1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
16 \def\psqrt#1{\sqrt{\mathstrut#1}}
18 \def\pct!{{\char`\%}} % percent sign in ordinary text
19 \font\tenlogo=logo10 % font used for the METAFONT logo
21 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
22 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
23 \def\[#1]{\ignorespaces} % left over from pascal web
24 \def\<#1>{$\langle#1\rangle$}
25 \def\section{\mathhexbox278}
26 \let\swap=\leftrightarrow
27 \def\round{\mathop{\rm round}\nolimits}
28 \mathchardef\vb="026A % synonym for `\|'
30 \def\(#1){} % this is used to make section names sort themselves better
31 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
38 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
40 The main purpose of the following program is to explain the algorithms of \MP\
41 as clearly as possible. However, the program has been written so that it
42 can be tuned to run efficiently in a wide variety of operating environments
43 by making comparatively few changes. Such flexibility is possible because
44 the documentation that follows is written in the \.{WEB} language, which is
45 at a higher level than C.
47 A large piece of software like \MP\ has inherent complexity that cannot
48 be reduced below a certain level of difficulty, although each individual
49 part is fairly simple by itself. The \.{WEB} language is intended to make
50 the algorithms as readable as possible, by reflecting the way the
51 individual program pieces fit together and by providing the
52 cross-references that connect different parts. Detailed comments about
53 what is going on, and about why things were done in certain ways, have
54 been liberally sprinkled throughout the program. These comments explain
55 features of the implementation, but they rarely attempt to explain the
56 \MP\ language itself, since the reader is supposed to be familiar with
57 {\sl The {\logos METAFONT\/}book} as well as the manual
59 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
60 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
61 AT\AM T Bell Laboratories.
63 @ The present implementation is a preliminary version, but the possibilities
64 for new features are limited by the desire to remain as nearly compatible
65 with \MF\ as possible.
67 On the other hand, the \.{WEB} description can be extended without changing
68 the core of the program, and it has been designed so that such
69 extensions are not extremely difficult to make.
70 The |banner| string defined here should be changed whenever \MP\
71 undergoes any modifications, so that it will be clear which version of
72 \MP\ might be the guilty party when a problem arises.
74 @^system dependencies@>
76 @d banner "This is MetaPost, Version 1.003" /* printed when \MP\ starts */
77 @d metapost_version "1.003"
78 @d mplib_version "0.30"
79 @d version_string " (Cweb version 0.30)"
84 @ The external library header for \MP\ is |mplib.h|. It contains a
85 few typedefs and the header defintions for the externally used
88 The most important of the typedefs is the definition of the structure
89 |MP_options|, that acts as a small, configurable front-end to the fairly
90 large |MP_instance| structure.
93 typedef struct MP_instance * MP;
95 typedef struct MP_options {
98 @<Exported function headers@>
100 @ The internal header file is much longer: it not only lists the complete
101 |MP_instance|, but also a lot of functions that have to be available to
102 the \ps\ backend, that is defined in a separate \.{WEB} file.
104 The variables from |MP_options| are included inside the |MP_instance|
109 typedef struct psout_data_struct * psout_data;
111 typedef signed int integer;
113 @<Types in the outer block@>
114 @<Constants in the outer block@>
115 # ifndef LIBAVL_ALLOCATOR
116 # define LIBAVL_ALLOCATOR
117 struct libavl_allocator {
118 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
119 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
122 typedef struct MP_instance {
126 @<Internal library declarations@>
134 #include <unistd.h> /* for access() */
135 #include <time.h> /* for struct tm \& co */
137 #include "mpmp.h" /* internal header */
138 #include "mppsout.h" /* internal header */
141 @<Basic printing procedures@>
142 @<Error handling procedures@>
144 @ Here are the functions that set up the \MP\ instance.
147 @<Declare |mp_reallocate| functions@>
148 struct MP_options *mp_options (void);
149 MP mp_new (struct MP_options *opt);
152 struct MP_options *mp_options (void) {
153 struct MP_options *opt;
154 opt = malloc(sizeof(MP_options));
156 memset (opt,0,sizeof(MP_options));
161 @ The |__attribute__| pragma is gcc-only.
163 @<Internal library ... @>=
164 #if !defined(__GNUC__) || (__GNUC__ < 2)
165 # define __attribute__(x)
166 #endif /* !defined(__GNUC__) || (__GNUC__ < 2) */
169 MP __attribute__ ((noinline))
170 mp_new (struct MP_options *opt) {
172 mp = malloc(1*sizeof(MP_instance));
175 @<Set |ini_version|@>;
176 @<Setup the non-local jump buffer in |mp_new|@>;
177 @<Allocate or initialize variables@>
178 if (opt->main_memory>mp->mem_max)
179 mp_reallocate_memory(mp,opt->main_memory);
180 mp_reallocate_paths(mp,1000);
181 mp_reallocate_fonts(mp,8);
186 void mp_free (MP mp) {
187 int k; /* loop variable */
188 @<Dealloc variables@>
193 void __attribute__((noinline))
194 mp_do_initialize ( MP mp) {
195 @<Local variables for initialization@>
196 @<Set initial values of key variables@>
198 int mp_initialize (MP mp) { /* this procedure gets things started properly */
199 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
200 @<Install and test the non-local jump buffer@>;
201 t_open_out; /* open the terminal for output */
202 @<Check the ``constant'' values...@>;
205 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
206 "---case %i",(int)mp->bad);
207 do_fprintf(mp->err_out,(char *)ss);
211 mp_do_initialize(mp); /* erase preloaded mem */
212 if (mp->ini_version) {
213 @<Run inimpost commands@>;
215 @<Initialize the output routines@>;
216 @<Get the first line of input and prepare to start@>;
218 mp_init_map_file(mp, mp->troff_mode);
219 mp->history=mp_spotless; /* ready to go! */
220 if (mp->troff_mode) {
221 mp->internal[mp_gtroffmode]=unity;
222 mp->internal[mp_prologues]=unity;
224 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
225 mp->cur_sym=mp->start_sym; mp_back_input(mp);
231 @<Exported function headers@>=
232 extern struct MP_options *mp_options (void);
233 extern MP mp_new (struct MP_options *opt) ;
234 extern void mp_free (MP mp);
235 extern int mp_initialize (MP mp);
237 @ The overall \MP\ program begins with the heading just shown, after which
238 comes a bunch of procedure declarations and function declarations.
239 Finally we will get to the main program, which begins with the
240 comment `|start_here|'. If you want to skip down to the
241 main program now, you can look up `|start_here|' in the index.
242 But the author suggests that the best way to understand this program
243 is to follow pretty much the order of \MP's components as they appear in the
244 \.{WEB} description you are now reading, since the present ordering is
245 intended to combine the advantages of the ``bottom up'' and ``top down''
246 approaches to the problem of understanding a somewhat complicated system.
248 @ Some of the code below is intended to be used only when diagnosing the
249 strange behavior that sometimes occurs when \MP\ is being installed or
250 when system wizards are fooling around with \MP\ without quite knowing
251 what they are doing. Such code will not normally be compiled; it is
252 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
254 @ This program has two important variations: (1) There is a long and slow
255 version called \.{INIMP}, which does the extra calculations needed to
257 initialize \MP's internal tables; and (2)~there is a shorter and faster
258 production version, which cuts the initialization to a bare minimum.
260 Which is which is decided at runtime.
262 @ The following parameters can be changed at compile time to extend or
263 reduce \MP's capacity. They may have different values in \.{INIMP} and
264 in production versions of \MP.
266 @^system dependencies@>
269 #define file_name_size 255 /* file names shouldn't be longer than this */
270 #define bistack_size 1500 /* size of stack for bisection algorithms;
271 should probably be left at this value */
273 @ Like the preceding parameters, the following quantities can be changed
274 at compile time to extend or reduce \MP's capacity. But if they are changed,
275 it is necessary to rerun the initialization program \.{INIMP}
277 to generate new tables for the production \MP\ program.
278 One can't simply make helter-skelter changes to the following constants,
279 since certain rather complex initialization
280 numbers are computed from them.
283 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
284 int pool_size; /* maximum number of characters in strings, including all
285 error messages and help texts, and the names of all identifiers */
286 int mem_max; /* greatest index in \MP's internal |mem| array;
287 must be strictly less than |max_halfword|;
288 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
289 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
290 must not be greater than |mem_max| */
292 @ @<Option variables@>=
293 int error_line; /* width of context lines on terminal error messages */
294 int half_error_line; /* width of first lines of contexts in terminal
295 error messages; should be between 30 and |error_line-15| */
296 int max_print_line; /* width of longest text lines output; should be at least 60 */
297 int hash_size; /* maximum number of symbolic tokens,
298 must be less than |max_halfword-3*param_size| */
299 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
300 int param_size; /* maximum number of simultaneous macro parameters */
301 int max_in_open; /* maximum number of input files and error insertions that
302 can be going on simultaneously */
303 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
304 void *userdata; /* this allows the calling application to setup local */
307 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
312 set_value(mp->error_line,opt->error_line,79);
313 set_value(mp->half_error_line,opt->half_error_line,50);
314 set_value(mp->max_print_line,opt->max_print_line,100);
315 mp->main_memory=5000;
318 set_value(mp->hash_size,opt->hash_size,9500);
319 set_value(mp->hash_prime,opt->hash_prime,7919);
320 set_value(mp->param_size,opt->param_size,150);
321 set_value(mp->max_in_open,opt->max_in_open,10);
322 mp->userdata=opt->userdata;
324 @ In case somebody has inadvertently made bad settings of the ``constants,''
325 \MP\ checks them using a global variable called |bad|.
327 This is the first of many sections of \MP\ where global variables are
331 integer bad; /* is some ``constant'' wrong? */
333 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
334 or something similar. (We can't do that until |max_halfword| has been defined.)
336 @<Check the ``constant'' values for consistency@>=
338 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
339 if ( mp->max_print_line<60 ) mp->bad=2;
340 if ( mp->mem_top<=1100 ) mp->bad=4;
341 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
343 @ Some |goto| labels are used by the following definitions. The label
344 `|restart|' is occasionally used at the very beginning of a procedure; and
345 the label `|reswitch|' is occasionally used just prior to a |case|
346 statement in which some cases change the conditions and we wish to branch
347 to the newly applicable case. Loops that are set up with the |loop|
348 construction defined below are commonly exited by going to `|done|' or to
349 `|found|' or to `|not_found|', and they are sometimes repeated by going to
350 `|continue|'. If two or more parts of a subroutine start differently but
351 end up the same, the shared code may be gathered together at
354 @ Here are some macros for common programming idioms.
356 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
357 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
358 @d negate(A) (A)=-(A) /* change the sign of a variable */
359 @d double(A) (A)=(A)+(A)
362 @d do_nothing /* empty statement */
363 @d Return goto exit /* terminate a procedure call */
364 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
366 @* \[2] The character set.
367 In order to make \MP\ readily portable to a wide variety of
368 computers, all of its input text is converted to an internal eight-bit
369 code that includes standard ASCII, the ``American Standard Code for
370 Information Interchange.'' This conversion is done immediately when each
371 character is read in. Conversely, characters are converted from ASCII to
372 the user's external representation just before they are output to a
376 Such an internal code is relevant to users of \MP\ only with respect to
377 the \&{char} and \&{ASCII} operations, and the comparison of strings.
379 @ Characters of text that have been converted to \MP's internal form
380 are said to be of type |ASCII_code|, which is a subrange of the integers.
383 typedef unsigned char ASCII_code; /* eight-bit numbers */
385 @ The present specification of \MP\ has been written under the assumption
386 that the character set contains at least the letters and symbols associated
387 with ASCII codes 040 through 0176; all of these characters are now
388 available on most computer terminals.
390 We shall use the name |text_char| to stand for the data type of the characters
391 that are converted to and from |ASCII_code| when they are input and output.
392 We shall also assume that |text_char| consists of the elements
393 |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
394 The following definitions should be adjusted if necessary.
395 @^system dependencies@>
397 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
398 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
401 typedef unsigned char text_char; /* the data type of characters in text files */
403 @ @<Local variables for init...@>=
406 @ The \MP\ processor converts between ASCII code and
407 the user's external character set by means of arrays |xord| and |xchr|
408 that are analogous to Pascal's |ord| and |chr| functions.
410 @d xchr(A) mp->xchr[(A)]
411 @d xord(A) mp->xord[(A)]
414 ASCII_code xord[256]; /* specifies conversion of input characters */
415 text_char xchr[256]; /* specifies conversion of output characters */
417 @ The core system assumes all 8-bit is acceptable. If it is not,
418 a change file has to alter the below section.
419 @^system dependencies@>
421 Additionally, people with extended character sets can
422 assign codes arbitrarily, giving an |xchr| equivalent to whatever
423 characters the users of \MP\ are allowed to have in their input files.
424 Appropriate changes to \MP's |char_class| table should then be made.
425 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
426 codes, called the |char_class|.) Such changes make portability of programs
427 more difficult, so they should be introduced cautiously if at all.
428 @^character set dependencies@>
429 @^system dependencies@>
432 for (i=0;i<=0377;i++) { xchr(i)=i; }
434 @ The following system-independent code makes the |xord| array contain a
435 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
436 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
437 |j| or more; hence, standard ASCII code numbers will be used instead of
438 codes below 040 in case there is a coincidence.
441 for (i=first_text_char;i<=last_text_char;i++) {
444 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
445 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
447 @* \[3] Input and output.
448 The bane of portability is the fact that different operating systems treat
449 input and output quite differently, perhaps because computer scientists
450 have not given sufficient attention to this problem. People have felt somehow
451 that input and output are not part of ``real'' programming. Well, it is true
452 that some kinds of programming are more fun than others. With existing
453 input/output conventions being so diverse and so messy, the only sources of
454 joy in such parts of the code are the rare occasions when one can find a
455 way to make the program a little less bad than it might have been. We have
456 two choices, either to attack I/O now and get it over with, or to postpone
457 I/O until near the end. Neither prospect is very attractive, so let's
460 The basic operations we need to do are (1)~inputting and outputting of
461 text, to or from a file or the user's terminal; (2)~inputting and
462 outputting of eight-bit bytes, to or from a file; (3)~instructing the
463 operating system to initiate (``open'') or to terminate (``close'') input or
464 output from a specified file; (4)~testing whether the end of an input
465 file has been reached; (5)~display of bits on the user's screen.
466 The bit-display operation will be discussed in a later section; we shall
467 deal here only with more traditional kinds of I/O.
469 @ Finding files happens in a slightly roundabout fashion: the \MP\
470 instance object contains a field that holds a function pointer that finds a
471 file, and returns its name, or NULL. For this, it receives three
472 parameters: the non-qualified name |fname|, the intended |fopen|
473 operation type |fmode|, and the type of the file |ftype|.
475 The file types that are passed on in |ftype| can be used to
476 differentiate file searches if a library like kpathsea is used,
477 the fopen mode is passed along for the same reason.
480 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
482 @ @<Exported types@>=
484 mp_filetype_terminal = 0, /* the terminal */
485 mp_filetype_error, /* the terminal */
486 mp_filetype_program , /* \MP\ language input */
487 mp_filetype_log, /* the log file */
488 mp_filetype_postscript, /* the postscript output */
489 mp_filetype_memfile, /* memory dumps */
490 mp_filetype_metrics, /* TeX font metric files */
491 mp_filetype_fontmap, /* PostScript font mapping files */
492 mp_filetype_font, /* PostScript type1 font programs */
493 mp_filetype_encoding, /* PostScript font encoding files */
494 mp_filetype_text /* first text file for readfrom and writeto primitives */
496 typedef char *(*mp_file_finder)(MP, const char *, const char *, int);
497 typedef void *(*mp_file_opener)(MP, const char *, const char *, int);
498 typedef char *(*mp_file_reader)(MP, void *, size_t *);
499 typedef void (*mp_binfile_reader)(MP, void *, void **, size_t *);
500 typedef void (*mp_file_closer)(MP, void *);
501 typedef int (*mp_file_eoftest)(MP, void *);
502 typedef void (*mp_file_flush)(MP, void *);
503 typedef void (*mp_file_writer)(MP, void *, const char *);
504 typedef void (*mp_binfile_writer)(MP, void *, void *, size_t);
507 @ @<Option variables@>=
508 mp_file_finder find_file;
509 mp_file_opener open_file;
510 mp_file_reader read_ascii_file;
511 mp_binfile_reader read_binary_file;
512 mp_file_closer close_file;
513 mp_file_eoftest eof_file;
514 mp_file_flush flush_file;
515 mp_file_writer write_ascii_file;
516 mp_binfile_writer write_binary_file;
518 @ The default function for finding files is |mp_find_file|. It is
519 pretty stupid: it will only find files in the current directory.
521 This function may disappear altogether, it is currently only
522 used for the default font map file.
525 char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) {
527 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
528 return strdup(fname);
533 @ This has to be done very early on, so it is best to put it in with
534 the |mp_new| allocations
536 @d set_callback_option(A) do { mp->A = mp_##A;
537 if (opt->A!=NULL) mp->A = opt->A;
540 @<Allocate or initialize ...@>=
541 set_callback_option(find_file);
542 set_callback_option(open_file);
543 set_callback_option(read_ascii_file);
544 set_callback_option(read_binary_file);
545 set_callback_option(close_file);
546 set_callback_option(eof_file);
547 set_callback_option(flush_file);
548 set_callback_option(write_ascii_file);
549 set_callback_option(write_binary_file);
551 @ Because |mp_find_file| is used so early, it has to be in the helpers
555 char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) ;
556 void *mp_open_file (MP mp , const char *fname, const char *fmode, int ftype) ;
557 char *mp_read_ascii_file (MP mp, void *f, size_t *size) ;
558 void mp_read_binary_file (MP mp, void *f, void **d, size_t *size) ;
559 void mp_close_file (MP mp, void *f) ;
560 int mp_eof_file (MP mp, void *f) ;
561 void mp_flush_file (MP mp, void *f) ;
562 void mp_write_ascii_file (MP mp, void *f, const char *s) ;
563 void mp_write_binary_file (MP mp, void *f, void *s, size_t t) ;
565 @ The function to open files can now be very short.
568 void *mp_open_file(MP mp, const char *fname, const char *fmode, int ftype) {
571 realmode[0] = *fmode;
575 if (ftype==mp_filetype_terminal) {
576 return (fmode[0] == 'r' ? stdin : stdout);
577 } else if (ftype==mp_filetype_error) {
579 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
580 return (void *)fopen(fname, realmode);
586 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
589 char name_of_file[file_name_size+1]; /* the name of a system file */
590 int name_length;/* this many characters are actually
591 relevant in |name_of_file| (the rest are blank) */
593 @ @<Option variables@>=
594 int print_found_names; /* configuration parameter */
596 @ If this parameter is true, the terminal and log will report the found
597 file names for input files instead of the requested ones.
598 It is off by default because it creates an extra filename lookup.
600 @<Allocate or initialize ...@>=
601 mp->print_found_names = (opt->print_found_names>0 ? true : false);
603 @ \MP's file-opening procedures return |false| if no file identified by
604 |name_of_file| could be opened.
606 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
607 It is not used for opening a mem file for read, because that file name
611 if (mp->print_found_names) {
612 char *s = (mp->find_file)(mp,mp->name_of_file,A,ftype);
614 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
615 strncpy(mp->name_of_file,s,file_name_size);
621 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
624 return (*f ? true : false)
627 boolean mp_a_open_in (MP mp, void **f, int ftype) {
628 /* open a text file for input */
632 boolean mp_w_open_in (MP mp, void **f) {
633 /* open a word file for input */
634 *f = (mp->open_file)(mp,mp->name_of_file,"r",mp_filetype_memfile);
635 return (*f ? true : false);
638 boolean mp_a_open_out (MP mp, void **f, int ftype) {
639 /* open a text file for output */
643 boolean mp_b_open_out (MP mp, void **f, int ftype) {
644 /* open a binary file for output */
648 boolean mp_w_open_out (MP mp, void **f) {
649 /* open a word file for output */
650 int ftype = mp_filetype_memfile;
655 char *mp_read_ascii_file (MP mp, void *ff, size_t *size) {
657 size_t len = 0, lim = 128;
659 FILE *f = (FILE *)ff;
661 (void) mp; /* for -Wunused */
667 if (s==NULL) return NULL;
668 while (c!=EOF && c!='\n' && c!='\r') {
670 s =realloc(s, (lim+(lim>>2)));
671 if (s==NULL) return NULL;
679 if (c!=EOF && c!='\n')
689 void mp_write_ascii_file (MP mp, void *f, const char *s) {
699 void mp_read_binary_file (MP mp, void *f, void **data, size_t *size) {
703 len = fread(*data,1,*size,(FILE *)f);
709 void mp_write_binary_file (MP mp, void *f, void *s, size_t size) {
713 fwrite(s,size,1,(FILE *)f);
719 void mp_close_file (MP mp, void *f) {
727 int mp_eof_file (MP mp, void *f) {
730 return feof((FILE *)f);
737 void mp_flush_file (MP mp, void *f) {
744 @ Input from text files is read one line at a time, using a routine called
745 |input_ln|. This function is defined in terms of global variables called
746 |buffer|, |first|, and |last| that will be described in detail later; for
747 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
748 values, and that |first| and |last| are indices into this array
749 representing the beginning and ending of a line of text.
752 size_t buf_size; /* maximum number of characters simultaneously present in
753 current lines of open files */
754 ASCII_code *buffer; /* lines of characters being read */
755 size_t first; /* the first unused position in |buffer| */
756 size_t last; /* end of the line just input to |buffer| */
757 size_t max_buf_stack; /* largest index used in |buffer| */
759 @ @<Allocate or initialize ...@>=
761 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
763 @ @<Dealloc variables@>=
767 void mp_reallocate_buffer(MP mp, size_t l) {
769 if (l>max_halfword) {
770 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
772 buffer = xmalloc((l+1),sizeof(ASCII_code));
773 memcpy(buffer,mp->buffer,(mp->buf_size+1));
775 mp->buffer = buffer ;
779 @ The |input_ln| function brings the next line of input from the specified
780 field into available positions of the buffer array and returns the value
781 |true|, unless the file has already been entirely read, in which case it
782 returns |false| and sets |last:=first|. In general, the |ASCII_code|
783 numbers that represent the next line of the file are input into
784 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
785 global variable |last| is set equal to |first| plus the length of the
786 line. Trailing blanks are removed from the line; thus, either |last=first|
787 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
790 The variable |max_buf_stack|, which is used to keep track of how large
791 the |buf_size| parameter must be to accommodate the present job, is
792 also kept up to date by |input_ln|.
795 boolean mp_input_ln (MP mp, void *f ) {
796 /* inputs the next line or returns |false| */
799 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
800 s = (mp->read_ascii_file)(mp,f, &size);
804 mp->last = mp->first+size;
805 if ( mp->last>=mp->max_buf_stack ) {
806 mp->max_buf_stack=mp->last+1;
807 while ( mp->max_buf_stack>=mp->buf_size ) {
808 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
811 memcpy((mp->buffer+mp->first),s,size);
812 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
818 @ The user's terminal acts essentially like other files of text, except
819 that it is used both for input and for output. When the terminal is
820 considered an input file, the file variable is called |term_in|, and when it
821 is considered an output file the file variable is |term_out|.
822 @^system dependencies@>
825 void * term_in; /* the terminal as an input file */
826 void * term_out; /* the terminal as an output file */
827 void * err_out; /* the terminal as an output file */
829 @ Here is how to open the terminal files. In the default configuration,
830 nothing happens except that the command line (if there is one) is copied
831 to the input buffer. The variable |command_line| will be filled by the
832 |main| procedure. The copying can not be done earlier in the program
833 logic because in the |INI| version, the |buffer| is also used for primitive
836 @^system dependencies@>
838 @d t_open_out do {/* open the terminal for text output */
839 mp->term_out = (mp->open_file)(mp,"terminal", "w", mp_filetype_terminal);
840 mp->err_out = (mp->open_file)(mp,"error", "w", mp_filetype_error);
842 @d t_open_in do { /* open the terminal for text input */
843 mp->term_in = (mp->open_file)(mp,"terminal", "r", mp_filetype_terminal);
844 if (mp->command_line!=NULL) {
845 mp->last = strlen(mp->command_line);
846 strncpy((char *)mp->buffer,mp->command_line,mp->last);
847 xfree(mp->command_line);
853 @d t_close_out do { /* close the terminal */
854 (mp->close_file)(mp,mp->term_out);
855 (mp->close_file)(mp,mp->err_out);
858 @d t_close_in do { /* close the terminal */
859 (mp->close_file)(mp,mp->term_in);
862 @<Option variables@>=
865 @ @<Allocate or initialize ...@>=
866 mp->command_line = xstrdup(opt->command_line);
868 @ Sometimes it is necessary to synchronize the input/output mixture that
869 happens on the user's terminal, and three system-dependent
870 procedures are used for this
871 purpose. The first of these, |update_terminal|, is called when we want
872 to make sure that everything we have output to the terminal so far has
873 actually left the computer's internal buffers and been sent.
874 The second, |clear_terminal|, is called when we wish to cancel any
875 input that the user may have typed ahead (since we are about to
876 issue an unexpected error message). The third, |wake_up_terminal|,
877 is supposed to revive the terminal if the user has disabled it by
878 some instruction to the operating system. The following macros show how
879 these operations can be specified:
880 @^system dependencies@>
882 @d update_terminal (mp->flush_file)(mp,mp->term_out) /* empty the terminal output buffer */
883 @d clear_terminal do_nothing /* clear the terminal input buffer */
884 @d wake_up_terminal (mp->flush_file)(mp,mp->term_out)
885 /* cancel the user's cancellation of output */
887 @ We need a special routine to read the first line of \MP\ input from
888 the user's terminal. This line is different because it is read before we
889 have opened the transcript file; there is sort of a ``chicken and
890 egg'' problem here. If the user types `\.{input cmr10}' on the first
891 line, or if some macro invoked by that line does such an \.{input},
892 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
893 commands are performed during the first line of terminal input, the transcript
894 file will acquire its default name `\.{mpout.log}'. (The transcript file
895 will not contain error messages generated by the first line before the
896 first \.{input} command.)
898 The first line is even more special. It's nice to let the user start
899 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
900 such a case, \MP\ will operate as if the first line of input were
901 `\.{cmr10}', i.e., the first line will consist of the remainder of the
902 command line, after the part that invoked \MP.
904 @ Different systems have different ways to get started. But regardless of
905 what conventions are adopted, the routine that initializes the terminal
906 should satisfy the following specifications:
908 \yskip\textindent{1)}It should open file |term_in| for input from the
909 terminal. (The file |term_out| will already be open for output to the
912 \textindent{2)}If the user has given a command line, this line should be
913 considered the first line of terminal input. Otherwise the
914 user should be prompted with `\.{**}', and the first line of input
915 should be whatever is typed in response.
917 \textindent{3)}The first line of input, which might or might not be a
918 command line, should appear in locations |first| to |last-1| of the
921 \textindent{4)}The global variable |loc| should be set so that the
922 character to be read next by \MP\ is in |buffer[loc]|. This
923 character should not be blank, and we should have |loc<last|.
925 \yskip\noindent(It may be necessary to prompt the user several times
926 before a non-blank line comes in. The prompt is `\.{**}' instead of the
927 later `\.*' because the meaning is slightly different: `\.{input}' need
928 not be typed immediately after~`\.{**}'.)
930 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
932 @ The following program does the required initialization
933 without retrieving a possible command line.
934 It should be clear how to modify this routine to deal with command lines,
935 if the system permits them.
936 @^system dependencies@>
939 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
946 if (!mp->noninteractive) {
947 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
950 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
951 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
952 @.End of file on the terminal@>
956 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
958 if ( loc<(int)mp->last ) {
959 return true; /* return unless the line was all blank */
961 if (!mp->noninteractive) {
962 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
968 boolean mp_init_terminal (MP mp) ;
971 @* \[4] String handling.
972 Symbolic token names and diagnostic messages are variable-length strings
973 of eight-bit characters. Many strings \MP\ uses are simply literals
974 in the compiled source, like the error messages and the names of the
975 internal parameters. Other strings are used or defined from the \MP\ input
976 language, and these have to be interned.
978 \MP\ uses strings more extensively than \MF\ does, but the necessary
979 operations can still be handled with a fairly simple data structure.
980 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
981 of the strings, and the array |str_start| contains indices of the starting
982 points of each string. Strings are referred to by integer numbers, so that
983 string number |s| comprises the characters |str_pool[j]| for
984 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
985 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
986 location. The first string number not currently in use is |str_ptr|
987 and |next_str[str_ptr]| begins a list of free string numbers. String
988 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
989 string currently being constructed.
991 String numbers 0 to 255 are reserved for strings that correspond to single
992 ASCII characters. This is in accordance with the conventions of \.{WEB},
994 which converts single-character strings into the ASCII code number of the
995 single character involved, while it converts other strings into integers
996 and builds a string pool file. Thus, when the string constant \.{"."} appears
997 in the program below, \.{WEB} converts it into the integer 46, which is the
998 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
999 into some integer greater than~255. String number 46 will presumably be the
1000 single character `\..'\thinspace; but some ASCII codes have no standard visible
1001 representation, and \MP\ may need to be able to print an arbitrary
1002 ASCII character, so the first 256 strings are used to specify exactly what
1003 should be printed for each of the 256 possibilities.
1006 typedef int pool_pointer; /* for variables that point into |str_pool| */
1007 typedef int str_number; /* for variables that point into |str_start| */
1010 ASCII_code *str_pool; /* the characters */
1011 pool_pointer *str_start; /* the starting pointers */
1012 str_number *next_str; /* for linking strings in order */
1013 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1014 str_number str_ptr; /* number of the current string being created */
1015 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1016 str_number init_str_use; /* the initial number of strings in use */
1017 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1018 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1020 @ @<Allocate or initialize ...@>=
1021 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1022 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1023 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1025 @ @<Dealloc variables@>=
1026 xfree(mp->str_pool);
1027 xfree(mp->str_start);
1028 xfree(mp->next_str);
1030 @ Most printing is done from |char *|s, but sometimes not. Here are
1031 functions that convert an internal string into a |char *| for use
1032 by the printing routines, and vice versa.
1034 @d str(A) mp_str(mp,A)
1035 @d rts(A) mp_rts(mp,A)
1038 int mp_xstrcmp (const char *a, const char *b);
1039 char * mp_str (MP mp, str_number s);
1042 str_number mp_rts (MP mp, const char *s);
1043 str_number mp_make_string (MP mp);
1045 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1046 very good: it does not handle nesting over more than one level.
1049 int mp_xstrcmp (const char *a, const char *b) {
1050 if (a==NULL && b==NULL)
1060 char * mp_str (MP mp, str_number ss) {
1063 if (ss==mp->str_ptr) {
1067 s = xmalloc(len+1,sizeof(char));
1068 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1073 str_number mp_rts (MP mp, const char *s) {
1074 int r; /* the new string */
1075 int old; /* a possible string in progress */
1079 } else if (strlen(s)==1) {
1083 str_room((integer)strlen(s));
1084 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1085 old = mp_make_string(mp);
1090 r = mp_make_string(mp);
1092 str_room(length(old));
1093 while (i<length(old)) {
1094 append_char((mp->str_start[old]+i));
1096 mp_flush_string(mp,old);
1102 @ Except for |strs_used_up|, the following string statistics are only
1103 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1107 integer strs_used_up; /* strings in use or unused but not reclaimed */
1108 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1109 integer strs_in_use; /* total number of strings actually in use */
1110 integer max_pl_used; /* maximum |pool_in_use| so far */
1111 integer max_strs_used; /* maximum |strs_in_use| so far */
1113 @ Several of the elementary string operations are performed using \.{WEB}
1114 macros instead of functions, because many of the
1115 operations are done quite frequently and we want to avoid the
1116 overhead of procedure calls. For example, here is
1117 a simple macro that computes the length of a string.
1120 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1122 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1124 @ The length of the current string is called |cur_length|. If we decide that
1125 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1126 |cur_length| becomes zero.
1128 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1129 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1131 @ Strings are created by appending character codes to |str_pool|.
1132 The |append_char| macro, defined here, does not check to see if the
1133 value of |pool_ptr| has gotten too high; this test is supposed to be
1134 made before |append_char| is used.
1136 To test if there is room to append |l| more characters to |str_pool|,
1137 we shall write |str_room(l)|, which tries to make sure there is enough room
1138 by compacting the string pool if necessary. If this does not work,
1139 |do_compaction| aborts \MP\ and gives an apologetic error message.
1141 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1142 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1144 @d str_room(A) /* make sure that the pool hasn't overflowed */
1145 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1146 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1147 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1150 @ The following routine is similar to |str_room(1)| but it uses the
1151 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1152 string space is exhausted.
1154 @<Declare the procedure called |unit_str_room|@>=
1155 void mp_unit_str_room (MP mp);
1158 void mp_unit_str_room (MP mp) {
1159 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1160 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1163 @ \MP's string expressions are implemented in a brute-force way: Every
1164 new string or substring that is needed is simply copied into the string pool.
1165 Space is eventually reclaimed by a procedure called |do_compaction| with
1166 the aid of a simple system system of reference counts.
1167 @^reference counts@>
1169 The number of references to string number |s| will be |str_ref[s]|. The
1170 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1171 positive number of references; such strings will never be recycled. If
1172 a string is ever referred to more than 126 times, simultaneously, we
1173 put it in this category. Hence a single byte suffices to store each |str_ref|.
1175 @d max_str_ref 127 /* ``infinite'' number of references */
1176 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1182 @ @<Allocate or initialize ...@>=
1183 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1185 @ @<Dealloc variables@>=
1188 @ Here's what we do when a string reference disappears:
1190 @d delete_str_ref(A) {
1191 if ( mp->str_ref[(A)]<max_str_ref ) {
1192 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1193 else mp_flush_string(mp, (A));
1197 @<Declare the procedure called |flush_string|@>=
1198 void mp_flush_string (MP mp,str_number s) ;
1201 @ We can't flush the first set of static strings at all, so there
1202 is no point in trying
1205 void mp_flush_string (MP mp,str_number s) {
1207 mp->pool_in_use=mp->pool_in_use-length(s);
1208 decr(mp->strs_in_use);
1209 if ( mp->next_str[s]!=mp->str_ptr ) {
1213 decr(mp->strs_used_up);
1215 mp->pool_ptr=mp->str_start[mp->str_ptr];
1219 @ C literals cannot be simply added, they need to be set so they can't
1222 @d intern(A) mp_intern(mp,(A))
1225 str_number mp_intern (MP mp, const char *s) {
1228 mp->str_ref[r] = max_str_ref;
1233 str_number mp_intern (MP mp, const char *s);
1236 @ Once a sequence of characters has been appended to |str_pool|, it
1237 officially becomes a string when the function |make_string| is called.
1238 This function returns the identification number of the new string as its
1241 When getting the next unused string number from the linked list, we pretend
1243 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1244 are linked sequentially even though the |next_str| entries have not been
1245 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1246 |do_compaction| is responsible for making sure of this.
1249 @<Declare the procedure called |do_compaction|@>
1250 @<Declare the procedure called |unit_str_room|@>
1251 str_number mp_make_string (MP mp);
1254 str_number mp_make_string (MP mp) { /* current string enters the pool */
1255 str_number s; /* the new string */
1258 mp->str_ptr=mp->next_str[s];
1259 if ( mp->str_ptr>mp->max_str_ptr ) {
1260 if ( mp->str_ptr==mp->max_strings ) {
1262 mp_do_compaction(mp, 0);
1266 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1267 @:this can't happen s}{\quad \.s@>
1269 mp->max_str_ptr=mp->str_ptr;
1270 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1274 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1275 incr(mp->strs_used_up);
1276 incr(mp->strs_in_use);
1277 mp->pool_in_use=mp->pool_in_use+length(s);
1278 if ( mp->pool_in_use>mp->max_pl_used )
1279 mp->max_pl_used=mp->pool_in_use;
1280 if ( mp->strs_in_use>mp->max_strs_used )
1281 mp->max_strs_used=mp->strs_in_use;
1285 @ The most interesting string operation is string pool compaction. The idea
1286 is to recover unused space in the |str_pool| array by recopying the strings
1287 to close the gaps created when some strings become unused. All string
1288 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1289 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1290 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1291 with |needed=mp->pool_size| supresses all overflow tests.
1293 The compaction process starts with |last_fixed_str| because all lower numbered
1294 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1297 str_number last_fixed_str; /* last permanently allocated string */
1298 str_number fixed_str_use; /* number of permanently allocated strings */
1300 @ @<Declare the procedure called |do_compaction|@>=
1301 void mp_do_compaction (MP mp, pool_pointer needed) ;
1304 void mp_do_compaction (MP mp, pool_pointer needed) {
1305 str_number str_use; /* a count of strings in use */
1306 str_number r,s,t; /* strings being manipulated */
1307 pool_pointer p,q; /* destination and source for copying string characters */
1308 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1309 r=mp->last_fixed_str;
1312 while ( s!=mp->str_ptr ) {
1313 while ( mp->str_ref[s]==0 ) {
1314 @<Advance |s| and add the old |s| to the list of free string numbers;
1315 then |break| if |s=str_ptr|@>;
1317 r=s; s=mp->next_str[s];
1319 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1320 after the end of the string@>;
1322 @<Move the current string back so that it starts at |p|@>;
1323 if ( needed<mp->pool_size ) {
1324 @<Make sure that there is room for another string with |needed| characters@>;
1326 @<Account for the compaction and make sure the statistics agree with the
1328 mp->strs_used_up=str_use;
1331 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1332 t=mp->next_str[mp->last_fixed_str];
1333 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1334 incr(mp->fixed_str_use);
1335 mp->last_fixed_str=t;
1338 str_use=mp->fixed_str_use
1340 @ Because of the way |flush_string| has been written, it should never be
1341 necessary to |break| here. The extra line of code seems worthwhile to
1342 preserve the generality of |do_compaction|.
1344 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1349 mp->next_str[t]=mp->next_str[mp->str_ptr];
1350 mp->next_str[mp->str_ptr]=t;
1351 if ( s==mp->str_ptr ) break;
1354 @ The string currently starts at |str_start[r]| and ends just before
1355 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1356 to locate the next string.
1358 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1361 while ( q<mp->str_start[s] ) {
1362 mp->str_pool[p]=mp->str_pool[q];
1366 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1367 we do this, anything between them should be moved.
1369 @ @<Move the current string back so that it starts at |p|@>=
1370 q=mp->str_start[mp->str_ptr];
1371 mp->str_start[mp->str_ptr]=p;
1372 while ( q<mp->pool_ptr ) {
1373 mp->str_pool[p]=mp->str_pool[q];
1378 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1380 @<Make sure that there is room for another string with |needed| char...@>=
1381 if ( str_use>=mp->max_strings-1 )
1382 mp_reallocate_strings (mp,str_use);
1383 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1384 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1385 mp->max_pool_ptr=mp->pool_ptr+needed;
1389 void mp_reallocate_strings (MP mp, str_number str_use) ;
1390 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1393 void mp_reallocate_strings (MP mp, str_number str_use) {
1394 while ( str_use>=mp->max_strings-1 ) {
1395 int l = mp->max_strings + (mp->max_strings>>2);
1396 XREALLOC (mp->str_ref, l, int);
1397 XREALLOC (mp->str_start, l, pool_pointer);
1398 XREALLOC (mp->next_str, l, str_number);
1399 mp->max_strings = l;
1402 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1403 while ( needed>mp->pool_size ) {
1404 int l = mp->pool_size + (mp->pool_size>>2);
1405 XREALLOC (mp->str_pool, l, ASCII_code);
1410 @ @<Account for the compaction and make sure the statistics agree with...@>=
1411 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1412 mp_confusion(mp, "string");
1413 @:this can't happen string}{\quad string@>
1414 incr(mp->pact_count);
1415 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1416 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1418 s=mp->str_ptr; t=str_use;
1419 while ( s<=mp->max_str_ptr ){
1420 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1421 incr(t); s=mp->next_str[s];
1423 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1426 @ A few more global variables are needed to keep track of statistics when
1427 |stat| $\ldots$ |tats| blocks are not commented out.
1430 integer pact_count; /* number of string pool compactions so far */
1431 integer pact_chars; /* total number of characters moved during compactions */
1432 integer pact_strs; /* total number of strings moved during compactions */
1434 @ @<Initialize compaction statistics@>=
1439 @ The following subroutine compares string |s| with another string of the
1440 same length that appears in |buffer| starting at position |k|;
1441 the result is |true| if and only if the strings are equal.
1444 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1445 /* test equality of strings */
1446 pool_pointer j; /* running index */
1448 while ( j<str_stop(s) ) {
1449 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1455 @ Here is a similar routine, but it compares two strings in the string pool,
1456 and it does not assume that they have the same length. If the first string
1457 is lexicographically greater than, less than, or equal to the second,
1458 the result is respectively positive, negative, or zero.
1461 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1462 /* test equality of strings */
1463 pool_pointer j,k; /* running indices */
1464 integer ls,lt; /* lengths */
1465 integer l; /* length remaining to test */
1466 ls=length(s); lt=length(t);
1467 if ( ls<=lt ) l=ls; else l=lt;
1468 j=mp->str_start[s]; k=mp->str_start[t];
1470 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1471 return (mp->str_pool[j]-mp->str_pool[k]);
1478 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1479 and |str_ptr| are computed by the \.{INIMP} program, based in part
1480 on the information that \.{WEB} has output while processing \MP.
1485 void mp_get_strings_started (MP mp) {
1486 /* initializes the string pool,
1487 but returns |false| if something goes wrong */
1488 int k; /* small indices or counters */
1489 str_number g; /* a new string */
1490 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1493 mp->pool_in_use=0; mp->strs_in_use=0;
1494 mp->max_pl_used=0; mp->max_strs_used=0;
1495 @<Initialize compaction statistics@>;
1497 @<Make the first 256 strings@>;
1498 g=mp_make_string(mp); /* string 256 == "" */
1499 mp->str_ref[g]=max_str_ref;
1500 mp->last_fixed_str=mp->str_ptr-1;
1501 mp->fixed_str_use=mp->str_ptr;
1506 void mp_get_strings_started (MP mp);
1508 @ The first 256 strings will consist of a single character only.
1510 @<Make the first 256...@>=
1511 for (k=0;k<=255;k++) {
1513 g=mp_make_string(mp);
1514 mp->str_ref[g]=max_str_ref;
1517 @ The first 128 strings will contain 95 standard ASCII characters, and the
1518 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1519 unless a system-dependent change is made here. Installations that have
1520 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1521 would like string 032 to be printed as the single character 032 instead
1522 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1523 even people with an extended character set will want to represent string
1524 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1525 to produce visible strings instead of tabs or line-feeds or carriage-returns
1526 or bell-rings or characters that are treated anomalously in text files.
1528 Unprintable characters of codes 128--255 are, similarly, rendered
1529 \.{\^\^80}--\.{\^\^ff}.
1531 The boolean expression defined here should be |true| unless \MP\ internal
1532 code number~|k| corresponds to a non-troublesome visible symbol in the
1533 local character set.
1534 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1535 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1537 @^character set dependencies@>
1538 @^system dependencies@>
1540 @<Character |k| cannot be printed@>=
1543 @* \[5] On-line and off-line printing.
1544 Messages that are sent to a user's terminal and to the transcript-log file
1545 are produced by several `|print|' procedures. These procedures will
1546 direct their output to a variety of places, based on the setting of
1547 the global variable |selector|, which has the following possible
1551 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1554 \hang |log_only|, prints only on the transcript file.
1556 \hang |term_only|, prints only on the terminal.
1558 \hang |no_print|, doesn't print at all. This is used only in rare cases
1559 before the transcript file is open.
1561 \hang |pseudo|, puts output into a cyclic buffer that is used
1562 by the |show_context| routine; when we get to that routine we shall discuss
1563 the reasoning behind this curious mode.
1565 \hang |new_string|, appends the output to the current string in the
1568 \hang |>=write_file| prints on one of the files used for the \&{write}
1569 @:write_}{\&{write} primitive@>
1573 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1574 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1575 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1576 relations are not used when |selector| could be |pseudo|, or |new_string|.
1577 We need not check for unprintable characters when |selector<pseudo|.
1579 Three additional global variables, |tally|, |term_offset| and |file_offset|
1580 record the number of characters that have been printed
1581 since they were most recently cleared to zero. We use |tally| to record
1582 the length of (possibly very long) stretches of printing; |term_offset|,
1583 and |file_offset|, on the other hand, keep track of how many
1584 characters have appeared so far on the current line that has been output
1585 to the terminal, the transcript file, or the \ps\ output file, respectively.
1587 @d new_string 0 /* printing is deflected to the string pool */
1588 @d pseudo 2 /* special |selector| setting for |show_context| */
1589 @d no_print 3 /* |selector| setting that makes data disappear */
1590 @d term_only 4 /* printing is destined for the terminal only */
1591 @d log_only 5 /* printing is destined for the transcript file only */
1592 @d term_and_log 6 /* normal |selector| setting */
1593 @d write_file 7 /* first write file selector */
1596 void * log_file; /* transcript of \MP\ session */
1597 void * ps_file; /* the generic font output goes here */
1598 unsigned int selector; /* where to print a message */
1599 unsigned char dig[23]; /* digits in a number being output */
1600 integer tally; /* the number of characters recently printed */
1601 unsigned int term_offset;
1602 /* the number of characters on the current terminal line */
1603 unsigned int file_offset;
1604 /* the number of characters on the current file line */
1605 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1606 integer trick_count; /* threshold for pseudoprinting, explained later */
1607 integer first_count; /* another variable for pseudoprinting */
1609 @ @<Allocate or initialize ...@>=
1610 memset(mp->dig,0,23);
1611 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1613 @ @<Dealloc variables@>=
1614 xfree(mp->trick_buf);
1616 @ @<Initialize the output routines@>=
1617 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1619 @ Macro abbreviations for output to the terminal and to the log file are
1620 defined here for convenience. Some systems need special conventions
1621 for terminal output, and it is possible to adhere to those conventions
1622 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1623 @^system dependencies@>
1625 @d do_fprintf(f,b) (mp->write_ascii_file)(mp,f,b)
1626 @d wterm(A) do_fprintf(mp->term_out,(A))
1627 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1628 @d wterm_cr do_fprintf(mp->term_out,"\n")
1629 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1630 @d wlog(A) do_fprintf(mp->log_file,(A))
1631 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1632 @d wlog_cr do_fprintf(mp->log_file, "\n")
1633 @d wlog_ln(A) { wlog_cr; do_fprintf(mp->log_file,(A)); }
1636 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1637 use an array |wr_file| that will be declared later.
1639 @d mp_print_text(A) mp_print_str(mp,text((A)))
1642 void mp_print_ln (MP mp);
1643 void mp_print_visible_char (MP mp, ASCII_code s);
1644 void mp_print_char (MP mp, ASCII_code k);
1645 void mp_print (MP mp, const char *s);
1646 void mp_print_str (MP mp, str_number s);
1647 void mp_print_nl (MP mp, const char *s);
1648 void mp_print_two (MP mp,scaled x, scaled y) ;
1649 void mp_print_scaled (MP mp,scaled s);
1651 @ @<Basic print...@>=
1652 void mp_print_ln (MP mp) { /* prints an end-of-line */
1653 switch (mp->selector) {
1656 mp->term_offset=0; mp->file_offset=0;
1659 wlog_cr; mp->file_offset=0;
1662 wterm_cr; mp->term_offset=0;
1669 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1671 } /* note that |tally| is not affected */
1673 @ The |print_visible_char| procedure sends one character to the desired
1674 destination, using the |xchr| array to map it into an external character
1675 compatible with |input_ln|. (It assumes that it is always called with
1676 a visible ASCII character.) All printing comes through |print_ln| or
1677 |print_char|, which ultimately calls |print_visible_char|, hence these
1678 routines are the ones that limit lines to at most |max_print_line| characters.
1679 But we must make an exception for the \ps\ output file since it is not safe
1680 to cut up lines arbitrarily in \ps.
1682 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1683 |do_compaction| and |do_compaction| can call the error routines. Actually,
1684 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1686 @<Basic printing...@>=
1687 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1688 switch (mp->selector) {
1690 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1691 incr(mp->term_offset); incr(mp->file_offset);
1692 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1693 wterm_cr; mp->term_offset=0;
1695 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1696 wlog_cr; mp->file_offset=0;
1700 wlog_chr(xchr(s)); incr(mp->file_offset);
1701 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1704 wterm_chr(xchr(s)); incr(mp->term_offset);
1705 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1710 if ( mp->tally<mp->trick_count )
1711 mp->trick_buf[mp->tally % mp->error_line]=s;
1714 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1715 mp_unit_str_room(mp);
1716 if ( mp->pool_ptr>=mp->pool_size )
1717 goto DONE; /* drop characters if string space is full */
1722 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1723 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1730 @ The |print_char| procedure sends one character to the desired destination.
1731 File names and string expressions might contain |ASCII_code| values that
1732 can't be printed using |print_visible_char|. These characters will be
1733 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1734 (This procedure assumes that it is safe to bypass all checks for unprintable
1735 characters when |selector| is in the range |0..max_write_files-1|.
1736 The user might want to write unprintable characters.
1738 @d print_lc_hex(A) do { l=(A);
1739 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1742 @<Basic printing...@>=
1743 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1744 int l; /* small index or counter */
1745 if ( mp->selector<pseudo || mp->selector>=write_file) {
1746 mp_print_visible_char(mp, k);
1747 } else if ( @<Character |k| cannot be printed@> ) {
1750 mp_print_visible_char(mp, k+0100);
1751 } else if ( k<0200 ) {
1752 mp_print_visible_char(mp, k-0100);
1754 print_lc_hex(k / 16);
1755 print_lc_hex(k % 16);
1758 mp_print_visible_char(mp, k);
1762 @ An entire string is output by calling |print|. Note that if we are outputting
1763 the single standard ASCII character \.c, we could call |print("c")|, since
1764 |"c"=99| is the number of a single-character string, as explained above. But
1765 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1766 routine when it knows that this is safe. (The present implementation
1767 assumes that it is always safe to print a visible ASCII character.)
1768 @^system dependencies@>
1771 void mp_do_print (MP mp, const char *ss, unsigned int len) { /* prints string |s| */
1774 mp_print_char(mp, ss[j]); incr(j);
1780 void mp_print (MP mp, const char *ss) {
1781 mp_do_print(mp, ss, strlen(ss));
1783 void mp_print_str (MP mp, str_number s) {
1784 pool_pointer j; /* current character code position */
1785 if ( (s<0)||(s>mp->max_str_ptr) ) {
1786 mp_do_print(mp,"???",3); /* this can't happen */
1790 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1794 @ Here is the very first thing that \MP\ prints: a headline that identifies
1795 the version number and base name. The |term_offset| variable is temporarily
1796 incorrect, but the discrepancy is not serious since we assume that the banner
1797 and mem identifier together will occupy at most |max_print_line|
1798 character positions.
1800 @<Initialize the output...@>=
1802 wterm (version_string);
1803 if (mp->mem_ident!=NULL)
1804 mp_print(mp,mp->mem_ident);
1808 @ The procedure |print_nl| is like |print|, but it makes sure that the
1809 string appears at the beginning of a new line.
1812 void mp_print_nl (MP mp, const char *s) { /* prints string |s| at beginning of line */
1813 switch(mp->selector) {
1815 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1818 if ( mp->file_offset>0 ) mp_print_ln(mp);
1821 if ( mp->term_offset>0 ) mp_print_ln(mp);
1827 } /* there are no other cases */
1831 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1834 void mp_print_the_digs (MP mp, eight_bits k) {
1835 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1837 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1841 @ The following procedure, which prints out the decimal representation of a
1842 given integer |n|, has been written carefully so that it works properly
1843 if |n=0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
1844 to negative arguments, since such operations are not implemented consistently
1848 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1849 integer m; /* used to negate |n| in possibly dangerous cases */
1850 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1852 mp_print_char(mp, '-');
1853 if ( n>-100000000 ) {
1856 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1860 mp->dig[0]=0; incr(n);
1865 mp->dig[k]=n % 10; n=n / 10; incr(k);
1867 mp_print_the_digs(mp, k);
1871 void mp_print_int (MP mp,integer n);
1873 @ \MP\ also makes use of a trivial procedure to print two digits. The
1874 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1877 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1879 mp_print_char(mp, '0'+(n / 10));
1880 mp_print_char(mp, '0'+(n % 10));
1885 void mp_print_dd (MP mp,integer n);
1887 @ Here is a procedure that asks the user to type a line of input,
1888 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1889 The input is placed into locations |first| through |last-1| of the
1890 |buffer| array, and echoed on the transcript file if appropriate.
1892 This procedure is never called when |interaction<mp_scroll_mode|.
1894 @d prompt_input(A) do {
1895 if (!mp->noninteractive) {
1896 wake_up_terminal; mp_print(mp, (A));
1899 } while (0) /* prints a string and gets a line of input */
1902 void mp_term_input (MP mp) { /* gets a line from the terminal */
1903 size_t k; /* index into |buffer| */
1904 update_terminal; /* Now the user sees the prompt for sure */
1905 if (!mp_input_ln(mp, mp->term_in )) {
1906 if (!mp->noninteractive) {
1907 mp_fatal_error(mp, "End of file on the terminal!");
1908 @.End of file on the terminal@>
1909 } else { /* we are done with this input chunk */
1910 longjmp(mp->jump_buf,1);
1913 if (!mp->noninteractive) {
1914 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1915 decr(mp->selector); /* prepare to echo the input */
1916 if ( mp->last!=mp->first ) {
1917 for (k=mp->first;k<=mp->last-1;k++) {
1918 mp_print_char(mp, mp->buffer[k]);
1922 mp->buffer[mp->last]='%';
1923 incr(mp->selector); /* restore previous status */
1927 @* \[6] Reporting errors.
1928 When something anomalous is detected, \MP\ typically does something like this:
1929 $$\vbox{\halign{#\hfil\cr
1930 |print_err("Something anomalous has been detected");|\cr
1931 |help3("This is the first line of my offer to help.")|\cr
1932 |("This is the second line. I'm trying to")|\cr
1933 |("explain the best way for you to proceed.");|\cr
1935 A two-line help message would be given using |help2|, etc.; these informal
1936 helps should use simple vocabulary that complements the words used in the
1937 official error message that was printed. (Outside the U.S.A., the help
1938 messages should preferably be translated into the local vernacular. Each
1939 line of help is at most 60 characters long, in the present implementation,
1940 so that |max_print_line| will not be exceeded.)
1942 The |print_err| procedure supplies a `\.!' before the official message,
1943 and makes sure that the terminal is awake if a stop is going to occur.
1944 The |error| procedure supplies a `\..' after the official message, then it
1945 shows the location of the error; and if |interaction=error_stop_mode|,
1946 it also enters into a dialog with the user, during which time the help
1947 message may be printed.
1948 @^system dependencies@>
1950 @ The global variable |interaction| has four settings, representing increasing
1951 amounts of user interaction:
1954 enum mp_interaction_mode {
1955 mp_unspecified_mode=0, /* extra value for command-line switch */
1956 mp_batch_mode, /* omits all stops and omits terminal output */
1957 mp_nonstop_mode, /* omits all stops */
1958 mp_scroll_mode, /* omits error stops */
1959 mp_error_stop_mode /* stops at every opportunity to interact */
1962 @ @<Option variables@>=
1963 int interaction; /* current level of interaction */
1964 int noninteractive; /* do we have a terminal? */
1966 @ Set it here so it can be overwritten by the commandline
1968 @<Allocate or initialize ...@>=
1969 mp->interaction=opt->interaction;
1970 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1971 mp->interaction=mp_error_stop_mode;
1972 if (mp->interaction<mp_unspecified_mode)
1973 mp->interaction=mp_batch_mode;
1974 mp->noninteractive=opt->noninteractive;
1978 @d print_err(A) mp_print_err(mp,(A))
1981 void mp_print_err(MP mp, const char * A);
1984 void mp_print_err(MP mp, const char * A) {
1985 if ( mp->interaction==mp_error_stop_mode )
1987 mp_print_nl(mp, "! ");
1993 @ \MP\ is careful not to call |error| when the print |selector| setting
1994 might be unusual. The only possible values of |selector| at the time of
1997 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1998 and |log_file| not yet open);
2000 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2002 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2004 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2006 @<Initialize the print |selector| based on |interaction|@>=
2007 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2009 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2010 routine is active when |error| is called; this ensures that |get_next|
2011 will never be called recursively.
2014 The global variable |history| records the worst level of error that
2015 has been detected. It has four possible values: |spotless|, |warning_issued|,
2016 |error_message_issued|, and |fatal_error_stop|.
2018 Another global variable, |error_count|, is increased by one when an
2019 |error| occurs without an interactive dialog, and it is reset to zero at
2020 the end of every statement. If |error_count| reaches 100, \MP\ decides
2021 that there is no point in continuing further.
2024 enum mp_history_states {
2025 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2026 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2027 mp_error_message_issued, /* |history| value when |error| has been called */
2028 mp_fatal_error_stop /* |history| value when termination was premature */
2032 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2033 int history; /* has the source input been clean so far? */
2034 int error_count; /* the number of scrolled errors since the last statement ended */
2036 @ The value of |history| is initially |fatal_error_stop|, but it will
2037 be changed to |spotless| if \MP\ survives the initialization process.
2039 @<Allocate or ...@>=
2040 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2042 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2043 error procedures near the beginning of the program. But the error procedures
2044 in turn use some other procedures, which need to be declared |forward|
2045 before we get to |error| itself.
2047 It is possible for |error| to be called recursively if some error arises
2048 when |get_next| is being used to delete a token, and/or if some fatal error
2049 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2051 is never more than two levels deep.
2054 void mp_get_next (MP mp);
2055 void mp_term_input (MP mp);
2056 void mp_show_context (MP mp);
2057 void mp_begin_file_reading (MP mp);
2058 void mp_open_log_file (MP mp);
2059 void mp_clear_for_error_prompt (MP mp);
2060 void mp_debug_help (MP mp);
2061 @<Declare the procedure called |flush_string|@>
2064 void mp_normalize_selector (MP mp);
2066 @ Individual lines of help are recorded in the array |help_line|, which
2067 contains entries in positions |0..(help_ptr-1)|. They should be printed
2068 in reverse order, i.e., with |help_line[0]| appearing last.
2070 @d hlp1(A) mp->help_line[0]=(A); }
2071 @d hlp2(A) mp->help_line[1]=(A); hlp1
2072 @d hlp3(A) mp->help_line[2]=(A); hlp2
2073 @d hlp4(A) mp->help_line[3]=(A); hlp3
2074 @d hlp5(A) mp->help_line[4]=(A); hlp4
2075 @d hlp6(A) mp->help_line[5]=(A); hlp5
2076 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2077 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2078 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2079 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2080 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2081 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2082 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2085 const char * help_line[6]; /* helps for the next |error| */
2086 unsigned int help_ptr; /* the number of help lines present */
2087 boolean use_err_help; /* should the |err_help| string be shown? */
2088 str_number err_help; /* a string set up by \&{errhelp} */
2089 str_number filename_template; /* a string set up by \&{filenametemplate} */
2091 @ @<Allocate or ...@>=
2092 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2094 @ The |jump_out| procedure just cuts across all active procedure levels and
2095 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2096 whole program. It is used when there is no recovery from a particular error.
2098 The program uses a |jump_buf| to handle this, this is initialized at three
2099 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2100 of |mp_run|. Those are the only library enty points.
2102 @^system dependencies@>
2107 @ @<Install and test the non-local jump buffer@>=
2108 if (setjmp(mp->jump_buf) != 0) { return mp->history; }
2110 @ @<Setup the non-local jump buffer in |mp_new|@>=
2111 if (setjmp(mp->jump_buf) != 0) return NULL;
2114 @ If the array of internals is still |NULL| when |jump_out| is called, a
2115 crash occured during initialization, and it is not safe to run the normal
2119 void mp_jump_out (MP mp) {
2120 if(mp->internal!=NULL)
2121 mp_close_files_and_terminate(mp);
2122 longjmp(mp->jump_buf,1);
2125 @ Here now is the general |error| routine.
2128 void mp_error (MP mp) { /* completes the job of error reporting */
2129 ASCII_code c; /* what the user types */
2130 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2131 pool_pointer j; /* character position being printed */
2132 if ( mp->history<mp_error_message_issued )
2133 mp->history=mp_error_message_issued;
2134 mp_print_char(mp, '.'); mp_show_context(mp);
2135 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2136 @<Get user's advice and |return|@>;
2138 incr(mp->error_count);
2139 if ( mp->error_count==100 ) {
2140 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2141 @.That makes 100 errors...@>
2142 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2144 @<Put help message on the transcript file@>;
2146 void mp_warn (MP mp, const char *msg) {
2147 int saved_selector = mp->selector;
2148 mp_normalize_selector(mp);
2149 mp_print_nl(mp,"Warning: ");
2152 mp->selector = saved_selector;
2155 @ @<Exported function ...@>=
2156 void mp_error (MP mp);
2157 void mp_warn (MP mp, const char *msg);
2160 @ @<Get user's advice...@>=
2163 mp_clear_for_error_prompt(mp); prompt_input("? ");
2165 if ( mp->last==mp->first ) return;
2166 c=mp->buffer[mp->first];
2167 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2168 @<Interpret code |c| and |return| if done@>;
2171 @ It is desirable to provide an `\.E' option here that gives the user
2172 an easy way to return from \MP\ to the system editor, with the offending
2173 line ready to be edited. But such an extension requires some system
2174 wizardry, so the present implementation simply types out the name of the
2176 edited and the relevant line number.
2177 @^system dependencies@>
2180 typedef void (*mp_run_editor_command)(MP, char *, int);
2182 @ @<Option variables@>=
2183 mp_run_editor_command run_editor;
2185 @ @<Allocate or initialize ...@>=
2186 set_callback_option(run_editor);
2189 void mp_run_editor (MP mp, char *fname, int fline);
2191 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2192 mp_print_nl(mp, "You want to edit file ");
2193 @.You want to edit file x@>
2194 mp_print(mp, fname);
2195 mp_print(mp, " at line ");
2196 mp_print_int(mp, fline);
2197 mp->interaction=mp_scroll_mode;
2202 There is a secret `\.D' option available when the debugging routines haven't
2206 @<Interpret code |c| and |return| if done@>=
2208 case '0': case '1': case '2': case '3': case '4':
2209 case '5': case '6': case '7': case '8': case '9':
2210 if ( mp->deletions_allowed ) {
2211 @<Delete |c-"0"| tokens and |continue|@>;
2216 mp_debug_help(mp); continue;
2220 if ( mp->file_ptr>0 ){
2221 (mp->run_editor)(mp,
2222 str(mp->input_stack[mp->file_ptr].name_field),
2227 @<Print the help information and |continue|@>;
2230 @<Introduce new material from the terminal and |return|@>;
2232 case 'Q': case 'R': case 'S':
2233 @<Change the interaction level and |return|@>;
2236 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2241 @<Print the menu of available options@>
2243 @ @<Print the menu...@>=
2245 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2246 @.Type <return> to proceed...@>
2247 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2248 mp_print_nl(mp, "I to insert something, ");
2249 if ( mp->file_ptr>0 )
2250 mp_print(mp, "E to edit your file,");
2251 if ( mp->deletions_allowed )
2252 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2253 mp_print_nl(mp, "H for help, X to quit.");
2256 @ Here the author of \MP\ apologizes for making use of the numerical
2257 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2258 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2259 @^Knuth, Donald Ervin@>
2261 @<Change the interaction...@>=
2263 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2264 mp_print(mp, "OK, entering ");
2266 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2267 case 'R': mp_print(mp, "nonstopmode"); break;
2268 case 'S': mp_print(mp, "scrollmode"); break;
2269 } /* there are no other cases */
2270 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2273 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2274 contain the material inserted by the user; otherwise another prompt will
2275 be given. In order to understand this part of the program fully, you need
2276 to be familiar with \MP's input stacks.
2278 @<Introduce new material...@>=
2280 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2281 if ( mp->last>mp->first+1 ) {
2282 loc=mp->first+1; mp->buffer[mp->first]=' ';
2284 prompt_input("insert>"); loc=mp->first;
2287 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2290 @ We allow deletion of up to 99 tokens at a time.
2292 @<Delete |c-"0"| tokens...@>=
2294 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2295 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2296 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2300 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2301 @<Decrease the string reference count, if the current token is a string@>;
2304 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2305 help2("I have just deleted some text, as you asked.")
2306 ("You can now delete more, or insert, or whatever.");
2307 mp_show_context(mp);
2311 @ @<Print the help info...@>=
2313 if ( mp->use_err_help ) {
2314 @<Print the string |err_help|, possibly on several lines@>;
2315 mp->use_err_help=false;
2317 if ( mp->help_ptr==0 ) {
2318 help2("Sorry, I don't know how to help in this situation.")
2319 ("Maybe you should try asking a human?");
2322 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2323 } while (mp->help_ptr!=0);
2325 help4("Sorry, I already gave what help I could...")
2326 ("Maybe you should try asking a human?")
2327 ("An error might have occurred before I noticed any problems.")
2328 ("``If all else fails, read the instructions.''");
2332 @ @<Print the string |err_help|, possibly on several lines@>=
2333 j=mp->str_start[mp->err_help];
2334 while ( j<str_stop(mp->err_help) ) {
2335 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2336 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2337 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2338 else { incr(j); mp_print_char(mp, '%'); };
2342 @ @<Put help message on the transcript file@>=
2343 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2344 if ( mp->use_err_help ) {
2345 mp_print_nl(mp, "");
2346 @<Print the string |err_help|, possibly on several lines@>;
2348 while ( mp->help_ptr>0 ){
2349 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2353 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2356 @ In anomalous cases, the print selector might be in an unknown state;
2357 the following subroutine is called to fix things just enough to keep
2358 running a bit longer.
2361 void mp_normalize_selector (MP mp) {
2362 if ( mp->log_opened ) mp->selector=term_and_log;
2363 else mp->selector=term_only;
2364 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2365 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2368 @ The following procedure prints \MP's last words before dying.
2370 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2371 mp->interaction=mp_scroll_mode; /* no more interaction */
2372 if ( mp->log_opened ) mp_error(mp);
2373 /*| if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); |*/
2374 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2378 void mp_fatal_error (MP mp, const char *s) { /* prints |s|, and that's it */
2379 mp_normalize_selector(mp);
2380 print_err("Emergency stop"); help1(s); succumb;
2384 @ @<Exported function ...@>=
2385 void mp_fatal_error (MP mp, const char *s);
2388 @ Here is the most dreaded error message.
2391 void mp_overflow (MP mp, const char *s, integer n) { /* stop due to finiteness */
2392 mp_normalize_selector(mp);
2393 print_err("MetaPost capacity exceeded, sorry [");
2394 @.MetaPost capacity exceeded ...@>
2395 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2396 help2("If you really absolutely need more capacity,")
2397 ("you can ask a wizard to enlarge me.");
2401 @ @<Internal library declarations@>=
2402 void mp_overflow (MP mp, const char *s, integer n);
2404 @ The program might sometime run completely amok, at which point there is
2405 no choice but to stop. If no previous error has been detected, that's bad
2406 news; a message is printed that is really intended for the \MP\
2407 maintenance person instead of the user (unless the user has been
2408 particularly diabolical). The index entries for `this can't happen' may
2409 help to pinpoint the problem.
2412 @<Internal library ...@>=
2413 void mp_confusion (MP mp, const char *s);
2415 @ @<Error hand...@>=
2416 void mp_confusion (MP mp, const char *s) {
2417 /* consistency check violated; |s| tells where */
2418 mp_normalize_selector(mp);
2419 if ( mp->history<mp_error_message_issued ) {
2420 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2421 @.This can't happen@>
2422 help1("I'm broken. Please show this to someone who can fix can fix");
2424 print_err("I can\'t go on meeting you like this");
2425 @.I can't go on...@>
2426 help2("One of your faux pas seems to have wounded me deeply...")
2427 ("in fact, I'm barely conscious. Please fix it and try again.");
2432 @ Users occasionally want to interrupt \MP\ while it's running.
2433 If the runtime system allows this, one can implement
2434 a routine that sets the global variable |interrupt| to some nonzero value
2435 when such an interrupt is signaled. Otherwise there is probably at least
2436 a way to make |interrupt| nonzero using the C debugger.
2437 @^system dependencies@>
2440 @d check_interrupt { if ( mp->interrupt!=0 )
2441 mp_pause_for_instructions(mp); }
2444 integer interrupt; /* should \MP\ pause for instructions? */
2445 boolean OK_to_interrupt; /* should interrupts be observed? */
2446 integer run_state; /* are we processing input ?*/
2448 @ @<Allocate or ...@>=
2449 mp->interrupt=0; mp->OK_to_interrupt=true; mp->run_state=0;
2451 @ When an interrupt has been detected, the program goes into its
2452 highest interaction level and lets the user have the full flexibility of
2453 the |error| routine. \MP\ checks for interrupts only at times when it is
2457 void mp_pause_for_instructions (MP mp) {
2458 if ( mp->OK_to_interrupt ) {
2459 mp->interaction=mp_error_stop_mode;
2460 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2462 print_err("Interruption");
2465 ("Try to insert some instructions for me (e.g.,`I show x'),")
2466 ("unless you just want to quit by typing `X'.");
2467 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2472 @ Many of \MP's error messages state that a missing token has been
2473 inserted behind the scenes. We can save string space and program space
2474 by putting this common code into a subroutine.
2477 void mp_missing_err (MP mp, const char *s) {
2478 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2479 @.Missing...inserted@>
2482 @* \[7] Arithmetic with scaled numbers.
2483 The principal computations performed by \MP\ are done entirely in terms of
2484 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2485 program can be carried out in exactly the same way on a wide variety of
2486 computers, including some small ones.
2489 But C does not rigidly define the |/| operation in the case of negative
2490 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2491 computers and |-n| on others (is this true ?). There are two principal
2492 types of arithmetic: ``translation-preserving,'' in which the identity
2493 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2494 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2495 different results, although the differences should be negligible when the
2496 language is being used properly. The \TeX\ processor has been defined
2497 carefully so that both varieties of arithmetic will produce identical
2498 output, but it would be too inefficient to constrain \MP\ in a similar way.
2500 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2502 @ One of \MP's most common operations is the calculation of
2503 $\lfloor{a+b\over2}\rfloor$,
2504 the midpoint of two given integers |a| and~|b|. The most decent way to do
2505 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2506 to calculate `|(a+b)>>1|'.
2508 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2509 in this program. If \MP\ is being implemented with languages that permit
2510 binary shifting, the |half| macro should be changed to make this operation
2511 as efficient as possible. Since some systems have shift operators that can
2512 only be trusted to work on positive numbers, there is also a macro |halfp|
2513 that is used only when the quantity being halved is known to be positive
2516 @d half(A) ((A) / 2)
2517 @d halfp(A) ((A) >> 1)
2519 @ A single computation might use several subroutine calls, and it is
2520 desirable to avoid producing multiple error messages in case of arithmetic
2521 overflow. So the routines below set the global variable |arith_error| to |true|
2522 instead of reporting errors directly to the user.
2523 @^overflow in arithmetic@>
2526 boolean arith_error; /* has arithmetic overflow occurred recently? */
2528 @ @<Allocate or ...@>=
2529 mp->arith_error=false;
2531 @ At crucial points the program will say |check_arith|, to test if
2532 an arithmetic error has been detected.
2534 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2537 void mp_clear_arith (MP mp) {
2538 print_err("Arithmetic overflow");
2539 @.Arithmetic overflow@>
2540 help4("Uh, oh. A little while ago one of the quantities that I was")
2541 ("computing got too large, so I'm afraid your answers will be")
2542 ("somewhat askew. You'll probably have to adopt different")
2543 ("tactics next time. But I shall try to carry on anyway.");
2545 mp->arith_error=false;
2548 @ Addition is not always checked to make sure that it doesn't overflow,
2549 but in places where overflow isn't too unlikely the |slow_add| routine
2552 @c integer mp_slow_add (MP mp,integer x, integer y) {
2554 if ( y<=el_gordo-x ) {
2557 mp->arith_error=true;
2560 } else if ( -y<=el_gordo+x ) {
2563 mp->arith_error=true;
2568 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2569 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2570 positions from the right end of a binary computer word.
2572 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2573 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2574 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2575 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2576 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2577 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2580 typedef integer scaled; /* this type is used for scaled integers */
2581 typedef unsigned char small_number; /* this type is self-explanatory */
2583 @ The following function is used to create a scaled integer from a given decimal
2584 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2585 given in |dig[i]|, and the calculation produces a correctly rounded result.
2588 scaled mp_round_decimals (MP mp,small_number k) {
2589 /* converts a decimal fraction */
2590 integer a = 0; /* the accumulator */
2592 a=(a+mp->dig[k]*two) / 10;
2597 @ Conversely, here is a procedure analogous to |print_int|. If the output
2598 of this procedure is subsequently read by \MP\ and converted by the
2599 |round_decimals| routine above, it turns out that the original value will
2600 be reproduced exactly. A decimal point is printed only if the value is
2601 not an integer. If there is more than one way to print the result with
2602 the optimum number of digits following the decimal point, the closest
2603 possible value is given.
2605 The invariant relation in the \&{repeat} loop is that a sequence of
2606 decimal digits yet to be printed will yield the original number if and only if
2607 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2608 We can stop if and only if $f=0$ satisfies this condition; the loop will
2609 terminate before $s$ can possibly become zero.
2611 @<Basic printing...@>=
2612 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2613 scaled delta; /* amount of allowable inaccuracy */
2615 mp_print_char(mp, '-');
2616 negate(s); /* print the sign, if negative */
2618 mp_print_int(mp, s / unity); /* print the integer part */
2622 mp_print_char(mp, '.');
2625 s=s+0100000-(delta / 2); /* round the final digit */
2626 mp_print_char(mp, '0'+(s / unity));
2633 @ We often want to print two scaled quantities in parentheses,
2634 separated by a comma.
2636 @<Basic printing...@>=
2637 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2638 mp_print_char(mp, '(');
2639 mp_print_scaled(mp, x);
2640 mp_print_char(mp, ',');
2641 mp_print_scaled(mp, y);
2642 mp_print_char(mp, ')');
2645 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2646 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2647 arithmetic with 28~significant bits of precision. A |fraction| denotes
2648 a scaled integer whose binary point is assumed to be 28 bit positions
2651 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2652 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2653 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2654 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2655 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2658 typedef integer fraction; /* this type is used for scaled fractions */
2660 @ In fact, the two sorts of scaling discussed above aren't quite
2661 sufficient; \MP\ has yet another, used internally to keep track of angles
2662 in units of $2^{-20}$ degrees.
2664 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2665 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2666 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2667 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2670 typedef integer angle; /* this type is used for scaled angles */
2672 @ The |make_fraction| routine produces the |fraction| equivalent of
2673 |p/q|, given integers |p| and~|q|; it computes the integer
2674 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2675 positive. If |p| and |q| are both of the same scaled type |t|,
2676 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2677 and it's also possible to use the subroutine ``backwards,'' using
2678 the relation |make_fraction(t,fraction)=t| between scaled types.
2680 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2681 sets |arith_error:=true|. Most of \MP's internal computations have
2682 been designed to avoid this sort of error.
2684 If this subroutine were programmed in assembly language on a typical
2685 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2686 double-precision product can often be input to a fixed-point division
2687 instruction. But when we are restricted to int-eger arithmetic it
2688 is necessary either to resort to multiple-precision maneuvering
2689 or to use a simple but slow iteration. The multiple-precision technique
2690 would be about three times faster than the code adopted here, but it
2691 would be comparatively long and tricky, involving about sixteen
2692 additional multiplications and divisions.
2694 This operation is part of \MP's ``inner loop''; indeed, it will
2695 consume nearly 10\pct! of the running time (exclusive of input and output)
2696 if the code below is left unchanged. A machine-dependent recoding
2697 will therefore make \MP\ run faster. The present implementation
2698 is highly portable, but slow; it avoids multiplication and division
2699 except in the initial stage. System wizards should be careful to
2700 replace it with a routine that is guaranteed to produce identical
2701 results in all cases.
2702 @^system dependencies@>
2704 As noted below, a few more routines should also be replaced by machine-dependent
2705 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2706 such changes aren't advisable; simplicity and robustness are
2707 preferable to trickery, unless the cost is too high.
2711 fraction mp_make_fraction (MP mp,integer p, integer q);
2712 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2714 @ If FIXPT is not defined, we need these preprocessor values
2716 @d ELGORDO 0x7fffffff
2717 @d TWEXP31 2147483648.0
2718 @d TWEXP28 268435456.0
2720 @d TWEXP_16 (1.0/65536.0)
2721 @d TWEXP_28 (1.0/268435456.0)
2725 fraction mp_make_fraction (MP mp,integer p, integer q) {
2727 integer f; /* the fraction bits, with a leading 1 bit */
2728 integer n; /* the integer part of $\vert p/q\vert$ */
2729 integer be_careful; /* disables certain compiler optimizations */
2730 boolean negative = false; /* should the result be negated? */
2732 negate(p); negative=true;
2736 if ( q==0 ) mp_confusion(mp, '/');
2738 @:this can't happen /}{\quad \./@>
2739 negate(q); negative = ! negative;
2743 mp->arith_error=true;
2744 return ( negative ? -el_gordo : el_gordo);
2746 n=(n-1)*fraction_one;
2747 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2748 return (negative ? (-(f+n)) : (f+n));
2754 if (q==0) mp_confusion(mp,'/');
2756 d = TWEXP28 * (double)p /(double)q;
2759 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2761 if (d==i && ( ((q>0 ? -q : q)&077777)
2762 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2765 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2767 if (d==i && ( ((q>0 ? q : -q)&077777)
2768 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2774 @ The |repeat| loop here preserves the following invariant relations
2775 between |f|, |p|, and~|q|:
2776 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2777 $p_0$ is the original value of~$p$.
2779 Notice that the computation specifies
2780 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2781 Let us hope that optimizing compilers do not miss this point; a
2782 special variable |be_careful| is used to emphasize the necessary
2783 order of computation. Optimizing compilers should keep |be_careful|
2784 in a register, not store it in memory.
2787 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2791 be_careful=p-q; p=be_careful+p;
2797 } while (f<fraction_one);
2799 if ( be_careful+p>=0 ) incr(f);
2802 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2803 given integer~|q| by a fraction~|f|. When the operands are positive, it
2804 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2807 This routine is even more ``inner loopy'' than |make_fraction|;
2808 the present implementation consumes almost 20\pct! of \MP's computation
2809 time during typical jobs, so a machine-language substitute is advisable.
2810 @^inner loop@> @^system dependencies@>
2813 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2817 integer mp_take_fraction (MP mp,integer q, fraction f) {
2818 integer p; /* the fraction so far */
2819 boolean negative; /* should the result be negated? */
2820 integer n; /* additional multiple of $q$ */
2821 integer be_careful; /* disables certain compiler optimizations */
2822 @<Reduce to the case that |f>=0| and |q>=0|@>;
2823 if ( f<fraction_one ) {
2826 n=f / fraction_one; f=f % fraction_one;
2827 if ( q<=el_gordo / n ) {
2830 mp->arith_error=true; n=el_gordo;
2834 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2835 be_careful=n-el_gordo;
2836 if ( be_careful+p>0 ){
2837 mp->arith_error=true; n=el_gordo-p;
2844 integer mp_take_fraction (MP mp,integer p, fraction q) {
2847 d = (double)p * (double)q * TWEXP_28;
2851 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2852 mp->arith_error = true;
2856 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2860 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2861 mp->arith_error = true;
2865 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2871 @ @<Reduce to the case that |f>=0| and |q>=0|@>=
2875 negate( f); negative=true;
2878 negate(q); negative=! negative;
2881 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2882 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2883 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2886 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2887 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2888 if ( q<fraction_four ) {
2890 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2895 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2901 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2902 analogous to |take_fraction| but with a different scaling.
2903 Given positive operands, |take_scaled|
2904 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2906 Once again it is a good idea to use a machine-language replacement if
2907 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2908 when the Computer Modern fonts are being generated.
2913 integer mp_take_scaled (MP mp,integer q, scaled f) {
2914 integer p; /* the fraction so far */
2915 boolean negative; /* should the result be negated? */
2916 integer n; /* additional multiple of $q$ */
2917 integer be_careful; /* disables certain compiler optimizations */
2918 @<Reduce to the case that |f>=0| and |q>=0|@>;
2922 n=f / unity; f=f % unity;
2923 if ( q<=el_gordo / n ) {
2926 mp->arith_error=true; n=el_gordo;
2930 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2931 be_careful=n-el_gordo;
2932 if ( be_careful+p>0 ) {
2933 mp->arith_error=true; n=el_gordo-p;
2935 return ( negative ?(-(n+p)) :(n+p));
2937 integer mp_take_scaled (MP mp,integer p, scaled q) {
2940 d = (double)p * (double)q * TWEXP_16;
2944 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2945 mp->arith_error = true;
2949 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2953 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2954 mp->arith_error = true;
2958 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2964 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2965 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2967 if ( q<fraction_four ) {
2969 p = (odd(f) ? halfp(p+q) : halfp(p));
2974 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2979 @ For completeness, there's also |make_scaled|, which computes a
2980 quotient as a |scaled| number instead of as a |fraction|.
2981 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2982 operands are positive. \ (This procedure is not used especially often,
2983 so it is not part of \MP's inner loop.)
2985 @<Internal library ...@>=
2986 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2989 scaled mp_make_scaled (MP mp,integer p, integer q) {
2991 integer f; /* the fraction bits, with a leading 1 bit */
2992 integer n; /* the integer part of $\vert p/q\vert$ */
2993 boolean negative; /* should the result be negated? */
2994 integer be_careful; /* disables certain compiler optimizations */
2995 if ( p>=0 ) negative=false;
2996 else { negate(p); negative=true; };
2999 if ( q==0 ) mp_confusion(mp, "/");
3000 @:this can't happen /}{\quad \./@>
3002 negate(q); negative=! negative;
3006 mp->arith_error=true;
3007 return (negative ? (-el_gordo) : el_gordo);
3010 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3011 return ( negative ? (-(f+n)) :(f+n));
3017 if (q==0) mp_confusion(mp,"/");
3019 d = TWEXP16 * (double)p /(double)q;
3022 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3024 if (d==i && ( ((q>0 ? -q : q)&077777)
3025 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3028 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3030 if (d==i && ( ((q>0 ? q : -q)&077777)
3031 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3037 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3040 be_careful=p-q; p=be_careful+p;
3041 if ( p>=0 ) f=f+f+1;
3042 else { f+=f; p=p+q; };
3045 if ( be_careful+p>=0 ) incr(f)
3047 @ Here is a typical example of how the routines above can be used.
3048 It computes the function
3049 $${1\over3\tau}f(\theta,\phi)=
3050 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3051 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3052 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3053 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3054 fudge factor for placing the first control point of a curve that starts
3055 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3056 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3058 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3059 (It's a sum of eight terms whose absolute values can be bounded using
3060 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3061 is positive; and since the tension $\tau$ is constrained to be at least
3062 $3\over4$, the numerator is less than $16\over3$. The denominator is
3063 nonnegative and at most~6. Hence the fixed-point calculations below
3064 are guaranteed to stay within the bounds of a 32-bit computer word.
3066 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3067 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3068 $\sin\phi$, and $\cos\phi$, respectively.
3071 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3072 fraction cf, scaled t) {
3073 integer acc,num,denom; /* registers for intermediate calculations */
3074 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3075 acc=mp_take_fraction(mp, acc,ct-cf);
3076 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3077 /* $2^{28}\sqrt2\approx379625062.497$ */
3078 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3079 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3080 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3081 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3082 /* |make_scaled(fraction,scaled)=fraction| */
3083 if ( num / 4>=denom )
3084 return fraction_four;
3086 return mp_make_fraction(mp, num, denom);
3089 @ The following somewhat different subroutine tests rigorously if $ab$ is
3090 greater than, equal to, or less than~$cd$,
3091 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3092 The result is $+1$, 0, or~$-1$ in the three respective cases.
3094 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3097 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3098 integer q,r; /* temporary registers */
3099 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3101 q = a / d; r = c / b;
3103 return ( q>r ? 1 : -1);
3104 q = a % d; r = c % b;
3107 if ( q==0 ) return -1;
3109 } /* now |a>d>0| and |c>b>0| */
3112 @ @<Reduce to the case that |a...@>=
3113 if ( a<0 ) { negate(a); negate(b); };
3114 if ( c<0 ) { negate(c); negate(d); };
3117 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3121 return ( a==0 ? 0 : -1);
3122 q=a; a=c; c=q; q=-b; b=-d; d=q;
3123 } else if ( b<=0 ) {
3124 if ( b<0 ) if ( a>0 ) return -1;
3125 return (c==0 ? 0 : -1);
3128 @ We conclude this set of elementary routines with some simple rounding
3129 and truncation operations.
3131 @<Internal library declarations@>=
3132 #define mp_floor_scaled(M,i) ((i)&(-65536))
3133 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3134 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3137 @* \[8] Algebraic and transcendental functions.
3138 \MP\ computes all of the necessary special functions from scratch, without
3139 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3141 @ To get the square root of a |scaled| number |x|, we want to calculate
3142 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3143 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3144 determines $s$ by an iterative method that maintains the invariant
3145 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3146 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3147 might, however, be zero at the start of the first iteration.
3150 scaled mp_square_rt (MP mp,scaled x) ;
3153 scaled mp_square_rt (MP mp,scaled x) {
3154 small_number k; /* iteration control counter */
3155 integer y,q; /* registers for intermediate calculations */
3157 @<Handle square root of zero or negative argument@>;
3160 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3163 if ( x<fraction_four ) y=0;
3164 else { x=x-fraction_four; y=1; };
3166 @<Decrease |k| by 1, maintaining the invariant
3167 relations between |x|, |y|, and~|q|@>;
3173 @ @<Handle square root of zero...@>=
3176 print_err("Square root of ");
3177 @.Square root...replaced by 0@>
3178 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3179 help2("Since I don't take square roots of negative numbers,")
3180 ("I'm zeroing this one. Proceed, with fingers crossed.");
3186 @ @<Decrease |k| by 1, maintaining...@>=
3188 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3189 x=x-fraction_four; incr(y);
3191 x+=x; y=y+y-q; q+=q;
3192 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3193 if ( y>q ){ y=y-q; q=q+2; }
3194 else if ( y<=0 ) { q=q-2; y=y+q; };
3197 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3198 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3199 @^Moler, Cleve Barry@>
3200 @^Morrison, Donald Ross@>
3201 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3202 in such a way that their Pythagorean sum remains invariant, while the
3203 smaller argument decreases.
3205 @<Internal library ...@>=
3206 integer mp_pyth_add (MP mp,integer a, integer b);
3210 integer mp_pyth_add (MP mp,integer a, integer b) {
3211 fraction r; /* register used to transform |a| and |b| */
3212 boolean big; /* is the result dangerously near $2^{31}$? */
3214 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3216 if ( a<fraction_two ) {
3219 a=a / 4; b=b / 4; big=true;
3220 }; /* we reduced the precision to avoid arithmetic overflow */
3221 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3223 if ( a<fraction_two ) {
3226 mp->arith_error=true; a=el_gordo;
3233 @ The key idea here is to reflect the vector $(a,b)$ about the
3234 line through $(a,b/2)$.
3236 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3238 r=mp_make_fraction(mp, b,a);
3239 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3241 r=mp_make_fraction(mp, r,fraction_four+r);
3242 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3246 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3247 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3250 integer mp_pyth_sub (MP mp,integer a, integer b) {
3251 fraction r; /* register used to transform |a| and |b| */
3252 boolean big; /* is the input dangerously near $2^{31}$? */
3255 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3257 if ( a<fraction_four ) {
3260 a=halfp(a); b=halfp(b); big=true;
3262 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3263 if ( big ) double(a);
3268 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3270 r=mp_make_fraction(mp, b,a);
3271 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3273 r=mp_make_fraction(mp, r,fraction_four-r);
3274 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3277 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3280 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3281 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3282 mp_print(mp, " has been replaced by 0");
3284 help2("Since I don't take square roots of negative numbers,")
3285 ("I'm zeroing this one. Proceed, with fingers crossed.");
3291 @ The subroutines for logarithm and exponential involve two tables.
3292 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3293 a bit more calculation, which the author claims to have done correctly:
3294 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3295 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3298 @d two_to_the(A) (1<<(A))
3301 static const integer spec_log[29] = { 0, /* special logarithms */
3302 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3303 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3304 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3306 @ @<Local variables for initialization@>=
3307 integer k; /* all-purpose loop index */
3310 @ Here is the routine that calculates $2^8$ times the natural logarithm
3311 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3312 when |x| is a given positive integer.
3314 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3315 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3316 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3317 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3318 during the calculation, and sixteen auxiliary bits to extend |y| are
3319 kept in~|z| during the initial argument reduction. (We add
3320 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3321 not become negative; also, the actual amount subtracted from~|y| is~96,
3322 not~100, because we want to add~4 for rounding before the final division by~8.)
3325 scaled mp_m_log (MP mp,scaled x) {
3326 integer y,z; /* auxiliary registers */
3327 integer k; /* iteration counter */
3329 @<Handle non-positive logarithm@>;
3331 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3332 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3333 while ( x<fraction_four ) {
3334 double(x); y-=93032639; z-=48782;
3335 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3336 y=y+(z / unity); k=2;
3337 while ( x>fraction_four+4 ) {
3338 @<Increase |k| until |x| can be multiplied by a
3339 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3345 @ @<Increase |k| until |x| can...@>=
3347 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3348 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3349 y+=spec_log[k]; x-=z;
3352 @ @<Handle non-positive logarithm@>=
3354 print_err("Logarithm of ");
3355 @.Logarithm...replaced by 0@>
3356 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3357 help2("Since I don't take logs of non-positive numbers,")
3358 ("I'm zeroing this one. Proceed, with fingers crossed.");
3363 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3364 when |x| is |scaled|. The result is an integer approximation to
3365 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3368 scaled mp_m_exp (MP mp,scaled x) {
3369 small_number k; /* loop control index */
3370 integer y,z; /* auxiliary registers */
3371 if ( x>174436200 ) {
3372 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3373 mp->arith_error=true;
3375 } else if ( x<-197694359 ) {
3376 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3380 z=-8*x; y=04000000; /* $y=2^{20}$ */
3382 if ( x<=127919879 ) {
3384 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3386 z=8*(174436200-x); /* |z| is always nonnegative */
3390 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3392 return ((y+8) / 16);
3398 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3399 to multiplying |y| by $1-2^{-k}$.
3401 A subtle point (which had to be checked) was that if $x=127919879$, the
3402 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3403 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3404 and by~16 when |k=27|.
3406 @<Multiply |y| by...@>=
3409 while ( z>=spec_log[k] ) {
3411 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3416 @ The trigonometric subroutines use an auxiliary table such that
3417 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3418 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3421 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3422 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3423 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3425 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3426 returns the |angle| whose tangent points in the direction $(x,y)$.
3427 This subroutine first determines the correct octant, then solves the
3428 problem for |0<=y<=x|, then converts the result appropriately to
3429 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3430 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3431 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3433 The octants are represented in a ``Gray code,'' since that turns out
3434 to be computationally simplest.
3440 @d second_octant (first_octant+switch_x_and_y)
3441 @d third_octant (first_octant+switch_x_and_y+negate_x)
3442 @d fourth_octant (first_octant+negate_x)
3443 @d fifth_octant (first_octant+negate_x+negate_y)
3444 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3445 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3446 @d eighth_octant (first_octant+negate_y)
3449 angle mp_n_arg (MP mp,integer x, integer y) {
3450 angle z; /* auxiliary register */
3451 integer t; /* temporary storage */
3452 small_number k; /* loop counter */
3453 int octant; /* octant code */
3455 octant=first_octant;
3457 negate(x); octant=first_octant+negate_x;
3460 negate(y); octant=octant+negate_y;
3463 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3466 @<Handle undefined arg@>;
3468 @<Set variable |z| to the arg of $(x,y)$@>;
3469 @<Return an appropriate answer based on |z| and |octant|@>;
3473 @ @<Handle undefined arg@>=
3475 print_err("angle(0,0) is taken as zero");
3476 @.angle(0,0)...zero@>
3477 help2("The `angle' between two identical points is undefined.")
