1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
16 \def\psqrt#1{\sqrt{\mathstrut#1}}
18 \def\pct!{{\char`\%}} % percent sign in ordinary text
19 \font\tenlogo=logo10 % font used for the METAFONT logo
21 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
22 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
23 \def\[#1]{\ignorespaces} % left over from pascal web
24 \def\<#1>{$\langle#1\rangle$}
25 \def\section{\mathhexbox278}
26 \let\swap=\leftrightarrow
27 \def\round{\mathop{\rm round}\nolimits}
28 \mathchardef\vb="026A % synonym for `\|'
30 \def\(#1){} % this is used to make section names sort themselves better
31 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
38 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
40 The main purpose of the following program is to explain the algorithms of \MP\
41 as clearly as possible. However, the program has been written so that it
42 can be tuned to run efficiently in a wide variety of operating environments
43 by making comparatively few changes. Such flexibility is possible because
44 the documentation that follows is written in the \.{WEB} language, which is
45 at a higher level than C.
47 A large piece of software like \MP\ has inherent complexity that cannot
48 be reduced below a certain level of difficulty, although each individual
49 part is fairly simple by itself. The \.{WEB} language is intended to make
50 the algorithms as readable as possible, by reflecting the way the
51 individual program pieces fit together and by providing the
52 cross-references that connect different parts. Detailed comments about
53 what is going on, and about why things were done in certain ways, have
54 been liberally sprinkled throughout the program. These comments explain
55 features of the implementation, but they rarely attempt to explain the
56 \MP\ language itself, since the reader is supposed to be familiar with
57 {\sl The {\logos METAFONT\/}book} as well as the manual
59 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
60 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
61 AT\AM T Bell Laboratories.
63 @ The present implementation is a preliminary version, but the possibilities
64 for new features are limited by the desire to remain as nearly compatible
65 with \MF\ as possible.
67 On the other hand, the \.{WEB} description can be extended without changing
68 the core of the program, and it has been designed so that such
69 extensions are not extremely difficult to make.
70 The |banner| string defined here should be changed whenever \MP\
71 undergoes any modifications, so that it will be clear which version of
72 \MP\ might be the guilty party when a problem arises.
74 @^system dependencies@>
76 @d banner "This is MetaPost, Version 1.004" /* printed when \MP\ starts */
77 @d metapost_version "1.004"
78 @d mplib_version "0.45"
79 @d version_string " (Cweb version 0.45)"
84 @ The external library header for \MP\ is |mplib.h|. It contains a
85 few typedefs and the header defintions for the externally used
88 The most important of the typedefs is the definition of the structure
89 |MP_options|, that acts as a small, configurable front-end to the fairly
90 large |MP_instance| structure.
93 typedef struct MP_instance * MP;
95 typedef struct MP_options {
98 @<Exported function headers@>
100 @ The internal header file is much longer: it not only lists the complete
101 |MP_instance|, but also a lot of functions that have to be available to
102 the \ps\ backend, that is defined in a separate \.{WEB} file.
104 The variables from |MP_options| are included inside the |MP_instance|
109 typedef struct psout_data_struct * psout_data;
111 typedef signed int integer;
113 @<Types in the outer block@>
114 @<Constants in the outer block@>
115 # ifndef LIBAVL_ALLOCATOR
116 # define LIBAVL_ALLOCATOR
117 struct libavl_allocator {
118 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
119 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
122 typedef struct MP_instance {
126 @<Internal library declarations@>
134 #include <unistd.h> /* for access() */
135 #include <time.h> /* for struct tm \& co */
137 #include "mpmp.h" /* internal header */
138 #include "mppsout.h" /* internal header */
141 @<Basic printing procedures@>
142 @<Error handling procedures@>
144 @ Here are the functions that set up the \MP\ instance.
147 @<Declare |mp_reallocate| functions@>
148 struct MP_options *mp_options (void);
149 MP mp_new (struct MP_options *opt);
152 struct MP_options *mp_options (void) {
153 struct MP_options *opt;
154 opt = malloc(sizeof(MP_options));
156 memset (opt,0,sizeof(MP_options));
161 @ The |__attribute__| pragma is gcc-only.
163 @<Internal library ... @>=
164 #if !defined(__GNUC__) || (__GNUC__ < 2)
165 # define __attribute__(x)
169 MP __attribute__ ((noinline))
170 mp_new (struct MP_options *opt) {
172 mp = malloc(1*sizeof(MP_instance));
175 @<Set |ini_version|@>;
176 @<Setup the non-local jump buffer in |mp_new|@>;
177 @<Allocate or initialize variables@>
178 if (opt->main_memory>mp->mem_max)
179 mp_reallocate_memory(mp,opt->main_memory);
180 mp_reallocate_paths(mp,1000);
181 mp_reallocate_fonts(mp,8);
186 void mp_free (MP mp) {
187 int k; /* loop variable */
188 @<Dealloc variables@>
193 void __attribute__((noinline))
194 mp_do_initialize ( MP mp) {
195 @<Local variables for initialization@>
196 @<Set initial values of key variables@>
198 int mp_initialize (MP mp) { /* this procedure gets things started properly */
199 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
200 @<Install and test the non-local jump buffer@>;
201 t_open_out; /* open the terminal for output */
202 @<Check the ``constant'' values...@>;
205 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
206 "---case %i",(int)mp->bad);
207 do_fprintf(mp->err_out,(char *)ss);
211 mp_do_initialize(mp); /* erase preloaded mem */
212 if (mp->ini_version) {
213 @<Run inimpost commands@>;
215 @<Initialize the output routines@>;
216 @<Get the first line of input and prepare to start@>;
218 mp_init_map_file(mp, mp->troff_mode);
219 mp->history=mp_spotless; /* ready to go! */
220 if (mp->troff_mode) {
221 mp->internal[mp_gtroffmode]=unity;
222 mp->internal[mp_prologues]=unity;
224 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
225 mp->cur_sym=mp->start_sym; mp_back_input(mp);
231 @<Exported function headers@>=
232 extern struct MP_options *mp_options (void);
233 extern MP mp_new (struct MP_options *opt) ;
234 extern void mp_free (MP mp);
235 extern int mp_initialize (MP mp);
237 @ The overall \MP\ program begins with the heading just shown, after which
238 comes a bunch of procedure declarations and function declarations.
239 Finally we will get to the main program, which begins with the
240 comment `|start_here|'. If you want to skip down to the
241 main program now, you can look up `|start_here|' in the index.
242 But the author suggests that the best way to understand this program
243 is to follow pretty much the order of \MP's components as they appear in the
244 \.{WEB} description you are now reading, since the present ordering is
245 intended to combine the advantages of the ``bottom up'' and ``top down''
246 approaches to the problem of understanding a somewhat complicated system.
248 @ Some of the code below is intended to be used only when diagnosing the
249 strange behavior that sometimes occurs when \MP\ is being installed or
250 when system wizards are fooling around with \MP\ without quite knowing
251 what they are doing. Such code will not normally be compiled; it is
252 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
254 @ This program has two important variations: (1) There is a long and slow
255 version called \.{INIMP}, which does the extra calculations needed to
257 initialize \MP's internal tables; and (2)~there is a shorter and faster
258 production version, which cuts the initialization to a bare minimum.
260 Which is which is decided at runtime.
262 @ The following parameters can be changed at compile time to extend or
263 reduce \MP's capacity. They may have different values in \.{INIMP} and
264 in production versions of \MP.
266 @^system dependencies@>
269 #define file_name_size 255 /* file names shouldn't be longer than this */
270 #define bistack_size 1500 /* size of stack for bisection algorithms;
271 should probably be left at this value */
273 @ Like the preceding parameters, the following quantities can be changed
274 at compile time to extend or reduce \MP's capacity. But if they are changed,
275 it is necessary to rerun the initialization program \.{INIMP}
277 to generate new tables for the production \MP\ program.
278 One can't simply make helter-skelter changes to the following constants,
279 since certain rather complex initialization
280 numbers are computed from them.
283 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
284 int pool_size; /* maximum number of characters in strings, including all
285 error messages and help texts, and the names of all identifiers */
286 int mem_max; /* greatest index in \MP's internal |mem| array;
287 must be strictly less than |max_halfword|;
288 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
289 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
290 must not be greater than |mem_max| */
292 @ @<Option variables@>=
293 int error_line; /* width of context lines on terminal error messages */
294 int half_error_line; /* width of first lines of contexts in terminal
295 error messages; should be between 30 and |error_line-15| */
296 int max_print_line; /* width of longest text lines output; should be at least 60 */
297 int hash_size; /* maximum number of symbolic tokens,
298 must be less than |max_halfword-3*param_size| */
299 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
300 int param_size; /* maximum number of simultaneous macro parameters */
301 int max_in_open; /* maximum number of input files and error insertions that
302 can be going on simultaneously */
303 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
304 void *userdata; /* this allows the calling application to setup local */
307 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
312 set_value(mp->error_line,opt->error_line,79);
313 set_value(mp->half_error_line,opt->half_error_line,50);
314 set_value(mp->max_print_line,opt->max_print_line,100);
315 mp->main_memory=5000;
318 set_value(mp->hash_size,opt->hash_size,9500);
319 set_value(mp->hash_prime,opt->hash_prime,7919);
320 set_value(mp->param_size,opt->param_size,150);
321 set_value(mp->max_in_open,opt->max_in_open,10);
322 mp->userdata=opt->userdata;
324 @ In case somebody has inadvertently made bad settings of the ``constants,''
325 \MP\ checks them using a global variable called |bad|.
327 This is the first of many sections of \MP\ where global variables are
331 integer bad; /* is some ``constant'' wrong? */
333 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
334 or something similar. (We can't do that until |max_halfword| has been defined.)
336 @<Check the ``constant'' values for consistency@>=
338 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
339 if ( mp->max_print_line<60 ) mp->bad=2;
340 if ( mp->mem_top<=1100 ) mp->bad=4;
341 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
343 @ Some |goto| labels are used by the following definitions. The label
344 `|restart|' is occasionally used at the very beginning of a procedure; and
345 the label `|reswitch|' is occasionally used just prior to a |case|
346 statement in which some cases change the conditions and we wish to branch
347 to the newly applicable case. Loops that are set up with the |loop|
348 construction defined below are commonly exited by going to `|done|' or to
349 `|found|' or to `|not_found|', and they are sometimes repeated by going to
350 `|continue|'. If two or more parts of a subroutine start differently but
351 end up the same, the shared code may be gathered together at
354 @ Here are some macros for common programming idioms.
356 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
357 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
358 @d negate(A) (A)=-(A) /* change the sign of a variable */
359 @d double(A) (A)=(A)+(A)
362 @d do_nothing /* empty statement */
363 @d Return goto exit /* terminate a procedure call */
364 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
366 @* \[2] The character set.
367 In order to make \MP\ readily portable to a wide variety of
368 computers, all of its input text is converted to an internal eight-bit
369 code that includes standard ASCII, the ``American Standard Code for
370 Information Interchange.'' This conversion is done immediately when each
371 character is read in. Conversely, characters are converted from ASCII to
372 the user's external representation just before they are output to a
376 Such an internal code is relevant to users of \MP\ only with respect to
377 the \&{char} and \&{ASCII} operations, and the comparison of strings.
379 @ Characters of text that have been converted to \MP's internal form
380 are said to be of type |ASCII_code|, which is a subrange of the integers.
383 typedef unsigned char ASCII_code; /* eight-bit numbers */
385 @ The present specification of \MP\ has been written under the assumption
386 that the character set contains at least the letters and symbols associated
387 with ASCII codes 040 through 0176; all of these characters are now
388 available on most computer terminals.
390 We shall use the name |text_char| to stand for the data type of the characters
391 that are converted to and from |ASCII_code| when they are input and output.
392 We shall also assume that |text_char| consists of the elements
393 |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
394 The following definitions should be adjusted if necessary.
395 @^system dependencies@>
397 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
398 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
401 typedef unsigned char text_char; /* the data type of characters in text files */
403 @ @<Local variables for init...@>=
406 @ The \MP\ processor converts between ASCII code and
407 the user's external character set by means of arrays |xord| and |xchr|
408 that are analogous to Pascal's |ord| and |chr| functions.
410 @d xchr(A) mp->xchr[(A)]
411 @d xord(A) mp->xord[(A)]
414 ASCII_code xord[256]; /* specifies conversion of input characters */
415 text_char xchr[256]; /* specifies conversion of output characters */
417 @ The core system assumes all 8-bit is acceptable. If it is not,
418 a change file has to alter the below section.
419 @^system dependencies@>
421 Additionally, people with extended character sets can
422 assign codes arbitrarily, giving an |xchr| equivalent to whatever
423 characters the users of \MP\ are allowed to have in their input files.
424 Appropriate changes to \MP's |char_class| table should then be made.
425 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
426 codes, called the |char_class|.) Such changes make portability of programs
427 more difficult, so they should be introduced cautiously if at all.
428 @^character set dependencies@>
429 @^system dependencies@>
432 for (i=0;i<=0377;i++) { xchr(i)=i; }
434 @ The following system-independent code makes the |xord| array contain a
435 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
436 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
437 |j| or more; hence, standard ASCII code numbers will be used instead of
438 codes below 040 in case there is a coincidence.
441 for (i=first_text_char;i<=last_text_char;i++) {
444 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
445 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
447 @* \[3] Input and output.
448 The bane of portability is the fact that different operating systems treat
449 input and output quite differently, perhaps because computer scientists
450 have not given sufficient attention to this problem. People have felt somehow
451 that input and output are not part of ``real'' programming. Well, it is true
452 that some kinds of programming are more fun than others. With existing
453 input/output conventions being so diverse and so messy, the only sources of
454 joy in such parts of the code are the rare occasions when one can find a
455 way to make the program a little less bad than it might have been. We have
456 two choices, either to attack I/O now and get it over with, or to postpone
457 I/O until near the end. Neither prospect is very attractive, so let's
460 The basic operations we need to do are (1)~inputting and outputting of
461 text, to or from a file or the user's terminal; (2)~inputting and
462 outputting of eight-bit bytes, to or from a file; (3)~instructing the
463 operating system to initiate (``open'') or to terminate (``close'') input or
464 output from a specified file; (4)~testing whether the end of an input
465 file has been reached; (5)~display of bits on the user's screen.
466 The bit-display operation will be discussed in a later section; we shall
467 deal here only with more traditional kinds of I/O.
469 @ Finding files happens in a slightly roundabout fashion: the \MP\
470 instance object contains a field that holds a function pointer that finds a
471 file, and returns its name, or NULL. For this, it receives three
472 parameters: the non-qualified name |fname|, the intended |fopen|
473 operation type |fmode|, and the type of the file |ftype|.
475 The file types that are passed on in |ftype| can be used to
476 differentiate file searches if a library like kpathsea is used,
477 the fopen mode is passed along for the same reason.
480 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
482 @ @<Exported types@>=
484 mp_filetype_terminal = 0, /* the terminal */
485 mp_filetype_error, /* the terminal */
486 mp_filetype_program , /* \MP\ language input */
487 mp_filetype_log, /* the log file */
488 mp_filetype_postscript, /* the postscript output */
489 mp_filetype_memfile, /* memory dumps */
490 mp_filetype_metrics, /* TeX font metric files */
491 mp_filetype_fontmap, /* PostScript font mapping files */
492 mp_filetype_font, /* PostScript type1 font programs */
493 mp_filetype_encoding, /* PostScript font encoding files */
494 mp_filetype_text /* first text file for readfrom and writeto primitives */
496 typedef char *(*mp_file_finder)(MP, const char *, const char *, int);
497 typedef void *(*mp_file_opener)(MP, const char *, const char *, int);
498 typedef char *(*mp_file_reader)(MP, void *, size_t *);
499 typedef void (*mp_binfile_reader)(MP, void *, void **, size_t *);
500 typedef void (*mp_file_closer)(MP, void *);
501 typedef int (*mp_file_eoftest)(MP, void *);
502 typedef void (*mp_file_flush)(MP, void *);
503 typedef void (*mp_file_writer)(MP, void *, const char *);
504 typedef void (*mp_binfile_writer)(MP, void *, void *, size_t);
507 @ @<Option variables@>=
508 mp_file_finder find_file;
509 mp_file_opener open_file;
510 mp_file_reader read_ascii_file;
511 mp_binfile_reader read_binary_file;
512 mp_file_closer close_file;
513 mp_file_eoftest eof_file;
514 mp_file_flush flush_file;
515 mp_file_writer write_ascii_file;
516 mp_binfile_writer write_binary_file;
518 @ The default function for finding files is |mp_find_file|. It is
519 pretty stupid: it will only find files in the current directory.
521 This function may disappear altogether, it is currently only
522 used for the default font map file.
525 char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) {
527 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
528 return strdup(fname);
533 @ This has to be done very early on, so it is best to put it in with
534 the |mp_new| allocations
536 @d set_callback_option(A) do { mp->A = mp_##A;
537 if (opt->A!=NULL) mp->A = opt->A;
540 @<Allocate or initialize ...@>=
541 set_callback_option(find_file);
542 set_callback_option(open_file);
543 set_callback_option(read_ascii_file);
544 set_callback_option(read_binary_file);
545 set_callback_option(close_file);
546 set_callback_option(eof_file);
547 set_callback_option(flush_file);
548 set_callback_option(write_ascii_file);
549 set_callback_option(write_binary_file);
551 @ Because |mp_find_file| is used so early, it has to be in the helpers
555 char *mp_find_file (MP mp, const char *fname, const char *fmode, int ftype) ;
556 void *mp_open_file (MP mp , const char *fname, const char *fmode, int ftype) ;
557 char *mp_read_ascii_file (MP mp, void *f, size_t *size) ;
558 void mp_read_binary_file (MP mp, void *f, void **d, size_t *size) ;
559 void mp_close_file (MP mp, void *f) ;
560 int mp_eof_file (MP mp, void *f) ;
561 void mp_flush_file (MP mp, void *f) ;
562 void mp_write_ascii_file (MP mp, void *f, const char *s) ;
563 void mp_write_binary_file (MP mp, void *f, void *s, size_t t) ;
565 @ The function to open files can now be very short.
568 void *mp_open_file(MP mp, const char *fname, const char *fmode, int ftype) {
571 realmode[0] = *fmode;
575 if (ftype==mp_filetype_terminal) {
576 return (fmode[0] == 'r' ? stdin : stdout);
577 } else if (ftype==mp_filetype_error) {
579 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
580 return (void *)fopen(fname, realmode);
586 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
589 char name_of_file[file_name_size+1]; /* the name of a system file */
590 int name_length;/* this many characters are actually
591 relevant in |name_of_file| (the rest are blank) */
593 @ @<Option variables@>=
594 int print_found_names; /* configuration parameter */
596 @ If this parameter is true, the terminal and log will report the found
597 file names for input files instead of the requested ones.
598 It is off by default because it creates an extra filename lookup.
600 @<Allocate or initialize ...@>=
601 mp->print_found_names = (opt->print_found_names>0 ? true : false);
603 @ \MP's file-opening procedures return |false| if no file identified by
604 |name_of_file| could be opened.
606 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
607 It is not used for opening a mem file for read, because that file name
611 if (mp->print_found_names) {
612 char *s = (mp->find_file)(mp,mp->name_of_file,A,ftype);
614 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
615 strncpy(mp->name_of_file,s,file_name_size);
621 *f = (mp->open_file)(mp,mp->name_of_file,A, ftype);
624 return (*f ? true : false)
627 boolean mp_a_open_in (MP mp, void **f, int ftype) {
628 /* open a text file for input */
632 boolean mp_w_open_in (MP mp, void **f) {
633 /* open a word file for input */
634 *f = (mp->open_file)(mp,mp->name_of_file,"r",mp_filetype_memfile);
635 return (*f ? true : false);
638 boolean mp_a_open_out (MP mp, void **f, int ftype) {
639 /* open a text file for output */
643 boolean mp_b_open_out (MP mp, void **f, int ftype) {
644 /* open a binary file for output */
648 boolean mp_w_open_out (MP mp, void **f) {
649 /* open a word file for output */
650 int ftype = mp_filetype_memfile;
655 char *mp_read_ascii_file (MP mp, void *ff, size_t *size) {
657 size_t len = 0, lim = 128;
659 FILE *f = (FILE *)ff;
661 (void) mp; /* for -Wunused */
669 if (s==NULL) return NULL;
670 while (c!=EOF && c!='\n' && c!='\r') {
672 s =realloc(s, (lim+(lim>>2)));
673 if (s==NULL) return NULL;
681 if (c!=EOF && c!='\n')
691 void mp_write_ascii_file (MP mp, void *f, const char *s) {
701 void mp_read_binary_file (MP mp, void *f, void **data, size_t *size) {
706 len = fread(*data,1,*size,(FILE *)f);
712 void mp_write_binary_file (MP mp, void *f, void *s, size_t size) {
716 fwrite(s,size,1,(FILE *)f);
722 void mp_close_file (MP mp, void *f) {
731 int mp_eof_file (MP mp, void *f) {
735 return feof((FILE *)f);
744 void mp_flush_file (MP mp, void *f) {
752 @ Input from text files is read one line at a time, using a routine called
753 |input_ln|. This function is defined in terms of global variables called
754 |buffer|, |first|, and |last| that will be described in detail later; for
755 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
756 values, and that |first| and |last| are indices into this array
757 representing the beginning and ending of a line of text.
760 size_t buf_size; /* maximum number of characters simultaneously present in
761 current lines of open files */
762 ASCII_code *buffer; /* lines of characters being read */
763 size_t first; /* the first unused position in |buffer| */
764 size_t last; /* end of the line just input to |buffer| */
765 size_t max_buf_stack; /* largest index used in |buffer| */
767 @ @<Allocate or initialize ...@>=
769 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
771 @ @<Dealloc variables@>=
775 void mp_reallocate_buffer(MP mp, size_t l) {
777 if (l>max_halfword) {
778 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
780 buffer = xmalloc((l+1),sizeof(ASCII_code));
781 memcpy(buffer,mp->buffer,(mp->buf_size+1));
783 mp->buffer = buffer ;
787 @ The |input_ln| function brings the next line of input from the specified
788 field into available positions of the buffer array and returns the value
789 |true|, unless the file has already been entirely read, in which case it
790 returns |false| and sets |last:=first|. In general, the |ASCII_code|
791 numbers that represent the next line of the file are input into
792 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
793 global variable |last| is set equal to |first| plus the length of the
794 line. Trailing blanks are removed from the line; thus, either |last=first|
795 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
798 The variable |max_buf_stack|, which is used to keep track of how large
799 the |buf_size| parameter must be to accommodate the present job, is
800 also kept up to date by |input_ln|.
803 boolean mp_input_ln (MP mp, void *f ) {
804 /* inputs the next line or returns |false| */
807 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
808 s = (mp->read_ascii_file)(mp,f, &size);
812 mp->last = mp->first+size;
813 if ( mp->last>=mp->max_buf_stack ) {
814 mp->max_buf_stack=mp->last+1;
815 while ( mp->max_buf_stack>=mp->buf_size ) {
816 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
819 memcpy((mp->buffer+mp->first),s,size);
820 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
826 @ The user's terminal acts essentially like other files of text, except
827 that it is used both for input and for output. When the terminal is
828 considered an input file, the file variable is called |term_in|, and when it
829 is considered an output file the file variable is |term_out|.
830 @^system dependencies@>
833 void * term_in; /* the terminal as an input file */
834 void * term_out; /* the terminal as an output file */
835 void * err_out; /* the terminal as an output file */
837 @ Here is how to open the terminal files. In the default configuration,
838 nothing happens except that the command line (if there is one) is copied
839 to the input buffer. The variable |command_line| will be filled by the
840 |main| procedure. The copying can not be done earlier in the program
841 logic because in the |INI| version, the |buffer| is also used for primitive
844 @^system dependencies@>
846 @d t_open_out do {/* open the terminal for text output */
847 mp->term_out = (mp->open_file)(mp,"terminal", "w", mp_filetype_terminal);
848 mp->err_out = (mp->open_file)(mp,"error", "w", mp_filetype_error);
850 @d t_open_in do { /* open the terminal for text input */
851 mp->term_in = (mp->open_file)(mp,"terminal", "r", mp_filetype_terminal);
852 if (mp->command_line!=NULL) {
853 mp->last = strlen(mp->command_line);
854 strncpy((char *)mp->buffer,mp->command_line,mp->last);
855 xfree(mp->command_line);
861 @d t_close_out do { /* close the terminal */
862 (mp->close_file)(mp,mp->term_out);
863 (mp->close_file)(mp,mp->err_out);
866 @d t_close_in do { /* close the terminal */
867 (mp->close_file)(mp,mp->term_in);
870 @<Option variables@>=
873 @ @<Allocate or initialize ...@>=
874 mp->command_line = xstrdup(opt->command_line);
876 @ Sometimes it is necessary to synchronize the input/output mixture that
877 happens on the user's terminal, and three system-dependent
878 procedures are used for this
879 purpose. The first of these, |update_terminal|, is called when we want
880 to make sure that everything we have output to the terminal so far has
881 actually left the computer's internal buffers and been sent.
882 The second, |clear_terminal|, is called when we wish to cancel any
883 input that the user may have typed ahead (since we are about to
884 issue an unexpected error message). The third, |wake_up_terminal|,
885 is supposed to revive the terminal if the user has disabled it by
886 some instruction to the operating system. The following macros show how
887 these operations can be specified:
888 @^system dependencies@>
890 @d update_terminal (mp->flush_file)(mp,mp->term_out) /* empty the terminal output buffer */
891 @d clear_terminal do_nothing /* clear the terminal input buffer */
892 @d wake_up_terminal (mp->flush_file)(mp,mp->term_out)
893 /* cancel the user's cancellation of output */
895 @ We need a special routine to read the first line of \MP\ input from
896 the user's terminal. This line is different because it is read before we
897 have opened the transcript file; there is sort of a ``chicken and
898 egg'' problem here. If the user types `\.{input cmr10}' on the first
899 line, or if some macro invoked by that line does such an \.{input},
900 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
901 commands are performed during the first line of terminal input, the transcript
902 file will acquire its default name `\.{mpout.log}'. (The transcript file
903 will not contain error messages generated by the first line before the
904 first \.{input} command.)
906 The first line is even more special. It's nice to let the user start
907 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
908 such a case, \MP\ will operate as if the first line of input were
909 `\.{cmr10}', i.e., the first line will consist of the remainder of the
910 command line, after the part that invoked \MP.
912 @ Different systems have different ways to get started. But regardless of
913 what conventions are adopted, the routine that initializes the terminal
914 should satisfy the following specifications:
916 \yskip\textindent{1)}It should open file |term_in| for input from the
917 terminal. (The file |term_out| will already be open for output to the
920 \textindent{2)}If the user has given a command line, this line should be
921 considered the first line of terminal input. Otherwise the
922 user should be prompted with `\.{**}', and the first line of input
923 should be whatever is typed in response.
925 \textindent{3)}The first line of input, which might or might not be a
926 command line, should appear in locations |first| to |last-1| of the
929 \textindent{4)}The global variable |loc| should be set so that the
930 character to be read next by \MP\ is in |buffer[loc]|. This
931 character should not be blank, and we should have |loc<last|.
933 \yskip\noindent(It may be necessary to prompt the user several times
934 before a non-blank line comes in. The prompt is `\.{**}' instead of the
935 later `\.*' because the meaning is slightly different: `\.{input}' need
936 not be typed immediately after~`\.{**}'.)
938 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
940 @ The following program does the required initialization
941 without retrieving a possible command line.
942 It should be clear how to modify this routine to deal with command lines,
943 if the system permits them.
944 @^system dependencies@>
947 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
954 if (!mp->noninteractive) {
955 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
958 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
959 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
960 @.End of file on the terminal@>
964 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
966 if ( loc<(int)mp->last ) {
967 return true; /* return unless the line was all blank */
969 if (!mp->noninteractive) {
970 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
976 boolean mp_init_terminal (MP mp) ;
979 @* \[4] String handling.
980 Symbolic token names and diagnostic messages are variable-length strings
981 of eight-bit characters. Many strings \MP\ uses are simply literals
982 in the compiled source, like the error messages and the names of the
983 internal parameters. Other strings are used or defined from the \MP\ input
984 language, and these have to be interned.
986 \MP\ uses strings more extensively than \MF\ does, but the necessary
987 operations can still be handled with a fairly simple data structure.
988 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
989 of the strings, and the array |str_start| contains indices of the starting
990 points of each string. Strings are referred to by integer numbers, so that
991 string number |s| comprises the characters |str_pool[j]| for
992 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
993 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
994 location. The first string number not currently in use is |str_ptr|
995 and |next_str[str_ptr]| begins a list of free string numbers. String
996 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
997 string currently being constructed.
999 String numbers 0 to 255 are reserved for strings that correspond to single
1000 ASCII characters. This is in accordance with the conventions of \.{WEB},
1002 which converts single-character strings into the ASCII code number of the
1003 single character involved, while it converts other strings into integers
1004 and builds a string pool file. Thus, when the string constant \.{"."} appears
1005 in the program below, \.{WEB} converts it into the integer 46, which is the
1006 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1007 into some integer greater than~255. String number 46 will presumably be the
1008 single character `\..'\thinspace; but some ASCII codes have no standard visible
1009 representation, and \MP\ may need to be able to print an arbitrary
1010 ASCII character, so the first 256 strings are used to specify exactly what
1011 should be printed for each of the 256 possibilities.
1014 typedef int pool_pointer; /* for variables that point into |str_pool| */
1015 typedef int str_number; /* for variables that point into |str_start| */
1018 ASCII_code *str_pool; /* the characters */
1019 pool_pointer *str_start; /* the starting pointers */
1020 str_number *next_str; /* for linking strings in order */
1021 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1022 str_number str_ptr; /* number of the current string being created */
1023 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1024 str_number init_str_use; /* the initial number of strings in use */
1025 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1026 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1028 @ @<Allocate or initialize ...@>=
1029 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1030 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1031 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1033 @ @<Dealloc variables@>=
1034 xfree(mp->str_pool);
1035 xfree(mp->str_start);
1036 xfree(mp->next_str);
1038 @ Most printing is done from |char *|s, but sometimes not. Here are
1039 functions that convert an internal string into a |char *| for use
1040 by the printing routines, and vice versa.
1042 @d str(A) mp_str(mp,A)
1043 @d rts(A) mp_rts(mp,A)
1046 int mp_xstrcmp (const char *a, const char *b);
1047 char * mp_str (MP mp, str_number s);
1050 str_number mp_rts (MP mp, const char *s);
1051 str_number mp_make_string (MP mp);
1053 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1054 very good: it does not handle nesting over more than one level.
1057 int mp_xstrcmp (const char *a, const char *b) {
1058 if (a==NULL && b==NULL)
1068 char * mp_str (MP mp, str_number ss) {
1071 if (ss==mp->str_ptr) {
1075 s = xmalloc(len+1,sizeof(char));
1076 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1081 str_number mp_rts (MP mp, const char *s) {
1082 int r; /* the new string */
1083 int old; /* a possible string in progress */
1087 } else if (strlen(s)==1) {
1091 str_room((integer)strlen(s));
1092 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1093 old = mp_make_string(mp);
1098 r = mp_make_string(mp);
1100 str_room(length(old));
1101 while (i<length(old)) {
1102 append_char((mp->str_start[old]+i));
1104 mp_flush_string(mp,old);
1110 @ Except for |strs_used_up|, the following string statistics are only
1111 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1115 integer strs_used_up; /* strings in use or unused but not reclaimed */
1116 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1117 integer strs_in_use; /* total number of strings actually in use */
1118 integer max_pl_used; /* maximum |pool_in_use| so far */
1119 integer max_strs_used; /* maximum |strs_in_use| so far */
1121 @ Several of the elementary string operations are performed using \.{WEB}
1122 macros instead of functions, because many of the
1123 operations are done quite frequently and we want to avoid the
1124 overhead of procedure calls. For example, here is
1125 a simple macro that computes the length of a string.
1128 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1130 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1132 @ The length of the current string is called |cur_length|. If we decide that
1133 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1134 |cur_length| becomes zero.
1136 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1137 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1139 @ Strings are created by appending character codes to |str_pool|.
1140 The |append_char| macro, defined here, does not check to see if the
1141 value of |pool_ptr| has gotten too high; this test is supposed to be
1142 made before |append_char| is used.
1144 To test if there is room to append |l| more characters to |str_pool|,
1145 we shall write |str_room(l)|, which tries to make sure there is enough room
1146 by compacting the string pool if necessary. If this does not work,
1147 |do_compaction| aborts \MP\ and gives an apologetic error message.
1149 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1150 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1152 @d str_room(A) /* make sure that the pool hasn't overflowed */
1153 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1154 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1155 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1158 @ The following routine is similar to |str_room(1)| but it uses the
1159 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1160 string space is exhausted.
1162 @<Declare the procedure called |unit_str_room|@>=
1163 void mp_unit_str_room (MP mp);
1166 void mp_unit_str_room (MP mp) {
1167 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1168 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1171 @ \MP's string expressions are implemented in a brute-force way: Every
1172 new string or substring that is needed is simply copied into the string pool.
1173 Space is eventually reclaimed by a procedure called |do_compaction| with
1174 the aid of a simple system system of reference counts.
1175 @^reference counts@>
1177 The number of references to string number |s| will be |str_ref[s]|. The
1178 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1179 positive number of references; such strings will never be recycled. If
1180 a string is ever referred to more than 126 times, simultaneously, we
1181 put it in this category. Hence a single byte suffices to store each |str_ref|.
1183 @d max_str_ref 127 /* ``infinite'' number of references */
1184 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1190 @ @<Allocate or initialize ...@>=
1191 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1193 @ @<Dealloc variables@>=
1196 @ Here's what we do when a string reference disappears:
1198 @d delete_str_ref(A) {
1199 if ( mp->str_ref[(A)]<max_str_ref ) {
1200 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1201 else mp_flush_string(mp, (A));
1205 @<Declare the procedure called |flush_string|@>=
1206 void mp_flush_string (MP mp,str_number s) ;
1209 @ We can't flush the first set of static strings at all, so there
1210 is no point in trying
1213 void mp_flush_string (MP mp,str_number s) {
1215 mp->pool_in_use=mp->pool_in_use-length(s);
1216 decr(mp->strs_in_use);
1217 if ( mp->next_str[s]!=mp->str_ptr ) {
1221 decr(mp->strs_used_up);
1223 mp->pool_ptr=mp->str_start[mp->str_ptr];
1227 @ C literals cannot be simply added, they need to be set so they can't
1230 @d intern(A) mp_intern(mp,(A))
1233 str_number mp_intern (MP mp, const char *s) {
1236 mp->str_ref[r] = max_str_ref;
1241 str_number mp_intern (MP mp, const char *s);
1244 @ Once a sequence of characters has been appended to |str_pool|, it
1245 officially becomes a string when the function |make_string| is called.
1246 This function returns the identification number of the new string as its
1249 When getting the next unused string number from the linked list, we pretend
1251 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1252 are linked sequentially even though the |next_str| entries have not been
1253 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1254 |do_compaction| is responsible for making sure of this.
1257 @<Declare the procedure called |do_compaction|@>
1258 @<Declare the procedure called |unit_str_room|@>
1259 str_number mp_make_string (MP mp);
1262 str_number mp_make_string (MP mp) { /* current string enters the pool */
1263 str_number s; /* the new string */
1266 mp->str_ptr=mp->next_str[s];
1267 if ( mp->str_ptr>mp->max_str_ptr ) {
1268 if ( mp->str_ptr==mp->max_strings ) {
1270 mp_do_compaction(mp, 0);
1274 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1275 @:this can't happen s}{\quad \.s@>
1277 mp->max_str_ptr=mp->str_ptr;
1278 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1282 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1283 incr(mp->strs_used_up);
1284 incr(mp->strs_in_use);
1285 mp->pool_in_use=mp->pool_in_use+length(s);
1286 if ( mp->pool_in_use>mp->max_pl_used )
1287 mp->max_pl_used=mp->pool_in_use;
1288 if ( mp->strs_in_use>mp->max_strs_used )
1289 mp->max_strs_used=mp->strs_in_use;
1293 @ The most interesting string operation is string pool compaction. The idea
1294 is to recover unused space in the |str_pool| array by recopying the strings
1295 to close the gaps created when some strings become unused. All string
1296 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1297 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1298 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1299 with |needed=mp->pool_size| supresses all overflow tests.
1301 The compaction process starts with |last_fixed_str| because all lower numbered
1302 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1305 str_number last_fixed_str; /* last permanently allocated string */
1306 str_number fixed_str_use; /* number of permanently allocated strings */
1308 @ @<Declare the procedure called |do_compaction|@>=
1309 void mp_do_compaction (MP mp, pool_pointer needed) ;
1312 void mp_do_compaction (MP mp, pool_pointer needed) {
1313 str_number str_use; /* a count of strings in use */
1314 str_number r,s,t; /* strings being manipulated */
1315 pool_pointer p,q; /* destination and source for copying string characters */
1316 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1317 r=mp->last_fixed_str;
1320 while ( s!=mp->str_ptr ) {
1321 while ( mp->str_ref[s]==0 ) {
1322 @<Advance |s| and add the old |s| to the list of free string numbers;
1323 then |break| if |s=str_ptr|@>;
1325 r=s; s=mp->next_str[s];
1327 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1328 after the end of the string@>;
1330 @<Move the current string back so that it starts at |p|@>;
1331 if ( needed<mp->pool_size ) {
1332 @<Make sure that there is room for another string with |needed| characters@>;
1334 @<Account for the compaction and make sure the statistics agree with the
1336 mp->strs_used_up=str_use;
1339 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1340 t=mp->next_str[mp->last_fixed_str];
1341 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1342 incr(mp->fixed_str_use);
1343 mp->last_fixed_str=t;
1346 str_use=mp->fixed_str_use
1348 @ Because of the way |flush_string| has been written, it should never be
1349 necessary to |break| here. The extra line of code seems worthwhile to
1350 preserve the generality of |do_compaction|.
1352 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1357 mp->next_str[t]=mp->next_str[mp->str_ptr];
1358 mp->next_str[mp->str_ptr]=t;
1359 if ( s==mp->str_ptr ) break;
1362 @ The string currently starts at |str_start[r]| and ends just before
1363 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1364 to locate the next string.
1366 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1369 while ( q<mp->str_start[s] ) {
1370 mp->str_pool[p]=mp->str_pool[q];
1374 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1375 we do this, anything between them should be moved.
1377 @ @<Move the current string back so that it starts at |p|@>=
1378 q=mp->str_start[mp->str_ptr];
1379 mp->str_start[mp->str_ptr]=p;
1380 while ( q<mp->pool_ptr ) {
1381 mp->str_pool[p]=mp->str_pool[q];
1386 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1388 @<Make sure that there is room for another string with |needed| char...@>=
1389 if ( str_use>=mp->max_strings-1 )
1390 mp_reallocate_strings (mp,str_use);
1391 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1392 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1393 mp->max_pool_ptr=mp->pool_ptr+needed;
1397 void mp_reallocate_strings (MP mp, str_number str_use) ;
1398 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1401 void mp_reallocate_strings (MP mp, str_number str_use) {
1402 while ( str_use>=mp->max_strings-1 ) {
1403 int l = mp->max_strings + (mp->max_strings>>2);
1404 XREALLOC (mp->str_ref, l, int);
1405 XREALLOC (mp->str_start, l, pool_pointer);
1406 XREALLOC (mp->next_str, l, str_number);
1407 mp->max_strings = l;
1410 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1411 while ( needed>mp->pool_size ) {
1412 int l = mp->pool_size + (mp->pool_size>>2);
1413 XREALLOC (mp->str_pool, l, ASCII_code);
1418 @ @<Account for the compaction and make sure the statistics agree with...@>=
1419 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1420 mp_confusion(mp, "string");
1421 @:this can't happen string}{\quad string@>
1422 incr(mp->pact_count);
1423 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1424 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1426 s=mp->str_ptr; t=str_use;
1427 while ( s<=mp->max_str_ptr ){
1428 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1429 incr(t); s=mp->next_str[s];
1431 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1434 @ A few more global variables are needed to keep track of statistics when
1435 |stat| $\ldots$ |tats| blocks are not commented out.
1438 integer pact_count; /* number of string pool compactions so far */
1439 integer pact_chars; /* total number of characters moved during compactions */
1440 integer pact_strs; /* total number of strings moved during compactions */
1442 @ @<Initialize compaction statistics@>=
1447 @ The following subroutine compares string |s| with another string of the
1448 same length that appears in |buffer| starting at position |k|;
1449 the result is |true| if and only if the strings are equal.
1452 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1453 /* test equality of strings */
1454 pool_pointer j; /* running index */
1456 while ( j<str_stop(s) ) {
1457 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1463 @ Here is a similar routine, but it compares two strings in the string pool,
1464 and it does not assume that they have the same length. If the first string
1465 is lexicographically greater than, less than, or equal to the second,
1466 the result is respectively positive, negative, or zero.
1469 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1470 /* test equality of strings */
1471 pool_pointer j,k; /* running indices */
1472 integer ls,lt; /* lengths */
1473 integer l; /* length remaining to test */
1474 ls=length(s); lt=length(t);
1475 if ( ls<=lt ) l=ls; else l=lt;
1476 j=mp->str_start[s]; k=mp->str_start[t];
1478 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1479 return (mp->str_pool[j]-mp->str_pool[k]);
1486 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1487 and |str_ptr| are computed by the \.{INIMP} program, based in part
1488 on the information that \.{WEB} has output while processing \MP.
1493 void mp_get_strings_started (MP mp) {
1494 /* initializes the string pool,
1495 but returns |false| if something goes wrong */
1496 int k; /* small indices or counters */
1497 str_number g; /* a new string */
1498 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1501 mp->pool_in_use=0; mp->strs_in_use=0;
1502 mp->max_pl_used=0; mp->max_strs_used=0;
1503 @<Initialize compaction statistics@>;
1505 @<Make the first 256 strings@>;
1506 g=mp_make_string(mp); /* string 256 == "" */
1507 mp->str_ref[g]=max_str_ref;
1508 mp->last_fixed_str=mp->str_ptr-1;
1509 mp->fixed_str_use=mp->str_ptr;
1514 void mp_get_strings_started (MP mp);
1516 @ The first 256 strings will consist of a single character only.
1518 @<Make the first 256...@>=
1519 for (k=0;k<=255;k++) {
1521 g=mp_make_string(mp);
1522 mp->str_ref[g]=max_str_ref;
1525 @ The first 128 strings will contain 95 standard ASCII characters, and the
1526 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1527 unless a system-dependent change is made here. Installations that have
1528 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1529 would like string 032 to be printed as the single character 032 instead
1530 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1531 even people with an extended character set will want to represent string
1532 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1533 to produce visible strings instead of tabs or line-feeds or carriage-returns
1534 or bell-rings or characters that are treated anomalously in text files.
1536 Unprintable characters of codes 128--255 are, similarly, rendered
1537 \.{\^\^80}--\.{\^\^ff}.
1539 The boolean expression defined here should be |true| unless \MP\ internal
1540 code number~|k| corresponds to a non-troublesome visible symbol in the
1541 local character set.
1542 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1543 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1545 @^character set dependencies@>
1546 @^system dependencies@>
1548 @<Character |k| cannot be printed@>=
1551 @* \[5] On-line and off-line printing.
1552 Messages that are sent to a user's terminal and to the transcript-log file
1553 are produced by several `|print|' procedures. These procedures will
1554 direct their output to a variety of places, based on the setting of
1555 the global variable |selector|, which has the following possible
1559 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1562 \hang |log_only|, prints only on the transcript file.
1564 \hang |term_only|, prints only on the terminal.
1566 \hang |no_print|, doesn't print at all. This is used only in rare cases
1567 before the transcript file is open.
1569 \hang |pseudo|, puts output into a cyclic buffer that is used
1570 by the |show_context| routine; when we get to that routine we shall discuss
1571 the reasoning behind this curious mode.
1573 \hang |new_string|, appends the output to the current string in the
1576 \hang |>=write_file| prints on one of the files used for the \&{write}
1577 @:write_}{\&{write} primitive@>
1581 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1582 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1583 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1584 relations are not used when |selector| could be |pseudo|, or |new_string|.
1585 We need not check for unprintable characters when |selector<pseudo|.
1587 Three additional global variables, |tally|, |term_offset| and |file_offset|
1588 record the number of characters that have been printed
1589 since they were most recently cleared to zero. We use |tally| to record
1590 the length of (possibly very long) stretches of printing; |term_offset|,
1591 and |file_offset|, on the other hand, keep track of how many
1592 characters have appeared so far on the current line that has been output
1593 to the terminal, the transcript file, or the \ps\ output file, respectively.
1595 @d new_string 0 /* printing is deflected to the string pool */
1596 @d pseudo 2 /* special |selector| setting for |show_context| */
1597 @d no_print 3 /* |selector| setting that makes data disappear */
1598 @d term_only 4 /* printing is destined for the terminal only */
1599 @d log_only 5 /* printing is destined for the transcript file only */
1600 @d term_and_log 6 /* normal |selector| setting */
1601 @d write_file 7 /* first write file selector */
1604 void * log_file; /* transcript of \MP\ session */
1605 void * ps_file; /* the generic font output goes here */
1606 unsigned int selector; /* where to print a message */
1607 unsigned char dig[23]; /* digits in a number being output */
1608 integer tally; /* the number of characters recently printed */
1609 unsigned int term_offset;
1610 /* the number of characters on the current terminal line */
1611 unsigned int file_offset;
1612 /* the number of characters on the current file line */
1613 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1614 integer trick_count; /* threshold for pseudoprinting, explained later */
1615 integer first_count; /* another variable for pseudoprinting */
1617 @ @<Allocate or initialize ...@>=
1618 memset(mp->dig,0,23);
1619 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1621 @ @<Dealloc variables@>=
1622 xfree(mp->trick_buf);
1624 @ @<Initialize the output routines@>=
1625 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1627 @ Macro abbreviations for output to the terminal and to the log file are
1628 defined here for convenience. Some systems need special conventions
1629 for terminal output, and it is possible to adhere to those conventions
1630 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1631 @^system dependencies@>
1633 @d do_fprintf(f,b) (mp->write_ascii_file)(mp,f,b)
1634 @d wterm(A) do_fprintf(mp->term_out,(A))
1635 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1636 @d wterm_cr do_fprintf(mp->term_out,"\n")
1637 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1638 @d wlog(A) do_fprintf(mp->log_file,(A))
1639 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1640 @d wlog_cr do_fprintf(mp->log_file, "\n")
1641 @d wlog_ln(A) { wlog_cr; do_fprintf(mp->log_file,(A)); }
1644 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1645 use an array |wr_file| that will be declared later.
1647 @d mp_print_text(A) mp_print_str(mp,text((A)))
1650 void mp_print_ln (MP mp);
1651 void mp_print_visible_char (MP mp, ASCII_code s);
1652 void mp_print_char (MP mp, ASCII_code k);
1653 void mp_print (MP mp, const char *s);
1654 void mp_print_str (MP mp, str_number s);
1655 void mp_print_nl (MP mp, const char *s);
1656 void mp_print_two (MP mp,scaled x, scaled y) ;
1657 void mp_print_scaled (MP mp,scaled s);
1659 @ @<Basic print...@>=
1660 void mp_print_ln (MP mp) { /* prints an end-of-line */
1661 switch (mp->selector) {
1664 mp->term_offset=0; mp->file_offset=0;
1667 wlog_cr; mp->file_offset=0;
1670 wterm_cr; mp->term_offset=0;
1677 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1679 } /* note that |tally| is not affected */
1681 @ The |print_visible_char| procedure sends one character to the desired
1682 destination, using the |xchr| array to map it into an external character
1683 compatible with |input_ln|. (It assumes that it is always called with
1684 a visible ASCII character.) All printing comes through |print_ln| or
1685 |print_char|, which ultimately calls |print_visible_char|, hence these
1686 routines are the ones that limit lines to at most |max_print_line| characters.
1687 But we must make an exception for the \ps\ output file since it is not safe
1688 to cut up lines arbitrarily in \ps.
1690 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1691 |do_compaction| and |do_compaction| can call the error routines. Actually,
1692 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1694 @<Basic printing...@>=
1695 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1696 switch (mp->selector) {
1698 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1699 incr(mp->term_offset); incr(mp->file_offset);
1700 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1701 wterm_cr; mp->term_offset=0;
1703 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1704 wlog_cr; mp->file_offset=0;
1708 wlog_chr(xchr(s)); incr(mp->file_offset);
1709 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1712 wterm_chr(xchr(s)); incr(mp->term_offset);
1713 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1718 if ( mp->tally<mp->trick_count )
1719 mp->trick_buf[mp->tally % mp->error_line]=s;
1722 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1723 mp_unit_str_room(mp);
1724 if ( mp->pool_ptr>=mp->pool_size )
1725 goto DONE; /* drop characters if string space is full */
1730 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1731 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1738 @ The |print_char| procedure sends one character to the desired destination.
1739 File names and string expressions might contain |ASCII_code| values that
1740 can't be printed using |print_visible_char|. These characters will be
1741 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1742 (This procedure assumes that it is safe to bypass all checks for unprintable
1743 characters when |selector| is in the range |0..max_write_files-1|.
1744 The user might want to write unprintable characters.
1746 @d print_lc_hex(A) do { l=(A);
1747 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1750 @<Basic printing...@>=
1751 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1752 int l; /* small index or counter */
1753 if ( mp->selector<pseudo || mp->selector>=write_file) {
1754 mp_print_visible_char(mp, k);
1755 } else if ( @<Character |k| cannot be printed@> ) {
1758 mp_print_visible_char(mp, k+0100);
1759 } else if ( k<0200 ) {
1760 mp_print_visible_char(mp, k-0100);
1762 print_lc_hex(k / 16);
1763 print_lc_hex(k % 16);
1766 mp_print_visible_char(mp, k);
1770 @ An entire string is output by calling |print|. Note that if we are outputting
1771 the single standard ASCII character \.c, we could call |print("c")|, since
1772 |"c"=99| is the number of a single-character string, as explained above. But
1773 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1774 routine when it knows that this is safe. (The present implementation
1775 assumes that it is always safe to print a visible ASCII character.)
1776 @^system dependencies@>
1779 void mp_do_print (MP mp, const char *ss, unsigned int len) { /* prints string |s| */
1782 mp_print_char(mp, ss[j]); incr(j);
1788 void mp_print (MP mp, const char *ss) {
1789 mp_do_print(mp, ss, strlen(ss));
1791 void mp_print_str (MP mp, str_number s) {
1792 pool_pointer j; /* current character code position */
1793 if ( (s<0)||(s>mp->max_str_ptr) ) {
1794 mp_do_print(mp,"???",3); /* this can't happen */
1798 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1802 @ Here is the very first thing that \MP\ prints: a headline that identifies
1803 the version number and base name. The |term_offset| variable is temporarily
1804 incorrect, but the discrepancy is not serious since we assume that the banner
1805 and mem identifier together will occupy at most |max_print_line|
1806 character positions.
1808 @<Initialize the output...@>=
1810 wterm (version_string);
1811 if (mp->mem_ident!=NULL)
1812 mp_print(mp,mp->mem_ident);
1816 @ The procedure |print_nl| is like |print|, but it makes sure that the
1817 string appears at the beginning of a new line.
1820 void mp_print_nl (MP mp, const char *s) { /* prints string |s| at beginning of line */
1821 switch(mp->selector) {
1823 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1826 if ( mp->file_offset>0 ) mp_print_ln(mp);
1829 if ( mp->term_offset>0 ) mp_print_ln(mp);
1835 } /* there are no other cases */
1839 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1842 void mp_print_the_digs (MP mp, eight_bits k) {
1843 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1845 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1849 @ The following procedure, which prints out the decimal representation of a
1850 given integer |n|, has been written carefully so that it works properly
1851 if |n=0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
1852 to negative arguments, since such operations are not implemented consistently
1856 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1857 integer m; /* used to negate |n| in possibly dangerous cases */
1858 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1860 mp_print_char(mp, '-');
1861 if ( n>-100000000 ) {
1864 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1868 mp->dig[0]=0; incr(n);
1873 mp->dig[k]=n % 10; n=n / 10; incr(k);
1875 mp_print_the_digs(mp, k);
1879 void mp_print_int (MP mp,integer n);
1881 @ \MP\ also makes use of a trivial procedure to print two digits. The
1882 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1885 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1887 mp_print_char(mp, '0'+(n / 10));
1888 mp_print_char(mp, '0'+(n % 10));
1893 void mp_print_dd (MP mp,integer n);
1895 @ Here is a procedure that asks the user to type a line of input,
1896 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1897 The input is placed into locations |first| through |last-1| of the
1898 |buffer| array, and echoed on the transcript file if appropriate.
1900 This procedure is never called when |interaction<mp_scroll_mode|.
1902 @d prompt_input(A) do {
1903 if (!mp->noninteractive) {
1904 wake_up_terminal; mp_print(mp, (A));
1907 } while (0) /* prints a string and gets a line of input */
1910 void mp_term_input (MP mp) { /* gets a line from the terminal */
1911 size_t k; /* index into |buffer| */
1912 update_terminal; /* Now the user sees the prompt for sure */
1913 if (!mp_input_ln(mp, mp->term_in )) {
1914 if (!mp->noninteractive) {
1915 mp_fatal_error(mp, "End of file on the terminal!");
1916 @.End of file on the terminal@>
1917 } else { /* we are done with this input chunk */
1918 longjmp(mp->jump_buf,1);
1921 if (!mp->noninteractive) {
1922 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1923 decr(mp->selector); /* prepare to echo the input */
1924 if ( mp->last!=mp->first ) {
1925 for (k=mp->first;k<=mp->last-1;k++) {
1926 mp_print_char(mp, mp->buffer[k]);
1930 mp->buffer[mp->last]='%';
1931 incr(mp->selector); /* restore previous status */
1935 @* \[6] Reporting errors.
1936 When something anomalous is detected, \MP\ typically does something like this:
1937 $$\vbox{\halign{#\hfil\cr
1938 |print_err("Something anomalous has been detected");|\cr
1939 |help3("This is the first line of my offer to help.")|\cr
1940 |("This is the second line. I'm trying to")|\cr
1941 |("explain the best way for you to proceed.");|\cr
1943 A two-line help message would be given using |help2|, etc.; these informal
1944 helps should use simple vocabulary that complements the words used in the
1945 official error message that was printed. (Outside the U.S.A., the help
1946 messages should preferably be translated into the local vernacular. Each
1947 line of help is at most 60 characters long, in the present implementation,
1948 so that |max_print_line| will not be exceeded.)
1950 The |print_err| procedure supplies a `\.!' before the official message,
1951 and makes sure that the terminal is awake if a stop is going to occur.
1952 The |error| procedure supplies a `\..' after the official message, then it
1953 shows the location of the error; and if |interaction=error_stop_mode|,
1954 it also enters into a dialog with the user, during which time the help
1955 message may be printed.
1956 @^system dependencies@>
1958 @ The global variable |interaction| has four settings, representing increasing
1959 amounts of user interaction:
1962 enum mp_interaction_mode {
1963 mp_unspecified_mode=0, /* extra value for command-line switch */
1964 mp_batch_mode, /* omits all stops and omits terminal output */
1965 mp_nonstop_mode, /* omits all stops */
1966 mp_scroll_mode, /* omits error stops */
1967 mp_error_stop_mode /* stops at every opportunity to interact */
1970 @ @<Option variables@>=
1971 int interaction; /* current level of interaction */
1972 int noninteractive; /* do we have a terminal? */
1974 @ Set it here so it can be overwritten by the commandline
1976 @<Allocate or initialize ...@>=
1977 mp->interaction=opt->interaction;
1978 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1979 mp->interaction=mp_error_stop_mode;
1980 if (mp->interaction<mp_unspecified_mode)
1981 mp->interaction=mp_batch_mode;
1982 mp->noninteractive=opt->noninteractive;
1986 @d print_err(A) mp_print_err(mp,(A))
1989 void mp_print_err(MP mp, const char * A);
1992 void mp_print_err(MP mp, const char * A) {
1993 if ( mp->interaction==mp_error_stop_mode )
1995 mp_print_nl(mp, "! ");
2001 @ \MP\ is careful not to call |error| when the print |selector| setting
2002 might be unusual. The only possible values of |selector| at the time of
2005 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
2006 and |log_file| not yet open);
2008 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2010 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2012 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2014 @<Initialize the print |selector| based on |interaction|@>=
2015 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2017 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2018 routine is active when |error| is called; this ensures that |get_next|
2019 will never be called recursively.
2022 The global variable |history| records the worst level of error that
2023 has been detected. It has four possible values: |spotless|, |warning_issued|,
2024 |error_message_issued|, and |fatal_error_stop|.
2026 Another global variable, |error_count|, is increased by one when an
2027 |error| occurs without an interactive dialog, and it is reset to zero at
2028 the end of every statement. If |error_count| reaches 100, \MP\ decides
2029 that there is no point in continuing further.
2032 enum mp_history_states {
2033 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2034 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2035 mp_error_message_issued, /* |history| value when |error| has been called */
2036 mp_fatal_error_stop /* |history| value when termination was premature */
2040 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2041 int history; /* has the source input been clean so far? */
2042 int error_count; /* the number of scrolled errors since the last statement ended */
2044 @ The value of |history| is initially |fatal_error_stop|, but it will
2045 be changed to |spotless| if \MP\ survives the initialization process.
2047 @<Allocate or ...@>=
2048 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2050 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2051 error procedures near the beginning of the program. But the error procedures
2052 in turn use some other procedures, which need to be declared |forward|
2053 before we get to |error| itself.
2055 It is possible for |error| to be called recursively if some error arises
2056 when |get_next| is being used to delete a token, and/or if some fatal error
2057 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2059 is never more than two levels deep.
2062 void mp_get_next (MP mp);
2063 void mp_term_input (MP mp);
2064 void mp_show_context (MP mp);
2065 void mp_begin_file_reading (MP mp);
2066 void mp_open_log_file (MP mp);
2067 void mp_clear_for_error_prompt (MP mp);
2068 void mp_debug_help (MP mp);
2069 @<Declare the procedure called |flush_string|@>
2072 void mp_normalize_selector (MP mp);
2074 @ Individual lines of help are recorded in the array |help_line|, which
2075 contains entries in positions |0..(help_ptr-1)|. They should be printed
2076 in reverse order, i.e., with |help_line[0]| appearing last.
2078 @d hlp1(A) mp->help_line[0]=(A); }
2079 @d hlp2(A) mp->help_line[1]=(A); hlp1
2080 @d hlp3(A) mp->help_line[2]=(A); hlp2
2081 @d hlp4(A) mp->help_line[3]=(A); hlp3
2082 @d hlp5(A) mp->help_line[4]=(A); hlp4
2083 @d hlp6(A) mp->help_line[5]=(A); hlp5
2084 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2085 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2086 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2087 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2088 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2089 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2090 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2093 const char * help_line[6]; /* helps for the next |error| */
2094 unsigned int help_ptr; /* the number of help lines present */
2095 boolean use_err_help; /* should the |err_help| string be shown? */
2096 str_number err_help; /* a string set up by \&{errhelp} */
2097 str_number filename_template; /* a string set up by \&{filenametemplate} */
2099 @ @<Allocate or ...@>=
2100 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2102 @ The |jump_out| procedure just cuts across all active procedure levels and
2103 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2104 whole program. It is used when there is no recovery from a particular error.
2106 The program uses a |jump_buf| to handle this, this is initialized at three
2107 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2108 of |mp_run|. Those are the only library enty points.
2110 @^system dependencies@>
2115 @ @<Install and test the non-local jump buffer@>=
2116 if (setjmp(mp->jump_buf) != 0) { return mp->history; }
2118 @ @<Setup the non-local jump buffer in |mp_new|@>=
2119 if (setjmp(mp->jump_buf) != 0) return NULL;
2122 @ If the array of internals is still |NULL| when |jump_out| is called, a
2123 crash occured during initialization, and it is not safe to run the normal
2127 void mp_jump_out (MP mp) {
2128 if(mp->internal!=NULL)
2129 mp_close_files_and_terminate(mp);
2130 longjmp(mp->jump_buf,1);
2133 @ Here now is the general |error| routine.
2136 void mp_error (MP mp) { /* completes the job of error reporting */
2137 ASCII_code c; /* what the user types */
2138 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2139 pool_pointer j; /* character position being printed */
2140 if ( mp->history<mp_error_message_issued )
2141 mp->history=mp_error_message_issued;
2142 mp_print_char(mp, '.'); mp_show_context(mp);
2143 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2144 @<Get user's advice and |return|@>;
2146 incr(mp->error_count);
2147 if ( mp->error_count==100 ) {
2148 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2149 @.That makes 100 errors...@>
2150 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2152 @<Put help message on the transcript file@>;
2154 void mp_warn (MP mp, const char *msg) {
2155 int saved_selector = mp->selector;
2156 mp_normalize_selector(mp);
2157 mp_print_nl(mp,"Warning: ");
2160 mp->selector = saved_selector;
2163 @ @<Exported function ...@>=
2164 void mp_error (MP mp);
2165 void mp_warn (MP mp, const char *msg);
2168 @ @<Get user's advice...@>=
2171 mp_clear_for_error_prompt(mp); prompt_input("? ");
2173 if ( mp->last==mp->first ) return;
2174 c=mp->buffer[mp->first];
2175 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2176 @<Interpret code |c| and |return| if done@>;
2179 @ It is desirable to provide an `\.E' option here that gives the user
2180 an easy way to return from \MP\ to the system editor, with the offending
2181 line ready to be edited. But such an extension requires some system
2182 wizardry, so the present implementation simply types out the name of the
2184 edited and the relevant line number.
2185 @^system dependencies@>
2188 typedef void (*mp_run_editor_command)(MP, char *, int);
2190 @ @<Option variables@>=
2191 mp_run_editor_command run_editor;
2193 @ @<Allocate or initialize ...@>=
2194 set_callback_option(run_editor);
2197 void mp_run_editor (MP mp, char *fname, int fline);
2199 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2200 mp_print_nl(mp, "You want to edit file ");
2201 @.You want to edit file x@>
2202 mp_print(mp, fname);
2203 mp_print(mp, " at line ");
2204 mp_print_int(mp, fline);
2205 mp->interaction=mp_scroll_mode;
2210 There is a secret `\.D' option available when the debugging routines haven't
2214 @<Interpret code |c| and |return| if done@>=
2216 case '0': case '1': case '2': case '3': case '4':
2217 case '5': case '6': case '7': case '8': case '9':
2218 if ( mp->deletions_allowed ) {
2219 @<Delete |c-"0"| tokens and |continue|@>;
2224 mp_debug_help(mp); continue;
2228 if ( mp->file_ptr>0 ){
2229 (mp->run_editor)(mp,
2230 str(mp->input_stack[mp->file_ptr].name_field),
2235 @<Print the help information and |continue|@>;
2238 @<Introduce new material from the terminal and |return|@>;
2240 case 'Q': case 'R': case 'S':
2241 @<Change the interaction level and |return|@>;
2244 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2249 @<Print the menu of available options@>
2251 @ @<Print the menu...@>=
2253 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2254 @.Type <return> to proceed...@>
2255 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2256 mp_print_nl(mp, "I to insert something, ");
2257 if ( mp->file_ptr>0 )
2258 mp_print(mp, "E to edit your file,");
2259 if ( mp->deletions_allowed )
2260 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2261 mp_print_nl(mp, "H for help, X to quit.");
2264 @ Here the author of \MP\ apologizes for making use of the numerical
2265 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2266 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2267 @^Knuth, Donald Ervin@>
2269 @<Change the interaction...@>=
2271 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2272 mp_print(mp, "OK, entering ");
2274 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2275 case 'R': mp_print(mp, "nonstopmode"); break;
2276 case 'S': mp_print(mp, "scrollmode"); break;
2277 } /* there are no other cases */
2278 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2281 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2282 contain the material inserted by the user; otherwise another prompt will
2283 be given. In order to understand this part of the program fully, you need
2284 to be familiar with \MP's input stacks.
2286 @<Introduce new material...@>=
2288 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2289 if ( mp->last>mp->first+1 ) {
2290 loc=mp->first+1; mp->buffer[mp->first]=' ';
2292 prompt_input("insert>"); loc=mp->first;
2295 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2298 @ We allow deletion of up to 99 tokens at a time.
2300 @<Delete |c-"0"| tokens...@>=
2302 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2303 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2304 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2308 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2309 @<Decrease the string reference count, if the current token is a string@>;
2312 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2313 help2("I have just deleted some text, as you asked.")
2314 ("You can now delete more, or insert, or whatever.");
2315 mp_show_context(mp);
2319 @ @<Print the help info...@>=
2321 if ( mp->use_err_help ) {
2322 @<Print the string |err_help|, possibly on several lines@>;
2323 mp->use_err_help=false;
2325 if ( mp->help_ptr==0 ) {
2326 help2("Sorry, I don't know how to help in this situation.")
2327 ("Maybe you should try asking a human?");
2330 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2331 } while (mp->help_ptr!=0);
2333 help4("Sorry, I already gave what help I could...")
2334 ("Maybe you should try asking a human?")
2335 ("An error might have occurred before I noticed any problems.")
2336 ("``If all else fails, read the instructions.''");
2340 @ @<Print the string |err_help|, possibly on several lines@>=
2341 j=mp->str_start[mp->err_help];
2342 while ( j<str_stop(mp->err_help) ) {
2343 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2344 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2345 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2346 else { incr(j); mp_print_char(mp, '%'); };
2350 @ @<Put help message on the transcript file@>=
2351 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2352 if ( mp->use_err_help ) {
2353 mp_print_nl(mp, "");
2354 @<Print the string |err_help|, possibly on several lines@>;
2356 while ( mp->help_ptr>0 ){
2357 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2361 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2364 @ In anomalous cases, the print selector might be in an unknown state;
2365 the following subroutine is called to fix things just enough to keep
2366 running a bit longer.
2369 void mp_normalize_selector (MP mp) {
2370 if ( mp->log_opened ) mp->selector=term_and_log;
2371 else mp->selector=term_only;
2372 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2373 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2376 @ The following procedure prints \MP's last words before dying.
2378 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2379 mp->interaction=mp_scroll_mode; /* no more interaction */
2380 if ( mp->log_opened ) mp_error(mp);
2381 /*| if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); |*/
2382 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2386 void mp_fatal_error (MP mp, const char *s) { /* prints |s|, and that's it */
2387 mp_normalize_selector(mp);
2388 print_err("Emergency stop"); help1(s); succumb;
2392 @ @<Exported function ...@>=
2393 void mp_fatal_error (MP mp, const char *s);
2396 @ Here is the most dreaded error message.
2399 void mp_overflow (MP mp, const char *s, integer n) { /* stop due to finiteness */
2400 mp_normalize_selector(mp);
2401 print_err("MetaPost capacity exceeded, sorry [");
2402 @.MetaPost capacity exceeded ...@>
2403 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2404 help2("If you really absolutely need more capacity,")
2405 ("you can ask a wizard to enlarge me.");
2409 @ @<Internal library declarations@>=
2410 void mp_overflow (MP mp, const char *s, integer n);
2412 @ The program might sometime run completely amok, at which point there is
2413 no choice but to stop. If no previous error has been detected, that's bad
2414 news; a message is printed that is really intended for the \MP\
2415 maintenance person instead of the user (unless the user has been
2416 particularly diabolical). The index entries for `this can't happen' may
2417 help to pinpoint the problem.
2420 @<Internal library ...@>=
2421 void mp_confusion (MP mp, const char *s);
2423 @ @<Error hand...@>=
2424 void mp_confusion (MP mp, const char *s) {
2425 /* consistency check violated; |s| tells where */
2426 mp_normalize_selector(mp);
2427 if ( mp->history<mp_error_message_issued ) {
2428 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2429 @.This can't happen@>
2430 help1("I'm broken. Please show this to someone who can fix can fix");
2432 print_err("I can\'t go on meeting you like this");
2433 @.I can't go on...@>
2434 help2("One of your faux pas seems to have wounded me deeply...")
2435 ("in fact, I'm barely conscious. Please fix it and try again.");
2440 @ Users occasionally want to interrupt \MP\ while it's running.
2441 If the runtime system allows this, one can implement
2442 a routine that sets the global variable |interrupt| to some nonzero value
2443 when such an interrupt is signaled. Otherwise there is probably at least
2444 a way to make |interrupt| nonzero using the C debugger.
2445 @^system dependencies@>
2448 @d check_interrupt { if ( mp->interrupt!=0 )
2449 mp_pause_for_instructions(mp); }
2452 integer interrupt; /* should \MP\ pause for instructions? */
2453 boolean OK_to_interrupt; /* should interrupts be observed? */
2454 integer run_state; /* are we processing input ?*/
2456 @ @<Allocate or ...@>=
2457 mp->interrupt=0; mp->OK_to_interrupt=true; mp->run_state=0;
2459 @ When an interrupt has been detected, the program goes into its
2460 highest interaction level and lets the user have the full flexibility of
2461 the |error| routine. \MP\ checks for interrupts only at times when it is
2465 void mp_pause_for_instructions (MP mp) {
2466 if ( mp->OK_to_interrupt ) {
2467 mp->interaction=mp_error_stop_mode;
2468 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2470 print_err("Interruption");
2473 ("Try to insert some instructions for me (e.g.,`I show x'),")
2474 ("unless you just want to quit by typing `X'.");
2475 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2480 @ Many of \MP's error messages state that a missing token has been
2481 inserted behind the scenes. We can save string space and program space
2482 by putting this common code into a subroutine.
2485 void mp_missing_err (MP mp, const char *s) {
2486 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2487 @.Missing...inserted@>
2490 @* \[7] Arithmetic with scaled numbers.
2491 The principal computations performed by \MP\ are done entirely in terms of
2492 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2493 program can be carried out in exactly the same way on a wide variety of
2494 computers, including some small ones.
2497 But C does not rigidly define the |/| operation in the case of negative
2498 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2499 computers and |-n| on others (is this true ?). There are two principal
2500 types of arithmetic: ``translation-preserving,'' in which the identity
2501 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2502 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2503 different results, although the differences should be negligible when the
2504 language is being used properly. The \TeX\ processor has been defined
2505 carefully so that both varieties of arithmetic will produce identical
2506 output, but it would be too inefficient to constrain \MP\ in a similar way.
2508 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2510 @ One of \MP's most common operations is the calculation of
2511 $\lfloor{a+b\over2}\rfloor$,
2512 the midpoint of two given integers |a| and~|b|. The most decent way to do
2513 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2514 to calculate `|(a+b)>>1|'.
2516 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2517 in this program. If \MP\ is being implemented with languages that permit
2518 binary shifting, the |half| macro should be changed to make this operation
2519 as efficient as possible. Since some systems have shift operators that can
2520 only be trusted to work on positive numbers, there is also a macro |halfp|
2521 that is used only when the quantity being halved is known to be positive
2524 @d half(A) ((A) / 2)
2525 @d halfp(A) ((A) >> 1)
2527 @ A single computation might use several subroutine calls, and it is
2528 desirable to avoid producing multiple error messages in case of arithmetic
2529 overflow. So the routines below set the global variable |arith_error| to |true|
2530 instead of reporting errors directly to the user.
2531 @^overflow in arithmetic@>
2534 boolean arith_error; /* has arithmetic overflow occurred recently? */
2536 @ @<Allocate or ...@>=
2537 mp->arith_error=false;
2539 @ At crucial points the program will say |check_arith|, to test if
2540 an arithmetic error has been detected.
2542 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2545 void mp_clear_arith (MP mp) {
2546 print_err("Arithmetic overflow");
2547 @.Arithmetic overflow@>
2548 help4("Uh, oh. A little while ago one of the quantities that I was")
2549 ("computing got too large, so I'm afraid your answers will be")
2550 ("somewhat askew. You'll probably have to adopt different")
2551 ("tactics next time. But I shall try to carry on anyway.");
2553 mp->arith_error=false;
2556 @ Addition is not always checked to make sure that it doesn't overflow,
2557 but in places where overflow isn't too unlikely the |slow_add| routine
2560 @c integer mp_slow_add (MP mp,integer x, integer y) {
2562 if ( y<=el_gordo-x ) {
2565 mp->arith_error=true;
2568 } else if ( -y<=el_gordo+x ) {
2571 mp->arith_error=true;
2576 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2577 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2578 positions from the right end of a binary computer word.
2580 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2581 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2582 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2583 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2584 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2585 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2588 typedef integer scaled; /* this type is used for scaled integers */
2589 typedef unsigned char small_number; /* this type is self-explanatory */
2591 @ The following function is used to create a scaled integer from a given decimal
2592 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2593 given in |dig[i]|, and the calculation produces a correctly rounded result.
2596 scaled mp_round_decimals (MP mp,small_number k) {
2597 /* converts a decimal fraction */
2598 integer a = 0; /* the accumulator */
2600 a=(a+mp->dig[k]*two) / 10;
2605 @ Conversely, here is a procedure analogous to |print_int|. If the output
2606 of this procedure is subsequently read by \MP\ and converted by the
2607 |round_decimals| routine above, it turns out that the original value will
2608 be reproduced exactly. A decimal point is printed only if the value is
2609 not an integer. If there is more than one way to print the result with
2610 the optimum number of digits following the decimal point, the closest
2611 possible value is given.
2613 The invariant relation in the \&{repeat} loop is that a sequence of
2614 decimal digits yet to be printed will yield the original number if and only if
2615 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2616 We can stop if and only if $f=0$ satisfies this condition; the loop will
2617 terminate before $s$ can possibly become zero.
2619 @<Basic printing...@>=
2620 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2621 scaled delta; /* amount of allowable inaccuracy */
2623 mp_print_char(mp, '-');
2624 negate(s); /* print the sign, if negative */
2626 mp_print_int(mp, s / unity); /* print the integer part */
2630 mp_print_char(mp, '.');
2633 s=s+0100000-(delta / 2); /* round the final digit */
2634 mp_print_char(mp, '0'+(s / unity));
2641 @ We often want to print two scaled quantities in parentheses,
2642 separated by a comma.
2644 @<Basic printing...@>=
2645 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2646 mp_print_char(mp, '(');
2647 mp_print_scaled(mp, x);
2648 mp_print_char(mp, ',');
2649 mp_print_scaled(mp, y);
2650 mp_print_char(mp, ')');
2653 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2654 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2655 arithmetic with 28~significant bits of precision. A |fraction| denotes
2656 a scaled integer whose binary point is assumed to be 28 bit positions
2659 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2660 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2661 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2662 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2663 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2666 typedef integer fraction; /* this type is used for scaled fractions */
2668 @ In fact, the two sorts of scaling discussed above aren't quite
2669 sufficient; \MP\ has yet another, used internally to keep track of angles
2670 in units of $2^{-20}$ degrees.
2672 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2673 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2674 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2675 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2678 typedef integer angle; /* this type is used for scaled angles */
2680 @ The |make_fraction| routine produces the |fraction| equivalent of
2681 |p/q|, given integers |p| and~|q|; it computes the integer
2682 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2683 positive. If |p| and |q| are both of the same scaled type |t|,
2684 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2685 and it's also possible to use the subroutine ``backwards,'' using
2686 the relation |make_fraction(t,fraction)=t| between scaled types.
2688 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2689 sets |arith_error:=true|. Most of \MP's internal computations have
2690 been designed to avoid this sort of error.
2692 If this subroutine were programmed in assembly language on a typical
2693 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2694 double-precision product can often be input to a fixed-point division
2695 instruction. But when we are restricted to int-eger arithmetic it
2696 is necessary either to resort to multiple-precision maneuvering
2697 or to use a simple but slow iteration. The multiple-precision technique
2698 would be about three times faster than the code adopted here, but it
2699 would be comparatively long and tricky, involving about sixteen
2700 additional multiplications and divisions.
2702 This operation is part of \MP's ``inner loop''; indeed, it will
2703 consume nearly 10\pct! of the running time (exclusive of input and output)
2704 if the code below is left unchanged. A machine-dependent recoding
2705 will therefore make \MP\ run faster. The present implementation
2706 is highly portable, but slow; it avoids multiplication and division
2707 except in the initial stage. System wizards should be careful to
2708 replace it with a routine that is guaranteed to produce identical
2709 results in all cases.
2710 @^system dependencies@>
2712 As noted below, a few more routines should also be replaced by machine-dependent
2713 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2714 such changes aren't advisable; simplicity and robustness are
2715 preferable to trickery, unless the cost is too high.
2719 fraction mp_make_fraction (MP mp,integer p, integer q);
2720 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2722 @ If FIXPT is not defined, we need these preprocessor values
2724 @d ELGORDO 0x7fffffff
2725 @d TWEXP31 2147483648.0
2726 @d TWEXP28 268435456.0
2728 @d TWEXP_16 (1.0/65536.0)
2729 @d TWEXP_28 (1.0/268435456.0)
2733 fraction mp_make_fraction (MP mp,integer p, integer q) {
2735 integer f; /* the fraction bits, with a leading 1 bit */
2736 integer n; /* the integer part of $\vert p/q\vert$ */
2737 integer be_careful; /* disables certain compiler optimizations */
2738 boolean negative = false; /* should the result be negated? */
2740 negate(p); negative=true;
2744 if ( q==0 ) mp_confusion(mp, '/');
2746 @:this can't happen /}{\quad \./@>
2747 negate(q); negative = ! negative;
2751 mp->arith_error=true;
2752 return ( negative ? -el_gordo : el_gordo);
2754 n=(n-1)*fraction_one;
2755 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2756 return (negative ? (-(f+n)) : (f+n));
2762 if (q==0) mp_confusion(mp,'/');
2764 d = TWEXP28 * (double)p /(double)q;
2767 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2769 if (d==i && ( ((q>0 ? -q : q)&077777)
2770 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2773 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2775 if (d==i && ( ((q>0 ? q : -q)&077777)
2776 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2782 @ The |repeat| loop here preserves the following invariant relations
2783 between |f|, |p|, and~|q|:
2784 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2785 $p_0$ is the original value of~$p$.
2787 Notice that the computation specifies
2788 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2789 Let us hope that optimizing compilers do not miss this point; a
2790 special variable |be_careful| is used to emphasize the necessary
2791 order of computation. Optimizing compilers should keep |be_careful|
2792 in a register, not store it in memory.
2795 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2799 be_careful=p-q; p=be_careful+p;
2805 } while (f<fraction_one);
2807 if ( be_careful+p>=0 ) incr(f);
2810 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2811 given integer~|q| by a fraction~|f|. When the operands are positive, it
2812 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2815 This routine is even more ``inner loopy'' than |make_fraction|;
2816 the present implementation consumes almost 20\pct! of \MP's computation
2817 time during typical jobs, so a machine-language substitute is advisable.
2818 @^inner loop@> @^system dependencies@>
2821 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2825 integer mp_take_fraction (MP mp,integer q, fraction f) {
2826 integer p; /* the fraction so far */
2827 boolean negative; /* should the result be negated? */
2828 integer n; /* additional multiple of $q$ */
2829 integer be_careful; /* disables certain compiler optimizations */
2830 @<Reduce to the case that |f>=0| and |q>=0|@>;
2831 if ( f<fraction_one ) {
2834 n=f / fraction_one; f=f % fraction_one;
2835 if ( q<=el_gordo / n ) {
2838 mp->arith_error=true; n=el_gordo;
2842 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2843 be_careful=n-el_gordo;
2844 if ( be_careful+p>0 ){
2845 mp->arith_error=true; n=el_gordo-p;
2852 integer mp_take_fraction (MP mp,integer p, fraction q) {
2855 d = (double)p * (double)q * TWEXP_28;
2859 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2860 mp->arith_error = true;
2864 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2868 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2869 mp->arith_error = true;
2873 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2879 @ @<Reduce to the case that |f>=0| and |q>=0|@>=
2883 negate( f); negative=true;
2886 negate(q); negative=! negative;
2889 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2890 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2891 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2894 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2895 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2896 if ( q<fraction_four ) {
2898 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2903 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2909 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2910 analogous to |take_fraction| but with a different scaling.
2911 Given positive operands, |take_scaled|
2912 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2914 Once again it is a good idea to use a machine-language replacement if
2915 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2916 when the Computer Modern fonts are being generated.
2921 integer mp_take_scaled (MP mp,integer q, scaled f) {
2922 integer p; /* the fraction so far */
2923 boolean negative; /* should the result be negated? */
2924 integer n; /* additional multiple of $q$ */
2925 integer be_careful; /* disables certain compiler optimizations */
2926 @<Reduce to the case that |f>=0| and |q>=0|@>;
2930 n=f / unity; f=f % unity;
2931 if ( q<=el_gordo / n ) {
2934 mp->arith_error=true; n=el_gordo;
2938 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2939 be_careful=n-el_gordo;
2940 if ( be_careful+p>0 ) {
2941 mp->arith_error=true; n=el_gordo-p;
2943 return ( negative ?(-(n+p)) :(n+p));
2945 integer mp_take_scaled (MP mp,integer p, scaled q) {
2948 d = (double)p * (double)q * TWEXP_16;
2952 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2953 mp->arith_error = true;
2957 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2961 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2962 mp->arith_error = true;
2966 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2972 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2973 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2975 if ( q<fraction_four ) {
2977 p = (odd(f) ? halfp(p+q) : halfp(p));
2982 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2987 @ For completeness, there's also |make_scaled|, which computes a
2988 quotient as a |scaled| number instead of as a |fraction|.
2989 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2990 operands are positive. \ (This procedure is not used especially often,
2991 so it is not part of \MP's inner loop.)
2993 @<Internal library ...@>=
2994 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2997 scaled mp_make_scaled (MP mp,integer p, integer q) {
2999 integer f; /* the fraction bits, with a leading 1 bit */
3000 integer n; /* the integer part of $\vert p/q\vert$ */
3001 boolean negative; /* should the result be negated? */
3002 integer be_careful; /* disables certain compiler optimizations */
3003 if ( p>=0 ) negative=false;
3004 else { negate(p); negative=true; };
3007 if ( q==0 ) mp_confusion(mp, "/");
3008 @:this can't happen /}{\quad \./@>
3010 negate(q); negative=! negative;
3014 mp->arith_error=true;
3015 return (negative ? (-el_gordo) : el_gordo);
3018 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3019 return ( negative ? (-(f+n)) :(f+n));
3025 if (q==0) mp_confusion(mp,"/");
3027 d = TWEXP16 * (double)p /(double)q;
3030 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3032 if (d==i && ( ((q>0 ? -q : q)&077777)
3033 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3036 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3038 if (d==i && ( ((q>0 ? q : -q)&077777)
3039 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3045 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3048 be_careful=p-q; p=be_careful+p;
3049 if ( p>=0 ) f=f+f+1;
3050 else { f+=f; p=p+q; };
3053 if ( be_careful+p>=0 ) incr(f)
3055 @ Here is a typical example of how the routines above can be used.
3056 It computes the function
3057 $${1\over3\tau}f(\theta,\phi)=
3058 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3059 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3060 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3061 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3062 fudge factor for placing the first control point of a curve that starts
3063 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3064 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3066 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3067 (It's a sum of eight terms whose absolute values can be bounded using
3068 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3069 is positive; and since the tension $\tau$ is constrained to be at least
3070 $3\over4$, the numerator is less than $16\over3$. The denominator is
3071 nonnegative and at most~6. Hence the fixed-point calculations below
3072 are guaranteed to stay within the bounds of a 32-bit computer word.
3074 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3075 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3076 $\sin\phi$, and $\cos\phi$, respectively.
3079 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3080 fraction cf, scaled t) {
3081 integer acc,num,denom; /* registers for intermediate calculations */
3082 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3083 acc=mp_take_fraction(mp, acc,ct-cf);
3084 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3085 /* $2^{28}\sqrt2\approx379625062.497$ */
3086 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3087 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3088 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3089 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3090 /* |make_scaled(fraction,scaled)=fraction| */
3091 if ( num / 4>=denom )
3092 return fraction_four;
3094 return mp_make_fraction(mp, num, denom);
3097 @ The following somewhat different subroutine tests rigorously if $ab$ is
3098 greater than, equal to, or less than~$cd$,
3099 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3100 The result is $+1$, 0, or~$-1$ in the three respective cases.
3102 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3105 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3106 integer q,r; /* temporary registers */
3107 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3109 q = a / d; r = c / b;
3111 return ( q>r ? 1 : -1);
3112 q = a % d; r = c % b;
3115 if ( q==0 ) return -1;
3117 } /* now |a>d>0| and |c>b>0| */
3120 @ @<Reduce to the case that |a...@>=
3121 if ( a<0 ) { negate(a); negate(b); };
3122 if ( c<0 ) { negate(c); negate(d); };
3125 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3129 return ( a==0 ? 0 : -1);
3130 q=a; a=c; c=q; q=-b; b=-d; d=q;
3131 } else if ( b<=0 ) {
3132 if ( b<0 ) if ( a>0 ) return -1;
3133 return (c==0 ? 0 : -1);
3136 @ We conclude this set of elementary routines with some simple rounding
3137 and truncation operations.
3139 @<Internal library declarations@>=
3140 #define mp_floor_scaled(M,i) ((i)&(-65536))
3141 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3142 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3145 @* \[8] Algebraic and transcendental functions.
3146 \MP\ computes all of the necessary special functions from scratch, without
3147 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3149 @ To get the square root of a |scaled| number |x|, we want to calculate
3150 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3151 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3152 determines $s$ by an iterative method that maintains the invariant
3153 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3154 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3155 might, however, be zero at the start of the first iteration.
3158 scaled mp_square_rt (MP mp,scaled x) ;
3161 scaled mp_square_rt (MP mp,scaled x) {
3162 small_number k; /* iteration control counter */
3163 integer y,q; /* registers for intermediate calculations */
3165 @<Handle square root of zero or negative argument@>;
3168 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3171 if ( x<fraction_four ) y=0;
3172 else { x=x-fraction_four; y=1; };
3174 @<Decrease |k| by 1, maintaining the invariant
3175 relations between |x|, |y|, and~|q|@>;
3181 @ @<Handle square root of zero...@>=
3184 print_err("Square root of ");
3185 @.Square root...replaced by 0@>
3186 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3187 help2("Since I don't take square roots of negative numbers,")
3188 ("I'm zeroing this one. Proceed, with fingers crossed.");
3194 @ @<Decrease |k| by 1, maintaining...@>=
3196 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3197 x=x-fraction_four; incr(y);
3199 x+=x; y=y+y-q; q+=q;
3200 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3201 if ( y>q ){ y=y-q; q=q+2; }
3202 else if ( y<=0 ) { q=q-2; y=y+q; };
3205 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3206 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3207 @^Moler, Cleve Barry@>
3208 @^Morrison, Donald Ross@>
3209 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3210 in such a way that their Pythagorean sum remains invariant, while the
3211 smaller argument decreases.
3213 @<Internal library ...@>=
3214 integer mp_pyth_add (MP mp,integer a, integer b);
3218 integer mp_pyth_add (MP mp,integer a, integer b) {
3219 fraction r; /* register used to transform |a| and |b| */
3220 boolean big; /* is the result dangerously near $2^{31}$? */
3222 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3224 if ( a<fraction_two ) {
3227 a=a / 4; b=b / 4; big=true;
3228 }; /* we reduced the precision to avoid arithmetic overflow */
3229 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3231 if ( a<fraction_two ) {
3234 mp->arith_error=true; a=el_gordo;
3241 @ The key idea here is to reflect the vector $(a,b)$ about the
3242 line through $(a,b/2)$.
3244 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3246 r=mp_make_fraction(mp, b,a);
3247 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3249 r=mp_make_fraction(mp, r,fraction_four+r);
3250 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3254 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3255 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3258 integer mp_pyth_sub (MP mp,integer a, integer b) {
3259 fraction r; /* register used to transform |a| and |b| */
3260 boolean big; /* is the input dangerously near $2^{31}$? */
3263 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3265 if ( a<fraction_four ) {
3268 a=halfp(a); b=halfp(b); big=true;
3270 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3271 if ( big ) double(a);
3276 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3278 r=mp_make_fraction(mp, b,a);
3279 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3281 r=mp_make_fraction(mp, r,fraction_four-r);
3282 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3285 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3288 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3289 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3290 mp_print(mp, " has been replaced by 0");
3292 help2("Since I don't take square roots of negative numbers,")
3293 ("I'm zeroing this one. Proceed, with fingers crossed.");
3299 @ The subroutines for logarithm and exponential involve two tables.
3300 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3301 a bit more calculation, which the author claims to have done correctly:
3302 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3303 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3306 @d two_to_the(A) (1<<(A))
3309 static const integer spec_log[29] = { 0, /* special logarithms */
3310 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3311 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3312 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3314 @ @<Local variables for initialization@>=
3315 integer k; /* all-purpose loop index */
3318 @ Here is the routine that calculates $2^8$ times the natural logarithm
3319 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3320 when |x| is a given positive integer.
3322 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3323 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3324 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3325 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3326 during the calculation, and sixteen auxiliary bits to extend |y| are
3327 kept in~|z| during the initial argument reduction. (We add
3328 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3329 not become negative; also, the actual amount subtracted from~|y| is~96,
3330 not~100, because we want to add~4 for rounding before the final division by~8.)
3333 scaled mp_m_log (MP mp,scaled x) {
3334 integer y,z; /* auxiliary registers */
3335 integer k; /* iteration counter */
3337 @<Handle non-positive logarithm@>;
3339 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3340 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3341 while ( x<fraction_four ) {
3342 double(x); y-=93032639; z-=48782;
3343 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3344 y=y+(z / unity); k=2;
3345 while ( x>fraction_four+4 ) {
3346 @<Increase |k| until |x| can be multiplied by a
3347 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3353 @ @<Increase |k| until |x| can...@>=
3355 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3356 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3357 y+=spec_log[k]; x-=z;
3360 @ @<Handle non-positive logarithm@>=
3362 print_err("Logarithm of ");
3363 @.Logarithm...replaced by 0@>
3364 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3365 help2("Since I don't take logs of non-positive numbers,")
3366 ("I'm zeroing this one. Proceed, with fingers crossed.");
3371 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3372 when |x| is |scaled|. The result is an integer approximation to
3373 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3376 scaled mp_m_exp (MP mp,scaled x) {
3377 small_number k; /* loop control index */
3378 integer y,z; /* auxiliary registers */
3379 if ( x>174436200 ) {
3380 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3381 mp->arith_error=true;
3383 } else if ( x<-197694359 ) {
3384 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3388 z=-8*x; y=04000000; /* $y=2^{20}$ */
3390 if ( x<=127919879 ) {
3392 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3394 z=8*(174436200-x); /* |z| is always nonnegative */
3398 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3400 return ((y+8) / 16);
3406 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3407 to multiplying |y| by $1-2^{-k}$.
3409 A subtle point (which had to be checked) was that if $x=127919879$, the
3410 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3411 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3412 and by~16 when |k=27|.
3414 @<Multiply |y| by...@>=
3417 while ( z>=spec_log[k] ) {
3419 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3424 @ The trigonometric subroutines use an auxiliary table such that
3425 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3426 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3429 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3430 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3431 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3433 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3434 returns the |angle| whose tangent points in the direction $(x,y)$.
3435 This subroutine first determines the correct octant, then solves the
3436 problem for |0<=y<=x|, then converts the result appropriately to
3437 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3438 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3439 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3441 The octants are represented in a ``Gray code,'' since that turns out
3442 to be computationally simplest.
3448 @d second_octant (first_octant+switch_x_and_y)
3449 @d third_octant (first_octant+switch_x_and_y+negate_x)
3450 @d fourth_octant (first_octant+negate_x)
3451 @d fifth_octant (first_octant+negate_x+negate_y)
3452 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3453 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3454 @d eighth_octant (first_octant+negate_y)
3457 angle mp_n_arg (MP mp,integer x, integer y) {
3458 angle z; /* auxiliary register */
3459 integer t; /* temporary storage */
3460 small_number k; /* loop counter */
3461 int octant; /* octant code */
3463 octant=first_octant;
3465 negate(x); octant=first_octant+negate_x;
3468 negate(y); octant=octant+negate_y;
3471 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3474 @<Handle undefined arg@>;
3476 @<Set variable |z| to the arg of $(x,y)$@>;
3477 @<Return an appropriate answer based on |z| and |octant|@>;
3481 @ @<Handle undefined arg@>=
3483 print_err("angle(0,0) is taken as zero");
3484 @.angle(0,0)...zero@>
3485 help2("The `angle' between two identical points is undefined.")
