1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.10"
88 @d version_string " (Cweb version 0.10)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
215 mp->term_out = stdout;
218 void mp_free (MP mp) {
219 int k; /* loop variable */
220 @<Dealloc variables@>
225 void mp_do_initialize ( MP mp) {
226 @<Local variables for initialization@>
227 @<Set initial values of key variables@>
229 int mp_initialize (MP mp) { /* this procedure gets things started properly */
230 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
231 @<Install and test the non-local jump buffer@>;
232 t_open_out; /* open the terminal for output */
233 @<Check the ``constant'' values...@>;
235 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
236 "---case %i",(int)mp->bad);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,79);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_program = 1, /* \MP\ language input */
561 mp_filetype_log, /* the log file */
562 mp_filetype_postscript, /* the postscript output */
563 mp_filetype_text, /* text files for readfrom and writeto primitives */
564 mp_filetype_memfile, /* memory dumps */
565 mp_filetype_metrics, /* TeX font metric files */
566 mp_filetype_fontmap, /* PostScript font mapping files */
567 mp_filetype_font, /* PostScript type1 font programs */
568 mp_filetype_encoding, /* PostScript font encoding files */
570 typedef char *(*mp_file_finder)(char *, char *, int);
573 mp_file_finder find_file;
575 @ @<Option variables@>=
576 mp_file_finder find_file;
578 @ The default function for finding files is |mp_find_file|. It is
579 pretty stupid: it will only find files in the current directory.
582 char *mp_find_file (char *fname, char *fmode, int ftype) {
583 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
584 return strdup(fname);
588 @ This has to be done very early on, so it is best to put it in with
589 the |mp_new| allocations
591 @d set_callback_option(A) do { mp->A = mp_##A;
592 if (opt->A!=NULL) mp->A = opt->A;
595 @<Allocate or initialize ...@>=
596 set_callback_option(find_file);
598 @ Because |mp_find_file| is used so early, it has to be in the helpers
602 char *mp_find_file (char *fname, char *fmode, int ftype) ;
604 @ The function to open files can now be very short.
607 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
608 char *s = (mp->find_file)(fname,fmode,ftype);
610 FILE *f = fopen(s, fmode);
617 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
620 char name_of_file[file_name_size+1]; /* the name of a system file */
621 int name_length;/* this many characters are actually
622 relevant in |name_of_file| (the rest are blank) */
623 boolean print_found_names; /* configuration parameter */
625 @ @<Option variables@>=
626 int print_found_names; /* configuration parameter */
628 @ If this parameter is true, the terminal and log will report the found
629 file names for input files instead of the requested ones.
630 It is off by default because it creates an extra filename lookup.
632 @<Allocate or initialize ...@>=
633 mp->print_found_names = (opt->print_found_names>0 ? true : false);
635 @ \MP's file-opening procedures return |false| if no file identified by
636 |name_of_file| could be opened.
638 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
639 It is not used for opening a mem file for read, because that file name
643 if (mp->print_found_names) {
644 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
646 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
647 strncpy(mp->name_of_file,s,file_name_size);
653 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
656 return (*f ? true : false)
659 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
660 /* open a text file for input */
664 boolean mp_w_open_in (MP mp, FILE **f) {
665 /* open a word file for input */
666 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
667 return (*f ? true : false);
670 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
671 /* open a text file for output */
675 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
676 /* open a binary file for output */
680 boolean mp_w_open_out (MP mp, FILE**f) {
681 /* open a word file for output */
682 int ftype = mp_filetype_memfile;
687 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
689 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
690 procedures, so we don't have to make any other special arrangements for
691 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
692 The treatment of text input is more difficult, however, because
693 of the necessary translation to |ASCII_code| values.
694 \MP's conventions should be efficient, and they should
695 blend nicely with the user's operating environment.
697 @ Input from text files is read one line at a time, using a routine called
698 |input_ln|. This function is defined in terms of global variables called
699 |buffer|, |first|, and |last| that will be described in detail later; for
700 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
701 values, and that |first| and |last| are indices into this array
702 representing the beginning and ending of a line of text.
705 size_t buf_size; /* maximum number of characters simultaneously present in
706 current lines of open files */
707 ASCII_code *buffer; /* lines of characters being read */
708 size_t first; /* the first unused position in |buffer| */
709 size_t last; /* end of the line just input to |buffer| */
710 size_t max_buf_stack; /* largest index used in |buffer| */
712 @ @<Allocate or initialize ...@>=
714 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
716 @ @<Dealloc variables@>=
720 void mp_reallocate_buffer(MP mp, size_t l) {
722 if (l>max_halfword) {
723 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
725 buffer = xmalloc((l+1),sizeof(ASCII_code));
726 memcpy(buffer,mp->buffer,(mp->buf_size+1));
728 mp->buffer = buffer ;
732 @ The |input_ln| function brings the next line of input from the specified
733 field into available positions of the buffer array and returns the value
734 |true|, unless the file has already been entirely read, in which case it
735 returns |false| and sets |last:=first|. In general, the |ASCII_code|
736 numbers that represent the next line of the file are input into
737 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
738 global variable |last| is set equal to |first| plus the length of the
739 line. Trailing blanks are removed from the line; thus, either |last=first|
740 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
743 An overflow error is given, however, if the normal actions of |input_ln|
744 would make |last>=buf_size|; this is done so that other parts of \MP\
745 can safely look at the contents of |buffer[last+1]| without overstepping
746 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
747 |first<buf_size| will always hold, so that there is always room for an
750 The variable |max_buf_stack|, which is used to keep track of how large
751 the |buf_size| parameter must be to accommodate the present job, is
752 also kept up to date by |input_ln|.
754 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
755 before looking at the first character of the line; this skips over
756 an |eoln| that was in |f^|. The procedure does not do a |get| when it
757 reaches the end of the line; therefore it can be used to acquire input
758 from the user's terminal as well as from ordinary text files.
760 Standard \PASCAL\ says that a file should have |eoln| immediately
761 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
762 occurs in the middle of a line, the system function |eoln| should return
763 a |true| result (even though |f^| will be undefined).
766 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
767 /* inputs the next line or returns |false| */
768 int last_nonblank; /* |last| with trailing blanks removed */
774 if (c!='\n' && c!='\r') {
778 /* input the first character of the line into |f^| */
779 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
783 last_nonblank=mp->first;
784 while (c!=EOF && c!='\n' && c!='\r') {
785 if ( mp->last>=mp->max_buf_stack ) {
786 mp->max_buf_stack=mp->last+1;
787 if ( mp->max_buf_stack==mp->buf_size ) {
788 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
791 mp->buffer[mp->last]=xord(c);
793 if ( mp->buffer[mp->last-1]!=' ' )
794 last_nonblank=mp->last;
800 mp->last=last_nonblank;
804 @ The user's terminal acts essentially like other files of text, except
805 that it is used both for input and for output. When the terminal is
806 considered an input file, the file variable is called |term_in|, and when it
807 is considered an output file the file variable is |term_out|.
808 @^system dependencies@>
811 FILE * term_in; /* the terminal as an input file */
812 FILE * term_out; /* the terminal as an output file */
814 @ Here is how to open the terminal files. In the default configuration,
815 nothing happens except that the command line (if there is one) is copied
816 to the input buffer. The variable |command_line| will be filled by the
817 |main| procedure. The copying can not be done earlier in the program
818 logic because in the |INI| version, the |buffer| is also used for primitive
821 @^system dependencies@>
823 @d t_open_out /* open the terminal for text output */
824 @d t_open_in do { /* open the terminal for text input */
825 if (mp->command_line!=NULL) {
826 mp->last = strlen(mp->command_line);
827 strncpy((char *)mp->buffer,mp->command_line,mp->last);
828 xfree(mp->command_line);
835 @ @<Option variables@>=
838 @ @<Allocate or initialize ...@>=
839 mp->command_line = opt->command_line;
841 @ Sometimes it is necessary to synchronize the input/output mixture that
842 happens on the user's terminal, and three system-dependent
843 procedures are used for this
844 purpose. The first of these, |update_terminal|, is called when we want
845 to make sure that everything we have output to the terminal so far has
846 actually left the computer's internal buffers and been sent.
847 The second, |clear_terminal|, is called when we wish to cancel any
848 input that the user may have typed ahead (since we are about to
849 issue an unexpected error message). The third, |wake_up_terminal|,
850 is supposed to revive the terminal if the user has disabled it by
851 some instruction to the operating system. The following macros show how
852 these operations can be specified in \ph:
853 @^system dependencies@>
855 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
856 @d clear_terminal do_nothing /* clear the terminal input buffer */
857 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
859 @ We need a special routine to read the first line of \MP\ input from
860 the user's terminal. This line is different because it is read before we
861 have opened the transcript file; there is sort of a ``chicken and
862 egg'' problem here. If the user types `\.{input cmr10}' on the first
863 line, or if some macro invoked by that line does such an \.{input},
864 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
865 commands are performed during the first line of terminal input, the transcript
866 file will acquire its default name `\.{mpout.log}'. (The transcript file
867 will not contain error messages generated by the first line before the
868 first \.{input} command.)
870 The first line is even more special if we are lucky enough to have an operating
871 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
872 program. It's nice to let the user start running a \MP\ job by typing
873 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
874 as if the first line of input were `\.{cmr10}', i.e., the first line will
875 consist of the remainder of the command line, after the part that invoked \MP.
877 @ Different systems have different ways to get started. But regardless of
878 what conventions are adopted, the routine that initializes the terminal
879 should satisfy the following specifications:
881 \yskip\textindent{1)}It should open file |term_in| for input from the
882 terminal. (The file |term_out| will already be open for output to the
885 \textindent{2)}If the user has given a command line, this line should be
886 considered the first line of terminal input. Otherwise the
887 user should be prompted with `\.{**}', and the first line of input
888 should be whatever is typed in response.
890 \textindent{3)}The first line of input, which might or might not be a
891 command line, should appear in locations |first| to |last-1| of the
894 \textindent{4)}The global variable |loc| should be set so that the
895 character to be read next by \MP\ is in |buffer[loc]|. This
896 character should not be blank, and we should have |loc<last|.
898 \yskip\noindent(It may be necessary to prompt the user several times
899 before a non-blank line comes in. The prompt is `\.{**}' instead of the
900 later `\.*' because the meaning is slightly different: `\.{input}' need
901 not be typed immediately after~`\.{**}'.)
903 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
905 @ The following program does the required initialization
906 without retrieving a possible command line.
907 It should be clear how to modify this routine to deal with command lines,
908 if the system permits them.