3478 ("I'm zeroing this one. Proceed, with fingers crossed.");
3483 @ @<Return an appropriate answer...@>=
3485 case first_octant: return z;
3486 case second_octant: return (ninety_deg-z);
3487 case third_octant: return (ninety_deg+z);
3488 case fourth_octant: return (one_eighty_deg-z);
3489 case fifth_octant: return (z-one_eighty_deg);
3490 case sixth_octant: return (-z-ninety_deg);
3491 case seventh_octant: return (z-ninety_deg);
3492 case eighth_octant: return (-z);
3493 }; /* there are no other cases */
3496 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3497 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3500 @<Set variable |z| to the arg...@>=
3501 while ( x>=fraction_two ) {
3502 x=halfp(x); y=halfp(y);
3506 while ( x<fraction_one ) {
3509 @<Increase |z| to the arg of $(x,y)$@>;
3512 @ During the calculations of this section, variables |x| and~|y|
3513 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3514 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3515 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3516 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3517 coordinates whose angle has decreased by~$\phi$; in the special case
3518 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3519 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3520 @^Meggitt, John E.@>
3521 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3523 The initial value of |x| will be multiplied by at most
3524 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3525 there is no chance of integer overflow.
3527 @<Increase |z|...@>=
3532 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3537 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3540 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3541 and cosine of that angle. The results of this routine are
3542 stored in global integer variables |n_sin| and |n_cos|.
3545 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3547 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3548 the purpose of |n_sin_cos(z)| is to set
3549 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3550 for some rather large number~|r|. The maximum of |x| and |y|
3551 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3552 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3555 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3557 small_number k; /* loop control variable */
3558 int q; /* specifies the quadrant */
3559 fraction r; /* magnitude of |(x,y)| */
3560 integer x,y,t; /* temporary registers */
3561 while ( z<0 ) z=z+three_sixty_deg;
3562 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3563 q=z / forty_five_deg; z=z % forty_five_deg;
3564 x=fraction_one; y=x;
3565 if ( ! odd(q) ) z=forty_five_deg-z;
3566 @<Subtract angle |z| from |(x,y)|@>;
3567 @<Convert |(x,y)| to the octant determined by~|q|@>;
3568 r=mp_pyth_add(mp, x,y);
3569 mp->n_cos=mp_make_fraction(mp, x,r);
3570 mp->n_sin=mp_make_fraction(mp, y,r);
3573 @ In this case the octants are numbered sequentially.
3575 @<Convert |(x,...@>=
3578 case 1: t=x; x=y; y=t; break;
3579 case 2: t=x; x=-y; y=t; break;
3580 case 3: negate(x); break;
3581 case 4: negate(x); negate(y); break;
3582 case 5: t=x; x=-y; y=-t; break;
3583 case 6: t=x; x=y; y=-t; break;
3584 case 7: negate(y); break;
3585 } /* there are no other cases */
3587 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3588 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3589 that this loop is guaranteed to terminate before the (nonexistent) value
3590 |spec_atan[27]| would be required.
3592 @<Subtract angle |z|...@>=
3595 if ( z>=spec_atan[k] ) {
3596 z=z-spec_atan[k]; t=x;
3597 x=t+y / two_to_the(k);
3598 y=y-t / two_to_the(k);
3602 if ( y<0 ) y=0 /* this precaution may never be needed */
3604 @ And now let's complete our collection of numeric utility routines
3605 by considering random number generation.
3606 \MP\ generates pseudo-random numbers with the additive scheme recommended
3607 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3608 results are random fractions between 0 and |fraction_one-1|, inclusive.
3610 There's an auxiliary array |randoms| that contains 55 pseudo-random
3611 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3612 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3613 The global variable |j_random| tells which element has most recently
3615 The global variable |random_seed| was introduced in version 0.9,
3616 for the sole reason of stressing the fact that the initial value of the
3617 random seed is system-dependant. The initialization code below will initialize
3618 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3619 is not good enough on modern fast machines that are capable of running
3620 multiple MetaPost processes within the same second.
3621 @^system dependencies@>
3624 fraction randoms[55]; /* the last 55 random values generated */
3625 int j_random; /* the number of unused |randoms| */
3627 @ @<Option variables@>=
3628 int random_seed; /* the default random seed */
3630 @ @<Allocate or initialize ...@>=
3631 mp->random_seed = (scaled)opt->random_seed;
3633 @ To consume a random fraction, the program below will say `|next_random|'
3634 and then it will fetch |randoms[j_random]|.
3636 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3637 else decr(mp->j_random); }
3640 void mp_new_randoms (MP mp) {
3641 int k; /* index into |randoms| */
3642 fraction x; /* accumulator */
3643 for (k=0;k<=23;k++) {
3644 x=mp->randoms[k]-mp->randoms[k+31];
3645 if ( x<0 ) x=x+fraction_one;
3648 for (k=24;k<= 54;k++){
3649 x=mp->randoms[k]-mp->randoms[k-24];
3650 if ( x<0 ) x=x+fraction_one;
3657 void mp_init_randoms (MP mp,scaled seed);
3659 @ To initialize the |randoms| table, we call the following routine.
3662 void mp_init_randoms (MP mp,scaled seed) {
3663 fraction j,jj,k; /* more or less random integers */
3664 int i; /* index into |randoms| */
3666 while ( j>=fraction_one ) j=halfp(j);
3668 for (i=0;i<=54;i++ ){
3670 if ( k<0 ) k=k+fraction_one;
3671 mp->randoms[(i*21)% 55]=j;
3675 mp_new_randoms(mp); /* ``warm up'' the array */
3678 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3679 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3681 Note that the call of |take_fraction| will produce the values 0 and~|x|
3682 with about half the probability that it will produce any other particular
3683 values between 0 and~|x|, because it rounds its answers.
3686 scaled mp_unif_rand (MP mp,scaled x) {
3687 scaled y; /* trial value */
3688 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3689 if ( y==abs(x) ) return 0;
3690 else if ( x>0 ) return y;
3694 @ Finally, a normal deviate with mean zero and unit standard deviation
3695 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3696 {\sl The Art of Computer Programming\/}).
3699 scaled mp_norm_rand (MP mp) {
3700 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3704 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3705 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3706 next_random; u=mp->randoms[mp->j_random];
3707 } while (abs(x)>=u);
3708 x=mp_make_fraction(mp, x,u);
3709 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3710 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3714 @* \[9] Packed data.
3715 In order to make efficient use of storage space, \MP\ bases its major data
3716 structures on a |memory_word|, which contains either a (signed) integer,
3717 possibly scaled, or a small number of fields that are one half or one
3718 quarter of the size used for storing integers.
3720 If |x| is a variable of type |memory_word|, it contains up to four
3721 fields that can be referred to as follows:
3722 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3723 |x|&.|int|&(an |integer|)\cr
3724 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3725 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3726 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3728 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3729 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3730 This is somewhat cumbersome to write, and not very readable either, but
3731 macros will be used to make the notation shorter and more transparent.
3732 The code below gives a formal definition of |memory_word| and
3733 its subsidiary types, using packed variant records. \MP\ makes no
3734 assumptions about the relative positions of the fields within a word.
3736 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3737 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3739 @ Here are the inequalities that the quarterword and halfword values
3740 must satisfy (or rather, the inequalities that they mustn't satisfy):
3742 @<Check the ``constant''...@>=
3743 if (mp->ini_version) {
3744 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3746 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3748 if ( max_quarterword<255 ) mp->bad=9;
3749 if ( max_halfword<65535 ) mp->bad=10;
3750 if ( max_quarterword>max_halfword ) mp->bad=11;
3751 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3752 if ( mp->max_strings>max_halfword ) mp->bad=13;
3754 @ The macros |qi| and |qo| are used for input to and output
3755 from quarterwords. These are legacy macros.
3756 @^system dependencies@>
3758 @d qo(A) (A) /* to read eight bits from a quarterword */
3759 @d qi(A) (A) /* to store eight bits in a quarterword */
3761 @ The reader should study the following definitions closely:
3762 @^system dependencies@>
3764 @d sc cint /* |scaled| data is equivalent to |integer| */
3767 typedef short quarterword; /* 1/4 of a word */
3768 typedef int halfword; /* 1/2 of a word */
3773 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3780 quarterword B2, B3, B0, B1;
3795 @ When debugging, we may want to print a |memory_word| without knowing
3796 what type it is; so we print it in all modes.
3800 void mp_print_word (MP mp,memory_word w) {
3801 /* prints |w| in all ways */
3802 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3803 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3804 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3805 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3806 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3807 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3808 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3809 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3810 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3811 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3812 mp_print_int(mp, w.qqqq.b3);
3816 @* \[10] Dynamic memory allocation.
3818 The \MP\ system does nearly all of its own memory allocation, so that it
3819 can readily be transported into environments that do not have automatic
3820 facilities for strings, garbage collection, etc., and so that it can be in
3821 control of what error messages the user receives. The dynamic storage
3822 requirements of \MP\ are handled by providing a large array |mem| in
3823 which consecutive blocks of words are used as nodes by the \MP\ routines.
3825 Pointer variables are indices into this array, or into another array
3826 called |eqtb| that will be explained later. A pointer variable might
3827 also be a special flag that lies outside the bounds of |mem|, so we
3828 allow pointers to assume any |halfword| value. The minimum memory
3829 index represents a null pointer.
3831 @d null 0 /* the null pointer */
3832 @d mp_void (null+1) /* a null pointer different from |null| */
3836 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3838 @ The |mem| array is divided into two regions that are allocated separately,
3839 but the dividing line between these two regions is not fixed; they grow
3840 together until finding their ``natural'' size in a particular job.
3841 Locations less than or equal to |lo_mem_max| are used for storing
3842 variable-length records consisting of two or more words each. This region
3843 is maintained using an algorithm similar to the one described in exercise
3844 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3845 appears in the allocated nodes; the program is responsible for knowing the
3846 relevant size when a node is freed. Locations greater than or equal to
3847 |hi_mem_min| are used for storing one-word records; a conventional
3848 \.{AVAIL} stack is used for allocation in this region.
3850 Locations of |mem| between |0| and |mem_top| may be dumped as part
3851 of preloaded mem files, by the \.{INIMP} preprocessor.
3853 Production versions of \MP\ may extend the memory at the top end in order to
3854 provide more space; these locations, between |mem_top| and |mem_max|,
3855 are always used for single-word nodes.
3857 The key pointers that govern |mem| allocation have a prescribed order:
3858 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3861 memory_word *mem; /* the big dynamic storage area */
3862 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3863 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3867 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3868 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3869 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3870 @d xstrdup(A) mp_xstrdup(mp,A)
3871 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3873 @<Declare helpers@>=
3874 void mp_xfree (void *x);
3875 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3876 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3877 char *mp_xstrdup(MP mp, const char *s);
3879 @ The |max_size_test| guards against overflow, on the assumption that
3880 |size_t| is at least 31bits wide.
3882 @d max_size_test 0x7FFFFFFF
3885 void mp_xfree (void *x) {
3886 if (x!=NULL) free(x);
3888 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3890 if ((max_size_test/size)<nmem) {
3891 do_fprintf(mp->err_out,"Memory size overflow!\n");
3892 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3894 w = realloc (p,(nmem*size));
3896 do_fprintf(mp->err_out,"Out of memory!\n");
3897 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3901 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3903 if ((max_size_test/size)<nmem) {
3904 do_fprintf(mp->err_out,"Memory size overflow!\n");
3905 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3907 w = malloc (nmem*size);
3909 do_fprintf(mp->err_out,"Out of memory!\n");
3910 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3914 char *mp_xstrdup(MP mp, const char *s) {
3920 do_fprintf(mp->err_out,"Out of memory!\n");
3921 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3928 @<Allocate or initialize ...@>=
3929 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3930 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3932 @ @<Dealloc variables@>=
3935 @ Users who wish to study the memory requirements of particular applications can
3936 can use optional special features that keep track of current and
3937 maximum memory usage. When code between the delimiters |stat| $\ldots$
3938 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3939 report these statistics when |mp_tracing_stats| is positive.
3942 integer var_used; integer dyn_used; /* how much memory is in use */
3944 @ Let's consider the one-word memory region first, since it's the
3945 simplest. The pointer variable |mem_end| holds the highest-numbered location
3946 of |mem| that has ever been used. The free locations of |mem| that
3947 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3948 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3949 and |rh| fields of |mem[p]| when it is of this type. The single-word
3950 free locations form a linked list
3951 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3952 terminated by |null|.
3954 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3955 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3958 pointer avail; /* head of the list of available one-word nodes */
3959 pointer mem_end; /* the last one-word node used in |mem| */
3961 @ If one-word memory is exhausted, it might mean that the user has forgotten
3962 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3963 later that try to help pinpoint the trouble.
3966 @<Declare the procedure called |show_token_list|@>
3967 @<Declare the procedure called |runaway|@>
3969 @ The function |get_avail| returns a pointer to a new one-word node whose
3970 |link| field is null. However, \MP\ will halt if there is no more room left.
3974 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3975 pointer p; /* the new node being got */
3976 p=mp->avail; /* get top location in the |avail| stack */
3978 mp->avail=link(mp->avail); /* and pop it off */
3979 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3980 incr(mp->mem_end); p=mp->mem_end;
3982 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3983 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3984 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3985 mp_overflow(mp, "main memory size",mp->mem_max);
3986 /* quit; all one-word nodes are busy */
3987 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3990 link(p)=null; /* provide an oft-desired initialization of the new node */
3991 incr(mp->dyn_used);/* maintain statistics */
3995 @ Conversely, a one-word node is recycled by calling |free_avail|.
3997 @d free_avail(A) /* single-word node liberation */
3998 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4000 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4001 overhead at the expense of extra programming. This macro is used in
4002 the places that would otherwise account for the most calls of |get_avail|.
4005 @d fast_get_avail(A) {
4006 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4007 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4008 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4011 @ The available-space list that keeps track of the variable-size portion
4012 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4013 pointed to by the roving pointer |rover|.
4015 Each empty node has size 2 or more; the first word contains the special
4016 value |max_halfword| in its |link| field and the size in its |info| field;
4017 the second word contains the two pointers for double linking.
4019 Each nonempty node also has size 2 or more. Its first word is of type
4020 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4021 Otherwise there is complete flexibility with respect to the contents
4022 of its other fields and its other words.
4024 (We require |mem_max<max_halfword| because terrible things can happen
4025 when |max_halfword| appears in the |link| field of a nonempty node.)
4027 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4028 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4029 @d node_size info /* the size field in empty variable-size nodes */
4030 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4031 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4034 pointer rover; /* points to some node in the list of empties */
4036 @ A call to |get_node| with argument |s| returns a pointer to a new node
4037 of size~|s|, which must be 2~or more. The |link| field of the first word
4038 of this new node is set to null. An overflow stop occurs if no suitable
4041 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4042 areas and returns the value |max_halfword|.
4044 @<Internal library declarations@>=
4045 pointer mp_get_node (MP mp,integer s) ;
4048 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4049 pointer p; /* the node currently under inspection */
4050 pointer q; /* the node physically after node |p| */
4051 integer r; /* the newly allocated node, or a candidate for this honor */
4052 integer t,tt; /* temporary registers */
4055 p=mp->rover; /* start at some free node in the ring */
4057 @<Try to allocate within node |p| and its physical successors,
4058 and |goto found| if allocation was possible@>;
4059 if (rlink(p)==null || (rlink(p)==p && p!=mp->rover)) {
4060 print_err("Free list garbled");
4061 help3("I found an entry in the list of free nodes that links")
4062 ("badly. I will try to ignore the broken link, but something")
4063 ("is seriously amiss. It is wise to warn the maintainers.")
4067 p=rlink(p); /* move to the next node in the ring */
4068 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4069 if ( s==010000000000 ) {
4070 return max_halfword;
4072 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4073 if ( mp->lo_mem_max+2<=max_halfword ) {
4074 @<Grow more variable-size memory and |goto restart|@>;
4077 mp_overflow(mp, "main memory size",mp->mem_max);
4078 /* sorry, nothing satisfactory is left */
4079 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4081 link(r)=null; /* this node is now nonempty */
4082 mp->var_used+=s; /* maintain usage statistics */
4086 @ The lower part of |mem| grows by 1000 words at a time, unless
4087 we are very close to going under. When it grows, we simply link
4088 a new node into the available-space list. This method of controlled
4089 growth helps to keep the |mem| usage consecutive when \MP\ is
4090 implemented on ``virtual memory'' systems.
4093 @<Grow more variable-size memory and |goto restart|@>=
4095 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4096 t=mp->lo_mem_max+1000;
4098 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4099 /* |lo_mem_max+2<=t<hi_mem_min| */
4101 if ( t>max_halfword ) t=max_halfword;
4102 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4103 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4104 node_size(q)=t-mp->lo_mem_max;
4105 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4110 @ @<Try to allocate...@>=
4111 q=p+node_size(p); /* find the physical successor */
4112 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4113 t=rlink(q); tt=llink(q);
4115 if ( q==mp->rover ) mp->rover=t;
4116 llink(t)=tt; rlink(tt)=t;
4121 @<Allocate from the top of node |p| and |goto found|@>;
4124 if ( rlink(p)!=p ) {
4125 @<Allocate entire node |p| and |goto found|@>;
4128 node_size(p)=q-p /* reset the size in case it grew */
4130 @ @<Allocate from the top...@>=
4132 node_size(p)=r-p; /* store the remaining size */
4133 mp->rover=p; /* start searching here next time */
4137 @ Here we delete node |p| from the ring, and let |rover| rove around.
4139 @<Allocate entire...@>=
4141 mp->rover=rlink(p); t=llink(p);
4142 llink(mp->rover)=t; rlink(t)=mp->rover;
4146 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4147 the operation |free_node(p,s)| will make its words available, by inserting
4148 |p| as a new empty node just before where |rover| now points.
4150 @<Internal library declarations@>=
4151 void mp_free_node (MP mp, pointer p, halfword s) ;
4154 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4156 pointer q; /* |llink(rover)| */
4157 node_size(p)=s; link(p)=empty_flag;
4159 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4160 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4161 mp->var_used-=s; /* maintain statistics */
4164 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4165 available space list. The list is probably very short at such times, so a
4166 simple insertion sort is used. The smallest available location will be
4167 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4170 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4172 pointer p,q,r; /* indices into |mem| */
4173 pointer old_rover; /* initial |rover| setting */
4174 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4175 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4176 while ( p!=old_rover ) {
4177 @<Sort |p| into the list starting at |rover|
4178 and advance |p| to |rlink(p)|@>;
4181 while ( rlink(p)!=max_halfword ) {
4182 llink(rlink(p))=p; p=rlink(p);
4184 rlink(p)=mp->rover; llink(mp->rover)=p;
4187 @ The following |while| loop is guaranteed to
4188 terminate, since the list that starts at
4189 |rover| ends with |max_halfword| during the sorting procedure.
4192 if ( p<mp->rover ) {
4193 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4196 while ( rlink(q)<p ) q=rlink(q);
4197 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4200 @* \[11] Memory layout.
4201 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4202 more efficient than dynamic allocation when we can get away with it. For
4203 example, locations |0| to |1| are always used to store a
4204 two-word dummy token whose second word is zero.
4205 The following macro definitions accomplish the static allocation by giving
4206 symbolic names to the fixed positions. Static variable-size nodes appear
4207 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4208 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4210 @d null_dash (2) /* the first two words are reserved for a null value */
4211 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4212 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4213 @d temp_val (zero_val+2) /* two words for a temporary value node */
4214 @d end_attr temp_val /* we use |end_attr+2| only */
4215 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4216 @d test_pen (inf_val+2)
4217 /* nine words for a pen used when testing the turning number */
4218 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4219 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4220 allocated word in the variable-size |mem| */
4222 @d sentinel mp->mem_top /* end of sorted lists */
4223 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4224 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4225 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4226 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4227 the one-word |mem| */
4229 @ The following code gets the dynamic part of |mem| off to a good start,
4230 when \MP\ is initializing itself the slow way.
4232 @<Initialize table entries (done by \.{INIMP} only)@>=
4233 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4234 link(mp->rover)=empty_flag;
4235 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4236 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4237 mp->lo_mem_max=mp->rover+1000;
4238 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4239 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4240 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4242 mp->avail=null; mp->mem_end=mp->mem_top;
4243 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4244 mp->var_used=lo_mem_stat_max+1;
4245 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4246 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4248 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4249 nodes that starts at a given position, until coming to |sentinel| or a
4250 pointer that is not in the one-word region. Another procedure,
4251 |flush_node_list|, frees an entire linked list of one-word and two-word
4252 nodes, until coming to a |null| pointer.
4256 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4257 pointer q,r; /* list traversers */
4258 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4263 if ( r<mp->hi_mem_min ) break;
4264 } while (r!=sentinel);
4265 /* now |q| is the last node on the list */
4266 link(q)=mp->avail; mp->avail=p;
4270 void mp_flush_node_list (MP mp,pointer p) {
4271 pointer q; /* the node being recycled */
4274 if ( q<mp->hi_mem_min )
4275 mp_free_node(mp, q,2);
4281 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4282 For example, some pointers might be wrong, or some ``dead'' nodes might not
4283 have been freed when the last reference to them disappeared. Procedures
4284 |check_mem| and |search_mem| are available to help diagnose such
4285 problems. These procedures make use of two arrays called |free| and
4286 |was_free| that are present only if \MP's debugging routines have
4287 been included. (You may want to decrease the size of |mem| while you
4291 Because |boolean|s are typedef-d as ints, it is better to use
4292 unsigned chars here.
4295 unsigned char *free; /* free cells */
4296 unsigned char *was_free; /* previously free cells */
4297 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4298 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4299 boolean panicking; /* do we want to check memory constantly? */
4301 @ @<Allocate or initialize ...@>=
4302 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4303 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4305 @ @<Dealloc variables@>=
4307 xfree(mp->was_free);
4309 @ @<Allocate or ...@>=
4310 mp->was_mem_end=0; /* indicate that everything was previously free */
4311 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4312 mp->panicking=false;
4314 @ @<Declare |mp_reallocate| functions@>=
4315 void mp_reallocate_memory(MP mp, int l) ;
4318 void mp_reallocate_memory(MP mp, int l) {
4319 XREALLOC(mp->free, l, unsigned char);
4320 XREALLOC(mp->was_free, l, unsigned char);
4322 int newarea = l-mp->mem_max;
4323 XREALLOC(mp->mem, l, memory_word);
4324 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4326 XREALLOC(mp->mem, l, memory_word);
4327 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4330 if (mp->ini_version)
4336 @ Procedure |check_mem| makes sure that the available space lists of
4337 |mem| are well formed, and it optionally prints out all locations
4338 that are reserved now but were free the last time this procedure was called.
4341 void mp_check_mem (MP mp,boolean print_locs ) {
4342 pointer p,q,r; /* current locations of interest in |mem| */
4343 boolean clobbered; /* is something amiss? */
4344 for (p=0;p<=mp->lo_mem_max;p++) {
4345 mp->free[p]=false; /* you can probably do this faster */
4347 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4348 mp->free[p]=false; /* ditto */
4350 @<Check single-word |avail| list@>;
4351 @<Check variable-size |avail| list@>;
4352 @<Check flags of unavailable nodes@>;
4353 @<Check the list of linear dependencies@>;
4355 @<Print newly busy locations@>;
4357 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4358 mp->was_mem_end=mp->mem_end;
4359 mp->was_lo_max=mp->lo_mem_max;
4360 mp->was_hi_min=mp->hi_mem_min;
4363 @ @<Check single-word...@>=
4364 p=mp->avail; q=null; clobbered=false;
4366 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4367 else if ( mp->free[p] ) clobbered=true;
4369 mp_print_nl(mp, "AVAIL list clobbered at ");
4370 @.AVAIL list clobbered...@>
4371 mp_print_int(mp, q); break;
4373 mp->free[p]=true; q=p; p=link(q);
4376 @ @<Check variable-size...@>=
4377 p=mp->rover; q=null; clobbered=false;
4379 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4380 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4381 else if ( !(is_empty(p))||(node_size(p)<2)||
4382 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4384 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4385 @.Double-AVAIL list clobbered...@>
4386 mp_print_int(mp, q); break;
4388 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4389 if ( mp->free[q] ) {
4390 mp_print_nl(mp, "Doubly free location at ");
4391 @.Doubly free location...@>
4392 mp_print_int(mp, q); break;
4397 } while (p!=mp->rover)
4400 @ @<Check flags...@>=
4402 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4403 if ( is_empty(p) ) {
4404 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4407 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4408 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4411 @ @<Print newly busy...@>=
4413 @<Do intialization required before printing new busy locations@>;
4414 mp_print_nl(mp, "New busy locs:");
4416 for (p=0;p<= mp->lo_mem_max;p++ ) {
4417 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4418 @<Indicate that |p| is a new busy location@>;
4421 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4422 if ( ! mp->free[p] &&
4423 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4424 @<Indicate that |p| is a new busy location@>;
4427 @<Finish printing new busy locations@>;
4430 @ There might be many new busy locations so we are careful to print contiguous
4431 blocks compactly. During this operation |q| is the last new busy location and
4432 |r| is the start of the block containing |q|.
4434 @<Indicate that |p| is a new busy location@>=
4438 mp_print(mp, ".."); mp_print_int(mp, q);
4440 mp_print_char(mp, ' '); mp_print_int(mp, p);
4446 @ @<Do intialization required before printing new busy locations@>=
4447 q=mp->mem_max; r=mp->mem_max
4449 @ @<Finish printing new busy locations@>=
4451 mp_print(mp, ".."); mp_print_int(mp, q);
4454 @ The |search_mem| procedure attempts to answer the question ``Who points
4455 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4456 that might not be of type |two_halves|. Strictly speaking, this is
4457 undefined, and it can lead to ``false drops'' (words that seem to
4458 point to |p| purely by coincidence). But for debugging purposes, we want
4459 to rule out the places that do {\sl not\/} point to |p|, so a few false
4460 drops are tolerable.
4463 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4464 integer q; /* current position being searched */
4465 for (q=0;q<=mp->lo_mem_max;q++) {
4467 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4470 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4473 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4475 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4478 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4481 @<Search |eqtb| for equivalents equal to |p|@>;
4484 @* \[12] The command codes.
4485 Before we can go much further, we need to define symbolic names for the internal
4486 code numbers that represent the various commands obeyed by \MP. These codes
4487 are somewhat arbitrary, but not completely so. For example,
4488 some codes have been made adjacent so that |case| statements in the
4489 program need not consider cases that are widely spaced, or so that |case|
4490 statements can be replaced by |if| statements. A command can begin an
4491 expression if and only if its code lies between |min_primary_command| and
4492 |max_primary_command|, inclusive. The first token of a statement that doesn't
4493 begin with an expression has a command code between |min_command| and
4494 |max_statement_command|, inclusive. Anything less than |min_command| is
4495 eliminated during macro expansions, and anything no more than |max_pre_command|
4496 is eliminated when expanding \TeX\ material. Ranges such as
4497 |min_secondary_command..max_secondary_command| are used when parsing
4498 expressions, but the relative ordering within such a range is generally not
4501 The ordering of the highest-numbered commands
4502 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4503 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4504 for the smallest two commands. The ordering is also important in the ranges
4505 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4507 At any rate, here is the list, for future reference.
4509 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4510 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4511 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4512 @d max_pre_command mpx_break
4513 @d if_test 4 /* conditional text (\&{if}) */
4514 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}) */
4515 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4516 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4517 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4518 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4519 @d relax 10 /* do nothing (\.{\char`\\}) */
4520 @d scan_tokens 11 /* put a string into the input buffer */
4521 @d expand_after 12 /* look ahead one token */
4522 @d defined_macro 13 /* a macro defined by the user */
4523 @d min_command (defined_macro+1)
4524 @d save_command 14 /* save a list of tokens (\&{save}) */
4525 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4526 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4527 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4528 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4529 @d ship_out_command 19 /* output a character (\&{shipout}) */
4530 @d add_to_command 20 /* add to edges (\&{addto}) */
4531 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4532 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4533 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4534 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4535 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4536 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4537 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4538 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4539 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4540 @d special_command 30 /* output special info (\&{special})
4541 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4542 @d write_command 31 /* write text to a file (\&{write}) */
4543 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc.) */
4544 @d max_statement_command type_name
4545 @d min_primary_command type_name
4546 @d left_delimiter 33 /* the left delimiter of a matching pair */
4547 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4548 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4549 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4550 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4551 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4552 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4553 @d capsule_token 40 /* a value that has been put into a token list */
4554 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4555 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4556 @d min_suffix_token internal_quantity
4557 @d tag_token 43 /* a symbolic token without a primitive meaning */
4558 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4559 @d max_suffix_token numeric_token
4560 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4561 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4562 @d min_tertiary_command plus_or_minus
4563 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4564 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4565 @d max_tertiary_command tertiary_binary
4566 @d left_brace 48 /* the operator `\.{\char`\{}' */
4567 @d min_expression_command left_brace
4568 @d path_join 49 /* the operator `\.{..}' */
4569 @d ampersand 50 /* the operator `\.\&' */
4570 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4571 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4572 @d equals 53 /* the operator `\.=' */
4573 @d max_expression_command equals
4574 @d and_command 54 /* the operator `\&{and}' */
4575 @d min_secondary_command and_command
4576 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4577 @d slash 56 /* the operator `\./' */
4578 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4579 @d max_secondary_command secondary_binary
4580 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4581 @d controls 59 /* specify control points explicitly (\&{controls}) */
4582 @d tension 60 /* specify tension between knots (\&{tension}) */
4583 @d at_least 61 /* bounded tension value (\&{atleast}) */
4584 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4585 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4586 @d right_delimiter 64 /* the right delimiter of a matching pair */
4587 @d left_bracket 65 /* the operator `\.[' */
4588 @d right_bracket 66 /* the operator `\.]' */
4589 @d right_brace 67 /* the operator `\.{\char`\}}' */
4590 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4592 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4593 @d of_token 70 /* the operator `\&{of}' */
4594 @d to_token 71 /* the operator `\&{to}' */
4595 @d step_token 72 /* the operator `\&{step}' */
4596 @d until_token 73 /* the operator `\&{until}' */
4597 @d within_token 74 /* the operator `\&{within}' */
4598 @d lig_kern_token 75
4599 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}', etc. */
4600 @d assignment 76 /* the operator `\.{:=}' */
4601 @d skip_to 77 /* the operation `\&{skipto}' */
4602 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4603 @d double_colon 79 /* the operator `\.{::}' */
4604 @d colon 80 /* the operator `\.:' */
4606 @d comma 81 /* the operator `\.,', must be |colon+1| */
4607 @d end_of_statement (mp->cur_cmd>comma)
4608 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4609 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4610 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4611 @d max_command_code stop
4612 @d outer_tag (max_command_code+1) /* protection code added to command code */
4615 typedef int command_code;
4617 @ Variables and capsules in \MP\ have a variety of ``types,''
4618 distinguished by the code numbers defined here. These numbers are also
4619 not completely arbitrary. Things that get expanded must have types
4620 |>mp_independent|; a type remaining after expansion is numeric if and only if
4621 its code number is at least |numeric_type|; objects containing numeric
4622 parts must have types between |transform_type| and |pair_type|;
4623 all other types must be smaller than |transform_type|; and among the types
4624 that are not unknown or vacuous, the smallest two must be |boolean_type|
4625 and |string_type| in that order.
4627 @d undefined 0 /* no type has been declared */
4628 @d unknown_tag 1 /* this constant is added to certain type codes below */
4629 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4630 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4633 enum mp_variable_type {
4634 mp_vacuous=1, /* no expression was present */
4635 mp_boolean_type, /* \&{boolean} with a known value */
4637 mp_string_type, /* \&{string} with a known value */
4639 mp_pen_type, /* \&{pen} with a known value */
4641 mp_path_type, /* \&{path} with a known value */
4643 mp_picture_type, /* \&{picture} with a known value */
4645 mp_transform_type, /* \&{transform} variable or capsule */
4646 mp_color_type, /* \&{color} variable or capsule */
4647 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4648 mp_pair_type, /* \&{pair} variable or capsule */
4649 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4650 mp_known, /* \&{numeric} with a known value */
4651 mp_dependent, /* a linear combination with |fraction| coefficients */
4652 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4653 mp_independent, /* \&{numeric} with unknown value */
4654 mp_token_list, /* variable name or suffix argument or text argument */
4655 mp_structured, /* variable with subscripts and attributes */
4656 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4657 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4661 void mp_print_type (MP mp,small_number t) ;
4663 @ @<Basic printing procedures@>=
4664 void mp_print_type (MP mp,small_number t) {
4666 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4667 case mp_boolean_type:mp_print(mp, "boolean"); break;
4668 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4669 case mp_string_type:mp_print(mp, "string"); break;
4670 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4671 case mp_pen_type:mp_print(mp, "pen"); break;
4672 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4673 case mp_path_type:mp_print(mp, "path"); break;
4674 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4675 case mp_picture_type:mp_print(mp, "picture"); break;
4676 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4677 case mp_transform_type:mp_print(mp, "transform"); break;
4678 case mp_color_type:mp_print(mp, "color"); break;
4679 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4680 case mp_pair_type:mp_print(mp, "pair"); break;
4681 case mp_known:mp_print(mp, "known numeric"); break;
4682 case mp_dependent:mp_print(mp, "dependent"); break;
4683 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4684 case mp_numeric_type:mp_print(mp, "numeric"); break;
4685 case mp_independent:mp_print(mp, "independent"); break;
4686 case mp_token_list:mp_print(mp, "token list"); break;
4687 case mp_structured:mp_print(mp, "mp_structured"); break;
4688 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4689 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4690 default: mp_print(mp, "undefined"); break;
4694 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4695 as well as a |type|. The possibilities for |name_type| are defined
4696 here; they will be explained in more detail later.
4700 mp_root=0, /* |name_type| at the top level of a variable */
4701 mp_saved_root, /* same, when the variable has been saved */
4702 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4703 mp_subscr, /* |name_type| in a subscript node */
4704 mp_attr, /* |name_type| in an attribute node */
4705 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4706 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4707 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4708 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4709 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4710 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4711 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4712 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4713 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4714 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4715 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4716 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4717 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4718 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4719 mp_capsule, /* |name_type| in stashed-away subexpressions */
4720 mp_token /* |name_type| in a numeric token or string token */
4723 @ Primitive operations that produce values have a secondary identification
4724 code in addition to their command code; it's something like genera and species.
4725 For example, `\.*' has the command code |primary_binary|, and its
4726 secondary identification is |times|. The secondary codes start at 30 so that
4727 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4728 are used as operators as well as type identifications. The relative values
4729 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4730 and |filled_op..bounded_op|. The restrictions are that
4731 |and_op-false_code=or_op-true_code|, that the ordering of
4732 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4733 and the ordering of |filled_op..bounded_op| must match that of the code
4734 values they test for.
4736 @d true_code 30 /* operation code for \.{true} */
4737 @d false_code 31 /* operation code for \.{false} */
4738 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4739 @d null_pen_code 33 /* operation code for \.{nullpen} */
4740 @d job_name_op 34 /* operation code for \.{jobname} */
4741 @d read_string_op 35 /* operation code for \.{readstring} */
4742 @d pen_circle 36 /* operation code for \.{pencircle} */
4743 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4744 @d read_from_op 38 /* operation code for \.{readfrom} */
4745 @d close_from_op 39 /* operation code for \.{closefrom} */
4746 @d odd_op 40 /* operation code for \.{odd} */
4747 @d known_op 41 /* operation code for \.{known} */
4748 @d unknown_op 42 /* operation code for \.{unknown} */
4749 @d not_op 43 /* operation code for \.{not} */
4750 @d decimal 44 /* operation code for \.{decimal} */
4751 @d reverse 45 /* operation code for \.{reverse} */
4752 @d make_path_op 46 /* operation code for \.{makepath} */
4753 @d make_pen_op 47 /* operation code for \.{makepen} */
4754 @d oct_op 48 /* operation code for \.{oct} */
4755 @d hex_op 49 /* operation code for \.{hex} */
4756 @d ASCII_op 50 /* operation code for \.{ASCII} */
4757 @d char_op 51 /* operation code for \.{char} */
4758 @d length_op 52 /* operation code for \.{length} */
4759 @d turning_op 53 /* operation code for \.{turningnumber} */
4760 @d color_model_part 54 /* operation code for \.{colormodel} */
4761 @d x_part 55 /* operation code for \.{xpart} */
4762 @d y_part 56 /* operation code for \.{ypart} */
4763 @d xx_part 57 /* operation code for \.{xxpart} */
4764 @d xy_part 58 /* operation code for \.{xypart} */
4765 @d yx_part 59 /* operation code for \.{yxpart} */
4766 @d yy_part 60 /* operation code for \.{yypart} */
4767 @d red_part 61 /* operation code for \.{redpart} */
4768 @d green_part 62 /* operation code for \.{greenpart} */
4769 @d blue_part 63 /* operation code for \.{bluepart} */
4770 @d cyan_part 64 /* operation code for \.{cyanpart} */
4771 @d magenta_part 65 /* operation code for \.{magentapart} */
4772 @d yellow_part 66 /* operation code for \.{yellowpart} */
4773 @d black_part 67 /* operation code for \.{blackpart} */
4774 @d grey_part 68 /* operation code for \.{greypart} */
4775 @d font_part 69 /* operation code for \.{fontpart} */
4776 @d text_part 70 /* operation code for \.{textpart} */
4777 @d path_part 71 /* operation code for \.{pathpart} */
4778 @d pen_part 72 /* operation code for \.{penpart} */
4779 @d dash_part 73 /* operation code for \.{dashpart} */
4780 @d sqrt_op 74 /* operation code for \.{sqrt} */
4781 @d m_exp_op 75 /* operation code for \.{mexp} */
4782 @d m_log_op 76 /* operation code for \.{mlog} */
4783 @d sin_d_op 77 /* operation code for \.{sind} */
4784 @d cos_d_op 78 /* operation code for \.{cosd} */
4785 @d floor_op 79 /* operation code for \.{floor} */
4786 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4787 @d char_exists_op 81 /* operation code for \.{charexists} */
4788 @d font_size 82 /* operation code for \.{fontsize} */
4789 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4790 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4791 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4792 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4793 @d arc_length 87 /* operation code for \.{arclength} */
4794 @d angle_op 88 /* operation code for \.{angle} */
4795 @d cycle_op 89 /* operation code for \.{cycle} */
4796 @d filled_op 90 /* operation code for \.{filled} */
4797 @d stroked_op 91 /* operation code for \.{stroked} */
4798 @d textual_op 92 /* operation code for \.{textual} */
4799 @d clipped_op 93 /* operation code for \.{clipped} */
4800 @d bounded_op 94 /* operation code for \.{bounded} */
4801 @d plus 95 /* operation code for \.+ */
4802 @d minus 96 /* operation code for \.- */
4803 @d times 97 /* operation code for \.* */
4804 @d over 98 /* operation code for \./ */
4805 @d pythag_add 99 /* operation code for \.{++} */
4806 @d pythag_sub 100 /* operation code for \.{+-+} */
4807 @d or_op 101 /* operation code for \.{or} */
4808 @d and_op 102 /* operation code for \.{and} */
4809 @d less_than 103 /* operation code for \.< */
4810 @d less_or_equal 104 /* operation code for \.{<=} */
4811 @d greater_than 105 /* operation code for \.> */
4812 @d greater_or_equal 106 /* operation code for \.{>=} */
4813 @d equal_to 107 /* operation code for \.= */
4814 @d unequal_to 108 /* operation code for \.{<>} */
4815 @d concatenate 109 /* operation code for \.\& */
4816 @d rotated_by 110 /* operation code for \.{rotated} */
4817 @d slanted_by 111 /* operation code for \.{slanted} */
4818 @d scaled_by 112 /* operation code for \.{scaled} */
4819 @d shifted_by 113 /* operation code for \.{shifted} */
4820 @d transformed_by 114 /* operation code for \.{transformed} */
4821 @d x_scaled 115 /* operation code for \.{xscaled} */
4822 @d y_scaled 116 /* operation code for \.{yscaled} */
4823 @d z_scaled 117 /* operation code for \.{zscaled} */
4824 @d in_font 118 /* operation code for \.{infont} */
4825 @d intersect 119 /* operation code for \.{intersectiontimes} */
4826 @d double_dot 120 /* operation code for improper \.{..} */
4827 @d substring_of 121 /* operation code for \.{substring} */
4828 @d min_of substring_of
4829 @d subpath_of 122 /* operation code for \.{subpath} */
4830 @d direction_time_of 123 /* operation code for \.{directiontime} */
4831 @d point_of 124 /* operation code for \.{point} */
4832 @d precontrol_of 125 /* operation code for \.{precontrol} */
4833 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4834 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4835 @d arc_time_of 128 /* operation code for \.{arctime} */
4836 @d mp_version 129 /* operation code for \.{mpversion} */
4837 @d envelope_of 130 /* operation code for \.{envelope} */
4839 @c void mp_print_op (MP mp,quarterword c) {
4840 if (c<=mp_numeric_type ) {
4841 mp_print_type(mp, c);
4844 case true_code:mp_print(mp, "true"); break;
4845 case false_code:mp_print(mp, "false"); break;
4846 case null_picture_code:mp_print(mp, "nullpicture"); break;
4847 case null_pen_code:mp_print(mp, "nullpen"); break;
4848 case job_name_op:mp_print(mp, "jobname"); break;
4849 case read_string_op:mp_print(mp, "readstring"); break;
4850 case pen_circle:mp_print(mp, "pencircle"); break;
4851 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4852 case read_from_op:mp_print(mp, "readfrom"); break;
4853 case close_from_op:mp_print(mp, "closefrom"); break;
4854 case odd_op:mp_print(mp, "odd"); break;
4855 case known_op:mp_print(mp, "known"); break;
4856 case unknown_op:mp_print(mp, "unknown"); break;
4857 case not_op:mp_print(mp, "not"); break;
4858 case decimal:mp_print(mp, "decimal"); break;
4859 case reverse:mp_print(mp, "reverse"); break;
4860 case make_path_op:mp_print(mp, "makepath"); break;
4861 case make_pen_op:mp_print(mp, "makepen"); break;
4862 case oct_op:mp_print(mp, "oct"); break;
4863 case hex_op:mp_print(mp, "hex"); break;
4864 case ASCII_op:mp_print(mp, "ASCII"); break;
4865 case char_op:mp_print(mp, "char"); break;
4866 case length_op:mp_print(mp, "length"); break;
4867 case turning_op:mp_print(mp, "turningnumber"); break;
4868 case x_part:mp_print(mp, "xpart"); break;
4869 case y_part:mp_print(mp, "ypart"); break;
4870 case xx_part:mp_print(mp, "xxpart"); break;
4871 case xy_part:mp_print(mp, "xypart"); break;
4872 case yx_part:mp_print(mp, "yxpart"); break;
4873 case yy_part:mp_print(mp, "yypart"); break;
4874 case red_part:mp_print(mp, "redpart"); break;
4875 case green_part:mp_print(mp, "greenpart"); break;
4876 case blue_part:mp_print(mp, "bluepart"); break;
4877 case cyan_part:mp_print(mp, "cyanpart"); break;
4878 case magenta_part:mp_print(mp, "magentapart"); break;
4879 case yellow_part:mp_print(mp, "yellowpart"); break;
4880 case black_part:mp_print(mp, "blackpart"); break;
4881 case grey_part:mp_print(mp, "greypart"); break;
4882 case color_model_part:mp_print(mp, "colormodel"); break;
4883 case font_part:mp_print(mp, "fontpart"); break;
4884 case text_part:mp_print(mp, "textpart"); break;
4885 case path_part:mp_print(mp, "pathpart"); break;
4886 case pen_part:mp_print(mp, "penpart"); break;
4887 case dash_part:mp_print(mp, "dashpart"); break;
4888 case sqrt_op:mp_print(mp, "sqrt"); break;
4889 case m_exp_op:mp_print(mp, "mexp"); break;
4890 case m_log_op:mp_print(mp, "mlog"); break;
4891 case sin_d_op:mp_print(mp, "sind"); break;
4892 case cos_d_op:mp_print(mp, "cosd"); break;
4893 case floor_op:mp_print(mp, "floor"); break;
4894 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4895 case char_exists_op:mp_print(mp, "charexists"); break;
4896 case font_size:mp_print(mp, "fontsize"); break;
4897 case ll_corner_op:mp_print(mp, "llcorner"); break;
4898 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4899 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4900 case ur_corner_op:mp_print(mp, "urcorner"); break;
4901 case arc_length:mp_print(mp, "arclength"); break;
4902 case angle_op:mp_print(mp, "angle"); break;
4903 case cycle_op:mp_print(mp, "cycle"); break;
4904 case filled_op:mp_print(mp, "filled"); break;
4905 case stroked_op:mp_print(mp, "stroked"); break;
4906 case textual_op:mp_print(mp, "textual"); break;
4907 case clipped_op:mp_print(mp, "clipped"); break;
4908 case bounded_op:mp_print(mp, "bounded"); break;
4909 case plus:mp_print_char(mp, '+'); break;
4910 case minus:mp_print_char(mp, '-'); break;
4911 case times:mp_print_char(mp, '*'); break;
4912 case over:mp_print_char(mp, '/'); break;
4913 case pythag_add:mp_print(mp, "++"); break;
4914 case pythag_sub:mp_print(mp, "+-+"); break;
4915 case or_op:mp_print(mp, "or"); break;
4916 case and_op:mp_print(mp, "and"); break;
4917 case less_than:mp_print_char(mp, '<'); break;
4918 case less_or_equal:mp_print(mp, "<="); break;
4919 case greater_than:mp_print_char(mp, '>'); break;
4920 case greater_or_equal:mp_print(mp, ">="); break;
4921 case equal_to:mp_print_char(mp, '='); break;
4922 case unequal_to:mp_print(mp, "<>"); break;
4923 case concatenate:mp_print(mp, "&"); break;
4924 case rotated_by:mp_print(mp, "rotated"); break;
4925 case slanted_by:mp_print(mp, "slanted"); break;
4926 case scaled_by:mp_print(mp, "scaled"); break;
4927 case shifted_by:mp_print(mp, "shifted"); break;
4928 case transformed_by:mp_print(mp, "transformed"); break;
4929 case x_scaled:mp_print(mp, "xscaled"); break;
4930 case y_scaled:mp_print(mp, "yscaled"); break;
4931 case z_scaled:mp_print(mp, "zscaled"); break;
4932 case in_font:mp_print(mp, "infont"); break;
4933 case intersect:mp_print(mp, "intersectiontimes"); break;
4934 case substring_of:mp_print(mp, "substring"); break;
4935 case subpath_of:mp_print(mp, "subpath"); break;
4936 case direction_time_of:mp_print(mp, "directiontime"); break;
4937 case point_of:mp_print(mp, "point"); break;
4938 case precontrol_of:mp_print(mp, "precontrol"); break;
4939 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4940 case pen_offset_of:mp_print(mp, "penoffset"); break;
4941 case arc_time_of:mp_print(mp, "arctime"); break;
4942 case mp_version:mp_print(mp, "mpversion"); break;
4943 case envelope_of:mp_print(mp, "envelope"); break;
4944 default: mp_print(mp, ".."); break;
4949 @ \MP\ also has a bunch of internal parameters that a user might want to
4950 fuss with. Every such parameter has an identifying code number, defined here.
4953 enum mp_given_internal {
4954 mp_tracing_titles=1, /* show titles online when they appear */
4955 mp_tracing_equations, /* show each variable when it becomes known */
4956 mp_tracing_capsules, /* show capsules too */
4957 mp_tracing_choices, /* show the control points chosen for paths */
4958 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4959 mp_tracing_commands, /* show commands and operations before they are performed */
4960 mp_tracing_restores, /* show when a variable or internal is restored */
4961 mp_tracing_macros, /* show macros before they are expanded */
4962 mp_tracing_output, /* show digitized edges as they are output */
4963 mp_tracing_stats, /* show memory usage at end of job */
4964 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4965 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4966 mp_year, /* the current year (e.g., 1984) */
4967 mp_month, /* the current month (e.g., 3 $\equiv$ March) */
4968 mp_day, /* the current day of the month */
4969 mp_time, /* the number of minutes past midnight when this job started */
4970 mp_char_code, /* the number of the next character to be output */
4971 mp_char_ext, /* the extension code of the next character to be output */
4972 mp_char_wd, /* the width of the next character to be output */
4973 mp_char_ht, /* the height of the next character to be output */
4974 mp_char_dp, /* the depth of the next character to be output */
4975 mp_char_ic, /* the italic correction of the next character to be output */
4976 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4977 mp_pausing, /* positive to display lines on the terminal before they are read */
4978 mp_showstopping, /* positive to stop after each \&{show} command */
4979 mp_fontmaking, /* positive if font metric output is to be produced */
4980 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4981 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4982 mp_miterlimit, /* controls miter length as in \ps */
4983 mp_warning_check, /* controls error message when variable value is large */
4984 mp_boundary_char, /* the right boundary character for ligatures */
4985 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4986 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4987 mp_default_color_model, /* the default color model for unspecified items */
4988 mp_restore_clip_color,
4989 mp_procset, /* wether or not create PostScript command shortcuts */
4990 mp_gtroffmode /* whether the user specified |-troff| on the command line */
4995 @d max_given_internal mp_gtroffmode
4998 scaled *internal; /* the values of internal quantities */
4999 char **int_name; /* their names */
5000 int int_ptr; /* the maximum internal quantity defined so far */
5001 int max_internal; /* current maximum number of internal quantities */
5003 @ @<Option variables@>=
5006 @ @<Allocate or initialize ...@>=
5007 mp->max_internal=2*max_given_internal;
5008 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5009 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5010 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5012 @ @<Exported function ...@>=
5013 int mp_troff_mode(MP mp);
5016 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5018 @ @<Set initial ...@>=
5019 for (k=0;k<= mp->max_internal; k++ ) {
5021 mp->int_name[k]=NULL;
5023 mp->int_ptr=max_given_internal;
5025 @ The symbolic names for internal quantities are put into \MP's hash table
5026 by using a routine called |primitive|, which will be defined later. Let us
5027 enter them now, so that we don't have to list all those names again
5030 @<Put each of \MP's primitives into the hash table@>=
5031 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5032 @:tracingtitles_}{\&{tracingtitles} primitive@>
5033 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5034 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5035 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5036 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5037 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5038 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5039 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5040 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5041 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5042 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5043 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5044 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5045 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5046 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5047 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5048 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5049 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5050 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5051 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5052 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5053 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5054 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5055 mp_primitive(mp, "year",internal_quantity,mp_year);
5056 @:mp_year_}{\&{year} primitive@>
5057 mp_primitive(mp, "month",internal_quantity,mp_month);
5058 @:mp_month_}{\&{month} primitive@>
5059 mp_primitive(mp, "day",internal_quantity,mp_day);
5060 @:mp_day_}{\&{day} primitive@>
5061 mp_primitive(mp, "time",internal_quantity,mp_time);
5062 @:time_}{\&{time} primitive@>
5063 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5064 @:mp_char_code_}{\&{charcode} primitive@>
5065 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5066 @:mp_char_ext_}{\&{charext} primitive@>
5067 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5068 @:mp_char_wd_}{\&{charwd} primitive@>
5069 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5070 @:mp_char_ht_}{\&{charht} primitive@>
5071 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5072 @:mp_char_dp_}{\&{chardp} primitive@>
5073 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5074 @:mp_char_ic_}{\&{charic} primitive@>
5075 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5076 @:mp_design_size_}{\&{designsize} primitive@>
5077 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5078 @:mp_pausing_}{\&{pausing} primitive@>
5079 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5080 @:mp_showstopping_}{\&{showstopping} primitive@>
5081 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5082 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5083 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5084 @:mp_linejoin_}{\&{linejoin} primitive@>
5085 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5086 @:mp_linecap_}{\&{linecap} primitive@>
5087 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5088 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5089 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5090 @:mp_warning_check_}{\&{warningcheck} primitive@>
5091 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5092 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5093 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5094 @:mp_prologues_}{\&{prologues} primitive@>
5095 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5096 @:mp_true_corners_}{\&{truecorners} primitive@>
5097 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5098 @:mp_procset_}{\&{mpprocset} primitive@>
5099 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5100 @:troffmode_}{\&{troffmode} primitive@>
5101 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5102 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5103 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5104 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5106 @ Colors can be specified in four color models. In the special
5107 case of |no_model|, MetaPost does not output any color operator to
5108 the postscript output.
5110 Note: these values are passed directly on to |with_option|. This only
5111 works because the other possible values passed to |with_option| are
5112 8 and 10 respectively (from |with_pen| and |with_picture|).
5114 There is a first state, that is only used for |gs_colormodel|. It flags
5115 the fact that there has not been any kind of color specification by
5116 the user so far in the game.
5119 enum mp_color_model {
5124 mp_uninitialized_model=9
5128 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5129 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5130 mp->internal[mp_restore_clip_color]=unity;
5132 @ Well, we do have to list the names one more time, for use in symbolic
5135 @<Initialize table...@>=
5136 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5137 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5138 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5139 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5140 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5141 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5142 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5143 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5144 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5145 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5146 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5147 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5148 mp->int_name[mp_year]=xstrdup("year");
5149 mp->int_name[mp_month]=xstrdup("month");
5150 mp->int_name[mp_day]=xstrdup("day");
5151 mp->int_name[mp_time]=xstrdup("time");
5152 mp->int_name[mp_char_code]=xstrdup("charcode");
5153 mp->int_name[mp_char_ext]=xstrdup("charext");
5154 mp->int_name[mp_char_wd]=xstrdup("charwd");
5155 mp->int_name[mp_char_ht]=xstrdup("charht");
5156 mp->int_name[mp_char_dp]=xstrdup("chardp");
5157 mp->int_name[mp_char_ic]=xstrdup("charic");
5158 mp->int_name[mp_design_size]=xstrdup("designsize");
5159 mp->int_name[mp_pausing]=xstrdup("pausing");
5160 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5161 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5162 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5163 mp->int_name[mp_linecap]=xstrdup("linecap");
5164 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5165 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5166 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5167 mp->int_name[mp_prologues]=xstrdup("prologues");
5168 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5169 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5170 mp->int_name[mp_procset]=xstrdup("mpprocset");
5171 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5172 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5174 @ The following procedure, which is called just before \MP\ initializes its
5175 input and output, establishes the initial values of the date and time.
5176 @^system dependencies@>
5178 Note that the values are |scaled| integers. Hence \MP\ can no longer
5179 be used after the year 32767.
5182 void mp_fix_date_and_time (MP mp) {
5183 time_t aclock = time ((time_t *) 0);
5184 struct tm *tmptr = localtime (&aclock);
5185 mp->internal[mp_time]=
5186 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5187 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5188 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5189 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5193 void mp_fix_date_and_time (MP mp) ;
5195 @ \MP\ is occasionally supposed to print diagnostic information that
5196 goes only into the transcript file, unless |mp_tracing_online| is positive.
5197 Now that we have defined |mp_tracing_online| we can define
5198 two routines that adjust the destination of print commands:
5201 void mp_begin_diagnostic (MP mp) ;
5202 void mp_end_diagnostic (MP mp,boolean blank_line);
5203 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) ;
5205 @ @<Basic printing...@>=
5206 @<Declare a function called |true_line|@>
5207 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5208 mp->old_setting=mp->selector;
5209 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5211 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5215 void mp_end_diagnostic (MP mp,boolean blank_line) {
5216 /* restore proper conditions after tracing */
5217 mp_print_nl(mp, "");
5218 if ( blank_line ) mp_print_ln(mp);
5219 mp->selector=mp->old_setting;
5225 unsigned int old_setting;
5227 @ We will occasionally use |begin_diagnostic| in connection with line-number
5228 printing, as follows. (The parameter |s| is typically |"Path"| or
5229 |"Cycle spec"|, etc.)
5231 @<Basic printing...@>=
5232 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) {
5233 mp_begin_diagnostic(mp);
5234 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5235 mp_print(mp, " at line ");
5236 mp_print_int(mp, mp_true_line(mp));
5237 mp_print(mp, t); mp_print_char(mp, ':');
5240 @ The 256 |ASCII_code| characters are grouped into classes by means of
5241 the |char_class| table. Individual class numbers have no semantic
5242 or syntactic significance, except in a few instances defined here.
5243 There's also |max_class|, which can be used as a basis for additional
5244 class numbers in nonstandard extensions of \MP.
5246 @d digit_class 0 /* the class number of \.{0123456789} */
5247 @d period_class 1 /* the class number of `\..' */
5248 @d space_class 2 /* the class number of spaces and nonstandard characters */
5249 @d percent_class 3 /* the class number of `\.\%' */
5250 @d string_class 4 /* the class number of `\."' */
5251 @d right_paren_class 8 /* the class number of `\.)' */
5252 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5253 @d letter_class 9 /* letters and the underline character */
5254 @d left_bracket_class 17 /* `\.[' */
5255 @d right_bracket_class 18 /* `\.]' */
5256 @d invalid_class 20 /* bad character in the input */
5257 @d max_class 20 /* the largest class number */
5260 int char_class[256]; /* the class numbers */
5262 @ If changes are made to accommodate non-ASCII character sets, they should
5263 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5264 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5265 @^system dependencies@>
5267 @<Set initial ...@>=
5268 for (k='0';k<='9';k++)
5269 mp->char_class[k]=digit_class;
5270 mp->char_class['.']=period_class;
5271 mp->char_class[' ']=space_class;
5272 mp->char_class['%']=percent_class;
5273 mp->char_class['"']=string_class;
5274 mp->char_class[',']=5;
5275 mp->char_class[';']=6;
5276 mp->char_class['(']=7;
5277 mp->char_class[')']=right_paren_class;
5278 for (k='A';k<= 'Z';k++ )
5279 mp->char_class[k]=letter_class;
5280 for (k='a';k<='z';k++)
5281 mp->char_class[k]=letter_class;
5282 mp->char_class['_']=letter_class;
5283 mp->char_class['<']=10;
5284 mp->char_class['=']=10;
5285 mp->char_class['>']=10;
5286 mp->char_class[':']=10;
5287 mp->char_class['|']=10;
5288 mp->char_class['`']=11;
5289 mp->char_class['\'']=11;
5290 mp->char_class['+']=12;
5291 mp->char_class['-']=12;
5292 mp->char_class['/']=13;
5293 mp->char_class['*']=13;
5294 mp->char_class['\\']=13;
5295 mp->char_class['!']=14;
5296 mp->char_class['?']=14;
5297 mp->char_class['#']=15;
5298 mp->char_class['&']=15;
5299 mp->char_class['@@']=15;
5300 mp->char_class['$']=15;
5301 mp->char_class['^']=16;
5302 mp->char_class['~']=16;
5303 mp->char_class['[']=left_bracket_class;
5304 mp->char_class[']']=right_bracket_class;
5305 mp->char_class['{']=19;
5306 mp->char_class['}']=19;
5308 mp->char_class[k]=invalid_class;
5309 mp->char_class['\t']=space_class;
5310 mp->char_class['\f']=space_class;
5311 for (k=127;k<=255;k++)
5312 mp->char_class[k]=invalid_class;
5314 @* \[13] The hash table.
5315 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5316 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5317 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5318 table, it is never removed.
5320 The actual sequence of characters forming a symbolic token is
5321 stored in the |str_pool| array together with all the other strings. An
5322 auxiliary array |hash| consists of items with two halfword fields per
5323 word. The first of these, called |next(p)|, points to the next identifier
5324 belonging to the same coalesced list as the identifier corresponding to~|p|;
5325 and the other, called |text(p)|, points to the |str_start| entry for
5326 |p|'s identifier. If position~|p| of the hash table is empty, we have
5327 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5328 hash list, we have |next(p)=0|.
5330 An auxiliary pointer variable called |hash_used| is maintained in such a
5331 way that all locations |p>=hash_used| are nonempty. The global variable
5332 |st_count| tells how many symbolic tokens have been defined, if statistics
5335 The first 256 locations of |hash| are reserved for symbols of length one.
5337 There's a parallel array called |eqtb| that contains the current equivalent
5338 values of each symbolic token. The entries of this array consist of
5339 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5340 piece of information that qualifies the |eq_type|).
5342 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5343 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5344 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5345 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5346 @d hash_base 257 /* hashing actually starts here */
5347 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5350 pointer hash_used; /* allocation pointer for |hash| */
5351 integer st_count; /* total number of known identifiers */
5353 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5354 since they are used in error recovery.
5356 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5357 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5358 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5359 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5360 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5361 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5362 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5363 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5364 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5365 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5366 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5367 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5368 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5369 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5370 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5371 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5372 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5375 two_halves *hash; /* the hash table */
5376 two_halves *eqtb; /* the equivalents */
5378 @ @<Allocate or initialize ...@>=
5379 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5380 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5382 @ @<Dealloc variables@>=
5387 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5388 for (k=2;k<=hash_end;k++) {
5389 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5392 @ @<Initialize table entries...@>=
5393 mp->hash_used=frozen_inaccessible; /* nothing is used */
5395 text(frozen_bad_vardef)=intern("a bad variable");
5396 text(frozen_etex)=intern("etex");
5397 text(frozen_mpx_break)=intern("mpxbreak");
5398 text(frozen_fi)=intern("fi");
5399 text(frozen_end_group)=intern("endgroup");
5400 text(frozen_end_def)=intern("enddef");
5401 text(frozen_end_for)=intern("endfor");
5402 text(frozen_semicolon)=intern(";");
5403 text(frozen_colon)=intern(":");
5404 text(frozen_slash)=intern("/");
5405 text(frozen_left_bracket)=intern("[");
5406 text(frozen_right_delimiter)=intern(")");
5407 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5408 eq_type(frozen_right_delimiter)=right_delimiter;
5410 @ @<Check the ``constant'' values...@>=
5411 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5413 @ Here is the subroutine that searches the hash table for an identifier
5414 that matches a given string of length~|l| appearing in |buffer[j..
5415 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5416 will always be found, and the corresponding hash table address
5420 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5421 integer h; /* hash code */
5422 pointer p; /* index in |hash| array */
5423 pointer k; /* index in |buffer| array */
5425 @<Treat special case of length 1 and |break|@>;
5427 @<Compute the hash code |h|@>;
5428 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5430 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5433 @<Insert a new symbolic token after |p|, then
5434 make |p| point to it and |break|@>;
5441 @ @<Treat special case of length 1...@>=
5442 p=mp->buffer[j]+1; text(p)=p-1; return p;
5445 @ @<Insert a new symbolic...@>=
5450 mp_overflow(mp, "hash size",mp->hash_size);
5451 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5452 decr(mp->hash_used);
5453 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5454 next(p)=mp->hash_used;
5458 for (k=j;k<=j+l-1;k++) {
5459 append_char(mp->buffer[k]);
5461 text(p)=mp_make_string(mp);
5462 mp->str_ref[text(p)]=max_str_ref;
5468 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5469 should be a prime number. The theory of hashing tells us to expect fewer
5470 than two table probes, on the average, when the search is successful.
5471 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5472 @^Vitter, Jeffrey Scott@>
5474 @<Compute the hash code |h|@>=
5476 for (k=j+1;k<=j+l-1;k++){
5477 h=h+h+mp->buffer[k];
5478 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5481 @ @<Search |eqtb| for equivalents equal to |p|@>=
5482 for (q=1;q<=hash_end;q++) {
5483 if ( equiv(q)==p ) {
5484 mp_print_nl(mp, "EQUIV(");
5485 mp_print_int(mp, q);
5486 mp_print_char(mp, ')');
5490 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5491 table, together with their command code (which will be the |eq_type|)
5492 and an operand (which will be the |equiv|). The |primitive| procedure
5493 does this, in a way that no \MP\ user can. The global value |cur_sym|
5494 contains the new |eqtb| pointer after |primitive| has acted.
5497 void mp_primitive (MP mp, const char *ss, halfword c, halfword o) {
5498 pool_pointer k; /* index into |str_pool| */
5499 small_number j; /* index into |buffer| */
5500 small_number l; /* length of the string */
5503 k=mp->str_start[s]; l=str_stop(s)-k;
5504 /* we will move |s| into the (empty) |buffer| */
5505 for (j=0;j<=l-1;j++) {
5506 mp->buffer[j]=mp->str_pool[k+j];
5508 mp->cur_sym=mp_id_lookup(mp, 0,l);
5509 if ( s>=256 ) { /* we don't want to have the string twice */
5510 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5512 eq_type(mp->cur_sym)=c;
5513 equiv(mp->cur_sym)=o;
5517 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5518 by their |eq_type| alone. These primitives are loaded into the hash table
5521 @<Put each of \MP's primitives into the hash table@>=
5522 mp_primitive(mp, "..",path_join,0);
5523 @:.._}{\.{..} primitive@>
5524 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5525 @:[ }{\.{[} primitive@>
5526 mp_primitive(mp, "]",right_bracket,0);
5527 @:] }{\.{]} primitive@>
5528 mp_primitive(mp, "}",right_brace,0);
5529 @:]]}{\.{\char`\}} primitive@>
5530 mp_primitive(mp, "{",left_brace,0);
5531 @:][}{\.{\char`\{} primitive@>
5532 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5533 @:: }{\.{:} primitive@>
5534 mp_primitive(mp, "::",double_colon,0);
5535 @::: }{\.{::} primitive@>
5536 mp_primitive(mp, "||:",bchar_label,0);
5537 @:::: }{\.{\char'174\char'174:} primitive@>
5538 mp_primitive(mp, ":=",assignment,0);
5539 @::=_}{\.{:=} primitive@>
5540 mp_primitive(mp, ",",comma,0);
5541 @:, }{\., primitive@>
5542 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5543 @:; }{\.; primitive@>
5544 mp_primitive(mp, "\\",relax,0);
5545 @:]]\\}{\.{\char`\\} primitive@>
5547 mp_primitive(mp, "addto",add_to_command,0);
5548 @:add_to_}{\&{addto} primitive@>
5549 mp_primitive(mp, "atleast",at_least,0);
5550 @:at_least_}{\&{atleast} primitive@>
5551 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5552 @:begin_group_}{\&{begingroup} primitive@>
5553 mp_primitive(mp, "controls",controls,0);
5554 @:controls_}{\&{controls} primitive@>
5555 mp_primitive(mp, "curl",curl_command,0);
5556 @:curl_}{\&{curl} primitive@>
5557 mp_primitive(mp, "delimiters",delimiters,0);
5558 @:delimiters_}{\&{delimiters} primitive@>
5559 mp_primitive(mp, "endgroup",end_group,0);
5560 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5561 @:endgroup_}{\&{endgroup} primitive@>
5562 mp_primitive(mp, "everyjob",every_job_command,0);
5563 @:every_job_}{\&{everyjob} primitive@>
5564 mp_primitive(mp, "exitif",exit_test,0);
5565 @:exit_if_}{\&{exitif} primitive@>
5566 mp_primitive(mp, "expandafter",expand_after,0);
5567 @:expand_after_}{\&{expandafter} primitive@>
5568 mp_primitive(mp, "interim",interim_command,0);
5569 @:interim_}{\&{interim} primitive@>
5570 mp_primitive(mp, "let",let_command,0);
5571 @:let_}{\&{let} primitive@>
5572 mp_primitive(mp, "newinternal",new_internal,0);
5573 @:new_internal_}{\&{newinternal} primitive@>
5574 mp_primitive(mp, "of",of_token,0);
5575 @:of_}{\&{of} primitive@>
5576 mp_primitive(mp, "randomseed",mp_random_seed,0);
5577 @:mp_random_seed_}{\&{randomseed} primitive@>
5578 mp_primitive(mp, "save",save_command,0);
5579 @:save_}{\&{save} primitive@>
5580 mp_primitive(mp, "scantokens",scan_tokens,0);
5581 @:scan_tokens_}{\&{scantokens} primitive@>
5582 mp_primitive(mp, "shipout",ship_out_command,0);
5583 @:ship_out_}{\&{shipout} primitive@>
5584 mp_primitive(mp, "skipto",skip_to,0);
5585 @:skip_to_}{\&{skipto} primitive@>
5586 mp_primitive(mp, "special",special_command,0);
5587 @:special}{\&{special} primitive@>
5588 mp_primitive(mp, "fontmapfile",special_command,1);
5589 @:fontmapfile}{\&{fontmapfile} primitive@>
5590 mp_primitive(mp, "fontmapline",special_command,2);
5591 @:fontmapline}{\&{fontmapline} primitive@>
5592 mp_primitive(mp, "step",step_token,0);
5593 @:step_}{\&{step} primitive@>
5594 mp_primitive(mp, "str",str_op,0);
5595 @:str_}{\&{str} primitive@>
5596 mp_primitive(mp, "tension",tension,0);
5597 @:tension_}{\&{tension} primitive@>
5598 mp_primitive(mp, "to",to_token,0);
5599 @:to_}{\&{to} primitive@>
5600 mp_primitive(mp, "until",until_token,0);
5601 @:until_}{\&{until} primitive@>
5602 mp_primitive(mp, "within",within_token,0);
5603 @:within_}{\&{within} primitive@>
5604 mp_primitive(mp, "write",write_command,0);
5605 @:write_}{\&{write} primitive@>
5607 @ Each primitive has a corresponding inverse, so that it is possible to
5608 display the cryptic numeric contents of |eqtb| in symbolic form.
5609 Every call of |primitive| in this program is therefore accompanied by some
5610 straightforward code that forms part of the |print_cmd_mod| routine
5613 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5614 case add_to_command:mp_print(mp, "addto"); break;
5615 case assignment:mp_print(mp, ":="); break;
5616 case at_least:mp_print(mp, "atleast"); break;
5617 case bchar_label:mp_print(mp, "||:"); break;
5618 case begin_group:mp_print(mp, "begingroup"); break;
5619 case colon:mp_print(mp, ":"); break;
5620 case comma:mp_print(mp, ","); break;
5621 case controls:mp_print(mp, "controls"); break;
5622 case curl_command:mp_print(mp, "curl"); break;
5623 case delimiters:mp_print(mp, "delimiters"); break;
5624 case double_colon:mp_print(mp, "::"); break;
5625 case end_group:mp_print(mp, "endgroup"); break;
5626 case every_job_command:mp_print(mp, "everyjob"); break;
5627 case exit_test:mp_print(mp, "exitif"); break;
5628 case expand_after:mp_print(mp, "expandafter"); break;
5629 case interim_command:mp_print(mp, "interim"); break;
5630 case left_brace:mp_print(mp, "{"); break;
5631 case left_bracket:mp_print(mp, "["); break;
5632 case let_command:mp_print(mp, "let"); break;
5633 case new_internal:mp_print(mp, "newinternal"); break;
5634 case of_token:mp_print(mp, "of"); break;
5635 case path_join:mp_print(mp, ".."); break;
5636 case mp_random_seed:mp_print(mp, "randomseed"); break;
5637 case relax:mp_print_char(mp, '\\'); break;
5638 case right_brace:mp_print(mp, "}"); break;
5639 case right_bracket:mp_print(mp, "]"); break;
5640 case save_command:mp_print(mp, "save"); break;
5641 case scan_tokens:mp_print(mp, "scantokens"); break;
5642 case semicolon:mp_print(mp, ";"); break;
5643 case ship_out_command:mp_print(mp, "shipout"); break;
5644 case skip_to:mp_print(mp, "skipto"); break;
5645 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5646 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5647 mp_print(mp, "special"); break;
5648 case step_token:mp_print(mp, "step"); break;
5649 case str_op:mp_print(mp, "str"); break;
5650 case tension:mp_print(mp, "tension"); break;
5651 case to_token:mp_print(mp, "to"); break;
5652 case until_token:mp_print(mp, "until"); break;
5653 case within_token:mp_print(mp, "within"); break;
5654 case write_command:mp_print(mp, "write"); break;
5656 @ We will deal with the other primitives later, at some point in the program
5657 where their |eq_type| and |equiv| values are more meaningful. For example,
5658 the primitives for macro definitions will be loaded when we consider the
5659 routines that define macros.
5660 It is easy to find where each particular
5661 primitive was treated by looking in the index at the end; for example, the
5662 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5664 @* \[14] Token lists.
5665 A \MP\ token is either symbolic or numeric or a string, or it denotes
5666 a macro parameter or capsule; so there are five corresponding ways to encode it
5668 internally: (1)~A symbolic token whose hash code is~|p|
5669 is represented by the number |p|, in the |info| field of a single-word
5670 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5671 represented in a two-word node of~|mem|; the |type| field is |known|,
5672 the |name_type| field is |token|, and the |value| field holds~|v|.
5673 The fact that this token appears in a two-word node rather than a
5674 one-word node is, of course, clear from the node address.
5675 (3)~A string token is also represented in a two-word node; the |type|
5676 field is |mp_string_type|, the |name_type| field is |token|, and the
5677 |value| field holds the corresponding |str_number|. (4)~Capsules have
5678 |name_type=capsule|, and their |type| and |value| fields represent
5679 arbitrary values (in ways to be explained later). (5)~Macro parameters
5680 are like symbolic tokens in that they appear in |info| fields of
5681 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5682 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5683 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5684 Actual values of these parameters are kept in a separate stack, as we will
5685 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5686 of course, chosen so that there will be no confusion between symbolic
5687 tokens and parameters of various types.
5690 the `\\{type}' field of a node has nothing to do with ``type'' in a
5691 printer's sense. It's curious that the same word is used in such different ways.
5693 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5694 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5695 @d token_node_size 2 /* the number of words in a large token node */
5696 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5697 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5698 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5699 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5700 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5702 @<Check the ``constant''...@>=
5703 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5705 @ We have set aside a two word node beginning at |null| so that we can have
5706 |value(null)=0|. We will make use of this coincidence later.
5708 @<Initialize table entries...@>=
5709 link(null)=null; value(null)=0;
5711 @ A numeric token is created by the following trivial routine.
5714 pointer mp_new_num_tok (MP mp,scaled v) {
5715 pointer p; /* the new node */
5716 p=mp_get_node(mp, token_node_size); value(p)=v;
5717 type(p)=mp_known; name_type(p)=mp_token;
5721 @ A token list is a singly linked list of nodes in |mem|, where
5722 each node contains a token and a link. Here's a subroutine that gets rid
5723 of a token list when it is no longer needed.
5725 @c void mp_flush_token_list (MP mp,pointer p) {
5726 pointer q; /* the node being recycled */
5729 if ( q>=mp->hi_mem_min ) {
5733 case mp_vacuous: case mp_boolean_type: case mp_known:
5735 case mp_string_type:
5736 delete_str_ref(value(q));
5738 case unknown_types: case mp_pen_type: case mp_path_type:
5739 case mp_picture_type: case mp_pair_type: case mp_color_type:
5740 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5741 case mp_proto_dependent: case mp_independent:
5742 mp_recycle_value(mp,q);
5744 default: mp_confusion(mp, "token");
5745 @:this can't happen token}{\quad token@>
5747 mp_free_node(mp, q,token_node_size);
5752 @ The procedure |show_token_list|, which prints a symbolic form of
5753 the token list that starts at a given node |p|, illustrates these
5754 conventions. The token list being displayed should not begin with a reference
5755 count. However, the procedure is intended to be fairly robust, so that if the
5756 memory links are awry or if |p| is not really a pointer to a token list,
5757 almost nothing catastrophic can happen.
5759 An additional parameter |q| is also given; this parameter is either null
5760 or it points to a node in the token list where a certain magic computation
5761 takes place that will be explained later. (Basically, |q| is non-null when
5762 we are printing the two-line context information at the time of an error
5763 message; |q| marks the place corresponding to where the second line
5766 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5767 of printing exceeds a given limit~|l|; the length of printing upon entry is
5768 assumed to be a given amount called |null_tally|. (Note that
5769 |show_token_list| sometimes uses itself recursively to print
5770 variable names within a capsule.)
5773 Unusual entries are printed in the form of all-caps tokens
5774 preceded by a space, e.g., `\.{\char`\ BAD}'.
5776 @<Declare the procedure called |show_token_list|@>=
5777 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5778 integer null_tally) ;
5781 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5782 integer null_tally) {
5783 small_number class,c; /* the |char_class| of previous and new tokens */
5784 integer r,v; /* temporary registers */
5785 class=percent_class;
5786 mp->tally=null_tally;
5787 while ( (p!=null) && (mp->tally<l) ) {
5789 @<Do magic computation@>;
5790 @<Display token |p| and set |c| to its class;
5791 but |return| if there are problems@>;
5795 mp_print(mp, " ETC.");
5800 @ @<Display token |p| and set |c| to its class...@>=
5801 c=letter_class; /* the default */
5802 if ( (p<0)||(p>mp->mem_end) ) {
5803 mp_print(mp, " CLOBBERED"); return;
5806 if ( p<mp->hi_mem_min ) {
5807 @<Display two-word token@>;
5810 if ( r>=expr_base ) {
5811 @<Display a parameter token@>;
5815 @<Display a collective subscript@>
5817 mp_print(mp, " IMPOSSIBLE");
5822 if ( (r<0)||(r>mp->max_str_ptr) ) {
5823 mp_print(mp, " NONEXISTENT");
5826 @<Print string |r| as a symbolic token
5827 and set |c| to its class@>;
5833 @ @<Display two-word token@>=
5834 if ( name_type(p)==mp_token ) {
5835 if ( type(p)==mp_known ) {
5836 @<Display a numeric token@>;
5837 } else if ( type(p)!=mp_string_type ) {
5838 mp_print(mp, " BAD");
5841 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5844 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5845 mp_print(mp, " BAD");
5847 mp_print_capsule(mp,p); c=right_paren_class;
5850 @ @<Display a numeric token@>=
5851 if ( class==digit_class )
5852 mp_print_char(mp, ' ');
5855 if ( class==left_bracket_class )
5856 mp_print_char(mp, ' ');
5857 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5858 c=right_bracket_class;
5860 mp_print_scaled(mp, v); c=digit_class;
5864 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5865 But we will see later (in the |print_variable_name| routine) that
5866 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5868 @<Display a collective subscript@>=
5870 if ( class==left_bracket_class )
5871 mp_print_char(mp, ' ');
5872 mp_print(mp, "[]"); c=right_bracket_class;
5875 @ @<Display a parameter token@>=
5877 if ( r<suffix_base ) {
5878 mp_print(mp, "(EXPR"); r=r-(expr_base);
5880 } else if ( r<text_base ) {
5881 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5884 mp_print(mp, "(TEXT"); r=r-(text_base);
5887 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5891 @ @<Print string |r| as a symbolic token...@>=
5893 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5896 case letter_class:mp_print_char(mp, '.'); break;
5897 case isolated_classes: break;
5898 default: mp_print_char(mp, ' '); break;
5901 mp_print_str(mp, r);
5905 void mp_print_capsule (MP mp, pointer p);
5907 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5908 void mp_print_capsule (MP mp, pointer p) {
5909 mp_print_char(mp, '('); mp_print_exp(mp,p,0); mp_print_char(mp, ')');
5912 @ Macro definitions are kept in \MP's memory in the form of token lists
5913 that have a few extra one-word nodes at the beginning.
5915 The first node contains a reference count that is used to tell when the
5916 list is no longer needed. To emphasize the fact that a reference count is
5917 present, we shall refer to the |info| field of this special node as the
5919 @^reference counts@>
5921 The next node or nodes after the reference count serve to describe the
5922 formal parameters. They consist of zero or more parameter tokens followed
5923 by a code for the type of macro.
5926 /* reference count preceding a macro definition or picture header */
5927 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5928 @d general_macro 0 /* preface to a macro defined with a parameter list */
5929 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5930 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5931 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5932 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5933 @d of_macro 5 /* preface to a macro with
5934 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5935 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5936 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5939 void mp_delete_mac_ref (MP mp,pointer p) {
5940 /* |p| points to the reference count of a macro list that is
5941 losing one reference */
5942 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5943 else decr(ref_count(p));
5946 @ The following subroutine displays a macro, given a pointer to its
5950 @<Declare the procedure called |print_cmd_mod|@>
5951 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5952 pointer r; /* temporary storage */
5953 p=link(p); /* bypass the reference count */
5954 while ( info(p)>text_macro ){
5955 r=link(p); link(p)=null;
5956 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5957 if ( l>0 ) l=l-mp->tally; else return;
5958 } /* control printing of `\.{ETC.}' */
5962 case general_macro:mp_print(mp, "->"); break;
5964 case primary_macro: case secondary_macro: case tertiary_macro:
5965 mp_print_char(mp, '<');
5966 mp_print_cmd_mod(mp, param_type,info(p));
5967 mp_print(mp, ">->");
5969 case expr_macro:mp_print(mp, "<expr>->"); break;
5970 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5971 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5972 case text_macro:mp_print(mp, "<text>->"); break;
5973 } /* there are no other cases */
5974 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5977 @* \[15] Data structures for variables.
5978 The variables of \MP\ programs can be simple, like `\.x', or they can
5979 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5980 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5981 example, `\.{boolean} \.{x[]a.b}'. It's time for us to study how such
5982 things are represented inside of the computer.
5984 Each variable value occupies two consecutive words, either in a two-word
5985 node called a value node, or as a two-word subfield of a larger node. One
5986 of those two words is called the |value| field; it is an integer,
5987 containing either a |scaled| numeric value or the representation of some
5988 other type of quantity. (It might also be subdivided into halfwords, in
5989 which case it is referred to by other names instead of |value|.) The other
5990 word is broken into subfields called |type|, |name_type|, and |link|. The
5991 |type| field is a quarterword that specifies the variable's type, and
5992 |name_type| is a quarterword from which \MP\ can reconstruct the
5993 variable's name (sometimes by using the |link| field as well). Thus, only
5994 1.25 words are actually devoted to the value itself; the other
5995 three-quarters of a word are overhead, but they aren't wasted because they
5996 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5998 In this section we shall be concerned only with the structural aspects of
5999 variables, not their values. Later parts of the program will change the
6000 |type| and |value| fields, but we shall treat those fields as black boxes
6001 whose contents should not be touched.
6003 However, if the |type| field is |mp_structured|, there is no |value| field,
6004 and the second word is broken into two pointer fields called |attr_head|
6005 and |subscr_head|. Those fields point to additional nodes that
6006 contain structural information, as we shall see.
6008 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6009 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6010 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6011 @d value_node_size 2 /* the number of words in a value node */
6013 @ An attribute node is three words long. Two of these words contain |type|
6014 and |value| fields as described above, and the third word contains
6015 additional information: There is an |attr_loc| field, which contains the
6016 hash address of the token that names this attribute; and there's also a
6017 |parent| field, which points to the value node of |mp_structured| type at the
6018 next higher level (i.e., at the level to which this attribute is
6019 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6020 |link| field points to the next attribute with the same parent; these are
6021 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6022 final attribute node links to the constant |end_attr|, whose |attr_loc|
6023 field is greater than any legal hash address. The |attr_head| in the
6024 parent points to a node whose |name_type| is |mp_structured_root|; this
6025 node represents the null attribute, i.e., the variable that is relevant
6026 when no attributes are attached to the parent. The |attr_head| node
6027 has the fields of either
6028 a value node, a subscript node, or an attribute node, depending on what
6029 the parent would be if it were not structured; but the subscript and
6030 attribute fields are ignored, so it effectively contains only the data of
6031 a value node. The |link| field in this special node points to an attribute
6032 node whose |attr_loc| field is zero; the latter node represents a collective
6033 subscript `\.{[]}' attached to the parent, and its |link| field points to
6034 the first non-special attribute node (or to |end_attr| if there are none).
6036 A subscript node likewise occupies three words, with |type| and |value| fields
6037 plus extra information; its |name_type| is |subscr|. In this case the
6038 third word is called the |subscript| field, which is a |scaled| integer.
6039 The |link| field points to the subscript node with the next larger
6040 subscript, if any; otherwise the |link| points to the attribute node
6041 for collective subscripts at this level. We have seen that the latter node
6042 contains an upward pointer, so that the parent can be deduced.
6044 The |name_type| in a parent-less value node is |root|, and the |link|
6045 is the hash address of the token that names this value.
6047 In other words, variables have a hierarchical structure that includes
6048 enough threads running around so that the program is able to move easily
6049 between siblings, parents, and children. An example should be helpful:
6050 (The reader is advised to draw a picture while reading the following
6051 description, since that will help to firm up the ideas.)
6052 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6053 and `\.{x20b}' have been mentioned in a user's program, where
6054 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6055 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6056 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6057 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6058 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6059 node and |r| to a subscript node. (Are you still following this? Use
6060 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6061 |type(q)| and |value(q)|; furthermore
6062 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6063 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6064 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6065 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6066 |qq| is a three-word ``attribute-as-value'' node with |type(qq)=numeric_type|
6067 (assuming that \.{x5} is numeric, because |qq| represents `\.{x[]}'
6068 with no further attributes), |name_type(qq)=structured_root|,
6069 |attr_loc(qq)=0|, |parent(qq)=p|, and
6070 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6071 an attribute node representing `\.{x[][]}', which has never yet
6072 occurred; its |type| field is |undefined|, and its |value| field is
6073 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6074 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6075 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6076 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6077 (Maybe colored lines will help untangle your picture.)
6078 Node |r| is a subscript node with |type| and |value|
6079 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6080 and |link(r)=r1| is another subscript node. To complete the picture,
6081 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6082 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6083 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6084 and we finish things off with three more nodes
6085 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6086 with a larger sheet of paper.) The value of variable \.{x20b}
6087 appears in node~|qqq2|, as you can well imagine.
6089 If the example in the previous paragraph doesn't make things crystal
6090 clear, a glance at some of the simpler subroutines below will reveal how
6091 things work out in practice.
6093 The only really unusual thing about these conventions is the use of
6094 collective subscript attributes. The idea is to avoid repeating a lot of
6095 type information when many elements of an array are identical macros
6096 (for which distinct values need not be stored) or when they don't have
6097 all of the possible attributes. Branches of the structure below collective
6098 subscript attributes do not carry actual values except for macro identifiers;
6099 branches of the structure below subscript nodes do not carry significant
6100 information in their collective subscript attributes.
6102 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6103 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6104 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6105 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6106 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6107 @d attr_node_size 3 /* the number of words in an attribute node */
6108 @d subscr_node_size 3 /* the number of words in a subscript node */
6109 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6111 @<Initialize table...@>=
6112 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6114 @ Variables of type \&{pair} will have values that point to four-word
6115 nodes containing two numeric values. The first of these values has
6116 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6117 the |link| in the first points back to the node whose |value| points
6118 to this four-word node.
6120 Variables of type \&{transform} are similar, but in this case their
6121 |value| points to a 12-word node containing six values, identified by
6122 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6123 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6124 Finally, variables of type \&{color} have 3~values in 6~words
6125 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6127 When an entire structured variable is saved, the |root| indication
6128 is temporarily replaced by |saved_root|.
6130 Some variables have no name; they just are used for temporary storage
6131 while expressions are being evaluated. We call them {\sl capsules}.
6133 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6134 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6135 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6136 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6137 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6138 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6139 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6140 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6141 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6142 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6143 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6144 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6145 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6146 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6148 @d pair_node_size 4 /* the number of words in a pair node */
6149 @d transform_node_size 12 /* the number of words in a transform node */
6150 @d color_node_size 6 /* the number of words in a color node */
6151 @d cmykcolor_node_size 8 /* the number of words in a color node */
6154 small_number big_node_size[mp_pair_type+1];
6155 small_number sector0[mp_pair_type+1];
6156 small_number sector_offset[mp_black_part_sector+1];
6158 @ The |sector0| array gives for each big node type, |name_type| values
6159 for its first subfield; the |sector_offset| array gives for each
6160 |name_type| value, the offset from the first subfield in words;
6161 and the |big_node_size| array gives the size in words for each type of
6165 mp->big_node_size[mp_transform_type]=transform_node_size;
6166 mp->big_node_size[mp_pair_type]=pair_node_size;
6167 mp->big_node_size[mp_color_type]=color_node_size;
6168 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6169 mp->sector0[mp_transform_type]=mp_x_part_sector;
6170 mp->sector0[mp_pair_type]=mp_x_part_sector;
6171 mp->sector0[mp_color_type]=mp_red_part_sector;
6172 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6173 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6174 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6176 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6177 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6179 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6180 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6183 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6184 procedure call |init_big_node(p)| will allocate a pair or transform node
6185 for~|p|. The individual parts of such nodes are initially of type
6189 void mp_init_big_node (MP mp,pointer p) {
6190 pointer q; /* the new node */
6191 small_number s; /* its size */
6192 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6195 @<Make variable |q+s| newly independent@>;
6196 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6199 link(q)=p; value(p)=q;
6202 @ The |id_transform| function creates a capsule for the
6203 identity transformation.
6206 pointer mp_id_transform (MP mp) {
6207 pointer p,q,r; /* list manipulation registers */
6208 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6209 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6210 r=q+transform_node_size;
6213 type(r)=mp_known; value(r)=0;
6215 value(xx_part_loc(q))=unity;
6216 value(yy_part_loc(q))=unity;
6220 @ Tokens are of type |tag_token| when they first appear, but they point
6221 to |null| until they are first used as the root of a variable.
6222 The following subroutine establishes the root node on such grand occasions.
6225 void mp_new_root (MP mp,pointer x) {
6226 pointer p; /* the new node */
6227 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6228 link(p)=x; equiv(x)=p;
6231 @ These conventions for variable representation are illustrated by the
6232 |print_variable_name| routine, which displays the full name of a
6233 variable given only a pointer to its two-word value packet.
6236 void mp_print_variable_name (MP mp, pointer p);
6239 void mp_print_variable_name (MP mp, pointer p) {
6240 pointer q; /* a token list that will name the variable's suffix */
6241 pointer r; /* temporary for token list creation */
6242 while ( name_type(p)>=mp_x_part_sector ) {
6243 @<Preface the output with a part specifier; |return| in the
6244 case of a capsule@>;
6247 while ( name_type(p)>mp_saved_root ) {
6248 @<Ascend one level, pushing a token onto list |q|
6249 and replacing |p| by its parent@>;
6251 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6252 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6254 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6255 mp_flush_token_list(mp, r);
6258 @ @<Ascend one level, pushing a token onto list |q|...@>=
6260 if ( name_type(p)==mp_subscr ) {
6261 r=mp_new_num_tok(mp, subscript(p));
6264 } while (name_type(p)!=mp_attr);
6265 } else if ( name_type(p)==mp_structured_root ) {
6266 p=link(p); goto FOUND;
6268 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6269 @:this can't happen var}{\quad var@>
6270 r=mp_get_avail(mp); info(r)=attr_loc(p);
6277 @ @<Preface the output with a part specifier...@>=
6278 { switch (name_type(p)) {
6279 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6280 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6281 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6282 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6283 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6284 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6285 case mp_red_part_sector: mp_print(mp, "red"); break;
6286 case mp_green_part_sector: mp_print(mp, "green"); break;
6287 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6288 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6289 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6290 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6291 case mp_black_part_sector: mp_print(mp, "black"); break;
6292 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6294 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6297 } /* there are no other cases */
6298 mp_print(mp, "part ");
6299 p=link(p-mp->sector_offset[name_type(p)]);
6302 @ The |interesting| function returns |true| if a given variable is not
6303 in a capsule, or if the user wants to trace capsules.
6306 boolean mp_interesting (MP mp,pointer p) {
6307 small_number t; /* a |name_type| */
6308 if ( mp->internal[mp_tracing_capsules]>0 ) {
6312 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6313 t=name_type(link(p-mp->sector_offset[t]));
6314 return (t!=mp_capsule);
6318 @ Now here is a subroutine that converts an unstructured type into an
6319 equivalent structured type, by inserting a |mp_structured| node that is
6320 capable of growing. This operation is done only when |name_type(p)=root|,
6321 |subscr|, or |attr|.
6323 The procedure returns a pointer to the new node that has taken node~|p|'s
6324 place in the structure. Node~|p| itself does not move, nor are its
6325 |value| or |type| fields changed in any way.
6328 pointer mp_new_structure (MP mp,pointer p) {
6329 pointer q,r=0; /* list manipulation registers */
6330 switch (name_type(p)) {
6332 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6335 @<Link a new subscript node |r| in place of node |p|@>;
6338 @<Link a new attribute node |r| in place of node |p|@>;
6341 mp_confusion(mp, "struct");
6342 @:this can't happen struct}{\quad struct@>
6345 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6346 attr_head(r)=p; name_type(p)=mp_structured_root;
6347 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6348 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6349 attr_loc(q)=collective_subscript;
6353 @ @<Link a new subscript node |r| in place of node |p|@>=
6358 } while (name_type(q)!=mp_attr);
6359 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6363 r=mp_get_node(mp, subscr_node_size);
6364 link(q)=r; subscript(r)=subscript(p);
6367 @ If the attribute is |collective_subscript|, there are two pointers to
6368 node~|p|, so we must change both of them.