3486 ("I'm zeroing this one. Proceed, with fingers crossed.");
3491 @ @<Return an appropriate answer...@>=
3493 case first_octant: return z;
3494 case second_octant: return (ninety_deg-z);
3495 case third_octant: return (ninety_deg+z);
3496 case fourth_octant: return (one_eighty_deg-z);
3497 case fifth_octant: return (z-one_eighty_deg);
3498 case sixth_octant: return (-z-ninety_deg);
3499 case seventh_octant: return (z-ninety_deg);
3500 case eighth_octant: return (-z);
3501 }; /* there are no other cases */
3504 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3505 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3508 @<Set variable |z| to the arg...@>=
3509 while ( x>=fraction_two ) {
3510 x=halfp(x); y=halfp(y);
3514 while ( x<fraction_one ) {
3517 @<Increase |z| to the arg of $(x,y)$@>;
3520 @ During the calculations of this section, variables |x| and~|y|
3521 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3522 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3523 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3524 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3525 coordinates whose angle has decreased by~$\phi$; in the special case
3526 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3527 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3528 @^Meggitt, John E.@>
3529 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3531 The initial value of |x| will be multiplied by at most
3532 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3533 there is no chance of integer overflow.
3535 @<Increase |z|...@>=
3540 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3545 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3548 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3549 and cosine of that angle. The results of this routine are
3550 stored in global integer variables |n_sin| and |n_cos|.
3553 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3555 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3556 the purpose of |n_sin_cos(z)| is to set
3557 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3558 for some rather large number~|r|. The maximum of |x| and |y|
3559 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3560 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3563 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3565 small_number k; /* loop control variable */
3566 int q; /* specifies the quadrant */
3567 fraction r; /* magnitude of |(x,y)| */
3568 integer x,y,t; /* temporary registers */
3569 while ( z<0 ) z=z+three_sixty_deg;
3570 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3571 q=z / forty_five_deg; z=z % forty_five_deg;
3572 x=fraction_one; y=x;
3573 if ( ! odd(q) ) z=forty_five_deg-z;
3574 @<Subtract angle |z| from |(x,y)|@>;
3575 @<Convert |(x,y)| to the octant determined by~|q|@>;
3576 r=mp_pyth_add(mp, x,y);
3577 mp->n_cos=mp_make_fraction(mp, x,r);
3578 mp->n_sin=mp_make_fraction(mp, y,r);
3581 @ In this case the octants are numbered sequentially.
3583 @<Convert |(x,...@>=
3586 case 1: t=x; x=y; y=t; break;
3587 case 2: t=x; x=-y; y=t; break;
3588 case 3: negate(x); break;
3589 case 4: negate(x); negate(y); break;
3590 case 5: t=x; x=-y; y=-t; break;
3591 case 6: t=x; x=y; y=-t; break;
3592 case 7: negate(y); break;
3593 } /* there are no other cases */
3595 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3596 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3597 that this loop is guaranteed to terminate before the (nonexistent) value
3598 |spec_atan[27]| would be required.
3600 @<Subtract angle |z|...@>=
3603 if ( z>=spec_atan[k] ) {
3604 z=z-spec_atan[k]; t=x;
3605 x=t+y / two_to_the(k);
3606 y=y-t / two_to_the(k);
3610 if ( y<0 ) y=0 /* this precaution may never be needed */
3612 @ And now let's complete our collection of numeric utility routines
3613 by considering random number generation.
3614 \MP\ generates pseudo-random numbers with the additive scheme recommended
3615 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3616 results are random fractions between 0 and |fraction_one-1|, inclusive.
3618 There's an auxiliary array |randoms| that contains 55 pseudo-random
3619 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3620 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3621 The global variable |j_random| tells which element has most recently
3623 The global variable |random_seed| was introduced in version 0.9,
3624 for the sole reason of stressing the fact that the initial value of the
3625 random seed is system-dependant. The initialization code below will initialize
3626 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3627 is not good enough on modern fast machines that are capable of running
3628 multiple MetaPost processes within the same second.
3629 @^system dependencies@>
3632 fraction randoms[55]; /* the last 55 random values generated */
3633 int j_random; /* the number of unused |randoms| */
3635 @ @<Option variables@>=
3636 int random_seed; /* the default random seed */
3638 @ @<Allocate or initialize ...@>=
3639 mp->random_seed = (scaled)opt->random_seed;
3641 @ To consume a random fraction, the program below will say `|next_random|'
3642 and then it will fetch |randoms[j_random]|.
3644 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3645 else decr(mp->j_random); }
3648 void mp_new_randoms (MP mp) {
3649 int k; /* index into |randoms| */
3650 fraction x; /* accumulator */
3651 for (k=0;k<=23;k++) {
3652 x=mp->randoms[k]-mp->randoms[k+31];
3653 if ( x<0 ) x=x+fraction_one;
3656 for (k=24;k<= 54;k++){
3657 x=mp->randoms[k]-mp->randoms[k-24];
3658 if ( x<0 ) x=x+fraction_one;
3665 void mp_init_randoms (MP mp,scaled seed);
3667 @ To initialize the |randoms| table, we call the following routine.
3670 void mp_init_randoms (MP mp,scaled seed) {
3671 fraction j,jj,k; /* more or less random integers */
3672 int i; /* index into |randoms| */
3674 while ( j>=fraction_one ) j=halfp(j);
3676 for (i=0;i<=54;i++ ){
3678 if ( k<0 ) k=k+fraction_one;
3679 mp->randoms[(i*21)% 55]=j;
3683 mp_new_randoms(mp); /* ``warm up'' the array */
3686 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3687 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3689 Note that the call of |take_fraction| will produce the values 0 and~|x|
3690 with about half the probability that it will produce any other particular
3691 values between 0 and~|x|, because it rounds its answers.
3694 scaled mp_unif_rand (MP mp,scaled x) {
3695 scaled y; /* trial value */
3696 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3697 if ( y==abs(x) ) return 0;
3698 else if ( x>0 ) return y;
3702 @ Finally, a normal deviate with mean zero and unit standard deviation
3703 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3704 {\sl The Art of Computer Programming\/}).
3707 scaled mp_norm_rand (MP mp) {
3708 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3712 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3713 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3714 next_random; u=mp->randoms[mp->j_random];
3715 } while (abs(x)>=u);
3716 x=mp_make_fraction(mp, x,u);
3717 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3718 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3722 @* \[9] Packed data.
3723 In order to make efficient use of storage space, \MP\ bases its major data
3724 structures on a |memory_word|, which contains either a (signed) integer,
3725 possibly scaled, or a small number of fields that are one half or one
3726 quarter of the size used for storing integers.
3728 If |x| is a variable of type |memory_word|, it contains up to four
3729 fields that can be referred to as follows:
3730 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3731 |x|&.|int|&(an |integer|)\cr
3732 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3733 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3734 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3736 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3737 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3738 This is somewhat cumbersome to write, and not very readable either, but
3739 macros will be used to make the notation shorter and more transparent.
3740 The code below gives a formal definition of |memory_word| and
3741 its subsidiary types, using packed variant records. \MP\ makes no
3742 assumptions about the relative positions of the fields within a word.
3744 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3745 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3747 @ Here are the inequalities that the quarterword and halfword values
3748 must satisfy (or rather, the inequalities that they mustn't satisfy):
3750 @<Check the ``constant''...@>=
3751 if (mp->ini_version) {
3752 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3754 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3756 if ( max_quarterword<255 ) mp->bad=9;
3757 if ( max_halfword<65535 ) mp->bad=10;
3758 if ( max_quarterword>max_halfword ) mp->bad=11;
3759 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3760 if ( mp->max_strings>max_halfword ) mp->bad=13;
3762 @ The macros |qi| and |qo| are used for input to and output
3763 from quarterwords. These are legacy macros.
3764 @^system dependencies@>
3766 @d qo(A) (A) /* to read eight bits from a quarterword */
3767 @d qi(A) (A) /* to store eight bits in a quarterword */
3769 @ The reader should study the following definitions closely:
3770 @^system dependencies@>
3772 @d sc cint /* |scaled| data is equivalent to |integer| */
3775 typedef short quarterword; /* 1/4 of a word */
3776 typedef int halfword; /* 1/2 of a word */
3781 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3788 quarterword B2, B3, B0, B1;
3803 @ When debugging, we may want to print a |memory_word| without knowing
3804 what type it is; so we print it in all modes.
3808 void mp_print_word (MP mp,memory_word w) {
3809 /* prints |w| in all ways */
3810 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3811 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3812 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3813 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3814 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3815 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3816 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3817 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3818 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3819 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3820 mp_print_int(mp, w.qqqq.b3);
3824 @* \[10] Dynamic memory allocation.
3826 The \MP\ system does nearly all of its own memory allocation, so that it
3827 can readily be transported into environments that do not have automatic
3828 facilities for strings, garbage collection, etc., and so that it can be in
3829 control of what error messages the user receives. The dynamic storage
3830 requirements of \MP\ are handled by providing a large array |mem| in
3831 which consecutive blocks of words are used as nodes by the \MP\ routines.
3833 Pointer variables are indices into this array, or into another array
3834 called |eqtb| that will be explained later. A pointer variable might
3835 also be a special flag that lies outside the bounds of |mem|, so we
3836 allow pointers to assume any |halfword| value. The minimum memory
3837 index represents a null pointer.
3839 @d null 0 /* the null pointer */
3840 @d mp_void (null+1) /* a null pointer different from |null| */
3844 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3846 @ The |mem| array is divided into two regions that are allocated separately,
3847 but the dividing line between these two regions is not fixed; they grow
3848 together until finding their ``natural'' size in a particular job.
3849 Locations less than or equal to |lo_mem_max| are used for storing
3850 variable-length records consisting of two or more words each. This region
3851 is maintained using an algorithm similar to the one described in exercise
3852 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3853 appears in the allocated nodes; the program is responsible for knowing the
3854 relevant size when a node is freed. Locations greater than or equal to
3855 |hi_mem_min| are used for storing one-word records; a conventional
3856 \.{AVAIL} stack is used for allocation in this region.
3858 Locations of |mem| between |0| and |mem_top| may be dumped as part
3859 of preloaded mem files, by the \.{INIMP} preprocessor.
3861 Production versions of \MP\ may extend the memory at the top end in order to
3862 provide more space; these locations, between |mem_top| and |mem_max|,
3863 are always used for single-word nodes.
3865 The key pointers that govern |mem| allocation have a prescribed order:
3866 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3869 memory_word *mem; /* the big dynamic storage area */
3870 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3871 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3875 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3876 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3877 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3878 @d xstrdup(A) mp_xstrdup(mp,A)
3879 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3881 @<Declare helpers@>=
3882 void mp_xfree (void *x);
3883 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3884 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3885 char *mp_xstrdup(MP mp, const char *s);
3887 @ The |max_size_test| guards against overflow, on the assumption that
3888 |size_t| is at least 31bits wide.
3890 @d max_size_test 0x7FFFFFFF
3893 void mp_xfree (void *x) {
3894 if (x!=NULL) free(x);
3896 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3898 if ((max_size_test/size)<nmem) {
3899 do_fprintf(mp->err_out,"Memory size overflow!\n");
3900 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3902 w = realloc (p,(nmem*size));
3904 do_fprintf(mp->err_out,"Out of memory!\n");
3905 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3909 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3911 if ((max_size_test/size)<nmem) {
3912 do_fprintf(mp->err_out,"Memory size overflow!\n");
3913 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3915 w = malloc (nmem*size);
3917 do_fprintf(mp->err_out,"Out of memory!\n");
3918 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3922 char *mp_xstrdup(MP mp, const char *s) {
3928 do_fprintf(mp->err_out,"Out of memory!\n");
3929 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3936 @<Allocate or initialize ...@>=
3937 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3938 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3940 @ @<Dealloc variables@>=
3943 @ Users who wish to study the memory requirements of particular applications can
3944 can use optional special features that keep track of current and
3945 maximum memory usage. When code between the delimiters |stat| $\ldots$
3946 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3947 report these statistics when |mp_tracing_stats| is positive.
3950 integer var_used; integer dyn_used; /* how much memory is in use */
3952 @ Let's consider the one-word memory region first, since it's the
3953 simplest. The pointer variable |mem_end| holds the highest-numbered location
3954 of |mem| that has ever been used. The free locations of |mem| that
3955 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3956 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3957 and |rh| fields of |mem[p]| when it is of this type. The single-word
3958 free locations form a linked list
3959 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3960 terminated by |null|.
3962 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3963 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3966 pointer avail; /* head of the list of available one-word nodes */
3967 pointer mem_end; /* the last one-word node used in |mem| */
3969 @ If one-word memory is exhausted, it might mean that the user has forgotten
3970 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3971 later that try to help pinpoint the trouble.
3974 @<Declare the procedure called |show_token_list|@>
3975 @<Declare the procedure called |runaway|@>
3977 @ The function |get_avail| returns a pointer to a new one-word node whose
3978 |link| field is null. However, \MP\ will halt if there is no more room left.
3982 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3983 pointer p; /* the new node being got */
3984 p=mp->avail; /* get top location in the |avail| stack */
3986 mp->avail=link(mp->avail); /* and pop it off */
3987 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3988 incr(mp->mem_end); p=mp->mem_end;
3990 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3991 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3992 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3993 mp_overflow(mp, "main memory size",mp->mem_max);
3994 /* quit; all one-word nodes are busy */
3995 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3998 link(p)=null; /* provide an oft-desired initialization of the new node */
3999 incr(mp->dyn_used);/* maintain statistics */
4003 @ Conversely, a one-word node is recycled by calling |free_avail|.
4005 @d free_avail(A) /* single-word node liberation */
4006 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4008 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4009 overhead at the expense of extra programming. This macro is used in
4010 the places that would otherwise account for the most calls of |get_avail|.
4013 @d fast_get_avail(A) {
4014 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4015 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4016 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4019 @ The available-space list that keeps track of the variable-size portion
4020 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4021 pointed to by the roving pointer |rover|.
4023 Each empty node has size 2 or more; the first word contains the special
4024 value |max_halfword| in its |link| field and the size in its |info| field;
4025 the second word contains the two pointers for double linking.
4027 Each nonempty node also has size 2 or more. Its first word is of type
4028 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4029 Otherwise there is complete flexibility with respect to the contents
4030 of its other fields and its other words.
4032 (We require |mem_max<max_halfword| because terrible things can happen
4033 when |max_halfword| appears in the |link| field of a nonempty node.)
4035 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4036 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4037 @d node_size info /* the size field in empty variable-size nodes */
4038 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4039 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4042 pointer rover; /* points to some node in the list of empties */
4044 @ A call to |get_node| with argument |s| returns a pointer to a new node
4045 of size~|s|, which must be 2~or more. The |link| field of the first word
4046 of this new node is set to null. An overflow stop occurs if no suitable
4049 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4050 areas and returns the value |max_halfword|.
4052 @<Internal library declarations@>=
4053 pointer mp_get_node (MP mp,integer s) ;
4056 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4057 pointer p; /* the node currently under inspection */
4058 pointer q; /* the node physically after node |p| */
4059 integer r; /* the newly allocated node, or a candidate for this honor */
4060 integer t,tt; /* temporary registers */
4063 p=mp->rover; /* start at some free node in the ring */
4065 @<Try to allocate within node |p| and its physical successors,
4066 and |goto found| if allocation was possible@>;
4067 if (rlink(p)==null || (rlink(p)==p && p!=mp->rover)) {
4068 print_err("Free list garbled");
4069 help3("I found an entry in the list of free nodes that links")
4070 ("badly. I will try to ignore the broken link, but something")
4071 ("is seriously amiss. It is wise to warn the maintainers.")
4075 p=rlink(p); /* move to the next node in the ring */
4076 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4077 if ( s==010000000000 ) {
4078 return max_halfword;
4080 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4081 if ( mp->lo_mem_max+2<=max_halfword ) {
4082 @<Grow more variable-size memory and |goto restart|@>;
4085 mp_overflow(mp, "main memory size",mp->mem_max);
4086 /* sorry, nothing satisfactory is left */
4087 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4089 link(r)=null; /* this node is now nonempty */
4090 mp->var_used+=s; /* maintain usage statistics */
4094 @ The lower part of |mem| grows by 1000 words at a time, unless
4095 we are very close to going under. When it grows, we simply link
4096 a new node into the available-space list. This method of controlled
4097 growth helps to keep the |mem| usage consecutive when \MP\ is
4098 implemented on ``virtual memory'' systems.
4101 @<Grow more variable-size memory and |goto restart|@>=
4103 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4104 t=mp->lo_mem_max+1000;
4106 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4107 /* |lo_mem_max+2<=t<hi_mem_min| */
4109 if ( t>max_halfword ) t=max_halfword;
4110 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4111 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4112 node_size(q)=t-mp->lo_mem_max;
4113 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4118 @ @<Try to allocate...@>=
4119 q=p+node_size(p); /* find the physical successor */
4120 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4121 t=rlink(q); tt=llink(q);
4123 if ( q==mp->rover ) mp->rover=t;
4124 llink(t)=tt; rlink(tt)=t;
4129 @<Allocate from the top of node |p| and |goto found|@>;
4132 if ( rlink(p)!=p ) {
4133 @<Allocate entire node |p| and |goto found|@>;
4136 node_size(p)=q-p /* reset the size in case it grew */
4138 @ @<Allocate from the top...@>=
4140 node_size(p)=r-p; /* store the remaining size */
4141 mp->rover=p; /* start searching here next time */
4145 @ Here we delete node |p| from the ring, and let |rover| rove around.
4147 @<Allocate entire...@>=
4149 mp->rover=rlink(p); t=llink(p);
4150 llink(mp->rover)=t; rlink(t)=mp->rover;
4154 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4155 the operation |free_node(p,s)| will make its words available, by inserting
4156 |p| as a new empty node just before where |rover| now points.
4158 @<Internal library declarations@>=
4159 void mp_free_node (MP mp, pointer p, halfword s) ;
4162 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4164 pointer q; /* |llink(rover)| */
4165 node_size(p)=s; link(p)=empty_flag;
4167 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4168 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4169 mp->var_used-=s; /* maintain statistics */
4172 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4173 available space list. The list is probably very short at such times, so a
4174 simple insertion sort is used. The smallest available location will be
4175 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4178 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4180 pointer p,q,r; /* indices into |mem| */
4181 pointer old_rover; /* initial |rover| setting */
4182 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4183 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4184 while ( p!=old_rover ) {
4185 @<Sort |p| into the list starting at |rover|
4186 and advance |p| to |rlink(p)|@>;
4189 while ( rlink(p)!=max_halfword ) {
4190 llink(rlink(p))=p; p=rlink(p);
4192 rlink(p)=mp->rover; llink(mp->rover)=p;
4195 @ The following |while| loop is guaranteed to
4196 terminate, since the list that starts at
4197 |rover| ends with |max_halfword| during the sorting procedure.
4200 if ( p<mp->rover ) {
4201 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4204 while ( rlink(q)<p ) q=rlink(q);
4205 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4208 @* \[11] Memory layout.
4209 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4210 more efficient than dynamic allocation when we can get away with it. For
4211 example, locations |0| to |1| are always used to store a
4212 two-word dummy token whose second word is zero.
4213 The following macro definitions accomplish the static allocation by giving
4214 symbolic names to the fixed positions. Static variable-size nodes appear
4215 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4216 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4218 @d null_dash (2) /* the first two words are reserved for a null value */
4219 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4220 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4221 @d temp_val (zero_val+2) /* two words for a temporary value node */
4222 @d end_attr temp_val /* we use |end_attr+2| only */
4223 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4224 @d test_pen (inf_val+2)
4225 /* nine words for a pen used when testing the turning number */
4226 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4227 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4228 allocated word in the variable-size |mem| */
4230 @d sentinel mp->mem_top /* end of sorted lists */
4231 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4232 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4233 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4234 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4235 the one-word |mem| */
4237 @ The following code gets the dynamic part of |mem| off to a good start,
4238 when \MP\ is initializing itself the slow way.
4240 @<Initialize table entries (done by \.{INIMP} only)@>=
4241 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4242 link(mp->rover)=empty_flag;
4243 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4244 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4245 mp->lo_mem_max=mp->rover+1000;
4246 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4247 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4248 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4250 mp->avail=null; mp->mem_end=mp->mem_top;
4251 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4252 mp->var_used=lo_mem_stat_max+1;
4253 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4254 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4256 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4257 nodes that starts at a given position, until coming to |sentinel| or a
4258 pointer that is not in the one-word region. Another procedure,
4259 |flush_node_list|, frees an entire linked list of one-word and two-word
4260 nodes, until coming to a |null| pointer.
4264 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4265 pointer q,r; /* list traversers */
4266 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4271 if ( r<mp->hi_mem_min ) break;
4272 } while (r!=sentinel);
4273 /* now |q| is the last node on the list */
4274 link(q)=mp->avail; mp->avail=p;
4278 void mp_flush_node_list (MP mp,pointer p) {
4279 pointer q; /* the node being recycled */
4282 if ( q<mp->hi_mem_min )
4283 mp_free_node(mp, q,2);
4289 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4290 For example, some pointers might be wrong, or some ``dead'' nodes might not
4291 have been freed when the last reference to them disappeared. Procedures
4292 |check_mem| and |search_mem| are available to help diagnose such
4293 problems. These procedures make use of two arrays called |free| and
4294 |was_free| that are present only if \MP's debugging routines have
4295 been included. (You may want to decrease the size of |mem| while you
4299 Because |boolean|s are typedef-d as ints, it is better to use
4300 unsigned chars here.
4303 unsigned char *free; /* free cells */
4304 unsigned char *was_free; /* previously free cells */
4305 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4306 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4307 boolean panicking; /* do we want to check memory constantly? */
4309 @ @<Allocate or initialize ...@>=
4310 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4311 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4313 @ @<Dealloc variables@>=
4315 xfree(mp->was_free);
4317 @ @<Allocate or ...@>=
4318 mp->was_mem_end=0; /* indicate that everything was previously free */
4319 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4320 mp->panicking=false;
4322 @ @<Declare |mp_reallocate| functions@>=
4323 void mp_reallocate_memory(MP mp, int l) ;
4326 void mp_reallocate_memory(MP mp, int l) {
4327 XREALLOC(mp->free, l, unsigned char);
4328 XREALLOC(mp->was_free, l, unsigned char);
4330 int newarea = l-mp->mem_max;
4331 XREALLOC(mp->mem, l, memory_word);
4332 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4334 XREALLOC(mp->mem, l, memory_word);
4335 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4338 if (mp->ini_version)
4344 @ Procedure |check_mem| makes sure that the available space lists of
4345 |mem| are well formed, and it optionally prints out all locations
4346 that are reserved now but were free the last time this procedure was called.
4349 void mp_check_mem (MP mp,boolean print_locs ) {
4350 pointer p,q,r; /* current locations of interest in |mem| */
4351 boolean clobbered; /* is something amiss? */
4352 for (p=0;p<=mp->lo_mem_max;p++) {
4353 mp->free[p]=false; /* you can probably do this faster */
4355 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4356 mp->free[p]=false; /* ditto */
4358 @<Check single-word |avail| list@>;
4359 @<Check variable-size |avail| list@>;
4360 @<Check flags of unavailable nodes@>;
4361 @<Check the list of linear dependencies@>;
4363 @<Print newly busy locations@>;
4365 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4366 mp->was_mem_end=mp->mem_end;
4367 mp->was_lo_max=mp->lo_mem_max;
4368 mp->was_hi_min=mp->hi_mem_min;
4371 @ @<Check single-word...@>=
4372 p=mp->avail; q=null; clobbered=false;
4374 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4375 else if ( mp->free[p] ) clobbered=true;
4377 mp_print_nl(mp, "AVAIL list clobbered at ");
4378 @.AVAIL list clobbered...@>
4379 mp_print_int(mp, q); break;
4381 mp->free[p]=true; q=p; p=link(q);
4384 @ @<Check variable-size...@>=
4385 p=mp->rover; q=null; clobbered=false;
4387 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4388 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4389 else if ( !(is_empty(p))||(node_size(p)<2)||
4390 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4392 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4393 @.Double-AVAIL list clobbered...@>
4394 mp_print_int(mp, q); break;
4396 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4397 if ( mp->free[q] ) {
4398 mp_print_nl(mp, "Doubly free location at ");
4399 @.Doubly free location...@>
4400 mp_print_int(mp, q); break;
4405 } while (p!=mp->rover)
4408 @ @<Check flags...@>=
4410 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4411 if ( is_empty(p) ) {
4412 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4415 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4416 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4419 @ @<Print newly busy...@>=
4421 @<Do intialization required before printing new busy locations@>;
4422 mp_print_nl(mp, "New busy locs:");
4424 for (p=0;p<= mp->lo_mem_max;p++ ) {
4425 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4426 @<Indicate that |p| is a new busy location@>;
4429 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4430 if ( ! mp->free[p] &&
4431 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4432 @<Indicate that |p| is a new busy location@>;
4435 @<Finish printing new busy locations@>;
4438 @ There might be many new busy locations so we are careful to print contiguous
4439 blocks compactly. During this operation |q| is the last new busy location and
4440 |r| is the start of the block containing |q|.
4442 @<Indicate that |p| is a new busy location@>=
4446 mp_print(mp, ".."); mp_print_int(mp, q);
4448 mp_print_char(mp, ' '); mp_print_int(mp, p);
4454 @ @<Do intialization required before printing new busy locations@>=
4455 q=mp->mem_max; r=mp->mem_max
4457 @ @<Finish printing new busy locations@>=
4459 mp_print(mp, ".."); mp_print_int(mp, q);
4462 @ The |search_mem| procedure attempts to answer the question ``Who points
4463 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4464 that might not be of type |two_halves|. Strictly speaking, this is
4465 undefined, and it can lead to ``false drops'' (words that seem to
4466 point to |p| purely by coincidence). But for debugging purposes, we want
4467 to rule out the places that do {\sl not\/} point to |p|, so a few false
4468 drops are tolerable.
4471 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4472 integer q; /* current position being searched */
4473 for (q=0;q<=mp->lo_mem_max;q++) {
4475 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4478 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4481 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4483 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4486 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4489 @<Search |eqtb| for equivalents equal to |p|@>;
4492 @* \[12] The command codes.
4493 Before we can go much further, we need to define symbolic names for the internal
4494 code numbers that represent the various commands obeyed by \MP. These codes
4495 are somewhat arbitrary, but not completely so. For example,
4496 some codes have been made adjacent so that |case| statements in the
4497 program need not consider cases that are widely spaced, or so that |case|
4498 statements can be replaced by |if| statements. A command can begin an
4499 expression if and only if its code lies between |min_primary_command| and
4500 |max_primary_command|, inclusive. The first token of a statement that doesn't
4501 begin with an expression has a command code between |min_command| and
4502 |max_statement_command|, inclusive. Anything less than |min_command| is
4503 eliminated during macro expansions, and anything no more than |max_pre_command|
4504 is eliminated when expanding \TeX\ material. Ranges such as
4505 |min_secondary_command..max_secondary_command| are used when parsing
4506 expressions, but the relative ordering within such a range is generally not
4509 The ordering of the highest-numbered commands
4510 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4511 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4512 for the smallest two commands. The ordering is also important in the ranges
4513 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4515 At any rate, here is the list, for future reference.
4517 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4518 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4519 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4520 @d max_pre_command mpx_break
4521 @d if_test 4 /* conditional text (\&{if}) */
4522 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}) */
4523 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4524 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4525 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4526 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4527 @d relax 10 /* do nothing (\.{\char`\\}) */
4528 @d scan_tokens 11 /* put a string into the input buffer */
4529 @d expand_after 12 /* look ahead one token */
4530 @d defined_macro 13 /* a macro defined by the user */
4531 @d min_command (defined_macro+1)
4532 @d save_command 14 /* save a list of tokens (\&{save}) */
4533 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4534 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4535 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4536 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4537 @d ship_out_command 19 /* output a character (\&{shipout}) */
4538 @d add_to_command 20 /* add to edges (\&{addto}) */
4539 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4540 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4541 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4542 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4543 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4544 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4545 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4546 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4547 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4548 @d special_command 30 /* output special info (\&{special})
4549 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4550 @d write_command 31 /* write text to a file (\&{write}) */
4551 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc.) */
4552 @d max_statement_command type_name
4553 @d min_primary_command type_name
4554 @d left_delimiter 33 /* the left delimiter of a matching pair */
4555 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4556 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4557 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4558 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4559 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4560 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4561 @d capsule_token 40 /* a value that has been put into a token list */
4562 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4563 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4564 @d min_suffix_token internal_quantity
4565 @d tag_token 43 /* a symbolic token without a primitive meaning */
4566 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4567 @d max_suffix_token numeric_token
4568 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4569 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4570 @d min_tertiary_command plus_or_minus
4571 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4572 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4573 @d max_tertiary_command tertiary_binary
4574 @d left_brace 48 /* the operator `\.{\char`\{}' */
4575 @d min_expression_command left_brace
4576 @d path_join 49 /* the operator `\.{..}' */
4577 @d ampersand 50 /* the operator `\.\&' */
4578 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4579 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4580 @d equals 53 /* the operator `\.=' */
4581 @d max_expression_command equals
4582 @d and_command 54 /* the operator `\&{and}' */
4583 @d min_secondary_command and_command
4584 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4585 @d slash 56 /* the operator `\./' */
4586 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4587 @d max_secondary_command secondary_binary
4588 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4589 @d controls 59 /* specify control points explicitly (\&{controls}) */
4590 @d tension 60 /* specify tension between knots (\&{tension}) */
4591 @d at_least 61 /* bounded tension value (\&{atleast}) */
4592 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4593 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4594 @d right_delimiter 64 /* the right delimiter of a matching pair */
4595 @d left_bracket 65 /* the operator `\.[' */
4596 @d right_bracket 66 /* the operator `\.]' */
4597 @d right_brace 67 /* the operator `\.{\char`\}}' */
4598 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4600 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4601 @d of_token 70 /* the operator `\&{of}' */
4602 @d to_token 71 /* the operator `\&{to}' */
4603 @d step_token 72 /* the operator `\&{step}' */
4604 @d until_token 73 /* the operator `\&{until}' */
4605 @d within_token 74 /* the operator `\&{within}' */
4606 @d lig_kern_token 75
4607 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}', etc. */
4608 @d assignment 76 /* the operator `\.{:=}' */
4609 @d skip_to 77 /* the operation `\&{skipto}' */
4610 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4611 @d double_colon 79 /* the operator `\.{::}' */
4612 @d colon 80 /* the operator `\.:' */
4614 @d comma 81 /* the operator `\.,', must be |colon+1| */
4615 @d end_of_statement (mp->cur_cmd>comma)
4616 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4617 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4618 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4619 @d max_command_code stop
4620 @d outer_tag (max_command_code+1) /* protection code added to command code */
4623 typedef int command_code;
4625 @ Variables and capsules in \MP\ have a variety of ``types,''
4626 distinguished by the code numbers defined here. These numbers are also
4627 not completely arbitrary. Things that get expanded must have types
4628 |>mp_independent|; a type remaining after expansion is numeric if and only if
4629 its code number is at least |numeric_type|; objects containing numeric
4630 parts must have types between |transform_type| and |pair_type|;
4631 all other types must be smaller than |transform_type|; and among the types
4632 that are not unknown or vacuous, the smallest two must be |boolean_type|
4633 and |string_type| in that order.
4635 @d undefined 0 /* no type has been declared */
4636 @d unknown_tag 1 /* this constant is added to certain type codes below */
4637 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4638 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4641 enum mp_variable_type {
4642 mp_vacuous=1, /* no expression was present */
4643 mp_boolean_type, /* \&{boolean} with a known value */
4645 mp_string_type, /* \&{string} with a known value */
4647 mp_pen_type, /* \&{pen} with a known value */
4649 mp_path_type, /* \&{path} with a known value */
4651 mp_picture_type, /* \&{picture} with a known value */
4653 mp_transform_type, /* \&{transform} variable or capsule */
4654 mp_color_type, /* \&{color} variable or capsule */
4655 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4656 mp_pair_type, /* \&{pair} variable or capsule */
4657 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4658 mp_known, /* \&{numeric} with a known value */
4659 mp_dependent, /* a linear combination with |fraction| coefficients */
4660 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4661 mp_independent, /* \&{numeric} with unknown value */
4662 mp_token_list, /* variable name or suffix argument or text argument */
4663 mp_structured, /* variable with subscripts and attributes */
4664 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4665 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4669 void mp_print_type (MP mp,small_number t) ;
4671 @ @<Basic printing procedures@>=
4672 void mp_print_type (MP mp,small_number t) {
4674 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4675 case mp_boolean_type:mp_print(mp, "boolean"); break;
4676 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4677 case mp_string_type:mp_print(mp, "string"); break;
4678 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4679 case mp_pen_type:mp_print(mp, "pen"); break;
4680 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4681 case mp_path_type:mp_print(mp, "path"); break;
4682 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4683 case mp_picture_type:mp_print(mp, "picture"); break;
4684 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4685 case mp_transform_type:mp_print(mp, "transform"); break;
4686 case mp_color_type:mp_print(mp, "color"); break;
4687 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4688 case mp_pair_type:mp_print(mp, "pair"); break;
4689 case mp_known:mp_print(mp, "known numeric"); break;
4690 case mp_dependent:mp_print(mp, "dependent"); break;
4691 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4692 case mp_numeric_type:mp_print(mp, "numeric"); break;
4693 case mp_independent:mp_print(mp, "independent"); break;
4694 case mp_token_list:mp_print(mp, "token list"); break;
4695 case mp_structured:mp_print(mp, "mp_structured"); break;
4696 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4697 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4698 default: mp_print(mp, "undefined"); break;
4702 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4703 as well as a |type|. The possibilities for |name_type| are defined
4704 here; they will be explained in more detail later.
4708 mp_root=0, /* |name_type| at the top level of a variable */
4709 mp_saved_root, /* same, when the variable has been saved */
4710 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4711 mp_subscr, /* |name_type| in a subscript node */
4712 mp_attr, /* |name_type| in an attribute node */
4713 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4714 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4715 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4716 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4717 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4718 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4719 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4720 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4721 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4722 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4723 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4724 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4725 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4726 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4727 mp_capsule, /* |name_type| in stashed-away subexpressions */
4728 mp_token /* |name_type| in a numeric token or string token */
4731 @ Primitive operations that produce values have a secondary identification
4732 code in addition to their command code; it's something like genera and species.
4733 For example, `\.*' has the command code |primary_binary|, and its
4734 secondary identification is |times|. The secondary codes start at 30 so that
4735 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4736 are used as operators as well as type identifications. The relative values
4737 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4738 and |filled_op..bounded_op|. The restrictions are that
4739 |and_op-false_code=or_op-true_code|, that the ordering of
4740 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4741 and the ordering of |filled_op..bounded_op| must match that of the code
4742 values they test for.
4744 @d true_code 30 /* operation code for \.{true} */
4745 @d false_code 31 /* operation code for \.{false} */
4746 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4747 @d null_pen_code 33 /* operation code for \.{nullpen} */
4748 @d job_name_op 34 /* operation code for \.{jobname} */
4749 @d read_string_op 35 /* operation code for \.{readstring} */
4750 @d pen_circle 36 /* operation code for \.{pencircle} */
4751 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4752 @d read_from_op 38 /* operation code for \.{readfrom} */
4753 @d close_from_op 39 /* operation code for \.{closefrom} */
4754 @d odd_op 40 /* operation code for \.{odd} */
4755 @d known_op 41 /* operation code for \.{known} */
4756 @d unknown_op 42 /* operation code for \.{unknown} */
4757 @d not_op 43 /* operation code for \.{not} */
4758 @d decimal 44 /* operation code for \.{decimal} */
4759 @d reverse 45 /* operation code for \.{reverse} */
4760 @d make_path_op 46 /* operation code for \.{makepath} */
4761 @d make_pen_op 47 /* operation code for \.{makepen} */
4762 @d oct_op 48 /* operation code for \.{oct} */
4763 @d hex_op 49 /* operation code for \.{hex} */
4764 @d ASCII_op 50 /* operation code for \.{ASCII} */
4765 @d char_op 51 /* operation code for \.{char} */
4766 @d length_op 52 /* operation code for \.{length} */
4767 @d turning_op 53 /* operation code for \.{turningnumber} */
4768 @d color_model_part 54 /* operation code for \.{colormodel} */
4769 @d x_part 55 /* operation code for \.{xpart} */
4770 @d y_part 56 /* operation code for \.{ypart} */
4771 @d xx_part 57 /* operation code for \.{xxpart} */
4772 @d xy_part 58 /* operation code for \.{xypart} */
4773 @d yx_part 59 /* operation code for \.{yxpart} */
4774 @d yy_part 60 /* operation code for \.{yypart} */
4775 @d red_part 61 /* operation code for \.{redpart} */
4776 @d green_part 62 /* operation code for \.{greenpart} */
4777 @d blue_part 63 /* operation code for \.{bluepart} */
4778 @d cyan_part 64 /* operation code for \.{cyanpart} */
4779 @d magenta_part 65 /* operation code for \.{magentapart} */
4780 @d yellow_part 66 /* operation code for \.{yellowpart} */
4781 @d black_part 67 /* operation code for \.{blackpart} */
4782 @d grey_part 68 /* operation code for \.{greypart} */
4783 @d font_part 69 /* operation code for \.{fontpart} */
4784 @d text_part 70 /* operation code for \.{textpart} */
4785 @d path_part 71 /* operation code for \.{pathpart} */
4786 @d pen_part 72 /* operation code for \.{penpart} */
4787 @d dash_part 73 /* operation code for \.{dashpart} */
4788 @d sqrt_op 74 /* operation code for \.{sqrt} */
4789 @d m_exp_op 75 /* operation code for \.{mexp} */
4790 @d m_log_op 76 /* operation code for \.{mlog} */
4791 @d sin_d_op 77 /* operation code for \.{sind} */
4792 @d cos_d_op 78 /* operation code for \.{cosd} */
4793 @d floor_op 79 /* operation code for \.{floor} */
4794 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4795 @d char_exists_op 81 /* operation code for \.{charexists} */
4796 @d font_size 82 /* operation code for \.{fontsize} */
4797 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4798 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4799 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4800 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4801 @d arc_length 87 /* operation code for \.{arclength} */
4802 @d angle_op 88 /* operation code for \.{angle} */
4803 @d cycle_op 89 /* operation code for \.{cycle} */
4804 @d filled_op 90 /* operation code for \.{filled} */
4805 @d stroked_op 91 /* operation code for \.{stroked} */
4806 @d textual_op 92 /* operation code for \.{textual} */
4807 @d clipped_op 93 /* operation code for \.{clipped} */
4808 @d bounded_op 94 /* operation code for \.{bounded} */
4809 @d plus 95 /* operation code for \.+ */
4810 @d minus 96 /* operation code for \.- */
4811 @d times 97 /* operation code for \.* */
4812 @d over 98 /* operation code for \./ */
4813 @d pythag_add 99 /* operation code for \.{++} */
4814 @d pythag_sub 100 /* operation code for \.{+-+} */
4815 @d or_op 101 /* operation code for \.{or} */
4816 @d and_op 102 /* operation code for \.{and} */
4817 @d less_than 103 /* operation code for \.< */
4818 @d less_or_equal 104 /* operation code for \.{<=} */
4819 @d greater_than 105 /* operation code for \.> */
4820 @d greater_or_equal 106 /* operation code for \.{>=} */
4821 @d equal_to 107 /* operation code for \.= */
4822 @d unequal_to 108 /* operation code for \.{<>} */
4823 @d concatenate 109 /* operation code for \.\& */
4824 @d rotated_by 110 /* operation code for \.{rotated} */
4825 @d slanted_by 111 /* operation code for \.{slanted} */
4826 @d scaled_by 112 /* operation code for \.{scaled} */
4827 @d shifted_by 113 /* operation code for \.{shifted} */
4828 @d transformed_by 114 /* operation code for \.{transformed} */
4829 @d x_scaled 115 /* operation code for \.{xscaled} */
4830 @d y_scaled 116 /* operation code for \.{yscaled} */
4831 @d z_scaled 117 /* operation code for \.{zscaled} */
4832 @d in_font 118 /* operation code for \.{infont} */
4833 @d intersect 119 /* operation code for \.{intersectiontimes} */
4834 @d double_dot 120 /* operation code for improper \.{..} */
4835 @d substring_of 121 /* operation code for \.{substring} */
4836 @d min_of substring_of
4837 @d subpath_of 122 /* operation code for \.{subpath} */
4838 @d direction_time_of 123 /* operation code for \.{directiontime} */
4839 @d point_of 124 /* operation code for \.{point} */
4840 @d precontrol_of 125 /* operation code for \.{precontrol} */
4841 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4842 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4843 @d arc_time_of 128 /* operation code for \.{arctime} */
4844 @d mp_version 129 /* operation code for \.{mpversion} */
4845 @d envelope_of 130 /* operation code for \.{envelope} */
4847 @c void mp_print_op (MP mp,quarterword c) {
4848 if (c<=mp_numeric_type ) {
4849 mp_print_type(mp, c);
4852 case true_code:mp_print(mp, "true"); break;
4853 case false_code:mp_print(mp, "false"); break;
4854 case null_picture_code:mp_print(mp, "nullpicture"); break;
4855 case null_pen_code:mp_print(mp, "nullpen"); break;
4856 case job_name_op:mp_print(mp, "jobname"); break;
4857 case read_string_op:mp_print(mp, "readstring"); break;
4858 case pen_circle:mp_print(mp, "pencircle"); break;
4859 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4860 case read_from_op:mp_print(mp, "readfrom"); break;
4861 case close_from_op:mp_print(mp, "closefrom"); break;
4862 case odd_op:mp_print(mp, "odd"); break;
4863 case known_op:mp_print(mp, "known"); break;
4864 case unknown_op:mp_print(mp, "unknown"); break;
4865 case not_op:mp_print(mp, "not"); break;
4866 case decimal:mp_print(mp, "decimal"); break;
4867 case reverse:mp_print(mp, "reverse"); break;
4868 case make_path_op:mp_print(mp, "makepath"); break;
4869 case make_pen_op:mp_print(mp, "makepen"); break;
4870 case oct_op:mp_print(mp, "oct"); break;
4871 case hex_op:mp_print(mp, "hex"); break;
4872 case ASCII_op:mp_print(mp, "ASCII"); break;
4873 case char_op:mp_print(mp, "char"); break;
4874 case length_op:mp_print(mp, "length"); break;
4875 case turning_op:mp_print(mp, "turningnumber"); break;
4876 case x_part:mp_print(mp, "xpart"); break;
4877 case y_part:mp_print(mp, "ypart"); break;
4878 case xx_part:mp_print(mp, "xxpart"); break;
4879 case xy_part:mp_print(mp, "xypart"); break;
4880 case yx_part:mp_print(mp, "yxpart"); break;
4881 case yy_part:mp_print(mp, "yypart"); break;
4882 case red_part:mp_print(mp, "redpart"); break;
4883 case green_part:mp_print(mp, "greenpart"); break;
4884 case blue_part:mp_print(mp, "bluepart"); break;
4885 case cyan_part:mp_print(mp, "cyanpart"); break;
4886 case magenta_part:mp_print(mp, "magentapart"); break;
4887 case yellow_part:mp_print(mp, "yellowpart"); break;
4888 case black_part:mp_print(mp, "blackpart"); break;
4889 case grey_part:mp_print(mp, "greypart"); break;
4890 case color_model_part:mp_print(mp, "colormodel"); break;
4891 case font_part:mp_print(mp, "fontpart"); break;
4892 case text_part:mp_print(mp, "textpart"); break;
4893 case path_part:mp_print(mp, "pathpart"); break;
4894 case pen_part:mp_print(mp, "penpart"); break;
4895 case dash_part:mp_print(mp, "dashpart"); break;
4896 case sqrt_op:mp_print(mp, "sqrt"); break;
4897 case m_exp_op:mp_print(mp, "mexp"); break;
4898 case m_log_op:mp_print(mp, "mlog"); break;
4899 case sin_d_op:mp_print(mp, "sind"); break;
4900 case cos_d_op:mp_print(mp, "cosd"); break;
4901 case floor_op:mp_print(mp, "floor"); break;
4902 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4903 case char_exists_op:mp_print(mp, "charexists"); break;
4904 case font_size:mp_print(mp, "fontsize"); break;
4905 case ll_corner_op:mp_print(mp, "llcorner"); break;
4906 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4907 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4908 case ur_corner_op:mp_print(mp, "urcorner"); break;
4909 case arc_length:mp_print(mp, "arclength"); break;
4910 case angle_op:mp_print(mp, "angle"); break;
4911 case cycle_op:mp_print(mp, "cycle"); break;
4912 case filled_op:mp_print(mp, "filled"); break;
4913 case stroked_op:mp_print(mp, "stroked"); break;
4914 case textual_op:mp_print(mp, "textual"); break;
4915 case clipped_op:mp_print(mp, "clipped"); break;
4916 case bounded_op:mp_print(mp, "bounded"); break;
4917 case plus:mp_print_char(mp, '+'); break;
4918 case minus:mp_print_char(mp, '-'); break;
4919 case times:mp_print_char(mp, '*'); break;
4920 case over:mp_print_char(mp, '/'); break;
4921 case pythag_add:mp_print(mp, "++"); break;
4922 case pythag_sub:mp_print(mp, "+-+"); break;
4923 case or_op:mp_print(mp, "or"); break;
4924 case and_op:mp_print(mp, "and"); break;
4925 case less_than:mp_print_char(mp, '<'); break;
4926 case less_or_equal:mp_print(mp, "<="); break;
4927 case greater_than:mp_print_char(mp, '>'); break;
4928 case greater_or_equal:mp_print(mp, ">="); break;
4929 case equal_to:mp_print_char(mp, '='); break;
4930 case unequal_to:mp_print(mp, "<>"); break;
4931 case concatenate:mp_print(mp, "&"); break;
4932 case rotated_by:mp_print(mp, "rotated"); break;
4933 case slanted_by:mp_print(mp, "slanted"); break;
4934 case scaled_by:mp_print(mp, "scaled"); break;
4935 case shifted_by:mp_print(mp, "shifted"); break;
4936 case transformed_by:mp_print(mp, "transformed"); break;
4937 case x_scaled:mp_print(mp, "xscaled"); break;
4938 case y_scaled:mp_print(mp, "yscaled"); break;
4939 case z_scaled:mp_print(mp, "zscaled"); break;
4940 case in_font:mp_print(mp, "infont"); break;
4941 case intersect:mp_print(mp, "intersectiontimes"); break;
4942 case substring_of:mp_print(mp, "substring"); break;
4943 case subpath_of:mp_print(mp, "subpath"); break;
4944 case direction_time_of:mp_print(mp, "directiontime"); break;
4945 case point_of:mp_print(mp, "point"); break;
4946 case precontrol_of:mp_print(mp, "precontrol"); break;
4947 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4948 case pen_offset_of:mp_print(mp, "penoffset"); break;
4949 case arc_time_of:mp_print(mp, "arctime"); break;
4950 case mp_version:mp_print(mp, "mpversion"); break;
4951 case envelope_of:mp_print(mp, "envelope"); break;
4952 default: mp_print(mp, ".."); break;
4957 @ \MP\ also has a bunch of internal parameters that a user might want to
4958 fuss with. Every such parameter has an identifying code number, defined here.
4961 enum mp_given_internal {
4962 mp_tracing_titles=1, /* show titles online when they appear */
4963 mp_tracing_equations, /* show each variable when it becomes known */
4964 mp_tracing_capsules, /* show capsules too */
4965 mp_tracing_choices, /* show the control points chosen for paths */
4966 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4967 mp_tracing_commands, /* show commands and operations before they are performed */
4968 mp_tracing_restores, /* show when a variable or internal is restored */
4969 mp_tracing_macros, /* show macros before they are expanded */
4970 mp_tracing_output, /* show digitized edges as they are output */
4971 mp_tracing_stats, /* show memory usage at end of job */
4972 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4973 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4974 mp_year, /* the current year (e.g., 1984) */
4975 mp_month, /* the current month (e.g., 3 $\equiv$ March) */
4976 mp_day, /* the current day of the month */
4977 mp_time, /* the number of minutes past midnight when this job started */
4978 mp_char_code, /* the number of the next character to be output */
4979 mp_char_ext, /* the extension code of the next character to be output */
4980 mp_char_wd, /* the width of the next character to be output */
4981 mp_char_ht, /* the height of the next character to be output */
4982 mp_char_dp, /* the depth of the next character to be output */
4983 mp_char_ic, /* the italic correction of the next character to be output */
4984 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4985 mp_pausing, /* positive to display lines on the terminal before they are read */
4986 mp_showstopping, /* positive to stop after each \&{show} command */
4987 mp_fontmaking, /* positive if font metric output is to be produced */
4988 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4989 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4990 mp_miterlimit, /* controls miter length as in \ps */
4991 mp_warning_check, /* controls error message when variable value is large */
4992 mp_boundary_char, /* the right boundary character for ligatures */
4993 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4994 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4995 mp_default_color_model, /* the default color model for unspecified items */
4996 mp_restore_clip_color,
4997 mp_procset, /* wether or not create PostScript command shortcuts */
4998 mp_gtroffmode /* whether the user specified |-troff| on the command line */
5003 @d max_given_internal mp_gtroffmode
5006 scaled *internal; /* the values of internal quantities */
5007 char **int_name; /* their names */
5008 int int_ptr; /* the maximum internal quantity defined so far */
5009 int max_internal; /* current maximum number of internal quantities */
5011 @ @<Option variables@>=
5014 @ @<Allocate or initialize ...@>=
5015 mp->max_internal=2*max_given_internal;
5016 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5017 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5018 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5020 @ @<Exported function ...@>=
5021 int mp_troff_mode(MP mp);
5024 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5026 @ @<Set initial ...@>=
5027 for (k=0;k<= mp->max_internal; k++ ) {
5029 mp->int_name[k]=NULL;
5031 mp->int_ptr=max_given_internal;
5033 @ The symbolic names for internal quantities are put into \MP's hash table
5034 by using a routine called |primitive|, which will be defined later. Let us
5035 enter them now, so that we don't have to list all those names again
5038 @<Put each of \MP's primitives into the hash table@>=
5039 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5040 @:tracingtitles_}{\&{tracingtitles} primitive@>
5041 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5042 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5043 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5044 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5045 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5046 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5047 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5048 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5049 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5050 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5051 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5052 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5053 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5054 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5055 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5056 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5057 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5058 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5059 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5060 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5061 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5062 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5063 mp_primitive(mp, "year",internal_quantity,mp_year);
5064 @:mp_year_}{\&{year} primitive@>
5065 mp_primitive(mp, "month",internal_quantity,mp_month);
5066 @:mp_month_}{\&{month} primitive@>
5067 mp_primitive(mp, "day",internal_quantity,mp_day);
5068 @:mp_day_}{\&{day} primitive@>
5069 mp_primitive(mp, "time",internal_quantity,mp_time);
5070 @:time_}{\&{time} primitive@>
5071 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5072 @:mp_char_code_}{\&{charcode} primitive@>
5073 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5074 @:mp_char_ext_}{\&{charext} primitive@>
5075 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5076 @:mp_char_wd_}{\&{charwd} primitive@>
5077 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5078 @:mp_char_ht_}{\&{charht} primitive@>
5079 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5080 @:mp_char_dp_}{\&{chardp} primitive@>
5081 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5082 @:mp_char_ic_}{\&{charic} primitive@>
5083 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5084 @:mp_design_size_}{\&{designsize} primitive@>
5085 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5086 @:mp_pausing_}{\&{pausing} primitive@>
5087 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5088 @:mp_showstopping_}{\&{showstopping} primitive@>
5089 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5090 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5091 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5092 @:mp_linejoin_}{\&{linejoin} primitive@>
5093 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5094 @:mp_linecap_}{\&{linecap} primitive@>
5095 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5096 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5097 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5098 @:mp_warning_check_}{\&{warningcheck} primitive@>
5099 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5100 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5101 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5102 @:mp_prologues_}{\&{prologues} primitive@>
5103 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5104 @:mp_true_corners_}{\&{truecorners} primitive@>
5105 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5106 @:mp_procset_}{\&{mpprocset} primitive@>
5107 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5108 @:troffmode_}{\&{troffmode} primitive@>
5109 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5110 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5111 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5112 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5114 @ Colors can be specified in four color models. In the special
5115 case of |no_model|, MetaPost does not output any color operator to
5116 the postscript output.
5118 Note: these values are passed directly on to |with_option|. This only
5119 works because the other possible values passed to |with_option| are
5120 8 and 10 respectively (from |with_pen| and |with_picture|).
5122 There is a first state, that is only used for |gs_colormodel|. It flags
5123 the fact that there has not been any kind of color specification by
5124 the user so far in the game.
5127 enum mp_color_model {
5132 mp_uninitialized_model=9
5136 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5137 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5138 mp->internal[mp_restore_clip_color]=unity;
5140 @ Well, we do have to list the names one more time, for use in symbolic
5143 @<Initialize table...@>=
5144 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5145 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5146 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5147 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5148 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5149 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5150 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5151 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5152 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5153 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5154 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5155 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5156 mp->int_name[mp_year]=xstrdup("year");
5157 mp->int_name[mp_month]=xstrdup("month");
5158 mp->int_name[mp_day]=xstrdup("day");
5159 mp->int_name[mp_time]=xstrdup("time");
5160 mp->int_name[mp_char_code]=xstrdup("charcode");
5161 mp->int_name[mp_char_ext]=xstrdup("charext");
5162 mp->int_name[mp_char_wd]=xstrdup("charwd");
5163 mp->int_name[mp_char_ht]=xstrdup("charht");
5164 mp->int_name[mp_char_dp]=xstrdup("chardp");
5165 mp->int_name[mp_char_ic]=xstrdup("charic");
5166 mp->int_name[mp_design_size]=xstrdup("designsize");
5167 mp->int_name[mp_pausing]=xstrdup("pausing");
5168 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5169 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5170 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5171 mp->int_name[mp_linecap]=xstrdup("linecap");
5172 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5173 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5174 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5175 mp->int_name[mp_prologues]=xstrdup("prologues");
5176 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5177 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5178 mp->int_name[mp_procset]=xstrdup("mpprocset");
5179 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5180 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5182 @ The following procedure, which is called just before \MP\ initializes its
5183 input and output, establishes the initial values of the date and time.
5184 @^system dependencies@>
5186 Note that the values are |scaled| integers. Hence \MP\ can no longer
5187 be used after the year 32767.
5190 void mp_fix_date_and_time (MP mp) {
5191 time_t aclock = time ((time_t *) 0);
5192 struct tm *tmptr = localtime (&aclock);
5193 mp->internal[mp_time]=
5194 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5195 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5196 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5197 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5201 void mp_fix_date_and_time (MP mp) ;
5203 @ \MP\ is occasionally supposed to print diagnostic information that
5204 goes only into the transcript file, unless |mp_tracing_online| is positive.
5205 Now that we have defined |mp_tracing_online| we can define
5206 two routines that adjust the destination of print commands:
5209 void mp_begin_diagnostic (MP mp) ;
5210 void mp_end_diagnostic (MP mp,boolean blank_line);
5211 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) ;
5213 @ @<Basic printing...@>=
5214 @<Declare a function called |true_line|@>
5215 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5216 mp->old_setting=mp->selector;
5217 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5219 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5223 void mp_end_diagnostic (MP mp,boolean blank_line) {
5224 /* restore proper conditions after tracing */
5225 mp_print_nl(mp, "");
5226 if ( blank_line ) mp_print_ln(mp);
5227 mp->selector=mp->old_setting;
5233 unsigned int old_setting;
5235 @ We will occasionally use |begin_diagnostic| in connection with line-number
5236 printing, as follows. (The parameter |s| is typically |"Path"| or
5237 |"Cycle spec"|, etc.)
5239 @<Basic printing...@>=
5240 void mp_print_diagnostic (MP mp, const char *s, const char *t, boolean nuline) {
5241 mp_begin_diagnostic(mp);
5242 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5243 mp_print(mp, " at line ");
5244 mp_print_int(mp, mp_true_line(mp));
5245 mp_print(mp, t); mp_print_char(mp, ':');
5248 @ The 256 |ASCII_code| characters are grouped into classes by means of
5249 the |char_class| table. Individual class numbers have no semantic
5250 or syntactic significance, except in a few instances defined here.
5251 There's also |max_class|, which can be used as a basis for additional
5252 class numbers in nonstandard extensions of \MP.
5254 @d digit_class 0 /* the class number of \.{0123456789} */
5255 @d period_class 1 /* the class number of `\..' */
5256 @d space_class 2 /* the class number of spaces and nonstandard characters */
5257 @d percent_class 3 /* the class number of `\.\%' */
5258 @d string_class 4 /* the class number of `\."' */
5259 @d right_paren_class 8 /* the class number of `\.)' */
5260 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5261 @d letter_class 9 /* letters and the underline character */
5262 @d left_bracket_class 17 /* `\.[' */
5263 @d right_bracket_class 18 /* `\.]' */
5264 @d invalid_class 20 /* bad character in the input */
5265 @d max_class 20 /* the largest class number */
5268 int char_class[256]; /* the class numbers */
5270 @ If changes are made to accommodate non-ASCII character sets, they should
5271 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5272 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5273 @^system dependencies@>
5275 @<Set initial ...@>=
5276 for (k='0';k<='9';k++)
5277 mp->char_class[k]=digit_class;
5278 mp->char_class['.']=period_class;
5279 mp->char_class[' ']=space_class;
5280 mp->char_class['%']=percent_class;
5281 mp->char_class['"']=string_class;
5282 mp->char_class[',']=5;
5283 mp->char_class[';']=6;
5284 mp->char_class['(']=7;
5285 mp->char_class[')']=right_paren_class;
5286 for (k='A';k<= 'Z';k++ )
5287 mp->char_class[k]=letter_class;
5288 for (k='a';k<='z';k++)
5289 mp->char_class[k]=letter_class;
5290 mp->char_class['_']=letter_class;
5291 mp->char_class['<']=10;
5292 mp->char_class['=']=10;
5293 mp->char_class['>']=10;
5294 mp->char_class[':']=10;
5295 mp->char_class['|']=10;
5296 mp->char_class['`']=11;
5297 mp->char_class['\'']=11;
5298 mp->char_class['+']=12;
5299 mp->char_class['-']=12;
5300 mp->char_class['/']=13;
5301 mp->char_class['*']=13;
5302 mp->char_class['\\']=13;
5303 mp->char_class['!']=14;
5304 mp->char_class['?']=14;
5305 mp->char_class['#']=15;
5306 mp->char_class['&']=15;
5307 mp->char_class['@@']=15;
5308 mp->char_class['$']=15;
5309 mp->char_class['^']=16;
5310 mp->char_class['~']=16;
5311 mp->char_class['[']=left_bracket_class;
5312 mp->char_class[']']=right_bracket_class;
5313 mp->char_class['{']=19;
5314 mp->char_class['}']=19;
5316 mp->char_class[k]=invalid_class;
5317 mp->char_class['\t']=space_class;
5318 mp->char_class['\f']=space_class;
5319 for (k=127;k<=255;k++)
5320 mp->char_class[k]=invalid_class;
5322 @* \[13] The hash table.
5323 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5324 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5325 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5326 table, it is never removed.
5328 The actual sequence of characters forming a symbolic token is
5329 stored in the |str_pool| array together with all the other strings. An
5330 auxiliary array |hash| consists of items with two halfword fields per
5331 word. The first of these, called |next(p)|, points to the next identifier
5332 belonging to the same coalesced list as the identifier corresponding to~|p|;
5333 and the other, called |text(p)|, points to the |str_start| entry for
5334 |p|'s identifier. If position~|p| of the hash table is empty, we have
5335 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5336 hash list, we have |next(p)=0|.
5338 An auxiliary pointer variable called |hash_used| is maintained in such a
5339 way that all locations |p>=hash_used| are nonempty. The global variable
5340 |st_count| tells how many symbolic tokens have been defined, if statistics
5343 The first 256 locations of |hash| are reserved for symbols of length one.
5345 There's a parallel array called |eqtb| that contains the current equivalent
5346 values of each symbolic token. The entries of this array consist of
5347 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5348 piece of information that qualifies the |eq_type|).
5350 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5351 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5352 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5353 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5354 @d hash_base 257 /* hashing actually starts here */
5355 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5358 pointer hash_used; /* allocation pointer for |hash| */
5359 integer st_count; /* total number of known identifiers */
5361 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5362 since they are used in error recovery.
5364 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5365 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5366 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5367 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5368 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5369 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5370 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5371 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5372 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5373 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5374 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5375 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5376 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5377 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5378 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5379 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5380 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5383 two_halves *hash; /* the hash table */
5384 two_halves *eqtb; /* the equivalents */
5386 @ @<Allocate or initialize ...@>=
5387 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5388 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5390 @ @<Dealloc variables@>=
5395 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5396 for (k=2;k<=hash_end;k++) {
5397 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5400 @ @<Initialize table entries...@>=
5401 mp->hash_used=frozen_inaccessible; /* nothing is used */
5403 text(frozen_bad_vardef)=intern("a bad variable");
5404 text(frozen_etex)=intern("etex");
5405 text(frozen_mpx_break)=intern("mpxbreak");
5406 text(frozen_fi)=intern("fi");
5407 text(frozen_end_group)=intern("endgroup");
5408 text(frozen_end_def)=intern("enddef");
5409 text(frozen_end_for)=intern("endfor");
5410 text(frozen_semicolon)=intern(";");
5411 text(frozen_colon)=intern(":");
5412 text(frozen_slash)=intern("/");
5413 text(frozen_left_bracket)=intern("[");
5414 text(frozen_right_delimiter)=intern(")");
5415 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5416 eq_type(frozen_right_delimiter)=right_delimiter;
5418 @ @<Check the ``constant'' values...@>=
5419 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5421 @ Here is the subroutine that searches the hash table for an identifier
5422 that matches a given string of length~|l| appearing in |buffer[j..
5423 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5424 will always be found, and the corresponding hash table address
5428 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5429 integer h; /* hash code */
5430 pointer p; /* index in |hash| array */
5431 pointer k; /* index in |buffer| array */
5433 @<Treat special case of length 1 and |break|@>;
5435 @<Compute the hash code |h|@>;
5436 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5438 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5441 @<Insert a new symbolic token after |p|, then
5442 make |p| point to it and |break|@>;
5449 @ @<Treat special case of length 1...@>=
5450 p=mp->buffer[j]+1; text(p)=p-1; return p;
5453 @ @<Insert a new symbolic...@>=
5458 mp_overflow(mp, "hash size",mp->hash_size);
5459 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5460 decr(mp->hash_used);
5461 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5462 next(p)=mp->hash_used;
5466 for (k=j;k<=j+l-1;k++) {
5467 append_char(mp->buffer[k]);
5469 text(p)=mp_make_string(mp);
5470 mp->str_ref[text(p)]=max_str_ref;
5476 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5477 should be a prime number. The theory of hashing tells us to expect fewer
5478 than two table probes, on the average, when the search is successful.
5479 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5480 @^Vitter, Jeffrey Scott@>
5482 @<Compute the hash code |h|@>=
5484 for (k=j+1;k<=j+l-1;k++){
5485 h=h+h+mp->buffer[k];
5486 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5489 @ @<Search |eqtb| for equivalents equal to |p|@>=
5490 for (q=1;q<=hash_end;q++) {
5491 if ( equiv(q)==p ) {
5492 mp_print_nl(mp, "EQUIV(");
5493 mp_print_int(mp, q);
5494 mp_print_char(mp, ')');
5498 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5499 table, together with their command code (which will be the |eq_type|)
5500 and an operand (which will be the |equiv|). The |primitive| procedure
5501 does this, in a way that no \MP\ user can. The global value |cur_sym|
5502 contains the new |eqtb| pointer after |primitive| has acted.
5505 void mp_primitive (MP mp, const char *ss, halfword c, halfword o) {
5506 pool_pointer k; /* index into |str_pool| */
5507 small_number j; /* index into |buffer| */
5508 small_number l; /* length of the string */
5511 k=mp->str_start[s]; l=str_stop(s)-k;
5512 /* we will move |s| into the (empty) |buffer| */
5513 for (j=0;j<=l-1;j++) {
5514 mp->buffer[j]=mp->str_pool[k+j];
5516 mp->cur_sym=mp_id_lookup(mp, 0,l);
5517 if ( s>=256 ) { /* we don't want to have the string twice */
5518 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5520 eq_type(mp->cur_sym)=c;
5521 equiv(mp->cur_sym)=o;
5525 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5526 by their |eq_type| alone. These primitives are loaded into the hash table
5529 @<Put each of \MP's primitives into the hash table@>=
5530 mp_primitive(mp, "..",path_join,0);
5531 @:.._}{\.{..} primitive@>
5532 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5533 @:[ }{\.{[} primitive@>
5534 mp_primitive(mp, "]",right_bracket,0);
5535 @:] }{\.{]} primitive@>
5536 mp_primitive(mp, "}",right_brace,0);
5537 @:]]}{\.{\char`\}} primitive@>
5538 mp_primitive(mp, "{",left_brace,0);
5539 @:][}{\.{\char`\{} primitive@>
5540 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5541 @:: }{\.{:} primitive@>
5542 mp_primitive(mp, "::",double_colon,0);
5543 @::: }{\.{::} primitive@>
5544 mp_primitive(mp, "||:",bchar_label,0);
5545 @:::: }{\.{\char'174\char'174:} primitive@>
5546 mp_primitive(mp, ":=",assignment,0);
5547 @::=_}{\.{:=} primitive@>
5548 mp_primitive(mp, ",",comma,0);
5549 @:, }{\., primitive@>
5550 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5551 @:; }{\.; primitive@>
5552 mp_primitive(mp, "\\",relax,0);
5553 @:]]\\}{\.{\char`\\} primitive@>
5555 mp_primitive(mp, "addto",add_to_command,0);
5556 @:add_to_}{\&{addto} primitive@>
5557 mp_primitive(mp, "atleast",at_least,0);
5558 @:at_least_}{\&{atleast} primitive@>
5559 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5560 @:begin_group_}{\&{begingroup} primitive@>
5561 mp_primitive(mp, "controls",controls,0);
5562 @:controls_}{\&{controls} primitive@>
5563 mp_primitive(mp, "curl",curl_command,0);
5564 @:curl_}{\&{curl} primitive@>
5565 mp_primitive(mp, "delimiters",delimiters,0);
5566 @:delimiters_}{\&{delimiters} primitive@>
5567 mp_primitive(mp, "endgroup",end_group,0);
5568 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5569 @:endgroup_}{\&{endgroup} primitive@>
5570 mp_primitive(mp, "everyjob",every_job_command,0);
5571 @:every_job_}{\&{everyjob} primitive@>
5572 mp_primitive(mp, "exitif",exit_test,0);
5573 @:exit_if_}{\&{exitif} primitive@>
5574 mp_primitive(mp, "expandafter",expand_after,0);
5575 @:expand_after_}{\&{expandafter} primitive@>
5576 mp_primitive(mp, "interim",interim_command,0);
5577 @:interim_}{\&{interim} primitive@>
5578 mp_primitive(mp, "let",let_command,0);
5579 @:let_}{\&{let} primitive@>
5580 mp_primitive(mp, "newinternal",new_internal,0);
5581 @:new_internal_}{\&{newinternal} primitive@>
5582 mp_primitive(mp, "of",of_token,0);
5583 @:of_}{\&{of} primitive@>
5584 mp_primitive(mp, "randomseed",mp_random_seed,0);
5585 @:mp_random_seed_}{\&{randomseed} primitive@>
5586 mp_primitive(mp, "save",save_command,0);
5587 @:save_}{\&{save} primitive@>
5588 mp_primitive(mp, "scantokens",scan_tokens,0);
5589 @:scan_tokens_}{\&{scantokens} primitive@>
5590 mp_primitive(mp, "shipout",ship_out_command,0);
5591 @:ship_out_}{\&{shipout} primitive@>
5592 mp_primitive(mp, "skipto",skip_to,0);
5593 @:skip_to_}{\&{skipto} primitive@>
5594 mp_primitive(mp, "special",special_command,0);
5595 @:special}{\&{special} primitive@>
5596 mp_primitive(mp, "fontmapfile",special_command,1);
5597 @:fontmapfile}{\&{fontmapfile} primitive@>
5598 mp_primitive(mp, "fontmapline",special_command,2);
5599 @:fontmapline}{\&{fontmapline} primitive@>
5600 mp_primitive(mp, "step",step_token,0);
5601 @:step_}{\&{step} primitive@>
5602 mp_primitive(mp, "str",str_op,0);
5603 @:str_}{\&{str} primitive@>
5604 mp_primitive(mp, "tension",tension,0);
5605 @:tension_}{\&{tension} primitive@>
5606 mp_primitive(mp, "to",to_token,0);
5607 @:to_}{\&{to} primitive@>
5608 mp_primitive(mp, "until",until_token,0);
5609 @:until_}{\&{until} primitive@>
5610 mp_primitive(mp, "within",within_token,0);
5611 @:within_}{\&{within} primitive@>
5612 mp_primitive(mp, "write",write_command,0);
5613 @:write_}{\&{write} primitive@>
5615 @ Each primitive has a corresponding inverse, so that it is possible to
5616 display the cryptic numeric contents of |eqtb| in symbolic form.
5617 Every call of |primitive| in this program is therefore accompanied by some
5618 straightforward code that forms part of the |print_cmd_mod| routine
5621 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5622 case add_to_command:mp_print(mp, "addto"); break;
5623 case assignment:mp_print(mp, ":="); break;
5624 case at_least:mp_print(mp, "atleast"); break;
5625 case bchar_label:mp_print(mp, "||:"); break;
5626 case begin_group:mp_print(mp, "begingroup"); break;
5627 case colon:mp_print(mp, ":"); break;
5628 case comma:mp_print(mp, ","); break;
5629 case controls:mp_print(mp, "controls"); break;
5630 case curl_command:mp_print(mp, "curl"); break;
5631 case delimiters:mp_print(mp, "delimiters"); break;
5632 case double_colon:mp_print(mp, "::"); break;
5633 case end_group:mp_print(mp, "endgroup"); break;
5634 case every_job_command:mp_print(mp, "everyjob"); break;
5635 case exit_test:mp_print(mp, "exitif"); break;
5636 case expand_after:mp_print(mp, "expandafter"); break;
5637 case interim_command:mp_print(mp, "interim"); break;
5638 case left_brace:mp_print(mp, "{"); break;
5639 case left_bracket:mp_print(mp, "["); break;
5640 case let_command:mp_print(mp, "let"); break;
5641 case new_internal:mp_print(mp, "newinternal"); break;
5642 case of_token:mp_print(mp, "of"); break;
5643 case path_join:mp_print(mp, ".."); break;
5644 case mp_random_seed:mp_print(mp, "randomseed"); break;
5645 case relax:mp_print_char(mp, '\\'); break;
5646 case right_brace:mp_print(mp, "}"); break;
5647 case right_bracket:mp_print(mp, "]"); break;
5648 case save_command:mp_print(mp, "save"); break;
5649 case scan_tokens:mp_print(mp, "scantokens"); break;
5650 case semicolon:mp_print(mp, ";"); break;
5651 case ship_out_command:mp_print(mp, "shipout"); break;
5652 case skip_to:mp_print(mp, "skipto"); break;
5653 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5654 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5655 mp_print(mp, "special"); break;
5656 case step_token:mp_print(mp, "step"); break;
5657 case str_op:mp_print(mp, "str"); break;
5658 case tension:mp_print(mp, "tension"); break;
5659 case to_token:mp_print(mp, "to"); break;
5660 case until_token:mp_print(mp, "until"); break;
5661 case within_token:mp_print(mp, "within"); break;
5662 case write_command:mp_print(mp, "write"); break;
5664 @ We will deal with the other primitives later, at some point in the program
5665 where their |eq_type| and |equiv| values are more meaningful. For example,
5666 the primitives for macro definitions will be loaded when we consider the
5667 routines that define macros.
5668 It is easy to find where each particular
5669 primitive was treated by looking in the index at the end; for example, the
5670 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5672 @* \[14] Token lists.
5673 A \MP\ token is either symbolic or numeric or a string, or it denotes
5674 a macro parameter or capsule; so there are five corresponding ways to encode it
5676 internally: (1)~A symbolic token whose hash code is~|p|
5677 is represented by the number |p|, in the |info| field of a single-word
5678 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5679 represented in a two-word node of~|mem|; the |type| field is |known|,
5680 the |name_type| field is |token|, and the |value| field holds~|v|.
5681 The fact that this token appears in a two-word node rather than a
5682 one-word node is, of course, clear from the node address.
5683 (3)~A string token is also represented in a two-word node; the |type|
5684 field is |mp_string_type|, the |name_type| field is |token|, and the
5685 |value| field holds the corresponding |str_number|. (4)~Capsules have
5686 |name_type=capsule|, and their |type| and |value| fields represent
5687 arbitrary values (in ways to be explained later). (5)~Macro parameters
5688 are like symbolic tokens in that they appear in |info| fields of
5689 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5690 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5691 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5692 Actual values of these parameters are kept in a separate stack, as we will
5693 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5694 of course, chosen so that there will be no confusion between symbolic
5695 tokens and parameters of various types.
5698 the `\\{type}' field of a node has nothing to do with ``type'' in a
5699 printer's sense. It's curious that the same word is used in such different ways.
5701 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5702 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5703 @d token_node_size 2 /* the number of words in a large token node */
5704 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5705 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5706 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5707 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5708 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5710 @<Check the ``constant''...@>=
5711 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5713 @ We have set aside a two word node beginning at |null| so that we can have
5714 |value(null)=0|. We will make use of this coincidence later.
5716 @<Initialize table entries...@>=
5717 link(null)=null; value(null)=0;
5719 @ A numeric token is created by the following trivial routine.
5722 pointer mp_new_num_tok (MP mp,scaled v) {
5723 pointer p; /* the new node */
5724 p=mp_get_node(mp, token_node_size); value(p)=v;
5725 type(p)=mp_known; name_type(p)=mp_token;
5729 @ A token list is a singly linked list of nodes in |mem|, where
5730 each node contains a token and a link. Here's a subroutine that gets rid
5731 of a token list when it is no longer needed.
5733 @c void mp_flush_token_list (MP mp,pointer p) {
5734 pointer q; /* the node being recycled */
5737 if ( q>=mp->hi_mem_min ) {
5741 case mp_vacuous: case mp_boolean_type: case mp_known:
5743 case mp_string_type:
5744 delete_str_ref(value(q));
5746 case unknown_types: case mp_pen_type: case mp_path_type:
5747 case mp_picture_type: case mp_pair_type: case mp_color_type:
5748 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5749 case mp_proto_dependent: case mp_independent:
5750 mp_recycle_value(mp,q);
5752 default: mp_confusion(mp, "token");
5753 @:this can't happen token}{\quad token@>
5755 mp_free_node(mp, q,token_node_size);
5760 @ The procedure |show_token_list|, which prints a symbolic form of
5761 the token list that starts at a given node |p|, illustrates these
5762 conventions. The token list being displayed should not begin with a reference
5763 count. However, the procedure is intended to be fairly robust, so that if the
5764 memory links are awry or if |p| is not really a pointer to a token list,
5765 almost nothing catastrophic can happen.
5767 An additional parameter |q| is also given; this parameter is either null
5768 or it points to a node in the token list where a certain magic computation
5769 takes place that will be explained later. (Basically, |q| is non-null when
5770 we are printing the two-line context information at the time of an error
5771 message; |q| marks the place corresponding to where the second line
5774 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5775 of printing exceeds a given limit~|l|; the length of printing upon entry is
5776 assumed to be a given amount called |null_tally|. (Note that
5777 |show_token_list| sometimes uses itself recursively to print
5778 variable names within a capsule.)
5781 Unusual entries are printed in the form of all-caps tokens
5782 preceded by a space, e.g., `\.{\char`\ BAD}'.
5784 @<Declare the procedure called |show_token_list|@>=
5785 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5786 integer null_tally) ;
5789 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5790 integer null_tally) {
5791 small_number class,c; /* the |char_class| of previous and new tokens */
5792 integer r,v; /* temporary registers */
5793 class=percent_class;
5794 mp->tally=null_tally;
5795 while ( (p!=null) && (mp->tally<l) ) {
5797 @<Do magic computation@>;
5798 @<Display token |p| and set |c| to its class;
5799 but |return| if there are problems@>;
5803 mp_print(mp, " ETC.");
5808 @ @<Display token |p| and set |c| to its class...@>=
5809 c=letter_class; /* the default */
5810 if ( (p<0)||(p>mp->mem_end) ) {
5811 mp_print(mp, " CLOBBERED"); return;
5814 if ( p<mp->hi_mem_min ) {
5815 @<Display two-word token@>;
5818 if ( r>=expr_base ) {
5819 @<Display a parameter token@>;
5823 @<Display a collective subscript@>
5825 mp_print(mp, " IMPOSSIBLE");
5830 if ( (r<0)||(r>mp->max_str_ptr) ) {
5831 mp_print(mp, " NONEXISTENT");
5834 @<Print string |r| as a symbolic token
5835 and set |c| to its class@>;
5841 @ @<Display two-word token@>=
5842 if ( name_type(p)==mp_token ) {
5843 if ( type(p)==mp_known ) {
5844 @<Display a numeric token@>;
5845 } else if ( type(p)!=mp_string_type ) {
5846 mp_print(mp, " BAD");
5849 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5852 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5853 mp_print(mp, " BAD");
5855 mp_print_capsule(mp,p); c=right_paren_class;
5858 @ @<Display a numeric token@>=
5859 if ( class==digit_class )
5860 mp_print_char(mp, ' ');
5863 if ( class==left_bracket_class )
5864 mp_print_char(mp, ' ');
5865 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5866 c=right_bracket_class;
5868 mp_print_scaled(mp, v); c=digit_class;
5872 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5873 But we will see later (in the |print_variable_name| routine) that
5874 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5876 @<Display a collective subscript@>=
5878 if ( class==left_bracket_class )
5879 mp_print_char(mp, ' ');
5880 mp_print(mp, "[]"); c=right_bracket_class;
5883 @ @<Display a parameter token@>=
5885 if ( r<suffix_base ) {
5886 mp_print(mp, "(EXPR"); r=r-(expr_base);
5888 } else if ( r<text_base ) {
5889 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5892 mp_print(mp, "(TEXT"); r=r-(text_base);
5895 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5899 @ @<Print string |r| as a symbolic token...@>=
5901 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5904 case letter_class:mp_print_char(mp, '.'); break;
5905 case isolated_classes: break;
5906 default: mp_print_char(mp, ' '); break;
5909 mp_print_str(mp, r);
5913 void mp_print_capsule (MP mp, pointer p);
5915 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5916 void mp_print_capsule (MP mp, pointer p) {
5917 mp_print_char(mp, '('); mp_print_exp(mp,p,0); mp_print_char(mp, ')');
5920 @ Macro definitions are kept in \MP's memory in the form of token lists
5921 that have a few extra one-word nodes at the beginning.
5923 The first node contains a reference count that is used to tell when the
5924 list is no longer needed. To emphasize the fact that a reference count is
5925 present, we shall refer to the |info| field of this special node as the
5927 @^reference counts@>
5929 The next node or nodes after the reference count serve to describe the
5930 formal parameters. They consist of zero or more parameter tokens followed
5931 by a code for the type of macro.
5934 /* reference count preceding a macro definition or picture header */
5935 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5936 @d general_macro 0 /* preface to a macro defined with a parameter list */
5937 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5938 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5939 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5940 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5941 @d of_macro 5 /* preface to a macro with
5942 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5943 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5944 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5947 void mp_delete_mac_ref (MP mp,pointer p) {
5948 /* |p| points to the reference count of a macro list that is
5949 losing one reference */
5950 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5951 else decr(ref_count(p));
5954 @ The following subroutine displays a macro, given a pointer to its
5958 @<Declare the procedure called |print_cmd_mod|@>
5959 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5960 pointer r; /* temporary storage */
5961 p=link(p); /* bypass the reference count */
5962 while ( info(p)>text_macro ){
5963 r=link(p); link(p)=null;
5964 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5965 if ( l>0 ) l=l-mp->tally; else return;
5966 } /* control printing of `\.{ETC.}' */
5970 case general_macro:mp_print(mp, "->"); break;
5972 case primary_macro: case secondary_macro: case tertiary_macro:
5973 mp_print_char(mp, '<');
5974 mp_print_cmd_mod(mp, param_type,info(p));
5975 mp_print(mp, ">->");
5977 case expr_macro:mp_print(mp, "<expr>->"); break;
5978 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5979 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5980 case text_macro:mp_print(mp, "<text>->"); break;
5981 } /* there are no other cases */
5982 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5985 @* \[15] Data structures for variables.
5986 The variables of \MP\ programs can be simple, like `\.x', or they can
5987 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5988 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5989 example, `\.{boolean} \.{x[]a.b}'. It's time for us to study how such
5990 things are represented inside of the computer.
5992 Each variable value occupies two consecutive words, either in a two-word
5993 node called a value node, or as a two-word subfield of a larger node. One
5994 of those two words is called the |value| field; it is an integer,
5995 containing either a |scaled| numeric value or the representation of some
5996 other type of quantity. (It might also be subdivided into halfwords, in
5997 which case it is referred to by other names instead of |value|.) The other
5998 word is broken into subfields called |type|, |name_type|, and |link|. The
5999 |type| field is a quarterword that specifies the variable's type, and
6000 |name_type| is a quarterword from which \MP\ can reconstruct the
6001 variable's name (sometimes by using the |link| field as well). Thus, only
6002 1.25 words are actually devoted to the value itself; the other
6003 three-quarters of a word are overhead, but they aren't wasted because they
6004 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6006 In this section we shall be concerned only with the structural aspects of
6007 variables, not their values. Later parts of the program will change the
6008 |type| and |value| fields, but we shall treat those fields as black boxes
6009 whose contents should not be touched.
6011 However, if the |type| field is |mp_structured|, there is no |value| field,
6012 and the second word is broken into two pointer fields called |attr_head|
6013 and |subscr_head|. Those fields point to additional nodes that
6014 contain structural information, as we shall see.
6016 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6017 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6018 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6019 @d value_node_size 2 /* the number of words in a value node */
6021 @ An attribute node is three words long. Two of these words contain |type|
6022 and |value| fields as described above, and the third word contains
6023 additional information: There is an |attr_loc| field, which contains the
6024 hash address of the token that names this attribute; and there's also a
6025 |parent| field, which points to the value node of |mp_structured| type at the
6026 next higher level (i.e., at the level to which this attribute is
6027 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6028 |link| field points to the next attribute with the same parent; these are
6029 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6030 final attribute node links to the constant |end_attr|, whose |attr_loc|
6031 field is greater than any legal hash address. The |attr_head| in the
6032 parent points to a node whose |name_type| is |mp_structured_root|; this
6033 node represents the null attribute, i.e., the variable that is relevant
6034 when no attributes are attached to the parent. The |attr_head| node
6035 has the fields of either
6036 a value node, a subscript node, or an attribute node, depending on what
6037 the parent would be if it were not structured; but the subscript and
6038 attribute fields are ignored, so it effectively contains only the data of
6039 a value node. The |link| field in this special node points to an attribute
6040 node whose |attr_loc| field is zero; the latter node represents a collective
6041 subscript `\.{[]}' attached to the parent, and its |link| field points to
6042 the first non-special attribute node (or to |end_attr| if there are none).
6044 A subscript node likewise occupies three words, with |type| and |value| fields
6045 plus extra information; its |name_type| is |subscr|. In this case the
6046 third word is called the |subscript| field, which is a |scaled| integer.
6047 The |link| field points to the subscript node with the next larger
6048 subscript, if any; otherwise the |link| points to the attribute node
6049 for collective subscripts at this level. We have seen that the latter node
6050 contains an upward pointer, so that the parent can be deduced.
6052 The |name_type| in a parent-less value node is |root|, and the |link|
6053 is the hash address of the token that names this value.
6055 In other words, variables have a hierarchical structure that includes
6056 enough threads running around so that the program is able to move easily
6057 between siblings, parents, and children. An example should be helpful:
6058 (The reader is advised to draw a picture while reading the following
6059 description, since that will help to firm up the ideas.)
6060 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6061 and `\.{x20b}' have been mentioned in a user's program, where
6062 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6063 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6064 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6065 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6066 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6067 node and |r| to a subscript node. (Are you still following this? Use
6068 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6069 |type(q)| and |value(q)|; furthermore
6070 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6071 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6072 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6073 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6074 |qq| is a three-word ``attribute-as-value'' node with |type(qq)=numeric_type|
6075 (assuming that \.{x5} is numeric, because |qq| represents `\.{x[]}'
6076 with no further attributes), |name_type(qq)=structured_root|,
6077 |attr_loc(qq)=0|, |parent(qq)=p|, and
6078 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6079 an attribute node representing `\.{x[][]}', which has never yet
6080 occurred; its |type| field is |undefined|, and its |value| field is
6081 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6082 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6083 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6084 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6085 (Maybe colored lines will help untangle your picture.)
6086 Node |r| is a subscript node with |type| and |value|
6087 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6088 and |link(r)=r1| is another subscript node. To complete the picture,
6089 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6090 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6091 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6092 and we finish things off with three more nodes
6093 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6094 with a larger sheet of paper.) The value of variable \.{x20b}
6095 appears in node~|qqq2|, as you can well imagine.
6097 If the example in the previous paragraph doesn't make things crystal
6098 clear, a glance at some of the simpler subroutines below will reveal how
6099 things work out in practice.
6101 The only really unusual thing about these conventions is the use of
6102 collective subscript attributes. The idea is to avoid repeating a lot of
6103 type information when many elements of an array are identical macros
6104 (for which distinct values need not be stored) or when they don't have
6105 all of the possible attributes. Branches of the structure below collective
6106 subscript attributes do not carry actual values except for macro identifiers;
6107 branches of the structure below subscript nodes do not carry significant
6108 information in their collective subscript attributes.
6110 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6111 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6112 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6113 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6114 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6115 @d attr_node_size 3 /* the number of words in an attribute node */
6116 @d subscr_node_size 3 /* the number of words in a subscript node */
6117 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6119 @<Initialize table...@>=
6120 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6122 @ Variables of type \&{pair} will have values that point to four-word
6123 nodes containing two numeric values. The first of these values has
6124 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6125 the |link| in the first points back to the node whose |value| points
6126 to this four-word node.
6128 Variables of type \&{transform} are similar, but in this case their
6129 |value| points to a 12-word node containing six values, identified by
6130 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6131 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6132 Finally, variables of type \&{color} have 3~values in 6~words
6133 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6135 When an entire structured variable is saved, the |root| indication
6136 is temporarily replaced by |saved_root|.
6138 Some variables have no name; they just are used for temporary storage
6139 while expressions are being evaluated. We call them {\sl capsules}.
6141 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6142 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6143 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6144 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6145 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6146 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6147 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6148 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6149 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6150 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6151 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6152 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6153 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6154 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6156 @d pair_node_size 4 /* the number of words in a pair node */
6157 @d transform_node_size 12 /* the number of words in a transform node */
6158 @d color_node_size 6 /* the number of words in a color node */
6159 @d cmykcolor_node_size 8 /* the number of words in a color node */
6162 small_number big_node_size[mp_pair_type+1];
6163 small_number sector0[mp_pair_type+1];
6164 small_number sector_offset[mp_black_part_sector+1];
6166 @ The |sector0| array gives for each big node type, |name_type| values
6167 for its first subfield; the |sector_offset| array gives for each
6168 |name_type| value, the offset from the first subfield in words;
6169 and the |big_node_size| array gives the size in words for each type of
6173 mp->big_node_size[mp_transform_type]=transform_node_size;
6174 mp->big_node_size[mp_pair_type]=pair_node_size;
6175 mp->big_node_size[mp_color_type]=color_node_size;
6176 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6177 mp->sector0[mp_transform_type]=mp_x_part_sector;
6178 mp->sector0[mp_pair_type]=mp_x_part_sector;
6179 mp->sector0[mp_color_type]=mp_red_part_sector;
6180 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6181 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6182 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6184 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6185 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6187 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6188 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6191 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6192 procedure call |init_big_node(p)| will allocate a pair or transform node
6193 for~|p|. The individual parts of such nodes are initially of type
6197 void mp_init_big_node (MP mp,pointer p) {
6198 pointer q; /* the new node */
6199 small_number s; /* its size */
6200 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6203 @<Make variable |q+s| newly independent@>;
6204 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6207 link(q)=p; value(p)=q;
6210 @ The |id_transform| function creates a capsule for the
6211 identity transformation.
6214 pointer mp_id_transform (MP mp) {
6215 pointer p,q,r; /* list manipulation registers */
6216 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6217 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6218 r=q+transform_node_size;
6221 type(r)=mp_known; value(r)=0;
6223 value(xx_part_loc(q))=unity;
6224 value(yy_part_loc(q))=unity;
6228 @ Tokens are of type |tag_token| when they first appear, but they point
6229 to |null| until they are first used as the root of a variable.
6230 The following subroutine establishes the root node on such grand occasions.
6233 void mp_new_root (MP mp,pointer x) {
6234 pointer p; /* the new node */
6235 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6236 link(p)=x; equiv(x)=p;
6239 @ These conventions for variable representation are illustrated by the
6240 |print_variable_name| routine, which displays the full name of a
6241 variable given only a pointer to its two-word value packet.
6244 void mp_print_variable_name (MP mp, pointer p);
6247 void mp_print_variable_name (MP mp, pointer p) {
6248 pointer q; /* a token list that will name the variable's suffix */
6249 pointer r; /* temporary for token list creation */
6250 while ( name_type(p)>=mp_x_part_sector ) {
6251 @<Preface the output with a part specifier; |return| in the
6252 case of a capsule@>;
6255 while ( name_type(p)>mp_saved_root ) {
6256 @<Ascend one level, pushing a token onto list |q|
6257 and replacing |p| by its parent@>;
6259 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6260 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6262 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6263 mp_flush_token_list(mp, r);
6266 @ @<Ascend one level, pushing a token onto list |q|...@>=
6268 if ( name_type(p)==mp_subscr ) {
6269 r=mp_new_num_tok(mp, subscript(p));
6272 } while (name_type(p)!=mp_attr);
6273 } else if ( name_type(p)==mp_structured_root ) {
6274 p=link(p); goto FOUND;
6276 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6277 @:this can't happen var}{\quad var@>
6278 r=mp_get_avail(mp); info(r)=attr_loc(p);
6285 @ @<Preface the output with a part specifier...@>=
6286 { switch (name_type(p)) {
6287 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6288 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6289 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6290 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6291 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6292 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6293 case mp_red_part_sector: mp_print(mp, "red"); break;
6294 case mp_green_part_sector: mp_print(mp, "green"); break;
6295 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6296 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6297 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6298 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6299 case mp_black_part_sector: mp_print(mp, "black"); break;
6300 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6302 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6305 } /* there are no other cases */
6306 mp_print(mp, "part ");
6307 p=link(p-mp->sector_offset[name_type(p)]);
6310 @ The |interesting| function returns |true| if a given variable is not
6311 in a capsule, or if the user wants to trace capsules.
6314 boolean mp_interesting (MP mp,pointer p) {
6315 small_number t; /* a |name_type| */
6316 if ( mp->internal[mp_tracing_capsules]>0 ) {
6320 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6321 t=name_type(link(p-mp->sector_offset[t]));
6322 return (t!=mp_capsule);
6326 @ Now here is a subroutine that converts an unstructured type into an
6327 equivalent structured type, by inserting a |mp_structured| node that is
6328 capable of growing. This operation is done only when |name_type(p)=root|,
6329 |subscr|, or |attr|.
6331 The procedure returns a pointer to the new node that has taken node~|p|'s
6332 place in the structure. Node~|p| itself does not move, nor are its
6333 |value| or |type| fields changed in any way.
6336 pointer mp_new_structure (MP mp,pointer p) {
6337 pointer q,r=0; /* list manipulation registers */
6338 switch (name_type(p)) {
6340 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6343 @<Link a new subscript node |r| in place of node |p|@>;
6346 @<Link a new attribute node |r| in place of node |p|@>;
6349 mp_confusion(mp, "struct");
6350 @:this can't happen struct}{\quad struct@>
6353 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6354 attr_head(r)=p; name_type(p)=mp_structured_root;
6355 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6356 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6357 attr_loc(q)=collective_subscript;
6361 @ @<Link a new subscript node |r| in place of node |p|@>=
6366 } while (name_type(q)!=mp_attr);
6367 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6371 r=mp_get_node(mp, subscr_node_size);
6372 link(q)=r; subscript(r)=subscript(p);
6375 @ If the attribute is |collective_subscript|, there are two pointers to
6376 node~|p|, so we must change both of them.