909 @^system dependencies@>
912 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
919 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
921 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
922 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
923 @.End of file on the terminal@>
927 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
929 if ( loc<(int)mp->last ) {
930 return true; /* return unless the line was all blank */
932 fprintf(mp->term_out,"Please type the name of your input file.\n");
937 boolean mp_init_terminal (MP mp) ;
940 @* \[4] String handling.
941 Symbolic token names and diagnostic messages are variable-length strings
942 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
943 mechanism, \MP\ does all of its string processing by homegrown methods.
945 \MP\ uses strings more extensively than \MF\ does, but the necessary
946 operations can still be handled with a fairly simple data structure.
947 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
948 of the strings, and the array |str_start| contains indices of the starting
949 points of each string. Strings are referred to by integer numbers, so that
950 string number |s| comprises the characters |str_pool[j]| for
951 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
952 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
953 location. The first string number not currently in use is |str_ptr|
954 and |next_str[str_ptr]| begins a list of free string numbers. String
955 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
956 string currently being constructed.
958 String numbers 0 to 255 are reserved for strings that correspond to single
959 ASCII characters. This is in accordance with the conventions of \.{WEB},
961 which converts single-character strings into the ASCII code number of the
962 single character involved, while it converts other strings into integers
963 and builds a string pool file. Thus, when the string constant \.{"."} appears
964 in the program below, \.{WEB} converts it into the integer 46, which is the
965 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
966 into some integer greater than~255. String number 46 will presumably be the
967 single character `\..'\thinspace; but some ASCII codes have no standard visible
968 representation, and \MP\ may need to be able to print an arbitrary
969 ASCII character, so the first 256 strings are used to specify exactly what
970 should be printed for each of the 256 possibilities.
973 typedef int pool_pointer; /* for variables that point into |str_pool| */
974 typedef int str_number; /* for variables that point into |str_start| */
977 ASCII_code *str_pool; /* the characters */
978 pool_pointer *str_start; /* the starting pointers */
979 str_number *next_str; /* for linking strings in order */
980 pool_pointer pool_ptr; /* first unused position in |str_pool| */
981 str_number str_ptr; /* number of the current string being created */
982 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
983 str_number init_str_use; /* the initial number of strings in use */
984 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
985 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
987 @ @<Allocate or initialize ...@>=
988 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
989 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
990 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
992 @ @<Dealloc variables@>=
994 xfree(mp->str_start);
997 @ Most printing is done from |char *|s, but sometimes not. Here are
998 functions that convert an internal string into a |char *| for use
999 by the printing routines, and vice versa.
1001 @d str(A) mp_str(mp,A)
1002 @d rts(A) mp_rts(mp,A)
1005 int mp_xstrcmp (const char *a, const char *b);
1006 char * mp_str (MP mp, str_number s);
1009 str_number mp_rts (MP mp, char *s);
1010 str_number mp_make_string (MP mp);
1012 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1013 very good: it does not handle nesting over more than one level.
1016 int mp_xstrcmp (const char *a, const char *b) {
1017 if (a==NULL && b==NULL)
1027 char * mp_str (MP mp, str_number ss) {
1030 if (ss==mp->str_ptr) {
1034 s = xmalloc(len+1,sizeof(char));
1035 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1040 str_number mp_rts (MP mp, char *s) {
1041 int r; /* the new string */
1042 int old; /* a possible string in progress */
1046 } else if (strlen(s)==1) {
1050 str_room((integer)strlen(s));
1051 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1052 old = mp_make_string(mp);
1057 r = mp_make_string(mp);
1059 str_room(length(old));
1060 while (i<length(old)) {
1061 append_char((mp->str_start[old]+i));
1063 mp_flush_string(mp,old);
1069 @ Except for |strs_used_up|, the following string statistics are only
1070 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1074 integer strs_used_up; /* strings in use or unused but not reclaimed */
1075 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1076 integer strs_in_use; /* total number of strings actually in use */
1077 integer max_pl_used; /* maximum |pool_in_use| so far */
1078 integer max_strs_used; /* maximum |strs_in_use| so far */
1080 @ Several of the elementary string operations are performed using \.{WEB}
1081 macros instead of \PASCAL\ procedures, because many of the
1082 operations are done quite frequently and we want to avoid the
1083 overhead of procedure calls. For example, here is
1084 a simple macro that computes the length of a string.
1087 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1089 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1091 @ The length of the current string is called |cur_length|. If we decide that
1092 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1093 |cur_length| becomes zero.
1095 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1096 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1098 @ Strings are created by appending character codes to |str_pool|.
1099 The |append_char| macro, defined here, does not check to see if the
1100 value of |pool_ptr| has gotten too high; this test is supposed to be
1101 made before |append_char| is used.
1103 To test if there is room to append |l| more characters to |str_pool|,
1104 we shall write |str_room(l)|, which tries to make sure there is enough room
1105 by compacting the string pool if necessary. If this does not work,
1106 |do_compaction| aborts \MP\ and gives an apologetic error message.
1108 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1109 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1111 @d str_room(A) /* make sure that the pool hasn't overflowed */
1112 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1113 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1114 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1117 @ The following routine is similar to |str_room(1)| but it uses the
1118 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1119 string space is exhausted.
1121 @<Declare the procedure called |unit_str_room|@>=
1122 void mp_unit_str_room (MP mp);
1125 void mp_unit_str_room (MP mp) {
1126 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1127 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1130 @ \MP's string expressions are implemented in a brute-force way: Every
1131 new string or substring that is needed is simply copied into the string pool.
1132 Space is eventually reclaimed by a procedure called |do_compaction| with
1133 the aid of a simple system system of reference counts.
1134 @^reference counts@>
1136 The number of references to string number |s| will be |str_ref[s]|. The
1137 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1138 positive number of references; such strings will never be recycled. If
1139 a string is ever referred to more than 126 times, simultaneously, we
1140 put it in this category. Hence a single byte suffices to store each |str_ref|.
1142 @d max_str_ref 127 /* ``infinite'' number of references */
1143 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1149 @ @<Allocate or initialize ...@>=
1150 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1152 @ @<Dealloc variables@>=
1155 @ Here's what we do when a string reference disappears:
1157 @d delete_str_ref(A) {
1158 if ( mp->str_ref[(A)]<max_str_ref ) {
1159 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1160 else mp_flush_string(mp, (A));
1164 @<Declare the procedure called |flush_string|@>=
1165 void mp_flush_string (MP mp,str_number s) ;
1168 @ We can't flush the first set of static strings at all, so there
1169 is no point in trying
1172 void mp_flush_string (MP mp,str_number s) {
1174 mp->pool_in_use=mp->pool_in_use-length(s);
1175 decr(mp->strs_in_use);
1176 if ( mp->next_str[s]!=mp->str_ptr ) {
1180 decr(mp->strs_used_up);
1182 mp->pool_ptr=mp->str_start[mp->str_ptr];
1186 @ C literals cannot be simply added, they need to be set so they can't
1189 @d intern(A) mp_intern(mp,(A))
1192 str_number mp_intern (MP mp, char *s) {
1195 mp->str_ref[r] = max_str_ref;
1200 str_number mp_intern (MP mp, char *s);
1203 @ Once a sequence of characters has been appended to |str_pool|, it
1204 officially becomes a string when the function |make_string| is called.
1205 This function returns the identification number of the new string as its
1208 When getting the next unused string number from the linked list, we pretend
1210 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1211 are linked sequentially even though the |next_str| entries have not been
1212 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1213 |do_compaction| is responsible for making sure of this.
1216 @<Declare the procedure called |do_compaction|@>;
1217 @<Declare the procedure called |unit_str_room|@>;
1218 str_number mp_make_string (MP mp);
1221 str_number mp_make_string (MP mp) { /* current string enters the pool */
1222 str_number s; /* the new string */
1225 mp->str_ptr=mp->next_str[s];
1226 if ( mp->str_ptr>mp->max_str_ptr ) {
1227 if ( mp->str_ptr==mp->max_strings ) {
1229 mp_do_compaction(mp, 0);
1233 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1234 @:this can't happen s}{\quad \.s@>
1236 mp->max_str_ptr=mp->str_ptr;
1237 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1241 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1242 incr(mp->strs_used_up);
1243 incr(mp->strs_in_use);
1244 mp->pool_in_use=mp->pool_in_use+length(s);
1245 if ( mp->pool_in_use>mp->max_pl_used )
1246 mp->max_pl_used=mp->pool_in_use;
1247 if ( mp->strs_in_use>mp->max_strs_used )
1248 mp->max_strs_used=mp->strs_in_use;
1252 @ The most interesting string operation is string pool compaction. The idea
1253 is to recover unused space in the |str_pool| array by recopying the strings
1254 to close the gaps created when some strings become unused. All string
1255 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1256 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1257 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1258 with |needed=mp->pool_size| supresses all overflow tests.
1260 The compaction process starts with |last_fixed_str| because all lower numbered
1261 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1264 str_number last_fixed_str; /* last permanently allocated string */
1265 str_number fixed_str_use; /* number of permanently allocated strings */
1267 @ @<Declare the procedure called |do_compaction|@>=
1268 void mp_do_compaction (MP mp, pool_pointer needed) ;
1271 void mp_do_compaction (MP mp, pool_pointer needed) {
1272 str_number str_use; /* a count of strings in use */
1273 str_number r,s,t; /* strings being manipulated */
1274 pool_pointer p,q; /* destination and source for copying string characters */
1275 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1276 r=mp->last_fixed_str;
1279 while ( s!=mp->str_ptr ) {
1280 while ( mp->str_ref[s]==0 ) {
1281 @<Advance |s| and add the old |s| to the list of free string numbers;
1282 then |break| if |s=str_ptr|@>;
1284 r=s; s=mp->next_str[s];
1286 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1287 after the end of the string@>;
1289 @<Move the current string back so that it starts at |p|@>;
1290 if ( needed<mp->pool_size ) {
1291 @<Make sure that there is room for another string with |needed| characters@>;
1293 @<Account for the compaction and make sure the statistics agree with the
1295 mp->strs_used_up=str_use;
1298 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1299 t=mp->next_str[mp->last_fixed_str];
1300 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1301 incr(mp->fixed_str_use);
1302 mp->last_fixed_str=t;
1305 str_use=mp->fixed_str_use
1307 @ Because of the way |flush_string| has been written, it should never be
1308 necessary to |break| here. The extra line of code seems worthwhile to
1309 preserve the generality of |do_compaction|.
1311 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1316 mp->next_str[t]=mp->next_str[mp->str_ptr];
1317 mp->next_str[mp->str_ptr]=t;
1318 if ( s==mp->str_ptr ) break;
1321 @ The string currently starts at |str_start[r]| and ends just before
1322 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1323 to locate the next string.