6370 @<Link a new attribute node |r| in place of node |p|@>=
6372 q=parent(p); r=attr_head(q);
6376 r=mp_get_node(mp, attr_node_size); link(q)=r;
6377 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6378 if ( attr_loc(p)==collective_subscript ) {
6379 q=subscr_head_loc(parent(p));
6380 while ( link(q)!=p ) q=link(q);
6385 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6386 list of suffixes; it returns a pointer to the corresponding two-word
6387 value. For example, if |t| points to token \.x followed by a numeric
6388 token containing the value~7, |find_variable| finds where the value of
6389 \.{x7} is stored in memory. This may seem a simple task, and it
6390 usually is, except when \.{x7} has never been referenced before.
6391 Indeed, \.x may never have even been subscripted before; complexities
6392 arise with respect to updating the collective subscript information.
6394 If a macro type is detected anywhere along path~|t|, or if the first
6395 item on |t| isn't a |tag_token|, the value |null| is returned.
6396 Otherwise |p| will be a non-null pointer to a node such that
6397 |undefined<type(p)<mp_structured|.
6399 @d abort_find { return null; }
6402 pointer mp_find_variable (MP mp,pointer t) {
6403 pointer p,q,r,s; /* nodes in the ``value'' line */
6404 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6405 integer n; /* subscript or attribute */
6406 memory_word save_word; /* temporary storage for a word of |mem| */
6408 p=info(t); t=link(t);
6409 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6410 if ( equiv(p)==null ) mp_new_root(mp, p);
6413 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6414 if ( t<mp->hi_mem_min ) {
6415 @<Descend one level for the subscript |value(t)|@>
6417 @<Descend one level for the attribute |info(t)|@>;
6421 if ( type(pp)>=mp_structured ) {
6422 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6424 if ( type(p)==mp_structured ) p=attr_head(p);
6425 if ( type(p)==undefined ) {
6426 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6427 type(p)=type(pp); value(p)=null;
6432 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6433 |pp|~stays in the collective line while |p|~goes through actual subscript
6436 @<Make sure that both nodes |p| and |pp|...@>=
6437 if ( type(pp)!=mp_structured ) {
6438 if ( type(pp)>mp_structured ) abort_find;
6439 ss=mp_new_structure(mp, pp);
6442 }; /* now |type(pp)=mp_structured| */
6443 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6444 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6446 @ We want this part of the program to be reasonably fast, in case there are
6448 lots of subscripts at the same level of the data structure. Therefore
6449 we store an ``infinite'' value in the word that appears at the end of the
6450 subscript list, even though that word isn't part of a subscript node.
6452 @<Descend one level for the subscript |value(t)|@>=
6455 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6456 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6457 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6460 } while (n>subscript(s));
6461 if ( n==subscript(s) ) {
6464 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6465 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6467 mp->mem[subscript_loc(q)]=save_word;
6470 @ @<Descend one level for the attribute |info(t)|@>=
6476 } while (n>attr_loc(ss));
6477 if ( n<attr_loc(ss) ) {
6478 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6479 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6480 parent(qq)=pp; ss=qq;
6485 pp=ss; s=attr_head(p);
6488 } while (n>attr_loc(s));
6489 if ( n==attr_loc(s) ) {
6492 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6493 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6499 @ Variables lose their former values when they appear in a type declaration,
6500 or when they are defined to be macros or \&{let} equal to something else.
6501 A subroutine will be defined later that recycles the storage associated
6502 with any particular |type| or |value|; our goal now is to study a higher
6503 level process called |flush_variable|, which selectively frees parts of a
6506 This routine has some complexity because of examples such as
6507 `\hbox{\tt numeric x[]a[]b}'
6508 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6509 `\hbox{\tt vardef x[]a[]=...}'
6510 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6511 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6512 to handle such examples is to use recursion; so that's what we~do.
6515 Parameter |p| points to the root information of the variable;
6516 parameter |t| points to a list of one-word nodes that represent
6517 suffixes, with |info=collective_subscript| for subscripts.
6520 @<Declare subroutines for printing expressions@>
6521 @<Declare basic dependency-list subroutines@>
6522 @<Declare the recycling subroutines@>
6523 void mp_flush_cur_exp (MP mp,scaled v) ;
6524 @<Declare the procedure called |flush_below_variable|@>
6527 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6528 pointer q,r; /* list manipulation */
6529 halfword n; /* attribute to match */
6531 if ( type(p)!=mp_structured ) return;
6532 n=info(t); t=link(t);
6533 if ( n==collective_subscript ) {
6534 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6535 while ( name_type(q)==mp_subscr ){
6536 mp_flush_variable(mp, q,t,discard_suffixes);
6538 if ( type(q)==mp_structured ) r=q;
6539 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6549 } while (attr_loc(p)<n);
6550 if ( attr_loc(p)!=n ) return;
6552 if ( discard_suffixes ) {
6553 mp_flush_below_variable(mp, p);
6555 if ( type(p)==mp_structured ) p=attr_head(p);
6556 mp_recycle_value(mp, p);
6560 @ The next procedure is simpler; it wipes out everything but |p| itself,
6561 which becomes undefined.
6563 @<Declare the procedure called |flush_below_variable|@>=
6564 void mp_flush_below_variable (MP mp, pointer p);
6567 void mp_flush_below_variable (MP mp,pointer p) {
6568 pointer q,r; /* list manipulation registers */
6569 if ( type(p)!=mp_structured ) {
6570 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6573 while ( name_type(q)==mp_subscr ) {
6574 mp_flush_below_variable(mp, q); r=q; q=link(q);
6575 mp_free_node(mp, r,subscr_node_size);
6577 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6578 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6579 else mp_free_node(mp, r,subscr_node_size);
6580 /* we assume that |subscr_node_size=attr_node_size| */
6582 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6583 } while (q!=end_attr);
6588 @ Just before assigning a new value to a variable, we will recycle the
6589 old value and make the old value undefined. The |und_type| routine
6590 determines what type of undefined value should be given, based on
6591 the current type before recycling.
6594 small_number mp_und_type (MP mp,pointer p) {
6596 case undefined: case mp_vacuous:
6598 case mp_boolean_type: case mp_unknown_boolean:
6599 return mp_unknown_boolean;
6600 case mp_string_type: case mp_unknown_string:
6601 return mp_unknown_string;
6602 case mp_pen_type: case mp_unknown_pen:
6603 return mp_unknown_pen;
6604 case mp_path_type: case mp_unknown_path:
6605 return mp_unknown_path;
6606 case mp_picture_type: case mp_unknown_picture:
6607 return mp_unknown_picture;
6608 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6609 case mp_pair_type: case mp_numeric_type:
6611 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6612 return mp_numeric_type;
6613 } /* there are no other cases */
6617 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6618 of a symbolic token. It must remove any variable structure or macro
6619 definition that is currently attached to that symbol. If the |saving|
6620 parameter is true, a subsidiary structure is saved instead of destroyed.
6623 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6624 pointer q; /* |equiv(p)| */
6626 switch (eq_type(p) % outer_tag) {
6628 case secondary_primary_macro:
6629 case tertiary_secondary_macro:
6630 case expression_tertiary_macro:
6631 if ( ! saving ) mp_delete_mac_ref(mp, q);
6636 name_type(q)=mp_saved_root;
6638 mp_flush_below_variable(mp, q);
6639 mp_free_node(mp,q,value_node_size);
6646 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6649 @* \[16] Saving and restoring equivalents.
6650 The nested structure given by \&{begingroup} and \&{endgroup}
6651 allows |eqtb| entries to be saved and restored, so that temporary changes
6652 can be made without difficulty. When the user requests a current value to
6653 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6654 \&{endgroup} ultimately causes the old values to be removed from the save
6655 stack and put back in their former places.
6657 The save stack is a linked list containing three kinds of entries,
6658 distinguished by their |info| fields. If |p| points to a saved item,
6662 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6663 such an item to the save stack and each \&{endgroup} cuts back the stack
6664 until the most recent such entry has been removed.
6667 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6668 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6672 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6673 integer to be restored to internal parameter number~|q|. Such entries
6674 are generated by \&{interim} commands.
6677 The global variable |save_ptr| points to the top item on the save stack.
6679 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6680 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6681 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6682 link((A))=mp->save_ptr; mp->save_ptr=(A);
6686 pointer save_ptr; /* the most recently saved item */
6688 @ @<Set init...@>=mp->save_ptr=null;
6690 @ The |save_variable| routine is given a hash address |q|; it salts this
6691 address in the save stack, together with its current equivalent,
6692 then makes token~|q| behave as though it were brand new.
6694 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6695 things from the stack when the program is not inside a group, so there's
6696 no point in wasting the space.
6698 @c void mp_save_variable (MP mp,pointer q) {
6699 pointer p; /* temporary register */
6700 if ( mp->save_ptr!=null ){
6701 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6702 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6704 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6707 @ Similarly, |save_internal| is given the location |q| of an internal
6708 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6711 @c void mp_save_internal (MP mp,halfword q) {
6712 pointer p; /* new item for the save stack */
6713 if ( mp->save_ptr!=null ){
6714 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6715 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6719 @ At the end of a group, the |unsave| routine restores all of the saved
6720 equivalents in reverse order. This routine will be called only when there
6721 is at least one boundary item on the save stack.
6724 void mp_unsave (MP mp) {
6725 pointer q; /* index to saved item */
6726 pointer p; /* temporary register */
6727 while ( info(mp->save_ptr)!=0 ) {
6728 q=info(mp->save_ptr);
6730 if ( mp->internal[mp_tracing_restores]>0 ) {
6731 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6732 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6733 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6734 mp_end_diagnostic(mp, false);
6736 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6738 if ( mp->internal[mp_tracing_restores]>0 ) {
6739 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6740 mp_print_text(q); mp_print_char(mp, '}');
6741 mp_end_diagnostic(mp, false);
6743 mp_clear_symbol(mp, q,false);
6744 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6745 if ( eq_type(q) % outer_tag==tag_token ) {
6747 if ( p!=null ) name_type(p)=mp_root;
6750 p=link(mp->save_ptr);
6751 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6753 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6756 @* \[17] Data structures for paths.
6757 When a \MP\ user specifies a path, \MP\ will create a list of knots
6758 and control points for the associated cubic spline curves. If the
6759 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6760 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6761 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6762 @:Bezier}{B\'ezier, Pierre Etienne@>
6763 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6764 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6767 There is a 8-word node for each knot $z_k$, containing one word of
6768 control information and six words for the |x| and |y| coordinates of
6769 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6770 |left_type| and |right_type| fields, which each occupy a quarter of
6771 the first word in the node; they specify properties of the curve as it
6772 enters and leaves the knot. There's also a halfword |link| field,
6773 which points to the following knot, and a final supplementary word (of
6774 which only a quarter is used).
6776 If the path is a closed contour, knots 0 and |n| are identical;
6777 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6778 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6779 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6780 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6782 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6783 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6784 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6785 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6786 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6787 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6788 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6789 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6790 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6791 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6792 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6793 @d left_coord(A) mp->mem[(A)+2].sc
6794 /* coordinate of previous control point given |x_loc| or |y_loc| */
6795 @d right_coord(A) mp->mem[(A)+4].sc
6796 /* coordinate of next control point given |x_loc| or |y_loc| */
6797 @d knot_node_size 8 /* number of words in a knot node */
6801 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6802 mp_explicit, /* |left_type| or |right_type| when control points are known */
6803 mp_given, /* |left_type| or |right_type| when a direction is given */
6804 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6805 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6809 @ Before the B\'ezier control points have been calculated, the memory
6810 space they will ultimately occupy is taken up by information that can be
6811 used to compute them. There are four cases:
6814 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6815 the knot in the same direction it entered; \MP\ will figure out a
6819 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6820 knot in a direction depending on the angle at which it enters the next
6821 knot and on the curl parameter stored in |right_curl|.
6824 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6825 knot in a nonzero direction stored as an |angle| in |right_given|.
6828 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6829 point for leaving this knot has already been computed; it is in the
6830 |right_x| and |right_y| fields.
6833 The rules for |left_type| are similar, but they refer to the curve entering
6834 the knot, and to \\{left} fields instead of \\{right} fields.
6836 Non-|explicit| control points will be chosen based on ``tension'' parameters
6837 in the |left_tension| and |right_tension| fields. The
6838 `\&{atleast}' option is represented by negative tension values.
6839 @:at_least_}{\&{atleast} primitive@>
6841 For example, the \MP\ path specification
6842 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6844 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6846 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6847 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6848 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6850 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6851 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6852 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6853 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6854 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6855 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6856 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6857 Of course, this example is more complicated than anything a normal user
6860 These types must satisfy certain restrictions because of the form of \MP's
6862 (i)~|open| type never appears in the same node together with |endpoint|,
6864 (ii)~The |right_type| of a node is |explicit| if and only if the
6865 |left_type| of the following node is |explicit|.
6866 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6868 @d left_curl left_x /* curl information when entering this knot */
6869 @d left_given left_x /* given direction when entering this knot */
6870 @d left_tension left_y /* tension information when entering this knot */
6871 @d right_curl right_x /* curl information when leaving this knot */
6872 @d right_given right_x /* given direction when leaving this knot */
6873 @d right_tension right_y /* tension information when leaving this knot */
6875 @ Knots can be user-supplied, or they can be created by program code,
6876 like the |split_cubic| function, or |copy_path|. The distinction is
6877 needed for the cleanup routine that runs after |split_cubic|, because
6878 it should only delete knots it has previously inserted, and never
6879 anything that was user-supplied. In order to be able to differentiate
6880 one knot from another, we will set |originator(p):=mp_metapost_user| when
6881 it appeared in the actual metapost program, and
6882 |originator(p):=mp_program_code| in all other cases.
6884 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6888 mp_program_code=0, /* not created by a user */
6889 mp_metapost_user /* created by a user */
6892 @ Here is a routine that prints a given knot list
6893 in symbolic form. It illustrates the conventions discussed above,
6894 and checks for anomalies that might arise while \MP\ is being debugged.
6896 @<Declare subroutines for printing expressions@>=
6897 void mp_pr_path (MP mp,pointer h);
6900 void mp_pr_path (MP mp,pointer h) {
6901 pointer p,q; /* for list traversal */
6905 if ( (p==null)||(q==null) ) {
6906 mp_print_nl(mp, "???"); return; /* this won't happen */
6909 @<Print information for adjacent knots |p| and |q|@>;
6912 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6913 @<Print two dots, followed by |given| or |curl| if present@>;
6916 if ( left_type(h)!=mp_endpoint )
6917 mp_print(mp, "cycle");
6920 @ @<Print information for adjacent knots...@>=
6921 mp_print_two(mp, x_coord(p),y_coord(p));
6922 switch (right_type(p)) {
6924 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6926 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6930 @<Print control points between |p| and |q|, then |goto done1|@>;
6933 @<Print information for a curve that begins |open|@>;
6937 @<Print information for a curve that begins |curl| or |given|@>;
6940 mp_print(mp, "???"); /* can't happen */
6944 if ( left_type(q)<=mp_explicit ) {
6945 mp_print(mp, "..control?"); /* can't happen */
6947 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6948 @<Print tension between |p| and |q|@>;
6951 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6952 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6954 @<Print two dots...@>=
6956 mp_print_nl(mp, " ..");
6957 if ( left_type(p)==mp_given ) {
6958 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6959 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6960 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6961 } else if ( left_type(p)==mp_curl ){
6962 mp_print(mp, "{curl ");
6963 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6967 @ @<Print tension between |p| and |q|@>=
6969 mp_print(mp, "..tension ");
6970 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6971 mp_print_scaled(mp, abs(right_tension(p)));
6972 if ( right_tension(p)!=left_tension(q) ){
6973 mp_print(mp, " and ");
6974 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6975 mp_print_scaled(mp, abs(left_tension(q)));
6979 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6981 mp_print(mp, "..controls ");
6982 mp_print_two(mp, right_x(p),right_y(p));
6983 mp_print(mp, " and ");
6984 if ( left_type(q)!=mp_explicit ) {
6985 mp_print(mp, "??"); /* can't happen */
6988 mp_print_two(mp, left_x(q),left_y(q));
6993 @ @<Print information for a curve that begins |open|@>=
6994 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
6995 mp_print(mp, "{open?}"); /* can't happen */
6999 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7000 \MP's default curl is present.
7002 @<Print information for a curve that begins |curl|...@>=
7004 if ( left_type(p)==mp_open )
7005 mp_print(mp, "??"); /* can't happen */
7007 if ( right_type(p)==mp_curl ) {
7008 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7010 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7011 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7012 mp_print_scaled(mp, mp->n_sin);
7014 mp_print_char(mp, '}');
7017 @ It is convenient to have another version of |pr_path| that prints the path
7018 as a diagnostic message.
7020 @<Declare subroutines for printing expressions@>=
7021 void mp_print_path (MP mp,pointer h, const char *s, boolean nuline) {
7022 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7025 mp_end_diagnostic(mp, true);
7028 @ If we want to duplicate a knot node, we can say |copy_knot|:
7031 pointer mp_copy_knot (MP mp,pointer p) {
7032 pointer q; /* the copy */
7033 int k; /* runs through the words of a knot node */
7034 q=mp_get_node(mp, knot_node_size);
7035 for (k=0;k<knot_node_size;k++) {
7036 mp->mem[q+k]=mp->mem[p+k];
7038 originator(q)=originator(p);
7042 @ The |copy_path| routine makes a clone of a given path.
7045 pointer mp_copy_path (MP mp, pointer p) {
7046 pointer q,pp,qq; /* for list manipulation */
7047 q=mp_copy_knot(mp, p);
7050 link(qq)=mp_copy_knot(mp, pp);
7059 @ Just before |ship_out|, knot lists are exported for printing.
7061 The |gr_XXXX| macros are defined in |mppsout.h|.
7064 mp_knot *mp_export_knot (MP mp,pointer p) {
7065 mp_knot *q; /* the copy */
7068 q = mp_xmalloc(mp, 1, sizeof (mp_knot));
7069 memset(q,0,sizeof (mp_knot));
7070 gr_left_type(q) = left_type(p);
7071 gr_right_type(q) = right_type(p);
7072 gr_x_coord(q) = x_coord(p);
7073 gr_y_coord(q) = y_coord(p);
7074 gr_left_x(q) = left_x(p);
7075 gr_left_y(q) = left_y(p);
7076 gr_right_x(q) = right_x(p);
7077 gr_right_y(q) = right_y(p);
7078 gr_originator(q) = originator(p);
7082 @ The |export_knot_list| routine therefore also makes a clone
7086 mp_knot *mp_export_knot_list (MP mp, pointer p) {
7087 mp_knot *q, *qq; /* for list manipulation */
7088 pointer pp; /* for list manipulation */
7091 q=mp_export_knot(mp, p);
7094 gr_next_knot(qq)=mp_export_knot(mp, pp);
7095 qq=gr_next_knot(qq);
7103 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7104 returns a pointer to the first node of the copy, if the path is a cycle,
7105 but to the final node of a non-cyclic copy. The global
7106 variable |path_tail| will point to the final node of the original path;
7107 this trick makes it easier to implement `\&{doublepath}'.
7109 All node types are assumed to be |endpoint| or |explicit| only.
7112 pointer mp_htap_ypoc (MP mp,pointer p) {
7113 pointer q,pp,qq,rr; /* for list manipulation */
7114 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7117 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7118 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7119 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7120 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7121 originator(qq)=originator(pp);
7122 if ( link(pp)==p ) {
7123 link(q)=qq; mp->path_tail=pp; return q;
7125 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7130 pointer path_tail; /* the node that links to the beginning of a path */
7132 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7133 calling the following subroutine.
7135 @<Declare the recycling subroutines@>=
7136 void mp_toss_knot_list (MP mp,pointer p) ;
7139 void mp_toss_knot_list (MP mp,pointer p) {
7140 pointer q; /* the node being freed */
7141 pointer r; /* the next node */
7145 mp_free_node(mp, q,knot_node_size); q=r;
7149 @* \[18] Choosing control points.
7150 Now we must actually delve into one of \MP's more difficult routines,
7151 the |make_choices| procedure that chooses angles and control points for
7152 the splines of a curve when the user has not specified them explicitly.
7153 The parameter to |make_choices| points to a list of knots and
7154 path information, as described above.
7156 A path decomposes into independent segments at ``breakpoint'' knots,
7157 which are knots whose left and right angles are both prespecified in
7158 some way (i.e., their |left_type| and |right_type| aren't both open).
7161 @<Declare the procedure called |solve_choices|@>
7162 void mp_make_choices (MP mp,pointer knots) {
7163 pointer h; /* the first breakpoint */
7164 pointer p,q; /* consecutive breakpoints being processed */
7165 @<Other local variables for |make_choices|@>;
7166 check_arith; /* make sure that |arith_error=false| */
7167 if ( mp->internal[mp_tracing_choices]>0 )
7168 mp_print_path(mp, knots,", before choices",true);
7169 @<If consecutive knots are equal, join them explicitly@>;
7170 @<Find the first breakpoint, |h|, on the path;
7171 insert an artificial breakpoint if the path is an unbroken cycle@>;
7174 @<Fill in the control points between |p| and the next breakpoint,
7175 then advance |p| to that breakpoint@>;
7177 if ( mp->internal[mp_tracing_choices]>0 )
7178 mp_print_path(mp, knots,", after choices",true);
7179 if ( mp->arith_error ) {
7180 @<Report an unexpected problem during the choice-making@>;
7184 @ @<Report an unexpected problem during the choice...@>=
7186 print_err("Some number got too big");
7187 @.Some number got too big@>
7188 help2("The path that I just computed is out of range.")
7189 ("So it will probably look funny. Proceed, for a laugh.");
7190 mp_put_get_error(mp); mp->arith_error=false;
7193 @ Two knots in a row with the same coordinates will always be joined
7194 by an explicit ``curve'' whose control points are identical with the
7197 @<If consecutive knots are equal, join them explicitly@>=
7201 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7202 right_type(p)=mp_explicit;
7203 if ( left_type(p)==mp_open ) {
7204 left_type(p)=mp_curl; left_curl(p)=unity;
7206 left_type(q)=mp_explicit;
7207 if ( right_type(q)==mp_open ) {
7208 right_type(q)=mp_curl; right_curl(q)=unity;
7210 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7211 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7216 @ If there are no breakpoints, it is necessary to compute the direction
7217 angles around an entire cycle. In this case the |left_type| of the first
7218 node is temporarily changed to |end_cycle|.
7220 @<Find the first breakpoint, |h|, on the path...@>=
7223 if ( left_type(h)!=mp_open ) break;
7224 if ( right_type(h)!=mp_open ) break;
7227 left_type(h)=mp_end_cycle; break;
7231 @ If |right_type(p)<given| and |q=link(p)|, we must have
7232 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7234 @<Fill in the control points between |p| and the next breakpoint...@>=
7236 if ( right_type(p)>=mp_given ) {
7237 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7238 @<Fill in the control information between
7239 consecutive breakpoints |p| and |q|@>;
7240 } else if ( right_type(p)==mp_endpoint ) {
7241 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7245 @ This step makes it possible to transform an explicitly computed path without
7246 checking the |left_type| and |right_type| fields.
7248 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7250 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7251 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7254 @ Before we can go further into the way choices are made, we need to
7255 consider the underlying theory. The basic ideas implemented in |make_choices|
7256 are due to John Hobby, who introduced the notion of ``mock curvature''
7257 @^Hobby, John Douglas@>
7258 at a knot. Angles are chosen so that they preserve mock curvature when
7259 a knot is passed, and this has been found to produce excellent results.
7261 It is convenient to introduce some notations that simplify the necessary
7262 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7263 between knots |k| and |k+1|; and let
7264 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7265 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7266 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7267 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7268 $$\eqalign{z_k^+&=z_k+
7269 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7271 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7272 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7273 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7274 corresponding ``offset angles.'' These angles satisfy the condition
7275 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7276 whenever the curve leaves an intermediate knot~|k| in the direction that
7279 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7280 the curve at its beginning and ending points. This means that
7281 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7282 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7283 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7284 z\k^-,z\k^{\phantom+};t)$
7287 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7288 \qquad{\rm and}\qquad
7289 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7290 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7292 approximation to this true curvature that arises in the limit for
7293 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7294 The standard velocity function satisfies
7295 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7296 hence the mock curvatures are respectively
7297 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7298 \qquad{\rm and}\qquad
7299 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7301 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7302 determines $\phi_k$ when $\theta_k$ is known, so the task of
7303 angle selection is essentially to choose appropriate values for each
7304 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7305 from $(**)$, we obtain a system of linear equations of the form
7306 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7308 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7309 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7310 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7311 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7312 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7313 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7314 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7315 hence they have a unique solution. Moreover, in most cases the tensions
7316 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7317 solution numerically stable, and there is an exponential damping
7318 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7319 a factor of~$O(2^{-j})$.
7321 @ However, we still must consider the angles at the starting and ending
7322 knots of a non-cyclic path. These angles might be given explicitly, or
7323 they might be specified implicitly in terms of an amount of ``curl.''
7325 Let's assume that angles need to be determined for a non-cyclic path
7326 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7327 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7328 have been given for $0<k<n$, and it will be convenient to introduce
7329 equations of the same form for $k=0$ and $k=n$, where
7330 $$A_0=B_0=C_n=D_n=0.$$
7331 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7332 define $C_0=1$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7333 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7334 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7335 mock curvature at $z_1$; i.e.,
7336 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7337 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7338 This equation simplifies to
7339 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7340 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7341 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7342 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7343 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7344 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7345 hence the linear equations remain nonsingular.
7347 Similar considerations apply at the right end, when the final angle $\phi_n$
7348 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7349 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7351 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7352 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7353 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7355 When |make_choices| chooses angles, it must compute the coefficients of
7356 these linear equations, then solve the equations. To compute the coefficients,
7357 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7358 When the equations are solved, the chosen directions $\theta_k$ are put
7359 back into the form of control points by essentially computing sines and
7362 @ OK, we are ready to make the hard choices of |make_choices|.
7363 Most of the work is relegated to an auxiliary procedure
7364 called |solve_choices|, which has been introduced to keep
7365 |make_choices| from being extremely long.
7367 @<Fill in the control information between...@>=
7368 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7369 set $n$ to the length of the path@>;
7370 @<Remove |open| types at the breakpoints@>;
7371 mp_solve_choices(mp, p,q,n)
7373 @ It's convenient to precompute quantities that will be needed several
7374 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7375 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7376 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7377 and $z\k-z_k$ will be stored in |psi[k]|.
7380 int path_size; /* maximum number of knots between breakpoints of a path */
7383 scaled *delta; /* knot differences */
7384 angle *psi; /* turning angles */
7386 @ @<Allocate or initialize ...@>=
7392 @ @<Dealloc variables@>=
7398 @ @<Other local variables for |make_choices|@>=
7399 int k,n; /* current and final knot numbers */
7400 pointer s,t; /* registers for list traversal */
7401 scaled delx,dely; /* directions where |open| meets |explicit| */
7402 fraction sine,cosine; /* trig functions of various angles */
7404 @ @<Calculate the turning angles...@>=
7407 k=0; s=p; n=mp->path_size;
7410 mp->delta_x[k]=x_coord(t)-x_coord(s);
7411 mp->delta_y[k]=y_coord(t)-y_coord(s);
7412 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7414 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7415 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7416 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7417 mp_take_fraction(mp, mp->delta_y[k],sine),
7418 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7419 mp_take_fraction(mp, mp->delta_x[k],sine));
7422 if ( k==mp->path_size ) {
7423 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7424 goto RESTART; /* retry, loop size has changed */
7427 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7428 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7431 @ When we get to this point of the code, |right_type(p)| is either
7432 |given| or |curl| or |open|. If it is |open|, we must have
7433 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7434 case, the |open| type is converted to |given|; however, if the
7435 velocity coming into this knot is zero, the |open| type is
7436 converted to a |curl|, since we don't know the incoming direction.
7438 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7439 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7441 @<Remove |open| types at the breakpoints@>=
7442 if ( left_type(q)==mp_open ) {
7443 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7444 if ( (delx==0)&&(dely==0) ) {
7445 left_type(q)=mp_curl; left_curl(q)=unity;
7447 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7450 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7451 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7452 if ( (delx==0)&&(dely==0) ) {
7453 right_type(p)=mp_curl; right_curl(p)=unity;
7455 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7459 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7460 and exactly one of the breakpoints involves a curl. The simplest case occurs
7461 when |n=1| and there is a curl at both breakpoints; then we simply draw
7464 But before coding up the simple cases, we might as well face the general case,
7465 since we must deal with it sooner or later, and since the general case
7466 is likely to give some insight into the way simple cases can be handled best.
7468 When there is no cycle, the linear equations to be solved form a tridiagonal
7469 system, and we can apply the standard technique of Gaussian elimination
7470 to convert that system to a sequence of equations of the form
7471 $$\theta_0+u_0\theta_1=v_0,\quad
7472 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7473 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7475 It is possible to do this diagonalization while generating the equations.
7476 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7477 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7479 The procedure is slightly more complex when there is a cycle, but the
7480 basic idea will be nearly the same. In the cyclic case the right-hand
7481 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7482 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7483 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7484 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7485 eliminate the $w$'s from the system, after which the solution can be
7488 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7489 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7490 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7491 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7494 angle *theta; /* values of $\theta_k$ */
7495 fraction *uu; /* values of $u_k$ */
7496 angle *vv; /* values of $v_k$ */
7497 fraction *ww; /* values of $w_k$ */
7499 @ @<Allocate or initialize ...@>=
7505 @ @<Dealloc variables@>=
7511 @ @<Declare |mp_reallocate| functions@>=
7512 void mp_reallocate_paths (MP mp, int l);
7515 void mp_reallocate_paths (MP mp, int l) {
7516 XREALLOC (mp->delta_x, l, scaled);
7517 XREALLOC (mp->delta_y, l, scaled);
7518 XREALLOC (mp->delta, l, scaled);
7519 XREALLOC (mp->psi, l, angle);
7520 XREALLOC (mp->theta, l, angle);
7521 XREALLOC (mp->uu, l, fraction);
7522 XREALLOC (mp->vv, l, angle);
7523 XREALLOC (mp->ww, l, fraction);
7527 @ Our immediate problem is to get the ball rolling by setting up the
7528 first equation or by realizing that no equations are needed, and to fit
7529 this initialization into a framework suitable for the overall computation.
7531 @<Declare the procedure called |solve_choices|@>=
7532 @<Declare subroutines needed by |solve_choices|@>
7533 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7534 int k; /* current knot number */
7535 pointer r,s,t; /* registers for list traversal */
7536 @<Other local variables for |solve_choices|@>;
7541 @<Get the linear equations started; or |return|
7542 with the control points in place, if linear equations
7545 switch (left_type(s)) {
7546 case mp_end_cycle: case mp_open:
7547 @<Set up equation to match mock curvatures
7548 at $z_k$; then |goto found| with $\theta_n$
7549 adjusted to equal $\theta_0$, if a cycle has ended@>;
7552 @<Set up equation for a curl at $\theta_n$
7556 @<Calculate the given value of $\theta_n$
7559 } /* there are no other cases */
7564 @<Finish choosing angles and assigning control points@>;
7567 @ On the first time through the loop, we have |k=0| and |r| is not yet
7568 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7570 @<Get the linear equations started...@>=
7571 switch (right_type(s)) {
7573 if ( left_type(t)==mp_given ) {
7574 @<Reduce to simple case of two givens and |return|@>
7576 @<Set up the equation for a given value of $\theta_0$@>;
7580 if ( left_type(t)==mp_curl ) {
7581 @<Reduce to simple case of straight line and |return|@>
7583 @<Set up the equation for a curl at $\theta_0$@>;
7587 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7588 /* this begins a cycle */
7590 } /* there are no other cases */
7592 @ The general equation that specifies equality of mock curvature at $z_k$ is
7593 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7594 as derived above. We want to combine this with the already-derived equation
7595 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7597 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7599 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7600 -A_kw_{k-1}\theta_0$$
7601 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7602 fixed-point arithmetic, avoiding the chance of overflow while retaining
7605 The calculations will be performed in several registers that
7606 provide temporary storage for intermediate quantities.
7608 @<Other local variables for |solve_choices|@>=
7609 fraction aa,bb,cc,ff,acc; /* temporary registers */
7610 scaled dd,ee; /* likewise, but |scaled| */
7611 scaled lt,rt; /* tension values */
7613 @ @<Set up equation to match mock curvatures...@>=
7614 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7615 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7616 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7617 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7618 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7619 @<Calculate the values of $v_k$ and $w_k$@>;
7620 if ( left_type(s)==mp_end_cycle ) {
7621 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7625 @ Since tension values are never less than 3/4, the values |aa| and
7626 |bb| computed here are never more than 4/5.
7628 @<Calculate the values $\\{aa}=...@>=
7629 if ( abs(right_tension(r))==unity) {
7630 aa=fraction_half; dd=2*mp->delta[k];
7632 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7633 dd=mp_take_fraction(mp, mp->delta[k],
7634 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7636 if ( abs(left_tension(t))==unity ){
7637 bb=fraction_half; ee=2*mp->delta[k-1];
7639 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7640 ee=mp_take_fraction(mp, mp->delta[k-1],
7641 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7643 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7645 @ The ratio to be calculated in this step can be written in the form
7646 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7647 \\{cc}\cdot\\{dd},$$
7648 because of the quantities just calculated. The values of |dd| and |ee|
7649 will not be needed after this step has been performed.
7651 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7652 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7653 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7655 ff=mp_make_fraction(mp, lt,rt);
7656 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7657 dd=mp_take_fraction(mp, dd,ff);
7659 ff=mp_make_fraction(mp, rt,lt);
7660 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7661 ee=mp_take_fraction(mp, ee,ff);
7664 ff=mp_make_fraction(mp, ee,ee+dd)
7666 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7667 equation was specified by a curl. In that case we must use a special
7668 method of computation to prevent overflow.
7670 Fortunately, the calculations turn out to be even simpler in this ``hard''
7671 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7672 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7674 @<Calculate the values of $v_k$ and $w_k$@>=
7675 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7676 if ( right_type(r)==mp_curl ) {
7678 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7680 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7681 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7682 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7683 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7684 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7685 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7686 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7689 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7690 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7691 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7692 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7695 The idea in the following code is to observe that
7696 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7697 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7698 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7699 so we can solve for $\theta_n=\theta_0$.
7701 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7703 aa=0; bb=fraction_one; /* we have |k=n| */
7706 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7707 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7708 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7709 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7710 mp->theta[n]=aa; mp->vv[0]=aa;
7711 for (k=1;k<=n-1;k++) {
7712 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7717 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7718 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7720 @<Calculate the given value of $\theta_n$...@>=
7722 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7723 reduce_angle(mp->theta[n]);
7727 @ @<Set up the equation for a given value of $\theta_0$@>=
7729 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7730 reduce_angle(mp->vv[0]);
7731 mp->uu[0]=0; mp->ww[0]=0;
7734 @ @<Set up the equation for a curl at $\theta_0$@>=
7735 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7736 if ( (rt==unity)&&(lt==unity) )
7737 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7739 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7740 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7743 @ @<Set up equation for a curl at $\theta_n$...@>=
7744 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7745 if ( (rt==unity)&&(lt==unity) )
7746 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7748 ff=mp_curl_ratio(mp, cc,lt,rt);
7749 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7750 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7754 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7755 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7756 a somewhat tedious program to calculate
7757 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7758 \alpha^3\gamma+(3-\beta)\beta^2},$$
7759 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7760 is necessary only if the curl and tension are both large.)
7761 The values of $\alpha$ and $\beta$ will be at most~4/3.
7763 @<Declare subroutines needed by |solve_choices|@>=
7764 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7766 fraction alpha,beta,num,denom,ff; /* registers */
7767 alpha=mp_make_fraction(mp, unity,a_tension);
7768 beta=mp_make_fraction(mp, unity,b_tension);
7769 if ( alpha<=beta ) {
7770 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7771 gamma=mp_take_fraction(mp, gamma,ff);
7772 beta=beta / 010000; /* convert |fraction| to |scaled| */
7773 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7774 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7776 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7777 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7778 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7779 /* $1365\approx 2^{12}/3$ */
7780 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7782 if ( num>=denom+denom+denom+denom ) return fraction_four;
7783 else return mp_make_fraction(mp, num,denom);
7786 @ We're in the home stretch now.
7788 @<Finish choosing angles and assigning control points@>=
7789 for (k=n-1;k>=0;k--) {
7790 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7795 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7796 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7797 mp_set_controls(mp, s,t,k);
7801 @ The |set_controls| routine actually puts the control points into
7802 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7803 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7804 $\cos\phi$ needed in this calculation.
7810 fraction cf; /* sines and cosines */
7812 @ @<Declare subroutines needed by |solve_choices|@>=
7813 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7814 fraction rr,ss; /* velocities, divided by thrice the tension */
7815 scaled lt,rt; /* tensions */
7816 fraction sine; /* $\sin(\theta+\phi)$ */
7817 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7818 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7819 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7820 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7821 @<Decrease the velocities,
7822 if necessary, to stay inside the bounding triangle@>;
7824 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7825 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7826 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7827 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7828 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7829 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7830 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7831 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7832 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7833 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7834 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7835 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7836 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7839 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7840 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7841 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7842 there is no ``bounding triangle.''
7844 @<Decrease the velocities, if necessary...@>=
7845 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7846 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7847 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7849 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7850 if ( right_tension(p)<0 )
7851 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7852 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7853 if ( left_tension(q)<0 )
7854 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7855 ss=mp_make_fraction(mp, abs(mp->st),sine);
7859 @ Only the simple cases remain to be handled.
7861 @<Reduce to simple case of two givens and |return|@>=
7863 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7864 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7865 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7866 mp_set_controls(mp, p,q,0); return;
7869 @ @<Reduce to simple case of straight line and |return|@>=
7871 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7872 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7874 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7875 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7876 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7877 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7879 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7880 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7881 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7884 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7885 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7886 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7887 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7889 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7890 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7891 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7896 @* \[19] Measuring paths.
7897 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7898 allow the user to measure the bounding box of anything that can go into a
7899 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7900 by just finding the bounding box of the knots and the control points. We
7901 need a more accurate version of the bounding box, but we can still use the
7902 easy estimate to save time by focusing on the interesting parts of the path.
7904 @ Computing an accurate bounding box involves a theme that will come up again
7905 and again. Given a Bernshte{\u\i}n polynomial
7906 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7907 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7908 we can conveniently bisect its range as follows:
7911 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7914 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7915 |0<=k<n-j|, for |0<=j<n|.
7919 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7920 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7921 This formula gives us the coefficients of polynomials to use over the ranges
7922 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7924 @ Now here's a subroutine that's handy for all sorts of path computations:
7925 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7926 returns the unique |fraction| value |t| between 0 and~1 at which
7927 $B(a,b,c;t)$ changes from positive to negative, or returns
7928 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7929 is already negative at |t=0|), |crossing_point| returns the value zero.
7931 @d no_crossing { return (fraction_one+1); }
7932 @d one_crossing { return fraction_one; }
7933 @d zero_crossing { return 0; }
7934 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7936 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7937 integer d; /* recursive counter */
7938 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7939 if ( a<0 ) zero_crossing;
7942 if ( c>0 ) { no_crossing; }
7943 else if ( (a==0)&&(b==0) ) { no_crossing;}
7944 else { one_crossing; }
7946 if ( a==0 ) zero_crossing;
7947 } else if ( a==0 ) {
7948 if ( b<=0 ) zero_crossing;
7950 @<Use bisection to find the crossing point, if one exists@>;
7953 @ The general bisection method is quite simple when $n=2$, hence
7954 |crossing_point| does not take much time. At each stage in the
7955 recursion we have a subinterval defined by |l| and~|j| such that
7956 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7957 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7959 It is convenient for purposes of calculation to combine the values
7960 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7961 of bisection then corresponds simply to doubling $d$ and possibly
7962 adding~1. Furthermore it proves to be convenient to modify
7963 our previous conventions for bisection slightly, maintaining the
7964 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7965 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7966 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7968 The following code maintains the invariant relations
7969 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7970 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7971 it has been constructed in such a way that no arithmetic overflow
7972 will occur if the inputs satisfy
7973 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7975 @<Use bisection to find the crossing point...@>=
7976 d=1; x0=a; x1=a-b; x2=b-c;
7987 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7991 } while (d<fraction_one);
7992 return (d-fraction_one)
7994 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7995 a cubic corresponding to the |fraction| value~|t|.
7997 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7998 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8000 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8002 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8003 scaled x1,x2,x3; /* intermediate values */
8004 x1=t_of_the_way(knot_coord(p),right_coord(p));
8005 x2=t_of_the_way(right_coord(p),left_coord(q));
8006 x3=t_of_the_way(left_coord(q),knot_coord(q));
8007 x1=t_of_the_way(x1,x2);
8008 x2=t_of_the_way(x2,x3);
8009 return t_of_the_way(x1,x2);
8012 @ The actual bounding box information is stored in global variables.
8013 Since it is convenient to address the $x$ and $y$ information
8014 separately, we define arrays indexed by |x_code..y_code| and use
8015 macros to give them more convenient names.
8019 mp_x_code=0, /* index for |minx| and |maxx| */
8020 mp_y_code /* index for |miny| and |maxy| */
8024 @d minx mp->bbmin[mp_x_code]
8025 @d maxx mp->bbmax[mp_x_code]
8026 @d miny mp->bbmin[mp_y_code]
8027 @d maxy mp->bbmax[mp_y_code]
8030 scaled bbmin[mp_y_code+1];
8031 scaled bbmax[mp_y_code+1];
8032 /* the result of procedures that compute bounding box information */
8034 @ Now we're ready for the key part of the bounding box computation.
8035 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8036 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8037 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8039 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8040 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8041 The |c| parameter is |x_code| or |y_code|.
8043 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8044 boolean wavy; /* whether we need to look for extremes */
8045 scaled del1,del2,del3,del,dmax; /* proportional to the control
8046 points of a quadratic derived from a cubic */
8047 fraction t,tt; /* where a quadratic crosses zero */
8048 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8050 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8051 @<Check the control points against the bounding box and set |wavy:=true|
8052 if any of them lie outside@>;
8054 del1=right_coord(p)-knot_coord(p);
8055 del2=left_coord(q)-right_coord(p);
8056 del3=knot_coord(q)-left_coord(q);
8057 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8058 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8060 negate(del1); negate(del2); negate(del3);
8062 t=mp_crossing_point(mp, del1,del2,del3);
8063 if ( t<fraction_one ) {
8064 @<Test the extremes of the cubic against the bounding box@>;
8069 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8070 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8071 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8073 @ @<Check the control points against the bounding box and set...@>=
8075 if ( mp->bbmin[c]<=right_coord(p) )
8076 if ( right_coord(p)<=mp->bbmax[c] )
8077 if ( mp->bbmin[c]<=left_coord(q) )
8078 if ( left_coord(q)<=mp->bbmax[c] )
8081 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8082 section. We just set |del=0| in that case.
8084 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8085 if ( del1!=0 ) del=del1;
8086 else if ( del2!=0 ) del=del2;
8090 if ( abs(del2)>dmax ) dmax=abs(del2);
8091 if ( abs(del3)>dmax ) dmax=abs(del3);
8092 while ( dmax<fraction_half ) {
8093 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8097 @ Since |crossing_point| has tried to choose |t| so that
8098 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8099 slope, the value of |del2| computed below should not be positive.
8100 But rounding error could make it slightly positive in which case we
8101 must cut it to zero to avoid confusion.
8103 @<Test the extremes of the cubic against the bounding box@>=
8105 x=mp_eval_cubic(mp, p,q,t);
8106 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8107 del2=t_of_the_way(del2,del3);
8108 /* now |0,del2,del3| represent the derivative on the remaining interval */
8109 if ( del2>0 ) del2=0;
8110 tt=mp_crossing_point(mp, 0,-del2,-del3);
8111 if ( tt<fraction_one ) {
8112 @<Test the second extreme against the bounding box@>;
8116 @ @<Test the second extreme against the bounding box@>=
8118 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8119 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8122 @ Finding the bounding box of a path is basically a matter of applying
8123 |bound_cubic| twice for each pair of adjacent knots.
8125 @c void mp_path_bbox (MP mp,pointer h) {
8126 pointer p,q; /* a pair of adjacent knots */
8127 minx=x_coord(h); miny=y_coord(h);
8128 maxx=minx; maxy=miny;
8131 if ( right_type(p)==mp_endpoint ) return;
8133 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8134 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8139 @ Another important way to measure a path is to find its arc length. This
8140 is best done by using the general bisection algorithm to subdivide the path
8141 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8144 Since the arc length is the integral with respect to time of the magnitude of
8145 the velocity, it is natural to use Simpson's rule for the approximation.
8147 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8148 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8149 for the arc length of a path of length~1. For a cubic spline
8150 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8151 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8153 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8155 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8156 is the result of the bisection algorithm.
8158 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8159 This could be done via the theoretical error bound for Simpson's rule,
8161 but this is impractical because it requires an estimate of the fourth
8162 derivative of the quantity being integrated. It is much easier to just perform
8163 a bisection step and see how much the arc length estimate changes. Since the
8164 error for Simpson's rule is proportional to the fourth power of the sample
8165 spacing, the remaining error is typically about $1\over16$ of the amount of
8166 the change. We say ``typically'' because the error has a pseudo-random behavior
8167 that could cause the two estimates to agree when each contain large errors.
8169 To protect against disasters such as undetected cusps, the bisection process
8170 should always continue until all the $dz_i$ vectors belong to a single
8171 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8172 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8173 If such a spline happens to produce an erroneous arc length estimate that
8174 is little changed by bisection, the amount of the error is likely to be fairly
8175 small. We will try to arrange things so that freak accidents of this type do
8176 not destroy the inverse relationship between the \&{arclength} and
8177 \&{arctime} operations.
8178 @:arclength_}{\&{arclength} primitive@>
8179 @:arctime_}{\&{arctime} primitive@>
8181 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8183 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8184 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8185 returns the time when the arc length reaches |a_goal| if there is such a time.
8186 Thus the return value is either an arc length less than |a_goal| or, if the
8187 arc length would be at least |a_goal|, it returns a time value decreased by
8188 |two|. This allows the caller to use the sign of the result to distinguish
8189 between arc lengths and time values. On certain types of overflow, it is
8190 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8191 Otherwise, the result is always less than |a_goal|.
8193 Rather than halving the control point coordinates on each recursive call to
8194 |arc_test|, it is better to keep them proportional to velocity on the original
8195 curve and halve the results instead. This means that recursive calls can
8196 potentially use larger error tolerances in their arc length estimates. How
8197 much larger depends on to what extent the errors behave as though they are
8198 independent of each other. To save computing time, we use optimistic assumptions
8199 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8202 In addition to the tolerance parameter, |arc_test| should also have parameters
8203 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8204 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8205 and they are needed in different instances of |arc_test|.
8207 @c @<Declare subroutines needed by |arc_test|@>
8208 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8209 scaled dx2, scaled dy2, scaled v0, scaled v02,
8210 scaled v2, scaled a_goal, scaled tol) {
8211 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8212 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8214 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8215 scaled arc; /* best arc length estimate before recursion */
8216 @<Other local variables in |arc_test|@>;
8217 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8219 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8220 set |arc_test| and |return|@>;
8221 @<Test if the control points are confined to one quadrant or rotating them
8222 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8223 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8224 if ( arc < a_goal ) {
8227 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8228 that time minus |two|@>;
8231 @<Use one or two recursive calls to compute the |arc_test| function@>;
8235 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8236 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8237 |make_fraction| in this inner loop.
8240 @<Use one or two recursive calls to compute the |arc_test| function@>=
8242 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8243 large as possible@>;
8244 tol = tol + halfp(tol);
8245 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8246 halfp(v02), a_new, tol);
8248 return (-halfp(two-a));
8250 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8251 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8252 halfp(v02), v022, v2, a_new, tol);
8254 return (-halfp(-b) - half_unit);
8256 return (a + half(b-a));
8260 @ @<Other local variables in |arc_test|@>=
8261 scaled a,b; /* results of recursive calls */
8262 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8264 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8265 a_aux = el_gordo - a_goal;
8266 if ( a_goal > a_aux ) {
8267 a_aux = a_goal - a_aux;
8270 a_new = a_goal + a_goal;
8274 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8275 to force the additions and subtractions to be done in an order that avoids
8278 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8281 a_new = a_new + a_aux;
8284 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8285 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8286 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8287 this bound. Note that recursive calls will maintain this invariant.
8289 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8290 dx01 = half(dx0 + dx1);
8291 dx12 = half(dx1 + dx2);
8292 dx02 = half(dx01 + dx12);
8293 dy01 = half(dy0 + dy1);
8294 dy12 = half(dy1 + dy2);
8295 dy02 = half(dy01 + dy12)
8297 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8298 |a_goal=el_gordo| is guaranteed to yield the arc length.
8300 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8301 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8302 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8304 arc1 = v002 + half(halfp(v0+tmp) - v002);
8305 arc = v022 + half(halfp(v2+tmp) - v022);
8306 if ( (arc < el_gordo-arc1) ) {
8309 mp->arith_error = true;
8310 if ( a_goal==el_gordo ) return (el_gordo);
8314 @ @<Other local variables in |arc_test|@>=
8315 scaled tmp, tmp2; /* all purpose temporary registers */
8316 scaled arc1; /* arc length estimate for the first half */
8318 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8319 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8320 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8322 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8323 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8325 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8326 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8328 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8329 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8332 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8334 it is appropriate to use the same approximation to decide when the integral
8335 reaches the intermediate value |a_goal|. At this point
8337 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8338 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8339 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8340 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8341 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8345 $$ {\vb\dot B(t)\vb\over 3} \approx
8346 \cases{B\left(\hbox{|v0|},
8347 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8348 {1\over 2}\hbox{|v02|}; 2t \right)&
8349 if $t\le{1\over 2}$\cr
8350 B\left({1\over 2}\hbox{|v02|},
8351 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8352 \hbox{|v2|}; 2t-1 \right)&
8353 if $t\ge{1\over 2}$.\cr}
8356 We can integrate $\vb\dot B(t)\vb$ by using
8357 $$\int 3B(a,b,c;\tau)\,dt =
8358 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8361 This construction allows us to find the time when the arc length reaches
8362 |a_goal| by solving a cubic equation of the form
8363 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8364 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8365 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8366 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8367 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8368 $\tau$ given $a$, $b$, $c$, and $x$.
8370 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8372 tmp = (v02 + 2) / 4;
8373 if ( a_goal<=arc1 ) {
8376 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8379 return ((half_unit - two) +
8380 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8384 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8385 $$ B(0, a, a+b, a+b+c; t) = x. $$
8386 This routine is based on |crossing_point| but is simplified by the
8387 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8388 If rounding error causes this condition to be violated slightly, we just ignore
8389 it and proceed with binary search. This finds a time when the function value
8390 reaches |x| and the slope is positive.
8392 @<Declare subroutines needed by |arc_test|@>=
8393 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8394 scaled ab, bc, ac; /* bisection results */
8395 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8396 integer xx; /* temporary for updating |x| */
8397 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8398 @:this can't happen rising?}{\quad rising?@>
8401 } else if ( x >= a+b+c ) {
8405 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8409 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8410 xx = x - a - ab - ac;
8411 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8412 else { x = x + xx; a=ac; b=bc; t = t+1; };
8413 } while (t < unity);
8418 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8423 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8425 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8426 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8433 @ It is convenient to have a simpler interface to |arc_test| that requires no
8434 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8435 length less than |fraction_four|.
8437 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8439 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8440 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8441 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8442 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8443 v0 = mp_pyth_add(mp, dx0,dy0);
8444 v1 = mp_pyth_add(mp, dx1,dy1);
8445 v2 = mp_pyth_add(mp, dx2,dy2);
8446 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8447 mp->arith_error = true;
8448 if ( a_goal==el_gordo ) return el_gordo;
8451 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8452 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8453 v0, v02, v2, a_goal, arc_tol));
8457 @ Now it is easy to find the arc length of an entire path.
8459 @c scaled mp_get_arc_length (MP mp,pointer h) {
8460 pointer p,q; /* for traversing the path */
8461 scaled a,a_tot; /* current and total arc lengths */
8464 while ( right_type(p)!=mp_endpoint ){
8466 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8467 left_x(q)-right_x(p), left_y(q)-right_y(p),
8468 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8469 a_tot = mp_slow_add(mp, a, a_tot);
8470 if ( q==h ) break; else p=q;
8476 @ The inverse operation of finding the time on a path~|h| when the arc length
8477 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8478 is required to handle very large times or negative times on cyclic paths. For
8479 non-cyclic paths, |arc0| values that are negative or too large cause
8480 |get_arc_time| to return 0 or the length of path~|h|.
8482 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8483 time value greater than the length of the path. Since it could be much greater,
8484 we must be prepared to compute the arc length of path~|h| and divide this into
8485 |arc0| to find how many multiples of the length of path~|h| to add.
8487 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8488 pointer p,q; /* for traversing the path */
8489 scaled t_tot; /* accumulator for the result */
8490 scaled t; /* the result of |do_arc_test| */
8491 scaled arc; /* portion of |arc0| not used up so far */
8492 integer n; /* number of extra times to go around the cycle */
8494 @<Deal with a negative |arc0| value and |return|@>;
8496 if ( arc0==el_gordo ) decr(arc0);
8500 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8502 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8503 left_x(q)-right_x(p), left_y(q)-right_y(p),
8504 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8505 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8507 @<Update |t_tot| and |arc| to avoid going around the cyclic
8508 path too many times but set |arith_error:=true| and |goto done| on
8517 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8518 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8519 else { t_tot = t_tot + unity; arc = arc - t; }
8521 @ @<Deal with a negative |arc0| value and |return|@>=
8523 if ( left_type(h)==mp_endpoint ) {
8526 p = mp_htap_ypoc(mp, h);
8527 t_tot = -mp_get_arc_time(mp, p, -arc0);
8528 mp_toss_knot_list(mp, p);
8534 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8536 n = arc / (arc0 - arc);
8537 arc = arc - n*(arc0 - arc);
8538 if ( t_tot > (el_gordo / (n+1)) ) {
8541 t_tot = (n + 1)*t_tot;
8544 @* \[20] Data structures for pens.
8545 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8546 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8547 @:stroke}{\&{stroke} command@>
8548 converted into an area fill as described in the next part of this program.
8549 The mathematics behind this process is based on simple aspects of the theory
8550 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8551 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8552 Foundations of Computer Science {\bf 24} (1983), 100--111].
8554 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8555 @:makepen_}{\&{makepen} primitive@>
8556 This path representation is almost sufficient for our purposes except that
8557 a pen path should always be a convex polygon with the vertices in
8558 counter-clockwise order.
8559 Since we will need to scan pen polygons both forward and backward, a pen
8560 should be represented as a doubly linked ring of knot nodes. There is
8561 room for the extra back pointer because we do not need the
8562 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8563 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8564 so that certain procedures can operate on both pens and paths. In particular,
8565 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8568 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8570 @ The |make_pen| procedure turns a path into a pen by initializing
8571 the |knil| pointers and making sure the knots form a convex polygon.
8572 Thus each cubic in the given path becomes a straight line and the control
8573 points are ignored. If the path is not cyclic, the ends are connected by a
8576 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8578 @c @<Declare a function called |convex_hull|@>
8579 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8580 pointer p,q; /* two consecutive knots */
8587 h=mp_convex_hull(mp, h);
8588 @<Make sure |h| isn't confused with an elliptical pen@>;
8593 @ The only information required about an elliptical pen is the overall
8594 transformation that has been applied to the original \&{pencircle}.
8595 @:pencircle_}{\&{pencircle} primitive@>
8596 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8597 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8598 knot node and transformed as if it were a path.
8600 @d pen_is_elliptical(A) ((A)==link((A)))
8602 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8603 pointer h; /* the knot node to return */
8604 h=mp_get_node(mp, knot_node_size);
8605 link(h)=h; knil(h)=h;
8606 originator(h)=mp_program_code;
8607 x_coord(h)=0; y_coord(h)=0;
8608 left_x(h)=diam; left_y(h)=0;
8609 right_x(h)=0; right_y(h)=diam;
8613 @ If the polygon being returned by |make_pen| has only one vertex, it will
8614 be interpreted as an elliptical pen. This is no problem since a degenerate
8615 polygon can equally well be thought of as a degenerate ellipse. We need only
8616 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8618 @<Make sure |h| isn't confused with an elliptical pen@>=
8619 if ( pen_is_elliptical( h) ){
8620 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8621 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8624 @ We have to cheat a little here but most operations on pens only use
8625 the first three words in each knot node.
8626 @^data structure assumptions@>
8628 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8629 x_coord(test_pen)=-half_unit;
8630 y_coord(test_pen)=0;
8631 x_coord(test_pen+3)=half_unit;
8632 y_coord(test_pen+3)=0;
8633 x_coord(test_pen+6)=0;
8634 y_coord(test_pen+6)=unity;
8635 link(test_pen)=test_pen+3;
8636 link(test_pen+3)=test_pen+6;
8637 link(test_pen+6)=test_pen;
8638 knil(test_pen)=test_pen+6;
8639 knil(test_pen+3)=test_pen;
8640 knil(test_pen+6)=test_pen+3
8642 @ Printing a polygonal pen is very much like printing a path
8644 @<Declare subroutines for printing expressions@>=
8645 void mp_pr_pen (MP mp,pointer h) {
8646 pointer p,q; /* for list traversal */
8647 if ( pen_is_elliptical(h) ) {
8648 @<Print the elliptical pen |h|@>;
8652 mp_print_two(mp, x_coord(p),y_coord(p));
8653 mp_print_nl(mp, " .. ");
8654 @<Advance |p| making sure the links are OK and |return| if there is
8657 mp_print(mp, "cycle");
8661 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8663 if ( (q==null) || (knil(q)!=p) ) {
8664 mp_print_nl(mp, "???"); return; /* this won't happen */
8669 @ @<Print the elliptical pen |h|@>=
8671 mp_print(mp, "pencircle transformed (");
8672 mp_print_scaled(mp, x_coord(h));
8673 mp_print_char(mp, ',');
8674 mp_print_scaled(mp, y_coord(h));
8675 mp_print_char(mp, ',');
8676 mp_print_scaled(mp, left_x(h)-x_coord(h));
8677 mp_print_char(mp, ',');
8678 mp_print_scaled(mp, right_x(h)-x_coord(h));
8679 mp_print_char(mp, ',');
8680 mp_print_scaled(mp, left_y(h)-y_coord(h));
8681 mp_print_char(mp, ',');
8682 mp_print_scaled(mp, right_y(h)-y_coord(h));
8683 mp_print_char(mp, ')');
8686 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8689 @<Declare subroutines for printing expressions@>=
8690 void mp_print_pen (MP mp,pointer h, const char *s, boolean nuline) {
8691 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8694 mp_end_diagnostic(mp, true);
8697 @ Making a polygonal pen into a path involves restoring the |left_type| and
8698 |right_type| fields and setting the control points so as to make a polygonal
8702 void mp_make_path (MP mp,pointer h) {
8703 pointer p; /* for traversing the knot list */
8704 small_number k; /* a loop counter */
8705 @<Other local variables in |make_path|@>;
8706 if ( pen_is_elliptical(h) ) {
8707 @<Make the elliptical pen |h| into a path@>;
8711 left_type(p)=mp_explicit;
8712 right_type(p)=mp_explicit;
8713 @<copy the coordinates of knot |p| into its control points@>;
8719 @ @<copy the coordinates of knot |p| into its control points@>=
8720 left_x(p)=x_coord(p);
8721 left_y(p)=y_coord(p);
8722 right_x(p)=x_coord(p);
8723 right_y(p)=y_coord(p)
8725 @ We need an eight knot path to get a good approximation to an ellipse.
8727 @<Make the elliptical pen |h| into a path@>=
8729 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8731 for (k=0;k<=7;k++ ) {
8732 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8733 transforming it appropriately@>;
8734 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8739 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8740 center_x=x_coord(h);
8741 center_y=y_coord(h);
8742 width_x=left_x(h)-center_x;
8743 width_y=left_y(h)-center_y;
8744 height_x=right_x(h)-center_x;
8745 height_y=right_y(h)-center_y
8747 @ @<Other local variables in |make_path|@>=
8748 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8749 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8750 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8751 scaled dx,dy; /* the vector from knot |p| to its right control point */
8753 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8755 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8756 find the point $k/8$ of the way around the circle and the direction vector
8759 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8761 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8762 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8763 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8764 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8765 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8766 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8767 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8768 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8769 right_x(p)=x_coord(p)+dx;
8770 right_y(p)=y_coord(p)+dy;
8771 left_x(p)=x_coord(p)-dx;
8772 left_y(p)=y_coord(p)-dy;
8773 left_type(p)=mp_explicit;
8774 right_type(p)=mp_explicit;
8775 originator(p)=mp_program_code
8778 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8779 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8781 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8782 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8783 function for $\theta=\phi=22.5^\circ$. This comes out to be
8784 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8785 \approx 0.132608244919772.
8789 mp->half_cos[0]=fraction_half;
8790 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8792 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8793 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8795 for (k=3;k<= 4;k++ ) {
8796 mp->half_cos[k]=-mp->half_cos[4-k];
8797 mp->d_cos[k]=-mp->d_cos[4-k];
8799 for (k=5;k<= 7;k++ ) {
8800 mp->half_cos[k]=mp->half_cos[8-k];
8801 mp->d_cos[k]=mp->d_cos[8-k];
8804 @ The |convex_hull| function forces a pen polygon to be convex when it is
8805 returned by |make_pen| and after any subsequent transformation where rounding
8806 error might allow the convexity to be lost.
8807 The convex hull algorithm used here is described by F.~P. Preparata and
8808 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8810 @<Declare a function called |convex_hull|@>=
8811 @<Declare a procedure called |move_knot|@>
8812 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8813 pointer l,r; /* the leftmost and rightmost knots */
8814 pointer p,q; /* knots being scanned */
8815 pointer s; /* the starting point for an upcoming scan */
8816 scaled dx,dy; /* a temporary pointer */
8817 if ( pen_is_elliptical(h) ) {
8820 @<Set |l| to the leftmost knot in polygon~|h|@>;
8821 @<Set |r| to the rightmost knot in polygon~|h|@>;
8824 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8825 move them past~|r|@>;
8826 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8827 move them past~|l|@>;
8828 @<Sort the path from |l| to |r| by increasing $x$@>;
8829 @<Sort the path from |r| to |l| by decreasing $x$@>;
8832 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8838 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8840 @<Set |l| to the leftmost knot in polygon~|h|@>=
8844 if ( x_coord(p)<=x_coord(l) )
8845 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8850 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8854 if ( x_coord(p)>=x_coord(r) )
8855 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8860 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8861 dx=x_coord(r)-x_coord(l);
8862 dy=y_coord(r)-y_coord(l);
8866 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8867 mp_move_knot(mp, p, r);
8871 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8874 @ @<Declare a procedure called |move_knot|@>=
8875 void mp_move_knot (MP mp,pointer p, pointer q) {
8876 link(knil(p))=link(p);
8877 knil(link(p))=knil(p);
8884 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8888 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8889 mp_move_knot(mp, p,l);
8893 @ The list is likely to be in order already so we just do linear insertions.
8894 Secondary comparisons on $y$ ensure that the sort is consistent with the
8895 choice of |l| and |r|.
8897 @<Sort the path from |l| to |r| by increasing $x$@>=
8901 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8902 while ( x_coord(q)==x_coord(p) ) {
8903 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8905 if ( q==knil(p) ) p=link(p);
8906 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8909 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8913 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8914 while ( x_coord(q)==x_coord(p) ) {
8915 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8917 if ( q==knil(p) ) p=link(p);
8918 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8921 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8922 at knot |q|. There usually will be a left turn so we streamline the case
8923 where the |then| clause is not executed.
8925 @<Do a Gramm scan and remove vertices where there...@>=
8929 dx=x_coord(q)-x_coord(p);
8930 dy=y_coord(q)-y_coord(p);
8934 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8935 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8940 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8943 mp_free_node(mp, p,knot_node_size);
8944 link(s)=q; knil(q)=s;
8946 else { p=knil(s); q=s; };
8949 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8950 offset associated with the given direction |(x,y)|. If two different offsets
8951 apply, it chooses one of them.
8954 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8955 pointer p,q; /* consecutive knots */
8957 /* the transformation matrix for an elliptical pen */
8958 fraction xx,yy; /* untransformed offset for an elliptical pen */
8959 fraction d; /* a temporary register */
8960 if ( pen_is_elliptical(h) ) {
8961 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8966 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8969 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8970 mp->cur_x=x_coord(p);
8971 mp->cur_y=y_coord(p);
8977 scaled cur_y; /* all-purpose return value registers */
8979 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8980 if ( (x==0) && (y==0) ) {
8981 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8983 @<Find the non-constant part of the transformation for |h|@>;
8984 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8987 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8988 untransformed version of |(x,y)|@>;
8989 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8990 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8993 @ @<Find the non-constant part of the transformation for |h|@>=
8994 wx=left_x(h)-x_coord(h);
8995 wy=left_y(h)-y_coord(h);
8996 hx=right_x(h)-x_coord(h);
8997 hy=right_y(h)-y_coord(h)
8999 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9000 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9001 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9002 d=mp_pyth_add(mp, xx,yy);
9004 xx=half(mp_make_fraction(mp, xx,d));
9005 yy=half(mp_make_fraction(mp, yy,d));
9008 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9009 But we can handle that case by just calling |find_offset| twice. The answer
9010 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9013 void mp_pen_bbox (MP mp,pointer h) {
9014 pointer p; /* for scanning the knot list */
9015 if ( pen_is_elliptical(h) ) {
9016 @<Find the bounding box of an elliptical pen@>;
9018 minx=x_coord(h); maxx=minx;
9019 miny=y_coord(h); maxy=miny;
9022 if ( x_coord(p)<minx ) minx=x_coord(p);
9023 if ( y_coord(p)<miny ) miny=y_coord(p);
9024 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9025 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9031 @ @<Find the bounding box of an elliptical pen@>=
9033 mp_find_offset(mp, 0,fraction_one,h);
9035 minx=2*x_coord(h)-mp->cur_x;
9036 mp_find_offset(mp, -fraction_one,0,h);
9038 miny=2*y_coord(h)-mp->cur_y;
9041 @* \[21] Edge structures.
9042 Now we come to \MP's internal scheme for representing pictures.
9043 The representation is very different from \MF's edge structures
9044 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9045 images. However, the basic idea is somewhat similar in that shapes
9046 are represented via their boundaries.
9048 The main purpose of edge structures is to keep track of graphical objects
9049 until it is time to translate them into \ps. Since \MP\ does not need to
9050 know anything about an edge structure other than how to translate it into
9051 \ps\ and how to find its bounding box, edge structures can be just linked
9052 lists of graphical objects. \MP\ has no easy way to determine whether
9053 two such objects overlap, but it suffices to draw the first one first and
9054 let the second one overwrite it if necessary.
9057 enum mp_graphical_object_code {
9058 @<Graphical object codes@>
9062 @ Let's consider the types of graphical objects one at a time.
9063 First of all, a filled contour is represented by a eight-word node. The first
9064 word contains |type| and |link| fields, and the next six words contain a
9065 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9066 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9067 give the relevant information.
9069 @d path_p(A) link((A)+1)
9070 /* a pointer to the path that needs filling */
9071 @d pen_p(A) info((A)+1)
9072 /* a pointer to the pen to fill or stroke with */
9073 @d color_model(A) type((A)+2) /* the color model */
9074 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9075 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9076 @d obj_grey_loc obj_red_loc /* the location for the color */
9077 @d red_val(A) mp->mem[(A)+3].sc
9078 /* the red component of the color in the range $0\ldots1$ */
9081 @d green_val(A) mp->mem[(A)+4].sc
9082 /* the green component of the color in the range $0\ldots1$ */
9083 @d magenta_val green_val
9084 @d blue_val(A) mp->mem[(A)+5].sc
9085 /* the blue component of the color in the range $0\ldots1$ */
9086 @d yellow_val blue_val
9087 @d black_val(A) mp->mem[(A)+6].sc
9088 /* the blue component of the color in the range $0\ldots1$ */
9089 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9090 @:mp_linejoin_}{\&{linejoin} primitive@>
9091 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9092 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9093 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9094 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9095 @d pre_script(A) mp->mem[(A)+8].hh.lh
9096 @d post_script(A) mp->mem[(A)+8].hh.rh
9099 @ @<Graphical object codes@>=
9103 pointer mp_new_fill_node (MP mp,pointer p) {
9104 /* make a fill node for cyclic path |p| and color black */
9105 pointer t; /* the new node */
9106 t=mp_get_node(mp, fill_node_size);
9107 type(t)=mp_fill_code;
9109 pen_p(t)=null; /* |null| means don't use a pen */
9114 color_model(t)=mp_uninitialized_model;
9116 post_script(t)=null;
9117 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9121 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9122 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9123 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9124 else ljoin_val(t)=0;
9125 if ( mp->internal[mp_miterlimit]<unity )
9126 miterlim_val(t)=unity;
9128 miterlim_val(t)=mp->internal[mp_miterlimit]
9130 @ A stroked path is represented by an eight-word node that is like a filled
9131 contour node except that it contains the current \&{linecap} value, a scale
9132 factor for the dash pattern, and a pointer that is non-null if the stroke
9133 is to be dashed. The purpose of the scale factor is to allow a picture to
9134 be transformed without touching the picture that |dash_p| points to.
9136 @d dash_p(A) link((A)+9)
9137 /* a pointer to the edge structure that gives the dash pattern */
9138 @d lcap_val(A) type((A)+9)
9139 /* the value of \&{linecap} */
9140 @:mp_linecap_}{\&{linecap} primitive@>
9141 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9142 @d stroked_node_size 11
9144 @ @<Graphical object codes@>=
9148 pointer mp_new_stroked_node (MP mp,pointer p) {
9149 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9150 pointer t; /* the new node */
9151 t=mp_get_node(mp, stroked_node_size);
9152 type(t)=mp_stroked_code;
9153 path_p(t)=p; pen_p(t)=null;
9155 dash_scale(t)=unity;
9160 color_model(t)=mp_uninitialized_model;
9162 post_script(t)=null;
9163 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9164 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9165 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9170 @ When a dashed line is computed in a transformed coordinate system, the dash
9171 lengths get scaled like the pen shape and we need to compensate for this. Since
9172 there is no unique scale factor for an arbitrary transformation, we use the
9173 the square root of the determinant. The properties of the determinant make it
9174 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9175 except for the initialization of the scale factor |s|. The factor of 64 is
9176 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9177 to counteract the effect of |take_fraction|.
9179 @<Declare subroutines needed by |print_edges|@>=
9180 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9181 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9182 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9183 @<Initialize |maxabs|@>;
9185 while ( (maxabs<fraction_one) && (s>1) ){
9186 a+=a; b+=b; c+=c; d+=d;
9187 maxabs+=maxabs; s=halfp(s);
9189 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9192 scaled mp_get_pen_scale (MP mp,pointer p) {
9193 return mp_sqrt_det(mp,
9194 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9195 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9198 @ @<Internal library ...@>=
9199 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9202 @ @<Initialize |maxabs|@>=
9204 if ( abs(b)>maxabs ) maxabs=abs(b);
9205 if ( abs(c)>maxabs ) maxabs=abs(c);
9206 if ( abs(d)>maxabs ) maxabs=abs(d)
9208 @ When a picture contains text, this is represented by a fourteen-word node
9209 where the color information and |type| and |link| fields are augmented by
9210 additional fields that describe the text and how it is transformed.
9211 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9212 the font and a string number that gives the text to be displayed.
9213 The |width|, |height|, and |depth| fields
9214 give the dimensions of the text at its design size, and the remaining six
9215 words give a transformation to be applied to the text. The |new_text_node|
9216 function initializes everything to default values so that the text comes out
9217 black with its reference point at the origin.
9219 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9220 @d font_n(A) info((A)+1) /* the font number */
9221 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9222 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9223 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9224 @d text_tx_loc(A) ((A)+11)
9225 /* the first of six locations for transformation parameters */
9226 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9227 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9228 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9229 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9230 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9231 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9232 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9233 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9234 @d text_node_size 17
9236 @ @<Graphical object codes@>=
9239 @ @c @<Declare text measuring subroutines@>
9240 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9241 /* make a text node for font |f| and text string |s| */
9242 pointer t; /* the new node */
9243 t=mp_get_node(mp, text_node_size);
9244 type(t)=mp_text_code;
9246 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9251 color_model(t)=mp_uninitialized_model;
9253 post_script(t)=null;
9254 tx_val(t)=0; ty_val(t)=0;
9255 txx_val(t)=unity; txy_val(t)=0;
9256 tyx_val(t)=0; tyy_val(t)=unity;
9257 mp_set_text_box(mp, t); /* this finds the bounding box */
9261 @ The last two types of graphical objects that can occur in an edge structure
9262 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9263 @:set_bounds_}{\&{setbounds} primitive@>
9264 to implement because we must keep track of exactly what is being clipped or
9265 bounded when pictures get merged together. For this reason, each clipping or
9266 \&{setbounds} operation is represented by a pair of nodes: first comes a
9267 two-word node whose |path_p| gives the relevant path, then there is the list
9268 of objects to clip or bound followed by a two-word node whose second word is
9271 Using at least two words for each graphical object node allows them all to be
9272 allocated and deallocated similarly with a global array |gr_object_size| to
9273 give the size in words for each object type.
9275 @d start_clip_size 2
9276 @d start_bounds_size 2
9277 @d stop_clip_size 2 /* the second word is not used here */
9278 @d stop_bounds_size 2 /* the second word is not used here */
9280 @d stop_type(A) ((A)+2)
9281 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9282 @d has_color(A) (type((A))<mp_start_clip_code)
9283 /* does a graphical object have color fields? */
9284 @d has_pen(A) (type((A))<mp_text_code)
9285 /* does a graphical object have a |pen_p| field? */
9286 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9287 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9289 @ @<Graphical object codes@>=
9290 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9291 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9292 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9293 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9296 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9297 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9298 pointer t; /* the new node */
9299 t=mp_get_node(mp, mp->gr_object_size[c]);
9305 @ We need an array to keep track of the sizes of graphical objects.
9308 small_number gr_object_size[mp_stop_bounds_code+1];
9311 mp->gr_object_size[mp_fill_code]=fill_node_size;
9312 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9313 mp->gr_object_size[mp_text_code]=text_node_size;
9314 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9315 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9316 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9317 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9319 @ All the essential information in an edge structure is encoded as a linked list
9320 of graphical objects as we have just seen, but it is helpful to add some
9321 redundant information. A single edge structure might be used as a dash pattern
9322 many times, and it would be nice to avoid scanning the same structure
9323 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9324 has a header that gives a list of dashes in a sorted order designed for rapid
9325 translation into \ps.
9327 Each dash is represented by a three-word node containing the initial and final
9328 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9329 the dash node with the next higher $x$-coordinates and the final link points
9330 to a special location called |null_dash|. (There should be no overlap between
9331 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9332 the period of repetition, this needs to be stored in the edge header along
9333 with a pointer to the list of dash nodes.
9335 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9336 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9339 /* in an edge header this points to the first dash node */
9340 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9342 @ It is also convenient for an edge header to contain the bounding
9343 box information needed by the \&{llcorner} and \&{urcorner} operators
9344 so that this does not have to be recomputed unnecessarily. This is done by
9345 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9346 how far the bounding box computation has gotten. Thus if the user asks for
9347 the bounding box and then adds some more text to the picture before asking
9348 for more bounding box information, the second computation need only look at
9349 the additional text.
9351 When the bounding box has not been computed, the |bblast| pointer points
9352 to a dummy link at the head of the graphical object list while the |minx_val|
9353 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9354 fields contain |-el_gordo|.
9356 Since the bounding box of pictures containing objects of type
9357 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9358 @:mp_true_corners_}{\&{truecorners} primitive@>
9359 data might not be valid for all values of this parameter. Hence, the |bbtype|
9360 field is needed to keep track of this.
9362 @d minx_val(A) mp->mem[(A)+2].sc
9363 @d miny_val(A) mp->mem[(A)+3].sc
9364 @d maxx_val(A) mp->mem[(A)+4].sc
9365 @d maxy_val(A) mp->mem[(A)+5].sc
9366 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9367 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9368 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9370 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9372 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9374 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9377 void mp_init_bbox (MP mp,pointer h) {
9378 /* Initialize the bounding box information in edge structure |h| */
9379 bblast(h)=dummy_loc(h);
9380 bbtype(h)=no_bounds;
9381 minx_val(h)=el_gordo;
9382 miny_val(h)=el_gordo;
9383 maxx_val(h)=-el_gordo;
9384 maxy_val(h)=-el_gordo;
9387 @ The only other entries in an edge header are a reference count in the first
9388 word and a pointer to the tail of the object list in the last word.
9390 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9391 @d edge_header_size 8
9394 void mp_init_edges (MP mp,pointer h) {
9395 /* initialize an edge header to null values */
9396 dash_list(h)=null_dash;
9397 obj_tail(h)=dummy_loc(h);
9398 link(dummy_loc(h))=null;
9400 mp_init_bbox(mp, h);
9403 @ Here is how edge structures are deleted. The process can be recursive because
9404 of the need to dereference edge structures that are used as dash patterns.
9407 @d add_edge_ref(A) incr(ref_count(A))
9408 @d delete_edge_ref(A) {
9409 if ( ref_count((A))==null )
9410 mp_toss_edges(mp, A);
9415 @<Declare the recycling subroutines@>=
9416 void mp_flush_dash_list (MP mp,pointer h);
9417 pointer mp_toss_gr_object (MP mp,pointer p) ;
9418 void mp_toss_edges (MP mp,pointer h) ;
9420 @ @c void mp_toss_edges (MP mp,pointer h) {
9421 pointer p,q; /* pointers that scan the list being recycled */
9422 pointer r; /* an edge structure that object |p| refers to */
9423 mp_flush_dash_list(mp, h);
9424 q=link(dummy_loc(h));
9425 while ( (q!=null) ) {
9427 r=mp_toss_gr_object(mp, p);
9428 if ( r!=null ) delete_edge_ref(r);
9430 mp_free_node(mp, h,edge_header_size);
9432 void mp_flush_dash_list (MP mp,pointer h) {
9433 pointer p,q; /* pointers that scan the list being recycled */
9435 while ( q!=null_dash ) {
9437 mp_free_node(mp, p,dash_node_size);
9439 dash_list(h)=null_dash;
9441 pointer mp_toss_gr_object (MP mp,pointer p) {
9442 /* returns an edge structure that needs to be dereferenced */
9443 pointer e; /* the edge structure to return */
9445 @<Prepare to recycle graphical object |p|@>;
9446 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9450 @ @<Prepare to recycle graphical object |p|@>=
9453 mp_toss_knot_list(mp, path_p(p));
9454 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9455 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9456 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9458 case mp_stroked_code:
9459 mp_toss_knot_list(mp, path_p(p));
9460 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9461 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9462 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9466 delete_str_ref(text_p(p));
9467 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9468 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9470 case mp_start_clip_code:
9471 case mp_start_bounds_code:
9472 mp_toss_knot_list(mp, path_p(p));
9474 case mp_stop_clip_code:
9475 case mp_stop_bounds_code:
9477 } /* there are no other cases */
9479 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9480 to be done before making a significant change to an edge structure. Much of
9481 the work is done in a separate routine |copy_objects| that copies a list of
9482 graphical objects into a new edge header.
9484 @c @<Declare a function called |copy_objects|@>
9485 pointer mp_private_edges (MP mp,pointer h) {
9486 /* make a private copy of the edge structure headed by |h| */
9487 pointer hh; /* the edge header for the new copy */
9488 pointer p,pp; /* pointers for copying the dash list */
9489 if ( ref_count(h)==null ) {
9493 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9494 @<Copy the dash list from |h| to |hh|@>;
9495 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9496 point into the new object list@>;
9501 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9502 @^data structure assumptions@>
9504 @<Copy the dash list from |h| to |hh|@>=
9505 pp=hh; p=dash_list(h);
9506 while ( (p!=null_dash) ) {
9507 link(pp)=mp_get_node(mp, dash_node_size);
9509 start_x(pp)=start_x(p);
9510 stop_x(pp)=stop_x(p);
9514 dash_y(hh)=dash_y(h)
9517 @ |h| is an edge structure
9520 mp_dash_object *mp_export_dashes (MP mp, pointer h) {
9523 scaled *dashes = NULL;
9525 if (h==null || dash_list(h)==null_dash)
9528 d = mp_xmalloc(mp,1,sizeof(mp_dash_object));
9529 start_x(null_dash)=start_x(p)+dash_y(h);
9530 while (p != null_dash) {
9531 dashes = mp_xrealloc(mp, dashes, num_dashes+2, sizeof(scaled));
9532 dashes[(num_dashes-1)] = (stop_x(p)-start_x(p));
9533 dashes[(num_dashes)] = (start_x(link(p))-stop_x(p));
9534 dashes[(num_dashes+1)] = -1; /* terminus */
9538 d->array_field = dashes;
9539 d->offset_field = mp_dash_offset(mp, h);
9540 d->scale_field = dash_scale(h);
9546 @ @<Copy the bounding box information from |h| to |hh|...@>=
9547 minx_val(hh)=minx_val(h);
9548 miny_val(hh)=miny_val(h);
9549 maxx_val(hh)=maxx_val(h);
9550 maxy_val(hh)=maxy_val(h);
9551 bbtype(hh)=bbtype(h);
9552 p=dummy_loc(h); pp=dummy_loc(hh);
9553 while ((p!=bblast(h)) ) {
9554 if ( p==null ) mp_confusion(mp, "bblast");
9555 @:this can't happen bblast}{\quad bblast@>
9556 p=link(p); pp=link(pp);
9560 @ Here is the promised routine for copying graphical objects into a new edge
9561 structure. It starts copying at object~|p| and stops just before object~|q|.
9562 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9563 structure requires further initialization by |init_bbox|.
9565 @<Declare a function called |copy_objects|@>=
9566 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9567 pointer hh; /* the new edge header */
9568 pointer pp; /* the last newly copied object */
9569 small_number k; /* temporary register */
9570 hh=mp_get_node(mp, edge_header_size);
9571 dash_list(hh)=null_dash;
9575 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9582 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9583 { k=mp->gr_object_size[type(p)];
9584 link(pp)=mp_get_node(mp, k);
9586 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9587 @<Fix anything in graphical object |pp| that should differ from the
9588 corresponding field in |p|@>;
9592 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9594 case mp_start_clip_code:
9595 case mp_start_bounds_code:
9596 path_p(pp)=mp_copy_path(mp, path_p(p));
9599 path_p(pp)=mp_copy_path(mp, path_p(p));
9600 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9602 case mp_stroked_code:
9603 path_p(pp)=mp_copy_path(mp, path_p(p));
9604 pen_p(pp)=copy_pen(pen_p(p));
9605 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9608 add_str_ref(text_p(pp));
9610 case mp_stop_clip_code:
9611 case mp_stop_bounds_code:
9613 } /* there are no other cases */
9615 @ Here is one way to find an acceptable value for the second argument to
9616 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9617 skips past one picture component, where a ``picture component'' is a single
9618 graphical object, or a start bounds or start clip object and everything up
9619 through the matching stop bounds or stop clip object. The macro version avoids
9620 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9621 unless |p| points to a stop bounds or stop clip node, in which case it executes
9624 @d skip_component(A)
9625 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9626 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9630 pointer mp_skip_1component (MP mp,pointer p) {
9631 integer lev; /* current nesting level */
9634 if ( is_start_or_stop(p) ) {
9635 if ( is_stop(p) ) decr(lev); else incr(lev);
9642 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9644 @<Declare subroutines for printing expressions@>=
9645 @<Declare subroutines needed by |print_edges|@>
9646 void mp_print_edges (MP mp,pointer h, const char *s, boolean nuline) {
9647 pointer p; /* a graphical object to be printed */
9648 pointer hh,pp; /* temporary pointers */
9649 scaled scf; /* a scale factor for the dash pattern */
9650 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9651 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9653 while ( link(p)!=null ) {
9657 @<Cases for printing graphical object node |p|@>;
9659 mp_print(mp, "[unknown object type!]");
9663 mp_print_nl(mp, "End edges");
9664 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9666 mp_end_diagnostic(mp, true);
9669 @ @<Cases for printing graphical object node |p|@>=
9671 mp_print(mp, "Filled contour ");
9672 mp_print_obj_color(mp, p);
9673 mp_print_char(mp, ':'); mp_print_ln(mp);
9674 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9675 if ( (pen_p(p)!=null) ) {
9676 @<Print join type for graphical object |p|@>;
9677 mp_print(mp, " with pen"); mp_print_ln(mp);
9678 mp_pr_pen(mp, pen_p(p));
9682 @ @<Print join type for graphical object |p|@>=
9683 switch (ljoin_val(p)) {
9685 mp_print(mp, "mitered joins limited ");
9686 mp_print_scaled(mp, miterlim_val(p));
9689 mp_print(mp, "round joins");
9692 mp_print(mp, "beveled joins");
9695 mp_print(mp, "?? joins");
9700 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9702 @<Print join and cap types for stroked node |p|@>=
9703 switch (lcap_val(p)) {
9704 case 0:mp_print(mp, "butt"); break;
9705 case 1:mp_print(mp, "round"); break;
9706 case 2:mp_print(mp, "square"); break;
9707 default: mp_print(mp, "??"); break;
9710 mp_print(mp, " ends, ");
9711 @<Print join type for graphical object |p|@>
9713 @ Here is a routine that prints the color of a graphical object if it isn't
9714 black (the default color).
9716 @<Declare subroutines needed by |print_edges|@>=
9717 @<Declare a procedure called |print_compact_node|@>
9718 void mp_print_obj_color (MP mp,pointer p) {
9719 if ( color_model(p)==mp_grey_model ) {
9720 if ( grey_val(p)>0 ) {
9721 mp_print(mp, "greyed ");
9722 mp_print_compact_node(mp, obj_grey_loc(p),1);
9724 } else if ( color_model(p)==mp_cmyk_model ) {
9725 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9726 (yellow_val(p)>0) || (black_val(p)>0) ) {
9727 mp_print(mp, "processcolored ");
9728 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9730 } else if ( color_model(p)==mp_rgb_model ) {
9731 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9732 mp_print(mp, "colored ");
9733 mp_print_compact_node(mp, obj_red_loc(p),3);
9738 @ We also need a procedure for printing consecutive scaled values as if they
9739 were a known big node.
9741 @<Declare a procedure called |print_compact_node|@>=
9742 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9743 pointer q; /* last location to print */
9745 mp_print_char(mp, '(');
9747 mp_print_scaled(mp, mp->mem[p].sc);
9748 if ( p<q ) mp_print_char(mp, ',');
9751 mp_print_char(mp, ')');
9754 @ @<Cases for printing graphical object node |p|@>=
9755 case mp_stroked_code:
9756 mp_print(mp, "Filled pen stroke ");
9757 mp_print_obj_color(mp, p);
9758 mp_print_char(mp, ':'); mp_print_ln(mp);
9759 mp_pr_path(mp, path_p(p));
9760 if ( dash_p(p)!=null ) {
9761 mp_print_nl(mp, "dashed (");
9762 @<Finish printing the dash pattern that |p| refers to@>;
9765 @<Print join and cap types for stroked node |p|@>;
9766 mp_print(mp, " with pen"); mp_print_ln(mp);
9767 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9769 else mp_pr_pen(mp, pen_p(p));
9772 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9773 when it is not known to define a suitable dash pattern. This is disallowed
9774 here because the |dash_p| field should never point to such an edge header.
9775 Note that memory is allocated for |start_x(null_dash)| and we are free to
9776 give it any convenient value.
9778 @<Finish printing the dash pattern that |p| refers to@>=
9779 ok_to_dash=pen_is_elliptical(pen_p(p));
9780 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9783 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9784 mp_print(mp, " ??");
9785 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9786 while ( pp!=null_dash ) {
9787 mp_print(mp, "on ");
9788 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9789 mp_print(mp, " off ");
9790 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9792 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9794 mp_print(mp, ") shifted ");
9795 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9796 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9799 @ @<Declare subroutines needed by |print_edges|@>=
9800 scaled mp_dash_offset (MP mp,pointer h) {
9801 scaled x; /* the answer */
9802 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9803 @:this can't happen dash0}{\quad dash0@>
9804 if ( dash_y(h)==0 ) {
9807 x=-(start_x(dash_list(h)) % dash_y(h));
9808 if ( x<0 ) x=x+dash_y(h);
9813 @ @<Cases for printing graphical object node |p|@>=
9815 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9816 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9817 mp_print_char(mp, '"'); mp_print_ln(mp);
9818 mp_print_obj_color(mp, p);
9819 mp_print(mp, "transformed ");
9820 mp_print_compact_node(mp, text_tx_loc(p),6);
9823 @ @<Cases for printing graphical object node |p|@>=
9824 case mp_start_clip_code:
9825 mp_print(mp, "clipping path:");
9827 mp_pr_path(mp, path_p(p));
9829 case mp_stop_clip_code:
9830 mp_print(mp, "stop clipping");
9833 @ @<Cases for printing graphical object node |p|@>=
9834 case mp_start_bounds_code:
9835 mp_print(mp, "setbounds path:");
9837 mp_pr_path(mp, path_p(p));
9839 case mp_stop_bounds_code:
9840 mp_print(mp, "end of setbounds");
9843 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9844 subroutine that scans an edge structure and tries to interpret it as a dash
9845 pattern. This can only be done when there are no filled regions or clipping
9846 paths and all the pen strokes have the same color. The first step is to let
9847 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9848 project all the pen stroke paths onto the line $y=y_0$ and require that there
9849 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9850 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9851 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9853 @c @<Declare a procedure called |x_retrace_error|@>
9854 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9855 pointer p; /* this scans the stroked nodes in the object list */
9856 pointer p0; /* if not |null| this points to the first stroked node */
9857 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9858 pointer d,dd; /* pointers used to create the dash list */
9860 @<Other local variables in |make_dashes|@>;
9861 y0=0; /* the initial $y$ coordinate */
9862 if ( dash_list(h)!=null_dash )
9865 p=link(dummy_loc(h));
9867 if ( type(p)!=mp_stroked_code ) {
9868 @<Compain that the edge structure contains a node of the wrong type
9869 and |goto not_found|@>;
9872 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9873 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9874 or |goto not_found| if there is an error@>;
9875 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9878 if ( dash_list(h)==null_dash )
9879 goto NOT_FOUND; /* No error message */
9880 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9881 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9884 @<Flush the dash list, recycle |h| and return |null|@>;
9887 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9889 print_err("Picture is too complicated to use as a dash pattern");
9890 help3("When you say `dashed p', picture p should not contain any")
9891 ("text, filled regions, or clipping paths. This time it did")
9892 ("so I'll just make it a solid line instead.");
9893 mp_put_get_error(mp);
9897 @ A similar error occurs when monotonicity fails.
9899 @<Declare a procedure called |x_retrace_error|@>=
9900 void mp_x_retrace_error (MP mp) {
9901 print_err("Picture is too complicated to use as a dash pattern");
9902 help3("When you say `dashed p', every path in p should be monotone")
9903 ("in x and there must be no overlapping. This failed")
9904 ("so I'll just make it a solid line instead.");
9905 mp_put_get_error(mp);
9908 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9909 handle the case where the pen stroke |p| is itself dashed.