6378 @<Link a new attribute node |r| in place of node |p|@>=
6380 q=parent(p); r=attr_head(q);
6384 r=mp_get_node(mp, attr_node_size); link(q)=r;
6385 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6386 if ( attr_loc(p)==collective_subscript ) {
6387 q=subscr_head_loc(parent(p));
6388 while ( link(q)!=p ) q=link(q);
6393 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6394 list of suffixes; it returns a pointer to the corresponding two-word
6395 value. For example, if |t| points to token \.x followed by a numeric
6396 token containing the value~7, |find_variable| finds where the value of
6397 \.{x7} is stored in memory. This may seem a simple task, and it
6398 usually is, except when \.{x7} has never been referenced before.
6399 Indeed, \.x may never have even been subscripted before; complexities
6400 arise with respect to updating the collective subscript information.
6402 If a macro type is detected anywhere along path~|t|, or if the first
6403 item on |t| isn't a |tag_token|, the value |null| is returned.
6404 Otherwise |p| will be a non-null pointer to a node such that
6405 |undefined<type(p)<mp_structured|.
6407 @d abort_find { return null; }
6410 pointer mp_find_variable (MP mp,pointer t) {
6411 pointer p,q,r,s; /* nodes in the ``value'' line */
6412 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6413 integer n; /* subscript or attribute */
6414 memory_word save_word; /* temporary storage for a word of |mem| */
6416 p=info(t); t=link(t);
6417 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6418 if ( equiv(p)==null ) mp_new_root(mp, p);
6421 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6422 if ( t<mp->hi_mem_min ) {
6423 @<Descend one level for the subscript |value(t)|@>
6425 @<Descend one level for the attribute |info(t)|@>;
6429 if ( type(pp)>=mp_structured ) {
6430 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6432 if ( type(p)==mp_structured ) p=attr_head(p);
6433 if ( type(p)==undefined ) {
6434 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6435 type(p)=type(pp); value(p)=null;
6440 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6441 |pp|~stays in the collective line while |p|~goes through actual subscript
6444 @<Make sure that both nodes |p| and |pp|...@>=
6445 if ( type(pp)!=mp_structured ) {
6446 if ( type(pp)>mp_structured ) abort_find;
6447 ss=mp_new_structure(mp, pp);
6450 }; /* now |type(pp)=mp_structured| */
6451 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6452 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6454 @ We want this part of the program to be reasonably fast, in case there are
6456 lots of subscripts at the same level of the data structure. Therefore
6457 we store an ``infinite'' value in the word that appears at the end of the
6458 subscript list, even though that word isn't part of a subscript node.
6460 @<Descend one level for the subscript |value(t)|@>=
6463 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6464 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6465 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6468 } while (n>subscript(s));
6469 if ( n==subscript(s) ) {
6472 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6473 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6475 mp->mem[subscript_loc(q)]=save_word;
6478 @ @<Descend one level for the attribute |info(t)|@>=
6484 } while (n>attr_loc(ss));
6485 if ( n<attr_loc(ss) ) {
6486 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6487 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6488 parent(qq)=pp; ss=qq;
6493 pp=ss; s=attr_head(p);
6496 } while (n>attr_loc(s));
6497 if ( n==attr_loc(s) ) {
6500 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6501 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6507 @ Variables lose their former values when they appear in a type declaration,
6508 or when they are defined to be macros or \&{let} equal to something else.
6509 A subroutine will be defined later that recycles the storage associated
6510 with any particular |type| or |value|; our goal now is to study a higher
6511 level process called |flush_variable|, which selectively frees parts of a
6514 This routine has some complexity because of examples such as
6515 `\hbox{\tt numeric x[]a[]b}'
6516 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6517 `\hbox{\tt vardef x[]a[]=...}'
6518 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6519 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6520 to handle such examples is to use recursion; so that's what we~do.
6523 Parameter |p| points to the root information of the variable;
6524 parameter |t| points to a list of one-word nodes that represent
6525 suffixes, with |info=collective_subscript| for subscripts.
6528 @<Declare subroutines for printing expressions@>
6529 @<Declare basic dependency-list subroutines@>
6530 @<Declare the recycling subroutines@>
6531 void mp_flush_cur_exp (MP mp,scaled v) ;
6532 @<Declare the procedure called |flush_below_variable|@>
6535 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6536 pointer q,r; /* list manipulation */
6537 halfword n; /* attribute to match */
6539 if ( type(p)!=mp_structured ) return;
6540 n=info(t); t=link(t);
6541 if ( n==collective_subscript ) {
6542 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6543 while ( name_type(q)==mp_subscr ){
6544 mp_flush_variable(mp, q,t,discard_suffixes);
6546 if ( type(q)==mp_structured ) r=q;
6547 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6557 } while (attr_loc(p)<n);
6558 if ( attr_loc(p)!=n ) return;
6560 if ( discard_suffixes ) {
6561 mp_flush_below_variable(mp, p);
6563 if ( type(p)==mp_structured ) p=attr_head(p);
6564 mp_recycle_value(mp, p);
6568 @ The next procedure is simpler; it wipes out everything but |p| itself,
6569 which becomes undefined.
6571 @<Declare the procedure called |flush_below_variable|@>=
6572 void mp_flush_below_variable (MP mp, pointer p);
6575 void mp_flush_below_variable (MP mp,pointer p) {
6576 pointer q,r; /* list manipulation registers */
6577 if ( type(p)!=mp_structured ) {
6578 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6581 while ( name_type(q)==mp_subscr ) {
6582 mp_flush_below_variable(mp, q); r=q; q=link(q);
6583 mp_free_node(mp, r,subscr_node_size);
6585 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6586 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6587 else mp_free_node(mp, r,subscr_node_size);
6588 /* we assume that |subscr_node_size=attr_node_size| */
6590 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6591 } while (q!=end_attr);
6596 @ Just before assigning a new value to a variable, we will recycle the
6597 old value and make the old value undefined. The |und_type| routine
6598 determines what type of undefined value should be given, based on
6599 the current type before recycling.
6602 small_number mp_und_type (MP mp,pointer p) {
6604 case undefined: case mp_vacuous:
6606 case mp_boolean_type: case mp_unknown_boolean:
6607 return mp_unknown_boolean;
6608 case mp_string_type: case mp_unknown_string:
6609 return mp_unknown_string;
6610 case mp_pen_type: case mp_unknown_pen:
6611 return mp_unknown_pen;
6612 case mp_path_type: case mp_unknown_path:
6613 return mp_unknown_path;
6614 case mp_picture_type: case mp_unknown_picture:
6615 return mp_unknown_picture;
6616 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6617 case mp_pair_type: case mp_numeric_type:
6619 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6620 return mp_numeric_type;
6621 } /* there are no other cases */
6625 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6626 of a symbolic token. It must remove any variable structure or macro
6627 definition that is currently attached to that symbol. If the |saving|
6628 parameter is true, a subsidiary structure is saved instead of destroyed.
6631 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6632 pointer q; /* |equiv(p)| */
6634 switch (eq_type(p) % outer_tag) {
6636 case secondary_primary_macro:
6637 case tertiary_secondary_macro:
6638 case expression_tertiary_macro:
6639 if ( ! saving ) mp_delete_mac_ref(mp, q);
6644 name_type(q)=mp_saved_root;
6646 mp_flush_below_variable(mp, q);
6647 mp_free_node(mp,q,value_node_size);
6654 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6657 @* \[16] Saving and restoring equivalents.
6658 The nested structure given by \&{begingroup} and \&{endgroup}
6659 allows |eqtb| entries to be saved and restored, so that temporary changes
6660 can be made without difficulty. When the user requests a current value to
6661 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6662 \&{endgroup} ultimately causes the old values to be removed from the save
6663 stack and put back in their former places.
6665 The save stack is a linked list containing three kinds of entries,
6666 distinguished by their |info| fields. If |p| points to a saved item,
6670 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6671 such an item to the save stack and each \&{endgroup} cuts back the stack
6672 until the most recent such entry has been removed.
6675 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6676 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6680 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6681 integer to be restored to internal parameter number~|q|. Such entries
6682 are generated by \&{interim} commands.
6685 The global variable |save_ptr| points to the top item on the save stack.
6687 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6688 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6689 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6690 link((A))=mp->save_ptr; mp->save_ptr=(A);
6694 pointer save_ptr; /* the most recently saved item */
6696 @ @<Set init...@>=mp->save_ptr=null;
6698 @ The |save_variable| routine is given a hash address |q|; it salts this
6699 address in the save stack, together with its current equivalent,
6700 then makes token~|q| behave as though it were brand new.
6702 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6703 things from the stack when the program is not inside a group, so there's
6704 no point in wasting the space.
6706 @c void mp_save_variable (MP mp,pointer q) {
6707 pointer p; /* temporary register */
6708 if ( mp->save_ptr!=null ){
6709 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6710 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6712 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6715 @ Similarly, |save_internal| is given the location |q| of an internal
6716 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6719 @c void mp_save_internal (MP mp,halfword q) {
6720 pointer p; /* new item for the save stack */
6721 if ( mp->save_ptr!=null ){
6722 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6723 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6727 @ At the end of a group, the |unsave| routine restores all of the saved
6728 equivalents in reverse order. This routine will be called only when there
6729 is at least one boundary item on the save stack.
6732 void mp_unsave (MP mp) {
6733 pointer q; /* index to saved item */
6734 pointer p; /* temporary register */
6735 while ( info(mp->save_ptr)!=0 ) {
6736 q=info(mp->save_ptr);
6738 if ( mp->internal[mp_tracing_restores]>0 ) {
6739 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6740 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6741 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6742 mp_end_diagnostic(mp, false);
6744 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6746 if ( mp->internal[mp_tracing_restores]>0 ) {
6747 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6748 mp_print_text(q); mp_print_char(mp, '}');
6749 mp_end_diagnostic(mp, false);
6751 mp_clear_symbol(mp, q,false);
6752 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6753 if ( eq_type(q) % outer_tag==tag_token ) {
6755 if ( p!=null ) name_type(p)=mp_root;
6758 p=link(mp->save_ptr);
6759 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6761 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6764 @* \[17] Data structures for paths.
6765 When a \MP\ user specifies a path, \MP\ will create a list of knots
6766 and control points for the associated cubic spline curves. If the
6767 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6768 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6769 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6770 @:Bezier}{B\'ezier, Pierre Etienne@>
6771 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6772 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6775 There is a 8-word node for each knot $z_k$, containing one word of
6776 control information and six words for the |x| and |y| coordinates of
6777 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6778 |left_type| and |right_type| fields, which each occupy a quarter of
6779 the first word in the node; they specify properties of the curve as it
6780 enters and leaves the knot. There's also a halfword |link| field,
6781 which points to the following knot, and a final supplementary word (of
6782 which only a quarter is used).
6784 If the path is a closed contour, knots 0 and |n| are identical;
6785 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6786 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6787 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6788 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6790 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6791 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6792 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6793 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6794 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6795 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6796 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6797 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6798 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6799 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6800 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6801 @d left_coord(A) mp->mem[(A)+2].sc
6802 /* coordinate of previous control point given |x_loc| or |y_loc| */
6803 @d right_coord(A) mp->mem[(A)+4].sc
6804 /* coordinate of next control point given |x_loc| or |y_loc| */
6805 @d knot_node_size 8 /* number of words in a knot node */
6809 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6810 mp_explicit, /* |left_type| or |right_type| when control points are known */
6811 mp_given, /* |left_type| or |right_type| when a direction is given */
6812 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6813 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6817 @ Before the B\'ezier control points have been calculated, the memory
6818 space they will ultimately occupy is taken up by information that can be
6819 used to compute them. There are four cases:
6822 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6823 the knot in the same direction it entered; \MP\ will figure out a
6827 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6828 knot in a direction depending on the angle at which it enters the next
6829 knot and on the curl parameter stored in |right_curl|.
6832 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6833 knot in a nonzero direction stored as an |angle| in |right_given|.
6836 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6837 point for leaving this knot has already been computed; it is in the
6838 |right_x| and |right_y| fields.
6841 The rules for |left_type| are similar, but they refer to the curve entering
6842 the knot, and to \\{left} fields instead of \\{right} fields.
6844 Non-|explicit| control points will be chosen based on ``tension'' parameters
6845 in the |left_tension| and |right_tension| fields. The
6846 `\&{atleast}' option is represented by negative tension values.
6847 @:at_least_}{\&{atleast} primitive@>
6849 For example, the \MP\ path specification
6850 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6852 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6854 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6855 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6856 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6858 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6859 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6860 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6861 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6862 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6863 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6864 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6865 Of course, this example is more complicated than anything a normal user
6868 These types must satisfy certain restrictions because of the form of \MP's
6870 (i)~|open| type never appears in the same node together with |endpoint|,
6872 (ii)~The |right_type| of a node is |explicit| if and only if the
6873 |left_type| of the following node is |explicit|.
6874 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6876 @d left_curl left_x /* curl information when entering this knot */
6877 @d left_given left_x /* given direction when entering this knot */
6878 @d left_tension left_y /* tension information when entering this knot */
6879 @d right_curl right_x /* curl information when leaving this knot */
6880 @d right_given right_x /* given direction when leaving this knot */
6881 @d right_tension right_y /* tension information when leaving this knot */
6883 @ Knots can be user-supplied, or they can be created by program code,
6884 like the |split_cubic| function, or |copy_path|. The distinction is
6885 needed for the cleanup routine that runs after |split_cubic|, because
6886 it should only delete knots it has previously inserted, and never
6887 anything that was user-supplied. In order to be able to differentiate
6888 one knot from another, we will set |originator(p):=mp_metapost_user| when
6889 it appeared in the actual metapost program, and
6890 |originator(p):=mp_program_code| in all other cases.
6892 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6896 mp_program_code=0, /* not created by a user */
6897 mp_metapost_user /* created by a user */
6900 @ Here is a routine that prints a given knot list
6901 in symbolic form. It illustrates the conventions discussed above,
6902 and checks for anomalies that might arise while \MP\ is being debugged.
6904 @<Declare subroutines for printing expressions@>=
6905 void mp_pr_path (MP mp,pointer h);
6908 void mp_pr_path (MP mp,pointer h) {
6909 pointer p,q; /* for list traversal */
6913 if ( (p==null)||(q==null) ) {
6914 mp_print_nl(mp, "???"); return; /* this won't happen */
6917 @<Print information for adjacent knots |p| and |q|@>;
6920 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6921 @<Print two dots, followed by |given| or |curl| if present@>;
6924 if ( left_type(h)!=mp_endpoint )
6925 mp_print(mp, "cycle");
6928 @ @<Print information for adjacent knots...@>=
6929 mp_print_two(mp, x_coord(p),y_coord(p));
6930 switch (right_type(p)) {
6932 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6934 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6938 @<Print control points between |p| and |q|, then |goto done1|@>;
6941 @<Print information for a curve that begins |open|@>;
6945 @<Print information for a curve that begins |curl| or |given|@>;
6948 mp_print(mp, "???"); /* can't happen */
6952 if ( left_type(q)<=mp_explicit ) {
6953 mp_print(mp, "..control?"); /* can't happen */
6955 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6956 @<Print tension between |p| and |q|@>;
6959 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6960 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6962 @<Print two dots...@>=
6964 mp_print_nl(mp, " ..");
6965 if ( left_type(p)==mp_given ) {
6966 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6967 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6968 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6969 } else if ( left_type(p)==mp_curl ){
6970 mp_print(mp, "{curl ");
6971 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6975 @ @<Print tension between |p| and |q|@>=
6977 mp_print(mp, "..tension ");
6978 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6979 mp_print_scaled(mp, abs(right_tension(p)));
6980 if ( right_tension(p)!=left_tension(q) ){
6981 mp_print(mp, " and ");
6982 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6983 mp_print_scaled(mp, abs(left_tension(q)));
6987 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6989 mp_print(mp, "..controls ");
6990 mp_print_two(mp, right_x(p),right_y(p));
6991 mp_print(mp, " and ");
6992 if ( left_type(q)!=mp_explicit ) {
6993 mp_print(mp, "??"); /* can't happen */
6996 mp_print_two(mp, left_x(q),left_y(q));
7001 @ @<Print information for a curve that begins |open|@>=
7002 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7003 mp_print(mp, "{open?}"); /* can't happen */
7007 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7008 \MP's default curl is present.
7010 @<Print information for a curve that begins |curl|...@>=
7012 if ( left_type(p)==mp_open )
7013 mp_print(mp, "??"); /* can't happen */
7015 if ( right_type(p)==mp_curl ) {
7016 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7018 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7019 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7020 mp_print_scaled(mp, mp->n_sin);
7022 mp_print_char(mp, '}');
7025 @ It is convenient to have another version of |pr_path| that prints the path
7026 as a diagnostic message.
7028 @<Declare subroutines for printing expressions@>=
7029 void mp_print_path (MP mp,pointer h, const char *s, boolean nuline) {
7030 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7033 mp_end_diagnostic(mp, true);
7036 @ If we want to duplicate a knot node, we can say |copy_knot|:
7039 pointer mp_copy_knot (MP mp,pointer p) {
7040 pointer q; /* the copy */
7041 int k; /* runs through the words of a knot node */
7042 q=mp_get_node(mp, knot_node_size);
7043 for (k=0;k<knot_node_size;k++) {
7044 mp->mem[q+k]=mp->mem[p+k];
7046 originator(q)=originator(p);
7050 @ The |copy_path| routine makes a clone of a given path.
7053 pointer mp_copy_path (MP mp, pointer p) {
7054 pointer q,pp,qq; /* for list manipulation */
7055 q=mp_copy_knot(mp, p);
7058 link(qq)=mp_copy_knot(mp, pp);
7067 @ Just before |ship_out|, knot lists are exported for printing.
7069 The |gr_XXXX| macros are defined in |mppsout.h|.
7072 mp_knot *mp_export_knot (MP mp,pointer p) {
7073 mp_knot *q; /* the copy */
7076 q = mp_xmalloc(mp, 1, sizeof (mp_knot));
7077 memset(q,0,sizeof (mp_knot));
7078 gr_left_type(q) = left_type(p);
7079 gr_right_type(q) = right_type(p);
7080 gr_x_coord(q) = x_coord(p);
7081 gr_y_coord(q) = y_coord(p);
7082 gr_left_x(q) = left_x(p);
7083 gr_left_y(q) = left_y(p);
7084 gr_right_x(q) = right_x(p);
7085 gr_right_y(q) = right_y(p);
7086 gr_originator(q) = originator(p);
7090 @ The |export_knot_list| routine therefore also makes a clone
7094 mp_knot *mp_export_knot_list (MP mp, pointer p) {
7095 mp_knot *q, *qq; /* for list manipulation */
7096 pointer pp; /* for list manipulation */
7099 q=mp_export_knot(mp, p);
7102 gr_next_knot(qq)=mp_export_knot(mp, pp);
7103 qq=gr_next_knot(qq);
7111 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7112 returns a pointer to the first node of the copy, if the path is a cycle,
7113 but to the final node of a non-cyclic copy. The global
7114 variable |path_tail| will point to the final node of the original path;
7115 this trick makes it easier to implement `\&{doublepath}'.
7117 All node types are assumed to be |endpoint| or |explicit| only.
7120 pointer mp_htap_ypoc (MP mp,pointer p) {
7121 pointer q,pp,qq,rr; /* for list manipulation */
7122 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7125 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7126 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7127 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7128 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7129 originator(qq)=originator(pp);
7130 if ( link(pp)==p ) {
7131 link(q)=qq; mp->path_tail=pp; return q;
7133 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7138 pointer path_tail; /* the node that links to the beginning of a path */
7140 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7141 calling the following subroutine.
7143 @<Declare the recycling subroutines@>=
7144 void mp_toss_knot_list (MP mp,pointer p) ;
7147 void mp_toss_knot_list (MP mp,pointer p) {
7148 pointer q; /* the node being freed */
7149 pointer r; /* the next node */
7153 mp_free_node(mp, q,knot_node_size); q=r;
7157 @* \[18] Choosing control points.
7158 Now we must actually delve into one of \MP's more difficult routines,
7159 the |make_choices| procedure that chooses angles and control points for
7160 the splines of a curve when the user has not specified them explicitly.
7161 The parameter to |make_choices| points to a list of knots and
7162 path information, as described above.
7164 A path decomposes into independent segments at ``breakpoint'' knots,
7165 which are knots whose left and right angles are both prespecified in
7166 some way (i.e., their |left_type| and |right_type| aren't both open).
7169 @<Declare the procedure called |solve_choices|@>
7170 void mp_make_choices (MP mp,pointer knots) {
7171 pointer h; /* the first breakpoint */
7172 pointer p,q; /* consecutive breakpoints being processed */
7173 @<Other local variables for |make_choices|@>;
7174 check_arith; /* make sure that |arith_error=false| */
7175 if ( mp->internal[mp_tracing_choices]>0 )
7176 mp_print_path(mp, knots,", before choices",true);
7177 @<If consecutive knots are equal, join them explicitly@>;
7178 @<Find the first breakpoint, |h|, on the path;
7179 insert an artificial breakpoint if the path is an unbroken cycle@>;
7182 @<Fill in the control points between |p| and the next breakpoint,
7183 then advance |p| to that breakpoint@>;
7185 if ( mp->internal[mp_tracing_choices]>0 )
7186 mp_print_path(mp, knots,", after choices",true);
7187 if ( mp->arith_error ) {
7188 @<Report an unexpected problem during the choice-making@>;
7192 @ @<Report an unexpected problem during the choice...@>=
7194 print_err("Some number got too big");
7195 @.Some number got too big@>
7196 help2("The path that I just computed is out of range.")
7197 ("So it will probably look funny. Proceed, for a laugh.");
7198 mp_put_get_error(mp); mp->arith_error=false;
7201 @ Two knots in a row with the same coordinates will always be joined
7202 by an explicit ``curve'' whose control points are identical with the
7205 @<If consecutive knots are equal, join them explicitly@>=
7209 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7210 right_type(p)=mp_explicit;
7211 if ( left_type(p)==mp_open ) {
7212 left_type(p)=mp_curl; left_curl(p)=unity;
7214 left_type(q)=mp_explicit;
7215 if ( right_type(q)==mp_open ) {
7216 right_type(q)=mp_curl; right_curl(q)=unity;
7218 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7219 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7224 @ If there are no breakpoints, it is necessary to compute the direction
7225 angles around an entire cycle. In this case the |left_type| of the first
7226 node is temporarily changed to |end_cycle|.
7228 @<Find the first breakpoint, |h|, on the path...@>=
7231 if ( left_type(h)!=mp_open ) break;
7232 if ( right_type(h)!=mp_open ) break;
7235 left_type(h)=mp_end_cycle; break;
7239 @ If |right_type(p)<given| and |q=link(p)|, we must have
7240 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7242 @<Fill in the control points between |p| and the next breakpoint...@>=
7244 if ( right_type(p)>=mp_given ) {
7245 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7246 @<Fill in the control information between
7247 consecutive breakpoints |p| and |q|@>;
7248 } else if ( right_type(p)==mp_endpoint ) {
7249 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7253 @ This step makes it possible to transform an explicitly computed path without
7254 checking the |left_type| and |right_type| fields.
7256 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7258 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7259 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7262 @ Before we can go further into the way choices are made, we need to
7263 consider the underlying theory. The basic ideas implemented in |make_choices|
7264 are due to John Hobby, who introduced the notion of ``mock curvature''
7265 @^Hobby, John Douglas@>
7266 at a knot. Angles are chosen so that they preserve mock curvature when
7267 a knot is passed, and this has been found to produce excellent results.
7269 It is convenient to introduce some notations that simplify the necessary
7270 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7271 between knots |k| and |k+1|; and let
7272 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7273 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7274 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7275 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7276 $$\eqalign{z_k^+&=z_k+
7277 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7279 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7280 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7281 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7282 corresponding ``offset angles.'' These angles satisfy the condition
7283 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7284 whenever the curve leaves an intermediate knot~|k| in the direction that
7287 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7288 the curve at its beginning and ending points. This means that
7289 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7290 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7291 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7292 z\k^-,z\k^{\phantom+};t)$
7295 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7296 \qquad{\rm and}\qquad
7297 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7298 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7300 approximation to this true curvature that arises in the limit for
7301 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7302 The standard velocity function satisfies
7303 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7304 hence the mock curvatures are respectively
7305 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7306 \qquad{\rm and}\qquad
7307 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7309 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7310 determines $\phi_k$ when $\theta_k$ is known, so the task of
7311 angle selection is essentially to choose appropriate values for each
7312 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7313 from $(**)$, we obtain a system of linear equations of the form
7314 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7316 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7317 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7318 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7319 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7320 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7321 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7322 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7323 hence they have a unique solution. Moreover, in most cases the tensions
7324 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7325 solution numerically stable, and there is an exponential damping
7326 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7327 a factor of~$O(2^{-j})$.
7329 @ However, we still must consider the angles at the starting and ending
7330 knots of a non-cyclic path. These angles might be given explicitly, or
7331 they might be specified implicitly in terms of an amount of ``curl.''
7333 Let's assume that angles need to be determined for a non-cyclic path
7334 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7335 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7336 have been given for $0<k<n$, and it will be convenient to introduce
7337 equations of the same form for $k=0$ and $k=n$, where
7338 $$A_0=B_0=C_n=D_n=0.$$
7339 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7340 define $C_0=1$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7341 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7342 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7343 mock curvature at $z_1$; i.e.,
7344 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7345 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7346 This equation simplifies to
7347 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7348 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7349 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7350 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7351 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7352 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7353 hence the linear equations remain nonsingular.
7355 Similar considerations apply at the right end, when the final angle $\phi_n$
7356 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7357 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7359 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7360 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7361 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7363 When |make_choices| chooses angles, it must compute the coefficients of
7364 these linear equations, then solve the equations. To compute the coefficients,
7365 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7366 When the equations are solved, the chosen directions $\theta_k$ are put
7367 back into the form of control points by essentially computing sines and
7370 @ OK, we are ready to make the hard choices of |make_choices|.
7371 Most of the work is relegated to an auxiliary procedure
7372 called |solve_choices|, which has been introduced to keep
7373 |make_choices| from being extremely long.
7375 @<Fill in the control information between...@>=
7376 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7377 set $n$ to the length of the path@>;
7378 @<Remove |open| types at the breakpoints@>;
7379 mp_solve_choices(mp, p,q,n)
7381 @ It's convenient to precompute quantities that will be needed several
7382 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7383 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7384 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7385 and $z\k-z_k$ will be stored in |psi[k]|.
7388 int path_size; /* maximum number of knots between breakpoints of a path */
7391 scaled *delta; /* knot differences */
7392 angle *psi; /* turning angles */
7394 @ @<Allocate or initialize ...@>=
7400 @ @<Dealloc variables@>=
7406 @ @<Other local variables for |make_choices|@>=
7407 int k,n; /* current and final knot numbers */
7408 pointer s,t; /* registers for list traversal */
7409 scaled delx,dely; /* directions where |open| meets |explicit| */
7410 fraction sine,cosine; /* trig functions of various angles */
7412 @ @<Calculate the turning angles...@>=
7415 k=0; s=p; n=mp->path_size;
7418 mp->delta_x[k]=x_coord(t)-x_coord(s);
7419 mp->delta_y[k]=y_coord(t)-y_coord(s);
7420 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7422 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7423 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7424 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7425 mp_take_fraction(mp, mp->delta_y[k],sine),
7426 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7427 mp_take_fraction(mp, mp->delta_x[k],sine));
7430 if ( k==mp->path_size ) {
7431 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7432 goto RESTART; /* retry, loop size has changed */
7435 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7436 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7439 @ When we get to this point of the code, |right_type(p)| is either
7440 |given| or |curl| or |open|. If it is |open|, we must have
7441 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7442 case, the |open| type is converted to |given|; however, if the
7443 velocity coming into this knot is zero, the |open| type is
7444 converted to a |curl|, since we don't know the incoming direction.
7446 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7447 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7449 @<Remove |open| types at the breakpoints@>=
7450 if ( left_type(q)==mp_open ) {
7451 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7452 if ( (delx==0)&&(dely==0) ) {
7453 left_type(q)=mp_curl; left_curl(q)=unity;
7455 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7458 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7459 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7460 if ( (delx==0)&&(dely==0) ) {
7461 right_type(p)=mp_curl; right_curl(p)=unity;
7463 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7467 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7468 and exactly one of the breakpoints involves a curl. The simplest case occurs
7469 when |n=1| and there is a curl at both breakpoints; then we simply draw
7472 But before coding up the simple cases, we might as well face the general case,
7473 since we must deal with it sooner or later, and since the general case
7474 is likely to give some insight into the way simple cases can be handled best.
7476 When there is no cycle, the linear equations to be solved form a tridiagonal
7477 system, and we can apply the standard technique of Gaussian elimination
7478 to convert that system to a sequence of equations of the form
7479 $$\theta_0+u_0\theta_1=v_0,\quad
7480 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7481 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7483 It is possible to do this diagonalization while generating the equations.
7484 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7485 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7487 The procedure is slightly more complex when there is a cycle, but the
7488 basic idea will be nearly the same. In the cyclic case the right-hand
7489 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7490 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7491 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7492 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7493 eliminate the $w$'s from the system, after which the solution can be
7496 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7497 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7498 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7499 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7502 angle *theta; /* values of $\theta_k$ */
7503 fraction *uu; /* values of $u_k$ */
7504 angle *vv; /* values of $v_k$ */
7505 fraction *ww; /* values of $w_k$ */
7507 @ @<Allocate or initialize ...@>=
7513 @ @<Dealloc variables@>=
7519 @ @<Declare |mp_reallocate| functions@>=
7520 void mp_reallocate_paths (MP mp, int l);
7523 void mp_reallocate_paths (MP mp, int l) {
7524 XREALLOC (mp->delta_x, l, scaled);
7525 XREALLOC (mp->delta_y, l, scaled);
7526 XREALLOC (mp->delta, l, scaled);
7527 XREALLOC (mp->psi, l, angle);
7528 XREALLOC (mp->theta, l, angle);
7529 XREALLOC (mp->uu, l, fraction);
7530 XREALLOC (mp->vv, l, angle);
7531 XREALLOC (mp->ww, l, fraction);
7535 @ Our immediate problem is to get the ball rolling by setting up the
7536 first equation or by realizing that no equations are needed, and to fit
7537 this initialization into a framework suitable for the overall computation.
7539 @<Declare the procedure called |solve_choices|@>=
7540 @<Declare subroutines needed by |solve_choices|@>
7541 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7542 int k; /* current knot number */
7543 pointer r,s,t; /* registers for list traversal */
7544 @<Other local variables for |solve_choices|@>;
7549 @<Get the linear equations started; or |return|
7550 with the control points in place, if linear equations
7553 switch (left_type(s)) {
7554 case mp_end_cycle: case mp_open:
7555 @<Set up equation to match mock curvatures
7556 at $z_k$; then |goto found| with $\theta_n$
7557 adjusted to equal $\theta_0$, if a cycle has ended@>;
7560 @<Set up equation for a curl at $\theta_n$
7564 @<Calculate the given value of $\theta_n$
7567 } /* there are no other cases */
7572 @<Finish choosing angles and assigning control points@>;
7575 @ On the first time through the loop, we have |k=0| and |r| is not yet
7576 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7578 @<Get the linear equations started...@>=
7579 switch (right_type(s)) {
7581 if ( left_type(t)==mp_given ) {
7582 @<Reduce to simple case of two givens and |return|@>
7584 @<Set up the equation for a given value of $\theta_0$@>;
7588 if ( left_type(t)==mp_curl ) {
7589 @<Reduce to simple case of straight line and |return|@>
7591 @<Set up the equation for a curl at $\theta_0$@>;
7595 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7596 /* this begins a cycle */
7598 } /* there are no other cases */
7600 @ The general equation that specifies equality of mock curvature at $z_k$ is
7601 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7602 as derived above. We want to combine this with the already-derived equation
7603 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7605 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7607 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7608 -A_kw_{k-1}\theta_0$$
7609 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7610 fixed-point arithmetic, avoiding the chance of overflow while retaining
7613 The calculations will be performed in several registers that
7614 provide temporary storage for intermediate quantities.
7616 @<Other local variables for |solve_choices|@>=
7617 fraction aa,bb,cc,ff,acc; /* temporary registers */
7618 scaled dd,ee; /* likewise, but |scaled| */
7619 scaled lt,rt; /* tension values */
7621 @ @<Set up equation to match mock curvatures...@>=
7622 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7623 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7624 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7625 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7626 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7627 @<Calculate the values of $v_k$ and $w_k$@>;
7628 if ( left_type(s)==mp_end_cycle ) {
7629 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7633 @ Since tension values are never less than 3/4, the values |aa| and
7634 |bb| computed here are never more than 4/5.
7636 @<Calculate the values $\\{aa}=...@>=
7637 if ( abs(right_tension(r))==unity) {
7638 aa=fraction_half; dd=2*mp->delta[k];
7640 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7641 dd=mp_take_fraction(mp, mp->delta[k],
7642 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7644 if ( abs(left_tension(t))==unity ){
7645 bb=fraction_half; ee=2*mp->delta[k-1];
7647 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7648 ee=mp_take_fraction(mp, mp->delta[k-1],
7649 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7651 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7653 @ The ratio to be calculated in this step can be written in the form
7654 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7655 \\{cc}\cdot\\{dd},$$
7656 because of the quantities just calculated. The values of |dd| and |ee|
7657 will not be needed after this step has been performed.
7659 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7660 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7661 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7663 ff=mp_make_fraction(mp, lt,rt);
7664 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7665 dd=mp_take_fraction(mp, dd,ff);
7667 ff=mp_make_fraction(mp, rt,lt);
7668 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7669 ee=mp_take_fraction(mp, ee,ff);
7672 ff=mp_make_fraction(mp, ee,ee+dd)
7674 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7675 equation was specified by a curl. In that case we must use a special
7676 method of computation to prevent overflow.
7678 Fortunately, the calculations turn out to be even simpler in this ``hard''
7679 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7680 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7682 @<Calculate the values of $v_k$ and $w_k$@>=
7683 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7684 if ( right_type(r)==mp_curl ) {
7686 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7688 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7689 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7690 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7691 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7692 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7693 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7694 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7697 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7698 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7699 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7700 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7703 The idea in the following code is to observe that
7704 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7705 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7706 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7707 so we can solve for $\theta_n=\theta_0$.
7709 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7711 aa=0; bb=fraction_one; /* we have |k=n| */
7714 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7715 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7716 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7717 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7718 mp->theta[n]=aa; mp->vv[0]=aa;
7719 for (k=1;k<=n-1;k++) {
7720 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7725 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7726 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7728 @<Calculate the given value of $\theta_n$...@>=
7730 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7731 reduce_angle(mp->theta[n]);
7735 @ @<Set up the equation for a given value of $\theta_0$@>=
7737 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7738 reduce_angle(mp->vv[0]);
7739 mp->uu[0]=0; mp->ww[0]=0;
7742 @ @<Set up the equation for a curl at $\theta_0$@>=
7743 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7744 if ( (rt==unity)&&(lt==unity) )
7745 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7747 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7748 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7751 @ @<Set up equation for a curl at $\theta_n$...@>=
7752 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7753 if ( (rt==unity)&&(lt==unity) )
7754 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7756 ff=mp_curl_ratio(mp, cc,lt,rt);
7757 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7758 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7762 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7763 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7764 a somewhat tedious program to calculate
7765 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7766 \alpha^3\gamma+(3-\beta)\beta^2},$$
7767 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7768 is necessary only if the curl and tension are both large.)
7769 The values of $\alpha$ and $\beta$ will be at most~4/3.
7771 @<Declare subroutines needed by |solve_choices|@>=
7772 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7774 fraction alpha,beta,num,denom,ff; /* registers */
7775 alpha=mp_make_fraction(mp, unity,a_tension);
7776 beta=mp_make_fraction(mp, unity,b_tension);
7777 if ( alpha<=beta ) {
7778 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7779 gamma=mp_take_fraction(mp, gamma,ff);
7780 beta=beta / 010000; /* convert |fraction| to |scaled| */
7781 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7782 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7784 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7785 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7786 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7787 /* $1365\approx 2^{12}/3$ */
7788 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7790 if ( num>=denom+denom+denom+denom ) return fraction_four;
7791 else return mp_make_fraction(mp, num,denom);
7794 @ We're in the home stretch now.
7796 @<Finish choosing angles and assigning control points@>=
7797 for (k=n-1;k>=0;k--) {
7798 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7803 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7804 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7805 mp_set_controls(mp, s,t,k);
7809 @ The |set_controls| routine actually puts the control points into
7810 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7811 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7812 $\cos\phi$ needed in this calculation.
7818 fraction cf; /* sines and cosines */
7820 @ @<Declare subroutines needed by |solve_choices|@>=
7821 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7822 fraction rr,ss; /* velocities, divided by thrice the tension */
7823 scaled lt,rt; /* tensions */
7824 fraction sine; /* $\sin(\theta+\phi)$ */
7825 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7826 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7827 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7828 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7829 @<Decrease the velocities,
7830 if necessary, to stay inside the bounding triangle@>;
7832 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7833 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7834 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7835 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7836 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7837 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7838 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7839 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7840 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7841 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7842 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7843 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7844 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7847 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7848 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7849 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7850 there is no ``bounding triangle.''
7852 @<Decrease the velocities, if necessary...@>=
7853 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7854 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7855 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7857 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7858 if ( right_tension(p)<0 )
7859 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7860 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7861 if ( left_tension(q)<0 )
7862 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7863 ss=mp_make_fraction(mp, abs(mp->st),sine);
7867 @ Only the simple cases remain to be handled.
7869 @<Reduce to simple case of two givens and |return|@>=
7871 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7872 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7873 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7874 mp_set_controls(mp, p,q,0); return;
7877 @ @<Reduce to simple case of straight line and |return|@>=
7879 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7880 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7882 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7883 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7884 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7885 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7887 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7888 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7889 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7892 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7893 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7894 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7895 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7897 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7898 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7899 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7904 @* \[19] Measuring paths.
7905 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7906 allow the user to measure the bounding box of anything that can go into a
7907 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7908 by just finding the bounding box of the knots and the control points. We
7909 need a more accurate version of the bounding box, but we can still use the
7910 easy estimate to save time by focusing on the interesting parts of the path.
7912 @ Computing an accurate bounding box involves a theme that will come up again
7913 and again. Given a Bernshte{\u\i}n polynomial
7914 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7915 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7916 we can conveniently bisect its range as follows:
7919 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7922 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7923 |0<=k<n-j|, for |0<=j<n|.
7927 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7928 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7929 This formula gives us the coefficients of polynomials to use over the ranges
7930 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7932 @ Now here's a subroutine that's handy for all sorts of path computations:
7933 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7934 returns the unique |fraction| value |t| between 0 and~1 at which
7935 $B(a,b,c;t)$ changes from positive to negative, or returns
7936 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7937 is already negative at |t=0|), |crossing_point| returns the value zero.
7939 @d no_crossing { return (fraction_one+1); }
7940 @d one_crossing { return fraction_one; }
7941 @d zero_crossing { return 0; }
7942 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7944 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7945 integer d; /* recursive counter */
7946 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7947 if ( a<0 ) zero_crossing;
7950 if ( c>0 ) { no_crossing; }
7951 else if ( (a==0)&&(b==0) ) { no_crossing;}
7952 else { one_crossing; }
7954 if ( a==0 ) zero_crossing;
7955 } else if ( a==0 ) {
7956 if ( b<=0 ) zero_crossing;
7958 @<Use bisection to find the crossing point, if one exists@>;
7961 @ The general bisection method is quite simple when $n=2$, hence
7962 |crossing_point| does not take much time. At each stage in the
7963 recursion we have a subinterval defined by |l| and~|j| such that
7964 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7965 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7967 It is convenient for purposes of calculation to combine the values
7968 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7969 of bisection then corresponds simply to doubling $d$ and possibly
7970 adding~1. Furthermore it proves to be convenient to modify
7971 our previous conventions for bisection slightly, maintaining the
7972 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7973 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7974 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7976 The following code maintains the invariant relations
7977 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7978 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7979 it has been constructed in such a way that no arithmetic overflow
7980 will occur if the inputs satisfy
7981 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7983 @<Use bisection to find the crossing point...@>=
7984 d=1; x0=a; x1=a-b; x2=b-c;
7995 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7999 } while (d<fraction_one);
8000 return (d-fraction_one)
8002 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8003 a cubic corresponding to the |fraction| value~|t|.
8005 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8006 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8008 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8010 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8011 scaled x1,x2,x3; /* intermediate values */
8012 x1=t_of_the_way(knot_coord(p),right_coord(p));
8013 x2=t_of_the_way(right_coord(p),left_coord(q));
8014 x3=t_of_the_way(left_coord(q),knot_coord(q));
8015 x1=t_of_the_way(x1,x2);
8016 x2=t_of_the_way(x2,x3);
8017 return t_of_the_way(x1,x2);
8020 @ The actual bounding box information is stored in global variables.
8021 Since it is convenient to address the $x$ and $y$ information
8022 separately, we define arrays indexed by |x_code..y_code| and use
8023 macros to give them more convenient names.
8027 mp_x_code=0, /* index for |minx| and |maxx| */
8028 mp_y_code /* index for |miny| and |maxy| */
8032 @d minx mp->bbmin[mp_x_code]
8033 @d maxx mp->bbmax[mp_x_code]
8034 @d miny mp->bbmin[mp_y_code]
8035 @d maxy mp->bbmax[mp_y_code]
8038 scaled bbmin[mp_y_code+1];
8039 scaled bbmax[mp_y_code+1];
8040 /* the result of procedures that compute bounding box information */
8042 @ Now we're ready for the key part of the bounding box computation.
8043 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8044 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8045 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8047 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8048 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8049 The |c| parameter is |x_code| or |y_code|.
8051 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8052 boolean wavy; /* whether we need to look for extremes */
8053 scaled del1,del2,del3,del,dmax; /* proportional to the control
8054 points of a quadratic derived from a cubic */
8055 fraction t,tt; /* where a quadratic crosses zero */
8056 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8058 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8059 @<Check the control points against the bounding box and set |wavy:=true|
8060 if any of them lie outside@>;
8062 del1=right_coord(p)-knot_coord(p);
8063 del2=left_coord(q)-right_coord(p);
8064 del3=knot_coord(q)-left_coord(q);
8065 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8066 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8068 negate(del1); negate(del2); negate(del3);
8070 t=mp_crossing_point(mp, del1,del2,del3);
8071 if ( t<fraction_one ) {
8072 @<Test the extremes of the cubic against the bounding box@>;
8077 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8078 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8079 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8081 @ @<Check the control points against the bounding box and set...@>=
8083 if ( mp->bbmin[c]<=right_coord(p) )
8084 if ( right_coord(p)<=mp->bbmax[c] )
8085 if ( mp->bbmin[c]<=left_coord(q) )
8086 if ( left_coord(q)<=mp->bbmax[c] )
8089 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8090 section. We just set |del=0| in that case.
8092 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8093 if ( del1!=0 ) del=del1;
8094 else if ( del2!=0 ) del=del2;
8098 if ( abs(del2)>dmax ) dmax=abs(del2);
8099 if ( abs(del3)>dmax ) dmax=abs(del3);
8100 while ( dmax<fraction_half ) {
8101 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8105 @ Since |crossing_point| has tried to choose |t| so that
8106 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8107 slope, the value of |del2| computed below should not be positive.
8108 But rounding error could make it slightly positive in which case we
8109 must cut it to zero to avoid confusion.
8111 @<Test the extremes of the cubic against the bounding box@>=
8113 x=mp_eval_cubic(mp, p,q,t);
8114 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8115 del2=t_of_the_way(del2,del3);
8116 /* now |0,del2,del3| represent the derivative on the remaining interval */
8117 if ( del2>0 ) del2=0;
8118 tt=mp_crossing_point(mp, 0,-del2,-del3);
8119 if ( tt<fraction_one ) {
8120 @<Test the second extreme against the bounding box@>;
8124 @ @<Test the second extreme against the bounding box@>=
8126 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8127 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8130 @ Finding the bounding box of a path is basically a matter of applying
8131 |bound_cubic| twice for each pair of adjacent knots.
8133 @c void mp_path_bbox (MP mp,pointer h) {
8134 pointer p,q; /* a pair of adjacent knots */
8135 minx=x_coord(h); miny=y_coord(h);
8136 maxx=minx; maxy=miny;
8139 if ( right_type(p)==mp_endpoint ) return;
8141 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8142 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8147 @ Another important way to measure a path is to find its arc length. This
8148 is best done by using the general bisection algorithm to subdivide the path
8149 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8152 Since the arc length is the integral with respect to time of the magnitude of
8153 the velocity, it is natural to use Simpson's rule for the approximation.
8155 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8156 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8157 for the arc length of a path of length~1. For a cubic spline
8158 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8159 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8161 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8163 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8164 is the result of the bisection algorithm.
8166 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8167 This could be done via the theoretical error bound for Simpson's rule,
8169 but this is impractical because it requires an estimate of the fourth
8170 derivative of the quantity being integrated. It is much easier to just perform
8171 a bisection step and see how much the arc length estimate changes. Since the
8172 error for Simpson's rule is proportional to the fourth power of the sample
8173 spacing, the remaining error is typically about $1\over16$ of the amount of
8174 the change. We say ``typically'' because the error has a pseudo-random behavior
8175 that could cause the two estimates to agree when each contain large errors.
8177 To protect against disasters such as undetected cusps, the bisection process
8178 should always continue until all the $dz_i$ vectors belong to a single
8179 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8180 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8181 If such a spline happens to produce an erroneous arc length estimate that
8182 is little changed by bisection, the amount of the error is likely to be fairly
8183 small. We will try to arrange things so that freak accidents of this type do
8184 not destroy the inverse relationship between the \&{arclength} and
8185 \&{arctime} operations.
8186 @:arclength_}{\&{arclength} primitive@>
8187 @:arctime_}{\&{arctime} primitive@>
8189 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8191 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8192 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8193 returns the time when the arc length reaches |a_goal| if there is such a time.
8194 Thus the return value is either an arc length less than |a_goal| or, if the
8195 arc length would be at least |a_goal|, it returns a time value decreased by
8196 |two|. This allows the caller to use the sign of the result to distinguish
8197 between arc lengths and time values. On certain types of overflow, it is
8198 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8199 Otherwise, the result is always less than |a_goal|.
8201 Rather than halving the control point coordinates on each recursive call to
8202 |arc_test|, it is better to keep them proportional to velocity on the original
8203 curve and halve the results instead. This means that recursive calls can
8204 potentially use larger error tolerances in their arc length estimates. How
8205 much larger depends on to what extent the errors behave as though they are
8206 independent of each other. To save computing time, we use optimistic assumptions
8207 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8210 In addition to the tolerance parameter, |arc_test| should also have parameters
8211 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8212 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8213 and they are needed in different instances of |arc_test|.
8215 @c @<Declare subroutines needed by |arc_test|@>
8216 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8217 scaled dx2, scaled dy2, scaled v0, scaled v02,
8218 scaled v2, scaled a_goal, scaled tol) {
8219 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8220 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8222 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8223 scaled arc; /* best arc length estimate before recursion */
8224 @<Other local variables in |arc_test|@>;
8225 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8227 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8228 set |arc_test| and |return|@>;
8229 @<Test if the control points are confined to one quadrant or rotating them
8230 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8231 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8232 if ( arc < a_goal ) {
8235 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8236 that time minus |two|@>;
8239 @<Use one or two recursive calls to compute the |arc_test| function@>;
8243 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8244 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8245 |make_fraction| in this inner loop.
8248 @<Use one or two recursive calls to compute the |arc_test| function@>=
8250 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8251 large as possible@>;
8252 tol = tol + halfp(tol);
8253 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8254 halfp(v02), a_new, tol);
8256 return (-halfp(two-a));
8258 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8259 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8260 halfp(v02), v022, v2, a_new, tol);
8262 return (-halfp(-b) - half_unit);
8264 return (a + half(b-a));
8268 @ @<Other local variables in |arc_test|@>=
8269 scaled a,b; /* results of recursive calls */
8270 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8272 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8273 a_aux = el_gordo - a_goal;
8274 if ( a_goal > a_aux ) {
8275 a_aux = a_goal - a_aux;
8278 a_new = a_goal + a_goal;
8282 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8283 to force the additions and subtractions to be done in an order that avoids
8286 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8289 a_new = a_new + a_aux;
8292 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8293 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8294 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8295 this bound. Note that recursive calls will maintain this invariant.
8297 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8298 dx01 = half(dx0 + dx1);
8299 dx12 = half(dx1 + dx2);
8300 dx02 = half(dx01 + dx12);
8301 dy01 = half(dy0 + dy1);
8302 dy12 = half(dy1 + dy2);
8303 dy02 = half(dy01 + dy12)
8305 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8306 |a_goal=el_gordo| is guaranteed to yield the arc length.
8308 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8309 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8310 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8312 arc1 = v002 + half(halfp(v0+tmp) - v002);
8313 arc = v022 + half(halfp(v2+tmp) - v022);
8314 if ( (arc < el_gordo-arc1) ) {
8317 mp->arith_error = true;
8318 if ( a_goal==el_gordo ) return (el_gordo);
8322 @ @<Other local variables in |arc_test|@>=
8323 scaled tmp, tmp2; /* all purpose temporary registers */
8324 scaled arc1; /* arc length estimate for the first half */
8326 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8327 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8328 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8330 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8331 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8333 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8334 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8336 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8337 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8340 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8342 it is appropriate to use the same approximation to decide when the integral
8343 reaches the intermediate value |a_goal|. At this point
8345 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8346 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8347 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8348 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8349 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8353 $$ {\vb\dot B(t)\vb\over 3} \approx
8354 \cases{B\left(\hbox{|v0|},
8355 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8356 {1\over 2}\hbox{|v02|}; 2t \right)&
8357 if $t\le{1\over 2}$\cr
8358 B\left({1\over 2}\hbox{|v02|},
8359 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8360 \hbox{|v2|}; 2t-1 \right)&
8361 if $t\ge{1\over 2}$.\cr}
8364 We can integrate $\vb\dot B(t)\vb$ by using
8365 $$\int 3B(a,b,c;\tau)\,dt =
8366 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8369 This construction allows us to find the time when the arc length reaches
8370 |a_goal| by solving a cubic equation of the form
8371 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8372 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8373 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8374 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8375 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8376 $\tau$ given $a$, $b$, $c$, and $x$.
8378 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8380 tmp = (v02 + 2) / 4;
8381 if ( a_goal<=arc1 ) {
8384 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8387 return ((half_unit - two) +
8388 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8392 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8393 $$ B(0, a, a+b, a+b+c; t) = x. $$
8394 This routine is based on |crossing_point| but is simplified by the
8395 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8396 If rounding error causes this condition to be violated slightly, we just ignore
8397 it and proceed with binary search. This finds a time when the function value
8398 reaches |x| and the slope is positive.
8400 @<Declare subroutines needed by |arc_test|@>=
8401 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8402 scaled ab, bc, ac; /* bisection results */
8403 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8404 integer xx; /* temporary for updating |x| */
8405 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8406 @:this can't happen rising?}{\quad rising?@>
8409 } else if ( x >= a+b+c ) {
8413 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8417 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8418 xx = x - a - ab - ac;
8419 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8420 else { x = x + xx; a=ac; b=bc; t = t+1; };
8421 } while (t < unity);
8426 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8431 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8433 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8434 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8441 @ It is convenient to have a simpler interface to |arc_test| that requires no
8442 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8443 length less than |fraction_four|.
8445 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8447 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8448 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8449 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8450 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8451 v0 = mp_pyth_add(mp, dx0,dy0);
8452 v1 = mp_pyth_add(mp, dx1,dy1);
8453 v2 = mp_pyth_add(mp, dx2,dy2);
8454 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8455 mp->arith_error = true;
8456 if ( a_goal==el_gordo ) return el_gordo;
8459 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8460 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8461 v0, v02, v2, a_goal, arc_tol));
8465 @ Now it is easy to find the arc length of an entire path.
8467 @c scaled mp_get_arc_length (MP mp,pointer h) {
8468 pointer p,q; /* for traversing the path */
8469 scaled a,a_tot; /* current and total arc lengths */
8472 while ( right_type(p)!=mp_endpoint ){
8474 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8475 left_x(q)-right_x(p), left_y(q)-right_y(p),
8476 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8477 a_tot = mp_slow_add(mp, a, a_tot);
8478 if ( q==h ) break; else p=q;
8484 @ The inverse operation of finding the time on a path~|h| when the arc length
8485 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8486 is required to handle very large times or negative times on cyclic paths. For
8487 non-cyclic paths, |arc0| values that are negative or too large cause
8488 |get_arc_time| to return 0 or the length of path~|h|.
8490 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8491 time value greater than the length of the path. Since it could be much greater,
8492 we must be prepared to compute the arc length of path~|h| and divide this into
8493 |arc0| to find how many multiples of the length of path~|h| to add.
8495 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8496 pointer p,q; /* for traversing the path */
8497 scaled t_tot; /* accumulator for the result */
8498 scaled t; /* the result of |do_arc_test| */
8499 scaled arc; /* portion of |arc0| not used up so far */
8500 integer n; /* number of extra times to go around the cycle */
8502 @<Deal with a negative |arc0| value and |return|@>;
8504 if ( arc0==el_gordo ) decr(arc0);
8508 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8510 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8511 left_x(q)-right_x(p), left_y(q)-right_y(p),
8512 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8513 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8515 @<Update |t_tot| and |arc| to avoid going around the cyclic
8516 path too many times but set |arith_error:=true| and |goto done| on
8525 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8526 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8527 else { t_tot = t_tot + unity; arc = arc - t; }
8529 @ @<Deal with a negative |arc0| value and |return|@>=
8531 if ( left_type(h)==mp_endpoint ) {
8534 p = mp_htap_ypoc(mp, h);
8535 t_tot = -mp_get_arc_time(mp, p, -arc0);
8536 mp_toss_knot_list(mp, p);
8542 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8544 n = arc / (arc0 - arc);
8545 arc = arc - n*(arc0 - arc);
8546 if ( t_tot > (el_gordo / (n+1)) ) {
8549 t_tot = (n + 1)*t_tot;
8552 @* \[20] Data structures for pens.
8553 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8554 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8555 @:stroke}{\&{stroke} command@>
8556 converted into an area fill as described in the next part of this program.
8557 The mathematics behind this process is based on simple aspects of the theory
8558 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8559 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8560 Foundations of Computer Science {\bf 24} (1983), 100--111].
8562 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8563 @:makepen_}{\&{makepen} primitive@>
8564 This path representation is almost sufficient for our purposes except that
8565 a pen path should always be a convex polygon with the vertices in
8566 counter-clockwise order.
8567 Since we will need to scan pen polygons both forward and backward, a pen
8568 should be represented as a doubly linked ring of knot nodes. There is
8569 room for the extra back pointer because we do not need the
8570 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8571 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8572 so that certain procedures can operate on both pens and paths. In particular,
8573 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8576 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8578 @ The |make_pen| procedure turns a path into a pen by initializing
8579 the |knil| pointers and making sure the knots form a convex polygon.
8580 Thus each cubic in the given path becomes a straight line and the control
8581 points are ignored. If the path is not cyclic, the ends are connected by a
8584 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8586 @c @<Declare a function called |convex_hull|@>
8587 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8588 pointer p,q; /* two consecutive knots */
8595 h=mp_convex_hull(mp, h);
8596 @<Make sure |h| isn't confused with an elliptical pen@>;
8601 @ The only information required about an elliptical pen is the overall
8602 transformation that has been applied to the original \&{pencircle}.
8603 @:pencircle_}{\&{pencircle} primitive@>
8604 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8605 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8606 knot node and transformed as if it were a path.
8608 @d pen_is_elliptical(A) ((A)==link((A)))
8610 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8611 pointer h; /* the knot node to return */
8612 h=mp_get_node(mp, knot_node_size);
8613 link(h)=h; knil(h)=h;
8614 originator(h)=mp_program_code;
8615 x_coord(h)=0; y_coord(h)=0;
8616 left_x(h)=diam; left_y(h)=0;
8617 right_x(h)=0; right_y(h)=diam;
8621 @ If the polygon being returned by |make_pen| has only one vertex, it will
8622 be interpreted as an elliptical pen. This is no problem since a degenerate
8623 polygon can equally well be thought of as a degenerate ellipse. We need only
8624 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8626 @<Make sure |h| isn't confused with an elliptical pen@>=
8627 if ( pen_is_elliptical( h) ){
8628 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8629 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8632 @ We have to cheat a little here but most operations on pens only use
8633 the first three words in each knot node.
8634 @^data structure assumptions@>
8636 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8637 x_coord(test_pen)=-half_unit;
8638 y_coord(test_pen)=0;
8639 x_coord(test_pen+3)=half_unit;
8640 y_coord(test_pen+3)=0;
8641 x_coord(test_pen+6)=0;
8642 y_coord(test_pen+6)=unity;
8643 link(test_pen)=test_pen+3;
8644 link(test_pen+3)=test_pen+6;
8645 link(test_pen+6)=test_pen;
8646 knil(test_pen)=test_pen+6;
8647 knil(test_pen+3)=test_pen;
8648 knil(test_pen+6)=test_pen+3
8650 @ Printing a polygonal pen is very much like printing a path
8652 @<Declare subroutines for printing expressions@>=
8653 void mp_pr_pen (MP mp,pointer h) {
8654 pointer p,q; /* for list traversal */
8655 if ( pen_is_elliptical(h) ) {
8656 @<Print the elliptical pen |h|@>;
8660 mp_print_two(mp, x_coord(p),y_coord(p));
8661 mp_print_nl(mp, " .. ");
8662 @<Advance |p| making sure the links are OK and |return| if there is
8665 mp_print(mp, "cycle");
8669 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8671 if ( (q==null) || (knil(q)!=p) ) {
8672 mp_print_nl(mp, "???"); return; /* this won't happen */
8677 @ @<Print the elliptical pen |h|@>=
8679 mp_print(mp, "pencircle transformed (");
8680 mp_print_scaled(mp, x_coord(h));
8681 mp_print_char(mp, ',');
8682 mp_print_scaled(mp, y_coord(h));
8683 mp_print_char(mp, ',');
8684 mp_print_scaled(mp, left_x(h)-x_coord(h));
8685 mp_print_char(mp, ',');
8686 mp_print_scaled(mp, right_x(h)-x_coord(h));
8687 mp_print_char(mp, ',');
8688 mp_print_scaled(mp, left_y(h)-y_coord(h));
8689 mp_print_char(mp, ',');
8690 mp_print_scaled(mp, right_y(h)-y_coord(h));
8691 mp_print_char(mp, ')');
8694 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8697 @<Declare subroutines for printing expressions@>=
8698 void mp_print_pen (MP mp,pointer h, const char *s, boolean nuline) {
8699 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8702 mp_end_diagnostic(mp, true);
8705 @ Making a polygonal pen into a path involves restoring the |left_type| and
8706 |right_type| fields and setting the control points so as to make a polygonal
8710 void mp_make_path (MP mp,pointer h) {
8711 pointer p; /* for traversing the knot list */
8712 small_number k; /* a loop counter */
8713 @<Other local variables in |make_path|@>;
8714 if ( pen_is_elliptical(h) ) {
8715 @<Make the elliptical pen |h| into a path@>;
8719 left_type(p)=mp_explicit;
8720 right_type(p)=mp_explicit;
8721 @<copy the coordinates of knot |p| into its control points@>;
8727 @ @<copy the coordinates of knot |p| into its control points@>=
8728 left_x(p)=x_coord(p);
8729 left_y(p)=y_coord(p);
8730 right_x(p)=x_coord(p);
8731 right_y(p)=y_coord(p)
8733 @ We need an eight knot path to get a good approximation to an ellipse.
8735 @<Make the elliptical pen |h| into a path@>=
8737 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8739 for (k=0;k<=7;k++ ) {
8740 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8741 transforming it appropriately@>;
8742 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8747 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8748 center_x=x_coord(h);
8749 center_y=y_coord(h);
8750 width_x=left_x(h)-center_x;
8751 width_y=left_y(h)-center_y;
8752 height_x=right_x(h)-center_x;
8753 height_y=right_y(h)-center_y
8755 @ @<Other local variables in |make_path|@>=
8756 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8757 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8758 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8759 scaled dx,dy; /* the vector from knot |p| to its right control point */
8761 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8763 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8764 find the point $k/8$ of the way around the circle and the direction vector
8767 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8769 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8770 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8771 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8772 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8773 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8774 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8775 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8776 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8777 right_x(p)=x_coord(p)+dx;
8778 right_y(p)=y_coord(p)+dy;
8779 left_x(p)=x_coord(p)-dx;
8780 left_y(p)=y_coord(p)-dy;
8781 left_type(p)=mp_explicit;
8782 right_type(p)=mp_explicit;
8783 originator(p)=mp_program_code
8786 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8787 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8789 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8790 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8791 function for $\theta=\phi=22.5^\circ$. This comes out to be
8792 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8793 \approx 0.132608244919772.
8797 mp->half_cos[0]=fraction_half;
8798 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8800 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8801 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8803 for (k=3;k<= 4;k++ ) {
8804 mp->half_cos[k]=-mp->half_cos[4-k];
8805 mp->d_cos[k]=-mp->d_cos[4-k];
8807 for (k=5;k<= 7;k++ ) {
8808 mp->half_cos[k]=mp->half_cos[8-k];
8809 mp->d_cos[k]=mp->d_cos[8-k];
8812 @ The |convex_hull| function forces a pen polygon to be convex when it is
8813 returned by |make_pen| and after any subsequent transformation where rounding
8814 error might allow the convexity to be lost.
8815 The convex hull algorithm used here is described by F.~P. Preparata and
8816 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8818 @<Declare a function called |convex_hull|@>=
8819 @<Declare a procedure called |move_knot|@>
8820 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8821 pointer l,r; /* the leftmost and rightmost knots */
8822 pointer p,q; /* knots being scanned */
8823 pointer s; /* the starting point for an upcoming scan */
8824 scaled dx,dy; /* a temporary pointer */
8825 if ( pen_is_elliptical(h) ) {
8828 @<Set |l| to the leftmost knot in polygon~|h|@>;
8829 @<Set |r| to the rightmost knot in polygon~|h|@>;
8832 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8833 move them past~|r|@>;
8834 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8835 move them past~|l|@>;
8836 @<Sort the path from |l| to |r| by increasing $x$@>;
8837 @<Sort the path from |r| to |l| by decreasing $x$@>;
8840 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8846 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8848 @<Set |l| to the leftmost knot in polygon~|h|@>=
8852 if ( x_coord(p)<=x_coord(l) )
8853 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8858 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8862 if ( x_coord(p)>=x_coord(r) )
8863 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8868 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8869 dx=x_coord(r)-x_coord(l);
8870 dy=y_coord(r)-y_coord(l);
8874 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8875 mp_move_knot(mp, p, r);
8879 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8882 @ @<Declare a procedure called |move_knot|@>=
8883 void mp_move_knot (MP mp,pointer p, pointer q) {
8884 link(knil(p))=link(p);
8885 knil(link(p))=knil(p);
8892 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8896 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8897 mp_move_knot(mp, p,l);
8901 @ The list is likely to be in order already so we just do linear insertions.
8902 Secondary comparisons on $y$ ensure that the sort is consistent with the
8903 choice of |l| and |r|.
8905 @<Sort the path from |l| to |r| by increasing $x$@>=
8909 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8910 while ( x_coord(q)==x_coord(p) ) {
8911 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8913 if ( q==knil(p) ) p=link(p);
8914 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8917 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8921 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8922 while ( x_coord(q)==x_coord(p) ) {
8923 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8925 if ( q==knil(p) ) p=link(p);
8926 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8929 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8930 at knot |q|. There usually will be a left turn so we streamline the case
8931 where the |then| clause is not executed.
8933 @<Do a Gramm scan and remove vertices where there...@>=
8937 dx=x_coord(q)-x_coord(p);
8938 dy=y_coord(q)-y_coord(p);
8942 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8943 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8948 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8951 mp_free_node(mp, p,knot_node_size);
8952 link(s)=q; knil(q)=s;
8954 else { p=knil(s); q=s; };
8957 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8958 offset associated with the given direction |(x,y)|. If two different offsets
8959 apply, it chooses one of them.
8962 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8963 pointer p,q; /* consecutive knots */
8965 /* the transformation matrix for an elliptical pen */
8966 fraction xx,yy; /* untransformed offset for an elliptical pen */
8967 fraction d; /* a temporary register */
8968 if ( pen_is_elliptical(h) ) {
8969 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8974 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8977 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8978 mp->cur_x=x_coord(p);
8979 mp->cur_y=y_coord(p);
8985 scaled cur_y; /* all-purpose return value registers */
8987 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8988 if ( (x==0) && (y==0) ) {
8989 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8991 @<Find the non-constant part of the transformation for |h|@>;
8992 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8995 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8996 untransformed version of |(x,y)|@>;
8997 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8998 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9001 @ @<Find the non-constant part of the transformation for |h|@>=
9002 wx=left_x(h)-x_coord(h);
9003 wy=left_y(h)-y_coord(h);
9004 hx=right_x(h)-x_coord(h);
9005 hy=right_y(h)-y_coord(h)
9007 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9008 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9009 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9010 d=mp_pyth_add(mp, xx,yy);
9012 xx=half(mp_make_fraction(mp, xx,d));
9013 yy=half(mp_make_fraction(mp, yy,d));
9016 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9017 But we can handle that case by just calling |find_offset| twice. The answer
9018 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9021 void mp_pen_bbox (MP mp,pointer h) {
9022 pointer p; /* for scanning the knot list */
9023 if ( pen_is_elliptical(h) ) {
9024 @<Find the bounding box of an elliptical pen@>;
9026 minx=x_coord(h); maxx=minx;
9027 miny=y_coord(h); maxy=miny;
9030 if ( x_coord(p)<minx ) minx=x_coord(p);
9031 if ( y_coord(p)<miny ) miny=y_coord(p);
9032 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9033 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9039 @ @<Find the bounding box of an elliptical pen@>=
9041 mp_find_offset(mp, 0,fraction_one,h);
9043 minx=2*x_coord(h)-mp->cur_x;
9044 mp_find_offset(mp, -fraction_one,0,h);
9046 miny=2*y_coord(h)-mp->cur_y;
9049 @* \[21] Edge structures.
9050 Now we come to \MP's internal scheme for representing pictures.
9051 The representation is very different from \MF's edge structures
9052 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9053 images. However, the basic idea is somewhat similar in that shapes
9054 are represented via their boundaries.
9056 The main purpose of edge structures is to keep track of graphical objects
9057 until it is time to translate them into \ps. Since \MP\ does not need to
9058 know anything about an edge structure other than how to translate it into
9059 \ps\ and how to find its bounding box, edge structures can be just linked
9060 lists of graphical objects. \MP\ has no easy way to determine whether
9061 two such objects overlap, but it suffices to draw the first one first and
9062 let the second one overwrite it if necessary.
9065 enum mp_graphical_object_code {
9066 @<Graphical object codes@>
9070 @ Let's consider the types of graphical objects one at a time.
9071 First of all, a filled contour is represented by a eight-word node. The first
9072 word contains |type| and |link| fields, and the next six words contain a
9073 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9074 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9075 give the relevant information.
9077 @d path_p(A) link((A)+1)
9078 /* a pointer to the path that needs filling */
9079 @d pen_p(A) info((A)+1)
9080 /* a pointer to the pen to fill or stroke with */
9081 @d color_model(A) type((A)+2) /* the color model */
9082 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9083 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9084 @d obj_grey_loc obj_red_loc /* the location for the color */
9085 @d red_val(A) mp->mem[(A)+3].sc
9086 /* the red component of the color in the range $0\ldots1$ */
9089 @d green_val(A) mp->mem[(A)+4].sc
9090 /* the green component of the color in the range $0\ldots1$ */
9091 @d magenta_val green_val
9092 @d blue_val(A) mp->mem[(A)+5].sc
9093 /* the blue component of the color in the range $0\ldots1$ */
9094 @d yellow_val blue_val
9095 @d black_val(A) mp->mem[(A)+6].sc
9096 /* the blue component of the color in the range $0\ldots1$ */
9097 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9098 @:mp_linejoin_}{\&{linejoin} primitive@>
9099 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9100 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9101 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9102 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9103 @d pre_script(A) mp->mem[(A)+8].hh.lh
9104 @d post_script(A) mp->mem[(A)+8].hh.rh
9107 @ @<Graphical object codes@>=
9111 pointer mp_new_fill_node (MP mp,pointer p) {
9112 /* make a fill node for cyclic path |p| and color black */
9113 pointer t; /* the new node */
9114 t=mp_get_node(mp, fill_node_size);
9115 type(t)=mp_fill_code;
9117 pen_p(t)=null; /* |null| means don't use a pen */
9122 color_model(t)=mp_uninitialized_model;
9124 post_script(t)=null;
9125 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9129 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9130 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9131 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9132 else ljoin_val(t)=0;
9133 if ( mp->internal[mp_miterlimit]<unity )
9134 miterlim_val(t)=unity;
9136 miterlim_val(t)=mp->internal[mp_miterlimit]
9138 @ A stroked path is represented by an eight-word node that is like a filled
9139 contour node except that it contains the current \&{linecap} value, a scale
9140 factor for the dash pattern, and a pointer that is non-null if the stroke
9141 is to be dashed. The purpose of the scale factor is to allow a picture to
9142 be transformed without touching the picture that |dash_p| points to.
9144 @d dash_p(A) link((A)+9)
9145 /* a pointer to the edge structure that gives the dash pattern */
9146 @d lcap_val(A) type((A)+9)
9147 /* the value of \&{linecap} */
9148 @:mp_linecap_}{\&{linecap} primitive@>
9149 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9150 @d stroked_node_size 11
9152 @ @<Graphical object codes@>=
9156 pointer mp_new_stroked_node (MP mp,pointer p) {
9157 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9158 pointer t; /* the new node */
9159 t=mp_get_node(mp, stroked_node_size);
9160 type(t)=mp_stroked_code;
9161 path_p(t)=p; pen_p(t)=null;
9163 dash_scale(t)=unity;
9168 color_model(t)=mp_uninitialized_model;
9170 post_script(t)=null;
9171 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9172 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9173 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9178 @ When a dashed line is computed in a transformed coordinate system, the dash
9179 lengths get scaled like the pen shape and we need to compensate for this. Since
9180 there is no unique scale factor for an arbitrary transformation, we use the
9181 the square root of the determinant. The properties of the determinant make it
9182 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9183 except for the initialization of the scale factor |s|. The factor of 64 is
9184 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9185 to counteract the effect of |take_fraction|.
9187 @<Declare subroutines needed by |print_edges|@>=
9188 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9189 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9190 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9191 @<Initialize |maxabs|@>;
9193 while ( (maxabs<fraction_one) && (s>1) ){
9194 a+=a; b+=b; c+=c; d+=d;
9195 maxabs+=maxabs; s=halfp(s);
9197 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9200 scaled mp_get_pen_scale (MP mp,pointer p) {
9201 return mp_sqrt_det(mp,
9202 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9203 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9206 @ @<Internal library ...@>=
9207 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9210 @ @<Initialize |maxabs|@>=
9212 if ( abs(b)>maxabs ) maxabs=abs(b);
9213 if ( abs(c)>maxabs ) maxabs=abs(c);
9214 if ( abs(d)>maxabs ) maxabs=abs(d)
9216 @ When a picture contains text, this is represented by a fourteen-word node
9217 where the color information and |type| and |link| fields are augmented by
9218 additional fields that describe the text and how it is transformed.
9219 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9220 the font and a string number that gives the text to be displayed.
9221 The |width|, |height|, and |depth| fields
9222 give the dimensions of the text at its design size, and the remaining six
9223 words give a transformation to be applied to the text. The |new_text_node|
9224 function initializes everything to default values so that the text comes out
9225 black with its reference point at the origin.
9227 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9228 @d font_n(A) info((A)+1) /* the font number */
9229 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9230 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9231 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9232 @d text_tx_loc(A) ((A)+11)
9233 /* the first of six locations for transformation parameters */
9234 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9235 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9236 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9237 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9238 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9239 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9240 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9241 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9242 @d text_node_size 17
9244 @ @<Graphical object codes@>=
9247 @ @c @<Declare text measuring subroutines@>
9248 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9249 /* make a text node for font |f| and text string |s| */
9250 pointer t; /* the new node */
9251 t=mp_get_node(mp, text_node_size);
9252 type(t)=mp_text_code;
9254 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9259 color_model(t)=mp_uninitialized_model;
9261 post_script(t)=null;
9262 tx_val(t)=0; ty_val(t)=0;
9263 txx_val(t)=unity; txy_val(t)=0;
9264 tyx_val(t)=0; tyy_val(t)=unity;
9265 mp_set_text_box(mp, t); /* this finds the bounding box */
9269 @ The last two types of graphical objects that can occur in an edge structure
9270 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9271 @:set_bounds_}{\&{setbounds} primitive@>
9272 to implement because we must keep track of exactly what is being clipped or
9273 bounded when pictures get merged together. For this reason, each clipping or
9274 \&{setbounds} operation is represented by a pair of nodes: first comes a
9275 two-word node whose |path_p| gives the relevant path, then there is the list
9276 of objects to clip or bound followed by a two-word node whose second word is
9279 Using at least two words for each graphical object node allows them all to be
9280 allocated and deallocated similarly with a global array |gr_object_size| to
9281 give the size in words for each object type.
9283 @d start_clip_size 2
9284 @d start_bounds_size 2
9285 @d stop_clip_size 2 /* the second word is not used here */
9286 @d stop_bounds_size 2 /* the second word is not used here */
9288 @d stop_type(A) ((A)+2)
9289 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9290 @d has_color(A) (type((A))<mp_start_clip_code)
9291 /* does a graphical object have color fields? */
9292 @d has_pen(A) (type((A))<mp_text_code)
9293 /* does a graphical object have a |pen_p| field? */
9294 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9295 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9297 @ @<Graphical object codes@>=
9298 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9299 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9300 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9301 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9304 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9305 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9306 pointer t; /* the new node */
9307 t=mp_get_node(mp, mp->gr_object_size[c]);
9313 @ We need an array to keep track of the sizes of graphical objects.
9316 small_number gr_object_size[mp_stop_bounds_code+1];
9319 mp->gr_object_size[mp_fill_code]=fill_node_size;
9320 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9321 mp->gr_object_size[mp_text_code]=text_node_size;
9322 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9323 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9324 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9325 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9327 @ All the essential information in an edge structure is encoded as a linked list
9328 of graphical objects as we have just seen, but it is helpful to add some
9329 redundant information. A single edge structure might be used as a dash pattern
9330 many times, and it would be nice to avoid scanning the same structure
9331 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9332 has a header that gives a list of dashes in a sorted order designed for rapid
9333 translation into \ps.
9335 Each dash is represented by a three-word node containing the initial and final
9336 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9337 the dash node with the next higher $x$-coordinates and the final link points
9338 to a special location called |null_dash|. (There should be no overlap between
9339 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9340 the period of repetition, this needs to be stored in the edge header along
9341 with a pointer to the list of dash nodes.
9343 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9344 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9347 /* in an edge header this points to the first dash node */
9348 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9350 @ It is also convenient for an edge header to contain the bounding
9351 box information needed by the \&{llcorner} and \&{urcorner} operators
9352 so that this does not have to be recomputed unnecessarily. This is done by
9353 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9354 how far the bounding box computation has gotten. Thus if the user asks for
9355 the bounding box and then adds some more text to the picture before asking
9356 for more bounding box information, the second computation need only look at
9357 the additional text.
9359 When the bounding box has not been computed, the |bblast| pointer points
9360 to a dummy link at the head of the graphical object list while the |minx_val|
9361 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9362 fields contain |-el_gordo|.
9364 Since the bounding box of pictures containing objects of type
9365 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9366 @:mp_true_corners_}{\&{truecorners} primitive@>
9367 data might not be valid for all values of this parameter. Hence, the |bbtype|
9368 field is needed to keep track of this.
9370 @d minx_val(A) mp->mem[(A)+2].sc
9371 @d miny_val(A) mp->mem[(A)+3].sc
9372 @d maxx_val(A) mp->mem[(A)+4].sc
9373 @d maxy_val(A) mp->mem[(A)+5].sc
9374 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9375 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9376 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9378 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9380 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9382 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9385 void mp_init_bbox (MP mp,pointer h) {
9386 /* Initialize the bounding box information in edge structure |h| */
9387 bblast(h)=dummy_loc(h);
9388 bbtype(h)=no_bounds;
9389 minx_val(h)=el_gordo;
9390 miny_val(h)=el_gordo;
9391 maxx_val(h)=-el_gordo;
9392 maxy_val(h)=-el_gordo;
9395 @ The only other entries in an edge header are a reference count in the first
9396 word and a pointer to the tail of the object list in the last word.
9398 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9399 @d edge_header_size 8
9402 void mp_init_edges (MP mp,pointer h) {
9403 /* initialize an edge header to null values */
9404 dash_list(h)=null_dash;
9405 obj_tail(h)=dummy_loc(h);
9406 link(dummy_loc(h))=null;
9408 mp_init_bbox(mp, h);
9411 @ Here is how edge structures are deleted. The process can be recursive because
9412 of the need to dereference edge structures that are used as dash patterns.
9415 @d add_edge_ref(A) incr(ref_count(A))
9416 @d delete_edge_ref(A) {
9417 if ( ref_count((A))==null )
9418 mp_toss_edges(mp, A);
9423 @<Declare the recycling subroutines@>=
9424 void mp_flush_dash_list (MP mp,pointer h);
9425 pointer mp_toss_gr_object (MP mp,pointer p) ;
9426 void mp_toss_edges (MP mp,pointer h) ;
9428 @ @c void mp_toss_edges (MP mp,pointer h) {
9429 pointer p,q; /* pointers that scan the list being recycled */
9430 pointer r; /* an edge structure that object |p| refers to */
9431 mp_flush_dash_list(mp, h);
9432 q=link(dummy_loc(h));
9433 while ( (q!=null) ) {
9435 r=mp_toss_gr_object(mp, p);
9436 if ( r!=null ) delete_edge_ref(r);
9438 mp_free_node(mp, h,edge_header_size);
9440 void mp_flush_dash_list (MP mp,pointer h) {
9441 pointer p,q; /* pointers that scan the list being recycled */
9443 while ( q!=null_dash ) {
9445 mp_free_node(mp, p,dash_node_size);
9447 dash_list(h)=null_dash;
9449 pointer mp_toss_gr_object (MP mp,pointer p) {
9450 /* returns an edge structure that needs to be dereferenced */
9451 pointer e; /* the edge structure to return */
9453 @<Prepare to recycle graphical object |p|@>;
9454 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9458 @ @<Prepare to recycle graphical object |p|@>=
9461 mp_toss_knot_list(mp, path_p(p));
9462 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9463 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9464 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9466 case mp_stroked_code:
9467 mp_toss_knot_list(mp, path_p(p));
9468 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9469 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9470 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9474 delete_str_ref(text_p(p));
9475 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9476 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9478 case mp_start_clip_code:
9479 case mp_start_bounds_code:
9480 mp_toss_knot_list(mp, path_p(p));
9482 case mp_stop_clip_code:
9483 case mp_stop_bounds_code:
9485 } /* there are no other cases */
9487 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9488 to be done before making a significant change to an edge structure. Much of
9489 the work is done in a separate routine |copy_objects| that copies a list of
9490 graphical objects into a new edge header.
9492 @c @<Declare a function called |copy_objects|@>
9493 pointer mp_private_edges (MP mp,pointer h) {
9494 /* make a private copy of the edge structure headed by |h| */
9495 pointer hh; /* the edge header for the new copy */
9496 pointer p,pp; /* pointers for copying the dash list */
9497 if ( ref_count(h)==null ) {
9501 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9502 @<Copy the dash list from |h| to |hh|@>;
9503 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9504 point into the new object list@>;
9509 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9510 @^data structure assumptions@>
9512 @<Copy the dash list from |h| to |hh|@>=
9513 pp=hh; p=dash_list(h);
9514 while ( (p!=null_dash) ) {
9515 link(pp)=mp_get_node(mp, dash_node_size);
9517 start_x(pp)=start_x(p);
9518 stop_x(pp)=stop_x(p);
9522 dash_y(hh)=dash_y(h)
9525 @ |h| is an edge structure
9528 mp_dash_object *mp_export_dashes (MP mp, pointer q, scaled *w) {
9531 scaled scf; /* scale factor */
9532 scaled *dashes = NULL;
9535 if (h==null || dash_list(h)==null_dash)
9538 scf=mp_get_pen_scale(mp, pen_p(q));
9540 if (*w==0) scf = dash_scale(q); else return NULL;
9542 scf=mp_make_scaled(mp, *w,scf);
9543 scf=mp_take_scaled(mp, scf,dash_scale(q));
9546 d = mp_xmalloc(mp,1,sizeof(mp_dash_object));
9547 start_x(null_dash)=start_x(p)+dash_y(h);
9548 while (p != null_dash) {
9549 dashes = mp_xrealloc(mp, dashes, num_dashes+2, sizeof(scaled));
9550 dashes[(num_dashes-1)] =
9551 mp_take_scaled(mp,(stop_x(p)-start_x(p)),scf);
9552 dashes[(num_dashes)] =
9553 mp_take_scaled(mp,(start_x(link(p))-stop_x(p)),scf);
9554 dashes[(num_dashes+1)] = -1; /* terminus */
9558 d->array_field = dashes;
9560 mp_take_scaled(mp,mp_dash_offset(mp, h),scf);
9566 @ @<Copy the bounding box information from |h| to |hh|...@>=
9567 minx_val(hh)=minx_val(h);
9568 miny_val(hh)=miny_val(h);
9569 maxx_val(hh)=maxx_val(h);
9570 maxy_val(hh)=maxy_val(h);
9571 bbtype(hh)=bbtype(h);
9572 p=dummy_loc(h); pp=dummy_loc(hh);
9573 while ((p!=bblast(h)) ) {
9574 if ( p==null ) mp_confusion(mp, "bblast");
9575 @:this can't happen bblast}{\quad bblast@>
9576 p=link(p); pp=link(pp);
9580 @ Here is the promised routine for copying graphical objects into a new edge
9581 structure. It starts copying at object~|p| and stops just before object~|q|.
9582 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9583 structure requires further initialization by |init_bbox|.
9585 @<Declare a function called |copy_objects|@>=
9586 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9587 pointer hh; /* the new edge header */
9588 pointer pp; /* the last newly copied object */
9589 small_number k; /* temporary register */
9590 hh=mp_get_node(mp, edge_header_size);
9591 dash_list(hh)=null_dash;
9595 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9602 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9603 { k=mp->gr_object_size[type(p)];
9604 link(pp)=mp_get_node(mp, k);
9606 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9607 @<Fix anything in graphical object |pp| that should differ from the
9608 corresponding field in |p|@>;
9612 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9614 case mp_start_clip_code:
9615 case mp_start_bounds_code:
9616 path_p(pp)=mp_copy_path(mp, path_p(p));
9619 path_p(pp)=mp_copy_path(mp, path_p(p));
9620 if ( pre_script(p)!=null ) add_str_ref(pre_script(p));
9621 if ( post_script(p)!=null ) add_str_ref(post_script(p));
9622 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9624 case mp_stroked_code:
9625 if ( pre_script(p)!=null ) add_str_ref(pre_script(p));
9626 if ( post_script(p)!=null ) add_str_ref(post_script(p));
9627 path_p(pp)=mp_copy_path(mp, path_p(p));
9628 pen_p(pp)=copy_pen(pen_p(p));
9629 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9632 if ( pre_script(p)!=null ) add_str_ref(pre_script(p));
9633 if ( post_script(p)!=null ) add_str_ref(post_script(p));
9634 add_str_ref(text_p(pp));
9636 case mp_stop_clip_code:
9637 case mp_stop_bounds_code:
9639 } /* there are no other cases */
9641 @ Here is one way to find an acceptable value for the second argument to
9642 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9643 skips past one picture component, where a ``picture component'' is a single
9644 graphical object, or a start bounds or start clip object and everything up
9645 through the matching stop bounds or stop clip object. The macro version avoids
9646 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9647 unless |p| points to a stop bounds or stop clip node, in which case it executes
9650 @d skip_component(A)
9651 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9652 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9656 pointer mp_skip_1component (MP mp,pointer p) {
9657 integer lev; /* current nesting level */
9660 if ( is_start_or_stop(p) ) {
9661 if ( is_stop(p) ) decr(lev); else incr(lev);
9668 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9670 @<Declare subroutines for printing expressions@>=
9671 @<Declare subroutines needed by |print_edges|@>
9672 void mp_print_edges (MP mp,pointer h, const char *s, boolean nuline) {
9673 pointer p; /* a graphical object to be printed */
9674 pointer hh,pp; /* temporary pointers */
9675 scaled scf; /* a scale factor for the dash pattern */
9676 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9677 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9679 while ( link(p)!=null ) {
9683 @<Cases for printing graphical object node |p|@>;
9685 mp_print(mp, "[unknown object type!]");
9689 mp_print_nl(mp, "End edges");
9690 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9692 mp_end_diagnostic(mp, true);
9695 @ @<Cases for printing graphical object node |p|@>=
9697 mp_print(mp, "Filled contour ");
9698 mp_print_obj_color(mp, p);
9699 mp_print_char(mp, ':'); mp_print_ln(mp);
9700 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9701 if ( (pen_p(p)!=null) ) {
9702 @<Print join type for graphical object |p|@>;
9703 mp_print(mp, " with pen"); mp_print_ln(mp);
9704 mp_pr_pen(mp, pen_p(p));
9708 @ @<Print join type for graphical object |p|@>=
9709 switch (ljoin_val(p)) {
9711 mp_print(mp, "mitered joins limited ");
9712 mp_print_scaled(mp, miterlim_val(p));
9715 mp_print(mp, "round joins");
9718 mp_print(mp, "beveled joins");
9721 mp_print(mp, "?? joins");
9726 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9728 @<Print join and cap types for stroked node |p|@>=
9729 switch (lcap_val(p)) {
9730 case 0:mp_print(mp, "butt"); break;
9731 case 1:mp_print(mp, "round"); break;
9732 case 2:mp_print(mp, "square"); break;
9733 default: mp_print(mp, "??"); break;
9736 mp_print(mp, " ends, ");
9737 @<Print join type for graphical object |p|@>
9739 @ Here is a routine that prints the color of a graphical object if it isn't
9740 black (the default color).
9742 @<Declare subroutines needed by |print_edges|@>=
9743 @<Declare a procedure called |print_compact_node|@>
9744 void mp_print_obj_color (MP mp,pointer p) {
9745 if ( color_model(p)==mp_grey_model ) {
9746 if ( grey_val(p)>0 ) {
9747 mp_print(mp, "greyed ");
9748 mp_print_compact_node(mp, obj_grey_loc(p),1);
9750 } else if ( color_model(p)==mp_cmyk_model ) {
9751 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9752 (yellow_val(p)>0) || (black_val(p)>0) ) {
9753 mp_print(mp, "processcolored ");
9754 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9756 } else if ( color_model(p)==mp_rgb_model ) {
9757 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9758 mp_print(mp, "colored ");
9759 mp_print_compact_node(mp, obj_red_loc(p),3);
9764 @ We also need a procedure for printing consecutive scaled values as if they
9765 were a known big node.
9767 @<Declare a procedure called |print_compact_node|@>=
9768 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9769 pointer q; /* last location to print */
9771 mp_print_char(mp, '(');
9773 mp_print_scaled(mp, mp->mem[p].sc);
9774 if ( p<q ) mp_print_char(mp, ',');
9777 mp_print_char(mp, ')');
9780 @ @<Cases for printing graphical object node |p|@>=
9781 case mp_stroked_code:
9782 mp_print(mp, "Filled pen stroke ");
9783 mp_print_obj_color(mp, p);
9784 mp_print_char(mp, ':'); mp_print_ln(mp);
9785 mp_pr_path(mp, path_p(p));
9786 if ( dash_p(p)!=null ) {
9787 mp_print_nl(mp, "dashed (");
9788 @<Finish printing the dash pattern that |p| refers to@>;
9791 @<Print join and cap types for stroked node |p|@>;
9792 mp_print(mp, " with pen"); mp_print_ln(mp);
9793 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9795 else mp_pr_pen(mp, pen_p(p));
9798 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9799 when it is not known to define a suitable dash pattern. This is disallowed
9800 here because the |dash_p| field should never point to such an edge header.
9801 Note that memory is allocated for |start_x(null_dash)| and we are free to
9802 give it any convenient value.
9804 @<Finish printing the dash pattern that |p| refers to@>=
9805 ok_to_dash=pen_is_elliptical(pen_p(p));
9806 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9809 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9810 mp_print(mp, " ??");
9811 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9812 while ( pp!=null_dash ) {
9813 mp_print(mp, "on ");
9814 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9815 mp_print(mp, " off ");
9816 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9818 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9820 mp_print(mp, ") shifted ");
9821 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9822 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9825 @ @<Declare subroutines needed by |print_edges|@>=
9826 scaled mp_dash_offset (MP mp,pointer h) {
9827 scaled x; /* the answer */
9828 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9829 @:this can't happen dash0}{\quad dash0@>
9830 if ( dash_y(h)==0 ) {
9833 x=-(start_x(dash_list(h)) % dash_y(h));
9834 if ( x<0 ) x=x+dash_y(h);
9839 @ @<Cases for printing graphical object node |p|@>=
9841 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9842 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9843 mp_print_char(mp, '"'); mp_print_ln(mp);
9844 mp_print_obj_color(mp, p);
9845 mp_print(mp, "transformed ");
9846 mp_print_compact_node(mp, text_tx_loc(p),6);
9849 @ @<Cases for printing graphical object node |p|@>=
9850 case mp_start_clip_code:
9851 mp_print(mp, "clipping path:");
9853 mp_pr_path(mp, path_p(p));
9855 case mp_stop_clip_code:
9856 mp_print(mp, "stop clipping");
9859 @ @<Cases for printing graphical object node |p|@>=
9860 case mp_start_bounds_code:
9861 mp_print(mp, "setbounds path:");
9863 mp_pr_path(mp, path_p(p));
9865 case mp_stop_bounds_code:
9866 mp_print(mp, "end of setbounds");
9869 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9870 subroutine that scans an edge structure and tries to interpret it as a dash
9871 pattern. This can only be done when there are no filled regions or clipping
9872 paths and all the pen strokes have the same color. The first step is to let
9873 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9874 project all the pen stroke paths onto the line $y=y_0$ and require that there
9875 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9876 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9877 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9879 @c @<Declare a procedure called |x_retrace_error|@>
9880 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9881 pointer p; /* this scans the stroked nodes in the object list */
9882 pointer p0; /* if not |null| this points to the first stroked node */
9883 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9884 pointer d,dd; /* pointers used to create the dash list */
9886 @<Other local variables in |make_dashes|@>;
9887 y0=0; /* the initial $y$ coordinate */
9888 if ( dash_list(h)!=null_dash )
9891 p=link(dummy_loc(h));
9893 if ( type(p)!=mp_stroked_code ) {
9894 @<Compain that the edge structure contains a node of the wrong type
9895 and |goto not_found|@>;
9898 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9899 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9900 or |goto not_found| if there is an error@>;
9901 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9904 if ( dash_list(h)==null_dash )
9905 goto NOT_FOUND; /* No error message */
9906 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9907 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9910 @<Flush the dash list, recycle |h| and return |null|@>;
9913 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9915 print_err("Picture is too complicated to use as a dash pattern");
9916 help3("When you say `dashed p', picture p should not contain any")
9917 ("text, filled regions, or clipping paths. This time it did")
9918 ("so I'll just make it a solid line instead.");
9919 mp_put_get_error(mp);
9923 @ A similar error occurs when monotonicity fails.
9925 @<Declare a procedure called |x_retrace_error|@>=
9926 void mp_x_retrace_error (MP mp) {
9927 print_err("Picture is too complicated to use as a dash pattern");
9928 help3("When you say `dashed p', every path in p should be monotone")
9929 ("in x and there must be no overlapping. This failed")
9930 ("so I'll just make it a solid line instead.");
9931 mp_put_get_error(mp);
9934 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9935 handle the case where the pen stroke |p| is itself dashed.