1325 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1328 while ( q<mp->str_start[s] ) {
1329 mp->str_pool[p]=mp->str_pool[q];
1333 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1334 we do this, anything between them should be moved.
1336 @ @<Move the current string back so that it starts at |p|@>=
1337 q=mp->str_start[mp->str_ptr];
1338 mp->str_start[mp->str_ptr]=p;
1339 while ( q<mp->pool_ptr ) {
1340 mp->str_pool[p]=mp->str_pool[q];
1345 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1347 @<Make sure that there is room for another string with |needed| char...@>=
1348 if ( str_use>=mp->max_strings-1 )
1349 mp_reallocate_strings (mp,str_use);
1350 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1351 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1352 mp->max_pool_ptr=mp->pool_ptr+needed;
1356 void mp_reallocate_strings (MP mp, str_number str_use) ;
1357 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1360 void mp_reallocate_strings (MP mp, str_number str_use) {
1361 while ( str_use>=mp->max_strings-1 ) {
1362 int l = mp->max_strings + (mp->max_strings>>2);
1363 XREALLOC (mp->str_ref, l, int);
1364 XREALLOC (mp->str_start, l, pool_pointer);
1365 XREALLOC (mp->next_str, l, str_number);
1366 mp->max_strings = l;
1369 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1370 while ( needed>mp->pool_size ) {
1371 int l = mp->pool_size + (mp->pool_size>>2);
1372 XREALLOC (mp->str_pool, l, ASCII_code);
1377 @ @<Account for the compaction and make sure the statistics agree with...@>=
1378 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1379 mp_confusion(mp, "string");
1380 @:this can't happen string}{\quad string@>
1381 incr(mp->pact_count);
1382 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1383 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1385 s=mp->str_ptr; t=str_use;
1386 while ( s<=mp->max_str_ptr ){
1387 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1388 incr(t); s=mp->next_str[s];
1390 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1393 @ A few more global variables are needed to keep track of statistics when
1394 |stat| $\ldots$ |tats| blocks are not commented out.
1397 integer pact_count; /* number of string pool compactions so far */
1398 integer pact_chars; /* total number of characters moved during compactions */
1399 integer pact_strs; /* total number of strings moved during compactions */
1401 @ @<Initialize compaction statistics@>=
1406 @ The following subroutine compares string |s| with another string of the
1407 same length that appears in |buffer| starting at position |k|;
1408 the result is |true| if and only if the strings are equal.
1411 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1412 /* test equality of strings */
1413 pool_pointer j; /* running index */
1415 while ( j<str_stop(s) ) {
1416 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1422 @ Here is a similar routine, but it compares two strings in the string pool,
1423 and it does not assume that they have the same length. If the first string
1424 is lexicographically greater than, less than, or equal to the second,
1425 the result is respectively positive, negative, or zero.
1428 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1429 /* test equality of strings */
1430 pool_pointer j,k; /* running indices */
1431 integer ls,lt; /* lengths */
1432 integer l; /* length remaining to test */
1433 ls=length(s); lt=length(t);
1434 if ( ls<=lt ) l=ls; else l=lt;
1435 j=mp->str_start[s]; k=mp->str_start[t];
1437 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1438 return (mp->str_pool[j]-mp->str_pool[k]);
1445 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1446 and |str_ptr| are computed by the \.{INIMP} program, based in part
1447 on the information that \.{WEB} has output while processing \MP.
1452 void mp_get_strings_started (MP mp) {
1453 /* initializes the string pool,
1454 but returns |false| if something goes wrong */
1455 int k; /* small indices or counters */
1456 str_number g; /* a new string */
1457 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1460 mp->pool_in_use=0; mp->strs_in_use=0;
1461 mp->max_pl_used=0; mp->max_strs_used=0;
1462 @<Initialize compaction statistics@>;
1464 @<Make the first 256 strings@>;
1465 g=mp_make_string(mp); /* string 256 == "" */
1466 mp->str_ref[g]=max_str_ref;
1467 mp->last_fixed_str=mp->str_ptr-1;
1468 mp->fixed_str_use=mp->str_ptr;
1473 void mp_get_strings_started (MP mp);
1475 @ The first 256 strings will consist of a single character only.
1477 @<Make the first 256...@>=
1478 for (k=0;k<=255;k++) {
1480 g=mp_make_string(mp);
1481 mp->str_ref[g]=max_str_ref;
1484 @ The first 128 strings will contain 95 standard ASCII characters, and the
1485 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1486 unless a system-dependent change is made here. Installations that have
1487 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1488 would like string 032 to be printed as the single character 032 instead
1489 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1490 even people with an extended character set will want to represent string
1491 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1492 to produce visible strings instead of tabs or line-feeds or carriage-returns
1493 or bell-rings or characters that are treated anomalously in text files.
1495 Unprintable characters of codes 128--255 are, similarly, rendered
1496 \.{\^\^80}--\.{\^\^ff}.
1498 The boolean expression defined here should be |true| unless \MP\ internal
1499 code number~|k| corresponds to a non-troublesome visible symbol in the
1500 local character set.
1501 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1502 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1504 @^character set dependencies@>
1505 @^system dependencies@>
1507 @<Character |k| cannot be printed@>=
1510 @* \[5] On-line and off-line printing.
1511 Messages that are sent to a user's terminal and to the transcript-log file
1512 are produced by several `|print|' procedures. These procedures will
1513 direct their output to a variety of places, based on the setting of
1514 the global variable |selector|, which has the following possible
1518 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1521 \hang |log_only|, prints only on the transcript file.
1523 \hang |term_only|, prints only on the terminal.
1525 \hang |no_print|, doesn't print at all. This is used only in rare cases
1526 before the transcript file is open.
1528 \hang |ps_file_only| prints only on the \ps\ output file.
1530 \hang |pseudo|, puts output into a cyclic buffer that is used
1531 by the |show_context| routine; when we get to that routine we shall discuss
1532 the reasoning behind this curious mode.
1534 \hang |new_string|, appends the output to the current string in the
1537 \hang |>=write_file| prints on one of the files used for the \&{write}
1538 @:write_}{\&{write} primitive@>
1542 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1543 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1544 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1545 relations are not used when |selector| could be |pseudo|, |new_string|,
1546 or |ps_file_only|. We need not check for unprintable characters when
1549 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1550 and |ps_offset| record the number of characters that have been printed
1551 since they were most recently cleared to zero. We use |tally| to record
1552 the length of (possibly very long) stretches of printing; |term_offset|,
1553 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1554 characters have appeared so far on the current line that has been output
1555 to the terminal, the transcript file, or the \ps\ output file, respectively.
1557 @d new_string 0 /* printing is deflected to the string pool */
1558 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1559 @d pseudo 2 /* special |selector| setting for |show_context| */
1560 @d no_print 3 /* |selector| setting that makes data disappear */
1561 @d term_only 4 /* printing is destined for the terminal only */
1562 @d log_only 5 /* printing is destined for the transcript file only */
1563 @d term_and_log 6 /* normal |selector| setting */
1564 @d write_file 7 /* first write file selector */
1567 FILE * log_file; /* transcript of \MP\ session */
1568 FILE * ps_file; /* the generic font output goes here */
1569 unsigned int selector; /* where to print a message */
1570 unsigned char dig[23]; /* digits in a number being output */
1571 integer tally; /* the number of characters recently printed */
1572 unsigned int term_offset;
1573 /* the number of characters on the current terminal line */
1574 unsigned int file_offset;
1575 /* the number of characters on the current file line */
1577 /* the number of characters on the current \ps\ file line */
1578 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1579 integer trick_count; /* threshold for pseudoprinting, explained later */
1580 integer first_count; /* another variable for pseudoprinting */
1582 @ @<Allocate or initialize ...@>=
1583 memset(mp->dig,0,23);
1584 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1586 @ @<Dealloc variables@>=
1587 xfree(mp->trick_buf);
1589 @ @<Initialize the output routines@>=
1590 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1592 @ Macro abbreviations for output to the terminal and to the log file are
1593 defined here for convenience. Some systems need special conventions
1594 for terminal output, and it is possible to adhere to those conventions
1595 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1596 @^system dependencies@>
1598 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1599 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1600 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1601 @d wterm_cr fprintf(mp->term_out,"\n")
1602 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1603 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1604 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1605 @d wlog_cr fprintf(mp->log_file, "\n")
1606 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1607 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1608 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1609 @d wps_cr fprintf(mp->ps_file,"\n")
1611 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1612 use an array |wr_file| that will be declared later.
1614 @d mp_print_text(A) mp_print_str(mp,text((A)))
1617 void mp_print_ln (MP mp);
1618 void mp_print_visible_char (MP mp, ASCII_code s);
1619 void mp_print_char (MP mp, ASCII_code k);
1620 void mp_print (MP mp, char *s);
1621 void mp_print_str (MP mp, str_number s);
1622 void mp_print_nl (MP mp, char *s);
1623 void mp_print_two (MP mp,scaled x, scaled y) ;
1624 void mp_print_scaled (MP mp,scaled s);
1626 @ @<Basic print...@>=
1627 void mp_print_ln (MP mp) { /* prints an end-of-line */
1628 switch (mp->selector) {
1631 mp->term_offset=0; mp->file_offset=0;
1634 wlog_cr; mp->file_offset=0;
1637 wterm_cr; mp->term_offset=0;
1640 wps_cr; mp->ps_offset=0;
1647 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1649 } /* note that |tally| is not affected */
1651 @ The |print_visible_char| procedure sends one character to the desired
1652 destination, using the |xchr| array to map it into an external character
1653 compatible with |input_ln|. (It assumes that it is always called with
1654 a visible ASCII character.) All printing comes through |print_ln| or
1655 |print_char|, which ultimately calls |print_visible_char|, hence these
1656 routines are the ones that limit lines to at most |max_print_line| characters.
1657 But we must make an exception for the \ps\ output file since it is not safe
1658 to cut up lines arbitrarily in \ps.
1660 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1661 |do_compaction| and |do_compaction| can call the error routines. Actually,
1662 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1664 @<Basic printing...@>=
1665 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1666 switch (mp->selector) {
1668 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1669 incr(mp->term_offset); incr(mp->file_offset);
1670 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1671 wterm_cr; mp->term_offset=0;
1673 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1674 wlog_cr; mp->file_offset=0;
1678 wlog_chr(xchr(s)); incr(mp->file_offset);
1679 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1682 wterm_chr(xchr(s)); incr(mp->term_offset);
1683 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1687 wps_cr; mp->ps_offset=0;
1689 wps_chr(xchr(s)); incr(mp->ps_offset);
1695 if ( mp->tally<mp->trick_count )
1696 mp->trick_buf[mp->tally % mp->error_line]=s;
1699 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1700 mp_unit_str_room(mp);
1701 if ( mp->pool_ptr>=mp->pool_size )
1702 goto DONE; /* drop characters if string space is full */
1707 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",xchr(s));
1713 @ The |print_char| procedure sends one character to the desired destination.