9911 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9912 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9915 if ( link(pp)!=pp ) {
9918 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9919 if there is a problem@>;
9920 } while (right_type(rr)!=mp_endpoint);
9922 d=mp_get_node(mp, dash_node_size);
9923 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9924 if ( x_coord(pp)<x_coord(rr) ) {
9925 start_x(d)=x_coord(pp);
9926 stop_x(d)=x_coord(rr);
9928 start_x(d)=x_coord(rr);
9929 stop_x(d)=x_coord(pp);
9932 @ We also need to check for the case where the segment from |qq| to |rr| is
9933 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9935 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9940 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9941 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9942 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9943 mp_x_retrace_error(mp); goto NOT_FOUND;
9947 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9948 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9949 mp_x_retrace_error(mp); goto NOT_FOUND;
9953 @ @<Other local variables in |make_dashes|@>=
9954 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9956 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9957 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9958 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9959 print_err("Picture is too complicated to use as a dash pattern");
9960 help3("When you say `dashed p', everything in picture p should")
9961 ("be the same color. I can\'t handle your color changes")
9962 ("so I'll just make it a solid line instead.");
9963 mp_put_get_error(mp);
9967 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9968 start_x(null_dash)=stop_x(d);
9969 dd=h; /* this makes |link(dd)=dash_list(h)| */
9970 while ( start_x(link(dd))<stop_x(d) )
9973 if ( (stop_x(dd)>start_x(d)) )
9974 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9979 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9981 while ( (link(d)!=null_dash) )
9984 dash_y(h)=stop_x(d)-start_x(dd);
9985 if ( abs(y0)>dash_y(h) ) {
9987 } else if ( d!=dd ) {
9988 dash_list(h)=link(dd);
9989 stop_x(d)=stop_x(dd)+dash_y(h);
9990 mp_free_node(mp, dd,dash_node_size);
9993 @ We get here when the argument is a null picture or when there is an error.
9994 Recovering from an error involves making |dash_list(h)| empty to indicate
9995 that |h| is not known to be a valid dash pattern. We also dereference |h|
9996 since it is not being used for the return value.
9998 @<Flush the dash list, recycle |h| and return |null|@>=
9999 mp_flush_dash_list(mp, h);
10000 delete_edge_ref(h);
10003 @ Having carefully saved the dashed stroked nodes in the
10004 corresponding dash nodes, we must be prepared to break up these dashes into
10007 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10008 d=h; /* now |link(d)=dash_list(h)| */
10009 while ( link(d)!=null_dash ) {
10015 hsf=dash_scale(ds);
10016 if ( (hh==null) ) mp_confusion(mp, "dash1");
10017 @:this can't happen dash0}{\quad dash1@>
10018 if ( dash_y(hh)==0 ) {
10021 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10022 @:this can't happen dash0}{\quad dash1@>
10023 @<Replace |link(d)| by a dashed version as determined by edge header
10024 |hh| and scale factor |ds|@>;
10029 @ @<Other local variables in |make_dashes|@>=
10030 pointer dln; /* |link(d)| */
10031 pointer hh; /* an edge header that tells how to break up |dln| */
10032 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10033 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10034 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10036 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10039 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10040 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10041 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10042 +mp_take_scaled(mp, hsf,dash_y(hh));
10043 stop_x(null_dash)=start_x(null_dash);
10044 @<Advance |dd| until finding the first dash that overlaps |dln| when
10045 offset by |xoff|@>;
10046 while ( start_x(dln)<=stop_x(dln) ) {
10047 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10048 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10051 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10054 mp_free_node(mp, dln,dash_node_size)
10056 @ The name of this module is a bit of a lie because we just find the
10057 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10058 overlap possible. It could be that the unoffset version of dash |dln| falls
10059 in the gap between |dd| and its predecessor.
10061 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10062 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10066 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10067 if ( dd==null_dash ) {
10069 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10072 @ At this point we already know that
10073 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10075 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10076 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10077 link(d)=mp_get_node(mp, dash_node_size);
10080 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10081 start_x(d)=start_x(dln);
10083 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10084 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10085 stop_x(d)=stop_x(dln);
10087 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10090 @ The next major task is to update the bounding box information in an edge
10091 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10092 header's bounding box to accommodate the box computed by |path_bbox| or
10093 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10096 @c void mp_adjust_bbox (MP mp,pointer h) {
10097 if ( minx<minx_val(h) ) minx_val(h)=minx;
10098 if ( miny<miny_val(h) ) miny_val(h)=miny;
10099 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10100 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10103 @ Here is a special routine for updating the bounding box information in
10104 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10105 that is to be stroked with the pen~|pp|.
10107 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10108 pointer q; /* a knot node adjacent to knot |p| */
10109 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10110 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10111 scaled z; /* a coordinate being tested against the bounding box */
10112 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10113 integer i; /* a loop counter */
10114 if ( right_type(p)!=mp_endpoint ) {
10117 @<Make |(dx,dy)| the final direction for the path segment from
10118 |q| to~|p|; set~|d|@>;
10119 d=mp_pyth_add(mp, dx,dy);
10121 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10122 for (i=1;i<= 2;i++) {
10123 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10124 update the bounding box to accommodate it@>;
10128 if ( right_type(p)==mp_endpoint ) {
10131 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10137 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10138 if ( q==link(p) ) {
10139 dx=x_coord(p)-right_x(p);
10140 dy=y_coord(p)-right_y(p);
10141 if ( (dx==0)&&(dy==0) ) {
10142 dx=x_coord(p)-left_x(q);
10143 dy=y_coord(p)-left_y(q);
10146 dx=x_coord(p)-left_x(p);
10147 dy=y_coord(p)-left_y(p);
10148 if ( (dx==0)&&(dy==0) ) {
10149 dx=x_coord(p)-right_x(q);
10150 dy=y_coord(p)-right_y(q);
10153 dx=x_coord(p)-x_coord(q);
10154 dy=y_coord(p)-y_coord(q)
10156 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10157 dx=mp_make_fraction(mp, dx,d);
10158 dy=mp_make_fraction(mp, dy,d);
10159 mp_find_offset(mp, -dy,dx,pp);
10160 xx=mp->cur_x; yy=mp->cur_y
10162 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10163 mp_find_offset(mp, dx,dy,pp);
10164 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10165 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10166 mp_confusion(mp, "box_ends");
10167 @:this can't happen box ends}{\quad\\{box\_ends}@>
10168 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10169 if ( z<minx_val(h) ) minx_val(h)=z;
10170 if ( z>maxx_val(h) ) maxx_val(h)=z;
10171 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10172 if ( z<miny_val(h) ) miny_val(h)=z;
10173 if ( z>maxy_val(h) ) maxy_val(h)=z
10175 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10179 } while (right_type(p)!=mp_endpoint)
10181 @ The major difficulty in finding the bounding box of an edge structure is the
10182 effect of clipping paths. We treat them conservatively by only clipping to the
10183 clipping path's bounding box, but this still
10184 requires recursive calls to |set_bbox| in order to find the bounding box of
10186 the objects to be clipped. Such calls are distinguished by the fact that the
10187 boolean parameter |top_level| is false.
10189 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10190 pointer p; /* a graphical object being considered */
10191 scaled sminx,sminy,smaxx,smaxy;
10192 /* for saving the bounding box during recursive calls */
10193 scaled x0,x1,y0,y1; /* temporary registers */
10194 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10195 @<Wipe out any existing bounding box information if |bbtype(h)| is
10196 incompatible with |internal[mp_true_corners]|@>;
10197 while ( link(bblast(h))!=null ) {
10201 case mp_stop_clip_code:
10202 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10203 @:this can't happen bbox}{\quad bbox@>
10205 @<Other cases for updating the bounding box based on the type of object |p|@>;
10206 } /* all cases are enumerated above */
10208 if ( ! top_level ) mp_confusion(mp, "bbox");
10211 @ @<Internal library declarations@>=
10212 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10214 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10215 switch (bbtype(h)) {
10219 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10222 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10224 } /* there are no other cases */
10226 @ @<Other cases for updating the bounding box...@>=
10228 mp_path_bbox(mp, path_p(p));
10229 if ( pen_p(p)!=null ) {
10232 mp_pen_bbox(mp, pen_p(p));
10238 mp_adjust_bbox(mp, h);
10241 @ @<Other cases for updating the bounding box...@>=
10242 case mp_start_bounds_code:
10243 if ( mp->internal[mp_true_corners]>0 ) {
10244 bbtype(h)=bounds_unset;
10246 bbtype(h)=bounds_set;
10247 mp_path_bbox(mp, path_p(p));
10248 mp_adjust_bbox(mp, h);
10249 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10253 case mp_stop_bounds_code:
10254 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10255 @:this can't happen bbox2}{\quad bbox2@>
10258 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10261 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10262 @:this can't happen bbox2}{\quad bbox2@>
10264 if ( type(p)==mp_start_bounds_code ) incr(lev);
10265 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10269 @ It saves a lot of grief here to be slightly conservative and not account for
10270 omitted parts of dashed lines. We also don't worry about the material omitted
10271 when using butt end caps. The basic computation is for round end caps and
10272 |box_ends| augments it for square end caps.
10274 @<Other cases for updating the bounding box...@>=
10275 case mp_stroked_code:
10276 mp_path_bbox(mp, path_p(p));
10279 mp_pen_bbox(mp, pen_p(p));
10284 mp_adjust_bbox(mp, h);
10285 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10286 mp_box_ends(mp, path_p(p), pen_p(p), h);
10289 @ The height width and depth information stored in a text node determines a
10290 rectangle that needs to be transformed according to the transformation
10291 parameters stored in the text node.
10293 @<Other cases for updating the bounding box...@>=
10295 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10296 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10297 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10300 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10301 else { minx=minx+y1; maxx=maxx+y0; }
10302 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10303 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10304 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10305 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10308 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10309 else { miny=miny+y1; maxy=maxy+y0; }
10310 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10311 mp_adjust_bbox(mp, h);
10314 @ This case involves a recursive call that advances |bblast(h)| to the node of
10315 type |mp_stop_clip_code| that matches |p|.
10317 @<Other cases for updating the bounding box...@>=
10318 case mp_start_clip_code:
10319 mp_path_bbox(mp, path_p(p));
10322 sminx=minx_val(h); sminy=miny_val(h);
10323 smaxx=maxx_val(h); smaxy=maxy_val(h);
10324 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10325 starting at |link(p)|@>;
10326 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10328 minx=sminx; miny=sminy;
10329 maxx=smaxx; maxy=smaxy;
10330 mp_adjust_bbox(mp, h);
10333 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10334 minx_val(h)=el_gordo;
10335 miny_val(h)=el_gordo;
10336 maxx_val(h)=-el_gordo;
10337 maxy_val(h)=-el_gordo;
10338 mp_set_bbox(mp, h,false)
10340 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10341 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10342 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10343 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10344 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10346 @* \[22] Finding an envelope.
10347 When \MP\ has a path and a polygonal pen, it needs to express the desired
10348 shape in terms of things \ps\ can understand. The present task is to compute
10349 a new path that describes the region to be filled. It is convenient to
10350 define this as a two step process where the first step is determining what
10351 offset to use for each segment of the path.
10353 @ Given a pointer |c| to a cyclic path,
10354 and a pointer~|h| to the first knot of a pen polygon,
10355 the |offset_prep| routine changes the path into cubics that are
10356 associated with particular pen offsets. Thus if the cubic between |p|
10357 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10358 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10359 to because |l-k| could be negative.)
10361 After overwriting the type information with offset differences, we no longer
10362 have a true path so we refer to the knot list returned by |offset_prep| as an
10365 Since an envelope spec only determines relative changes in pen offsets,
10366 |offset_prep| sets a global variable |spec_offset| to the relative change from
10367 |h| to the first offset.
10369 @d zero_off 16384 /* added to offset changes to make them positive */
10372 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10374 @ @c @<Declare subroutines needed by |offset_prep|@>
10375 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10376 halfword n; /* the number of vertices in the pen polygon */
10377 pointer p,q,q0,r,w, ww; /* for list manipulation */
10378 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10379 pointer w0; /* a pointer to pen offset to use just before |p| */
10380 scaled dxin,dyin; /* the direction into knot |p| */
10381 integer turn_amt; /* change in pen offsets for the current cubic */
10382 @<Other local variables for |offset_prep|@>;
10384 @<Initialize the pen size~|n|@>;
10385 @<Initialize the incoming direction and pen offset at |c|@>;
10389 @<Split the cubic between |p| and |q|, if necessary, into cubics
10390 associated with single offsets, after which |q| should
10391 point to the end of the final such cubic@>;
10393 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10394 might have been introduced by the splitting process@>;
10396 @<Fix the offset change in |info(c)| and set |c| to the return value of
10401 @ We shall want to keep track of where certain knots on the cyclic path
10402 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10403 knot nodes because some nodes are deleted while removing dead cubics. Thus
10404 |offset_prep| updates the following pointers
10408 pointer spec_p2; /* pointers to distinguished knots */
10411 mp->spec_p1=null; mp->spec_p2=null;
10413 @ @<Initialize the pen size~|n|@>=
10420 @ Since the true incoming direction isn't known yet, we just pick a direction
10421 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10424 @<Initialize the incoming direction and pen offset at |c|@>=
10425 dxin=x_coord(link(h))-x_coord(knil(h));
10426 dyin=y_coord(link(h))-y_coord(knil(h));
10427 if ( (dxin==0)&&(dyin==0) ) {
10428 dxin=y_coord(knil(h))-y_coord(h);
10429 dyin=x_coord(h)-x_coord(knil(h));
10433 @ We must be careful not to remove the only cubic in a cycle.
10435 But we must also be careful for another reason. If the user-supplied
10436 path starts with a set of degenerate cubics, the target node |q| can
10437 be collapsed to the initial node |p| which might be the same as the
10438 initial node |c| of the curve. This would cause the |offset_prep| routine
10439 to bail out too early, causing distress later on. (See for example
10440 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10443 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10447 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10448 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10449 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10451 @<Remove the cubic following |p| and update the data structures
10452 to merge |r| into |p|@>;
10456 /* Check if we removed too much */
10460 @ @<Remove the cubic following |p| and update the data structures...@>=
10461 { k_needed=info(p)-zero_off;
10465 info(p)=k_needed+info(r);
10468 if ( r==c ) { info(p)=info(c); c=p; };
10469 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10470 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10471 r=p; mp_remove_cubic(mp, p);
10474 @ Not setting the |info| field of the newly created knot allows the splitting
10475 routine to work for paths.
10477 @<Declare subroutines needed by |offset_prep|@>=
10478 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10479 scaled v; /* an intermediate value */
10480 pointer q,r; /* for list manipulation */
10481 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10482 originator(r)=mp_program_code;
10483 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10484 v=t_of_the_way(right_x(p),left_x(q));
10485 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10486 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10487 left_x(r)=t_of_the_way(right_x(p),v);
10488 right_x(r)=t_of_the_way(v,left_x(q));
10489 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10490 v=t_of_the_way(right_y(p),left_y(q));
10491 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10492 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10493 left_y(r)=t_of_the_way(right_y(p),v);
10494 right_y(r)=t_of_the_way(v,left_y(q));
10495 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10498 @ This does not set |info(p)| or |right_type(p)|.
10500 @<Declare subroutines needed by |offset_prep|@>=
10501 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10502 pointer q; /* the node that disappears */
10503 q=link(p); link(p)=link(q);
10504 right_x(p)=right_x(q); right_y(p)=right_y(q);
10505 mp_free_node(mp, q,knot_node_size);
10508 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10509 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10510 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10511 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10512 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10513 When listed by increasing $k$, these directions occur in counter-clockwise
10514 order so that $d_k\preceq d\k$ for all~$k$.
10515 The goal of |offset_prep| is to find an offset index~|k| to associate with
10516 each cubic, such that the direction $d(t)$ of the cubic satisfies
10517 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10518 We may have to split a cubic into many pieces before each
10519 piece corresponds to a unique offset.
10521 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10522 info(p)=zero_off+k_needed;
10524 @<Prepare for derivative computations;
10525 |goto not_found| if the current cubic is dead@>;
10526 @<Find the initial direction |(dx,dy)|@>;
10527 @<Update |info(p)| and find the offset $w_k$ such that
10528 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10529 the direction change at |p|@>;
10530 @<Find the final direction |(dxin,dyin)|@>;
10531 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10532 @<Complete the offset splitting process@>;
10533 w0=mp_pen_walk(mp, w0,turn_amt)
10535 @ @<Declare subroutines needed by |offset_prep|@>=
10536 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10537 /* walk |k| steps around a pen from |w| */
10538 while ( k>0 ) { w=link(w); decr(k); };
10539 while ( k<0 ) { w=knil(w); incr(k); };
10543 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10544 calculated from the quadratic polynomials
10545 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10546 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10547 Since we may be calculating directions from several cubics
10548 split from the current one, it is desirable to do these calculations
10549 without losing too much precision. ``Scaled up'' values of the
10550 derivatives, which will be less tainted by accumulated errors than
10551 derivatives found from the cubics themselves, are maintained in
10552 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10553 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10554 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10556 @<Other local variables for |offset_prep|@>=
10557 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10558 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10559 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10560 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10561 integer max_coef; /* used while scaling */
10562 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10563 fraction t; /* where the derivative passes through zero */
10564 fraction s; /* a temporary value */
10566 @ @<Prepare for derivative computations...@>=
10567 x0=right_x(p)-x_coord(p);
10568 x2=x_coord(q)-left_x(q);
10569 x1=left_x(q)-right_x(p);
10570 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10571 y1=left_y(q)-right_y(p);
10573 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10574 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10575 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10576 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10577 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10578 if ( max_coef==0 ) goto NOT_FOUND;
10579 while ( max_coef<fraction_half ) {
10581 double(x0); double(x1); double(x2);
10582 double(y0); double(y1); double(y2);
10585 @ Let us first solve a special case of the problem: Suppose we
10586 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10587 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10588 $d(0)\succ d_{k-1}$.
10589 Then, in a sense, we're halfway done, since one of the two relations
10590 in $(*)$ is satisfied, and the other couldn't be satisfied for
10591 any other value of~|k|.
10593 Actually, the conditions can be relaxed somewhat since a relation such as
10594 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10595 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10596 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10597 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10598 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10599 counterclockwise direction.
10601 The |fin_offset_prep| subroutine solves the stated subproblem.
10602 It has a parameter called |rise| that is |1| in
10603 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10604 the derivative of the cubic following |p|.
10605 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10606 be set properly. The |turn_amt| parameter gives the absolute value of the
10607 overall net change in pen offsets.
10609 @<Declare subroutines needed by |offset_prep|@>=
10610 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10611 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10612 integer rise, integer turn_amt) {
10613 pointer ww; /* for list manipulation */
10614 scaled du,dv; /* for slope calculation */
10615 integer t0,t1,t2; /* test coefficients */
10616 fraction t; /* place where the derivative passes a critical slope */
10617 fraction s; /* slope or reciprocal slope */
10618 integer v; /* intermediate value for updating |x0..y2| */
10619 pointer q; /* original |link(p)| */
10622 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10623 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10624 @<Compute test coefficients |(t0,t1,t2)|
10625 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10626 t=mp_crossing_point(mp, t0,t1,t2);
10627 if ( t>=fraction_one ) {
10628 if ( turn_amt>0 ) t=fraction_one; else return;
10630 @<Split the cubic at $t$,
10631 and split off another cubic if the derivative crosses back@>;
10636 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10637 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10638 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10641 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10642 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10643 if ( abs(du)>=abs(dv) ) {
10644 s=mp_make_fraction(mp, dv,du);
10645 t0=mp_take_fraction(mp, x0,s)-y0;
10646 t1=mp_take_fraction(mp, x1,s)-y1;
10647 t2=mp_take_fraction(mp, x2,s)-y2;
10648 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10650 s=mp_make_fraction(mp, du,dv);
10651 t0=x0-mp_take_fraction(mp, y0,s);
10652 t1=x1-mp_take_fraction(mp, y1,s);
10653 t2=x2-mp_take_fraction(mp, y2,s);
10654 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10656 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10658 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10659 $(*)$, and it might cross again and return towards $s_{k-1}$ or $s_k$,
10660 respectively, yielding another solution of $(*)$.
10662 @<Split the cubic at $t$, and split off another...@>=
10664 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10666 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10667 x0=t_of_the_way(v,x1);
10668 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10669 y0=t_of_the_way(v,y1);
10670 if ( turn_amt<0 ) {
10671 t1=t_of_the_way(t1,t2);
10672 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10673 t=mp_crossing_point(mp, 0,-t1,-t2);
10674 if ( t>fraction_one ) t=fraction_one;
10676 if ( (t==fraction_one)&&(link(p)!=q) ) {
10677 info(link(p))=info(link(p))-rise;
10679 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10680 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10681 x2=t_of_the_way(x1,v);
10682 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10683 y2=t_of_the_way(y1,v);
10688 @ Now we must consider the general problem of |offset_prep|, when
10689 nothing is known about a given cubic. We start by finding its
10690 direction in the vicinity of |t=0|.
10692 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10693 has not yet introduced any more numerical errors. Thus we can compute
10694 the true initial direction for the given cubic, even if it is almost
10697 @<Find the initial direction |(dx,dy)|@>=
10699 if ( dx==0 && dy==0 ) {
10701 if ( dx==0 && dy==0 ) {
10705 if ( p==c ) { dx0=dx; dy0=dy; }
10707 @ @<Find the final direction |(dxin,dyin)|@>=
10709 if ( dxin==0 && dyin==0 ) {
10711 if ( dxin==0 && dyin==0 ) {
10716 @ The next step is to bracket the initial direction between consecutive
10717 edges of the pen polygon. We must be careful to turn clockwise only if
10718 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10719 counter-clockwise in order to make \&{doublepath} envelopes come out
10720 @:double_path_}{\&{doublepath} primitive@>
10721 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10723 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10724 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10725 w=mp_pen_walk(mp, w0, turn_amt);
10727 info(p)=info(p)+turn_amt
10729 @ Decide how many pen offsets to go away from |w| in order to find the offset
10730 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10731 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10732 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10734 If the pen polygon has only two edges, they could both be parallel
10735 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10736 such edge in order to avoid an infinite loop.
10738 @<Declare subroutines needed by |offset_prep|@>=
10739 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10740 scaled dy, boolean ccw) {
10741 pointer ww; /* a neighbor of knot~|w| */
10742 integer s; /* turn amount so far */
10743 integer t; /* |ab_vs_cd| result */
10748 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10749 dx,(y_coord(ww)-y_coord(w)));
10756 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10757 dx,(y_coord(w)-y_coord(ww))) < 0) {
10765 @ When we're all done, the final offset is |w0| and the final curve direction
10766 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10767 can correct |info(c)| which was erroneously based on an incoming offset
10770 @d fix_by(A) info(c)=info(c)+(A)
10772 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10773 mp->spec_offset=info(c)-zero_off;
10774 if ( link(c)==c ) {
10775 info(c)=zero_off+n;
10778 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10779 while ( info(c)<=zero_off-n ) fix_by(n);
10780 while ( info(c)>zero_off ) fix_by(-n);
10781 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10784 @ Finally we want to reduce the general problem to situations that
10785 |fin_offset_prep| can handle. We split the cubic into at most three parts
10786 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10788 @<Complete the offset splitting process@>=
10790 @<Compute test coeff...@>;
10791 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10792 |t:=fraction_one+1|@>;
10793 if ( t>fraction_one ) {
10794 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10796 mp_split_cubic(mp, p,t); r=link(p);
10797 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10798 x2a=t_of_the_way(x1a,x1);
10799 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10800 y2a=t_of_the_way(y1a,y1);
10801 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10802 info(r)=zero_off-1;
10803 if ( turn_amt>=0 ) {
10804 t1=t_of_the_way(t1,t2);
10806 t=mp_crossing_point(mp, 0,-t1,-t2);
10807 if ( t>fraction_one ) t=fraction_one;
10808 @<Split off another rising cubic for |fin_offset_prep|@>;
10809 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10811 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10815 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10816 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10817 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10818 x0a=t_of_the_way(x1,x1a);
10819 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10820 y0a=t_of_the_way(y1,y1a);
10821 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10824 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10825 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10826 need to decide whether the directions are parallel or antiparallel. We
10827 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10828 should be avoided when the value of |turn_amt| already determines the
10829 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10830 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10831 crossing and the first crossing cannot be antiparallel.
10833 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10834 t=mp_crossing_point(mp, t0,t1,t2);
10835 if ( turn_amt>=0 ) {
10839 u0=t_of_the_way(x0,x1);
10840 u1=t_of_the_way(x1,x2);
10841 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10842 v0=t_of_the_way(y0,y1);
10843 v1=t_of_the_way(y1,y2);
10844 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10845 if ( ss<0 ) t=fraction_one+1;
10847 } else if ( t>fraction_one ) {
10851 @ @<Other local variables for |offset_prep|@>=
10852 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10853 integer ss = 0; /* the part of the dot product computed so far */
10854 int d_sign; /* sign of overall change in direction for this cubic */
10856 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10857 problem to decide which way it loops around but that's OK as long we're
10858 consistent. To make \&{doublepath} envelopes work properly, reversing
10859 the path should always change the sign of |turn_amt|.
10861 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10862 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10864 @<Check rotation direction based on node position@>
10868 if ( dy>0 ) d_sign=1; else d_sign=-1;
10870 if ( dx>0 ) d_sign=1; else d_sign=-1;
10873 @<Make |ss| negative if and only if the total change in direction is
10874 more than $180^\circ$@>;
10875 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10876 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10878 @ We check rotation direction by looking at the vector connecting the current
10879 node with the next. If its angle with incoming and outgoing tangents has the
10880 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10881 Otherwise we proceed to the cusp code.
10883 @<Check rotation direction based on node position@>=
10884 u0=x_coord(q)-x_coord(p);
10885 u1=y_coord(q)-y_coord(p);
10886 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10887 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10889 @ In order to be invariant under path reversal, the result of this computation
10890 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10891 then swapped with |(x2,y2)|. We make use of the identities
10892 |take_fraction(-a,-b)=take_fraction(a,b)| and
10893 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10895 @<Make |ss| negative if and only if the total change in direction is...@>=
10896 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10897 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10898 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10900 t=mp_crossing_point(mp, t0,t1,-t0);
10901 u0=t_of_the_way(x0,x1);
10902 u1=t_of_the_way(x1,x2);
10903 v0=t_of_the_way(y0,y1);
10904 v1=t_of_the_way(y1,y2);
10906 t=mp_crossing_point(mp, -t0,t1,t0);
10907 u0=t_of_the_way(x2,x1);
10908 u1=t_of_the_way(x1,x0);
10909 v0=t_of_the_way(y2,y1);
10910 v1=t_of_the_way(y1,y0);
10912 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10913 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10915 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10916 that the |cur_pen| has not been walked around to the first offset.
10919 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, const char *s) {
10920 pointer p,q; /* list traversal */
10921 pointer w; /* the current pen offset */
10922 mp_print_diagnostic(mp, "Envelope spec",s,true);
10923 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10925 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10926 mp_print(mp, " % beginning with offset ");
10927 mp_print_two(mp, x_coord(w),y_coord(w));
10931 @<Print the cubic between |p| and |q|@>;
10933 if ((p==cur_spec) || (info(p)!=zero_off))
10936 if ( info(p)!=zero_off ) {
10937 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10939 } while (p!=cur_spec);
10940 mp_print_nl(mp, " & cycle");
10941 mp_end_diagnostic(mp, true);
10944 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10946 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10947 mp_print(mp, " % ");
10948 if ( info(p)>zero_off ) mp_print(mp, "counter");
10949 mp_print(mp, "clockwise to offset ");
10950 mp_print_two(mp, x_coord(w),y_coord(w));
10953 @ @<Print the cubic between |p| and |q|@>=
10955 mp_print_nl(mp, " ..controls ");
10956 mp_print_two(mp, right_x(p),right_y(p));
10957 mp_print(mp, " and ");
10958 mp_print_two(mp, left_x(q),left_y(q));
10959 mp_print_nl(mp, " ..");
10960 mp_print_two(mp, x_coord(q),y_coord(q));
10963 @ Once we have an envelope spec, the remaining task to construct the actual
10964 envelope by offsetting each cubic as determined by the |info| fields in
10965 the knots. First we use |offset_prep| to convert the |c| into an envelope
10966 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10969 The |ljoin| and |miterlim| parameters control the treatment of points where the
10970 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10971 The endpoints are easily located because |c| is given in undoubled form
10972 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10973 track of the endpoints and treat them like very sharp corners.
10974 Butt end caps are treated like beveled joins; round end caps are treated like
10975 round joins; and square end caps are achieved by setting |join_type:=3|.
10977 None of these parameters apply to inside joins where the convolution tracing
10978 has retrograde lines. In such cases we use a simple connect-the-endpoints
10979 approach that is achieved by setting |join_type:=2|.
10981 @c @<Declare a function called |insert_knot|@>
10982 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10983 small_number lcap, scaled miterlim) {
10984 pointer p,q,r,q0; /* for manipulating the path */
10985 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10986 pointer w,w0; /* the pen knot for the current offset */
10987 scaled qx,qy; /* unshifted coordinates of |q| */
10988 halfword k,k0; /* controls pen edge insertion */
10989 @<Other local variables for |make_envelope|@>;
10990 dxin=0; dyin=0; dxout=0; dyout=0;
10991 mp->spec_p1=null; mp->spec_p2=null;
10992 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10993 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10994 the initial offset@>;
10999 qx=x_coord(q); qy=y_coord(q);
11002 if ( k!=zero_off ) {
11003 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11005 @<Add offset |w| to the cubic from |p| to |q|@>;
11006 while ( k!=zero_off ) {
11007 @<Step |w| and move |k| one step closer to |zero_off|@>;
11008 if ( (join_type==1)||(k==zero_off) )
11009 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11011 if ( q!=link(p) ) {
11012 @<Set |p=link(p)| and add knots between |p| and |q| as
11013 required by |join_type|@>;
11020 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11021 c=mp_offset_prep(mp, c,h);
11022 if ( mp->internal[mp_tracing_specs]>0 )
11023 mp_print_spec(mp, c,h,"");
11024 h=mp_pen_walk(mp, h,mp->spec_offset)
11026 @ Mitered and squared-off joins depend on path directions that are difficult to
11027 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11028 have degenerate cubics only if the entire cycle collapses to a single
11029 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11030 envelope degenerate as well.
11032 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11033 if ( k<zero_off ) {
11036 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11037 else if ( lcap==2 ) join_type=3;
11038 else join_type=2-lcap;
11039 if ( (join_type==0)||(join_type==3) ) {
11040 @<Set the incoming and outgoing directions at |q|; in case of
11041 degeneracy set |join_type:=2|@>;
11042 if ( join_type==0 ) {
11043 @<If |miterlim| is less than the secant of half the angle at |q|
11044 then set |join_type:=2|@>;
11049 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11051 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11052 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11054 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11057 @ @<Other local variables for |make_envelope|@>=
11058 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11059 scaled tmp; /* a temporary value */
11061 @ The coordinates of |p| have already been shifted unless |p| is the first
11062 knot in which case they get shifted at the very end.
11064 @<Add offset |w| to the cubic from |p| to |q|@>=
11065 right_x(p)=right_x(p)+x_coord(w);
11066 right_y(p)=right_y(p)+y_coord(w);
11067 left_x(q)=left_x(q)+x_coord(w);
11068 left_y(q)=left_y(q)+y_coord(w);
11069 x_coord(q)=x_coord(q)+x_coord(w);
11070 y_coord(q)=y_coord(q)+y_coord(w);
11071 left_type(q)=mp_explicit;
11072 right_type(q)=mp_explicit
11074 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11075 if ( k>zero_off ){ w=link(w); decr(k); }
11076 else { w=knil(w); incr(k); }
11078 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11079 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11080 case the cubic containing these control points is ``yet to be examined.''
11082 @<Declare a function called |insert_knot|@>=
11083 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11084 /* returns the inserted knot */
11085 pointer r; /* the new knot */
11086 r=mp_get_node(mp, knot_node_size);
11087 link(r)=link(q); link(q)=r;
11088 right_x(r)=right_x(q);
11089 right_y(r)=right_y(q);
11092 right_x(q)=x_coord(q);
11093 right_y(q)=y_coord(q);
11094 left_x(r)=x_coord(r);
11095 left_y(r)=y_coord(r);
11096 left_type(r)=mp_explicit;
11097 right_type(r)=mp_explicit;
11098 originator(r)=mp_program_code;
11102 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11104 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11107 if ( (join_type==0)||(join_type==3) ) {
11108 if ( join_type==0 ) {
11109 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11111 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11115 right_x(r)=x_coord(r);
11116 right_y(r)=y_coord(r);
11121 @ For very small angles, adding a knot is unnecessary and would cause numerical
11122 problems, so we just set |r:=null| in that case.
11124 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11126 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11127 if ( abs(det)<26844 ) {
11128 r=null; /* sine $<10^{-4}$ */
11130 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11131 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11132 tmp=mp_make_fraction(mp, tmp,det);
11133 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11134 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11138 @ @<Other local variables for |make_envelope|@>=
11139 fraction det; /* a determinant used for mitered join calculations */
11141 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11143 ht_x=y_coord(w)-y_coord(w0);
11144 ht_y=x_coord(w0)-x_coord(w);
11145 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11146 ht_x+=ht_x; ht_y+=ht_y;
11148 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11149 product with |(ht_x,ht_y)|@>;
11150 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11151 mp_take_fraction(mp, dyin,ht_y));
11152 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11153 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11154 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11155 mp_take_fraction(mp, dyout,ht_y));
11156 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11157 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11160 @ @<Other local variables for |make_envelope|@>=
11161 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11162 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11163 halfword kk; /* keeps track of the pen vertices being scanned */
11164 pointer ww; /* the pen vertex being tested */
11166 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11167 from zero to |max_ht|.
11169 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11174 @<Step |ww| and move |kk| one step closer to |k0|@>;
11175 if ( kk==k0 ) break;
11176 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11177 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11178 if ( tmp>max_ht ) max_ht=tmp;
11182 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11183 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11184 else { ww=knil(ww); incr(kk); }
11186 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11187 if ( left_type(c)==mp_endpoint ) {
11188 mp->spec_p1=mp_htap_ypoc(mp, c);
11189 mp->spec_p2=mp->path_tail;
11190 originator(mp->spec_p1)=mp_program_code;
11191 link(mp->spec_p2)=link(mp->spec_p1);
11192 link(mp->spec_p1)=c;
11193 mp_remove_cubic(mp, mp->spec_p1);
11195 if ( c!=link(c) ) {
11196 originator(mp->spec_p2)=mp_program_code;
11197 mp_remove_cubic(mp, mp->spec_p2);
11199 @<Make |c| look like a cycle of length one@>;
11203 @ @<Make |c| look like a cycle of length one@>=
11205 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11206 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11207 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11210 @ In degenerate situations we might have to look at the knot preceding~|q|.
11211 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11213 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11214 dxin=x_coord(q)-left_x(q);
11215 dyin=y_coord(q)-left_y(q);
11216 if ( (dxin==0)&&(dyin==0) ) {
11217 dxin=x_coord(q)-right_x(p);
11218 dyin=y_coord(q)-right_y(p);
11219 if ( (dxin==0)&&(dyin==0) ) {
11220 dxin=x_coord(q)-x_coord(p);
11221 dyin=y_coord(q)-y_coord(p);
11222 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11223 dxin=dxin+x_coord(w);
11224 dyin=dyin+y_coord(w);
11228 tmp=mp_pyth_add(mp, dxin,dyin);
11232 dxin=mp_make_fraction(mp, dxin,tmp);
11233 dyin=mp_make_fraction(mp, dyin,tmp);
11234 @<Set the outgoing direction at |q|@>;
11237 @ If |q=c| then the coordinates of |r| and the control points between |q|
11238 and~|r| have already been offset by |h|.
11240 @<Set the outgoing direction at |q|@>=
11241 dxout=right_x(q)-x_coord(q);
11242 dyout=right_y(q)-y_coord(q);
11243 if ( (dxout==0)&&(dyout==0) ) {
11245 dxout=left_x(r)-x_coord(q);
11246 dyout=left_y(r)-y_coord(q);
11247 if ( (dxout==0)&&(dyout==0) ) {
11248 dxout=x_coord(r)-x_coord(q);
11249 dyout=y_coord(r)-y_coord(q);
11253 dxout=dxout-x_coord(h);
11254 dyout=dyout-y_coord(h);
11256 tmp=mp_pyth_add(mp, dxout,dyout);
11257 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11258 @:this can't happen degerate spec}{\quad degenerate spec@>
11259 dxout=mp_make_fraction(mp, dxout,tmp);
11260 dyout=mp_make_fraction(mp, dyout,tmp)
11262 @* \[23] Direction and intersection times.
11263 A path of length $n$ is defined parametrically by functions $x(t)$ and
11264 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11265 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11266 we shall consider operations that determine special times associated with
11267 given paths: the first time that a path travels in a given direction, and
11268 a pair of times at which two paths cross each other.
11270 @ Let's start with the easier task. The function |find_direction_time| is
11271 given a direction |(x,y)| and a path starting at~|h|. If the path never
11272 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11273 it will be nonnegative.
11275 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11276 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11277 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11278 assumed to match any given direction at time~|t|.
11280 The routine solves this problem in nondegenerate cases by rotating the path
11281 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11282 to find when a given path first travels ``due east.''
11285 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11286 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11287 pointer p,q; /* for list traversal */
11288 scaled n; /* the direction time at knot |p| */
11289 scaled tt; /* the direction time within a cubic */
11290 @<Other local variables for |find_direction_time|@>;
11291 @<Normalize the given direction for better accuracy;
11292 but |return| with zero result if it's zero@>;
11295 if ( right_type(p)==mp_endpoint ) break;
11297 @<Rotate the cubic between |p| and |q|; then
11298 |goto found| if the rotated cubic travels due east at some time |tt|;
11299 but |break| if an entire cyclic path has been traversed@>;
11307 @ @<Normalize the given direction for better accuracy...@>=
11308 if ( abs(x)<abs(y) ) {
11309 x=mp_make_fraction(mp, x,abs(y));
11310 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11311 } else if ( x==0 ) {
11314 y=mp_make_fraction(mp, y,abs(x));
11315 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11318 @ Since we're interested in the tangent directions, we work with the
11319 derivative $${1\over3}B'(x_0,x_1,x_2,x_3;t)=
11320 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11321 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11322 in order to achieve better accuracy.
11324 The given path may turn abruptly at a knot, and it might pass the critical
11325 tangent direction at such a time. Therefore we remember the direction |phi|
11326 in which the previous rotated cubic was traveling. (The value of |phi| will be
11327 undefined on the first cubic, i.e., when |n=0|.)
11329 @<Rotate the cubic between |p| and |q|; then...@>=
11331 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11332 points of the rotated derivatives@>;
11333 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11335 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11338 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11339 @<Exit to |found| if the curve whose derivatives are specified by
11340 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11342 @ @<Other local variables for |find_direction_time|@>=
11343 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11344 angle theta,phi; /* angles of exit and entry at a knot */
11345 fraction t; /* temp storage */
11347 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11348 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11349 x3=x_coord(q)-left_x(q);
11350 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11351 y3=y_coord(q)-left_y(q);
11353 if ( abs(x2)>max ) max=abs(x2);
11354 if ( abs(x3)>max ) max=abs(x3);
11355 if ( abs(y1)>max ) max=abs(y1);
11356 if ( abs(y2)>max ) max=abs(y2);
11357 if ( abs(y3)>max ) max=abs(y3);
11358 if ( max==0 ) goto FOUND;
11359 while ( max<fraction_half ){
11360 max+=max; x1+=x1; x2+=x2; x3+=x3;
11361 y1+=y1; y2+=y2; y3+=y3;
11363 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11364 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11365 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11366 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11367 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11368 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11370 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11371 theta=mp_n_arg(mp, x1,y1);
11372 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11373 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11375 @ In this step we want to use the |crossing_point| routine to find the
11376 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11377 Several complications arise: If the quadratic equation has a double root,
11378 the curve never crosses zero, and |crossing_point| will find nothing;
11379 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11380 equation has simple roots, or only one root, we may have to negate it
11381 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11382 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11385 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11386 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11387 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11388 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11389 either |goto found| or |goto done|@>;
11392 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11393 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11395 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11396 $B(x_1,x_2,x_3;t)\ge0$@>;
11399 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11400 two roots, because we know that it isn't identically zero.
11402 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11403 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11404 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11405 subject to rounding errors. Yet this code optimistically tries to
11406 do the right thing.
11408 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11410 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11411 t=mp_crossing_point(mp, y1,y2,y3);
11412 if ( t>fraction_one ) goto DONE;
11413 y2=t_of_the_way(y2,y3);
11414 x1=t_of_the_way(x1,x2);
11415 x2=t_of_the_way(x2,x3);
11416 x1=t_of_the_way(x1,x2);
11417 if ( x1>=0 ) we_found_it;
11419 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11420 if ( t>fraction_one ) goto DONE;
11421 x1=t_of_the_way(x1,x2);
11422 x2=t_of_the_way(x2,x3);
11423 if ( t_of_the_way(x1,x2)>=0 ) {
11424 t=t_of_the_way(tt,fraction_one); we_found_it;
11427 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11428 either |goto found| or |goto done|@>=
11430 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11431 t=mp_make_fraction(mp, y1,y1-y2);
11432 x1=t_of_the_way(x1,x2);
11433 x2=t_of_the_way(x2,x3);
11434 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11435 } else if ( y3==0 ) {
11437 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11438 } else if ( x3>=0 ) {
11439 tt=unity; goto FOUND;
11445 @ At this point we know that the derivative of |y(t)| is identically zero,
11446 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11449 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11451 t=mp_crossing_point(mp, -x1,-x2,-x3);
11452 if ( t<=fraction_one ) we_found_it;
11453 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11454 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11458 @ The intersection of two cubics can be found by an interesting variant
11459 of the general bisection scheme described in the introduction to
11461 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11462 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11463 if an intersection exists. First we find the smallest rectangle that
11464 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11465 the smallest rectangle that encloses
11466 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11467 But if the rectangles do overlap, we bisect the intervals, getting
11468 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11469 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11470 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11471 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11472 levels of bisection we will have determined the intersection times $t_1$
11473 and~$t_2$ to $l$~bits of accuracy.
11475 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11476 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11477 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11478 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11479 to determine when the enclosing rectangles overlap. Here's why:
11480 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11481 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11482 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11483 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11484 overlap if and only if $u\submin\L x\submax$ and
11485 $x\submin\L u\submax$. Letting
11486 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11487 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11488 we have $2^lu\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11490 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11491 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11492 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11493 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11494 because of the overlap condition; i.e., we know that $X\submin$,
11495 $X\submax$, and their relatives are bounded, hence $X\submax-
11496 U\submin$ and $X\submin-U\submax$ are bounded.
11498 @ Incidentally, if the given cubics intersect more than once, the process
11499 just sketched will not necessarily find the lexicographically smallest pair
11500 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11501 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11502 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11503 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11504 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11505 Shuffled order agrees with lexicographic order if all pairs of solutions
11506 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11507 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11508 and the bisection algorithm would be substantially less efficient if it were
11509 constrained by lexicographic order.
11511 For example, suppose that an overlap has been found for $l=3$ and
11512 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11513 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11514 Then there is probably an intersection in one of the subintervals
11515 $(.1011,.011x)$; but lexicographic order would require us to explore
11516 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11517 want to store all of the subdivision data for the second path, so the
11518 subdivisions would have to be regenerated many times. Such inefficiencies
11519 would be associated with every `1' in the binary representation of~$t_1$.
11521 @ The subdivision process introduces rounding errors, hence we need to
11522 make a more liberal test for overlap. It is not hard to show that the
11523 computed values of $U_i$ differ from the truth by at most~$l$, on
11524 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11525 If $\beta$ is an upper bound on the absolute error in the computed
11526 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11527 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11528 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11530 More accuracy is obtained if we try the algorithm first with |tol=0|;
11531 the more liberal tolerance is used only if an exact approach fails.
11532 It is convenient to do this double-take by letting `3' in the preceding
11533 paragraph be a parameter, which is first 0, then 3.
11536 unsigned int tol_step; /* either 0 or 3, usually */
11538 @ We shall use an explicit stack to implement the recursive bisection
11539 method described above. The |bisect_stack| array will contain numerous 5-word
11540 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11541 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11543 The following macros define the allocation of stack positions to
11544 the quantities needed for bisection-intersection.
11546 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11547 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11548 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11549 @d stack_min(A) mp->bisect_stack[(A)+3]
11550 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11551 @d stack_max(A) mp->bisect_stack[(A)+4]
11552 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11553 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11555 @d u_packet(A) ((A)-5)
11556 @d v_packet(A) ((A)-10)
11557 @d x_packet(A) ((A)-15)
11558 @d y_packet(A) ((A)-20)
11559 @d l_packets (mp->bisect_ptr-int_packets)
11560 @d r_packets mp->bisect_ptr
11561 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11562 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11563 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11564 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11565 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11566 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11567 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11568 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11570 @d u1l stack_1(ul_packet) /* $U'_1$ */
11571 @d u2l stack_2(ul_packet) /* $U'_2$ */
11572 @d u3l stack_3(ul_packet) /* $U'_3$ */
11573 @d v1l stack_1(vl_packet) /* $V'_1$ */
11574 @d v2l stack_2(vl_packet) /* $V'_2$ */
11575 @d v3l stack_3(vl_packet) /* $V'_3$ */
11576 @d x1l stack_1(xl_packet) /* $X'_1$ */
11577 @d x2l stack_2(xl_packet) /* $X'_2$ */
11578 @d x3l stack_3(xl_packet) /* $X'_3$ */
11579 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11580 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11581 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11582 @d u1r stack_1(ur_packet) /* $U''_1$ */
11583 @d u2r stack_2(ur_packet) /* $U''_2$ */
11584 @d u3r stack_3(ur_packet) /* $U''_3$ */
11585 @d v1r stack_1(vr_packet) /* $V''_1$ */
11586 @d v2r stack_2(vr_packet) /* $V''_2$ */
11587 @d v3r stack_3(vr_packet) /* $V''_3$ */
11588 @d x1r stack_1(xr_packet) /* $X''_1$ */
11589 @d x2r stack_2(xr_packet) /* $X''_2$ */
11590 @d x3r stack_3(xr_packet) /* $X''_3$ */
11591 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11592 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11593 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11595 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11596 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11597 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11598 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11599 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11600 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11603 integer *bisect_stack;
11604 unsigned int bisect_ptr;
11606 @ @<Allocate or initialize ...@>=
11607 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11609 @ @<Dealloc variables@>=
11610 xfree(mp->bisect_stack);
11612 @ @<Check the ``constant''...@>=
11613 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11615 @ Computation of the min and max is a tedious but fairly fast sequence of
11616 instructions; exactly four comparisons are made in each branch.
11619 if ( stack_1((A))<0 ) {
11620 if ( stack_3((A))>=0 ) {
11621 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11622 else stack_min((A))=stack_1((A));
11623 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11624 if ( stack_max((A))<0 ) stack_max((A))=0;
11626 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11627 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11628 stack_max((A))=stack_1((A))+stack_2((A));
11629 if ( stack_max((A))<0 ) stack_max((A))=0;
11631 } else if ( stack_3((A))<=0 ) {
11632 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11633 else stack_max((A))=stack_1((A));
11634 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11635 if ( stack_min((A))>0 ) stack_min((A))=0;
11637 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11638 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11639 stack_min((A))=stack_1((A))+stack_2((A));
11640 if ( stack_min((A))>0 ) stack_min((A))=0;
11643 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11644 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11645 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11646 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11647 plus the |scaled| values of $t_1$ and~$t_2$.
11649 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11650 finds no intersection. The routine gives up and gives an approximate answer
11651 if it has backtracked
11652 more than 5000 times (otherwise there are cases where several minutes
11653 of fruitless computation would be possible).
11655 @d max_patience 5000
11658 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11659 integer time_to_go; /* this many backtracks before giving up */
11660 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11662 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11663 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11664 and |(pp,link(pp))|, respectively.
11666 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11667 pointer q,qq; /* |link(p)|, |link(pp)| */
11668 mp->time_to_go=max_patience; mp->max_t=2;
11669 @<Initialize for intersections at level zero@>;
11672 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11673 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11674 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11675 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11677 if ( mp->cur_t>=mp->max_t ){
11678 if ( mp->max_t==two ) { /* we've done 17 bisections */
11679 mp->cur_t=halfp(mp->cur_t+1);
11680 mp->cur_tt=halfp(mp->cur_tt+1);
11683 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11685 @<Subdivide for a new level of intersection@>;
11688 if ( mp->time_to_go>0 ) {
11689 decr(mp->time_to_go);
11691 while ( mp->appr_t<unity ) {
11692 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11694 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11696 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11700 @ The following variables are global, although they are used only by
11701 |cubic_intersection|, because it is necessary on some machines to
11702 split |cubic_intersection| up into two procedures.
11705 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11706 integer tol; /* bound on the uncertainty in the overlap test */
11708 unsigned int xy; /* pointers to the current packets of interest */
11709 integer three_l; /* |tol_step| times the bisection level */
11710 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11712 @ We shall assume that the coordinates are sufficiently non-extreme that
11713 integer overflow will not occur.
11714 @^overflow in arithmetic@>
11716 @<Initialize for intersections at level zero@>=
11717 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11718 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11719 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11720 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11721 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11722 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11723 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11724 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11725 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11726 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11727 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11728 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11730 @ @<Subdivide for a new level of intersection@>=
11731 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11732 stack_uv=mp->uv; stack_xy=mp->xy;
11733 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11734 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11735 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11736 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11737 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11738 u3l=half(u2l+u2r); u1r=u3l;
11739 set_min_max(ul_packet); set_min_max(ur_packet);
11740 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11741 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11742 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11743 v3l=half(v2l+v2r); v1r=v3l;
11744 set_min_max(vl_packet); set_min_max(vr_packet);
11745 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11746 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11747 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11748 x3l=half(x2l+x2r); x1r=x3l;
11749 set_min_max(xl_packet); set_min_max(xr_packet);
11750 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11751 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11752 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11753 y3l=half(y2l+y2r); y1r=y3l;
11754 set_min_max(yl_packet); set_min_max(yr_packet);
11755 mp->uv=l_packets; mp->xy=l_packets;
11756 mp->delx+=mp->delx; mp->dely+=mp->dely;
11757 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11758 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11760 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11762 if ( odd(mp->cur_tt) ) {
11763 if ( odd(mp->cur_t) ) {
11764 @<Descend to the previous level and |goto not_found|@>;
11767 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11768 +stack_3(u_packet(mp->uv));
11769 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11770 +stack_3(v_packet(mp->uv));
11771 mp->uv=mp->uv+int_packets; /* switch from |l_packets| to |r_packets| */
11772 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11773 /* switch from |r_packets| to |l_packets| */
11774 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11775 +stack_3(x_packet(mp->xy));
11776 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11777 +stack_3(y_packet(mp->xy));
11780 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11781 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11782 -stack_3(x_packet(mp->xy));
11783 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11784 -stack_3(y_packet(mp->xy));
11785 mp->xy=mp->xy+int_packets; /* switch from |l_packets| to |r_packets| */
11788 @ @<Descend to the previous level...@>=
11790 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11791 if ( mp->cur_t==0 ) return;
11792 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11793 mp->three_l=mp->three_l-mp->tol_step;
11794 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11795 mp->uv=stack_uv; mp->xy=stack_xy;
11799 @ The |path_intersection| procedure is much simpler.
11800 It invokes |cubic_intersection| in lexicographic order until finding a
11801 pair of cubics that intersect. The final intersection times are placed in
11802 |cur_t| and~|cur_tt|.
11804 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11805 pointer p,pp; /* link registers that traverse the given paths */
11806 integer n,nn; /* integer parts of intersection times, minus |unity| */
11807 @<Change one-point paths into dead cycles@>;
11812 if ( right_type(p)!=mp_endpoint ) {
11815 if ( right_type(pp)!=mp_endpoint ) {
11816 mp_cubic_intersection(mp, p,pp);
11817 if ( mp->cur_t>0 ) {
11818 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11822 nn=nn+unity; pp=link(pp);
11825 n=n+unity; p=link(p);
11827 mp->tol_step=mp->tol_step+3;
11828 } while (mp->tol_step<=3);
11829 mp->cur_t=-unity; mp->cur_tt=-unity;
11832 @ @<Change one-point paths...@>=
11833 if ( right_type(h)==mp_endpoint ) {
11834 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11835 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11837 if ( right_type(hh)==mp_endpoint ) {
11838 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11839 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11842 @* \[24] Dynamic linear equations.
11843 \MP\ users define variables implicitly by stating equations that should be
11844 satisfied; the computer is supposed to be smart enough to solve those equations.
11845 And indeed, the computer tries valiantly to do so, by distinguishing five
11846 different types of numeric values:
11849 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11850 of the variable whose address is~|p|.
11853 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11854 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11855 as a |scaled| number plus a sum of independent variables with |fraction|
11859 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11860 number'' reflecting the time this variable was first used in an equation;
11861 also |0<=m<64|, and each dependent variable
11862 that refers to this one is actually referring to the future value of
11863 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11864 scaling are sometimes needed to keep the coefficients in dependency lists
11865 from getting too large. The value of~|m| will always be even.)
11868 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11869 equation before, but it has been explicitly declared to be numeric.
11872 |type(p)=undefined| means that variable |p| hasn't appeared before.
11874 \smallskip\noindent
11875 We have actually discussed these five types in the reverse order of their
11876 history during a computation: Once |known|, a variable never again
11877 becomes |dependent|; once |dependent|, it almost never again becomes
11878 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11879 and once |mp_numeric_type|, it never again becomes |undefined| (except
11880 of course when the user specifically decides to scrap the old value
11881 and start again). A backward step may, however, take place: Sometimes
11882 a |dependent| variable becomes |mp_independent| again, when one of the
11883 independent variables it depends on is reverting to |undefined|.
11886 The next patch detects overflow of independent-variable serial
11887 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11889 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11890 @d new_indep(A) /* create a new independent variable */
11891 { if ( mp->serial_no>el_gordo-s_scale )
11892 mp_fatal_error(mp, "variable instance identifiers exhausted");
11893 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11894 value((A))=mp->serial_no;
11898 integer serial_no; /* the most recent serial number, times |s_scale| */
11900 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11902 @ But how are dependency lists represented? It's simple: The linear combination
11903 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11904 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11905 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11906 of $\alpha_1$; and |link(p)| points to the dependency list
11907 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11908 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11909 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11910 they appear in decreasing order of their |value| fields (i.e., of
11911 their serial numbers). \ (It is convenient to use decreasing order,
11912 since |value(null)=0|. If the independent variables were not sorted by
11913 serial number but by some other criterion, such as their location in |mem|,
11914 the equation-solving mechanism would be too system-dependent, because
11915 the ordering can affect the computed results.)
11917 The |link| field in the node that contains the constant term $\beta$ is
11918 called the {\sl final link\/} of the dependency list. \MP\ maintains
11919 a doubly-linked master list of all dependency lists, in terms of a permanently
11921 in |mem| called |dep_head|. If there are no dependencies, we have
11922 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11923 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11924 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11925 points to its dependency list. If the final link of that dependency list
11926 occurs in location~|q|, then |link(q)| points to the next dependent
11927 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11929 @d dep_list(A) link(value_loc((A)))
11930 /* half of the |value| field in a |dependent| variable */
11931 @d prev_dep(A) info(value_loc((A)))
11932 /* the other half; makes a doubly linked list */
11933 @d dep_node_size 2 /* the number of words per dependency node */
11935 @<Initialize table entries...@>= mp->serial_no=0;
11936 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11937 info(dep_head)=null; dep_list(dep_head)=null;
11939 @ Actually the description above contains a little white lie. There's
11940 another kind of variable called |mp_proto_dependent|, which is
11941 just like a |dependent| one except that the $\alpha$ coefficients
11942 in its dependency list are |scaled| instead of being fractions.
11943 Proto-dependency lists are mixed with dependency lists in the
11944 nodes reachable from |dep_head|.
11946 @ Here is a procedure that prints a dependency list in symbolic form.
11947 The second parameter should be either |dependent| or |mp_proto_dependent|,
11948 to indicate the scaling of the coefficients.
11950 @<Declare subroutines for printing expressions@>=
11951 void mp_print_dependency (MP mp,pointer p, small_number t) {
11952 integer v; /* a coefficient */
11953 pointer pp,q; /* for list manipulation */
11956 v=abs(value(p)); q=info(p);
11957 if ( q==null ) { /* the constant term */
11958 if ( (v!=0)||(p==pp) ) {
11959 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11960 mp_print_scaled(mp, value(p));
11964 @<Print the coefficient, unless it's $\pm1.0$@>;
11965 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11966 @:this can't happen dep}{\quad dep@>
11967 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11968 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11973 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11974 if ( value(p)<0 ) mp_print_char(mp, '-');
11975 else if ( p!=pp ) mp_print_char(mp, '+');
11976 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11977 if ( v!=unity ) mp_print_scaled(mp, v)
11979 @ The maximum absolute value of a coefficient in a given dependency list
11980 is returned by the following simple function.
11982 @c fraction mp_max_coef (MP mp,pointer p) {
11983 fraction x; /* the maximum so far */
11985 while ( info(p)!=null ) {
11986 if ( abs(value(p))>x ) x=abs(value(p));
11992 @ One of the main operations needed on dependency lists is to add a multiple
11993 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11994 to dependency lists and |f| is a fraction.
11996 If the coefficient of any independent variable becomes |coef_bound| or
11997 more, in absolute value, this procedure changes the type of that variable
11998 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11999 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12000 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12001 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12002 2.3723$, the safer value 7/3 is taken as the threshold.)
12004 The changes mentioned in the preceding paragraph are actually done only if
12005 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12006 it is |false| only when \MP\ is making a dependency list that will soon
12007 be equated to zero.
12009 Several procedures that act on dependency lists, including |p_plus_fq|,
12010 set the global variable |dep_final| to the final (constant term) node of
12011 the dependency list that they produce.
12013 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12014 @d independent_needing_fix 0
12017 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12018 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12019 pointer dep_final; /* location of the constant term and final link */
12022 mp->fix_needed=false; mp->watch_coefs=true;
12024 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12025 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12026 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12027 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12029 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12031 The final link of the dependency list or proto-dependency list returned
12032 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12033 constant term of the result will be located in the same |mem| location
12034 as the original constant term of~|p|.
12036 Coefficients of the result are assumed to be zero if they are less than
12037 a certain threshold. This compensates for inevitable rounding errors,
12038 and tends to make more variables `|known|'. The threshold is approximately
12039 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12040 proto-dependencies.
12042 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12043 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12044 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12045 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12047 @<Declare basic dependency-list subroutines@>=
12048 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12049 pointer q, small_number t, small_number tt) ;
12052 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12053 pointer q, small_number t, small_number tt) {
12054 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12055 pointer r,s; /* for list manipulation */
12056 integer threshold; /* defines a neighborhood of zero */
12057 integer v; /* temporary register */
12058 if ( t==mp_dependent ) threshold=fraction_threshold;
12059 else threshold=scaled_threshold;
12060 r=temp_head; pp=info(p); qq=info(q);
12066 @<Contribute a term from |p|, plus |f| times the
12067 corresponding term from |q|@>
12069 } else if ( value(pp)<value(qq) ) {
12070 @<Contribute a term from |q|, multiplied by~|f|@>
12072 link(r)=p; r=p; p=link(p); pp=info(p);
12075 if ( t==mp_dependent )
12076 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12078 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12079 link(r)=p; mp->dep_final=p;
12080 return link(temp_head);
12083 @ @<Contribute a term from |p|, plus |f|...@>=
12085 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12086 else v=value(p)+mp_take_scaled(mp, f,value(q));
12087 value(p)=v; s=p; p=link(p);
12088 if ( abs(v)<threshold ) {
12089 mp_free_node(mp, s,dep_node_size);
12091 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12092 type(qq)=independent_needing_fix; mp->fix_needed=true;
12096 pp=info(p); q=link(q); qq=info(q);
12099 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12101 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12102 else v=mp_take_scaled(mp, f,value(q));
12103 if ( abs(v)>halfp(threshold) ) {
12104 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12105 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12106 type(qq)=independent_needing_fix; mp->fix_needed=true;
12110 q=link(q); qq=info(q);
12113 @ It is convenient to have another subroutine for the special case
12114 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12115 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12117 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12118 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12119 pointer r,s; /* for list manipulation */
12120 integer threshold; /* defines a neighborhood of zero */
12121 integer v; /* temporary register */
12122 if ( t==mp_dependent ) threshold=fraction_threshold;
12123 else threshold=scaled_threshold;
12124 r=temp_head; pp=info(p); qq=info(q);
12130 @<Contribute a term from |p|, plus the
12131 corresponding term from |q|@>
12134 if ( value(pp)<value(qq) ) {
12135 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12136 q=link(q); qq=info(q); link(r)=s; r=s;
12138 link(r)=p; r=p; p=link(p); pp=info(p);
12142 value(p)=mp_slow_add(mp, value(p),value(q));
12143 link(r)=p; mp->dep_final=p;
12144 return link(temp_head);
12147 @ @<Contribute a term from |p|, plus the...@>=
12149 v=value(p)+value(q);
12150 value(p)=v; s=p; p=link(p); pp=info(p);
12151 if ( abs(v)<threshold ) {
12152 mp_free_node(mp, s,dep_node_size);
12154 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12155 type(qq)=independent_needing_fix; mp->fix_needed=true;
12159 q=link(q); qq=info(q);
12162 @ A somewhat simpler routine will multiply a dependency list
12163 by a given constant~|v|. The constant is either a |fraction| less than
12164 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12165 convert a dependency list to a proto-dependency list.
12166 Parameters |t0| and |t1| are the list types before and after;
12167 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12168 and |v_is_scaled=true|.
12170 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12171 small_number t1, boolean v_is_scaled) {
12172 pointer r,s; /* for list manipulation */
12173 integer w; /* tentative coefficient */
12175 boolean scaling_down;
12176 if ( t0!=t1 ) scaling_down=true; else scaling_down=(!v_is_scaled);
12177 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12178 else threshold=half_scaled_threshold;
12180 while ( info(p)!=null ) {
12181 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12182 else w=mp_take_scaled(mp, v,value(p));
12183 if ( abs(w)<=threshold ) {
12184 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12186 if ( abs(w)>=coef_bound ) {
12187 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12189 link(r)=p; r=p; value(p)=w; p=link(p);
12193 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12194 else value(p)=mp_take_fraction(mp, value(p),v);
12195 return link(temp_head);
12198 @ Similarly, we sometimes need to divide a dependency list
12199 by a given |scaled| constant.
12201 @<Declare basic dependency-list subroutines@>=
12202 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12203 t0, small_number t1) ;
12206 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12207 t0, small_number t1) {
12208 pointer r,s; /* for list manipulation */
12209 integer w; /* tentative coefficient */
12211 boolean scaling_down;
12212 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12213 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12214 else threshold=half_scaled_threshold;
12216 while ( info( p)!=null ) {
12217 if ( scaling_down ) {
12218 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12219 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12221 w=mp_make_scaled(mp, value(p),v);
12223 if ( abs(w)<=threshold ) {
12224 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12226 if ( abs(w)>=coef_bound ) {
12227 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12229 link(r)=p; r=p; value(p)=w; p=link(p);
12232 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12233 return link(temp_head);
12236 @ Here's another utility routine for dependency lists. When an independent
12237 variable becomes dependent, we want to remove it from all existing
12238 dependencies. The |p_with_x_becoming_q| function computes the
12239 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12241 This procedure has basically the same calling conventions as |p_plus_fq|:
12242 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12243 final link are inherited from~|p|; and the fourth parameter tells whether
12244 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12245 is not altered if |x| does not occur in list~|p|.
12247 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12248 pointer x, pointer q, small_number t) {
12249 pointer r,s; /* for list manipulation */
12250 integer v; /* coefficient of |x| */
12251 integer sx; /* serial number of |x| */
12252 s=p; r=temp_head; sx=value(x);
12253 while ( value(info(s))>sx ) { r=s; s=link(s); };
12254 if ( info(s)!=x ) {
12257 link(temp_head)=p; link(r)=link(s); v=value(s);
12258 mp_free_node(mp, s,dep_node_size);
12259 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12263 @ Here's a simple procedure that reports an error when a variable
12264 has just received a known value that's out of the required range.
12266 @<Declare basic dependency-list subroutines@>=
12267 void mp_val_too_big (MP mp,scaled x) ;
12269 @ @c void mp_val_too_big (MP mp,scaled x) {
12270 if ( mp->internal[mp_warning_check]>0 ) {
12271 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12272 @.Value is too large@>
12273 help4("The equation I just processed has given some variable")
12274 ("a value of 4096 or more. Continue and I'll try to cope")
12275 ("with that big value; but it might be dangerous.")
12276 ("(Set warningcheck:=0 to suppress this message.)");
12281 @ When a dependent variable becomes known, the following routine
12282 removes its dependency list. Here |p| points to the variable, and
12283 |q| points to the dependency list (which is one node long).
12285 @<Declare basic dependency-list subroutines@>=
12286 void mp_make_known (MP mp,pointer p, pointer q) ;
12288 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12289 int t; /* the previous type */
12290 prev_dep(link(q))=prev_dep(p);
12291 link(prev_dep(p))=link(q); t=type(p);
12292 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12293 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12294 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12295 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12296 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12297 mp_print_variable_name(mp, p);
12298 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12299 mp_end_diagnostic(mp, false);
12301 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12302 mp->cur_type=mp_known; mp->cur_exp=value(p);
12303 mp_free_node(mp, p,value_node_size);
12307 @ The |fix_dependencies| routine is called into action when |fix_needed|
12308 has been triggered. The program keeps a list~|s| of independent variables
12309 whose coefficients must be divided by~4.
12311 In unusual cases, this fixup process might reduce one or more coefficients
12312 to zero, so that a variable will become known more or less by default.
12314 @<Declare basic dependency-list subroutines@>=
12315 void mp_fix_dependencies (MP mp);
12317 @ @c void mp_fix_dependencies (MP mp) {
12318 pointer p,q,r,s,t; /* list manipulation registers */
12319 pointer x; /* an independent variable */
12320 r=link(dep_head); s=null;
12321 while ( r!=dep_head ){
12323 @<Run through the dependency list for variable |t|, fixing
12324 all nodes, and ending with final link~|q|@>;
12326 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12328 while ( s!=null ) {
12329 p=link(s); x=info(s); free_avail(s); s=p;
12330 type(x)=mp_independent; value(x)=value(x)+2;
12332 mp->fix_needed=false;
12335 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12337 @<Run through the dependency list for variable |t|...@>=
12338 r=value_loc(t); /* |link(r)=dep_list(t)| */
12340 q=link(r); x=info(q);
12341 if ( x==null ) break;
12342 if ( type(x)<=independent_being_fixed ) {
12343 if ( type(x)<independent_being_fixed ) {
12344 p=mp_get_avail(mp); link(p)=s; s=p;
12345 info(s)=x; type(x)=independent_being_fixed;
12347 value(q)=value(q) / 4;
12348 if ( value(q)==0 ) {
12349 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12356 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12357 linking it into the list of all known dependencies. We assume that
12358 |dep_final| points to the final node of list~|p|.
12360 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12361 pointer r; /* what used to be the first dependency */
12362 dep_list(q)=p; prev_dep(q)=dep_head;
12363 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12367 @ Here is one of the ways a dependency list gets started.
12368 The |const_dependency| routine produces a list that has nothing but
12371 @c pointer mp_const_dependency (MP mp, scaled v) {
12372 mp->dep_final=mp_get_node(mp, dep_node_size);
12373 value(mp->dep_final)=v; info(mp->dep_final)=null;
12374 return mp->dep_final;
12377 @ And here's a more interesting way to start a dependency list from scratch:
12378 The parameter to |single_dependency| is the location of an
12379 independent variable~|x|, and the result is the simple dependency list
12382 In the unlikely event that the given independent variable has been doubled so
12383 often that we can't refer to it with a nonzero coefficient,
12384 |single_dependency| returns the simple list `0'. This case can be
12385 recognized by testing that the returned list pointer is equal to
12388 @c pointer mp_single_dependency (MP mp,pointer p) {
12389 pointer q; /* the new dependency list */
12390 integer m; /* the number of doublings */
12391 m=value(p) % s_scale;
12393 return mp_const_dependency(mp, 0);
12395 q=mp_get_node(mp, dep_node_size);
12396 value(q)=two_to_the(28-m); info(q)=p;
12397 link(q)=mp_const_dependency(mp, 0);
12402 @ We sometimes need to make an exact copy of a dependency list.
12404 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12405 pointer q; /* the new dependency list */
12406 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12408 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12409 if ( info(mp->dep_final)==null ) break;
12410 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12411 mp->dep_final=link(mp->dep_final); p=link(p);
12416 @ But how do variables normally become known? Ah, now we get to the heart of the
12417 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12418 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12419 appears. It equates this list to zero, by choosing an independent variable
12420 with the largest coefficient and making it dependent on the others. The
12421 newly dependent variable is eliminated from all current dependencies,
12422 thereby possibly making other dependent variables known.
12424 The given list |p| is, of course, totally destroyed by all this processing.
12426 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12427 pointer q,r,s; /* for link manipulation */
12428 pointer x; /* the variable that loses its independence */
12429 integer n; /* the number of times |x| had been halved */
12430 integer v; /* the coefficient of |x| in list |p| */
12431 pointer prev_r; /* lags one step behind |r| */
12432 pointer final_node; /* the constant term of the new dependency list */
12433 integer w; /* a tentative coefficient */
12434 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12435 x=info(q); n=value(x) % s_scale;
12436 @<Divide list |p| by |-v|, removing node |q|@>;
12437 if ( mp->internal[mp_tracing_equations]>0 ) {
12438 @<Display the new dependency@>;
12440 @<Simplify all existing dependencies by substituting for |x|@>;
12441 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12442 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12445 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12446 q=p; r=link(p); v=value(q);
12447 while ( info(r)!=null ) {
12448 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12452 @ Here we want to change the coefficients from |scaled| to |fraction|,
12453 except in the constant term. In the common case of a trivial equation
12454 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12456 @<Divide list |p| by |-v|, removing node |q|@>=
12457 s=temp_head; link(s)=p; r=p;
12460 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12462 w=mp_make_fraction(mp, value(r),v);
12463 if ( abs(w)<=half_fraction_threshold ) {
12464 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12470 } while (info(r)!=null);
12471 if ( t==mp_proto_dependent ) {
12472 value(r)=-mp_make_scaled(mp, value(r),v);
12473 } else if ( v!=-fraction_one ) {
12474 value(r)=-mp_make_fraction(mp, value(r),v);
12476 final_node=r; p=link(temp_head)
12478 @ @<Display the new dependency@>=
12479 if ( mp_interesting(mp, x) ) {
12480 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12481 mp_print_variable_name(mp, x);
12482 @:]]]\#\#_}{\.{\#\#}@>
12484 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12485 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12486 mp_end_diagnostic(mp, false);
12489 @ @<Simplify all existing dependencies by substituting for |x|@>=
12490 prev_r=dep_head; r=link(dep_head);
12491 while ( r!=dep_head ) {
12492 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12493 if ( info(q)==null ) {
12494 mp_make_known(mp, r,q);
12497 do { q=link(q); } while (info(q)!=null);
12503 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12504 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12505 if ( info(p)==null ) {
12508 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12509 mp_free_node(mp, p,dep_node_size);
12510 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12511 mp->cur_exp=value(x); mp->cur_type=mp_known;
12512 mp_free_node(mp, x,value_node_size);
12515 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12516 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12519 @ @<Divide list |p| by $2^n$@>=
12521 s=temp_head; link(temp_head)=p; r=p;
12524 else w=value(r) / two_to_the(n);
12525 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12527 mp_free_node(mp, r,dep_node_size);
12532 } while (info(s)!=null);
12536 @ The |check_mem| procedure, which is used only when \MP\ is being
12537 debugged, makes sure that the current dependency lists are well formed.
12539 @<Check the list of linear dependencies@>=
12540 q=dep_head; p=link(q);
12541 while ( p!=dep_head ) {
12542 if ( prev_dep(p)!=q ) {
12543 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12548 r=info(p); q=p; p=link(q);
12549 if ( r==null ) break;
12550 if ( value(info(p))>=value(r) ) {
12551 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12552 @.Out of order...@>
12557 @* \[25] Dynamic nonlinear equations.
12558 Variables of numeric type are maintained by the general scheme of
12559 independent, dependent, and known values that we have just studied;
12560 and the components of pair and transform variables are handled in the
12561 same way. But \MP\ also has five other types of values: \&{boolean},
12562 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12564 Equations are allowed between nonlinear quantities, but only in a
12565 simple form. Two variables that haven't yet been assigned values are
12566 either equal to each other, or they're not.
12568 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12569 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12570 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12571 |null| (which means that no other variables are equivalent to this one), or
12572 it points to another variable of the same undefined type. The pointers in the
12573 latter case form a cycle of nodes, which we shall call a ``ring.''
12574 Rings of undefined variables may include capsules, which arise as
12575 intermediate results within expressions or as \&{expr} parameters to macros.
12577 When one member of a ring receives a value, the same value is given to
12578 all the other members. In the case of paths and pictures, this implies
12579 making separate copies of a potentially large data structure; users should
12580 restrain their enthusiasm for such generality, unless they have lots and
12581 lots of memory space.
12583 @ The following procedure is called when a capsule node is being
12584 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12586 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12587 pointer q; /* the new capsule node */
12588 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12590 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12595 @ Conversely, we might delete a capsule or a variable before it becomes known.
12596 The following procedure simply detaches a quantity from its ring,
12597 without recycling the storage.
12599 @<Declare the recycling subroutines@>=
12600 void mp_ring_delete (MP mp,pointer p) {
12603 if ( q!=null ) if ( q!=p ){
12604 while ( value(q)!=p ) q=value(q);
12609 @ Eventually there might be an equation that assigns values to all of the
12610 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12611 propagation of values.
12613 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12614 value, it will soon be recycled.
12616 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12617 small_number t; /* the type of ring |p| */
12618 pointer q,r; /* link manipulation registers */
12619 t=type(p)-unknown_tag; q=value(p);
12620 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12622 r=value(q); type(q)=t;
12624 case mp_boolean_type: value(q)=v; break;
12625 case mp_string_type: value(q)=v; add_str_ref(v); break;
12626 case mp_pen_type: value(q)=copy_pen(v); break;
12627 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12628 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12629 } /* there ain't no more cases */
12634 @ If two members of rings are equated, and if they have the same type,
12635 the |ring_merge| procedure is called on to make them equivalent.
12637 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12638 pointer r; /* traverses one list */
12642 @<Exclaim about a redundant equation@>;
12647 r=value(p); value(p)=value(q); value(q)=r;
12650 @ @<Exclaim about a redundant equation@>=
12652 print_err("Redundant equation");
12653 @.Redundant equation@>
12654 help2("I already knew that this equation was true.")
12655 ("But perhaps no harm has been done; let's continue.");
12656 mp_put_get_error(mp);
12659 @* \[26] Introduction to the syntactic routines.
12660 Let's pause a moment now and try to look at the Big Picture.
12661 The \MP\ program consists of three main parts: syntactic routines,
12662 semantic routines, and output routines. The chief purpose of the
12663 syntactic routines is to deliver the user's input to the semantic routines,
12664 while parsing expressions and locating operators and operands. The
12665 semantic routines act as an interpreter responding to these operators,
12666 which may be regarded as commands. And the output routines are
12667 periodically called on to produce compact font descriptions that can be
12668 used for typesetting or for making interim proof drawings. We have
12669 discussed the basic data structures and many of the details of semantic
12670 operations, so we are good and ready to plunge into the part of \MP\ that
12671 actually controls the activities.
12673 Our current goal is to come to grips with the |get_next| procedure,
12674 which is the keystone of \MP's input mechanism. Each call of |get_next|
12675 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12676 representing the next input token.
12677 $$\vbox{\halign{#\hfil\cr
12678 \hbox{|cur_cmd| denotes a command code from the long list of codes
12680 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12681 \hbox{|cur_sym| is the hash address of the symbolic token that was
12683 \hbox{\qquad or zero in the case of a numeric or string
12684 or capsule token.}\cr}}$$
12685 Underlying this external behavior of |get_next| is all the machinery
12686 necessary to convert from character files to tokens. At a given time we
12687 may be only partially finished with the reading of several files (for
12688 which \&{input} was specified), and partially finished with the expansion
12689 of some user-defined macros and/or some macro parameters, and partially
12690 finished reading some text that the user has inserted online,
12691 and so on. When reading a character file, the characters must be
12692 converted to tokens; comments and blank spaces must
12693 be removed, numeric and string tokens must be evaluated.
12695 To handle these situations, which might all be present simultaneously,
12696 \MP\ uses various stacks that hold information about the incomplete
12697 activities, and there is a finite state control for each level of the
12698 input mechanism. These stacks record the current state of an implicitly
12699 recursive process, but the |get_next| procedure is not recursive.
12702 eight_bits cur_cmd; /* current command set by |get_next| */
12703 integer cur_mod; /* operand of current command */
12704 halfword cur_sym; /* hash address of current symbol */
12706 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12707 command code and its modifier.
12708 It consists of a rather tedious sequence of print
12709 commands, and most of it is essentially an inverse to the |primitive|
12710 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12711 all of this procedure appears elsewhere in the program, together with the
12712 corresponding |primitive| calls.
12714 @<Declare the procedure called |print_cmd_mod|@>=
12715 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12717 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12718 default: mp_print(mp, "[unknown command code!]"); break;
12722 @ Here is a procedure that displays a given command in braces, in the
12723 user's transcript file.
12725 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12728 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12729 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12730 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12731 mp_end_diagnostic(mp, false);
12734 @* \[27] Input stacks and states.
12735 The state of \MP's input mechanism appears in the input stack, whose
12736 entries are records with five fields, called |index|, |start|, |loc|,
12737 |limit|, and |name|. The top element of this stack is maintained in a
12738 global variable for which no subscripting needs to be done; the other
12739 elements of the stack appear in an array. Hence the stack is declared thus:
12743 quarterword index_field;
12744 halfword start_field, loc_field, limit_field, name_field;
12748 in_state_record *input_stack;
12749 integer input_ptr; /* first unused location of |input_stack| */
12750 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12751 in_state_record cur_input; /* the ``top'' input state */
12752 int stack_size; /* maximum number of simultaneous input sources */
12754 @ @<Allocate or initialize ...@>=
12755 mp->stack_size = 300;
12756 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12758 @ @<Dealloc variables@>=
12759 xfree(mp->input_stack);
12761 @ We've already defined the special variable |loc==cur_input.loc_field|
12762 in our discussion of basic input-output routines. The other components of
12763 |cur_input| are defined in the same way:
12765 @d index mp->cur_input.index_field /* reference for buffer information */
12766 @d start mp->cur_input.start_field /* starting position in |buffer| */
12767 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12768 @d name mp->cur_input.name_field /* name of the current file */
12770 @ Let's look more closely now at the five control variables
12771 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12772 assuming that \MP\ is reading a line of characters that have been input
12773 from some file or from the user's terminal. There is an array called
12774 |buffer| that acts as a stack of all lines of characters that are
12775 currently being read from files, including all lines on subsidiary
12776 levels of the input stack that are not yet completed. \MP\ will return to
12777 the other lines when it is finished with the present input file.
12779 (Incidentally, on a machine with byte-oriented addressing, it would be
12780 appropriate to combine |buffer| with the |str_pool| array,
12781 letting the buffer entries grow downward from the top of the string pool
12782 and checking that these two tables don't bump into each other.)
12784 The line we are currently working on begins in position |start| of the
12785 buffer; the next character we are about to read is |buffer[loc]|; and
12786 |limit| is the location of the last character present. We always have
12787 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12788 that the end of a line is easily sensed.
12790 The |name| variable is a string number that designates the name of
12791 the current file, if we are reading an ordinary text file. Special codes
12792 |is_term..max_spec_src| indicate other sources of input text.
12794 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12795 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12796 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12797 @d max_spec_src is_scantok
12799 @ Additional information about the current line is available via the
12800 |index| variable, which counts how many lines of characters are present
12801 in the buffer below the current level. We have |index=0| when reading
12802 from the terminal and prompting the user for each line; then if the user types,
12803 e.g., `\.{input figs}', we will have |index=1| while reading
12804 the file \.{figs.mp}. However, it does not follow that |index| is the
12805 same as the input stack pointer, since many of the levels on the input
12806 stack may come from token lists and some |index| values may correspond
12807 to \.{MPX} files that are not currently on the stack.
12809 The global variable |in_open| is equal to the highest |index| value counting
12810 \.{MPX} files but excluding token-list input levels. Thus, the number of
12811 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12812 when we are not reading a token list.
12814 If we are not currently reading from the terminal,
12815 we are reading from the file variable |input_file[index]|. We use
12816 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12817 and |cur_file| as an abbreviation for |input_file[index]|.
12819 When \MP\ is not reading from the terminal, the global variable |line| contains
12820 the line number in the current file, for use in error messages. More precisely,
12821 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12822 the line number for each file in the |input_file| array.
12824 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12825 array so that the name doesn't get lost when the file is temporarily removed
12826 from the input stack.
12827 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12828 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12829 Since this is not an \.{MPX} file, we have
12830 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12831 This |name| field is set to |finished| when |input_file[k]| is completely
12834 If more information about the input state is needed, it can be
12835 included in small arrays like those shown here. For example,
12836 the current page or segment number in the input file might be put
12837 into a variable |page|, that is really a macro for the current entry
12838 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12839 by analogy with |line_stack|.
12840 @^system dependencies@>
12842 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12843 @d cur_file mp->input_file[index] /* the current |void *| variable */
12844 @d line mp->line_stack[index] /* current line number in the current source file */
12845 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12846 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12847 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12848 @d mpx_reading (mp->mpx_name[index]>absent)
12849 /* when reading a file, is it an \.{MPX} file? */
12851 /* |name_field| value when the corresponding \.{MPX} file is finished */
12854 integer in_open; /* the number of lines in the buffer, less one */
12855 unsigned int open_parens; /* the number of open text files */
12856 void * *input_file ;
12857 integer *line_stack ; /* the line number for each file */
12858 char * *iname_stack; /* used for naming \.{MPX} files */
12859 char * *iarea_stack; /* used for naming \.{MPX} files */
12860 halfword*mpx_name ;
12862 @ @<Allocate or ...@>=
12863 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12864 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12865 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12866 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12867 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12870 for (k=0;k<=mp->max_in_open;k++) {
12871 mp->iname_stack[k] =NULL;
12872 mp->iarea_stack[k] =NULL;
12876 @ @<Dealloc variables@>=
12879 for (l=0;l<=mp->max_in_open;l++) {
12880 xfree(mp->iname_stack[l]);
12881 xfree(mp->iarea_stack[l]);
12884 xfree(mp->input_file);
12885 xfree(mp->line_stack);
12886 xfree(mp->iname_stack);
12887 xfree(mp->iarea_stack);
12888 xfree(mp->mpx_name);
12891 @ However, all this discussion about input state really applies only to the
12892 case that we are inputting from a file. There is another important case,
12893 namely when we are currently getting input from a token list. In this case
12894 |index>max_in_open|, and the conventions about the other state variables
12897 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12898 the node that will be read next. If |loc=null|, the token list has been
12901 \yskip\hang|start| points to the first node of the token list; this node
12902 may or may not contain a reference count, depending on the type of token
12905 \yskip\hang|token_type|, which takes the place of |index| in the
12906 discussion above, is a code number that explains what kind of token list
12909 \yskip\hang|name| points to the |eqtb| address of the control sequence
12910 being expanded, if the current token list is a macro not defined by
12911 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12912 can be deduced by looking at their first two parameters.
12914 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12915 the parameters of the current macro or loop text begin in the |param_stack|.
12917 \yskip\noindent The |token_type| can take several values, depending on
12918 where the current token list came from:
12921 \indent|forever_text|, if the token list being scanned is the body of
12922 a \&{forever} loop;
12924 \indent|loop_text|, if the token list being scanned is the body of
12925 a \&{for} or \&{forsuffixes} loop;
12927 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12929 \indent|backed_up|, if the token list being scanned has been inserted as
12930 `to be read again'.
12932 \indent|inserted|, if the token list being scanned has been inserted as
12933 part of error recovery;
12935 \indent|macro|, if the expansion of a user-defined symbolic token is being
12939 The token list begins with a reference count if and only if |token_type=
12941 @^reference counts@>
12943 @d token_type index /* type of current token list */
12944 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12945 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12946 @d param_start limit /* base of macro parameters in |param_stack| */
12947 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12948 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12949 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12950 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12951 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12952 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12954 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12955 lists for parameters at the current level and subsidiary levels of input.
12956 This stack grows at a different rate from the others.
12959 pointer *param_stack; /* token list pointers for parameters */
12960 integer param_ptr; /* first unused entry in |param_stack| */
12961 integer max_param_stack; /* largest value of |param_ptr| */
12963 @ @<Allocate or initialize ...@>=
12964 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12966 @ @<Dealloc variables@>=
12967 xfree(mp->param_stack);
12969 @ Notice that the |line| isn't valid when |token_state| is true because it
12970 depends on |index|. If we really need to know the line number for the
12971 topmost file in the index stack we use the following function. If a page
12972 number or other information is needed, this routine should be modified to
12973 compute it as well.
12974 @^system dependencies@>
12976 @<Declare a function called |true_line|@>=
12977 integer mp_true_line (MP mp) {
12978 int k; /* an index into the input stack */
12979 if ( file_state && (name>max_spec_src) ) {
12984 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12985 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12988 return (k>0 ? mp->line_stack[(k-1)] : 0 );
12992 @ Thus, the ``current input state'' can be very complicated indeed; there
12993 can be many levels and each level can arise in a variety of ways. The
12994 |show_context| procedure, which is used by \MP's error-reporting routine to
12995 print out the current input state on all levels down to the most recent
12996 line of characters from an input file, illustrates most of these conventions.
12997 The global variable |file_ptr| contains the lowest level that was
12998 displayed by this procedure.
13001 integer file_ptr; /* shallowest level shown by |show_context| */
13003 @ The status at each level is indicated by printing two lines, where the first
13004 line indicates what was read so far and the second line shows what remains
13005 to be read. The context is cropped, if necessary, so that the first line
13006 contains at most |half_error_line| characters, and the second contains
13007 at most |error_line|. Non-current input levels whose |token_type| is
13008 `|backed_up|' are shown only if they have not been fully read.
13010 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13011 int old_setting; /* saved |selector| setting */
13012 @<Local variables for formatting calculations@>
13013 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13014 /* store current state */
13016 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13017 @<Display the current context@>;
13019 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13020 decr(mp->file_ptr);
13022 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13025 @ @<Display the current context@>=
13026 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13027 (token_type!=backed_up) || (loc!=null) ) {
13028 /* we omit backed-up token lists that have already been read */
13029 mp->tally=0; /* get ready to count characters */
13030 old_setting=mp->selector;
13031 if ( file_state ) {
13032 @<Print location of current line@>;
13033 @<Pseudoprint the line@>;
13035 @<Print type of token list@>;
13036 @<Pseudoprint the token list@>;
13038 mp->selector=old_setting; /* stop pseudoprinting */
13039 @<Print two lines using the tricky pseudoprinted information@>;
13042 @ This routine should be changed, if necessary, to give the best possible
13043 indication of where the current line resides in the input file.
13044 For example, on some systems it is best to print both a page and line number.
13045 @^system dependencies@>
13047 @<Print location of current line@>=
13048 if ( name>max_spec_src ) {
13049 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13050 } else if ( terminal_input ) {
13051 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13052 else mp_print_nl(mp, "<insert>");
13053 } else if ( name==is_scantok ) {
13054 mp_print_nl(mp, "<scantokens>");
13056 mp_print_nl(mp, "<read>");
13058 mp_print_char(mp, ' ')
13060 @ Can't use case statement here because the |token_type| is not
13061 a constant expression.
13063 @<Print type of token list@>=
13065 if(token_type==forever_text) {
13066 mp_print_nl(mp, "<forever> ");
13067 } else if (token_type==loop_text) {
13068 @<Print the current loop value@>;
13069 } else if (token_type==parameter) {
13070 mp_print_nl(mp, "<argument> ");
13071 } else if (token_type==backed_up) {
13072 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13073 else mp_print_nl(mp, "<to be read again> ");
13074 } else if (token_type==inserted) {
13075 mp_print_nl(mp, "<inserted text> ");
13076 } else if (token_type==macro) {
13078 if ( name!=null ) mp_print_text(name);
13079 else @<Print the name of a \&{vardef}'d macro@>;
13080 mp_print(mp, "->");
13082 mp_print_nl(mp, "?");/* this should never happen */
13087 @ The parameter that corresponds to a loop text is either a token list
13088 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13089 We'll discuss capsules later; for now, all we need to know is that
13090 the |link| field in a capsule parameter is |void| and that
13091 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13093 @<Print the current loop value@>=
13094 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13096 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13097 else mp_show_token_list(mp, p,null,20,mp->tally);
13099 mp_print(mp, ")> ");
13102 @ The first two parameters of a macro defined by \&{vardef} will be token
13103 lists representing the macro's prefix and ``at point.'' By putting these
13104 together, we get the macro's full name.
13106 @<Print the name of a \&{vardef}'d macro@>=
13107 { p=mp->param_stack[param_start];
13109 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13112 while ( link(q)!=null ) q=link(q);
13113 link(q)=mp->param_stack[param_start+1];
13114 mp_show_token_list(mp, p,null,20,mp->tally);
13119 @ Now it is necessary to explain a little trick. We don't want to store a long
13120 string that corresponds to a token list, because that string might take up
13121 lots of memory; and we are printing during a time when an error message is
13122 being given, so we dare not do anything that might overflow one of \MP's
13123 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13124 that stores characters into a buffer of length |error_line|, where character
13125 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13126 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13127 |tally:=0| and |trick_count:=1000000|; then when we reach the
13128 point where transition from line 1 to line 2 should occur, we
13129 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13130 tally+1+error_line-half_error_line)|. At the end of the
13131 pseudoprinting, the values of |first_count|, |tally|, and
13132 |trick_count| give us all the information we need to print the two lines,
13133 and all of the necessary text is in |trick_buf|.
13135 Namely, let |l| be the length of the descriptive information that appears
13136 on the first line. The length of the context information gathered for that
13137 line is |k=first_count|, and the length of the context information
13138 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13139 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13140 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13141 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13142 and print `\.{...}' followed by
13143 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13144 where subscripts of |trick_buf| are circular modulo |error_line|. The
13145 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13146 unless |n+m>error_line|; in the latter case, further cropping is done.
13147 This is easier to program than to explain.
13149 @<Local variables for formatting...@>=
13150 int i; /* index into |buffer| */
13151 integer l; /* length of descriptive information on line 1 */
13152 integer m; /* context information gathered for line 2 */
13153 int n; /* length of line 1 */
13154 integer p; /* starting or ending place in |trick_buf| */
13155 integer q; /* temporary index */
13157 @ The following code tells the print routines to gather
13158 the desired information.
13160 @d begin_pseudoprint {
13161 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13162 mp->trick_count=1000000;
13164 @d set_trick_count {
13165 mp->first_count=mp->tally;
13166 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13167 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13170 @ And the following code uses the information after it has been gathered.
13172 @<Print two lines using the tricky pseudoprinted information@>=
13173 if ( mp->trick_count==1000000 ) set_trick_count;
13174 /* |set_trick_count| must be performed */
13175 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13176 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13177 if ( l+mp->first_count<=mp->half_error_line ) {
13178 p=0; n=l+mp->first_count;
13180 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13181 n=mp->half_error_line;
13183 for (q=p;q<=mp->first_count-1;q++) {
13184 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13187 for (q=1;q<=n;q++) {
13188 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13190 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13191 else p=mp->first_count+(mp->error_line-n-3);
13192 for (q=mp->first_count;q<=p-1;q++) {
13193 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13195 if ( m+n>mp->error_line ) mp_print(mp, "...")
13197 @ But the trick is distracting us from our current goal, which is to
13198 understand the input state. So let's concentrate on the data structures that
13199 are being pseudoprinted as we finish up the |show_context| procedure.
13201 @<Pseudoprint the line@>=
13204 for (i=start;i<=limit-1;i++) {
13205 if ( i==loc ) set_trick_count;
13206 mp_print_str(mp, mp->buffer[i]);
13210 @ @<Pseudoprint the token list@>=
13212 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13213 else mp_show_macro(mp, start,loc,100000)
13215 @ Here is the missing piece of |show_token_list| that is activated when the
13216 token beginning line~2 is about to be shown:
13218 @<Do magic computation@>=set_trick_count
13220 @* \[28] Maintaining the input stacks.