9937 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9938 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9941 if ( link(pp)!=pp ) {
9944 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9945 if there is a problem@>;
9946 } while (right_type(rr)!=mp_endpoint);
9948 d=mp_get_node(mp, dash_node_size);
9949 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9950 if ( x_coord(pp)<x_coord(rr) ) {
9951 start_x(d)=x_coord(pp);
9952 stop_x(d)=x_coord(rr);
9954 start_x(d)=x_coord(rr);
9955 stop_x(d)=x_coord(pp);
9958 @ We also need to check for the case where the segment from |qq| to |rr| is
9959 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9961 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9966 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9967 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9968 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9969 mp_x_retrace_error(mp); goto NOT_FOUND;
9973 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9974 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9975 mp_x_retrace_error(mp); goto NOT_FOUND;
9979 @ @<Other local variables in |make_dashes|@>=
9980 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9982 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9983 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9984 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9985 print_err("Picture is too complicated to use as a dash pattern");
9986 help3("When you say `dashed p', everything in picture p should")
9987 ("be the same color. I can\'t handle your color changes")
9988 ("so I'll just make it a solid line instead.");
9989 mp_put_get_error(mp);
9993 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9994 start_x(null_dash)=stop_x(d);
9995 dd=h; /* this makes |link(dd)=dash_list(h)| */
9996 while ( start_x(link(dd))<stop_x(d) )
9999 if ( (stop_x(dd)>start_x(d)) )
10000 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10005 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10007 while ( (link(d)!=null_dash) )
10010 dash_y(h)=stop_x(d)-start_x(dd);
10011 if ( abs(y0)>dash_y(h) ) {
10013 } else if ( d!=dd ) {
10014 dash_list(h)=link(dd);
10015 stop_x(d)=stop_x(dd)+dash_y(h);
10016 mp_free_node(mp, dd,dash_node_size);
10019 @ We get here when the argument is a null picture or when there is an error.
10020 Recovering from an error involves making |dash_list(h)| empty to indicate
10021 that |h| is not known to be a valid dash pattern. We also dereference |h|
10022 since it is not being used for the return value.
10024 @<Flush the dash list, recycle |h| and return |null|@>=
10025 mp_flush_dash_list(mp, h);
10026 delete_edge_ref(h);
10029 @ Having carefully saved the dashed stroked nodes in the
10030 corresponding dash nodes, we must be prepared to break up these dashes into
10033 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10034 d=h; /* now |link(d)=dash_list(h)| */
10035 while ( link(d)!=null_dash ) {
10041 hsf=dash_scale(ds);
10042 if ( (hh==null) ) mp_confusion(mp, "dash1");
10043 @:this can't happen dash0}{\quad dash1@>
10044 if ( dash_y(hh)==0 ) {
10047 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10048 @:this can't happen dash0}{\quad dash1@>
10049 @<Replace |link(d)| by a dashed version as determined by edge header
10050 |hh| and scale factor |ds|@>;
10055 @ @<Other local variables in |make_dashes|@>=
10056 pointer dln; /* |link(d)| */
10057 pointer hh; /* an edge header that tells how to break up |dln| */
10058 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10059 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10060 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10062 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10065 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10066 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10067 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10068 +mp_take_scaled(mp, hsf,dash_y(hh));
10069 stop_x(null_dash)=start_x(null_dash);
10070 @<Advance |dd| until finding the first dash that overlaps |dln| when
10071 offset by |xoff|@>;
10072 while ( start_x(dln)<=stop_x(dln) ) {
10073 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10074 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10077 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10080 mp_free_node(mp, dln,dash_node_size)
10082 @ The name of this module is a bit of a lie because we just find the
10083 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10084 overlap possible. It could be that the unoffset version of dash |dln| falls
10085 in the gap between |dd| and its predecessor.
10087 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10088 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10092 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10093 if ( dd==null_dash ) {
10095 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10098 @ At this point we already know that
10099 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10101 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10102 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10103 link(d)=mp_get_node(mp, dash_node_size);
10106 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10107 start_x(d)=start_x(dln);
10109 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10110 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10111 stop_x(d)=stop_x(dln);
10113 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10116 @ The next major task is to update the bounding box information in an edge
10117 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10118 header's bounding box to accommodate the box computed by |path_bbox| or
10119 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10122 @c void mp_adjust_bbox (MP mp,pointer h) {
10123 if ( minx<minx_val(h) ) minx_val(h)=minx;
10124 if ( miny<miny_val(h) ) miny_val(h)=miny;
10125 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10126 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10129 @ Here is a special routine for updating the bounding box information in
10130 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10131 that is to be stroked with the pen~|pp|.
10133 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10134 pointer q; /* a knot node adjacent to knot |p| */
10135 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10136 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10137 scaled z; /* a coordinate being tested against the bounding box */
10138 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10139 integer i; /* a loop counter */
10140 if ( right_type(p)!=mp_endpoint ) {
10143 @<Make |(dx,dy)| the final direction for the path segment from
10144 |q| to~|p|; set~|d|@>;
10145 d=mp_pyth_add(mp, dx,dy);
10147 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10148 for (i=1;i<= 2;i++) {
10149 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10150 update the bounding box to accommodate it@>;
10154 if ( right_type(p)==mp_endpoint ) {
10157 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10163 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10164 if ( q==link(p) ) {
10165 dx=x_coord(p)-right_x(p);
10166 dy=y_coord(p)-right_y(p);
10167 if ( (dx==0)&&(dy==0) ) {
10168 dx=x_coord(p)-left_x(q);
10169 dy=y_coord(p)-left_y(q);
10172 dx=x_coord(p)-left_x(p);
10173 dy=y_coord(p)-left_y(p);
10174 if ( (dx==0)&&(dy==0) ) {
10175 dx=x_coord(p)-right_x(q);
10176 dy=y_coord(p)-right_y(q);
10179 dx=x_coord(p)-x_coord(q);
10180 dy=y_coord(p)-y_coord(q)
10182 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10183 dx=mp_make_fraction(mp, dx,d);
10184 dy=mp_make_fraction(mp, dy,d);
10185 mp_find_offset(mp, -dy,dx,pp);
10186 xx=mp->cur_x; yy=mp->cur_y
10188 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10189 mp_find_offset(mp, dx,dy,pp);
10190 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10191 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10192 mp_confusion(mp, "box_ends");
10193 @:this can't happen box ends}{\quad\\{box\_ends}@>
10194 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10195 if ( z<minx_val(h) ) minx_val(h)=z;
10196 if ( z>maxx_val(h) ) maxx_val(h)=z;
10197 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10198 if ( z<miny_val(h) ) miny_val(h)=z;
10199 if ( z>maxy_val(h) ) maxy_val(h)=z
10201 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10205 } while (right_type(p)!=mp_endpoint)
10207 @ The major difficulty in finding the bounding box of an edge structure is the
10208 effect of clipping paths. We treat them conservatively by only clipping to the
10209 clipping path's bounding box, but this still
10210 requires recursive calls to |set_bbox| in order to find the bounding box of
10212 the objects to be clipped. Such calls are distinguished by the fact that the
10213 boolean parameter |top_level| is false.
10215 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10216 pointer p; /* a graphical object being considered */
10217 scaled sminx,sminy,smaxx,smaxy;
10218 /* for saving the bounding box during recursive calls */
10219 scaled x0,x1,y0,y1; /* temporary registers */
10220 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10221 @<Wipe out any existing bounding box information if |bbtype(h)| is
10222 incompatible with |internal[mp_true_corners]|@>;
10223 while ( link(bblast(h))!=null ) {
10227 case mp_stop_clip_code:
10228 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10229 @:this can't happen bbox}{\quad bbox@>
10231 @<Other cases for updating the bounding box based on the type of object |p|@>;
10232 } /* all cases are enumerated above */
10234 if ( ! top_level ) mp_confusion(mp, "bbox");
10237 @ @<Internal library declarations@>=
10238 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10240 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10241 switch (bbtype(h)) {
10245 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10248 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10250 } /* there are no other cases */
10252 @ @<Other cases for updating the bounding box...@>=
10254 mp_path_bbox(mp, path_p(p));
10255 if ( pen_p(p)!=null ) {
10258 mp_pen_bbox(mp, pen_p(p));
10264 mp_adjust_bbox(mp, h);
10267 @ @<Other cases for updating the bounding box...@>=
10268 case mp_start_bounds_code:
10269 if ( mp->internal[mp_true_corners]>0 ) {
10270 bbtype(h)=bounds_unset;
10272 bbtype(h)=bounds_set;
10273 mp_path_bbox(mp, path_p(p));
10274 mp_adjust_bbox(mp, h);
10275 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10279 case mp_stop_bounds_code:
10280 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10281 @:this can't happen bbox2}{\quad bbox2@>
10284 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10287 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10288 @:this can't happen bbox2}{\quad bbox2@>
10290 if ( type(p)==mp_start_bounds_code ) incr(lev);
10291 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10295 @ It saves a lot of grief here to be slightly conservative and not account for
10296 omitted parts of dashed lines. We also don't worry about the material omitted
10297 when using butt end caps. The basic computation is for round end caps and
10298 |box_ends| augments it for square end caps.
10300 @<Other cases for updating the bounding box...@>=
10301 case mp_stroked_code:
10302 mp_path_bbox(mp, path_p(p));
10305 mp_pen_bbox(mp, pen_p(p));
10310 mp_adjust_bbox(mp, h);
10311 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10312 mp_box_ends(mp, path_p(p), pen_p(p), h);
10315 @ The height width and depth information stored in a text node determines a
10316 rectangle that needs to be transformed according to the transformation
10317 parameters stored in the text node.
10319 @<Other cases for updating the bounding box...@>=
10321 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10322 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10323 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10326 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10327 else { minx=minx+y1; maxx=maxx+y0; }
10328 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10329 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10330 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10331 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10334 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10335 else { miny=miny+y1; maxy=maxy+y0; }
10336 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10337 mp_adjust_bbox(mp, h);
10340 @ This case involves a recursive call that advances |bblast(h)| to the node of
10341 type |mp_stop_clip_code| that matches |p|.
10343 @<Other cases for updating the bounding box...@>=
10344 case mp_start_clip_code:
10345 mp_path_bbox(mp, path_p(p));
10348 sminx=minx_val(h); sminy=miny_val(h);
10349 smaxx=maxx_val(h); smaxy=maxy_val(h);
10350 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10351 starting at |link(p)|@>;
10352 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10354 minx=sminx; miny=sminy;
10355 maxx=smaxx; maxy=smaxy;
10356 mp_adjust_bbox(mp, h);
10359 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10360 minx_val(h)=el_gordo;
10361 miny_val(h)=el_gordo;
10362 maxx_val(h)=-el_gordo;
10363 maxy_val(h)=-el_gordo;
10364 mp_set_bbox(mp, h,false)
10366 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10367 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10368 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10369 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10370 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10372 @* \[22] Finding an envelope.
10373 When \MP\ has a path and a polygonal pen, it needs to express the desired
10374 shape in terms of things \ps\ can understand. The present task is to compute
10375 a new path that describes the region to be filled. It is convenient to
10376 define this as a two step process where the first step is determining what
10377 offset to use for each segment of the path.
10379 @ Given a pointer |c| to a cyclic path,
10380 and a pointer~|h| to the first knot of a pen polygon,
10381 the |offset_prep| routine changes the path into cubics that are
10382 associated with particular pen offsets. Thus if the cubic between |p|
10383 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10384 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10385 to because |l-k| could be negative.)
10387 After overwriting the type information with offset differences, we no longer
10388 have a true path so we refer to the knot list returned by |offset_prep| as an
10391 Since an envelope spec only determines relative changes in pen offsets,
10392 |offset_prep| sets a global variable |spec_offset| to the relative change from
10393 |h| to the first offset.
10395 @d zero_off 16384 /* added to offset changes to make them positive */
10398 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10400 @ @c @<Declare subroutines needed by |offset_prep|@>
10401 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10402 halfword n; /* the number of vertices in the pen polygon */
10403 pointer c0,p,q,q0,r,w, ww; /* for list manipulation */
10404 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10405 pointer w0; /* a pointer to pen offset to use just before |p| */
10406 scaled dxin,dyin; /* the direction into knot |p| */
10407 integer turn_amt; /* change in pen offsets for the current cubic */
10408 @<Other local variables for |offset_prep|@>;
10410 @<Initialize the pen size~|n|@>;
10411 @<Initialize the incoming direction and pen offset at |c|@>;
10412 p=c; c0=c; k_needed=0;
10415 @<Split the cubic between |p| and |q|, if necessary, into cubics
10416 associated with single offsets, after which |q| should
10417 point to the end of the final such cubic@>;
10419 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10420 might have been introduced by the splitting process@>;
10422 @<Fix the offset change in |info(c)| and set |c| to the return value of
10427 @ We shall want to keep track of where certain knots on the cyclic path
10428 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10429 knot nodes because some nodes are deleted while removing dead cubics. Thus
10430 |offset_prep| updates the following pointers
10434 pointer spec_p2; /* pointers to distinguished knots */
10437 mp->spec_p1=null; mp->spec_p2=null;
10439 @ @<Initialize the pen size~|n|@>=
10446 @ Since the true incoming direction isn't known yet, we just pick a direction
10447 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10450 @<Initialize the incoming direction and pen offset at |c|@>=
10451 dxin=x_coord(link(h))-x_coord(knil(h));
10452 dyin=y_coord(link(h))-y_coord(knil(h));
10453 if ( (dxin==0)&&(dyin==0) ) {
10454 dxin=y_coord(knil(h))-y_coord(h);
10455 dyin=x_coord(h)-x_coord(knil(h));
10459 @ We must be careful not to remove the only cubic in a cycle.
10461 But we must also be careful for another reason. If the user-supplied
10462 path starts with a set of degenerate cubics, the target node |q| can
10463 be collapsed to the initial node |p| which might be the same as the
10464 initial node |c| of the curve. This would cause the |offset_prep| routine
10465 to bail out too early, causing distress later on. (See for example
10466 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10469 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10473 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10474 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10475 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10477 @<Remove the cubic following |p| and update the data structures
10478 to merge |r| into |p|@>;
10482 /* Check if we removed too much */
10483 if ((q!=q0)&&(q!=c||c==c0))
10486 @ @<Remove the cubic following |p| and update the data structures...@>=
10487 { k_needed=info(p)-zero_off;
10491 info(p)=k_needed+info(r);
10494 if ( r==c ) { info(p)=info(c); c=p; };
10495 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10496 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10497 r=p; mp_remove_cubic(mp, p);
10500 @ Not setting the |info| field of the newly created knot allows the splitting
10501 routine to work for paths.
10503 @<Declare subroutines needed by |offset_prep|@>=
10504 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10505 scaled v; /* an intermediate value */
10506 pointer q,r; /* for list manipulation */
10507 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10508 originator(r)=mp_program_code;
10509 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10510 v=t_of_the_way(right_x(p),left_x(q));
10511 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10512 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10513 left_x(r)=t_of_the_way(right_x(p),v);
10514 right_x(r)=t_of_the_way(v,left_x(q));
10515 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10516 v=t_of_the_way(right_y(p),left_y(q));
10517 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10518 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10519 left_y(r)=t_of_the_way(right_y(p),v);
10520 right_y(r)=t_of_the_way(v,left_y(q));
10521 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10524 @ This does not set |info(p)| or |right_type(p)|.
10526 @<Declare subroutines needed by |offset_prep|@>=
10527 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10528 pointer q; /* the node that disappears */
10529 q=link(p); link(p)=link(q);
10530 right_x(p)=right_x(q); right_y(p)=right_y(q);
10531 mp_free_node(mp, q,knot_node_size);
10534 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10535 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10536 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10537 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10538 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10539 When listed by increasing $k$, these directions occur in counter-clockwise
10540 order so that $d_k\preceq d\k$ for all~$k$.
10541 The goal of |offset_prep| is to find an offset index~|k| to associate with
10542 each cubic, such that the direction $d(t)$ of the cubic satisfies
10543 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10544 We may have to split a cubic into many pieces before each
10545 piece corresponds to a unique offset.
10547 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10548 info(p)=zero_off+k_needed;
10550 @<Prepare for derivative computations;
10551 |goto not_found| if the current cubic is dead@>;
10552 @<Find the initial direction |(dx,dy)|@>;
10553 @<Update |info(p)| and find the offset $w_k$ such that
10554 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10555 the direction change at |p|@>;
10556 @<Find the final direction |(dxin,dyin)|@>;
10557 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10558 @<Complete the offset splitting process@>;
10559 w0=mp_pen_walk(mp, w0,turn_amt)
10561 @ @<Declare subroutines needed by |offset_prep|@>=
10562 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10563 /* walk |k| steps around a pen from |w| */
10564 while ( k>0 ) { w=link(w); decr(k); };
10565 while ( k<0 ) { w=knil(w); incr(k); };
10569 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10570 calculated from the quadratic polynomials
10571 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10572 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10573 Since we may be calculating directions from several cubics
10574 split from the current one, it is desirable to do these calculations
10575 without losing too much precision. ``Scaled up'' values of the
10576 derivatives, which will be less tainted by accumulated errors than
10577 derivatives found from the cubics themselves, are maintained in
10578 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10579 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10580 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10582 @<Other local variables for |offset_prep|@>=
10583 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10584 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10585 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10586 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10587 integer max_coef; /* used while scaling */
10588 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10589 fraction t; /* where the derivative passes through zero */
10590 fraction s; /* a temporary value */
10592 @ @<Prepare for derivative computations...@>=
10593 x0=right_x(p)-x_coord(p);
10594 x2=x_coord(q)-left_x(q);
10595 x1=left_x(q)-right_x(p);
10596 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10597 y1=left_y(q)-right_y(p);
10599 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10600 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10601 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10602 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10603 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10604 if ( max_coef==0 ) goto NOT_FOUND;
10605 while ( max_coef<fraction_half ) {
10607 double(x0); double(x1); double(x2);
10608 double(y0); double(y1); double(y2);
10611 @ Let us first solve a special case of the problem: Suppose we
10612 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10613 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10614 $d(0)\succ d_{k-1}$.
10615 Then, in a sense, we're halfway done, since one of the two relations
10616 in $(*)$ is satisfied, and the other couldn't be satisfied for
10617 any other value of~|k|.
10619 Actually, the conditions can be relaxed somewhat since a relation such as
10620 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10621 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10622 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10623 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10624 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10625 counterclockwise direction.
10627 The |fin_offset_prep| subroutine solves the stated subproblem.
10628 It has a parameter called |rise| that is |1| in
10629 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10630 the derivative of the cubic following |p|.
10631 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10632 be set properly. The |turn_amt| parameter gives the absolute value of the
10633 overall net change in pen offsets.
10635 @<Declare subroutines needed by |offset_prep|@>=
10636 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10637 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10638 integer rise, integer turn_amt) {
10639 pointer ww; /* for list manipulation */
10640 scaled du,dv; /* for slope calculation */
10641 integer t0,t1,t2; /* test coefficients */
10642 fraction t; /* place where the derivative passes a critical slope */
10643 fraction s; /* slope or reciprocal slope */
10644 integer v; /* intermediate value for updating |x0..y2| */
10645 pointer q; /* original |link(p)| */
10648 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10649 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10650 @<Compute test coefficients |(t0,t1,t2)|
10651 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10652 t=mp_crossing_point(mp, t0,t1,t2);
10653 if ( t>=fraction_one ) {
10654 if ( turn_amt>0 ) t=fraction_one; else return;
10656 @<Split the cubic at $t$,
10657 and split off another cubic if the derivative crosses back@>;
10662 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10663 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10664 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10667 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10668 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10669 if ( abs(du)>=abs(dv) ) {
10670 s=mp_make_fraction(mp, dv,du);
10671 t0=mp_take_fraction(mp, x0,s)-y0;
10672 t1=mp_take_fraction(mp, x1,s)-y1;
10673 t2=mp_take_fraction(mp, x2,s)-y2;
10674 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10676 s=mp_make_fraction(mp, du,dv);
10677 t0=x0-mp_take_fraction(mp, y0,s);
10678 t1=x1-mp_take_fraction(mp, y1,s);
10679 t2=x2-mp_take_fraction(mp, y2,s);
10680 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10682 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10684 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10685 $(*)$, and it might cross again and return towards $s_{k-1}$ or $s_k$,
10686 respectively, yielding another solution of $(*)$.
10688 @<Split the cubic at $t$, and split off another...@>=
10690 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10692 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10693 x0=t_of_the_way(v,x1);
10694 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10695 y0=t_of_the_way(v,y1);
10696 if ( turn_amt<0 ) {
10697 t1=t_of_the_way(t1,t2);
10698 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10699 t=mp_crossing_point(mp, 0,-t1,-t2);
10700 if ( t>fraction_one ) t=fraction_one;
10702 if ( (t==fraction_one)&&(link(p)!=q) ) {
10703 info(link(p))=info(link(p))-rise;
10705 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10706 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10707 x2=t_of_the_way(x1,v);
10708 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10709 y2=t_of_the_way(y1,v);
10714 @ Now we must consider the general problem of |offset_prep|, when
10715 nothing is known about a given cubic. We start by finding its
10716 direction in the vicinity of |t=0|.
10718 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10719 has not yet introduced any more numerical errors. Thus we can compute
10720 the true initial direction for the given cubic, even if it is almost
10723 @<Find the initial direction |(dx,dy)|@>=
10725 if ( dx==0 && dy==0 ) {
10727 if ( dx==0 && dy==0 ) {
10731 if ( p==c ) { dx0=dx; dy0=dy; }
10733 @ @<Find the final direction |(dxin,dyin)|@>=
10735 if ( dxin==0 && dyin==0 ) {
10737 if ( dxin==0 && dyin==0 ) {
10742 @ The next step is to bracket the initial direction between consecutive
10743 edges of the pen polygon. We must be careful to turn clockwise only if
10744 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10745 counter-clockwise in order to make \&{doublepath} envelopes come out
10746 @:double_path_}{\&{doublepath} primitive@>
10747 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10749 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10750 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10751 w=mp_pen_walk(mp, w0, turn_amt);
10753 info(p)=info(p)+turn_amt
10755 @ Decide how many pen offsets to go away from |w| in order to find the offset
10756 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10757 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10758 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10760 If the pen polygon has only two edges, they could both be parallel
10761 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10762 such edge in order to avoid an infinite loop.
10764 @<Declare subroutines needed by |offset_prep|@>=
10765 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10766 scaled dy, boolean ccw) {
10767 pointer ww; /* a neighbor of knot~|w| */
10768 integer s; /* turn amount so far */
10769 integer t; /* |ab_vs_cd| result */
10774 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10775 dx,(y_coord(ww)-y_coord(w)));
10782 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10783 dx,(y_coord(w)-y_coord(ww))) < 0) {
10791 @ When we're all done, the final offset is |w0| and the final curve direction
10792 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10793 can correct |info(c)| which was erroneously based on an incoming offset
10796 @d fix_by(A) info(c)=info(c)+(A)
10798 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10799 mp->spec_offset=info(c)-zero_off;
10800 if ( link(c)==c ) {
10801 info(c)=zero_off+n;
10804 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10805 while ( info(c)<=zero_off-n ) fix_by(n);
10806 while ( info(c)>zero_off ) fix_by(-n);
10807 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10810 @ Finally we want to reduce the general problem to situations that
10811 |fin_offset_prep| can handle. We split the cubic into at most three parts
10812 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10814 @<Complete the offset splitting process@>=
10816 @<Compute test coeff...@>;
10817 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10818 |t:=fraction_one+1|@>;
10819 if ( t>fraction_one ) {
10820 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10822 mp_split_cubic(mp, p,t); r=link(p);
10823 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10824 x2a=t_of_the_way(x1a,x1);
10825 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10826 y2a=t_of_the_way(y1a,y1);
10827 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10828 info(r)=zero_off-1;
10829 if ( turn_amt>=0 ) {
10830 t1=t_of_the_way(t1,t2);
10832 t=mp_crossing_point(mp, 0,-t1,-t2);
10833 if ( t>fraction_one ) t=fraction_one;
10834 @<Split off another rising cubic for |fin_offset_prep|@>;
10835 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10837 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10841 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10842 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10843 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10844 x0a=t_of_the_way(x1,x1a);
10845 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10846 y0a=t_of_the_way(y1,y1a);
10847 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10850 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10851 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10852 need to decide whether the directions are parallel or antiparallel. We
10853 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10854 should be avoided when the value of |turn_amt| already determines the
10855 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10856 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10857 crossing and the first crossing cannot be antiparallel.
10859 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10860 t=mp_crossing_point(mp, t0,t1,t2);
10861 if ( turn_amt>=0 ) {
10865 u0=t_of_the_way(x0,x1);
10866 u1=t_of_the_way(x1,x2);
10867 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10868 v0=t_of_the_way(y0,y1);
10869 v1=t_of_the_way(y1,y2);
10870 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10871 if ( ss<0 ) t=fraction_one+1;
10873 } else if ( t>fraction_one ) {
10877 @ @<Other local variables for |offset_prep|@>=
10878 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10879 integer ss = 0; /* the part of the dot product computed so far */
10880 int d_sign; /* sign of overall change in direction for this cubic */
10882 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10883 problem to decide which way it loops around but that's OK as long we're
10884 consistent. To make \&{doublepath} envelopes work properly, reversing
10885 the path should always change the sign of |turn_amt|.
10887 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10888 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10890 @<Check rotation direction based on node position@>
10894 if ( dy>0 ) d_sign=1; else d_sign=-1;
10896 if ( dx>0 ) d_sign=1; else d_sign=-1;
10899 @<Make |ss| negative if and only if the total change in direction is
10900 more than $180^\circ$@>;
10901 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10902 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10904 @ We check rotation direction by looking at the vector connecting the current
10905 node with the next. If its angle with incoming and outgoing tangents has the
10906 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10907 Otherwise we proceed to the cusp code.
10909 @<Check rotation direction based on node position@>=
10910 u0=x_coord(q)-x_coord(p);
10911 u1=y_coord(q)-y_coord(p);
10912 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10913 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10915 @ In order to be invariant under path reversal, the result of this computation
10916 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10917 then swapped with |(x2,y2)|. We make use of the identities
10918 |take_fraction(-a,-b)=take_fraction(a,b)| and
10919 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10921 @<Make |ss| negative if and only if the total change in direction is...@>=
10922 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10923 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10924 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10926 t=mp_crossing_point(mp, t0,t1,-t0);
10927 u0=t_of_the_way(x0,x1);
10928 u1=t_of_the_way(x1,x2);
10929 v0=t_of_the_way(y0,y1);
10930 v1=t_of_the_way(y1,y2);
10932 t=mp_crossing_point(mp, -t0,t1,t0);
10933 u0=t_of_the_way(x2,x1);
10934 u1=t_of_the_way(x1,x0);
10935 v0=t_of_the_way(y2,y1);
10936 v1=t_of_the_way(y1,y0);
10938 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10939 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10941 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10942 that the |cur_pen| has not been walked around to the first offset.
10945 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, const char *s) {
10946 pointer p,q; /* list traversal */
10947 pointer w; /* the current pen offset */
10948 mp_print_diagnostic(mp, "Envelope spec",s,true);
10949 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10951 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10952 mp_print(mp, " % beginning with offset ");
10953 mp_print_two(mp, x_coord(w),y_coord(w));
10957 @<Print the cubic between |p| and |q|@>;
10959 if ((p==cur_spec) || (info(p)!=zero_off))
10962 if ( info(p)!=zero_off ) {
10963 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10965 } while (p!=cur_spec);
10966 mp_print_nl(mp, " & cycle");
10967 mp_end_diagnostic(mp, true);
10970 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10972 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10973 mp_print(mp, " % ");
10974 if ( info(p)>zero_off ) mp_print(mp, "counter");
10975 mp_print(mp, "clockwise to offset ");
10976 mp_print_two(mp, x_coord(w),y_coord(w));
10979 @ @<Print the cubic between |p| and |q|@>=
10981 mp_print_nl(mp, " ..controls ");
10982 mp_print_two(mp, right_x(p),right_y(p));
10983 mp_print(mp, " and ");
10984 mp_print_two(mp, left_x(q),left_y(q));
10985 mp_print_nl(mp, " ..");
10986 mp_print_two(mp, x_coord(q),y_coord(q));
10989 @ Once we have an envelope spec, the remaining task to construct the actual
10990 envelope by offsetting each cubic as determined by the |info| fields in
10991 the knots. First we use |offset_prep| to convert the |c| into an envelope
10992 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10995 The |ljoin| and |miterlim| parameters control the treatment of points where the
10996 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10997 The endpoints are easily located because |c| is given in undoubled form
10998 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10999 track of the endpoints and treat them like very sharp corners.
11000 Butt end caps are treated like beveled joins; round end caps are treated like
11001 round joins; and square end caps are achieved by setting |join_type:=3|.
11003 None of these parameters apply to inside joins where the convolution tracing
11004 has retrograde lines. In such cases we use a simple connect-the-endpoints
11005 approach that is achieved by setting |join_type:=2|.
11007 @c @<Declare a function called |insert_knot|@>
11008 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11009 small_number lcap, scaled miterlim) {
11010 pointer p,q,r,q0; /* for manipulating the path */
11011 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11012 pointer w,w0; /* the pen knot for the current offset */
11013 scaled qx,qy; /* unshifted coordinates of |q| */
11014 halfword k,k0; /* controls pen edge insertion */
11015 @<Other local variables for |make_envelope|@>;
11016 dxin=0; dyin=0; dxout=0; dyout=0;
11017 mp->spec_p1=null; mp->spec_p2=null;
11018 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11019 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11020 the initial offset@>;
11025 qx=x_coord(q); qy=y_coord(q);
11028 if ( k!=zero_off ) {
11029 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11031 @<Add offset |w| to the cubic from |p| to |q|@>;
11032 while ( k!=zero_off ) {
11033 @<Step |w| and move |k| one step closer to |zero_off|@>;
11034 if ( (join_type==1)||(k==zero_off) )
11035 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11037 if ( q!=link(p) ) {
11038 @<Set |p=link(p)| and add knots between |p| and |q| as
11039 required by |join_type|@>;
11046 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11047 c=mp_offset_prep(mp, c,h);
11048 if ( mp->internal[mp_tracing_specs]>0 )
11049 mp_print_spec(mp, c,h,"");
11050 h=mp_pen_walk(mp, h,mp->spec_offset)
11052 @ Mitered and squared-off joins depend on path directions that are difficult to
11053 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11054 have degenerate cubics only if the entire cycle collapses to a single
11055 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11056 envelope degenerate as well.
11058 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11059 if ( k<zero_off ) {
11062 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11063 else if ( lcap==2 ) join_type=3;
11064 else join_type=2-lcap;
11065 if ( (join_type==0)||(join_type==3) ) {
11066 @<Set the incoming and outgoing directions at |q|; in case of
11067 degeneracy set |join_type:=2|@>;
11068 if ( join_type==0 ) {
11069 @<If |miterlim| is less than the secant of half the angle at |q|
11070 then set |join_type:=2|@>;
11075 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11077 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11078 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11080 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11083 @ @<Other local variables for |make_envelope|@>=
11084 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11085 scaled tmp; /* a temporary value */
11087 @ The coordinates of |p| have already been shifted unless |p| is the first
11088 knot in which case they get shifted at the very end.
11090 @<Add offset |w| to the cubic from |p| to |q|@>=
11091 right_x(p)=right_x(p)+x_coord(w);
11092 right_y(p)=right_y(p)+y_coord(w);
11093 left_x(q)=left_x(q)+x_coord(w);
11094 left_y(q)=left_y(q)+y_coord(w);
11095 x_coord(q)=x_coord(q)+x_coord(w);
11096 y_coord(q)=y_coord(q)+y_coord(w);
11097 left_type(q)=mp_explicit;
11098 right_type(q)=mp_explicit
11100 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11101 if ( k>zero_off ){ w=link(w); decr(k); }
11102 else { w=knil(w); incr(k); }
11104 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11105 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11106 case the cubic containing these control points is ``yet to be examined.''
11108 @<Declare a function called |insert_knot|@>=
11109 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11110 /* returns the inserted knot */
11111 pointer r; /* the new knot */
11112 r=mp_get_node(mp, knot_node_size);
11113 link(r)=link(q); link(q)=r;
11114 right_x(r)=right_x(q);
11115 right_y(r)=right_y(q);
11118 right_x(q)=x_coord(q);
11119 right_y(q)=y_coord(q);
11120 left_x(r)=x_coord(r);
11121 left_y(r)=y_coord(r);
11122 left_type(r)=mp_explicit;
11123 right_type(r)=mp_explicit;
11124 originator(r)=mp_program_code;
11128 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11130 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11133 if ( (join_type==0)||(join_type==3) ) {
11134 if ( join_type==0 ) {
11135 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11137 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11141 right_x(r)=x_coord(r);
11142 right_y(r)=y_coord(r);
11147 @ For very small angles, adding a knot is unnecessary and would cause numerical
11148 problems, so we just set |r:=null| in that case.
11150 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11152 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11153 if ( abs(det)<26844 ) {
11154 r=null; /* sine $<10^{-4}$ */
11156 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11157 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11158 tmp=mp_make_fraction(mp, tmp,det);
11159 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11160 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11164 @ @<Other local variables for |make_envelope|@>=
11165 fraction det; /* a determinant used for mitered join calculations */
11167 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11169 ht_x=y_coord(w)-y_coord(w0);
11170 ht_y=x_coord(w0)-x_coord(w);
11171 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11172 ht_x+=ht_x; ht_y+=ht_y;
11174 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11175 product with |(ht_x,ht_y)|@>;
11176 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11177 mp_take_fraction(mp, dyin,ht_y));
11178 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11179 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11180 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11181 mp_take_fraction(mp, dyout,ht_y));
11182 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11183 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11186 @ @<Other local variables for |make_envelope|@>=
11187 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11188 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11189 halfword kk; /* keeps track of the pen vertices being scanned */
11190 pointer ww; /* the pen vertex being tested */
11192 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11193 from zero to |max_ht|.
11195 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11200 @<Step |ww| and move |kk| one step closer to |k0|@>;
11201 if ( kk==k0 ) break;
11202 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11203 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11204 if ( tmp>max_ht ) max_ht=tmp;
11208 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11209 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11210 else { ww=knil(ww); incr(kk); }
11212 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11213 if ( left_type(c)==mp_endpoint ) {
11214 mp->spec_p1=mp_htap_ypoc(mp, c);
11215 mp->spec_p2=mp->path_tail;
11216 originator(mp->spec_p1)=mp_program_code;
11217 link(mp->spec_p2)=link(mp->spec_p1);
11218 link(mp->spec_p1)=c;
11219 mp_remove_cubic(mp, mp->spec_p1);
11221 if ( c!=link(c) ) {
11222 originator(mp->spec_p2)=mp_program_code;
11223 mp_remove_cubic(mp, mp->spec_p2);
11225 @<Make |c| look like a cycle of length one@>;
11229 @ @<Make |c| look like a cycle of length one@>=
11231 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11232 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11233 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11236 @ In degenerate situations we might have to look at the knot preceding~|q|.
11237 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11239 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11240 dxin=x_coord(q)-left_x(q);
11241 dyin=y_coord(q)-left_y(q);
11242 if ( (dxin==0)&&(dyin==0) ) {
11243 dxin=x_coord(q)-right_x(p);
11244 dyin=y_coord(q)-right_y(p);
11245 if ( (dxin==0)&&(dyin==0) ) {
11246 dxin=x_coord(q)-x_coord(p);
11247 dyin=y_coord(q)-y_coord(p);
11248 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11249 dxin=dxin+x_coord(w);
11250 dyin=dyin+y_coord(w);
11254 tmp=mp_pyth_add(mp, dxin,dyin);
11258 dxin=mp_make_fraction(mp, dxin,tmp);
11259 dyin=mp_make_fraction(mp, dyin,tmp);
11260 @<Set the outgoing direction at |q|@>;
11263 @ If |q=c| then the coordinates of |r| and the control points between |q|
11264 and~|r| have already been offset by |h|.
11266 @<Set the outgoing direction at |q|@>=
11267 dxout=right_x(q)-x_coord(q);
11268 dyout=right_y(q)-y_coord(q);
11269 if ( (dxout==0)&&(dyout==0) ) {
11271 dxout=left_x(r)-x_coord(q);
11272 dyout=left_y(r)-y_coord(q);
11273 if ( (dxout==0)&&(dyout==0) ) {
11274 dxout=x_coord(r)-x_coord(q);
11275 dyout=y_coord(r)-y_coord(q);
11279 dxout=dxout-x_coord(h);
11280 dyout=dyout-y_coord(h);
11282 tmp=mp_pyth_add(mp, dxout,dyout);
11283 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11284 @:this can't happen degerate spec}{\quad degenerate spec@>
11285 dxout=mp_make_fraction(mp, dxout,tmp);
11286 dyout=mp_make_fraction(mp, dyout,tmp)
11288 @* \[23] Direction and intersection times.
11289 A path of length $n$ is defined parametrically by functions $x(t)$ and
11290 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11291 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11292 we shall consider operations that determine special times associated with
11293 given paths: the first time that a path travels in a given direction, and
11294 a pair of times at which two paths cross each other.
11296 @ Let's start with the easier task. The function |find_direction_time| is
11297 given a direction |(x,y)| and a path starting at~|h|. If the path never
11298 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11299 it will be nonnegative.
11301 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11302 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11303 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11304 assumed to match any given direction at time~|t|.
11306 The routine solves this problem in nondegenerate cases by rotating the path
11307 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11308 to find when a given path first travels ``due east.''
11311 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11312 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11313 pointer p,q; /* for list traversal */
11314 scaled n; /* the direction time at knot |p| */
11315 scaled tt; /* the direction time within a cubic */
11316 @<Other local variables for |find_direction_time|@>;
11317 @<Normalize the given direction for better accuracy;
11318 but |return| with zero result if it's zero@>;
11321 if ( right_type(p)==mp_endpoint ) break;
11323 @<Rotate the cubic between |p| and |q|; then
11324 |goto found| if the rotated cubic travels due east at some time |tt|;
11325 but |break| if an entire cyclic path has been traversed@>;
11333 @ @<Normalize the given direction for better accuracy...@>=
11334 if ( abs(x)<abs(y) ) {
11335 x=mp_make_fraction(mp, x,abs(y));
11336 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11337 } else if ( x==0 ) {
11340 y=mp_make_fraction(mp, y,abs(x));
11341 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11344 @ Since we're interested in the tangent directions, we work with the
11345 derivative $${1\over3}B'(x_0,x_1,x_2,x_3;t)=
11346 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11347 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11348 in order to achieve better accuracy.
11350 The given path may turn abruptly at a knot, and it might pass the critical
11351 tangent direction at such a time. Therefore we remember the direction |phi|
11352 in which the previous rotated cubic was traveling. (The value of |phi| will be
11353 undefined on the first cubic, i.e., when |n=0|.)
11355 @<Rotate the cubic between |p| and |q|; then...@>=
11357 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11358 points of the rotated derivatives@>;
11359 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11361 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11364 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11365 @<Exit to |found| if the curve whose derivatives are specified by
11366 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11368 @ @<Other local variables for |find_direction_time|@>=
11369 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11370 angle theta,phi; /* angles of exit and entry at a knot */
11371 fraction t; /* temp storage */
11373 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11374 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11375 x3=x_coord(q)-left_x(q);
11376 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11377 y3=y_coord(q)-left_y(q);
11379 if ( abs(x2)>max ) max=abs(x2);
11380 if ( abs(x3)>max ) max=abs(x3);
11381 if ( abs(y1)>max ) max=abs(y1);
11382 if ( abs(y2)>max ) max=abs(y2);
11383 if ( abs(y3)>max ) max=abs(y3);
11384 if ( max==0 ) goto FOUND;
11385 while ( max<fraction_half ){
11386 max+=max; x1+=x1; x2+=x2; x3+=x3;
11387 y1+=y1; y2+=y2; y3+=y3;
11389 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11390 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11391 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11392 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11393 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11394 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11396 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11397 theta=mp_n_arg(mp, x1,y1);
11398 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11399 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11401 @ In this step we want to use the |crossing_point| routine to find the
11402 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11403 Several complications arise: If the quadratic equation has a double root,
11404 the curve never crosses zero, and |crossing_point| will find nothing;
11405 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11406 equation has simple roots, or only one root, we may have to negate it
11407 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11408 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11411 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11412 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11413 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11414 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11415 either |goto found| or |goto done|@>;
11418 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11419 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11421 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11422 $B(x_1,x_2,x_3;t)\ge0$@>;
11425 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11426 two roots, because we know that it isn't identically zero.
11428 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11429 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11430 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11431 subject to rounding errors. Yet this code optimistically tries to
11432 do the right thing.
11434 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11436 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11437 t=mp_crossing_point(mp, y1,y2,y3);
11438 if ( t>fraction_one ) goto DONE;
11439 y2=t_of_the_way(y2,y3);
11440 x1=t_of_the_way(x1,x2);
11441 x2=t_of_the_way(x2,x3);
11442 x1=t_of_the_way(x1,x2);
11443 if ( x1>=0 ) we_found_it;
11445 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11446 if ( t>fraction_one ) goto DONE;
11447 x1=t_of_the_way(x1,x2);
11448 x2=t_of_the_way(x2,x3);
11449 if ( t_of_the_way(x1,x2)>=0 ) {
11450 t=t_of_the_way(tt,fraction_one); we_found_it;
11453 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11454 either |goto found| or |goto done|@>=
11456 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11457 t=mp_make_fraction(mp, y1,y1-y2);
11458 x1=t_of_the_way(x1,x2);
11459 x2=t_of_the_way(x2,x3);
11460 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11461 } else if ( y3==0 ) {
11463 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11464 } else if ( x3>=0 ) {
11465 tt=unity; goto FOUND;
11471 @ At this point we know that the derivative of |y(t)| is identically zero,
11472 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11475 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11477 t=mp_crossing_point(mp, -x1,-x2,-x3);
11478 if ( t<=fraction_one ) we_found_it;
11479 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11480 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11484 @ The intersection of two cubics can be found by an interesting variant
11485 of the general bisection scheme described in the introduction to
11487 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11488 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11489 if an intersection exists. First we find the smallest rectangle that
11490 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11491 the smallest rectangle that encloses
11492 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11493 But if the rectangles do overlap, we bisect the intervals, getting
11494 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11495 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11496 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11497 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11498 levels of bisection we will have determined the intersection times $t_1$
11499 and~$t_2$ to $l$~bits of accuracy.
11501 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11502 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11503 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11504 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11505 to determine when the enclosing rectangles overlap. Here's why:
11506 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11507 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11508 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11509 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11510 overlap if and only if $u\submin\L x\submax$ and
11511 $x\submin\L u\submax$. Letting
11512 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11513 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11514 we have $2^lu\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11516 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11517 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11518 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11519 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11520 because of the overlap condition; i.e., we know that $X\submin$,
11521 $X\submax$, and their relatives are bounded, hence $X\submax-
11522 U\submin$ and $X\submin-U\submax$ are bounded.
11524 @ Incidentally, if the given cubics intersect more than once, the process
11525 just sketched will not necessarily find the lexicographically smallest pair
11526 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11527 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11528 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11529 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11530 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11531 Shuffled order agrees with lexicographic order if all pairs of solutions
11532 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11533 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11534 and the bisection algorithm would be substantially less efficient if it were
11535 constrained by lexicographic order.
11537 For example, suppose that an overlap has been found for $l=3$ and
11538 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11539 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11540 Then there is probably an intersection in one of the subintervals
11541 $(.1011,.011x)$; but lexicographic order would require us to explore
11542 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11543 want to store all of the subdivision data for the second path, so the
11544 subdivisions would have to be regenerated many times. Such inefficiencies
11545 would be associated with every `1' in the binary representation of~$t_1$.
11547 @ The subdivision process introduces rounding errors, hence we need to
11548 make a more liberal test for overlap. It is not hard to show that the
11549 computed values of $U_i$ differ from the truth by at most~$l$, on
11550 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11551 If $\beta$ is an upper bound on the absolute error in the computed
11552 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11553 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11554 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11556 More accuracy is obtained if we try the algorithm first with |tol=0|;
11557 the more liberal tolerance is used only if an exact approach fails.
11558 It is convenient to do this double-take by letting `3' in the preceding
11559 paragraph be a parameter, which is first 0, then 3.
11562 unsigned int tol_step; /* either 0 or 3, usually */
11564 @ We shall use an explicit stack to implement the recursive bisection
11565 method described above. The |bisect_stack| array will contain numerous 5-word
11566 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11567 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11569 The following macros define the allocation of stack positions to
11570 the quantities needed for bisection-intersection.
11572 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11573 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11574 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11575 @d stack_min(A) mp->bisect_stack[(A)+3]
11576 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11577 @d stack_max(A) mp->bisect_stack[(A)+4]
11578 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11579 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11581 @d u_packet(A) ((A)-5)
11582 @d v_packet(A) ((A)-10)
11583 @d x_packet(A) ((A)-15)
11584 @d y_packet(A) ((A)-20)
11585 @d l_packets (mp->bisect_ptr-int_packets)
11586 @d r_packets mp->bisect_ptr
11587 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11588 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11589 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11590 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11591 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11592 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11593 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11594 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11596 @d u1l stack_1(ul_packet) /* $U'_1$ */
11597 @d u2l stack_2(ul_packet) /* $U'_2$ */
11598 @d u3l stack_3(ul_packet) /* $U'_3$ */
11599 @d v1l stack_1(vl_packet) /* $V'_1$ */
11600 @d v2l stack_2(vl_packet) /* $V'_2$ */
11601 @d v3l stack_3(vl_packet) /* $V'_3$ */
11602 @d x1l stack_1(xl_packet) /* $X'_1$ */
11603 @d x2l stack_2(xl_packet) /* $X'_2$ */
11604 @d x3l stack_3(xl_packet) /* $X'_3$ */
11605 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11606 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11607 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11608 @d u1r stack_1(ur_packet) /* $U''_1$ */
11609 @d u2r stack_2(ur_packet) /* $U''_2$ */
11610 @d u3r stack_3(ur_packet) /* $U''_3$ */
11611 @d v1r stack_1(vr_packet) /* $V''_1$ */
11612 @d v2r stack_2(vr_packet) /* $V''_2$ */
11613 @d v3r stack_3(vr_packet) /* $V''_3$ */
11614 @d x1r stack_1(xr_packet) /* $X''_1$ */
11615 @d x2r stack_2(xr_packet) /* $X''_2$ */
11616 @d x3r stack_3(xr_packet) /* $X''_3$ */
11617 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11618 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11619 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11621 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11622 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11623 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11624 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11625 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11626 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11629 integer *bisect_stack;
11630 unsigned int bisect_ptr;
11632 @ @<Allocate or initialize ...@>=
11633 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11635 @ @<Dealloc variables@>=
11636 xfree(mp->bisect_stack);
11638 @ @<Check the ``constant''...@>=
11639 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11641 @ Computation of the min and max is a tedious but fairly fast sequence of
11642 instructions; exactly four comparisons are made in each branch.
11645 if ( stack_1((A))<0 ) {
11646 if ( stack_3((A))>=0 ) {
11647 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11648 else stack_min((A))=stack_1((A));
11649 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11650 if ( stack_max((A))<0 ) stack_max((A))=0;
11652 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11653 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11654 stack_max((A))=stack_1((A))+stack_2((A));
11655 if ( stack_max((A))<0 ) stack_max((A))=0;
11657 } else if ( stack_3((A))<=0 ) {
11658 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11659 else stack_max((A))=stack_1((A));
11660 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11661 if ( stack_min((A))>0 ) stack_min((A))=0;
11663 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11664 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11665 stack_min((A))=stack_1((A))+stack_2((A));
11666 if ( stack_min((A))>0 ) stack_min((A))=0;
11669 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11670 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11671 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11672 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11673 plus the |scaled| values of $t_1$ and~$t_2$.
11675 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11676 finds no intersection. The routine gives up and gives an approximate answer
11677 if it has backtracked
11678 more than 5000 times (otherwise there are cases where several minutes
11679 of fruitless computation would be possible).
11681 @d max_patience 5000
11684 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11685 integer time_to_go; /* this many backtracks before giving up */
11686 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11688 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11689 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11690 and |(pp,link(pp))|, respectively.
11692 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11693 pointer q,qq; /* |link(p)|, |link(pp)| */
11694 mp->time_to_go=max_patience; mp->max_t=2;
11695 @<Initialize for intersections at level zero@>;
11698 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11699 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11700 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11701 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11703 if ( mp->cur_t>=mp->max_t ){
11704 if ( mp->max_t==two ) { /* we've done 17 bisections */
11705 mp->cur_t=halfp(mp->cur_t+1);
11706 mp->cur_tt=halfp(mp->cur_tt+1);
11709 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11711 @<Subdivide for a new level of intersection@>;
11714 if ( mp->time_to_go>0 ) {
11715 decr(mp->time_to_go);
11717 while ( mp->appr_t<unity ) {
11718 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11720 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11722 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11726 @ The following variables are global, although they are used only by
11727 |cubic_intersection|, because it is necessary on some machines to
11728 split |cubic_intersection| up into two procedures.
11731 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11732 integer tol; /* bound on the uncertainty in the overlap test */
11734 unsigned int xy; /* pointers to the current packets of interest */
11735 integer three_l; /* |tol_step| times the bisection level */
11736 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11738 @ We shall assume that the coordinates are sufficiently non-extreme that
11739 integer overflow will not occur.
11740 @^overflow in arithmetic@>
11742 @<Initialize for intersections at level zero@>=
11743 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11744 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11745 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11746 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11747 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11748 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11749 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11750 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11751 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11752 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11753 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11754 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11756 @ @<Subdivide for a new level of intersection@>=
11757 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11758 stack_uv=mp->uv; stack_xy=mp->xy;
11759 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11760 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11761 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11762 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11763 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11764 u3l=half(u2l+u2r); u1r=u3l;
11765 set_min_max(ul_packet); set_min_max(ur_packet);
11766 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11767 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11768 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11769 v3l=half(v2l+v2r); v1r=v3l;
11770 set_min_max(vl_packet); set_min_max(vr_packet);
11771 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11772 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11773 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11774 x3l=half(x2l+x2r); x1r=x3l;
11775 set_min_max(xl_packet); set_min_max(xr_packet);
11776 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11777 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11778 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11779 y3l=half(y2l+y2r); y1r=y3l;
11780 set_min_max(yl_packet); set_min_max(yr_packet);
11781 mp->uv=l_packets; mp->xy=l_packets;
11782 mp->delx+=mp->delx; mp->dely+=mp->dely;
11783 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11784 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11786 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11788 if ( odd(mp->cur_tt) ) {
11789 if ( odd(mp->cur_t) ) {
11790 @<Descend to the previous level and |goto not_found|@>;
11793 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11794 +stack_3(u_packet(mp->uv));
11795 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11796 +stack_3(v_packet(mp->uv));
11797 mp->uv=mp->uv+int_packets; /* switch from |l_packets| to |r_packets| */
11798 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11799 /* switch from |r_packets| to |l_packets| */
11800 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11801 +stack_3(x_packet(mp->xy));
11802 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11803 +stack_3(y_packet(mp->xy));
11806 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11807 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11808 -stack_3(x_packet(mp->xy));
11809 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11810 -stack_3(y_packet(mp->xy));
11811 mp->xy=mp->xy+int_packets; /* switch from |l_packets| to |r_packets| */
11814 @ @<Descend to the previous level...@>=
11816 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11817 if ( mp->cur_t==0 ) return;
11818 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11819 mp->three_l=mp->three_l-mp->tol_step;
11820 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11821 mp->uv=stack_uv; mp->xy=stack_xy;
11825 @ The |path_intersection| procedure is much simpler.
11826 It invokes |cubic_intersection| in lexicographic order until finding a
11827 pair of cubics that intersect. The final intersection times are placed in
11828 |cur_t| and~|cur_tt|.
11830 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11831 pointer p,pp; /* link registers that traverse the given paths */
11832 integer n,nn; /* integer parts of intersection times, minus |unity| */
11833 @<Change one-point paths into dead cycles@>;
11838 if ( right_type(p)!=mp_endpoint ) {
11841 if ( right_type(pp)!=mp_endpoint ) {
11842 mp_cubic_intersection(mp, p,pp);
11843 if ( mp->cur_t>0 ) {
11844 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11848 nn=nn+unity; pp=link(pp);
11851 n=n+unity; p=link(p);
11853 mp->tol_step=mp->tol_step+3;
11854 } while (mp->tol_step<=3);
11855 mp->cur_t=-unity; mp->cur_tt=-unity;
11858 @ @<Change one-point paths...@>=
11859 if ( right_type(h)==mp_endpoint ) {
11860 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11861 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11863 if ( right_type(hh)==mp_endpoint ) {
11864 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11865 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11868 @* \[24] Dynamic linear equations.
11869 \MP\ users define variables implicitly by stating equations that should be
11870 satisfied; the computer is supposed to be smart enough to solve those equations.
11871 And indeed, the computer tries valiantly to do so, by distinguishing five
11872 different types of numeric values:
11875 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11876 of the variable whose address is~|p|.
11879 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11880 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11881 as a |scaled| number plus a sum of independent variables with |fraction|
11885 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11886 number'' reflecting the time this variable was first used in an equation;
11887 also |0<=m<64|, and each dependent variable
11888 that refers to this one is actually referring to the future value of
11889 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11890 scaling are sometimes needed to keep the coefficients in dependency lists
11891 from getting too large. The value of~|m| will always be even.)
11894 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11895 equation before, but it has been explicitly declared to be numeric.
11898 |type(p)=undefined| means that variable |p| hasn't appeared before.
11900 \smallskip\noindent
11901 We have actually discussed these five types in the reverse order of their
11902 history during a computation: Once |known|, a variable never again
11903 becomes |dependent|; once |dependent|, it almost never again becomes
11904 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11905 and once |mp_numeric_type|, it never again becomes |undefined| (except
11906 of course when the user specifically decides to scrap the old value
11907 and start again). A backward step may, however, take place: Sometimes
11908 a |dependent| variable becomes |mp_independent| again, when one of the
11909 independent variables it depends on is reverting to |undefined|.
11912 The next patch detects overflow of independent-variable serial
11913 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11915 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11916 @d new_indep(A) /* create a new independent variable */
11917 { if ( mp->serial_no>el_gordo-s_scale )
11918 mp_fatal_error(mp, "variable instance identifiers exhausted");
11919 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11920 value((A))=mp->serial_no;
11924 integer serial_no; /* the most recent serial number, times |s_scale| */
11926 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11928 @ But how are dependency lists represented? It's simple: The linear combination
11929 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11930 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11931 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11932 of $\alpha_1$; and |link(p)| points to the dependency list
11933 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11934 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11935 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11936 they appear in decreasing order of their |value| fields (i.e., of
11937 their serial numbers). \ (It is convenient to use decreasing order,
11938 since |value(null)=0|. If the independent variables were not sorted by
11939 serial number but by some other criterion, such as their location in |mem|,
11940 the equation-solving mechanism would be too system-dependent, because
11941 the ordering can affect the computed results.)
11943 The |link| field in the node that contains the constant term $\beta$ is
11944 called the {\sl final link\/} of the dependency list. \MP\ maintains
11945 a doubly-linked master list of all dependency lists, in terms of a permanently
11947 in |mem| called |dep_head|. If there are no dependencies, we have
11948 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11949 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11950 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11951 points to its dependency list. If the final link of that dependency list
11952 occurs in location~|q|, then |link(q)| points to the next dependent
11953 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11955 @d dep_list(A) link(value_loc((A)))
11956 /* half of the |value| field in a |dependent| variable */
11957 @d prev_dep(A) info(value_loc((A)))
11958 /* the other half; makes a doubly linked list */
11959 @d dep_node_size 2 /* the number of words per dependency node */
11961 @<Initialize table entries...@>= mp->serial_no=0;
11962 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11963 info(dep_head)=null; dep_list(dep_head)=null;
11965 @ Actually the description above contains a little white lie. There's
11966 another kind of variable called |mp_proto_dependent|, which is
11967 just like a |dependent| one except that the $\alpha$ coefficients
11968 in its dependency list are |scaled| instead of being fractions.
11969 Proto-dependency lists are mixed with dependency lists in the
11970 nodes reachable from |dep_head|.
11972 @ Here is a procedure that prints a dependency list in symbolic form.
11973 The second parameter should be either |dependent| or |mp_proto_dependent|,
11974 to indicate the scaling of the coefficients.
11976 @<Declare subroutines for printing expressions@>=
11977 void mp_print_dependency (MP mp,pointer p, small_number t) {
11978 integer v; /* a coefficient */
11979 pointer pp,q; /* for list manipulation */
11982 v=abs(value(p)); q=info(p);
11983 if ( q==null ) { /* the constant term */
11984 if ( (v!=0)||(p==pp) ) {
11985 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11986 mp_print_scaled(mp, value(p));
11990 @<Print the coefficient, unless it's $\pm1.0$@>;
11991 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11992 @:this can't happen dep}{\quad dep@>
11993 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11994 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11999 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12000 if ( value(p)<0 ) mp_print_char(mp, '-');
12001 else if ( p!=pp ) mp_print_char(mp, '+');
12002 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12003 if ( v!=unity ) mp_print_scaled(mp, v)
12005 @ The maximum absolute value of a coefficient in a given dependency list
12006 is returned by the following simple function.
12008 @c fraction mp_max_coef (MP mp,pointer p) {
12009 fraction x; /* the maximum so far */
12011 while ( info(p)!=null ) {
12012 if ( abs(value(p))>x ) x=abs(value(p));
12018 @ One of the main operations needed on dependency lists is to add a multiple
12019 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12020 to dependency lists and |f| is a fraction.
12022 If the coefficient of any independent variable becomes |coef_bound| or
12023 more, in absolute value, this procedure changes the type of that variable
12024 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12025 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12026 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12027 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12028 2.3723$, the safer value 7/3 is taken as the threshold.)
12030 The changes mentioned in the preceding paragraph are actually done only if
12031 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12032 it is |false| only when \MP\ is making a dependency list that will soon
12033 be equated to zero.
12035 Several procedures that act on dependency lists, including |p_plus_fq|,
12036 set the global variable |dep_final| to the final (constant term) node of
12037 the dependency list that they produce.
12039 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12040 @d independent_needing_fix 0
12043 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12044 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12045 pointer dep_final; /* location of the constant term and final link */
12048 mp->fix_needed=false; mp->watch_coefs=true;
12050 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12051 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12052 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12053 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12055 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12057 The final link of the dependency list or proto-dependency list returned
12058 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12059 constant term of the result will be located in the same |mem| location
12060 as the original constant term of~|p|.
12062 Coefficients of the result are assumed to be zero if they are less than
12063 a certain threshold. This compensates for inevitable rounding errors,
12064 and tends to make more variables `|known|'. The threshold is approximately
12065 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12066 proto-dependencies.
12068 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12069 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12070 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12071 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12073 @<Declare basic dependency-list subroutines@>=
12074 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12075 pointer q, small_number t, small_number tt) ;
12078 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12079 pointer q, small_number t, small_number tt) {
12080 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12081 pointer r,s; /* for list manipulation */
12082 integer threshold; /* defines a neighborhood of zero */
12083 integer v; /* temporary register */
12084 if ( t==mp_dependent ) threshold=fraction_threshold;
12085 else threshold=scaled_threshold;
12086 r=temp_head; pp=info(p); qq=info(q);
12092 @<Contribute a term from |p|, plus |f| times the
12093 corresponding term from |q|@>
12095 } else if ( value(pp)<value(qq) ) {
12096 @<Contribute a term from |q|, multiplied by~|f|@>
12098 link(r)=p; r=p; p=link(p); pp=info(p);
12101 if ( t==mp_dependent )
12102 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12104 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12105 link(r)=p; mp->dep_final=p;
12106 return link(temp_head);
12109 @ @<Contribute a term from |p|, plus |f|...@>=
12111 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12112 else v=value(p)+mp_take_scaled(mp, f,value(q));
12113 value(p)=v; s=p; p=link(p);
12114 if ( abs(v)<threshold ) {
12115 mp_free_node(mp, s,dep_node_size);
12117 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12118 type(qq)=independent_needing_fix; mp->fix_needed=true;
12122 pp=info(p); q=link(q); qq=info(q);
12125 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12127 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12128 else v=mp_take_scaled(mp, f,value(q));
12129 if ( abs(v)>halfp(threshold) ) {
12130 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12131 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12132 type(qq)=independent_needing_fix; mp->fix_needed=true;
12136 q=link(q); qq=info(q);
12139 @ It is convenient to have another subroutine for the special case
12140 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12141 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12143 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12144 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12145 pointer r,s; /* for list manipulation */
12146 integer threshold; /* defines a neighborhood of zero */
12147 integer v; /* temporary register */
12148 if ( t==mp_dependent ) threshold=fraction_threshold;
12149 else threshold=scaled_threshold;
12150 r=temp_head; pp=info(p); qq=info(q);
12156 @<Contribute a term from |p|, plus the
12157 corresponding term from |q|@>
12160 if ( value(pp)<value(qq) ) {
12161 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12162 q=link(q); qq=info(q); link(r)=s; r=s;
12164 link(r)=p; r=p; p=link(p); pp=info(p);
12168 value(p)=mp_slow_add(mp, value(p),value(q));
12169 link(r)=p; mp->dep_final=p;
12170 return link(temp_head);
12173 @ @<Contribute a term from |p|, plus the...@>=
12175 v=value(p)+value(q);
12176 value(p)=v; s=p; p=link(p); pp=info(p);
12177 if ( abs(v)<threshold ) {
12178 mp_free_node(mp, s,dep_node_size);
12180 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12181 type(qq)=independent_needing_fix; mp->fix_needed=true;
12185 q=link(q); qq=info(q);
12188 @ A somewhat simpler routine will multiply a dependency list
12189 by a given constant~|v|. The constant is either a |fraction| less than
12190 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12191 convert a dependency list to a proto-dependency list.
12192 Parameters |t0| and |t1| are the list types before and after;
12193 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12194 and |v_is_scaled=true|.
12196 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12197 small_number t1, boolean v_is_scaled) {
12198 pointer r,s; /* for list manipulation */
12199 integer w; /* tentative coefficient */
12201 boolean scaling_down;
12202 if ( t0!=t1 ) scaling_down=true; else scaling_down=(!v_is_scaled);
12203 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12204 else threshold=half_scaled_threshold;
12206 while ( info(p)!=null ) {
12207 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12208 else w=mp_take_scaled(mp, v,value(p));
12209 if ( abs(w)<=threshold ) {
12210 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12212 if ( abs(w)>=coef_bound ) {
12213 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12215 link(r)=p; r=p; value(p)=w; p=link(p);
12219 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12220 else value(p)=mp_take_fraction(mp, value(p),v);
12221 return link(temp_head);
12224 @ Similarly, we sometimes need to divide a dependency list
12225 by a given |scaled| constant.
12227 @<Declare basic dependency-list subroutines@>=
12228 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12229 t0, small_number t1) ;
12232 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12233 t0, small_number t1) {
12234 pointer r,s; /* for list manipulation */
12235 integer w; /* tentative coefficient */
12237 boolean scaling_down;
12238 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12239 if ( t1==mp_dependent ) threshold=half_fraction_threshold;
12240 else threshold=half_scaled_threshold;
12242 while ( info( p)!=null ) {
12243 if ( scaling_down ) {
12244 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12245 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12247 w=mp_make_scaled(mp, value(p),v);
12249 if ( abs(w)<=threshold ) {
12250 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12252 if ( abs(w)>=coef_bound ) {
12253 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12255 link(r)=p; r=p; value(p)=w; p=link(p);
12258 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12259 return link(temp_head);
12262 @ Here's another utility routine for dependency lists. When an independent
12263 variable becomes dependent, we want to remove it from all existing
12264 dependencies. The |p_with_x_becoming_q| function computes the
12265 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12267 This procedure has basically the same calling conventions as |p_plus_fq|:
12268 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12269 final link are inherited from~|p|; and the fourth parameter tells whether
12270 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12271 is not altered if |x| does not occur in list~|p|.
12273 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12274 pointer x, pointer q, small_number t) {
12275 pointer r,s; /* for list manipulation */
12276 integer v; /* coefficient of |x| */
12277 integer sx; /* serial number of |x| */
12278 s=p; r=temp_head; sx=value(x);
12279 while ( value(info(s))>sx ) { r=s; s=link(s); };
12280 if ( info(s)!=x ) {
12283 link(temp_head)=p; link(r)=link(s); v=value(s);
12284 mp_free_node(mp, s,dep_node_size);
12285 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12289 @ Here's a simple procedure that reports an error when a variable
12290 has just received a known value that's out of the required range.
12292 @<Declare basic dependency-list subroutines@>=
12293 void mp_val_too_big (MP mp,scaled x) ;
12295 @ @c void mp_val_too_big (MP mp,scaled x) {
12296 if ( mp->internal[mp_warning_check]>0 ) {
12297 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12298 @.Value is too large@>
12299 help4("The equation I just processed has given some variable")
12300 ("a value of 4096 or more. Continue and I'll try to cope")
12301 ("with that big value; but it might be dangerous.")
12302 ("(Set warningcheck:=0 to suppress this message.)");
12307 @ When a dependent variable becomes known, the following routine
12308 removes its dependency list. Here |p| points to the variable, and
12309 |q| points to the dependency list (which is one node long).
12311 @<Declare basic dependency-list subroutines@>=
12312 void mp_make_known (MP mp,pointer p, pointer q) ;
12314 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12315 int t; /* the previous type */
12316 prev_dep(link(q))=prev_dep(p);
12317 link(prev_dep(p))=link(q); t=type(p);
12318 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12319 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12320 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12321 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12322 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12323 mp_print_variable_name(mp, p);
12324 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12325 mp_end_diagnostic(mp, false);
12327 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12328 mp->cur_type=mp_known; mp->cur_exp=value(p);
12329 mp_free_node(mp, p,value_node_size);
12333 @ The |fix_dependencies| routine is called into action when |fix_needed|
12334 has been triggered. The program keeps a list~|s| of independent variables
12335 whose coefficients must be divided by~4.
12337 In unusual cases, this fixup process might reduce one or more coefficients
12338 to zero, so that a variable will become known more or less by default.
12340 @<Declare basic dependency-list subroutines@>=
12341 void mp_fix_dependencies (MP mp);
12343 @ @c void mp_fix_dependencies (MP mp) {
12344 pointer p,q,r,s,t; /* list manipulation registers */
12345 pointer x; /* an independent variable */
12346 r=link(dep_head); s=null;
12347 while ( r!=dep_head ){
12349 @<Run through the dependency list for variable |t|, fixing
12350 all nodes, and ending with final link~|q|@>;
12352 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12354 while ( s!=null ) {
12355 p=link(s); x=info(s); free_avail(s); s=p;
12356 type(x)=mp_independent; value(x)=value(x)+2;
12358 mp->fix_needed=false;
12361 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12363 @<Run through the dependency list for variable |t|...@>=
12364 r=value_loc(t); /* |link(r)=dep_list(t)| */
12366 q=link(r); x=info(q);
12367 if ( x==null ) break;
12368 if ( type(x)<=independent_being_fixed ) {
12369 if ( type(x)<independent_being_fixed ) {
12370 p=mp_get_avail(mp); link(p)=s; s=p;
12371 info(s)=x; type(x)=independent_being_fixed;
12373 value(q)=value(q) / 4;
12374 if ( value(q)==0 ) {
12375 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12382 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12383 linking it into the list of all known dependencies. We assume that
12384 |dep_final| points to the final node of list~|p|.
12386 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12387 pointer r; /* what used to be the first dependency */
12388 dep_list(q)=p; prev_dep(q)=dep_head;
12389 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12393 @ Here is one of the ways a dependency list gets started.
12394 The |const_dependency| routine produces a list that has nothing but
12397 @c pointer mp_const_dependency (MP mp, scaled v) {
12398 mp->dep_final=mp_get_node(mp, dep_node_size);
12399 value(mp->dep_final)=v; info(mp->dep_final)=null;
12400 return mp->dep_final;
12403 @ And here's a more interesting way to start a dependency list from scratch:
12404 The parameter to |single_dependency| is the location of an
12405 independent variable~|x|, and the result is the simple dependency list
12408 In the unlikely event that the given independent variable has been doubled so
12409 often that we can't refer to it with a nonzero coefficient,
12410 |single_dependency| returns the simple list `0'. This case can be
12411 recognized by testing that the returned list pointer is equal to
12414 @c pointer mp_single_dependency (MP mp,pointer p) {
12415 pointer q; /* the new dependency list */
12416 integer m; /* the number of doublings */
12417 m=value(p) % s_scale;
12419 return mp_const_dependency(mp, 0);
12421 q=mp_get_node(mp, dep_node_size);
12422 value(q)=two_to_the(28-m); info(q)=p;
12423 link(q)=mp_const_dependency(mp, 0);
12428 @ We sometimes need to make an exact copy of a dependency list.
12430 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12431 pointer q; /* the new dependency list */
12432 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12434 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12435 if ( info(mp->dep_final)==null ) break;
12436 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12437 mp->dep_final=link(mp->dep_final); p=link(p);
12442 @ But how do variables normally become known? Ah, now we get to the heart of the
12443 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12444 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12445 appears. It equates this list to zero, by choosing an independent variable
12446 with the largest coefficient and making it dependent on the others. The
12447 newly dependent variable is eliminated from all current dependencies,
12448 thereby possibly making other dependent variables known.
12450 The given list |p| is, of course, totally destroyed by all this processing.
12452 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12453 pointer q,r,s; /* for link manipulation */
12454 pointer x; /* the variable that loses its independence */
12455 integer n; /* the number of times |x| had been halved */
12456 integer v; /* the coefficient of |x| in list |p| */
12457 pointer prev_r; /* lags one step behind |r| */
12458 pointer final_node; /* the constant term of the new dependency list */
12459 integer w; /* a tentative coefficient */
12460 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12461 x=info(q); n=value(x) % s_scale;
12462 @<Divide list |p| by |-v|, removing node |q|@>;
12463 if ( mp->internal[mp_tracing_equations]>0 ) {
12464 @<Display the new dependency@>;
12466 @<Simplify all existing dependencies by substituting for |x|@>;
12467 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12468 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12471 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12472 q=p; r=link(p); v=value(q);
12473 while ( info(r)!=null ) {
12474 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12478 @ Here we want to change the coefficients from |scaled| to |fraction|,
12479 except in the constant term. In the common case of a trivial equation
12480 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12482 @<Divide list |p| by |-v|, removing node |q|@>=
12483 s=temp_head; link(s)=p; r=p;
12486 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12488 w=mp_make_fraction(mp, value(r),v);
12489 if ( abs(w)<=half_fraction_threshold ) {
12490 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12496 } while (info(r)!=null);
12497 if ( t==mp_proto_dependent ) {
12498 value(r)=-mp_make_scaled(mp, value(r),v);
12499 } else if ( v!=-fraction_one ) {
12500 value(r)=-mp_make_fraction(mp, value(r),v);
12502 final_node=r; p=link(temp_head)
12504 @ @<Display the new dependency@>=
12505 if ( mp_interesting(mp, x) ) {
12506 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12507 mp_print_variable_name(mp, x);
12508 @:]]]\#\#_}{\.{\#\#}@>
12510 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12511 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12512 mp_end_diagnostic(mp, false);
12515 @ @<Simplify all existing dependencies by substituting for |x|@>=
12516 prev_r=dep_head; r=link(dep_head);
12517 while ( r!=dep_head ) {
12518 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12519 if ( info(q)==null ) {
12520 mp_make_known(mp, r,q);
12523 do { q=link(q); } while (info(q)!=null);
12529 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12530 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12531 if ( info(p)==null ) {
12534 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12535 mp_free_node(mp, p,dep_node_size);
12536 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12537 mp->cur_exp=value(x); mp->cur_type=mp_known;
12538 mp_free_node(mp, x,value_node_size);
12541 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12542 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12545 @ @<Divide list |p| by $2^n$@>=
12547 s=temp_head; link(temp_head)=p; r=p;
12550 else w=value(r) / two_to_the(n);
12551 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12553 mp_free_node(mp, r,dep_node_size);
12558 } while (info(s)!=null);
12562 @ The |check_mem| procedure, which is used only when \MP\ is being
12563 debugged, makes sure that the current dependency lists are well formed.
12565 @<Check the list of linear dependencies@>=
12566 q=dep_head; p=link(q);
12567 while ( p!=dep_head ) {
12568 if ( prev_dep(p)!=q ) {
12569 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12574 r=info(p); q=p; p=link(q);
12575 if ( r==null ) break;
12576 if ( value(info(p))>=value(r) ) {
12577 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12578 @.Out of order...@>
12583 @* \[25] Dynamic nonlinear equations.
12584 Variables of numeric type are maintained by the general scheme of
12585 independent, dependent, and known values that we have just studied;
12586 and the components of pair and transform variables are handled in the
12587 same way. But \MP\ also has five other types of values: \&{boolean},
12588 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12590 Equations are allowed between nonlinear quantities, but only in a
12591 simple form. Two variables that haven't yet been assigned values are
12592 either equal to each other, or they're not.
12594 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12595 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12596 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12597 |null| (which means that no other variables are equivalent to this one), or
12598 it points to another variable of the same undefined type. The pointers in the
12599 latter case form a cycle of nodes, which we shall call a ``ring.''
12600 Rings of undefined variables may include capsules, which arise as
12601 intermediate results within expressions or as \&{expr} parameters to macros.
12603 When one member of a ring receives a value, the same value is given to
12604 all the other members. In the case of paths and pictures, this implies
12605 making separate copies of a potentially large data structure; users should
12606 restrain their enthusiasm for such generality, unless they have lots and
12607 lots of memory space.
12609 @ The following procedure is called when a capsule node is being
12610 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12612 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12613 pointer q; /* the new capsule node */
12614 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12616 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12621 @ Conversely, we might delete a capsule or a variable before it becomes known.
12622 The following procedure simply detaches a quantity from its ring,
12623 without recycling the storage.
12625 @<Declare the recycling subroutines@>=
12626 void mp_ring_delete (MP mp,pointer p) {
12629 if ( q!=null ) if ( q!=p ){
12630 while ( value(q)!=p ) q=value(q);
12635 @ Eventually there might be an equation that assigns values to all of the
12636 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12637 propagation of values.
12639 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12640 value, it will soon be recycled.
12642 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12643 small_number t; /* the type of ring |p| */
12644 pointer q,r; /* link manipulation registers */
12645 t=type(p)-unknown_tag; q=value(p);
12646 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12648 r=value(q); type(q)=t;
12650 case mp_boolean_type: value(q)=v; break;
12651 case mp_string_type: value(q)=v; add_str_ref(v); break;
12652 case mp_pen_type: value(q)=copy_pen(v); break;
12653 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12654 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12655 } /* there ain't no more cases */
12660 @ If two members of rings are equated, and if they have the same type,
12661 the |ring_merge| procedure is called on to make them equivalent.
12663 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12664 pointer r; /* traverses one list */
12668 @<Exclaim about a redundant equation@>;
12673 r=value(p); value(p)=value(q); value(q)=r;
12676 @ @<Exclaim about a redundant equation@>=
12678 print_err("Redundant equation");
12679 @.Redundant equation@>
12680 help2("I already knew that this equation was true.")
12681 ("But perhaps no harm has been done; let's continue.");
12682 mp_put_get_error(mp);
12685 @* \[26] Introduction to the syntactic routines.
12686 Let's pause a moment now and try to look at the Big Picture.
12687 The \MP\ program consists of three main parts: syntactic routines,
12688 semantic routines, and output routines. The chief purpose of the
12689 syntactic routines is to deliver the user's input to the semantic routines,
12690 while parsing expressions and locating operators and operands. The
12691 semantic routines act as an interpreter responding to these operators,
12692 which may be regarded as commands. And the output routines are
12693 periodically called on to produce compact font descriptions that can be
12694 used for typesetting or for making interim proof drawings. We have
12695 discussed the basic data structures and many of the details of semantic
12696 operations, so we are good and ready to plunge into the part of \MP\ that
12697 actually controls the activities.
12699 Our current goal is to come to grips with the |get_next| procedure,
12700 which is the keystone of \MP's input mechanism. Each call of |get_next|
12701 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12702 representing the next input token.
12703 $$\vbox{\halign{#\hfil\cr
12704 \hbox{|cur_cmd| denotes a command code from the long list of codes
12706 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12707 \hbox{|cur_sym| is the hash address of the symbolic token that was
12709 \hbox{\qquad or zero in the case of a numeric or string
12710 or capsule token.}\cr}}$$
12711 Underlying this external behavior of |get_next| is all the machinery
12712 necessary to convert from character files to tokens. At a given time we
12713 may be only partially finished with the reading of several files (for
12714 which \&{input} was specified), and partially finished with the expansion
12715 of some user-defined macros and/or some macro parameters, and partially
12716 finished reading some text that the user has inserted online,
12717 and so on. When reading a character file, the characters must be
12718 converted to tokens; comments and blank spaces must
12719 be removed, numeric and string tokens must be evaluated.
12721 To handle these situations, which might all be present simultaneously,
12722 \MP\ uses various stacks that hold information about the incomplete
12723 activities, and there is a finite state control for each level of the
12724 input mechanism. These stacks record the current state of an implicitly
12725 recursive process, but the |get_next| procedure is not recursive.
12728 eight_bits cur_cmd; /* current command set by |get_next| */
12729 integer cur_mod; /* operand of current command */
12730 halfword cur_sym; /* hash address of current symbol */
12732 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12733 command code and its modifier.
12734 It consists of a rather tedious sequence of print
12735 commands, and most of it is essentially an inverse to the |primitive|
12736 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12737 all of this procedure appears elsewhere in the program, together with the
12738 corresponding |primitive| calls.
12740 @<Declare the procedure called |print_cmd_mod|@>=
12741 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12743 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12744 default: mp_print(mp, "[unknown command code!]"); break;
12748 @ Here is a procedure that displays a given command in braces, in the
12749 user's transcript file.
12751 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12754 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12755 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12756 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12757 mp_end_diagnostic(mp, false);
12760 @* \[27] Input stacks and states.
12761 The state of \MP's input mechanism appears in the input stack, whose
12762 entries are records with five fields, called |index|, |start|, |loc|,
12763 |limit|, and |name|. The top element of this stack is maintained in a
12764 global variable for which no subscripting needs to be done; the other
12765 elements of the stack appear in an array. Hence the stack is declared thus:
12769 quarterword index_field;
12770 halfword start_field, loc_field, limit_field, name_field;
12774 in_state_record *input_stack;
12775 integer input_ptr; /* first unused location of |input_stack| */
12776 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12777 in_state_record cur_input; /* the ``top'' input state */
12778 int stack_size; /* maximum number of simultaneous input sources */
12780 @ @<Allocate or initialize ...@>=
12781 mp->stack_size = 300;
12782 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12784 @ @<Dealloc variables@>=
12785 xfree(mp->input_stack);
12787 @ We've already defined the special variable |loc==cur_input.loc_field|
12788 in our discussion of basic input-output routines. The other components of
12789 |cur_input| are defined in the same way:
12791 @d index mp->cur_input.index_field /* reference for buffer information */
12792 @d start mp->cur_input.start_field /* starting position in |buffer| */
12793 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12794 @d name mp->cur_input.name_field /* name of the current file */
12796 @ Let's look more closely now at the five control variables
12797 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12798 assuming that \MP\ is reading a line of characters that have been input
12799 from some file or from the user's terminal. There is an array called
12800 |buffer| that acts as a stack of all lines of characters that are
12801 currently being read from files, including all lines on subsidiary
12802 levels of the input stack that are not yet completed. \MP\ will return to
12803 the other lines when it is finished with the present input file.
12805 (Incidentally, on a machine with byte-oriented addressing, it would be
12806 appropriate to combine |buffer| with the |str_pool| array,
12807 letting the buffer entries grow downward from the top of the string pool
12808 and checking that these two tables don't bump into each other.)
12810 The line we are currently working on begins in position |start| of the
12811 buffer; the next character we are about to read is |buffer[loc]|; and
12812 |limit| is the location of the last character present. We always have
12813 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12814 that the end of a line is easily sensed.
12816 The |name| variable is a string number that designates the name of
12817 the current file, if we are reading an ordinary text file. Special codes
12818 |is_term..max_spec_src| indicate other sources of input text.
12820 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12821 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12822 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12823 @d max_spec_src is_scantok
12825 @ Additional information about the current line is available via the
12826 |index| variable, which counts how many lines of characters are present
12827 in the buffer below the current level. We have |index=0| when reading
12828 from the terminal and prompting the user for each line; then if the user types,
12829 e.g., `\.{input figs}', we will have |index=1| while reading
12830 the file \.{figs.mp}. However, it does not follow that |index| is the
12831 same as the input stack pointer, since many of the levels on the input
12832 stack may come from token lists and some |index| values may correspond
12833 to \.{MPX} files that are not currently on the stack.
12835 The global variable |in_open| is equal to the highest |index| value counting
12836 \.{MPX} files but excluding token-list input levels. Thus, the number of
12837 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12838 when we are not reading a token list.
12840 If we are not currently reading from the terminal,
12841 we are reading from the file variable |input_file[index]|. We use
12842 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12843 and |cur_file| as an abbreviation for |input_file[index]|.
12845 When \MP\ is not reading from the terminal, the global variable |line| contains
12846 the line number in the current file, for use in error messages. More precisely,
12847 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12848 the line number for each file in the |input_file| array.
12850 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12851 array so that the name doesn't get lost when the file is temporarily removed
12852 from the input stack.
12853 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12854 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12855 Since this is not an \.{MPX} file, we have
12856 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12857 This |name| field is set to |finished| when |input_file[k]| is completely
12860 If more information about the input state is needed, it can be
12861 included in small arrays like those shown here. For example,
12862 the current page or segment number in the input file might be put
12863 into a variable |page|, that is really a macro for the current entry
12864 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12865 by analogy with |line_stack|.
12866 @^system dependencies@>
12868 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12869 @d cur_file mp->input_file[index] /* the current |void *| variable */
12870 @d line mp->line_stack[index] /* current line number in the current source file */
12871 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12872 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12873 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12874 @d mpx_reading (mp->mpx_name[index]>absent)
12875 /* when reading a file, is it an \.{MPX} file? */
12877 /* |name_field| value when the corresponding \.{MPX} file is finished */
12880 integer in_open; /* the number of lines in the buffer, less one */
12881 unsigned int open_parens; /* the number of open text files */
12882 void * *input_file ;
12883 integer *line_stack ; /* the line number for each file */
12884 char * *iname_stack; /* used for naming \.{MPX} files */
12885 char * *iarea_stack; /* used for naming \.{MPX} files */
12886 halfword*mpx_name ;
12888 @ @<Allocate or ...@>=
12889 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12890 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12891 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12892 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12893 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12896 for (k=0;k<=mp->max_in_open;k++) {
12897 mp->iname_stack[k] =NULL;
12898 mp->iarea_stack[k] =NULL;
12902 @ @<Dealloc variables@>=
12905 for (l=0;l<=mp->max_in_open;l++) {
12906 xfree(mp->iname_stack[l]);
12907 xfree(mp->iarea_stack[l]);
12910 xfree(mp->input_file);
12911 xfree(mp->line_stack);
12912 xfree(mp->iname_stack);
12913 xfree(mp->iarea_stack);
12914 xfree(mp->mpx_name);
12917 @ However, all this discussion about input state really applies only to the
12918 case that we are inputting from a file. There is another important case,
12919 namely when we are currently getting input from a token list. In this case
12920 |index>max_in_open|, and the conventions about the other state variables
12923 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12924 the node that will be read next. If |loc=null|, the token list has been
12927 \yskip\hang|start| points to the first node of the token list; this node
12928 may or may not contain a reference count, depending on the type of token
12931 \yskip\hang|token_type|, which takes the place of |index| in the
12932 discussion above, is a code number that explains what kind of token list
12935 \yskip\hang|name| points to the |eqtb| address of the control sequence
12936 being expanded, if the current token list is a macro not defined by
12937 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12938 can be deduced by looking at their first two parameters.
12940 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12941 the parameters of the current macro or loop text begin in the |param_stack|.
12943 \yskip\noindent The |token_type| can take several values, depending on
12944 where the current token list came from:
12947 \indent|forever_text|, if the token list being scanned is the body of
12948 a \&{forever} loop;
12950 \indent|loop_text|, if the token list being scanned is the body of
12951 a \&{for} or \&{forsuffixes} loop;
12953 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12955 \indent|backed_up|, if the token list being scanned has been inserted as
12956 `to be read again'.
12958 \indent|inserted|, if the token list being scanned has been inserted as
12959 part of error recovery;
12961 \indent|macro|, if the expansion of a user-defined symbolic token is being
12965 The token list begins with a reference count if and only if |token_type=
12967 @^reference counts@>
12969 @d token_type index /* type of current token list */
12970 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12971 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12972 @d param_start limit /* base of macro parameters in |param_stack| */
12973 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12974 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12975 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12976 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12977 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12978 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12980 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12981 lists for parameters at the current level and subsidiary levels of input.
12982 This stack grows at a different rate from the others.
12985 pointer *param_stack; /* token list pointers for parameters */
12986 integer param_ptr; /* first unused entry in |param_stack| */
12987 integer max_param_stack; /* largest value of |param_ptr| */
12989 @ @<Allocate or initialize ...@>=
12990 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12992 @ @<Dealloc variables@>=
12993 xfree(mp->param_stack);
12995 @ Notice that the |line| isn't valid when |token_state| is true because it
12996 depends on |index|. If we really need to know the line number for the
12997 topmost file in the index stack we use the following function. If a page
12998 number or other information is needed, this routine should be modified to
12999 compute it as well.
13000 @^system dependencies@>
13002 @<Declare a function called |true_line|@>=
13003 integer mp_true_line (MP mp) {
13004 int k; /* an index into the input stack */
13005 if ( file_state && (name>max_spec_src) ) {
13010 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13011 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13014 return (k>0 ? mp->line_stack[(k-1)] : 0 );
13018 @ Thus, the ``current input state'' can be very complicated indeed; there
13019 can be many levels and each level can arise in a variety of ways. The
13020 |show_context| procedure, which is used by \MP's error-reporting routine to
13021 print out the current input state on all levels down to the most recent
13022 line of characters from an input file, illustrates most of these conventions.
13023 The global variable |file_ptr| contains the lowest level that was
13024 displayed by this procedure.
13027 integer file_ptr; /* shallowest level shown by |show_context| */
13029 @ The status at each level is indicated by printing two lines, where the first
13030 line indicates what was read so far and the second line shows what remains
13031 to be read. The context is cropped, if necessary, so that the first line
13032 contains at most |half_error_line| characters, and the second contains
13033 at most |error_line|. Non-current input levels whose |token_type| is
13034 `|backed_up|' are shown only if they have not been fully read.
13036 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13037 int old_setting; /* saved |selector| setting */
13038 @<Local variables for formatting calculations@>
13039 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13040 /* store current state */
13042 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13043 @<Display the current context@>;
13045 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13046 decr(mp->file_ptr);
13048 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13051 @ @<Display the current context@>=
13052 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13053 (token_type!=backed_up) || (loc!=null) ) {
13054 /* we omit backed-up token lists that have already been read */
13055 mp->tally=0; /* get ready to count characters */
13056 old_setting=mp->selector;
13057 if ( file_state ) {
13058 @<Print location of current line@>;
13059 @<Pseudoprint the line@>;
13061 @<Print type of token list@>;
13062 @<Pseudoprint the token list@>;
13064 mp->selector=old_setting; /* stop pseudoprinting */
13065 @<Print two lines using the tricky pseudoprinted information@>;
13068 @ This routine should be changed, if necessary, to give the best possible
13069 indication of where the current line resides in the input file.
13070 For example, on some systems it is best to print both a page and line number.
13071 @^system dependencies@>
13073 @<Print location of current line@>=
13074 if ( name>max_spec_src ) {
13075 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13076 } else if ( terminal_input ) {
13077 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13078 else mp_print_nl(mp, "<insert>");
13079 } else if ( name==is_scantok ) {
13080 mp_print_nl(mp, "<scantokens>");
13082 mp_print_nl(mp, "<read>");
13084 mp_print_char(mp, ' ')
13086 @ Can't use case statement here because the |token_type| is not
13087 a constant expression.
13089 @<Print type of token list@>=
13091 if(token_type==forever_text) {
13092 mp_print_nl(mp, "<forever> ");
13093 } else if (token_type==loop_text) {
13094 @<Print the current loop value@>;
13095 } else if (token_type==parameter) {
13096 mp_print_nl(mp, "<argument> ");
13097 } else if (token_type==backed_up) {
13098 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13099 else mp_print_nl(mp, "<to be read again> ");
13100 } else if (token_type==inserted) {
13101 mp_print_nl(mp, "<inserted text> ");
13102 } else if (token_type==macro) {
13104 if ( name!=null ) mp_print_text(name);
13105 else @<Print the name of a \&{vardef}'d macro@>;
13106 mp_print(mp, "->");
13108 mp_print_nl(mp, "?");/* this should never happen */
13113 @ The parameter that corresponds to a loop text is either a token list
13114 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13115 We'll discuss capsules later; for now, all we need to know is that
13116 the |link| field in a capsule parameter is |void| and that
13117 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13119 @<Print the current loop value@>=
13120 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13122 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13123 else mp_show_token_list(mp, p,null,20,mp->tally);
13125 mp_print(mp, ")> ");
13128 @ The first two parameters of a macro defined by \&{vardef} will be token
13129 lists representing the macro's prefix and ``at point.'' By putting these
13130 together, we get the macro's full name.
13132 @<Print the name of a \&{vardef}'d macro@>=
13133 { p=mp->param_stack[param_start];
13135 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13138 while ( link(q)!=null ) q=link(q);
13139 link(q)=mp->param_stack[param_start+1];
13140 mp_show_token_list(mp, p,null,20,mp->tally);
13145 @ Now it is necessary to explain a little trick. We don't want to store a long
13146 string that corresponds to a token list, because that string might take up
13147 lots of memory; and we are printing during a time when an error message is
13148 being given, so we dare not do anything that might overflow one of \MP's
13149 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13150 that stores characters into a buffer of length |error_line|, where character
13151 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13152 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13153 |tally:=0| and |trick_count:=1000000|; then when we reach the
13154 point where transition from line 1 to line 2 should occur, we
13155 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13156 tally+1+error_line-half_error_line)|. At the end of the
13157 pseudoprinting, the values of |first_count|, |tally|, and
13158 |trick_count| give us all the information we need to print the two lines,
13159 and all of the necessary text is in |trick_buf|.
13161 Namely, let |l| be the length of the descriptive information that appears
13162 on the first line. The length of the context information gathered for that
13163 line is |k=first_count|, and the length of the context information
13164 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13165 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13166 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13167 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13168 and print `\.{...}' followed by
13169 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13170 where subscripts of |trick_buf| are circular modulo |error_line|. The
13171 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13172 unless |n+m>error_line|; in the latter case, further cropping is done.
13173 This is easier to program than to explain.
13175 @<Local variables for formatting...@>=
13176 int i; /* index into |buffer| */
13177 integer l; /* length of descriptive information on line 1 */
13178 integer m; /* context information gathered for line 2 */
13179 int n; /* length of line 1 */
13180 integer p; /* starting or ending place in |trick_buf| */
13181 integer q; /* temporary index */
13183 @ The following code tells the print routines to gather
13184 the desired information.
13186 @d begin_pseudoprint {
13187 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13188 mp->trick_count=1000000;
13190 @d set_trick_count {
13191 mp->first_count=mp->tally;
13192 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13193 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13196 @ And the following code uses the information after it has been gathered.
13198 @<Print two lines using the tricky pseudoprinted information@>=
13199 if ( mp->trick_count==1000000 ) set_trick_count;
13200 /* |set_trick_count| must be performed */
13201 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13202 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13203 if ( l+mp->first_count<=mp->half_error_line ) {
13204 p=0; n=l+mp->first_count;
13206 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13207 n=mp->half_error_line;
13209 for (q=p;q<=mp->first_count-1;q++) {
13210 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13213 for (q=1;q<=n;q++) {
13214 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13216 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13217 else p=mp->first_count+(mp->error_line-n-3);
13218 for (q=mp->first_count;q<=p-1;q++) {
13219 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13221 if ( m+n>mp->error_line ) mp_print(mp, "...")
13223 @ But the trick is distracting us from our current goal, which is to
13224 understand the input state. So let's concentrate on the data structures that
13225 are being pseudoprinted as we finish up the |show_context| procedure.
13227 @<Pseudoprint the line@>=
13230 for (i=start;i<=limit-1;i++) {
13231 if ( i==loc ) set_trick_count;
13232 mp_print_str(mp, mp->buffer[i]);
13236 @ @<Pseudoprint the token list@>=
13238 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13239 else mp_show_macro(mp, start,loc,100000)
13241 @ Here is the missing piece of |show_token_list| that is activated when the
13242 token beginning line~2 is about to be shown:
13244 @<Do magic computation@>=set_trick_count
13246 @* \[28] Maintaining the input stacks.