1714 File names and string expressions might contain |ASCII_code| values that
1715 can't be printed using |print_visible_char|. These characters will be
1716 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1717 (This procedure assumes that it is safe to bypass all checks for unprintable
1718 characters when |selector| is in the range |0..max_write_files-1| or when
1719 |selector=ps_file_only|. In the former case the user might want to write
1720 unprintable characters, and in the latter case the \ps\ printing routines
1721 check their arguments themselves before calling |print_char| or |print|.)
1723 @d print_lc_hex(A) do { l=(A);
1724 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1727 @<Basic printing...@>=
1728 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1729 int l; /* small index or counter */
1730 if ( mp->selector<pseudo || mp->selector>=write_file) {
1731 mp_print_visible_char(mp, k);
1732 } else if ( @<Character |k| cannot be printed@> ) {
1735 mp_print_visible_char(mp, k+0100);
1736 } else if ( k<0200 ) {
1737 mp_print_visible_char(mp, k-0100);
1739 print_lc_hex(k / 16);
1740 print_lc_hex(k % 16);
1743 mp_print_visible_char(mp, k);
1747 @ An entire string is output by calling |print|. Note that if we are outputting
1748 the single standard ASCII character \.c, we could call |print("c")|, since
1749 |"c"=99| is the number of a single-character string, as explained above. But
1750 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1751 routine when it knows that this is safe. (The present implementation
1752 assumes that it is always safe to print a visible ASCII character.)
1753 @^system dependencies@>
1756 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1759 mp_print_char(mp, ss[j]); incr(j);
1765 void mp_print (MP mp, char *ss) {
1766 mp_do_print(mp, ss, strlen(ss));
1768 void mp_print_str (MP mp, str_number s) {
1769 pool_pointer j; /* current character code position */
1770 if ( (s<0)||(s>mp->max_str_ptr) ) {
1771 mp_do_print(mp,"???",3); /* this can't happen */
1775 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1779 @ Here is the very first thing that \MP\ prints: a headline that identifies
1780 the version number and base name. The |term_offset| variable is temporarily
1781 incorrect, but the discrepancy is not serious since we assume that the banner
1782 and mem identifier together will occupy at most |max_print_line|
1783 character positions.
1785 @<Initialize the output...@>=
1787 wterm (version_string);
1788 if (mp->mem_ident!=NULL)
1789 mp_print(mp,mp->mem_ident);
1793 @ The procedure |print_nl| is like |print|, but it makes sure that the
1794 string appears at the beginning of a new line.
1797 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1798 switch(mp->selector) {
1800 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1803 if ( mp->file_offset>0 ) mp_print_ln(mp);
1806 if ( mp->term_offset>0 ) mp_print_ln(mp);
1809 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1815 } /* there are no other cases */
1819 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1822 void mp_print_the_digs (MP mp, eight_bits k) {
1823 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1825 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1829 @ The following procedure, which prints out the decimal representation of a
1830 given integer |n|, has been written carefully so that it works properly
1831 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1832 to negative arguments, since such operations are not implemented consistently
1833 by all \PASCAL\ compilers.
1836 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1837 integer m; /* used to negate |n| in possibly dangerous cases */
1838 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1840 mp_print_char(mp, '-');
1841 if ( n>-100000000 ) {
1844 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1848 mp->dig[0]=0; incr(n);
1853 mp->dig[k]=n % 10; n=n / 10; incr(k);
1855 mp_print_the_digs(mp, k);
1859 void mp_print_int (MP mp,integer n);
1861 @ \MP\ also makes use of a trivial procedure to print two digits. The
1862 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1865 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1867 mp_print_char(mp, '0'+(n / 10));
1868 mp_print_char(mp, '0'+(n % 10));
1873 void mp_print_dd (MP mp,integer n);
1875 @ Here is a procedure that asks the user to type a line of input,
1876 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1877 The input is placed into locations |first| through |last-1| of the
1878 |buffer| array, and echoed on the transcript file if appropriate.
1880 This procedure is never called when |interaction<mp_scroll_mode|.
1882 @d prompt_input(A) do {
1883 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1884 } while (0) /* prints a string and gets a line of input */
1887 void mp_term_input (MP mp) { /* gets a line from the terminal */
1888 size_t k; /* index into |buffer| */
1889 update_terminal; /* Now the user sees the prompt for sure */
1890 if (!mp_input_ln(mp, mp->term_in,true))
1891 mp_fatal_error(mp, "End of file on the terminal!");
1892 @.End of file on the terminal@>
1893 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1894 decr(mp->selector); /* prepare to echo the input */
1895 if ( mp->last!=mp->first ) {
1896 for (k=mp->first;k<=mp->last-1;k++) {
1897 mp_print_char(mp, mp->buffer[k]);
1901 mp->buffer[mp->last]='%';
1902 incr(mp->selector); /* restore previous status */
1905 @* \[6] Reporting errors.
1906 When something anomalous is detected, \MP\ typically does something like this:
1907 $$\vbox{\halign{#\hfil\cr
1908 |print_err("Something anomalous has been detected");|\cr
1909 |help3("This is the first line of my offer to help.")|\cr
1910 |("This is the second line. I'm trying to")|\cr
1911 |("explain the best way for you to proceed.");|\cr
1913 A two-line help message would be given using |help2|, etc.; these informal
1914 helps should use simple vocabulary that complements the words used in the
1915 official error message that was printed. (Outside the U.S.A., the help
1916 messages should preferably be translated into the local vernacular. Each
1917 line of help is at most 60 characters long, in the present implementation,
1918 so that |max_print_line| will not be exceeded.)
1920 The |print_err| procedure supplies a `\.!' before the official message,
1921 and makes sure that the terminal is awake if a stop is going to occur.
1922 The |error| procedure supplies a `\..' after the official message, then it
1923 shows the location of the error; and if |interaction=error_stop_mode|,
1924 it also enters into a dialog with the user, during which time the help
1925 message may be printed.
1926 @^system dependencies@>
1928 @ The global variable |interaction| has four settings, representing increasing
1929 amounts of user interaction:
1932 enum mp_interaction_mode {
1933 mp_unspecified_mode=0, /* extra value for command-line switch */
1934 mp_batch_mode, /* omits all stops and omits terminal output */
1935 mp_nonstop_mode, /* omits all stops */
1936 mp_scroll_mode, /* omits error stops */
1937 mp_error_stop_mode, /* stops at every opportunity to interact */
1941 int interaction; /* current level of interaction */
1943 @ @<Option variables@>=
1944 int interaction; /* current level of interaction */
1946 @ Set it here so it can be overwritten by the commandline
1948 @<Allocate or initialize ...@>=
1949 mp->interaction=opt->interaction;
1950 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1951 mp->interaction=mp_error_stop_mode;
1952 if (mp->interaction<mp_unspecified_mode)
1953 mp->interaction=mp_batch_mode;
1957 @d print_err(A) mp_print_err(mp,(A))
1960 void mp_print_err(MP mp, char * A);
1963 void mp_print_err(MP mp, char * A) {
1964 if ( mp->interaction==mp_error_stop_mode )
1966 mp_print_nl(mp, "! ");
1972 @ \MP\ is careful not to call |error| when the print |selector| setting
1973 might be unusual. The only possible values of |selector| at the time of
1976 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1977 and |log_file| not yet open);
1979 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1981 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1983 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1985 @<Initialize the print |selector| based on |interaction|@>=
1986 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1988 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1989 routine is active when |error| is called; this ensures that |get_next|
1990 will never be called recursively.
1993 The global variable |history| records the worst level of error that
1994 has been detected. It has four possible values: |spotless|, |warning_issued|,
1995 |error_message_issued|, and |fatal_error_stop|.
1997 Another global variable, |error_count|, is increased by one when an
1998 |error| occurs without an interactive dialog, and it is reset to zero at
1999 the end of every statement. If |error_count| reaches 100, \MP\ decides
2000 that there is no point in continuing further.
2003 enum mp_history_states {
2004 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2005 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2006 mp_error_message_issued, /* |history| value when |error| has been called */
2007 mp_fatal_error_stop, /* |history| value when termination was premature */
2011 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2012 int history; /* has the source input been clean so far? */
2013 int error_count; /* the number of scrolled errors since the last statement ended */
2015 @ The value of |history| is initially |fatal_error_stop|, but it will
2016 be changed to |spotless| if \MP\ survives the initialization process.
2018 @<Allocate or ...@>=
2019 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2021 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2022 error procedures near the beginning of the program. But the error procedures
2023 in turn use some other procedures, which need to be declared |forward|
2024 before we get to |error| itself.
2026 It is possible for |error| to be called recursively if some error arises
2027 when |get_next| is being used to delete a token, and/or if some fatal error
2028 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2030 is never more than two levels deep.
2033 void mp_get_next (MP mp);
2034 void mp_term_input (MP mp);
2035 void mp_show_context (MP mp);
2036 void mp_begin_file_reading (MP mp);
2037 void mp_open_log_file (MP mp);
2038 void mp_clear_for_error_prompt (MP mp);
2039 void mp_debug_help (MP mp);
2040 @<Declare the procedure called |flush_string|@>
2043 void mp_normalize_selector (MP mp);
2045 @ Individual lines of help are recorded in the array |help_line|, which
2046 contains entries in positions |0..(help_ptr-1)|. They should be printed
2047 in reverse order, i.e., with |help_line[0]| appearing last.
2049 @d hlp1(A) mp->help_line[0]=(A); }
2050 @d hlp2(A) mp->help_line[1]=(A); hlp1
2051 @d hlp3(A) mp->help_line[2]=(A); hlp2
2052 @d hlp4(A) mp->help_line[3]=(A); hlp3
2053 @d hlp5(A) mp->help_line[4]=(A); hlp4
2054 @d hlp6(A) mp->help_line[5]=(A); hlp5
2055 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2056 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2057 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2058 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2059 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2060 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2061 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2064 char * help_line[6]; /* helps for the next |error| */
2065 unsigned int help_ptr; /* the number of help lines present */
2066 boolean use_err_help; /* should the |err_help| string be shown? */
2067 str_number err_help; /* a string set up by \&{errhelp} */
2068 str_number filename_template; /* a string set up by \&{filenametemplate} */
2070 @ @<Allocate or ...@>=
2071 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2073 @ The |jump_out| procedure just cuts across all active procedure levels and
2074 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2075 whole program. It is used when there is no recovery from a particular error.