13221 The following subroutines change the input status in commonly needed ways.
13223 First comes |push_input|, which stores the current state and creates a
13224 new level (having, initially, the same properties as the old).
13226 @d push_input { /* enter a new input level, save the old */
13227 if ( mp->input_ptr>mp->max_in_stack ) {
13228 mp->max_in_stack=mp->input_ptr;
13229 if ( mp->input_ptr==mp->stack_size ) {
13230 int l = (mp->stack_size+(mp->stack_size>>2));
13231 XREALLOC(mp->input_stack, l, in_state_record);
13232 mp->stack_size = l;
13235 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13236 incr(mp->input_ptr);
13239 @ And of course what goes up must come down.
13241 @d pop_input { /* leave an input level, re-enter the old */
13242 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13245 @ Here is a procedure that starts a new level of token-list input, given
13246 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13247 set |name|, reset~|loc|, and increase the macro's reference count.
13249 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13251 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13252 push_input; start=p; token_type=t;
13253 param_start=mp->param_ptr; loc=p;
13256 @ When a token list has been fully scanned, the following computations
13257 should be done as we leave that level of input.
13260 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13261 pointer p; /* temporary register */
13262 if ( token_type>=backed_up ) { /* token list to be deleted */
13263 if ( token_type<=inserted ) {
13264 mp_flush_token_list(mp, start); goto DONE;
13266 mp_delete_mac_ref(mp, start); /* update reference count */
13269 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13270 decr(mp->param_ptr);
13271 p=mp->param_stack[mp->param_ptr];
13273 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13274 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13276 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13281 pop_input; check_interrupt;
13284 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13285 token by the |cur_tok| routine.
13288 @c @<Declare the procedure called |make_exp_copy|@>
13289 pointer mp_cur_tok (MP mp) {
13290 pointer p; /* a new token node */
13291 small_number save_type; /* |cur_type| to be restored */
13292 integer save_exp; /* |cur_exp| to be restored */
13293 if ( mp->cur_sym==0 ) {
13294 if ( mp->cur_cmd==capsule_token ) {
13295 save_type=mp->cur_type; save_exp=mp->cur_exp;
13296 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13297 mp->cur_type=save_type; mp->cur_exp=save_exp;
13299 p=mp_get_node(mp, token_node_size);
13300 value(p)=mp->cur_mod; name_type(p)=mp_token;
13301 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13302 else type(p)=mp_string_type;
13305 fast_get_avail(p); info(p)=mp->cur_sym;
13310 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13311 seen. The |back_input| procedure takes care of this by putting the token
13312 just scanned back into the input stream, ready to be read again.
13313 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13316 void mp_back_input (MP mp);
13318 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13319 pointer p; /* a token list of length one */
13321 while ( token_state &&(loc==null) )
13322 mp_end_token_list(mp); /* conserve stack space */
13326 @ The |back_error| routine is used when we want to restore or replace an
13327 offending token just before issuing an error message. We disable interrupts
13328 during the call of |back_input| so that the help message won't be lost.
13331 void mp_error (MP mp);
13332 void mp_back_error (MP mp);
13334 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13335 mp->OK_to_interrupt=false;
13337 mp->OK_to_interrupt=true; mp_error(mp);
13339 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13340 mp->OK_to_interrupt=false;
13341 mp_back_input(mp); token_type=inserted;
13342 mp->OK_to_interrupt=true; mp_error(mp);
13345 @ The |begin_file_reading| procedure starts a new level of input for lines
13346 of characters to be read from a file, or as an insertion from the
13347 terminal. It does not take care of opening the file, nor does it set |loc|
13348 or |limit| or |line|.
13349 @^system dependencies@>
13351 @c void mp_begin_file_reading (MP mp) {
13352 if ( mp->in_open==mp->max_in_open )
13353 mp_overflow(mp, "text input levels",mp->max_in_open);
13354 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13355 if ( mp->first==mp->buf_size )
13356 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13357 incr(mp->in_open); push_input; index=mp->in_open;
13358 mp->mpx_name[index]=absent;
13360 name=is_term; /* |terminal_input| is now |true| */
13363 @ Conversely, the variables must be downdated when such a level of input
13364 is finished. Any associated \.{MPX} file must also be closed and popped
13365 off the file stack.
13367 @c void mp_end_file_reading (MP mp) {
13368 if ( mp->in_open>index ) {
13369 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13370 mp_confusion(mp, "endinput");
13371 @:this can't happen endinput}{\quad endinput@>
13373 (mp->close_file)(mp,mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13374 delete_str_ref(mp->mpx_name[mp->in_open]);
13379 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13380 if ( name>max_spec_src ) {
13381 (mp->close_file)(mp,cur_file);
13382 delete_str_ref(name);
13386 pop_input; decr(mp->in_open);
13389 @ Here is a function that tries to resume input from an \.{MPX} file already
13390 associated with the current input file. It returns |false| if this doesn't
13393 @c boolean mp_begin_mpx_reading (MP mp) {
13394 if ( mp->in_open!=index+1 ) {
13397 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13398 @:this can't happen mpx}{\quad mpx@>
13399 if ( mp->first==mp->buf_size )
13400 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13401 push_input; index=mp->in_open;
13403 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13404 @<Put an empty line in the input buffer@>;
13409 @ This procedure temporarily stops reading an \.{MPX} file.
13411 @c void mp_end_mpx_reading (MP mp) {
13412 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13413 @:this can't happen mpx}{\quad mpx@>
13415 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13421 @ Here we enforce a restriction that simplifies the input stacks considerably.
13422 This should not inconvenience the user because \.{MPX} files are generated
13423 by an auxiliary program called \.{DVItoMP}.
13425 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13427 print_err("`mpxbreak' must be at the end of a line");
13428 help4("This file contains picture expressions for btex...etex")
13429 ("blocks. Such files are normally generated automatically")
13430 ("but this one seems to be messed up. I'm going to ignore")
13431 ("the rest of this line.");
13435 @ In order to keep the stack from overflowing during a long sequence of
13436 inserted `\.{show}' commands, the following routine removes completed
13437 error-inserted lines from memory.
13439 @c void mp_clear_for_error_prompt (MP mp) {
13440 while ( file_state && terminal_input &&
13441 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13442 mp_print_ln(mp); clear_terminal;
13445 @ To get \MP's whole input mechanism going, we perform the following
13448 @<Initialize the input routines@>=
13449 { mp->input_ptr=0; mp->max_in_stack=0;
13450 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13451 mp->param_ptr=0; mp->max_param_stack=0;
13453 start=1; index=0; line=0; name=is_term;
13454 mp->mpx_name[0]=absent;
13455 mp->force_eof=false;
13456 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13457 limit=mp->last; mp->first=mp->last+1;
13458 /* |init_terminal| has set |loc| and |last| */
13461 @* \[29] Getting the next token.
13462 The heart of \MP's input mechanism is the |get_next| procedure, which
13463 we shall develop in the next few sections of the program. Perhaps we
13464 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13465 eyes and mouth, reading the source files and gobbling them up. And it also
13466 helps \MP\ to regurgitate stored token lists that are to be processed again.
13468 The main duty of |get_next| is to input one token and to set |cur_cmd|
13469 and |cur_mod| to that token's command code and modifier. Furthermore, if
13470 the input token is a symbolic token, that token's |hash| address
13471 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13473 Underlying this simple description is a certain amount of complexity
13474 because of all the cases that need to be handled.
13475 However, the inner loop of |get_next| is reasonably short and fast.
13477 @ Before getting into |get_next|, we need to consider a mechanism by which
13478 \MP\ helps keep errors from propagating too far. Whenever the program goes
13479 into a mode where it keeps calling |get_next| repeatedly until a certain
13480 condition is met, it sets |scanner_status| to some value other than |normal|.
13481 Then if an input file ends, or if an `\&{outer}' symbol appears,
13482 an appropriate error recovery will be possible.
13484 The global variable |warning_info| helps in this error recovery by providing
13485 additional information. For example, |warning_info| might indicate the
13486 name of a macro whose replacement text is being scanned.
13488 @d normal 0 /* |scanner_status| at ``quiet times'' */
13489 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13490 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13491 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13492 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13493 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13494 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13495 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13498 integer scanner_status; /* are we scanning at high speed? */
13499 integer warning_info; /* if so, what else do we need to know,
13500 in case an error occurs? */
13502 @ @<Initialize the input routines@>=
13503 mp->scanner_status=normal;
13505 @ The following subroutine
13506 is called when an `\&{outer}' symbolic token has been scanned or
13507 when the end of a file has been reached. These two cases are distinguished
13508 by |cur_sym|, which is zero at the end of a file.
13510 @c boolean mp_check_outer_validity (MP mp) {
13511 pointer p; /* points to inserted token list */
13512 if ( mp->scanner_status==normal ) {
13514 } else if ( mp->scanner_status==tex_flushing ) {
13515 @<Check if the file has ended while flushing \TeX\ material and set the
13516 result value for |check_outer_validity|@>;
13518 mp->deletions_allowed=false;
13519 @<Back up an outer symbolic token so that it can be reread@>;
13520 if ( mp->scanner_status>skipping ) {
13521 @<Tell the user what has run away and try to recover@>;
13523 print_err("Incomplete if; all text was ignored after line ");
13524 @.Incomplete if...@>
13525 mp_print_int(mp, mp->warning_info);
13526 help3("A forbidden `outer' token occurred in skipped text.")
13527 ("This kind of error happens when you say `if...' and forget")
13528 ("the matching `fi'. I've inserted a `fi'; this might work.");
13529 if ( mp->cur_sym==0 )
13530 mp->help_line[2]="The file ended while I was skipping conditional text.";
13531 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13533 mp->deletions_allowed=true;
13538 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13539 if ( mp->cur_sym!=0 ) {
13542 mp->deletions_allowed=false;
13543 print_err("TeX mode didn't end; all text was ignored after line ");
13544 mp_print_int(mp, mp->warning_info);
13545 help2("The file ended while I was looking for the `etex' to")
13546 ("finish this TeX material. I've inserted `etex' now.");
13547 mp->cur_sym = frozen_etex;
13549 mp->deletions_allowed=true;
13553 @ @<Back up an outer symbolic token so that it can be reread@>=
13554 if ( mp->cur_sym!=0 ) {
13555 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13556 back_list(p); /* prepare to read the symbolic token again */
13559 @ @<Tell the user what has run away...@>=
13561 mp_runaway(mp); /* print the definition-so-far */
13562 if ( mp->cur_sym==0 ) {
13563 print_err("File ended");
13564 @.File ended while scanning...@>
13566 print_err("Forbidden token found");
13567 @.Forbidden token found...@>
13569 mp_print(mp, " while scanning ");
13570 help4("I suspect you have forgotten an `enddef',")
13571 ("causing me to read past where you wanted me to stop.")
13572 ("I'll try to recover; but if the error is serious,")
13573 ("you'd better type `E' or `X' now and fix your file.");
13574 switch (mp->scanner_status) {
13575 @<Complete the error message,
13576 and set |cur_sym| to a token that might help recover from the error@>
13577 } /* there are no other cases */
13581 @ As we consider various kinds of errors, it is also appropriate to
13582 change the first line of the help message just given; |help_line[3]|
13583 points to the string that might be changed.
13585 @<Complete the error message,...@>=
13587 mp_print(mp, "to the end of the statement");
13588 mp->help_line[3]="A previous error seems to have propagated,";
13589 mp->cur_sym=frozen_semicolon;
13592 mp_print(mp, "a text argument");
13593 mp->help_line[3]="It seems that a right delimiter was left out,";
13594 if ( mp->warning_info==0 ) {
13595 mp->cur_sym=frozen_end_group;
13597 mp->cur_sym=frozen_right_delimiter;
13598 equiv(frozen_right_delimiter)=mp->warning_info;
13603 mp_print(mp, "the definition of ");
13604 if ( mp->scanner_status==op_defining )
13605 mp_print_text(mp->warning_info);
13607 mp_print_variable_name(mp, mp->warning_info);
13608 mp->cur_sym=frozen_end_def;
13610 case loop_defining:
13611 mp_print(mp, "the text of a ");
13612 mp_print_text(mp->warning_info);
13613 mp_print(mp, " loop");
13614 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13615 mp->cur_sym=frozen_end_for;
13618 @ The |runaway| procedure displays the first part of the text that occurred
13619 when \MP\ began its special |scanner_status|, if that text has been saved.
13621 @<Declare the procedure called |runaway|@>=
13622 void mp_runaway (MP mp) {
13623 if ( mp->scanner_status>flushing ) {
13624 mp_print_nl(mp, "Runaway ");
13625 switch (mp->scanner_status) {
13626 case absorbing: mp_print(mp, "text?"); break;
13628 case op_defining: mp_print(mp,"definition?"); break;
13629 case loop_defining: mp_print(mp, "loop?"); break;
13630 } /* there are no other cases */
13632 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13636 @ We need to mention a procedure that may be called by |get_next|.
13639 void mp_firm_up_the_line (MP mp);
13641 @ And now we're ready to take the plunge into |get_next| itself.
13642 Note that the behavior depends on the |scanner_status| because percent signs
13643 and double quotes need to be passed over when skipping TeX material.
13646 void mp_get_next (MP mp) {
13647 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13649 /*restart*/ /* go here to get the next input token */
13650 /*exit*/ /* go here when the next input token has been got */
13651 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13652 /*found*/ /* go here when the end of a symbolic token has been found */
13653 /*switch*/ /* go here to branch on the class of an input character */
13654 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13655 /* go here at crucial stages when scanning a number */
13656 int k; /* an index into |buffer| */
13657 ASCII_code c; /* the current character in the buffer */
13658 ASCII_code class; /* its class number */
13659 integer n,f; /* registers for decimal-to-binary conversion */
13662 if ( file_state ) {
13663 @<Input from external file; |goto restart| if no input found,
13664 or |return| if a non-symbolic token is found@>;
13666 @<Input from token list; |goto restart| if end of list or
13667 if a parameter needs to be expanded,
13668 or |return| if a non-symbolic token is found@>;
13671 @<Finish getting the symbolic token in |cur_sym|;
13672 |goto restart| if it is illegal@>;
13675 @ When a symbolic token is declared to be `\&{outer}', its command code
13676 is increased by |outer_tag|.
13679 @<Finish getting the symbolic token in |cur_sym|...@>=
13680 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13681 if ( mp->cur_cmd>=outer_tag ) {
13682 if ( mp_check_outer_validity(mp) )
13683 mp->cur_cmd=mp->cur_cmd-outer_tag;
13688 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13689 to have a special test for end-of-line.
13692 @<Input from external file;...@>=
13695 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13697 case digit_class: goto START_NUMERIC_TOKEN; break;
13699 class=mp->char_class[mp->buffer[loc]];
13700 if ( class>period_class ) {
13702 } else if ( class<period_class ) { /* |class=digit_class| */
13703 n=0; goto START_DECIMAL_TOKEN;
13707 case space_class: goto SWITCH; break;
13708 case percent_class:
13709 if ( mp->scanner_status==tex_flushing ) {
13710 if ( loc<limit ) goto SWITCH;
13712 @<Move to next line of file, or |goto restart| if there is no next line@>;
13717 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13718 else @<Get a string token and |return|@>;
13720 case isolated_classes:
13721 k=loc-1; goto FOUND; break;
13722 case invalid_class:
13723 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13724 else @<Decry the invalid character and |goto restart|@>;
13726 default: break; /* letters, etc. */
13729 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13731 START_NUMERIC_TOKEN:
13732 @<Get the integer part |n| of a numeric token;
13733 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13734 START_DECIMAL_TOKEN:
13735 @<Get the fraction part |f| of a numeric token@>;
13737 @<Pack the numeric and fraction parts of a numeric token
13740 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13743 @ We go to |restart| instead of to |SWITCH|, because we might enter
13744 |token_state| after the error has been dealt with
13745 (cf.\ |clear_for_error_prompt|).
13747 @<Decry the invalid...@>=
13749 print_err("Text line contains an invalid character");
13750 @.Text line contains...@>
13751 help2("A funny symbol that I can\'t read has just been input.")
13752 ("Continue, and I'll forget that it ever happened.");
13753 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13757 @ @<Get a string token and |return|@>=
13759 if ( mp->buffer[loc]=='"' ) {
13760 mp->cur_mod=rts("");
13762 k=loc; mp->buffer[limit+1]='"';
13765 } while (mp->buffer[loc]!='"');
13767 @<Decry the missing string delimiter and |goto restart|@>;
13770 mp->cur_mod=mp->buffer[k];
13774 append_char(mp->buffer[k]); incr(k);
13776 mp->cur_mod=mp_make_string(mp);
13779 incr(loc); mp->cur_cmd=string_token;
13783 @ We go to |restart| after this error message, not to |SWITCH|,
13784 because the |clear_for_error_prompt| routine might have reinstated
13785 |token_state| after |error| has finished.
13787 @<Decry the missing string delimiter and |goto restart|@>=
13789 loc=limit; /* the next character to be read on this line will be |"%"| */
13790 print_err("Incomplete string token has been flushed");
13791 @.Incomplete string token...@>
13792 help3("Strings should finish on the same line as they began.")
13793 ("I've deleted the partial string; you might want to")
13794 ("insert another by typing, e.g., `I\"new string\"'.");
13795 mp->deletions_allowed=false; mp_error(mp);
13796 mp->deletions_allowed=true;
13800 @ @<Get the integer part |n| of a numeric token...@>=
13802 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13803 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13806 if ( mp->buffer[loc]=='.' )
13807 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13810 goto FIN_NUMERIC_TOKEN;
13813 @ @<Get the fraction part |f| of a numeric token@>=
13816 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13817 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13820 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13821 f=mp_round_decimals(mp, k);
13826 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13828 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13829 } else if ( mp->scanner_status!=tex_flushing ) {
13830 print_err("Enormous number has been reduced");
13831 @.Enormous number...@>
13832 help2("I can\'t handle numbers bigger than 32767.99998;")
13833 ("so I've changed your constant to that maximum amount.");
13834 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13835 mp->cur_mod=el_gordo;
13837 mp->cur_cmd=numeric_token; return
13839 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13841 mp->cur_mod=n*unity+f;
13842 if ( mp->cur_mod>=fraction_one ) {
13843 if ( (mp->internal[mp_warning_check]>0) &&
13844 (mp->scanner_status!=tex_flushing) ) {
13845 print_err("Number is too large (");
13846 mp_print_scaled(mp, mp->cur_mod);
13847 mp_print_char(mp, ')');
13848 help3("It is at least 4096. Continue and I'll try to cope")
13849 ("with that big value; but it might be dangerous.")
13850 ("(Set warningcheck:=0 to suppress this message.)");
13856 @ Let's consider now what happens when |get_next| is looking at a token list.
13859 @<Input from token list;...@>=
13860 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13861 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13862 if ( mp->cur_sym>=expr_base ) {
13863 if ( mp->cur_sym>=suffix_base ) {
13864 @<Insert a suffix or text parameter and |goto restart|@>;
13866 mp->cur_cmd=capsule_token;
13867 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13868 mp->cur_sym=0; return;
13871 } else if ( loc>null ) {
13872 @<Get a stored numeric or string or capsule token and |return|@>
13873 } else { /* we are done with this token list */
13874 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13877 @ @<Insert a suffix or text parameter...@>=
13879 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13880 /* |param_size=text_base-suffix_base| */
13881 mp_begin_token_list(mp,
13882 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13887 @ @<Get a stored numeric or string or capsule token...@>=
13889 if ( name_type(loc)==mp_token ) {
13890 mp->cur_mod=value(loc);
13891 if ( type(loc)==mp_known ) {
13892 mp->cur_cmd=numeric_token;
13894 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13897 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13899 loc=link(loc); return;
13902 @ All of the easy branches of |get_next| have now been taken care of.
13903 There is one more branch.
13905 @<Move to next line of file, or |goto restart|...@>=
13906 if ( name>max_spec_src ) {
13907 @<Read next line of file into |buffer|, or
13908 |goto restart| if the file has ended@>;
13910 if ( mp->input_ptr>0 ) {
13911 /* text was inserted during error recovery or by \&{scantokens} */
13912 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13914 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13915 if ( mp->interaction>mp_nonstop_mode ) {
13916 if ( limit==start ) /* previous line was empty */
13917 mp_print_nl(mp, "(Please type a command or say `end')");
13919 mp_print_ln(mp); mp->first=start;
13920 prompt_input("*"); /* input on-line into |buffer| */
13922 limit=mp->last; mp->buffer[limit]='%';
13923 mp->first=limit+1; loc=start;
13925 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13927 /* nonstop mode, which is intended for overnight batch processing,
13928 never waits for on-line input */
13932 @ The global variable |force_eof| is normally |false|; it is set |true|
13933 by an \&{endinput} command.
13936 boolean force_eof; /* should the next \&{input} be aborted early? */
13938 @ We must decrement |loc| in order to leave the buffer in a valid state
13939 when an error condition causes us to |goto restart| without calling
13940 |end_file_reading|.
13942 @<Read next line of file into |buffer|, or
13943 |goto restart| if the file has ended@>=
13945 incr(line); mp->first=start;
13946 if ( ! mp->force_eof ) {
13947 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13948 mp_firm_up_the_line(mp); /* this sets |limit| */
13950 mp->force_eof=true;
13952 if ( mp->force_eof ) {
13953 mp->force_eof=false;
13955 if ( mpx_reading ) {
13956 @<Complain that the \.{MPX} file ended unexpectly; then set
13957 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13959 mp_print_char(mp, ')'); decr(mp->open_parens);
13960 update_terminal; /* show user that file has been read */
13961 mp_end_file_reading(mp); /* resume previous level */
13962 if ( mp_check_outer_validity(mp) ) goto RESTART;
13966 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13969 @ We should never actually come to the end of an \.{MPX} file because such
13970 files should have an \&{mpxbreak} after the translation of the last
13971 \&{btex}$\,\ldots\,$\&{etex} block.
13973 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13975 mp->mpx_name[index]=finished;
13976 print_err("mpx file ended unexpectedly");
13977 help4("The file had too few picture expressions for btex...etex")
13978 ("blocks. Such files are normally generated automatically")
13979 ("but this one got messed up. You might want to insert a")
13980 ("picture expression now.");
13981 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13982 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13985 @ Sometimes we want to make it look as though we have just read a blank line
13986 without really doing so.
13988 @<Put an empty line in the input buffer@>=
13989 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13990 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13992 @ If the user has set the |mp_pausing| parameter to some positive value,
13993 and if nonstop mode has not been selected, each line of input is displayed
13994 on the terminal and the transcript file, followed by `\.{=>}'.
13995 \MP\ waits for a response. If the response is null (i.e., if nothing is
13996 typed except perhaps a few blank spaces), the original
13997 line is accepted as it stands; otherwise the line typed is
13998 used instead of the line in the file.
14000 @c void mp_firm_up_the_line (MP mp) {
14001 size_t k; /* an index into |buffer| */
14003 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14004 wake_up_terminal; mp_print_ln(mp);
14005 if ( start<limit ) {
14006 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14007 mp_print_str(mp, mp->buffer[k]);
14010 mp->first=limit; prompt_input("=>"); /* wait for user response */
14012 if ( mp->last>mp->first ) {
14013 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14014 mp->buffer[k+start-mp->first]=mp->buffer[k];
14016 limit=start+mp->last-mp->first;
14021 @* \[30] Dealing with \TeX\ material.
14022 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14023 features need to be implemented at a low level in the scanning process
14024 so that \MP\ can stay in synch with the a preprocessor that treats
14025 blocks of \TeX\ material as they occur in the input file without trying
14026 to expand \MP\ macros. Thus we need a special version of |get_next|
14027 that does not expand macros and such but does handle \&{btex},
14028 \&{verbatimtex}, etc.
14030 The special version of |get_next| is called |get_t_next|. It works by flushing
14031 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14032 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14033 \&{btex}, and switching back when it sees \&{mpxbreak}.
14039 mp_primitive(mp, "btex",start_tex,btex_code);
14040 @:btex_}{\&{btex} primitive@>
14041 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14042 @:verbatimtex_}{\&{verbatimtex} primitive@>
14043 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14044 @:etex_}{\&{etex} primitive@>
14045 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14046 @:mpx_break_}{\&{mpxbreak} primitive@>
14048 @ @<Cases of |print_cmd...@>=
14049 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14050 else mp_print(mp, "verbatimtex"); break;
14051 case etex_marker: mp_print(mp, "etex"); break;
14052 case mpx_break: mp_print(mp, "mpxbreak"); break;
14054 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14055 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14058 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14061 void mp_start_mpx_input (MP mp);
14064 void mp_t_next (MP mp) {
14065 int old_status; /* saves the |scanner_status| */
14066 integer old_info; /* saves the |warning_info| */
14067 while ( mp->cur_cmd<=max_pre_command ) {
14068 if ( mp->cur_cmd==mpx_break ) {
14069 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14070 @<Complain about a misplaced \&{mpxbreak}@>;
14072 mp_end_mpx_reading(mp);
14075 } else if ( mp->cur_cmd==start_tex ) {
14076 if ( token_state || (name<=max_spec_src) ) {
14077 @<Complain that we are not reading a file@>;
14078 } else if ( mpx_reading ) {
14079 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14080 } else if ( (mp->cur_mod!=verbatim_code)&&
14081 (mp->mpx_name[index]!=finished) ) {
14082 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14087 @<Complain about a misplaced \&{etex}@>;
14089 goto COMMON_ENDING;
14091 @<Flush the \TeX\ material@>;
14097 @ We could be in the middle of an operation such as skipping false conditional
14098 text when \TeX\ material is encountered, so we must be careful to save the
14101 @<Flush the \TeX\ material@>=
14102 old_status=mp->scanner_status;
14103 old_info=mp->warning_info;
14104 mp->scanner_status=tex_flushing;
14105 mp->warning_info=line;
14106 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14107 mp->scanner_status=old_status;
14108 mp->warning_info=old_info
14110 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14111 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14112 help4("This file contains picture expressions for btex...etex")
14113 ("blocks. Such files are normally generated automatically")
14114 ("but this one seems to be messed up. I'll just keep going")
14115 ("and hope for the best.");
14119 @ @<Complain that we are not reading a file@>=
14120 { print_err("You can only use `btex' or `verbatimtex' in a file");
14121 help3("I'll have to ignore this preprocessor command because it")
14122 ("only works when there is a file to preprocess. You might")
14123 ("want to delete everything up to the next `etex`.");
14127 @ @<Complain about a misplaced \&{mpxbreak}@>=
14128 { print_err("Misplaced mpxbreak");
14129 help2("I'll ignore this preprocessor command because it")
14130 ("doesn't belong here");
14134 @ @<Complain about a misplaced \&{etex}@>=
14135 { print_err("Extra etex will be ignored");
14136 help1("There is no btex or verbatimtex for this to match");
14140 @* \[31] Scanning macro definitions.
14141 \MP\ has a variety of ways to tuck tokens away into token lists for later
14142 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14143 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14144 All such operations are handled by the routines in this part of the program.
14146 The modifier part of each command code is zero for the ``ending delimiters''
14147 like \&{enddef} and \&{endfor}.
14149 @d start_def 1 /* command modifier for \&{def} */
14150 @d var_def 2 /* command modifier for \&{vardef} */
14151 @d end_def 0 /* command modifier for \&{enddef} */
14152 @d start_forever 1 /* command modifier for \&{forever} */
14153 @d end_for 0 /* command modifier for \&{endfor} */
14156 mp_primitive(mp, "def",macro_def,start_def);
14157 @:def_}{\&{def} primitive@>
14158 mp_primitive(mp, "vardef",macro_def,var_def);
14159 @:var_def_}{\&{vardef} primitive@>
14160 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14161 @:primary_def_}{\&{primarydef} primitive@>
14162 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14163 @:secondary_def_}{\&{secondarydef} primitive@>
14164 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14165 @:tertiary_def_}{\&{tertiarydef} primitive@>
14166 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14167 @:end_def_}{\&{enddef} primitive@>
14169 mp_primitive(mp, "for",iteration,expr_base);
14170 @:for_}{\&{for} primitive@>
14171 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14172 @:for_suffixes_}{\&{forsuffixes} primitive@>
14173 mp_primitive(mp, "forever",iteration,start_forever);
14174 @:forever_}{\&{forever} primitive@>
14175 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14176 @:end_for_}{\&{endfor} primitive@>
14178 @ @<Cases of |print_cmd...@>=
14180 if ( m<=var_def ) {
14181 if ( m==start_def ) mp_print(mp, "def");
14182 else if ( m<start_def ) mp_print(mp, "enddef");
14183 else mp_print(mp, "vardef");
14184 } else if ( m==secondary_primary_macro ) {
14185 mp_print(mp, "primarydef");
14186 } else if ( m==tertiary_secondary_macro ) {
14187 mp_print(mp, "secondarydef");
14189 mp_print(mp, "tertiarydef");
14193 if ( m<=start_forever ) {
14194 if ( m==start_forever ) mp_print(mp, "forever");
14195 else mp_print(mp, "endfor");
14196 } else if ( m==expr_base ) {
14197 mp_print(mp, "for");
14199 mp_print(mp, "forsuffixes");
14203 @ Different macro-absorbing operations have different syntaxes, but they
14204 also have a lot in common. There is a list of special symbols that are to
14205 be replaced by parameter tokens; there is a special command code that
14206 ends the definition; the quotation conventions are identical. Therefore
14207 it makes sense to have most of the work done by a single subroutine. That
14208 subroutine is called |scan_toks|.
14210 The first parameter to |scan_toks| is the command code that will
14211 terminate scanning (either |macro_def| or |iteration|).
14213 The second parameter, |subst_list|, points to a (possibly empty) list
14214 of two-word nodes whose |info| and |value| fields specify symbol tokens
14215 before and after replacement. The list will be returned to free storage
14218 The third parameter is simply appended to the token list that is built.
14219 And the final parameter tells how many of the special operations
14220 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14221 When such parameters are present, they are called \.{(SUFFIX0)},
14222 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14224 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14225 subst_list, pointer tail_end, small_number suffix_count) {
14226 pointer p; /* tail of the token list being built */
14227 pointer q; /* temporary for link management */
14228 integer balance; /* left delimiters minus right delimiters */
14229 p=hold_head; balance=1; link(hold_head)=null;
14232 if ( mp->cur_sym>0 ) {
14233 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14234 if ( mp->cur_cmd==terminator ) {
14235 @<Adjust the balance; |break| if it's zero@>;
14236 } else if ( mp->cur_cmd==macro_special ) {
14237 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14240 link(p)=mp_cur_tok(mp); p=link(p);
14242 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14243 return link(hold_head);
14246 @ @<Substitute for |cur_sym|...@>=
14249 while ( q!=null ) {
14250 if ( info(q)==mp->cur_sym ) {
14251 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14257 @ @<Adjust the balance; |break| if it's zero@>=
14258 if ( mp->cur_mod>0 ) {
14266 @ Four commands are intended to be used only within macro texts: \&{quote},
14267 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14268 code called |macro_special|.
14270 @d quote 0 /* |macro_special| modifier for \&{quote} */
14271 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14272 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14273 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14276 mp_primitive(mp, "quote",macro_special,quote);
14277 @:quote_}{\&{quote} primitive@>
14278 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14279 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14280 mp_primitive(mp, "@@",macro_special,macro_at);
14281 @:]]]\AT!_}{\.{\AT!} primitive@>
14282 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14283 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14285 @ @<Cases of |print_cmd...@>=
14286 case macro_special:
14288 case macro_prefix: mp_print(mp, "#@@"); break;
14289 case macro_at: mp_print_char(mp, '@@'); break;
14290 case macro_suffix: mp_print(mp, "@@#"); break;
14291 default: mp_print(mp, "quote"); break;
14295 @ @<Handle quoted...@>=
14297 if ( mp->cur_mod==quote ) { get_t_next; }
14298 else if ( mp->cur_mod<=suffix_count )
14299 mp->cur_sym=suffix_base-1+mp->cur_mod;
14302 @ Here is a routine that's used whenever a token will be redefined. If
14303 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14304 substituted; the latter is redefinable but essentially impossible to use,
14305 hence \MP's tables won't get fouled up.
14307 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14310 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14311 print_err("Missing symbolic token inserted");
14312 @.Missing symbolic token...@>
14313 help3("Sorry: You can\'t redefine a number, string, or expr.")
14314 ("I've inserted an inaccessible symbol so that your")
14315 ("definition will be completed without mixing me up too badly.");
14316 if ( mp->cur_sym>0 )
14317 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14318 else if ( mp->cur_cmd==string_token )
14319 delete_str_ref(mp->cur_mod);
14320 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14324 @ Before we actually redefine a symbolic token, we need to clear away its
14325 former value, if it was a variable. The following stronger version of
14326 |get_symbol| does that.
14328 @c void mp_get_clear_symbol (MP mp) {
14329 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14332 @ Here's another little subroutine; it checks that an equals sign
14333 or assignment sign comes along at the proper place in a macro definition.
14335 @c void mp_check_equals (MP mp) {
14336 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14337 mp_missing_err(mp, "=");
14339 help5("The next thing in this `def' should have been `=',")
14340 ("because I've already looked at the definition heading.")
14341 ("But don't worry; I'll pretend that an equals sign")
14342 ("was present. Everything from here to `enddef'")
14343 ("will be the replacement text of this macro.");
14348 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14349 handled now that we have |scan_toks|. In this case there are
14350 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14351 |expr_base| and |expr_base+1|).
14353 @c void mp_make_op_def (MP mp) {
14354 command_code m; /* the type of definition */
14355 pointer p,q,r; /* for list manipulation */
14357 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14358 info(q)=mp->cur_sym; value(q)=expr_base;
14359 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14360 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14361 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14362 get_t_next; mp_check_equals(mp);
14363 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14364 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14365 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14366 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14367 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14370 @ Parameters to macros are introduced by the keywords \&{expr},
14371 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14374 mp_primitive(mp, "expr",param_type,expr_base);
14375 @:expr_}{\&{expr} primitive@>
14376 mp_primitive(mp, "suffix",param_type,suffix_base);
14377 @:suffix_}{\&{suffix} primitive@>
14378 mp_primitive(mp, "text",param_type,text_base);
14379 @:text_}{\&{text} primitive@>
14380 mp_primitive(mp, "primary",param_type,primary_macro);
14381 @:primary_}{\&{primary} primitive@>
14382 mp_primitive(mp, "secondary",param_type,secondary_macro);
14383 @:secondary_}{\&{secondary} primitive@>
14384 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14385 @:tertiary_}{\&{tertiary} primitive@>
14387 @ @<Cases of |print_cmd...@>=
14389 if ( m>=expr_base ) {
14390 if ( m==expr_base ) mp_print(mp, "expr");
14391 else if ( m==suffix_base ) mp_print(mp, "suffix");
14392 else mp_print(mp, "text");
14393 } else if ( m<secondary_macro ) {
14394 mp_print(mp, "primary");
14395 } else if ( m==secondary_macro ) {
14396 mp_print(mp, "secondary");
14398 mp_print(mp, "tertiary");
14402 @ Let's turn next to the more complex processing associated with \&{def}
14403 and \&{vardef}. When the following procedure is called, |cur_mod|
14404 should be either |start_def| or |var_def|.
14406 @c @<Declare the procedure called |check_delimiter|@>
14407 @<Declare the function called |scan_declared_variable|@>
14408 void mp_scan_def (MP mp) {
14409 int m; /* the type of definition */
14410 int n; /* the number of special suffix parameters */
14411 int k; /* the total number of parameters */
14412 int c; /* the kind of macro we're defining */
14413 pointer r; /* parameter-substitution list */
14414 pointer q; /* tail of the macro token list */
14415 pointer p; /* temporary storage */
14416 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14417 pointer l_delim,r_delim; /* matching delimiters */
14418 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14419 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14420 @<Scan the token or variable to be defined;
14421 set |n|, |scanner_status|, and |warning_info|@>;
14423 if ( mp->cur_cmd==left_delimiter ) {
14424 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14426 if ( mp->cur_cmd==param_type ) {
14427 @<Absorb undelimited parameters, putting them into list |r|@>;
14429 mp_check_equals(mp);
14430 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14431 @<Attach the replacement text to the tail of node |p|@>;
14432 mp->scanner_status=normal; mp_get_x_next(mp);
14435 @ We don't put `|frozen_end_group|' into the replacement text of
14436 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14438 @<Attach the replacement text to the tail of node |p|@>=
14439 if ( m==start_def ) {
14440 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14442 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14443 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14444 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14446 if ( mp->warning_info==bad_vardef )
14447 mp_flush_token_list(mp, value(bad_vardef))
14451 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14453 @ @<Scan the token or variable to be defined;...@>=
14454 if ( m==start_def ) {
14455 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14456 mp->scanner_status=op_defining; n=0;
14457 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14459 p=mp_scan_declared_variable(mp);
14460 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14461 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14462 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14463 mp->scanner_status=var_defining; n=2;
14464 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14467 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14468 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14470 @ @<Change to `\.{a bad variable}'@>=
14472 print_err("This variable already starts with a macro");
14473 @.This variable already...@>
14474 help2("After `vardef a' you can\'t say `vardef a.b'.")
14475 ("So I'll have to discard this definition.");
14476 mp_error(mp); mp->warning_info=bad_vardef;
14479 @ @<Initialize table entries...@>=
14480 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14481 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14483 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14485 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14486 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14489 print_err("Missing parameter type; `expr' will be assumed");
14490 @.Missing parameter type@>
14491 help1("You should've had `expr' or `suffix' or `text' here.");
14492 mp_back_error(mp); base=expr_base;
14494 @<Absorb parameter tokens for type |base|@>;
14495 mp_check_delimiter(mp, l_delim,r_delim);
14497 } while (mp->cur_cmd==left_delimiter)
14499 @ @<Absorb parameter tokens for type |base|@>=
14501 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14502 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14503 value(p)=base+k; info(p)=mp->cur_sym;
14504 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14505 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14506 incr(k); link(p)=r; r=p; get_t_next;
14507 } while (mp->cur_cmd==comma)
14509 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14511 p=mp_get_node(mp, token_node_size);
14512 if ( mp->cur_mod<expr_base ) {
14513 c=mp->cur_mod; value(p)=expr_base+k;
14515 value(p)=mp->cur_mod+k;
14516 if ( mp->cur_mod==expr_base ) c=expr_macro;
14517 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14520 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14521 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14522 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14523 c=of_macro; p=mp_get_node(mp, token_node_size);
14524 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14525 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14526 link(p)=r; r=p; get_t_next;
14530 @* \[32] Expanding the next token.
14531 Only a few command codes |<min_command| can possibly be returned by
14532 |get_t_next|; in increasing order, they are
14533 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14534 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14536 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14537 like |get_t_next| except that it keeps getting more tokens until
14538 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14539 macros and removes conditionals or iterations or input instructions that
14542 It follows that |get_x_next| might invoke itself recursively. In fact,
14543 there is massive recursion, since macro expansion can involve the
14544 scanning of arbitrarily complex expressions, which in turn involve
14545 macro expansion and conditionals, etc.
14548 Therefore it's necessary to declare a whole bunch of |forward|
14549 procedures at this point, and to insert some other procedures
14550 that will be invoked by |get_x_next|.
14553 void mp_scan_primary (MP mp);
14554 void mp_scan_secondary (MP mp);
14555 void mp_scan_tertiary (MP mp);
14556 void mp_scan_expression (MP mp);
14557 void mp_scan_suffix (MP mp);
14558 @<Declare the procedure called |macro_call|@>
14559 void mp_get_boolean (MP mp);
14560 void mp_pass_text (MP mp);
14561 void mp_conditional (MP mp);
14562 void mp_start_input (MP mp);
14563 void mp_begin_iteration (MP mp);
14564 void mp_resume_iteration (MP mp);
14565 void mp_stop_iteration (MP mp);
14567 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14568 when it has to do exotic expansion commands.
14570 @c void mp_expand (MP mp) {
14571 pointer p; /* for list manipulation */
14572 size_t k; /* something that we hope is |<=buf_size| */
14573 pool_pointer j; /* index into |str_pool| */
14574 if ( mp->internal[mp_tracing_commands]>unity )
14575 if ( mp->cur_cmd!=defined_macro )
14577 switch (mp->cur_cmd) {
14579 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14582 @<Terminate the current conditional and skip to \&{fi}@>;
14585 @<Initiate or terminate input from a file@>;
14588 if ( mp->cur_mod==end_for ) {
14589 @<Scold the user for having an extra \&{endfor}@>;
14591 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14598 @<Exit a loop if the proper time has come@>;
14603 @<Expand the token after the next token@>;
14606 @<Put a string into the input buffer@>;
14608 case defined_macro:
14609 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14611 }; /* there are no other cases */
14614 @ @<Scold the user...@>=
14616 print_err("Extra `endfor'");
14618 help2("I'm not currently working on a for loop,")
14619 ("so I had better not try to end anything.");
14623 @ The processing of \&{input} involves the |start_input| subroutine,
14624 which will be declared later; the processing of \&{endinput} is trivial.
14627 mp_primitive(mp, "input",input,0);
14628 @:input_}{\&{input} primitive@>
14629 mp_primitive(mp, "endinput",input,1);
14630 @:end_input_}{\&{endinput} primitive@>
14632 @ @<Cases of |print_cmd_mod|...@>=
14634 if ( m==0 ) mp_print(mp, "input");
14635 else mp_print(mp, "endinput");
14638 @ @<Initiate or terminate input...@>=
14639 if ( mp->cur_mod>0 ) mp->force_eof=true;
14640 else mp_start_input(mp)
14642 @ We'll discuss the complicated parts of loop operations later. For now
14643 it suffices to know that there's a global variable called |loop_ptr|
14644 that will be |null| if no loop is in progress.
14647 { while ( token_state &&(loc==null) )
14648 mp_end_token_list(mp); /* conserve stack space */
14649 if ( mp->loop_ptr==null ) {
14650 print_err("Lost loop");
14652 help2("I'm confused; after exiting from a loop, I still seem")
14653 ("to want to repeat it. I'll try to forget the problem.");
14656 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14660 @ @<Exit a loop if the proper time has come@>=
14661 { mp_get_boolean(mp);
14662 if ( mp->internal[mp_tracing_commands]>unity )
14663 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14664 if ( mp->cur_exp==true_code ) {
14665 if ( mp->loop_ptr==null ) {
14666 print_err("No loop is in progress");
14667 @.No loop is in progress@>
14668 help1("Why say `exitif' when there's nothing to exit from?");
14669 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14671 @<Exit prematurely from an iteration@>;
14673 } else if ( mp->cur_cmd!=semicolon ) {
14674 mp_missing_err(mp, ";");
14676 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14677 ("I shall pretend that one was there."); mp_back_error(mp);
14681 @ Here we use the fact that |forever_text| is the only |token_type| that
14682 is less than |loop_text|.
14684 @<Exit prematurely...@>=
14687 if ( file_state ) {
14688 mp_end_file_reading(mp);
14690 if ( token_type<=loop_text ) p=start;
14691 mp_end_token_list(mp);
14694 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14696 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14699 @ @<Expand the token after the next token@>=
14701 p=mp_cur_tok(mp); get_t_next;
14702 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14703 else mp_back_input(mp);
14707 @ @<Put a string into the input buffer@>=
14708 { mp_get_x_next(mp); mp_scan_primary(mp);
14709 if ( mp->cur_type!=mp_string_type ) {
14710 mp_disp_err(mp, null,"Not a string");
14712 help2("I'm going to flush this expression, since")
14713 ("scantokens should be followed by a known string.");
14714 mp_put_get_flush_error(mp, 0);
14717 if ( length(mp->cur_exp)>0 )
14718 @<Pretend we're reading a new one-line file@>;
14722 @ @<Pretend we're reading a new one-line file@>=
14723 { mp_begin_file_reading(mp); name=is_scantok;
14724 k=mp->first+length(mp->cur_exp);
14725 if ( k>=mp->max_buf_stack ) {
14726 while ( k>=mp->buf_size ) {
14727 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14729 mp->max_buf_stack=k+1;
14731 j=mp->str_start[mp->cur_exp]; limit=k;
14732 while ( mp->first<(size_t)limit ) {
14733 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14735 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14736 mp_flush_cur_exp(mp, 0);
14739 @ Here finally is |get_x_next|.
14741 The expression scanning routines to be considered later
14742 communicate via the global quantities |cur_type| and |cur_exp|;
14743 we must be very careful to save and restore these quantities while
14744 macros are being expanded.
14748 void mp_get_x_next (MP mp);
14750 @ @c void mp_get_x_next (MP mp) {
14751 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14753 if ( mp->cur_cmd<min_command ) {
14754 save_exp=mp_stash_cur_exp(mp);
14756 if ( mp->cur_cmd==defined_macro )
14757 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14761 } while (mp->cur_cmd<min_command);
14762 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14766 @ Now let's consider the |macro_call| procedure, which is used to start up
14767 all user-defined macros. Since the arguments to a macro might be expressions,
14768 |macro_call| is recursive.
14771 The first parameter to |macro_call| points to the reference count of the
14772 token list that defines the macro. The second parameter contains any
14773 arguments that have already been parsed (see below). The third parameter
14774 points to the symbolic token that names the macro. If the third parameter
14775 is |null|, the macro was defined by \&{vardef}, so its name can be
14776 reconstructed from the prefix and ``at'' arguments found within the
14779 What is this second parameter? It's simply a linked list of one-word items,
14780 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14781 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14782 the first scanned argument, and |link(arg_list)| points to the list of
14783 further arguments (if any).
14785 Arguments of type \&{expr} are so-called capsules, which we will
14786 discuss later when we concentrate on expressions; they can be
14787 recognized easily because their |link| field is |void|. Arguments of type
14788 \&{suffix} and \&{text} are token lists without reference counts.
14790 @ After argument scanning is complete, the arguments are moved to the
14791 |param_stack|. (They can't be put on that stack any sooner, because
14792 the stack is growing and shrinking in unpredictable ways as more arguments
14793 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14794 the replacement text of the macro is placed at the top of the \MP's
14795 input stack, so that |get_t_next| will proceed to read it next.
14797 @<Declare the procedure called |macro_call|@>=
14798 @<Declare the procedure called |print_macro_name|@>
14799 @<Declare the procedure called |print_arg|@>
14800 @<Declare the procedure called |scan_text_arg|@>
14801 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14802 pointer macro_name) ;
14805 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14806 pointer macro_name) {
14807 /* invokes a user-defined control sequence */
14808 pointer r; /* current node in the macro's token list */
14809 pointer p,q; /* for list manipulation */
14810 integer n; /* the number of arguments */
14811 pointer tail = 0; /* tail of the argument list */
14812 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14813 r=link(def_ref); add_mac_ref(def_ref);
14814 if ( arg_list==null ) {
14817 @<Determine the number |n| of arguments already supplied,
14818 and set |tail| to the tail of |arg_list|@>;
14820 if ( mp->internal[mp_tracing_macros]>0 ) {
14821 @<Show the text of the macro being expanded, and the existing arguments@>;
14823 @<Scan the remaining arguments, if any; set |r| to the first token
14824 of the replacement text@>;
14825 @<Feed the arguments and replacement text to the scanner@>;
14828 @ @<Show the text of the macro...@>=
14829 mp_begin_diagnostic(mp); mp_print_ln(mp);
14830 mp_print_macro_name(mp, arg_list,macro_name);
14831 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14832 mp_show_macro(mp, def_ref,null,100000);
14833 if ( arg_list!=null ) {
14837 mp_print_arg(mp, q,n,0);
14838 incr(n); p=link(p);
14841 mp_end_diagnostic(mp, false)
14844 @ @<Declare the procedure called |print_macro_name|@>=
14845 void mp_print_macro_name (MP mp,pointer a, pointer n);
14848 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14849 pointer p,q; /* they traverse the first part of |a| */
14855 mp_print_text(info(info(link(a))));
14858 while ( link(q)!=null ) q=link(q);
14859 link(q)=info(link(a));
14860 mp_show_token_list(mp, p,null,1000,0);
14866 @ @<Declare the procedure called |print_arg|@>=
14867 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14870 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14871 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14872 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14873 else mp_print_nl(mp, "(TEXT");
14874 mp_print_int(mp, n); mp_print(mp, ")<-");
14875 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14876 else mp_show_token_list(mp, q,null,1000,0);
14879 @ @<Determine the number |n| of arguments already supplied...@>=
14881 n=1; tail=arg_list;
14882 while ( link(tail)!=null ) {
14883 incr(n); tail=link(tail);
14887 @ @<Scan the remaining arguments, if any; set |r|...@>=
14888 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14889 while ( info(r)>=expr_base ) {
14890 @<Scan the delimited argument represented by |info(r)|@>;
14893 if ( mp->cur_cmd==comma ) {
14894 print_err("Too many arguments to ");
14895 @.Too many arguments...@>
14896 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14897 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14899 mp_print(mp, "' has been inserted");
14900 help3("I'm going to assume that the comma I just read was a")
14901 ("right delimiter, and then I'll begin expanding the macro.")
14902 ("You might want to delete some tokens before continuing.");
14905 if ( info(r)!=general_macro ) {
14906 @<Scan undelimited argument(s)@>;
14910 @ At this point, the reader will find it advisable to review the explanation
14911 of token list format that was presented earlier, paying special attention to
14912 the conventions that apply only at the beginning of a macro's token list.
14914 On the other hand, the reader will have to take the expression-parsing
14915 aspects of the following program on faith; we will explain |cur_type|
14916 and |cur_exp| later. (Several things in this program depend on each other,
14917 and it's necessary to jump into the circle somewhere.)
14919 @<Scan the delimited argument represented by |info(r)|@>=
14920 if ( mp->cur_cmd!=comma ) {
14922 if ( mp->cur_cmd!=left_delimiter ) {
14923 print_err("Missing argument to ");
14924 @.Missing argument...@>
14925 mp_print_macro_name(mp, arg_list,macro_name);
14926 help3("That macro has more parameters than you thought.")
14927 ("I'll continue by pretending that each missing argument")
14928 ("is either zero or null.");
14929 if ( info(r)>=suffix_base ) {
14930 mp->cur_exp=null; mp->cur_type=mp_token_list;
14932 mp->cur_exp=0; mp->cur_type=mp_known;
14934 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14937 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14939 @<Scan the argument represented by |info(r)|@>;
14940 if ( mp->cur_cmd!=comma )
14941 @<Check that the proper right delimiter was present@>;
14943 @<Append the current expression to |arg_list|@>
14945 @ @<Check that the proper right delim...@>=
14946 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14947 if ( info(link(r))>=expr_base ) {
14948 mp_missing_err(mp, ",");
14950 help3("I've finished reading a macro argument and am about to")
14951 ("read another; the arguments weren't delimited correctly.")
14952 ("You might want to delete some tokens before continuing.");
14953 mp_back_error(mp); mp->cur_cmd=comma;
14955 mp_missing_err(mp, str(text(r_delim)));
14957 help2("I've gotten to the end of the macro parameter list.")
14958 ("You might want to delete some tokens before continuing.");
14963 @ A \&{suffix} or \&{text} parameter will have been scanned as
14964 a token list pointed to by |cur_exp|, in which case we will have
14965 |cur_type=token_list|.
14967 @<Append the current expression to |arg_list|@>=
14969 p=mp_get_avail(mp);
14970 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14971 else info(p)=mp_stash_cur_exp(mp);
14972 if ( mp->internal[mp_tracing_macros]>0 ) {
14973 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14974 mp_end_diagnostic(mp, false);
14976 if ( arg_list==null ) arg_list=p;
14981 @ @<Scan the argument represented by |info(r)|@>=
14982 if ( info(r)>=text_base ) {
14983 mp_scan_text_arg(mp, l_delim,r_delim);
14986 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14987 else mp_scan_expression(mp);
14990 @ The parameters to |scan_text_arg| are either a pair of delimiters
14991 or zero; the latter case is for undelimited text arguments, which
14992 end with the first semicolon or \&{endgroup} or \&{end} that is not
14993 contained in a group.
14995 @<Declare the procedure called |scan_text_arg|@>=
14996 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14999 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15000 integer balance; /* excess of |l_delim| over |r_delim| */
15001 pointer p; /* list tail */
15002 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15003 p=hold_head; balance=1; link(hold_head)=null;
15006 if ( l_delim==0 ) {
15007 @<Adjust the balance for an undelimited argument; |break| if done@>;
15009 @<Adjust the balance for a delimited argument; |break| if done@>;
15011 link(p)=mp_cur_tok(mp); p=link(p);
15013 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15014 mp->scanner_status=normal;
15017 @ @<Adjust the balance for a delimited argument...@>=
15018 if ( mp->cur_cmd==right_delimiter ) {
15019 if ( mp->cur_mod==l_delim ) {
15021 if ( balance==0 ) break;
15023 } else if ( mp->cur_cmd==left_delimiter ) {
15024 if ( mp->cur_mod==r_delim ) incr(balance);
15027 @ @<Adjust the balance for an undelimited...@>=
15028 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15029 if ( balance==1 ) { break; }
15030 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15031 } else if ( mp->cur_cmd==begin_group ) {
15035 @ @<Scan undelimited argument(s)@>=
15037 if ( info(r)<text_macro ) {
15039 if ( info(r)!=suffix_macro ) {
15040 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15044 case primary_macro:mp_scan_primary(mp); break;
15045 case secondary_macro:mp_scan_secondary(mp); break;
15046 case tertiary_macro:mp_scan_tertiary(mp); break;
15047 case expr_macro:mp_scan_expression(mp); break;
15049 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15052 @<Scan a suffix with optional delimiters@>;
15054 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15055 } /* there are no other cases */
15057 @<Append the current expression to |arg_list|@>;
15060 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15062 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15063 if ( mp->internal[mp_tracing_macros]>0 ) {
15064 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15065 mp_end_diagnostic(mp, false);
15067 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15069 if ( mp->cur_cmd!=of_token ) {
15070 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15072 mp_print_macro_name(mp, arg_list,macro_name);
15073 help1("I've got the first argument; will look now for the other.");
15076 mp_get_x_next(mp); mp_scan_primary(mp);
15079 @ @<Scan a suffix with optional delimiters@>=
15081 if ( mp->cur_cmd!=left_delimiter ) {
15084 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15086 mp_scan_suffix(mp);
15087 if ( l_delim!=null ) {
15088 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15089 mp_missing_err(mp, str(text(r_delim)));
15091 help2("I've gotten to the end of the macro parameter list.")
15092 ("You might want to delete some tokens before continuing.");
15099 @ Before we put a new token list on the input stack, it is wise to clean off
15100 all token lists that have recently been depleted. Then a user macro that ends
15101 with a call to itself will not require unbounded stack space.
15103 @<Feed the arguments and replacement text to the scanner@>=
15104 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15105 if ( mp->param_ptr+n>mp->max_param_stack ) {
15106 mp->max_param_stack=mp->param_ptr+n;
15107 if ( mp->max_param_stack>mp->param_size )
15108 mp_overflow(mp, "parameter stack size",mp->param_size);
15109 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15111 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15115 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15117 mp_flush_list(mp, arg_list);
15120 @ It's sometimes necessary to put a single argument onto |param_stack|.
15121 The |stack_argument| subroutine does this.
15123 @c void mp_stack_argument (MP mp,pointer p) {
15124 if ( mp->param_ptr==mp->max_param_stack ) {
15125 incr(mp->max_param_stack);
15126 if ( mp->max_param_stack>mp->param_size )
15127 mp_overflow(mp, "parameter stack size",mp->param_size);
15128 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15130 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15133 @* \[33] Conditional processing.
15134 Let's consider now the way \&{if} commands are handled.
15136 Conditions can be inside conditions, and this nesting has a stack
15137 that is independent of other stacks.
15138 Four global variables represent the top of the condition stack:
15139 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15140 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15141 the largest code of a |fi_or_else| command that is syntactically legal;
15142 and |if_line| is the line number at which the current conditional began.
15144 If no conditions are currently in progress, the condition stack has the
15145 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15146 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15147 |link| fields of the first word contain |if_limit|, |cur_if|, and
15148 |cond_ptr| at the next level, and the second word contains the
15149 corresponding |if_line|.
15151 @d if_node_size 2 /* number of words in stack entry for conditionals */
15152 @d if_line_field(A) mp->mem[(A)+1].cint
15153 @d if_code 1 /* code for \&{if} being evaluated */
15154 @d fi_code 2 /* code for \&{fi} */
15155 @d else_code 3 /* code for \&{else} */
15156 @d else_if_code 4 /* code for \&{elseif} */
15159 pointer cond_ptr; /* top of the condition stack */
15160 integer if_limit; /* upper bound on |fi_or_else| codes */
15161 small_number cur_if; /* type of conditional being worked on */
15162 integer if_line; /* line where that conditional began */
15165 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15168 mp_primitive(mp, "if",if_test,if_code);
15169 @:if_}{\&{if} primitive@>
15170 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15171 @:fi_}{\&{fi} primitive@>
15172 mp_primitive(mp, "else",fi_or_else,else_code);
15173 @:else_}{\&{else} primitive@>
15174 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15175 @:else_if_}{\&{elseif} primitive@>
15177 @ @<Cases of |print_cmd_mod|...@>=
15181 case if_code:mp_print(mp, "if"); break;
15182 case fi_code:mp_print(mp, "fi"); break;
15183 case else_code:mp_print(mp, "else"); break;
15184 default: mp_print(mp, "elseif"); break;
15188 @ Here is a procedure that ignores text until coming to an \&{elseif},
15189 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15190 nesting. After it has acted, |cur_mod| will indicate the token that
15193 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15194 makes the skipping process a bit simpler.
15197 void mp_pass_text (MP mp) {
15199 mp->scanner_status=skipping;
15200 mp->warning_info=mp_true_line(mp);
15203 if ( mp->cur_cmd<=fi_or_else ) {
15204 if ( mp->cur_cmd<fi_or_else ) {
15208 if ( mp->cur_mod==fi_code ) decr(l);
15211 @<Decrease the string reference count,
15212 if the current token is a string@>;
15215 mp->scanner_status=normal;
15218 @ @<Decrease the string reference count...@>=
15219 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15221 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15222 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15223 condition has been evaluated, a colon will be inserted.
15224 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15226 @<Push the condition stack@>=
15227 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15228 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15229 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15230 mp->cur_if=if_code;
15233 @ @<Pop the condition stack@>=
15234 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15235 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15236 mp_free_node(mp, p,if_node_size);
15239 @ Here's a procedure that changes the |if_limit| code corresponding to
15240 a given value of |cond_ptr|.
15242 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15244 if ( p==mp->cond_ptr ) {
15245 mp->if_limit=l; /* that's the easy case */
15249 if ( q==null ) mp_confusion(mp, "if");
15250 @:this can't happen if}{\quad if@>
15251 if ( link(q)==p ) {
15259 @ The user is supposed to put colons into the proper parts of conditional
15260 statements. Therefore, \MP\ has to check for their presence.
15263 void mp_check_colon (MP mp) {
15264 if ( mp->cur_cmd!=colon ) {
15265 mp_missing_err(mp, ":");
15267 help2("There should've been a colon after the condition.")
15268 ("I shall pretend that one was there.");;
15273 @ A condition is started when the |get_x_next| procedure encounters
15274 an |if_test| command; in that case |get_x_next| calls |conditional|,
15275 which is a recursive procedure.
15278 @c void mp_conditional (MP mp) {
15279 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15280 int new_if_limit; /* future value of |if_limit| */
15281 pointer p; /* temporary register */
15282 @<Push the condition stack@>;
15283 save_cond_ptr=mp->cond_ptr;
15285 mp_get_boolean(mp); new_if_limit=else_if_code;
15286 if ( mp->internal[mp_tracing_commands]>unity ) {
15287 @<Display the boolean value of |cur_exp|@>;
15290 mp_check_colon(mp);
15291 if ( mp->cur_exp==true_code ) {
15292 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15293 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15295 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15297 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15298 if ( mp->cur_mod==fi_code ) {
15299 @<Pop the condition stack@>
15300 } else if ( mp->cur_mod==else_if_code ) {
15303 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15308 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15309 \&{else}: \\{bar} \&{fi}', the first \&{else}
15310 that we come to after learning that the \&{if} is false is not the
15311 \&{else} we're looking for. Hence the following curious logic is needed.
15313 @<Skip to \&{elseif}...@>=
15316 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15317 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15321 @ @<Display the boolean value...@>=
15322 { mp_begin_diagnostic(mp);
15323 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15324 else mp_print(mp, "{false}");
15325 mp_end_diagnostic(mp, false);
15328 @ The processing of conditionals is complete except for the following
15329 code, which is actually part of |get_x_next|. It comes into play when
15330 \&{elseif}, \&{else}, or \&{fi} is scanned.
15332 @<Terminate the current conditional and skip to \&{fi}@>=
15333 if ( mp->cur_mod>mp->if_limit ) {
15334 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15335 mp_missing_err(mp, ":");
15337 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15339 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15343 help1("I'm ignoring this; it doesn't match any if.");
15347 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15348 @<Pop the condition stack@>;
15351 @* \[34] Iterations.
15352 To bring our treatment of |get_x_next| to a close, we need to consider what
15353 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15355 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15356 that are currently active. If |loop_ptr=null|, no loops are in progress;
15357 otherwise |info(loop_ptr)| points to the iterative text of the current
15358 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15359 loops that enclose the current one.
15361 A loop-control node also has two other fields, called |loop_type| and
15362 |loop_list|, whose contents depend on the type of loop:
15364 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15365 points to a list of one-word nodes whose |info| fields point to the
15366 remaining argument values of a suffix list and expression list.
15368 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15371 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15372 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15373 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15376 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15377 header and |loop_list(loop_ptr)| points into the graphical object list for
15380 \yskip\noindent In the case of a progression node, the first word is not used
15381 because the link field of words in the dynamic memory area cannot be arbitrary.
15383 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15384 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15385 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15386 @d loop_node_size 2 /* the number of words in a loop control node */
15387 @d progression_node_size 4 /* the number of words in a progression node */
15388 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15389 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15390 @d progression_flag (null+2)
15391 /* |loop_type| value when |loop_list| points to a progression node */
15394 pointer loop_ptr; /* top of the loop-control-node stack */
15399 @ If the expressions that define an arithmetic progression in
15400 a \&{for} loop don't have known numeric values, the |bad_for|
15401 subroutine screams at the user.
15403 @c void mp_bad_for (MP mp, const char * s) {
15404 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15405 @.Improper...replaced by 0@>
15406 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15407 help4("When you say `for x=a step b until c',")
15408 ("the initial value `a' and the step size `b'")
15409 ("and the final value `c' must have known numeric values.")
15410 ("I'm zeroing this one. Proceed, with fingers crossed.");
15411 mp_put_get_flush_error(mp, 0);
15414 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15415 has just been scanned. (This code requires slight familiarity with
15416 expression-parsing routines that we have not yet discussed; but it seems
15417 to belong in the present part of the program, even though the original author
15418 didn't write it until later. The reader may wish to come back to it.)
15420 @c void mp_begin_iteration (MP mp) {
15421 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15422 halfword n; /* hash address of the current symbol */
15423 pointer s; /* the new loop-control node */
15424 pointer p; /* substitution list for |scan_toks| */
15425 pointer q; /* link manipulation register */
15426 pointer pp; /* a new progression node */
15427 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15428 if ( m==start_forever ){
15429 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15431 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15432 info(p)=mp->cur_sym; value(p)=m;
15434 if ( mp->cur_cmd==within_token ) {
15435 @<Set up a picture iteration@>;
15437 @<Check for the |"="| or |":="| in a loop header@>;
15438 @<Scan the values to be used in the loop@>;
15441 @<Check for the presence of a colon@>;
15442 @<Scan the loop text and put it on the loop control stack@>;
15443 mp_resume_iteration(mp);
15446 @ @<Check for the |"="| or |":="| in a loop header@>=
15447 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15448 mp_missing_err(mp, "=");
15450 help3("The next thing in this loop should have been `=' or `:='.")
15451 ("But don't worry; I'll pretend that an equals sign")
15452 ("was present, and I'll look for the values next.");
15456 @ @<Check for the presence of a colon@>=
15457 if ( mp->cur_cmd!=colon ) {
15458 mp_missing_err(mp, ":");
15460 help3("The next thing in this loop should have been a `:'.")
15461 ("So I'll pretend that a colon was present;")
15462 ("everything from here to `endfor' will be iterated.");
15466 @ We append a special |frozen_repeat_loop| token in place of the
15467 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15468 at the proper time to cause the loop to be repeated.
15470 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15471 he will be foiled by the |get_symbol| routine, which keeps frozen
15472 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15473 token, so it won't be lost accidentally.)
15475 @ @<Scan the loop text...@>=
15476 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15477 mp->scanner_status=loop_defining; mp->warning_info=n;
15478 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15479 link(s)=mp->loop_ptr; mp->loop_ptr=s
15481 @ @<Initialize table...@>=
15482 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15483 text(frozen_repeat_loop)=intern(" ENDFOR");
15485 @ The loop text is inserted into \MP's scanning apparatus by the
15486 |resume_iteration| routine.
15488 @c void mp_resume_iteration (MP mp) {
15489 pointer p,q; /* link registers */
15490 p=loop_type(mp->loop_ptr);
15491 if ( p==progression_flag ) {
15492 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15493 mp->cur_exp=value(p);
15494 if ( @<The arithmetic progression has ended@> ) {
15495 mp_stop_iteration(mp);
15498 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15499 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15500 } else if ( p==null ) {
15501 p=loop_list(mp->loop_ptr);
15503 mp_stop_iteration(mp);
15506 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15507 } else if ( p==mp_void ) {
15508 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15510 @<Make |q| a capsule containing the next picture component from
15511 |loop_list(loop_ptr)| or |goto not_found|@>;
15513 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15514 mp_stack_argument(mp, q);
15515 if ( mp->internal[mp_tracing_commands]>unity ) {
15516 @<Trace the start of a loop@>;
15520 mp_stop_iteration(mp);
15523 @ @<The arithmetic progression has ended@>=
15524 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15525 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15527 @ @<Trace the start of a loop@>=
15529 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15531 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15532 else mp_show_token_list(mp, q,null,50,0);
15533 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15536 @ @<Make |q| a capsule containing the next picture component from...@>=
15537 { q=loop_list(mp->loop_ptr);
15538 if ( q==null ) goto NOT_FOUND;
15539 skip_component(q) goto NOT_FOUND;
15540 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15541 mp_init_bbox(mp, mp->cur_exp);
15542 mp->cur_type=mp_picture_type;
15543 loop_list(mp->loop_ptr)=q;
15544 q=mp_stash_cur_exp(mp);
15547 @ A level of loop control disappears when |resume_iteration| has decided
15548 not to resume, or when an \&{exitif} construction has removed the loop text
15549 from the input stack.
15551 @c void mp_stop_iteration (MP mp) {
15552 pointer p,q; /* the usual */
15553 p=loop_type(mp->loop_ptr);
15554 if ( p==progression_flag ) {
15555 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15556 } else if ( p==null ){
15557 q=loop_list(mp->loop_ptr);
15558 while ( q!=null ) {
15561 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15562 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15564 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15567 p=q; q=link(q); free_avail(p);
15569 } else if ( p>progression_flag ) {
15570 delete_edge_ref(p);
15572 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15573 mp_free_node(mp, p,loop_node_size);
15576 @ Now that we know all about loop control, we can finish up
15577 the missing portion of |begin_iteration| and we'll be done.
15579 The following code is performed after the `\.=' has been scanned in
15580 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15581 (if |m=suffix_base|).
15583 @<Scan the values to be used in the loop@>=
15584 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15587 if ( m!=expr_base ) {
15588 mp_scan_suffix(mp);
15590 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15592 mp_scan_expression(mp);
15593 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15594 @<Prepare for step-until construction and |break|@>;
15596 mp->cur_exp=mp_stash_cur_exp(mp);
15598 link(q)=mp_get_avail(mp); q=link(q);
15599 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15602 } while (mp->cur_cmd==comma)
15604 @ @<Prepare for step-until construction and |break|@>=
15606 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15607 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15608 mp_get_x_next(mp); mp_scan_expression(mp);
15609 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15610 step_size(pp)=mp->cur_exp;
15611 if ( mp->cur_cmd!=until_token ) {
15612 mp_missing_err(mp, "until");
15613 @.Missing `until'@>
15614 help2("I assume you meant to say `until' after `step'.")
15615 ("So I'll look for the final value and colon next.");
15618 mp_get_x_next(mp); mp_scan_expression(mp);
15619 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15620 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15621 loop_type(s)=progression_flag;
15625 @ The last case is when we have just seen ``\&{within}'', and we need to
15626 parse a picture expression and prepare to iterate over it.
15628 @<Set up a picture iteration@>=
15629 { mp_get_x_next(mp);
15630 mp_scan_expression(mp);
15631 @<Make sure the current expression is a known picture@>;
15632 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15633 q=link(dummy_loc(mp->cur_exp));
15635 if ( is_start_or_stop(q) )
15636 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15640 @ @<Make sure the current expression is a known picture@>=
15641 if ( mp->cur_type!=mp_picture_type ) {
15642 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15643 help1("When you say `for x in p', p must be a known picture.");
15644 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15645 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15648 @* \[35] File names.
15649 It's time now to fret about file names. Besides the fact that different
15650 operating systems treat files in different ways, we must cope with the
15651 fact that completely different naming conventions are used by different
15652 groups of people. The following programs show what is required for one
15653 particular operating system; similar routines for other systems are not
15654 difficult to devise.
15655 @^system dependencies@>
15657 \MP\ assumes that a file name has three parts: the name proper; its
15658 ``extension''; and a ``file area'' where it is found in an external file
15659 system. The extension of an input file is assumed to be
15660 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15661 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15662 metric files that describe characters in any fonts created by \MP; it is
15663 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15664 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15665 The file area can be arbitrary on input files, but files are usually
15666 output to the user's current area. If an input file cannot be
15667 found on the specified area, \MP\ will look for it on a special system
15668 area; this special area is intended for commonly used input files.
15670 Simple uses of \MP\ refer only to file names that have no explicit
15671 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15672 instead of `\.{input} \.{cmr10.new}'. Simple file
15673 names are best, because they make the \MP\ source files portable;
15674 whenever a file name consists entirely of letters and digits, it should be
15675 treated in the same way by all implementations of \MP. However, users
15676 need the ability to refer to other files in their environment, especially
15677 when responding to error messages concerning unopenable files; therefore
15678 we want to let them use the syntax that appears in their favorite
15681 @ \MP\ uses the same conventions that have proved to be satisfactory for
15682 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15683 @^system dependencies@>
15684 the system-independent parts of \MP\ are expressed in terms
15685 of three system-dependent
15686 procedures called |begin_name|, |more_name|, and |end_name|. In
15687 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15688 the system-independent driver program does the operations
15689 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;\,|more_name|(c_n);
15691 These three procedures communicate with each other via global variables.
15692 Afterwards the file name will appear in the string pool as three strings
15693 called |cur_name|\penalty10000\hskip-.05em,
15694 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15695 |""|), unless they were explicitly specified by the user.
15697 Actually the situation is slightly more complicated, because \MP\ needs
15698 to know when the file name ends. The |more_name| routine is a function
15699 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15700 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15701 returns |false|; or, it returns |true| and $c_n$ is the last character
15702 on the current input line. In other words,
15703 |more_name| is supposed to return |true| unless it is sure that the
15704 file name has been completely scanned; and |end_name| is supposed to be able
15705 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15706 whether $|more_name|(c_n)$ returned |true| or |false|.
15709 char * cur_name; /* name of file just scanned */
15710 char * cur_area; /* file area just scanned, or \.{""} */
15711 char * cur_ext; /* file extension just scanned, or \.{""} */
15713 @ It is easier to maintain reference counts if we assign initial values.
15716 mp->cur_name=xstrdup("");
15717 mp->cur_area=xstrdup("");
15718 mp->cur_ext=xstrdup("");
15720 @ @<Dealloc variables@>=
15721 xfree(mp->cur_area);
15722 xfree(mp->cur_name);
15723 xfree(mp->cur_ext);
15725 @ The file names we shall deal with for illustrative purposes have the
15726 following structure: If the name contains `\.>' or `\.:', the file area
15727 consists of all characters up to and including the final such character;
15728 otherwise the file area is null. If the remaining file name contains
15729 `\..', the file extension consists of all such characters from the first
15730 remaining `\..' to the end, otherwise the file extension is null.
15731 @^system dependencies@>
15733 We can scan such file names easily by using two global variables that keep track
15734 of the occurrences of area and extension delimiters. Note that these variables
15735 cannot be of type |pool_pointer| because a string pool compaction could occur
15736 while scanning a file name.
15739 integer area_delimiter;
15740 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15741 integer ext_delimiter; /* the relevant `\..', if any */
15743 @ Here now is the first of the system-dependent routines for file name scanning.
15744 @^system dependencies@>
15746 @<Declare subroutines for parsing file names@>=
15747 void mp_begin_name (MP mp) {
15748 xfree(mp->cur_name);
15749 xfree(mp->cur_area);
15750 xfree(mp->cur_ext);
15751 mp->area_delimiter=-1;
15752 mp->ext_delimiter=-1;
15755 @ And here's the second.
15756 @^system dependencies@>
15758 @<Declare subroutines for parsing file names@>=
15759 boolean mp_more_name (MP mp, ASCII_code c) {
15763 if ( (c=='>')||(c==':') ) {
15764 mp->area_delimiter=mp->pool_ptr;
15765 mp->ext_delimiter=-1;
15766 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15767 mp->ext_delimiter=mp->pool_ptr;
15769 str_room(1); append_char(c); /* contribute |c| to the current string */
15775 @^system dependencies@>
15777 @d copy_pool_segment(A,B,C) {
15778 A = xmalloc(C+1,sizeof(char));
15779 strncpy(A,(char *)(mp->str_pool+B),C);
15782 @<Declare subroutines for parsing file names@>=
15783 void mp_end_name (MP mp) {
15784 pool_pointer s; /* length of area, name, and extension */
15787 s = mp->str_start[mp->str_ptr];
15788 if ( mp->area_delimiter<0 ) {
15789 mp->cur_area=xstrdup("");
15791 len = mp->area_delimiter-s;
15792 copy_pool_segment(mp->cur_area,s,len);
15795 if ( mp->ext_delimiter<0 ) {
15796 mp->cur_ext=xstrdup("");
15797 len = mp->pool_ptr-s;
15799 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15800 len = mp->ext_delimiter-s;
15802 copy_pool_segment(mp->cur_name,s,len);
15803 mp->pool_ptr=s; /* don't need this partial string */
15806 @ Conversely, here is a routine that takes three strings and prints a file
15807 name that might have produced them. (The routine is system dependent, because
15808 some operating systems put the file area last instead of first.)
15809 @^system dependencies@>
15811 @<Basic printing...@>=
15812 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15813 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15816 @ Another system-dependent routine is needed to convert three internal
15818 to the |name_of_file| value that is used to open files. The present code
15819 allows both lowercase and uppercase letters in the file name.
15820 @^system dependencies@>
15822 @d append_to_name(A) { c=(A);
15823 if ( k<file_name_size ) {
15824 mp->name_of_file[k]=xchr(c);
15829 @<Declare subroutines for parsing file names@>=
15830 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) {
15831 integer k; /* number of positions filled in |name_of_file| */
15832 ASCII_code c; /* character being packed */
15833 const char *j; /* a character index */
15837 for (j=a;*j;j++) { append_to_name(*j); }
15839 for (j=n;*j;j++) { append_to_name(*j); }
15841 for (j=e;*j;j++) { append_to_name(*j); }
15843 mp->name_of_file[k]=0;
15847 @ @<Internal library declarations@>=
15848 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) ;
15850 @ A messier routine is also needed, since mem file names must be scanned
15851 before \MP's string mechanism has been initialized. We shall use the
15852 global variable |MP_mem_default| to supply the text for default system areas
15853 and extensions related to mem files.
15854 @^system dependencies@>
15856 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15857 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15858 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15861 char *MP_mem_default;
15863 @ @<Option variables@>=
15864 char *mem_name; /* for commandline */
15866 @ @<Allocate or initialize ...@>=
15867 mp->MP_mem_default = xstrdup("plain.mem");
15868 mp->mem_name = xstrdup(opt->mem_name);
15870 @^system dependencies@>
15872 @ @<Dealloc variables@>=
15873 xfree(mp->MP_mem_default);
15874 xfree(mp->mem_name);
15876 @ @<Check the ``constant'' values for consistency@>=
15877 if ( mem_default_length>file_name_size ) mp->bad=20;
15879 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15880 from the first |n| characters of |MP_mem_default|, followed by
15881 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15884 We dare not give error messages here, since \MP\ calls this routine before
15885 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15886 since the error will be detected in another way when a strange file name
15888 @^system dependencies@>
15890 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15892 integer k; /* number of positions filled in |name_of_file| */
15893 ASCII_code c; /* character being packed */
15894 integer j; /* index into |buffer| or |MP_mem_default| */
15895 if ( n+b-a+1+mem_ext_length>file_name_size )
15896 b=a+file_name_size-n-1-mem_ext_length;
15898 for (j=0;j<n;j++) {
15899 append_to_name(xord((int)mp->MP_mem_default[j]));
15901 for (j=a;j<b;j++) {
15902 append_to_name(mp->buffer[j]);
15904 for (j=mem_default_length-mem_ext_length;
15905 j<mem_default_length;j++) {
15906 append_to_name(xord((int)mp->MP_mem_default[j]));
15908 mp->name_of_file[k]=0;
15912 @ Here is the only place we use |pack_buffered_name|. This part of the program
15913 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15914 the preliminary initialization, or when the user is substituting another
15915 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15916 contains the first line of input in |buffer[loc..(last-1)]|, where
15917 |loc<last| and |buffer[loc]<>" "|.
15920 boolean mp_open_mem_file (MP mp) ;
15923 boolean mp_open_mem_file (MP mp) {
15924 int j; /* the first space after the file name */
15925 if (mp->mem_name!=NULL) {
15926 mp->mem_file = (mp->open_file)(mp,mp->mem_name, "r", mp_filetype_memfile);
15927 if ( mp->mem_file ) return true;
15930 if ( mp->buffer[loc]=='&' ) {
15931 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15932 while ( mp->buffer[j]!=' ' ) incr(j);
15933 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15934 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15936 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15937 @.Sorry, I can't find...@>
15940 /* now pull out all the stops: try for the system \.{plain} file */
15941 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15942 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15944 wterm_ln("I can\'t find the PLAIN mem file!\n");
15945 @.I can't find PLAIN...@>
15950 loc=j; return true;
15953 @ Operating systems often make it possible to determine the exact name (and
15954 possible version number) of a file that has been opened. The following routine,
15955 which simply makes a \MP\ string from the value of |name_of_file|, should
15956 ideally be changed to deduce the full name of file~|f|, which is the file
15957 most recently opened, if it is possible to do this.
15958 @^system dependencies@>
15961 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15962 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15963 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15966 str_number mp_make_name_string (MP mp) {
15967 int k; /* index into |name_of_file| */
15968 str_room(mp->name_length);
15969 for (k=0;k<mp->name_length;k++) {
15970 append_char(xord((int)mp->name_of_file[k]));
15972 return mp_make_string(mp);
15975 @ Now let's consider the ``driver''
15976 routines by which \MP\ deals with file names
15977 in a system-independent manner. First comes a procedure that looks for a
15978 file name in the input by taking the information from the input buffer.
15979 (We can't use |get_next|, because the conversion to tokens would
15980 destroy necessary information.)
15982 This procedure doesn't allow semicolons or percent signs to be part of
15983 file names, because of other conventions of \MP.
15984 {\sl The {\logos METAFONT\/}book} doesn't
15985 use semicolons or percents immediately after file names, but some users
15986 no doubt will find it natural to do so; therefore system-dependent
15987 changes to allow such characters in file names should probably
15988 be made with reluctance, and only when an entire file name that
15989 includes special characters is ``quoted'' somehow.
15990 @^system dependencies@>
15992 @c void mp_scan_file_name (MP mp) {
15994 while ( mp->buffer[loc]==' ' ) incr(loc);
15996 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15997 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16003 @ Here is another version that takes its input from a string.
16005 @<Declare subroutines for parsing file names@>=
16006 void mp_str_scan_file (MP mp, str_number s) {
16007 pool_pointer p,q; /* current position and stopping point */
16009 p=mp->str_start[s]; q=str_stop(s);
16011 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16017 @ And one that reads from a |char*|.
16019 @<Declare subroutines for parsing file names@>=
16020 void mp_ptr_scan_file (MP mp, char *s) {
16021 char *p, *q; /* current position and stopping point */
16023 p=s; q=p+strlen(s);
16025 if ( ! mp_more_name(mp, *p)) break;
16032 @ The global variable |job_name| contains the file name that was first
16033 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16034 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16037 boolean log_opened; /* has the transcript file been opened? */
16038 char *log_name; /* full name of the log file */
16040 @ @<Option variables@>=
16041 char *job_name; /* principal file name */
16043 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16044 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16045 except of course for a short time just after |job_name| has become nonzero.
16047 @<Allocate or ...@>=
16048 mp->job_name=mp_xstrdup(mp, opt->job_name);
16049 mp->log_opened=false;
16051 @ @<Dealloc variables@>=
16052 xfree(mp->job_name);
16054 @ Here is a routine that manufactures the output file names, assuming that
16055 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16058 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16061 void mp_pack_job_name (MP mp, const char *s) ;
16064 void mp_pack_job_name (MP mp, const char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16065 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16066 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16067 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16071 @ If some trouble arises when \MP\ tries to open a file, the following
16072 routine calls upon the user to supply another file name. Parameter~|s|
16073 is used in the error message to identify the type of file; parameter~|e|
16074 is the default extension if none is given. Upon exit from the routine,
16075 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16076 ready for another attempt at file opening.
16079 void mp_prompt_file_name (MP mp, const char * s, const char * e) ;
16081 @ @c void mp_prompt_file_name (MP mp, const char * s, const char * e) {
16082 size_t k; /* index into |buffer| */
16083 char * saved_cur_name;
16084 if ( mp->interaction==mp_scroll_mode )
16086 if (strcmp(s,"input file name")==0) {
16087 print_err("I can\'t find file `");
16088 @.I can't find file x@>
16090 print_err("I can\'t write on file `");
16092 @.I can't write on file x@>
16093 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16094 mp_print(mp, "'.");
16095 if (strcmp(e,"")==0)
16096 mp_show_context(mp);
16097 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16099 if ( mp->interaction<mp_scroll_mode )
16100 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16101 @.job aborted, file error...@>
16102 saved_cur_name = xstrdup(mp->cur_name);
16103 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16104 if (strcmp(mp->cur_ext,"")==0)
16105 mp->cur_ext=xstrdup(e);
16106 if (strlen(mp->cur_name)==0) {
16107 mp->cur_name=saved_cur_name;
16109 xfree(saved_cur_name);
16114 @ @<Scan file name in the buffer@>=
16116 mp_begin_name(mp); k=mp->first;
16117 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16119 if ( k==mp->last ) break;
16120 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16126 @ The |open_log_file| routine is used to open the transcript file and to help
16127 it catch up to what has previously been printed on the terminal.
16129 @c void mp_open_log_file (MP mp) {
16130 int old_setting; /* previous |selector| setting */
16131 int k; /* index into |months| and |buffer| */
16132 int l; /* end of first input line */
16133 integer m; /* the current month */
16134 const char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16135 /* abbreviations of month names */
16136 old_setting=mp->selector;
16137 if ( mp->job_name==NULL ) {
16138 mp->job_name=xstrdup("mpout");
16140 mp_pack_job_name(mp,".log");
16141 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16142 @<Try to get a different log file name@>;
16144 mp->log_name=xstrdup(mp->name_of_file);
16145 mp->selector=log_only; mp->log_opened=true;
16146 @<Print the banner line, including the date and time@>;
16147 mp->input_stack[mp->input_ptr]=mp->cur_input;
16148 /* make sure bottom level is in memory */
16150 if (!mp->noninteractive) {
16151 mp_print_nl(mp, "**");
16152 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16153 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16154 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16156 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16159 @ @<Dealloc variables@>=
16160 xfree(mp->log_name);
16162 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16163 unable to print error messages or even to |show_context|.
16164 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16165 routine will not be invoked because |log_opened| will be false.
16167 The normal idea of |mp_batch_mode| is that nothing at all should be written
16168 on the terminal. However, in the unusual case that
16169 no log file could be opened, we make an exception and allow
16170 an explanatory message to be seen.
16172 Incidentally, the program always refers to the log file as a `\.{transcript
16173 file}', because some systems cannot use the extension `\.{.log}' for
16176 @<Try to get a different log file name@>=
16178 mp->selector=term_only;
16179 mp_prompt_file_name(mp, "transcript file name",".log");
16182 @ @<Print the banner...@>=
16185 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16186 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16187 mp_print_char(mp, ' ');
16188 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16189 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16190 mp_print_char(mp, ' ');
16191 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16192 mp_print_char(mp, ' ');
16193 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16194 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16197 @ The |try_extension| function tries to open an input file determined by
16198 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16199 can't find the file in |cur_area| or the appropriate system area.
16201 @c boolean mp_try_extension (MP mp, const char *ext) {
16202 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16203 in_name=xstrdup(mp->cur_name);
16204 in_area=xstrdup(mp->cur_area);
16205 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16208 mp_pack_file_name(mp, mp->cur_name,NULL,ext);
16209 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16213 @ Let's turn now to the procedure that is used to initiate file reading
16214 when an `\.{input}' command is being processed.
16216 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16217 char *fname = NULL;
16218 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16220 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16221 if ( strlen(mp->cur_ext)==0 ) {
16222 if ( mp_try_extension(mp, ".mp") ) break;
16223 else if ( mp_try_extension(mp, "") ) break;
16224 else if ( mp_try_extension(mp, ".mf") ) break;
16225 /* |else do_nothing; | */
16226 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16229 mp_end_file_reading(mp); /* remove the level that didn't work */
16230 mp_prompt_file_name(mp, "input file name","");
16232 name=mp_a_make_name_string(mp, cur_file);
16233 fname = xstrdup(mp->name_of_file);
16234 if ( mp->job_name==NULL ) {
16235 mp->job_name=xstrdup(mp->cur_name);
16236 mp_open_log_file(mp);
16237 } /* |open_log_file| doesn't |show_context|, so |limit|
16238 and |loc| needn't be set to meaningful values yet */
16239 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16240 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16241 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16244 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16245 @<Read the first line of the new file@>;
16248 @ This code should be omitted if |a_make_name_string| returns something other
16249 than just a copy of its argument and the full file name is needed for opening
16250 \.{MPX} files or implementing the switch-to-editor option.
16251 @^system dependencies@>
16253 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16254 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16256 @ If the file is empty, it is considered to contain a single blank line,
16257 so there is no need to test the return value.
16259 @<Read the first line...@>=
16262 (void)mp_input_ln(mp, cur_file );
16263 mp_firm_up_the_line(mp);
16264 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16267 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16268 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16269 if ( token_state ) {
16270 print_err("File names can't appear within macros");
16271 @.File names can't...@>
16272 help3("Sorry...I've converted what follows to tokens,")
16273 ("possibly garbaging the name you gave.")
16274 ("Please delete the tokens and insert the name again.");
16277 if ( file_state ) {
16278 mp_scan_file_name(mp);
16280 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16281 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16282 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16285 @ The following simple routine starts reading the \.{MPX} file associated
16286 with the current input file.
16288 @c void mp_start_mpx_input (MP mp) {
16289 char *origname = NULL; /* a copy of nameoffile */
16290 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16291 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16292 |goto not_found| if there is a problem@>;
16293 mp_begin_file_reading(mp);
16294 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16295 mp_end_file_reading(mp);
16298 name=mp_a_make_name_string(mp, cur_file);
16299 mp->mpx_name[index]=name; add_str_ref(name);
16300 @<Read the first line of the new file@>;
16303 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16307 @ This should ideally be changed to do whatever is necessary to create the
16308 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16309 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16310 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16311 completely different typesetting program if suitable postprocessor is
16312 available to perform the function of \.{DVItoMP}.)
16313 @^system dependencies@>
16315 @ @<Exported types@>=
16316 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16318 @ @<Option variables@>=
16319 mp_run_make_mpx_command run_make_mpx;
16321 @ @<Allocate or initialize ...@>=
16322 set_callback_option(run_make_mpx);
16324 @ @<Internal library declarations@>=
16325 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16327 @ The default does nothing.
16329 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16336 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16337 |goto not_found| if there is a problem@>=
16338 origname = mp_xstrdup(mp,mp->name_of_file);
16339 *(origname+strlen(origname)-1)=0; /* drop the x */
16340 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16343 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16344 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16345 mp_print_nl(mp, ">> ");
16346 mp_print(mp, origname);
16347 mp_print_nl(mp, ">> ");
16348 mp_print(mp, mp->name_of_file);
16349 mp_print_nl(mp, "! Unable to make mpx file");
16350 help4("The two files given above are one of your source files")
16351 ("and an auxiliary file I need to read to find out what your")
16352 ("btex..etex blocks mean. If you don't know why I had trouble,")
16353 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16356 @ The last file-opening commands are for files accessed via the \&{readfrom}
16357 @:read_from_}{\&{readfrom} primitive@>
16358 operator and the \&{write} command. Such files are stored in separate arrays.
16359 @:write_}{\&{write} primitive@>
16361 @<Types in the outer block@>=
16362 typedef unsigned int readf_index; /* |0..max_read_files| */
16363 typedef unsigned int write_index; /* |0..max_write_files| */
16366 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16367 void ** rd_file; /* \&{readfrom} files */
16368 char ** rd_fname; /* corresponding file name or 0 if file not open */
16369 readf_index read_files; /* number of valid entries in the above arrays */
16370 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16371 void ** wr_file; /* \&{write} files */
16372 char ** wr_fname; /* corresponding file name or 0 if file not open */
16373 write_index write_files; /* number of valid entries in the above arrays */
16375 @ @<Allocate or initialize ...@>=
16376 mp->max_read_files=8;
16377 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16378 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16379 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16381 mp->max_write_files=8;
16382 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16383 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16384 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16388 @ This routine starts reading the file named by string~|s| without setting
16389 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16390 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16392 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16393 mp_ptr_scan_file(mp, s);
16395 mp_begin_file_reading(mp);
16396 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16398 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16399 (mp->close_file)(mp,mp->rd_file[n]);
16402 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16405 mp_end_file_reading(mp);
16409 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16412 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16414 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16415 mp_ptr_scan_file(mp, s);
16417 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16418 mp_prompt_file_name(mp, "file name for write output","");
16419 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16423 @* \[36] Introduction to the parsing routines.
16424 We come now to the central nervous system that sparks many of \MP's activities.
16425 By evaluating expressions, from their primary constituents to ever larger
16426 subexpressions, \MP\ builds the structures that ultimately define complete
16427 pictures or fonts of type.
16429 Four mutually recursive subroutines are involved in this process: We call them
16430 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16431 and |scan_expression|.}$$
16433 Each of them is parameterless and begins with the first token to be scanned
16434 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16435 the value of the primary or secondary or tertiary or expression that was
16436 found will appear in the global variables |cur_type| and |cur_exp|. The
16437 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16440 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16441 backup mechanisms have been added in order to provide reasonable error
16445 small_number cur_type; /* the type of the expression just found */
16446 integer cur_exp; /* the value of the expression just found */
16451 @ Many different kinds of expressions are possible, so it is wise to have
16452 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16455 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16456 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16457 construction in which there was no expression before the \&{endgroup}.
16458 In this case |cur_exp| has some irrelevant value.
16461 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16465 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16467 a ring of equivalent booleans whose value has not yet been defined.
16470 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16471 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16472 includes this particular reference.
16475 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16477 a ring of equivalent strings whose value has not yet been defined.
16480 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16481 else points to any of the nodes in this pen. The pen may be polygonal or
16485 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16487 a ring of equivalent pens whose value has not yet been defined.
16490 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16491 a path; nobody else points to this particular path. The control points of
16492 the path will have been chosen.
16495 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16497 a ring of equivalent paths whose value has not yet been defined.
16500 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16501 There may be other pointers to this particular set of edges. The header node
16502 contains a reference count that includes this particular reference.
16505 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16507 a ring of equivalent pictures whose value has not yet been defined.
