp->panicking=! mp->panicking;
26711 @ \MP\ used to have one single routine to print to both `write' files
26712 and the PostScript output. Web2c redefines ``Character |k| cannot be
26713 printed'', and that resulted in some bugs where 8-bit characters were
26714 written to the PostScript file (reported by Wlodek Bzyl).
26716 Also, Hans Hagen requested spaces to be output as "\\040" instead of
26717 a plain space, since that makes it easier to parse the result file
26718 for postprocessing.
26720 @<Character |k| is not allowed in PostScript output@>=
26723 @ Saving the filename template
26725 @<Save the filename template@>=
26727 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26728 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26730 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26734 @* \[48] System-dependent changes.
26735 This section should be replaced, if necessary, by any special
26736 modification of the program
26737 that are necessary to make \MP\ work at a particular installation.
26738 It is usually best to design your change file so that all changes to
26739 previous sections preserve the section numbering; then everybody's version
26740 will be consistent with the published program. More extensive changes,
26741 which introduce new sections, can be inserted here; then only the index
26742 itself will get a new section number.
26743 @^system dependencies@>
26746 Here is where you can find all uses of each identifier in the program,
26747 with underlined entries pointing to where the identifier was defined.
26748 If the identifier is only one letter long, however, you get to see only
26749 the underlined entries. {\sl All references are to section numbers instead of
26752 This index also lists error messages and other aspects of the program
26753 that you might want to look up some day. For example, the entry
26754 for ``system dependencies'' lists all sections that should receive
26755 special attention from people who are installing \MP\ in a new
26756 operating environment. A list of various things that can't happen appears
26757 under ``this can't happen''.
26758 Approximately 25 sections are listed under ``inner loop''; these account
26759 for more than 60\pct! of \MP's running time, exclusive of input and output.