2077 The program uses a |jump_buf| to handle this, this is initialized at three
2078 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2079 of |mp_run|. Those are the only library enty points.
2081 @^system dependencies@>
2086 @ @<Install and test the non-local jump buffer@>=
2087 if (setjmp(mp->jump_buf) != 0) return mp->history;
2089 @ @<Setup the non-local jump buffer in |mp_new|@>=
2090 if (setjmp(mp->jump_buf) != 0) return NULL;
2092 @ If |mp->internal| is zero, then a crash occured during initialization,
2093 and it is not safe to run |mp_close_files_and_terminate|.
2096 void mp_jump_out (MP mp) {
2097 if(mp->internal!=NULL)
2098 mp_close_files_and_terminate(mp);
2099 longjmp(mp->jump_buf,1);
2102 @ Here now is the general |error| routine.
2105 void mp_error (MP mp) { /* completes the job of error reporting */
2106 ASCII_code c; /* what the user types */
2107 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2108 pool_pointer j; /* character position being printed */
2109 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2110 mp_print_char(mp, '.'); mp_show_context(mp);
2111 if ( mp->interaction==mp_error_stop_mode ) {
2112 @<Get user's advice and |return|@>;
2114 incr(mp->error_count);
2115 if ( mp->error_count==100 ) {
2116 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2117 @.That makes 100 errors...@>
2118 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2120 @<Put help message on the transcript file@>;
2122 void mp_warn (MP mp, char *msg) {
2123 int saved_selector = mp->selector;
2124 mp_normalize_selector(mp);
2125 mp_print_nl(mp,"Warning: ");
2127 mp->selector = saved_selector;
2130 @ @<Exported function ...@>=
2131 void mp_error (MP mp);
2132 void mp_warn (MP mp, char *msg);
2135 @ @<Get user's advice...@>=
2138 mp_clear_for_error_prompt(mp); prompt_input("? ");
2140 if ( mp->last==mp->first ) return;
2141 c=mp->buffer[mp->first];
2142 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2143 @<Interpret code |c| and |return| if done@>;
2146 @ It is desirable to provide an `\.E' option here that gives the user
2147 an easy way to return from \MP\ to the system editor, with the offending
2148 line ready to be edited. But such an extension requires some system
2149 wizardry, so the present implementation simply types out the name of the
2151 edited and the relevant line number.
2152 @^system dependencies@>
2155 typedef void (*mp_run_editor_command)(MP, char *, int);
2158 mp_run_editor_command run_editor;
2160 @ @<Option variables@>=
2161 mp_run_editor_command run_editor;
2163 @ @<Allocate or initialize ...@>=
2164 set_callback_option(run_editor);
2167 void mp_run_editor (MP mp, char *fname, int fline);
2169 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2170 mp_print_nl(mp, "You want to edit file ");
2171 @.You want to edit file x@>
2172 mp_print(mp, fname);
2173 mp_print(mp, " at line ");
2174 mp_print_int(mp, fline);
2175 mp->interaction=mp_scroll_mode;
2180 There is a secret `\.D' option available when the debugging routines haven't
2184 @<Interpret code |c| and |return| if done@>=
2186 case '0': case '1': case '2': case '3': case '4':
2187 case '5': case '6': case '7': case '8': case '9':
2188 if ( mp->deletions_allowed ) {
2189 @<Delete |c-"0"| tokens and |continue|@>;
2194 mp_debug_help(mp); continue;
2198 if ( mp->file_ptr>0 ){
2199 (mp->run_editor)(mp,
2200 str(mp->input_stack[mp->file_ptr].name_field),
2205 @<Print the help information and |continue|@>;
2208 @<Introduce new material from the terminal and |return|@>;
2210 case 'Q': case 'R': case 'S':
2211 @<Change the interaction level and |return|@>;
2214 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2219 @<Print the menu of available options@>
2221 @ @<Print the menu...@>=
2223 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2224 @.Type <return> to proceed...@>
2225 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2226 mp_print_nl(mp, "I to insert something, ");
2227 if ( mp->file_ptr>0 )
2228 mp_print(mp, "E to edit your file,");
2229 if ( mp->deletions_allowed )
2230 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2231 mp_print_nl(mp, "H for help, X to quit.");
2234 @ Here the author of \MP\ apologizes for making use of the numerical
2235 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2236 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2237 @^Knuth, Donald Ervin@>
2239 @<Change the interaction...@>=
2241 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2242 mp_print(mp, "OK, entering ");
2244 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2245 case 'R': mp_print(mp, "nonstopmode"); break;
2246 case 'S': mp_print(mp, "scrollmode"); break;
2247 } /* there are no other cases */
2248 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2251 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2252 contain the material inserted by the user; otherwise another prompt will
2253 be given. In order to understand this part of the program fully, you need
2254 to be familiar with \MP's input stacks.
2256 @<Introduce new material...@>=
2258 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2259 if ( mp->last>mp->first+1 ) {
2260 loc=mp->first+1; mp->buffer[mp->first]=' ';
2262 prompt_input("insert>"); loc=mp->first;
2265 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2268 @ We allow deletion of up to 99 tokens at a time.
2270 @<Delete |c-"0"| tokens...@>=
2272 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2273 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2274 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2278 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2279 @<Decrease the string reference count, if the current token is a string@>;
2282 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2283 help2("I have just deleted some text, as you asked.")
2284 ("You can now delete more, or insert, or whatever.");
2285 mp_show_context(mp);
2289 @ @<Print the help info...@>=
2291 if ( mp->use_err_help ) {
2292 @<Print the string |err_help|, possibly on several lines@>;
2293 mp->use_err_help=false;
2295 if ( mp->help_ptr==0 ) {
2296 help2("Sorry, I don't know how to help in this situation.")
2297 ("Maybe you should try asking a human?");
2300 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2301 } while (mp->help_ptr!=0);
2303 help4("Sorry, I already gave what help I could...")
2304 ("Maybe you should try asking a human?")
2305 ("An error might have occurred before I noticed any problems.")
2306 ("``If all else fails, read the instructions.''");
2310 @ @<Print the string |err_help|, possibly on several lines@>=
2311 j=mp->str_start[mp->err_help];
2312 while ( j<str_stop(mp->err_help) ) {
2313 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2314 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2315 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2316 else { incr(j); mp_print_char(mp, '%'); };
2320 @ @<Put help message on the transcript file@>=
2321 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2322 if ( mp->use_err_help ) {
2323 mp_print_nl(mp, "");
2324 @<Print the string |err_help|, possibly on several lines@>;
2326 while ( mp->help_ptr>0 ){
2327 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2331 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2334 @ In anomalous cases, the print selector might be in an unknown state;
2335 the following subroutine is called to fix things just enough to keep
2336 running a bit longer.
2339 void mp_normalize_selector (MP mp) {
2340 if ( mp->log_opened ) mp->selector=term_and_log;
2341 else mp->selector=term_only;
2342 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2343 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2346 @ The following procedure prints \MP's last words before dying.
2348 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2349 mp->interaction=mp_scroll_mode; /* no more interaction */
2350 if ( mp->log_opened ) mp_error(mp);
2351 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2352 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2356 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2357 mp_normalize_selector(mp);
2358 print_err("Emergency stop"); help1(s); succumb;
2362 @ @<Exported function ...@>=
2363 void mp_fatal_error (MP mp, char *s);
2366 @ Here is the most dreaded error message.
2369 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2370 mp_normalize_selector(mp);
2371 print_err("MetaPost capacity exceeded, sorry [");
2372 @.MetaPost capacity exceeded ...@>
2373 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2374 help2("If you really absolutely need more capacity,")
2375 ("you can ask a wizard to enlarge me.");
2380 void mp_overflow (MP mp, char *s, integer n);
2382 @ The program might sometime run completely amok, at which point there is
2383 no choice but to stop. If no previous error has been detected, that's bad
2384 news; a message is printed that is really intended for the \MP\
2385 maintenance person instead of the user (unless the user has been
2386 particularly diabolical). The index entries for `this can't happen' may
2387 help to pinpoint the problem.
2390 @<Internal library ...@>=
2391 void mp_confusion (MP mp,char *s);
2393 @ @<Error hand...@>=
2394 void mp_confusion (MP mp,char *s) {
2395 /* consistency check violated; |s| tells where */
2396 mp_normalize_selector(mp);
2397 if ( mp->history<mp_error_message_issued ) {
2398 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2399 @.This can't happen@>
2400 help1("I'm broken. Please show this to someone who can fix can fix");
2402 print_err("I can\'t go on meeting you like this");
2403 @.I can't go on...@>
2404 help2("One of your faux pas seems to have wounded me deeply...")
2405 ("in fact, I'm barely conscious. Please fix it and try again.");
2410 @ Users occasionally want to interrupt \MP\ while it's running.
2411 If the \PASCAL\ runtime system allows this, one can implement
2412 a routine that sets the global variable |interrupt| to some nonzero value
2413 when such an interrupt is signaled. Otherwise there is probably at least
2414 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2415 @^system dependencies@>
2418 @d check_interrupt { if ( mp->interrupt!=0 )
2419 mp_pause_for_instructions(mp); }
2422 integer interrupt; /* should \MP\ pause for instructions? */
2423 boolean OK_to_interrupt; /* should interrupts be observed? */
2425 @ @<Allocate or ...@>=
2426 mp->interrupt=0; mp->OK_to_interrupt=true;
2428 @ When an interrupt has been detected, the program goes into its
2429 highest interaction level and lets the user have the full flexibility of
2430 the |error| routine. \MP\ checks for interrupts only at times when it is
2434 void mp_pause_for_instructions (MP mp) {
2435 if ( mp->OK_to_interrupt ) {
2436 mp->interaction=mp_error_stop_mode;
2437 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2439 print_err("Interruption");
2442 ("Try to insert some instructions for me (e.g.,`I show x'),")
2443 ("unless you just want to quit by typing `X'.");
2444 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2449 @ Many of \MP's error messages state that a missing token has been
2450 inserted behind the scenes. We can save string space and program space
2451 by putting this common code into a subroutine.
2454 void mp_missing_err (MP mp, char *s) {
2455 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2456 @.Missing...inserted@>
2459 @* \[7] Arithmetic with scaled numbers.
2460 The principal computations performed by \MP\ are done entirely in terms of
2461 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2462 program can be carried out in exactly the same way on a wide variety of
2463 computers, including some small ones.