16510 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16511 capsule node. The |value| part of this capsule
16512 points to a transform node that contains six numeric values,
16513 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16516 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16517 capsule node. The |value| part of this capsule
16518 points to a color node that contains three numeric values,
16519 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16522 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16523 capsule node. The |value| part of this capsule
16524 points to a color node that contains four numeric values,
16525 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16528 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16529 node whose type is |mp_pair_type|. The |value| part of this capsule
16530 points to a pair node that contains two numeric values,
16531 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16534 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16537 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16538 is |dependent|. The |dep_list| field in this capsule points to the associated
16542 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16543 capsule node. The |dep_list| field in this capsule
16544 points to the associated dependency list.
16547 |cur_type=independent| means that |cur_exp| points to a capsule node
16548 whose type is |independent|. This somewhat unusual case can arise, for
16549 example, in the expression
16550 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16553 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16556 \smallskip\noindent
16557 The possible settings of |cur_type| have been listed here in increasing
16558 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16559 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16560 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16563 @ Capsules are two-word nodes that have a similar meaning
16564 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|,
16565 and their |type| field is one of the possibilities for |cur_type| listed above.
16566 Also |link<=void| in capsules that aren't part of a token list.
16568 The |value| field of a capsule is, in most cases, the value that
16569 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16570 However, when |cur_exp| would point to a capsule,
16571 no extra layer of indirection is present; the |value|
16572 field is what would have been called |value(cur_exp)| if it had not been
16573 encapsulated. Furthermore, if the type is |dependent| or
16574 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16575 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16576 always part of the general |dep_list| structure.
16578 The |get_x_next| routine is careful not to change the values of |cur_type|
16579 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16580 call a macro, which might parse an expression, which might execute lots of
16581 commands in a group; hence it's possible that |cur_type| might change
16582 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16583 |known| or |independent|, during the time |get_x_next| is called. The
16584 programs below are careful to stash sensitive intermediate results in
16585 capsules, so that \MP's generality doesn't cause trouble.
16587 Here's a procedure that illustrates these conventions. It takes
16588 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16589 and stashes them away in a
16590 capsule. It is not used when |cur_type=mp_token_list|.
16591 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16592 copy path lists or to update reference counts, etc.
16594 The special link |mp_void| is put on the capsule returned by
16595 |stash_cur_exp|, because this procedure is used to store macro parameters
16596 that must be easily distinguishable from token lists.
16598 @<Declare the stashing/unstashing routines@>=
16599 pointer mp_stash_cur_exp (MP mp) {
16600 pointer p; /* the capsule that will be returned */
16601 switch (mp->cur_type) {
16602 case unknown_types:
16603 case mp_transform_type:
16604 case mp_color_type:
16607 case mp_proto_dependent:
16608 case mp_independent:
16609 case mp_cmykcolor_type:
16613 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16614 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16617 mp->cur_type=mp_vacuous; link(p)=mp_void;
16621 @ The inverse of |stash_cur_exp| is the following procedure, which
16622 deletes an unnecessary capsule and puts its contents into |cur_type|
16625 The program steps of \MP\ can be divided into two categories: those in
16626 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16627 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16628 information or not. It's important not to ignore them when they're alive,
16629 and it's important not to pay attention to them when they're dead.
16631 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16632 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16633 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16634 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16635 only when they are alive or dormant.
16637 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16638 are alive or dormant. The \\{unstash} procedure assumes that they are
16639 dead or dormant; it resuscitates them.
16641 @<Declare the stashing/unstashing...@>=
16642 void mp_unstash_cur_exp (MP mp,pointer p) ;
16645 void mp_unstash_cur_exp (MP mp,pointer p) {
16646 mp->cur_type=type(p);
16647 switch (mp->cur_type) {
16648 case unknown_types:
16649 case mp_transform_type:
16650 case mp_color_type:
16653 case mp_proto_dependent:
16654 case mp_independent:
16655 case mp_cmykcolor_type:
16659 mp->cur_exp=value(p);
16660 mp_free_node(mp, p,value_node_size);
16665 @ The following procedure prints the values of expressions in an
16666 abbreviated format. If its first parameter |p| is null, the value of
16667 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16668 containing the desired value. The second parameter controls the amount of
16669 output. If it is~0, dependency lists will be abbreviated to
16670 `\.{linearform}' unless they consist of a single term. If it is greater
16671 than~1, complicated structures (pens, pictures, and paths) will be displayed
16675 @<Declare subroutines for printing expressions@>=
16676 @<Declare the procedure called |print_dp|@>
16677 @<Declare the stashing/unstashing routines@>
16678 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16679 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16680 small_number t; /* the type of the expression */
16681 pointer q; /* a big node being displayed */
16682 integer v=0; /* the value of the expression */
16684 restore_cur_exp=false;
16686 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16689 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16690 @<Print an abbreviated value of |v| with format depending on |t|@>;
16691 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16694 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16696 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16697 case mp_boolean_type:
16698 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16700 case unknown_types: case mp_numeric_type:
16701 @<Display a variable that's been declared but not defined@>;
16703 case mp_string_type:
16704 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16706 case mp_pen_type: case mp_path_type: case mp_picture_type:
16707 @<Display a complex type@>;
16709 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16710 if ( v==null ) mp_print_type(mp, t);
16711 else @<Display a big node@>;
16713 case mp_known:mp_print_scaled(mp, v); break;
16714 case mp_dependent: case mp_proto_dependent:
16715 mp_print_dp(mp, t,v,verbosity);
16717 case mp_independent:mp_print_variable_name(mp, p); break;
16718 default: mp_confusion(mp, "exp"); break;
16719 @:this can't happen exp}{\quad exp@>
16722 @ @<Display a big node@>=
16724 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16726 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16727 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16728 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16730 if ( v!=q ) mp_print_char(mp, ',');
16732 mp_print_char(mp, ')');
16735 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16736 in the log file only, unless the user has given a positive value to
16739 @<Display a complex type@>=
16740 if ( verbosity<=1 ) {
16741 mp_print_type(mp, t);
16743 if ( mp->selector==term_and_log )
16744 if ( mp->internal[mp_tracing_online]<=0 ) {
16745 mp->selector=term_only;
16746 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16747 mp->selector=term_and_log;
16750 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16751 case mp_path_type:mp_print_path(mp, v,"",false); break;
16752 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16753 } /* there are no other cases */
16756 @ @<Declare the procedure called |print_dp|@>=
16757 void mp_print_dp (MP mp,small_number t, pointer p,
16758 small_number verbosity) {
16759 pointer q; /* the node following |p| */
16761 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16762 else mp_print(mp, "linearform");
16765 @ The displayed name of a variable in a ring will not be a capsule unless
16766 the ring consists entirely of capsules.
16768 @<Display a variable that's been declared but not defined@>=
16769 { mp_print_type(mp, t);
16771 { mp_print_char(mp, ' ');
16772 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16773 mp_print_variable_name(mp, v);
16777 @ When errors are detected during parsing, it is often helpful to
16778 display an expression just above the error message, using |exp_err|
16779 or |disp_err| instead of |print_err|.
16781 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16783 @<Declare subroutines for printing expressions@>=
16784 void mp_disp_err (MP mp,pointer p, const char *s) {
16785 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16786 mp_print_nl(mp, ">> ");
16788 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16790 mp_print_nl(mp, "! "); mp_print(mp, s);
16795 @ If |cur_type| and |cur_exp| contain relevant information that should
16796 be recycled, we will use the following procedure, which changes |cur_type|
16797 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16798 and |cur_exp| as either alive or dormant after this has been done,
16799 because |cur_exp| will not contain a pointer value.
16801 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16802 switch (mp->cur_type) {
16803 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16804 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16805 mp_recycle_value(mp, mp->cur_exp);
16806 mp_free_node(mp, mp->cur_exp,value_node_size);
16808 case mp_string_type:
16809 delete_str_ref(mp->cur_exp); break;
16810 case mp_pen_type: case mp_path_type:
16811 mp_toss_knot_list(mp, mp->cur_exp); break;
16812 case mp_picture_type:
16813 delete_edge_ref(mp->cur_exp); break;
16817 mp->cur_type=mp_known; mp->cur_exp=v;
16820 @ There's a much more general procedure that is capable of releasing
16821 the storage associated with any two-word value packet.
16823 @<Declare the recycling subroutines@>=
16824 void mp_recycle_value (MP mp,pointer p) ;
16826 @ @c void mp_recycle_value (MP mp,pointer p) {
16827 small_number t; /* a type code */
16828 integer vv; /* another value */
16829 pointer q,r,s,pp; /* link manipulation registers */
16830 integer v=0; /* a value */
16832 if ( t<mp_dependent ) v=value(p);
16834 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16835 case mp_numeric_type:
16837 case unknown_types:
16838 mp_ring_delete(mp, p); break;
16839 case mp_string_type:
16840 delete_str_ref(v); break;
16841 case mp_path_type: case mp_pen_type:
16842 mp_toss_knot_list(mp, v); break;
16843 case mp_picture_type:
16844 delete_edge_ref(v); break;
16845 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16846 case mp_transform_type:
16847 @<Recycle a big node@>; break;
16848 case mp_dependent: case mp_proto_dependent:
16849 @<Recycle a dependency list@>; break;
16850 case mp_independent:
16851 @<Recycle an independent variable@>; break;
16852 case mp_token_list: case mp_structured:
16853 mp_confusion(mp, "recycle"); break;
16854 @:this can't happen recycle}{\quad recycle@>
16855 case mp_unsuffixed_macro: case mp_suffixed_macro:
16856 mp_delete_mac_ref(mp, value(p)); break;
16857 } /* there are no other cases */
16861 @ @<Recycle a big node@>=
16863 q=v+mp->big_node_size[t];
16865 q=q-2; mp_recycle_value(mp, q);
16867 mp_free_node(mp, v,mp->big_node_size[t]);
16870 @ @<Recycle a dependency list@>=
16873 while ( info(q)!=null ) q=link(q);
16874 link(prev_dep(p))=link(q);
16875 prev_dep(link(q))=prev_dep(p);
16876 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16879 @ When an independent variable disappears, it simply fades away, unless
16880 something depends on it. In the latter case, a dependent variable whose
16881 coefficient of dependence is maximal will take its place.
16882 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16883 as part of his Ph.D. thesis (Stanford University, December 1982).
16884 @^Zabala Salelles, Ignacio Andr\'es@>
16886 For example, suppose that variable $x$ is being recycled, and that the
16887 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16888 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16889 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16890 we will print `\.{\#\#\# -2x=-y+a}'.
16892 There's a slight complication, however: An independent variable $x$
16893 can occur both in dependency lists and in proto-dependency lists.
16894 This makes it necessary to be careful when deciding which coefficient
16897 Furthermore, this complication is not so slight when
16898 a proto-dependent variable is chosen to become independent. For example,
16899 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16900 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16901 large coefficient `50'.
16903 In order to deal with these complications without wasting too much time,
16904 we shall link together the occurrences of~$x$ among all the linear
16905 dependencies, maintaining separate lists for the dependent and
16906 proto-dependent cases.
16908 @<Recycle an independent variable@>=
16910 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16911 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16913 while ( q!=dep_head ) {
16914 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16917 if ( info(r)==null ) break;
16918 if ( info(r)!=p ) {
16921 t=type(q); link(s)=link(r); info(r)=q;
16922 if ( abs(value(r))>mp->max_c[t] ) {
16923 @<Record a new maximum coefficient of type |t|@>;
16925 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16931 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16932 @<Choose a dependent variable to take the place of the disappearing
16933 independent variable, and change all remaining dependencies
16938 @ The code for independency removal makes use of three two-word arrays.
16941 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16942 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16943 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16945 @ @<Record a new maximum coefficient...@>=
16947 if ( mp->max_c[t]>0 ) {
16948 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16950 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16953 @ @<Choose a dependent...@>=
16955 if ( (mp->max_c[mp_dependent] / 010000) >= mp->max_c[mp_proto_dependent] )
16958 t=mp_proto_dependent;
16959 @<Determine the dependency list |s| to substitute for the independent
16961 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16962 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16963 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16965 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16966 else { @<Substitute new proto-dependencies in place of |p|@>;}
16967 mp_flush_node_list(mp, s);
16968 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16972 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16973 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16974 whose dependency list we have removed node~|s|. We must reinsert
16975 node~|s| into the dependency list, with coefficient $-1.0$, and with
16976 |pp| as the new independent variable. Since |pp| will have a larger serial
16977 number than any other variable, we can put node |s| at the head of the
16980 @<Determine the dep...@>=
16981 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16982 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16983 r=dep_list(pp); link(s)=r;
16984 while ( info(r)!=null ) r=link(r);
16985 q=link(r); link(r)=null;
16986 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16988 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16989 if ( mp->internal[mp_tracing_equations]>0 ) {
16990 @<Show the transformed dependency@>;
16993 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16994 by the dependency list~|s|.
16996 @<Show the transformed...@>=
16997 if ( mp_interesting(mp, p) ) {
16998 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16999 @:]]]\#\#\#_}{\.{\#\#\#}@>
17000 if ( v>0 ) mp_print_char(mp, '-');
17001 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17002 else vv=mp->max_c[mp_proto_dependent];
17003 if ( vv!=unity ) mp_print_scaled(mp, vv);
17004 mp_print_variable_name(mp, p);
17005 while ( value(p) % s_scale>0 ) {
17006 mp_print(mp, "*4"); value(p)=value(p)-2;
17008 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17009 mp_print_dependency(mp, s,t);
17010 mp_end_diagnostic(mp, false);
17013 @ Finally, there are dependent and proto-dependent variables whose
17014 dependency lists must be brought up to date.
17016 @<Substitute new dependencies...@>=
17017 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17019 while ( r!=null ) {
17021 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17022 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17023 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17024 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17028 @ @<Substitute new proto...@>=
17029 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17031 while ( r!=null ) {
17033 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17034 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17035 mp->cur_type=mp_proto_dependent;
17036 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,
17037 mp_dependent,mp_proto_dependent);
17038 type(q)=mp_proto_dependent;
17039 value(r)=mp_round_fraction(mp, value(r));
17041 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17042 mp_make_scaled(mp, value(r),-v),s,
17043 mp_proto_dependent,mp_proto_dependent);
17044 if ( dep_list(q)==mp->dep_final )
17045 mp_make_known(mp, q,mp->dep_final);
17046 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17050 @ Here are some routines that provide handy combinations of actions
17051 that are often needed during error recovery. For example,
17052 `|flush_error|' flushes the current expression, replaces it by
17053 a given value, and calls |error|.
17055 Errors often are detected after an extra token has already been scanned.
17056 The `\\{put\_get}' routines put that token back before calling |error|;
17057 then they get it back again. (Or perhaps they get another token, if
17058 the user has changed things.)
17061 void mp_flush_error (MP mp,scaled v);
17062 void mp_put_get_error (MP mp);
17063 void mp_put_get_flush_error (MP mp,scaled v) ;
17066 void mp_flush_error (MP mp,scaled v) {
17067 mp_error(mp); mp_flush_cur_exp(mp, v);
17069 void mp_put_get_error (MP mp) {
17070 mp_back_error(mp); mp_get_x_next(mp);
17072 void mp_put_get_flush_error (MP mp,scaled v) {
17073 mp_put_get_error(mp);
17074 mp_flush_cur_exp(mp, v);
17077 @ A global variable |var_flag| is set to a special command code
17078 just before \MP\ calls |scan_expression|, if the expression should be
17079 treated as a variable when this command code immediately follows. For
17080 example, |var_flag| is set to |assignment| at the beginning of a
17081 statement, because we want to know the {\sl location\/} of a variable at
17082 the left of `\.{:=}', not the {\sl value\/} of that variable.
17084 The |scan_expression| subroutine calls |scan_tertiary|,
17085 which calls |scan_secondary|, which calls |scan_primary|, which sets
17086 |var_flag:=0|. In this way each of the scanning routines ``knows''
17087 when it has been called with a special |var_flag|, but |var_flag| is
17090 A variable preceding a command that equals |var_flag| is converted to a
17091 token list rather than a value. Furthermore, an `\.{=}' sign following an
17092 expression with |var_flag=assignment| is not considered to be a relation
17093 that produces boolean expressions.
17097 int var_flag; /* command that wants a variable */
17102 @* \[37] Parsing primary expressions.
17103 The first parsing routine, |scan_primary|, is also the most complicated one,
17104 since it involves so many different cases. But each case---with one
17105 exception---is fairly simple by itself.
17107 When |scan_primary| begins, the first token of the primary to be scanned
17108 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17109 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17110 earlier. If |cur_cmd| is not between |min_primary_command| and
17111 |max_primary_command|, inclusive, a syntax error will be signaled.
17113 @<Declare the basic parsing subroutines@>=
17114 void mp_scan_primary (MP mp) {
17115 pointer p,q,r; /* for list manipulation */
17116 quarterword c; /* a primitive operation code */
17117 int my_var_flag; /* initial value of |my_var_flag| */
17118 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17119 @<Other local variables for |scan_primary|@>;
17120 my_var_flag=mp->var_flag; mp->var_flag=0;
17123 @<Supply diagnostic information, if requested@>;
17124 switch (mp->cur_cmd) {
17125 case left_delimiter:
17126 @<Scan a delimited primary@>; break;
17128 @<Scan a grouped primary@>; break;
17130 @<Scan a string constant@>; break;
17131 case numeric_token:
17132 @<Scan a primary that starts with a numeric token@>; break;
17134 @<Scan a nullary operation@>; break;
17135 case unary: case type_name: case cycle: case plus_or_minus:
17136 @<Scan a unary operation@>; break;
17137 case primary_binary:
17138 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17140 @<Convert a suffix to a string@>; break;
17141 case internal_quantity:
17142 @<Scan an internal numeric quantity@>; break;
17143 case capsule_token:
17144 mp_make_exp_copy(mp, mp->cur_mod); break;
17146 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17148 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17149 @.A primary expression...@>
17151 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17153 if ( mp->cur_cmd==left_bracket ) {
17154 if ( mp->cur_type>=mp_known ) {
17155 @<Scan a mediation construction@>;
17162 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17164 @c void mp_bad_exp (MP mp, const char * s) {
17166 print_err(s); mp_print(mp, " expression can't begin with `");
17167 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17168 mp_print_char(mp, '\'');
17169 help4("I'm afraid I need some sort of value in order to continue,")
17170 ("so I've tentatively inserted `0'. You may want to")
17171 ("delete this zero and insert something else;")
17172 ("see Chapter 27 of The METAFONTbook for an example.");
17173 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17174 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17175 mp->cur_mod=0; mp_ins_error(mp);
17176 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17177 mp->var_flag=save_flag;
17180 @ @<Supply diagnostic information, if requested@>=
17182 if ( mp->panicking ) mp_check_mem(mp, false);
17184 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17185 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17188 @ @<Scan a delimited primary@>=
17190 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17191 mp_get_x_next(mp); mp_scan_expression(mp);
17192 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17193 @<Scan the rest of a delimited set of numerics@>;
17195 mp_check_delimiter(mp, l_delim,r_delim);
17199 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17200 within a ``big node.''
17202 @c void mp_stash_in (MP mp,pointer p) {
17203 pointer q; /* temporary register */
17204 type(p)=mp->cur_type;
17205 if ( mp->cur_type==mp_known ) {
17206 value(p)=mp->cur_exp;
17208 if ( mp->cur_type==mp_independent ) {
17209 @<Stash an independent |cur_exp| into a big node@>;
17211 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17212 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17213 link(prev_dep(p))=p;
17215 mp_free_node(mp, mp->cur_exp,value_node_size);
17217 mp->cur_type=mp_vacuous;
17220 @ In rare cases the current expression can become |independent|. There
17221 may be many dependency lists pointing to such an independent capsule,
17222 so we can't simply move it into place within a big node. Instead,
17223 we copy it, then recycle it.
17225 @ @<Stash an independent |cur_exp|...@>=
17227 q=mp_single_dependency(mp, mp->cur_exp);
17228 if ( q==mp->dep_final ){
17229 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17231 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17233 mp_recycle_value(mp, mp->cur_exp);
17236 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17237 are synonymous with |x_part_loc| and |y_part_loc|.
17239 @<Scan the rest of a delimited set of numerics@>=
17241 p=mp_stash_cur_exp(mp);
17242 mp_get_x_next(mp); mp_scan_expression(mp);
17243 @<Make sure the second part of a pair or color has a numeric type@>;
17244 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17245 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17246 else type(q)=mp_pair_type;
17247 mp_init_big_node(mp, q); r=value(q);
17248 mp_stash_in(mp, y_part_loc(r));
17249 mp_unstash_cur_exp(mp, p);
17250 mp_stash_in(mp, x_part_loc(r));
17251 if ( mp->cur_cmd==comma ) {
17252 @<Scan the last of a triplet of numerics@>;
17254 if ( mp->cur_cmd==comma ) {
17255 type(q)=mp_cmykcolor_type;
17256 mp_init_big_node(mp, q); t=value(q);
17257 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17258 value(cyan_part_loc(t))=value(red_part_loc(r));
17259 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17260 value(magenta_part_loc(t))=value(green_part_loc(r));
17261 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17262 value(yellow_part_loc(t))=value(blue_part_loc(r));
17263 mp_recycle_value(mp, r);
17265 @<Scan the last of a quartet of numerics@>;
17267 mp_check_delimiter(mp, l_delim,r_delim);
17268 mp->cur_type=type(q);
17272 @ @<Make sure the second part of a pair or color has a numeric type@>=
17273 if ( mp->cur_type<mp_known ) {
17274 exp_err("Nonnumeric ypart has been replaced by 0");
17275 @.Nonnumeric...replaced by 0@>
17276 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17277 ("but after finding a nice `a' I found a `b' that isn't")
17278 ("of numeric type. So I've changed that part to zero.")
17279 ("(The b that I didn't like appears above the error message.)");
17280 mp_put_get_flush_error(mp, 0);
17283 @ @<Scan the last of a triplet of numerics@>=
17285 mp_get_x_next(mp); mp_scan_expression(mp);
17286 if ( mp->cur_type<mp_known ) {
17287 exp_err("Nonnumeric third part has been replaced by 0");
17288 @.Nonnumeric...replaced by 0@>
17289 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17290 ("isn't of numeric type. So I've changed that part to zero.")
17291 ("(The c that I didn't like appears above the error message.)");
17292 mp_put_get_flush_error(mp, 0);
17294 mp_stash_in(mp, blue_part_loc(r));
17297 @ @<Scan the last of a quartet of numerics@>=
17299 mp_get_x_next(mp); mp_scan_expression(mp);
17300 if ( mp->cur_type<mp_known ) {
17301 exp_err("Nonnumeric blackpart has been replaced by 0");
17302 @.Nonnumeric...replaced by 0@>
17303 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17304 ("of numeric type. So I've changed that part to zero.")
17305 ("(The k that I didn't like appears above the error message.)");
17306 mp_put_get_flush_error(mp, 0);
17308 mp_stash_in(mp, black_part_loc(r));
17311 @ The local variable |group_line| keeps track of the line
17312 where a \&{begingroup} command occurred; this will be useful
17313 in an error message if the group doesn't actually end.
17315 @<Other local variables for |scan_primary|@>=
17316 integer group_line; /* where a group began */
17318 @ @<Scan a grouped primary@>=
17320 group_line=mp_true_line(mp);
17321 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17322 save_boundary_item(p);
17324 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17325 } while (mp->cur_cmd==semicolon);
17326 if ( mp->cur_cmd!=end_group ) {
17327 print_err("A group begun on line ");
17328 @.A group...never ended@>
17329 mp_print_int(mp, group_line);
17330 mp_print(mp, " never ended");
17331 help2("I saw a `begingroup' back there that hasn't been matched")
17332 ("by `endgroup'. So I've inserted `endgroup' now.");
17333 mp_back_error(mp); mp->cur_cmd=end_group;
17336 /* this might change |cur_type|, if independent variables are recycled */
17337 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17340 @ @<Scan a string constant@>=
17342 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17345 @ Later we'll come to procedures that perform actual operations like
17346 addition, square root, and so on; our purpose now is to do the parsing.
17347 But we might as well mention those future procedures now, so that the
17348 suspense won't be too bad:
17351 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17352 `\&{true}' or `\&{pencircle}');
17355 |do_unary(c)| applies a primitive operation to the current expression;
17358 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17359 and the current expression.
17361 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17363 @ @<Scan a unary operation@>=
17365 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17366 mp_do_unary(mp, c); goto DONE;
17369 @ A numeric token might be a primary by itself, or it might be the
17370 numerator of a fraction composed solely of numeric tokens, or it might
17371 multiply the primary that follows (provided that the primary doesn't begin
17372 with a plus sign or a minus sign). The code here uses the facts that
17373 |max_primary_command=plus_or_minus| and
17374 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17375 than unity, we try to retain higher precision when we use it in scalar
17378 @<Other local variables for |scan_primary|@>=
17379 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17381 @ @<Scan a primary that starts with a numeric token@>=
17383 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17384 if ( mp->cur_cmd!=slash ) {
17388 if ( mp->cur_cmd!=numeric_token ) {
17390 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17393 num=mp->cur_exp; denom=mp->cur_mod;
17394 if ( denom==0 ) { @<Protest division by zero@>; }
17395 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17396 check_arith; mp_get_x_next(mp);
17398 if ( mp->cur_cmd>=min_primary_command ) {
17399 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17400 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17401 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17402 mp_do_binary(mp, p,times);
17404 mp_frac_mult(mp, num,denom);
17405 mp_free_node(mp, p,value_node_size);
17412 @ @<Protest division...@>=
17414 print_err("Division by zero");
17415 @.Division by zero@>
17416 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17419 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17421 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17422 if ( mp->cur_cmd!=of_token ) {
17423 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17424 mp_print_cmd_mod(mp, primary_binary,c);
17426 help1("I've got the first argument; will look now for the other.");
17429 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17430 mp_do_binary(mp, p,c); goto DONE;
17433 @ @<Convert a suffix to a string@>=
17435 mp_get_x_next(mp); mp_scan_suffix(mp);
17436 mp->old_setting=mp->selector; mp->selector=new_string;
17437 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17438 mp_flush_token_list(mp, mp->cur_exp);
17439 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17440 mp->cur_type=mp_string_type;
17444 @ If an internal quantity appears all by itself on the left of an
17445 assignment, we return a token list of length one, containing the address
17446 of the internal quantity plus |hash_end|. (This accords with the conventions
17447 of the save stack, as described earlier.)
17449 @<Scan an internal...@>=
17452 if ( my_var_flag==assignment ) {
17454 if ( mp->cur_cmd==assignment ) {
17455 mp->cur_exp=mp_get_avail(mp);
17456 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17461 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17464 @ The most difficult part of |scan_primary| has been saved for last, since
17465 it was necessary to build up some confidence first. We can now face the task
17466 of scanning a variable.
17468 As we scan a variable, we build a token list containing the relevant
17469 names and subscript values, simultaneously following along in the
17470 ``collective'' structure to see if we are actually dealing with a macro
17471 instead of a value.
17473 The local variables |pre_head| and |post_head| will point to the beginning
17474 of the prefix and suffix lists; |tail| will point to the end of the list
17475 that is currently growing.
17477 Another local variable, |tt|, contains partial information about the
17478 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17479 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17480 doesn't bother to update its information about type. And if
17481 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17483 @ @<Other local variables for |scan_primary|@>=
17484 pointer pre_head,post_head,tail;
17485 /* prefix and suffix list variables */
17486 small_number tt; /* approximation to the type of the variable-so-far */
17487 pointer t; /* a token */
17488 pointer macro_ref = 0; /* reference count for a suffixed macro */
17490 @ @<Scan a variable primary...@>=
17492 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17494 t=mp_cur_tok(mp); link(tail)=t;
17495 if ( tt!=undefined ) {
17496 @<Find the approximate type |tt| and corresponding~|q|@>;
17497 if ( tt>=mp_unsuffixed_macro ) {
17498 @<Either begin an unsuffixed macro call or
17499 prepare for a suffixed one@>;
17502 mp_get_x_next(mp); tail=t;
17503 if ( mp->cur_cmd==left_bracket ) {
17504 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17506 if ( mp->cur_cmd>max_suffix_token ) break;
17507 if ( mp->cur_cmd<min_suffix_token ) break;
17508 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17509 @<Handle unusual cases that masquerade as variables, and |goto restart|
17510 or |goto done| if appropriate;
17511 otherwise make a copy of the variable and |goto done|@>;
17514 @ @<Either begin an unsuffixed macro call or...@>=
17517 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17518 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17519 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17521 @<Set up unsuffixed macro call and |goto restart|@>;
17525 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17527 mp_get_x_next(mp); mp_scan_expression(mp);
17528 if ( mp->cur_cmd!=right_bracket ) {
17529 @<Put the left bracket and the expression back to be rescanned@>;
17531 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17532 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17536 @ The left bracket that we thought was introducing a subscript might have
17537 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17538 So we don't issue an error message at this point; but we do want to back up
17539 so as to avoid any embarrassment about our incorrect assumption.
17541 @<Put the left bracket and the expression back to be rescanned@>=
17543 mp_back_input(mp); /* that was the token following the current expression */
17544 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17545 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17548 @ Here's a routine that puts the current expression back to be read again.
17550 @c void mp_back_expr (MP mp) {
17551 pointer p; /* capsule token */
17552 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17555 @ Unknown subscripts lead to the following error message.
17557 @c void mp_bad_subscript (MP mp) {
17558 exp_err("Improper subscript has been replaced by zero");
17559 @.Improper subscript...@>
17560 help3("A bracketed subscript must have a known numeric value;")
17561 ("unfortunately, what I found was the value that appears just")
17562 ("above this error message. So I'll try a zero subscript.");
17563 mp_flush_error(mp, 0);
17566 @ Every time we call |get_x_next|, there's a chance that the variable we've
17567 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17568 into the variable structure; we need to start searching from the root each time.
17570 @<Find the approximate type |tt| and corresponding~|q|@>=
17573 p=link(pre_head); q=info(p); tt=undefined;
17574 if ( eq_type(q) % outer_tag==tag_token ) {
17576 if ( q==null ) goto DONE2;
17580 tt=type(q); goto DONE2;
17582 if ( type(q)!=mp_structured ) goto DONE2;
17583 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17584 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17585 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17586 if ( attr_loc(q)>info(p) ) goto DONE2;
17594 @ How do things stand now? Well, we have scanned an entire variable name,
17595 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17596 |cur_sym| represent the token that follows. If |post_head=null|, a
17597 token list for this variable name starts at |link(pre_head)|, with all
17598 subscripts evaluated. But if |post_head<>null|, the variable turned out
17599 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17600 |post_head| is the head of a token list containing both `\.{\AT!}' and
17603 Our immediate problem is to see if this variable still exists. (Variable
17604 structures can change drastically whenever we call |get_x_next|; users
17605 aren't supposed to do this, but the fact that it is possible means that
17606 we must be cautious.)
17608 The following procedure prints an error message when a variable
17609 unexpectedly disappears. Its help message isn't quite right for
17610 our present purposes, but we'll be able to fix that up.
17613 void mp_obliterated (MP mp,pointer q) {
17614 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17615 mp_print(mp, " has been obliterated");
17616 @.Variable...obliterated@>
17617 help5("It seems you did a nasty thing---probably by accident,")
17618 ("but nevertheless you nearly hornswoggled me...")
17619 ("While I was evaluating the right-hand side of this")
17620 ("command, something happened, and the left-hand side")
17621 ("is no longer a variable! So I won't change anything.");
17624 @ If the variable does exist, we also need to check
17625 for a few other special cases before deciding that a plain old ordinary
17626 variable has, indeed, been scanned.
17628 @<Handle unusual cases that masquerade as variables...@>=
17629 if ( post_head!=null ) {
17630 @<Set up suffixed macro call and |goto restart|@>;
17632 q=link(pre_head); free_avail(pre_head);
17633 if ( mp->cur_cmd==my_var_flag ) {
17634 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17636 p=mp_find_variable(mp, q);
17638 mp_make_exp_copy(mp, p);
17640 mp_obliterated(mp, q);
17641 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17642 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17643 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17644 mp_put_get_flush_error(mp, 0);
17646 mp_flush_node_list(mp, q);
17649 @ The only complication associated with macro calling is that the prefix
17650 and ``at'' parameters must be packaged in an appropriate list of lists.
17652 @<Set up unsuffixed macro call and |goto restart|@>=
17654 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17655 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17660 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17661 we don't care, because we have reserved a pointer (|macro_ref|) to its
17664 @<Set up suffixed macro call and |goto restart|@>=
17666 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17667 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17668 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17669 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17670 mp_get_x_next(mp); goto RESTART;
17673 @ Our remaining job is simply to make a copy of the value that has been
17674 found. Some cases are harder than others, but complexity arises solely
17675 because of the multiplicity of possible cases.
17677 @<Declare the procedure called |make_exp_copy|@>=
17678 @<Declare subroutines needed by |make_exp_copy|@>
17679 void mp_make_exp_copy (MP mp,pointer p) {
17680 pointer q,r,t; /* registers for list manipulation */
17682 mp->cur_type=type(p);
17683 switch (mp->cur_type) {
17684 case mp_vacuous: case mp_boolean_type: case mp_known:
17685 mp->cur_exp=value(p); break;
17686 case unknown_types:
17687 mp->cur_exp=mp_new_ring_entry(mp, p);
17689 case mp_string_type:
17690 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17692 case mp_picture_type:
17693 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17696 mp->cur_exp=copy_pen(value(p));
17699 mp->cur_exp=mp_copy_path(mp, value(p));
17701 case mp_transform_type: case mp_color_type:
17702 case mp_cmykcolor_type: case mp_pair_type:
17703 @<Copy the big node |p|@>;
17705 case mp_dependent: case mp_proto_dependent:
17706 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17708 case mp_numeric_type:
17709 new_indep(p); goto RESTART;
17711 case mp_independent:
17712 q=mp_single_dependency(mp, p);
17713 if ( q==mp->dep_final ){
17714 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,dep_node_size);
17716 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17720 mp_confusion(mp, "copy");
17721 @:this can't happen copy}{\quad copy@>
17726 @ The |encapsulate| subroutine assumes that |dep_final| is the
17727 tail of dependency list~|p|.
17729 @<Declare subroutines needed by |make_exp_copy|@>=
17730 void mp_encapsulate (MP mp,pointer p) {
17731 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17732 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17735 @ The most tedious case arises when the user refers to a
17736 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17737 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17740 @<Copy the big node |p|@>=
17742 if ( value(p)==null )
17743 mp_init_big_node(mp, p);
17744 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17745 mp_init_big_node(mp, t);
17746 q=value(p)+mp->big_node_size[mp->cur_type];
17747 r=value(t)+mp->big_node_size[mp->cur_type];
17749 q=q-2; r=r-2; mp_install(mp, r,q);
17750 } while (q!=value(p));
17754 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17755 a big node that will be part of a capsule.
17757 @<Declare subroutines needed by |make_exp_copy|@>=
17758 void mp_install (MP mp,pointer r, pointer q) {
17759 pointer p; /* temporary register */
17760 if ( type(q)==mp_known ){
17761 value(r)=value(q); type(r)=mp_known;
17762 } else if ( type(q)==mp_independent ) {
17763 p=mp_single_dependency(mp, q);
17764 if ( p==mp->dep_final ) {
17765 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,dep_node_size);
17767 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17770 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17774 @ Expressions of the form `\.{a[b,c]}' are converted into
17775 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17776 provided that \.a is numeric.
17778 @<Scan a mediation...@>=
17780 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17781 if ( mp->cur_cmd!=comma ) {
17782 @<Put the left bracket and the expression back...@>;
17783 mp_unstash_cur_exp(mp, p);
17785 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17786 if ( mp->cur_cmd!=right_bracket ) {
17787 mp_missing_err(mp, "]");
17789 help3("I've scanned an expression of the form `a[b,c',")
17790 ("so a right bracket should have come next.")
17791 ("I shall pretend that one was there.");
17794 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17795 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17796 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17800 @ Here is a comparatively simple routine that is used to scan the
17801 \&{suffix} parameters of a macro.
17803 @<Declare the basic parsing subroutines@>=
17804 void mp_scan_suffix (MP mp) {
17805 pointer h,t; /* head and tail of the list being built */
17806 pointer p; /* temporary register */
17807 h=mp_get_avail(mp); t=h;
17809 if ( mp->cur_cmd==left_bracket ) {
17810 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17812 if ( mp->cur_cmd==numeric_token ) {
17813 p=mp_new_num_tok(mp, mp->cur_mod);
17814 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17815 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17819 link(t)=p; t=p; mp_get_x_next(mp);
17821 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17824 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17826 mp_get_x_next(mp); mp_scan_expression(mp);
17827 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17828 if ( mp->cur_cmd!=right_bracket ) {
17829 mp_missing_err(mp, "]");
17831 help3("I've seen a `[' and a subscript value, in a suffix,")
17832 ("so a right bracket should have come next.")
17833 ("I shall pretend that one was there.");
17836 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17839 @* \[38] Parsing secondary and higher expressions.
17841 After the intricacies of |scan_primary|\kern-1pt,
17842 the |scan_secondary| routine is
17843 refreshingly simple. It's not trivial, but the operations are relatively
17844 straightforward; the main difficulty is, again, that expressions and data
17845 structures might change drastically every time we call |get_x_next|, so a
17846 cautious approach is mandatory. For example, a macro defined by
17847 \&{primarydef} might have disappeared by the time its second argument has
17848 been scanned; we solve this by increasing the reference count of its token
17849 list, so that the macro can be called even after it has been clobbered.
17851 @<Declare the basic parsing subroutines@>=
17852 void mp_scan_secondary (MP mp) {
17853 pointer p; /* for list manipulation */
17854 halfword c,d; /* operation codes or modifiers */
17855 pointer mac_name; /* token defined with \&{primarydef} */
17857 if ((mp->cur_cmd<min_primary_command)||
17858 (mp->cur_cmd>max_primary_command) )
17859 mp_bad_exp(mp, "A secondary");
17860 @.A secondary expression...@>
17861 mp_scan_primary(mp);
17863 if ( mp->cur_cmd<=max_secondary_command &&
17864 mp->cur_cmd>=min_secondary_command ) {
17865 p=mp_stash_cur_exp(mp);
17866 c=mp->cur_mod; d=mp->cur_cmd;
17867 if ( d==secondary_primary_macro ) {
17868 mac_name=mp->cur_sym;
17872 mp_scan_primary(mp);
17873 if ( d!=secondary_primary_macro ) {
17874 mp_do_binary(mp, p,c);
17877 mp_binary_mac(mp, p,c,mac_name);
17878 decr(ref_count(c));
17886 @ The following procedure calls a macro that has two parameters,
17889 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17890 pointer q,r; /* nodes in the parameter list */
17891 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17892 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17893 mp_macro_call(mp, c,q,n);
17896 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17898 @<Declare the basic parsing subroutines@>=
17899 void mp_scan_tertiary (MP mp) {
17900 pointer p; /* for list manipulation */
17901 halfword c,d; /* operation codes or modifiers */
17902 pointer mac_name; /* token defined with \&{secondarydef} */
17904 if ((mp->cur_cmd<min_primary_command)||
17905 (mp->cur_cmd>max_primary_command) )
17906 mp_bad_exp(mp, "A tertiary");
17907 @.A tertiary expression...@>
17908 mp_scan_secondary(mp);
17910 if ( mp->cur_cmd<=max_tertiary_command ) {
17911 if ( mp->cur_cmd>=min_tertiary_command ) {
17912 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17913 if ( d==tertiary_secondary_macro ) {
17914 mac_name=mp->cur_sym; add_mac_ref(c);
17916 mp_get_x_next(mp); mp_scan_secondary(mp);
17917 if ( d!=tertiary_secondary_macro ) {
17918 mp_do_binary(mp, p,c);
17920 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17921 decr(ref_count(c)); mp_get_x_next(mp);
17929 @ Finally we reach the deepest level in our quartet of parsing routines.
17930 This one is much like the others; but it has an extra complication from
17931 paths, which materialize here.
17933 @d continue_path 25 /* a label inside of |scan_expression| */
17934 @d finish_path 26 /* another */
17936 @<Declare the basic parsing subroutines@>=
17937 void mp_scan_expression (MP mp) {
17938 pointer p,q,r,pp,qq; /* for list manipulation */
17939 halfword c,d; /* operation codes or modifiers */
17940 int my_var_flag; /* initial value of |var_flag| */
17941 pointer mac_name; /* token defined with \&{tertiarydef} */
17942 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17943 scaled x,y; /* explicit coordinates or tension at a path join */
17944 int t; /* knot type following a path join */
17946 my_var_flag=mp->var_flag; mac_name=null;
17948 if ((mp->cur_cmd<min_primary_command)||
17949 (mp->cur_cmd>max_primary_command) )
17950 mp_bad_exp(mp, "An");
17951 @.An expression...@>
17952 mp_scan_tertiary(mp);
17954 if ( mp->cur_cmd<=max_expression_command )
17955 if ( mp->cur_cmd>=min_expression_command ) {
17956 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17957 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17958 if ( d==expression_tertiary_macro ) {
17959 mac_name=mp->cur_sym; add_mac_ref(c);
17961 if ( (d<ampersand)||((d==ampersand)&&
17962 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17963 @<Scan a path construction operation;
17964 but |return| if |p| has the wrong type@>;
17966 mp_get_x_next(mp); mp_scan_tertiary(mp);
17967 if ( d!=expression_tertiary_macro ) {
17968 mp_do_binary(mp, p,c);
17970 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17971 decr(ref_count(c)); mp_get_x_next(mp);
17980 @ The reader should review the data structure conventions for paths before
17981 hoping to understand the next part of this code.
17983 @<Scan a path construction operation...@>=
17986 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17987 but |return| if |p| doesn't have a suitable type@>;
17989 @<Determine the path join parameters;
17990 but |goto finish_path| if there's only a direction specifier@>;
17991 if ( mp->cur_cmd==cycle ) {
17992 @<Get ready to close a cycle@>;
17994 mp_scan_tertiary(mp);
17995 @<Convert the right operand, |cur_exp|,
17996 into a partial path from |pp| to~|qq|@>;
17998 @<Join the partial paths and reset |p| and |q| to the head and tail
18000 if ( mp->cur_cmd>=min_expression_command )
18001 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18003 @<Choose control points for the path and put the result into |cur_exp|@>;
18006 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18008 mp_unstash_cur_exp(mp, p);
18009 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18010 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18013 while ( link(q)!=p ) q=link(q);
18014 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18015 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18017 left_type(p)=mp_open; right_type(q)=mp_open;
18020 @ A pair of numeric values is changed into a knot node for a one-point path
18021 when \MP\ discovers that the pair is part of a path.
18023 @c @<Declare the procedure called |known_pair|@>
18024 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18025 pointer q; /* the new node */
18026 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18027 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18028 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18032 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18033 of the current expression, assuming that the current expression is a
18034 pair of known numerics. Unknown components are zeroed, and the
18035 current expression is flushed.
18037 @<Declare the procedure called |known_pair|@>=
18038 void mp_known_pair (MP mp) {
18039 pointer p; /* the pair node */
18040 if ( mp->cur_type!=mp_pair_type ) {
18041 exp_err("Undefined coordinates have been replaced by (0,0)");
18042 @.Undefined coordinates...@>
18043 help5("I need x and y numbers for this part of the path.")
18044 ("The value I found (see above) was no good;")
18045 ("so I'll try to keep going by using zero instead.")
18046 ("(Chapter 27 of The METAFONTbook explains that")
18047 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18048 ("you might want to type `I ??" "?' now.)");
18049 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18051 p=value(mp->cur_exp);
18052 @<Make sure that both |x| and |y| parts of |p| are known;
18053 copy them into |cur_x| and |cur_y|@>;
18054 mp_flush_cur_exp(mp, 0);
18058 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18059 if ( type(x_part_loc(p))==mp_known ) {
18060 mp->cur_x=value(x_part_loc(p));
18062 mp_disp_err(mp, x_part_loc(p),
18063 "Undefined x coordinate has been replaced by 0");
18064 @.Undefined coordinates...@>
18065 help5("I need a `known' x value for this part of the path.")
18066 ("The value I found (see above) was no good;")
18067 ("so I'll try to keep going by using zero instead.")
18068 ("(Chapter 27 of The METAFONTbook explains that")
18069 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18070 ("you might want to type `I ??" "?' now.)");
18071 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18073 if ( type(y_part_loc(p))==mp_known ) {
18074 mp->cur_y=value(y_part_loc(p));
18076 mp_disp_err(mp, y_part_loc(p),
18077 "Undefined y coordinate has been replaced by 0");
18078 help5("I need a `known' y value for this part of the path.")
18079 ("The value I found (see above) was no good;")
18080 ("so I'll try to keep going by using zero instead.")
18081 ("(Chapter 27 of The METAFONTbook explains that")
18082 ("you might want to type `I ??" "?' now.)");
18083 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18086 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18088 @<Determine the path join parameters...@>=
18089 if ( mp->cur_cmd==left_brace ) {
18090 @<Put the pre-join direction information into node |q|@>;
18093 if ( d==path_join ) {
18094 @<Determine the tension and/or control points@>;
18095 } else if ( d!=ampersand ) {
18099 if ( mp->cur_cmd==left_brace ) {
18100 @<Put the post-join direction information into |x| and |t|@>;
18101 } else if ( right_type(q)!=mp_explicit ) {
18105 @ The |scan_direction| subroutine looks at the directional information
18106 that is enclosed in braces, and also scans ahead to the following character.
18107 A type code is returned, either |open| (if the direction was $(0,0)$),
18108 or |curl| (if the direction was a curl of known value |cur_exp|), or
18109 |given| (if the direction is given by the |angle| value that now
18110 appears in |cur_exp|).
18112 There's nothing difficult about this subroutine, but the program is rather
18113 lengthy because a variety of potential errors need to be nipped in the bud.
18115 @c small_number mp_scan_direction (MP mp) {
18116 int t; /* the type of information found */
18117 scaled x; /* an |x| coordinate */
18119 if ( mp->cur_cmd==curl_command ) {
18120 @<Scan a curl specification@>;
18122 @<Scan a given direction@>;
18124 if ( mp->cur_cmd!=right_brace ) {
18125 mp_missing_err(mp, "}");
18126 @.Missing `\char`\}'@>
18127 help3("I've scanned a direction spec for part of a path,")
18128 ("so a right brace should have come next.")
18129 ("I shall pretend that one was there.");
18136 @ @<Scan a curl specification@>=
18137 { mp_get_x_next(mp); mp_scan_expression(mp);
18138 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18139 exp_err("Improper curl has been replaced by 1");
18141 help1("A curl must be a known, nonnegative number.");
18142 mp_put_get_flush_error(mp, unity);
18147 @ @<Scan a given direction@>=
18148 { mp_scan_expression(mp);
18149 if ( mp->cur_type>mp_pair_type ) {
18150 @<Get given directions separated by commas@>;
18154 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18155 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18158 @ @<Get given directions separated by commas@>=
18160 if ( mp->cur_type!=mp_known ) {
18161 exp_err("Undefined x coordinate has been replaced by 0");
18162 @.Undefined coordinates...@>
18163 help5("I need a `known' x value for this part of the path.")
18164 ("The value I found (see above) was no good;")
18165 ("so I'll try to keep going by using zero instead.")
18166 ("(Chapter 27 of The METAFONTbook explains that")
18167 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18168 ("you might want to type `I ??" "?' now.)");
18169 mp_put_get_flush_error(mp, 0);
18172 if ( mp->cur_cmd!=comma ) {
18173 mp_missing_err(mp, ",");
18175 help2("I've got the x coordinate of a path direction;")
18176 ("will look for the y coordinate next.");
18179 mp_get_x_next(mp); mp_scan_expression(mp);
18180 if ( mp->cur_type!=mp_known ) {
18181 exp_err("Undefined y coordinate has been replaced by 0");
18182 help5("I need a `known' y value for this part of the path.")
18183 ("The value I found (see above) was no good;")
18184 ("so I'll try to keep going by using zero instead.")
18185 ("(Chapter 27 of The METAFONTbook explains that")
18186 ("you might want to type `I ??" "?' now.)");
18187 mp_put_get_flush_error(mp, 0);
18189 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18192 @ At this point |right_type(q)| is usually |open|, but it may have been
18193 set to some other value by a previous operation. We must maintain
18194 the value of |right_type(q)| in cases such as
18195 `\.{..\{curl2\}z\{0,0\}..}'.
18197 @<Put the pre-join...@>=
18199 t=mp_scan_direction(mp);
18200 if ( t!=mp_open ) {
18201 right_type(q)=t; right_given(q)=mp->cur_exp;
18202 if ( left_type(q)==mp_open ) {
18203 left_type(q)=t; left_given(q)=mp->cur_exp;
18204 } /* note that |left_given(q)=left_curl(q)| */
18208 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18209 and since |left_given| is similarly equivalent to |left_x|, we use
18210 |x| and |y| to hold the given direction and tension information when
18211 there are no explicit control points.
18213 @<Put the post-join...@>=
18215 t=mp_scan_direction(mp);
18216 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18217 else t=mp_explicit; /* the direction information is superfluous */
18220 @ @<Determine the tension and/or...@>=
18223 if ( mp->cur_cmd==tension ) {
18224 @<Set explicit tensions@>;
18225 } else if ( mp->cur_cmd==controls ) {
18226 @<Set explicit control points@>;
18228 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18231 if ( mp->cur_cmd!=path_join ) {
18232 mp_missing_err(mp, "..");
18234 help1("A path join command should end with two dots.");
18241 @ @<Set explicit tensions@>=
18243 mp_get_x_next(mp); y=mp->cur_cmd;
18244 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18245 mp_scan_primary(mp);
18246 @<Make sure that the current expression is a valid tension setting@>;
18247 if ( y==at_least ) negate(mp->cur_exp);
18248 right_tension(q)=mp->cur_exp;
18249 if ( mp->cur_cmd==and_command ) {
18250 mp_get_x_next(mp); y=mp->cur_cmd;
18251 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18252 mp_scan_primary(mp);
18253 @<Make sure that the current expression is a valid tension setting@>;
18254 if ( y==at_least ) negate(mp->cur_exp);
18259 @ @d min_tension three_quarter_unit
18261 @<Make sure that the current expression is a valid tension setting@>=
18262 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18263 exp_err("Improper tension has been set to 1");
18264 @.Improper tension@>
18265 help1("The expression above should have been a number >=3/4.");
18266 mp_put_get_flush_error(mp, unity);
18269 @ @<Set explicit control points@>=
18271 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18272 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18273 if ( mp->cur_cmd!=and_command ) {
18274 x=right_x(q); y=right_y(q);
18276 mp_get_x_next(mp); mp_scan_primary(mp);
18277 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18281 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18283 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18284 else pp=mp->cur_exp;
18286 while ( link(qq)!=pp ) qq=link(qq);
18287 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18288 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18290 left_type(pp)=mp_open; right_type(qq)=mp_open;
18293 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18294 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18295 shouldn't have length zero.
18297 @<Get ready to close a cycle@>=
18299 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18300 if ( d==ampersand ) if ( p==q ) {
18301 d=path_join; right_tension(q)=unity; y=unity;
18305 @ @<Join the partial paths and reset |p| and |q|...@>=
18307 if ( d==ampersand ) {
18308 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18309 print_err("Paths don't touch; `&' will be changed to `..'");
18310 @.Paths don't touch@>
18311 help3("When you join paths `p&q', the ending point of p")
18312 ("must be exactly equal to the starting point of q.")
18313 ("So I'm going to pretend that you said `p..q' instead.");
18314 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18317 @<Plug an opening in |right_type(pp)|, if possible@>;
18318 if ( d==ampersand ) {
18319 @<Splice independent paths together@>;
18321 @<Plug an opening in |right_type(q)|, if possible@>;
18322 link(q)=pp; left_y(pp)=y;
18323 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18328 @ @<Plug an opening in |right_type(q)|...@>=
18329 if ( right_type(q)==mp_open ) {
18330 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18331 right_type(q)=left_type(q); right_given(q)=left_given(q);
18335 @ @<Plug an opening in |right_type(pp)|...@>=
18336 if ( right_type(pp)==mp_open ) {
18337 if ( (t==mp_curl)||(t==mp_given) ) {
18338 right_type(pp)=t; right_given(pp)=x;
18342 @ @<Splice independent paths together@>=
18344 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18345 left_type(q)=mp_curl; left_curl(q)=unity;
18347 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18348 right_type(pp)=mp_curl; right_curl(pp)=unity;
18350 right_type(q)=right_type(pp); link(q)=link(pp);
18351 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18352 mp_free_node(mp, pp,knot_node_size);
18353 if ( qq==pp ) qq=q;
18356 @ @<Choose control points for the path...@>=
18358 if ( d==ampersand ) p=q;
18360 left_type(p)=mp_endpoint;
18361 if ( right_type(p)==mp_open ) {
18362 right_type(p)=mp_curl; right_curl(p)=unity;
18364 right_type(q)=mp_endpoint;
18365 if ( left_type(q)==mp_open ) {
18366 left_type(q)=mp_curl; left_curl(q)=unity;
18370 mp_make_choices(mp, p);
18371 mp->cur_type=mp_path_type; mp->cur_exp=p
18373 @ Finally, we sometimes need to scan an expression whose value is
18374 supposed to be either |true_code| or |false_code|.
18376 @<Declare the basic parsing subroutines@>=
18377 void mp_get_boolean (MP mp) {
18378 mp_get_x_next(mp); mp_scan_expression(mp);
18379 if ( mp->cur_type!=mp_boolean_type ) {
18380 exp_err("Undefined condition will be treated as `false'");
18381 @.Undefined condition...@>
18382 help2("The expression shown above should have had a definite")
18383 ("true-or-false value. I'm changing it to `false'.");
18384 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18388 @* \[39] Doing the operations.
18389 The purpose of parsing is primarily to permit people to avoid piles of
18390 parentheses. But the real work is done after the structure of an expression
18391 has been recognized; that's when new expressions are generated. We
18392 turn now to the guts of \MP, which handles individual operators that
18393 have come through the parsing mechanism.
18395 We'll start with the easy ones that take no operands, then work our way
18396 up to operators with one and ultimately two arguments. In other words,
18397 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18398 that are invoked periodically by the expression scanners.
18400 First let's make sure that all of the primitive operators are in the
18401 hash table. Although |scan_primary| and its relatives made use of the
18402 \\{cmd} code for these operators, the \\{do} routines base everything
18403 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18404 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18407 mp_primitive(mp, "true",nullary,true_code);
18408 @:true_}{\&{true} primitive@>
18409 mp_primitive(mp, "false",nullary,false_code);
18410 @:false_}{\&{false} primitive@>
18411 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18412 @:null_picture_}{\&{nullpicture} primitive@>
18413 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18414 @:null_pen_}{\&{nullpen} primitive@>
18415 mp_primitive(mp, "jobname",nullary,job_name_op);
18416 @:job_name_}{\&{jobname} primitive@>
18417 mp_primitive(mp, "readstring",nullary,read_string_op);
18418 @:read_string_}{\&{readstring} primitive@>
18419 mp_primitive(mp, "pencircle",nullary,pen_circle);
18420 @:pen_circle_}{\&{pencircle} primitive@>
18421 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18422 @:normal_deviate_}{\&{normaldeviate} primitive@>
18423 mp_primitive(mp, "readfrom",unary,read_from_op);
18424 @:read_from_}{\&{readfrom} primitive@>
18425 mp_primitive(mp, "closefrom",unary,close_from_op);
18426 @:close_from_}{\&{closefrom} primitive@>
18427 mp_primitive(mp, "odd",unary,odd_op);
18428 @:odd_}{\&{odd} primitive@>
18429 mp_primitive(mp, "known",unary,known_op);
18430 @:known_}{\&{known} primitive@>
18431 mp_primitive(mp, "unknown",unary,unknown_op);
18432 @:unknown_}{\&{unknown} primitive@>
18433 mp_primitive(mp, "not",unary,not_op);
18434 @:not_}{\&{not} primitive@>
18435 mp_primitive(mp, "decimal",unary,decimal);
18436 @:decimal_}{\&{decimal} primitive@>
18437 mp_primitive(mp, "reverse",unary,reverse);
18438 @:reverse_}{\&{reverse} primitive@>
18439 mp_primitive(mp, "makepath",unary,make_path_op);
18440 @:make_path_}{\&{makepath} primitive@>
18441 mp_primitive(mp, "makepen",unary,make_pen_op);
18442 @:make_pen_}{\&{makepen} primitive@>
18443 mp_primitive(mp, "oct",unary,oct_op);
18444 @:oct_}{\&{oct} primitive@>
18445 mp_primitive(mp, "hex",unary,hex_op);
18446 @:hex_}{\&{hex} primitive@>
18447 mp_primitive(mp, "ASCII",unary,ASCII_op);
18448 @:ASCII_}{\&{ASCII} primitive@>
18449 mp_primitive(mp, "char",unary,char_op);
18450 @:char_}{\&{char} primitive@>
18451 mp_primitive(mp, "length",unary,length_op);
18452 @:length_}{\&{length} primitive@>
18453 mp_primitive(mp, "turningnumber",unary,turning_op);
18454 @:turning_number_}{\&{turningnumber} primitive@>
18455 mp_primitive(mp, "xpart",unary,x_part);
18456 @:x_part_}{\&{xpart} primitive@>
18457 mp_primitive(mp, "ypart",unary,y_part);
18458 @:y_part_}{\&{ypart} primitive@>
18459 mp_primitive(mp, "xxpart",unary,xx_part);
18460 @:xx_part_}{\&{xxpart} primitive@>
18461 mp_primitive(mp, "xypart",unary,xy_part);
18462 @:xy_part_}{\&{xypart} primitive@>
18463 mp_primitive(mp, "yxpart",unary,yx_part);
18464 @:yx_part_}{\&{yxpart} primitive@>
18465 mp_primitive(mp, "yypart",unary,yy_part);
18466 @:yy_part_}{\&{yypart} primitive@>
18467 mp_primitive(mp, "redpart",unary,red_part);
18468 @:red_part_}{\&{redpart} primitive@>
18469 mp_primitive(mp, "greenpart",unary,green_part);
18470 @:green_part_}{\&{greenpart} primitive@>
18471 mp_primitive(mp, "bluepart",unary,blue_part);
18472 @:blue_part_}{\&{bluepart} primitive@>
18473 mp_primitive(mp, "cyanpart",unary,cyan_part);
18474 @:cyan_part_}{\&{cyanpart} primitive@>
18475 mp_primitive(mp, "magentapart",unary,magenta_part);
18476 @:magenta_part_}{\&{magentapart} primitive@>
18477 mp_primitive(mp, "yellowpart",unary,yellow_part);
18478 @:yellow_part_}{\&{yellowpart} primitive@>
18479 mp_primitive(mp, "blackpart",unary,black_part);
18480 @:black_part_}{\&{blackpart} primitive@>
18481 mp_primitive(mp, "greypart",unary,grey_part);
18482 @:grey_part_}{\&{greypart} primitive@>
18483 mp_primitive(mp, "colormodel",unary,color_model_part);
18484 @:color_model_part_}{\&{colormodel} primitive@>
18485 mp_primitive(mp, "fontpart",unary,font_part);
18486 @:font_part_}{\&{fontpart} primitive@>
18487 mp_primitive(mp, "textpart",unary,text_part);
18488 @:text_part_}{\&{textpart} primitive@>
18489 mp_primitive(mp, "pathpart",unary,path_part);
18490 @:path_part_}{\&{pathpart} primitive@>
18491 mp_primitive(mp, "penpart",unary,pen_part);
18492 @:pen_part_}{\&{penpart} primitive@>
18493 mp_primitive(mp, "dashpart",unary,dash_part);
18494 @:dash_part_}{\&{dashpart} primitive@>
18495 mp_primitive(mp, "sqrt",unary,sqrt_op);
18496 @:sqrt_}{\&{sqrt} primitive@>
18497 mp_primitive(mp, "mexp",unary,m_exp_op);
18498 @:m_exp_}{\&{mexp} primitive@>
18499 mp_primitive(mp, "mlog",unary,m_log_op);
18500 @:m_log_}{\&{mlog} primitive@>
18501 mp_primitive(mp, "sind",unary,sin_d_op);
18502 @:sin_d_}{\&{sind} primitive@>
18503 mp_primitive(mp, "cosd",unary,cos_d_op);
18504 @:cos_d_}{\&{cosd} primitive@>
18505 mp_primitive(mp, "floor",unary,floor_op);
18506 @:floor_}{\&{floor} primitive@>
18507 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18508 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18509 mp_primitive(mp, "charexists",unary,char_exists_op);
18510 @:char_exists_}{\&{charexists} primitive@>
18511 mp_primitive(mp, "fontsize",unary,font_size);
18512 @:font_size_}{\&{fontsize} primitive@>
18513 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18514 @:ll_corner_}{\&{llcorner} primitive@>
18515 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18516 @:lr_corner_}{\&{lrcorner} primitive@>
18517 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18518 @:ul_corner_}{\&{ulcorner} primitive@>
18519 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18520 @:ur_corner_}{\&{urcorner} primitive@>
18521 mp_primitive(mp, "arclength",unary,arc_length);
18522 @:arc_length_}{\&{arclength} primitive@>
18523 mp_primitive(mp, "angle",unary,angle_op);
18524 @:angle_}{\&{angle} primitive@>
18525 mp_primitive(mp, "cycle",cycle,cycle_op);
18526 @:cycle_}{\&{cycle} primitive@>
18527 mp_primitive(mp, "stroked",unary,stroked_op);
18528 @:stroked_}{\&{stroked} primitive@>
18529 mp_primitive(mp, "filled",unary,filled_op);
18530 @:filled_}{\&{filled} primitive@>
18531 mp_primitive(mp, "textual",unary,textual_op);
18532 @:textual_}{\&{textual} primitive@>
18533 mp_primitive(mp, "clipped",unary,clipped_op);
18534 @:clipped_}{\&{clipped} primitive@>
18535 mp_primitive(mp, "bounded",unary,bounded_op);
18536 @:bounded_}{\&{bounded} primitive@>
18537 mp_primitive(mp, "+",plus_or_minus,plus);
18538 @:+ }{\.{+} primitive@>
18539 mp_primitive(mp, "-",plus_or_minus,minus);
18540 @:- }{\.{-} primitive@>
18541 mp_primitive(mp, "*",secondary_binary,times);
18542 @:* }{\.{*} primitive@>
18543 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18544 @:/ }{\.{/} primitive@>
18545 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18546 @:++_}{\.{++} primitive@>
18547 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18548 @:+-+_}{\.{+-+} primitive@>
18549 mp_primitive(mp, "or",tertiary_binary,or_op);
18550 @:or_}{\&{or} primitive@>
18551 mp_primitive(mp, "and",and_command,and_op);
18552 @:and_}{\&{and} primitive@>
18553 mp_primitive(mp, "<",expression_binary,less_than);
18554 @:< }{\.{<} primitive@>
18555 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18556 @:<=_}{\.{<=} primitive@>
18557 mp_primitive(mp, ">",expression_binary,greater_than);
18558 @:> }{\.{>} primitive@>
18559 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18560 @:>=_}{\.{>=} primitive@>
18561 mp_primitive(mp, "=",equals,equal_to);
18562 @:= }{\.{=} primitive@>
18563 mp_primitive(mp, "<>",expression_binary,unequal_to);
18564 @:<>_}{\.{<>} primitive@>
18565 mp_primitive(mp, "substring",primary_binary,substring_of);
18566 @:substring_}{\&{substring} primitive@>
18567 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18568 @:subpath_}{\&{subpath} primitive@>
18569 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18570 @:direction_time_}{\&{directiontime} primitive@>
18571 mp_primitive(mp, "point",primary_binary,point_of);
18572 @:point_}{\&{point} primitive@>
18573 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18574 @:precontrol_}{\&{precontrol} primitive@>
18575 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18576 @:postcontrol_}{\&{postcontrol} primitive@>
18577 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18578 @:pen_offset_}{\&{penoffset} primitive@>
18579 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18580 @:arc_time_of_}{\&{arctime} primitive@>
18581 mp_primitive(mp, "mpversion",nullary,mp_version);
18582 @:mp_verison_}{\&{mpversion} primitive@>
18583 mp_primitive(mp, "&",ampersand,concatenate);
18584 @:!!!}{\.{\&} primitive@>
18585 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18586 @:rotated_}{\&{rotated} primitive@>
18587 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18588 @:slanted_}{\&{slanted} primitive@>
18589 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18590 @:scaled_}{\&{scaled} primitive@>
18591 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18592 @:shifted_}{\&{shifted} primitive@>
18593 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18594 @:transformed_}{\&{transformed} primitive@>
18595 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18596 @:x_scaled_}{\&{xscaled} primitive@>
18597 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18598 @:y_scaled_}{\&{yscaled} primitive@>
18599 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18600 @:z_scaled_}{\&{zscaled} primitive@>
18601 mp_primitive(mp, "infont",secondary_binary,in_font);
18602 @:in_font_}{\&{infont} primitive@>
18603 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18604 @:intersection_times_}{\&{intersectiontimes} primitive@>
18605 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18606 @:envelope_}{\&{envelope} primitive@>
18608 @ @<Cases of |print_cmd...@>=
18611 case primary_binary:
18612 case secondary_binary:
18613 case tertiary_binary:
18614 case expression_binary:
18616 case plus_or_minus:
18621 mp_print_op(mp, m);
18624 @ OK, let's look at the simplest \\{do} procedure first.
18626 @c @<Declare nullary action procedure@>
18627 void mp_do_nullary (MP mp,quarterword c) {
18629 if ( mp->internal[mp_tracing_commands]>two )
18630 mp_show_cmd_mod(mp, nullary,c);
18632 case true_code: case false_code:
18633 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18635 case null_picture_code:
18636 mp->cur_type=mp_picture_type;
18637 mp->cur_exp=mp_get_node(mp, edge_header_size);
18638 mp_init_edges(mp, mp->cur_exp);
18640 case null_pen_code:
18641 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18643 case normal_deviate:
18644 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18647 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18650 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18651 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18654 mp->cur_type=mp_string_type;
18655 mp->cur_exp=intern(metapost_version) ;
18657 case read_string_op:
18658 @<Read a string from the terminal@>;
18660 } /* there are no other cases */
18664 @ @<Read a string...@>=
18666 if ( mp->interaction<=mp_nonstop_mode )
18667 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18668 mp_begin_file_reading(mp); name=is_read;
18669 limit=start; prompt_input("");
18670 mp_finish_read(mp);
18673 @ @<Declare nullary action procedure@>=
18674 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18676 str_room((int)mp->last-start);
18677 for (k=start;k<=mp->last-1;k++) {
18678 append_char(mp->buffer[k]);
18680 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18681 mp->cur_exp=mp_make_string(mp);
18684 @ Things get a bit more interesting when there's an operand. The
18685 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18687 @c @<Declare unary action procedures@>
18688 void mp_do_unary (MP mp,quarterword c) {
18689 pointer p,q,r; /* for list manipulation */
18690 integer x; /* a temporary register */
18692 if ( mp->internal[mp_tracing_commands]>two )
18693 @<Trace the current unary operation@>;
18696 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18699 @<Negate the current expression@>;
18701 @<Additional cases of unary operators@>;
18702 } /* there are no other cases */
18706 @ The |nice_pair| function returns |true| if both components of a pair
18709 @<Declare unary action procedures@>=
18710 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18711 if ( t==mp_pair_type ) {
18713 if ( type(x_part_loc(p))==mp_known )
18714 if ( type(y_part_loc(p))==mp_known )
18720 @ The |nice_color_or_pair| function is analogous except that it also accepts
18721 fully known colors.
18723 @<Declare unary action procedures@>=
18724 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18725 pointer q,r; /* for scanning the big node */
18726 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18730 r=q+mp->big_node_size[type(p)];
18733 if ( type(r)!=mp_known )
18740 @ @<Declare unary action...@>=
18741 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18742 mp_print_char(mp, '(');
18743 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18744 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18745 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18746 mp_print_type(mp, t);
18748 mp_print_char(mp, ')');
18751 @ @<Declare unary action...@>=
18752 void mp_bad_unary (MP mp,quarterword c) {
18753 exp_err("Not implemented: "); mp_print_op(mp, c);
18754 @.Not implemented...@>
18755 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18756 help3("I'm afraid I don't know how to apply that operation to that")
18757 ("particular type. Continue, and I'll simply return the")
18758 ("argument (shown above) as the result of the operation.");
18759 mp_put_get_error(mp);
18762 @ @<Trace the current unary operation@>=
18764 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18765 mp_print_op(mp, c); mp_print_char(mp, '(');
18766 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18767 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18770 @ Negation is easy except when the current expression
18771 is of type |independent|, or when it is a pair with one or more
18772 |independent| components.
18774 It is tempting to argue that the negative of an independent variable
18775 is an independent variable, hence we don't have to do anything when
18776 negating it. The fallacy is that other dependent variables pointing
18777 to the current expression must change the sign of their
18778 coefficients if we make no change to the current expression.
18780 Instead, we work around the problem by copying the current expression
18781 and recycling it afterwards (cf.~the |stash_in| routine).
18783 @<Negate the current expression@>=
18784 switch (mp->cur_type) {
18785 case mp_color_type:
18786 case mp_cmykcolor_type:
18788 case mp_independent:
18789 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18790 if ( mp->cur_type==mp_dependent ) {
18791 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18792 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18793 p=value(mp->cur_exp);
18794 r=p+mp->big_node_size[mp->cur_type];
18797 if ( type(r)==mp_known ) negate(value(r));
18798 else mp_negate_dep_list(mp, dep_list(r));
18800 } /* if |cur_type=mp_known| then |cur_exp=0| */
18801 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18804 case mp_proto_dependent:
18805 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18808 negate(mp->cur_exp);
18811 mp_bad_unary(mp, minus);
18815 @ @<Declare unary action...@>=
18816 void mp_negate_dep_list (MP mp,pointer p) {
18819 if ( info(p)==null ) return;
18824 @ @<Additional cases of unary operators@>=
18826 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18827 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18830 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18831 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18833 @<Additional cases of unary operators@>=
18840 case uniform_deviate:
18842 case char_exists_op:
18843 if ( mp->cur_type!=mp_known ) {
18844 mp_bad_unary(mp, c);
18847 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18848 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18849 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18852 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18853 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18854 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18856 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18857 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18859 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18860 mp->cur_type=mp_boolean_type;
18862 case char_exists_op:
18863 @<Determine if a character has been shipped out@>;
18865 } /* there are no other cases */
18869 @ @<Additional cases of unary operators@>=
18871 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18872 p=value(mp->cur_exp);
18873 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18874 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18875 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18877 mp_bad_unary(mp, angle_op);
18881 @ If the current expression is a pair, but the context wants it to
18882 be a path, we call |pair_to_path|.
18884 @<Declare unary action...@>=
18885 void mp_pair_to_path (MP mp) {
18886 mp->cur_exp=mp_new_knot(mp);
18887 mp->cur_type=mp_path_type;
18891 @d pict_color_type(A) ((link(dummy_loc(mp->cur_exp))!=null) &&
18892 (has_color(link(dummy_loc(mp->cur_exp)))) &&
18893 (color_model(link(dummy_loc(mp->cur_exp)))==A))
18895 @<Additional cases of unary operators@>=
18898 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18899 mp_take_part(mp, c);
18900 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18901 else mp_bad_unary(mp, c);
18907 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18908 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18909 else mp_bad_unary(mp, c);
18914 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18915 else if ( mp->cur_type==mp_picture_type ) {
18916 if pict_color_type(mp_rgb_model) mp_take_pict_part(mp, c);
18917 else mp_bad_color_part(mp, c);
18919 else mp_bad_unary(mp, c);
18925 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18926 else if ( mp->cur_type==mp_picture_type ) {
18927 if pict_color_type(mp_cmyk_model) mp_take_pict_part(mp, c);
18928 else mp_bad_color_part(mp, c);
18930 else mp_bad_unary(mp, c);
18933 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18934 else if ( mp->cur_type==mp_picture_type ) {
18935 if pict_color_type(mp_grey_model) mp_take_pict_part(mp, c);
18936 else mp_bad_color_part(mp, c);
18938 else mp_bad_unary(mp, c);
18940 case color_model_part:
18941 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18942 else mp_bad_unary(mp, c);
18945 @ @<Declarations@>=
18946 void mp_bad_color_part(MP mp, quarterword c);
18949 void mp_bad_color_part(MP mp, quarterword c) {
18950 pointer p; /* the big node */
18951 p=link(dummy_loc(mp->cur_exp));
18952 exp_err("Wrong picture color model: "); mp_print_op(mp, c);
18953 @.Wrong picture color model...@>
18954 if (color_model(p)==mp_grey_model)
18955 mp_print(mp, " of grey object");
18956 else if (color_model(p)==mp_cmyk_model)
18957 mp_print(mp, " of cmyk object");
18958 else if (color_model(p)==mp_rgb_model)
18959 mp_print(mp, " of rgb object");
18960 else if (color_model(p)==mp_no_model)
18961 mp_print(mp, " of marking object");
18963 mp_print(mp," of defaulted object");
18964 help3("You can only ask for the redpart, greenpart, bluepart of a rgb object,")
18965 ("the cyanpart, magentapart, yellowpart or blackpart of a cmyk object, ")
18966 ("or the greypart of a grey object. No mixing and matching, please.");
18969 mp_flush_cur_exp(mp,unity);
18971 mp_flush_cur_exp(mp,0);
18974 @ In the following procedure, |cur_exp| points to a capsule, which points to
18975 a big node. We want to delete all but one part of the big node.
18977 @<Declare unary action...@>=
18978 void mp_take_part (MP mp,quarterword c) {
18979 pointer p; /* the big node */
18980 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18981 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18982 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18983 mp_recycle_value(mp, temp_val);
18986 @ @<Initialize table entries...@>=
18987 name_type(temp_val)=mp_capsule;
18989 @ @<Additional cases of unary operators@>=
18995 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18996 else mp_bad_unary(mp, c);
18999 @ @<Declarations@>=
19000 void mp_scale_edges (MP mp);
19002 @ @<Declare unary action...@>=
19003 void mp_take_pict_part (MP mp,quarterword c) {
19004 pointer p; /* first graphical object in |cur_exp| */
19005 p=link(dummy_loc(mp->cur_exp));
19008 case x_part: case y_part: case xx_part:
19009 case xy_part: case yx_part: case yy_part:
19010 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19011 else goto NOT_FOUND;
19013 case red_part: case green_part: case blue_part:
19014 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19015 else goto NOT_FOUND;
19017 case cyan_part: case magenta_part: case yellow_part:
19019 if ( has_color(p) ) {
19020 if ( color_model(p)==mp_uninitialized_model )
19021 mp_flush_cur_exp(mp, unity);
19023 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19024 } else goto NOT_FOUND;
19027 if ( has_color(p) )
19028 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19029 else goto NOT_FOUND;
19031 case color_model_part:
19032 if ( has_color(p) ) {
19033 if ( color_model(p)==mp_uninitialized_model )
19034 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19036 mp_flush_cur_exp(mp, color_model(p)*unity);
19037 } else goto NOT_FOUND;
19039 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19040 } /* all cases have been enumerated */
19044 @<Convert the current expression to a null value appropriate
19048 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19050 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19052 mp_flush_cur_exp(mp, text_p(p));
19053 add_str_ref(mp->cur_exp);
19054 mp->cur_type=mp_string_type;
19058 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19060 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19061 add_str_ref(mp->cur_exp);
19062 mp->cur_type=mp_string_type;
19066 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19067 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19068 @:this can't happen pict}{\quad pict@>
19070 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19071 mp->cur_type=mp_path_type;
19075 if ( ! has_pen(p) ) goto NOT_FOUND;
19077 if ( pen_p(p)==null ) goto NOT_FOUND;
19078 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19079 mp->cur_type=mp_pen_type;
19084 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19085 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19086 else { add_edge_ref(dash_p(p));
19087 mp->se_sf=dash_scale(p);
19088 mp->se_pic=dash_p(p);
19089 mp_scale_edges(mp);
19090 mp_flush_cur_exp(mp, mp->se_pic);
19091 mp->cur_type=mp_picture_type;
19096 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19097 parameterless procedure even though it really takes two arguments and updates
19098 one of them. Hence the following globals are needed.
19101 pointer se_pic; /* edge header used and updated by |scale_edges| */
19102 scaled se_sf; /* the scale factor argument to |scale_edges| */
19104 @ @<Convert the current expression to a null value appropriate...@>=
19106 case text_part: case font_part:
19107 mp_flush_cur_exp(mp, rts(""));
19108 mp->cur_type=mp_string_type;
19111 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19112 left_type(mp->cur_exp)=mp_endpoint;
19113 right_type(mp->cur_exp)=mp_endpoint;
19114 link(mp->cur_exp)=mp->cur_exp;
19115 x_coord(mp->cur_exp)=0;
19116 y_coord(mp->cur_exp)=0;
19117 originator(mp->cur_exp)=mp_metapost_user;
19118 mp->cur_type=mp_path_type;
19121 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19122 mp->cur_type=mp_pen_type;
19125 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19126 mp_init_edges(mp, mp->cur_exp);
19127 mp->cur_type=mp_picture_type;
19130 mp_flush_cur_exp(mp, 0);
19134 @ @<Additional cases of unary...@>=
19136 if ( mp->cur_type!=mp_known ) {
19137 mp_bad_unary(mp, char_op);
19139 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19140 mp->cur_type=mp_string_type;
19141 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19145 if ( mp->cur_type!=mp_known ) {
19146 mp_bad_unary(mp, decimal);
19148 mp->old_setting=mp->selector; mp->selector=new_string;
19149 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19150 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19156 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19157 else mp_str_to_num(mp, c);
19160 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19161 else @<Find the design size of the font whose name is |cur_exp|@>;
19164 @ @<Declare unary action...@>=
19165 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19166 integer n; /* accumulator */
19167 ASCII_code m; /* current character */
19168 pool_pointer k; /* index into |str_pool| */
19169 int b; /* radix of conversion */
19170 boolean bad_char; /* did the string contain an invalid digit? */
19171 if ( c==ASCII_op ) {
19172 if ( length(mp->cur_exp)==0 ) n=-1;
19173 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19175 if ( c==oct_op ) b=8; else b=16;
19176 n=0; bad_char=false;
19177 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19179 if ( (m>='0')&&(m<='9') ) m=m-'0';
19180 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19181 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19182 else { bad_char=true; m=0; };
19183 if ( m>=b ) { bad_char=true; m=0; };
19184 if ( n<32768 / b ) n=n*b+m; else n=32767;
19186 @<Give error messages if |bad_char| or |n>=4096|@>;
19188 mp_flush_cur_exp(mp, n*unity);
19191 @ @<Give error messages if |bad_char|...@>=
19193 exp_err("String contains illegal digits");
19194 @.String contains illegal digits@>
19196 help1("I zeroed out characters that weren't in the range 0..7.");
19198 help1("I zeroed out characters that weren't hex digits.");
19200 mp_put_get_error(mp);
19203 if ( mp->internal[mp_warning_check]>0 ) {
19204 print_err("Number too large (");
19205 mp_print_int(mp, n); mp_print_char(mp, ')');
19206 @.Number too large@>
19207 help2("I have trouble with numbers greater than 4095; watch out.")
19208 ("(Set warningcheck:=0 to suppress this message.)");
19209 mp_put_get_error(mp);
19213 @ The length operation is somewhat unusual in that it applies to a variety
19214 of different types of operands.
19216 @<Additional cases of unary...@>=
19218 switch (mp->cur_type) {
19219 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19220 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19221 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19222 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19224 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19225 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19226 value(x_part_loc(value(mp->cur_exp))),
19227 value(y_part_loc(value(mp->cur_exp)))));
19228 else mp_bad_unary(mp, c);
19233 @ @<Declare unary action...@>=
19234 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19235 scaled n; /* the path length so far */
19236 pointer p; /* traverser */
19238 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19239 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19243 @ @<Declare unary action...@>=
19244 scaled mp_pict_length (MP mp) {
19245 /* counts interior components in picture |cur_exp| */
19246 scaled n; /* the count so far */
19247 pointer p; /* traverser */
19249 p=link(dummy_loc(mp->cur_exp));
19251 if ( is_start_or_stop(p) )
19252 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19253 while ( p!=null ) {
19254 skip_component(p) return n;
19261 @ Implement |turningnumber|
19263 @<Additional cases of unary...@>=
19265 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19266 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19267 else if ( left_type(mp->cur_exp)==mp_endpoint )
19268 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19270 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19273 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19274 argument is |origin|.
19276 @<Declare unary action...@>=
19277 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19278 if ( (! ((xpar==0) && (ypar==0))) )
19279 return mp_n_arg(mp, xpar,ypar);
19284 @ The actual turning number is (for the moment) computed in a C function
19285 that receives eight integers corresponding to the four controlling points,
19286 and returns a single angle. Besides those, we have to account for discrete
19287 moves at the actual points.
19289 @d floor(a) (a>=0 ? a : -(int)(-a))
19290 @d bezier_error (720<<20)+1
19291 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19293 @d out ((double)(xo>>20))
19294 @d mid ((double)(xm>>20))
19295 @d in ((double)(xi>>20))
19296 @d divisor (256*256)
19297 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19299 @<Declare unary action...@>=
19300 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19301 integer CX,integer CY,integer DX,integer DY);
19304 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19305 integer CX,integer CY,integer DX,integer DY) {
19307 integer deltax,deltay;
19308 double ax,ay,bx,by,cx,cy,dx,dy;
19309 angle xi = 0, xo = 0, xm = 0;
19311 ax=AX/divisor; ay=AY/divisor;
19312 bx=BX/divisor; by=BY/divisor;
19313 cx=CX/divisor; cy=CY/divisor;
19314 dx=DX/divisor; dy=DY/divisor;
19316 deltax = (BX-AX); deltay = (BY-AY);
19317 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19318 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19319 xi = mp_an_angle(mp,deltax,deltay);
19321 deltax = (CX-BX); deltay = (CY-BY);
19322 xm = mp_an_angle(mp,deltax,deltay);
19324 deltax = (DX-CX); deltay = (DY-CY);
19325 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19326 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19327 xo = mp_an_angle(mp,deltax,deltay);
19329 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19330 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19331 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19333 if ((a==0)&&(c==0)) {
19334 res = (b==0 ? 0 : (out-in));
19335 print_roots("no roots (a)");
19336 } else if ((a==0)||(c==0)) {
19337 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19338 res = out-in; /* ? */
19341 else if (res>180.0)
19343 print_roots("no roots (b)");
19345 res = out-in; /* ? */
19346 print_roots("one root (a)");
19348 } else if ((sign(a)*sign(c))<0) {
19349 res = out-in; /* ? */
19352 else if (res>180.0)
19354 print_roots("one root (b)");
19356 if (sign(a) == sign(b)) {
19357 res = out-in; /* ? */
19360 else if (res>180.0)
19362 print_roots("no roots (d)");
19364 if ((b*b) == (4*a*c)) {
19365 res = bezier_error;
19366 print_roots("double root"); /* cusp */
19367 } else if ((b*b) < (4*a*c)) {
19368 res = out-in; /* ? */
19369 if (res<=0.0 &&res>-180.0)
19371 else if (res>=0.0 && res<180.0)
19373 print_roots("no roots (e)");
19378 else if (res>180.0)
19380 print_roots("two roots"); /* two inflections */
19384 return double2angle(res);
19388 @d p_nextnext link(link(p))
19390 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19392 @<Declare unary action...@>=
19393 scaled mp_new_turn_cycles (MP mp,pointer c) {
19394 angle res,ang; /* the angles of intermediate results */
19395 scaled turns; /* the turn counter */
19396 pointer p; /* for running around the path */
19397 integer xp,yp; /* coordinates of next point */
19398 integer x,y; /* helper coordinates */
19399 angle in_angle,out_angle; /* helper angles */
19400 int old_setting; /* saved |selector| setting */
19404 old_setting = mp->selector; mp->selector=term_only;
19405 if ( mp->internal[mp_tracing_commands]>unity ) {
19406 mp_begin_diagnostic(mp);
19407 mp_print_nl(mp, "");
19408 mp_end_diagnostic(mp, false);
19411 xp = x_coord(p_next); yp = y_coord(p_next);
19412 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19413 left_x(p_next), left_y(p_next), xp, yp);
19414 if ( ang>seven_twenty_deg ) {
19415 print_err("Strange path");
19417 mp->selector=old_setting;
19421 if ( res > one_eighty_deg ) {
19422 res = res - three_sixty_deg;
19423 turns = turns + unity;
19425 if ( res <= -one_eighty_deg ) {
19426 res = res + three_sixty_deg;
19427 turns = turns - unity;
19429 /* incoming angle at next point */
19430 x = left_x(p_next); y = left_y(p_next);
19431 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19432 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19433 in_angle = mp_an_angle(mp, xp - x, yp - y);
19434 /* outgoing angle at next point */
19435 x = right_x(p_next); y = right_y(p_next);
19436 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19437 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19438 out_angle = mp_an_angle(mp, x - xp, y- yp);
19439 ang = (out_angle - in_angle);
19443 if ( res >= one_eighty_deg ) {
19444 res = res - three_sixty_deg;
19445 turns = turns + unity;
19447 if ( res <= -one_eighty_deg ) {
19448 res = res + three_sixty_deg;
19449 turns = turns - unity;
19454 mp->selector=old_setting;
19459 @ This code is based on Bogus\l{}av Jackowski's
19460 |emergency_turningnumber| macro, with some minor changes by Taco
19461 Hoekwater. The macro code looked more like this:
19463 vardef turning\_number primary p =
19464 ~~save res, ang, turns;
19466 ~~if length p <= 2:
19467 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19469 ~~~~for t = 0 upto length p-1 :
19470 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19471 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19472 ~~~~~~if angc > 180: angc := angc - 360; fi;
19473 ~~~~~~if angc < -180: angc := angc + 360; fi;
19474 ~~~~~~res := res + angc;
19479 The general idea is to calculate only the sum of the angles of
19480 straight lines between the points, of a path, not worrying about cusps
19481 or self-intersections in the segments at all. If the segment is not
19482 well-behaved, the result is not necesarily correct. But the old code
19483 was not always correct either, and worse, it sometimes failed for
19484 well-behaved paths as well. All known bugs that were triggered by the
19485 original code no longer occur with this code, and it runs roughly 3
19486 times as fast because the algorithm is much simpler.
19488 @ It is possible to overflow the return value of the |turn_cycles|
19489 function when the path is sufficiently long and winding, but I am not
19490 going to bother testing for that. In any case, it would only return
19491 the looped result value, which is not a big problem.
19493 The macro code for the repeat loop was a bit nicer to look
19494 at than the pascal code, because it could use |point -1 of p|. In
19495 pascal, the fastest way to loop around the path is not to look
19496 backward once, but forward twice. These defines help hide the trick.
19498 @d p_to link(link(p))
19502 @<Declare unary action...@>=
19503 scaled mp_turn_cycles (MP mp,pointer c) {
19504 angle res,ang; /* the angles of intermediate results */
19505 scaled turns; /* the turn counter */
19506 pointer p; /* for running around the path */
19507 res=0; turns= 0; p=c;
19509 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19510 y_coord(p_to) - y_coord(p_here))
19511 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19512 y_coord(p_here) - y_coord(p_from));
19515 if ( res >= three_sixty_deg ) {
19516 res = res - three_sixty_deg;
19517 turns = turns + unity;
19519 if ( res <= -three_sixty_deg ) {
19520 res = res + three_sixty_deg;
19521 turns = turns - unity;
19528 @ @<Declare unary action...@>=
19529 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19531 scaled saved_t_o; /* tracing\_online saved */
19532 if ( (link(c)==c)||(link(link(c))==c) ) {
19533 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19538 nval = mp_new_turn_cycles(mp, c);
19539 oval = mp_turn_cycles(mp, c);
19540 if ( nval!=oval ) {
19541 saved_t_o=mp->internal[mp_tracing_online];
19542 mp->internal[mp_tracing_online]=unity;
19543 mp_begin_diagnostic(mp);
19544 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19545 " The current computed value is ");
19546 mp_print_scaled(mp, nval);
19547 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19548 mp_print_scaled(mp, oval);
19549 mp_end_diagnostic(mp, false);
19550 mp->internal[mp_tracing_online]=saved_t_o;
19556 @ @<Declare unary action...@>=
19557 scaled mp_count_turns (MP mp,pointer c) {
19558 pointer p; /* a knot in envelope spec |c| */
19559 integer t; /* total pen offset changes counted */
19562 t=t+info(p)-zero_off;
19565 return ((t / 3)*unity);
19568 @ @d type_range(A,B) {
19569 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19570 mp_flush_cur_exp(mp, true_code);
19571 else mp_flush_cur_exp(mp, false_code);
19572 mp->cur_type=mp_boolean_type;
19575 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19576 else mp_flush_cur_exp(mp, false_code);
19577 mp->cur_type=mp_boolean_type;
19580 @<Additional cases of unary operators@>=
19581 case mp_boolean_type:
19582 type_range(mp_boolean_type,mp_unknown_boolean); break;
19583 case mp_string_type:
19584 type_range(mp_string_type,mp_unknown_string); break;
19586 type_range(mp_pen_type,mp_unknown_pen); break;
19588 type_range(mp_path_type,mp_unknown_path); break;
19589 case mp_picture_type:
19590 type_range(mp_picture_type,mp_unknown_picture); break;
19591 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19593 type_test(c); break;
19594 case mp_numeric_type:
19595 type_range(mp_known,mp_independent); break;
19596 case known_op: case unknown_op:
19597 mp_test_known(mp, c); break;
19599 @ @<Declare unary action procedures@>=
19600 void mp_test_known (MP mp,quarterword c) {
19601 int b; /* is the current expression known? */
19602 pointer p,q; /* locations in a big node */
19604 switch (mp->cur_type) {
19605 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19606 case mp_pen_type: case mp_path_type: case mp_picture_type:
19610 case mp_transform_type:
19611 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19612 p=value(mp->cur_exp);
19613 q=p+mp->big_node_size[mp->cur_type];
19616 if ( type(q)!=mp_known )
19625 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19626 else mp_flush_cur_exp(mp, true_code+false_code-b);
19627 mp->cur_type=mp_boolean_type;
19630 @ @<Additional cases of unary operators@>=
19632 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19633 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19634 else mp_flush_cur_exp(mp, false_code);
19635 mp->cur_type=mp_boolean_type;
19638 @ @<Additional cases of unary operators@>=
19640 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19641 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19642 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19645 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19647 @^data structure assumptions@>
19649 @<Additional cases of unary operators@>=
19655 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19656 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19657 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19658 mp_flush_cur_exp(mp, true_code);
19659 else mp_flush_cur_exp(mp, false_code);
19660 mp->cur_type=mp_boolean_type;
19663 @ @<Additional cases of unary operators@>=
19665 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19666 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19668 mp->cur_type=mp_pen_type;
19669 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19673 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19675 mp->cur_type=mp_path_type;
19676 mp_make_path(mp, mp->cur_exp);
19680 if ( mp->cur_type==mp_path_type ) {
19681 p=mp_htap_ypoc(mp, mp->cur_exp);
19682 if ( right_type(p)==mp_endpoint ) p=link(p);
19683 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19684 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19685 else mp_bad_unary(mp, reverse);
19688 @ The |pair_value| routine changes the current expression to a
19689 given ordered pair of values.
19691 @<Declare unary action procedures@>=
19692 void mp_pair_value (MP mp,scaled x, scaled y) {
19693 pointer p; /* a pair node */
19694 p=mp_get_node(mp, value_node_size);
19695 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19696 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19698 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19699 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19702 @ @<Additional cases of unary operators@>=
19704 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19705 else mp_pair_value(mp, minx,miny);
19708 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19709 else mp_pair_value(mp, maxx,miny);
19712 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19713 else mp_pair_value(mp, minx,maxy);
19716 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19717 else mp_pair_value(mp, maxx,maxy);
19720 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19721 box of the current expression. The boolean result is |false| if the expression
19722 has the wrong type.