13247 The following subroutines change the input status in commonly needed ways.
13249 First comes |push_input|, which stores the current state and creates a
13250 new level (having, initially, the same properties as the old).
13252 @d push_input { /* enter a new input level, save the old */
13253 if ( mp->input_ptr>mp->max_in_stack ) {
13254 mp->max_in_stack=mp->input_ptr;
13255 if ( mp->input_ptr==mp->stack_size ) {
13256 int l = (mp->stack_size+(mp->stack_size>>2));
13257 XREALLOC(mp->input_stack, l, in_state_record);
13258 mp->stack_size = l;
13261 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13262 incr(mp->input_ptr);
13265 @ And of course what goes up must come down.
13267 @d pop_input { /* leave an input level, re-enter the old */
13268 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13271 @ Here is a procedure that starts a new level of token-list input, given
13272 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13273 set |name|, reset~|loc|, and increase the macro's reference count.
13275 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13277 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13278 push_input; start=p; token_type=t;
13279 param_start=mp->param_ptr; loc=p;
13282 @ When a token list has been fully scanned, the following computations
13283 should be done as we leave that level of input.
13286 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13287 pointer p; /* temporary register */
13288 if ( token_type>=backed_up ) { /* token list to be deleted */
13289 if ( token_type<=inserted ) {
13290 mp_flush_token_list(mp, start); goto DONE;
13292 mp_delete_mac_ref(mp, start); /* update reference count */
13295 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13296 decr(mp->param_ptr);
13297 p=mp->param_stack[mp->param_ptr];
13299 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13300 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13302 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13307 pop_input; check_interrupt;
13310 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13311 token by the |cur_tok| routine.
13314 @c @<Declare the procedure called |make_exp_copy|@>
13315 pointer mp_cur_tok (MP mp) {
13316 pointer p; /* a new token node */
13317 small_number save_type; /* |cur_type| to be restored */
13318 integer save_exp; /* |cur_exp| to be restored */
13319 if ( mp->cur_sym==0 ) {
13320 if ( mp->cur_cmd==capsule_token ) {
13321 save_type=mp->cur_type; save_exp=mp->cur_exp;
13322 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13323 mp->cur_type=save_type; mp->cur_exp=save_exp;
13325 p=mp_get_node(mp, token_node_size);
13326 value(p)=mp->cur_mod; name_type(p)=mp_token;
13327 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13328 else type(p)=mp_string_type;
13331 fast_get_avail(p); info(p)=mp->cur_sym;
13336 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13337 seen. The |back_input| procedure takes care of this by putting the token
13338 just scanned back into the input stream, ready to be read again.
13339 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13342 void mp_back_input (MP mp);
13344 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13345 pointer p; /* a token list of length one */
13347 while ( token_state &&(loc==null) )
13348 mp_end_token_list(mp); /* conserve stack space */
13352 @ The |back_error| routine is used when we want to restore or replace an
13353 offending token just before issuing an error message. We disable interrupts
13354 during the call of |back_input| so that the help message won't be lost.
13357 void mp_error (MP mp);
13358 void mp_back_error (MP mp);
13360 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13361 mp->OK_to_interrupt=false;
13363 mp->OK_to_interrupt=true; mp_error(mp);
13365 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13366 mp->OK_to_interrupt=false;
13367 mp_back_input(mp); token_type=inserted;
13368 mp->OK_to_interrupt=true; mp_error(mp);
13371 @ The |begin_file_reading| procedure starts a new level of input for lines
13372 of characters to be read from a file, or as an insertion from the
13373 terminal. It does not take care of opening the file, nor does it set |loc|
13374 or |limit| or |line|.
13375 @^system dependencies@>
13377 @c void mp_begin_file_reading (MP mp) {
13378 if ( mp->in_open==mp->max_in_open )
13379 mp_overflow(mp, "text input levels",mp->max_in_open);
13380 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13381 if ( mp->first==mp->buf_size )
13382 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13383 incr(mp->in_open); push_input; index=mp->in_open;
13384 mp->mpx_name[index]=absent;
13386 name=is_term; /* |terminal_input| is now |true| */
13389 @ Conversely, the variables must be downdated when such a level of input
13390 is finished. Any associated \.{MPX} file must also be closed and popped
13391 off the file stack.
13393 @c void mp_end_file_reading (MP mp) {
13394 if ( mp->in_open>index ) {
13395 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13396 mp_confusion(mp, "endinput");
13397 @:this can't happen endinput}{\quad endinput@>
13399 (mp->close_file)(mp,mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13400 delete_str_ref(mp->mpx_name[mp->in_open]);
13405 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13406 if ( name>max_spec_src ) {
13407 (mp->close_file)(mp,cur_file);
13408 delete_str_ref(name);
13412 pop_input; decr(mp->in_open);
13415 @ Here is a function that tries to resume input from an \.{MPX} file already
13416 associated with the current input file. It returns |false| if this doesn't
13419 @c boolean mp_begin_mpx_reading (MP mp) {
13420 if ( mp->in_open!=index+1 ) {
13423 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13424 @:this can't happen mpx}{\quad mpx@>
13425 if ( mp->first==mp->buf_size )
13426 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13427 push_input; index=mp->in_open;
13429 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13430 @<Put an empty line in the input buffer@>;
13435 @ This procedure temporarily stops reading an \.{MPX} file.
13437 @c void mp_end_mpx_reading (MP mp) {
13438 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13439 @:this can't happen mpx}{\quad mpx@>
13441 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13447 @ Here we enforce a restriction that simplifies the input stacks considerably.
13448 This should not inconvenience the user because \.{MPX} files are generated
13449 by an auxiliary program called \.{DVItoMP}.
13451 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13453 print_err("`mpxbreak' must be at the end of a line");
13454 help4("This file contains picture expressions for btex...etex")
13455 ("blocks. Such files are normally generated automatically")
13456 ("but this one seems to be messed up. I'm going to ignore")
13457 ("the rest of this line.");
13461 @ In order to keep the stack from overflowing during a long sequence of
13462 inserted `\.{show}' commands, the following routine removes completed
13463 error-inserted lines from memory.
13465 @c void mp_clear_for_error_prompt (MP mp) {
13466 while ( file_state && terminal_input &&
13467 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13468 mp_print_ln(mp); clear_terminal;
13471 @ To get \MP's whole input mechanism going, we perform the following
13474 @<Initialize the input routines@>=
13475 { mp->input_ptr=0; mp->max_in_stack=0;
13476 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13477 mp->param_ptr=0; mp->max_param_stack=0;
13479 start=1; index=0; line=0; name=is_term;
13480 mp->mpx_name[0]=absent;
13481 mp->force_eof=false;
13482 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13483 limit=mp->last; mp->first=mp->last+1;
13484 /* |init_terminal| has set |loc| and |last| */
13487 @* \[29] Getting the next token.
13488 The heart of \MP's input mechanism is the |get_next| procedure, which
13489 we shall develop in the next few sections of the program. Perhaps we
13490 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13491 eyes and mouth, reading the source files and gobbling them up. And it also
13492 helps \MP\ to regurgitate stored token lists that are to be processed again.
13494 The main duty of |get_next| is to input one token and to set |cur_cmd|
13495 and |cur_mod| to that token's command code and modifier. Furthermore, if
13496 the input token is a symbolic token, that token's |hash| address
13497 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13499 Underlying this simple description is a certain amount of complexity
13500 because of all the cases that need to be handled.
13501 However, the inner loop of |get_next| is reasonably short and fast.
13503 @ Before getting into |get_next|, we need to consider a mechanism by which
13504 \MP\ helps keep errors from propagating too far. Whenever the program goes
13505 into a mode where it keeps calling |get_next| repeatedly until a certain
13506 condition is met, it sets |scanner_status| to some value other than |normal|.
13507 Then if an input file ends, or if an `\&{outer}' symbol appears,
13508 an appropriate error recovery will be possible.
13510 The global variable |warning_info| helps in this error recovery by providing
13511 additional information. For example, |warning_info| might indicate the
13512 name of a macro whose replacement text is being scanned.
13514 @d normal 0 /* |scanner_status| at ``quiet times'' */
13515 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13516 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13517 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13518 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13519 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13520 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13521 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13524 integer scanner_status; /* are we scanning at high speed? */
13525 integer warning_info; /* if so, what else do we need to know,
13526 in case an error occurs? */
13528 @ @<Initialize the input routines@>=
13529 mp->scanner_status=normal;
13531 @ The following subroutine
13532 is called when an `\&{outer}' symbolic token has been scanned or
13533 when the end of a file has been reached. These two cases are distinguished
13534 by |cur_sym|, which is zero at the end of a file.
13536 @c boolean mp_check_outer_validity (MP mp) {
13537 pointer p; /* points to inserted token list */
13538 if ( mp->scanner_status==normal ) {
13540 } else if ( mp->scanner_status==tex_flushing ) {
13541 @<Check if the file has ended while flushing \TeX\ material and set the
13542 result value for |check_outer_validity|@>;
13544 mp->deletions_allowed=false;
13545 @<Back up an outer symbolic token so that it can be reread@>;
13546 if ( mp->scanner_status>skipping ) {
13547 @<Tell the user what has run away and try to recover@>;
13549 print_err("Incomplete if; all text was ignored after line ");
13550 @.Incomplete if...@>
13551 mp_print_int(mp, mp->warning_info);
13552 help3("A forbidden `outer' token occurred in skipped text.")
13553 ("This kind of error happens when you say `if...' and forget")
13554 ("the matching `fi'. I've inserted a `fi'; this might work.");
13555 if ( mp->cur_sym==0 )
13556 mp->help_line[2]="The file ended while I was skipping conditional text.";
13557 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13559 mp->deletions_allowed=true;
13564 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13565 if ( mp->cur_sym!=0 ) {
13568 mp->deletions_allowed=false;
13569 print_err("TeX mode didn't end; all text was ignored after line ");
13570 mp_print_int(mp, mp->warning_info);
13571 help2("The file ended while I was looking for the `etex' to")
13572 ("finish this TeX material. I've inserted `etex' now.");
13573 mp->cur_sym = frozen_etex;
13575 mp->deletions_allowed=true;
13579 @ @<Back up an outer symbolic token so that it can be reread@>=
13580 if ( mp->cur_sym!=0 ) {
13581 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13582 back_list(p); /* prepare to read the symbolic token again */
13585 @ @<Tell the user what has run away...@>=
13587 mp_runaway(mp); /* print the definition-so-far */
13588 if ( mp->cur_sym==0 ) {
13589 print_err("File ended");
13590 @.File ended while scanning...@>
13592 print_err("Forbidden token found");
13593 @.Forbidden token found...@>
13595 mp_print(mp, " while scanning ");
13596 help4("I suspect you have forgotten an `enddef',")
13597 ("causing me to read past where you wanted me to stop.")
13598 ("I'll try to recover; but if the error is serious,")
13599 ("you'd better type `E' or `X' now and fix your file.");
13600 switch (mp->scanner_status) {
13601 @<Complete the error message,
13602 and set |cur_sym| to a token that might help recover from the error@>
13603 } /* there are no other cases */
13607 @ As we consider various kinds of errors, it is also appropriate to
13608 change the first line of the help message just given; |help_line[3]|
13609 points to the string that might be changed.
13611 @<Complete the error message,...@>=
13613 mp_print(mp, "to the end of the statement");
13614 mp->help_line[3]="A previous error seems to have propagated,";
13615 mp->cur_sym=frozen_semicolon;
13618 mp_print(mp, "a text argument");
13619 mp->help_line[3]="It seems that a right delimiter was left out,";
13620 if ( mp->warning_info==0 ) {
13621 mp->cur_sym=frozen_end_group;
13623 mp->cur_sym=frozen_right_delimiter;
13624 equiv(frozen_right_delimiter)=mp->warning_info;
13629 mp_print(mp, "the definition of ");
13630 if ( mp->scanner_status==op_defining )
13631 mp_print_text(mp->warning_info);
13633 mp_print_variable_name(mp, mp->warning_info);
13634 mp->cur_sym=frozen_end_def;
13636 case loop_defining:
13637 mp_print(mp, "the text of a ");
13638 mp_print_text(mp->warning_info);
13639 mp_print(mp, " loop");
13640 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13641 mp->cur_sym=frozen_end_for;
13644 @ The |runaway| procedure displays the first part of the text that occurred
13645 when \MP\ began its special |scanner_status|, if that text has been saved.
13647 @<Declare the procedure called |runaway|@>=
13648 void mp_runaway (MP mp) {
13649 if ( mp->scanner_status>flushing ) {
13650 mp_print_nl(mp, "Runaway ");
13651 switch (mp->scanner_status) {
13652 case absorbing: mp_print(mp, "text?"); break;
13654 case op_defining: mp_print(mp,"definition?"); break;
13655 case loop_defining: mp_print(mp, "loop?"); break;
13656 } /* there are no other cases */
13658 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13662 @ We need to mention a procedure that may be called by |get_next|.
13665 void mp_firm_up_the_line (MP mp);
13667 @ And now we're ready to take the plunge into |get_next| itself.
13668 Note that the behavior depends on the |scanner_status| because percent signs
13669 and double quotes need to be passed over when skipping TeX material.
13672 void mp_get_next (MP mp) {
13673 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13675 /*restart*/ /* go here to get the next input token */
13676 /*exit*/ /* go here when the next input token has been got */
13677 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13678 /*found*/ /* go here when the end of a symbolic token has been found */
13679 /*switch*/ /* go here to branch on the class of an input character */
13680 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13681 /* go here at crucial stages when scanning a number */
13682 int k; /* an index into |buffer| */
13683 ASCII_code c; /* the current character in the buffer */
13684 ASCII_code class; /* its class number */
13685 integer n,f; /* registers for decimal-to-binary conversion */
13688 if ( file_state ) {
13689 @<Input from external file; |goto restart| if no input found,
13690 or |return| if a non-symbolic token is found@>;
13692 @<Input from token list; |goto restart| if end of list or
13693 if a parameter needs to be expanded,
13694 or |return| if a non-symbolic token is found@>;
13697 @<Finish getting the symbolic token in |cur_sym|;
13698 |goto restart| if it is illegal@>;
13701 @ When a symbolic token is declared to be `\&{outer}', its command code
13702 is increased by |outer_tag|.
13705 @<Finish getting the symbolic token in |cur_sym|...@>=
13706 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13707 if ( mp->cur_cmd>=outer_tag ) {
13708 if ( mp_check_outer_validity(mp) )
13709 mp->cur_cmd=mp->cur_cmd-outer_tag;
13714 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13715 to have a special test for end-of-line.
13718 @<Input from external file;...@>=
13721 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13723 case digit_class: goto START_NUMERIC_TOKEN; break;
13725 class=mp->char_class[mp->buffer[loc]];
13726 if ( class>period_class ) {
13728 } else if ( class<period_class ) { /* |class=digit_class| */
13729 n=0; goto START_DECIMAL_TOKEN;
13733 case space_class: goto SWITCH; break;
13734 case percent_class:
13735 if ( mp->scanner_status==tex_flushing ) {
13736 if ( loc<limit ) goto SWITCH;
13738 @<Move to next line of file, or |goto restart| if there is no next line@>;
13743 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13744 else @<Get a string token and |return|@>;
13746 case isolated_classes:
13747 k=loc-1; goto FOUND; break;
13748 case invalid_class:
13749 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13750 else @<Decry the invalid character and |goto restart|@>;
13752 default: break; /* letters, etc. */
13755 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13757 START_NUMERIC_TOKEN:
13758 @<Get the integer part |n| of a numeric token;
13759 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13760 START_DECIMAL_TOKEN:
13761 @<Get the fraction part |f| of a numeric token@>;
13763 @<Pack the numeric and fraction parts of a numeric token
13766 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13769 @ We go to |restart| instead of to |SWITCH|, because we might enter
13770 |token_state| after the error has been dealt with
13771 (cf.\ |clear_for_error_prompt|).
13773 @<Decry the invalid...@>=
13775 print_err("Text line contains an invalid character");
13776 @.Text line contains...@>
13777 help2("A funny symbol that I can\'t read has just been input.")
13778 ("Continue, and I'll forget that it ever happened.");
13779 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13783 @ @<Get a string token and |return|@>=
13785 if ( mp->buffer[loc]=='"' ) {
13786 mp->cur_mod=rts("");
13788 k=loc; mp->buffer[limit+1]='"';
13791 } while (mp->buffer[loc]!='"');
13793 @<Decry the missing string delimiter and |goto restart|@>;
13796 mp->cur_mod=mp->buffer[k];
13800 append_char(mp->buffer[k]); incr(k);
13802 mp->cur_mod=mp_make_string(mp);
13805 incr(loc); mp->cur_cmd=string_token;
13809 @ We go to |restart| after this error message, not to |SWITCH|,
13810 because the |clear_for_error_prompt| routine might have reinstated
13811 |token_state| after |error| has finished.
13813 @<Decry the missing string delimiter and |goto restart|@>=
13815 loc=limit; /* the next character to be read on this line will be |"%"| */
13816 print_err("Incomplete string token has been flushed");
13817 @.Incomplete string token...@>
13818 help3("Strings should finish on the same line as they began.")
13819 ("I've deleted the partial string; you might want to")
13820 ("insert another by typing, e.g., `I\"new string\"'.");
13821 mp->deletions_allowed=false; mp_error(mp);
13822 mp->deletions_allowed=true;
13826 @ @<Get the integer part |n| of a numeric token...@>=
13828 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13829 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13832 if ( mp->buffer[loc]=='.' )
13833 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13836 goto FIN_NUMERIC_TOKEN;
13839 @ @<Get the fraction part |f| of a numeric token@>=
13842 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13843 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13846 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13847 f=mp_round_decimals(mp, k);
13852 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13854 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13855 } else if ( mp->scanner_status!=tex_flushing ) {
13856 print_err("Enormous number has been reduced");
13857 @.Enormous number...@>
13858 help2("I can\'t handle numbers bigger than 32767.99998;")
13859 ("so I've changed your constant to that maximum amount.");
13860 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13861 mp->cur_mod=el_gordo;
13863 mp->cur_cmd=numeric_token; return
13865 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13867 mp->cur_mod=n*unity+f;
13868 if ( mp->cur_mod>=fraction_one ) {
13869 if ( (mp->internal[mp_warning_check]>0) &&
13870 (mp->scanner_status!=tex_flushing) ) {
13871 print_err("Number is too large (");
13872 mp_print_scaled(mp, mp->cur_mod);
13873 mp_print_char(mp, ')');
13874 help3("It is at least 4096. Continue and I'll try to cope")
13875 ("with that big value; but it might be dangerous.")
13876 ("(Set warningcheck:=0 to suppress this message.)");
13882 @ Let's consider now what happens when |get_next| is looking at a token list.
13885 @<Input from token list;...@>=
13886 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13887 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13888 if ( mp->cur_sym>=expr_base ) {
13889 if ( mp->cur_sym>=suffix_base ) {
13890 @<Insert a suffix or text parameter and |goto restart|@>;
13892 mp->cur_cmd=capsule_token;
13893 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13894 mp->cur_sym=0; return;
13897 } else if ( loc>null ) {
13898 @<Get a stored numeric or string or capsule token and |return|@>
13899 } else { /* we are done with this token list */
13900 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13903 @ @<Insert a suffix or text parameter...@>=
13905 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13906 /* |param_size=text_base-suffix_base| */
13907 mp_begin_token_list(mp,
13908 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13913 @ @<Get a stored numeric or string or capsule token...@>=
13915 if ( name_type(loc)==mp_token ) {
13916 mp->cur_mod=value(loc);
13917 if ( type(loc)==mp_known ) {
13918 mp->cur_cmd=numeric_token;
13920 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13923 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13925 loc=link(loc); return;
13928 @ All of the easy branches of |get_next| have now been taken care of.
13929 There is one more branch.
13931 @<Move to next line of file, or |goto restart|...@>=
13932 if ( name>max_spec_src ) {
13933 @<Read next line of file into |buffer|, or
13934 |goto restart| if the file has ended@>;
13936 if ( mp->input_ptr>0 ) {
13937 /* text was inserted during error recovery or by \&{scantokens} */
13938 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13940 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13941 if ( mp->interaction>mp_nonstop_mode ) {
13942 if ( limit==start ) /* previous line was empty */
13943 mp_print_nl(mp, "(Please type a command or say `end')");
13945 mp_print_ln(mp); mp->first=start;
13946 prompt_input("*"); /* input on-line into |buffer| */
13948 limit=mp->last; mp->buffer[limit]='%';
13949 mp->first=limit+1; loc=start;
13951 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13953 /* nonstop mode, which is intended for overnight batch processing,
13954 never waits for on-line input */
13958 @ The global variable |force_eof| is normally |false|; it is set |true|
13959 by an \&{endinput} command.
13962 boolean force_eof; /* should the next \&{input} be aborted early? */
13964 @ We must decrement |loc| in order to leave the buffer in a valid state
13965 when an error condition causes us to |goto restart| without calling
13966 |end_file_reading|.
13968 @<Read next line of file into |buffer|, or
13969 |goto restart| if the file has ended@>=
13971 incr(line); mp->first=start;
13972 if ( ! mp->force_eof ) {
13973 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13974 mp_firm_up_the_line(mp); /* this sets |limit| */
13976 mp->force_eof=true;
13978 if ( mp->force_eof ) {
13979 mp->force_eof=false;
13981 if ( mpx_reading ) {
13982 @<Complain that the \.{MPX} file ended unexpectly; then set
13983 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13985 mp_print_char(mp, ')'); decr(mp->open_parens);
13986 update_terminal; /* show user that file has been read */
13987 mp_end_file_reading(mp); /* resume previous level */
13988 if ( mp_check_outer_validity(mp) ) goto RESTART;
13992 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13995 @ We should never actually come to the end of an \.{MPX} file because such
13996 files should have an \&{mpxbreak} after the translation of the last
13997 \&{btex}$\,\ldots\,$\&{etex} block.
13999 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14001 mp->mpx_name[index]=finished;
14002 print_err("mpx file ended unexpectedly");
14003 help4("The file had too few picture expressions for btex...etex")
14004 ("blocks. Such files are normally generated automatically")
14005 ("but this one got messed up. You might want to insert a")
14006 ("picture expression now.");
14007 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14008 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14011 @ Sometimes we want to make it look as though we have just read a blank line
14012 without really doing so.
14014 @<Put an empty line in the input buffer@>=
14015 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14016 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14018 @ If the user has set the |mp_pausing| parameter to some positive value,
14019 and if nonstop mode has not been selected, each line of input is displayed
14020 on the terminal and the transcript file, followed by `\.{=>}'.
14021 \MP\ waits for a response. If the response is null (i.e., if nothing is
14022 typed except perhaps a few blank spaces), the original
14023 line is accepted as it stands; otherwise the line typed is
14024 used instead of the line in the file.
14026 @c void mp_firm_up_the_line (MP mp) {
14027 size_t k; /* an index into |buffer| */
14029 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14030 wake_up_terminal; mp_print_ln(mp);
14031 if ( start<limit ) {
14032 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14033 mp_print_str(mp, mp->buffer[k]);
14036 mp->first=limit; prompt_input("=>"); /* wait for user response */
14038 if ( mp->last>mp->first ) {
14039 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14040 mp->buffer[k+start-mp->first]=mp->buffer[k];
14042 limit=start+mp->last-mp->first;
14047 @* \[30] Dealing with \TeX\ material.
14048 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14049 features need to be implemented at a low level in the scanning process
14050 so that \MP\ can stay in synch with the a preprocessor that treats
14051 blocks of \TeX\ material as they occur in the input file without trying
14052 to expand \MP\ macros. Thus we need a special version of |get_next|
14053 that does not expand macros and such but does handle \&{btex},
14054 \&{verbatimtex}, etc.
14056 The special version of |get_next| is called |get_t_next|. It works by flushing
14057 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14058 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14059 \&{btex}, and switching back when it sees \&{mpxbreak}.
14065 mp_primitive(mp, "btex",start_tex,btex_code);
14066 @:btex_}{\&{btex} primitive@>
14067 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14068 @:verbatimtex_}{\&{verbatimtex} primitive@>
14069 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14070 @:etex_}{\&{etex} primitive@>
14071 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14072 @:mpx_break_}{\&{mpxbreak} primitive@>
14074 @ @<Cases of |print_cmd...@>=
14075 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14076 else mp_print(mp, "verbatimtex"); break;
14077 case etex_marker: mp_print(mp, "etex"); break;
14078 case mpx_break: mp_print(mp, "mpxbreak"); break;
14080 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14081 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14084 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14087 void mp_start_mpx_input (MP mp);
14090 void mp_t_next (MP mp) {
14091 int old_status; /* saves the |scanner_status| */
14092 integer old_info; /* saves the |warning_info| */
14093 while ( mp->cur_cmd<=max_pre_command ) {
14094 if ( mp->cur_cmd==mpx_break ) {
14095 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14096 @<Complain about a misplaced \&{mpxbreak}@>;
14098 mp_end_mpx_reading(mp);
14101 } else if ( mp->cur_cmd==start_tex ) {
14102 if ( token_state || (name<=max_spec_src) ) {
14103 @<Complain that we are not reading a file@>;
14104 } else if ( mpx_reading ) {
14105 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14106 } else if ( (mp->cur_mod!=verbatim_code)&&
14107 (mp->mpx_name[index]!=finished) ) {
14108 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14113 @<Complain about a misplaced \&{etex}@>;
14115 goto COMMON_ENDING;
14117 @<Flush the \TeX\ material@>;
14123 @ We could be in the middle of an operation such as skipping false conditional
14124 text when \TeX\ material is encountered, so we must be careful to save the
14127 @<Flush the \TeX\ material@>=
14128 old_status=mp->scanner_status;
14129 old_info=mp->warning_info;
14130 mp->scanner_status=tex_flushing;
14131 mp->warning_info=line;
14132 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14133 mp->scanner_status=old_status;
14134 mp->warning_info=old_info
14136 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14137 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14138 help4("This file contains picture expressions for btex...etex")
14139 ("blocks. Such files are normally generated automatically")
14140 ("but this one seems to be messed up. I'll just keep going")
14141 ("and hope for the best.");
14145 @ @<Complain that we are not reading a file@>=
14146 { print_err("You can only use `btex' or `verbatimtex' in a file");
14147 help3("I'll have to ignore this preprocessor command because it")
14148 ("only works when there is a file to preprocess. You might")
14149 ("want to delete everything up to the next `etex`.");
14153 @ @<Complain about a misplaced \&{mpxbreak}@>=
14154 { print_err("Misplaced mpxbreak");
14155 help2("I'll ignore this preprocessor command because it")
14156 ("doesn't belong here");
14160 @ @<Complain about a misplaced \&{etex}@>=
14161 { print_err("Extra etex will be ignored");
14162 help1("There is no btex or verbatimtex for this to match");
14166 @* \[31] Scanning macro definitions.
14167 \MP\ has a variety of ways to tuck tokens away into token lists for later
14168 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14169 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14170 All such operations are handled by the routines in this part of the program.
14172 The modifier part of each command code is zero for the ``ending delimiters''
14173 like \&{enddef} and \&{endfor}.
14175 @d start_def 1 /* command modifier for \&{def} */
14176 @d var_def 2 /* command modifier for \&{vardef} */
14177 @d end_def 0 /* command modifier for \&{enddef} */
14178 @d start_forever 1 /* command modifier for \&{forever} */
14179 @d end_for 0 /* command modifier for \&{endfor} */
14182 mp_primitive(mp, "def",macro_def,start_def);
14183 @:def_}{\&{def} primitive@>
14184 mp_primitive(mp, "vardef",macro_def,var_def);
14185 @:var_def_}{\&{vardef} primitive@>
14186 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14187 @:primary_def_}{\&{primarydef} primitive@>
14188 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14189 @:secondary_def_}{\&{secondarydef} primitive@>
14190 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14191 @:tertiary_def_}{\&{tertiarydef} primitive@>
14192 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14193 @:end_def_}{\&{enddef} primitive@>
14195 mp_primitive(mp, "for",iteration,expr_base);
14196 @:for_}{\&{for} primitive@>
14197 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14198 @:for_suffixes_}{\&{forsuffixes} primitive@>
14199 mp_primitive(mp, "forever",iteration,start_forever);
14200 @:forever_}{\&{forever} primitive@>
14201 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14202 @:end_for_}{\&{endfor} primitive@>
14204 @ @<Cases of |print_cmd...@>=
14206 if ( m<=var_def ) {
14207 if ( m==start_def ) mp_print(mp, "def");
14208 else if ( m<start_def ) mp_print(mp, "enddef");
14209 else mp_print(mp, "vardef");
14210 } else if ( m==secondary_primary_macro ) {
14211 mp_print(mp, "primarydef");
14212 } else if ( m==tertiary_secondary_macro ) {
14213 mp_print(mp, "secondarydef");
14215 mp_print(mp, "tertiarydef");
14219 if ( m<=start_forever ) {
14220 if ( m==start_forever ) mp_print(mp, "forever");
14221 else mp_print(mp, "endfor");
14222 } else if ( m==expr_base ) {
14223 mp_print(mp, "for");
14225 mp_print(mp, "forsuffixes");
14229 @ Different macro-absorbing operations have different syntaxes, but they
14230 also have a lot in common. There is a list of special symbols that are to
14231 be replaced by parameter tokens; there is a special command code that
14232 ends the definition; the quotation conventions are identical. Therefore
14233 it makes sense to have most of the work done by a single subroutine. That
14234 subroutine is called |scan_toks|.
14236 The first parameter to |scan_toks| is the command code that will
14237 terminate scanning (either |macro_def| or |iteration|).
14239 The second parameter, |subst_list|, points to a (possibly empty) list
14240 of two-word nodes whose |info| and |value| fields specify symbol tokens
14241 before and after replacement. The list will be returned to free storage
14244 The third parameter is simply appended to the token list that is built.
14245 And the final parameter tells how many of the special operations
14246 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14247 When such parameters are present, they are called \.{(SUFFIX0)},
14248 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14250 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14251 subst_list, pointer tail_end, small_number suffix_count) {
14252 pointer p; /* tail of the token list being built */
14253 pointer q; /* temporary for link management */
14254 integer balance; /* left delimiters minus right delimiters */
14255 p=hold_head; balance=1; link(hold_head)=null;
14258 if ( mp->cur_sym>0 ) {
14259 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14260 if ( mp->cur_cmd==terminator ) {
14261 @<Adjust the balance; |break| if it's zero@>;
14262 } else if ( mp->cur_cmd==macro_special ) {
14263 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14266 link(p)=mp_cur_tok(mp); p=link(p);
14268 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14269 return link(hold_head);
14272 @ @<Substitute for |cur_sym|...@>=
14275 while ( q!=null ) {
14276 if ( info(q)==mp->cur_sym ) {
14277 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14283 @ @<Adjust the balance; |break| if it's zero@>=
14284 if ( mp->cur_mod>0 ) {
14292 @ Four commands are intended to be used only within macro texts: \&{quote},
14293 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14294 code called |macro_special|.
14296 @d quote 0 /* |macro_special| modifier for \&{quote} */
14297 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14298 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14299 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14302 mp_primitive(mp, "quote",macro_special,quote);
14303 @:quote_}{\&{quote} primitive@>
14304 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14305 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14306 mp_primitive(mp, "@@",macro_special,macro_at);
14307 @:]]]\AT!_}{\.{\AT!} primitive@>
14308 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14309 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14311 @ @<Cases of |print_cmd...@>=
14312 case macro_special:
14314 case macro_prefix: mp_print(mp, "#@@"); break;
14315 case macro_at: mp_print_char(mp, '@@'); break;
14316 case macro_suffix: mp_print(mp, "@@#"); break;
14317 default: mp_print(mp, "quote"); break;
14321 @ @<Handle quoted...@>=
14323 if ( mp->cur_mod==quote ) { get_t_next; }
14324 else if ( mp->cur_mod<=suffix_count )
14325 mp->cur_sym=suffix_base-1+mp->cur_mod;
14328 @ Here is a routine that's used whenever a token will be redefined. If
14329 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14330 substituted; the latter is redefinable but essentially impossible to use,
14331 hence \MP's tables won't get fouled up.
14333 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14336 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14337 print_err("Missing symbolic token inserted");
14338 @.Missing symbolic token...@>
14339 help3("Sorry: You can\'t redefine a number, string, or expr.")
14340 ("I've inserted an inaccessible symbol so that your")
14341 ("definition will be completed without mixing me up too badly.");
14342 if ( mp->cur_sym>0 )
14343 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14344 else if ( mp->cur_cmd==string_token )
14345 delete_str_ref(mp->cur_mod);
14346 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14350 @ Before we actually redefine a symbolic token, we need to clear away its
14351 former value, if it was a variable. The following stronger version of
14352 |get_symbol| does that.
14354 @c void mp_get_clear_symbol (MP mp) {
14355 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14358 @ Here's another little subroutine; it checks that an equals sign
14359 or assignment sign comes along at the proper place in a macro definition.
14361 @c void mp_check_equals (MP mp) {
14362 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14363 mp_missing_err(mp, "=");
14365 help5("The next thing in this `def' should have been `=',")
14366 ("because I've already looked at the definition heading.")
14367 ("But don't worry; I'll pretend that an equals sign")
14368 ("was present. Everything from here to `enddef'")
14369 ("will be the replacement text of this macro.");
14374 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14375 handled now that we have |scan_toks|. In this case there are
14376 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14377 |expr_base| and |expr_base+1|).
14379 @c void mp_make_op_def (MP mp) {
14380 command_code m; /* the type of definition */
14381 pointer p,q,r; /* for list manipulation */
14383 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14384 info(q)=mp->cur_sym; value(q)=expr_base;
14385 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14386 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14387 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14388 get_t_next; mp_check_equals(mp);
14389 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14390 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14391 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14392 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14393 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14396 @ Parameters to macros are introduced by the keywords \&{expr},
14397 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14400 mp_primitive(mp, "expr",param_type,expr_base);
14401 @:expr_}{\&{expr} primitive@>
14402 mp_primitive(mp, "suffix",param_type,suffix_base);
14403 @:suffix_}{\&{suffix} primitive@>
14404 mp_primitive(mp, "text",param_type,text_base);
14405 @:text_}{\&{text} primitive@>
14406 mp_primitive(mp, "primary",param_type,primary_macro);
14407 @:primary_}{\&{primary} primitive@>
14408 mp_primitive(mp, "secondary",param_type,secondary_macro);
14409 @:secondary_}{\&{secondary} primitive@>
14410 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14411 @:tertiary_}{\&{tertiary} primitive@>
14413 @ @<Cases of |print_cmd...@>=
14415 if ( m>=expr_base ) {
14416 if ( m==expr_base ) mp_print(mp, "expr");
14417 else if ( m==suffix_base ) mp_print(mp, "suffix");
14418 else mp_print(mp, "text");
14419 } else if ( m<secondary_macro ) {
14420 mp_print(mp, "primary");
14421 } else if ( m==secondary_macro ) {
14422 mp_print(mp, "secondary");
14424 mp_print(mp, "tertiary");
14428 @ Let's turn next to the more complex processing associated with \&{def}
14429 and \&{vardef}. When the following procedure is called, |cur_mod|
14430 should be either |start_def| or |var_def|.
14432 @c @<Declare the procedure called |check_delimiter|@>
14433 @<Declare the function called |scan_declared_variable|@>
14434 void mp_scan_def (MP mp) {
14435 int m; /* the type of definition */
14436 int n; /* the number of special suffix parameters */
14437 int k; /* the total number of parameters */
14438 int c; /* the kind of macro we're defining */
14439 pointer r; /* parameter-substitution list */
14440 pointer q; /* tail of the macro token list */
14441 pointer p; /* temporary storage */
14442 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14443 pointer l_delim,r_delim; /* matching delimiters */
14444 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14445 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14446 @<Scan the token or variable to be defined;
14447 set |n|, |scanner_status|, and |warning_info|@>;
14449 if ( mp->cur_cmd==left_delimiter ) {
14450 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14452 if ( mp->cur_cmd==param_type ) {
14453 @<Absorb undelimited parameters, putting them into list |r|@>;
14455 mp_check_equals(mp);
14456 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14457 @<Attach the replacement text to the tail of node |p|@>;
14458 mp->scanner_status=normal; mp_get_x_next(mp);
14461 @ We don't put `|frozen_end_group|' into the replacement text of
14462 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14464 @<Attach the replacement text to the tail of node |p|@>=
14465 if ( m==start_def ) {
14466 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14468 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14469 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14470 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14472 if ( mp->warning_info==bad_vardef )
14473 mp_flush_token_list(mp, value(bad_vardef))
14477 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14479 @ @<Scan the token or variable to be defined;...@>=
14480 if ( m==start_def ) {
14481 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14482 mp->scanner_status=op_defining; n=0;
14483 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14485 p=mp_scan_declared_variable(mp);
14486 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14487 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14488 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14489 mp->scanner_status=var_defining; n=2;
14490 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14493 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14494 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14496 @ @<Change to `\.{a bad variable}'@>=
14498 print_err("This variable already starts with a macro");
14499 @.This variable already...@>
14500 help2("After `vardef a' you can\'t say `vardef a.b'.")
14501 ("So I'll have to discard this definition.");
14502 mp_error(mp); mp->warning_info=bad_vardef;
14505 @ @<Initialize table entries...@>=
14506 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14507 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14509 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14511 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14512 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14515 print_err("Missing parameter type; `expr' will be assumed");
14516 @.Missing parameter type@>
14517 help1("You should've had `expr' or `suffix' or `text' here.");
14518 mp_back_error(mp); base=expr_base;
14520 @<Absorb parameter tokens for type |base|@>;
14521 mp_check_delimiter(mp, l_delim,r_delim);
14523 } while (mp->cur_cmd==left_delimiter)
14525 @ @<Absorb parameter tokens for type |base|@>=
14527 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14528 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14529 value(p)=base+k; info(p)=mp->cur_sym;
14530 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14531 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14532 incr(k); link(p)=r; r=p; get_t_next;
14533 } while (mp->cur_cmd==comma)
14535 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14537 p=mp_get_node(mp, token_node_size);
14538 if ( mp->cur_mod<expr_base ) {
14539 c=mp->cur_mod; value(p)=expr_base+k;
14541 value(p)=mp->cur_mod+k;
14542 if ( mp->cur_mod==expr_base ) c=expr_macro;
14543 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14546 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14547 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14548 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14549 c=of_macro; p=mp_get_node(mp, token_node_size);
14550 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14551 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14552 link(p)=r; r=p; get_t_next;
14556 @* \[32] Expanding the next token.
14557 Only a few command codes |<min_command| can possibly be returned by
14558 |get_t_next|; in increasing order, they are
14559 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14560 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14562 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14563 like |get_t_next| except that it keeps getting more tokens until
14564 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14565 macros and removes conditionals or iterations or input instructions that
14568 It follows that |get_x_next| might invoke itself recursively. In fact,
14569 there is massive recursion, since macro expansion can involve the
14570 scanning of arbitrarily complex expressions, which in turn involve
14571 macro expansion and conditionals, etc.
14574 Therefore it's necessary to declare a whole bunch of |forward|
14575 procedures at this point, and to insert some other procedures
14576 that will be invoked by |get_x_next|.
14579 void mp_scan_primary (MP mp);
14580 void mp_scan_secondary (MP mp);
14581 void mp_scan_tertiary (MP mp);
14582 void mp_scan_expression (MP mp);
14583 void mp_scan_suffix (MP mp);
14584 @<Declare the procedure called |macro_call|@>
14585 void mp_get_boolean (MP mp);
14586 void mp_pass_text (MP mp);
14587 void mp_conditional (MP mp);
14588 void mp_start_input (MP mp);
14589 void mp_begin_iteration (MP mp);
14590 void mp_resume_iteration (MP mp);
14591 void mp_stop_iteration (MP mp);
14593 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14594 when it has to do exotic expansion commands.
14596 @c void mp_expand (MP mp) {
14597 pointer p; /* for list manipulation */
14598 size_t k; /* something that we hope is |<=buf_size| */
14599 pool_pointer j; /* index into |str_pool| */
14600 if ( mp->internal[mp_tracing_commands]>unity )
14601 if ( mp->cur_cmd!=defined_macro )
14603 switch (mp->cur_cmd) {
14605 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14608 @<Terminate the current conditional and skip to \&{fi}@>;
14611 @<Initiate or terminate input from a file@>;
14614 if ( mp->cur_mod==end_for ) {
14615 @<Scold the user for having an extra \&{endfor}@>;
14617 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14624 @<Exit a loop if the proper time has come@>;
14629 @<Expand the token after the next token@>;
14632 @<Put a string into the input buffer@>;
14634 case defined_macro:
14635 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14637 }; /* there are no other cases */
14640 @ @<Scold the user...@>=
14642 print_err("Extra `endfor'");
14644 help2("I'm not currently working on a for loop,")
14645 ("so I had better not try to end anything.");
14649 @ The processing of \&{input} involves the |start_input| subroutine,
14650 which will be declared later; the processing of \&{endinput} is trivial.
14653 mp_primitive(mp, "input",input,0);
14654 @:input_}{\&{input} primitive@>
14655 mp_primitive(mp, "endinput",input,1);
14656 @:end_input_}{\&{endinput} primitive@>
14658 @ @<Cases of |print_cmd_mod|...@>=
14660 if ( m==0 ) mp_print(mp, "input");
14661 else mp_print(mp, "endinput");
14664 @ @<Initiate or terminate input...@>=
14665 if ( mp->cur_mod>0 ) mp->force_eof=true;
14666 else mp_start_input(mp)
14668 @ We'll discuss the complicated parts of loop operations later. For now
14669 it suffices to know that there's a global variable called |loop_ptr|
14670 that will be |null| if no loop is in progress.
14673 { while ( token_state &&(loc==null) )
14674 mp_end_token_list(mp); /* conserve stack space */
14675 if ( mp->loop_ptr==null ) {
14676 print_err("Lost loop");
14678 help2("I'm confused; after exiting from a loop, I still seem")
14679 ("to want to repeat it. I'll try to forget the problem.");
14682 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14686 @ @<Exit a loop if the proper time has come@>=
14687 { mp_get_boolean(mp);
14688 if ( mp->internal[mp_tracing_commands]>unity )
14689 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14690 if ( mp->cur_exp==true_code ) {
14691 if ( mp->loop_ptr==null ) {
14692 print_err("No loop is in progress");
14693 @.No loop is in progress@>
14694 help1("Why say `exitif' when there's nothing to exit from?");
14695 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14697 @<Exit prematurely from an iteration@>;
14699 } else if ( mp->cur_cmd!=semicolon ) {
14700 mp_missing_err(mp, ";");
14702 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14703 ("I shall pretend that one was there."); mp_back_error(mp);
14707 @ Here we use the fact that |forever_text| is the only |token_type| that
14708 is less than |loop_text|.
14710 @<Exit prematurely...@>=
14713 if ( file_state ) {
14714 mp_end_file_reading(mp);
14716 if ( token_type<=loop_text ) p=start;
14717 mp_end_token_list(mp);
14720 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14722 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14725 @ @<Expand the token after the next token@>=
14727 p=mp_cur_tok(mp); get_t_next;
14728 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14729 else mp_back_input(mp);
14733 @ @<Put a string into the input buffer@>=
14734 { mp_get_x_next(mp); mp_scan_primary(mp);
14735 if ( mp->cur_type!=mp_string_type ) {
14736 mp_disp_err(mp, null,"Not a string");
14738 help2("I'm going to flush this expression, since")
14739 ("scantokens should be followed by a known string.");
14740 mp_put_get_flush_error(mp, 0);
14743 if ( length(mp->cur_exp)>0 )
14744 @<Pretend we're reading a new one-line file@>;
14748 @ @<Pretend we're reading a new one-line file@>=
14749 { mp_begin_file_reading(mp); name=is_scantok;
14750 k=mp->first+length(mp->cur_exp);
14751 if ( k>=mp->max_buf_stack ) {
14752 while ( k>=mp->buf_size ) {
14753 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14755 mp->max_buf_stack=k+1;
14757 j=mp->str_start[mp->cur_exp]; limit=k;
14758 while ( mp->first<(size_t)limit ) {
14759 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14761 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14762 mp_flush_cur_exp(mp, 0);
14765 @ Here finally is |get_x_next|.
14767 The expression scanning routines to be considered later
14768 communicate via the global quantities |cur_type| and |cur_exp|;
14769 we must be very careful to save and restore these quantities while
14770 macros are being expanded.
14774 void mp_get_x_next (MP mp);
14776 @ @c void mp_get_x_next (MP mp) {
14777 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14779 if ( mp->cur_cmd<min_command ) {
14780 save_exp=mp_stash_cur_exp(mp);
14782 if ( mp->cur_cmd==defined_macro )
14783 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14787 } while (mp->cur_cmd<min_command);
14788 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14792 @ Now let's consider the |macro_call| procedure, which is used to start up
14793 all user-defined macros. Since the arguments to a macro might be expressions,
14794 |macro_call| is recursive.
14797 The first parameter to |macro_call| points to the reference count of the
14798 token list that defines the macro. The second parameter contains any
14799 arguments that have already been parsed (see below). The third parameter
14800 points to the symbolic token that names the macro. If the third parameter
14801 is |null|, the macro was defined by \&{vardef}, so its name can be
14802 reconstructed from the prefix and ``at'' arguments found within the
14805 What is this second parameter? It's simply a linked list of one-word items,
14806 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14807 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14808 the first scanned argument, and |link(arg_list)| points to the list of
14809 further arguments (if any).
14811 Arguments of type \&{expr} are so-called capsules, which we will
14812 discuss later when we concentrate on expressions; they can be
14813 recognized easily because their |link| field is |void|. Arguments of type
14814 \&{suffix} and \&{text} are token lists without reference counts.
14816 @ After argument scanning is complete, the arguments are moved to the
14817 |param_stack|. (They can't be put on that stack any sooner, because
14818 the stack is growing and shrinking in unpredictable ways as more arguments
14819 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14820 the replacement text of the macro is placed at the top of the \MP's
14821 input stack, so that |get_t_next| will proceed to read it next.
14823 @<Declare the procedure called |macro_call|@>=
14824 @<Declare the procedure called |print_macro_name|@>
14825 @<Declare the procedure called |print_arg|@>
14826 @<Declare the procedure called |scan_text_arg|@>
14827 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14828 pointer macro_name) ;
14831 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14832 pointer macro_name) {
14833 /* invokes a user-defined control sequence */
14834 pointer r; /* current node in the macro's token list */
14835 pointer p,q; /* for list manipulation */
14836 integer n; /* the number of arguments */
14837 pointer tail = 0; /* tail of the argument list */
14838 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14839 r=link(def_ref); add_mac_ref(def_ref);
14840 if ( arg_list==null ) {
14843 @<Determine the number |n| of arguments already supplied,
14844 and set |tail| to the tail of |arg_list|@>;
14846 if ( mp->internal[mp_tracing_macros]>0 ) {
14847 @<Show the text of the macro being expanded, and the existing arguments@>;
14849 @<Scan the remaining arguments, if any; set |r| to the first token
14850 of the replacement text@>;
14851 @<Feed the arguments and replacement text to the scanner@>;
14854 @ @<Show the text of the macro...@>=
14855 mp_begin_diagnostic(mp); mp_print_ln(mp);
14856 mp_print_macro_name(mp, arg_list,macro_name);
14857 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14858 mp_show_macro(mp, def_ref,null,100000);
14859 if ( arg_list!=null ) {
14863 mp_print_arg(mp, q,n,0);
14864 incr(n); p=link(p);
14867 mp_end_diagnostic(mp, false)
14870 @ @<Declare the procedure called |print_macro_name|@>=
14871 void mp_print_macro_name (MP mp,pointer a, pointer n);
14874 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14875 pointer p,q; /* they traverse the first part of |a| */
14881 mp_print_text(info(info(link(a))));
14884 while ( link(q)!=null ) q=link(q);
14885 link(q)=info(link(a));
14886 mp_show_token_list(mp, p,null,1000,0);
14892 @ @<Declare the procedure called |print_arg|@>=
14893 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14896 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14897 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14898 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14899 else mp_print_nl(mp, "(TEXT");
14900 mp_print_int(mp, n); mp_print(mp, ")<-");
14901 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14902 else mp_show_token_list(mp, q,null,1000,0);
14905 @ @<Determine the number |n| of arguments already supplied...@>=
14907 n=1; tail=arg_list;
14908 while ( link(tail)!=null ) {
14909 incr(n); tail=link(tail);
14913 @ @<Scan the remaining arguments, if any; set |r|...@>=
14914 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14915 while ( info(r)>=expr_base ) {
14916 @<Scan the delimited argument represented by |info(r)|@>;
14919 if ( mp->cur_cmd==comma ) {
14920 print_err("Too many arguments to ");
14921 @.Too many arguments...@>
14922 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14923 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14925 mp_print(mp, "' has been inserted");
14926 help3("I'm going to assume that the comma I just read was a")
14927 ("right delimiter, and then I'll begin expanding the macro.")
14928 ("You might want to delete some tokens before continuing.");
14931 if ( info(r)!=general_macro ) {
14932 @<Scan undelimited argument(s)@>;
14936 @ At this point, the reader will find it advisable to review the explanation
14937 of token list format that was presented earlier, paying special attention to
14938 the conventions that apply only at the beginning of a macro's token list.
14940 On the other hand, the reader will have to take the expression-parsing
14941 aspects of the following program on faith; we will explain |cur_type|
14942 and |cur_exp| later. (Several things in this program depend on each other,
14943 and it's necessary to jump into the circle somewhere.)
14945 @<Scan the delimited argument represented by |info(r)|@>=
14946 if ( mp->cur_cmd!=comma ) {
14948 if ( mp->cur_cmd!=left_delimiter ) {
14949 print_err("Missing argument to ");
14950 @.Missing argument...@>
14951 mp_print_macro_name(mp, arg_list,macro_name);
14952 help3("That macro has more parameters than you thought.")
14953 ("I'll continue by pretending that each missing argument")
14954 ("is either zero or null.");
14955 if ( info(r)>=suffix_base ) {
14956 mp->cur_exp=null; mp->cur_type=mp_token_list;
14958 mp->cur_exp=0; mp->cur_type=mp_known;
14960 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14963 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14965 @<Scan the argument represented by |info(r)|@>;
14966 if ( mp->cur_cmd!=comma )
14967 @<Check that the proper right delimiter was present@>;
14969 @<Append the current expression to |arg_list|@>
14971 @ @<Check that the proper right delim...@>=
14972 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14973 if ( info(link(r))>=expr_base ) {
14974 mp_missing_err(mp, ",");
14976 help3("I've finished reading a macro argument and am about to")
14977 ("read another; the arguments weren't delimited correctly.")
14978 ("You might want to delete some tokens before continuing.");
14979 mp_back_error(mp); mp->cur_cmd=comma;
14981 mp_missing_err(mp, str(text(r_delim)));
14983 help2("I've gotten to the end of the macro parameter list.")
14984 ("You might want to delete some tokens before continuing.");
14989 @ A \&{suffix} or \&{text} parameter will have been scanned as
14990 a token list pointed to by |cur_exp|, in which case we will have
14991 |cur_type=token_list|.
14993 @<Append the current expression to |arg_list|@>=
14995 p=mp_get_avail(mp);
14996 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14997 else info(p)=mp_stash_cur_exp(mp);
14998 if ( mp->internal[mp_tracing_macros]>0 ) {
14999 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15000 mp_end_diagnostic(mp, false);
15002 if ( arg_list==null ) arg_list=p;
15007 @ @<Scan the argument represented by |info(r)|@>=
15008 if ( info(r)>=text_base ) {
15009 mp_scan_text_arg(mp, l_delim,r_delim);
15012 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15013 else mp_scan_expression(mp);
15016 @ The parameters to |scan_text_arg| are either a pair of delimiters
15017 or zero; the latter case is for undelimited text arguments, which
15018 end with the first semicolon or \&{endgroup} or \&{end} that is not
15019 contained in a group.
15021 @<Declare the procedure called |scan_text_arg|@>=
15022 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15025 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15026 integer balance; /* excess of |l_delim| over |r_delim| */
15027 pointer p; /* list tail */
15028 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15029 p=hold_head; balance=1; link(hold_head)=null;
15032 if ( l_delim==0 ) {
15033 @<Adjust the balance for an undelimited argument; |break| if done@>;
15035 @<Adjust the balance for a delimited argument; |break| if done@>;
15037 link(p)=mp_cur_tok(mp); p=link(p);
15039 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15040 mp->scanner_status=normal;
15043 @ @<Adjust the balance for a delimited argument...@>=
15044 if ( mp->cur_cmd==right_delimiter ) {
15045 if ( mp->cur_mod==l_delim ) {
15047 if ( balance==0 ) break;
15049 } else if ( mp->cur_cmd==left_delimiter ) {
15050 if ( mp->cur_mod==r_delim ) incr(balance);
15053 @ @<Adjust the balance for an undelimited...@>=
15054 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15055 if ( balance==1 ) { break; }
15056 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15057 } else if ( mp->cur_cmd==begin_group ) {
15061 @ @<Scan undelimited argument(s)@>=
15063 if ( info(r)<text_macro ) {
15065 if ( info(r)!=suffix_macro ) {
15066 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15070 case primary_macro:mp_scan_primary(mp); break;
15071 case secondary_macro:mp_scan_secondary(mp); break;
15072 case tertiary_macro:mp_scan_tertiary(mp); break;
15073 case expr_macro:mp_scan_expression(mp); break;
15075 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15078 @<Scan a suffix with optional delimiters@>;
15080 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15081 } /* there are no other cases */
15083 @<Append the current expression to |arg_list|@>;
15086 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15088 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15089 if ( mp->internal[mp_tracing_macros]>0 ) {
15090 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15091 mp_end_diagnostic(mp, false);
15093 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15095 if ( mp->cur_cmd!=of_token ) {
15096 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15098 mp_print_macro_name(mp, arg_list,macro_name);
15099 help1("I've got the first argument; will look now for the other.");
15102 mp_get_x_next(mp); mp_scan_primary(mp);
15105 @ @<Scan a suffix with optional delimiters@>=
15107 if ( mp->cur_cmd!=left_delimiter ) {
15110 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15112 mp_scan_suffix(mp);
15113 if ( l_delim!=null ) {
15114 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15115 mp_missing_err(mp, str(text(r_delim)));
15117 help2("I've gotten to the end of the macro parameter list.")
15118 ("You might want to delete some tokens before continuing.");
15125 @ Before we put a new token list on the input stack, it is wise to clean off
15126 all token lists that have recently been depleted. Then a user macro that ends
15127 with a call to itself will not require unbounded stack space.
15129 @<Feed the arguments and replacement text to the scanner@>=
15130 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15131 if ( mp->param_ptr+n>mp->max_param_stack ) {
15132 mp->max_param_stack=mp->param_ptr+n;
15133 if ( mp->max_param_stack>mp->param_size )
15134 mp_overflow(mp, "parameter stack size",mp->param_size);
15135 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15137 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15141 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15143 mp_flush_list(mp, arg_list);
15146 @ It's sometimes necessary to put a single argument onto |param_stack|.
15147 The |stack_argument| subroutine does this.
15149 @c void mp_stack_argument (MP mp,pointer p) {
15150 if ( mp->param_ptr==mp->max_param_stack ) {
15151 incr(mp->max_param_stack);
15152 if ( mp->max_param_stack>mp->param_size )
15153 mp_overflow(mp, "parameter stack size",mp->param_size);
15154 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15156 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15159 @* \[33] Conditional processing.
15160 Let's consider now the way \&{if} commands are handled.
15162 Conditions can be inside conditions, and this nesting has a stack
15163 that is independent of other stacks.
15164 Four global variables represent the top of the condition stack:
15165 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15166 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15167 the largest code of a |fi_or_else| command that is syntactically legal;
15168 and |if_line| is the line number at which the current conditional began.
15170 If no conditions are currently in progress, the condition stack has the
15171 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15172 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15173 |link| fields of the first word contain |if_limit|, |cur_if|, and
15174 |cond_ptr| at the next level, and the second word contains the
15175 corresponding |if_line|.
15177 @d if_node_size 2 /* number of words in stack entry for conditionals */
15178 @d if_line_field(A) mp->mem[(A)+1].cint
15179 @d if_code 1 /* code for \&{if} being evaluated */
15180 @d fi_code 2 /* code for \&{fi} */
15181 @d else_code 3 /* code for \&{else} */
15182 @d else_if_code 4 /* code for \&{elseif} */
15185 pointer cond_ptr; /* top of the condition stack */
15186 integer if_limit; /* upper bound on |fi_or_else| codes */
15187 small_number cur_if; /* type of conditional being worked on */
15188 integer if_line; /* line where that conditional began */
15191 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15194 mp_primitive(mp, "if",if_test,if_code);
15195 @:if_}{\&{if} primitive@>
15196 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15197 @:fi_}{\&{fi} primitive@>
15198 mp_primitive(mp, "else",fi_or_else,else_code);
15199 @:else_}{\&{else} primitive@>
15200 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15201 @:else_if_}{\&{elseif} primitive@>
15203 @ @<Cases of |print_cmd_mod|...@>=
15207 case if_code:mp_print(mp, "if"); break;
15208 case fi_code:mp_print(mp, "fi"); break;
15209 case else_code:mp_print(mp, "else"); break;
15210 default: mp_print(mp, "elseif"); break;
15214 @ Here is a procedure that ignores text until coming to an \&{elseif},
15215 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15216 nesting. After it has acted, |cur_mod| will indicate the token that
15219 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15220 makes the skipping process a bit simpler.
15223 void mp_pass_text (MP mp) {
15225 mp->scanner_status=skipping;
15226 mp->warning_info=mp_true_line(mp);
15229 if ( mp->cur_cmd<=fi_or_else ) {
15230 if ( mp->cur_cmd<fi_or_else ) {
15234 if ( mp->cur_mod==fi_code ) decr(l);
15237 @<Decrease the string reference count,
15238 if the current token is a string@>;
15241 mp->scanner_status=normal;
15244 @ @<Decrease the string reference count...@>=
15245 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15247 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15248 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15249 condition has been evaluated, a colon will be inserted.
15250 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15252 @<Push the condition stack@>=
15253 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15254 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15255 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15256 mp->cur_if=if_code;
15259 @ @<Pop the condition stack@>=
15260 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15261 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15262 mp_free_node(mp, p,if_node_size);
15265 @ Here's a procedure that changes the |if_limit| code corresponding to
15266 a given value of |cond_ptr|.
15268 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15270 if ( p==mp->cond_ptr ) {
15271 mp->if_limit=l; /* that's the easy case */
15275 if ( q==null ) mp_confusion(mp, "if");
15276 @:this can't happen if}{\quad if@>
15277 if ( link(q)==p ) {
15285 @ The user is supposed to put colons into the proper parts of conditional
15286 statements. Therefore, \MP\ has to check for their presence.
15289 void mp_check_colon (MP mp) {
15290 if ( mp->cur_cmd!=colon ) {
15291 mp_missing_err(mp, ":");
15293 help2("There should've been a colon after the condition.")
15294 ("I shall pretend that one was there.");;
15299 @ A condition is started when the |get_x_next| procedure encounters
15300 an |if_test| command; in that case |get_x_next| calls |conditional|,
15301 which is a recursive procedure.
15304 @c void mp_conditional (MP mp) {
15305 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15306 int new_if_limit; /* future value of |if_limit| */
15307 pointer p; /* temporary register */
15308 @<Push the condition stack@>;
15309 save_cond_ptr=mp->cond_ptr;
15311 mp_get_boolean(mp); new_if_limit=else_if_code;
15312 if ( mp->internal[mp_tracing_commands]>unity ) {
15313 @<Display the boolean value of |cur_exp|@>;
15316 mp_check_colon(mp);
15317 if ( mp->cur_exp==true_code ) {
15318 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15319 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15321 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15323 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15324 if ( mp->cur_mod==fi_code ) {
15325 @<Pop the condition stack@>
15326 } else if ( mp->cur_mod==else_if_code ) {
15329 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15334 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15335 \&{else}: \\{bar} \&{fi}', the first \&{else}
15336 that we come to after learning that the \&{if} is false is not the
15337 \&{else} we're looking for. Hence the following curious logic is needed.
15339 @<Skip to \&{elseif}...@>=
15342 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15343 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15347 @ @<Display the boolean value...@>=
15348 { mp_begin_diagnostic(mp);
15349 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15350 else mp_print(mp, "{false}");
15351 mp_end_diagnostic(mp, false);
15354 @ The processing of conditionals is complete except for the following
15355 code, which is actually part of |get_x_next|. It comes into play when
15356 \&{elseif}, \&{else}, or \&{fi} is scanned.
15358 @<Terminate the current conditional and skip to \&{fi}@>=
15359 if ( mp->cur_mod>mp->if_limit ) {
15360 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15361 mp_missing_err(mp, ":");
15363 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15365 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15369 help1("I'm ignoring this; it doesn't match any if.");
15373 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15374 @<Pop the condition stack@>;
15377 @* \[34] Iterations.
15378 To bring our treatment of |get_x_next| to a close, we need to consider what
15379 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15381 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15382 that are currently active. If |loop_ptr=null|, no loops are in progress;
15383 otherwise |info(loop_ptr)| points to the iterative text of the current
15384 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15385 loops that enclose the current one.
15387 A loop-control node also has two other fields, called |loop_type| and
15388 |loop_list|, whose contents depend on the type of loop:
15390 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15391 points to a list of one-word nodes whose |info| fields point to the
15392 remaining argument values of a suffix list and expression list.
15394 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15397 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15398 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15399 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15402 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15403 header and |loop_list(loop_ptr)| points into the graphical object list for
15406 \yskip\noindent In the case of a progression node, the first word is not used
15407 because the link field of words in the dynamic memory area cannot be arbitrary.
15409 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15410 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15411 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15412 @d loop_node_size 2 /* the number of words in a loop control node */
15413 @d progression_node_size 4 /* the number of words in a progression node */
15414 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15415 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15416 @d progression_flag (null+2)
15417 /* |loop_type| value when |loop_list| points to a progression node */
15420 pointer loop_ptr; /* top of the loop-control-node stack */
15425 @ If the expressions that define an arithmetic progression in
15426 a \&{for} loop don't have known numeric values, the |bad_for|
15427 subroutine screams at the user.
15429 @c void mp_bad_for (MP mp, const char * s) {
15430 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15431 @.Improper...replaced by 0@>
15432 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15433 help4("When you say `for x=a step b until c',")
15434 ("the initial value `a' and the step size `b'")
15435 ("and the final value `c' must have known numeric values.")
15436 ("I'm zeroing this one. Proceed, with fingers crossed.");
15437 mp_put_get_flush_error(mp, 0);
15440 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15441 has just been scanned. (This code requires slight familiarity with
15442 expression-parsing routines that we have not yet discussed; but it seems
15443 to belong in the present part of the program, even though the original author
15444 didn't write it until later. The reader may wish to come back to it.)
15446 @c void mp_begin_iteration (MP mp) {
15447 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15448 halfword n; /* hash address of the current symbol */
15449 pointer s; /* the new loop-control node */
15450 pointer p; /* substitution list for |scan_toks| */
15451 pointer q; /* link manipulation register */
15452 pointer pp; /* a new progression node */
15453 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15454 if ( m==start_forever ){
15455 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15457 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15458 info(p)=mp->cur_sym; value(p)=m;
15460 if ( mp->cur_cmd==within_token ) {
15461 @<Set up a picture iteration@>;
15463 @<Check for the |"="| or |":="| in a loop header@>;
15464 @<Scan the values to be used in the loop@>;
15467 @<Check for the presence of a colon@>;
15468 @<Scan the loop text and put it on the loop control stack@>;
15469 mp_resume_iteration(mp);
15472 @ @<Check for the |"="| or |":="| in a loop header@>=
15473 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15474 mp_missing_err(mp, "=");
15476 help3("The next thing in this loop should have been `=' or `:='.")
15477 ("But don't worry; I'll pretend that an equals sign")
15478 ("was present, and I'll look for the values next.");
15482 @ @<Check for the presence of a colon@>=
15483 if ( mp->cur_cmd!=colon ) {
15484 mp_missing_err(mp, ":");
15486 help3("The next thing in this loop should have been a `:'.")
15487 ("So I'll pretend that a colon was present;")
15488 ("everything from here to `endfor' will be iterated.");
15492 @ We append a special |frozen_repeat_loop| token in place of the
15493 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15494 at the proper time to cause the loop to be repeated.
15496 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15497 he will be foiled by the |get_symbol| routine, which keeps frozen
15498 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15499 token, so it won't be lost accidentally.)
15501 @ @<Scan the loop text...@>=
15502 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15503 mp->scanner_status=loop_defining; mp->warning_info=n;
15504 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15505 link(s)=mp->loop_ptr; mp->loop_ptr=s
15507 @ @<Initialize table...@>=
15508 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15509 text(frozen_repeat_loop)=intern(" ENDFOR");
15511 @ The loop text is inserted into \MP's scanning apparatus by the
15512 |resume_iteration| routine.
15514 @c void mp_resume_iteration (MP mp) {
15515 pointer p,q; /* link registers */
15516 p=loop_type(mp->loop_ptr);
15517 if ( p==progression_flag ) {
15518 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15519 mp->cur_exp=value(p);
15520 if ( @<The arithmetic progression has ended@> ) {
15521 mp_stop_iteration(mp);
15524 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15525 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15526 } else if ( p==null ) {
15527 p=loop_list(mp->loop_ptr);
15529 mp_stop_iteration(mp);
15532 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15533 } else if ( p==mp_void ) {
15534 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15536 @<Make |q| a capsule containing the next picture component from
15537 |loop_list(loop_ptr)| or |goto not_found|@>;
15539 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15540 mp_stack_argument(mp, q);
15541 if ( mp->internal[mp_tracing_commands]>unity ) {
15542 @<Trace the start of a loop@>;
15546 mp_stop_iteration(mp);
15549 @ @<The arithmetic progression has ended@>=
15550 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15551 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15553 @ @<Trace the start of a loop@>=
15555 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15557 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15558 else mp_show_token_list(mp, q,null,50,0);
15559 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15562 @ @<Make |q| a capsule containing the next picture component from...@>=
15563 { q=loop_list(mp->loop_ptr);
15564 if ( q==null ) goto NOT_FOUND;
15565 skip_component(q) goto NOT_FOUND;
15566 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15567 mp_init_bbox(mp, mp->cur_exp);
15568 mp->cur_type=mp_picture_type;
15569 loop_list(mp->loop_ptr)=q;
15570 q=mp_stash_cur_exp(mp);
15573 @ A level of loop control disappears when |resume_iteration| has decided
15574 not to resume, or when an \&{exitif} construction has removed the loop text
15575 from the input stack.
15577 @c void mp_stop_iteration (MP mp) {
15578 pointer p,q; /* the usual */
15579 p=loop_type(mp->loop_ptr);
15580 if ( p==progression_flag ) {
15581 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15582 } else if ( p==null ){
15583 q=loop_list(mp->loop_ptr);
15584 while ( q!=null ) {
15587 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15588 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15590 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15593 p=q; q=link(q); free_avail(p);
15595 } else if ( p>progression_flag ) {
15596 delete_edge_ref(p);
15598 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15599 mp_free_node(mp, p,loop_node_size);
15602 @ Now that we know all about loop control, we can finish up
15603 the missing portion of |begin_iteration| and we'll be done.
15605 The following code is performed after the `\.=' has been scanned in
15606 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15607 (if |m=suffix_base|).
15609 @<Scan the values to be used in the loop@>=
15610 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15613 if ( m!=expr_base ) {
15614 mp_scan_suffix(mp);
15616 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15618 mp_scan_expression(mp);
15619 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15620 @<Prepare for step-until construction and |break|@>;
15622 mp->cur_exp=mp_stash_cur_exp(mp);
15624 link(q)=mp_get_avail(mp); q=link(q);
15625 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15628 } while (mp->cur_cmd==comma)
15630 @ @<Prepare for step-until construction and |break|@>=
15632 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15633 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15634 mp_get_x_next(mp); mp_scan_expression(mp);
15635 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15636 step_size(pp)=mp->cur_exp;
15637 if ( mp->cur_cmd!=until_token ) {
15638 mp_missing_err(mp, "until");
15639 @.Missing `until'@>
15640 help2("I assume you meant to say `until' after `step'.")
15641 ("So I'll look for the final value and colon next.");
15644 mp_get_x_next(mp); mp_scan_expression(mp);
15645 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15646 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15647 loop_type(s)=progression_flag;
15651 @ The last case is when we have just seen ``\&{within}'', and we need to
15652 parse a picture expression and prepare to iterate over it.
15654 @<Set up a picture iteration@>=
15655 { mp_get_x_next(mp);
15656 mp_scan_expression(mp);
15657 @<Make sure the current expression is a known picture@>;
15658 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15659 q=link(dummy_loc(mp->cur_exp));
15661 if ( is_start_or_stop(q) )
15662 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15666 @ @<Make sure the current expression is a known picture@>=
15667 if ( mp->cur_type!=mp_picture_type ) {
15668 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15669 help1("When you say `for x in p', p must be a known picture.");
15670 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15671 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15674 @* \[35] File names.
15675 It's time now to fret about file names. Besides the fact that different
15676 operating systems treat files in different ways, we must cope with the
15677 fact that completely different naming conventions are used by different
15678 groups of people. The following programs show what is required for one
15679 particular operating system; similar routines for other systems are not
15680 difficult to devise.
15681 @^system dependencies@>
15683 \MP\ assumes that a file name has three parts: the name proper; its
15684 ``extension''; and a ``file area'' where it is found in an external file
15685 system. The extension of an input file is assumed to be
15686 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15687 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15688 metric files that describe characters in any fonts created by \MP; it is
15689 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15690 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15691 The file area can be arbitrary on input files, but files are usually
15692 output to the user's current area. If an input file cannot be
15693 found on the specified area, \MP\ will look for it on a special system
15694 area; this special area is intended for commonly used input files.
15696 Simple uses of \MP\ refer only to file names that have no explicit
15697 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15698 instead of `\.{input} \.{cmr10.new}'. Simple file
15699 names are best, because they make the \MP\ source files portable;
15700 whenever a file name consists entirely of letters and digits, it should be
15701 treated in the same way by all implementations of \MP. However, users
15702 need the ability to refer to other files in their environment, especially
15703 when responding to error messages concerning unopenable files; therefore
15704 we want to let them use the syntax that appears in their favorite
15707 @ \MP\ uses the same conventions that have proved to be satisfactory for
15708 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15709 @^system dependencies@>
15710 the system-independent parts of \MP\ are expressed in terms
15711 of three system-dependent
15712 procedures called |begin_name|, |more_name|, and |end_name|. In
15713 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15714 the system-independent driver program does the operations
15715 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;\,|more_name|(c_n);
15717 These three procedures communicate with each other via global variables.
15718 Afterwards the file name will appear in the string pool as three strings
15719 called |cur_name|\penalty10000\hskip-.05em,
15720 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15721 |""|), unless they were explicitly specified by the user.
15723 Actually the situation is slightly more complicated, because \MP\ needs
15724 to know when the file name ends. The |more_name| routine is a function
15725 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15726 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15727 returns |false|; or, it returns |true| and $c_n$ is the last character
15728 on the current input line. In other words,
15729 |more_name| is supposed to return |true| unless it is sure that the
15730 file name has been completely scanned; and |end_name| is supposed to be able
15731 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15732 whether $|more_name|(c_n)$ returned |true| or |false|.
15735 char * cur_name; /* name of file just scanned */
15736 char * cur_area; /* file area just scanned, or \.{""} */
15737 char * cur_ext; /* file extension just scanned, or \.{""} */
15739 @ It is easier to maintain reference counts if we assign initial values.
15742 mp->cur_name=xstrdup("");
15743 mp->cur_area=xstrdup("");
15744 mp->cur_ext=xstrdup("");
15746 @ @<Dealloc variables@>=
15747 xfree(mp->cur_area);
15748 xfree(mp->cur_name);
15749 xfree(mp->cur_ext);
15751 @ The file names we shall deal with for illustrative purposes have the
15752 following structure: If the name contains `\.>' or `\.:', the file area
15753 consists of all characters up to and including the final such character;
15754 otherwise the file area is null. If the remaining file name contains
15755 `\..', the file extension consists of all such characters from the first
15756 remaining `\..' to the end, otherwise the file extension is null.
15757 @^system dependencies@>
15759 We can scan such file names easily by using two global variables that keep track
15760 of the occurrences of area and extension delimiters. Note that these variables
15761 cannot be of type |pool_pointer| because a string pool compaction could occur
15762 while scanning a file name.
15765 integer area_delimiter;
15766 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15767 integer ext_delimiter; /* the relevant `\..', if any */
15769 @ Here now is the first of the system-dependent routines for file name scanning.
15770 @^system dependencies@>
15772 The file name length is limited to |file_name_size|. That is good, because
15773 in the current configuration we cannot call |mp_do_compaction| while a name
15774 is being scanned, |mp->area_delimiter| and |mp->ext_delimiter| are direct
15775 offsets into |mp->str_pool|. I am not in a great hurry to fix this, because
15776 calling |str_room()| just once is more efficient anyway. TODO.
15778 @<Declare subroutines for parsing file names@>=
15779 void mp_begin_name (MP mp) {
15780 xfree(mp->cur_name);
15781 xfree(mp->cur_area);
15782 xfree(mp->cur_ext);
15783 mp->area_delimiter=-1;
15784 mp->ext_delimiter=-1;
15785 str_room(file_name_size);
15788 @ And here's the second.
15789 @^system dependencies@>
15791 @<Declare subroutines for parsing file names@>=
15792 boolean mp_more_name (MP mp, ASCII_code c) {
15796 if ( (c=='>')||(c==':') ) {
15797 mp->area_delimiter=mp->pool_ptr;
15798 mp->ext_delimiter=-1;
15799 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15800 mp->ext_delimiter=mp->pool_ptr;
15802 append_char(c); /* contribute |c| to the current string */
15808 @^system dependencies@>
15810 @d copy_pool_segment(A,B,C) {
15811 A = xmalloc(C+1,sizeof(char));
15812 strncpy(A,(char *)(mp->str_pool+B),C);
15815 @<Declare subroutines for parsing file names@>=
15816 void mp_end_name (MP mp) {
15817 pool_pointer s; /* length of area, name, and extension */
15820 s = mp->str_start[mp->str_ptr];
15821 if ( mp->area_delimiter<0 ) {
15822 mp->cur_area=xstrdup("");
15824 len = mp->area_delimiter-s;
15825 copy_pool_segment(mp->cur_area,s,len);
15828 if ( mp->ext_delimiter<0 ) {
15829 mp->cur_ext=xstrdup("");
15830 len = mp->pool_ptr-s;
15832 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15833 len = mp->ext_delimiter-s;
15835 copy_pool_segment(mp->cur_name,s,len);
15836 mp->pool_ptr=s; /* don't need this partial string */
15839 @ Conversely, here is a routine that takes three strings and prints a file
15840 name that might have produced them. (The routine is system dependent, because
15841 some operating systems put the file area last instead of first.)
15842 @^system dependencies@>
15844 @<Basic printing...@>=
15845 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15846 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15849 @ Another system-dependent routine is needed to convert three internal
15851 to the |name_of_file| value that is used to open files. The present code
15852 allows both lowercase and uppercase letters in the file name.
15853 @^system dependencies@>
15855 @d append_to_name(A) { c=(A);
15856 if ( k<file_name_size ) {
15857 mp->name_of_file[k]=xchr(c);
15862 @<Declare subroutines for parsing file names@>=
15863 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) {
15864 integer k; /* number of positions filled in |name_of_file| */
15865 ASCII_code c; /* character being packed */
15866 const char *j; /* a character index */
15870 for (j=a;*j;j++) { append_to_name(*j); }
15872 for (j=n;*j;j++) { append_to_name(*j); }
15874 for (j=e;*j;j++) { append_to_name(*j); }
15876 mp->name_of_file[k]=0;
15880 @ @<Internal library declarations@>=
15881 void mp_pack_file_name (MP mp, const char *n, const char *a, const char *e) ;
15883 @ A messier routine is also needed, since mem file names must be scanned
15884 before \MP's string mechanism has been initialized. We shall use the
15885 global variable |MP_mem_default| to supply the text for default system areas
15886 and extensions related to mem files.
15887 @^system dependencies@>
15889 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15890 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15891 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15894 char *MP_mem_default;
15896 @ @<Option variables@>=
15897 char *mem_name; /* for commandline */
15899 @ @<Allocate or initialize ...@>=
15900 mp->MP_mem_default = xstrdup("plain.mem");
15901 mp->mem_name = xstrdup(opt->mem_name);
15903 @^system dependencies@>
15905 @ @<Dealloc variables@>=
15906 xfree(mp->MP_mem_default);
15907 xfree(mp->mem_name);
15909 @ @<Check the ``constant'' values for consistency@>=
15910 if ( mem_default_length>file_name_size ) mp->bad=20;
15912 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15913 from the first |n| characters of |MP_mem_default|, followed by
15914 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15917 We dare not give error messages here, since \MP\ calls this routine before
15918 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15919 since the error will be detected in another way when a strange file name
15921 @^system dependencies@>
15923 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15925 integer k; /* number of positions filled in |name_of_file| */
15926 ASCII_code c; /* character being packed */
15927 integer j; /* index into |buffer| or |MP_mem_default| */
15928 if ( n+b-a+1+mem_ext_length>file_name_size )
15929 b=a+file_name_size-n-1-mem_ext_length;
15931 for (j=0;j<n;j++) {
15932 append_to_name(xord((int)mp->MP_mem_default[j]));
15934 for (j=a;j<b;j++) {
15935 append_to_name(mp->buffer[j]);
15937 for (j=mem_default_length-mem_ext_length;
15938 j<mem_default_length;j++) {
15939 append_to_name(xord((int)mp->MP_mem_default[j]));
15941 mp->name_of_file[k]=0;
15945 @ Here is the only place we use |pack_buffered_name|. This part of the program
15946 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15947 the preliminary initialization, or when the user is substituting another
15948 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15949 contains the first line of input in |buffer[loc..(last-1)]|, where
15950 |loc<last| and |buffer[loc]<>" "|.
15953 boolean mp_open_mem_file (MP mp) ;
15956 boolean mp_open_mem_file (MP mp) {
15957 int j; /* the first space after the file name */
15958 if (mp->mem_name!=NULL) {
15959 mp->mem_file = (mp->open_file)(mp,mp->mem_name, "r", mp_filetype_memfile);
15960 if ( mp->mem_file ) return true;
15963 if ( mp->buffer[loc]=='&' ) {
15964 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15965 while ( mp->buffer[j]!=' ' ) incr(j);
15966 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15967 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15969 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15970 @.Sorry, I can't find...@>
15973 /* now pull out all the stops: try for the system \.{plain} file */
15974 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15975 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15977 wterm_ln("I can\'t find the PLAIN mem file!\n");
15978 @.I can't find PLAIN...@>
15983 loc=j; return true;
15986 @ Operating systems often make it possible to determine the exact name (and
15987 possible version number) of a file that has been opened. The following routine,
15988 which simply makes a \MP\ string from the value of |name_of_file|, should
15989 ideally be changed to deduce the full name of file~|f|, which is the file
15990 most recently opened, if it is possible to do this.
15991 @^system dependencies@>
15994 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15995 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15996 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15999 str_number mp_make_name_string (MP mp) {
16000 int k; /* index into |name_of_file| */
16001 str_room(mp->name_length);
16002 for (k=0;k<mp->name_length;k++) {
16003 append_char(xord((int)mp->name_of_file[k]));
16005 return mp_make_string(mp);
16008 @ Now let's consider the ``driver''
16009 routines by which \MP\ deals with file names
16010 in a system-independent manner. First comes a procedure that looks for a
16011 file name in the input by taking the information from the input buffer.
16012 (We can't use |get_next|, because the conversion to tokens would
16013 destroy necessary information.)
16015 This procedure doesn't allow semicolons or percent signs to be part of
16016 file names, because of other conventions of \MP.
16017 {\sl The {\logos METAFONT\/}book} doesn't
16018 use semicolons or percents immediately after file names, but some users
16019 no doubt will find it natural to do so; therefore system-dependent
16020 changes to allow such characters in file names should probably
16021 be made with reluctance, and only when an entire file name that
16022 includes special characters is ``quoted'' somehow.
16023 @^system dependencies@>
16025 @c void mp_scan_file_name (MP mp) {
16027 while ( mp->buffer[loc]==' ' ) incr(loc);
16029 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16030 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16036 @ Here is another version that takes its input from a string.
16038 @<Declare subroutines for parsing file names@>=
16039 void mp_str_scan_file (MP mp, str_number s) {
16040 pool_pointer p,q; /* current position and stopping point */
16042 p=mp->str_start[s]; q=str_stop(s);
16044 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16050 @ And one that reads from a |char*|.
16052 @<Declare subroutines for parsing file names@>=
16053 void mp_ptr_scan_file (MP mp, char *s) {
16054 char *p, *q; /* current position and stopping point */
16056 p=s; q=p+strlen(s);
16058 if ( ! mp_more_name(mp, *p)) break;
16065 @ The global variable |job_name| contains the file name that was first
16066 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16067 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16070 boolean log_opened; /* has the transcript file been opened? */
16071 char *log_name; /* full name of the log file */
16073 @ @<Option variables@>=
16074 char *job_name; /* principal file name */
16076 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16077 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16078 except of course for a short time just after |job_name| has become nonzero.
16080 @<Allocate or ...@>=
16081 mp->job_name=mp_xstrdup(mp, opt->job_name);
16082 mp->log_opened=false;
16084 @ @<Dealloc variables@>=
16085 xfree(mp->job_name);
16087 @ Here is a routine that manufactures the output file names, assuming that
16088 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16091 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16094 void mp_pack_job_name (MP mp, const char *s) ;
16097 void mp_pack_job_name (MP mp, const char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16098 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16099 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16100 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16104 @ If some trouble arises when \MP\ tries to open a file, the following
16105 routine calls upon the user to supply another file name. Parameter~|s|
16106 is used in the error message to identify the type of file; parameter~|e|
16107 is the default extension if none is given. Upon exit from the routine,
16108 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16109 ready for another attempt at file opening.
16112 void mp_prompt_file_name (MP mp, const char * s, const char * e) ;
16114 @ @c void mp_prompt_file_name (MP mp, const char * s, const char * e) {
16115 size_t k; /* index into |buffer| */
16116 char * saved_cur_name;
16117 if ( mp->interaction==mp_scroll_mode )
16119 if (strcmp(s,"input file name")==0) {
16120 print_err("I can\'t find file `");
16121 @.I can't find file x@>
16123 print_err("I can\'t write on file `");
16125 @.I can't write on file x@>
16126 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16127 mp_print(mp, "'.");
16128 if (strcmp(e,"")==0)
16129 mp_show_context(mp);
16130 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16132 if ( mp->interaction<mp_scroll_mode )
16133 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16134 @.job aborted, file error...@>
16135 saved_cur_name = xstrdup(mp->cur_name);
16136 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16137 if (strcmp(mp->cur_ext,"")==0)
16138 mp->cur_ext=xstrdup(e);
16139 if (strlen(mp->cur_name)==0) {
16140 mp->cur_name=saved_cur_name;
16142 xfree(saved_cur_name);
16147 @ @<Scan file name in the buffer@>=
16149 mp_begin_name(mp); k=mp->first;
16150 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16152 if ( k==mp->last ) break;
16153 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16159 @ The |open_log_file| routine is used to open the transcript file and to help
16160 it catch up to what has previously been printed on the terminal.
16162 @c void mp_open_log_file (MP mp) {
16163 int old_setting; /* previous |selector| setting */
16164 int k; /* index into |months| and |buffer| */
16165 int l; /* end of first input line */
16166 integer m; /* the current month */
16167 const char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16168 /* abbreviations of month names */
16169 old_setting=mp->selector;
16170 if ( mp->job_name==NULL ) {
16171 mp->job_name=xstrdup("mpout");
16173 mp_pack_job_name(mp,".log");
16174 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16175 @<Try to get a different log file name@>;
16177 mp->log_name=xstrdup(mp->name_of_file);
16178 mp->selector=log_only; mp->log_opened=true;
16179 @<Print the banner line, including the date and time@>;
16180 mp->input_stack[mp->input_ptr]=mp->cur_input;
16181 /* make sure bottom level is in memory */
16183 if (!mp->noninteractive) {
16184 mp_print_nl(mp, "**");
16185 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16186 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16187 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16189 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16192 @ @<Dealloc variables@>=
16193 xfree(mp->log_name);
16195 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16196 unable to print error messages or even to |show_context|.
16197 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16198 routine will not be invoked because |log_opened| will be false.
16200 The normal idea of |mp_batch_mode| is that nothing at all should be written
16201 on the terminal. However, in the unusual case that
16202 no log file could be opened, we make an exception and allow
16203 an explanatory message to be seen.
16205 Incidentally, the program always refers to the log file as a `\.{transcript
16206 file}', because some systems cannot use the extension `\.{.log}' for
16209 @<Try to get a different log file name@>=
16211 mp->selector=term_only;
16212 mp_prompt_file_name(mp, "transcript file name",".log");
16215 @ @<Print the banner...@>=
16218 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16219 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16220 mp_print_char(mp, ' ');
16221 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16222 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16223 mp_print_char(mp, ' ');
16224 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16225 mp_print_char(mp, ' ');
16226 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16227 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16230 @ The |try_extension| function tries to open an input file determined by
16231 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16232 can't find the file in |cur_area| or the appropriate system area.
16234 @c boolean mp_try_extension (MP mp, const char *ext) {
16235 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16236 in_name=xstrdup(mp->cur_name);
16237 in_area=xstrdup(mp->cur_area);
16238 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16241 mp_pack_file_name(mp, mp->cur_name,NULL,ext);
16242 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16246 @ Let's turn now to the procedure that is used to initiate file reading
16247 when an `\.{input}' command is being processed.
16249 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16250 char *fname = NULL;
16251 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16253 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16254 if ( strlen(mp->cur_ext)==0 ) {
16255 if ( mp_try_extension(mp, ".mp") ) break;
16256 else if ( mp_try_extension(mp, "") ) break;
16257 else if ( mp_try_extension(mp, ".mf") ) break;
16258 /* |else do_nothing; | */
16259 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16262 mp_end_file_reading(mp); /* remove the level that didn't work */
16263 mp_prompt_file_name(mp, "input file name","");
16265 name=mp_a_make_name_string(mp, cur_file);
16266 fname = xstrdup(mp->name_of_file);
16267 if ( mp->job_name==NULL ) {
16268 mp->job_name=xstrdup(mp->cur_name);
16269 mp_open_log_file(mp);
16270 } /* |open_log_file| doesn't |show_context|, so |limit|
16271 and |loc| needn't be set to meaningful values yet */
16272 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16273 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16274 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16277 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16278 @<Read the first line of the new file@>;
16281 @ This code should be omitted if |a_make_name_string| returns something other
16282 than just a copy of its argument and the full file name is needed for opening
16283 \.{MPX} files or implementing the switch-to-editor option.
16284 @^system dependencies@>
16286 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16287 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16289 @ If the file is empty, it is considered to contain a single blank line,
16290 so there is no need to test the return value.
16292 @<Read the first line...@>=
16295 (void)mp_input_ln(mp, cur_file );
16296 mp_firm_up_the_line(mp);
16297 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16300 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16301 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16302 if ( token_state ) {
16303 print_err("File names can't appear within macros");
16304 @.File names can't...@>
16305 help3("Sorry...I've converted what follows to tokens,")
16306 ("possibly garbaging the name you gave.")
16307 ("Please delete the tokens and insert the name again.");
16310 if ( file_state ) {
16311 mp_scan_file_name(mp);
16313 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16314 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16315 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16318 @ The following simple routine starts reading the \.{MPX} file associated
16319 with the current input file.
16321 @c void mp_start_mpx_input (MP mp) {
16322 char *origname = NULL; /* a copy of nameoffile */
16323 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16324 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16325 |goto not_found| if there is a problem@>;
16326 mp_begin_file_reading(mp);
16327 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16328 mp_end_file_reading(mp);
16331 name=mp_a_make_name_string(mp, cur_file);
16332 mp->mpx_name[index]=name; add_str_ref(name);
16333 @<Read the first line of the new file@>;
16336 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16340 @ This should ideally be changed to do whatever is necessary to create the
16341 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16342 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16343 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16344 completely different typesetting program if suitable postprocessor is
16345 available to perform the function of \.{DVItoMP}.)
16346 @^system dependencies@>
16348 @ @<Exported types@>=
16349 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16351 @ @<Option variables@>=
16352 mp_run_make_mpx_command run_make_mpx;
16354 @ @<Allocate or initialize ...@>=
16355 set_callback_option(run_make_mpx);
16357 @ @<Internal library declarations@>=
16358 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16360 @ The default does nothing.
16362 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16369 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16370 |goto not_found| if there is a problem@>=
16371 origname = mp_xstrdup(mp,mp->name_of_file);
16372 *(origname+strlen(origname)-1)=0; /* drop the x */
16373 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16376 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16377 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16378 mp_print_nl(mp, ">> ");
16379 mp_print(mp, origname);
16380 mp_print_nl(mp, ">> ");
16381 mp_print(mp, mp->name_of_file);
16382 mp_print_nl(mp, "! Unable to make mpx file");
16383 help4("The two files given above are one of your source files")
16384 ("and an auxiliary file I need to read to find out what your")
16385 ("btex..etex blocks mean. If you don't know why I had trouble,")
16386 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16389 @ The last file-opening commands are for files accessed via the \&{readfrom}
16390 @:read_from_}{\&{readfrom} primitive@>
16391 operator and the \&{write} command. Such files are stored in separate arrays.
16392 @:write_}{\&{write} primitive@>
16394 @<Types in the outer block@>=
16395 typedef unsigned int readf_index; /* |0..max_read_files| */
16396 typedef unsigned int write_index; /* |0..max_write_files| */
16399 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16400 void ** rd_file; /* \&{readfrom} files */
16401 char ** rd_fname; /* corresponding file name or 0 if file not open */
16402 readf_index read_files; /* number of valid entries in the above arrays */
16403 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16404 void ** wr_file; /* \&{write} files */
16405 char ** wr_fname; /* corresponding file name or 0 if file not open */
16406 write_index write_files; /* number of valid entries in the above arrays */
16408 @ @<Allocate or initialize ...@>=
16409 mp->max_read_files=8;
16410 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16411 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16412 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16414 mp->max_write_files=8;
16415 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16416 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16417 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16421 @ This routine starts reading the file named by string~|s| without setting
16422 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16423 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16425 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16426 mp_ptr_scan_file(mp, s);
16428 mp_begin_file_reading(mp);
16429 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16431 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16432 (mp->close_file)(mp,mp->rd_file[n]);
16435 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16438 mp_end_file_reading(mp);
16442 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16445 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16447 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16448 mp_ptr_scan_file(mp, s);
16450 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16451 mp_prompt_file_name(mp, "file name for write output","");
16452 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16456 @* \[36] Introduction to the parsing routines.
16457 We come now to the central nervous system that sparks many of \MP's activities.
16458 By evaluating expressions, from their primary constituents to ever larger
16459 subexpressions, \MP\ builds the structures that ultimately define complete
16460 pictures or fonts of type.
16462 Four mutually recursive subroutines are involved in this process: We call them
16463 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16464 and |scan_expression|.}$$
16466 Each of them is parameterless and begins with the first token to be scanned
16467 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16468 the value of the primary or secondary or tertiary or expression that was
16469 found will appear in the global variables |cur_type| and |cur_exp|. The
16470 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16473 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16474 backup mechanisms have been added in order to provide reasonable error
16478 small_number cur_type; /* the type of the expression just found */
16479 integer cur_exp; /* the value of the expression just found */
16484 @ Many different kinds of expressions are possible, so it is wise to have
16485 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16488 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16489 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16490 construction in which there was no expression before the \&{endgroup}.
16491 In this case |cur_exp| has some irrelevant value.
16494 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16498 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16500 a ring of equivalent booleans whose value has not yet been defined.
16503 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16504 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16505 includes this particular reference.
16508 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16510 a ring of equivalent strings whose value has not yet been defined.
16513 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16514 else points to any of the nodes in this pen. The pen may be polygonal or
16518 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16520 a ring of equivalent pens whose value has not yet been defined.
16523 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16524 a path; nobody else points to this particular path. The control points of
16525 the path will have been chosen.
16528 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16530 a ring of equivalent paths whose value has not yet been defined.
16533 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16534 There may be other pointers to this particular set of edges. The header node
16535 contains a reference count that includes this particular reference.