2466 But \PASCAL\ does not define the |div|
2467 operation in the case of negative dividends; for example, the result of
2468 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2469 There are two principal types of arithmetic: ``translation-preserving,''
2470 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2471 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2472 two \MP s, which can produce different results, although the differences
2473 should be negligible when the language is being used properly.
2474 The \TeX\ processor has been defined carefully so that both varieties
2475 of arithmetic will produce identical output, but it would be too
2476 inefficient to constrain \MP\ in a similar way.
2478 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2480 @ One of \MP's most common operations is the calculation of
2481 $\lfloor{a+b\over2}\rfloor$,
2482 the midpoint of two given integers |a| and~|b|. The only decent way to do
2483 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2484 far more efficient to calculate `|(a+b)| right shifted one bit'.
2486 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2487 in this program. If \MP\ is being implemented with languages that permit
2488 binary shifting, the |half| macro should be changed to make this operation
2489 as efficient as possible. Since some languages have shift operators that can
2490 only be trusted to work on positive numbers, there is also a macro |halfp|
2491 that is used only when the quantity being halved is known to be positive
2494 @d half(A) ((A) / 2)
2495 @d halfp(A) ((A) / 2)
2497 @ A single computation might use several subroutine calls, and it is
2498 desirable to avoid producing multiple error messages in case of arithmetic
2499 overflow. So the routines below set the global variable |arith_error| to |true|
2500 instead of reporting errors directly to the user.
2503 boolean arith_error; /* has arithmetic overflow occurred recently? */
2505 @ @<Allocate or ...@>=
2506 mp->arith_error=false;
2508 @ At crucial points the program will say |check_arith|, to test if
2509 an arithmetic error has been detected.
2511 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2514 void mp_clear_arith (MP mp) {
2515 print_err("Arithmetic overflow");
2516 @.Arithmetic overflow@>
2517 help4("Uh, oh. A little while ago one of the quantities that I was")
2518 ("computing got too large, so I'm afraid your answers will be")
2519 ("somewhat askew. You'll probably have to adopt different")
2520 ("tactics next time. But I shall try to carry on anyway.");
2522 mp->arith_error=false;
2525 @ Addition is not always checked to make sure that it doesn't overflow,
2526 but in places where overflow isn't too unlikely the |slow_add| routine
2529 @c integer mp_slow_add (MP mp,integer x, integer y) {
2531 if ( y<=el_gordo-x ) {
2534 mp->arith_error=true;
2537 } else if ( -y<=el_gordo+x ) {
2540 mp->arith_error=true;
2545 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2546 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2547 positions from the right end of a binary computer word.
2549 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2550 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2551 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2552 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2553 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2554 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2557 typedef integer scaled; /* this type is used for scaled integers */
2558 typedef unsigned char small_number; /* this type is self-explanatory */
2560 @ The following function is used to create a scaled integer from a given decimal
2561 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2562 given in |dig[i]|, and the calculation produces a correctly rounded result.
2565 scaled mp_round_decimals (MP mp,small_number k) {
2566 /* converts a decimal fraction */
2567 integer a = 0; /* the accumulator */
2569 a=(a+mp->dig[k]*two) / 10;
2574 @ Conversely, here is a procedure analogous to |print_int|. If the output
2575 of this procedure is subsequently read by \MP\ and converted by the
2576 |round_decimals| routine above, it turns out that the original value will
2577 be reproduced exactly. A decimal point is printed only if the value is
2578 not an integer. If there is more than one way to print the result with
2579 the optimum number of digits following the decimal point, the closest
2580 possible value is given.
2582 The invariant relation in the \&{repeat} loop is that a sequence of
2583 decimal digits yet to be printed will yield the original number if and only if
2584 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2585 We can stop if and only if $f=0$ satisfies this condition; the loop will
2586 terminate before $s$ can possibly become zero.
2588 @<Basic printing...@>=
2589 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2590 scaled delta; /* amount of allowable inaccuracy */
2592 mp_print_char(mp, '-');
2593 negate(s); /* print the sign, if negative */
2595 mp_print_int(mp, s / unity); /* print the integer part */
2599 mp_print_char(mp, '.');
2602 s=s+0100000-(delta / 2); /* round the final digit */
2603 mp_print_char(mp, '0'+(s / unity));
2610 @ We often want to print two scaled quantities in parentheses,
2611 separated by a comma.
2613 @<Basic printing...@>=
2614 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2615 mp_print_char(mp, '(');
2616 mp_print_scaled(mp, x);
2617 mp_print_char(mp, ',');
2618 mp_print_scaled(mp, y);
2619 mp_print_char(mp, ')');
2622 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2623 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2624 arithmetic with 28~significant bits of precision. A |fraction| denotes
2625 a scaled integer whose binary point is assumed to be 28 bit positions
2628 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2629 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2630 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2631 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2632 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2635 typedef integer fraction; /* this type is used for scaled fractions */
2637 @ In fact, the two sorts of scaling discussed above aren't quite
2638 sufficient; \MP\ has yet another, used internally to keep track of angles
2639 in units of $2^{-20}$ degrees.
2641 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2642 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2643 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2644 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2647 typedef integer angle; /* this type is used for scaled angles */
2649 @ The |make_fraction| routine produces the |fraction| equivalent of
2650 |p/q|, given integers |p| and~|q|; it computes the integer
2651 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2652 positive. If |p| and |q| are both of the same scaled type |t|,
2653 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2654 and it's also possible to use the subroutine ``backwards,'' using
2655 the relation |make_fraction(t,fraction)=t| between scaled types.
2657 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2658 sets |arith_error:=true|. Most of \MP's internal computations have
2659 been designed to avoid this sort of error.
2661 If this subroutine were programmed in assembly language on a typical
2662 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2663 double-precision product can often be input to a fixed-point division
2664 instruction. But when we are restricted to \PASCAL\ arithmetic it
2665 is necessary either to resort to multiple-precision maneuvering
2666 or to use a simple but slow iteration. The multiple-precision technique
2667 would be about three times faster than the code adopted here, but it
2668 would be comparatively long and tricky, involving about sixteen
2669 additional multiplications and divisions.
2671 This operation is part of \MP's ``inner loop''; indeed, it will
2672 consume nearly 10\pct! of the running time (exclusive of input and output)
2673 if the code below is left unchanged. A machine-dependent recoding
2674 will therefore make \MP\ run faster. The present implementation
2675 is highly portable, but slow; it avoids multiplication and division
2676 except in the initial stage. System wizards should be careful to
2677 replace it with a routine that is guaranteed to produce identical
2678 results in all cases.
2679 @^system dependencies@>
2681 As noted below, a few more routines should also be replaced by machine-dependent
2682 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2683 such changes aren't advisable; simplicity and robustness are
2684 preferable to trickery, unless the cost is too high.
2688 fraction mp_make_fraction (MP mp,integer p, integer q);
2689 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2691 @ If FIXPT is not defined, we need these preprocessor values
2693 @d ELGORDO 0x7fffffff
2694 @d TWEXP31 2147483648.0
2695 @d TWEXP28 268435456.0
2697 @d TWEXP_16 (1.0/65536.0)
2698 @d TWEXP_28 (1.0/268435456.0)
2702 fraction mp_make_fraction (MP mp,integer p, integer q) {
2704 integer f; /* the fraction bits, with a leading 1 bit */
2705 integer n; /* the integer part of $\vert p/q\vert$ */
2706 integer be_careful; /* disables certain compiler optimizations */
2707 boolean negative = false; /* should the result be negated? */
2709 negate(p); negative=true;
2713 if ( q==0 ) mp_confusion(mp, '/');
2715 @:this can't happen /}{\quad \./@>
2716 negate(q); negative = ! negative;
2720 mp->arith_error=true;
2721 return ( negative ? -el_gordo : el_gordo);
2723 n=(n-1)*fraction_one;
2724 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2725 return (negative ? (-(f+n)) : (f+n));
2731 if (q==0) mp_confusion(mp,'/');
2733 d = TWEXP28 * (double)p /(double)q;
2736 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2738 if (d==i && ( ((q>0 ? -q : q)&077777)
2739 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2742 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2744 if (d==i && ( ((q>0 ? q : -q)&077777)
2745 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2751 @ The |repeat| loop here preserves the following invariant relations
2752 between |f|, |p|, and~|q|:
2753 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2754 $p_0$ is the original value of~$p$.
2756 Notice that the computation specifies
2757 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2758 Let us hope that optimizing compilers do not miss this point; a
2759 special variable |be_careful| is used to emphasize the necessary
2760 order of computation. Optimizing compilers should keep |be_careful|
2761 in a register, not store it in memory.
2764 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2768 be_careful=p-q; p=be_careful+p;
2774 } while (f<fraction_one);
2776 if ( be_careful+p>=0 ) incr(f);
2779 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2780 given integer~|q| by a fraction~|f|. When the operands are positive, it
2781 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2784 This routine is even more ``inner loopy'' than |make_fraction|;
2785 the present implementation consumes almost 20\pct! of \MP's computation
2786 time during typical jobs, so a machine-language substitute is advisable.
2787 @^inner loop@> @^system dependencies@>
2790 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2794 integer mp_take_fraction (MP mp,integer q, fraction f) {
2795 integer p; /* the fraction so far */
2796 boolean negative; /* should the result be negated? */
2797 integer n; /* additional multiple of $q$ */
2798 integer be_careful; /* disables certain compiler optimizations */
2799 @<Reduce to the case that |f>=0| and |q>0|@>;
2800 if ( f<fraction_one ) {
2803 n=f / fraction_one; f=f % fraction_one;
2804 if ( q<=el_gordo / n ) {
2807 mp->arith_error=true; n=el_gordo;
2811 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2812 be_careful=n-el_gordo;
2813 if ( be_careful+p>0 ){
2814 mp->arith_error=true; n=el_gordo-p;
2821 integer mp_take_fraction (MP mp,integer p, fraction q) {
2824 d = (double)p * (double)q * TWEXP_28;
2828 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2829 mp->arith_error = true;
2833 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2837 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2838 mp->arith_error = true;
2842 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2848 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2852 negate( f); negative=true;
2855 negate(q); negative=! negative;
2858 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2859 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2860 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2863 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2864 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2865 if ( q<fraction_four ) {
2867 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2872 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2878 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2879 analogous to |take_fraction| but with a different scaling.
2880 Given positive operands, |take_scaled|
2881 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2883 Once again it is a good idea to use a machine-language replacement if
2884 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2885 when the Computer Modern fonts are being generated.