19724 @<Declare unary action procedures@>=
19725 boolean mp_get_cur_bbox (MP mp) {
19726 switch (mp->cur_type) {
19727 case mp_picture_type:
19728 mp_set_bbox(mp, mp->cur_exp,true);
19729 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19730 minx=0; maxx=0; miny=0; maxy=0;
19732 minx=minx_val(mp->cur_exp);
19733 maxx=maxx_val(mp->cur_exp);
19734 miny=miny_val(mp->cur_exp);
19735 maxy=maxy_val(mp->cur_exp);
19739 mp_path_bbox(mp, mp->cur_exp);
19742 mp_pen_bbox(mp, mp->cur_exp);
19750 @ @<Additional cases of unary operators@>=
19752 case close_from_op:
19753 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19754 else mp_do_read_or_close(mp,c);
19757 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19758 a line from the file or to close the file.
19760 @<Declare unary action procedures@>=
19761 void mp_do_read_or_close (MP mp,quarterword c) {
19762 readf_index n,n0; /* indices for searching |rd_fname| */
19763 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19764 call |start_read_input| and |goto found| or |not_found|@>;
19765 mp_begin_file_reading(mp);
19767 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19769 mp_end_file_reading(mp);
19771 @<Record the end of file and set |cur_exp| to a dummy value@>;
19774 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19777 mp_flush_cur_exp(mp, 0);
19778 mp_finish_read(mp);
19781 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19784 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19789 fn = str(mp->cur_exp);
19790 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19793 } else if ( c==close_from_op ) {
19796 if ( n0==mp->read_files ) {
19797 if ( mp->read_files<mp->max_read_files ) {
19798 incr(mp->read_files);
19803 l = mp->max_read_files + (mp->max_read_files>>2);
19804 rd_file = xmalloc((l+1), sizeof(void *));
19805 rd_fname = xmalloc((l+1), sizeof(char *));
19806 for (k=0;k<=l;k++) {
19807 if (k<=mp->max_read_files) {
19808 rd_file[k]=mp->rd_file[k];
19809 rd_fname[k]=mp->rd_fname[k];
19815 xfree(mp->rd_file); xfree(mp->rd_fname);
19816 mp->max_read_files = l;
19817 mp->rd_file = rd_file;
19818 mp->rd_fname = rd_fname;
19822 if ( mp_start_read_input(mp,fn,n) )
19827 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19829 if ( c==close_from_op ) {
19830 (mp->close_file)(mp,mp->rd_file[n]);
19835 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19836 xfree(mp->rd_fname[n]);
19837 mp->rd_fname[n]=NULL;
19838 if ( n==mp->read_files-1 ) mp->read_files=n;
19839 if ( c==close_from_op )
19841 mp_flush_cur_exp(mp, mp->eof_line);
19842 mp->cur_type=mp_string_type
19844 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19847 str_number eof_line;
19852 @ Finally, we have the operations that combine a capsule~|p|
19853 with the current expression.
19855 @d binary_return { mp_finish_binary(mp, old_p, old_exp); return; }
19857 @c @<Declare binary action procedures@>
19858 void mp_finish_binary (MP mp, pointer old_p, pointer old_exp ){
19860 @<Recycle any sidestepped |independent| capsules@>;
19862 void mp_do_binary (MP mp,pointer p, quarterword c) {
19863 pointer q,r,rr; /* for list manipulation */
19864 pointer old_p,old_exp; /* capsules to recycle */
19865 integer v; /* for numeric manipulation */
19867 if ( mp->internal[mp_tracing_commands]>two ) {
19868 @<Trace the current binary operation@>;
19870 @<Sidestep |independent| cases in capsule |p|@>;
19871 @<Sidestep |independent| cases in the current expression@>;
19873 case plus: case minus:
19874 @<Add or subtract the current expression from |p|@>;
19876 @<Additional cases of binary operators@>;
19877 }; /* there are no other cases */
19878 mp_recycle_value(mp, p);
19879 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19880 mp_finish_binary(mp, old_p, old_exp);
19883 @ @<Declare binary action...@>=
19884 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19885 mp_disp_err(mp, p,"");
19886 exp_err("Not implemented: ");
19887 @.Not implemented...@>
19888 if ( c>=min_of ) mp_print_op(mp, c);
19889 mp_print_known_or_unknown_type(mp, type(p),p);
19890 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19891 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19892 help3("I'm afraid I don't know how to apply that operation to that")
19893 ("combination of types. Continue, and I'll return the second")
19894 ("argument (see above) as the result of the operation.");
19895 mp_put_get_error(mp);
19897 void mp_bad_envelope_pen (MP mp) {
19898 mp_disp_err(mp, null,"");
19899 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19900 @.Not implemented...@>
19901 help3("I'm afraid I don't know how to apply that operation to that")
19902 ("combination of types. Continue, and I'll return the second")
19903 ("argument (see above) as the result of the operation.");
19904 mp_put_get_error(mp);
19907 @ @<Trace the current binary operation@>=
19909 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19910 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19911 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19912 mp_print_exp(mp,null,0); mp_print(mp,")}");
19913 mp_end_diagnostic(mp, false);
19916 @ Several of the binary operations are potentially complicated by the
19917 fact that |independent| values can sneak into capsules. For example,
19918 we've seen an instance of this difficulty in the unary operation
19919 of negation. In order to reduce the number of cases that need to be
19920 handled, we first change the two operands (if necessary)
19921 to rid them of |independent| components. The original operands are
19922 put into capsules called |old_p| and |old_exp|, which will be
19923 recycled after the binary operation has been safely carried out.
19925 @<Recycle any sidestepped |independent| capsules@>=
19926 if ( old_p!=null ) {
19927 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19929 if ( old_exp!=null ) {
19930 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19933 @ A big node is considered to be ``tarnished'' if it contains at least one
19934 independent component. We will define a simple function called `|tarnished|'
19935 that returns |null| if and only if its argument is not tarnished.
19937 @<Sidestep |independent| cases in capsule |p|@>=
19939 case mp_transform_type:
19940 case mp_color_type:
19941 case mp_cmykcolor_type:
19943 old_p=mp_tarnished(mp, p);
19945 case mp_independent: old_p=mp_void; break;
19946 default: old_p=null; break;
19948 if ( old_p!=null ) {
19949 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19950 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19953 @ @<Sidestep |independent| cases in the current expression@>=
19954 switch (mp->cur_type) {
19955 case mp_transform_type:
19956 case mp_color_type:
19957 case mp_cmykcolor_type:
19959 old_exp=mp_tarnished(mp, mp->cur_exp);
19961 case mp_independent:old_exp=mp_void; break;
19962 default: old_exp=null; break;
19964 if ( old_exp!=null ) {
19965 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19968 @ @<Declare binary action...@>=
19969 pointer mp_tarnished (MP mp,pointer p) {
19970 pointer q; /* beginning of the big node */
19971 pointer r; /* current position in the big node */
19972 q=value(p); r=q+mp->big_node_size[type(p)];
19975 if ( type(r)==mp_independent ) return mp_void;
19980 @ @<Add or subtract the current expression from |p|@>=
19981 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19982 mp_bad_binary(mp, p,c);
19984 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19985 mp_add_or_subtract(mp, p,null,c);
19987 if ( mp->cur_type!=type(p) ) {
19988 mp_bad_binary(mp, p,c);
19990 q=value(p); r=value(mp->cur_exp);
19991 rr=r+mp->big_node_size[mp->cur_type];
19993 mp_add_or_subtract(mp, q,r,c);
20000 @ The first argument to |add_or_subtract| is the location of a value node
20001 in a capsule or pair node that will soon be recycled. The second argument
20002 is either a location within a pair or transform node of |cur_exp|,
20003 or it is null (which means that |cur_exp| itself should be the second
20004 argument). The third argument is either |plus| or |minus|.
20006 The sum or difference of the numeric quantities will replace the second
20007 operand. Arithmetic overflow may go undetected; users aren't supposed to
20008 be monkeying around with really big values.
20009 @^overflow in arithmetic@>
20011 @<Declare binary action...@>=
20012 @<Declare the procedure called |dep_finish|@>
20013 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20014 small_number s,t; /* operand types */
20015 pointer r; /* list traverser */
20016 integer v; /* second operand value */
20019 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20022 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20024 if ( t==mp_known ) {
20025 if ( c==minus ) negate(v);
20026 if ( type(p)==mp_known ) {
20027 v=mp_slow_add(mp, value(p),v);
20028 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20031 @<Add a known value to the constant term of |dep_list(p)|@>;
20033 if ( c==minus ) mp_negate_dep_list(mp, v);
20034 @<Add operand |p| to the dependency list |v|@>;
20038 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20040 while ( info(r)!=null ) r=link(r);
20041 value(r)=mp_slow_add(mp, value(r),v);
20043 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20044 name_type(q)=mp_capsule;
20046 dep_list(q)=dep_list(p); type(q)=type(p);
20047 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20048 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20050 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20051 nice to retain the extra accuracy of |fraction| coefficients.
20052 But we have to handle both kinds, and mixtures too.
20054 @<Add operand |p| to the dependency list |v|@>=
20055 if ( type(p)==mp_known ) {
20056 @<Add the known |value(p)| to the constant term of |v|@>;
20058 s=type(p); r=dep_list(p);
20059 if ( t==mp_dependent ) {
20060 if ( s==mp_dependent ) {
20061 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20062 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20063 } /* |fix_needed| will necessarily be false */
20064 t=mp_proto_dependent;
20065 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20067 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20068 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20070 @<Output the answer, |v| (which might have become |known|)@>;
20073 @ @<Add the known |value(p)| to the constant term of |v|@>=
20075 while ( info(v)!=null ) v=link(v);
20076 value(v)=mp_slow_add(mp, value(p),value(v));
20079 @ @<Output the answer, |v| (which might have become |known|)@>=
20080 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20081 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20083 @ Here's the current situation: The dependency list |v| of type |t|
20084 should either be put into the current expression (if |q=null|) or
20085 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20086 or |q|) formerly held a dependency list with the same
20087 final pointer as the list |v|.
20089 @<Declare the procedure called |dep_finish|@>=
20090 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20091 pointer p; /* the destination */
20092 scaled vv; /* the value, if it is |known| */
20093 if ( q==null ) p=mp->cur_exp; else p=q;
20094 dep_list(p)=v; type(p)=t;
20095 if ( info(v)==null ) {
20098 mp_flush_cur_exp(mp, vv);
20100 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20102 } else if ( q==null ) {
20105 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20108 @ Let's turn now to the six basic relations of comparison.
20110 @<Additional cases of binary operators@>=
20111 case less_than: case less_or_equal: case greater_than:
20112 case greater_or_equal: case equal_to: case unequal_to:
20113 check_arith; /* at this point |arith_error| should be |false|? */
20114 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20115 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20116 } else if ( mp->cur_type!=type(p) ) {
20117 mp_bad_binary(mp, p,c); goto DONE;
20118 } else if ( mp->cur_type==mp_string_type ) {
20119 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20120 } else if ((mp->cur_type==mp_unknown_string)||
20121 (mp->cur_type==mp_unknown_boolean) ) {
20122 @<Check if unknowns have been equated@>;
20123 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20124 @<Reduce comparison of big nodes to comparison of scalars@>;
20125 } else if ( mp->cur_type==mp_boolean_type ) {
20126 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20128 mp_bad_binary(mp, p,c); goto DONE;
20130 @<Compare the current expression with zero@>;
20132 mp->arith_error=false; /* ignore overflow in comparisons */
20135 @ @<Compare the current expression with zero@>=
20136 if ( mp->cur_type!=mp_known ) {
20137 if ( mp->cur_type<mp_known ) {
20138 mp_disp_err(mp, p,"");
20139 help1("The quantities shown above have not been equated.")
20141 help2("Oh dear. I can\'t decide if the expression above is positive,")
20142 ("negative, or zero. So this comparison test won't be `true'.");
20144 exp_err("Unknown relation will be considered false");
20145 @.Unknown relation...@>
20146 mp_put_get_flush_error(mp, false_code);
20149 case less_than: boolean_reset(mp->cur_exp<0); break;
20150 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20151 case greater_than: boolean_reset(mp->cur_exp>0); break;
20152 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20153 case equal_to: boolean_reset(mp->cur_exp==0); break;
20154 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20155 }; /* there are no other cases */
20157 mp->cur_type=mp_boolean_type
20159 @ When two unknown strings are in the same ring, we know that they are
20160 equal. Otherwise, we don't know whether they are equal or not, so we
20163 @<Check if unknowns have been equated@>=
20165 q=value(mp->cur_exp);
20166 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20167 if ( q==p ) mp_flush_cur_exp(mp, 0);
20170 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20172 q=value(p); r=value(mp->cur_exp);
20173 rr=r+mp->big_node_size[mp->cur_type]-2;
20174 while (1) { mp_add_or_subtract(mp, q,r,minus);
20175 if ( type(r)!=mp_known ) break;
20176 if ( value(r)!=0 ) break;
20177 if ( r==rr ) break;
20180 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20183 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20185 @<Additional cases of binary operators@>=
20188 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20189 mp_bad_binary(mp, p,c);
20190 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20193 @ @<Additional cases of binary operators@>=
20195 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20196 mp_bad_binary(mp, p,times);
20197 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20198 @<Multiply when at least one operand is known@>;
20199 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20200 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20201 (type(p)>mp_pair_type)) ) {
20202 mp_hard_times(mp, p);
20205 mp_bad_binary(mp, p,times);
20209 @ @<Multiply when at least one operand is known@>=
20211 if ( type(p)==mp_known ) {
20212 v=value(p); mp_free_node(mp, p,value_node_size);
20214 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20216 if ( mp->cur_type==mp_known ) {
20217 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20218 } else if ( (mp->cur_type==mp_pair_type)||
20219 (mp->cur_type==mp_color_type)||
20220 (mp->cur_type==mp_cmykcolor_type) ) {
20221 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20223 p=p-2; mp_dep_mult(mp, p,v,true);
20224 } while (p!=value(mp->cur_exp));
20226 mp_dep_mult(mp, null,v,true);
20231 @ @<Declare binary action...@>=
20232 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20233 pointer q; /* the dependency list being multiplied by |v| */
20234 small_number s,t; /* its type, before and after */
20237 } else if ( type(p)!=mp_known ) {
20240 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20241 else value(p)=mp_take_fraction(mp, value(p),v);
20244 t=type(q); q=dep_list(q); s=t;
20245 if ( t==mp_dependent ) if ( v_is_scaled )
20246 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20247 t=mp_proto_dependent;
20248 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20249 mp_dep_finish(mp, q,p,t);
20252 @ Here is a routine that is similar to |times|; but it is invoked only
20253 internally, when |v| is a |fraction| whose magnitude is at most~1,
20254 and when |cur_type>=mp_color_type|.
20256 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20257 /* multiplies |cur_exp| by |n/d| */
20258 pointer p; /* a pair node */
20259 pointer old_exp; /* a capsule to recycle */
20260 fraction v; /* |n/d| */
20261 if ( mp->internal[mp_tracing_commands]>two ) {
20262 @<Trace the fraction multiplication@>;
20264 switch (mp->cur_type) {
20265 case mp_transform_type:
20266 case mp_color_type:
20267 case mp_cmykcolor_type:
20269 old_exp=mp_tarnished(mp, mp->cur_exp);
20271 case mp_independent: old_exp=mp_void; break;
20272 default: old_exp=null; break;
20274 if ( old_exp!=null ) {
20275 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20277 v=mp_make_fraction(mp, n,d);
20278 if ( mp->cur_type==mp_known ) {
20279 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20280 } else if ( mp->cur_type<=mp_pair_type ) {
20281 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20284 mp_dep_mult(mp, p,v,false);
20285 } while (p!=value(mp->cur_exp));
20287 mp_dep_mult(mp, null,v,false);
20289 if ( old_exp!=null ) {
20290 mp_recycle_value(mp, old_exp);
20291 mp_free_node(mp, old_exp,value_node_size);
20295 @ @<Trace the fraction multiplication@>=
20297 mp_begin_diagnostic(mp);
20298 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20299 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20301 mp_end_diagnostic(mp, false);
20304 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20306 @<Declare binary action procedures@>=
20307 void mp_hard_times (MP mp,pointer p) {
20308 pointer q; /* a copy of the dependent variable |p| */
20309 pointer r; /* a component of the big node for the nice color or pair */
20310 scaled v; /* the known value for |r| */
20311 if ( type(p)<=mp_pair_type ) {
20312 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20313 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20314 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20319 if ( r==value(mp->cur_exp) )
20321 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20322 mp_dep_mult(mp, r,v,true);
20324 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20325 link(prev_dep(p))=r;
20326 mp_free_node(mp, p,value_node_size);
20327 mp_dep_mult(mp, r,v,true);
20330 @ @<Additional cases of binary operators@>=
20332 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20333 mp_bad_binary(mp, p,over);
20335 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20337 @<Squeal about division by zero@>;
20339 if ( mp->cur_type==mp_known ) {
20340 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20341 } else if ( mp->cur_type<=mp_pair_type ) {
20342 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20344 p=p-2; mp_dep_div(mp, p,v);
20345 } while (p!=value(mp->cur_exp));
20347 mp_dep_div(mp, null,v);
20354 @ @<Declare binary action...@>=
20355 void mp_dep_div (MP mp,pointer p, scaled v) {
20356 pointer q; /* the dependency list being divided by |v| */
20357 small_number s,t; /* its type, before and after */
20358 if ( p==null ) q=mp->cur_exp;
20359 else if ( type(p)!=mp_known ) q=p;
20360 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20361 t=type(q); q=dep_list(q); s=t;
20362 if ( t==mp_dependent )
20363 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20364 t=mp_proto_dependent;
20365 q=mp_p_over_v(mp, q,v,s,t);
20366 mp_dep_finish(mp, q,p,t);
20369 @ @<Squeal about division by zero@>=
20371 exp_err("Division by zero");
20372 @.Division by zero@>
20373 help2("You're trying to divide the quantity shown above the error")
20374 ("message by zero. I'm going to divide it by one instead.");
20375 mp_put_get_error(mp);
20378 @ @<Additional cases of binary operators@>=
20381 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20382 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20383 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20384 } else mp_bad_binary(mp, p,c);
20387 @ The next few sections of the program deal with affine transformations
20388 of coordinate data.
20390 @<Additional cases of binary operators@>=
20391 case rotated_by: case slanted_by:
20392 case scaled_by: case shifted_by: case transformed_by:
20393 case x_scaled: case y_scaled: case z_scaled:
20394 if ( type(p)==mp_path_type ) {
20395 path_trans(c,p); binary_return;
20396 } else if ( type(p)==mp_pen_type ) {
20398 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20399 /* rounding error could destroy convexity */
20401 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20402 mp_big_trans(mp, p,c);
20403 } else if ( type(p)==mp_picture_type ) {
20404 mp_do_edges_trans(mp, p,c); binary_return;
20406 mp_bad_binary(mp, p,c);
20410 @ Let |c| be one of the eight transform operators. The procedure call
20411 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20412 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20413 change at all if |c=transformed_by|.)
20415 Then, if all components of the resulting transform are |known|, they are
20416 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20417 and |cur_exp| is changed to the known value zero.
20419 @<Declare binary action...@>=
20420 void mp_set_up_trans (MP mp,quarterword c) {
20421 pointer p,q,r; /* list manipulation registers */
20422 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20423 @<Put the current transform into |cur_exp|@>;
20425 @<If the current transform is entirely known, stash it in global variables;
20426 otherwise |return|@>;
20435 scaled ty; /* current transform coefficients */
20437 @ @<Put the current transform...@>=
20439 p=mp_stash_cur_exp(mp);
20440 mp->cur_exp=mp_id_transform(mp);
20441 mp->cur_type=mp_transform_type;
20442 q=value(mp->cur_exp);
20444 @<For each of the eight cases, change the relevant fields of |cur_exp|
20446 but do nothing if capsule |p| doesn't have the appropriate type@>;
20447 }; /* there are no other cases */
20448 mp_disp_err(mp, p,"Improper transformation argument");
20449 @.Improper transformation argument@>
20450 help3("The expression shown above has the wrong type,")
20451 ("so I can\'t transform anything using it.")
20452 ("Proceed, and I'll omit the transformation.");
20453 mp_put_get_error(mp);
20455 mp_recycle_value(mp, p);
20456 mp_free_node(mp, p,value_node_size);
20459 @ @<If the current transform is entirely known, ...@>=
20460 q=value(mp->cur_exp); r=q+transform_node_size;
20463 if ( type(r)!=mp_known ) return;
20465 mp->txx=value(xx_part_loc(q));
20466 mp->txy=value(xy_part_loc(q));
20467 mp->tyx=value(yx_part_loc(q));
20468 mp->tyy=value(yy_part_loc(q));
20469 mp->tx=value(x_part_loc(q));
20470 mp->ty=value(y_part_loc(q));
20471 mp_flush_cur_exp(mp, 0)
20473 @ @<For each of the eight cases...@>=
20475 if ( type(p)==mp_known )
20476 @<Install sines and cosines, then |goto done|@>;
20479 if ( type(p)>mp_pair_type ) {
20480 mp_install(mp, xy_part_loc(q),p); goto DONE;
20484 if ( type(p)>mp_pair_type ) {
20485 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20490 if ( type(p)==mp_pair_type ) {
20491 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20492 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20496 if ( type(p)>mp_pair_type ) {
20497 mp_install(mp, xx_part_loc(q),p); goto DONE;
20501 if ( type(p)>mp_pair_type ) {
20502 mp_install(mp, yy_part_loc(q),p); goto DONE;
20506 if ( type(p)==mp_pair_type )
20507 @<Install a complex multiplier, then |goto done|@>;
20509 case transformed_by:
20513 @ @<Install sines and cosines, then |goto done|@>=
20514 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20515 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20516 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20517 value(xy_part_loc(q))=-value(yx_part_loc(q));
20518 value(yy_part_loc(q))=value(xx_part_loc(q));
20522 @ @<Install a complex multiplier, then |goto done|@>=
20525 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20526 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20527 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20528 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20529 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20530 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20534 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20535 insists that the transformation be entirely known.
20537 @<Declare binary action...@>=
20538 void mp_set_up_known_trans (MP mp,quarterword c) {
20539 mp_set_up_trans(mp, c);
20540 if ( mp->cur_type!=mp_known ) {
20541 exp_err("Transform components aren't all known");
20542 @.Transform components...@>
20543 help3("I'm unable to apply a partially specified transformation")
20544 ("except to a fully known pair or transform.")
20545 ("Proceed, and I'll omit the transformation.");
20546 mp_put_get_flush_error(mp, 0);
20547 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20548 mp->tx=0; mp->ty=0;
20552 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20553 coordinates in locations |p| and~|q|.
20555 @<Declare binary action...@>=
20556 void mp_trans (MP mp,pointer p, pointer q) {
20557 scaled v; /* the new |x| value */
20558 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20559 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20560 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20561 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20565 @ The simplest transformation procedure applies a transform to all
20566 coordinates of a path. The |path_trans(c)(p)| macro applies
20567 a transformation defined by |cur_exp| and the transform operator |c|
20570 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20571 mp_unstash_cur_exp(mp, (B));
20572 mp_do_path_trans(mp, mp->cur_exp); }
20574 @<Declare binary action...@>=
20575 void mp_do_path_trans (MP mp,pointer p) {
20576 pointer q; /* list traverser */
20579 if ( left_type(q)!=mp_endpoint )
20580 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20581 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20582 if ( right_type(q)!=mp_endpoint )
20583 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20584 @^data structure assumptions@>
20589 @ Transforming a pen is very similar, except that there are no |left_type|
20590 and |right_type| fields.
20592 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20593 mp_unstash_cur_exp(mp, (B));
20594 mp_do_pen_trans(mp, mp->cur_exp); }
20596 @<Declare binary action...@>=
20597 void mp_do_pen_trans (MP mp,pointer p) {
20598 pointer q; /* list traverser */
20599 if ( pen_is_elliptical(p) ) {
20600 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20601 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20605 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20606 @^data structure assumptions@>
20611 @ The next transformation procedure applies to edge structures. It will do
20612 any transformation, but the results may be substandard if the picture contains
20613 text that uses downloaded bitmap fonts. The binary action procedure is
20614 |do_edges_trans|, but we also need a function that just scales a picture.
20615 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20616 should be thought of as procedures that update an edge structure |h|, except
20617 that they have to return a (possibly new) structure because of the need to call
20620 @<Declare binary action...@>=
20621 pointer mp_edges_trans (MP mp, pointer h) {
20622 pointer q; /* the object being transformed */
20623 pointer r,s; /* for list manipulation */
20624 scaled sx,sy; /* saved transformation parameters */
20625 scaled sqdet; /* square root of determinant for |dash_scale| */
20626 integer sgndet; /* sign of the determinant */
20627 scaled v; /* a temporary value */
20628 h=mp_private_edges(mp, h);
20629 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20630 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20631 if ( dash_list(h)!=null_dash ) {
20632 @<Try to transform the dash list of |h|@>;
20634 @<Make the bounding box of |h| unknown if it can't be updated properly
20635 without scanning the whole structure@>;
20636 q=link(dummy_loc(h));
20637 while ( q!=null ) {
20638 @<Transform graphical object |q|@>;
20643 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20644 mp_set_up_known_trans(mp, c);
20645 value(p)=mp_edges_trans(mp, value(p));
20646 mp_unstash_cur_exp(mp, p);
20648 void mp_scale_edges (MP mp) {
20649 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20650 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20651 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20654 @ @<Try to transform the dash list of |h|@>=
20655 if ( (mp->txy!=0)||(mp->tyx!=0)||
20656 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20657 mp_flush_dash_list(mp, h);
20659 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20660 @<Scale the dash list by |txx| and shift it by |tx|@>;
20661 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20664 @ @<Reverse the dash list of |h|@>=
20667 dash_list(h)=null_dash;
20668 while ( r!=null_dash ) {
20670 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20671 link(s)=dash_list(h);
20676 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20678 while ( r!=null_dash ) {
20679 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20680 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20684 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20685 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20686 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20687 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20688 mp_init_bbox(mp, h);
20691 if ( minx_val(h)<=maxx_val(h) ) {
20692 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20699 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20701 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20702 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20705 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20708 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20710 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20711 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20712 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20713 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20714 if ( mp->txx+mp->txy<0 ) {
20715 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20717 if ( mp->tyx+mp->tyy<0 ) {
20718 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20722 @ Now we ready for the main task of transforming the graphical objects in edge
20725 @<Transform graphical object |q|@>=
20727 case mp_fill_code: case mp_stroked_code:
20728 mp_do_path_trans(mp, path_p(q));
20729 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20731 case mp_start_clip_code: case mp_start_bounds_code:
20732 mp_do_path_trans(mp, path_p(q));
20736 @<Transform the compact transformation starting at |r|@>;
20738 case mp_stop_clip_code: case mp_stop_bounds_code:
20740 } /* there are no other cases */
20742 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20743 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20744 since the \ps\ output procedures will try to compensate for the transformation
20745 we are applying to |pen_p(q)|. Since this compensation is based on the square
20746 root of the determinant, |sqdet| is the appropriate factor.
20748 @<Transform |pen_p(q)|, making sure...@>=
20749 if ( pen_p(q)!=null ) {
20750 sx=mp->tx; sy=mp->ty;
20751 mp->tx=0; mp->ty=0;
20752 mp_do_pen_trans(mp, pen_p(q));
20753 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20754 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20755 if ( ! pen_is_elliptical(pen_p(q)) )
20757 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20758 /* this unreverses the pen */
20759 mp->tx=sx; mp->ty=sy;
20762 @ This uses the fact that transformations are stored in the order
20763 |(tx,ty,txx,txy,tyx,tyy)|.
20764 @^data structure assumptions@>
20766 @<Transform the compact transformation starting at |r|@>=
20767 mp_trans(mp, r,r+1);
20768 sx=mp->tx; sy=mp->ty;
20769 mp->tx=0; mp->ty=0;
20770 mp_trans(mp, r+2,r+4);
20771 mp_trans(mp, r+3,r+5);
20772 mp->tx=sx; mp->ty=sy
20774 @ The hard cases of transformation occur when big nodes are involved,
20775 and when some of their components are unknown.
20777 @<Declare binary action...@>=
20778 @<Declare subroutines needed by |big_trans|@>
20779 void mp_big_trans (MP mp,pointer p, quarterword c) {
20780 pointer q,r,pp,qq; /* list manipulation registers */
20781 small_number s; /* size of a big node */
20782 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20785 if ( type(r)!=mp_known ) {
20786 @<Transform an unknown big node and |return|@>;
20789 @<Transform a known big node@>;
20790 } /* node |p| will now be recycled by |do_binary| */
20792 @ @<Transform an unknown big node and |return|@>=
20794 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20795 r=value(mp->cur_exp);
20796 if ( mp->cur_type==mp_transform_type ) {
20797 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20798 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20799 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20800 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20802 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20803 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20807 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20808 and let |q| point to a another value field. The |bilin1| procedure
20809 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20811 @<Declare subroutines needed by |big_trans|@>=
20812 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20813 scaled u, scaled delta) {
20814 pointer r; /* list traverser */
20815 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20817 if ( type(q)==mp_known ) {
20818 delta+=mp_take_scaled(mp, value(q),u);
20820 @<Ensure that |type(p)=mp_proto_dependent|@>;
20821 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20822 mp_proto_dependent,type(q));
20825 if ( type(p)==mp_known ) {
20829 while ( info(r)!=null ) r=link(r);
20831 if ( r!=dep_list(p) ) value(r)=delta;
20832 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20834 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20837 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20838 if ( type(p)!=mp_proto_dependent ) {
20839 if ( type(p)==mp_known )
20840 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20842 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20843 mp_proto_dependent,true);
20844 type(p)=mp_proto_dependent;
20847 @ @<Transform a known big node@>=
20848 mp_set_up_trans(mp, c);
20849 if ( mp->cur_type==mp_known ) {
20850 @<Transform known by known@>;
20852 pp=mp_stash_cur_exp(mp); qq=value(pp);
20853 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20854 if ( mp->cur_type==mp_transform_type ) {
20855 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20856 value(xy_part_loc(q)),yx_part_loc(qq),null);
20857 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20858 value(xx_part_loc(q)),yx_part_loc(qq),null);
20859 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20860 value(yy_part_loc(q)),xy_part_loc(qq),null);
20861 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20862 value(yx_part_loc(q)),xy_part_loc(qq),null);
20864 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20865 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20866 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20867 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20868 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20871 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20872 at |dep_final|. The following procedure adds |v| times another
20873 numeric quantity to~|p|.
20875 @<Declare subroutines needed by |big_trans|@>=
20876 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20877 if ( type(r)==mp_known ) {
20878 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20880 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20881 mp_proto_dependent,type(r));
20882 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20886 @ The |bilin2| procedure is something like |bilin1|, but with known
20887 and unknown quantities reversed. Parameter |p| points to a value field
20888 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20889 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20890 unless it is |null| (which stands for zero). Location~|p| will be
20891 replaced by $p\cdot t+v\cdot u+q$.
20893 @<Declare subroutines needed by |big_trans|@>=
20894 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20895 pointer u, pointer q) {
20896 scaled vv; /* temporary storage for |value(p)| */
20897 vv=value(p); type(p)=mp_proto_dependent;
20898 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20900 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20901 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20902 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20903 if ( dep_list(p)==mp->dep_final ) {
20904 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20905 type(p)=mp_known; value(p)=vv;
20909 @ @<Transform known by known@>=
20911 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20912 if ( mp->cur_type==mp_transform_type ) {
20913 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20914 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20915 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20916 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20918 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20919 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20922 @ Finally, in |bilin3| everything is |known|.
20924 @<Declare subroutines needed by |big_trans|@>=
20925 void mp_bilin3 (MP mp,pointer p, scaled t,
20926 scaled v, scaled u, scaled delta) {
20928 delta+=mp_take_scaled(mp, value(p),t);
20931 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20932 else value(p)=delta;
20935 @ @<Additional cases of binary operators@>=
20937 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20938 else mp_bad_binary(mp, p,concatenate);
20941 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20942 mp_chop_string(mp, value(p));
20943 else mp_bad_binary(mp, p,substring_of);
20946 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20947 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20948 mp_chop_path(mp, value(p));
20949 else mp_bad_binary(mp, p,subpath_of);
20952 @ @<Declare binary action...@>=
20953 void mp_cat (MP mp,pointer p) {
20954 str_number a,b; /* the strings being concatenated */
20955 pool_pointer k; /* index into |str_pool| */
20956 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20957 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20958 append_char(mp->str_pool[k]);
20960 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20961 append_char(mp->str_pool[k]);
20963 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20966 @ @<Declare binary action...@>=
20967 void mp_chop_string (MP mp,pointer p) {
20968 integer a, b; /* start and stop points */
20969 integer l; /* length of the original string */
20970 integer k; /* runs from |a| to |b| */
20971 str_number s; /* the original string */
20972 boolean reversed; /* was |a>b|? */
20973 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20974 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20975 if ( a<=b ) reversed=false;
20976 else { reversed=true; k=a; a=b; b=k; };
20977 s=mp->cur_exp; l=length(s);
20988 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20989 append_char(mp->str_pool[k]);
20992 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20993 append_char(mp->str_pool[k]);
20996 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20999 @ @<Declare binary action...@>=
21000 void mp_chop_path (MP mp,pointer p) {
21001 pointer q; /* a knot in the original path */
21002 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21003 scaled a,b,k,l; /* indices for chopping */
21004 boolean reversed; /* was |a>b|? */
21005 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21006 if ( a<=b ) reversed=false;
21007 else { reversed=true; k=a; a=b; b=k; };
21008 @<Dispense with the cases |a<0| and/or |b>l|@>;
21010 while ( a>=unity ) {
21011 q=link(q); a=a-unity; b=b-unity;
21014 @<Construct a path from |pp| to |qq| of length zero@>;
21016 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21018 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21019 mp_toss_knot_list(mp, mp->cur_exp);
21021 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21027 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21029 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21030 a=0; if ( b<0 ) b=0;
21032 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21036 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21037 b=l; if ( a>l ) a=l;
21045 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21047 pp=mp_copy_knot(mp, q); qq=pp;
21049 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21052 ss=pp; pp=link(pp);
21053 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21054 mp_free_node(mp, ss,knot_node_size);
21056 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21060 mp_split_cubic(mp, rr,(b+unity)*010000);
21061 mp_free_node(mp, qq,knot_node_size);
21066 @ @<Construct a path from |pp| to |qq| of length zero@>=
21068 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21069 pp=mp_copy_knot(mp, q); qq=pp;
21072 @ @<Additional cases of binary operators@>=
21073 case point_of: case precontrol_of: case postcontrol_of:
21074 if ( mp->cur_type==mp_pair_type )
21075 mp_pair_to_path(mp);
21076 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21077 mp_find_point(mp, value(p),c);
21079 mp_bad_binary(mp, p,c);
21081 case pen_offset_of:
21082 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21083 mp_set_up_offset(mp, value(p));
21085 mp_bad_binary(mp, p,pen_offset_of);
21087 case direction_time_of:
21088 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21089 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21090 mp_set_up_direction_time(mp, value(p));
21092 mp_bad_binary(mp, p,direction_time_of);
21095 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21096 mp_bad_binary(mp, p,envelope_of);
21098 mp_set_up_envelope(mp, p);
21101 @ @<Declare binary action...@>=
21102 void mp_set_up_offset (MP mp,pointer p) {
21103 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21104 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21106 void mp_set_up_direction_time (MP mp,pointer p) {
21107 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21108 value(y_part_loc(p)),mp->cur_exp));
21110 void mp_set_up_envelope (MP mp,pointer p) {
21111 small_number ljoin, lcap;
21113 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21114 /* TODO: accept elliptical pens for straight paths */
21115 if (pen_is_elliptical(value(p))) {
21116 mp_bad_envelope_pen(mp);
21118 mp->cur_type = mp_path_type;
21121 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21122 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21124 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21125 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21127 if ( mp->internal[mp_miterlimit]<unity )
21130 miterlim=mp->internal[mp_miterlimit];
21131 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21132 mp->cur_type = mp_path_type;
21135 @ @<Declare binary action...@>=
21136 void mp_find_point (MP mp,scaled v, quarterword c) {
21137 pointer p; /* the path */
21138 scaled n; /* its length */
21140 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21141 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21144 } else if ( v<0 ) {
21145 if ( left_type(p)==mp_endpoint ) v=0;
21146 else v=n-1-((-v-1) % n);
21147 } else if ( v>n ) {
21148 if ( left_type(p)==mp_endpoint ) v=n;
21152 while ( v>=unity ) { p=link(p); v=v-unity; };
21154 @<Insert a fractional node by splitting the cubic@>;
21156 @<Set the current expression to the desired path coordinates@>;
21159 @ @<Insert a fractional node...@>=
21160 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21162 @ @<Set the current expression to the desired path coordinates...@>=
21165 mp_pair_value(mp, x_coord(p),y_coord(p));
21167 case precontrol_of:
21168 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21169 else mp_pair_value(mp, left_x(p),left_y(p));
21171 case postcontrol_of:
21172 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21173 else mp_pair_value(mp, right_x(p),right_y(p));
21175 } /* there are no other cases */
21177 @ @<Additional cases of binary operators@>=
21179 if ( mp->cur_type==mp_pair_type )
21180 mp_pair_to_path(mp);
21181 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21182 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21184 mp_bad_binary(mp, p,c);
21187 @ @<Additional cases of bin...@>=
21189 if ( type(p)==mp_pair_type ) {
21190 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21191 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21193 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21194 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21195 mp_path_intersection(mp, value(p),mp->cur_exp);
21196 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21198 mp_bad_binary(mp, p,intersect);
21202 @ @<Additional cases of bin...@>=
21204 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21205 mp_bad_binary(mp, p,in_font);
21206 else { mp_do_infont(mp, p); binary_return; }
21209 @ Function |new_text_node| owns the reference count for its second argument
21210 (the text string) but not its first (the font name).
21212 @<Declare binary action...@>=
21213 void mp_do_infont (MP mp,pointer p) {
21215 q=mp_get_node(mp, edge_header_size);
21216 mp_init_edges(mp, q);
21217 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21218 obj_tail(q)=link(obj_tail(q));
21219 mp_free_node(mp, p,value_node_size);
21220 mp_flush_cur_exp(mp, q);
21221 mp->cur_type=mp_picture_type;
21224 @* \[40] Statements and commands.
21225 The chief executive of \MP\ is the |do_statement| routine, which
21226 contains the master switch that causes all the various pieces of \MP\
21227 to do their things, in the right order.
21229 In a sense, this is the grand climax of the program: It applies all the
21230 tools that we have worked so hard to construct. In another sense, this is
21231 the messiest part of the program: It necessarily refers to other pieces
21232 of code all over the place, so that a person can't fully understand what is
21233 going on without paging back and forth to be reminded of conventions that
21234 are defined elsewhere. We are now at the hub of the web.
21236 The structure of |do_statement| itself is quite simple. The first token
21237 of the statement is fetched using |get_x_next|. If it can be the first
21238 token of an expression, we look for an equation, an assignment, or a
21239 title. Otherwise we use a \&{case} construction to branch at high speed to
21240 the appropriate routine for various and sundry other types of commands,
21241 each of which has an ``action procedure'' that does the necessary work.
21243 The program uses the fact that
21244 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21245 to interpret a statement that starts with, e.g., `\&{string}',
21246 as a type declaration rather than a boolean expression.
21248 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21249 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21250 if ( mp->cur_cmd>max_primary_command ) {
21251 @<Worry about bad statement@>;
21252 } else if ( mp->cur_cmd>max_statement_command ) {
21253 @<Do an equation, assignment, title, or
21254 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21256 @<Do a statement that doesn't begin with an expression@>;
21258 if ( mp->cur_cmd<semicolon )
21259 @<Flush unparsable junk that was found after the statement@>;
21263 @ @<Declarations@>=
21264 @<Declare action procedures for use by |do_statement|@>
21266 @ The only command codes |>max_primary_command| that can be present
21267 at the beginning of a statement are |semicolon| and higher; these
21268 occur when the statement is null.
21270 @<Worry about bad statement@>=
21272 if ( mp->cur_cmd<semicolon ) {
21273 print_err("A statement can't begin with `");
21274 @.A statement can't begin with x@>
21275 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21276 help5("I was looking for the beginning of a new statement.")
21277 ("If you just proceed without changing anything, I'll ignore")
21278 ("everything up to the next `;'. Please insert a semicolon")
21279 ("now in front of anything that you don't want me to delete.")
21280 ("(See Chapter 27 of The METAFONTbook for an example.)");
21281 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21282 mp_back_error(mp); mp_get_x_next(mp);
21286 @ The help message printed here says that everything is flushed up to
21287 a semicolon, but actually the commands |end_group| and |stop| will
21288 also terminate a statement.
21290 @<Flush unparsable junk that was found after the statement@>=
21292 print_err("Extra tokens will be flushed");
21293 @.Extra tokens will be flushed@>
21294 help6("I've just read as much of that statement as I could fathom,")
21295 ("so a semicolon should have been next. It's very puzzling...")
21296 ("but I'll try to get myself back together, by ignoring")
21297 ("everything up to the next `;'. Please insert a semicolon")
21298 ("now in front of anything that you don't want me to delete.")
21299 ("(See Chapter 27 of The METAFONTbook for an example.)");
21300 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21301 mp_back_error(mp); mp->scanner_status=flushing;
21304 @<Decrease the string reference count...@>;
21305 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21306 mp->scanner_status=normal;
21309 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21310 |cur_type=mp_vacuous| unless the statement was simply an expression;
21311 in the latter case, |cur_type| and |cur_exp| should represent that
21314 @<Do a statement that doesn't...@>=
21316 if ( mp->internal[mp_tracing_commands]>0 )
21318 switch (mp->cur_cmd ) {
21319 case type_name:mp_do_type_declaration(mp); break;
21321 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21322 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21324 @<Cases of |do_statement| that invoke particular commands@>;
21325 } /* there are no other cases */
21326 mp->cur_type=mp_vacuous;
21329 @ The most important statements begin with expressions.
21331 @<Do an equation, assignment, title, or...@>=
21333 mp->var_flag=assignment; mp_scan_expression(mp);
21334 if ( mp->cur_cmd<end_group ) {
21335 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21336 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21337 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21338 else if ( mp->cur_type!=mp_vacuous ){
21339 exp_err("Isolated expression");
21340 @.Isolated expression@>
21341 help3("I couldn't find an `=' or `:=' after the")
21342 ("expression that is shown above this error message,")
21343 ("so I guess I'll just ignore it and carry on.");
21344 mp_put_get_error(mp);
21346 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21352 if ( mp->internal[mp_tracing_titles]>0 ) {
21353 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21357 @ Equations and assignments are performed by the pair of mutually recursive
21359 routines |do_equation| and |do_assignment|. These routines are called when
21360 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21361 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21362 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21363 will be equal to the right-hand side (which will normally be equal
21364 to the left-hand side).
21366 @<Declare action procedures for use by |do_statement|@>=
21367 @<Declare the procedure called |try_eq|@>
21368 @<Declare the procedure called |make_eq|@>
21369 void mp_do_equation (MP mp) ;
21372 void mp_do_equation (MP mp) {
21373 pointer lhs; /* capsule for the left-hand side */
21374 pointer p; /* temporary register */
21375 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21376 mp->var_flag=assignment; mp_scan_expression(mp);
21377 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21378 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21379 if ( mp->internal[mp_tracing_commands]>two )
21380 @<Trace the current equation@>;
21381 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21382 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21383 }; /* in this case |make_eq| will change the pair to a path */
21384 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21387 @ And |do_assignment| is similar to |do_equation|:
21390 void mp_do_assignment (MP mp);
21392 @ @<Declare action procedures for use by |do_statement|@>=
21393 void mp_do_assignment (MP mp) ;
21396 void mp_do_assignment (MP mp) {
21397 pointer lhs; /* token list for the left-hand side */
21398 pointer p; /* where the left-hand value is stored */
21399 pointer q; /* temporary capsule for the right-hand value */
21400 if ( mp->cur_type!=mp_token_list ) {
21401 exp_err("Improper `:=' will be changed to `='");
21403 help2("I didn't find a variable name at the left of the `:=',")
21404 ("so I'm going to pretend that you said `=' instead.");
21405 mp_error(mp); mp_do_equation(mp);
21407 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21408 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21409 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21410 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21411 if ( mp->internal[mp_tracing_commands]>two )
21412 @<Trace the current assignment@>;
21413 if ( info(lhs)>hash_end ) {
21414 @<Assign the current expression to an internal variable@>;
21416 @<Assign the current expression to the variable |lhs|@>;
21418 mp_flush_node_list(mp, lhs);
21422 @ @<Trace the current equation@>=
21424 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21425 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21426 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21429 @ @<Trace the current assignment@>=
21431 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21432 if ( info(lhs)>hash_end )
21433 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21435 mp_show_token_list(mp, lhs,null,1000,0);
21436 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21437 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21440 @ @<Assign the current expression to an internal variable@>=
21441 if ( mp->cur_type==mp_known ) {
21442 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21444 exp_err("Internal quantity `");
21445 @.Internal quantity...@>
21446 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21447 mp_print(mp, "' must receive a known value");
21448 help2("I can\'t set an internal quantity to anything but a known")
21449 ("numeric value, so I'll have to ignore this assignment.");
21450 mp_put_get_error(mp);
21453 @ @<Assign the current expression to the variable |lhs|@>=
21455 p=mp_find_variable(mp, lhs);
21457 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21458 mp_recycle_value(mp, p);
21459 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21460 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21462 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21467 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21468 a pointer to a capsule that is to be equated to the current expression.
21470 @<Declare the procedure called |make_eq|@>=
21471 void mp_make_eq (MP mp,pointer lhs) ;
21475 @c void mp_make_eq (MP mp,pointer lhs) {
21476 small_number t; /* type of the left-hand side */
21477 pointer p,q; /* pointers inside of big nodes */
21478 integer v=0; /* value of the left-hand side */
21481 if ( t<=mp_pair_type ) v=value(lhs);
21483 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21484 is incompatible with~|t|@>;
21485 } /* all cases have been listed */
21486 @<Announce that the equation cannot be performed@>;
21488 check_arith; mp_recycle_value(mp, lhs);
21489 mp_free_node(mp, lhs,value_node_size);
21492 @ @<Announce that the equation cannot be performed@>=
21493 mp_disp_err(mp, lhs,"");
21494 exp_err("Equation cannot be performed (");
21495 @.Equation cannot be performed@>
21496 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21497 else mp_print(mp, "numeric");
21498 mp_print_char(mp, '=');
21499 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21500 else mp_print(mp, "numeric");
21501 mp_print_char(mp, ')');
21502 help2("I'm sorry, but I don't know how to make such things equal.")
21503 ("(See the two expressions just above the error message.)");
21504 mp_put_get_error(mp)
21506 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21507 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21508 case mp_path_type: case mp_picture_type:
21509 if ( mp->cur_type==t+unknown_tag ) {
21510 mp_nonlinear_eq(mp, v,mp->cur_exp,false);
21511 mp_unstash_cur_exp(mp, mp->cur_exp); goto DONE;
21512 } else if ( mp->cur_type==t ) {
21513 @<Report redundant or inconsistent equation and |goto done|@>;
21516 case unknown_types:
21517 if ( mp->cur_type==t-unknown_tag ) {
21518 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21519 } else if ( mp->cur_type==t ) {
21520 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21521 } else if ( mp->cur_type==mp_pair_type ) {
21522 if ( t==mp_unknown_path ) {
21523 mp_pair_to_path(mp); goto RESTART;
21527 case mp_transform_type: case mp_color_type:
21528 case mp_cmykcolor_type: case mp_pair_type:
21529 if ( mp->cur_type==t ) {
21530 @<Do multiple equations and |goto done|@>;
21533 case mp_known: case mp_dependent:
21534 case mp_proto_dependent: case mp_independent:
21535 if ( mp->cur_type>=mp_known ) {
21536 mp_try_eq(mp, lhs,null); goto DONE;
21542 @ @<Report redundant or inconsistent equation and |goto done|@>=
21544 if ( mp->cur_type<=mp_string_type ) {
21545 if ( mp->cur_type==mp_string_type ) {
21546 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21549 } else if ( v!=mp->cur_exp ) {
21552 @<Exclaim about a redundant equation@>; goto DONE;
21554 print_err("Redundant or inconsistent equation");
21555 @.Redundant or inconsistent equation@>
21556 help2("An equation between already-known quantities can't help.")
21557 ("But don't worry; continue and I'll just ignore it.");
21558 mp_put_get_error(mp); goto DONE;
21560 print_err("Inconsistent equation");
21561 @.Inconsistent equation@>
21562 help2("The equation I just read contradicts what was said before.")
21563 ("But don't worry; continue and I'll just ignore it.");
21564 mp_put_get_error(mp); goto DONE;
21567 @ @<Do multiple equations and |goto done|@>=
21569 p=v+mp->big_node_size[t];
21570 q=value(mp->cur_exp)+mp->big_node_size[t];
21572 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21577 @ The first argument to |try_eq| is the location of a value node
21578 in a capsule that will soon be recycled. The second argument is
21579 either a location within a pair or transform node pointed to by
21580 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21581 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21582 but to equate the two operands.
21584 @<Declare the procedure called |try_eq|@>=
21585 void mp_try_eq (MP mp,pointer l, pointer r) ;
21588 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21589 pointer p; /* dependency list for right operand minus left operand */
21590 int t; /* the type of list |p| */
21591 pointer q; /* the constant term of |p| is here */
21592 pointer pp; /* dependency list for right operand */
21593 int tt; /* the type of list |pp| */
21594 boolean copied; /* have we copied a list that ought to be recycled? */
21595 @<Remove the left operand from its container, negate it, and
21596 put it into dependency list~|p| with constant term~|q|@>;
21597 @<Add the right operand to list |p|@>;
21598 if ( info(p)==null ) {
21599 @<Deal with redundant or inconsistent equation@>;
21601 mp_linear_eq(mp, p,t);
21602 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21603 if ( type(mp->cur_exp)==mp_known ) {
21604 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21605 mp_free_node(mp, pp,value_node_size);
21611 @ @<Remove the left operand from its container, negate it, and...@>=
21613 if ( t==mp_known ) {
21614 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21615 } else if ( t==mp_independent ) {
21616 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21619 p=dep_list(l); q=p;
21622 if ( info(q)==null ) break;
21625 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21629 @ @<Deal with redundant or inconsistent equation@>=
21631 if ( abs(value(p))>64 ) { /* off by .001 or more */
21632 print_err("Inconsistent equation");
21633 @.Inconsistent equation@>
21634 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21635 mp_print_char(mp, ')');
21636 help2("The equation I just read contradicts what was said before.")
21637 ("But don't worry; continue and I'll just ignore it.");
21638 mp_put_get_error(mp);
21639 } else if ( r==null ) {
21640 @<Exclaim about a redundant equation@>;
21642 mp_free_node(mp, p,dep_node_size);
21645 @ @<Add the right operand to list |p|@>=
21647 if ( mp->cur_type==mp_known ) {
21648 value(q)=value(q)+mp->cur_exp; goto DONE1;
21651 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21652 else pp=dep_list(mp->cur_exp);
21655 if ( type(r)==mp_known ) {
21656 value(q)=value(q)+value(r); goto DONE1;
21659 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21660 else pp=dep_list(r);
21663 if ( tt!=mp_independent ) copied=false;
21664 else { copied=true; tt=mp_dependent; };
21665 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21666 if ( copied ) mp_flush_node_list(mp, pp);
21669 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21670 mp->watch_coefs=false;
21672 p=mp_p_plus_q(mp, p,pp,t);
21673 } else if ( t==mp_proto_dependent ) {
21674 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21677 while ( info(q)!=null ) {
21678 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21680 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21682 mp->watch_coefs=true;
21684 @ Our next goal is to process type declarations. For this purpose it's
21685 convenient to have a procedure that scans a $\langle\,$declared
21686 variable$\,\rangle$ and returns the corresponding token list. After the
21687 following procedure has acted, the token after the declared variable
21688 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21691 @<Declare the function called |scan_declared_variable|@>=
21692 pointer mp_scan_declared_variable (MP mp) {
21693 pointer x; /* hash address of the variable's root */
21694 pointer h,t; /* head and tail of the token list to be returned */
21695 pointer l; /* hash address of left bracket */
21696 mp_get_symbol(mp); x=mp->cur_sym;
21697 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21698 h=mp_get_avail(mp); info(h)=x; t=h;
21701 if ( mp->cur_sym==0 ) break;
21702 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21703 if ( mp->cur_cmd==left_bracket ) {
21704 @<Descend past a collective subscript@>;
21709 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21711 if ( (eq_type(x)%outer_tag)!=tag_token ) mp_clear_symbol(mp, x,false);
21712 if ( equiv(x)==null ) mp_new_root(mp, x);
21716 @ If the subscript isn't collective, we don't accept it as part of the
21719 @<Descend past a collective subscript@>=
21721 l=mp->cur_sym; mp_get_x_next(mp);
21722 if ( mp->cur_cmd!=right_bracket ) {
21723 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21725 mp->cur_sym=collective_subscript;
21729 @ Type declarations are introduced by the following primitive operations.
21732 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21733 @:numeric_}{\&{numeric} primitive@>
21734 mp_primitive(mp, "string",type_name,mp_string_type);
21735 @:string_}{\&{string} primitive@>
21736 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21737 @:boolean_}{\&{boolean} primitive@>
21738 mp_primitive(mp, "path",type_name,mp_path_type);
21739 @:path_}{\&{path} primitive@>
21740 mp_primitive(mp, "pen",type_name,mp_pen_type);
21741 @:pen_}{\&{pen} primitive@>
21742 mp_primitive(mp, "picture",type_name,mp_picture_type);
21743 @:picture_}{\&{picture} primitive@>
21744 mp_primitive(mp, "transform",type_name,mp_transform_type);
21745 @:transform_}{\&{transform} primitive@>
21746 mp_primitive(mp, "color",type_name,mp_color_type);
21747 @:color_}{\&{color} primitive@>
21748 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21749 @:color_}{\&{rgbcolor} primitive@>
21750 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21751 @:color_}{\&{cmykcolor} primitive@>
21752 mp_primitive(mp, "pair",type_name,mp_pair_type);
21753 @:pair_}{\&{pair} primitive@>
21755 @ @<Cases of |print_cmd...@>=
21756 case type_name: mp_print_type(mp, m); break;
21758 @ Now we are ready to handle type declarations, assuming that a
21759 |type_name| has just been scanned.
21761 @<Declare action procedures for use by |do_statement|@>=
21762 void mp_do_type_declaration (MP mp) ;
21765 void mp_do_type_declaration (MP mp) {
21766 small_number t; /* the type being declared */
21767 pointer p; /* token list for a declared variable */
21768 pointer q; /* value node for the variable */
21769 if ( mp->cur_mod>=mp_transform_type )
21772 t=mp->cur_mod+unknown_tag;
21774 p=mp_scan_declared_variable(mp);
21775 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21776 q=mp_find_variable(mp, p);
21778 type(q)=t; value(q)=null;
21780 print_err("Declared variable conflicts with previous vardef");
21781 @.Declared variable conflicts...@>
21782 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21783 ("Proceed, and I'll ignore the illegal redeclaration.");
21784 mp_put_get_error(mp);
21786 mp_flush_list(mp, p);
21787 if ( mp->cur_cmd<comma ) {
21788 @<Flush spurious symbols after the declared variable@>;
21790 } while (! end_of_statement);
21793 @ @<Flush spurious symbols after the declared variable@>=
21795 print_err("Illegal suffix of declared variable will be flushed");
21796 @.Illegal suffix...flushed@>
21797 help5("Variables in declarations must consist entirely of")
21798 ("names and collective subscripts, e.g., `x[]a'.")
21799 ("Are you trying to use a reserved word in a variable name?")
21800 ("I'm going to discard the junk I found here,")
21801 ("up to the next comma or the end of the declaration.");
21802 if ( mp->cur_cmd==numeric_token )
21803 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21804 mp_put_get_error(mp); mp->scanner_status=flushing;
21807 @<Decrease the string reference count...@>;
21808 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21809 mp->scanner_status=normal;
21812 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21813 until coming to the end of the user's program.
21814 Each execution of |do_statement| concludes with
21815 |cur_cmd=semicolon|, |end_group|, or |stop|.
21817 @c void mp_main_control (MP mp) {
21819 mp_do_statement(mp);
21820 if ( mp->cur_cmd==end_group ) {
21821 print_err("Extra `endgroup'");
21822 @.Extra `endgroup'@>
21823 help2("I'm not currently working on a `begingroup',")
21824 ("so I had better not try to end anything.");
21825 mp_flush_error(mp, 0);
21827 } while (mp->cur_cmd!=stop);
21829 int __attribute__((noinline))
21831 if (mp->history < mp_fatal_error_stop ) {
21832 @<Install and test the non-local jump buffer@>;
21833 mp_main_control(mp); /* come to life */
21834 mp_final_cleanup(mp); /* prepare for death */
21835 mp_close_files_and_terminate(mp);
21837 return mp->history;
21839 int __attribute__((noinline))
21840 mp_execute (MP mp) {
21841 if (mp->history < mp_fatal_error_stop ) {
21842 mp->history = mp_spotless;
21843 mp->file_offset = 0;
21844 mp->term_offset = 0;
21846 @<Install and test the non-local jump buffer@>;
21847 if (mp->run_state==0) {
21850 mp_input_ln(mp,mp->term_in);
21851 mp_firm_up_the_line(mp);
21852 mp->buffer[limit]='%';
21857 mp_do_statement(mp);
21858 } while (mp->cur_cmd!=stop);
21860 return mp->history;
21862 int __attribute__((noinline))
21863 mp_finish (MP mp) {
21864 if (mp->history < mp_fatal_error_stop ) {
21865 @<Install and test the non-local jump buffer@>;
21866 mp_final_cleanup(mp); /* prepare for death */
21867 mp_close_files_and_terminate(mp);
21869 return mp->history;
21871 const char * mp_mplib_version (MP mp) {
21873 return mplib_version;
21875 const char * mp_metapost_version (MP mp) {
21877 return metapost_version;
21880 @ @<Exported function headers@>=
21881 int mp_run (MP mp);
21882 int mp_execute (MP mp);
21883 int mp_finish (MP mp);
21884 const char * mp_mplib_version (MP mp);
21885 const char * mp_metapost_version (MP mp);
21888 mp_primitive(mp, "end",stop,0);
21889 @:end_}{\&{end} primitive@>
21890 mp_primitive(mp, "dump",stop,1);
21891 @:dump_}{\&{dump} primitive@>
21893 @ @<Cases of |print_cmd...@>=
21895 if ( m==0 ) mp_print(mp, "end");
21896 else mp_print(mp, "dump");
21900 Let's turn now to statements that are classified as ``commands'' because
21901 of their imperative nature. We'll begin with simple ones, so that it
21902 will be clear how to hook command processing into the |do_statement| routine;
21903 then we'll tackle the tougher commands.
21905 Here's one of the simplest:
21907 @<Cases of |do_statement|...@>=
21908 case mp_random_seed: mp_do_random_seed(mp); break;
21910 @ @<Declare action procedures for use by |do_statement|@>=
21911 void mp_do_random_seed (MP mp) ;
21913 @ @c void mp_do_random_seed (MP mp) {
21915 if ( mp->cur_cmd!=assignment ) {
21916 mp_missing_err(mp, ":=");
21918 help1("Always say `randomseed:=<numeric expression>'.");
21921 mp_get_x_next(mp); mp_scan_expression(mp);
21922 if ( mp->cur_type!=mp_known ) {
21923 exp_err("Unknown value will be ignored");
21924 @.Unknown value...ignored@>
21925 help2("Your expression was too random for me to handle,")
21926 ("so I won't change the random seed just now.");
21927 mp_put_get_flush_error(mp, 0);
21929 @<Initialize the random seed to |cur_exp|@>;
21933 @ @<Initialize the random seed to |cur_exp|@>=
21935 mp_init_randoms(mp, mp->cur_exp);
21936 if ( mp->selector>=log_only && mp->selector<write_file) {
21937 mp->old_setting=mp->selector; mp->selector=log_only;
21938 mp_print_nl(mp, "{randomseed:=");
21939 mp_print_scaled(mp, mp->cur_exp);
21940 mp_print_char(mp, '}');
21941 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21945 @ And here's another simple one (somewhat different in flavor):
21947 @<Cases of |do_statement|...@>=
21949 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21950 @<Initialize the print |selector| based on |interaction|@>;
21951 if ( mp->log_opened ) mp->selector=mp->selector+2;
21956 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21957 @:mp_batch_mode_}{\&{batchmode} primitive@>
21958 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21959 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21960 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21961 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21962 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21963 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21965 @ @<Cases of |print_cmd_mod|...@>=
21968 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21969 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21970 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21971 default: mp_print(mp, "errorstopmode"); break;
21975 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21977 @<Cases of |do_statement|...@>=
21978 case protection_command: mp_do_protection(mp); break;
21981 mp_primitive(mp, "inner",protection_command,0);
21982 @:inner_}{\&{inner} primitive@>
21983 mp_primitive(mp, "outer",protection_command,1);
21984 @:outer_}{\&{outer} primitive@>
21986 @ @<Cases of |print_cmd...@>=
21987 case protection_command:
21988 if ( m==0 ) mp_print(mp, "inner");
21989 else mp_print(mp, "outer");
21992 @ @<Declare action procedures for use by |do_statement|@>=
21993 void mp_do_protection (MP mp) ;
21995 @ @c void mp_do_protection (MP mp) {
21996 int m; /* 0 to unprotect, 1 to protect */
21997 halfword t; /* the |eq_type| before we change it */
22000 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22002 if ( t>=outer_tag )
22003 eq_type(mp->cur_sym)=t-outer_tag;
22004 } else if ( t<outer_tag ) {
22005 eq_type(mp->cur_sym)=t+outer_tag;
22008 } while (mp->cur_cmd==comma);
22011 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22012 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22013 declaration assigns the command code |left_delimiter| to `\.{(}' and
22014 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22015 hash address of its mate.
22017 @<Cases of |do_statement|...@>=
22018 case delimiters: mp_def_delims(mp); break;
22020 @ @<Declare action procedures for use by |do_statement|@>=
22021 void mp_def_delims (MP mp) ;
22023 @ @c void mp_def_delims (MP mp) {
22024 pointer l_delim,r_delim; /* the new delimiter pair */
22025 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22026 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22027 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22028 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22032 @ Here is a procedure that is called when \MP\ has reached a point
22033 where some right delimiter is mandatory.
22035 @<Declare the procedure called |check_delimiter|@>=
22036 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22037 if ( mp->cur_cmd==right_delimiter )
22038 if ( mp->cur_mod==l_delim )
22040 if ( mp->cur_sym!=r_delim ) {
22041 mp_missing_err(mp, str(text(r_delim)));
22043 help2("I found no right delimiter to match a left one. So I've")
22044 ("put one in, behind the scenes; this may fix the problem.");
22047 print_err("The token `"); mp_print_text(r_delim);
22048 @.The token...delimiter@>
22049 mp_print(mp, "' is no longer a right delimiter");
22050 help3("Strange: This token has lost its former meaning!")
22051 ("I'll read it as a right delimiter this time;")
22052 ("but watch out, I'll probably miss it later.");
22057 @ The next four commands save or change the values associated with tokens.
22059 @<Cases of |do_statement|...@>=
22062 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22063 } while (mp->cur_cmd==comma);
22065 case interim_command: mp_do_interim(mp); break;
22066 case let_command: mp_do_let(mp); break;
22067 case new_internal: mp_do_new_internal(mp); break;
22069 @ @<Declare action procedures for use by |do_statement|@>=
22070 void mp_do_statement (MP mp);
22071 void mp_do_interim (MP mp);
22073 @ @c void mp_do_interim (MP mp) {
22075 if ( mp->cur_cmd!=internal_quantity ) {
22076 print_err("The token `");
22077 @.The token...quantity@>
22078 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22079 else mp_print_text(mp->cur_sym);
22080 mp_print(mp, "' isn't an internal quantity");
22081 help1("Something like `tracingonline' should follow `interim'.");
22084 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22086 mp_do_statement(mp);
22089 @ The following procedure is careful not to undefine the left-hand symbol
22090 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22092 @<Declare action procedures for use by |do_statement|@>=
22093 void mp_do_let (MP mp) ;
22095 @ @c void mp_do_let (MP mp) {
22096 pointer l; /* hash location of the left-hand symbol */
22097 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22098 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22099 mp_missing_err(mp, "=");
22101 help3("You should have said `let symbol = something'.")
22102 ("But don't worry; I'll pretend that an equals sign")
22103 ("was present. The next token I read will be `something'.");
22107 switch (mp->cur_cmd) {
22108 case defined_macro: case secondary_primary_macro:
22109 case tertiary_secondary_macro: case expression_tertiary_macro:
22110 add_mac_ref(mp->cur_mod);
22115 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22116 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22117 else equiv(l)=mp->cur_mod;
22121 @ @<Declarations@>=
22122 void mp_grow_internals (MP mp, int l);
22123 void mp_do_new_internal (MP mp) ;
22126 void mp_grow_internals (MP mp, int l) {
22130 if ( hash_end+l>max_halfword ) {
22131 mp_confusion(mp, "out of memory space"); /* can't be reached */
22133 int_name = xmalloc ((l+1),sizeof(char *));
22134 internal = xmalloc ((l+1),sizeof(scaled));
22135 for (k=0;k<=l; k++ ) {
22136 if (k<=mp->max_internal) {
22137 internal[k]=mp->internal[k];
22138 int_name[k]=mp->int_name[k];
22144 xfree(mp->internal); xfree(mp->int_name);
22145 mp->int_name = int_name;
22146 mp->internal = internal;
22147 mp->max_internal = l;
22151 void mp_do_new_internal (MP mp) {
22153 if ( mp->int_ptr==mp->max_internal ) {
22154 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22156 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22157 eq_type(mp->cur_sym)=internal_quantity;
22158 equiv(mp->cur_sym)=mp->int_ptr;
22159 if(mp->int_name[mp->int_ptr]!=NULL)
22160 xfree(mp->int_name[mp->int_ptr]);
22161 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22162 mp->internal[mp->int_ptr]=0;
22164 } while (mp->cur_cmd==comma);
22167 @ @<Dealloc variables@>=
22168 for (k=0;k<=mp->max_internal;k++) {
22169 xfree(mp->int_name[k]);
22171 xfree(mp->internal);
22172 xfree(mp->int_name);
22175 @ The various `\&{show}' commands are distinguished by modifier fields
22178 @d show_token_code 0 /* show the meaning of a single token */
22179 @d show_stats_code 1 /* show current memory and string usage */
22180 @d show_code 2 /* show a list of expressions */
22181 @d show_var_code 3 /* show a variable and its descendents */
22182 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22185 mp_primitive(mp, "showtoken",show_command,show_token_code);
22186 @:show_token_}{\&{showtoken} primitive@>
22187 mp_primitive(mp, "showstats",show_command,show_stats_code);
22188 @:show_stats_}{\&{showstats} primitive@>
22189 mp_primitive(mp, "show",show_command,show_code);
22190 @:show_}{\&{show} primitive@>
22191 mp_primitive(mp, "showvariable",show_command,show_var_code);
22192 @:show_var_}{\&{showvariable} primitive@>
22193 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22194 @:show_dependencies_}{\&{showdependencies} primitive@>
22196 @ @<Cases of |print_cmd...@>=
22199 case show_token_code:mp_print(mp, "showtoken"); break;
22200 case show_stats_code:mp_print(mp, "showstats"); break;
22201 case show_code:mp_print(mp, "show"); break;
22202 case show_var_code:mp_print(mp, "showvariable"); break;
22203 default: mp_print(mp, "showdependencies"); break;
22207 @ @<Cases of |do_statement|...@>=
22208 case show_command:mp_do_show_whatever(mp); break;
22210 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22211 if it's |show_code|, complicated structures are abbreviated, otherwise
22214 @<Declare action procedures for use by |do_statement|@>=
22215 void mp_do_show (MP mp) ;
22217 @ @c void mp_do_show (MP mp) {
22219 mp_get_x_next(mp); mp_scan_expression(mp);
22220 mp_print_nl(mp, ">> ");
22222 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22223 } while (mp->cur_cmd==comma);
22226 @ @<Declare action procedures for use by |do_statement|@>=
22227 void mp_disp_token (MP mp) ;
22229 @ @c void mp_disp_token (MP mp) {
22230 mp_print_nl(mp, "> ");
22232 if ( mp->cur_sym==0 ) {
22233 @<Show a numeric or string or capsule token@>;
22235 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22236 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22237 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22238 if ( mp->cur_cmd==defined_macro ) {
22239 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22240 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22245 @ @<Show a numeric or string or capsule token@>=
22247 if ( mp->cur_cmd==numeric_token ) {
22248 mp_print_scaled(mp, mp->cur_mod);
22249 } else if ( mp->cur_cmd==capsule_token ) {
22250 mp_print_capsule(mp,mp->cur_mod);
22252 mp_print_char(mp, '"');
22253 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22254 delete_str_ref(mp->cur_mod);
22258 @ The following cases of |print_cmd_mod| might arise in connection
22259 with |disp_token|, although they don't necessarily correspond to
22262 @<Cases of |print_cmd_...@>=
22263 case left_delimiter:
22264 case right_delimiter:
22265 if ( c==left_delimiter ) mp_print(mp, "left");
22266 else mp_print(mp, "right");
22267 mp_print(mp, " delimiter that matches ");
22271 if ( m==null ) mp_print(mp, "tag");
22272 else mp_print(mp, "variable");
22274 case defined_macro:
22275 mp_print(mp, "macro:");
22277 case secondary_primary_macro:
22278 case tertiary_secondary_macro:
22279 case expression_tertiary_macro:
22280 mp_print_cmd_mod(mp, macro_def,c);
22281 mp_print(mp, "'d macro:");
22282 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22285 mp_print(mp, "[repeat the loop]");
22287 case internal_quantity:
22288 mp_print(mp, mp->int_name[m]);
22291 @ @<Declare action procedures for use by |do_statement|@>=
22292 void mp_do_show_token (MP mp) ;
22294 @ @c void mp_do_show_token (MP mp) {
22296 get_t_next; mp_disp_token(mp);
22298 } while (mp->cur_cmd==comma);
22301 @ @<Declare action procedures for use by |do_statement|@>=
22302 void mp_do_show_stats (MP mp) ;
22304 @ @c void mp_do_show_stats (MP mp) {
22305 mp_print_nl(mp, "Memory usage ");
22306 @.Memory usage...@>
22307 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22308 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22309 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22310 mp_print_nl(mp, "String usage ");
22311 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22312 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22313 mp_print(mp, " (");
22314 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22315 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22316 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22320 @ Here's a recursive procedure that gives an abbreviated account
22321 of a variable, for use by |do_show_var|.
22323 @<Declare action procedures for use by |do_statement|@>=
22324 void mp_disp_var (MP mp,pointer p) ;
22326 @ @c void mp_disp_var (MP mp,pointer p) {
22327 pointer q; /* traverses attributes and subscripts */
22328 int n; /* amount of macro text to show */
22329 if ( type(p)==mp_structured ) {
22330 @<Descend the structure@>;
22331 } else if ( type(p)>=mp_unsuffixed_macro ) {
22332 @<Display a variable macro@>;
22333 } else if ( type(p)!=undefined ){
22334 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22335 mp_print_char(mp, '=');
22336 mp_print_exp(mp, p,0);
22340 @ @<Descend the structure@>=
22343 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22345 while ( name_type(q)==mp_subscr ) {
22346 mp_disp_var(mp, q); q=link(q);
22350 @ @<Display a variable macro@>=
22352 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22353 if ( type(p)>mp_unsuffixed_macro )
22354 mp_print(mp, "@@#"); /* |suffixed_macro| */
22355 mp_print(mp, "=macro:");
22356 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22357 else n=mp->max_print_line-mp->file_offset-15;
22358 mp_show_macro(mp, value(p),null,n);
22361 @ @<Declare action procedures for use by |do_statement|@>=
22362 void mp_do_show_var (MP mp) ;
22364 @ @c void mp_do_show_var (MP mp) {
22367 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22368 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22369 mp_disp_var(mp, mp->cur_mod); goto DONE;
22374 } while (mp->cur_cmd==comma);
22377 @ @<Declare action procedures for use by |do_statement|@>=
22378 void mp_do_show_dependencies (MP mp) ;
22380 @ @c void mp_do_show_dependencies (MP mp) {
22381 pointer p; /* link that runs through all dependencies */
22383 while ( p!=dep_head ) {
22384 if ( mp_interesting(mp, p) ) {
22385 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22386 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22387 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22388 mp_print_dependency(mp, dep_list(p),type(p));
22391 while ( info(p)!=null ) p=link(p);
22397 @ Finally we are ready for the procedure that governs all of the
22400 @<Declare action procedures for use by |do_statement|@>=
22401 void mp_do_show_whatever (MP mp) ;
22403 @ @c void mp_do_show_whatever (MP mp) {
22404 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22405 switch (mp->cur_mod) {
22406 case show_token_code:mp_do_show_token(mp); break;
22407 case show_stats_code:mp_do_show_stats(mp); break;
22408 case show_code:mp_do_show(mp); break;
22409 case show_var_code:mp_do_show_var(mp); break;
22410 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22411 } /* there are no other cases */
22412 if ( mp->internal[mp_showstopping]>0 ){
22415 if ( mp->interaction<mp_error_stop_mode ) {
22416 help0; decr(mp->error_count);
22418 help1("This isn't an error message; I'm just showing something.");
22420 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22421 else mp_put_get_error(mp);
22425 @ The `\&{addto}' command needs the following additional primitives:
22427 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22428 @d contour_code 1 /* command modifier for `\&{contour}' */
22429 @d also_code 2 /* command modifier for `\&{also}' */
22431 @ Pre and postscripts need two new identifiers:
22433 @d with_pre_script 11
22434 @d with_post_script 13
22437 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22438 @:double_path_}{\&{doublepath} primitive@>
22439 mp_primitive(mp, "contour",thing_to_add,contour_code);
22440 @:contour_}{\&{contour} primitive@>
22441 mp_primitive(mp, "also",thing_to_add,also_code);
22442 @:also_}{\&{also} primitive@>
22443 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22444 @:with_pen_}{\&{withpen} primitive@>
22445 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22446 @:dashed_}{\&{dashed} primitive@>
22447 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22448 @:with_pre_script_}{\&{withprescript} primitive@>
22449 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22450 @:with_post_script_}{\&{withpostscript} primitive@>
22451 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22452 @:with_color_}{\&{withoutcolor} primitive@>
22453 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22454 @:with_color_}{\&{withgreyscale} primitive@>
22455 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22456 @:with_color_}{\&{withcolor} primitive@>
22457 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22458 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22459 @:with_color_}{\&{withrgbcolor} primitive@>
22460 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22461 @:with_color_}{\&{withcmykcolor} primitive@>
22463 @ @<Cases of |print_cmd...@>=
22465 if ( m==contour_code ) mp_print(mp, "contour");
22466 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22467 else mp_print(mp, "also");
22470 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22471 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22472 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22473 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22474 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22475 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22476 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22477 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22478 else mp_print(mp, "dashed");
22481 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22482 updates the list of graphical objects starting at |p|. Each $\langle$with
22483 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22484 Other objects are ignored.
22486 @<Declare action procedures for use by |do_statement|@>=
22487 void mp_scan_with_list (MP mp,pointer p) ;
22489 @ @c void mp_scan_with_list (MP mp,pointer p) {
22490 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22491 pointer q; /* for list manipulation */
22492 int old_setting; /* saved |selector| setting */
22493 pointer k; /* for finding the near-last item in a list */
22494 str_number s; /* for string cleanup after combining */
22495 pointer cp,pp,dp,ap,bp;
22496 /* objects being updated; |void| initially; |null| to suppress update */
22497 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22499 while ( mp->cur_cmd==with_option ){
22502 if ( t!=mp_no_model ) mp_scan_expression(mp);
22503 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22504 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22505 ((t==mp_uninitialized_model)&&
22506 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22507 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22508 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22509 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22510 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22511 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22512 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22513 @<Complain about improper type@>;
22514 } else if ( t==mp_uninitialized_model ) {
22515 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22517 @<Transfer a color from the current expression to object~|cp|@>;
22518 mp_flush_cur_exp(mp, 0);
22519 } else if ( t==mp_rgb_model ) {
22520 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22522 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22523 mp_flush_cur_exp(mp, 0);
22524 } else if ( t==mp_cmyk_model ) {
22525 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22527 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22528 mp_flush_cur_exp(mp, 0);
22529 } else if ( t==mp_grey_model ) {
22530 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22532 @<Transfer a greyscale from the current expression to object~|cp|@>;
22533 mp_flush_cur_exp(mp, 0);
22534 } else if ( t==mp_no_model ) {
22535 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22537 @<Transfer a noncolor from the current expression to object~|cp|@>;
22538 } else if ( t==mp_pen_type ) {
22539 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22541 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22542 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22544 } else if ( t==with_pre_script ) {
22547 while ( (ap!=null)&&(! has_color(ap)) )
22550 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22552 old_setting=mp->selector;
22553 mp->selector=new_string;
22554 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22555 mp_print_str(mp, mp->cur_exp);
22556 append_char(13); /* a forced \ps\ newline */
22557 mp_print_str(mp, pre_script(ap));
22558 pre_script(ap)=mp_make_string(mp);
22560 mp->selector=old_setting;
22562 pre_script(ap)=mp->cur_exp;
22564 mp->cur_type=mp_vacuous;
22566 } else if ( t==with_post_script ) {
22570 while ( link(k)!=null ) {
22572 if ( has_color(k) ) bp=k;
22575 if ( post_script(bp)!=null ) {
22577 old_setting=mp->selector;
22578 mp->selector=new_string;
22579 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22580 mp_print_str(mp, post_script(bp));
22581 append_char(13); /* a forced \ps\ newline */
22582 mp_print_str(mp, mp->cur_exp);
22583 post_script(bp)=mp_make_string(mp);
22585 mp->selector=old_setting;
22587 post_script(bp)=mp->cur_exp;
22589 mp->cur_type=mp_vacuous;
22592 if ( dp==mp_void ) {
22593 @<Make |dp| a stroked node in list~|p|@>;
22596 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22597 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22598 dash_scale(dp)=unity;
22599 mp->cur_type=mp_vacuous;
22603 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22607 @ @<Complain about improper type@>=
22608 { exp_err("Improper type");
22610 help2("Next time say `withpen <known pen expression>';")
22611 ("I'll ignore the bad `with' clause and look for another.");
22612 if ( t==with_pre_script )
22613 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22614 else if ( t==with_post_script )
22615 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22616 else if ( t==mp_picture_type )
22617 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22618 else if ( t==mp_uninitialized_model )
22619 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22620 else if ( t==mp_rgb_model )
22621 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22622 else if ( t==mp_cmyk_model )
22623 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22624 else if ( t==mp_grey_model )
22625 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22626 mp_put_get_flush_error(mp, 0);
22629 @ Forcing the color to be between |0| and |unity| here guarantees that no
22630 picture will ever contain a color outside the legal range for \ps\ graphics.
22632 @<Transfer a color from the current expression to object~|cp|@>=
22633 { if ( mp->cur_type==mp_color_type )
22634 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22635 else if ( mp->cur_type==mp_cmykcolor_type )
22636 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22637 else if ( mp->cur_type==mp_known )
22638 @<Transfer a greyscale from the current expression to object~|cp|@>
22639 else if ( mp->cur_exp==false_code )
22640 @<Transfer a noncolor from the current expression to object~|cp|@>;
22643 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22644 { q=value(mp->cur_exp);
22649 red_val(cp)=value(red_part_loc(q));
22650 green_val(cp)=value(green_part_loc(q));
22651 blue_val(cp)=value(blue_part_loc(q));
22652 color_model(cp)=mp_rgb_model;
22653 if ( red_val(cp)<0 ) red_val(cp)=0;
22654 if ( green_val(cp)<0 ) green_val(cp)=0;
22655 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22656 if ( red_val(cp)>unity ) red_val(cp)=unity;
22657 if ( green_val(cp)>unity ) green_val(cp)=unity;
22658 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22661 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22662 { q=value(mp->cur_exp);
22663 cyan_val(cp)=value(cyan_part_loc(q));
22664 magenta_val(cp)=value(magenta_part_loc(q));
22665 yellow_val(cp)=value(yellow_part_loc(q));
22666 black_val(cp)=value(black_part_loc(q));
22667 color_model(cp)=mp_cmyk_model;
22668 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22669 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22670 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22671 if ( black_val(cp)<0 ) black_val(cp)=0;
22672 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22673 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22674 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22675 if ( black_val(cp)>unity ) black_val(cp)=unity;
22678 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22685 color_model(cp)=mp_grey_model;
22686 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22687 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22690 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22697 color_model(cp)=mp_no_model;
22700 @ @<Make |cp| a colored object in object list~|p|@>=
22702 while ( cp!=null ){
22703 if ( has_color(cp) ) break;
22708 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22710 while ( pp!=null ) {
22711 if ( has_pen(pp) ) break;
22716 @ @<Make |dp| a stroked node in list~|p|@>=
22718 while ( dp!=null ) {
22719 if ( type(dp)==mp_stroked_code ) break;
22724 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22725 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22726 if ( pp>mp_void ) {
22727 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22729 if ( dp>mp_void ) {
22730 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22734 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22736 while ( q!=null ) {
22737 if ( has_color(q) ) {
22738 red_val(q)=red_val(cp);
22739 green_val(q)=green_val(cp);
22740 blue_val(q)=blue_val(cp);
22741 black_val(q)=black_val(cp);
22742 color_model(q)=color_model(cp);
22748 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22750 while ( q!=null ) {
22751 if ( has_pen(q) ) {
22752 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22753 pen_p(q)=copy_pen(pen_p(pp));
22759 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22761 while ( q!=null ) {
22762 if ( type(q)==mp_stroked_code ) {
22763 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22764 dash_p(q)=dash_p(dp);
22765 dash_scale(q)=unity;
22766 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22772 @ One of the things we need to do when we've parsed an \&{addto} or
22773 similar command is find the header of a supposed \&{picture} variable, given
22774 a token list for that variable. Since the edge structure is about to be
22775 updated, we use |private_edges| to make sure that this is possible.
22777 @<Declare action procedures for use by |do_statement|@>=
22778 pointer mp_find_edges_var (MP mp, pointer t) ;
22780 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22782 pointer cur_edges; /* the return value */
22783 p=mp_find_variable(mp, t); cur_edges=null;
22785 mp_obliterated(mp, t); mp_put_get_error(mp);
22786 } else if ( type(p)!=mp_picture_type ) {
22787 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22788 @.Variable x is the wrong type@>
22789 mp_print(mp, " is the wrong type (");
22790 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22791 help2("I was looking for a \"known\" picture variable.")
22792 ("So I'll not change anything just now.");
22793 mp_put_get_error(mp);
22795 value(p)=mp_private_edges(mp, value(p));
22796 cur_edges=value(p);
22798 mp_flush_node_list(mp, t);
22802 @ @<Cases of |do_statement|...@>=
22803 case add_to_command: mp_do_add_to(mp); break;
22804 case bounds_command:mp_do_bounds(mp); break;
22807 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22808 @:clip_}{\&{clip} primitive@>
22809 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22810 @:set_bounds_}{\&{setbounds} primitive@>
22812 @ @<Cases of |print_cmd...@>=
22813 case bounds_command:
22814 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22815 else mp_print(mp, "setbounds");
22818 @ The following function parses the beginning of an \&{addto} or \&{clip}
22819 command: it expects a variable name followed by a token with |cur_cmd=sep|
22820 and then an expression. The function returns the token list for the variable
22821 and stores the command modifier for the separator token in the global variable
22822 |last_add_type|. We must be careful because this variable might get overwritten
22823 any time we call |get_x_next|.
22826 quarterword last_add_type;
22827 /* command modifier that identifies the last \&{addto} command */
22829 @ @<Declare action procedures for use by |do_statement|@>=
22830 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22832 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22833 pointer lhv; /* variable to add to left */
22834 quarterword add_type=0; /* value to be returned in |last_add_type| */
22836 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22837 if ( mp->cur_type!=mp_token_list ) {
22838 @<Abandon edges command because there's no variable@>;
22840 lhv=mp->cur_exp; add_type=mp->cur_mod;
22841 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22843 mp->last_add_type=add_type;
22847 @ @<Abandon edges command because there's no variable@>=
22848 { exp_err("Not a suitable variable");
22849 @.Not a suitable variable@>
22850 help4("At this point I needed to see the name of a picture variable.")
22851 ("(Or perhaps you have indeed presented me with one; I might")
22852 ("have missed it, if it wasn't followed by the proper token.)")
22853 ("So I'll not change anything just now.");
22854 mp_put_get_flush_error(mp, 0);
22857 @ Here is an example of how to use |start_draw_cmd|.
22859 @<Declare action procedures for use by |do_statement|@>=
22860 void mp_do_bounds (MP mp) ;
22862 @ @c void mp_do_bounds (MP mp) {
22863 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22864 pointer p; /* for list manipulation */
22865 integer m; /* initial value of |cur_mod| */
22867 lhv=mp_start_draw_cmd(mp, to_token);
22869 lhe=mp_find_edges_var(mp, lhv);
22871 mp_flush_cur_exp(mp, 0);
22872 } else if ( mp->cur_type!=mp_path_type ) {
22873 exp_err("Improper `clip'");
22874 @.Improper `addto'@>
22875 help2("This expression should have specified a known path.")
22876 ("So I'll not change anything just now.");
22877 mp_put_get_flush_error(mp, 0);
22878 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22879 @<Complain about a non-cycle@>;
22881 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22886 @ @<Complain about a non-cycle@>=
22887 { print_err("Not a cycle");
22889 help2("That contour should have ended with `..cycle' or `&cycle'.")
22890 ("So I'll not change anything just now."); mp_put_get_error(mp);
22893 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22894 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22895 link(p)=link(dummy_loc(lhe));
22896 link(dummy_loc(lhe))=p;
22897 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22898 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22899 type(p)=stop_type(m);
22900 link(obj_tail(lhe))=p;
22902 mp_init_bbox(mp, lhe);
22905 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22906 cases to deal with.
22908 @<Declare action procedures for use by |do_statement|@>=
22909 void mp_do_add_to (MP mp) ;
22911 @ @c void mp_do_add_to (MP mp) {
22912 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22913 pointer p; /* the graphical object or list for |scan_with_list| to update */
22914 pointer e; /* an edge structure to be merged */
22915 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22916 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22918 if ( add_type==also_code ) {
22919 @<Make sure the current expression is a suitable picture and set |e| and |p|
22922 @<Create a graphical object |p| based on |add_type| and the current
22925 mp_scan_with_list(mp, p);
22926 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22930 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22931 setting |e:=null| prevents anything from being added to |lhe|.
22933 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22936 if ( mp->cur_type!=mp_picture_type ) {
22937 exp_err("Improper `addto'");
22938 @.Improper `addto'@>
22939 help2("This expression should have specified a known picture.")
22940 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22942 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22943 p=link(dummy_loc(e));
22947 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22948 attempts to add to the edge structure.
22950 @<Create a graphical object |p| based on |add_type| and the current...@>=
22952 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22953 if ( mp->cur_type!=mp_path_type ) {
22954 exp_err("Improper `addto'");
22955 @.Improper `addto'@>
22956 help2("This expression should have specified a known path.")
22957 ("So I'll not change anything just now.");
22958 mp_put_get_flush_error(mp, 0);
22959 } else if ( add_type==contour_code ) {
22960 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22961 @<Complain about a non-cycle@>;
22963 p=mp_new_fill_node(mp, mp->cur_exp);
22964 mp->cur_type=mp_vacuous;
22967 p=mp_new_stroked_node(mp, mp->cur_exp);
22968 mp->cur_type=mp_vacuous;
22972 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22973 lhe=mp_find_edges_var(mp, lhv);
22975 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22976 if ( e!=null ) delete_edge_ref(e);
22977 } else if ( add_type==also_code ) {
22979 @<Merge |e| into |lhe| and delete |e|@>;
22983 } else if ( p!=null ) {
22984 link(obj_tail(lhe))=p;
22986 if ( add_type==double_path_code )
22987 if ( pen_p(p)==null )
22988 pen_p(p)=mp_get_pen_circle(mp, 0);
22991 @ @<Merge |e| into |lhe| and delete |e|@>=
22992 { if ( link(dummy_loc(e))!=null ) {
22993 link(obj_tail(lhe))=link(dummy_loc(e));
22994 obj_tail(lhe)=obj_tail(e);
22995 obj_tail(e)=dummy_loc(e);
22996 link(dummy_loc(e))=null;
22997 mp_flush_dash_list(mp, lhe);
22999 mp_toss_edges(mp, e);
23002 @ @<Cases of |do_statement|...@>=
23003 case ship_out_command: mp_do_ship_out(mp); break;
23005 @ @<Declare action procedures for use by |do_statement|@>=
23006 @<Declare the function called |tfm_check|@>
23007 @<Declare the \ps\ output procedures@>
23008 void mp_do_ship_out (MP mp) ;
23010 @ @c void mp_do_ship_out (MP mp) {
23011 integer c; /* the character code */
23012 mp_get_x_next(mp); mp_scan_expression(mp);
23013 if ( mp->cur_type!=mp_picture_type ) {
23014 @<Complain that it's not a known picture@>;
23016 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23017 if ( c<0 ) c=c+256;
23018 @<Store the width information for character code~|c|@>;
23019 mp_ship_out(mp, mp->cur_exp);
23020 mp_flush_cur_exp(mp, 0);
23024 @ @<Complain that it's not a known picture@>=
23026 exp_err("Not a known picture");
23027 help1("I can only output known pictures.");
23028 mp_put_get_flush_error(mp, 0);
23031 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23034 @<Cases of |do_statement|...@>=
23035 case every_job_command:
23036 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23040 halfword start_sym; /* a symbolic token to insert at beginning of job */
23045 @ Finally, we have only the ``message'' commands remaining.
23048 @d err_message_code 1
23050 @d filename_template_code 3
23051 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23052 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23054 mp->pool_ptr = mp->pool_ptr - g;
23056 mp_print_char(mp, '0');
23059 mp_print_int(mp, (A));
23064 mp_primitive(mp, "message",message_command,message_code);
23065 @:message_}{\&{message} primitive@>
23066 mp_primitive(mp, "errmessage",message_command,err_message_code);
23067 @:err_message_}{\&{errmessage} primitive@>
23068 mp_primitive(mp, "errhelp",message_command,err_help_code);
23069 @:err_help_}{\&{errhelp} primitive@>
23070 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23071 @:filename_template_}{\&{filenametemplate} primitive@>
23073 @ @<Cases of |print_cmd...@>=
23074 case message_command:
23075 if ( m<err_message_code ) mp_print(mp, "message");
23076 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23077 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23078 else mp_print(mp, "errhelp");
23081 @ @<Cases of |do_statement|...@>=
23082 case message_command: mp_do_message(mp); break;
23084 @ @<Declare action procedures for use by |do_statement|@>=
23085 @<Declare a procedure called |no_string_err|@>
23086 void mp_do_message (MP mp) ;
23089 @c void mp_do_message (MP mp) {
23090 int m; /* the type of message */
23091 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23092 if ( mp->cur_type!=mp_string_type )
23093 mp_no_string_err(mp, "A message should be a known string expression.");
23097 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23099 case err_message_code:
23100 @<Print string |cur_exp| as an error message@>;
23102 case err_help_code:
23103 @<Save string |cur_exp| as the |err_help|@>;
23105 case filename_template_code:
23106 @<Save the filename template@>;
23108 } /* there are no other cases */
23110 mp_flush_cur_exp(mp, 0);
23113 @ @<Declare a procedure called |no_string_err|@>=
23114 void mp_no_string_err (MP mp, const char *s) {
23115 exp_err("Not a string");
23118 mp_put_get_error(mp);
23121 @ The global variable |err_help| is zero when the user has most recently
23122 given an empty help string, or if none has ever been given.
23124 @<Save string |cur_exp| as the |err_help|@>=
23126 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23127 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23128 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23131 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23132 \&{errhelp}, we don't want to give a long help message each time. So we
23133 give a verbose explanation only once.
23136 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23138 @ @<Set init...@>=mp->long_help_seen=false;
23140 @ @<Print string |cur_exp| as an error message@>=
23142 print_err(""); mp_print_str(mp, mp->cur_exp);
23143 if ( mp->err_help!=0 ) {
23144 mp->use_err_help=true;
23145 } else if ( mp->long_help_seen ) {
23146 help1("(That was another `errmessage'.)") ;
23148 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23149 help4("This error message was generated by an `errmessage'")
23150 ("command, so I can\'t give any explicit help.")