16538 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16540 a ring of equivalent pictures whose value has not yet been defined.
16543 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16544 capsule node. The |value| part of this capsule
16545 points to a transform node that contains six numeric values,
16546 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16549 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16550 capsule node. The |value| part of this capsule
16551 points to a color node that contains three numeric values,
16552 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16555 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16556 capsule node. The |value| part of this capsule
16557 points to a color node that contains four numeric values,
16558 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16561 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16562 node whose type is |mp_pair_type|. The |value| part of this capsule
16563 points to a pair node that contains two numeric values,
16564 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16567 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16570 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16571 is |dependent|. The |dep_list| field in this capsule points to the associated
16575 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16576 capsule node. The |dep_list| field in this capsule
16577 points to the associated dependency list.
16580 |cur_type=independent| means that |cur_exp| points to a capsule node
16581 whose type is |independent|. This somewhat unusual case can arise, for
16582 example, in the expression
16583 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16586 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16589 \smallskip\noindent
16590 The possible settings of |cur_type| have been listed here in increasing
16591 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16592 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16593 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16596 @ Capsules are two-word nodes that have a similar meaning
16597 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|,
16598 and their |type| field is one of the possibilities for |cur_type| listed above.
16599 Also |link<=void| in capsules that aren't part of a token list.
16601 The |value| field of a capsule is, in most cases, the value that
16602 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16603 However, when |cur_exp| would point to a capsule,
16604 no extra layer of indirection is present; the |value|
16605 field is what would have been called |value(cur_exp)| if it had not been
16606 encapsulated. Furthermore, if the type is |dependent| or
16607 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16608 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16609 always part of the general |dep_list| structure.
16611 The |get_x_next| routine is careful not to change the values of |cur_type|
16612 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16613 call a macro, which might parse an expression, which might execute lots of
16614 commands in a group; hence it's possible that |cur_type| might change
16615 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16616 |known| or |independent|, during the time |get_x_next| is called. The
16617 programs below are careful to stash sensitive intermediate results in
16618 capsules, so that \MP's generality doesn't cause trouble.
16620 Here's a procedure that illustrates these conventions. It takes
16621 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16622 and stashes them away in a
16623 capsule. It is not used when |cur_type=mp_token_list|.
16624 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16625 copy path lists or to update reference counts, etc.
16627 The special link |mp_void| is put on the capsule returned by
16628 |stash_cur_exp|, because this procedure is used to store macro parameters
16629 that must be easily distinguishable from token lists.
16631 @<Declare the stashing/unstashing routines@>=
16632 pointer mp_stash_cur_exp (MP mp) {
16633 pointer p; /* the capsule that will be returned */
16634 switch (mp->cur_type) {
16635 case unknown_types:
16636 case mp_transform_type:
16637 case mp_color_type:
16640 case mp_proto_dependent:
16641 case mp_independent:
16642 case mp_cmykcolor_type:
16646 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16647 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16650 mp->cur_type=mp_vacuous; link(p)=mp_void;
16654 @ The inverse of |stash_cur_exp| is the following procedure, which
16655 deletes an unnecessary capsule and puts its contents into |cur_type|
16658 The program steps of \MP\ can be divided into two categories: those in
16659 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16660 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16661 information or not. It's important not to ignore them when they're alive,
16662 and it's important not to pay attention to them when they're dead.
16664 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16665 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16666 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16667 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16668 only when they are alive or dormant.
16670 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16671 are alive or dormant. The \\{unstash} procedure assumes that they are
16672 dead or dormant; it resuscitates them.
16674 @<Declare the stashing/unstashing...@>=
16675 void mp_unstash_cur_exp (MP mp,pointer p) ;
16678 void mp_unstash_cur_exp (MP mp,pointer p) {
16679 mp->cur_type=type(p);
16680 switch (mp->cur_type) {
16681 case unknown_types:
16682 case mp_transform_type:
16683 case mp_color_type:
16686 case mp_proto_dependent:
16687 case mp_independent:
16688 case mp_cmykcolor_type:
16692 mp->cur_exp=value(p);
16693 mp_free_node(mp, p,value_node_size);
16698 @ The following procedure prints the values of expressions in an
16699 abbreviated format. If its first parameter |p| is null, the value of
16700 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16701 containing the desired value. The second parameter controls the amount of
16702 output. If it is~0, dependency lists will be abbreviated to
16703 `\.{linearform}' unless they consist of a single term. If it is greater
16704 than~1, complicated structures (pens, pictures, and paths) will be displayed
16708 @<Declare subroutines for printing expressions@>=
16709 @<Declare the procedure called |print_dp|@>
16710 @<Declare the stashing/unstashing routines@>
16711 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16712 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16713 small_number t; /* the type of the expression */
16714 pointer q; /* a big node being displayed */
16715 integer v=0; /* the value of the expression */
16717 restore_cur_exp=false;
16719 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16722 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16723 @<Print an abbreviated value of |v| with format depending on |t|@>;
16724 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16727 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16729 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16730 case mp_boolean_type:
16731 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16733 case unknown_types: case mp_numeric_type:
16734 @<Display a variable that's been declared but not defined@>;
16736 case mp_string_type:
16737 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16739 case mp_pen_type: case mp_path_type: case mp_picture_type:
16740 @<Display a complex type@>;
16742 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16743 if ( v==null ) mp_print_type(mp, t);
16744 else @<Display a big node@>;
16746 case mp_known:mp_print_scaled(mp, v); break;
16747 case mp_dependent: case mp_proto_dependent:
16748 mp_print_dp(mp, t,v,verbosity);
16750 case mp_independent:mp_print_variable_name(mp, p); break;
16751 default: mp_confusion(mp, "exp"); break;
16752 @:this can't happen exp}{\quad exp@>
16755 @ @<Display a big node@>=
16757 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16759 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16760 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16761 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16763 if ( v!=q ) mp_print_char(mp, ',');
16765 mp_print_char(mp, ')');
16768 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16769 in the log file only, unless the user has given a positive value to
16772 @<Display a complex type@>=
16773 if ( verbosity<=1 ) {
16774 mp_print_type(mp, t);
16776 if ( mp->selector==term_and_log )
16777 if ( mp->internal[mp_tracing_online]<=0 ) {
16778 mp->selector=term_only;
16779 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16780 mp->selector=term_and_log;
16783 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16784 case mp_path_type:mp_print_path(mp, v,"",false); break;
16785 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16786 } /* there are no other cases */
16789 @ @<Declare the procedure called |print_dp|@>=
16790 void mp_print_dp (MP mp,small_number t, pointer p,
16791 small_number verbosity) {
16792 pointer q; /* the node following |p| */
16794 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16795 else mp_print(mp, "linearform");
16798 @ The displayed name of a variable in a ring will not be a capsule unless
16799 the ring consists entirely of capsules.
16801 @<Display a variable that's been declared but not defined@>=
16802 { mp_print_type(mp, t);
16804 { mp_print_char(mp, ' ');
16805 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16806 mp_print_variable_name(mp, v);
16810 @ When errors are detected during parsing, it is often helpful to
16811 display an expression just above the error message, using |exp_err|
16812 or |disp_err| instead of |print_err|.
16814 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16816 @<Declare subroutines for printing expressions@>=
16817 void mp_disp_err (MP mp,pointer p, const char *s) {
16818 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16819 mp_print_nl(mp, ">> ");
16821 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16823 mp_print_nl(mp, "! "); mp_print(mp, s);
16828 @ If |cur_type| and |cur_exp| contain relevant information that should
16829 be recycled, we will use the following procedure, which changes |cur_type|
16830 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16831 and |cur_exp| as either alive or dormant after this has been done,
16832 because |cur_exp| will not contain a pointer value.
16834 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16835 switch (mp->cur_type) {
16836 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16837 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16838 mp_recycle_value(mp, mp->cur_exp);
16839 mp_free_node(mp, mp->cur_exp,value_node_size);
16841 case mp_string_type:
16842 delete_str_ref(mp->cur_exp); break;
16843 case mp_pen_type: case mp_path_type:
16844 mp_toss_knot_list(mp, mp->cur_exp); break;
16845 case mp_picture_type:
16846 delete_edge_ref(mp->cur_exp); break;
16850 mp->cur_type=mp_known; mp->cur_exp=v;
16853 @ There's a much more general procedure that is capable of releasing
16854 the storage associated with any two-word value packet.
16856 @<Declare the recycling subroutines@>=
16857 void mp_recycle_value (MP mp,pointer p) ;
16859 @ @c void mp_recycle_value (MP mp,pointer p) {
16860 small_number t; /* a type code */
16861 integer vv; /* another value */
16862 pointer q,r,s,pp; /* link manipulation registers */
16863 integer v=0; /* a value */
16865 if ( t<mp_dependent ) v=value(p);
16867 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16868 case mp_numeric_type:
16870 case unknown_types:
16871 mp_ring_delete(mp, p); break;
16872 case mp_string_type:
16873 delete_str_ref(v); break;
16874 case mp_path_type: case mp_pen_type:
16875 mp_toss_knot_list(mp, v); break;
16876 case mp_picture_type:
16877 delete_edge_ref(v); break;
16878 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16879 case mp_transform_type:
16880 @<Recycle a big node@>; break;
16881 case mp_dependent: case mp_proto_dependent:
16882 @<Recycle a dependency list@>; break;
16883 case mp_independent:
16884 @<Recycle an independent variable@>; break;
16885 case mp_token_list: case mp_structured:
16886 mp_confusion(mp, "recycle"); break;
16887 @:this can't happen recycle}{\quad recycle@>
16888 case mp_unsuffixed_macro: case mp_suffixed_macro:
16889 mp_delete_mac_ref(mp, value(p)); break;
16890 } /* there are no other cases */
16894 @ @<Recycle a big node@>=
16896 q=v+mp->big_node_size[t];
16898 q=q-2; mp_recycle_value(mp, q);
16900 mp_free_node(mp, v,mp->big_node_size[t]);
16903 @ @<Recycle a dependency list@>=
16906 while ( info(q)!=null ) q=link(q);
16907 link(prev_dep(p))=link(q);
16908 prev_dep(link(q))=prev_dep(p);
16909 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16912 @ When an independent variable disappears, it simply fades away, unless
16913 something depends on it. In the latter case, a dependent variable whose
16914 coefficient of dependence is maximal will take its place.
16915 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16916 as part of his Ph.D. thesis (Stanford University, December 1982).
16917 @^Zabala Salelles, Ignacio Andr\'es@>
16919 For example, suppose that variable $x$ is being recycled, and that the
16920 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16921 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16922 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16923 we will print `\.{\#\#\# -2x=-y+a}'.
16925 There's a slight complication, however: An independent variable $x$
16926 can occur both in dependency lists and in proto-dependency lists.
16927 This makes it necessary to be careful when deciding which coefficient
16930 Furthermore, this complication is not so slight when
16931 a proto-dependent variable is chosen to become independent. For example,
16932 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16933 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16934 large coefficient `50'.
16936 In order to deal with these complications without wasting too much time,
16937 we shall link together the occurrences of~$x$ among all the linear
16938 dependencies, maintaining separate lists for the dependent and
16939 proto-dependent cases.
16941 @<Recycle an independent variable@>=
16943 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16944 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16946 while ( q!=dep_head ) {
16947 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16950 if ( info(r)==null ) break;
16951 if ( info(r)!=p ) {
16954 t=type(q); link(s)=link(r); info(r)=q;
16955 if ( abs(value(r))>mp->max_c[t] ) {
16956 @<Record a new maximum coefficient of type |t|@>;
16958 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16964 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16965 @<Choose a dependent variable to take the place of the disappearing
16966 independent variable, and change all remaining dependencies
16971 @ The code for independency removal makes use of three two-word arrays.
16974 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16975 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16976 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16978 @ @<Record a new maximum coefficient...@>=
16980 if ( mp->max_c[t]>0 ) {
16981 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16983 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16986 @ @<Choose a dependent...@>=
16988 if ( (mp->max_c[mp_dependent] / 010000) >= mp->max_c[mp_proto_dependent] )
16991 t=mp_proto_dependent;
16992 @<Determine the dependency list |s| to substitute for the independent
16994 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16995 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16996 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16998 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16999 else { @<Substitute new proto-dependencies in place of |p|@>;}
17000 mp_flush_node_list(mp, s);
17001 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17005 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17006 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17007 whose dependency list we have removed node~|s|. We must reinsert
17008 node~|s| into the dependency list, with coefficient $-1.0$, and with
17009 |pp| as the new independent variable. Since |pp| will have a larger serial
17010 number than any other variable, we can put node |s| at the head of the
17013 @<Determine the dep...@>=
17014 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17015 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17016 r=dep_list(pp); link(s)=r;
17017 while ( info(r)!=null ) r=link(r);
17018 q=link(r); link(r)=null;
17019 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17021 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17022 if ( mp->internal[mp_tracing_equations]>0 ) {
17023 @<Show the transformed dependency@>;
17026 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17027 by the dependency list~|s|.
17029 @<Show the transformed...@>=
17030 if ( mp_interesting(mp, p) ) {
17031 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17032 @:]]]\#\#\#_}{\.{\#\#\#}@>
17033 if ( v>0 ) mp_print_char(mp, '-');
17034 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17035 else vv=mp->max_c[mp_proto_dependent];
17036 if ( vv!=unity ) mp_print_scaled(mp, vv);
17037 mp_print_variable_name(mp, p);
17038 while ( value(p) % s_scale>0 ) {
17039 mp_print(mp, "*4"); value(p)=value(p)-2;
17041 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17042 mp_print_dependency(mp, s,t);
17043 mp_end_diagnostic(mp, false);
17046 @ Finally, there are dependent and proto-dependent variables whose
17047 dependency lists must be brought up to date.
17049 @<Substitute new dependencies...@>=
17050 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17052 while ( r!=null ) {
17054 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17055 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17056 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17057 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17061 @ @<Substitute new proto...@>=
17062 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17064 while ( r!=null ) {
17066 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17067 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17068 mp->cur_type=mp_proto_dependent;
17069 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,
17070 mp_dependent,mp_proto_dependent);
17071 type(q)=mp_proto_dependent;
17072 value(r)=mp_round_fraction(mp, value(r));
17074 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17075 mp_make_scaled(mp, value(r),-v),s,
17076 mp_proto_dependent,mp_proto_dependent);
17077 if ( dep_list(q)==mp->dep_final )
17078 mp_make_known(mp, q,mp->dep_final);
17079 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17083 @ Here are some routines that provide handy combinations of actions
17084 that are often needed during error recovery. For example,
17085 `|flush_error|' flushes the current expression, replaces it by
17086 a given value, and calls |error|.
17088 Errors often are detected after an extra token has already been scanned.
17089 The `\\{put\_get}' routines put that token back before calling |error|;
17090 then they get it back again. (Or perhaps they get another token, if
17091 the user has changed things.)
17094 void mp_flush_error (MP mp,scaled v);
17095 void mp_put_get_error (MP mp);
17096 void mp_put_get_flush_error (MP mp,scaled v) ;
17099 void mp_flush_error (MP mp,scaled v) {
17100 mp_error(mp); mp_flush_cur_exp(mp, v);
17102 void mp_put_get_error (MP mp) {
17103 mp_back_error(mp); mp_get_x_next(mp);
17105 void mp_put_get_flush_error (MP mp,scaled v) {
17106 mp_put_get_error(mp);
17107 mp_flush_cur_exp(mp, v);
17110 @ A global variable |var_flag| is set to a special command code
17111 just before \MP\ calls |scan_expression|, if the expression should be
17112 treated as a variable when this command code immediately follows. For
17113 example, |var_flag| is set to |assignment| at the beginning of a
17114 statement, because we want to know the {\sl location\/} of a variable at
17115 the left of `\.{:=}', not the {\sl value\/} of that variable.
17117 The |scan_expression| subroutine calls |scan_tertiary|,
17118 which calls |scan_secondary|, which calls |scan_primary|, which sets
17119 |var_flag:=0|. In this way each of the scanning routines ``knows''
17120 when it has been called with a special |var_flag|, but |var_flag| is
17123 A variable preceding a command that equals |var_flag| is converted to a
17124 token list rather than a value. Furthermore, an `\.{=}' sign following an
17125 expression with |var_flag=assignment| is not considered to be a relation
17126 that produces boolean expressions.
17130 int var_flag; /* command that wants a variable */
17135 @* \[37] Parsing primary expressions.
17136 The first parsing routine, |scan_primary|, is also the most complicated one,
17137 since it involves so many different cases. But each case---with one
17138 exception---is fairly simple by itself.
17140 When |scan_primary| begins, the first token of the primary to be scanned
17141 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17142 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17143 earlier. If |cur_cmd| is not between |min_primary_command| and
17144 |max_primary_command|, inclusive, a syntax error will be signaled.
17146 @<Declare the basic parsing subroutines@>=
17147 void mp_scan_primary (MP mp) {
17148 pointer p,q,r; /* for list manipulation */
17149 quarterword c; /* a primitive operation code */
17150 int my_var_flag; /* initial value of |my_var_flag| */
17151 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17152 @<Other local variables for |scan_primary|@>;
17153 my_var_flag=mp->var_flag; mp->var_flag=0;
17156 @<Supply diagnostic information, if requested@>;
17157 switch (mp->cur_cmd) {
17158 case left_delimiter:
17159 @<Scan a delimited primary@>; break;
17161 @<Scan a grouped primary@>; break;
17163 @<Scan a string constant@>; break;
17164 case numeric_token:
17165 @<Scan a primary that starts with a numeric token@>; break;
17167 @<Scan a nullary operation@>; break;
17168 case unary: case type_name: case cycle: case plus_or_minus:
17169 @<Scan a unary operation@>; break;
17170 case primary_binary:
17171 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17173 @<Convert a suffix to a string@>; break;
17174 case internal_quantity:
17175 @<Scan an internal numeric quantity@>; break;
17176 case capsule_token:
17177 mp_make_exp_copy(mp, mp->cur_mod); break;
17179 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17181 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17182 @.A primary expression...@>
17184 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17186 if ( mp->cur_cmd==left_bracket ) {
17187 if ( mp->cur_type>=mp_known ) {
17188 @<Scan a mediation construction@>;
17195 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17197 @c void mp_bad_exp (MP mp, const char * s) {
17199 print_err(s); mp_print(mp, " expression can't begin with `");
17200 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17201 mp_print_char(mp, '\'');
17202 help4("I'm afraid I need some sort of value in order to continue,")
17203 ("so I've tentatively inserted `0'. You may want to")
17204 ("delete this zero and insert something else;")
17205 ("see Chapter 27 of The METAFONTbook for an example.");
17206 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17207 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17208 mp->cur_mod=0; mp_ins_error(mp);
17209 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17210 mp->var_flag=save_flag;
17213 @ @<Supply diagnostic information, if requested@>=
17215 if ( mp->panicking ) mp_check_mem(mp, false);
17217 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17218 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17221 @ @<Scan a delimited primary@>=
17223 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17224 mp_get_x_next(mp); mp_scan_expression(mp);
17225 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17226 @<Scan the rest of a delimited set of numerics@>;
17228 mp_check_delimiter(mp, l_delim,r_delim);
17232 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17233 within a ``big node.''
17235 @c void mp_stash_in (MP mp,pointer p) {
17236 pointer q; /* temporary register */
17237 type(p)=mp->cur_type;
17238 if ( mp->cur_type==mp_known ) {
17239 value(p)=mp->cur_exp;
17241 if ( mp->cur_type==mp_independent ) {
17242 @<Stash an independent |cur_exp| into a big node@>;
17244 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17245 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17246 link(prev_dep(p))=p;
17248 mp_free_node(mp, mp->cur_exp,value_node_size);
17250 mp->cur_type=mp_vacuous;
17253 @ In rare cases the current expression can become |independent|. There
17254 may be many dependency lists pointing to such an independent capsule,
17255 so we can't simply move it into place within a big node. Instead,
17256 we copy it, then recycle it.
17258 @ @<Stash an independent |cur_exp|...@>=
17260 q=mp_single_dependency(mp, mp->cur_exp);
17261 if ( q==mp->dep_final ){
17262 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17264 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17266 mp_recycle_value(mp, mp->cur_exp);
17269 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17270 are synonymous with |x_part_loc| and |y_part_loc|.
17272 @<Scan the rest of a delimited set of numerics@>=
17274 p=mp_stash_cur_exp(mp);
17275 mp_get_x_next(mp); mp_scan_expression(mp);
17276 @<Make sure the second part of a pair or color has a numeric type@>;
17277 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17278 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17279 else type(q)=mp_pair_type;
17280 mp_init_big_node(mp, q); r=value(q);
17281 mp_stash_in(mp, y_part_loc(r));
17282 mp_unstash_cur_exp(mp, p);
17283 mp_stash_in(mp, x_part_loc(r));
17284 if ( mp->cur_cmd==comma ) {
17285 @<Scan the last of a triplet of numerics@>;
17287 if ( mp->cur_cmd==comma ) {
17288 type(q)=mp_cmykcolor_type;
17289 mp_init_big_node(mp, q); t=value(q);
17290 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17291 value(cyan_part_loc(t))=value(red_part_loc(r));
17292 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17293 value(magenta_part_loc(t))=value(green_part_loc(r));
17294 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17295 value(yellow_part_loc(t))=value(blue_part_loc(r));
17296 mp_recycle_value(mp, r);
17298 @<Scan the last of a quartet of numerics@>;
17300 mp_check_delimiter(mp, l_delim,r_delim);
17301 mp->cur_type=type(q);
17305 @ @<Make sure the second part of a pair or color has a numeric type@>=
17306 if ( mp->cur_type<mp_known ) {
17307 exp_err("Nonnumeric ypart has been replaced by 0");
17308 @.Nonnumeric...replaced by 0@>
17309 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17310 ("but after finding a nice `a' I found a `b' that isn't")
17311 ("of numeric type. So I've changed that part to zero.")
17312 ("(The b that I didn't like appears above the error message.)");
17313 mp_put_get_flush_error(mp, 0);
17316 @ @<Scan the last of a triplet of numerics@>=
17318 mp_get_x_next(mp); mp_scan_expression(mp);
17319 if ( mp->cur_type<mp_known ) {
17320 exp_err("Nonnumeric third part has been replaced by 0");
17321 @.Nonnumeric...replaced by 0@>
17322 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17323 ("isn't of numeric type. So I've changed that part to zero.")
17324 ("(The c that I didn't like appears above the error message.)");
17325 mp_put_get_flush_error(mp, 0);
17327 mp_stash_in(mp, blue_part_loc(r));
17330 @ @<Scan the last of a quartet of numerics@>=
17332 mp_get_x_next(mp); mp_scan_expression(mp);
17333 if ( mp->cur_type<mp_known ) {
17334 exp_err("Nonnumeric blackpart has been replaced by 0");
17335 @.Nonnumeric...replaced by 0@>
17336 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17337 ("of numeric type. So I've changed that part to zero.")
17338 ("(The k that I didn't like appears above the error message.)");
17339 mp_put_get_flush_error(mp, 0);
17341 mp_stash_in(mp, black_part_loc(r));
17344 @ The local variable |group_line| keeps track of the line
17345 where a \&{begingroup} command occurred; this will be useful
17346 in an error message if the group doesn't actually end.
17348 @<Other local variables for |scan_primary|@>=
17349 integer group_line; /* where a group began */
17351 @ @<Scan a grouped primary@>=
17353 group_line=mp_true_line(mp);
17354 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17355 save_boundary_item(p);
17357 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17358 } while (mp->cur_cmd==semicolon);
17359 if ( mp->cur_cmd!=end_group ) {
17360 print_err("A group begun on line ");
17361 @.A group...never ended@>
17362 mp_print_int(mp, group_line);
17363 mp_print(mp, " never ended");
17364 help2("I saw a `begingroup' back there that hasn't been matched")
17365 ("by `endgroup'. So I've inserted `endgroup' now.");
17366 mp_back_error(mp); mp->cur_cmd=end_group;
17369 /* this might change |cur_type|, if independent variables are recycled */
17370 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17373 @ @<Scan a string constant@>=
17375 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17378 @ Later we'll come to procedures that perform actual operations like
17379 addition, square root, and so on; our purpose now is to do the parsing.
17380 But we might as well mention those future procedures now, so that the
17381 suspense won't be too bad:
17384 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17385 `\&{true}' or `\&{pencircle}');
17388 |do_unary(c)| applies a primitive operation to the current expression;
17391 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17392 and the current expression.
17394 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17396 @ @<Scan a unary operation@>=
17398 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17399 mp_do_unary(mp, c); goto DONE;
17402 @ A numeric token might be a primary by itself, or it might be the
17403 numerator of a fraction composed solely of numeric tokens, or it might
17404 multiply the primary that follows (provided that the primary doesn't begin
17405 with a plus sign or a minus sign). The code here uses the facts that
17406 |max_primary_command=plus_or_minus| and
17407 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17408 than unity, we try to retain higher precision when we use it in scalar
17411 @<Other local variables for |scan_primary|@>=
17412 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17414 @ @<Scan a primary that starts with a numeric token@>=
17416 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17417 if ( mp->cur_cmd!=slash ) {
17421 if ( mp->cur_cmd!=numeric_token ) {
17423 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17426 num=mp->cur_exp; denom=mp->cur_mod;
17427 if ( denom==0 ) { @<Protest division by zero@>; }
17428 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17429 check_arith; mp_get_x_next(mp);
17431 if ( mp->cur_cmd>=min_primary_command ) {
17432 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17433 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17434 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17435 mp_do_binary(mp, p,times);
17437 mp_frac_mult(mp, num,denom);
17438 mp_free_node(mp, p,value_node_size);
17445 @ @<Protest division...@>=
17447 print_err("Division by zero");
17448 @.Division by zero@>
17449 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17452 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17454 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17455 if ( mp->cur_cmd!=of_token ) {
17456 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17457 mp_print_cmd_mod(mp, primary_binary,c);
17459 help1("I've got the first argument; will look now for the other.");
17462 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17463 mp_do_binary(mp, p,c); goto DONE;
17466 @ @<Convert a suffix to a string@>=
17468 mp_get_x_next(mp); mp_scan_suffix(mp);
17469 mp->old_setting=mp->selector; mp->selector=new_string;
17470 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17471 mp_flush_token_list(mp, mp->cur_exp);
17472 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17473 mp->cur_type=mp_string_type;
17477 @ If an internal quantity appears all by itself on the left of an
17478 assignment, we return a token list of length one, containing the address
17479 of the internal quantity plus |hash_end|. (This accords with the conventions
17480 of the save stack, as described earlier.)
17482 @<Scan an internal...@>=
17485 if ( my_var_flag==assignment ) {
17487 if ( mp->cur_cmd==assignment ) {
17488 mp->cur_exp=mp_get_avail(mp);
17489 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17494 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17497 @ The most difficult part of |scan_primary| has been saved for last, since
17498 it was necessary to build up some confidence first. We can now face the task
17499 of scanning a variable.
17501 As we scan a variable, we build a token list containing the relevant
17502 names and subscript values, simultaneously following along in the
17503 ``collective'' structure to see if we are actually dealing with a macro
17504 instead of a value.
17506 The local variables |pre_head| and |post_head| will point to the beginning
17507 of the prefix and suffix lists; |tail| will point to the end of the list
17508 that is currently growing.
17510 Another local variable, |tt|, contains partial information about the
17511 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17512 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17513 doesn't bother to update its information about type. And if
17514 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17516 @ @<Other local variables for |scan_primary|@>=
17517 pointer pre_head,post_head,tail;
17518 /* prefix and suffix list variables */
17519 small_number tt; /* approximation to the type of the variable-so-far */
17520 pointer t; /* a token */
17521 pointer macro_ref = 0; /* reference count for a suffixed macro */
17523 @ @<Scan a variable primary...@>=
17525 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17527 t=mp_cur_tok(mp); link(tail)=t;
17528 if ( tt!=undefined ) {
17529 @<Find the approximate type |tt| and corresponding~|q|@>;
17530 if ( tt>=mp_unsuffixed_macro ) {
17531 @<Either begin an unsuffixed macro call or
17532 prepare for a suffixed one@>;
17535 mp_get_x_next(mp); tail=t;
17536 if ( mp->cur_cmd==left_bracket ) {
17537 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17539 if ( mp->cur_cmd>max_suffix_token ) break;
17540 if ( mp->cur_cmd<min_suffix_token ) break;
17541 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17542 @<Handle unusual cases that masquerade as variables, and |goto restart|
17543 or |goto done| if appropriate;
17544 otherwise make a copy of the variable and |goto done|@>;
17547 @ @<Either begin an unsuffixed macro call or...@>=
17550 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17551 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17552 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17554 @<Set up unsuffixed macro call and |goto restart|@>;
17558 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17560 mp_get_x_next(mp); mp_scan_expression(mp);
17561 if ( mp->cur_cmd!=right_bracket ) {
17562 @<Put the left bracket and the expression back to be rescanned@>;
17564 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17565 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17569 @ The left bracket that we thought was introducing a subscript might have
17570 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17571 So we don't issue an error message at this point; but we do want to back up
17572 so as to avoid any embarrassment about our incorrect assumption.
17574 @<Put the left bracket and the expression back to be rescanned@>=
17576 mp_back_input(mp); /* that was the token following the current expression */
17577 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17578 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17581 @ Here's a routine that puts the current expression back to be read again.
17583 @c void mp_back_expr (MP mp) {
17584 pointer p; /* capsule token */
17585 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17588 @ Unknown subscripts lead to the following error message.
17590 @c void mp_bad_subscript (MP mp) {
17591 exp_err("Improper subscript has been replaced by zero");
17592 @.Improper subscript...@>
17593 help3("A bracketed subscript must have a known numeric value;")
17594 ("unfortunately, what I found was the value that appears just")
17595 ("above this error message. So I'll try a zero subscript.");
17596 mp_flush_error(mp, 0);
17599 @ Every time we call |get_x_next|, there's a chance that the variable we've
17600 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17601 into the variable structure; we need to start searching from the root each time.
17603 @<Find the approximate type |tt| and corresponding~|q|@>=
17606 p=link(pre_head); q=info(p); tt=undefined;
17607 if ( eq_type(q) % outer_tag==tag_token ) {
17609 if ( q==null ) goto DONE2;
17613 tt=type(q); goto DONE2;
17615 if ( type(q)!=mp_structured ) goto DONE2;
17616 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17617 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17618 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17619 if ( attr_loc(q)>info(p) ) goto DONE2;
17627 @ How do things stand now? Well, we have scanned an entire variable name,
17628 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17629 |cur_sym| represent the token that follows. If |post_head=null|, a
17630 token list for this variable name starts at |link(pre_head)|, with all
17631 subscripts evaluated. But if |post_head<>null|, the variable turned out
17632 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17633 |post_head| is the head of a token list containing both `\.{\AT!}' and
17636 Our immediate problem is to see if this variable still exists. (Variable
17637 structures can change drastically whenever we call |get_x_next|; users
17638 aren't supposed to do this, but the fact that it is possible means that
17639 we must be cautious.)
17641 The following procedure prints an error message when a variable
17642 unexpectedly disappears. Its help message isn't quite right for
17643 our present purposes, but we'll be able to fix that up.
17646 void mp_obliterated (MP mp,pointer q) {
17647 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17648 mp_print(mp, " has been obliterated");
17649 @.Variable...obliterated@>
17650 help5("It seems you did a nasty thing---probably by accident,")
17651 ("but nevertheless you nearly hornswoggled me...")
17652 ("While I was evaluating the right-hand side of this")
17653 ("command, something happened, and the left-hand side")
17654 ("is no longer a variable! So I won't change anything.");
17657 @ If the variable does exist, we also need to check
17658 for a few other special cases before deciding that a plain old ordinary
17659 variable has, indeed, been scanned.
17661 @<Handle unusual cases that masquerade as variables...@>=
17662 if ( post_head!=null ) {
17663 @<Set up suffixed macro call and |goto restart|@>;
17665 q=link(pre_head); free_avail(pre_head);
17666 if ( mp->cur_cmd==my_var_flag ) {
17667 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17669 p=mp_find_variable(mp, q);
17671 mp_make_exp_copy(mp, p);
17673 mp_obliterated(mp, q);
17674 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17675 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17676 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17677 mp_put_get_flush_error(mp, 0);
17679 mp_flush_node_list(mp, q);
17682 @ The only complication associated with macro calling is that the prefix
17683 and ``at'' parameters must be packaged in an appropriate list of lists.
17685 @<Set up unsuffixed macro call and |goto restart|@>=
17687 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17688 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17693 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17694 we don't care, because we have reserved a pointer (|macro_ref|) to its
17697 @<Set up suffixed macro call and |goto restart|@>=
17699 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17700 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17701 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17702 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17703 mp_get_x_next(mp); goto RESTART;
17706 @ Our remaining job is simply to make a copy of the value that has been
17707 found. Some cases are harder than others, but complexity arises solely
17708 because of the multiplicity of possible cases.
17710 @<Declare the procedure called |make_exp_copy|@>=
17711 @<Declare subroutines needed by |make_exp_copy|@>
17712 void mp_make_exp_copy (MP mp,pointer p) {
17713 pointer q,r,t; /* registers for list manipulation */
17715 mp->cur_type=type(p);
17716 switch (mp->cur_type) {
17717 case mp_vacuous: case mp_boolean_type: case mp_known:
17718 mp->cur_exp=value(p); break;
17719 case unknown_types:
17720 mp->cur_exp=mp_new_ring_entry(mp, p);
17722 case mp_string_type:
17723 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17725 case mp_picture_type:
17726 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17729 mp->cur_exp=copy_pen(value(p));
17732 mp->cur_exp=mp_copy_path(mp, value(p));
17734 case mp_transform_type: case mp_color_type:
17735 case mp_cmykcolor_type: case mp_pair_type:
17736 @<Copy the big node |p|@>;
17738 case mp_dependent: case mp_proto_dependent:
17739 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17741 case mp_numeric_type:
17742 new_indep(p); goto RESTART;
17744 case mp_independent:
17745 q=mp_single_dependency(mp, p);
17746 if ( q==mp->dep_final ){
17747 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,dep_node_size);
17749 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17753 mp_confusion(mp, "copy");
17754 @:this can't happen copy}{\quad copy@>
17759 @ The |encapsulate| subroutine assumes that |dep_final| is the
17760 tail of dependency list~|p|.
17762 @<Declare subroutines needed by |make_exp_copy|@>=
17763 void mp_encapsulate (MP mp,pointer p) {
17764 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17765 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17768 @ The most tedious case arises when the user refers to a
17769 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17770 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17773 @<Copy the big node |p|@>=
17775 if ( value(p)==null )
17776 mp_init_big_node(mp, p);
17777 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17778 mp_init_big_node(mp, t);
17779 q=value(p)+mp->big_node_size[mp->cur_type];
17780 r=value(t)+mp->big_node_size[mp->cur_type];
17782 q=q-2; r=r-2; mp_install(mp, r,q);
17783 } while (q!=value(p));
17787 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17788 a big node that will be part of a capsule.
17790 @<Declare subroutines needed by |make_exp_copy|@>=
17791 void mp_install (MP mp,pointer r, pointer q) {
17792 pointer p; /* temporary register */
17793 if ( type(q)==mp_known ){
17794 value(r)=value(q); type(r)=mp_known;
17795 } else if ( type(q)==mp_independent ) {
17796 p=mp_single_dependency(mp, q);
17797 if ( p==mp->dep_final ) {
17798 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,dep_node_size);
17800 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17803 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17807 @ Expressions of the form `\.{a[b,c]}' are converted into
17808 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17809 provided that \.a is numeric.
17811 @<Scan a mediation...@>=
17813 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17814 if ( mp->cur_cmd!=comma ) {
17815 @<Put the left bracket and the expression back...@>;
17816 mp_unstash_cur_exp(mp, p);
17818 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17819 if ( mp->cur_cmd!=right_bracket ) {
17820 mp_missing_err(mp, "]");
17822 help3("I've scanned an expression of the form `a[b,c',")
17823 ("so a right bracket should have come next.")
17824 ("I shall pretend that one was there.");
17827 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17828 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17829 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17833 @ Here is a comparatively simple routine that is used to scan the
17834 \&{suffix} parameters of a macro.
17836 @<Declare the basic parsing subroutines@>=
17837 void mp_scan_suffix (MP mp) {
17838 pointer h,t; /* head and tail of the list being built */
17839 pointer p; /* temporary register */
17840 h=mp_get_avail(mp); t=h;
17842 if ( mp->cur_cmd==left_bracket ) {
17843 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17845 if ( mp->cur_cmd==numeric_token ) {
17846 p=mp_new_num_tok(mp, mp->cur_mod);
17847 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17848 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17852 link(t)=p; t=p; mp_get_x_next(mp);
17854 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17857 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17859 mp_get_x_next(mp); mp_scan_expression(mp);
17860 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17861 if ( mp->cur_cmd!=right_bracket ) {
17862 mp_missing_err(mp, "]");
17864 help3("I've seen a `[' and a subscript value, in a suffix,")
17865 ("so a right bracket should have come next.")
17866 ("I shall pretend that one was there.");
17869 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17872 @* \[38] Parsing secondary and higher expressions.
17874 After the intricacies of |scan_primary|\kern-1pt,
17875 the |scan_secondary| routine is
17876 refreshingly simple. It's not trivial, but the operations are relatively
17877 straightforward; the main difficulty is, again, that expressions and data
17878 structures might change drastically every time we call |get_x_next|, so a
17879 cautious approach is mandatory. For example, a macro defined by
17880 \&{primarydef} might have disappeared by the time its second argument has
17881 been scanned; we solve this by increasing the reference count of its token
17882 list, so that the macro can be called even after it has been clobbered.
17884 @<Declare the basic parsing subroutines@>=
17885 void mp_scan_secondary (MP mp) {
17886 pointer p; /* for list manipulation */
17887 halfword c,d; /* operation codes or modifiers */
17888 pointer mac_name; /* token defined with \&{primarydef} */
17890 if ((mp->cur_cmd<min_primary_command)||
17891 (mp->cur_cmd>max_primary_command) )
17892 mp_bad_exp(mp, "A secondary");
17893 @.A secondary expression...@>
17894 mp_scan_primary(mp);
17896 if ( mp->cur_cmd<=max_secondary_command &&
17897 mp->cur_cmd>=min_secondary_command ) {
17898 p=mp_stash_cur_exp(mp);
17899 c=mp->cur_mod; d=mp->cur_cmd;
17900 if ( d==secondary_primary_macro ) {
17901 mac_name=mp->cur_sym;
17905 mp_scan_primary(mp);
17906 if ( d!=secondary_primary_macro ) {
17907 mp_do_binary(mp, p,c);
17910 mp_binary_mac(mp, p,c,mac_name);
17911 decr(ref_count(c));
17919 @ The following procedure calls a macro that has two parameters,
17922 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17923 pointer q,r; /* nodes in the parameter list */
17924 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17925 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17926 mp_macro_call(mp, c,q,n);
17929 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17931 @<Declare the basic parsing subroutines@>=
17932 void mp_scan_tertiary (MP mp) {
17933 pointer p; /* for list manipulation */
17934 halfword c,d; /* operation codes or modifiers */
17935 pointer mac_name; /* token defined with \&{secondarydef} */
17937 if ((mp->cur_cmd<min_primary_command)||
17938 (mp->cur_cmd>max_primary_command) )
17939 mp_bad_exp(mp, "A tertiary");
17940 @.A tertiary expression...@>
17941 mp_scan_secondary(mp);
17943 if ( mp->cur_cmd<=max_tertiary_command ) {
17944 if ( mp->cur_cmd>=min_tertiary_command ) {
17945 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17946 if ( d==tertiary_secondary_macro ) {
17947 mac_name=mp->cur_sym; add_mac_ref(c);
17949 mp_get_x_next(mp); mp_scan_secondary(mp);
17950 if ( d!=tertiary_secondary_macro ) {
17951 mp_do_binary(mp, p,c);
17953 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17954 decr(ref_count(c)); mp_get_x_next(mp);
17962 @ Finally we reach the deepest level in our quartet of parsing routines.
17963 This one is much like the others; but it has an extra complication from
17964 paths, which materialize here.
17966 @d continue_path 25 /* a label inside of |scan_expression| */
17967 @d finish_path 26 /* another */
17969 @<Declare the basic parsing subroutines@>=
17970 void mp_scan_expression (MP mp) {
17971 pointer p,q,r,pp,qq; /* for list manipulation */
17972 halfword c,d; /* operation codes or modifiers */
17973 int my_var_flag; /* initial value of |var_flag| */
17974 pointer mac_name; /* token defined with \&{tertiarydef} */
17975 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17976 scaled x,y; /* explicit coordinates or tension at a path join */
17977 int t; /* knot type following a path join */
17979 my_var_flag=mp->var_flag; mac_name=null;
17981 if ((mp->cur_cmd<min_primary_command)||
17982 (mp->cur_cmd>max_primary_command) )
17983 mp_bad_exp(mp, "An");
17984 @.An expression...@>
17985 mp_scan_tertiary(mp);
17987 if ( mp->cur_cmd<=max_expression_command )
17988 if ( mp->cur_cmd>=min_expression_command ) {
17989 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17990 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17991 if ( d==expression_tertiary_macro ) {
17992 mac_name=mp->cur_sym; add_mac_ref(c);
17994 if ( (d<ampersand)||((d==ampersand)&&
17995 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17996 @<Scan a path construction operation;
17997 but |return| if |p| has the wrong type@>;
17999 mp_get_x_next(mp); mp_scan_tertiary(mp);
18000 if ( d!=expression_tertiary_macro ) {
18001 mp_do_binary(mp, p,c);
18003 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18004 decr(ref_count(c)); mp_get_x_next(mp);
18013 @ The reader should review the data structure conventions for paths before
18014 hoping to understand the next part of this code.
18016 @<Scan a path construction operation...@>=
18019 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18020 but |return| if |p| doesn't have a suitable type@>;
18022 @<Determine the path join parameters;
18023 but |goto finish_path| if there's only a direction specifier@>;
18024 if ( mp->cur_cmd==cycle ) {
18025 @<Get ready to close a cycle@>;
18027 mp_scan_tertiary(mp);
18028 @<Convert the right operand, |cur_exp|,
18029 into a partial path from |pp| to~|qq|@>;
18031 @<Join the partial paths and reset |p| and |q| to the head and tail
18033 if ( mp->cur_cmd>=min_expression_command )
18034 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18036 @<Choose control points for the path and put the result into |cur_exp|@>;
18039 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18041 mp_unstash_cur_exp(mp, p);
18042 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18043 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18046 while ( link(q)!=p ) q=link(q);
18047 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18048 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18050 left_type(p)=mp_open; right_type(q)=mp_open;
18053 @ A pair of numeric values is changed into a knot node for a one-point path
18054 when \MP\ discovers that the pair is part of a path.
18056 @c @<Declare the procedure called |known_pair|@>
18057 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18058 pointer q; /* the new node */
18059 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18060 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18061 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18065 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18066 of the current expression, assuming that the current expression is a
18067 pair of known numerics. Unknown components are zeroed, and the
18068 current expression is flushed.
18070 @<Declare the procedure called |known_pair|@>=
18071 void mp_known_pair (MP mp) {
18072 pointer p; /* the pair node */
18073 if ( mp->cur_type!=mp_pair_type ) {
18074 exp_err("Undefined coordinates have been replaced by (0,0)");
18075 @.Undefined coordinates...@>
18076 help5("I need x and y numbers for this part of the path.")
18077 ("The value I found (see above) was no good;")
18078 ("so I'll try to keep going by using zero instead.")
18079 ("(Chapter 27 of The METAFONTbook explains that")
18080 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18081 ("you might want to type `I ??" "?' now.)");
18082 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18084 p=value(mp->cur_exp);
18085 @<Make sure that both |x| and |y| parts of |p| are known;
18086 copy them into |cur_x| and |cur_y|@>;
18087 mp_flush_cur_exp(mp, 0);
18091 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18092 if ( type(x_part_loc(p))==mp_known ) {
18093 mp->cur_x=value(x_part_loc(p));
18095 mp_disp_err(mp, x_part_loc(p),
18096 "Undefined x coordinate has been replaced by 0");
18097 @.Undefined coordinates...@>
18098 help5("I need a `known' x value for this part of the path.")
18099 ("The value I found (see above) was no good;")
18100 ("so I'll try to keep going by using zero instead.")
18101 ("(Chapter 27 of The METAFONTbook explains that")
18102 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18103 ("you might want to type `I ??" "?' now.)");
18104 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18106 if ( type(y_part_loc(p))==mp_known ) {
18107 mp->cur_y=value(y_part_loc(p));
18109 mp_disp_err(mp, y_part_loc(p),
18110 "Undefined y coordinate has been replaced by 0");
18111 help5("I need a `known' y value for this part of the path.")
18112 ("The value I found (see above) was no good;")
18113 ("so I'll try to keep going by using zero instead.")
18114 ("(Chapter 27 of The METAFONTbook explains that")
18115 ("you might want to type `I ??" "?' now.)");
18116 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18119 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18121 @<Determine the path join parameters...@>=
18122 if ( mp->cur_cmd==left_brace ) {
18123 @<Put the pre-join direction information into node |q|@>;
18126 if ( d==path_join ) {
18127 @<Determine the tension and/or control points@>;
18128 } else if ( d!=ampersand ) {
18132 if ( mp->cur_cmd==left_brace ) {
18133 @<Put the post-join direction information into |x| and |t|@>;
18134 } else if ( right_type(q)!=mp_explicit ) {
18138 @ The |scan_direction| subroutine looks at the directional information
18139 that is enclosed in braces, and also scans ahead to the following character.
18140 A type code is returned, either |open| (if the direction was $(0,0)$),
18141 or |curl| (if the direction was a curl of known value |cur_exp|), or
18142 |given| (if the direction is given by the |angle| value that now
18143 appears in |cur_exp|).
18145 There's nothing difficult about this subroutine, but the program is rather
18146 lengthy because a variety of potential errors need to be nipped in the bud.
18148 @c small_number mp_scan_direction (MP mp) {
18149 int t; /* the type of information found */
18150 scaled x; /* an |x| coordinate */
18152 if ( mp->cur_cmd==curl_command ) {
18153 @<Scan a curl specification@>;
18155 @<Scan a given direction@>;
18157 if ( mp->cur_cmd!=right_brace ) {
18158 mp_missing_err(mp, "}");
18159 @.Missing `\char`\}'@>
18160 help3("I've scanned a direction spec for part of a path,")
18161 ("so a right brace should have come next.")
18162 ("I shall pretend that one was there.");
18169 @ @<Scan a curl specification@>=
18170 { mp_get_x_next(mp); mp_scan_expression(mp);
18171 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18172 exp_err("Improper curl has been replaced by 1");
18174 help1("A curl must be a known, nonnegative number.");
18175 mp_put_get_flush_error(mp, unity);
18180 @ @<Scan a given direction@>=
18181 { mp_scan_expression(mp);
18182 if ( mp->cur_type>mp_pair_type ) {
18183 @<Get given directions separated by commas@>;
18187 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18188 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18191 @ @<Get given directions separated by commas@>=
18193 if ( mp->cur_type!=mp_known ) {
18194 exp_err("Undefined x coordinate has been replaced by 0");
18195 @.Undefined coordinates...@>
18196 help5("I need a `known' x value for this part of the path.")
18197 ("The value I found (see above) was no good;")
18198 ("so I'll try to keep going by using zero instead.")
18199 ("(Chapter 27 of The METAFONTbook explains that")
18200 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18201 ("you might want to type `I ??" "?' now.)");
18202 mp_put_get_flush_error(mp, 0);
18205 if ( mp->cur_cmd!=comma ) {
18206 mp_missing_err(mp, ",");
18208 help2("I've got the x coordinate of a path direction;")
18209 ("will look for the y coordinate next.");
18212 mp_get_x_next(mp); mp_scan_expression(mp);
18213 if ( mp->cur_type!=mp_known ) {
18214 exp_err("Undefined y coordinate has been replaced by 0");
18215 help5("I need a `known' y value for this part of the path.")
18216 ("The value I found (see above) was no good;")
18217 ("so I'll try to keep going by using zero instead.")
18218 ("(Chapter 27 of The METAFONTbook explains that")
18219 ("you might want to type `I ??" "?' now.)");
18220 mp_put_get_flush_error(mp, 0);
18222 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18225 @ At this point |right_type(q)| is usually |open|, but it may have been
18226 set to some other value by a previous operation. We must maintain
18227 the value of |right_type(q)| in cases such as
18228 `\.{..\{curl2\}z\{0,0\}..}'.
18230 @<Put the pre-join...@>=
18232 t=mp_scan_direction(mp);
18233 if ( t!=mp_open ) {
18234 right_type(q)=t; right_given(q)=mp->cur_exp;
18235 if ( left_type(q)==mp_open ) {
18236 left_type(q)=t; left_given(q)=mp->cur_exp;
18237 } /* note that |left_given(q)=left_curl(q)| */
18241 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18242 and since |left_given| is similarly equivalent to |left_x|, we use
18243 |x| and |y| to hold the given direction and tension information when
18244 there are no explicit control points.
18246 @<Put the post-join...@>=
18248 t=mp_scan_direction(mp);
18249 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18250 else t=mp_explicit; /* the direction information is superfluous */
18253 @ @<Determine the tension and/or...@>=
18256 if ( mp->cur_cmd==tension ) {
18257 @<Set explicit tensions@>;
18258 } else if ( mp->cur_cmd==controls ) {
18259 @<Set explicit control points@>;
18261 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18264 if ( mp->cur_cmd!=path_join ) {
18265 mp_missing_err(mp, "..");
18267 help1("A path join command should end with two dots.");
18274 @ @<Set explicit tensions@>=
18276 mp_get_x_next(mp); y=mp->cur_cmd;
18277 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18278 mp_scan_primary(mp);
18279 @<Make sure that the current expression is a valid tension setting@>;
18280 if ( y==at_least ) negate(mp->cur_exp);
18281 right_tension(q)=mp->cur_exp;
18282 if ( mp->cur_cmd==and_command ) {
18283 mp_get_x_next(mp); y=mp->cur_cmd;
18284 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18285 mp_scan_primary(mp);
18286 @<Make sure that the current expression is a valid tension setting@>;
18287 if ( y==at_least ) negate(mp->cur_exp);
18292 @ @d min_tension three_quarter_unit
18294 @<Make sure that the current expression is a valid tension setting@>=
18295 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18296 exp_err("Improper tension has been set to 1");
18297 @.Improper tension@>
18298 help1("The expression above should have been a number >=3/4.");
18299 mp_put_get_flush_error(mp, unity);
18302 @ @<Set explicit control points@>=
18304 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18305 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18306 if ( mp->cur_cmd!=and_command ) {
18307 x=right_x(q); y=right_y(q);
18309 mp_get_x_next(mp); mp_scan_primary(mp);
18310 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18314 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18316 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18317 else pp=mp->cur_exp;
18319 while ( link(qq)!=pp ) qq=link(qq);
18320 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18321 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18323 left_type(pp)=mp_open; right_type(qq)=mp_open;
18326 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18327 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18328 shouldn't have length zero.
18330 @<Get ready to close a cycle@>=
18332 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18333 if ( d==ampersand ) if ( p==q ) {
18334 d=path_join; right_tension(q)=unity; y=unity;
18338 @ @<Join the partial paths and reset |p| and |q|...@>=
18340 if ( d==ampersand ) {
18341 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18342 print_err("Paths don't touch; `&' will be changed to `..'");
18343 @.Paths don't touch@>
18344 help3("When you join paths `p&q', the ending point of p")
18345 ("must be exactly equal to the starting point of q.")
18346 ("So I'm going to pretend that you said `p..q' instead.");
18347 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18350 @<Plug an opening in |right_type(pp)|, if possible@>;
18351 if ( d==ampersand ) {
18352 @<Splice independent paths together@>;
18354 @<Plug an opening in |right_type(q)|, if possible@>;
18355 link(q)=pp; left_y(pp)=y;
18356 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18361 @ @<Plug an opening in |right_type(q)|...@>=
18362 if ( right_type(q)==mp_open ) {
18363 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18364 right_type(q)=left_type(q); right_given(q)=left_given(q);
18368 @ @<Plug an opening in |right_type(pp)|...@>=
18369 if ( right_type(pp)==mp_open ) {
18370 if ( (t==mp_curl)||(t==mp_given) ) {
18371 right_type(pp)=t; right_given(pp)=x;
18375 @ @<Splice independent paths together@>=
18377 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18378 left_type(q)=mp_curl; left_curl(q)=unity;
18380 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18381 right_type(pp)=mp_curl; right_curl(pp)=unity;
18383 right_type(q)=right_type(pp); link(q)=link(pp);
18384 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18385 mp_free_node(mp, pp,knot_node_size);
18386 if ( qq==pp ) qq=q;
18389 @ @<Choose control points for the path...@>=
18391 if ( d==ampersand ) p=q;
18393 left_type(p)=mp_endpoint;
18394 if ( right_type(p)==mp_open ) {
18395 right_type(p)=mp_curl; right_curl(p)=unity;
18397 right_type(q)=mp_endpoint;
18398 if ( left_type(q)==mp_open ) {
18399 left_type(q)=mp_curl; left_curl(q)=unity;
18403 mp_make_choices(mp, p);
18404 mp->cur_type=mp_path_type; mp->cur_exp=p
18406 @ Finally, we sometimes need to scan an expression whose value is
18407 supposed to be either |true_code| or |false_code|.
18409 @<Declare the basic parsing subroutines@>=
18410 void mp_get_boolean (MP mp) {
18411 mp_get_x_next(mp); mp_scan_expression(mp);
18412 if ( mp->cur_type!=mp_boolean_type ) {
18413 exp_err("Undefined condition will be treated as `false'");
18414 @.Undefined condition...@>
18415 help2("The expression shown above should have had a definite")
18416 ("true-or-false value. I'm changing it to `false'.");
18417 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18421 @* \[39] Doing the operations.
18422 The purpose of parsing is primarily to permit people to avoid piles of
18423 parentheses. But the real work is done after the structure of an expression
18424 has been recognized; that's when new expressions are generated. We
18425 turn now to the guts of \MP, which handles individual operators that
18426 have come through the parsing mechanism.
18428 We'll start with the easy ones that take no operands, then work our way
18429 up to operators with one and ultimately two arguments. In other words,
18430 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18431 that are invoked periodically by the expression scanners.
18433 First let's make sure that all of the primitive operators are in the
18434 hash table. Although |scan_primary| and its relatives made use of the
18435 \\{cmd} code for these operators, the \\{do} routines base everything
18436 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18437 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18440 mp_primitive(mp, "true",nullary,true_code);
18441 @:true_}{\&{true} primitive@>
18442 mp_primitive(mp, "false",nullary,false_code);
18443 @:false_}{\&{false} primitive@>
18444 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18445 @:null_picture_}{\&{nullpicture} primitive@>
18446 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18447 @:null_pen_}{\&{nullpen} primitive@>
18448 mp_primitive(mp, "jobname",nullary,job_name_op);
18449 @:job_name_}{\&{jobname} primitive@>
18450 mp_primitive(mp, "readstring",nullary,read_string_op);
18451 @:read_string_}{\&{readstring} primitive@>
18452 mp_primitive(mp, "pencircle",nullary,pen_circle);
18453 @:pen_circle_}{\&{pencircle} primitive@>
18454 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18455 @:normal_deviate_}{\&{normaldeviate} primitive@>
18456 mp_primitive(mp, "readfrom",unary,read_from_op);
18457 @:read_from_}{\&{readfrom} primitive@>
18458 mp_primitive(mp, "closefrom",unary,close_from_op);
18459 @:close_from_}{\&{closefrom} primitive@>
18460 mp_primitive(mp, "odd",unary,odd_op);
18461 @:odd_}{\&{odd} primitive@>
18462 mp_primitive(mp, "known",unary,known_op);
18463 @:known_}{\&{known} primitive@>
18464 mp_primitive(mp, "unknown",unary,unknown_op);
18465 @:unknown_}{\&{unknown} primitive@>
18466 mp_primitive(mp, "not",unary,not_op);
18467 @:not_}{\&{not} primitive@>
18468 mp_primitive(mp, "decimal",unary,decimal);
18469 @:decimal_}{\&{decimal} primitive@>
18470 mp_primitive(mp, "reverse",unary,reverse);
18471 @:reverse_}{\&{reverse} primitive@>
18472 mp_primitive(mp, "makepath",unary,make_path_op);
18473 @:make_path_}{\&{makepath} primitive@>
18474 mp_primitive(mp, "makepen",unary,make_pen_op);
18475 @:make_pen_}{\&{makepen} primitive@>
18476 mp_primitive(mp, "oct",unary,oct_op);
18477 @:oct_}{\&{oct} primitive@>
18478 mp_primitive(mp, "hex",unary,hex_op);
18479 @:hex_}{\&{hex} primitive@>
18480 mp_primitive(mp, "ASCII",unary,ASCII_op);
18481 @:ASCII_}{\&{ASCII} primitive@>
18482 mp_primitive(mp, "char",unary,char_op);
18483 @:char_}{\&{char} primitive@>
18484 mp_primitive(mp, "length",unary,length_op);
18485 @:length_}{\&{length} primitive@>
18486 mp_primitive(mp, "turningnumber",unary,turning_op);
18487 @:turning_number_}{\&{turningnumber} primitive@>
18488 mp_primitive(mp, "xpart",unary,x_part);
18489 @:x_part_}{\&{xpart} primitive@>
18490 mp_primitive(mp, "ypart",unary,y_part);
18491 @:y_part_}{\&{ypart} primitive@>
18492 mp_primitive(mp, "xxpart",unary,xx_part);
18493 @:xx_part_}{\&{xxpart} primitive@>
18494 mp_primitive(mp, "xypart",unary,xy_part);
18495 @:xy_part_}{\&{xypart} primitive@>
18496 mp_primitive(mp, "yxpart",unary,yx_part);
18497 @:yx_part_}{\&{yxpart} primitive@>
18498 mp_primitive(mp, "yypart",unary,yy_part);
18499 @:yy_part_}{\&{yypart} primitive@>
18500 mp_primitive(mp, "redpart",unary,red_part);
18501 @:red_part_}{\&{redpart} primitive@>
18502 mp_primitive(mp, "greenpart",unary,green_part);
18503 @:green_part_}{\&{greenpart} primitive@>
18504 mp_primitive(mp, "bluepart",unary,blue_part);
18505 @:blue_part_}{\&{bluepart} primitive@>
18506 mp_primitive(mp, "cyanpart",unary,cyan_part);
18507 @:cyan_part_}{\&{cyanpart} primitive@>
18508 mp_primitive(mp, "magentapart",unary,magenta_part);
18509 @:magenta_part_}{\&{magentapart} primitive@>
18510 mp_primitive(mp, "yellowpart",unary,yellow_part);
18511 @:yellow_part_}{\&{yellowpart} primitive@>
18512 mp_primitive(mp, "blackpart",unary,black_part);
18513 @:black_part_}{\&{blackpart} primitive@>
18514 mp_primitive(mp, "greypart",unary,grey_part);
18515 @:grey_part_}{\&{greypart} primitive@>
18516 mp_primitive(mp, "colormodel",unary,color_model_part);
18517 @:color_model_part_}{\&{colormodel} primitive@>
18518 mp_primitive(mp, "fontpart",unary,font_part);
18519 @:font_part_}{\&{fontpart} primitive@>
18520 mp_primitive(mp, "textpart",unary,text_part);
18521 @:text_part_}{\&{textpart} primitive@>
18522 mp_primitive(mp, "pathpart",unary,path_part);
18523 @:path_part_}{\&{pathpart} primitive@>
18524 mp_primitive(mp, "penpart",unary,pen_part);
18525 @:pen_part_}{\&{penpart} primitive@>
18526 mp_primitive(mp, "dashpart",unary,dash_part);
18527 @:dash_part_}{\&{dashpart} primitive@>
18528 mp_primitive(mp, "sqrt",unary,sqrt_op);
18529 @:sqrt_}{\&{sqrt} primitive@>
18530 mp_primitive(mp, "mexp",unary,m_exp_op);
18531 @:m_exp_}{\&{mexp} primitive@>
18532 mp_primitive(mp, "mlog",unary,m_log_op);
18533 @:m_log_}{\&{mlog} primitive@>
18534 mp_primitive(mp, "sind",unary,sin_d_op);
18535 @:sin_d_}{\&{sind} primitive@>
18536 mp_primitive(mp, "cosd",unary,cos_d_op);
18537 @:cos_d_}{\&{cosd} primitive@>
18538 mp_primitive(mp, "floor",unary,floor_op);
18539 @:floor_}{\&{floor} primitive@>
18540 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18541 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18542 mp_primitive(mp, "charexists",unary,char_exists_op);
18543 @:char_exists_}{\&{charexists} primitive@>
18544 mp_primitive(mp, "fontsize",unary,font_size);
18545 @:font_size_}{\&{fontsize} primitive@>
18546 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18547 @:ll_corner_}{\&{llcorner} primitive@>
18548 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18549 @:lr_corner_}{\&{lrcorner} primitive@>
18550 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18551 @:ul_corner_}{\&{ulcorner} primitive@>
18552 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18553 @:ur_corner_}{\&{urcorner} primitive@>
18554 mp_primitive(mp, "arclength",unary,arc_length);
18555 @:arc_length_}{\&{arclength} primitive@>
18556 mp_primitive(mp, "angle",unary,angle_op);
18557 @:angle_}{\&{angle} primitive@>
18558 mp_primitive(mp, "cycle",cycle,cycle_op);
18559 @:cycle_}{\&{cycle} primitive@>
18560 mp_primitive(mp, "stroked",unary,stroked_op);
18561 @:stroked_}{\&{stroked} primitive@>
18562 mp_primitive(mp, "filled",unary,filled_op);
18563 @:filled_}{\&{filled} primitive@>
18564 mp_primitive(mp, "textual",unary,textual_op);
18565 @:textual_}{\&{textual} primitive@>
18566 mp_primitive(mp, "clipped",unary,clipped_op);
18567 @:clipped_}{\&{clipped} primitive@>
18568 mp_primitive(mp, "bounded",unary,bounded_op);
18569 @:bounded_}{\&{bounded} primitive@>
18570 mp_primitive(mp, "+",plus_or_minus,plus);
18571 @:+ }{\.{+} primitive@>
18572 mp_primitive(mp, "-",plus_or_minus,minus);
18573 @:- }{\.{-} primitive@>
18574 mp_primitive(mp, "*",secondary_binary,times);
18575 @:* }{\.{*} primitive@>
18576 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18577 @:/ }{\.{/} primitive@>
18578 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18579 @:++_}{\.{++} primitive@>
18580 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18581 @:+-+_}{\.{+-+} primitive@>
18582 mp_primitive(mp, "or",tertiary_binary,or_op);
18583 @:or_}{\&{or} primitive@>
18584 mp_primitive(mp, "and",and_command,and_op);
18585 @:and_}{\&{and} primitive@>
18586 mp_primitive(mp, "<",expression_binary,less_than);
18587 @:< }{\.{<} primitive@>
18588 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18589 @:<=_}{\.{<=} primitive@>
18590 mp_primitive(mp, ">",expression_binary,greater_than);
18591 @:> }{\.{>} primitive@>
18592 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18593 @:>=_}{\.{>=} primitive@>
18594 mp_primitive(mp, "=",equals,equal_to);
18595 @:= }{\.{=} primitive@>
18596 mp_primitive(mp, "<>",expression_binary,unequal_to);
18597 @:<>_}{\.{<>} primitive@>
18598 mp_primitive(mp, "substring",primary_binary,substring_of);
18599 @:substring_}{\&{substring} primitive@>
18600 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18601 @:subpath_}{\&{subpath} primitive@>
18602 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18603 @:direction_time_}{\&{directiontime} primitive@>
18604 mp_primitive(mp, "point",primary_binary,point_of);
18605 @:point_}{\&{point} primitive@>
18606 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18607 @:precontrol_}{\&{precontrol} primitive@>
18608 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18609 @:postcontrol_}{\&{postcontrol} primitive@>
18610 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18611 @:pen_offset_}{\&{penoffset} primitive@>
18612 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18613 @:arc_time_of_}{\&{arctime} primitive@>
18614 mp_primitive(mp, "mpversion",nullary,mp_version);
18615 @:mp_verison_}{\&{mpversion} primitive@>
18616 mp_primitive(mp, "&",ampersand,concatenate);
18617 @:!!!}{\.{\&} primitive@>
18618 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18619 @:rotated_}{\&{rotated} primitive@>
18620 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18621 @:slanted_}{\&{slanted} primitive@>
18622 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18623 @:scaled_}{\&{scaled} primitive@>
18624 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18625 @:shifted_}{\&{shifted} primitive@>
18626 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18627 @:transformed_}{\&{transformed} primitive@>
18628 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18629 @:x_scaled_}{\&{xscaled} primitive@>
18630 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18631 @:y_scaled_}{\&{yscaled} primitive@>
18632 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18633 @:z_scaled_}{\&{zscaled} primitive@>
18634 mp_primitive(mp, "infont",secondary_binary,in_font);
18635 @:in_font_}{\&{infont} primitive@>
18636 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18637 @:intersection_times_}{\&{intersectiontimes} primitive@>
18638 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18639 @:envelope_}{\&{envelope} primitive@>
18641 @ @<Cases of |print_cmd...@>=
18644 case primary_binary:
18645 case secondary_binary:
18646 case tertiary_binary:
18647 case expression_binary:
18649 case plus_or_minus:
18654 mp_print_op(mp, m);
18657 @ OK, let's look at the simplest \\{do} procedure first.
18659 @c @<Declare nullary action procedure@>
18660 void mp_do_nullary (MP mp,quarterword c) {
18662 if ( mp->internal[mp_tracing_commands]>two )
18663 mp_show_cmd_mod(mp, nullary,c);
18665 case true_code: case false_code:
18666 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18668 case null_picture_code:
18669 mp->cur_type=mp_picture_type;
18670 mp->cur_exp=mp_get_node(mp, edge_header_size);
18671 mp_init_edges(mp, mp->cur_exp);
18673 case null_pen_code:
18674 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18676 case normal_deviate:
18677 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18680 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18683 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18684 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18687 mp->cur_type=mp_string_type;
18688 mp->cur_exp=intern(metapost_version) ;
18690 case read_string_op:
18691 @<Read a string from the terminal@>;
18693 } /* there are no other cases */
18697 @ @<Read a string...@>=
18699 if ( mp->interaction<=mp_nonstop_mode )
18700 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18701 mp_begin_file_reading(mp); name=is_read;
18702 limit=start; prompt_input("");
18703 mp_finish_read(mp);
18706 @ @<Declare nullary action procedure@>=
18707 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18709 str_room((int)mp->last-start);
18710 for (k=start;k<=mp->last-1;k++) {
18711 append_char(mp->buffer[k]);
18713 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18714 mp->cur_exp=mp_make_string(mp);
18717 @ Things get a bit more interesting when there's an operand. The
18718 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18720 @c @<Declare unary action procedures@>
18721 void mp_do_unary (MP mp,quarterword c) {
18722 pointer p,q,r; /* for list manipulation */
18723 integer x; /* a temporary register */
18725 if ( mp->internal[mp_tracing_commands]>two )
18726 @<Trace the current unary operation@>;
18729 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18732 @<Negate the current expression@>;
18734 @<Additional cases of unary operators@>;
18735 } /* there are no other cases */
18739 @ The |nice_pair| function returns |true| if both components of a pair
18742 @<Declare unary action procedures@>=
18743 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18744 if ( t==mp_pair_type ) {
18746 if ( type(x_part_loc(p))==mp_known )
18747 if ( type(y_part_loc(p))==mp_known )
18753 @ The |nice_color_or_pair| function is analogous except that it also accepts
18754 fully known colors.
18756 @<Declare unary action procedures@>=
18757 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18758 pointer q,r; /* for scanning the big node */
18759 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18763 r=q+mp->big_node_size[type(p)];
18766 if ( type(r)!=mp_known )
18773 @ @<Declare unary action...@>=
18774 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18775 mp_print_char(mp, '(');
18776 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18777 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18778 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18779 mp_print_type(mp, t);
18781 mp_print_char(mp, ')');
18784 @ @<Declare unary action...@>=
18785 void mp_bad_unary (MP mp,quarterword c) {
18786 exp_err("Not implemented: "); mp_print_op(mp, c);
18787 @.Not implemented...@>
18788 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18789 help3("I'm afraid I don't know how to apply that operation to that")
18790 ("particular type. Continue, and I'll simply return the")
18791 ("argument (shown above) as the result of the operation.");
18792 mp_put_get_error(mp);
18795 @ @<Trace the current unary operation@>=
18797 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18798 mp_print_op(mp, c); mp_print_char(mp, '(');
18799 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18800 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18803 @ Negation is easy except when the current expression
18804 is of type |independent|, or when it is a pair with one or more
18805 |independent| components.
18807 It is tempting to argue that the negative of an independent variable
18808 is an independent variable, hence we don't have to do anything when
18809 negating it. The fallacy is that other dependent variables pointing
18810 to the current expression must change the sign of their
18811 coefficients if we make no change to the current expression.
18813 Instead, we work around the problem by copying the current expression
18814 and recycling it afterwards (cf.~the |stash_in| routine).
18816 @<Negate the current expression@>=
18817 switch (mp->cur_type) {
18818 case mp_color_type:
18819 case mp_cmykcolor_type:
18821 case mp_independent:
18822 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18823 if ( mp->cur_type==mp_dependent ) {
18824 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18825 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18826 p=value(mp->cur_exp);
18827 r=p+mp->big_node_size[mp->cur_type];
18830 if ( type(r)==mp_known ) negate(value(r));
18831 else mp_negate_dep_list(mp, dep_list(r));
18833 } /* if |cur_type=mp_known| then |cur_exp=0| */
18834 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18837 case mp_proto_dependent:
18838 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18841 negate(mp->cur_exp);
18844 mp_bad_unary(mp, minus);
18848 @ @<Declare unary action...@>=
18849 void mp_negate_dep_list (MP mp,pointer p) {
18852 if ( info(p)==null ) return;
18857 @ @<Additional cases of unary operators@>=
18859 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18860 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18863 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18864 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18866 @<Additional cases of unary operators@>=
18873 case uniform_deviate:
18875 case char_exists_op:
18876 if ( mp->cur_type!=mp_known ) {
18877 mp_bad_unary(mp, c);
18880 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18881 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18882 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18885 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18886 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18887 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18889 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18890 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18892 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18893 mp->cur_type=mp_boolean_type;
18895 case char_exists_op:
18896 @<Determine if a character has been shipped out@>;
18898 } /* there are no other cases */
18902 @ @<Additional cases of unary operators@>=
18904 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18905 p=value(mp->cur_exp);
18906 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18907 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18908 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18910 mp_bad_unary(mp, angle_op);
18914 @ If the current expression is a pair, but the context wants it to
18915 be a path, we call |pair_to_path|.
18917 @<Declare unary action...@>=
18918 void mp_pair_to_path (MP mp) {
18919 mp->cur_exp=mp_new_knot(mp);
18920 mp->cur_type=mp_path_type;
18924 @d pict_color_type(A) ((link(dummy_loc(mp->cur_exp))!=null) &&
18925 (has_color(link(dummy_loc(mp->cur_exp)))) &&
18926 ((color_model(link(dummy_loc(mp->cur_exp)))==A)
18928 (color_model(link(dummy_loc(mp->cur_exp)))==mp_uninitialized_model) &&
18929 (mp->internal[mp_default_color_model]/unity)==(A)))
18931 @<Additional cases of unary operators@>=
18934 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18935 mp_take_part(mp, c);
18936 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18937 else mp_bad_unary(mp, c);
18943 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18944 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18945 else mp_bad_unary(mp, c);
18950 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18951 else if ( mp->cur_type==mp_picture_type ) {
18952 if pict_color_type(mp_rgb_model) mp_take_pict_part(mp, c);
18953 else mp_bad_color_part(mp, c);
18955 else mp_bad_unary(mp, c);
18961 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18962 else if ( mp->cur_type==mp_picture_type ) {
18963 if pict_color_type(mp_cmyk_model) mp_take_pict_part(mp, c);
18964 else mp_bad_color_part(mp, c);
18966 else mp_bad_unary(mp, c);
18969 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18970 else if ( mp->cur_type==mp_picture_type ) {
18971 if pict_color_type(mp_grey_model) mp_take_pict_part(mp, c);
18972 else mp_bad_color_part(mp, c);
18974 else mp_bad_unary(mp, c);
18976 case color_model_part:
18977 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18978 else mp_bad_unary(mp, c);
18981 @ @<Declarations@>=
18982 void mp_bad_color_part(MP mp, quarterword c);
18985 void mp_bad_color_part(MP mp, quarterword c) {
18986 pointer p; /* the big node */
18987 p=link(dummy_loc(mp->cur_exp));
18988 exp_err("Wrong picture color model: "); mp_print_op(mp, c);
18989 @.Wrong picture color model...@>
18990 if (color_model(p)==mp_grey_model)
18991 mp_print(mp, " of grey object");
18992 else if (color_model(p)==mp_cmyk_model)
18993 mp_print(mp, " of cmyk object");
18994 else if (color_model(p)==mp_rgb_model)
18995 mp_print(mp, " of rgb object");
18996 else if (color_model(p)==mp_no_model)
18997 mp_print(mp, " of marking object");
18999 mp_print(mp," of defaulted object");
19000 help3("You can only ask for the redpart, greenpart, bluepart of a rgb object,")
19001 ("the cyanpart, magentapart, yellowpart or blackpart of a cmyk object, ")
19002 ("or the greypart of a grey object. No mixing and matching, please.");
19005 mp_flush_cur_exp(mp,unity);
19007 mp_flush_cur_exp(mp,0);
19010 @ In the following procedure, |cur_exp| points to a capsule, which points to
19011 a big node. We want to delete all but one part of the big node.
19013 @<Declare unary action...@>=
19014 void mp_take_part (MP mp,quarterword c) {
19015 pointer p; /* the big node */
19016 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19017 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19018 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19019 mp_recycle_value(mp, temp_val);
19022 @ @<Initialize table entries...@>=
19023 name_type(temp_val)=mp_capsule;
19025 @ @<Additional cases of unary operators@>=
19031 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19032 else mp_bad_unary(mp, c);
19035 @ @<Declarations@>=
19036 void mp_scale_edges (MP mp);
19038 @ @<Declare unary action...@>=
19039 void mp_take_pict_part (MP mp,quarterword c) {
19040 pointer p; /* first graphical object in |cur_exp| */
19041 p=link(dummy_loc(mp->cur_exp));
19044 case x_part: case y_part: case xx_part:
19045 case xy_part: case yx_part: case yy_part:
19046 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19047 else goto NOT_FOUND;
19049 case red_part: case green_part: case blue_part:
19050 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19051 else goto NOT_FOUND;
19053 case cyan_part: case magenta_part: case yellow_part:
19055 if ( has_color(p) ) {
19056 if ( color_model(p)==mp_uninitialized_model && c==black_part)
19057 mp_flush_cur_exp(mp, unity);
19059 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19060 } else goto NOT_FOUND;
19063 if ( has_color(p) )
19064 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19065 else goto NOT_FOUND;
19067 case color_model_part:
19068 if ( has_color(p) ) {
19069 if ( color_model(p)==mp_uninitialized_model )
19070 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19072 mp_flush_cur_exp(mp, color_model(p)*unity);
19073 } else goto NOT_FOUND;
19075 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19076 } /* all cases have been enumerated */
19080 @<Convert the current expression to a null value appropriate
19084 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19086 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19088 mp_flush_cur_exp(mp, text_p(p));
19089 add_str_ref(mp->cur_exp);
19090 mp->cur_type=mp_string_type;
19094 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19096 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19097 add_str_ref(mp->cur_exp);
19098 mp->cur_type=mp_string_type;
19102 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19103 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19104 @:this can't happen pict}{\quad pict@>
19106 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19107 mp->cur_type=mp_path_type;
19111 if ( ! has_pen(p) ) goto NOT_FOUND;
19113 if ( pen_p(p)==null ) goto NOT_FOUND;
19114 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19115 mp->cur_type=mp_pen_type;
19120 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19121 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19122 else { add_edge_ref(dash_p(p));
19123 mp->se_sf=dash_scale(p);
19124 mp->se_pic=dash_p(p);
19125 mp_scale_edges(mp);
19126 mp_flush_cur_exp(mp, mp->se_pic);
19127 mp->cur_type=mp_picture_type;
19132 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19133 parameterless procedure even though it really takes two arguments and updates
19134 one of them. Hence the following globals are needed.
19137 pointer se_pic; /* edge header used and updated by |scale_edges| */
19138 scaled se_sf; /* the scale factor argument to |scale_edges| */
19140 @ @<Convert the current expression to a null value appropriate...@>=
19142 case text_part: case font_part:
19143 mp_flush_cur_exp(mp, rts(""));
19144 mp->cur_type=mp_string_type;
19147 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19148 left_type(mp->cur_exp)=mp_endpoint;
19149 right_type(mp->cur_exp)=mp_endpoint;
19150 link(mp->cur_exp)=mp->cur_exp;
19151 x_coord(mp->cur_exp)=0;
19152 y_coord(mp->cur_exp)=0;
19153 originator(mp->cur_exp)=mp_metapost_user;
19154 mp->cur_type=mp_path_type;
19157 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19158 mp->cur_type=mp_pen_type;
19161 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19162 mp_init_edges(mp, mp->cur_exp);
19163 mp->cur_type=mp_picture_type;
19166 mp_flush_cur_exp(mp, 0);
19170 @ @<Additional cases of unary...@>=
19172 if ( mp->cur_type!=mp_known ) {
19173 mp_bad_unary(mp, char_op);
19175 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19176 mp->cur_type=mp_string_type;
19177 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19181 if ( mp->cur_type!=mp_known ) {
19182 mp_bad_unary(mp, decimal);
19184 mp->old_setting=mp->selector; mp->selector=new_string;
19185 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19186 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19192 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19193 else mp_str_to_num(mp, c);
19196 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19197 else @<Find the design size of the font whose name is |cur_exp|@>;
19200 @ @<Declare unary action...@>=
19201 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19202 integer n; /* accumulator */
19203 ASCII_code m; /* current character */
19204 pool_pointer k; /* index into |str_pool| */
19205 int b; /* radix of conversion */
19206 boolean bad_char; /* did the string contain an invalid digit? */
19207 if ( c==ASCII_op ) {
19208 if ( length(mp->cur_exp)==0 ) n=-1;
19209 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19211 if ( c==oct_op ) b=8; else b=16;
19212 n=0; bad_char=false;
19213 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19215 if ( (m>='0')&&(m<='9') ) m=m-'0';
19216 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19217 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19218 else { bad_char=true; m=0; };
19219 if ( m>=b ) { bad_char=true; m=0; };
19220 if ( n<32768 / b ) n=n*b+m; else n=32767;
19222 @<Give error messages if |bad_char| or |n>=4096|@>;
19224 mp_flush_cur_exp(mp, n*unity);
19227 @ @<Give error messages if |bad_char|...@>=
19229 exp_err("String contains illegal digits");
19230 @.String contains illegal digits@>
19232 help1("I zeroed out characters that weren't in the range 0..7.");
19234 help1("I zeroed out characters that weren't hex digits.");
19236 mp_put_get_error(mp);
19239 if ( mp->internal[mp_warning_check]>0 ) {
19240 print_err("Number too large (");
19241 mp_print_int(mp, n); mp_print_char(mp, ')');
19242 @.Number too large@>
19243 help2("I have trouble with numbers greater than 4095; watch out.")
19244 ("(Set warningcheck:=0 to suppress this message.)");
19245 mp_put_get_error(mp);
19249 @ The length operation is somewhat unusual in that it applies to a variety
19250 of different types of operands.
19252 @<Additional cases of unary...@>=
19254 switch (mp->cur_type) {
19255 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19256 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19257 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19258 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19260 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19261 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19262 value(x_part_loc(value(mp->cur_exp))),
19263 value(y_part_loc(value(mp->cur_exp)))));
19264 else mp_bad_unary(mp, c);
19269 @ @<Declare unary action...@>=
19270 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19271 scaled n; /* the path length so far */
19272 pointer p; /* traverser */
19274 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19275 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19279 @ @<Declare unary action...@>=
19280 scaled mp_pict_length (MP mp) {
19281 /* counts interior components in picture |cur_exp| */
19282 scaled n; /* the count so far */
19283 pointer p; /* traverser */
19285 p=link(dummy_loc(mp->cur_exp));
19287 if ( is_start_or_stop(p) )
19288 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19289 while ( p!=null ) {
19290 skip_component(p) return n;
19297 @ Implement |turningnumber|
19299 @<Additional cases of unary...@>=
19301 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19302 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19303 else if ( left_type(mp->cur_exp)==mp_endpoint )
19304 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19306 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19309 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19310 argument is |origin|.
19312 @<Declare unary action...@>=
19313 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19314 if ( (! ((xpar==0) && (ypar==0))) )
19315 return mp_n_arg(mp, xpar,ypar);
19320 @ The actual turning number is (for the moment) computed in a C function
19321 that receives eight integers corresponding to the four controlling points,
19322 and returns a single angle. Besides those, we have to account for discrete
19323 moves at the actual points.
19325 @d floor(a) (a>=0 ? a : -(int)(-a))
19326 @d bezier_error (720<<20)+1
19327 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19329 @d out ((double)(xo>>20))
19330 @d mid ((double)(xm>>20))
19331 @d in ((double)(xi>>20))
19332 @d divisor (256*256)
19333 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19335 @<Declare unary action...@>=
19336 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19337 integer CX,integer CY,integer DX,integer DY);
19340 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19341 integer CX,integer CY,integer DX,integer DY) {
19343 integer deltax,deltay;
19344 double ax,ay,bx,by,cx,cy,dx,dy;
19345 angle xi = 0, xo = 0, xm = 0;
19347 ax=AX/divisor; ay=AY/divisor;
19348 bx=BX/divisor; by=BY/divisor;
19349 cx=CX/divisor; cy=CY/divisor;
19350 dx=DX/divisor; dy=DY/divisor;
19352 deltax = (BX-AX); deltay = (BY-AY);
19353 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19354 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19355 xi = mp_an_angle(mp,deltax,deltay);
19357 deltax = (CX-BX); deltay = (CY-BY);
19358 xm = mp_an_angle(mp,deltax,deltay);
19360 deltax = (DX-CX); deltay = (DY-CY);
19361 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19362 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19363 xo = mp_an_angle(mp,deltax,deltay);
19365 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19366 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19367 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19369 if ((a==0)&&(c==0)) {
19370 res = (b==0 ? 0 : (out-in));
19371 print_roots("no roots (a)");
19372 } else if ((a==0)||(c==0)) {
19373 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19374 res = out-in; /* ? */
19377 else if (res>180.0)
19379 print_roots("no roots (b)");
19381 res = out-in; /* ? */
19382 print_roots("one root (a)");
19384 } else if ((sign(a)*sign(c))<0) {
19385 res = out-in; /* ? */
19388 else if (res>180.0)
19390 print_roots("one root (b)");
19392 if (sign(a) == sign(b)) {
19393 res = out-in; /* ? */
19396 else if (res>180.0)
19398 print_roots("no roots (d)");
19400 if ((b*b) == (4*a*c)) {
19401 res = bezier_error;
19402 print_roots("double root"); /* cusp */
19403 } else if ((b*b) < (4*a*c)) {
19404 res = out-in; /* ? */
19405 if (res<=0.0 &&res>-180.0)
19407 else if (res>=0.0 && res<180.0)
19409 print_roots("no roots (e)");
19414 else if (res>180.0)
19416 print_roots("two roots"); /* two inflections */
19420 return double2angle(res);
19424 @d p_nextnext link(link(p))
19426 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19428 @<Declare unary action...@>=
19429 scaled mp_new_turn_cycles (MP mp,pointer c) {
19430 angle res,ang; /* the angles of intermediate results */
19431 scaled turns; /* the turn counter */
19432 pointer p; /* for running around the path */
19433 integer xp,yp; /* coordinates of next point */
19434 integer x,y; /* helper coordinates */
19435 angle in_angle,out_angle; /* helper angles */
19436 int old_setting; /* saved |selector| setting */
19440 old_setting = mp->selector; mp->selector=term_only;
19441 if ( mp->internal[mp_tracing_commands]>unity ) {
19442 mp_begin_diagnostic(mp);
19443 mp_print_nl(mp, "");
19444 mp_end_diagnostic(mp, false);
19447 xp = x_coord(p_next); yp = y_coord(p_next);
19448 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19449 left_x(p_next), left_y(p_next), xp, yp);
19450 if ( ang>seven_twenty_deg ) {
19451 print_err("Strange path");
19453 mp->selector=old_setting;
19457 if ( res > one_eighty_deg ) {
19458 res = res - three_sixty_deg;
19459 turns = turns + unity;
19461 if ( res <= -one_eighty_deg ) {
19462 res = res + three_sixty_deg;
19463 turns = turns - unity;
19465 /* incoming angle at next point */
19466 x = left_x(p_next); y = left_y(p_next);
19467 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19468 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19469 in_angle = mp_an_angle(mp, xp - x, yp - y);
19470 /* outgoing angle at next point */
19471 x = right_x(p_next); y = right_y(p_next);
19472 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19473 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19474 out_angle = mp_an_angle(mp, x - xp, y- yp);
19475 ang = (out_angle - in_angle);
19479 if ( res >= one_eighty_deg ) {
19480 res = res - three_sixty_deg;
19481 turns = turns + unity;
19483 if ( res <= -one_eighty_deg ) {
19484 res = res + three_sixty_deg;
19485 turns = turns - unity;
19490 mp->selector=old_setting;
19495 @ This code is based on Bogus\l{}av Jackowski's
19496 |emergency_turningnumber| macro, with some minor changes by Taco
19497 Hoekwater. The macro code looked more like this:
19499 vardef turning\_number primary p =
19500 ~~save res, ang, turns;
19502 ~~if length p <= 2:
19503 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19505 ~~~~for t = 0 upto length p-1 :
19506 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19507 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19508 ~~~~~~if angc > 180: angc := angc - 360; fi;
19509 ~~~~~~if angc < -180: angc := angc + 360; fi;
19510 ~~~~~~res := res + angc;
19515 The general idea is to calculate only the sum of the angles of
19516 straight lines between the points, of a path, not worrying about cusps
19517 or self-intersections in the segments at all. If the segment is not
19518 well-behaved, the result is not necesarily correct. But the old code
19519 was not always correct either, and worse, it sometimes failed for
19520 well-behaved paths as well. All known bugs that were triggered by the
19521 original code no longer occur with this code, and it runs roughly 3
19522 times as fast because the algorithm is much simpler.
19524 @ It is possible to overflow the return value of the |turn_cycles|
19525 function when the path is sufficiently long and winding, but I am not
19526 going to bother testing for that. In any case, it would only return
19527 the looped result value, which is not a big problem.
19529 The macro code for the repeat loop was a bit nicer to look
19530 at than the pascal code, because it could use |point -1 of p|. In
19531 pascal, the fastest way to loop around the path is not to look
19532 backward once, but forward twice. These defines help hide the trick.
19534 @d p_to link(link(p))
19538 @<Declare unary action...@>=
19539 scaled mp_turn_cycles (MP mp,pointer c) {
19540 angle res,ang; /* the angles of intermediate results */
19541 scaled turns; /* the turn counter */
19542 pointer p; /* for running around the path */
19543 res=0; turns= 0; p=c;
19545 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19546 y_coord(p_to) - y_coord(p_here))
19547 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19548 y_coord(p_here) - y_coord(p_from));
19551 if ( res >= three_sixty_deg ) {
19552 res = res - three_sixty_deg;
19553 turns = turns + unity;
19555 if ( res <= -three_sixty_deg ) {
19556 res = res + three_sixty_deg;
19557 turns = turns - unity;
19564 @ @<Declare unary action...@>=
19565 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19567 scaled saved_t_o; /* tracing\_online saved */
19568 if ( (link(c)==c)||(link(link(c))==c) ) {
19569 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19574 nval = mp_new_turn_cycles(mp, c);
19575 oval = mp_turn_cycles(mp, c);
19576 if ( nval!=oval ) {
19577 saved_t_o=mp->internal[mp_tracing_online];
19578 mp->internal[mp_tracing_online]=unity;
19579 mp_begin_diagnostic(mp);
19580 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19581 " The current computed value is ");
19582 mp_print_scaled(mp, nval);
19583 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19584 mp_print_scaled(mp, oval);
19585 mp_end_diagnostic(mp, false);
19586 mp->internal[mp_tracing_online]=saved_t_o;
19592 @ @<Declare unary action...@>=
19593 scaled mp_count_turns (MP mp,pointer c) {
19594 pointer p; /* a knot in envelope spec |c| */
19595 integer t; /* total pen offset changes counted */
19598 t=t+info(p)-zero_off;
19601 return ((t / 3)*unity);
19604 @ @d type_range(A,B) {
19605 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19606 mp_flush_cur_exp(mp, true_code);
19607 else mp_flush_cur_exp(mp, false_code);
19608 mp->cur_type=mp_boolean_type;
19611 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19612 else mp_flush_cur_exp(mp, false_code);
19613 mp->cur_type=mp_boolean_type;
19616 @<Additional cases of unary operators@>=
19617 case mp_boolean_type:
19618 type_range(mp_boolean_type,mp_unknown_boolean); break;
19619 case mp_string_type:
19620 type_range(mp_string_type,mp_unknown_string); break;
19622 type_range(mp_pen_type,mp_unknown_pen); break;
19624 type_range(mp_path_type,mp_unknown_path); break;
19625 case mp_picture_type:
19626 type_range(mp_picture_type,mp_unknown_picture); break;
19627 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19629 type_test(c); break;
19630 case mp_numeric_type:
19631 type_range(mp_known,mp_independent); break;
19632 case known_op: case unknown_op:
19633 mp_test_known(mp, c); break;
19635 @ @<Declare unary action procedures@>=
19636 void mp_test_known (MP mp,quarterword c) {
19637 int b; /* is the current expression known? */
19638 pointer p,q; /* locations in a big node */
19640 switch (mp->cur_type) {
19641 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19642 case mp_pen_type: case mp_path_type: case mp_picture_type:
19646 case mp_transform_type:
19647 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19648 p=value(mp->cur_exp);
19649 q=p+mp->big_node_size[mp->cur_type];
19652 if ( type(q)!=mp_known )
19661 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19662 else mp_flush_cur_exp(mp, true_code+false_code-b);
19663 mp->cur_type=mp_boolean_type;
19666 @ @<Additional cases of unary operators@>=
19668 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19669 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19670 else mp_flush_cur_exp(mp, false_code);
19671 mp->cur_type=mp_boolean_type;
19674 @ @<Additional cases of unary operators@>=
19676 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19677 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19678 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19681 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19683 @^data structure assumptions@>
19685 @<Additional cases of unary operators@>=
19691 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19692 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19693 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19694 mp_flush_cur_exp(mp, true_code);
19695 else mp_flush_cur_exp(mp, false_code);
19696 mp->cur_type=mp_boolean_type;
19699 @ @<Additional cases of unary operators@>=
19701 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19702 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19704 mp->cur_type=mp_pen_type;
19705 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19709 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19711 mp->cur_type=mp_path_type;
19712 mp_make_path(mp, mp->cur_exp);
19716 if ( mp->cur_type==mp_path_type ) {
19717 p=mp_htap_ypoc(mp, mp->cur_exp);
19718 if ( right_type(p)==mp_endpoint ) p=link(p);
19719 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19720 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19721 else mp_bad_unary(mp, reverse);
19724 @ The |pair_value| routine changes the current expression to a
19725 given ordered pair of values.
19727 @<Declare unary action procedures@>=
19728 void mp_pair_value (MP mp,scaled x, scaled y) {
19729 pointer p; /* a pair node */
19730 p=mp_get_node(mp, value_node_size);
19731 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19732 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19734 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19735 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19738 @ @<Additional cases of unary operators@>=
19740 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19741 else mp_pair_value(mp, minx,miny);
19744 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19745 else mp_pair_value(mp, maxx,miny);
19748 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19749 else mp_pair_value(mp, minx,maxy);
19752 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19753 else mp_pair_value(mp, maxx,maxy);
19756 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19757 box of the current expression. The boolean result is |false| if the expression
19758 has the wrong type.