2890 integer mp_take_scaled (MP mp,integer q, scaled f) {
2891 integer p; /* the fraction so far */
2892 boolean negative; /* should the result be negated? */
2893 integer n; /* additional multiple of $q$ */
2894 integer be_careful; /* disables certain compiler optimizations */
2895 @<Reduce to the case that |f>=0| and |q>0|@>;
2899 n=f / unity; f=f % unity;
2900 if ( q<=el_gordo / n ) {
2903 mp->arith_error=true; n=el_gordo;
2907 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2908 be_careful=n-el_gordo;
2909 if ( be_careful+p>0 ) {
2910 mp->arith_error=true; n=el_gordo-p;
2912 return ( negative ?(-(n+p)) :(n+p));
2914 integer mp_take_scaled (MP mp,integer p, scaled q) {
2917 d = (double)p * (double)q * TWEXP_16;
2921 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2922 mp->arith_error = true;
2926 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2930 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2931 mp->arith_error = true;
2935 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2941 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2942 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2944 if ( q<fraction_four ) {
2946 p = (odd(f) ? halfp(p+q) : halfp(p));
2951 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2956 @ For completeness, there's also |make_scaled|, which computes a
2957 quotient as a |scaled| number instead of as a |fraction|.
2958 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2959 operands are positive. \ (This procedure is not used especially often,
2960 so it is not part of \MP's inner loop.)
2962 @<Internal library ...@>=
2963 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2966 scaled mp_make_scaled (MP mp,integer p, integer q) {
2968 integer f; /* the fraction bits, with a leading 1 bit */
2969 integer n; /* the integer part of $\vert p/q\vert$ */
2970 boolean negative; /* should the result be negated? */
2971 integer be_careful; /* disables certain compiler optimizations */
2972 if ( p>=0 ) negative=false;
2973 else { negate(p); negative=true; };
2976 if ( q==0 ) mp_confusion(mp, "/");
2977 @:this can't happen /}{\quad \./@>
2979 negate(q); negative=! negative;
2983 mp->arith_error=true;
2984 return (negative ? (-el_gordo) : el_gordo);
2987 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2988 return ( negative ? (-(f+n)) :(f+n));
2994 if (q==0) mp_confusion(mp,"/");
2996 d = TWEXP16 * (double)p /(double)q;
2999 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3001 if (d==i && ( ((q>0 ? -q : q)&077777)
3002 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3005 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3007 if (d==i && ( ((q>0 ? q : -q)&077777)
3008 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3014 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3017 be_careful=p-q; p=be_careful+p;
3018 if ( p>=0 ) f=f+f+1;
3019 else { f+=f; p=p+q; };
3022 if ( be_careful+p>=0 ) incr(f)
3024 @ Here is a typical example of how the routines above can be used.
3025 It computes the function
3026 $${1\over3\tau}f(\theta,\phi)=
3027 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3028 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3029 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3030 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3031 fudge factor for placing the first control point of a curve that starts
3032 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3033 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3035 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3036 (It's a sum of eight terms whose absolute values can be bounded using
3037 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3038 is positive; and since the tension $\tau$ is constrained to be at least
3039 $3\over4$, the numerator is less than $16\over3$. The denominator is
3040 nonnegative and at most~6. Hence the fixed-point calculations below
3041 are guaranteed to stay within the bounds of a 32-bit computer word.
3043 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3044 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3045 $\sin\phi$, and $\cos\phi$, respectively.
3048 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3049 fraction cf, scaled t) {
3050 integer acc,num,denom; /* registers for intermediate calculations */
3051 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3052 acc=mp_take_fraction(mp, acc,ct-cf);
3053 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3054 /* $2^{28}\sqrt2\approx379625062.497$ */
3055 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3056 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3057 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3058 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3059 /* |make_scaled(fraction,scaled)=fraction| */
3060 if ( num / 4>=denom )
3061 return fraction_four;
3063 return mp_make_fraction(mp, num, denom);
3066 @ The following somewhat different subroutine tests rigorously if $ab$ is
3067 greater than, equal to, or less than~$cd$,
3068 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3069 The result is $+1$, 0, or~$-1$ in the three respective cases.
3071 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3074 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3075 integer q,r; /* temporary registers */
3076 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3078 q = a / d; r = c / b;
3080 return ( q>r ? 1 : -1);
3081 q = a % d; r = c % b;
3084 if ( q==0 ) return -1;
3086 } /* now |a>d>0| and |c>b>0| */
3089 @ @<Reduce to the case that |a...@>=
3090 if ( a<0 ) { negate(a); negate(b); };
3091 if ( c<0 ) { negate(c); negate(d); };
3094 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3098 return ( a==0 ? 0 : -1);
3099 q=a; a=c; c=q; q=-b; b=-d; d=q;
3100 } else if ( b<=0 ) {
3101 if ( b<0 ) if ( a>0 ) return -1;
3102 return (c==0 ? 0 : -1);
3105 @ We conclude this set of elementary routines with some simple rounding
3106 and truncation operations.
3108 @<Internal library declarations@>=
3109 #define mp_floor_scaled(M,i) ((i)&(-65536))
3110 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3111 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3114 @* \[8] Algebraic and transcendental functions.
3115 \MP\ computes all of the necessary special functions from scratch, without
3116 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3118 @ To get the square root of a |scaled| number |x|, we want to calculate
3119 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3120 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3121 determines $s$ by an iterative method that maintains the invariant
3122 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3123 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3124 might, however, be zero at the start of the first iteration.
3127 scaled mp_square_rt (MP mp,scaled x) ;
3130 scaled mp_square_rt (MP mp,scaled x) {
3131 small_number k; /* iteration control counter */
3132 integer y,q; /* registers for intermediate calculations */
3134 @<Handle square root of zero or negative argument@>;
3137 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3140 if ( x<fraction_four ) y=0;
3141 else { x=x-fraction_four; y=1; };
3143 @<Decrease |k| by 1, maintaining the invariant
3144 relations between |x|, |y|, and~|q|@>;
3150 @ @<Handle square root of zero...@>=
3153 print_err("Square root of ");
3154 @.Square root...replaced by 0@>
3155 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3156 help2("Since I don't take square roots of negative numbers,")
3157 ("I'm zeroing this one. Proceed, with fingers crossed.");
3163 @ @<Decrease |k| by 1, maintaining...@>=
3165 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3166 x=x-fraction_four; incr(y);
3168 x+=x; y=y+y-q; q+=q;
3169 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3170 if ( y>q ){ y=y-q; q=q+2; }
3171 else if ( y<=0 ) { q=q-2; y=y+q; };
3174 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3175 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3176 @^Moler, Cleve Barry@>
3177 @^Morrison, Donald Ross@>
3178 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3179 in such a way that their Pythagorean sum remains invariant, while the
3180 smaller argument decreases.
3182 @<Internal library ...@>=
3183 integer mp_pyth_add (MP mp,integer a, integer b);
3187 integer mp_pyth_add (MP mp,integer a, integer b) {
3188 fraction r; /* register used to transform |a| and |b| */
3189 boolean big; /* is the result dangerously near $2^{31}$? */
3191 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3193 if ( a<fraction_two ) {
3196 a=a / 4; b=b / 4; big=true;
3197 }; /* we reduced the precision to avoid arithmetic overflow */
3198 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3200 if ( a<fraction_two ) {
3203 mp->arith_error=true; a=el_gordo;
3210 @ The key idea here is to reflect the vector $(a,b)$ about the
3211 line through $(a,b/2)$.
3213 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3215 r=mp_make_fraction(mp, b,a);
3216 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3218 r=mp_make_fraction(mp, r,fraction_four+r);
3219 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3223 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3224 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3227 integer mp_pyth_sub (MP mp,integer a, integer b) {
3228 fraction r; /* register used to transform |a| and |b| */
3229 boolean big; /* is the input dangerously near $2^{31}$? */
3232 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3234 if ( a<fraction_four ) {
3237 a=halfp(a); b=halfp(b); big=true;
3239 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3240 if ( big ) double(a);
3245 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3247 r=mp_make_fraction(mp, b,a);
3248 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3250 r=mp_make_fraction(mp, r,fraction_four-r);
3251 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3254 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3257 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3258 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3259 mp_print(mp, " has been replaced by 0");
3261 help2("Since I don't take square roots of negative numbers,")
3262 ("I'm zeroing this one. Proceed, with fingers crossed.");
3268 @ The subroutines for logarithm and exponential involve two tables.
3269 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3270 a bit more calculation, which the author claims to have done correctly:
3271 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3272 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3275 @d two_to_the(A) (1<<(A))
3278 static const integer spec_log[29] = { 0, /* special logarithms */
3279 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3280 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3281 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3283 @ @<Local variables for initialization@>=
3284 integer k; /* all-purpose loop index */
3287 @ Here is the routine that calculates $2^8$ times the natural logarithm
3288 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3289 when |x| is a given positive integer.
3291 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3292 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3293 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3294 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3295 during the calculation, and sixteen auxiliary bits to extend |y| are
3296 kept in~|z| during the initial argument reduction. (We add
3297 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3298 not become negative; also, the actual amount subtracted from~|y| is~96,
3299 not~100, because we want to add~4 for rounding before the final division by~8.)
3302 scaled mp_m_log (MP mp,scaled x) {
3303 integer y,z; /* auxiliary registers */
3304 integer k; /* iteration counter */
3306 @<Handle non-positive logarithm@>;
3308 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3309 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3310 while ( x<fraction_four ) {
3311 double(x); y-=93032639; z-=48782;
3312 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3313 y=y+(z / unity); k=2;
3314 while ( x>fraction_four+4 ) {
3315 @<Increase |k| until |x| can be multiplied by a
3316 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3322 @ @<Increase |k| until |x| can...@>=
3324 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3325 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3326 y+=spec_log[k]; x-=z;
3329 @ @<Handle non-positive logarithm@>=
3331 print_err("Logarithm of ");
3332 @.Logarithm...replaced by 0@>
3333 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3334 help2("Since I don't take logs of non-positive numbers,")
3335 ("I'm zeroing this one. Proceed, with fingers crossed.");
3340 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3341 when |x| is |scaled|. The result is an integer approximation to
3342 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3345 scaled mp_m_exp (MP mp,scaled x) {
3346 small_number k; /* loop control index */
3347 integer y,z; /* auxiliary registers */
3348 if ( x>174436200 ) {
3349 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3350 mp->arith_error=true;
3352 } else if ( x<-197694359 ) {
3353 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3357 z=-8*x; y=04000000; /* $y=2^{20}$ */
3359 if ( x<=127919879 ) {
3361 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3363 z=8*(174436200-x); /* |z| is always nonnegative */
3367 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3369 return ((y+8) / 16);
3375 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3376 to multiplying |y| by $1-2^{-k}$.