23151 ("Pretend that you're Miss Marple: Examine all clues,")
23153 ("and deduce the truth by inspired guesses.");
23155 mp_put_get_error(mp); mp->use_err_help=false;
23158 @ @<Cases of |do_statement|...@>=
23159 case write_command: mp_do_write(mp); break;
23161 @ @<Declare action procedures for use by |do_statement|@>=
23162 void mp_do_write (MP mp) ;
23164 @ @c void mp_do_write (MP mp) {
23165 str_number t; /* the line of text to be written */
23166 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23167 int old_setting; /* for saving |selector| during output */
23169 mp_scan_expression(mp);
23170 if ( mp->cur_type!=mp_string_type ) {
23171 mp_no_string_err(mp, "The text to be written should be a known string expression");
23172 } else if ( mp->cur_cmd!=to_token ) {
23173 print_err("Missing `to' clause");
23174 help1("A write command should end with `to <filename>'");
23175 mp_put_get_error(mp);
23177 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23179 mp_scan_expression(mp);
23180 if ( mp->cur_type!=mp_string_type )
23181 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23183 @<Write |t| to the file named by |cur_exp|@>;
23187 mp_flush_cur_exp(mp, 0);
23190 @ @<Write |t| to the file named by |cur_exp|@>=
23192 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23193 |cur_exp| must be inserted@>;
23194 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23195 @<Record the end of file on |wr_file[n]|@>;
23197 old_setting=mp->selector;
23198 mp->selector=n+write_file;
23199 mp_print_str(mp, t); mp_print_ln(mp);
23200 mp->selector = old_setting;
23204 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23206 char *fn = str(mp->cur_exp);
23208 n0=mp->write_files;
23209 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23210 if ( n==0 ) { /* bottom reached */
23211 if ( n0==mp->write_files ) {
23212 if ( mp->write_files<mp->max_write_files ) {
23213 incr(mp->write_files);
23218 l = mp->max_write_files + (mp->max_write_files>>2);
23219 wr_file = xmalloc((l+1),sizeof(void *));
23220 wr_fname = xmalloc((l+1),sizeof(char *));
23221 for (k=0;k<=l;k++) {
23222 if (k<=mp->max_write_files) {
23223 wr_file[k]=mp->wr_file[k];
23224 wr_fname[k]=mp->wr_fname[k];
23230 xfree(mp->wr_file); xfree(mp->wr_fname);
23231 mp->max_write_files = l;
23232 mp->wr_file = wr_file;
23233 mp->wr_fname = wr_fname;
23237 mp_open_write_file(mp, fn ,n);
23240 if ( mp->wr_fname[n]==NULL ) n0=n;
23245 @ @<Record the end of file on |wr_file[n]|@>=
23246 { (mp->close_file)(mp,mp->wr_file[n]);
23247 xfree(mp->wr_fname[n]);
23248 mp->wr_fname[n]=NULL;
23249 if ( n==mp->write_files-1 ) mp->write_files=n;
23253 @* \[42] Writing font metric data.
23254 \TeX\ gets its knowledge about fonts from font metric files, also called
23255 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23256 but other programs know about them too. One of \MP's duties is to
23257 write \.{TFM} files so that the user's fonts can readily be
23258 applied to typesetting.
23259 @:TFM files}{\.{TFM} files@>
23260 @^font metric files@>
23262 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23263 Since the number of bytes is always a multiple of~4, we could
23264 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23265 byte interpretation. The format of \.{TFM} files was designed by
23266 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23267 @^Ramshaw, Lyle Harold@>
23268 of information in a compact but useful form.
23271 void * tfm_file; /* the font metric output goes here */
23272 char * metric_file_name; /* full name of the font metric file */
23274 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23275 integers that give the lengths of the various subsequent portions
23276 of the file. These twelve integers are, in order:
23277 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23278 |lf|&length of the entire file, in words;\cr
23279 |lh|&length of the header data, in words;\cr
23280 |bc|&smallest character code in the font;\cr
23281 |ec|&largest character code in the font;\cr
23282 |nw|&number of words in the width table;\cr
23283 |nh|&number of words in the height table;\cr
23284 |nd|&number of words in the depth table;\cr
23285 |ni|&number of words in the italic correction table;\cr
23286 |nl|&number of words in the lig/kern table;\cr
23287 |nk|&number of words in the kern table;\cr
23288 |ne|&number of words in the extensible character table;\cr
23289 |np|&number of font parameter words.\cr}}$$
23290 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23292 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23293 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23294 and as few as 0 characters (if |bc=ec+1|).
23296 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23297 16 or more bits, the most significant bytes appear first in the file.
23298 This is called BigEndian order.
23299 @^BigEndian order@>
23301 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23304 The most important data type used here is a |fix_word|, which is
23305 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23306 quantity, with the two's complement of the entire word used to represent
23307 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23308 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23309 the smallest is $-2048$. We will see below, however, that all but two of
23310 the |fix_word| values must lie between $-16$ and $+16$.
23312 @ The first data array is a block of header information, which contains
23313 general facts about the font. The header must contain at least two words,
23314 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23315 header information of use to other software routines might also be
23316 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23317 For example, 16 more words of header information are in use at the Xerox
23318 Palo Alto Research Center; the first ten specify the character coding
23319 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23320 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23321 last gives the ``face byte.''
23323 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23324 the \.{GF} output file. This helps ensure consistency between files,
23325 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23326 should match the check sums on actual fonts that are used. The actual
23327 relation between this check sum and the rest of the \.{TFM} file is not
23328 important; the check sum is simply an identification number with the
23329 property that incompatible fonts almost always have distinct check sums.
23332 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23333 font, in units of \TeX\ points. This number must be at least 1.0; it is
23334 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23335 font, i.e., a font that was designed to look best at a 10-point size,
23336 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23337 $\delta$ \.{pt}', the effect is to override the design size and replace it
23338 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23339 the font image by a factor of $\delta$ divided by the design size. {\sl
23340 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23341 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23342 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23343 since many fonts have a design size equal to one em. The other dimensions
23344 must be less than 16 design-size units in absolute value; thus,
23345 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23346 \.{TFM} file whose first byte might be something besides 0 or 255.
23349 @ Next comes the |char_info| array, which contains one |char_info_word|
23350 per character. Each word in this part of the file contains six fields
23351 packed into four bytes as follows.
23353 \yskip\hang first byte: |width_index| (8 bits)\par
23354 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23356 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23358 \hang fourth byte: |remainder| (8 bits)\par
23360 The actual width of a character is \\{width}|[width_index]|, in design-size
23361 units; this is a device for compressing information, since many characters
23362 have the same width. Since it is quite common for many characters
23363 to have the same height, depth, or italic correction, the \.{TFM} format
23364 imposes a limit of 16 different heights, 16 different depths, and
23365 64 different italic corrections.
23367 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23368 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23369 value of zero. The |width_index| should never be zero unless the
23370 character does not exist in the font, since a character is valid if and
23371 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23373 @ The |tag| field in a |char_info_word| has four values that explain how to
23374 interpret the |remainder| field.
23376 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23377 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23378 program starting at location |remainder| in the |lig_kern| array.\par
23379 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23380 characters of ascending sizes, and not the largest in the chain. The
23381 |remainder| field gives the character code of the next larger character.\par
23382 \hang|tag=3| (|ext_tag|) means that this character code represents an
23383 extensible character, i.e., a character that is built up of smaller pieces
23384 so that it can be made arbitrarily large. The pieces are specified in
23385 |exten[remainder]|.\par
23387 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23388 unless they are used in special circumstances in math formulas. For example,
23389 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23390 operation looks for both |list_tag| and |ext_tag|.
23392 @d no_tag 0 /* vanilla character */
23393 @d lig_tag 1 /* character has a ligature/kerning program */
23394 @d list_tag 2 /* character has a successor in a charlist */
23395 @d ext_tag 3 /* character is extensible */
23397 @ The |lig_kern| array contains instructions in a simple programming language
23398 that explains what to do for special letter pairs. Each word in this array is a
23399 |lig_kern_command| of four bytes.
23401 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23402 step if the byte is 128 or more, otherwise the next step is obtained by
23403 skipping this number of intervening steps.\par
23404 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23405 then perform the operation and stop, otherwise continue.''\par
23406 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23407 a kern step otherwise.\par
23408 \hang fourth byte: |remainder|.\par
23411 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23412 between the current character and |next_char|. This amount is
23413 often negative, so that the characters are brought closer together
23414 by kerning; but it might be positive.
23416 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23417 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23418 |remainder| is inserted between the current character and |next_char|;
23419 then the current character is deleted if $b=0$, and |next_char| is
23420 deleted if $c=0$; then we pass over $a$~characters to reach the next
23421 current character (which may have a ligature/kerning program of its own).
23423 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23424 the |next_char| byte is the so-called right boundary character of this font;
23425 the value of |next_char| need not lie between |bc| and~|ec|.
23426 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23427 there is a special ligature/kerning program for a left boundary character,
23428 beginning at location |256*op_byte+remainder|.
23429 The interpretation is that \TeX\ puts implicit boundary characters
23430 before and after each consecutive string of characters from the same font.
23431 These implicit characters do not appear in the output, but they can affect
23432 ligatures and kerning.
23434 If the very first instruction of a character's |lig_kern| program has
23435 |skip_byte>128|, the program actually begins in location
23436 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23437 arrays, because the first instruction must otherwise
23438 appear in a location |<=255|.
23440 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23442 $$\hbox{|256*op_byte+remainder<nl|.}$$
23443 If such an instruction is encountered during
23444 normal program execution, it denotes an unconditional halt; no ligature
23445 command is performed.
23448 /* value indicating `\.{STOP}' in a lig/kern program */
23449 @d kern_flag (128) /* op code for a kern step */
23450 @d skip_byte(A) mp->lig_kern[(A)].b0
23451 @d next_char(A) mp->lig_kern[(A)].b1
23452 @d op_byte(A) mp->lig_kern[(A)].b2
23453 @d rem_byte(A) mp->lig_kern[(A)].b3
23455 @ Extensible characters are specified by an |extensible_recipe|, which
23456 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23457 order). These bytes are the character codes of individual pieces used to
23458 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23459 present in the built-up result. For example, an extensible vertical line is
23460 like an extensible bracket, except that the top and bottom pieces are missing.
23462 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23463 if the piece isn't present. Then the extensible characters have the form
23464 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23465 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23466 The width of the extensible character is the width of $R$; and the
23467 height-plus-depth is the sum of the individual height-plus-depths of the
23468 components used, since the pieces are butted together in a vertical list.
23470 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23471 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23472 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23473 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23475 @ The final portion of a \.{TFM} file is the |param| array, which is another
23476 sequence of |fix_word| values.
23478 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23479 to help position accents. For example, |slant=.25| means that when you go
23480 up one unit, you also go .25 units to the right. The |slant| is a pure
23481 number; it is the only |fix_word| other than the design size itself that is
23482 not scaled by the design size.
23485 \hang|param[2]=space| is the normal spacing between words in text.
23486 Note that character 040 in the font need not have anything to do with
23489 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23491 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23493 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23494 the height of letters for which accents don't have to be raised or lowered.
23496 \hang|param[6]=quad| is the size of one em in the font.
23498 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23502 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23507 @d space_stretch_code 3
23508 @d space_shrink_code 4
23511 @d extra_space_code 7
23513 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23514 information, and it does this all at once at the end of a job.
23515 In order to prepare for such frenetic activity, it squirrels away the
23516 necessary facts in various arrays as information becomes available.
23518 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23519 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23520 |tfm_ital_corr|. Other information about a character (e.g., about
23521 its ligatures or successors) is accessible via the |char_tag| and
23522 |char_remainder| arrays. Other information about the font as a whole
23523 is kept in additional arrays called |header_byte|, |lig_kern|,
23524 |kern|, |exten|, and |param|.
23526 @d max_tfm_int 32510
23527 @d undefined_label max_tfm_int /* an undefined local label */
23530 #define TFM_ITEMS 257
23532 eight_bits ec; /* smallest and largest character codes shipped out */
23533 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23534 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23535 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23536 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23537 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23538 int char_tag[TFM_ITEMS]; /* |remainder| category */
23539 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23540 char *header_byte; /* bytes of the \.{TFM} header */
23541 int header_last; /* last initialized \.{TFM} header byte */
23542 int header_size; /* size of the \.{TFM} header */
23543 four_quarters *lig_kern; /* the ligature/kern table */
23544 short nl; /* the number of ligature/kern steps so far */
23545 scaled *kern; /* distinct kerning amounts */
23546 short nk; /* the number of distinct kerns so far */
23547 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23548 short ne; /* the number of extensible characters so far */
23549 scaled *param; /* \&{fontinfo} parameters */
23550 short np; /* the largest \&{fontinfo} parameter specified so far */
23551 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23552 short skip_table[TFM_ITEMS]; /* local label status */
23553 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23554 integer bchar; /* right boundary character */
23555 short bch_label; /* left boundary starting location */
23556 short ll;short lll; /* registers used for lig/kern processing */
23557 short label_loc[257]; /* lig/kern starting addresses */
23558 eight_bits label_char[257]; /* characters for |label_loc| */
23559 short label_ptr; /* highest position occupied in |label_loc| */
23561 @ @<Allocate or initialize ...@>=
23562 mp->header_last = 0; mp->header_size = 128; /* just for init */
23563 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23564 mp->lig_kern = NULL; /* allocated when needed */
23565 mp->kern = NULL; /* allocated when needed */
23566 mp->param = NULL; /* allocated when needed */
23568 @ @<Dealloc variables@>=
23569 xfree(mp->header_byte);
23570 xfree(mp->lig_kern);
23575 for (k=0;k<= 255;k++ ) {
23576 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23577 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23578 mp->skip_table[k]=undefined_label;
23580 memset(mp->header_byte,0,mp->header_size);
23581 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23582 mp->internal[mp_boundary_char]=-unity;
23583 mp->bch_label=undefined_label;
23584 mp->label_loc[0]=-1; mp->label_ptr=0;
23586 @ @<Declarations@>=
23587 scaled mp_tfm_check (MP mp,small_number m) ;
23589 @ @<Declare the function called |tfm_check|@>=
23590 scaled mp_tfm_check (MP mp,small_number m) {
23591 if ( abs(mp->internal[m])>=fraction_half ) {
23592 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23593 @.Enormous charwd...@>
23594 @.Enormous chardp...@>
23595 @.Enormous charht...@>
23596 @.Enormous charic...@>
23597 @.Enormous designsize...@>
23598 mp_print(mp, " has been reduced");
23599 help1("Font metric dimensions must be less than 2048pt.");
23600 mp_put_get_error(mp);
23601 if ( mp->internal[m]>0 ) return (fraction_half-1);
23602 else return (1-fraction_half);
23604 return mp->internal[m];
23608 @ @<Store the width information for character code~|c|@>=
23609 if ( c<mp->bc ) mp->bc=c;
23610 if ( c>mp->ec ) mp->ec=c;
23611 mp->char_exists[c]=true;
23612 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23613 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23614 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23615 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23617 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23619 @<Cases of |do_statement|...@>=
23620 case tfm_command: mp_do_tfm_command(mp); break;
23622 @ @d char_list_code 0
23623 @d lig_table_code 1
23624 @d extensible_code 2
23625 @d header_byte_code 3
23626 @d font_dimen_code 4
23629 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23630 @:char_list_}{\&{charlist} primitive@>
23631 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23632 @:lig_table_}{\&{ligtable} primitive@>
23633 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23634 @:extensible_}{\&{extensible} primitive@>
23635 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23636 @:header_byte_}{\&{headerbyte} primitive@>
23637 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23638 @:font_dimen_}{\&{fontdimen} primitive@>
23640 @ @<Cases of |print_cmd...@>=
23643 case char_list_code:mp_print(mp, "charlist"); break;
23644 case lig_table_code:mp_print(mp, "ligtable"); break;
23645 case extensible_code:mp_print(mp, "extensible"); break;
23646 case header_byte_code:mp_print(mp, "headerbyte"); break;
23647 default: mp_print(mp, "fontdimen"); break;
23651 @ @<Declare action procedures for use by |do_statement|@>=
23652 eight_bits mp_get_code (MP mp) ;
23654 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23655 integer c; /* the code value found */
23656 mp_get_x_next(mp); mp_scan_expression(mp);
23657 if ( mp->cur_type==mp_known ) {
23658 c=mp_round_unscaled(mp, mp->cur_exp);
23659 if ( c>=0 ) if ( c<256 ) return c;
23660 } else if ( mp->cur_type==mp_string_type ) {
23661 if ( length(mp->cur_exp)==1 ) {
23662 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23666 exp_err("Invalid code has been replaced by 0");
23667 @.Invalid code...@>
23668 help2("I was looking for a number between 0 and 255, or for a")
23669 ("string of length 1. Didn't find it; will use 0 instead.");
23670 mp_put_get_flush_error(mp, 0); c=0;
23674 @ @<Declare action procedures for use by |do_statement|@>=
23675 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23677 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23678 if ( mp->char_tag[c]==no_tag ) {
23679 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23681 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23682 mp->label_char[mp->label_ptr]=c;
23685 @<Complain about a character tag conflict@>;
23689 @ @<Complain about a character tag conflict@>=
23691 print_err("Character ");
23692 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23693 else if ( c==256 ) mp_print(mp, "||");
23694 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23695 mp_print(mp, " is already ");
23696 @.Character c is already...@>
23697 switch (mp->char_tag[c]) {
23698 case lig_tag: mp_print(mp, "in a ligtable"); break;
23699 case list_tag: mp_print(mp, "in a charlist"); break;
23700 case ext_tag: mp_print(mp, "extensible"); break;
23701 } /* there are no other cases */
23702 help2("It's not legal to label a character more than once.")
23703 ("So I'll not change anything just now.");
23704 mp_put_get_error(mp);
23707 @ @<Declare action procedures for use by |do_statement|@>=
23708 void mp_do_tfm_command (MP mp) ;
23710 @ @c void mp_do_tfm_command (MP mp) {
23711 int c,cc; /* character codes */
23712 int k; /* index into the |kern| array */
23713 int j; /* index into |header_byte| or |param| */
23714 switch (mp->cur_mod) {
23715 case char_list_code:
23717 /* we will store a list of character successors */
23718 while ( mp->cur_cmd==colon ) {
23719 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23722 case lig_table_code:
23723 if (mp->lig_kern==NULL)
23724 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23725 if (mp->kern==NULL)
23726 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23727 @<Store a list of ligature/kern steps@>;
23729 case extensible_code:
23730 @<Define an extensible recipe@>;
23732 case header_byte_code:
23733 case font_dimen_code:
23734 c=mp->cur_mod; mp_get_x_next(mp);
23735 mp_scan_expression(mp);
23736 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23737 exp_err("Improper location");
23738 @.Improper location@>
23739 help2("I was looking for a known, positive number.")
23740 ("For safety's sake I'll ignore the present command.");
23741 mp_put_get_error(mp);
23743 j=mp_round_unscaled(mp, mp->cur_exp);
23744 if ( mp->cur_cmd!=colon ) {
23745 mp_missing_err(mp, ":");
23747 help1("A colon should follow a headerbyte or fontinfo location.");
23750 if ( c==header_byte_code ) {
23751 @<Store a list of header bytes@>;
23753 if (mp->param==NULL)
23754 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23755 @<Store a list of font dimensions@>;
23759 } /* there are no other cases */
23762 @ @<Store a list of ligature/kern steps@>=
23764 mp->lk_started=false;
23767 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23768 @<Process a |skip_to| command and |goto done|@>;
23769 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23770 else { mp_back_input(mp); c=mp_get_code(mp); };
23771 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23772 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23774 if ( mp->cur_cmd==lig_kern_token ) {
23775 @<Compile a ligature/kern command@>;
23777 print_err("Illegal ligtable step");
23778 @.Illegal ligtable step@>
23779 help1("I was looking for `=:' or `kern' here.");
23780 mp_back_error(mp); next_char(mp->nl)=qi(0);
23781 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23782 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23784 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23786 if ( mp->cur_cmd==comma ) goto CONTINUE;
23787 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23792 mp_primitive(mp, "=:",lig_kern_token,0);
23793 @:=:_}{\.{=:} primitive@>
23794 mp_primitive(mp, "=:|",lig_kern_token,1);
23795 @:=:/_}{\.{=:\char'174} primitive@>
23796 mp_primitive(mp, "=:|>",lig_kern_token,5);
23797 @:=:/>_}{\.{=:\char'174>} primitive@>
23798 mp_primitive(mp, "|=:",lig_kern_token,2);
23799 @:=:/_}{\.{\char'174=:} primitive@>
23800 mp_primitive(mp, "|=:>",lig_kern_token,6);
23801 @:=:/>_}{\.{\char'174=:>} primitive@>
23802 mp_primitive(mp, "|=:|",lig_kern_token,3);
23803 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23804 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23805 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23806 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23807 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23808 mp_primitive(mp, "kern",lig_kern_token,128);
23809 @:kern_}{\&{kern} primitive@>
23811 @ @<Cases of |print_cmd...@>=
23812 case lig_kern_token:
23814 case 0:mp_print(mp, "=:"); break;
23815 case 1:mp_print(mp, "=:|"); break;
23816 case 2:mp_print(mp, "|=:"); break;
23817 case 3:mp_print(mp, "|=:|"); break;
23818 case 5:mp_print(mp, "=:|>"); break;
23819 case 6:mp_print(mp, "|=:>"); break;
23820 case 7:mp_print(mp, "|=:|>"); break;
23821 case 11:mp_print(mp, "|=:|>>"); break;
23822 default: mp_print(mp, "kern"); break;
23826 @ Local labels are implemented by maintaining the |skip_table| array,
23827 where |skip_table[c]| is either |undefined_label| or the address of the
23828 most recent lig/kern instruction that skips to local label~|c|. In the
23829 latter case, the |skip_byte| in that instruction will (temporarily)
23830 be zero if there were no prior skips to this label, or it will be the
23831 distance to the prior skip.
23833 We may need to cancel skips that span more than 127 lig/kern steps.
23835 @d cancel_skips(A) mp->ll=(A);
23837 mp->lll=qo(skip_byte(mp->ll));
23838 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23839 } while (mp->lll!=0)
23840 @d skip_error(A) { print_err("Too far to skip");
23841 @.Too far to skip@>
23842 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23843 mp_error(mp); cancel_skips((A));
23846 @<Process a |skip_to| command and |goto done|@>=
23849 if ( mp->nl-mp->skip_table[c]>128 ) {
23850 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23852 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23853 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23854 mp->skip_table[c]=mp->nl-1; goto DONE;
23857 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23859 if ( mp->cur_cmd==colon ) {
23860 if ( c==256 ) mp->bch_label=mp->nl;
23861 else mp_set_tag(mp, c,lig_tag,mp->nl);
23862 } else if ( mp->skip_table[c]<undefined_label ) {
23863 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23865 mp->lll=qo(skip_byte(mp->ll));
23866 if ( mp->nl-mp->ll>128 ) {
23867 skip_error(mp->ll); goto CONTINUE;
23869 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23870 } while (mp->lll!=0);
23875 @ @<Compile a ligature/kern...@>=
23877 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23878 if ( mp->cur_mod<128 ) { /* ligature op */
23879 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23881 mp_get_x_next(mp); mp_scan_expression(mp);
23882 if ( mp->cur_type!=mp_known ) {
23883 exp_err("Improper kern");
23885 help2("The amount of kern should be a known numeric value.")
23886 ("I'm zeroing this one. Proceed, with fingers crossed.");
23887 mp_put_get_flush_error(mp, 0);
23889 mp->kern[mp->nk]=mp->cur_exp;
23891 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23893 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23896 op_byte(mp->nl)=kern_flag+(k / 256);
23897 rem_byte(mp->nl)=qi((k % 256));
23899 mp->lk_started=true;
23902 @ @d missing_extensible_punctuation(A)
23903 { mp_missing_err(mp, (A));
23904 @.Missing `\char`\#'@>
23905 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23908 @<Define an extensible recipe@>=
23910 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23911 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23912 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23913 ext_top(mp->ne)=qi(mp_get_code(mp));
23914 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23915 ext_mid(mp->ne)=qi(mp_get_code(mp));
23916 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23917 ext_bot(mp->ne)=qi(mp_get_code(mp));
23918 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23919 ext_rep(mp->ne)=qi(mp_get_code(mp));
23923 @ The header could contain ASCII zeroes, so can't use |strdup|.
23925 @<Store a list of header bytes@>=
23927 if ( j>=mp->header_size ) {
23928 int l = mp->header_size + (mp->header_size >> 2);
23929 char *t = xmalloc(l,sizeof(char));
23931 memcpy(t,mp->header_byte,mp->header_size);
23932 xfree (mp->header_byte);
23933 mp->header_byte = t;
23934 mp->header_size = l;
23936 mp->header_byte[j]=mp_get_code(mp);
23937 incr(j); incr(mp->header_last);
23938 } while (mp->cur_cmd==comma)
23940 @ @<Store a list of font dimensions@>=
23942 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23943 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23944 mp_get_x_next(mp); mp_scan_expression(mp);
23945 if ( mp->cur_type!=mp_known ){
23946 exp_err("Improper font parameter");
23947 @.Improper font parameter@>
23948 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23949 mp_put_get_flush_error(mp, 0);
23951 mp->param[j]=mp->cur_exp; incr(j);
23952 } while (mp->cur_cmd==comma)
23954 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23955 All that remains is to output it in the correct format.
23957 An interesting problem needs to be solved in this connection, because
23958 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23959 and 64~italic corrections. If the data has more distinct values than
23960 this, we want to meet the necessary restrictions by perturbing the
23961 given values as little as possible.
23963 \MP\ solves this problem in two steps. First the values of a given
23964 kind (widths, heights, depths, or italic corrections) are sorted;
23965 then the list of sorted values is perturbed, if necessary.
23967 The sorting operation is facilitated by having a special node of
23968 essentially infinite |value| at the end of the current list.
23970 @<Initialize table entries...@>=
23971 value(inf_val)=fraction_four;
23973 @ Straight linear insertion is good enough for sorting, since the lists
23974 are usually not terribly long. As we work on the data, the current list
23975 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23976 list will be in increasing order of their |value| fields.
23978 Given such a list, the |sort_in| function takes a value and returns a pointer
23979 to where that value can be found in the list. The value is inserted in
23980 the proper place, if necessary.
23982 At the time we need to do these operations, most of \MP's work has been
23983 completed, so we will have plenty of memory to play with. The value nodes
23984 that are allocated for sorting will never be returned to free storage.
23986 @d clear_the_list link(temp_head)=inf_val
23988 @c pointer mp_sort_in (MP mp,scaled v) {
23989 pointer p,q,r; /* list manipulation registers */
23993 if ( v<=value(q) ) break;
23996 if ( v<value(q) ) {
23997 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24002 @ Now we come to the interesting part, where we reduce the list if necessary
24003 until it has the required size. The |min_cover| routine is basic to this
24004 process; it computes the minimum number~|m| such that the values of the
24005 current sorted list can be covered by |m|~intervals of width~|d|. It
24006 also sets the global value |perturbation| to the smallest value $d'>d$
24007 such that the covering found by this algorithm would be different.
24009 In particular, |min_cover(0)| returns the number of distinct values in the
24010 current list and sets |perturbation| to the minimum distance between
24013 @c integer mp_min_cover (MP mp,scaled d) {
24014 pointer p; /* runs through the current list */
24015 scaled l; /* the least element covered by the current interval */
24016 integer m; /* lower bound on the size of the minimum cover */
24017 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24018 while ( p!=inf_val ){
24019 incr(m); l=value(p);
24020 do { p=link(p); } while (value(p)<=l+d);
24021 if ( value(p)-l<mp->perturbation )
24022 mp->perturbation=value(p)-l;
24028 scaled perturbation; /* quantity related to \.{TFM} rounding */
24029 integer excess; /* the list is this much too long */
24031 @ The smallest |d| such that a given list can be covered with |m| intervals
24032 is determined by the |threshold| routine, which is sort of an inverse
24033 to |min_cover|. The idea is to increase the interval size rapidly until
24034 finding the range, then to go sequentially until the exact borderline has
24037 @c scaled mp_threshold (MP mp,integer m) {
24038 scaled d; /* lower bound on the smallest interval size */
24039 mp->excess=mp_min_cover(mp, 0)-m;
24040 if ( mp->excess<=0 ) {
24044 d=mp->perturbation;
24045 } while (mp_min_cover(mp, d+d)>m);
24046 while ( mp_min_cover(mp, d)>m )
24047 d=mp->perturbation;
24052 @ The |skimp| procedure reduces the current list to at most |m| entries,
24053 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24054 is the |k|th distinct value on the resulting list, and it sets
24055 |perturbation| to the maximum amount by which a |value| field has
24056 been changed. The size of the resulting list is returned as the
24059 @c integer mp_skimp (MP mp,integer m) {
24060 scaled d; /* the size of intervals being coalesced */
24061 pointer p,q,r; /* list manipulation registers */
24062 scaled l; /* the least value in the current interval */
24063 scaled v; /* a compromise value */
24064 d=mp_threshold(mp, m); mp->perturbation=0;
24065 q=temp_head; m=0; p=link(temp_head);
24066 while ( p!=inf_val ) {
24067 incr(m); l=value(p); info(p)=m;
24068 if ( value(link(p))<=l+d ) {
24069 @<Replace an interval of values by its midpoint@>;
24076 @ @<Replace an interval...@>=
24079 p=link(p); info(p)=m;
24080 decr(mp->excess); if ( mp->excess==0 ) d=0;
24081 } while (value(link(p))<=l+d);
24082 v=l+halfp(value(p)-l);
24083 if ( value(p)-v>mp->perturbation )
24084 mp->perturbation=value(p)-v;
24087 r=link(r); value(r)=v;
24089 link(q)=p; /* remove duplicate values from the current list */
24092 @ A warning message is issued whenever something is perturbed by
24093 more than 1/16\thinspace pt.
24095 @c void mp_tfm_warning (MP mp,small_number m) {
24096 mp_print_nl(mp, "(some ");
24097 mp_print(mp, mp->int_name[m]);
24098 @.some charwds...@>
24099 @.some chardps...@>
24100 @.some charhts...@>
24101 @.some charics...@>
24102 mp_print(mp, " values had to be adjusted by as much as ");
24103 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24106 @ Here's an example of how we use these routines.
24107 The width data needs to be perturbed only if there are 256 distinct
24108 widths, but \MP\ must check for this case even though it is
24111 An integer variable |k| will be defined when we use this code.
24112 The |dimen_head| array will contain pointers to the sorted
24113 lists of dimensions.
24115 @<Massage the \.{TFM} widths@>=
24117 for (k=mp->bc;k<=mp->ec;k++) {
24118 if ( mp->char_exists[k] )
24119 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24121 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24122 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24125 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24127 @ Heights, depths, and italic corrections are different from widths
24128 not only because their list length is more severely restricted, but
24129 also because zero values do not need to be put into the lists.
24131 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24133 for (k=mp->bc;k<=mp->ec;k++) {
24134 if ( mp->char_exists[k] ) {
24135 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24136 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24139 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24140 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24142 for (k=mp->bc;k<=mp->ec;k++) {
24143 if ( mp->char_exists[k] ) {
24144 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24145 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24148 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24149 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24151 for (k=mp->bc;k<=mp->ec;k++) {
24152 if ( mp->char_exists[k] ) {
24153 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24154 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24157 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24158 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24160 @ @<Initialize table entries...@>=
24161 value(zero_val)=0; info(zero_val)=0;
24163 @ Bytes 5--8 of the header are set to the design size, unless the user has
24164 some crazy reason for specifying them differently.
24167 Error messages are not allowed at the time this procedure is called,
24168 so a warning is printed instead.
24170 The value of |max_tfm_dimen| is calculated so that
24171 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24172 < \\{three\_bytes}.$$
24174 @d three_bytes 0100000000 /* $2^{24}$ */
24177 void mp_fix_design_size (MP mp) {
24178 scaled d; /* the design size */
24179 d=mp->internal[mp_design_size];
24180 if ( (d<unity)||(d>=fraction_half) ) {
24182 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24183 @.illegal design size...@>
24184 d=040000000; mp->internal[mp_design_size]=d;
24186 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24187 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24188 mp->header_byte[4]=d / 04000000;
24189 mp->header_byte[5]=(d / 4096) % 256;
24190 mp->header_byte[6]=(d / 16) % 256;
24191 mp->header_byte[7]=(d % 16)*16;
24193 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-1-mp->internal[mp_design_size] / 010000000;
24194 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24197 @ The |dimen_out| procedure computes a |fix_word| relative to the
24198 design size. If the data was out of range, it is corrected and the
24199 global variable |tfm_changed| is increased by~one.
24201 @c integer mp_dimen_out (MP mp,scaled x) {
24202 if ( abs(x)>mp->max_tfm_dimen ) {
24203 incr(mp->tfm_changed);
24204 if ( x>0 ) x=mp->max_tfm_dimen; else x=-mp->max_tfm_dimen;
24206 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24211 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24212 integer tfm_changed; /* the number of data entries that were out of bounds */
24214 @ If the user has not specified any of the first four header bytes,
24215 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24216 from the |tfm_width| data relative to the design size.
24219 @c void mp_fix_check_sum (MP mp) {
24220 eight_bits k; /* runs through character codes */
24221 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24222 integer x; /* hash value used in check sum computation */
24223 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24224 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24225 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24226 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24227 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24232 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24233 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24234 for (k=mp->bc;k<=mp->ec;k++) {
24235 if ( mp->char_exists[k] ) {
24236 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24237 B1=(B1+B1+x) % 255;
24238 B2=(B2+B2+x) % 253;
24239 B3=(B3+B3+x) % 251;
24240 B4=(B4+B4+x) % 247;
24244 @ Finally we're ready to actually write the \.{TFM} information.
24245 Here are some utility routines for this purpose.
24247 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24248 unsigned char s=(A);
24249 (mp->write_binary_file)(mp,mp->tfm_file,(void *)&s,1);
24252 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24253 tfm_out(x / 256); tfm_out(x % 256);
24255 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24256 if ( x>=0 ) tfm_out(x / three_bytes);
24258 x=x+010000000000; /* use two's complement for negative values */
24260 tfm_out((x / three_bytes) + 128);
24262 x=x % three_bytes; tfm_out(x / unity);
24263 x=x % unity; tfm_out(x / 0400);
24266 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24267 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24268 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24271 @ @<Finish the \.{TFM} file@>=
24272 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24273 mp_pack_job_name(mp, ".tfm");
24274 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24275 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24276 mp->metric_file_name=xstrdup(mp->name_of_file);
24277 @<Output the subfile sizes and header bytes@>;
24278 @<Output the character information bytes, then
24279 output the dimensions themselves@>;
24280 @<Output the ligature/kern program@>;
24281 @<Output the extensible character recipes and the font metric parameters@>;
24282 if ( mp->internal[mp_tracing_stats]>0 )
24283 @<Log the subfile sizes of the \.{TFM} file@>;
24284 mp_print_nl(mp, "Font metrics written on ");
24285 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24286 @.Font metrics written...@>
24287 (mp->close_file)(mp,mp->tfm_file)
24289 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24292 @<Output the subfile sizes and header bytes@>=
24294 LH=(k+3) / 4; /* this is the number of header words */
24295 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24296 @<Compute the ligature/kern program offset and implant the
24297 left boundary label@>;
24298 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24299 +lk_offset+mp->nk+mp->ne+mp->np);
24300 /* this is the total number of file words that will be output */
24301 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24302 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24303 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24304 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24305 mp_tfm_two(mp, mp->np);
24306 for (k=0;k< 4*LH;k++) {
24307 tfm_out(mp->header_byte[k]);
24310 @ @<Output the character information bytes...@>=
24311 for (k=mp->bc;k<=mp->ec;k++) {
24312 if ( ! mp->char_exists[k] ) {
24313 mp_tfm_four(mp, 0);
24315 tfm_out(info(mp->tfm_width[k])); /* the width index */
24316 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24317 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24318 tfm_out(mp->char_remainder[k]);
24322 for (k=1;k<=4;k++) {
24323 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24324 while ( p!=inf_val ) {
24325 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24330 @ We need to output special instructions at the beginning of the
24331 |lig_kern| array in order to specify the right boundary character
24332 and/or to handle starting addresses that exceed 255. The |label_loc|
24333 and |label_char| arrays have been set up to record all the
24334 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24335 \le|label_loc|[|label_ptr]|$.
24337 @<Compute the ligature/kern program offset...@>=
24338 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24339 if ((mp->bchar<0)||(mp->bchar>255))
24340 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24341 else { mp->lk_started=true; lk_offset=1; };
24342 @<Find the minimum |lk_offset| and adjust all remainders@>;
24343 if ( mp->bch_label<undefined_label )
24344 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24345 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24346 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24347 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24350 @ @<Find the minimum |lk_offset|...@>=
24351 k=mp->label_ptr; /* pointer to the largest unallocated label */
24352 if ( mp->label_loc[k]+lk_offset>255 ) {
24353 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24355 mp->char_remainder[mp->label_char[k]]=lk_offset;
24356 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24357 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24359 incr(lk_offset); decr(k);
24360 } while (! (lk_offset+mp->label_loc[k]<256));
24361 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24363 if ( lk_offset>0 ) {
24365 mp->char_remainder[mp->label_char[k]]
24366 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24371 @ @<Output the ligature/kern program@>=
24372 for (k=0;k<= 255;k++ ) {
24373 if ( mp->skip_table[k]<undefined_label ) {
24374 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24375 @.local label l:: was missing@>
24376 cancel_skips(mp->skip_table[k]);
24379 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24380 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24382 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24383 mp->ll=mp->label_loc[mp->label_ptr];
24384 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24385 else { tfm_out(255); tfm_out(mp->bchar); };
24386 mp_tfm_two(mp, mp->ll+lk_offset);
24388 decr(mp->label_ptr);
24389 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24392 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24393 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24395 @ @<Output the extensible character recipes...@>=
24396 for (k=0;k<=mp->ne-1;k++)
24397 mp_tfm_qqqq(mp, mp->exten[k]);
24398 for (k=1;k<=mp->np;k++) {
24400 if ( abs(mp->param[1])<fraction_half ) {
24401 mp_tfm_four(mp, mp->param[1]*16);
24403 incr(mp->tfm_changed);
24404 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24405 else mp_tfm_four(mp, -el_gordo);
24408 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24411 if ( mp->tfm_changed>0 ) {
24412 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24413 @.a font metric dimension...@>
24415 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24416 @.font metric dimensions...@>
24417 mp_print(mp, " font metric dimensions");
24419 mp_print(mp, " had to be decreased)");
24422 @ @<Log the subfile sizes of the \.{TFM} file@>=
24426 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24427 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24428 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24432 @* \[43] Reading font metric data.
24434 \MP\ isn't a typesetting program but it does need to find the bounding box
24435 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24436 well as write them.
24441 @ All the width, height, and depth information is stored in an array called
24442 |font_info|. This array is allocated sequentially and each font is stored
24443 as a series of |char_info| words followed by the width, height, and depth
24444 tables. Since |font_name| entries are permanent, their |str_ref| values are
24445 set to |max_str_ref|.
24448 typedef unsigned int font_number; /* |0..font_max| */
24450 @ The |font_info| array is indexed via a group directory arrays.
24451 For example, the |char_info| data for character~|c| in font~|f| will be
24452 in |font_info[char_base[f]+c].qqqq|.
24455 font_number font_max; /* maximum font number for included text fonts */
24456 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24457 memory_word *font_info; /* height, width, and depth data */
24458 char **font_enc_name; /* encoding names, if any */
24459 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24460 int next_fmem; /* next unused entry in |font_info| */
24461 font_number last_fnum; /* last font number used so far */
24462 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24463 char **font_name; /* name as specified in the \&{infont} command */
24464 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24465 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24466 eight_bits *font_bc;
24467 eight_bits *font_ec; /* first and last character code */
24468 int *char_base; /* base address for |char_info| */
24469 int *width_base; /* index for zeroth character width */
24470 int *height_base; /* index for zeroth character height */
24471 int *depth_base; /* index for zeroth character depth */
24472 pointer *font_sizes;
24474 @ @<Allocate or initialize ...@>=
24475 mp->font_mem_size = 10000;
24476 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24477 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24478 mp->font_enc_name = NULL;
24479 mp->font_ps_name_fixed = NULL;
24480 mp->font_dsize = NULL;
24481 mp->font_name = NULL;
24482 mp->font_ps_name = NULL;
24483 mp->font_bc = NULL;
24484 mp->font_ec = NULL;
24485 mp->last_fnum = null_font;
24486 mp->char_base = NULL;
24487 mp->width_base = NULL;
24488 mp->height_base = NULL;
24489 mp->depth_base = NULL;
24490 mp->font_sizes = null;
24492 @ @<Dealloc variables@>=
24493 for (k=1;k<=(int)mp->last_fnum;k++) {
24494 xfree(mp->font_enc_name[k]);
24495 xfree(mp->font_name[k]);
24496 xfree(mp->font_ps_name[k]);
24498 xfree(mp->font_info);
24499 xfree(mp->font_enc_name);
24500 xfree(mp->font_ps_name_fixed);
24501 xfree(mp->font_dsize);
24502 xfree(mp->font_name);
24503 xfree(mp->font_ps_name);
24504 xfree(mp->font_bc);
24505 xfree(mp->font_ec);
24506 xfree(mp->char_base);
24507 xfree(mp->width_base);
24508 xfree(mp->height_base);
24509 xfree(mp->depth_base);
24510 xfree(mp->font_sizes);
24514 void mp_reallocate_fonts (MP mp, font_number l) {
24516 XREALLOC(mp->font_enc_name, l, char *);
24517 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24518 XREALLOC(mp->font_dsize, l, scaled);
24519 XREALLOC(mp->font_name, l, char *);
24520 XREALLOC(mp->font_ps_name, l, char *);
24521 XREALLOC(mp->font_bc, l, eight_bits);
24522 XREALLOC(mp->font_ec, l, eight_bits);
24523 XREALLOC(mp->char_base, l, int);
24524 XREALLOC(mp->width_base, l, int);
24525 XREALLOC(mp->height_base, l, int);
24526 XREALLOC(mp->depth_base, l, int);
24527 XREALLOC(mp->font_sizes, l, pointer);
24528 for (f=(mp->last_fnum+1);f<=l;f++) {
24529 mp->font_enc_name[f]=NULL;
24530 mp->font_ps_name_fixed[f] = false;
24531 mp->font_name[f]=NULL;
24532 mp->font_ps_name[f]=NULL;
24533 mp->font_sizes[f]=null;
24538 @ @<Declare |mp_reallocate| functions@>=
24539 void mp_reallocate_fonts (MP mp, font_number l);
24542 @ A |null_font| containing no characters is useful for error recovery. Its
24543 |font_name| entry starts out empty but is reset each time an erroneous font is
24544 found. This helps to cut down on the number of duplicate error messages without
24545 wasting a lot of space.
24547 @d null_font 0 /* the |font_number| for an empty font */
24549 @<Set initial...@>=
24550 mp->font_dsize[null_font]=0;
24551 mp->font_bc[null_font]=1;
24552 mp->font_ec[null_font]=0;
24553 mp->char_base[null_font]=0;
24554 mp->width_base[null_font]=0;
24555 mp->height_base[null_font]=0;
24556 mp->depth_base[null_font]=0;
24558 mp->last_fnum=null_font;
24559 mp->last_ps_fnum=null_font;
24560 mp->font_name[null_font]=(char *)"nullfont";
24561 mp->font_ps_name[null_font]=(char *)"";
24562 mp->font_ps_name_fixed[null_font] = false;
24563 mp->font_enc_name[null_font]=NULL;
24564 mp->font_sizes[null_font]=null;
24566 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24567 the |width index|; the |b1| field contains the height
24568 index; the |b2| fields contains the depth index, and the |b3| field used only
24569 for temporary storage. (It is used to keep track of which characters occur in
24570 an edge structure that is being shipped out.)
24571 The corresponding words in the width, height, and depth tables are stored as
24572 |scaled| values in units of \ps\ points.
24574 With the macros below, the |char_info| word for character~|c| in font~|f| is
24575 |char_info(f)(c)| and the width is
24576 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24578 @d char_info_end(A) (A)].qqqq
24579 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24580 @d char_width_end(A) (A).b0].sc
24581 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24582 @d char_height_end(A) (A).b1].sc
24583 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24584 @d char_depth_end(A) (A).b2].sc
24585 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24586 @d ichar_exists(A) ((A).b0>0)
24588 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24589 A preliminary name is obtained here from the \.{TFM} name as given in the
24590 |fname| argument. This gets updated later from an external table if necessary.
24592 @<Declare text measuring subroutines@>=
24593 @<Declare subroutines for parsing file names@>
24594 font_number mp_read_font_info (MP mp, char *fname) {
24595 boolean file_opened; /* has |tfm_infile| been opened? */
24596 font_number n; /* the number to return */
24597 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24598 size_t whd_size; /* words needed for heights, widths, and depths */
24599 int i,ii; /* |font_info| indices */
24600 int jj; /* counts bytes to be ignored */
24601 scaled z; /* used to compute the design size */
24603 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24604 eight_bits h_and_d; /* height and depth indices being unpacked */
24605 unsigned char tfbyte; /* a byte read from the file */
24607 @<Open |tfm_infile| for input@>;
24608 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24609 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24611 @<Complain that the \.{TFM} file is bad@>;
24613 if ( file_opened ) (mp->close_file)(mp,mp->tfm_infile);
24614 if ( n!=null_font ) {
24615 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24616 mp->font_name[n]=mp_xstrdup(mp,fname);
24621 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24622 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24623 @.TFtoPL@> @.PLtoTF@>
24624 and \.{PLtoTF} can be used to debug \.{TFM} files.
24626 @<Complain that the \.{TFM} file is bad@>=
24627 print_err("Font ");
24628 mp_print(mp, fname);
24629 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24630 else mp_print(mp, " not usable: TFM file not found");
24631 help3("I wasn't able to read the size data for this font so this")
24632 ("`infont' operation won't produce anything. If the font name")
24633 ("is right, you might ask an expert to make a TFM file");
24635 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24638 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24639 @<Read the \.{TFM} size fields@>;
24640 @<Use the size fields to allocate space in |font_info|@>;
24641 @<Read the \.{TFM} header@>;
24642 @<Read the character data and the width, height, and depth tables and
24645 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24646 might try to read past the end of the file if this happens. Changes will be
24647 needed if it causes a system error to refer to |tfm_infile^| or call
24648 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24649 @^system dependencies@>
24650 of |tfget| could be changed to
24651 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24655 void *tfbyte_ptr = &tfbyte;
24656 (mp->read_binary_file)(mp,mp->tfm_infile,&tfbyte_ptr,&wanted);
24657 if (wanted==0) goto BAD_TFM;
24659 @d read_two(A) { (A)=tfbyte;
24660 if ( (A)>127 ) goto BAD_TFM;
24661 tfget; (A)=(A)*0400+tfbyte;
24663 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24665 @<Read the \.{TFM} size fields@>=
24666 tfget; read_two(lf);
24667 tfget; read_two(tfm_lh);
24668 tfget; read_two(bc);
24669 tfget; read_two(ec);
24670 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24671 tfget; read_two(nw);
24672 tfget; read_two(nh);
24673 tfget; read_two(nd);
24674 whd_size=(ec+1-bc)+nw+nh+nd;
24675 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24678 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24679 necessary to apply the |so| and |qo| macros when looking up the width of a
24680 character in the string pool. In order to ensure nonnegative |char_base|
24681 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24684 @<Use the size fields to allocate space in |font_info|@>=
24685 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24686 if (mp->last_fnum==mp->font_max)
24687 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24688 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24689 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24690 memory_word *font_info;
24691 font_info = xmalloc ((l+1),sizeof(memory_word));
24692 memset (font_info,0,sizeof(memory_word)*(l+1));
24693 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24694 xfree(mp->font_info);
24695 mp->font_info = font_info;
24696 mp->font_mem_size = l;
24698 incr(mp->last_fnum);
24702 mp->char_base[n]=mp->next_fmem-bc;
24703 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24704 mp->height_base[n]=mp->width_base[n]+nw;
24705 mp->depth_base[n]=mp->height_base[n]+nh;
24706 mp->next_fmem=mp->next_fmem+whd_size;
24709 @ @<Read the \.{TFM} header@>=
24710 if ( tfm_lh<2 ) goto BAD_TFM;
24712 tfget; read_two(z);
24713 tfget; z=z*0400+tfbyte;
24714 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24715 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24716 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24717 tf_ignore(4*(tfm_lh-2))
24719 @ @<Read the character data and the width, height, and depth tables...@>=
24720 ii=mp->width_base[n];
24721 i=mp->char_base[n]+bc;
24723 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24724 tfget; h_and_d=tfbyte;
24725 mp->font_info[i].qqqq.b1=h_and_d / 16;
24726 mp->font_info[i].qqqq.b2=h_and_d % 16;
24730 while ( i<mp->next_fmem ) {
24731 @<Read a four byte dimension, scale it by the design size, store it in
24732 |font_info[i]|, and increment |i|@>;
24736 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24737 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24738 we can multiply it by sixteen and think of it as a |fraction| that has been
24739 divided by sixteen. This cancels the extra scale factor contained in
24742 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24745 if ( d>=0200 ) d=d-0400;
24746 tfget; d=d*0400+tfbyte;
24747 tfget; d=d*0400+tfbyte;
24748 tfget; d=d*0400+tfbyte;
24749 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24753 @ This function does no longer use the file name parser, because |fname| is
24754 a C string already.
24755 @<Open |tfm_infile| for input@>=
24757 mp_ptr_scan_file(mp, fname);
24758 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); }
24759 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24761 mp->tfm_infile = (mp->open_file)(mp, mp->name_of_file, "r",mp_filetype_metrics);
24762 if ( !mp->tfm_infile ) goto BAD_TFM;
24765 @ When we have a font name and we don't know whether it has been loaded yet,
24766 we scan the |font_name| array before calling |read_font_info|.
24768 @<Declare text measuring subroutines@>=
24769 font_number mp_find_font (MP mp, char *f) {
24771 for (n=0;n<=mp->last_fnum;n++) {
24772 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24777 n = mp_read_font_info(mp, f);
24782 @ One simple application of |find_font| is the implementation of the |font_size|
24783 operator that gets the design size for a given font name.
24785 @<Find the design size of the font whose name is |cur_exp|@>=
24786 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24788 @ If we discover that the font doesn't have a requested character, we omit it
24789 from the bounding box computation and expect the \ps\ interpreter to drop it.
24790 This routine issues a warning message if the user has asked for it.
24792 @<Declare text measuring subroutines@>=
24793 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24794 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24795 mp_begin_diagnostic(mp);
24796 if ( mp->selector==log_only ) incr(mp->selector);
24797 mp_print_nl(mp, "Missing character: There is no ");
24798 @.Missing character@>
24799 mp_print_str(mp, mp->str_pool[k]);
24800 mp_print(mp, " in font ");
24801 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24802 mp_end_diagnostic(mp, false);
24806 @ The whole purpose of saving the height, width, and depth information is to be
24807 able to find the bounding box of an item of text in an edge structure. The
24808 |set_text_box| procedure takes a text node and adds this information.
24810 @<Declare text measuring subroutines@>=
24811 void mp_set_text_box (MP mp,pointer p) {
24812 font_number f; /* |font_n(p)| */
24813 ASCII_code bc,ec; /* range of valid characters for font |f| */
24814 pool_pointer k,kk; /* current character and character to stop at */
24815 four_quarters cc; /* the |char_info| for the current character */
24816 scaled h,d; /* dimensions of the current character */
24818 height_val(p)=-el_gordo;
24819 depth_val(p)=-el_gordo;
24823 kk=str_stop(text_p(p));
24824 k=mp->str_start[text_p(p)];
24826 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24828 @<Set the height and depth to zero if the bounding box is empty@>;
24831 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24833 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24834 mp_lost_warning(mp, f,k);
24836 cc=char_info(f)(mp->str_pool[k]);
24837 if ( ! ichar_exists(cc) ) {
24838 mp_lost_warning(mp, f,k);
24840 width_val(p)=width_val(p)+char_width(f)(cc);
24841 h=char_height(f)(cc);
24842 d=char_depth(f)(cc);
24843 if ( h>height_val(p) ) height_val(p)=h;
24844 if ( d>depth_val(p) ) depth_val(p)=d;
24850 @ Let's hope modern compilers do comparisons correctly when the difference would
24853 @<Set the height and depth to zero if the bounding box is empty@>=
24854 if ( height_val(p)<-depth_val(p) ) {
24859 @ The new primitives fontmapfile and fontmapline.
24861 @<Declare action procedures for use by |do_statement|@>=
24862 void mp_do_mapfile (MP mp) ;
24863 void mp_do_mapline (MP mp) ;
24865 @ @c void mp_do_mapfile (MP mp) {
24866 mp_get_x_next(mp); mp_scan_expression(mp);
24867 if ( mp->cur_type!=mp_string_type ) {
24868 @<Complain about improper map operation@>;
24870 mp_map_file(mp,mp->cur_exp);
24873 void mp_do_mapline (MP mp) {
24874 mp_get_x_next(mp); mp_scan_expression(mp);
24875 if ( mp->cur_type!=mp_string_type ) {
24876 @<Complain about improper map operation@>;
24878 mp_map_line(mp,mp->cur_exp);
24882 @ @<Complain about improper map operation@>=
24884 exp_err("Unsuitable expression");
24885 help1("Only known strings can be map files or map lines.");
24886 mp_put_get_error(mp);
24889 @ To print |scaled| value to PDF output we need some subroutines to ensure
24892 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24895 scaled one_bp; /* scaled value corresponds to 1bp */
24896 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24897 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24898 integer ten_pow[10]; /* $10^0..10^9$ */
24899 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24902 mp->one_bp = 65782; /* 65781.76 */
24903 mp->one_hundred_bp = 6578176;
24904 mp->one_hundred_inch = 473628672;
24905 mp->ten_pow[0] = 1;
24906 for (i = 1;i<= 9; i++ ) {
24907 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24910 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24912 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24916 if ( s < 0 ) { sign = -sign; s = -s; }
24917 if ( m < 0 ) { sign = -sign; m = -m; }
24919 mp_confusion(mp, "arithmetic: divided by zero");
24920 else if ( m >= (max_integer / 10) )
24921 mp_confusion(mp, "arithmetic: number too big");
24924 for (i = 1;i<=dd;i++) {
24925 q = 10*q + (10*r) / m;
24928 if ( 2*r >= m ) { incr(q); r = r - m; }
24929 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24933 @* \[44] Shipping pictures out.
24934 The |ship_out| procedure, to be described below, is given a pointer to
24935 an edge structure. Its mission is to output a file containing the \ps\
24936 description of an edge structure.
24938 @ Each time an edge structure is shipped out we write a new \ps\ output
24939 file named according to the current \&{charcode}.
24940 @:char_code_}{\&{charcode} primitive@>
24942 This is the only backend function that remains in the main |mpost.w| file.
24943 There are just too many variable accesses needed for status reporting
24944 etcetera to make it worthwile to move the code to |psout.w|.
24946 @<Internal library declarations@>=
24947 void mp_open_output_file (MP mp) ;
24950 char *mp_set_output_file_name (MP mp, integer c) {
24951 char *ss = NULL; /* filename extension proposal */
24952 int old_setting; /* previous |selector| setting */
24953 pool_pointer i; /* indexes into |filename_template| */
24954 integer cc; /* a temporary integer for template building */
24955 integer f,g=0; /* field widths */
24956 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24957 if ( mp->filename_template==0 ) {
24958 char *s; /* a file extension derived from |c| */
24962 @<Use |c| to compute the file extension |s|@>;
24963 mp_pack_job_name(mp, s);
24965 } else { /* initializations */
24966 str_number s, n; /* a file extension derived from |c| */
24967 old_setting=mp->selector;
24968 mp->selector=new_string;
24970 i = mp->str_start[mp->filename_template];
24971 n = rts(""); /* initialize */
24972 while ( i<str_stop(mp->filename_template) ) {
24973 if ( mp->str_pool[i]=='%' ) {
24976 if ( i<str_stop(mp->filename_template) ) {
24977 if ( mp->str_pool[i]=='j' ) {
24978 mp_print(mp, mp->job_name);
24979 } else if ( mp->str_pool[i]=='d' ) {
24980 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24981 print_with_leading_zeroes(cc);
24982 } else if ( mp->str_pool[i]=='m' ) {
24983 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24984 print_with_leading_zeroes(cc);
24985 } else if ( mp->str_pool[i]=='y' ) {
24986 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24987 print_with_leading_zeroes(cc);
24988 } else if ( mp->str_pool[i]=='H' ) {
24989 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24990 print_with_leading_zeroes(cc);
24991 } else if ( mp->str_pool[i]=='M' ) {
24992 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24993 print_with_leading_zeroes(cc);
24994 } else if ( mp->str_pool[i]=='c' ) {
24995 if ( c<0 ) mp_print(mp, "ps");
24996 else print_with_leading_zeroes(c);
24997 } else if ( (mp->str_pool[i]>='0') &&
24998 (mp->str_pool[i]<='9') ) {
25000 f = (f*10) + mp->str_pool[i]-'0';
25003 mp_print_str(mp, mp->str_pool[i]);
25007 if ( mp->str_pool[i]=='.' )
25009 n = mp_make_string(mp);
25010 mp_print_str(mp, mp->str_pool[i]);
25014 s = mp_make_string(mp);
25015 mp->selector= old_setting;
25016 if (length(n)==0) {
25020 mp_pack_file_name(mp, str(n),"",str(s));
25028 char * mp_get_output_file_name (MP mp) {
25029 char *fname; /* return value */
25030 char *saved_name; /* saved |name_of_file| */
25031 saved_name = mp_xstrdup(mp, mp->name_of_file);
25032 (void)mp_set_output_file_name(mp, mp_round_unscaled(mp, mp->internal[mp_char_code]));
25033 fname = mp_xstrdup(mp, mp->name_of_file);
25034 mp_pack_file_name(mp, saved_name,NULL,NULL);
25038 void mp_open_output_file (MP mp) {
25039 char *ss; /* filename extension proposal */
25040 integer c; /* \&{charcode} rounded to the nearest integer */
25041 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25042 ss = mp_set_output_file_name(mp, c);
25043 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25044 mp_prompt_file_name(mp, "file name for output",ss);
25046 @<Store the true output file name if appropriate@>;
25049 @ The file extension created here could be up to five characters long in
25050 extreme cases so it may have to be shortened on some systems.
25051 @^system dependencies@>
25053 @<Use |c| to compute the file extension |s|@>=
25056 snprintf(s,7,".%i",(int)c);
25059 @ The user won't want to see all the output file names so we only save the
25060 first and last ones and a count of how many there were. For this purpose
25061 files are ordered primarily by \&{charcode} and secondarily by order of
25063 @:char_code_}{\&{charcode} primitive@>
25065 @<Store the true output file name if appropriate@>=
25066 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25067 mp->first_output_code=c;
25068 xfree(mp->first_file_name);
25069 mp->first_file_name=xstrdup(mp->name_of_file);
25071 if ( c>=mp->last_output_code ) {
25072 mp->last_output_code=c;
25073 xfree(mp->last_file_name);
25074 mp->last_file_name=xstrdup(mp->name_of_file);
25078 char * first_file_name;
25079 char * last_file_name; /* full file names */
25080 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25081 @:char_code_}{\&{charcode} primitive@>
25082 integer total_shipped; /* total number of |ship_out| operations completed */
25085 mp->first_file_name=xstrdup("");
25086 mp->last_file_name=xstrdup("");
25087 mp->first_output_code=32768;
25088 mp->last_output_code=-32768;
25089 mp->total_shipped=0;
25091 @ @<Dealloc variables@>=
25092 xfree(mp->first_file_name);
25093 xfree(mp->last_file_name);
25095 @ @<Begin the progress report for the output of picture~|c|@>=
25096 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25097 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25098 mp_print_char(mp, '[');
25099 if ( c>=0 ) mp_print_int(mp, c)
25101 @ @<End progress report@>=
25102 mp_print_char(mp, ']');
25104 incr(mp->total_shipped)
25106 @ @<Explain what output files were written@>=
25107 if ( mp->total_shipped>0 ) {
25108 mp_print_nl(mp, "");
25109 mp_print_int(mp, mp->total_shipped);
25110 mp_print(mp, " output file");
25111 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25112 mp_print(mp, " written: ");
25113 mp_print(mp, mp->first_file_name);
25114 if ( mp->total_shipped>1 ) {
25115 if ( 31+strlen(mp->first_file_name)+
25116 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25118 mp_print(mp, " .. ");
25119 mp_print(mp, mp->last_file_name);
25123 @ @<Internal library declarations@>=
25124 boolean mp_has_font_size(MP mp, font_number f );
25127 boolean mp_has_font_size(MP mp, font_number f ) {
25128 return (mp->font_sizes[f]!=null);
25131 @ The \&{special} command saves up lines of text to be printed during the next
25132 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25135 pointer last_pending; /* the last token in a list of pending specials */
25138 mp->last_pending=spec_head;
25140 @ @<Cases of |do_statement|...@>=
25141 case special_command:
25142 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25143 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25147 @ @<Declare action procedures for use by |do_statement|@>=
25148 void mp_do_special (MP mp) ;
25150 @ @c void mp_do_special (MP mp) {
25151 mp_get_x_next(mp); mp_scan_expression(mp);
25152 if ( mp->cur_type!=mp_string_type ) {
25153 @<Complain about improper special operation@>;
25155 link(mp->last_pending)=mp_stash_cur_exp(mp);
25156 mp->last_pending=link(mp->last_pending);
25157 link(mp->last_pending)=null;
25161 @ @<Complain about improper special operation@>=
25163 exp_err("Unsuitable expression");
25164 help1("Only known strings are allowed for output as specials.");
25165 mp_put_get_error(mp);
25168 @ On the export side, we need an extra object type for special strings.
25170 @<Graphical object codes@>=
25173 @ @<Export pending specials@>=
25175 while ( p!=null ) {
25176 mp_special_object *tp;
25177 tp = (mp_special_object *)mp_new_graphic_object(mp,mp_special_code);
25178 gr_pre_script(tp) = str(value(p));
25179 if (hh->body==NULL) hh->body = (mp_graphic_object *)tp;
25180 else gr_link(hp) = (mp_graphic_object *)tp;
25181 hp = (mp_graphic_object *)tp;
25184 mp_flush_token_list(mp, link(spec_head));
25185 link(spec_head)=null;
25186 mp->last_pending=spec_head
25188 @ We are now ready for the main output procedure. Note that the |selector|
25189 setting is saved in a global variable so that |begin_diagnostic| can access it.
25191 @<Declare the \ps\ output procedures@>=
25192 void mp_ship_out (MP mp, pointer h) ;
25194 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25196 @d export_color(q,p)
25197 if ( color_model(p)==mp_uninitialized_model ) {
25198 gr_color_model(q) = (mp->internal[mp_default_color_model]>>16);
25199 gr_cyan_val(q) = 0;
25200 gr_magenta_val(q) = 0;
25201 gr_yellow_val(q) = 0;
25202 gr_black_val(q) = (gr_color_model(q)==mp_cmyk_model ? unity : 0);
25204 gr_color_model(q) = color_model(p);
25205 gr_cyan_val(q) = cyan_val(p);
25206 gr_magenta_val(q) = magenta_val(p);
25207 gr_yellow_val(q) = yellow_val(p);
25208 gr_black_val(q) = black_val(p);
25211 @d export_scripts(q,p)
25212 if (pre_script(p)!=null) gr_pre_script(q) = str(pre_script(p));
25213 if (post_script(p)!=null) gr_post_script(q) = str(post_script(p));
25216 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25217 pointer p; /* the current graphical object */
25218 integer t; /* a temporary value */
25219 mp_edge_object *hh; /* the first graphical object */
25220 struct mp_graphic_object *hq; /* something |hp| points to */
25221 struct mp_text_object *tt;
25222 struct mp_fill_object *tf;
25223 struct mp_stroked_object *ts;
25224 struct mp_clip_object *tc;
25225 struct mp_bounds_object *tb;
25226 struct mp_graphic_object *hp = NULL; /* the current graphical object */
25227 mp_set_bbox(mp, h, true);
25228 hh = mp_xmalloc(mp,1,sizeof(mp_edge_object));
25232 hh->_minx = minx_val(h);
25233 hh->_miny = miny_val(h);
25234 hh->_maxx = maxx_val(h);
25235 hh->_maxy = maxy_val(h);
25236 hh->_filename = mp_get_output_file_name(mp);
25237 @<Export pending specials@>;
25238 p=link(dummy_loc(h));
25239 while ( p!=null ) {
25240 hq = mp_new_graphic_object(mp,type(p));
25243 tf = (mp_fill_object *)hq;
25244 gr_pen_p(tf) = mp_export_knot_list(mp,pen_p(p));
25245 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25246 gr_path_p(tf) = mp_export_knot_list(mp,path_p(p));
25249 pc = mp_copy_path(mp, path_p(p));
25250 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25251 gr_path_p(tf) = mp_export_knot_list(mp,pp);
25252 mp_toss_knot_list(mp, pp);
25253 pc = mp_htap_ypoc(mp, path_p(p));
25254 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25255 gr_htap_p(tf) = mp_export_knot_list(mp,pp);
25256 mp_toss_knot_list(mp, pp);
25258 export_color(tf,p) ;
25259 export_scripts(tf,p);
25260 gr_ljoin_val(tf) = ljoin_val(p);
25261 gr_miterlim_val(tf) = miterlim_val(p);
25263 case mp_stroked_code:
25264 ts = (mp_stroked_object *)hq;
25265 gr_pen_p(ts) = mp_export_knot_list(mp,pen_p(p));
25266 if (pen_is_elliptical(pen_p(p))) {
25267 gr_path_p(ts) = mp_export_knot_list(mp,path_p(p));
25270 pc=mp_copy_path(mp, path_p(p));
25272 if ( left_type(pc)!=mp_endpoint ) {
25273 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25274 right_type(pc)=mp_endpoint;
25278 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25279 gr_path_p(ts) = mp_export_knot_list(mp,pc);
25280 mp_toss_knot_list(mp, pc);
25282 export_color(ts,p) ;
25283 export_scripts(ts,p);
25284 gr_ljoin_val(ts) = ljoin_val(p);
25285 gr_miterlim_val(ts) = miterlim_val(p);
25286 gr_lcap_val(ts) = lcap_val(p);
25287 gr_dash_p(ts) = mp_export_dashes(mp,dash_p(p));
25290 tt = (mp_text_object *)hq;
25291 gr_text_p(tt) = str(text_p(p));
25292 gr_font_n(tt) = font_n(p);
25293 gr_font_name(tt) = mp_xstrdup(mp,mp->font_name[font_n(p)]);
25294 gr_font_dsize(tt) = mp->font_dsize[font_n(p)];
25295 export_color(tt,p) ;
25296 export_scripts(tt,p);
25297 gr_width_val(tt) = width_val(p);
25298 gr_height_val(tt) = height_val(p);
25299 gr_depth_val(tt) = depth_val(p);
25300 gr_tx_val(tt) = tx_val(p);
25301 gr_ty_val(tt) = ty_val(p);
25302 gr_txx_val(tt) = txx_val(p);
25303 gr_txy_val(tt) = txy_val(p);
25304 gr_tyx_val(tt) = tyx_val(p);
25305 gr_tyy_val(tt) = tyy_val(p);
25307 case mp_start_clip_code:
25308 tc = (mp_clip_object *)hq;
25309 gr_path_p(tc) = mp_export_knot_list(mp,path_p(p));
25311 case mp_start_bounds_code:
25312 tb = (mp_bounds_object *)hq;
25313 gr_path_p(tb) = mp_export_knot_list(mp,path_p(p));
25315 case mp_stop_clip_code:
25316 case mp_stop_bounds_code:
25317 /* nothing to do here */
25320 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25327 @ @<Exported function ...@>=
25328 struct mp_edge_object *mp_gr_export(MP mp, int h);
25330 @ This function is now nearly trivial.
25333 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25334 integer c; /* \&{charcode} rounded to the nearest integer */
25335 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25336 @<Begin the progress report for the output of picture~|c|@>;
25337 (mp->shipout_backend) (mp, h);
25338 @<End progress report@>;
25339 if ( mp->internal[mp_tracing_output]>0 )
25340 mp_print_edges(mp, h," (just shipped out)",true);
25343 @ @<Declarations@>=
25344 void mp_shipout_backend (MP mp, pointer h);
25347 void mp_shipout_backend (MP mp, pointer h) {
25348 mp_edge_object *hh; /* the first graphical object */
25349 hh = mp_gr_export(mp,h);
25350 mp_gr_ship_out (hh,
25351 (mp->internal[mp_prologues]>>16),
25352 (mp->internal[mp_procset]>>16));
25353 mp_gr_toss_objects(hh);
25356 @ @<Exported types@>=
25357 typedef void (*mp_backend_writer)(MP, int);
25359 @ @<Option variables@>=
25360 mp_backend_writer shipout_backend;
25362 @ @<Allocate or initialize ...@>=
25363 set_callback_option(shipout_backend);
25365 @ Now that we've finished |ship_out|, let's look at the other commands
25366 by which a user can send things to the \.{GF} file.
25368 @ @<Determine if a character has been shipped out@>=
25370 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25371 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25372 boolean_reset(mp->char_exists[mp->cur_exp]);
25373 mp->cur_type=mp_boolean_type;
25379 @ @<Allocate or initialize ...@>=
25380 mp_backend_initialize(mp);
25383 mp_backend_free(mp);
25386 @* \[45] Dumping and undumping the tables.
25387 After \.{INIMP} has seen a collection of macros, it
25388 can write all the necessary information on an auxiliary file so
25389 that production versions of \MP\ are able to initialize their
25390 memory at high speed. The present section of the program takes
25391 care of such output and input. We shall consider simultaneously
25392 the processes of storing and restoring,
25393 so that the inverse relation between them is clear.
25396 The global variable |mem_ident| is a string that is printed right
25397 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25398 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25399 for example, `\.{(mem=plain 1990.4.14)}', showing the year,
25400 month, and day that the mem file was created. We have |mem_ident=0|
25401 before \MP's tables are loaded.
25407 mp->mem_ident=NULL;
25409 @ @<Initialize table entries...@>=
25410 mp->mem_ident=xstrdup(" (INIMP)");
25412 @ @<Declare act...@>=
25413 void mp_store_mem_file (MP mp) ;
25415 @ @c void mp_store_mem_file (MP mp) {
25416 integer k; /* all-purpose index */
25417 pointer p,q; /* all-purpose pointers */
25418 integer x; /* something to dump */
25419 four_quarters w; /* four ASCII codes */
25421 @<Create the |mem_ident|, open the mem file,
25422 and inform the user that dumping has begun@>;
25423 @<Dump constants for consistency check@>;
25424 @<Dump the string pool@>;
25425 @<Dump the dynamic memory@>;
25426 @<Dump the table of equivalents and the hash table@>;
25427 @<Dump a few more things and the closing check word@>;
25428 @<Close the mem file@>;
25431 @ Corresponding to the procedure that dumps a mem file, we also have a function
25432 that reads~one~in. The function returns |false| if the dumped mem is
25433 incompatible with the present \MP\ table sizes, etc.
25435 @d off_base 6666 /* go here if the mem file is unacceptable */
25436 @d too_small(A) { wake_up_terminal;
25437 wterm_ln("---! Must increase the "); wterm((A));
25438 @.Must increase the x@>
25443 boolean mp_load_mem_file (MP mp) {
25444 integer k; /* all-purpose index */
25445 pointer p,q; /* all-purpose pointers */
25446 integer x; /* something undumped */
25447 str_number s; /* some temporary string */
25448 four_quarters w; /* four ASCII codes */
25450 @<Undump constants for consistency check@>;
25451 @<Undump the string pool@>;
25452 @<Undump the dynamic memory@>;
25453 @<Undump the table of equivalents and the hash table@>;
25454 @<Undump a few more things and the closing check word@>;
25455 return true; /* it worked! */
25458 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25459 @.Fatal mem file error@>
25463 @ @<Declarations@>=
25464 boolean mp_load_mem_file (MP mp) ;
25466 @ Mem files consist of |memory_word| items, and we use the following
25467 macros to dump words of different types:
25469 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25470 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp,mp->mem_file,&cint,sizeof(cint)); }
25471 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25472 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25473 @d dump_string(A) { dump_int(strlen(A)+1);
25474 (mp->write_binary_file)(mp,mp->mem_file,A,strlen(A)+1); }
25477 void * mem_file; /* for input or output of mem information */
25479 @ The inverse macros are slightly more complicated, since we need to check
25480 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25481 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25484 size_t wanted = sizeof(A);
25486 (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted);
25487 if (wanted!=sizeof(A)) goto OFF_BASE;
25491 size_t wanted = sizeof(A);
25493 (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted);
25494 if (wanted!=sizeof(A)) goto OFF_BASE;
25497 @d undump_wd(A) { mgetw(WW); A=WW; }
25498 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25499 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25500 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25501 @d undump_strings(A,B,C) {
25502 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25503 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25504 @d undump_size(A,B,C,D) { undump_int(x);
25505 if (x<(A)) goto OFF_BASE;
25506 if (x>(B)) { too_small((C)); } else { D=x;} }
25507 @d undump_string(A) do {
25513 the_string = xmalloc(XX,sizeof(char));
25514 (mp->read_binary_file)(mp,mp->mem_file,&the_string,&the_wanted);
25515 A = (char *)the_string;
25516 if (the_wanted!=(size_t)XX) goto OFF_BASE;
25519 @ The next few sections of the program should make it clear how we use the
25520 dump/undump macros.
25522 @<Dump constants for consistency check@>=
25523 dump_int(mp->mem_top);
25524 dump_int(mp->hash_size);
25525 dump_int(mp->hash_prime)
25526 dump_int(mp->param_size);
25527 dump_int(mp->max_in_open);
25529 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25530 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25531 the same strings. (And it is, of course, a good thing that they do.)
25535 @<Undump constants for consistency check@>=
25536 undump_int(x); mp->mem_top = x;
25537 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25538 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25539 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25540 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25542 @ We do string pool compaction to avoid dumping unused strings.
25545 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25546 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25549 @<Dump the string pool@>=
25550 mp_do_compaction(mp, mp->pool_size);
25551 dump_int(mp->pool_ptr);
25552 dump_int(mp->max_str_ptr);
25553 dump_int(mp->str_ptr);
25555 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25558 while ( k<=mp->max_str_ptr ) {
25559 dump_int(mp->next_str[k]); incr(k);
25563 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25564 if ( k==mp->str_ptr ) {
25571 while (k+4<mp->pool_ptr ) {
25572 dump_four_ASCII; k=k+4;
25574 k=mp->pool_ptr-4; dump_four_ASCII;
25575 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25576 mp_print(mp, " strings of total length ");
25577 mp_print_int(mp, mp->pool_ptr)
25579 @ @d undump_four_ASCII
25581 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25582 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25584 @<Undump the string pool@>=
25585 undump_int(mp->pool_ptr);
25586 mp_reallocate_pool(mp, mp->pool_ptr) ;
25587 undump_int(mp->max_str_ptr);
25588 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25589 undump(0,mp->max_str_ptr,mp->str_ptr);
25590 undump(0,mp->max_str_ptr+1,s);
25591 for (k=0;k<=s-1;k++)
25592 mp->next_str[k]=k+1;
25593 for (k=s;k<=mp->max_str_ptr;k++)
25594 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25595 mp->fixed_str_use=0;
25598 undump(0,mp->pool_ptr,mp->str_start[k]);
25599 if ( k==mp->str_ptr ) break;
25600 mp->str_ref[k]=max_str_ref;
25601 incr(mp->fixed_str_use);
25602 mp->last_fixed_str=k; k=mp->next_str[k];
25605 while ( k+4<mp->pool_ptr ) {
25606 undump_four_ASCII; k=k+4;
25608 k=mp->pool_ptr-4; undump_four_ASCII;
25609 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25610 mp->max_pool_ptr=mp->pool_ptr;
25611 mp->strs_used_up=mp->fixed_str_use;
25612 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25613 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25614 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25616 @ By sorting the list of available spaces in the variable-size portion of
25617 |mem|, we are usually able to get by without having to dump very much
25618 of the dynamic memory.
25620 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25621 information even when it has not been gathering statistics.
25623 @<Dump the dynamic memory@>=
25624 mp_sort_avail(mp); mp->var_used=0;
25625 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25626 p=0; q=mp->rover; x=0;
25628 for (k=p;k<= q+1;k++)
25629 dump_wd(mp->mem[k]);
25630 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25631 p=q+node_size(q); q=rlink(q);
25632 } while (q!=mp->rover);
25633 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25634 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25635 for (k=p;k<= mp->lo_mem_max;k++ )
25636 dump_wd(mp->mem[k]);
25637 x=x+mp->lo_mem_max+1-p;
25638 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25639 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25640 dump_wd(mp->mem[k]);
25641 x=x+mp->mem_end+1-mp->hi_mem_min;
25643 while ( p!=null ) {
25644 decr(mp->dyn_used); p=link(p);
25646 dump_int(mp->var_used); dump_int(mp->dyn_used);
25647 mp_print_ln(mp); mp_print_int(mp, x);
25648 mp_print(mp, " memory locations dumped; current usage is ");
25649 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25651 @ @<Undump the dynamic memory@>=
25652 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25653 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25656 for (k=p;k<= q+1; k++)
25657 undump_wd(mp->mem[k]);
25659 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25662 } while (q!=mp->rover);
25663 for (k=p;k<=mp->lo_mem_max;k++ )
25664 undump_wd(mp->mem[k]);
25665 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25666 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25667 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25668 undump_wd(mp->mem[k]);
25669 undump_int(mp->var_used); undump_int(mp->dyn_used)
25671 @ A different scheme is used to compress the hash table, since its lower region
25672 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25673 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25674 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25676 @<Dump the table of equivalents and the hash table@>=
25677 dump_int(mp->hash_used);
25678 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25679 for (p=1;p<=mp->hash_used;p++) {
25680 if ( text(p)!=0 ) {
25681 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25684 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25685 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25687 dump_int(mp->st_count);
25688 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25690 @ @<Undump the table of equivalents and the hash table@>=
25691 undump(1,frozen_inaccessible,mp->hash_used);
25694 undump(p+1,mp->hash_used,p);
25695 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25696 } while (p!=mp->hash_used);
25697 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25698 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25700 undump_int(mp->st_count)
25702 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25703 to prevent them appearing again.
25705 @<Dump a few more things and the closing check word@>=
25706 dump_int(mp->max_internal);
25707 dump_int(mp->int_ptr);
25708 for (k=1;k<= mp->int_ptr;k++ ) {
25709 dump_int(mp->internal[k]);
25710 dump_string(mp->int_name[k]);
25712 dump_int(mp->start_sym);
25713 dump_int(mp->interaction);
25714 dump_string(mp->mem_ident);
25715 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25716 mp->internal[mp_tracing_stats]=0
25718 @ @<Undump a few more things and the closing check word@>=
25720 if (x>mp->max_internal) mp_grow_internals(mp,x);
25721 undump_int(mp->int_ptr);
25722 for (k=1;k<= mp->int_ptr;k++) {
25723 undump_int(mp->internal[k]);
25724 undump_string(mp->int_name[k]);
25726 undump(0,frozen_inaccessible,mp->start_sym);
25727 if (mp->interaction==mp_unspecified_mode) {
25728 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25730 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25732 undump_string(mp->mem_ident);
25733 undump(1,hash_end,mp->bg_loc);
25734 undump(1,hash_end,mp->eg_loc);
25735 undump_int(mp->serial_no);
25737 if (x!=69073) goto OFF_BASE
25739 @ @<Create the |mem_ident|...@>=
25741 xfree(mp->mem_ident);
25742 mp->mem_ident = xmalloc(256,1);
25743 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25745 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25746 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25747 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25748 mp_pack_job_name(mp, mem_extension);
25749 while (! mp_w_open_out(mp, &mp->mem_file) )
25750 mp_prompt_file_name(mp, "mem file name", mem_extension);
25751 mp_print_nl(mp, "Beginning to dump on file ");
25752 @.Beginning to dump...@>
25753 mp_print(mp, mp->name_of_file);
25754 mp_print_nl(mp, mp->mem_ident);
25757 @ @<Dealloc variables@>=
25758 xfree(mp->mem_ident);
25760 @ @<Close the mem file@>=
25761 (mp->close_file)(mp,mp->mem_file)
25763 @* \[46] The main program.
25764 This is it: the part of \MP\ that executes all those procedures we have
25767 Well---almost. We haven't put the parsing subroutines into the
25768 program yet; and we'd better leave space for a few more routines that may
25769 have been forgotten.
25771 @c @<Declare the basic parsing subroutines@>
25772 @<Declare miscellaneous procedures that were declared |forward|@>
25773 @<Last-minute procedures@>
25775 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25777 has to be run first; it initializes everything from scratch, without
25778 reading a mem file, and it has the capability of dumping a mem file.
25779 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25781 to input a mem file in order to get started. \.{VIRMP} typically has
25782 a bit more memory capacity than \.{INIMP}, because it does not need the
25783 space consumed by the dumping/undumping routines and the numerous calls on
25786 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25787 the best implementations therefore allow for production versions of \MP\ that
25788 not only avoid the loading routine for object code, they also have
25789 a mem file pre-loaded.
25791 @ @<Option variables@>=
25792 int ini_version; /* are we iniMP? */
25794 @ @<Set |ini_version|@>=
25795 mp->ini_version = (opt->ini_version ? true : false);
25797 @ Here we do whatever is needed to complete \MP's job gracefully on the
25798 local operating system. The code here might come into play after a fatal
25799 error; it must therefore consist entirely of ``safe'' operations that
25800 cannot produce error messages. For example, it would be a mistake to call
25801 |str_room| or |make_string| at this time, because a call on |overflow|
25802 might lead to an infinite loop.
25803 @^system dependencies@>
25805 This program doesn't bother to close the input files that may still be open.
25807 @<Last-minute...@>=
25808 void mp_close_files_and_terminate (MP mp) {
25809 integer k; /* all-purpose index */
25810 integer LH; /* the length of the \.{TFM} header, in words */
25811 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25812 pointer p; /* runs through a list of \.{TFM} dimensions */
25813 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25814 if ( mp->internal[mp_tracing_stats]>0 )
25815 @<Output statistics about this job@>;
25817 @<Do all the finishing work on the \.{TFM} file@>;
25818 @<Explain what output files were written@>;
25819 if ( mp->log_opened ){
25821 (mp->close_file)(mp,mp->log_file);
25822 mp->selector=mp->selector-2;
25823 if ( mp->selector==term_only ) {
25824 mp_print_nl(mp, "Transcript written on ");
25825 @.Transcript written...@>
25826 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25834 @ @<Declarations@>=
25835 void mp_close_files_and_terminate (MP mp) ;
25837 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25838 if (mp->rd_fname!=NULL) {
25839 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25840 if ( mp->rd_fname[k]!=NULL ) {
25841 (mp->close_file)(mp,mp->rd_file[k]);
25845 if (mp->wr_fname!=NULL) {
25846 for (k=0;k<=(int)mp->write_files-1;k++) {
25847 if ( mp->wr_fname[k]!=NULL ) {
25848 (mp->close_file)(mp,mp->wr_file[k]);
25854 for (k=0;k<(int)mp->max_read_files;k++ ) {
25855 if ( mp->rd_fname[k]!=NULL ) {
25856 (mp->close_file)(mp,mp->rd_file[k]);
25857 mp_xfree(mp->rd_fname[k]);
25860 mp_xfree(mp->rd_file);
25861 mp_xfree(mp->rd_fname);
25862 for (k=0;k<(int)mp->max_write_files;k++) {
25863 if ( mp->wr_fname[k]!=NULL ) {
25864 (mp->close_file)(mp,mp->wr_file[k]);
25865 mp_xfree(mp->wr_fname[k]);
25868 mp_xfree(mp->wr_file);
25869 mp_xfree(mp->wr_fname);
25872 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25874 We reclaim all of the variable-size memory at this point, so that
25875 there is no chance of another memory overflow after the memory capacity
25876 has already been exceeded.
25878 @<Do all the finishing work on the \.{TFM} file@>=
25879 if ( mp->internal[mp_fontmaking]>0 ) {
25880 @<Make the dynamic memory into one big available node@>;
25881 @<Massage the \.{TFM} widths@>;
25882 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25883 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25884 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25885 @<Finish the \.{TFM} file@>;
25888 @ @<Make the dynamic memory into one big available node@>=
25889 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25890 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25891 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25892 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25893 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25895 @ The present section goes directly to the log file instead of using
25896 |print| commands, because there's no need for these strings to take
25897 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25899 @<Output statistics...@>=
25900 if ( mp->log_opened ) {
25903 wlog_ln("Here is how much of MetaPost's memory you used:");
25904 @.Here is how much...@>
25905 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25906 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25907 (int)(mp->max_strings-1-mp->init_str_use));
25909 snprintf(s,128," %i string characters out of %i",
25910 (int)mp->max_pl_used-mp->init_pool_ptr,
25911 (int)mp->pool_size-mp->init_pool_ptr);
25913 snprintf(s,128," %i words of memory out of %i",
25914 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25917 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25919 snprintf(s,128," %ii,%in,%ip,%ib stack positions out of %ii,%in,%ip,%ib",
25920 (int)mp->max_in_stack,(int)mp->int_ptr,
25921 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25922 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25924 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25925 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25929 @ It is nice to have have some of the stats available from the API.
25931 @<Exported function ...@>=
25932 int mp_memory_usage (MP mp );
25933 int mp_hash_usage (MP mp );
25934 int mp_param_usage (MP mp );
25935 int mp_open_usage (MP mp );
25938 int mp_memory_usage (MP mp ) {
25939 return (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2;
25941 int mp_hash_usage (MP mp ) {
25942 return (int)mp->st_count;
25944 int mp_param_usage (MP mp ) {
25945 return (int)mp->max_param_stack;
25947 int mp_open_usage (MP mp ) {
25948 return (int)mp->max_in_stack;
25951 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25954 @<Last-minute...@>=
25955 void mp_final_cleanup (MP mp) {
25956 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25958 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25959 while ( mp->input_ptr>0 ) {
25960 if ( token_state ) mp_end_token_list(mp);
25961 else mp_end_file_reading(mp);
25963 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25964 while ( mp->open_parens>0 ) {
25965 mp_print(mp, " )"); decr(mp->open_parens);
25967 while ( mp->cond_ptr!=null ) {
25968 mp_print_nl(mp, "(end occurred when ");
25969 @.end occurred...@>
25970 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25971 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25972 if ( mp->if_line!=0 ) {
25973 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25975 mp_print(mp, " was incomplete)");
25976 mp->if_line=if_line_field(mp->cond_ptr);
25977 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25979 if ( mp->history!=mp_spotless )
25980 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25981 if ( mp->selector==term_and_log ) {
25982 mp->selector=term_only;
25983 mp_print_nl(mp, "(see the transcript file for additional information)");
25984 @.see the transcript file...@>
25985 mp->selector=term_and_log;
25988 if (mp->ini_version) {
25989 mp_store_mem_file(mp); return;
25991 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25992 @.dump...only by INIMP@>
25996 @ @<Declarations@>=
25997 void mp_final_cleanup (MP mp) ;
25998 void mp_init_prim (MP mp) ;
25999 void mp_init_tab (MP mp) ;
26001 @ @<Last-minute...@>=
26002 void mp_init_prim (MP mp) { /* initialize all the primitives */
26006 void mp_init_tab (MP mp) { /* initialize other tables */
26007 integer k; /* all-purpose index */
26008 @<Initialize table entries (done by \.{INIMP} only)@>;
26012 @ When we begin the following code, \MP's tables may still contain garbage;
26013 the strings might not even be present. Thus we must proceed cautiously to get
26016 But when we finish this part of the program, \MP\ is ready to call on the
26017 |main_control| routine to do its work.
26019 @<Get the first line...@>=
26021 @<Initialize the input routines@>;
26022 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26023 if ( mp->mem_ident!=NULL ) {
26024 mp_do_initialize(mp); /* erase preloaded mem */
26026 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26027 if ( ! mp_load_mem_file(mp) ) {
26028 (mp->close_file)(mp, mp->mem_file);
26029 return mp_fatal_error_stop;
26031 (mp->close_file)(mp, mp->mem_file);
26032 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26034 mp->buffer[limit]='%';
26035 mp_fix_date_and_time(mp);
26036 if (mp->random_seed==0)
26037 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
26038 mp_init_randoms(mp, mp->random_seed);
26039 @<Initialize the print |selector|...@>;
26040 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26041 mp_start_input(mp); /* \&{input} assumed */
26044 @ @<Run inimpost commands@>=
26046 mp_get_strings_started(mp);
26047 mp_init_tab(mp); /* initialize the tables */
26048 mp_init_prim(mp); /* call |primitive| for each primitive */
26049 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26050 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26051 mp_fix_date_and_time(mp);
26055 @* \[47] Debugging.
26056 Once \MP\ is working, you should be able to diagnose most errors with
26057 the \.{show} commands and other diagnostic features. But for the initial
26058 stages of debugging, and for the revelation of really deep mysteries, you
26059 can compile \MP\ with a few more aids. An additional routine called |debug_help|
26060 will also come into play when you type `\.D' after an error message;
26061 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26063 @^system dependencies@>
26065 The interface to |debug_help| is primitive, but it is good enough when used
26066 with a debugger that allows you to set breakpoints and to read
26067 variables and change their values. After getting the prompt `\.{debug \#}', you
26068 type either a negative number (this exits |debug_help|), or zero (this
26069 goes to a location where you can set a breakpoint, thereby entering into
26070 dialog with the debugger), or a positive number |m| followed by
26071 an argument |n|. The meaning of |m| and |n| will be clear from the
26072 program below. (If |m=13|, there is an additional argument, |l|.)
26075 @<Last-minute...@>=
26076 void mp_debug_help (MP mp) { /* routine to display various things */
26083 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26086 aline = (mp->read_ascii_file)(mp,mp->term_in, &len);
26087 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26091 aline = (mp->read_ascii_file)(mp,mp->term_in, &len);
26092 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26094 @<Numbered cases for |debug_help|@>;
26095 default: mp_print(mp, "?"); break;
26100 @ @<Numbered cases...@>=
26101 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26103 case 2: mp_print_int(mp, info(n));
26105 case 3: mp_print_int(mp, link(n));
26107 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26109 case 5: mp_print_variable_name(mp, n);
26111 case 6: mp_print_int(mp, mp->internal[n]);
26113 case 7: mp_do_show_dependencies(mp);
26115 case 9: mp_show_token_list(mp, n,null,100000,0);
26117 case 10: mp_print_str(mp, n);
26119 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26121 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26125 aline = (mp->read_ascii_file)(mp,mp->term_in, &len);
26126 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26127 mp_print_cmd_mod(mp, n,l);
26129 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26131 case 15: mp->panicking=! mp->panicking;
26135 @ Saving the filename template
26137 @<Save the filename template@>=
26139 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26140 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26142 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26146 @* \[48] System-dependent changes.
26147 This section should be replaced, if necessary, by any special
26148 modification of the program
26149 that are necessary to make \MP\ work at a particular installation.
26150 It is usually best to design your change file so that all changes to
26151 previous sections preserve the section numbering; then everybody's version
26152 will be consistent with the published program. More extensive changes,
26153 which introduce new sections, can be inserted here; then only the index
26154 itself will get a new section number.
26155 @^system dependencies@>
26158 Here is where you can find all uses of each identifier in the program,
26159 with underlined entries pointing to where the identifier was defined.
26160 If the identifier is only one letter long, however, you get to see only
26161 the underlined entries. {\sl All references are to section numbers instead of
26164 This index also lists error messages and other aspects of the program
26165 that you might want to look up some day. For example, the entry
26166 for ``system dependencies'' lists all sections that should receive
26167 special attention from people who are installing \MP\ in a new
26168 operating environment. A list of various things that can't happen appears
26169 under ``this can't happen''.
26170 Approximately 25 sections are listed under ``inner loop''; these account
26171 for more than 60\pct! of \MP's running time, exclusive of input and output.