19760 @<Declare unary action procedures@>=
19761 boolean mp_get_cur_bbox (MP mp) {
19762 switch (mp->cur_type) {
19763 case mp_picture_type:
19764 mp_set_bbox(mp, mp->cur_exp,true);
19765 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19766 minx=0; maxx=0; miny=0; maxy=0;
19768 minx=minx_val(mp->cur_exp);
19769 maxx=maxx_val(mp->cur_exp);
19770 miny=miny_val(mp->cur_exp);
19771 maxy=maxy_val(mp->cur_exp);
19775 mp_path_bbox(mp, mp->cur_exp);
19778 mp_pen_bbox(mp, mp->cur_exp);
19786 @ @<Additional cases of unary operators@>=
19788 case close_from_op:
19789 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19790 else mp_do_read_or_close(mp,c);
19793 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19794 a line from the file or to close the file.
19796 @<Declare unary action procedures@>=
19797 void mp_do_read_or_close (MP mp,quarterword c) {
19798 readf_index n,n0; /* indices for searching |rd_fname| */
19799 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19800 call |start_read_input| and |goto found| or |not_found|@>;
19801 mp_begin_file_reading(mp);
19803 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19805 mp_end_file_reading(mp);
19807 @<Record the end of file and set |cur_exp| to a dummy value@>;
19810 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19813 mp_flush_cur_exp(mp, 0);
19814 mp_finish_read(mp);
19817 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19820 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19825 fn = str(mp->cur_exp);
19826 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19829 } else if ( c==close_from_op ) {
19832 if ( n0==mp->read_files ) {
19833 if ( mp->read_files<mp->max_read_files ) {
19834 incr(mp->read_files);
19839 l = mp->max_read_files + (mp->max_read_files>>2);
19840 rd_file = xmalloc((l+1), sizeof(void *));
19841 rd_fname = xmalloc((l+1), sizeof(char *));
19842 for (k=0;k<=l;k++) {
19843 if (k<=mp->max_read_files) {
19844 rd_file[k]=mp->rd_file[k];
19845 rd_fname[k]=mp->rd_fname[k];
19851 xfree(mp->rd_file); xfree(mp->rd_fname);
19852 mp->max_read_files = l;
19853 mp->rd_file = rd_file;
19854 mp->rd_fname = rd_fname;
19858 if ( mp_start_read_input(mp,fn,n) )
19863 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19865 if ( c==close_from_op ) {
19866 (mp->close_file)(mp,mp->rd_file[n]);
19871 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19872 xfree(mp->rd_fname[n]);
19873 mp->rd_fname[n]=NULL;
19874 if ( n==mp->read_files-1 ) mp->read_files=n;
19875 if ( c==close_from_op )
19877 mp_flush_cur_exp(mp, mp->eof_line);
19878 mp->cur_type=mp_string_type
19880 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19883 str_number eof_line;
19888 @ Finally, we have the operations that combine a capsule~|p|
19889 with the current expression.
19891 @d binary_return { mp_finish_binary(mp, old_p, old_exp); return; }
19893 @c @<Declare binary action procedures@>
19894 void mp_finish_binary (MP mp, pointer old_p, pointer old_exp ){
19896 @<Recycle any sidestepped |independent| capsules@>;
19898 void mp_do_binary (MP mp,pointer p, quarterword c) {
19899 pointer q,r,rr; /* for list manipulation */
19900 pointer old_p,old_exp; /* capsules to recycle */
19901 integer v; /* for numeric manipulation */
19903 if ( mp->internal[mp_tracing_commands]>two ) {
19904 @<Trace the current binary operation@>;
19906 @<Sidestep |independent| cases in capsule |p|@>;
19907 @<Sidestep |independent| cases in the current expression@>;
19909 case plus: case minus:
19910 @<Add or subtract the current expression from |p|@>;
19912 @<Additional cases of binary operators@>;
19913 }; /* there are no other cases */
19914 mp_recycle_value(mp, p);
19915 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19916 mp_finish_binary(mp, old_p, old_exp);
19919 @ @<Declare binary action...@>=
19920 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19921 mp_disp_err(mp, p,"");
19922 exp_err("Not implemented: ");
19923 @.Not implemented...@>
19924 if ( c>=min_of ) mp_print_op(mp, c);
19925 mp_print_known_or_unknown_type(mp, type(p),p);
19926 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19927 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19928 help3("I'm afraid I don't know how to apply that operation to that")
19929 ("combination of types. Continue, and I'll return the second")
19930 ("argument (see above) as the result of the operation.");
19931 mp_put_get_error(mp);
19933 void mp_bad_envelope_pen (MP mp) {
19934 mp_disp_err(mp, null,"");
19935 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19936 @.Not implemented...@>
19937 help3("I'm afraid I don't know how to apply that operation to that")
19938 ("combination of types. Continue, and I'll return the second")
19939 ("argument (see above) as the result of the operation.");
19940 mp_put_get_error(mp);
19943 @ @<Trace the current binary operation@>=
19945 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19946 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19947 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19948 mp_print_exp(mp,null,0); mp_print(mp,")}");
19949 mp_end_diagnostic(mp, false);
19952 @ Several of the binary operations are potentially complicated by the
19953 fact that |independent| values can sneak into capsules. For example,
19954 we've seen an instance of this difficulty in the unary operation
19955 of negation. In order to reduce the number of cases that need to be
19956 handled, we first change the two operands (if necessary)
19957 to rid them of |independent| components. The original operands are
19958 put into capsules called |old_p| and |old_exp|, which will be
19959 recycled after the binary operation has been safely carried out.
19961 @<Recycle any sidestepped |independent| capsules@>=
19962 if ( old_p!=null ) {
19963 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19965 if ( old_exp!=null ) {
19966 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19969 @ A big node is considered to be ``tarnished'' if it contains at least one
19970 independent component. We will define a simple function called `|tarnished|'
19971 that returns |null| if and only if its argument is not tarnished.
19973 @<Sidestep |independent| cases in capsule |p|@>=
19975 case mp_transform_type:
19976 case mp_color_type:
19977 case mp_cmykcolor_type:
19979 old_p=mp_tarnished(mp, p);
19981 case mp_independent: old_p=mp_void; break;
19982 default: old_p=null; break;
19984 if ( old_p!=null ) {
19985 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19986 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19989 @ @<Sidestep |independent| cases in the current expression@>=
19990 switch (mp->cur_type) {
19991 case mp_transform_type:
19992 case mp_color_type:
19993 case mp_cmykcolor_type:
19995 old_exp=mp_tarnished(mp, mp->cur_exp);
19997 case mp_independent:old_exp=mp_void; break;
19998 default: old_exp=null; break;
20000 if ( old_exp!=null ) {
20001 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20004 @ @<Declare binary action...@>=
20005 pointer mp_tarnished (MP mp,pointer p) {
20006 pointer q; /* beginning of the big node */
20007 pointer r; /* current position in the big node */
20008 q=value(p); r=q+mp->big_node_size[type(p)];
20011 if ( type(r)==mp_independent ) return mp_void;
20016 @ @<Add or subtract the current expression from |p|@>=
20017 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20018 mp_bad_binary(mp, p,c);
20020 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20021 mp_add_or_subtract(mp, p,null,c);
20023 if ( mp->cur_type!=type(p) ) {
20024 mp_bad_binary(mp, p,c);
20026 q=value(p); r=value(mp->cur_exp);
20027 rr=r+mp->big_node_size[mp->cur_type];
20029 mp_add_or_subtract(mp, q,r,c);
20036 @ The first argument to |add_or_subtract| is the location of a value node
20037 in a capsule or pair node that will soon be recycled. The second argument
20038 is either a location within a pair or transform node of |cur_exp|,
20039 or it is null (which means that |cur_exp| itself should be the second
20040 argument). The third argument is either |plus| or |minus|.
20042 The sum or difference of the numeric quantities will replace the second
20043 operand. Arithmetic overflow may go undetected; users aren't supposed to
20044 be monkeying around with really big values.
20045 @^overflow in arithmetic@>
20047 @<Declare binary action...@>=
20048 @<Declare the procedure called |dep_finish|@>
20049 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20050 small_number s,t; /* operand types */
20051 pointer r; /* list traverser */
20052 integer v; /* second operand value */
20055 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20058 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20060 if ( t==mp_known ) {
20061 if ( c==minus ) negate(v);
20062 if ( type(p)==mp_known ) {
20063 v=mp_slow_add(mp, value(p),v);
20064 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20067 @<Add a known value to the constant term of |dep_list(p)|@>;
20069 if ( c==minus ) mp_negate_dep_list(mp, v);
20070 @<Add operand |p| to the dependency list |v|@>;
20074 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20076 while ( info(r)!=null ) r=link(r);
20077 value(r)=mp_slow_add(mp, value(r),v);
20079 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20080 name_type(q)=mp_capsule;
20082 dep_list(q)=dep_list(p); type(q)=type(p);
20083 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20084 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20086 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20087 nice to retain the extra accuracy of |fraction| coefficients.
20088 But we have to handle both kinds, and mixtures too.
20090 @<Add operand |p| to the dependency list |v|@>=
20091 if ( type(p)==mp_known ) {
20092 @<Add the known |value(p)| to the constant term of |v|@>;
20094 s=type(p); r=dep_list(p);
20095 if ( t==mp_dependent ) {
20096 if ( s==mp_dependent ) {
20097 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20098 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20099 } /* |fix_needed| will necessarily be false */
20100 t=mp_proto_dependent;
20101 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20103 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20104 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20106 @<Output the answer, |v| (which might have become |known|)@>;
20109 @ @<Add the known |value(p)| to the constant term of |v|@>=
20111 while ( info(v)!=null ) v=link(v);
20112 value(v)=mp_slow_add(mp, value(p),value(v));
20115 @ @<Output the answer, |v| (which might have become |known|)@>=
20116 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20117 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20119 @ Here's the current situation: The dependency list |v| of type |t|
20120 should either be put into the current expression (if |q=null|) or
20121 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20122 or |q|) formerly held a dependency list with the same
20123 final pointer as the list |v|.
20125 @<Declare the procedure called |dep_finish|@>=
20126 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20127 pointer p; /* the destination */
20128 scaled vv; /* the value, if it is |known| */
20129 if ( q==null ) p=mp->cur_exp; else p=q;
20130 dep_list(p)=v; type(p)=t;
20131 if ( info(v)==null ) {
20134 mp_flush_cur_exp(mp, vv);
20136 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20138 } else if ( q==null ) {
20141 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20144 @ Let's turn now to the six basic relations of comparison.
20146 @<Additional cases of binary operators@>=
20147 case less_than: case less_or_equal: case greater_than:
20148 case greater_or_equal: case equal_to: case unequal_to:
20149 check_arith; /* at this point |arith_error| should be |false|? */
20150 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20151 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20152 } else if ( mp->cur_type!=type(p) ) {
20153 mp_bad_binary(mp, p,c); goto DONE;
20154 } else if ( mp->cur_type==mp_string_type ) {
20155 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20156 } else if ((mp->cur_type==mp_unknown_string)||
20157 (mp->cur_type==mp_unknown_boolean) ) {
20158 @<Check if unknowns have been equated@>;
20159 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20160 @<Reduce comparison of big nodes to comparison of scalars@>;
20161 } else if ( mp->cur_type==mp_boolean_type ) {
20162 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20164 mp_bad_binary(mp, p,c); goto DONE;
20166 @<Compare the current expression with zero@>;
20168 mp->arith_error=false; /* ignore overflow in comparisons */
20171 @ @<Compare the current expression with zero@>=
20172 if ( mp->cur_type!=mp_known ) {
20173 if ( mp->cur_type<mp_known ) {
20174 mp_disp_err(mp, p,"");
20175 help1("The quantities shown above have not been equated.")
20177 help2("Oh dear. I can\'t decide if the expression above is positive,")
20178 ("negative, or zero. So this comparison test won't be `true'.");
20180 exp_err("Unknown relation will be considered false");
20181 @.Unknown relation...@>
20182 mp_put_get_flush_error(mp, false_code);
20185 case less_than: boolean_reset(mp->cur_exp<0); break;
20186 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20187 case greater_than: boolean_reset(mp->cur_exp>0); break;
20188 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20189 case equal_to: boolean_reset(mp->cur_exp==0); break;
20190 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20191 }; /* there are no other cases */
20193 mp->cur_type=mp_boolean_type
20195 @ When two unknown strings are in the same ring, we know that they are
20196 equal. Otherwise, we don't know whether they are equal or not, so we
20199 @<Check if unknowns have been equated@>=
20201 q=value(mp->cur_exp);
20202 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20203 if ( q==p ) mp_flush_cur_exp(mp, 0);
20206 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20208 q=value(p); r=value(mp->cur_exp);
20209 rr=r+mp->big_node_size[mp->cur_type]-2;
20210 while (1) { mp_add_or_subtract(mp, q,r,minus);
20211 if ( type(r)!=mp_known ) break;
20212 if ( value(r)!=0 ) break;
20213 if ( r==rr ) break;
20216 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20219 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20221 @<Additional cases of binary operators@>=
20224 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20225 mp_bad_binary(mp, p,c);
20226 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20229 @ @<Additional cases of binary operators@>=
20231 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20232 mp_bad_binary(mp, p,times);
20233 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20234 @<Multiply when at least one operand is known@>;
20235 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20236 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20237 (type(p)>mp_pair_type)) ) {
20238 mp_hard_times(mp, p);
20241 mp_bad_binary(mp, p,times);
20245 @ @<Multiply when at least one operand is known@>=
20247 if ( type(p)==mp_known ) {
20248 v=value(p); mp_free_node(mp, p,value_node_size);
20250 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20252 if ( mp->cur_type==mp_known ) {
20253 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20254 } else if ( (mp->cur_type==mp_pair_type)||
20255 (mp->cur_type==mp_color_type)||
20256 (mp->cur_type==mp_cmykcolor_type) ) {
20257 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20259 p=p-2; mp_dep_mult(mp, p,v,true);
20260 } while (p!=value(mp->cur_exp));
20262 mp_dep_mult(mp, null,v,true);
20267 @ @<Declare binary action...@>=
20268 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20269 pointer q; /* the dependency list being multiplied by |v| */
20270 small_number s,t; /* its type, before and after */
20273 } else if ( type(p)!=mp_known ) {
20276 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20277 else value(p)=mp_take_fraction(mp, value(p),v);
20280 t=type(q); q=dep_list(q); s=t;
20281 if ( t==mp_dependent ) if ( v_is_scaled )
20282 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20283 t=mp_proto_dependent;
20284 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20285 mp_dep_finish(mp, q,p,t);
20288 @ Here is a routine that is similar to |times|; but it is invoked only
20289 internally, when |v| is a |fraction| whose magnitude is at most~1,
20290 and when |cur_type>=mp_color_type|.
20292 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20293 /* multiplies |cur_exp| by |n/d| */
20294 pointer p; /* a pair node */
20295 pointer old_exp; /* a capsule to recycle */
20296 fraction v; /* |n/d| */
20297 if ( mp->internal[mp_tracing_commands]>two ) {
20298 @<Trace the fraction multiplication@>;
20300 switch (mp->cur_type) {
20301 case mp_transform_type:
20302 case mp_color_type:
20303 case mp_cmykcolor_type:
20305 old_exp=mp_tarnished(mp, mp->cur_exp);
20307 case mp_independent: old_exp=mp_void; break;
20308 default: old_exp=null; break;
20310 if ( old_exp!=null ) {
20311 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20313 v=mp_make_fraction(mp, n,d);
20314 if ( mp->cur_type==mp_known ) {
20315 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20316 } else if ( mp->cur_type<=mp_pair_type ) {
20317 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20320 mp_dep_mult(mp, p,v,false);
20321 } while (p!=value(mp->cur_exp));
20323 mp_dep_mult(mp, null,v,false);
20325 if ( old_exp!=null ) {
20326 mp_recycle_value(mp, old_exp);
20327 mp_free_node(mp, old_exp,value_node_size);
20331 @ @<Trace the fraction multiplication@>=
20333 mp_begin_diagnostic(mp);
20334 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20335 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20337 mp_end_diagnostic(mp, false);
20340 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20342 @<Declare binary action procedures@>=
20343 void mp_hard_times (MP mp,pointer p) {
20344 pointer q; /* a copy of the dependent variable |p| */
20345 pointer r; /* a component of the big node for the nice color or pair */
20346 scaled v; /* the known value for |r| */
20347 if ( type(p)<=mp_pair_type ) {
20348 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20349 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20350 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20355 if ( r==value(mp->cur_exp) )
20357 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20358 mp_dep_mult(mp, r,v,true);
20360 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20361 link(prev_dep(p))=r;
20362 mp_free_node(mp, p,value_node_size);
20363 mp_dep_mult(mp, r,v,true);
20366 @ @<Additional cases of binary operators@>=
20368 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20369 mp_bad_binary(mp, p,over);
20371 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20373 @<Squeal about division by zero@>;
20375 if ( mp->cur_type==mp_known ) {
20376 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20377 } else if ( mp->cur_type<=mp_pair_type ) {
20378 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20380 p=p-2; mp_dep_div(mp, p,v);
20381 } while (p!=value(mp->cur_exp));
20383 mp_dep_div(mp, null,v);
20390 @ @<Declare binary action...@>=
20391 void mp_dep_div (MP mp,pointer p, scaled v) {
20392 pointer q; /* the dependency list being divided by |v| */
20393 small_number s,t; /* its type, before and after */
20394 if ( p==null ) q=mp->cur_exp;
20395 else if ( type(p)!=mp_known ) q=p;
20396 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20397 t=type(q); q=dep_list(q); s=t;
20398 if ( t==mp_dependent )
20399 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20400 t=mp_proto_dependent;
20401 q=mp_p_over_v(mp, q,v,s,t);
20402 mp_dep_finish(mp, q,p,t);
20405 @ @<Squeal about division by zero@>=
20407 exp_err("Division by zero");
20408 @.Division by zero@>
20409 help2("You're trying to divide the quantity shown above the error")
20410 ("message by zero. I'm going to divide it by one instead.");
20411 mp_put_get_error(mp);
20414 @ @<Additional cases of binary operators@>=
20417 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20418 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20419 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20420 } else mp_bad_binary(mp, p,c);
20423 @ The next few sections of the program deal with affine transformations
20424 of coordinate data.
20426 @<Additional cases of binary operators@>=
20427 case rotated_by: case slanted_by:
20428 case scaled_by: case shifted_by: case transformed_by:
20429 case x_scaled: case y_scaled: case z_scaled:
20430 if ( type(p)==mp_path_type ) {
20431 path_trans(c,p); binary_return;
20432 } else if ( type(p)==mp_pen_type ) {
20434 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20435 /* rounding error could destroy convexity */
20437 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20438 mp_big_trans(mp, p,c);
20439 } else if ( type(p)==mp_picture_type ) {
20440 mp_do_edges_trans(mp, p,c); binary_return;
20442 mp_bad_binary(mp, p,c);
20446 @ Let |c| be one of the eight transform operators. The procedure call
20447 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20448 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20449 change at all if |c=transformed_by|.)
20451 Then, if all components of the resulting transform are |known|, they are
20452 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20453 and |cur_exp| is changed to the known value zero.
20455 @<Declare binary action...@>=
20456 void mp_set_up_trans (MP mp,quarterword c) {
20457 pointer p,q,r; /* list manipulation registers */
20458 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20459 @<Put the current transform into |cur_exp|@>;
20461 @<If the current transform is entirely known, stash it in global variables;
20462 otherwise |return|@>;
20471 scaled ty; /* current transform coefficients */
20473 @ @<Put the current transform...@>=
20475 p=mp_stash_cur_exp(mp);
20476 mp->cur_exp=mp_id_transform(mp);
20477 mp->cur_type=mp_transform_type;
20478 q=value(mp->cur_exp);
20480 @<For each of the eight cases, change the relevant fields of |cur_exp|
20482 but do nothing if capsule |p| doesn't have the appropriate type@>;
20483 }; /* there are no other cases */
20484 mp_disp_err(mp, p,"Improper transformation argument");
20485 @.Improper transformation argument@>
20486 help3("The expression shown above has the wrong type,")
20487 ("so I can\'t transform anything using it.")
20488 ("Proceed, and I'll omit the transformation.");
20489 mp_put_get_error(mp);
20491 mp_recycle_value(mp, p);
20492 mp_free_node(mp, p,value_node_size);
20495 @ @<If the current transform is entirely known, ...@>=
20496 q=value(mp->cur_exp); r=q+transform_node_size;
20499 if ( type(r)!=mp_known ) return;
20501 mp->txx=value(xx_part_loc(q));
20502 mp->txy=value(xy_part_loc(q));
20503 mp->tyx=value(yx_part_loc(q));
20504 mp->tyy=value(yy_part_loc(q));
20505 mp->tx=value(x_part_loc(q));
20506 mp->ty=value(y_part_loc(q));
20507 mp_flush_cur_exp(mp, 0)
20509 @ @<For each of the eight cases...@>=
20511 if ( type(p)==mp_known )
20512 @<Install sines and cosines, then |goto done|@>;
20515 if ( type(p)>mp_pair_type ) {
20516 mp_install(mp, xy_part_loc(q),p); goto DONE;
20520 if ( type(p)>mp_pair_type ) {
20521 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20526 if ( type(p)==mp_pair_type ) {
20527 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20528 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20532 if ( type(p)>mp_pair_type ) {
20533 mp_install(mp, xx_part_loc(q),p); goto DONE;
20537 if ( type(p)>mp_pair_type ) {
20538 mp_install(mp, yy_part_loc(q),p); goto DONE;
20542 if ( type(p)==mp_pair_type )
20543 @<Install a complex multiplier, then |goto done|@>;
20545 case transformed_by:
20549 @ @<Install sines and cosines, then |goto done|@>=
20550 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20551 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20552 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20553 value(xy_part_loc(q))=-value(yx_part_loc(q));
20554 value(yy_part_loc(q))=value(xx_part_loc(q));
20558 @ @<Install a complex multiplier, then |goto done|@>=
20561 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20562 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20563 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20564 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20565 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20566 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20570 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20571 insists that the transformation be entirely known.
20573 @<Declare binary action...@>=
20574 void mp_set_up_known_trans (MP mp,quarterword c) {
20575 mp_set_up_trans(mp, c);
20576 if ( mp->cur_type!=mp_known ) {
20577 exp_err("Transform components aren't all known");
20578 @.Transform components...@>
20579 help3("I'm unable to apply a partially specified transformation")
20580 ("except to a fully known pair or transform.")
20581 ("Proceed, and I'll omit the transformation.");
20582 mp_put_get_flush_error(mp, 0);
20583 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20584 mp->tx=0; mp->ty=0;
20588 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20589 coordinates in locations |p| and~|q|.
20591 @<Declare binary action...@>=
20592 void mp_trans (MP mp,pointer p, pointer q) {
20593 scaled v; /* the new |x| value */
20594 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20595 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20596 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20597 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20601 @ The simplest transformation procedure applies a transform to all
20602 coordinates of a path. The |path_trans(c)(p)| macro applies
20603 a transformation defined by |cur_exp| and the transform operator |c|
20606 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20607 mp_unstash_cur_exp(mp, (B));
20608 mp_do_path_trans(mp, mp->cur_exp); }
20610 @<Declare binary action...@>=
20611 void mp_do_path_trans (MP mp,pointer p) {
20612 pointer q; /* list traverser */
20615 if ( left_type(q)!=mp_endpoint )
20616 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20617 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20618 if ( right_type(q)!=mp_endpoint )
20619 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20620 @^data structure assumptions@>
20625 @ Transforming a pen is very similar, except that there are no |left_type|
20626 and |right_type| fields.
20628 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20629 mp_unstash_cur_exp(mp, (B));
20630 mp_do_pen_trans(mp, mp->cur_exp); }
20632 @<Declare binary action...@>=
20633 void mp_do_pen_trans (MP mp,pointer p) {
20634 pointer q; /* list traverser */
20635 if ( pen_is_elliptical(p) ) {
20636 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20637 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20641 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20642 @^data structure assumptions@>
20647 @ The next transformation procedure applies to edge structures. It will do
20648 any transformation, but the results may be substandard if the picture contains
20649 text that uses downloaded bitmap fonts. The binary action procedure is
20650 |do_edges_trans|, but we also need a function that just scales a picture.
20651 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20652 should be thought of as procedures that update an edge structure |h|, except
20653 that they have to return a (possibly new) structure because of the need to call
20656 @<Declare binary action...@>=
20657 pointer mp_edges_trans (MP mp, pointer h) {
20658 pointer q; /* the object being transformed */
20659 pointer r,s; /* for list manipulation */
20660 scaled sx,sy; /* saved transformation parameters */
20661 scaled sqdet; /* square root of determinant for |dash_scale| */
20662 integer sgndet; /* sign of the determinant */
20663 scaled v; /* a temporary value */
20664 h=mp_private_edges(mp, h);
20665 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20666 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20667 if ( dash_list(h)!=null_dash ) {
20668 @<Try to transform the dash list of |h|@>;
20670 @<Make the bounding box of |h| unknown if it can't be updated properly
20671 without scanning the whole structure@>;
20672 q=link(dummy_loc(h));
20673 while ( q!=null ) {
20674 @<Transform graphical object |q|@>;
20679 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20680 mp_set_up_known_trans(mp, c);
20681 value(p)=mp_edges_trans(mp, value(p));
20682 mp_unstash_cur_exp(mp, p);
20684 void mp_scale_edges (MP mp) {
20685 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20686 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20687 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20690 @ @<Try to transform the dash list of |h|@>=
20691 if ( (mp->txy!=0)||(mp->tyx!=0)||
20692 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20693 mp_flush_dash_list(mp, h);
20695 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20696 @<Scale the dash list by |txx| and shift it by |tx|@>;
20697 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20700 @ @<Reverse the dash list of |h|@>=
20703 dash_list(h)=null_dash;
20704 while ( r!=null_dash ) {
20706 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20707 link(s)=dash_list(h);
20712 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20714 while ( r!=null_dash ) {
20715 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20716 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20720 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20721 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20722 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20723 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20724 mp_init_bbox(mp, h);
20727 if ( minx_val(h)<=maxx_val(h) ) {
20728 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20735 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20737 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20738 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20741 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20744 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20746 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20747 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20748 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20749 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20750 if ( mp->txx+mp->txy<0 ) {
20751 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20753 if ( mp->tyx+mp->tyy<0 ) {
20754 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20758 @ Now we ready for the main task of transforming the graphical objects in edge
20761 @<Transform graphical object |q|@>=
20763 case mp_fill_code: case mp_stroked_code:
20764 mp_do_path_trans(mp, path_p(q));
20765 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20767 case mp_start_clip_code: case mp_start_bounds_code:
20768 mp_do_path_trans(mp, path_p(q));
20772 @<Transform the compact transformation starting at |r|@>;
20774 case mp_stop_clip_code: case mp_stop_bounds_code:
20776 } /* there are no other cases */
20778 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20779 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20780 since the \ps\ output procedures will try to compensate for the transformation
20781 we are applying to |pen_p(q)|. Since this compensation is based on the square
20782 root of the determinant, |sqdet| is the appropriate factor.
20784 @<Transform |pen_p(q)|, making sure...@>=
20785 if ( pen_p(q)!=null ) {
20786 sx=mp->tx; sy=mp->ty;
20787 mp->tx=0; mp->ty=0;
20788 mp_do_pen_trans(mp, pen_p(q));
20789 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20790 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20791 if ( ! pen_is_elliptical(pen_p(q)) )
20793 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20794 /* this unreverses the pen */
20795 mp->tx=sx; mp->ty=sy;
20798 @ This uses the fact that transformations are stored in the order
20799 |(tx,ty,txx,txy,tyx,tyy)|.
20800 @^data structure assumptions@>
20802 @<Transform the compact transformation starting at |r|@>=
20803 mp_trans(mp, r,r+1);
20804 sx=mp->tx; sy=mp->ty;
20805 mp->tx=0; mp->ty=0;
20806 mp_trans(mp, r+2,r+4);
20807 mp_trans(mp, r+3,r+5);
20808 mp->tx=sx; mp->ty=sy
20810 @ The hard cases of transformation occur when big nodes are involved,
20811 and when some of their components are unknown.
20813 @<Declare binary action...@>=
20814 @<Declare subroutines needed by |big_trans|@>
20815 void mp_big_trans (MP mp,pointer p, quarterword c) {
20816 pointer q,r,pp,qq; /* list manipulation registers */
20817 small_number s; /* size of a big node */
20818 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20821 if ( type(r)!=mp_known ) {
20822 @<Transform an unknown big node and |return|@>;
20825 @<Transform a known big node@>;
20826 } /* node |p| will now be recycled by |do_binary| */
20828 @ @<Transform an unknown big node and |return|@>=
20830 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20831 r=value(mp->cur_exp);
20832 if ( mp->cur_type==mp_transform_type ) {
20833 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20834 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20835 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20836 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20838 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20839 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20843 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20844 and let |q| point to a another value field. The |bilin1| procedure
20845 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20847 @<Declare subroutines needed by |big_trans|@>=
20848 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20849 scaled u, scaled delta) {
20850 pointer r; /* list traverser */
20851 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20853 if ( type(q)==mp_known ) {
20854 delta+=mp_take_scaled(mp, value(q),u);
20856 @<Ensure that |type(p)=mp_proto_dependent|@>;
20857 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20858 mp_proto_dependent,type(q));
20861 if ( type(p)==mp_known ) {
20865 while ( info(r)!=null ) r=link(r);
20867 if ( r!=dep_list(p) ) value(r)=delta;
20868 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20870 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20873 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20874 if ( type(p)!=mp_proto_dependent ) {
20875 if ( type(p)==mp_known )
20876 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20878 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20879 mp_proto_dependent,true);
20880 type(p)=mp_proto_dependent;
20883 @ @<Transform a known big node@>=
20884 mp_set_up_trans(mp, c);
20885 if ( mp->cur_type==mp_known ) {
20886 @<Transform known by known@>;
20888 pp=mp_stash_cur_exp(mp); qq=value(pp);
20889 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20890 if ( mp->cur_type==mp_transform_type ) {
20891 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20892 value(xy_part_loc(q)),yx_part_loc(qq),null);
20893 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20894 value(xx_part_loc(q)),yx_part_loc(qq),null);
20895 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20896 value(yy_part_loc(q)),xy_part_loc(qq),null);
20897 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20898 value(yx_part_loc(q)),xy_part_loc(qq),null);
20900 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20901 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20902 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20903 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20904 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20907 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20908 at |dep_final|. The following procedure adds |v| times another
20909 numeric quantity to~|p|.
20911 @<Declare subroutines needed by |big_trans|@>=
20912 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20913 if ( type(r)==mp_known ) {
20914 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20916 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20917 mp_proto_dependent,type(r));
20918 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20922 @ The |bilin2| procedure is something like |bilin1|, but with known
20923 and unknown quantities reversed. Parameter |p| points to a value field
20924 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20925 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20926 unless it is |null| (which stands for zero). Location~|p| will be
20927 replaced by $p\cdot t+v\cdot u+q$.
20929 @<Declare subroutines needed by |big_trans|@>=
20930 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20931 pointer u, pointer q) {
20932 scaled vv; /* temporary storage for |value(p)| */
20933 vv=value(p); type(p)=mp_proto_dependent;
20934 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20936 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20937 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20938 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20939 if ( dep_list(p)==mp->dep_final ) {
20940 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20941 type(p)=mp_known; value(p)=vv;
20945 @ @<Transform known by known@>=
20947 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20948 if ( mp->cur_type==mp_transform_type ) {
20949 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20950 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20951 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20952 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20954 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20955 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20958 @ Finally, in |bilin3| everything is |known|.
20960 @<Declare subroutines needed by |big_trans|@>=
20961 void mp_bilin3 (MP mp,pointer p, scaled t,
20962 scaled v, scaled u, scaled delta) {
20964 delta+=mp_take_scaled(mp, value(p),t);
20967 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20968 else value(p)=delta;
20971 @ @<Additional cases of binary operators@>=
20973 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20974 else mp_bad_binary(mp, p,concatenate);
20977 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20978 mp_chop_string(mp, value(p));
20979 else mp_bad_binary(mp, p,substring_of);
20982 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20983 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20984 mp_chop_path(mp, value(p));
20985 else mp_bad_binary(mp, p,subpath_of);
20988 @ @<Declare binary action...@>=
20989 void mp_cat (MP mp,pointer p) {
20990 str_number a,b; /* the strings being concatenated */
20991 pool_pointer k; /* index into |str_pool| */
20992 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20993 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20994 append_char(mp->str_pool[k]);
20996 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20997 append_char(mp->str_pool[k]);
20999 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21002 @ @<Declare binary action...@>=
21003 void mp_chop_string (MP mp,pointer p) {
21004 integer a, b; /* start and stop points */
21005 integer l; /* length of the original string */
21006 integer k; /* runs from |a| to |b| */
21007 str_number s; /* the original string */
21008 boolean reversed; /* was |a>b|? */
21009 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21010 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21011 if ( a<=b ) reversed=false;
21012 else { reversed=true; k=a; a=b; b=k; };
21013 s=mp->cur_exp; l=length(s);
21024 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21025 append_char(mp->str_pool[k]);
21028 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21029 append_char(mp->str_pool[k]);
21032 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21035 @ @<Declare binary action...@>=
21036 void mp_chop_path (MP mp,pointer p) {
21037 pointer q; /* a knot in the original path */
21038 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21039 scaled a,b,k,l; /* indices for chopping */
21040 boolean reversed; /* was |a>b|? */
21041 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21042 if ( a<=b ) reversed=false;
21043 else { reversed=true; k=a; a=b; b=k; };
21044 @<Dispense with the cases |a<0| and/or |b>l|@>;
21046 while ( a>=unity ) {
21047 q=link(q); a=a-unity; b=b-unity;
21050 @<Construct a path from |pp| to |qq| of length zero@>;
21052 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21054 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21055 mp_toss_knot_list(mp, mp->cur_exp);
21057 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21063 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21065 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21066 a=0; if ( b<0 ) b=0;
21068 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21072 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21073 b=l; if ( a>l ) a=l;
21081 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21083 pp=mp_copy_knot(mp, q); qq=pp;
21085 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21088 ss=pp; pp=link(pp);
21089 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21090 mp_free_node(mp, ss,knot_node_size);
21092 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21096 mp_split_cubic(mp, rr,(b+unity)*010000);
21097 mp_free_node(mp, qq,knot_node_size);
21102 @ @<Construct a path from |pp| to |qq| of length zero@>=
21104 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21105 pp=mp_copy_knot(mp, q); qq=pp;
21108 @ @<Additional cases of binary operators@>=
21109 case point_of: case precontrol_of: case postcontrol_of:
21110 if ( mp->cur_type==mp_pair_type )
21111 mp_pair_to_path(mp);
21112 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21113 mp_find_point(mp, value(p),c);
21115 mp_bad_binary(mp, p,c);
21117 case pen_offset_of:
21118 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21119 mp_set_up_offset(mp, value(p));
21121 mp_bad_binary(mp, p,pen_offset_of);
21123 case direction_time_of:
21124 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21125 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21126 mp_set_up_direction_time(mp, value(p));
21128 mp_bad_binary(mp, p,direction_time_of);
21131 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21132 mp_bad_binary(mp, p,envelope_of);
21134 mp_set_up_envelope(mp, p);
21137 @ @<Declare binary action...@>=
21138 void mp_set_up_offset (MP mp,pointer p) {
21139 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21140 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21142 void mp_set_up_direction_time (MP mp,pointer p) {
21143 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21144 value(y_part_loc(p)),mp->cur_exp));
21146 void mp_set_up_envelope (MP mp,pointer p) {
21147 small_number ljoin, lcap;
21149 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21150 /* TODO: accept elliptical pens for straight paths */
21151 if (pen_is_elliptical(value(p))) {
21152 mp_bad_envelope_pen(mp);
21154 mp->cur_type = mp_path_type;
21157 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21158 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21160 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21161 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21163 if ( mp->internal[mp_miterlimit]<unity )
21166 miterlim=mp->internal[mp_miterlimit];
21167 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21168 mp->cur_type = mp_path_type;
21171 @ @<Declare binary action...@>=
21172 void mp_find_point (MP mp,scaled v, quarterword c) {
21173 pointer p; /* the path */
21174 scaled n; /* its length */
21176 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21177 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21180 } else if ( v<0 ) {
21181 if ( left_type(p)==mp_endpoint ) v=0;
21182 else v=n-1-((-v-1) % n);
21183 } else if ( v>n ) {
21184 if ( left_type(p)==mp_endpoint ) v=n;
21188 while ( v>=unity ) { p=link(p); v=v-unity; };
21190 @<Insert a fractional node by splitting the cubic@>;
21192 @<Set the current expression to the desired path coordinates@>;
21195 @ @<Insert a fractional node...@>=
21196 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21198 @ @<Set the current expression to the desired path coordinates...@>=
21201 mp_pair_value(mp, x_coord(p),y_coord(p));
21203 case precontrol_of:
21204 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21205 else mp_pair_value(mp, left_x(p),left_y(p));
21207 case postcontrol_of:
21208 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21209 else mp_pair_value(mp, right_x(p),right_y(p));
21211 } /* there are no other cases */
21213 @ @<Additional cases of binary operators@>=
21215 if ( mp->cur_type==mp_pair_type )
21216 mp_pair_to_path(mp);
21217 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21218 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21220 mp_bad_binary(mp, p,c);
21223 @ @<Additional cases of bin...@>=
21225 if ( type(p)==mp_pair_type ) {
21226 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21227 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21229 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21230 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21231 mp_path_intersection(mp, value(p),mp->cur_exp);
21232 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21234 mp_bad_binary(mp, p,intersect);
21238 @ @<Additional cases of bin...@>=
21240 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21241 mp_bad_binary(mp, p,in_font);
21242 else { mp_do_infont(mp, p); binary_return; }
21245 @ Function |new_text_node| owns the reference count for its second argument
21246 (the text string) but not its first (the font name).
21248 @<Declare binary action...@>=
21249 void mp_do_infont (MP mp,pointer p) {
21251 q=mp_get_node(mp, edge_header_size);
21252 mp_init_edges(mp, q);
21253 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21254 obj_tail(q)=link(obj_tail(q));
21255 mp_free_node(mp, p,value_node_size);
21256 mp_flush_cur_exp(mp, q);
21257 mp->cur_type=mp_picture_type;
21260 @* \[40] Statements and commands.
21261 The chief executive of \MP\ is the |do_statement| routine, which
21262 contains the master switch that causes all the various pieces of \MP\
21263 to do their things, in the right order.
21265 In a sense, this is the grand climax of the program: It applies all the
21266 tools that we have worked so hard to construct. In another sense, this is
21267 the messiest part of the program: It necessarily refers to other pieces
21268 of code all over the place, so that a person can't fully understand what is
21269 going on without paging back and forth to be reminded of conventions that
21270 are defined elsewhere. We are now at the hub of the web.
21272 The structure of |do_statement| itself is quite simple. The first token
21273 of the statement is fetched using |get_x_next|. If it can be the first
21274 token of an expression, we look for an equation, an assignment, or a
21275 title. Otherwise we use a \&{case} construction to branch at high speed to
21276 the appropriate routine for various and sundry other types of commands,
21277 each of which has an ``action procedure'' that does the necessary work.
21279 The program uses the fact that
21280 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21281 to interpret a statement that starts with, e.g., `\&{string}',
21282 as a type declaration rather than a boolean expression.
21284 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21285 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21286 if ( mp->cur_cmd>max_primary_command ) {
21287 @<Worry about bad statement@>;
21288 } else if ( mp->cur_cmd>max_statement_command ) {
21289 @<Do an equation, assignment, title, or
21290 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21292 @<Do a statement that doesn't begin with an expression@>;
21294 if ( mp->cur_cmd<semicolon )
21295 @<Flush unparsable junk that was found after the statement@>;
21299 @ @<Declarations@>=
21300 @<Declare action procedures for use by |do_statement|@>
21302 @ The only command codes |>max_primary_command| that can be present
21303 at the beginning of a statement are |semicolon| and higher; these
21304 occur when the statement is null.
21306 @<Worry about bad statement@>=
21308 if ( mp->cur_cmd<semicolon ) {
21309 print_err("A statement can't begin with `");
21310 @.A statement can't begin with x@>
21311 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21312 help5("I was looking for the beginning of a new statement.")
21313 ("If you just proceed without changing anything, I'll ignore")
21314 ("everything up to the next `;'. Please insert a semicolon")
21315 ("now in front of anything that you don't want me to delete.")
21316 ("(See Chapter 27 of The METAFONTbook for an example.)");
21317 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21318 mp_back_error(mp); mp_get_x_next(mp);
21322 @ The help message printed here says that everything is flushed up to
21323 a semicolon, but actually the commands |end_group| and |stop| will
21324 also terminate a statement.
21326 @<Flush unparsable junk that was found after the statement@>=
21328 print_err("Extra tokens will be flushed");
21329 @.Extra tokens will be flushed@>
21330 help6("I've just read as much of that statement as I could fathom,")
21331 ("so a semicolon should have been next. It's very puzzling...")
21332 ("but I'll try to get myself back together, by ignoring")
21333 ("everything up to the next `;'. Please insert a semicolon")
21334 ("now in front of anything that you don't want me to delete.")
21335 ("(See Chapter 27 of The METAFONTbook for an example.)");
21336 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21337 mp_back_error(mp); mp->scanner_status=flushing;
21340 @<Decrease the string reference count...@>;
21341 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21342 mp->scanner_status=normal;
21345 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21346 |cur_type=mp_vacuous| unless the statement was simply an expression;
21347 in the latter case, |cur_type| and |cur_exp| should represent that
21350 @<Do a statement that doesn't...@>=
21352 if ( mp->internal[mp_tracing_commands]>0 )
21354 switch (mp->cur_cmd ) {
21355 case type_name:mp_do_type_declaration(mp); break;
21357 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21358 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21360 @<Cases of |do_statement| that invoke particular commands@>;
21361 } /* there are no other cases */
21362 mp->cur_type=mp_vacuous;
21365 @ The most important statements begin with expressions.
21367 @<Do an equation, assignment, title, or...@>=
21369 mp->var_flag=assignment; mp_scan_expression(mp);
21370 if ( mp->cur_cmd<end_group ) {
21371 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21372 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21373 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21374 else if ( mp->cur_type!=mp_vacuous ){
21375 exp_err("Isolated expression");
21376 @.Isolated expression@>
21377 help3("I couldn't find an `=' or `:=' after the")
21378 ("expression that is shown above this error message,")
21379 ("so I guess I'll just ignore it and carry on.");
21380 mp_put_get_error(mp);
21382 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21388 if ( mp->internal[mp_tracing_titles]>0 ) {
21389 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21393 @ Equations and assignments are performed by the pair of mutually recursive
21395 routines |do_equation| and |do_assignment|. These routines are called when
21396 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21397 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21398 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21399 will be equal to the right-hand side (which will normally be equal
21400 to the left-hand side).
21402 @<Declare action procedures for use by |do_statement|@>=
21403 @<Declare the procedure called |try_eq|@>
21404 @<Declare the procedure called |make_eq|@>
21405 void mp_do_equation (MP mp) ;
21408 void mp_do_equation (MP mp) {
21409 pointer lhs; /* capsule for the left-hand side */
21410 pointer p; /* temporary register */
21411 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21412 mp->var_flag=assignment; mp_scan_expression(mp);
21413 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21414 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21415 if ( mp->internal[mp_tracing_commands]>two )
21416 @<Trace the current equation@>;
21417 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21418 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21419 }; /* in this case |make_eq| will change the pair to a path */
21420 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21423 @ And |do_assignment| is similar to |do_equation|:
21426 void mp_do_assignment (MP mp);
21428 @ @<Declare action procedures for use by |do_statement|@>=
21429 void mp_do_assignment (MP mp) ;
21432 void mp_do_assignment (MP mp) {
21433 pointer lhs; /* token list for the left-hand side */
21434 pointer p; /* where the left-hand value is stored */
21435 pointer q; /* temporary capsule for the right-hand value */
21436 if ( mp->cur_type!=mp_token_list ) {
21437 exp_err("Improper `:=' will be changed to `='");
21439 help2("I didn't find a variable name at the left of the `:=',")
21440 ("so I'm going to pretend that you said `=' instead.");
21441 mp_error(mp); mp_do_equation(mp);
21443 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21444 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21445 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21446 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21447 if ( mp->internal[mp_tracing_commands]>two )
21448 @<Trace the current assignment@>;
21449 if ( info(lhs)>hash_end ) {
21450 @<Assign the current expression to an internal variable@>;
21452 @<Assign the current expression to the variable |lhs|@>;
21454 mp_flush_node_list(mp, lhs);
21458 @ @<Trace the current equation@>=
21460 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21461 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21462 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21465 @ @<Trace the current assignment@>=
21467 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21468 if ( info(lhs)>hash_end )
21469 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21471 mp_show_token_list(mp, lhs,null,1000,0);
21472 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21473 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21476 @ @<Assign the current expression to an internal variable@>=
21477 if ( mp->cur_type==mp_known ) {
21478 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21480 exp_err("Internal quantity `");
21481 @.Internal quantity...@>
21482 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21483 mp_print(mp, "' must receive a known value");
21484 help2("I can\'t set an internal quantity to anything but a known")
21485 ("numeric value, so I'll have to ignore this assignment.");
21486 mp_put_get_error(mp);
21489 @ @<Assign the current expression to the variable |lhs|@>=
21491 p=mp_find_variable(mp, lhs);
21493 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21494 mp_recycle_value(mp, p);
21495 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21496 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21498 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21503 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21504 a pointer to a capsule that is to be equated to the current expression.
21506 @<Declare the procedure called |make_eq|@>=
21507 void mp_make_eq (MP mp,pointer lhs) ;
21511 @c void mp_make_eq (MP mp,pointer lhs) {
21512 small_number t; /* type of the left-hand side */
21513 pointer p,q; /* pointers inside of big nodes */
21514 integer v=0; /* value of the left-hand side */
21517 if ( t<=mp_pair_type ) v=value(lhs);
21519 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21520 is incompatible with~|t|@>;
21521 } /* all cases have been listed */
21522 @<Announce that the equation cannot be performed@>;
21524 check_arith; mp_recycle_value(mp, lhs);
21525 mp_free_node(mp, lhs,value_node_size);
21528 @ @<Announce that the equation cannot be performed@>=
21529 mp_disp_err(mp, lhs,"");
21530 exp_err("Equation cannot be performed (");
21531 @.Equation cannot be performed@>
21532 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21533 else mp_print(mp, "numeric");
21534 mp_print_char(mp, '=');
21535 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21536 else mp_print(mp, "numeric");
21537 mp_print_char(mp, ')');
21538 help2("I'm sorry, but I don't know how to make such things equal.")
21539 ("(See the two expressions just above the error message.)");
21540 mp_put_get_error(mp)
21542 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21543 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21544 case mp_path_type: case mp_picture_type:
21545 if ( mp->cur_type==t+unknown_tag ) {
21546 mp_nonlinear_eq(mp, v,mp->cur_exp,false);
21547 mp_unstash_cur_exp(mp, mp->cur_exp); goto DONE;
21548 } else if ( mp->cur_type==t ) {
21549 @<Report redundant or inconsistent equation and |goto done|@>;
21552 case unknown_types:
21553 if ( mp->cur_type==t-unknown_tag ) {
21554 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21555 } else if ( mp->cur_type==t ) {
21556 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21557 } else if ( mp->cur_type==mp_pair_type ) {
21558 if ( t==mp_unknown_path ) {
21559 mp_pair_to_path(mp); goto RESTART;
21563 case mp_transform_type: case mp_color_type:
21564 case mp_cmykcolor_type: case mp_pair_type:
21565 if ( mp->cur_type==t ) {
21566 @<Do multiple equations and |goto done|@>;
21569 case mp_known: case mp_dependent:
21570 case mp_proto_dependent: case mp_independent:
21571 if ( mp->cur_type>=mp_known ) {
21572 mp_try_eq(mp, lhs,null); goto DONE;
21578 @ @<Report redundant or inconsistent equation and |goto done|@>=
21580 if ( mp->cur_type<=mp_string_type ) {
21581 if ( mp->cur_type==mp_string_type ) {
21582 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21585 } else if ( v!=mp->cur_exp ) {
21588 @<Exclaim about a redundant equation@>; goto DONE;
21590 print_err("Redundant or inconsistent equation");
21591 @.Redundant or inconsistent equation@>
21592 help2("An equation between already-known quantities can't help.")
21593 ("But don't worry; continue and I'll just ignore it.");
21594 mp_put_get_error(mp); goto DONE;
21596 print_err("Inconsistent equation");
21597 @.Inconsistent equation@>
21598 help2("The equation I just read contradicts what was said before.")
21599 ("But don't worry; continue and I'll just ignore it.");
21600 mp_put_get_error(mp); goto DONE;
21603 @ @<Do multiple equations and |goto done|@>=
21605 p=v+mp->big_node_size[t];
21606 q=value(mp->cur_exp)+mp->big_node_size[t];
21608 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21613 @ The first argument to |try_eq| is the location of a value node
21614 in a capsule that will soon be recycled. The second argument is
21615 either a location within a pair or transform node pointed to by
21616 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21617 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21618 but to equate the two operands.
21620 @<Declare the procedure called |try_eq|@>=
21621 void mp_try_eq (MP mp,pointer l, pointer r) ;
21624 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21625 pointer p; /* dependency list for right operand minus left operand */
21626 int t; /* the type of list |p| */
21627 pointer q; /* the constant term of |p| is here */
21628 pointer pp; /* dependency list for right operand */
21629 int tt; /* the type of list |pp| */
21630 boolean copied; /* have we copied a list that ought to be recycled? */
21631 @<Remove the left operand from its container, negate it, and
21632 put it into dependency list~|p| with constant term~|q|@>;
21633 @<Add the right operand to list |p|@>;
21634 if ( info(p)==null ) {
21635 @<Deal with redundant or inconsistent equation@>;
21637 mp_linear_eq(mp, p,t);
21638 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21639 if ( type(mp->cur_exp)==mp_known ) {
21640 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21641 mp_free_node(mp, pp,value_node_size);
21647 @ @<Remove the left operand from its container, negate it, and...@>=
21649 if ( t==mp_known ) {
21650 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21651 } else if ( t==mp_independent ) {
21652 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21655 p=dep_list(l); q=p;
21658 if ( info(q)==null ) break;
21661 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21665 @ @<Deal with redundant or inconsistent equation@>=
21667 if ( abs(value(p))>64 ) { /* off by .001 or more */
21668 print_err("Inconsistent equation");
21669 @.Inconsistent equation@>
21670 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21671 mp_print_char(mp, ')');
21672 help2("The equation I just read contradicts what was said before.")
21673 ("But don't worry; continue and I'll just ignore it.");
21674 mp_put_get_error(mp);
21675 } else if ( r==null ) {
21676 @<Exclaim about a redundant equation@>;
21678 mp_free_node(mp, p,dep_node_size);
21681 @ @<Add the right operand to list |p|@>=
21683 if ( mp->cur_type==mp_known ) {
21684 value(q)=value(q)+mp->cur_exp; goto DONE1;
21687 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21688 else pp=dep_list(mp->cur_exp);
21691 if ( type(r)==mp_known ) {
21692 value(q)=value(q)+value(r); goto DONE1;
21695 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21696 else pp=dep_list(r);
21699 if ( tt!=mp_independent ) copied=false;
21700 else { copied=true; tt=mp_dependent; };
21701 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21702 if ( copied ) mp_flush_node_list(mp, pp);
21705 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21706 mp->watch_coefs=false;
21708 p=mp_p_plus_q(mp, p,pp,t);
21709 } else if ( t==mp_proto_dependent ) {
21710 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21713 while ( info(q)!=null ) {
21714 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21716 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21718 mp->watch_coefs=true;
21720 @ Our next goal is to process type declarations. For this purpose it's
21721 convenient to have a procedure that scans a $\langle\,$declared
21722 variable$\,\rangle$ and returns the corresponding token list. After the
21723 following procedure has acted, the token after the declared variable
21724 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21727 @<Declare the function called |scan_declared_variable|@>=
21728 pointer mp_scan_declared_variable (MP mp) {
21729 pointer x; /* hash address of the variable's root */
21730 pointer h,t; /* head and tail of the token list to be returned */
21731 pointer l; /* hash address of left bracket */
21732 mp_get_symbol(mp); x=mp->cur_sym;
21733 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21734 h=mp_get_avail(mp); info(h)=x; t=h;
21737 if ( mp->cur_sym==0 ) break;
21738 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21739 if ( mp->cur_cmd==left_bracket ) {
21740 @<Descend past a collective subscript@>;
21745 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21747 if ( (eq_type(x)%outer_tag)!=tag_token ) mp_clear_symbol(mp, x,false);
21748 if ( equiv(x)==null ) mp_new_root(mp, x);
21752 @ If the subscript isn't collective, we don't accept it as part of the
21755 @<Descend past a collective subscript@>=
21757 l=mp->cur_sym; mp_get_x_next(mp);
21758 if ( mp->cur_cmd!=right_bracket ) {
21759 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21761 mp->cur_sym=collective_subscript;
21765 @ Type declarations are introduced by the following primitive operations.
21768 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21769 @:numeric_}{\&{numeric} primitive@>
21770 mp_primitive(mp, "string",type_name,mp_string_type);
21771 @:string_}{\&{string} primitive@>
21772 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21773 @:boolean_}{\&{boolean} primitive@>
21774 mp_primitive(mp, "path",type_name,mp_path_type);
21775 @:path_}{\&{path} primitive@>
21776 mp_primitive(mp, "pen",type_name,mp_pen_type);
21777 @:pen_}{\&{pen} primitive@>
21778 mp_primitive(mp, "picture",type_name,mp_picture_type);
21779 @:picture_}{\&{picture} primitive@>
21780 mp_primitive(mp, "transform",type_name,mp_transform_type);
21781 @:transform_}{\&{transform} primitive@>
21782 mp_primitive(mp, "color",type_name,mp_color_type);
21783 @:color_}{\&{color} primitive@>
21784 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21785 @:color_}{\&{rgbcolor} primitive@>
21786 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21787 @:color_}{\&{cmykcolor} primitive@>
21788 mp_primitive(mp, "pair",type_name,mp_pair_type);
21789 @:pair_}{\&{pair} primitive@>
21791 @ @<Cases of |print_cmd...@>=
21792 case type_name: mp_print_type(mp, m); break;
21794 @ Now we are ready to handle type declarations, assuming that a
21795 |type_name| has just been scanned.
21797 @<Declare action procedures for use by |do_statement|@>=
21798 void mp_do_type_declaration (MP mp) ;
21801 void mp_do_type_declaration (MP mp) {
21802 small_number t; /* the type being declared */
21803 pointer p; /* token list for a declared variable */
21804 pointer q; /* value node for the variable */
21805 if ( mp->cur_mod>=mp_transform_type )
21808 t=mp->cur_mod+unknown_tag;
21810 p=mp_scan_declared_variable(mp);
21811 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21812 q=mp_find_variable(mp, p);
21814 type(q)=t; value(q)=null;
21816 print_err("Declared variable conflicts with previous vardef");
21817 @.Declared variable conflicts...@>
21818 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21819 ("Proceed, and I'll ignore the illegal redeclaration.");
21820 mp_put_get_error(mp);
21822 mp_flush_list(mp, p);
21823 if ( mp->cur_cmd<comma ) {
21824 @<Flush spurious symbols after the declared variable@>;
21826 } while (! end_of_statement);
21829 @ @<Flush spurious symbols after the declared variable@>=
21831 print_err("Illegal suffix of declared variable will be flushed");
21832 @.Illegal suffix...flushed@>
21833 help5("Variables in declarations must consist entirely of")
21834 ("names and collective subscripts, e.g., `x[]a'.")
21835 ("Are you trying to use a reserved word in a variable name?")
21836 ("I'm going to discard the junk I found here,")
21837 ("up to the next comma or the end of the declaration.");
21838 if ( mp->cur_cmd==numeric_token )
21839 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21840 mp_put_get_error(mp); mp->scanner_status=flushing;
21843 @<Decrease the string reference count...@>;
21844 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21845 mp->scanner_status=normal;
21848 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21849 until coming to the end of the user's program.
21850 Each execution of |do_statement| concludes with
21851 |cur_cmd=semicolon|, |end_group|, or |stop|.
21853 @c void mp_main_control (MP mp) {
21855 mp_do_statement(mp);
21856 if ( mp->cur_cmd==end_group ) {
21857 print_err("Extra `endgroup'");
21858 @.Extra `endgroup'@>
21859 help2("I'm not currently working on a `begingroup',")
21860 ("so I had better not try to end anything.");
21861 mp_flush_error(mp, 0);
21863 } while (mp->cur_cmd!=stop);
21865 int __attribute__((noinline))
21867 if (mp->history < mp_fatal_error_stop ) {
21868 @<Install and test the non-local jump buffer@>;
21869 mp_main_control(mp); /* come to life */
21870 mp_final_cleanup(mp); /* prepare for death */
21871 mp_close_files_and_terminate(mp);
21873 return mp->history;
21875 int __attribute__((noinline))
21876 mp_execute (MP mp) {
21877 if (mp->history < mp_fatal_error_stop ) {
21878 mp->history = mp_spotless;
21879 mp->file_offset = 0;
21880 mp->term_offset = 0;
21882 @<Install and test the non-local jump buffer@>;
21883 if (mp->run_state==0) {
21886 mp_input_ln(mp,mp->term_in);
21887 mp_firm_up_the_line(mp);
21888 mp->buffer[limit]='%';
21893 mp_do_statement(mp);
21894 } while (mp->cur_cmd!=stop);
21896 return mp->history;
21898 int __attribute__((noinline))
21899 mp_finish (MP mp) {
21900 if (mp->history < mp_fatal_error_stop ) {
21901 @<Install and test the non-local jump buffer@>;
21902 mp_final_cleanup(mp); /* prepare for death */
21903 mp_close_files_and_terminate(mp);
21905 return mp->history;
21907 const char * mp_mplib_version (MP mp) {
21909 return mplib_version;
21911 const char * mp_metapost_version (MP mp) {
21913 return metapost_version;
21916 @ @<Exported function headers@>=
21917 int mp_run (MP mp);
21918 int mp_execute (MP mp);
21919 int mp_finish (MP mp);
21920 const char * mp_mplib_version (MP mp);
21921 const char * mp_metapost_version (MP mp);
21924 mp_primitive(mp, "end",stop,0);
21925 @:end_}{\&{end} primitive@>
21926 mp_primitive(mp, "dump",stop,1);
21927 @:dump_}{\&{dump} primitive@>
21929 @ @<Cases of |print_cmd...@>=
21931 if ( m==0 ) mp_print(mp, "end");
21932 else mp_print(mp, "dump");
21936 Let's turn now to statements that are classified as ``commands'' because
21937 of their imperative nature. We'll begin with simple ones, so that it
21938 will be clear how to hook command processing into the |do_statement| routine;
21939 then we'll tackle the tougher commands.
21941 Here's one of the simplest:
21943 @<Cases of |do_statement|...@>=
21944 case mp_random_seed: mp_do_random_seed(mp); break;
21946 @ @<Declare action procedures for use by |do_statement|@>=
21947 void mp_do_random_seed (MP mp) ;
21949 @ @c void mp_do_random_seed (MP mp) {
21951 if ( mp->cur_cmd!=assignment ) {
21952 mp_missing_err(mp, ":=");
21954 help1("Always say `randomseed:=<numeric expression>'.");
21957 mp_get_x_next(mp); mp_scan_expression(mp);
21958 if ( mp->cur_type!=mp_known ) {
21959 exp_err("Unknown value will be ignored");
21960 @.Unknown value...ignored@>
21961 help2("Your expression was too random for me to handle,")
21962 ("so I won't change the random seed just now.");
21963 mp_put_get_flush_error(mp, 0);
21965 @<Initialize the random seed to |cur_exp|@>;
21969 @ @<Initialize the random seed to |cur_exp|@>=
21971 mp_init_randoms(mp, mp->cur_exp);
21972 if ( mp->selector>=log_only && mp->selector<write_file) {
21973 mp->old_setting=mp->selector; mp->selector=log_only;
21974 mp_print_nl(mp, "{randomseed:=");
21975 mp_print_scaled(mp, mp->cur_exp);
21976 mp_print_char(mp, '}');
21977 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21981 @ And here's another simple one (somewhat different in flavor):
21983 @<Cases of |do_statement|...@>=
21985 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21986 @<Initialize the print |selector| based on |interaction|@>;
21987 if ( mp->log_opened ) mp->selector=mp->selector+2;
21992 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21993 @:mp_batch_mode_}{\&{batchmode} primitive@>
21994 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21995 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21996 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21997 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21998 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21999 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
22001 @ @<Cases of |print_cmd_mod|...@>=
22004 case mp_batch_mode: mp_print(mp, "batchmode"); break;
22005 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
22006 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
22007 default: mp_print(mp, "errorstopmode"); break;
22011 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22013 @<Cases of |do_statement|...@>=
22014 case protection_command: mp_do_protection(mp); break;
22017 mp_primitive(mp, "inner",protection_command,0);
22018 @:inner_}{\&{inner} primitive@>
22019 mp_primitive(mp, "outer",protection_command,1);
22020 @:outer_}{\&{outer} primitive@>
22022 @ @<Cases of |print_cmd...@>=
22023 case protection_command:
22024 if ( m==0 ) mp_print(mp, "inner");
22025 else mp_print(mp, "outer");
22028 @ @<Declare action procedures for use by |do_statement|@>=
22029 void mp_do_protection (MP mp) ;
22031 @ @c void mp_do_protection (MP mp) {
22032 int m; /* 0 to unprotect, 1 to protect */
22033 halfword t; /* the |eq_type| before we change it */
22036 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22038 if ( t>=outer_tag )
22039 eq_type(mp->cur_sym)=t-outer_tag;
22040 } else if ( t<outer_tag ) {
22041 eq_type(mp->cur_sym)=t+outer_tag;
22044 } while (mp->cur_cmd==comma);
22047 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22048 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22049 declaration assigns the command code |left_delimiter| to `\.{(}' and
22050 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22051 hash address of its mate.
22053 @<Cases of |do_statement|...@>=
22054 case delimiters: mp_def_delims(mp); break;
22056 @ @<Declare action procedures for use by |do_statement|@>=
22057 void mp_def_delims (MP mp) ;
22059 @ @c void mp_def_delims (MP mp) {
22060 pointer l_delim,r_delim; /* the new delimiter pair */
22061 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22062 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22063 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22064 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22068 @ Here is a procedure that is called when \MP\ has reached a point
22069 where some right delimiter is mandatory.
22071 @<Declare the procedure called |check_delimiter|@>=
22072 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22073 if ( mp->cur_cmd==right_delimiter )
22074 if ( mp->cur_mod==l_delim )
22076 if ( mp->cur_sym!=r_delim ) {
22077 mp_missing_err(mp, str(text(r_delim)));
22079 help2("I found no right delimiter to match a left one. So I've")
22080 ("put one in, behind the scenes; this may fix the problem.");
22083 print_err("The token `"); mp_print_text(r_delim);
22084 @.The token...delimiter@>
22085 mp_print(mp, "' is no longer a right delimiter");
22086 help3("Strange: This token has lost its former meaning!")
22087 ("I'll read it as a right delimiter this time;")
22088 ("but watch out, I'll probably miss it later.");
22093 @ The next four commands save or change the values associated with tokens.
22095 @<Cases of |do_statement|...@>=
22098 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22099 } while (mp->cur_cmd==comma);
22101 case interim_command: mp_do_interim(mp); break;
22102 case let_command: mp_do_let(mp); break;
22103 case new_internal: mp_do_new_internal(mp); break;
22105 @ @<Declare action procedures for use by |do_statement|@>=
22106 void mp_do_statement (MP mp);
22107 void mp_do_interim (MP mp);
22109 @ @c void mp_do_interim (MP mp) {
22111 if ( mp->cur_cmd!=internal_quantity ) {
22112 print_err("The token `");
22113 @.The token...quantity@>
22114 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22115 else mp_print_text(mp->cur_sym);
22116 mp_print(mp, "' isn't an internal quantity");
22117 help1("Something like `tracingonline' should follow `interim'.");
22120 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22122 mp_do_statement(mp);
22125 @ The following procedure is careful not to undefine the left-hand symbol
22126 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22128 @<Declare action procedures for use by |do_statement|@>=
22129 void mp_do_let (MP mp) ;
22131 @ @c void mp_do_let (MP mp) {
22132 pointer l; /* hash location of the left-hand symbol */
22133 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22134 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22135 mp_missing_err(mp, "=");
22137 help3("You should have said `let symbol = something'.")
22138 ("But don't worry; I'll pretend that an equals sign")
22139 ("was present. The next token I read will be `something'.");
22143 switch (mp->cur_cmd) {
22144 case defined_macro: case secondary_primary_macro:
22145 case tertiary_secondary_macro: case expression_tertiary_macro:
22146 add_mac_ref(mp->cur_mod);
22151 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22152 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22153 else equiv(l)=mp->cur_mod;
22157 @ @<Declarations@>=
22158 void mp_grow_internals (MP mp, int l);
22159 void mp_do_new_internal (MP mp) ;
22162 void mp_grow_internals (MP mp, int l) {
22166 if ( hash_end+l>max_halfword ) {
22167 mp_confusion(mp, "out of memory space"); /* can't be reached */
22169 int_name = xmalloc ((l+1),sizeof(char *));
22170 internal = xmalloc ((l+1),sizeof(scaled));
22171 for (k=0;k<=l; k++ ) {
22172 if (k<=mp->max_internal) {
22173 internal[k]=mp->internal[k];
22174 int_name[k]=mp->int_name[k];
22180 xfree(mp->internal); xfree(mp->int_name);
22181 mp->int_name = int_name;
22182 mp->internal = internal;
22183 mp->max_internal = l;
22187 void mp_do_new_internal (MP mp) {
22189 if ( mp->int_ptr==mp->max_internal ) {
22190 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22192 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22193 eq_type(mp->cur_sym)=internal_quantity;
22194 equiv(mp->cur_sym)=mp->int_ptr;
22195 if(mp->int_name[mp->int_ptr]!=NULL)
22196 xfree(mp->int_name[mp->int_ptr]);
22197 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22198 mp->internal[mp->int_ptr]=0;
22200 } while (mp->cur_cmd==comma);
22203 @ @<Dealloc variables@>=
22204 for (k=0;k<=mp->max_internal;k++) {
22205 xfree(mp->int_name[k]);
22207 xfree(mp->internal);
22208 xfree(mp->int_name);
22211 @ The various `\&{show}' commands are distinguished by modifier fields
22214 @d show_token_code 0 /* show the meaning of a single token */
22215 @d show_stats_code 1 /* show current memory and string usage */
22216 @d show_code 2 /* show a list of expressions */
22217 @d show_var_code 3 /* show a variable and its descendents */
22218 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22221 mp_primitive(mp, "showtoken",show_command,show_token_code);
22222 @:show_token_}{\&{showtoken} primitive@>
22223 mp_primitive(mp, "showstats",show_command,show_stats_code);
22224 @:show_stats_}{\&{showstats} primitive@>
22225 mp_primitive(mp, "show",show_command,show_code);
22226 @:show_}{\&{show} primitive@>
22227 mp_primitive(mp, "showvariable",show_command,show_var_code);
22228 @:show_var_}{\&{showvariable} primitive@>
22229 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22230 @:show_dependencies_}{\&{showdependencies} primitive@>
22232 @ @<Cases of |print_cmd...@>=
22235 case show_token_code:mp_print(mp, "showtoken"); break;
22236 case show_stats_code:mp_print(mp, "showstats"); break;
22237 case show_code:mp_print(mp, "show"); break;
22238 case show_var_code:mp_print(mp, "showvariable"); break;
22239 default: mp_print(mp, "showdependencies"); break;
22243 @ @<Cases of |do_statement|...@>=
22244 case show_command:mp_do_show_whatever(mp); break;
22246 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22247 if it's |show_code|, complicated structures are abbreviated, otherwise
22250 @<Declare action procedures for use by |do_statement|@>=
22251 void mp_do_show (MP mp) ;
22253 @ @c void mp_do_show (MP mp) {
22255 mp_get_x_next(mp); mp_scan_expression(mp);
22256 mp_print_nl(mp, ">> ");
22258 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22259 } while (mp->cur_cmd==comma);
22262 @ @<Declare action procedures for use by |do_statement|@>=
22263 void mp_disp_token (MP mp) ;
22265 @ @c void mp_disp_token (MP mp) {
22266 mp_print_nl(mp, "> ");
22268 if ( mp->cur_sym==0 ) {
22269 @<Show a numeric or string or capsule token@>;
22271 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22272 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22273 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22274 if ( mp->cur_cmd==defined_macro ) {
22275 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22276 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22281 @ @<Show a numeric or string or capsule token@>=
22283 if ( mp->cur_cmd==numeric_token ) {
22284 mp_print_scaled(mp, mp->cur_mod);
22285 } else if ( mp->cur_cmd==capsule_token ) {
22286 mp_print_capsule(mp,mp->cur_mod);
22288 mp_print_char(mp, '"');
22289 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22290 delete_str_ref(mp->cur_mod);
22294 @ The following cases of |print_cmd_mod| might arise in connection
22295 with |disp_token|, although they don't necessarily correspond to
22298 @<Cases of |print_cmd_...@>=
22299 case left_delimiter:
22300 case right_delimiter:
22301 if ( c==left_delimiter ) mp_print(mp, "left");
22302 else mp_print(mp, "right");
22303 mp_print(mp, " delimiter that matches ");
22307 if ( m==null ) mp_print(mp, "tag");
22308 else mp_print(mp, "variable");
22310 case defined_macro:
22311 mp_print(mp, "macro:");
22313 case secondary_primary_macro:
22314 case tertiary_secondary_macro:
22315 case expression_tertiary_macro:
22316 mp_print_cmd_mod(mp, macro_def,c);
22317 mp_print(mp, "'d macro:");
22318 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22321 mp_print(mp, "[repeat the loop]");
22323 case internal_quantity:
22324 mp_print(mp, mp->int_name[m]);
22327 @ @<Declare action procedures for use by |do_statement|@>=
22328 void mp_do_show_token (MP mp) ;
22330 @ @c void mp_do_show_token (MP mp) {
22332 get_t_next; mp_disp_token(mp);
22334 } while (mp->cur_cmd==comma);
22337 @ @<Declare action procedures for use by |do_statement|@>=
22338 void mp_do_show_stats (MP mp) ;
22340 @ @c void mp_do_show_stats (MP mp) {
22341 mp_print_nl(mp, "Memory usage ");
22342 @.Memory usage...@>
22343 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22344 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22345 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22346 mp_print_nl(mp, "String usage ");
22347 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22348 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22349 mp_print(mp, " (");
22350 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22351 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22352 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22356 @ Here's a recursive procedure that gives an abbreviated account
22357 of a variable, for use by |do_show_var|.
22359 @<Declare action procedures for use by |do_statement|@>=
22360 void mp_disp_var (MP mp,pointer p) ;
22362 @ @c void mp_disp_var (MP mp,pointer p) {
22363 pointer q; /* traverses attributes and subscripts */
22364 int n; /* amount of macro text to show */
22365 if ( type(p)==mp_structured ) {
22366 @<Descend the structure@>;
22367 } else if ( type(p)>=mp_unsuffixed_macro ) {
22368 @<Display a variable macro@>;
22369 } else if ( type(p)!=undefined ){
22370 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22371 mp_print_char(mp, '=');
22372 mp_print_exp(mp, p,0);
22376 @ @<Descend the structure@>=
22379 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22381 while ( name_type(q)==mp_subscr ) {
22382 mp_disp_var(mp, q); q=link(q);
22386 @ @<Display a variable macro@>=
22388 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22389 if ( type(p)>mp_unsuffixed_macro )
22390 mp_print(mp, "@@#"); /* |suffixed_macro| */
22391 mp_print(mp, "=macro:");
22392 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22393 else n=mp->max_print_line-mp->file_offset-15;
22394 mp_show_macro(mp, value(p),null,n);
22397 @ @<Declare action procedures for use by |do_statement|@>=
22398 void mp_do_show_var (MP mp) ;
22400 @ @c void mp_do_show_var (MP mp) {
22403 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22404 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22405 mp_disp_var(mp, mp->cur_mod); goto DONE;
22410 } while (mp->cur_cmd==comma);
22413 @ @<Declare action procedures for use by |do_statement|@>=
22414 void mp_do_show_dependencies (MP mp) ;
22416 @ @c void mp_do_show_dependencies (MP mp) {
22417 pointer p; /* link that runs through all dependencies */
22419 while ( p!=dep_head ) {
22420 if ( mp_interesting(mp, p) ) {
22421 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22422 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22423 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22424 mp_print_dependency(mp, dep_list(p),type(p));
22427 while ( info(p)!=null ) p=link(p);
22433 @ Finally we are ready for the procedure that governs all of the
22436 @<Declare action procedures for use by |do_statement|@>=
22437 void mp_do_show_whatever (MP mp) ;
22439 @ @c void mp_do_show_whatever (MP mp) {
22440 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22441 switch (mp->cur_mod) {
22442 case show_token_code:mp_do_show_token(mp); break;
22443 case show_stats_code:mp_do_show_stats(mp); break;
22444 case show_code:mp_do_show(mp); break;
22445 case show_var_code:mp_do_show_var(mp); break;
22446 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22447 } /* there are no other cases */
22448 if ( mp->internal[mp_showstopping]>0 ){
22451 if ( mp->interaction<mp_error_stop_mode ) {
22452 help0; decr(mp->error_count);
22454 help1("This isn't an error message; I'm just showing something.");
22456 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22457 else mp_put_get_error(mp);
22461 @ The `\&{addto}' command needs the following additional primitives:
22463 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22464 @d contour_code 1 /* command modifier for `\&{contour}' */
22465 @d also_code 2 /* command modifier for `\&{also}' */
22467 @ Pre and postscripts need two new identifiers:
22469 @d with_pre_script 11
22470 @d with_post_script 13
22473 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22474 @:double_path_}{\&{doublepath} primitive@>
22475 mp_primitive(mp, "contour",thing_to_add,contour_code);
22476 @:contour_}{\&{contour} primitive@>
22477 mp_primitive(mp, "also",thing_to_add,also_code);
22478 @:also_}{\&{also} primitive@>
22479 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22480 @:with_pen_}{\&{withpen} primitive@>
22481 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22482 @:dashed_}{\&{dashed} primitive@>
22483 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22484 @:with_pre_script_}{\&{withprescript} primitive@>
22485 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22486 @:with_post_script_}{\&{withpostscript} primitive@>
22487 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22488 @:with_color_}{\&{withoutcolor} primitive@>
22489 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22490 @:with_color_}{\&{withgreyscale} primitive@>
22491 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22492 @:with_color_}{\&{withcolor} primitive@>
22493 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22494 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22495 @:with_color_}{\&{withrgbcolor} primitive@>
22496 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22497 @:with_color_}{\&{withcmykcolor} primitive@>
22499 @ @<Cases of |print_cmd...@>=
22501 if ( m==contour_code ) mp_print(mp, "contour");
22502 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22503 else mp_print(mp, "also");
22506 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22507 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22508 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22509 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22510 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22511 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22512 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22513 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22514 else mp_print(mp, "dashed");
22517 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22518 updates the list of graphical objects starting at |p|. Each $\langle$with
22519 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22520 Other objects are ignored.
22522 @<Declare action procedures for use by |do_statement|@>=
22523 void mp_scan_with_list (MP mp,pointer p) ;
22525 @ @c void mp_scan_with_list (MP mp,pointer p) {
22526 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22527 pointer q; /* for list manipulation */
22528 int old_setting; /* saved |selector| setting */
22529 pointer k; /* for finding the near-last item in a list */
22530 str_number s; /* for string cleanup after combining */
22531 pointer cp,pp,dp,ap,bp;
22532 /* objects being updated; |void| initially; |null| to suppress update */
22533 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22535 while ( mp->cur_cmd==with_option ){
22538 if ( t!=mp_no_model ) mp_scan_expression(mp);
22539 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22540 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22541 ((t==mp_uninitialized_model)&&
22542 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22543 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22544 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22545 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22546 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22547 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22548 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22549 @<Complain about improper type@>;
22550 } else if ( t==mp_uninitialized_model ) {
22551 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22553 @<Transfer a color from the current expression to object~|cp|@>;
22554 mp_flush_cur_exp(mp, 0);
22555 } else if ( t==mp_rgb_model ) {
22556 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22558 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22559 mp_flush_cur_exp(mp, 0);
22560 } else if ( t==mp_cmyk_model ) {
22561 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22563 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22564 mp_flush_cur_exp(mp, 0);
22565 } else if ( t==mp_grey_model ) {
22566 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22568 @<Transfer a greyscale from the current expression to object~|cp|@>;
22569 mp_flush_cur_exp(mp, 0);
22570 } else if ( t==mp_no_model ) {
22571 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22573 @<Transfer a noncolor from the current expression to object~|cp|@>;
22574 } else if ( t==mp_pen_type ) {
22575 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22577 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22578 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22580 } else if ( t==with_pre_script ) {
22583 while ( (ap!=null)&&(! has_color(ap)) )
22586 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22588 old_setting=mp->selector;
22589 mp->selector=new_string;
22590 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22591 mp_print_str(mp, mp->cur_exp);
22592 append_char(13); /* a forced \ps\ newline */
22593 mp_print_str(mp, pre_script(ap));
22594 pre_script(ap)=mp_make_string(mp);
22596 mp->selector=old_setting;
22598 pre_script(ap)=mp->cur_exp;
22600 mp->cur_type=mp_vacuous;
22602 } else if ( t==with_post_script ) {
22606 while ( link(k)!=null ) {
22608 if ( has_color(k) ) bp=k;
22611 if ( post_script(bp)!=null ) {
22613 old_setting=mp->selector;
22614 mp->selector=new_string;
22615 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22616 mp_print_str(mp, post_script(bp));
22617 append_char(13); /* a forced \ps\ newline */
22618 mp_print_str(mp, mp->cur_exp);
22619 post_script(bp)=mp_make_string(mp);
22621 mp->selector=old_setting;
22623 post_script(bp)=mp->cur_exp;
22625 mp->cur_type=mp_vacuous;
22628 if ( dp==mp_void ) {
22629 @<Make |dp| a stroked node in list~|p|@>;
22632 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22633 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22634 dash_scale(dp)=unity;
22635 mp->cur_type=mp_vacuous;
22639 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22643 @ @<Complain about improper type@>=
22644 { exp_err("Improper type");
22646 help2("Next time say `withpen <known pen expression>';")
22647 ("I'll ignore the bad `with' clause and look for another.");
22648 if ( t==with_pre_script )
22649 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22650 else if ( t==with_post_script )
22651 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22652 else if ( t==mp_picture_type )
22653 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22654 else if ( t==mp_uninitialized_model )
22655 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22656 else if ( t==mp_rgb_model )
22657 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22658 else if ( t==mp_cmyk_model )
22659 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22660 else if ( t==mp_grey_model )
22661 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22662 mp_put_get_flush_error(mp, 0);
22665 @ Forcing the color to be between |0| and |unity| here guarantees that no
22666 picture will ever contain a color outside the legal range for \ps\ graphics.
22668 @<Transfer a color from the current expression to object~|cp|@>=
22669 { if ( mp->cur_type==mp_color_type )
22670 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22671 else if ( mp->cur_type==mp_cmykcolor_type )
22672 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22673 else if ( mp->cur_type==mp_known )
22674 @<Transfer a greyscale from the current expression to object~|cp|@>
22675 else if ( mp->cur_exp==false_code )
22676 @<Transfer a noncolor from the current expression to object~|cp|@>;
22679 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22680 { q=value(mp->cur_exp);
22685 red_val(cp)=value(red_part_loc(q));
22686 green_val(cp)=value(green_part_loc(q));
22687 blue_val(cp)=value(blue_part_loc(q));
22688 color_model(cp)=mp_rgb_model;
22689 if ( red_val(cp)<0 ) red_val(cp)=0;
22690 if ( green_val(cp)<0 ) green_val(cp)=0;
22691 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22692 if ( red_val(cp)>unity ) red_val(cp)=unity;
22693 if ( green_val(cp)>unity ) green_val(cp)=unity;
22694 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22697 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22698 { q=value(mp->cur_exp);
22699 cyan_val(cp)=value(cyan_part_loc(q));
22700 magenta_val(cp)=value(magenta_part_loc(q));
22701 yellow_val(cp)=value(yellow_part_loc(q));
22702 black_val(cp)=value(black_part_loc(q));
22703 color_model(cp)=mp_cmyk_model;
22704 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22705 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22706 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22707 if ( black_val(cp)<0 ) black_val(cp)=0;
22708 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22709 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22710 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22711 if ( black_val(cp)>unity ) black_val(cp)=unity;
22714 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22721 color_model(cp)=mp_grey_model;
22722 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22723 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22726 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22733 color_model(cp)=mp_no_model;
22736 @ @<Make |cp| a colored object in object list~|p|@>=
22738 while ( cp!=null ){
22739 if ( has_color(cp) ) break;
22744 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22746 while ( pp!=null ) {
22747 if ( has_pen(pp) ) break;
22752 @ @<Make |dp| a stroked node in list~|p|@>=
22754 while ( dp!=null ) {
22755 if ( type(dp)==mp_stroked_code ) break;
22760 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22761 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22762 if ( pp>mp_void ) {
22763 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22765 if ( dp>mp_void ) {
22766 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22770 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22772 while ( q!=null ) {
22773 if ( has_color(q) ) {
22774 red_val(q)=red_val(cp);
22775 green_val(q)=green_val(cp);
22776 blue_val(q)=blue_val(cp);
22777 black_val(q)=black_val(cp);
22778 color_model(q)=color_model(cp);
22784 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22786 while ( q!=null ) {
22787 if ( has_pen(q) ) {
22788 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22789 pen_p(q)=copy_pen(pen_p(pp));
22795 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22797 while ( q!=null ) {
22798 if ( type(q)==mp_stroked_code ) {
22799 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22800 dash_p(q)=dash_p(dp);
22801 dash_scale(q)=unity;
22802 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22808 @ One of the things we need to do when we've parsed an \&{addto} or
22809 similar command is find the header of a supposed \&{picture} variable, given
22810 a token list for that variable. Since the edge structure is about to be
22811 updated, we use |private_edges| to make sure that this is possible.
22813 @<Declare action procedures for use by |do_statement|@>=
22814 pointer mp_find_edges_var (MP mp, pointer t) ;
22816 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22818 pointer cur_edges; /* the return value */
22819 p=mp_find_variable(mp, t); cur_edges=null;
22821 mp_obliterated(mp, t); mp_put_get_error(mp);
22822 } else if ( type(p)!=mp_picture_type ) {
22823 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22824 @.Variable x is the wrong type@>
22825 mp_print(mp, " is the wrong type (");
22826 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22827 help2("I was looking for a \"known\" picture variable.")
22828 ("So I'll not change anything just now.");
22829 mp_put_get_error(mp);
22831 value(p)=mp_private_edges(mp, value(p));
22832 cur_edges=value(p);
22834 mp_flush_node_list(mp, t);
22838 @ @<Cases of |do_statement|...@>=
22839 case add_to_command: mp_do_add_to(mp); break;
22840 case bounds_command:mp_do_bounds(mp); break;
22843 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22844 @:clip_}{\&{clip} primitive@>
22845 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22846 @:set_bounds_}{\&{setbounds} primitive@>
22848 @ @<Cases of |print_cmd...@>=
22849 case bounds_command:
22850 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22851 else mp_print(mp, "setbounds");
22854 @ The following function parses the beginning of an \&{addto} or \&{clip}
22855 command: it expects a variable name followed by a token with |cur_cmd=sep|
22856 and then an expression. The function returns the token list for the variable
22857 and stores the command modifier for the separator token in the global variable
22858 |last_add_type|. We must be careful because this variable might get overwritten
22859 any time we call |get_x_next|.
22862 quarterword last_add_type;
22863 /* command modifier that identifies the last \&{addto} command */
22865 @ @<Declare action procedures for use by |do_statement|@>=
22866 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22868 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22869 pointer lhv; /* variable to add to left */
22870 quarterword add_type=0; /* value to be returned in |last_add_type| */
22872 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22873 if ( mp->cur_type!=mp_token_list ) {
22874 @<Abandon edges command because there's no variable@>;
22876 lhv=mp->cur_exp; add_type=mp->cur_mod;
22877 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22879 mp->last_add_type=add_type;
22883 @ @<Abandon edges command because there's no variable@>=
22884 { exp_err("Not a suitable variable");
22885 @.Not a suitable variable@>
22886 help4("At this point I needed to see the name of a picture variable.")
22887 ("(Or perhaps you have indeed presented me with one; I might")
22888 ("have missed it, if it wasn't followed by the proper token.)")
22889 ("So I'll not change anything just now.");
22890 mp_put_get_flush_error(mp, 0);
22893 @ Here is an example of how to use |start_draw_cmd|.
22895 @<Declare action procedures for use by |do_statement|@>=
22896 void mp_do_bounds (MP mp) ;
22898 @ @c void mp_do_bounds (MP mp) {
22899 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22900 pointer p; /* for list manipulation */
22901 integer m; /* initial value of |cur_mod| */
22903 lhv=mp_start_draw_cmd(mp, to_token);
22905 lhe=mp_find_edges_var(mp, lhv);
22907 mp_flush_cur_exp(mp, 0);
22908 } else if ( mp->cur_type!=mp_path_type ) {
22909 exp_err("Improper `clip'");
22910 @.Improper `addto'@>
22911 help2("This expression should have specified a known path.")
22912 ("So I'll not change anything just now.");
22913 mp_put_get_flush_error(mp, 0);
22914 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22915 @<Complain about a non-cycle@>;
22917 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22922 @ @<Complain about a non-cycle@>=
22923 { print_err("Not a cycle");
22925 help2("That contour should have ended with `..cycle' or `&cycle'.")
22926 ("So I'll not change anything just now."); mp_put_get_error(mp);
22929 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22930 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22931 link(p)=link(dummy_loc(lhe));
22932 link(dummy_loc(lhe))=p;
22933 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22934 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22935 type(p)=stop_type(m);
22936 link(obj_tail(lhe))=p;
22938 mp_init_bbox(mp, lhe);
22941 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22942 cases to deal with.
22944 @<Declare action procedures for use by |do_statement|@>=
22945 void mp_do_add_to (MP mp) ;
22947 @ @c void mp_do_add_to (MP mp) {
22948 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22949 pointer p; /* the graphical object or list for |scan_with_list| to update */
22950 pointer e; /* an edge structure to be merged */
22951 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22952 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22954 if ( add_type==also_code ) {
22955 @<Make sure the current expression is a suitable picture and set |e| and |p|
22958 @<Create a graphical object |p| based on |add_type| and the current
22961 mp_scan_with_list(mp, p);
22962 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22966 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22967 setting |e:=null| prevents anything from being added to |lhe|.
22969 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22972 if ( mp->cur_type!=mp_picture_type ) {
22973 exp_err("Improper `addto'");
22974 @.Improper `addto'@>
22975 help2("This expression should have specified a known picture.")
22976 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22978 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22979 p=link(dummy_loc(e));
22983 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22984 attempts to add to the edge structure.
22986 @<Create a graphical object |p| based on |add_type| and the current...@>=
22988 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22989 if ( mp->cur_type!=mp_path_type ) {
22990 exp_err("Improper `addto'");
22991 @.Improper `addto'@>
22992 help2("This expression should have specified a known path.")
22993 ("So I'll not change anything just now.");
22994 mp_put_get_flush_error(mp, 0);
22995 } else if ( add_type==contour_code ) {
22996 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22997 @<Complain about a non-cycle@>;
22999 p=mp_new_fill_node(mp, mp->cur_exp);
23000 mp->cur_type=mp_vacuous;
23003 p=mp_new_stroked_node(mp, mp->cur_exp);
23004 mp->cur_type=mp_vacuous;
23008 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23009 lhe=mp_find_edges_var(mp, lhv);
23011 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23012 if ( e!=null ) delete_edge_ref(e);
23013 } else if ( add_type==also_code ) {
23015 @<Merge |e| into |lhe| and delete |e|@>;
23019 } else if ( p!=null ) {
23020 link(obj_tail(lhe))=p;
23022 if ( add_type==double_path_code )
23023 if ( pen_p(p)==null )
23024 pen_p(p)=mp_get_pen_circle(mp, 0);
23027 @ @<Merge |e| into |lhe| and delete |e|@>=
23028 { if ( link(dummy_loc(e))!=null ) {
23029 link(obj_tail(lhe))=link(dummy_loc(e));
23030 obj_tail(lhe)=obj_tail(e);
23031 obj_tail(e)=dummy_loc(e);
23032 link(dummy_loc(e))=null;
23033 mp_flush_dash_list(mp, lhe);
23035 mp_toss_edges(mp, e);
23038 @ @<Cases of |do_statement|...@>=
23039 case ship_out_command: mp_do_ship_out(mp); break;
23041 @ @<Declare action procedures for use by |do_statement|@>=
23042 @<Declare the function called |tfm_check|@>
23043 @<Declare the \ps\ output procedures@>
23044 void mp_do_ship_out (MP mp) ;
23046 @ @c void mp_do_ship_out (MP mp) {
23047 integer c; /* the character code */
23048 mp_get_x_next(mp); mp_scan_expression(mp);
23049 if ( mp->cur_type!=mp_picture_type ) {
23050 @<Complain that it's not a known picture@>;
23052 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23053 if ( c<0 ) c=c+256;
23054 @<Store the width information for character code~|c|@>;
23055 mp_ship_out(mp, mp->cur_exp);
23056 mp_flush_cur_exp(mp, 0);
23060 @ @<Complain that it's not a known picture@>=
23062 exp_err("Not a known picture");
23063 help1("I can only output known pictures.");
23064 mp_put_get_flush_error(mp, 0);
23067 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23070 @<Cases of |do_statement|...@>=
23071 case every_job_command:
23072 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23076 halfword start_sym; /* a symbolic token to insert at beginning of job */
23081 @ Finally, we have only the ``message'' commands remaining.
23084 @d err_message_code 1
23086 @d filename_template_code 3
23087 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23088 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23090 mp->pool_ptr = mp->pool_ptr - g;
23092 mp_print_char(mp, '0');
23095 mp_print_int(mp, (A));
23100 mp_primitive(mp, "message",message_command,message_code);
23101 @:message_}{\&{message} primitive@>
23102 mp_primitive(mp, "errmessage",message_command,err_message_code);
23103 @:err_message_}{\&{errmessage} primitive@>
23104 mp_primitive(mp, "errhelp",message_command,err_help_code);
23105 @:err_help_}{\&{errhelp} primitive@>
23106 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23107 @:filename_template_}{\&{filenametemplate} primitive@>
23109 @ @<Cases of |print_cmd...@>=
23110 case message_command:
23111 if ( m<err_message_code ) mp_print(mp, "message");
23112 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23113 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23114 else mp_print(mp, "errhelp");
23117 @ @<Cases of |do_statement|...@>=
23118 case message_command: mp_do_message(mp); break;
23120 @ @<Declare action procedures for use by |do_statement|@>=
23121 @<Declare a procedure called |no_string_err|@>
23122 void mp_do_message (MP mp) ;
23125 @c void mp_do_message (MP mp) {
23126 int m; /* the type of message */
23127 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23128 if ( mp->cur_type!=mp_string_type )
23129 mp_no_string_err(mp, "A message should be a known string expression.");
23133 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23135 case err_message_code:
23136 @<Print string |cur_exp| as an error message@>;
23138 case err_help_code:
23139 @<Save string |cur_exp| as the |err_help|@>;
23141 case filename_template_code:
23142 @<Save the filename template@>;
23144 } /* there are no other cases */
23146 mp_flush_cur_exp(mp, 0);
23149 @ @<Declare a procedure called |no_string_err|@>=
23150 void mp_no_string_err (MP mp, const char *s) {
23151 exp_err("Not a string");
23154 mp_put_get_error(mp);
23157 @ The global variable |err_help| is zero when the user has most recently
23158 given an empty help string, or if none has ever been given.
23160 @<Save string |cur_exp| as the |err_help|@>=
23162 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23163 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23164 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23167 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23168 \&{errhelp}, we don't want to give a long help message each time. So we
23169 give a verbose explanation only once.
23172 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23174 @ @<Set init...@>=mp->long_help_seen=false;
23176 @ @<Print string |cur_exp| as an error message@>=
23178 print_err(""); mp_print_str(mp, mp->cur_exp);
23179 if ( mp->err_help!=0 ) {
23180 mp->use_err_help=true;
23181 } else if ( mp->long_help_seen ) {
23182 help1("(That was another `errmessage'.)") ;
23184 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23185 help4("This error message was generated by an `errmessage'")
23186 ("command, so I can\'t give any explicit help.")
23187 ("Pretend that you're Miss Marple: Examine all clues,")
23189 ("and deduce the truth by inspired guesses.");
23191 mp_put_get_error(mp); mp->use_err_help=false;
23194 @ @<Cases of |do_statement|...@>=
23195 case write_command: mp_do_write(mp); break;
23197 @ @<Declare action procedures for use by |do_statement|@>=
23198 void mp_do_write (MP mp) ;
23200 @ @c void mp_do_write (MP mp) {
23201 str_number t; /* the line of text to be written */
23202 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23203 int old_setting; /* for saving |selector| during output */
23205 mp_scan_expression(mp);
23206 if ( mp->cur_type!=mp_string_type ) {
23207 mp_no_string_err(mp, "The text to be written should be a known string expression");
23208 } else if ( mp->cur_cmd!=to_token ) {
23209 print_err("Missing `to' clause");
23210 help1("A write command should end with `to <filename>'");
23211 mp_put_get_error(mp);
23213 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23215 mp_scan_expression(mp);
23216 if ( mp->cur_type!=mp_string_type )
23217 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23219 @<Write |t| to the file named by |cur_exp|@>;
23223 mp_flush_cur_exp(mp, 0);
23226 @ @<Write |t| to the file named by |cur_exp|@>=
23228 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23229 |cur_exp| must be inserted@>;
23230 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23231 @<Record the end of file on |wr_file[n]|@>;
23233 old_setting=mp->selector;
23234 mp->selector=n+write_file;
23235 mp_print_str(mp, t); mp_print_ln(mp);
23236 mp->selector = old_setting;
23240 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23242 char *fn = str(mp->cur_exp);
23244 n0=mp->write_files;
23245 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23246 if ( n==0 ) { /* bottom reached */
23247 if ( n0==mp->write_files ) {
23248 if ( mp->write_files<mp->max_write_files ) {
23249 incr(mp->write_files);
23254 l = mp->max_write_files + (mp->max_write_files>>2);
23255 wr_file = xmalloc((l+1),sizeof(void *));
23256 wr_fname = xmalloc((l+1),sizeof(char *));
23257 for (k=0;k<=l;k++) {
23258 if (k<=mp->max_write_files) {
23259 wr_file[k]=mp->wr_file[k];
23260 wr_fname[k]=mp->wr_fname[k];
23266 xfree(mp->wr_file); xfree(mp->wr_fname);
23267 mp->max_write_files = l;
23268 mp->wr_file = wr_file;
23269 mp->wr_fname = wr_fname;
23273 mp_open_write_file(mp, fn ,n);
23276 if ( mp->wr_fname[n]==NULL ) n0=n;
23281 @ @<Record the end of file on |wr_file[n]|@>=
23282 { (mp->close_file)(mp,mp->wr_file[n]);
23283 xfree(mp->wr_fname[n]);
23284 if ( n==mp->write_files-1 ) mp->write_files=n;
23288 @* \[42] Writing font metric data.
23289 \TeX\ gets its knowledge about fonts from font metric files, also called
23290 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23291 but other programs know about them too. One of \MP's duties is to
23292 write \.{TFM} files so that the user's fonts can readily be
23293 applied to typesetting.
23294 @:TFM files}{\.{TFM} files@>
23295 @^font metric files@>
23297 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23298 Since the number of bytes is always a multiple of~4, we could
23299 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23300 byte interpretation. The format of \.{TFM} files was designed by
23301 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23302 @^Ramshaw, Lyle Harold@>
23303 of information in a compact but useful form.
23306 void * tfm_file; /* the font metric output goes here */
23307 char * metric_file_name; /* full name of the font metric file */
23309 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23310 integers that give the lengths of the various subsequent portions
23311 of the file. These twelve integers are, in order:
23312 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23313 |lf|&length of the entire file, in words;\cr
23314 |lh|&length of the header data, in words;\cr
23315 |bc|&smallest character code in the font;\cr
23316 |ec|&largest character code in the font;\cr
23317 |nw|&number of words in the width table;\cr
23318 |nh|&number of words in the height table;\cr
23319 |nd|&number of words in the depth table;\cr
23320 |ni|&number of words in the italic correction table;\cr
23321 |nl|&number of words in the lig/kern table;\cr
23322 |nk|&number of words in the kern table;\cr
23323 |ne|&number of words in the extensible character table;\cr
23324 |np|&number of font parameter words.\cr}}$$
23325 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23327 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23328 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23329 and as few as 0 characters (if |bc=ec+1|).
23331 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23332 16 or more bits, the most significant bytes appear first in the file.
23333 This is called BigEndian order.
23334 @^BigEndian order@>
23336 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23339 The most important data type used here is a |fix_word|, which is
23340 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23341 quantity, with the two's complement of the entire word used to represent
23342 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23343 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23344 the smallest is $-2048$. We will see below, however, that all but two of
23345 the |fix_word| values must lie between $-16$ and $+16$.
23347 @ The first data array is a block of header information, which contains
23348 general facts about the font. The header must contain at least two words,
23349 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23350 header information of use to other software routines might also be
23351 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23352 For example, 16 more words of header information are in use at the Xerox
23353 Palo Alto Research Center; the first ten specify the character coding
23354 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23355 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23356 last gives the ``face byte.''
23358 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23359 the \.{GF} output file. This helps ensure consistency between files,
23360 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23361 should match the check sums on actual fonts that are used. The actual
23362 relation between this check sum and the rest of the \.{TFM} file is not
23363 important; the check sum is simply an identification number with the
23364 property that incompatible fonts almost always have distinct check sums.
23367 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23368 font, in units of \TeX\ points. This number must be at least 1.0; it is
23369 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23370 font, i.e., a font that was designed to look best at a 10-point size,
23371 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23372 $\delta$ \.{pt}', the effect is to override the design size and replace it
23373 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23374 the font image by a factor of $\delta$ divided by the design size. {\sl
23375 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23376 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23377 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23378 since many fonts have a design size equal to one em. The other dimensions
23379 must be less than 16 design-size units in absolute value; thus,
23380 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23381 \.{TFM} file whose first byte might be something besides 0 or 255.
23384 @ Next comes the |char_info| array, which contains one |char_info_word|
23385 per character. Each word in this part of the file contains six fields
23386 packed into four bytes as follows.
23388 \yskip\hang first byte: |width_index| (8 bits)\par
23389 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23391 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23393 \hang fourth byte: |remainder| (8 bits)\par
23395 The actual width of a character is \\{width}|[width_index]|, in design-size
23396 units; this is a device for compressing information, since many characters
23397 have the same width. Since it is quite common for many characters
23398 to have the same height, depth, or italic correction, the \.{TFM} format
23399 imposes a limit of 16 different heights, 16 different depths, and
23400 64 different italic corrections.
23402 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23403 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23404 value of zero. The |width_index| should never be zero unless the
23405 character does not exist in the font, since a character is valid if and
23406 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23408 @ The |tag| field in a |char_info_word| has four values that explain how to
23409 interpret the |remainder| field.
23411 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23412 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23413 program starting at location |remainder| in the |lig_kern| array.\par
23414 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23415 characters of ascending sizes, and not the largest in the chain. The
23416 |remainder| field gives the character code of the next larger character.\par
23417 \hang|tag=3| (|ext_tag|) means that this character code represents an
23418 extensible character, i.e., a character that is built up of smaller pieces
23419 so that it can be made arbitrarily large. The pieces are specified in
23420 |exten[remainder]|.\par
23422 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23423 unless they are used in special circumstances in math formulas. For example,
23424 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23425 operation looks for both |list_tag| and |ext_tag|.
23427 @d no_tag 0 /* vanilla character */
23428 @d lig_tag 1 /* character has a ligature/kerning program */
23429 @d list_tag 2 /* character has a successor in a charlist */
23430 @d ext_tag 3 /* character is extensible */
23432 @ The |lig_kern| array contains instructions in a simple programming language
23433 that explains what to do for special letter pairs. Each word in this array is a
23434 |lig_kern_command| of four bytes.
23436 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23437 step if the byte is 128 or more, otherwise the next step is obtained by
23438 skipping this number of intervening steps.\par
23439 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23440 then perform the operation and stop, otherwise continue.''\par
23441 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23442 a kern step otherwise.\par
23443 \hang fourth byte: |remainder|.\par
23446 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23447 between the current character and |next_char|. This amount is
23448 often negative, so that the characters are brought closer together
23449 by kerning; but it might be positive.
23451 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23452 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23453 |remainder| is inserted between the current character and |next_char|;
23454 then the current character is deleted if $b=0$, and |next_char| is
23455 deleted if $c=0$; then we pass over $a$~characters to reach the next
23456 current character (which may have a ligature/kerning program of its own).
23458 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23459 the |next_char| byte is the so-called right boundary character of this font;
23460 the value of |next_char| need not lie between |bc| and~|ec|.
23461 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23462 there is a special ligature/kerning program for a left boundary character,
23463 beginning at location |256*op_byte+remainder|.
23464 The interpretation is that \TeX\ puts implicit boundary characters
23465 before and after each consecutive string of characters from the same font.
23466 These implicit characters do not appear in the output, but they can affect
23467 ligatures and kerning.
23469 If the very first instruction of a character's |lig_kern| program has
23470 |skip_byte>128|, the program actually begins in location
23471 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23472 arrays, because the first instruction must otherwise
23473 appear in a location |<=255|.
23475 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23477 $$\hbox{|256*op_byte+remainder<nl|.}$$
23478 If such an instruction is encountered during
23479 normal program execution, it denotes an unconditional halt; no ligature
23480 command is performed.
23483 /* value indicating `\.{STOP}' in a lig/kern program */
23484 @d kern_flag (128) /* op code for a kern step */
23485 @d skip_byte(A) mp->lig_kern[(A)].b0
23486 @d next_char(A) mp->lig_kern[(A)].b1
23487 @d op_byte(A) mp->lig_kern[(A)].b2
23488 @d rem_byte(A) mp->lig_kern[(A)].b3
23490 @ Extensible characters are specified by an |extensible_recipe|, which
23491 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23492 order). These bytes are the character codes of individual pieces used to
23493 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23494 present in the built-up result. For example, an extensible vertical line is
23495 like an extensible bracket, except that the top and bottom pieces are missing.
23497 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23498 if the piece isn't present. Then the extensible characters have the form
23499 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23500 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23501 The width of the extensible character is the width of $R$; and the
23502 height-plus-depth is the sum of the individual height-plus-depths of the
23503 components used, since the pieces are butted together in a vertical list.
23505 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23506 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23507 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23508 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23510 @ The final portion of a \.{TFM} file is the |param| array, which is another
23511 sequence of |fix_word| values.
23513 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23514 to help position accents. For example, |slant=.25| means that when you go
23515 up one unit, you also go .25 units to the right. The |slant| is a pure
23516 number; it is the only |fix_word| other than the design size itself that is
23517 not scaled by the design size.
23520 \hang|param[2]=space| is the normal spacing between words in text.
23521 Note that character 040 in the font need not have anything to do with
23524 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23526 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23528 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23529 the height of letters for which accents don't have to be raised or lowered.
23531 \hang|param[6]=quad| is the size of one em in the font.
23533 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23537 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23542 @d space_stretch_code 3
23543 @d space_shrink_code 4
23546 @d extra_space_code 7
23548 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23549 information, and it does this all at once at the end of a job.
23550 In order to prepare for such frenetic activity, it squirrels away the
23551 necessary facts in various arrays as information becomes available.
23553 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23554 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23555 |tfm_ital_corr|. Other information about a character (e.g., about
23556 its ligatures or successors) is accessible via the |char_tag| and
23557 |char_remainder| arrays. Other information about the font as a whole
23558 is kept in additional arrays called |header_byte|, |lig_kern|,
23559 |kern|, |exten|, and |param|.
23561 @d max_tfm_int 32510
23562 @d undefined_label max_tfm_int /* an undefined local label */
23565 #define TFM_ITEMS 257
23567 eight_bits ec; /* smallest and largest character codes shipped out */
23568 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23569 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23570 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23571 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23572 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23573 int char_tag[TFM_ITEMS]; /* |remainder| category */
23574 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23575 char *header_byte; /* bytes of the \.{TFM} header */
23576 int header_last; /* last initialized \.{TFM} header byte */
23577 int header_size; /* size of the \.{TFM} header */
23578 four_quarters *lig_kern; /* the ligature/kern table */
23579 short nl; /* the number of ligature/kern steps so far */
23580 scaled *kern; /* distinct kerning amounts */
23581 short nk; /* the number of distinct kerns so far */
23582 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23583 short ne; /* the number of extensible characters so far */
23584 scaled *param; /* \&{fontinfo} parameters */
23585 short np; /* the largest \&{fontinfo} parameter specified so far */
23586 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23587 short skip_table[TFM_ITEMS]; /* local label status */
23588 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23589 integer bchar; /* right boundary character */
23590 short bch_label; /* left boundary starting location */
23591 short ll;short lll; /* registers used for lig/kern processing */
23592 short label_loc[257]; /* lig/kern starting addresses */
23593 eight_bits label_char[257]; /* characters for |label_loc| */
23594 short label_ptr; /* highest position occupied in |label_loc| */
23596 @ @<Allocate or initialize ...@>=
23597 mp->header_last = 0; mp->header_size = 128; /* just for init */
23598 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23599 mp->lig_kern = NULL; /* allocated when needed */
23600 mp->kern = NULL; /* allocated when needed */
23601 mp->param = NULL; /* allocated when needed */
23603 @ @<Dealloc variables@>=
23604 xfree(mp->header_byte);
23605 xfree(mp->lig_kern);
23610 for (k=0;k<= 255;k++ ) {
23611 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23612 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23613 mp->skip_table[k]=undefined_label;
23615 memset(mp->header_byte,0,mp->header_size);
23616 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23617 mp->internal[mp_boundary_char]=-unity;
23618 mp->bch_label=undefined_label;
23619 mp->label_loc[0]=-1; mp->label_ptr=0;
23621 @ @<Declarations@>=
23622 scaled mp_tfm_check (MP mp,small_number m) ;
23624 @ @<Declare the function called |tfm_check|@>=
23625 scaled mp_tfm_check (MP mp,small_number m) {
23626 if ( abs(mp->internal[m])>=fraction_half ) {
23627 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23628 @.Enormous charwd...@>
23629 @.Enormous chardp...@>
23630 @.Enormous charht...@>
23631 @.Enormous charic...@>
23632 @.Enormous designsize...@>
23633 mp_print(mp, " has been reduced");
23634 help1("Font metric dimensions must be less than 2048pt.");
23635 mp_put_get_error(mp);
23636 if ( mp->internal[m]>0 ) return (fraction_half-1);
23637 else return (1-fraction_half);
23639 return mp->internal[m];
23643 @ @<Store the width information for character code~|c|@>=
23644 if ( c<mp->bc ) mp->bc=c;
23645 if ( c>mp->ec ) mp->ec=c;
23646 mp->char_exists[c]=true;
23647 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23648 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23649 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23650 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23652 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23654 @<Cases of |do_statement|...@>=
23655 case tfm_command: mp_do_tfm_command(mp); break;
23657 @ @d char_list_code 0
23658 @d lig_table_code 1
23659 @d extensible_code 2
23660 @d header_byte_code 3
23661 @d font_dimen_code 4
23664 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23665 @:char_list_}{\&{charlist} primitive@>
23666 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23667 @:lig_table_}{\&{ligtable} primitive@>
23668 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23669 @:extensible_}{\&{extensible} primitive@>
23670 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23671 @:header_byte_}{\&{headerbyte} primitive@>
23672 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23673 @:font_dimen_}{\&{fontdimen} primitive@>
23675 @ @<Cases of |print_cmd...@>=
23678 case char_list_code:mp_print(mp, "charlist"); break;
23679 case lig_table_code:mp_print(mp, "ligtable"); break;
23680 case extensible_code:mp_print(mp, "extensible"); break;
23681 case header_byte_code:mp_print(mp, "headerbyte"); break;
23682 default: mp_print(mp, "fontdimen"); break;
23686 @ @<Declare action procedures for use by |do_statement|@>=
23687 eight_bits mp_get_code (MP mp) ;
23689 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23690 integer c; /* the code value found */
23691 mp_get_x_next(mp); mp_scan_expression(mp);
23692 if ( mp->cur_type==mp_known ) {
23693 c=mp_round_unscaled(mp, mp->cur_exp);
23694 if ( c>=0 ) if ( c<256 ) return c;
23695 } else if ( mp->cur_type==mp_string_type ) {
23696 if ( length(mp->cur_exp)==1 ) {
23697 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23701 exp_err("Invalid code has been replaced by 0");
23702 @.Invalid code...@>
23703 help2("I was looking for a number between 0 and 255, or for a")
23704 ("string of length 1. Didn't find it; will use 0 instead.");
23705 mp_put_get_flush_error(mp, 0); c=0;
23709 @ @<Declare action procedures for use by |do_statement|@>=
23710 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23712 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23713 if ( mp->char_tag[c]==no_tag ) {
23714 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23716 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23717 mp->label_char[mp->label_ptr]=c;
23720 @<Complain about a character tag conflict@>;
23724 @ @<Complain about a character tag conflict@>=
23726 print_err("Character ");
23727 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23728 else if ( c==256 ) mp_print(mp, "||");
23729 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23730 mp_print(mp, " is already ");
23731 @.Character c is already...@>
23732 switch (mp->char_tag[c]) {
23733 case lig_tag: mp_print(mp, "in a ligtable"); break;
23734 case list_tag: mp_print(mp, "in a charlist"); break;
23735 case ext_tag: mp_print(mp, "extensible"); break;
23736 } /* there are no other cases */
23737 help2("It's not legal to label a character more than once.")
23738 ("So I'll not change anything just now.");
23739 mp_put_get_error(mp);
23742 @ @<Declare action procedures for use by |do_statement|@>=
23743 void mp_do_tfm_command (MP mp) ;
23745 @ @c void mp_do_tfm_command (MP mp) {
23746 int c,cc; /* character codes */
23747 int k; /* index into the |kern| array */
23748 int j; /* index into |header_byte| or |param| */
23749 switch (mp->cur_mod) {
23750 case char_list_code:
23752 /* we will store a list of character successors */
23753 while ( mp->cur_cmd==colon ) {
23754 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23757 case lig_table_code:
23758 if (mp->lig_kern==NULL)
23759 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23760 if (mp->kern==NULL)
23761 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23762 @<Store a list of ligature/kern steps@>;
23764 case extensible_code:
23765 @<Define an extensible recipe@>;
23767 case header_byte_code:
23768 case font_dimen_code:
23769 c=mp->cur_mod; mp_get_x_next(mp);
23770 mp_scan_expression(mp);
23771 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23772 exp_err("Improper location");
23773 @.Improper location@>
23774 help2("I was looking for a known, positive number.")
23775 ("For safety's sake I'll ignore the present command.");
23776 mp_put_get_error(mp);
23778 j=mp_round_unscaled(mp, mp->cur_exp);
23779 if ( mp->cur_cmd!=colon ) {
23780 mp_missing_err(mp, ":");
23782 help1("A colon should follow a headerbyte or fontinfo location.");
23785 if ( c==header_byte_code ) {
23786 @<Store a list of header bytes@>;
23788 if (mp->param==NULL)
23789 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23790 @<Store a list of font dimensions@>;
23794 } /* there are no other cases */
23797 @ @<Store a list of ligature/kern steps@>=
23799 mp->lk_started=false;
23802 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23803 @<Process a |skip_to| command and |goto done|@>;
23804 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23805 else { mp_back_input(mp); c=mp_get_code(mp); };
23806 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23807 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23809 if ( mp->cur_cmd==lig_kern_token ) {
23810 @<Compile a ligature/kern command@>;
23812 print_err("Illegal ligtable step");
23813 @.Illegal ligtable step@>
23814 help1("I was looking for `=:' or `kern' here.");
23815 mp_back_error(mp); next_char(mp->nl)=qi(0);
23816 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23817 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23819 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23821 if ( mp->cur_cmd==comma ) goto CONTINUE;
23822 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23827 mp_primitive(mp, "=:",lig_kern_token,0);
23828 @:=:_}{\.{=:} primitive@>
23829 mp_primitive(mp, "=:|",lig_kern_token,1);
23830 @:=:/_}{\.{=:\char'174} primitive@>
23831 mp_primitive(mp, "=:|>",lig_kern_token,5);
23832 @:=:/>_}{\.{=:\char'174>} primitive@>
23833 mp_primitive(mp, "|=:",lig_kern_token,2);
23834 @:=:/_}{\.{\char'174=:} primitive@>
23835 mp_primitive(mp, "|=:>",lig_kern_token,6);
23836 @:=:/>_}{\.{\char'174=:>} primitive@>
23837 mp_primitive(mp, "|=:|",lig_kern_token,3);
23838 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23839 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23840 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23841 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23842 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23843 mp_primitive(mp, "kern",lig_kern_token,128);
23844 @:kern_}{\&{kern} primitive@>
23846 @ @<Cases of |print_cmd...@>=
23847 case lig_kern_token:
23849 case 0:mp_print(mp, "=:"); break;
23850 case 1:mp_print(mp, "=:|"); break;
23851 case 2:mp_print(mp, "|=:"); break;
23852 case 3:mp_print(mp, "|=:|"); break;
23853 case 5:mp_print(mp, "=:|>"); break;
23854 case 6:mp_print(mp, "|=:>"); break;
23855 case 7:mp_print(mp, "|=:|>"); break;
23856 case 11:mp_print(mp, "|=:|>>"); break;
23857 default: mp_print(mp, "kern"); break;
23861 @ Local labels are implemented by maintaining the |skip_table| array,
23862 where |skip_table[c]| is either |undefined_label| or the address of the
23863 most recent lig/kern instruction that skips to local label~|c|. In the
23864 latter case, the |skip_byte| in that instruction will (temporarily)
23865 be zero if there were no prior skips to this label, or it will be the
23866 distance to the prior skip.
23868 We may need to cancel skips that span more than 127 lig/kern steps.
23870 @d cancel_skips(A) mp->ll=(A);
23872 mp->lll=qo(skip_byte(mp->ll));
23873 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23874 } while (mp->lll!=0)
23875 @d skip_error(A) { print_err("Too far to skip");
23876 @.Too far to skip@>
23877 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23878 mp_error(mp); cancel_skips((A));
23881 @<Process a |skip_to| command and |goto done|@>=
23884 if ( mp->nl-mp->skip_table[c]>128 ) {
23885 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23887 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23888 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23889 mp->skip_table[c]=mp->nl-1; goto DONE;
23892 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23894 if ( mp->cur_cmd==colon ) {
23895 if ( c==256 ) mp->bch_label=mp->nl;
23896 else mp_set_tag(mp, c,lig_tag,mp->nl);
23897 } else if ( mp->skip_table[c]<undefined_label ) {
23898 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23900 mp->lll=qo(skip_byte(mp->ll));
23901 if ( mp->nl-mp->ll>128 ) {
23902 skip_error(mp->ll); goto CONTINUE;
23904 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23905 } while (mp->lll!=0);
23910 @ @<Compile a ligature/kern...@>=
23912 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23913 if ( mp->cur_mod<128 ) { /* ligature op */
23914 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23916 mp_get_x_next(mp); mp_scan_expression(mp);
23917 if ( mp->cur_type!=mp_known ) {
23918 exp_err("Improper kern");
23920 help2("The amount of kern should be a known numeric value.")
23921 ("I'm zeroing this one. Proceed, with fingers crossed.");
23922 mp_put_get_flush_error(mp, 0);
23924 mp->kern[mp->nk]=mp->cur_exp;
23926 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23928 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23931 op_byte(mp->nl)=kern_flag+(k / 256);
23932 rem_byte(mp->nl)=qi((k % 256));
23934 mp->lk_started=true;
23937 @ @d missing_extensible_punctuation(A)
23938 { mp_missing_err(mp, (A));
23939 @.Missing `\char`\#'@>
23940 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23943 @<Define an extensible recipe@>=
23945 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23946 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23947 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23948 ext_top(mp->ne)=qi(mp_get_code(mp));
23949 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23950 ext_mid(mp->ne)=qi(mp_get_code(mp));
23951 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23952 ext_bot(mp->ne)=qi(mp_get_code(mp));
23953 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23954 ext_rep(mp->ne)=qi(mp_get_code(mp));
23958 @ The header could contain ASCII zeroes, so can't use |strdup|.
23960 @<Store a list of header bytes@>=
23962 if ( j>=mp->header_size ) {
23963 int l = mp->header_size + (mp->header_size >> 2);
23964 char *t = xmalloc(l,sizeof(char));
23966 memcpy(t,mp->header_byte,mp->header_size);
23967 xfree (mp->header_byte);
23968 mp->header_byte = t;
23969 mp->header_size = l;
23971 mp->header_byte[j]=mp_get_code(mp);
23972 incr(j); incr(mp->header_last);
23973 } while (mp->cur_cmd==comma)
23975 @ @<Store a list of font dimensions@>=
23977 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23978 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23979 mp_get_x_next(mp); mp_scan_expression(mp);
23980 if ( mp->cur_type!=mp_known ){
23981 exp_err("Improper font parameter");
23982 @.Improper font parameter@>
23983 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23984 mp_put_get_flush_error(mp, 0);
23986 mp->param[j]=mp->cur_exp; incr(j);
23987 } while (mp->cur_cmd==comma)
23989 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23990 All that remains is to output it in the correct format.
23992 An interesting problem needs to be solved in this connection, because
23993 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23994 and 64~italic corrections. If the data has more distinct values than
23995 this, we want to meet the necessary restrictions by perturbing the
23996 given values as little as possible.
23998 \MP\ solves this problem in two steps. First the values of a given
23999 kind (widths, heights, depths, or italic corrections) are sorted;
24000 then the list of sorted values is perturbed, if necessary.
24002 The sorting operation is facilitated by having a special node of
24003 essentially infinite |value| at the end of the current list.
24005 @<Initialize table entries...@>=
24006 value(inf_val)=fraction_four;
24008 @ Straight linear insertion is good enough for sorting, since the lists
24009 are usually not terribly long. As we work on the data, the current list
24010 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
24011 list will be in increasing order of their |value| fields.
24013 Given such a list, the |sort_in| function takes a value and returns a pointer
24014 to where that value can be found in the list. The value is inserted in
24015 the proper place, if necessary.
24017 At the time we need to do these operations, most of \MP's work has been
24018 completed, so we will have plenty of memory to play with. The value nodes
24019 that are allocated for sorting will never be returned to free storage.
24021 @d clear_the_list link(temp_head)=inf_val
24023 @c pointer mp_sort_in (MP mp,scaled v) {
24024 pointer p,q,r; /* list manipulation registers */
24028 if ( v<=value(q) ) break;
24031 if ( v<value(q) ) {
24032 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24037 @ Now we come to the interesting part, where we reduce the list if necessary
24038 until it has the required size. The |min_cover| routine is basic to this
24039 process; it computes the minimum number~|m| such that the values of the
24040 current sorted list can be covered by |m|~intervals of width~|d|. It
24041 also sets the global value |perturbation| to the smallest value $d'>d$
24042 such that the covering found by this algorithm would be different.
24044 In particular, |min_cover(0)| returns the number of distinct values in the
24045 current list and sets |perturbation| to the minimum distance between
24048 @c integer mp_min_cover (MP mp,scaled d) {
24049 pointer p; /* runs through the current list */
24050 scaled l; /* the least element covered by the current interval */
24051 integer m; /* lower bound on the size of the minimum cover */
24052 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24053 while ( p!=inf_val ){
24054 incr(m); l=value(p);
24055 do { p=link(p); } while (value(p)<=l+d);
24056 if ( value(p)-l<mp->perturbation )
24057 mp->perturbation=value(p)-l;
24063 scaled perturbation; /* quantity related to \.{TFM} rounding */
24064 integer excess; /* the list is this much too long */
24066 @ The smallest |d| such that a given list can be covered with |m| intervals
24067 is determined by the |threshold| routine, which is sort of an inverse
24068 to |min_cover|. The idea is to increase the interval size rapidly until
24069 finding the range, then to go sequentially until the exact borderline has
24072 @c scaled mp_threshold (MP mp,integer m) {
24073 scaled d; /* lower bound on the smallest interval size */
24074 mp->excess=mp_min_cover(mp, 0)-m;
24075 if ( mp->excess<=0 ) {
24079 d=mp->perturbation;
24080 } while (mp_min_cover(mp, d+d)>m);
24081 while ( mp_min_cover(mp, d)>m )
24082 d=mp->perturbation;
24087 @ The |skimp| procedure reduces the current list to at most |m| entries,
24088 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24089 is the |k|th distinct value on the resulting list, and it sets
24090 |perturbation| to the maximum amount by which a |value| field has
24091 been changed. The size of the resulting list is returned as the
24094 @c integer mp_skimp (MP mp,integer m) {
24095 scaled d; /* the size of intervals being coalesced */
24096 pointer p,q,r; /* list manipulation registers */
24097 scaled l; /* the least value in the current interval */
24098 scaled v; /* a compromise value */
24099 d=mp_threshold(mp, m); mp->perturbation=0;
24100 q=temp_head; m=0; p=link(temp_head);
24101 while ( p!=inf_val ) {
24102 incr(m); l=value(p); info(p)=m;
24103 if ( value(link(p))<=l+d ) {
24104 @<Replace an interval of values by its midpoint@>;
24111 @ @<Replace an interval...@>=
24114 p=link(p); info(p)=m;
24115 decr(mp->excess); if ( mp->excess==0 ) d=0;
24116 } while (value(link(p))<=l+d);
24117 v=l+halfp(value(p)-l);
24118 if ( value(p)-v>mp->perturbation )
24119 mp->perturbation=value(p)-v;
24122 r=link(r); value(r)=v;
24124 link(q)=p; /* remove duplicate values from the current list */
24127 @ A warning message is issued whenever something is perturbed by
24128 more than 1/16\thinspace pt.
24130 @c void mp_tfm_warning (MP mp,small_number m) {
24131 mp_print_nl(mp, "(some ");
24132 mp_print(mp, mp->int_name[m]);
24133 @.some charwds...@>
24134 @.some chardps...@>
24135 @.some charhts...@>
24136 @.some charics...@>
24137 mp_print(mp, " values had to be adjusted by as much as ");
24138 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24141 @ Here's an example of how we use these routines.
24142 The width data needs to be perturbed only if there are 256 distinct
24143 widths, but \MP\ must check for this case even though it is
24146 An integer variable |k| will be defined when we use this code.
24147 The |dimen_head| array will contain pointers to the sorted
24148 lists of dimensions.
24150 @<Massage the \.{TFM} widths@>=
24152 for (k=mp->bc;k<=mp->ec;k++) {
24153 if ( mp->char_exists[k] )
24154 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24156 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24157 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24160 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24162 @ Heights, depths, and italic corrections are different from widths
24163 not only because their list length is more severely restricted, but
24164 also because zero values do not need to be put into the lists.
24166 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24168 for (k=mp->bc;k<=mp->ec;k++) {
24169 if ( mp->char_exists[k] ) {
24170 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24171 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24174 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24175 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24177 for (k=mp->bc;k<=mp->ec;k++) {
24178 if ( mp->char_exists[k] ) {
24179 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24180 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24183 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24184 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24186 for (k=mp->bc;k<=mp->ec;k++) {
24187 if ( mp->char_exists[k] ) {
24188 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24189 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24192 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24193 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24195 @ @<Initialize table entries...@>=
24196 value(zero_val)=0; info(zero_val)=0;
24198 @ Bytes 5--8 of the header are set to the design size, unless the user has
24199 some crazy reason for specifying them differently.
24202 Error messages are not allowed at the time this procedure is called,
24203 so a warning is printed instead.
24205 The value of |max_tfm_dimen| is calculated so that
24206 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24207 < \\{three\_bytes}.$$
24209 @d three_bytes 0100000000 /* $2^{24}$ */
24212 void mp_fix_design_size (MP mp) {
24213 scaled d; /* the design size */
24214 d=mp->internal[mp_design_size];
24215 if ( (d<unity)||(d>=fraction_half) ) {
24217 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24218 @.illegal design size...@>
24219 d=040000000; mp->internal[mp_design_size]=d;
24221 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24222 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24223 mp->header_byte[4]=d / 04000000;
24224 mp->header_byte[5]=(d / 4096) % 256;
24225 mp->header_byte[6]=(d / 16) % 256;
24226 mp->header_byte[7]=(d % 16)*16;
24228 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-1-mp->internal[mp_design_size] / 010000000;
24229 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24232 @ The |dimen_out| procedure computes a |fix_word| relative to the
24233 design size. If the data was out of range, it is corrected and the
24234 global variable |tfm_changed| is increased by~one.
24236 @c integer mp_dimen_out (MP mp,scaled x) {
24237 if ( abs(x)>mp->max_tfm_dimen ) {
24238 incr(mp->tfm_changed);
24239 if ( x>0 ) x=mp->max_tfm_dimen; else x=-mp->max_tfm_dimen;
24241 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24246 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24247 integer tfm_changed; /* the number of data entries that were out of bounds */
24249 @ If the user has not specified any of the first four header bytes,
24250 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24251 from the |tfm_width| data relative to the design size.
24254 @c void mp_fix_check_sum (MP mp) {
24255 eight_bits k; /* runs through character codes */
24256 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24257 integer x; /* hash value used in check sum computation */
24258 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24259 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24260 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24261 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24262 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24267 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24268 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24269 for (k=mp->bc;k<=mp->ec;k++) {
24270 if ( mp->char_exists[k] ) {
24271 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24272 B1=(B1+B1+x) % 255;
24273 B2=(B2+B2+x) % 253;
24274 B3=(B3+B3+x) % 251;
24275 B4=(B4+B4+x) % 247;
24279 @ Finally we're ready to actually write the \.{TFM} information.
24280 Here are some utility routines for this purpose.
24282 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24283 unsigned char s=(A);
24284 (mp->write_binary_file)(mp,mp->tfm_file,(void *)&s,1);
24287 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24288 tfm_out(x / 256); tfm_out(x % 256);
24290 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24291 if ( x>=0 ) tfm_out(x / three_bytes);
24293 x=x+010000000000; /* use two's complement for negative values */
24295 tfm_out((x / three_bytes) + 128);
24297 x=x % three_bytes; tfm_out(x / unity);
24298 x=x % unity; tfm_out(x / 0400);
24301 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24302 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24303 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24306 @ @<Finish the \.{TFM} file@>=
24307 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24308 mp_pack_job_name(mp, ".tfm");
24309 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24310 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24311 mp->metric_file_name=xstrdup(mp->name_of_file);
24312 @<Output the subfile sizes and header bytes@>;
24313 @<Output the character information bytes, then
24314 output the dimensions themselves@>;
24315 @<Output the ligature/kern program@>;
24316 @<Output the extensible character recipes and the font metric parameters@>;
24317 if ( mp->internal[mp_tracing_stats]>0 )
24318 @<Log the subfile sizes of the \.{TFM} file@>;
24319 mp_print_nl(mp, "Font metrics written on ");
24320 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24321 @.Font metrics written...@>
24322 (mp->close_file)(mp,mp->tfm_file)
24324 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24327 @<Output the subfile sizes and header bytes@>=
24329 LH=(k+3) / 4; /* this is the number of header words */
24330 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24331 @<Compute the ligature/kern program offset and implant the
24332 left boundary label@>;
24333 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24334 +lk_offset+mp->nk+mp->ne+mp->np);
24335 /* this is the total number of file words that will be output */
24336 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24337 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24338 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24339 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24340 mp_tfm_two(mp, mp->np);
24341 for (k=0;k< 4*LH;k++) {
24342 tfm_out(mp->header_byte[k]);
24345 @ @<Output the character information bytes...@>=
24346 for (k=mp->bc;k<=mp->ec;k++) {
24347 if ( ! mp->char_exists[k] ) {
24348 mp_tfm_four(mp, 0);
24350 tfm_out(info(mp->tfm_width[k])); /* the width index */
24351 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24352 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24353 tfm_out(mp->char_remainder[k]);
24357 for (k=1;k<=4;k++) {
24358 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24359 while ( p!=inf_val ) {
24360 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24365 @ We need to output special instructions at the beginning of the
24366 |lig_kern| array in order to specify the right boundary character
24367 and/or to handle starting addresses that exceed 255. The |label_loc|
24368 and |label_char| arrays have been set up to record all the
24369 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24370 \le|label_loc|[|label_ptr]|$.
24372 @<Compute the ligature/kern program offset...@>=
24373 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24374 if ((mp->bchar<0)||(mp->bchar>255))
24375 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24376 else { mp->lk_started=true; lk_offset=1; };
24377 @<Find the minimum |lk_offset| and adjust all remainders@>;
24378 if ( mp->bch_label<undefined_label )
24379 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24380 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24381 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24382 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24385 @ @<Find the minimum |lk_offset|...@>=
24386 k=mp->label_ptr; /* pointer to the largest unallocated label */
24387 if ( mp->label_loc[k]+lk_offset>255 ) {
24388 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24390 mp->char_remainder[mp->label_char[k]]=lk_offset;
24391 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24392 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24394 incr(lk_offset); decr(k);
24395 } while (! (lk_offset+mp->label_loc[k]<256));
24396 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24398 if ( lk_offset>0 ) {
24400 mp->char_remainder[mp->label_char[k]]
24401 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24406 @ @<Output the ligature/kern program@>=
24407 for (k=0;k<= 255;k++ ) {
24408 if ( mp->skip_table[k]<undefined_label ) {
24409 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24410 @.local label l:: was missing@>
24411 cancel_skips(mp->skip_table[k]);
24414 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24415 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24417 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24418 mp->ll=mp->label_loc[mp->label_ptr];
24419 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24420 else { tfm_out(255); tfm_out(mp->bchar); };
24421 mp_tfm_two(mp, mp->ll+lk_offset);
24423 decr(mp->label_ptr);
24424 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24427 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24428 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24430 @ @<Output the extensible character recipes...@>=
24431 for (k=0;k<=mp->ne-1;k++)
24432 mp_tfm_qqqq(mp, mp->exten[k]);
24433 for (k=1;k<=mp->np;k++) {
24435 if ( abs(mp->param[1])<fraction_half ) {
24436 mp_tfm_four(mp, mp->param[1]*16);
24438 incr(mp->tfm_changed);
24439 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24440 else mp_tfm_four(mp, -el_gordo);
24443 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24446 if ( mp->tfm_changed>0 ) {
24447 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24448 @.a font metric dimension...@>
24450 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24451 @.font metric dimensions...@>
24452 mp_print(mp, " font metric dimensions");
24454 mp_print(mp, " had to be decreased)");
24457 @ @<Log the subfile sizes of the \.{TFM} file@>=
24461 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24462 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24463 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24467 @* \[43] Reading font metric data.
24469 \MP\ isn't a typesetting program but it does need to find the bounding box
24470 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24471 well as write them.
24476 @ All the width, height, and depth information is stored in an array called
24477 |font_info|. This array is allocated sequentially and each font is stored
24478 as a series of |char_info| words followed by the width, height, and depth
24479 tables. Since |font_name| entries are permanent, their |str_ref| values are
24480 set to |max_str_ref|.
24483 typedef unsigned int font_number; /* |0..font_max| */
24485 @ The |font_info| array is indexed via a group directory arrays.
24486 For example, the |char_info| data for character~|c| in font~|f| will be
24487 in |font_info[char_base[f]+c].qqqq|.
24490 font_number font_max; /* maximum font number for included text fonts */
24491 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24492 memory_word *font_info; /* height, width, and depth data */
24493 char **font_enc_name; /* encoding names, if any */
24494 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24495 int next_fmem; /* next unused entry in |font_info| */
24496 font_number last_fnum; /* last font number used so far */
24497 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24498 char **font_name; /* name as specified in the \&{infont} command */
24499 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24500 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24501 eight_bits *font_bc;
24502 eight_bits *font_ec; /* first and last character code */
24503 int *char_base; /* base address for |char_info| */
24504 int *width_base; /* index for zeroth character width */
24505 int *height_base; /* index for zeroth character height */
24506 int *depth_base; /* index for zeroth character depth */
24507 pointer *font_sizes;
24509 @ @<Allocate or initialize ...@>=
24510 mp->font_mem_size = 10000;
24511 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24512 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24513 mp->font_enc_name = NULL;
24514 mp->font_ps_name_fixed = NULL;
24515 mp->font_dsize = NULL;
24516 mp->font_name = NULL;
24517 mp->font_ps_name = NULL;
24518 mp->font_bc = NULL;
24519 mp->font_ec = NULL;
24520 mp->last_fnum = null_font;
24521 mp->char_base = NULL;
24522 mp->width_base = NULL;
24523 mp->height_base = NULL;
24524 mp->depth_base = NULL;
24525 mp->font_sizes = null;
24527 @ @<Dealloc variables@>=
24528 for (k=1;k<=(int)mp->last_fnum;k++) {
24529 xfree(mp->font_enc_name[k]);
24530 xfree(mp->font_name[k]);
24531 xfree(mp->font_ps_name[k]);
24533 xfree(mp->font_info);
24534 xfree(mp->font_enc_name);
24535 xfree(mp->font_ps_name_fixed);
24536 xfree(mp->font_dsize);
24537 xfree(mp->font_name);
24538 xfree(mp->font_ps_name);
24539 xfree(mp->font_bc);
24540 xfree(mp->font_ec);
24541 xfree(mp->char_base);
24542 xfree(mp->width_base);
24543 xfree(mp->height_base);
24544 xfree(mp->depth_base);
24545 xfree(mp->font_sizes);
24549 void mp_reallocate_fonts (MP mp, font_number l) {
24551 XREALLOC(mp->font_enc_name, l, char *);
24552 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24553 XREALLOC(mp->font_dsize, l, scaled);
24554 XREALLOC(mp->font_name, l, char *);
24555 XREALLOC(mp->font_ps_name, l, char *);
24556 XREALLOC(mp->font_bc, l, eight_bits);
24557 XREALLOC(mp->font_ec, l, eight_bits);
24558 XREALLOC(mp->char_base, l, int);
24559 XREALLOC(mp->width_base, l, int);
24560 XREALLOC(mp->height_base, l, int);
24561 XREALLOC(mp->depth_base, l, int);
24562 XREALLOC(mp->font_sizes, l, pointer);
24563 for (f=(mp->last_fnum+1);f<=l;f++) {
24564 mp->font_enc_name[f]=NULL;
24565 mp->font_ps_name_fixed[f] = false;
24566 mp->font_name[f]=NULL;
24567 mp->font_ps_name[f]=NULL;
24568 mp->font_sizes[f]=null;
24573 @ @<Declare |mp_reallocate| functions@>=
24574 void mp_reallocate_fonts (MP mp, font_number l);
24577 @ A |null_font| containing no characters is useful for error recovery. Its
24578 |font_name| entry starts out empty but is reset each time an erroneous font is
24579 found. This helps to cut down on the number of duplicate error messages without
24580 wasting a lot of space.
24582 @d null_font 0 /* the |font_number| for an empty font */
24584 @<Set initial...@>=
24585 mp->font_dsize[null_font]=0;
24586 mp->font_bc[null_font]=1;
24587 mp->font_ec[null_font]=0;
24588 mp->char_base[null_font]=0;
24589 mp->width_base[null_font]=0;
24590 mp->height_base[null_font]=0;
24591 mp->depth_base[null_font]=0;
24593 mp->last_fnum=null_font;
24594 mp->last_ps_fnum=null_font;
24595 mp->font_name[null_font]=(char *)"nullfont";
24596 mp->font_ps_name[null_font]=(char *)"";
24597 mp->font_ps_name_fixed[null_font] = false;
24598 mp->font_enc_name[null_font]=NULL;
24599 mp->font_sizes[null_font]=null;
24601 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24602 the |width index|; the |b1| field contains the height
24603 index; the |b2| fields contains the depth index, and the |b3| field used only
24604 for temporary storage. (It is used to keep track of which characters occur in
24605 an edge structure that is being shipped out.)
24606 The corresponding words in the width, height, and depth tables are stored as
24607 |scaled| values in units of \ps\ points.
24609 With the macros below, the |char_info| word for character~|c| in font~|f| is
24610 |char_info(f)(c)| and the width is
24611 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24613 @d char_info_end(A) (A)].qqqq
24614 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24615 @d char_width_end(A) (A).b0].sc
24616 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24617 @d char_height_end(A) (A).b1].sc
24618 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24619 @d char_depth_end(A) (A).b2].sc
24620 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24621 @d ichar_exists(A) ((A).b0>0)
24623 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24624 A preliminary name is obtained here from the \.{TFM} name as given in the
24625 |fname| argument. This gets updated later from an external table if necessary.
24627 @<Declare text measuring subroutines@>=
24628 @<Declare subroutines for parsing file names@>
24629 font_number mp_read_font_info (MP mp, char *fname) {
24630 boolean file_opened; /* has |tfm_infile| been opened? */
24631 font_number n; /* the number to return */
24632 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24633 size_t whd_size; /* words needed for heights, widths, and depths */
24634 int i,ii; /* |font_info| indices */
24635 int jj; /* counts bytes to be ignored */
24636 scaled z; /* used to compute the design size */
24638 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24639 eight_bits h_and_d; /* height and depth indices being unpacked */
24640 unsigned char tfbyte; /* a byte read from the file */
24642 @<Open |tfm_infile| for input@>;
24643 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24644 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24646 @<Complain that the \.{TFM} file is bad@>;
24648 if ( file_opened ) (mp->close_file)(mp,mp->tfm_infile);
24649 if ( n!=null_font ) {
24650 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24651 mp->font_name[n]=mp_xstrdup(mp,fname);
24656 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24657 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24658 @.TFtoPL@> @.PLtoTF@>
24659 and \.{PLtoTF} can be used to debug \.{TFM} files.
24661 @<Complain that the \.{TFM} file is bad@>=
24662 print_err("Font ");
24663 mp_print(mp, fname);
24664 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24665 else mp_print(mp, " not usable: TFM file not found");
24666 help3("I wasn't able to read the size data for this font so this")
24667 ("`infont' operation won't produce anything. If the font name")
24668 ("is right, you might ask an expert to make a TFM file");
24670 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24673 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24674 @<Read the \.{TFM} size fields@>;
24675 @<Use the size fields to allocate space in |font_info|@>;
24676 @<Read the \.{TFM} header@>;
24677 @<Read the character data and the width, height, and depth tables and
24680 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24681 might try to read past the end of the file if this happens. Changes will be
24682 needed if it causes a system error to refer to |tfm_infile^| or call
24683 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24684 @^system dependencies@>
24685 of |tfget| could be changed to
24686 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24690 void *tfbyte_ptr = &tfbyte;
24691 (mp->read_binary_file)(mp,mp->tfm_infile,&tfbyte_ptr,&wanted);
24692 if (wanted==0) goto BAD_TFM;
24694 @d read_two(A) { (A)=tfbyte;
24695 if ( (A)>127 ) goto BAD_TFM;
24696 tfget; (A)=(A)*0400+tfbyte;
24698 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24700 @<Read the \.{TFM} size fields@>=
24701 tfget; read_two(lf);
24702 tfget; read_two(tfm_lh);
24703 tfget; read_two(bc);
24704 tfget; read_two(ec);
24705 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24706 tfget; read_two(nw);
24707 tfget; read_two(nh);
24708 tfget; read_two(nd);
24709 whd_size=(ec+1-bc)+nw+nh+nd;
24710 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24713 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24714 necessary to apply the |so| and |qo| macros when looking up the width of a
24715 character in the string pool. In order to ensure nonnegative |char_base|
24716 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24719 @<Use the size fields to allocate space in |font_info|@>=
24720 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24721 if (mp->last_fnum==mp->font_max)
24722 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24723 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24724 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24725 memory_word *font_info;
24726 font_info = xmalloc ((l+1),sizeof(memory_word));
24727 memset (font_info,0,sizeof(memory_word)*(l+1));
24728 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24729 xfree(mp->font_info);
24730 mp->font_info = font_info;
24731 mp->font_mem_size = l;
24733 incr(mp->last_fnum);
24737 mp->char_base[n]=mp->next_fmem-bc;
24738 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24739 mp->height_base[n]=mp->width_base[n]+nw;
24740 mp->depth_base[n]=mp->height_base[n]+nh;
24741 mp->next_fmem=mp->next_fmem+whd_size;
24744 @ @<Read the \.{TFM} header@>=
24745 if ( tfm_lh<2 ) goto BAD_TFM;
24747 tfget; read_two(z);
24748 tfget; z=z*0400+tfbyte;
24749 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24750 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24751 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24752 tf_ignore(4*(tfm_lh-2))
24754 @ @<Read the character data and the width, height, and depth tables...@>=
24755 ii=mp->width_base[n];
24756 i=mp->char_base[n]+bc;
24758 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24759 tfget; h_and_d=tfbyte;
24760 mp->font_info[i].qqqq.b1=h_and_d / 16;
24761 mp->font_info[i].qqqq.b2=h_and_d % 16;
24765 while ( i<mp->next_fmem ) {
24766 @<Read a four byte dimension, scale it by the design size, store it in
24767 |font_info[i]|, and increment |i|@>;
24771 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24772 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24773 we can multiply it by sixteen and think of it as a |fraction| that has been
24774 divided by sixteen. This cancels the extra scale factor contained in
24777 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24780 if ( d>=0200 ) d=d-0400;
24781 tfget; d=d*0400+tfbyte;
24782 tfget; d=d*0400+tfbyte;
24783 tfget; d=d*0400+tfbyte;
24784 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24788 @ This function does no longer use the file name parser, because |fname| is
24789 a C string already.
24790 @<Open |tfm_infile| for input@>=
24792 mp_ptr_scan_file(mp, fname);
24793 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); }
24794 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24796 mp->tfm_infile = (mp->open_file)(mp, mp->name_of_file, "r",mp_filetype_metrics);
24797 if ( !mp->tfm_infile ) goto BAD_TFM;
24800 @ When we have a font name and we don't know whether it has been loaded yet,
24801 we scan the |font_name| array before calling |read_font_info|.
24803 @<Declare text measuring subroutines@>=
24804 font_number mp_find_font (MP mp, char *f) {
24806 for (n=0;n<=mp->last_fnum;n++) {
24807 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24812 n = mp_read_font_info(mp, f);
24817 @ One simple application of |find_font| is the implementation of the |font_size|
24818 operator that gets the design size for a given font name.
24820 @<Find the design size of the font whose name is |cur_exp|@>=
24821 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24823 @ If we discover that the font doesn't have a requested character, we omit it
24824 from the bounding box computation and expect the \ps\ interpreter to drop it.
24825 This routine issues a warning message if the user has asked for it.
24827 @<Declare text measuring subroutines@>=
24828 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24829 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24830 mp_begin_diagnostic(mp);
24831 if ( mp->selector==log_only ) incr(mp->selector);
24832 mp_print_nl(mp, "Missing character: There is no ");
24833 @.Missing character@>
24834 mp_print_str(mp, mp->str_pool[k]);
24835 mp_print(mp, " in font ");
24836 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24837 mp_end_diagnostic(mp, false);
24841 @ The whole purpose of saving the height, width, and depth information is to be
24842 able to find the bounding box of an item of text in an edge structure. The
24843 |set_text_box| procedure takes a text node and adds this information.
24845 @<Declare text measuring subroutines@>=
24846 void mp_set_text_box (MP mp,pointer p) {
24847 font_number f; /* |font_n(p)| */
24848 ASCII_code bc,ec; /* range of valid characters for font |f| */
24849 pool_pointer k,kk; /* current character and character to stop at */
24850 four_quarters cc; /* the |char_info| for the current character */
24851 scaled h,d; /* dimensions of the current character */
24853 height_val(p)=-el_gordo;
24854 depth_val(p)=-el_gordo;
24858 kk=str_stop(text_p(p));
24859 k=mp->str_start[text_p(p)];
24861 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24863 @<Set the height and depth to zero if the bounding box is empty@>;
24866 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24868 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24869 mp_lost_warning(mp, f,k);
24871 cc=char_info(f)(mp->str_pool[k]);
24872 if ( ! ichar_exists(cc) ) {
24873 mp_lost_warning(mp, f,k);
24875 width_val(p)=width_val(p)+char_width(f)(cc);
24876 h=char_height(f)(cc);
24877 d=char_depth(f)(cc);
24878 if ( h>height_val(p) ) height_val(p)=h;
24879 if ( d>depth_val(p) ) depth_val(p)=d;
24885 @ Let's hope modern compilers do comparisons correctly when the difference would
24888 @<Set the height and depth to zero if the bounding box is empty@>=
24889 if ( height_val(p)<-depth_val(p) ) {
24894 @ The new primitives fontmapfile and fontmapline.
24896 @<Declare action procedures for use by |do_statement|@>=
24897 void mp_do_mapfile (MP mp) ;
24898 void mp_do_mapline (MP mp) ;
24900 @ @c void mp_do_mapfile (MP mp) {
24901 mp_get_x_next(mp); mp_scan_expression(mp);
24902 if ( mp->cur_type!=mp_string_type ) {
24903 @<Complain about improper map operation@>;
24905 mp_map_file(mp,mp->cur_exp);
24908 void mp_do_mapline (MP mp) {
24909 mp_get_x_next(mp); mp_scan_expression(mp);
24910 if ( mp->cur_type!=mp_string_type ) {
24911 @<Complain about improper map operation@>;
24913 mp_map_line(mp,mp->cur_exp);
24917 @ @<Complain about improper map operation@>=
24919 exp_err("Unsuitable expression");
24920 help1("Only known strings can be map files or map lines.");
24921 mp_put_get_error(mp);
24924 @ To print |scaled| value to PDF output we need some subroutines to ensure
24927 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24930 scaled one_bp; /* scaled value corresponds to 1bp */
24931 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24932 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24933 integer ten_pow[10]; /* $10^0..10^9$ */
24934 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24937 mp->one_bp = 65782; /* 65781.76 */
24938 mp->one_hundred_bp = 6578176;
24939 mp->one_hundred_inch = 473628672;
24940 mp->ten_pow[0] = 1;
24941 for (i = 1;i<= 9; i++ ) {
24942 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24945 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24947 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24951 if ( s < 0 ) { sign = -sign; s = -s; }
24952 if ( m < 0 ) { sign = -sign; m = -m; }
24954 mp_confusion(mp, "arithmetic: divided by zero");
24955 else if ( m >= (max_integer / 10) )
24956 mp_confusion(mp, "arithmetic: number too big");
24959 for (i = 1;i<=dd;i++) {
24960 q = 10*q + (10*r) / m;
24963 if ( 2*r >= m ) { incr(q); r = r - m; }
24964 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24968 @* \[44] Shipping pictures out.
24969 The |ship_out| procedure, to be described below, is given a pointer to
24970 an edge structure. Its mission is to output a file containing the \ps\
24971 description of an edge structure.
24973 @ Each time an edge structure is shipped out we write a new \ps\ output
24974 file named according to the current \&{charcode}.
24975 @:char_code_}{\&{charcode} primitive@>
24977 This is the only backend function that remains in the main |mpost.w| file.
24978 There are just too many variable accesses needed for status reporting
24979 etcetera to make it worthwile to move the code to |psout.w|.
24981 @<Internal library declarations@>=
24982 void mp_open_output_file (MP mp) ;
24985 char *mp_set_output_file_name (MP mp, integer c) {
24986 char *ss = NULL; /* filename extension proposal */
24987 int old_setting; /* previous |selector| setting */
24988 pool_pointer i; /* indexes into |filename_template| */
24989 integer cc; /* a temporary integer for template building */
24990 integer f,g=0; /* field widths */
24991 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24992 if ( mp->filename_template==0 ) {
24993 char *s; /* a file extension derived from |c| */
24997 @<Use |c| to compute the file extension |s|@>;
24998 mp_pack_job_name(mp, s);
25000 } else { /* initializations */
25001 str_number s, n; /* a file extension derived from |c| */
25002 old_setting=mp->selector;
25003 mp->selector=new_string;
25005 i = mp->str_start[mp->filename_template];
25006 n = rts(""); /* initialize */
25007 while ( i<str_stop(mp->filename_template) ) {
25008 if ( mp->str_pool[i]=='%' ) {
25011 if ( i<str_stop(mp->filename_template) ) {
25012 if ( mp->str_pool[i]=='j' ) {
25013 mp_print(mp, mp->job_name);
25014 } else if ( mp->str_pool[i]=='d' ) {
25015 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25016 print_with_leading_zeroes(cc);
25017 } else if ( mp->str_pool[i]=='m' ) {
25018 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25019 print_with_leading_zeroes(cc);
25020 } else if ( mp->str_pool[i]=='y' ) {
25021 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25022 print_with_leading_zeroes(cc);
25023 } else if ( mp->str_pool[i]=='H' ) {
25024 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25025 print_with_leading_zeroes(cc);
25026 } else if ( mp->str_pool[i]=='M' ) {
25027 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25028 print_with_leading_zeroes(cc);
25029 } else if ( mp->str_pool[i]=='c' ) {
25030 if ( c<0 ) mp_print(mp, "ps");
25031 else print_with_leading_zeroes(c);
25032 } else if ( (mp->str_pool[i]>='0') &&
25033 (mp->str_pool[i]<='9') ) {
25035 f = (f*10) + mp->str_pool[i]-'0';
25038 mp_print_str(mp, mp->str_pool[i]);
25042 if ( mp->str_pool[i]=='.' )
25044 n = mp_make_string(mp);
25045 mp_print_str(mp, mp->str_pool[i]);
25049 s = mp_make_string(mp);
25050 mp->selector= old_setting;
25051 if (length(n)==0) {
25055 mp_pack_file_name(mp, str(n),"",str(s));
25063 char * mp_get_output_file_name (MP mp) {
25064 char *fname; /* return value */
25065 char *saved_name; /* saved |name_of_file| */
25066 saved_name = mp_xstrdup(mp, mp->name_of_file);
25067 (void)mp_set_output_file_name(mp, mp_round_unscaled(mp, mp->internal[mp_char_code]));
25068 fname = mp_xstrdup(mp, mp->name_of_file);
25069 mp_pack_file_name(mp, saved_name,NULL,NULL);
25073 void mp_open_output_file (MP mp) {
25074 char *ss; /* filename extension proposal */
25075 integer c; /* \&{charcode} rounded to the nearest integer */
25076 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25077 ss = mp_set_output_file_name(mp, c);
25078 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25079 mp_prompt_file_name(mp, "file name for output",ss);
25081 @<Store the true output file name if appropriate@>;
25084 @ The file extension created here could be up to five characters long in
25085 extreme cases so it may have to be shortened on some systems.
25086 @^system dependencies@>
25088 @<Use |c| to compute the file extension |s|@>=
25091 snprintf(s,7,".%i",(int)c);
25094 @ The user won't want to see all the output file names so we only save the
25095 first and last ones and a count of how many there were. For this purpose
25096 files are ordered primarily by \&{charcode} and secondarily by order of
25098 @:char_code_}{\&{charcode} primitive@>
25100 @<Store the true output file name if appropriate@>=
25101 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25102 mp->first_output_code=c;
25103 xfree(mp->first_file_name);
25104 mp->first_file_name=xstrdup(mp->name_of_file);
25106 if ( c>=mp->last_output_code ) {
25107 mp->last_output_code=c;
25108 xfree(mp->last_file_name);
25109 mp->last_file_name=xstrdup(mp->name_of_file);
25113 char * first_file_name;
25114 char * last_file_name; /* full file names */
25115 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25116 @:char_code_}{\&{charcode} primitive@>
25117 integer total_shipped; /* total number of |ship_out| operations completed */
25120 mp->first_file_name=xstrdup("");
25121 mp->last_file_name=xstrdup("");
25122 mp->first_output_code=32768;
25123 mp->last_output_code=-32768;
25124 mp->total_shipped=0;
25126 @ @<Dealloc variables@>=
25127 xfree(mp->first_file_name);
25128 xfree(mp->last_file_name);
25130 @ @<Begin the progress report for the output of picture~|c|@>=
25131 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25132 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25133 mp_print_char(mp, '[');
25134 if ( c>=0 ) mp_print_int(mp, c)
25136 @ @<End progress report@>=
25137 mp_print_char(mp, ']');
25139 incr(mp->total_shipped)
25141 @ @<Explain what output files were written@>=
25142 if ( mp->total_shipped>0 ) {
25143 mp_print_nl(mp, "");
25144 mp_print_int(mp, mp->total_shipped);
25145 mp_print(mp, " output file");
25146 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25147 mp_print(mp, " written: ");
25148 mp_print(mp, mp->first_file_name);
25149 if ( mp->total_shipped>1 ) {
25150 if ( 31+strlen(mp->first_file_name)+
25151 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25153 mp_print(mp, " .. ");
25154 mp_print(mp, mp->last_file_name);
25158 @ @<Internal library declarations@>=
25159 boolean mp_has_font_size(MP mp, font_number f );
25162 boolean mp_has_font_size(MP mp, font_number f ) {
25163 return (mp->font_sizes[f]!=null);
25166 @ The \&{special} command saves up lines of text to be printed during the next
25167 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25170 pointer last_pending; /* the last token in a list of pending specials */
25173 mp->last_pending=spec_head;
25175 @ @<Cases of |do_statement|...@>=
25176 case special_command:
25177 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25178 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25182 @ @<Declare action procedures for use by |do_statement|@>=
25183 void mp_do_special (MP mp) ;
25185 @ @c void mp_do_special (MP mp) {
25186 mp_get_x_next(mp); mp_scan_expression(mp);
25187 if ( mp->cur_type!=mp_string_type ) {
25188 @<Complain about improper special operation@>;
25190 link(mp->last_pending)=mp_stash_cur_exp(mp);
25191 mp->last_pending=link(mp->last_pending);
25192 link(mp->last_pending)=null;
25196 @ @<Complain about improper special operation@>=
25198 exp_err("Unsuitable expression");
25199 help1("Only known strings are allowed for output as specials.");
25200 mp_put_get_error(mp);
25203 @ On the export side, we need an extra object type for special strings.
25205 @<Graphical object codes@>=
25208 @ @<Export pending specials@>=
25210 while ( p!=null ) {
25211 mp_special_object *tp;
25212 tp = (mp_special_object *)mp_new_graphic_object(mp,mp_special_code);
25213 gr_pre_script(tp) = str(value(p));
25214 if (hh->body==NULL) hh->body = (mp_graphic_object *)tp;
25215 else gr_link(hp) = (mp_graphic_object *)tp;
25216 hp = (mp_graphic_object *)tp;
25219 mp_flush_token_list(mp, link(spec_head));
25220 link(spec_head)=null;
25221 mp->last_pending=spec_head
25223 @ We are now ready for the main output procedure. Note that the |selector|
25224 setting is saved in a global variable so that |begin_diagnostic| can access it.
25226 @<Declare the \ps\ output procedures@>=
25227 void mp_ship_out (MP mp, pointer h) ;
25229 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25231 @d export_color(q,p)
25232 if ( color_model(p)==mp_uninitialized_model ) {
25233 gr_color_model(q) = (mp->internal[mp_default_color_model]>>16);
25234 gr_cyan_val(q) = 0;
25235 gr_magenta_val(q) = 0;
25236 gr_yellow_val(q) = 0;
25237 gr_black_val(q) = (gr_color_model(q)==mp_cmyk_model ? unity : 0);
25239 gr_color_model(q) = color_model(p);
25240 gr_cyan_val(q) = cyan_val(p);
25241 gr_magenta_val(q) = magenta_val(p);
25242 gr_yellow_val(q) = yellow_val(p);
25243 gr_black_val(q) = black_val(p);
25246 @d export_scripts(q,p)
25247 if (pre_script(p)!=null) gr_pre_script(q) = str(pre_script(p));
25248 if (post_script(p)!=null) gr_post_script(q) = str(post_script(p));
25251 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25252 pointer p; /* the current graphical object */
25253 integer t; /* a temporary value */
25254 scaled d_width; /* the current pen width */
25255 mp_edge_object *hh; /* the first graphical object */
25256 struct mp_graphic_object *hq; /* something |hp| points to */
25257 struct mp_text_object *tt;
25258 struct mp_fill_object *tf;
25259 struct mp_stroked_object *ts;
25260 struct mp_clip_object *tc;
25261 struct mp_bounds_object *tb;
25262 struct mp_graphic_object *hp = NULL; /* the current graphical object */
25263 mp_set_bbox(mp, h, true);
25264 hh = mp_xmalloc(mp,1,sizeof(mp_edge_object));
25268 hh->_minx = minx_val(h);
25269 hh->_miny = miny_val(h);
25270 hh->_maxx = maxx_val(h);
25271 hh->_maxy = maxy_val(h);
25272 hh->_filename = mp_get_output_file_name(mp);
25273 @<Export pending specials@>;
25274 p=link(dummy_loc(h));
25275 while ( p!=null ) {
25276 hq = mp_new_graphic_object(mp,type(p));
25279 tf = (mp_fill_object *)hq;
25280 gr_pen_p(tf) = mp_export_knot_list(mp,pen_p(p));
25281 d_width = mp_get_pen_scale(mp, pen_p(p));
25282 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25283 gr_path_p(tf) = mp_export_knot_list(mp,path_p(p));
25286 pc = mp_copy_path(mp, path_p(p));
25287 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25288 gr_path_p(tf) = mp_export_knot_list(mp,pp);
25289 mp_toss_knot_list(mp, pp);
25290 pc = mp_htap_ypoc(mp, path_p(p));
25291 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25292 gr_htap_p(tf) = mp_export_knot_list(mp,pp);
25293 mp_toss_knot_list(mp, pp);
25295 export_color(tf,p) ;
25296 export_scripts(tf,p);
25297 gr_ljoin_val(tf) = ljoin_val(p);
25298 gr_miterlim_val(tf) = miterlim_val(p);
25300 case mp_stroked_code:
25301 ts = (mp_stroked_object *)hq;
25302 gr_pen_p(ts) = mp_export_knot_list(mp,pen_p(p));
25303 d_width = mp_get_pen_scale(mp, pen_p(p));
25304 if (pen_is_elliptical(pen_p(p))) {
25305 gr_path_p(ts) = mp_export_knot_list(mp,path_p(p));
25308 pc=mp_copy_path(mp, path_p(p));
25310 if ( left_type(pc)!=mp_endpoint ) {
25311 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25312 right_type(pc)=mp_endpoint;
25316 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25317 gr_path_p(ts) = mp_export_knot_list(mp,pc);
25318 mp_toss_knot_list(mp, pc);
25320 export_color(ts,p) ;
25321 export_scripts(ts,p);
25322 gr_ljoin_val(ts) = ljoin_val(p);
25323 gr_miterlim_val(ts) = miterlim_val(p);
25324 gr_lcap_val(ts) = lcap_val(p);
25325 gr_dash_p(ts) = mp_export_dashes(mp,p,&d_width);
25328 tt = (mp_text_object *)hq;
25329 gr_text_p(tt) = str(text_p(p));
25330 gr_font_n(tt) = font_n(p);
25331 gr_font_name(tt) = mp_xstrdup(mp,mp->font_name[font_n(p)]);
25332 gr_font_dsize(tt) = mp->font_dsize[font_n(p)];
25333 export_color(tt,p) ;
25334 export_scripts(tt,p);
25335 gr_width_val(tt) = width_val(p);
25336 gr_height_val(tt) = height_val(p);
25337 gr_depth_val(tt) = depth_val(p);
25338 gr_tx_val(tt) = tx_val(p);
25339 gr_ty_val(tt) = ty_val(p);
25340 gr_txx_val(tt) = txx_val(p);
25341 gr_txy_val(tt) = txy_val(p);
25342 gr_tyx_val(tt) = tyx_val(p);
25343 gr_tyy_val(tt) = tyy_val(p);
25345 case mp_start_clip_code:
25346 tc = (mp_clip_object *)hq;
25347 gr_path_p(tc) = mp_export_knot_list(mp,path_p(p));
25349 case mp_start_bounds_code:
25350 tb = (mp_bounds_object *)hq;
25351 gr_path_p(tb) = mp_export_knot_list(mp,path_p(p));
25353 case mp_stop_clip_code:
25354 case mp_stop_bounds_code:
25355 /* nothing to do here */
25358 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25365 @ @<Exported function ...@>=
25366 struct mp_edge_object *mp_gr_export(MP mp, int h);
25368 @ This function is now nearly trivial.
25371 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25372 integer c; /* \&{charcode} rounded to the nearest integer */
25373 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25374 @<Begin the progress report for the output of picture~|c|@>;
25375 (mp->shipout_backend) (mp, h);
25376 @<End progress report@>;
25377 if ( mp->internal[mp_tracing_output]>0 )
25378 mp_print_edges(mp, h," (just shipped out)",true);
25381 @ @<Declarations@>=
25382 void mp_shipout_backend (MP mp, pointer h);
25385 void mp_shipout_backend (MP mp, pointer h) {
25386 mp_edge_object *hh; /* the first graphical object */
25387 hh = mp_gr_export(mp,h);
25388 mp_gr_ship_out (hh,
25389 (mp->internal[mp_prologues]>>16),
25390 (mp->internal[mp_procset]>>16));
25391 mp_gr_toss_objects(hh);
25394 @ @<Exported types@>=
25395 typedef void (*mp_backend_writer)(MP, int);
25397 @ @<Option variables@>=
25398 mp_backend_writer shipout_backend;
25400 @ @<Allocate or initialize ...@>=
25401 set_callback_option(shipout_backend);
25403 @ Now that we've finished |ship_out|, let's look at the other commands
25404 by which a user can send things to the \.{GF} file.
25406 @ @<Determine if a character has been shipped out@>=
25408 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25409 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25410 boolean_reset(mp->char_exists[mp->cur_exp]);
25411 mp->cur_type=mp_boolean_type;
25417 @ @<Allocate or initialize ...@>=
25418 mp_backend_initialize(mp);
25421 mp_backend_free(mp);
25424 @* \[45] Dumping and undumping the tables.
25425 After \.{INIMP} has seen a collection of macros, it
25426 can write all the necessary information on an auxiliary file so
25427 that production versions of \MP\ are able to initialize their
25428 memory at high speed. The present section of the program takes
25429 care of such output and input. We shall consider simultaneously
25430 the processes of storing and restoring,
25431 so that the inverse relation between them is clear.
25434 The global variable |mem_ident| is a string that is printed right
25435 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25436 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25437 for example, `\.{(mem=plain 1990.4.14)}', showing the year,
25438 month, and day that the mem file was created. We have |mem_ident=0|
25439 before \MP's tables are loaded.
25445 mp->mem_ident=NULL;
25447 @ @<Initialize table entries...@>=
25448 mp->mem_ident=xstrdup(" (INIMP)");
25450 @ @<Declare act...@>=
25451 void mp_store_mem_file (MP mp) ;
25453 @ @c void mp_store_mem_file (MP mp) {
25454 integer k; /* all-purpose index */
25455 pointer p,q; /* all-purpose pointers */
25456 integer x; /* something to dump */
25457 four_quarters w; /* four ASCII codes */
25459 @<Create the |mem_ident|, open the mem file,
25460 and inform the user that dumping has begun@>;
25461 @<Dump constants for consistency check@>;
25462 @<Dump the string pool@>;
25463 @<Dump the dynamic memory@>;
25464 @<Dump the table of equivalents and the hash table@>;
25465 @<Dump a few more things and the closing check word@>;
25466 @<Close the mem file@>;
25469 @ Corresponding to the procedure that dumps a mem file, we also have a function
25470 that reads~one~in. The function returns |false| if the dumped mem is
25471 incompatible with the present \MP\ table sizes, etc.
25473 @d off_base 6666 /* go here if the mem file is unacceptable */
25474 @d too_small(A) { wake_up_terminal;
25475 wterm_ln("---! Must increase the "); wterm((A));
25476 @.Must increase the x@>
25481 boolean mp_load_mem_file (MP mp) {
25482 integer k; /* all-purpose index */
25483 pointer p,q; /* all-purpose pointers */
25484 integer x; /* something undumped */
25485 str_number s; /* some temporary string */
25486 four_quarters w; /* four ASCII codes */
25488 @<Undump constants for consistency check@>;
25489 @<Undump the string pool@>;
25490 @<Undump the dynamic memory@>;
25491 @<Undump the table of equivalents and the hash table@>;
25492 @<Undump a few more things and the closing check word@>;
25493 return true; /* it worked! */
25496 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25497 @.Fatal mem file error@>
25501 @ @<Declarations@>=
25502 boolean mp_load_mem_file (MP mp) ;
25504 @ Mem files consist of |memory_word| items, and we use the following
25505 macros to dump words of different types:
25507 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25508 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp,mp->mem_file,&cint,sizeof(cint)); }
25509 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25510 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp,mp->mem_file,&WW,sizeof(WW)); }
25511 @d dump_string(A) { dump_int(strlen(A)+1);
25512 (mp->write_binary_file)(mp,mp->mem_file,A,strlen(A)+1); }
25515 void * mem_file; /* for input or output of mem information */
25517 @ The inverse macros are slightly more complicated, since we need to check
25518 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25519 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25522 size_t wanted = sizeof(A);
25524 (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted);
25525 if (wanted!=sizeof(A)) goto OFF_BASE;
25529 size_t wanted = sizeof(A);
25531 (mp->read_binary_file)(mp, mp->mem_file,&A_ptr,&wanted);
25532 if (wanted!=sizeof(A)) goto OFF_BASE;
25535 @d undump_wd(A) { mgetw(WW); A=WW; }
25536 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25537 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25538 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25539 @d undump_strings(A,B,C) {
25540 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25541 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25542 @d undump_size(A,B,C,D) { undump_int(x);
25543 if (x<(A)) goto OFF_BASE;
25544 if (x>(B)) { too_small((C)); } else { D=x;} }
25545 @d undump_string(A) do {
25551 the_string = xmalloc(XX,sizeof(char));
25552 (mp->read_binary_file)(mp,mp->mem_file,&the_string,&the_wanted);
25553 A = (char *)the_string;
25554 if (the_wanted!=(size_t)XX) goto OFF_BASE;
25557 @ The next few sections of the program should make it clear how we use the
25558 dump/undump macros.
25560 @<Dump constants for consistency check@>=
25561 dump_int(mp->mem_top);
25562 dump_int(mp->hash_size);
25563 dump_int(mp->hash_prime)
25564 dump_int(mp->param_size);
25565 dump_int(mp->max_in_open);
25567 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25568 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25569 the same strings. (And it is, of course, a good thing that they do.)
25573 @<Undump constants for consistency check@>=
25574 undump_int(x); mp->mem_top = x;
25575 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25576 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25577 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25578 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25580 @ We do string pool compaction to avoid dumping unused strings.
25583 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25584 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25587 @<Dump the string pool@>=
25588 mp_do_compaction(mp, mp->pool_size);
25589 dump_int(mp->pool_ptr);
25590 dump_int(mp->max_str_ptr);
25591 dump_int(mp->str_ptr);
25593 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25596 while ( k<=mp->max_str_ptr ) {
25597 dump_int(mp->next_str[k]); incr(k);
25601 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25602 if ( k==mp->str_ptr ) {
25609 while (k+4<mp->pool_ptr ) {
25610 dump_four_ASCII; k=k+4;
25612 k=mp->pool_ptr-4; dump_four_ASCII;
25613 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25614 mp_print(mp, " strings of total length ");
25615 mp_print_int(mp, mp->pool_ptr)
25617 @ @d undump_four_ASCII
25619 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25620 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25622 @<Undump the string pool@>=
25623 undump_int(mp->pool_ptr);
25624 mp_reallocate_pool(mp, mp->pool_ptr) ;
25625 undump_int(mp->max_str_ptr);
25626 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25627 undump(0,mp->max_str_ptr,mp->str_ptr);
25628 undump(0,mp->max_str_ptr+1,s);
25629 for (k=0;k<=s-1;k++)
25630 mp->next_str[k]=k+1;
25631 for (k=s;k<=mp->max_str_ptr;k++)
25632 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25633 mp->fixed_str_use=0;
25636 undump(0,mp->pool_ptr,mp->str_start[k]);
25637 if ( k==mp->str_ptr ) break;
25638 mp->str_ref[k]=max_str_ref;
25639 incr(mp->fixed_str_use);
25640 mp->last_fixed_str=k; k=mp->next_str[k];
25643 while ( k+4<mp->pool_ptr ) {
25644 undump_four_ASCII; k=k+4;
25646 k=mp->pool_ptr-4; undump_four_ASCII;
25647 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25648 mp->max_pool_ptr=mp->pool_ptr;
25649 mp->strs_used_up=mp->fixed_str_use;
25650 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25651 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25652 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25654 @ By sorting the list of available spaces in the variable-size portion of
25655 |mem|, we are usually able to get by without having to dump very much
25656 of the dynamic memory.
25658 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25659 information even when it has not been gathering statistics.
25661 @<Dump the dynamic memory@>=
25662 mp_sort_avail(mp); mp->var_used=0;
25663 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25664 p=0; q=mp->rover; x=0;
25666 for (k=p;k<= q+1;k++)
25667 dump_wd(mp->mem[k]);
25668 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25669 p=q+node_size(q); q=rlink(q);
25670 } while (q!=mp->rover);
25671 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25672 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25673 for (k=p;k<= mp->lo_mem_max;k++ )
25674 dump_wd(mp->mem[k]);
25675 x=x+mp->lo_mem_max+1-p;
25676 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25677 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25678 dump_wd(mp->mem[k]);
25679 x=x+mp->mem_end+1-mp->hi_mem_min;
25681 while ( p!=null ) {
25682 decr(mp->dyn_used); p=link(p);
25684 dump_int(mp->var_used); dump_int(mp->dyn_used);
25685 mp_print_ln(mp); mp_print_int(mp, x);
25686 mp_print(mp, " memory locations dumped; current usage is ");
25687 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25689 @ @<Undump the dynamic memory@>=
25690 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25691 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25694 for (k=p;k<= q+1; k++)
25695 undump_wd(mp->mem[k]);
25697 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25700 } while (q!=mp->rover);
25701 for (k=p;k<=mp->lo_mem_max;k++ )
25702 undump_wd(mp->mem[k]);
25703 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25704 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25705 mp->last_pending=spec_head;
25706 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25707 undump_wd(mp->mem[k]);
25708 undump_int(mp->var_used); undump_int(mp->dyn_used)
25710 @ A different scheme is used to compress the hash table, since its lower region
25711 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25712 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25713 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25715 @<Dump the table of equivalents and the hash table@>=
25716 dump_int(mp->hash_used);
25717 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25718 for (p=1;p<=mp->hash_used;p++) {
25719 if ( text(p)!=0 ) {
25720 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25723 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25724 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25726 dump_int(mp->st_count);
25727 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25729 @ @<Undump the table of equivalents and the hash table@>=
25730 undump(1,frozen_inaccessible,mp->hash_used);
25733 undump(p+1,mp->hash_used,p);
25734 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25735 } while (p!=mp->hash_used);
25736 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25737 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25739 undump_int(mp->st_count)
25741 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25742 to prevent them appearing again.
25744 @<Dump a few more things and the closing check word@>=
25745 dump_int(mp->max_internal);
25746 dump_int(mp->int_ptr);
25747 for (k=1;k<= mp->int_ptr;k++ ) {
25748 dump_int(mp->internal[k]);
25749 dump_string(mp->int_name[k]);
25751 dump_int(mp->start_sym);
25752 dump_int(mp->interaction);
25753 dump_string(mp->mem_ident);
25754 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25755 mp->internal[mp_tracing_stats]=0
25757 @ @<Undump a few more things and the closing check word@>=
25759 if (x>mp->max_internal) mp_grow_internals(mp,x);
25760 undump_int(mp->int_ptr);
25761 for (k=1;k<= mp->int_ptr;k++) {
25762 undump_int(mp->internal[k]);
25763 undump_string(mp->int_name[k]);
25765 undump(0,frozen_inaccessible,mp->start_sym);
25766 if (mp->interaction==mp_unspecified_mode) {
25767 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25769 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25771 undump_string(mp->mem_ident);
25772 undump(1,hash_end,mp->bg_loc);
25773 undump(1,hash_end,mp->eg_loc);
25774 undump_int(mp->serial_no);
25776 if (x!=69073) goto OFF_BASE
25778 @ @<Create the |mem_ident|...@>=
25780 xfree(mp->mem_ident);
25781 mp->mem_ident = xmalloc(256,1);
25782 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25784 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25785 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25786 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25787 mp_pack_job_name(mp, mem_extension);
25788 while (! mp_w_open_out(mp, &mp->mem_file) )
25789 mp_prompt_file_name(mp, "mem file name", mem_extension);
25790 mp_print_nl(mp, "Beginning to dump on file ");
25791 @.Beginning to dump...@>
25792 mp_print(mp, mp->name_of_file);
25793 mp_print_nl(mp, mp->mem_ident);
25796 @ @<Dealloc variables@>=
25797 xfree(mp->mem_ident);
25799 @ @<Close the mem file@>=
25800 (mp->close_file)(mp,mp->mem_file)
25802 @* \[46] The main program.
25803 This is it: the part of \MP\ that executes all those procedures we have
25806 Well---almost. We haven't put the parsing subroutines into the
25807 program yet; and we'd better leave space for a few more routines that may
25808 have been forgotten.
25810 @c @<Declare the basic parsing subroutines@>
25811 @<Declare miscellaneous procedures that were declared |forward|@>
25812 @<Last-minute procedures@>
25814 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25816 has to be run first; it initializes everything from scratch, without
25817 reading a mem file, and it has the capability of dumping a mem file.
25818 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25820 to input a mem file in order to get started. \.{VIRMP} typically has
25821 a bit more memory capacity than \.{INIMP}, because it does not need the
25822 space consumed by the dumping/undumping routines and the numerous calls on
25825 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25826 the best implementations therefore allow for production versions of \MP\ that
25827 not only avoid the loading routine for object code, they also have
25828 a mem file pre-loaded.
25830 @ @<Option variables@>=
25831 int ini_version; /* are we iniMP? */
25833 @ @<Set |ini_version|@>=
25834 mp->ini_version = (opt->ini_version ? true : false);
25836 @ Here we do whatever is needed to complete \MP's job gracefully on the
25837 local operating system. The code here might come into play after a fatal
25838 error; it must therefore consist entirely of ``safe'' operations that
25839 cannot produce error messages. For example, it would be a mistake to call
25840 |str_room| or |make_string| at this time, because a call on |overflow|
25841 might lead to an infinite loop.
25842 @^system dependencies@>
25844 This program doesn't bother to close the input files that may still be open.
25846 @<Last-minute...@>=
25847 void mp_close_files_and_terminate (MP mp) {
25848 integer k; /* all-purpose index */
25849 integer LH; /* the length of the \.{TFM} header, in words */
25850 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25851 pointer p; /* runs through a list of \.{TFM} dimensions */
25852 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25853 if ( mp->internal[mp_tracing_stats]>0 )
25854 @<Output statistics about this job@>;
25856 @<Do all the finishing work on the \.{TFM} file@>;
25857 @<Explain what output files were written@>;
25858 if ( mp->log_opened ){
25860 (mp->close_file)(mp,mp->log_file);
25861 mp->selector=mp->selector-2;
25862 if ( mp->selector==term_only ) {
25863 mp_print_nl(mp, "Transcript written on ");
25864 @.Transcript written...@>
25865 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25873 @ @<Declarations@>=
25874 void mp_close_files_and_terminate (MP mp) ;
25876 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25877 if (mp->rd_fname!=NULL) {
25878 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25879 if ( mp->rd_fname[k]!=NULL ) {
25880 (mp->close_file)(mp,mp->rd_file[k]);
25881 xfree(mp->rd_fname[k]);
25885 if (mp->wr_fname!=NULL) {
25886 for (k=0;k<=(int)mp->write_files-1;k++) {
25887 if ( mp->wr_fname[k]!=NULL ) {
25888 (mp->close_file)(mp,mp->wr_file[k]);
25889 xfree(mp->wr_fname[k]);
25895 for (k=0;k<(int)mp->max_read_files;k++ ) {
25896 if ( mp->rd_fname[k]!=NULL ) {
25897 (mp->close_file)(mp,mp->rd_file[k]);
25898 xfree(mp->rd_fname[k]);
25901 xfree(mp->rd_file);
25902 xfree(mp->rd_fname);
25903 for (k=0;k<(int)mp->max_write_files;k++) {
25904 if ( mp->wr_fname[k]!=NULL ) {
25905 (mp->close_file)(mp,mp->wr_file[k]);
25906 xfree(mp->wr_fname[k]);
25909 xfree(mp->wr_file);
25910 xfree(mp->wr_fname);
25913 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25915 We reclaim all of the variable-size memory at this point, so that
25916 there is no chance of another memory overflow after the memory capacity
25917 has already been exceeded.
25919 @<Do all the finishing work on the \.{TFM} file@>=
25920 if ( mp->internal[mp_fontmaking]>0 ) {
25921 @<Make the dynamic memory into one big available node@>;
25922 @<Massage the \.{TFM} widths@>;
25923 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25924 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25925 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25926 @<Finish the \.{TFM} file@>;
25929 @ @<Make the dynamic memory into one big available node@>=
25930 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25931 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25932 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25933 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25934 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25936 @ The present section goes directly to the log file instead of using
25937 |print| commands, because there's no need for these strings to take
25938 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25940 @<Output statistics...@>=
25941 if ( mp->log_opened ) {
25944 wlog_ln("Here is how much of MetaPost's memory you used:");
25945 @.Here is how much...@>
25946 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25947 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25948 (int)(mp->max_strings-1-mp->init_str_use));
25950 snprintf(s,128," %i string characters out of %i",
25951 (int)mp->max_pl_used-mp->init_pool_ptr,
25952 (int)mp->pool_size-mp->init_pool_ptr);
25954 snprintf(s,128," %i words of memory out of %i",
25955 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25958 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25960 snprintf(s,128," %ii,%in,%ip,%ib stack positions out of %ii,%in,%ip,%ib",
25961 (int)mp->max_in_stack,(int)mp->int_ptr,
25962 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25963 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25965 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25966 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25970 @ It is nice to have have some of the stats available from the API.
25972 @<Exported function ...@>=
25973 int mp_memory_usage (MP mp );
25974 int mp_hash_usage (MP mp );
25975 int mp_param_usage (MP mp );
25976 int mp_open_usage (MP mp );
25979 int mp_memory_usage (MP mp ) {
25980 return (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2;
25982 int mp_hash_usage (MP mp ) {
25983 return (int)mp->st_count;
25985 int mp_param_usage (MP mp ) {
25986 return (int)mp->max_param_stack;
25988 int mp_open_usage (MP mp ) {
25989 return (int)mp->max_in_stack;
25992 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25995 @<Last-minute...@>=
25996 void mp_final_cleanup (MP mp) {
25997 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25999 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26000 while ( mp->input_ptr>0 ) {
26001 if ( token_state ) mp_end_token_list(mp);
26002 else mp_end_file_reading(mp);
26004 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26005 while ( mp->open_parens>0 ) {
26006 mp_print(mp, " )"); decr(mp->open_parens);
26008 while ( mp->cond_ptr!=null ) {
26009 mp_print_nl(mp, "(end occurred when ");
26010 @.end occurred...@>
26011 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26012 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26013 if ( mp->if_line!=0 ) {
26014 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26016 mp_print(mp, " was incomplete)");
26017 mp->if_line=if_line_field(mp->cond_ptr);
26018 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26020 if ( mp->history!=mp_spotless )
26021 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26022 if ( mp->selector==term_and_log ) {
26023 mp->selector=term_only;
26024 mp_print_nl(mp, "(see the transcript file for additional information)");
26025 @.see the transcript file...@>
26026 mp->selector=term_and_log;
26029 if (mp->ini_version) {
26030 mp_store_mem_file(mp); return;
26032 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26033 @.dump...only by INIMP@>
26037 @ @<Declarations@>=
26038 void mp_final_cleanup (MP mp) ;
26039 void mp_init_prim (MP mp) ;
26040 void mp_init_tab (MP mp) ;
26042 @ @<Last-minute...@>=
26043 void mp_init_prim (MP mp) { /* initialize all the primitives */
26047 void mp_init_tab (MP mp) { /* initialize other tables */
26048 integer k; /* all-purpose index */
26049 @<Initialize table entries (done by \.{INIMP} only)@>;
26053 @ When we begin the following code, \MP's tables may still contain garbage;
26054 the strings might not even be present. Thus we must proceed cautiously to get
26057 But when we finish this part of the program, \MP\ is ready to call on the
26058 |main_control| routine to do its work.
26060 @<Get the first line...@>=
26062 @<Initialize the input routines@>;
26063 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26064 if ( mp->mem_ident!=NULL ) {
26065 mp_do_initialize(mp); /* erase preloaded mem */
26067 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26068 if ( ! mp_load_mem_file(mp) ) {
26069 (mp->close_file)(mp, mp->mem_file);
26070 return mp_fatal_error_stop;
26072 (mp->close_file)(mp, mp->mem_file);
26073 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26075 mp->buffer[limit]='%';
26076 mp_fix_date_and_time(mp);
26077 if (mp->random_seed==0)
26078 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
26079 mp_init_randoms(mp, mp->random_seed);
26080 @<Initialize the print |selector|...@>;
26081 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26082 mp_start_input(mp); /* \&{input} assumed */
26085 @ @<Run inimpost commands@>=
26087 mp_get_strings_started(mp);
26088 mp_init_tab(mp); /* initialize the tables */
26089 mp_init_prim(mp); /* call |primitive| for each primitive */
26090 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26091 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26092 mp_fix_date_and_time(mp);
26096 @* \[47] Debugging.
26097 Once \MP\ is working, you should be able to diagnose most errors with
26098 the \.{show} commands and other diagnostic features. But for the initial
26099 stages of debugging, and for the revelation of really deep mysteries, you
26100 can compile \MP\ with a few more aids. An additional routine called |debug_help|
26101 will also come into play when you type `\.D' after an error message;
26102 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26104 @^system dependencies@>
26106 The interface to |debug_help| is primitive, but it is good enough when used
26107 with a debugger that allows you to set breakpoints and to read
26108 variables and change their values. After getting the prompt `\.{debug \#}', you
26109 type either a negative number (this exits |debug_help|), or zero (this
26110 goes to a location where you can set a breakpoint, thereby entering into
26111 dialog with the debugger), or a positive number |m| followed by
26112 an argument |n|. The meaning of |m| and |n| will be clear from the
26113 program below. (If |m=13|, there is an additional argument, |l|.)
26116 @<Last-minute...@>=
26117 void mp_debug_help (MP mp) { /* routine to display various things */
26124 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26127 aline = (mp->read_ascii_file)(mp,mp->term_in, &len);
26128 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26132 aline = (mp->read_ascii_file)(mp,mp->term_in, &len);
26133 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26135 @<Numbered cases for |debug_help|@>;
26136 default: mp_print(mp, "?"); break;
26141 @ @<Numbered cases...@>=
26142 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26144 case 2: mp_print_int(mp, info(n));
26146 case 3: mp_print_int(mp, link(n));
26148 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26150 case 5: mp_print_variable_name(mp, n);
26152 case 6: mp_print_int(mp, mp->internal[n]);
26154 case 7: mp_do_show_dependencies(mp);
26156 case 9: mp_show_token_list(mp, n,null,100000,0);
26158 case 10: mp_print_str(mp, n);
26160 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26162 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26166 aline = (mp->read_ascii_file)(mp,mp->term_in, &len);
26167 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26168 mp_print_cmd_mod(mp, n,l);
26170 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26172 case 15: mp->panicking=! mp->panicking;
26176 @ Saving the filename template
26178 @<Save the filename template@>=
26180 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26181 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26183 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26187 @* \[48] System-dependent changes.
26188 This section should be replaced, if necessary, by any special
26189 modification of the program
26190 that are necessary to make \MP\ work at a particular installation.
26191 It is usually best to design your change file so that all changes to
26192 previous sections preserve the section numbering; then everybody's version
26193 will be consistent with the published program. More extensive changes,
26194 which introduce new sections, can be inserted here; then only the index
26195 itself will get a new section number.
26196 @^system dependencies@>
26199 Here is where you can find all uses of each identifier in the program,
26200 with underlined entries pointing to where the identifier was defined.
26201 If the identifier is only one letter long, however, you get to see only
26202 the underlined entries. {\sl All references are to section numbers instead of
26205 This index also lists error messages and other aspects of the program
26206 that you might want to look up some day. For example, the entry
26207 for ``system dependencies'' lists all sections that should receive
26208 special attention from people who are installing \MP\ in a new
26209 operating environment. A list of various things that can't happen appears
26210 under ``this can't happen''.
26211 Approximately 25 sections are listed under ``inner loop''; these account
26212 for more than 60\pct! of \MP's running time, exclusive of input and output.