3378 A subtle point (which had to be checked) was that if $x=127919879$, the
3379 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3380 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3381 and by~16 when |k=27|.
3383 @<Multiply |y| by...@>=
3386 while ( z>=spec_log[k] ) {
3388 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3393 @ The trigonometric subroutines use an auxiliary table such that
3394 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3395 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3398 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3399 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3400 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3402 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3403 returns the |angle| whose tangent points in the direction $(x,y)$.
3404 This subroutine first determines the correct octant, then solves the
3405 problem for |0<=y<=x|, then converts the result appropriately to
3406 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3407 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3408 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3410 The octants are represented in a ``Gray code,'' since that turns out
3411 to be computationally simplest.
3417 @d second_octant (first_octant+switch_x_and_y)
3418 @d third_octant (first_octant+switch_x_and_y+negate_x)
3419 @d fourth_octant (first_octant+negate_x)
3420 @d fifth_octant (first_octant+negate_x+negate_y)
3421 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3422 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3423 @d eighth_octant (first_octant+negate_y)
3426 angle mp_n_arg (MP mp,integer x, integer y) {
3427 angle z; /* auxiliary register */
3428 integer t; /* temporary storage */
3429 small_number k; /* loop counter */
3430 int octant; /* octant code */
3432 octant=first_octant;
3434 negate(x); octant=first_octant+negate_x;
3437 negate(y); octant=octant+negate_y;
3440 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3443 @<Handle undefined arg@>;
3445 @<Set variable |z| to the arg of $(x,y)$@>;
3446 @<Return an appropriate answer based on |z| and |octant|@>;
3450 @ @<Handle undefined arg@>=
3452 print_err("angle(0,0) is taken as zero");
3453 @.angle(0,0)...zero@>
3454 help2("The `angle' between two identical points is undefined.")
3455 ("I'm zeroing this one. Proceed, with fingers crossed.");
3460 @ @<Return an appropriate answer...@>=
3462 case first_octant: return z;
3463 case second_octant: return (ninety_deg-z);
3464 case third_octant: return (ninety_deg+z);
3465 case fourth_octant: return (one_eighty_deg-z);
3466 case fifth_octant: return (z-one_eighty_deg);
3467 case sixth_octant: return (-z-ninety_deg);
3468 case seventh_octant: return (z-ninety_deg);
3469 case eighth_octant: return (-z);
3470 }; /* there are no other cases */
3473 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3474 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3477 @<Set variable |z| to the arg...@>=
3478 while ( x>=fraction_two ) {
3479 x=halfp(x); y=halfp(y);
3483 while ( x<fraction_one ) {
3486 @<Increase |z| to the arg of $(x,y)$@>;
3489 @ During the calculations of this section, variables |x| and~|y|
3490 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3491 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3492 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3493 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3494 coordinates whose angle has decreased by~$\phi$; in the special case
3495 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3496 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3497 @^Meggitt, John E.@>
3498 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3500 The initial value of |x| will be multiplied by at most
3501 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3502 there is no chance of integer overflow.
3504 @<Increase |z|...@>=
3509 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3514 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3517 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3518 and cosine of that angle. The results of this routine are
3519 stored in global integer variables |n_sin| and |n_cos|.
3522 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3524 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3525 the purpose of |n_sin_cos(z)| is to set
3526 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3527 for some rather large number~|r|. The maximum of |x| and |y|
3528 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3529 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3532 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3534 small_number k; /* loop control variable */
3535 int q; /* specifies the quadrant */
3536 fraction r; /* magnitude of |(x,y)| */
3537 integer x,y,t; /* temporary registers */
3538 while ( z<0 ) z=z+three_sixty_deg;
3539 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3540 q=z / forty_five_deg; z=z % forty_five_deg;
3541 x=fraction_one; y=x;
3542 if ( ! odd(q) ) z=forty_five_deg-z;
3543 @<Subtract angle |z| from |(x,y)|@>;
3544 @<Convert |(x,y)| to the octant determined by~|q|@>;
3545 r=mp_pyth_add(mp, x,y);
3546 mp->n_cos=mp_make_fraction(mp, x,r);
3547 mp->n_sin=mp_make_fraction(mp, y,r);
3550 @ In this case the octants are numbered sequentially.
3552 @<Convert |(x,...@>=
3555 case 1: t=x; x=y; y=t; break;
3556 case 2: t=x; x=-y; y=t; break;
3557 case 3: negate(x); break;
3558 case 4: negate(x); negate(y); break;
3559 case 5: t=x; x=-y; y=-t; break;
3560 case 6: t=x; x=y; y=-t; break;
3561 case 7: negate(y); break;
3562 } /* there are no other cases */
3564 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3565 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3566 that this loop is guaranteed to terminate before the (nonexistent) value
3567 |spec_atan[27]| would be required.
3569 @<Subtract angle |z|...@>=
3572 if ( z>=spec_atan[k] ) {
3573 z=z-spec_atan[k]; t=x;
3574 x=t+y / two_to_the(k);
3575 y=y-t / two_to_the(k);
3579 if ( y<0 ) y=0 /* this precaution may never be needed */
3581 @ And now let's complete our collection of numeric utility routines
3582 by considering random number generation.
3583 \MP\ generates pseudo-random numbers with the additive scheme recommended
3584 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3585 results are random fractions between 0 and |fraction_one-1|, inclusive.
3587 There's an auxiliary array |randoms| that contains 55 pseudo-random
3588 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3589 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3590 The global variable |j_random| tells which element has most recently
3592 The global variable |sys_random_seed| was introduced in version 0.9,
3593 for the sole reason of stressing the fact that the initial value of the
3594 random seed is system-dependant. The pascal code below will initialize
3595 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3596 is not good enough on modern fast machines that are capable of running
3597 multiple MetaPost processes within the same second.
3598 @^system dependencies@>
3601 fraction randoms[55]; /* the last 55 random values generated */
3602 int j_random; /* the number of unused |randoms| */
3603 scaled sys_random_seed; /* the default random seed */
3605 @ @<Exported types@>=
3606 typedef int (*mp_get_random_seed_command)(MP mp);
3609 mp_get_random_seed_command get_random_seed;
3611 @ @<Option variables@>=
3612 mp_get_random_seed_command get_random_seed;
3614 @ @<Allocate or initialize ...@>=
3615 set_callback_option(get_random_seed);
3617 @ @<Internal library declarations@>=
3618 int mp_get_random_seed (MP mp);
3621 int mp_get_random_seed (MP mp) {
3622 return (mp->internal[mp_time] / unity)+mp->internal[mp_day];
3625 @ To consume a random fraction, the program below will say `|next_random|'
3626 and then it will fetch |randoms[j_random]|.
3628 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3629 else decr(mp->j_random); }
3632 void mp_new_randoms (MP mp) {
3633 int k; /* index into |randoms| */
3634 fraction x; /* accumulator */
3635 for (k=0;k<=23;k++) {
3636 x=mp->randoms[k]-mp->randoms[k+31];
3637 if ( x<0 ) x=x+fraction_one;
3640 for (k=24;k<= 54;k++){
3641 x=mp->randoms[k]-mp->randoms[k-24];
3642 if ( x<0 ) x=x+fraction_one;
3649 void mp_init_randoms (MP mp,scaled seed);
3651 @ To initialize the |randoms| table, we call the following routine.
3654 void mp_init_randoms (MP mp,scaled seed) {
3655 fraction j,jj,k; /* more or less random integers */
3656 int i; /* index into |randoms| */
3658 while ( j>=fraction_one ) j=halfp(j);
3660 for (i=0;i<=54;i++ ){
3662 if ( k<0 ) k=k+fraction_one;
3663 mp->randoms[(i*21)% 55]=j;
3667 mp_new_randoms(mp); /* ``warm up'' the array */
3670 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3671 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3673 Note that the call of |take_fraction| will produce the values 0 and~|x|
3674 with about half the probability that it will produce any other particular
3675 values between 0 and~|x|, because it rounds its answers.
3678 scaled mp_unif_rand (MP mp,scaled x) {
3679 scaled y; /* trial value */
3680 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3681 if ( y==abs(x) ) return 0;
3682 else if ( x>0 ) return y;
3686 @ Finally, a normal deviate with mean zero and unit standard deviation
3687 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3688 {\sl The Art of Computer Programming\/}).
3691 scaled mp_norm_rand (MP mp) {
3692 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3696 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3697 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3698 next_random; u=mp->randoms[mp->j_random];
3699 } while (abs(x)>=u);
3700 x=mp_make_fraction(mp, x,u);
3701 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3702 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3706 @* \[9] Packed data.
3707 In order to make efficient use of storage space, \MP\ bases its major data
3708 structures on a |memory_word|, which contains either a (signed) integer,
3709 possibly scaled, or a small number of fields that are one half or one
3710 quarter of the size used for storing integers.
3712 If |x| is a variable of type |memory_word|, it contains up to four
3713 fields that can be referred to as follows:
3714 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3715 |x|&.|int|&(an |integer|)\cr
3716 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3717 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3718 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3720 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3721 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3722 This is somewhat cumbersome to write, and not very readable either, but
3723 macros will be used to make the notation shorter and more transparent.
3724 The code below gives a formal definition of |memory_word| and
3725 its subsidiary types, using packed variant records. \MP\ makes no
3726 assumptions about the relative positions of the fields within a word.
3728 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3729 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3731 @ Here are the inequalities that the quarterword and halfword values
3732 must satisfy (or rather, the inequalities that they mustn't satisfy):
3734 @<Check the ``constant''...@>=
3735 if (mp->ini_version) {
3736 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3738 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3740 if ( max_quarterword<255 ) mp->bad=9;
3741 if ( max_halfword<65535 ) mp->bad=10;
3742 if ( max_quarterword>max_halfword ) mp->bad=11;
3743 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3744 if ( mp->max_strings>max_halfword ) mp->bad=13;
3746 @ The macros |qi| and |qo| are used for input to and output
3747 from quarterwords. These are legacy macros.
3748 @^system dependencies@>
3750 @d qo(A) (A) /* to read eight bits from a quarterword */
3751 @d qi(A) (A) /* to store eight bits in a quarterword */
3753 @ The reader should study the following definitions closely:
3754 @^system dependencies@>
3756 @d sc cint /* |scaled| data is equivalent to |integer| */
3759 typedef short quarterword; /* 1/4 of a word */
3760 typedef int halfword; /* 1/2 of a word */
3765 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3772 quarterword B2, B3, B0, B1;
3787 @ When debugging, we may want to print a |memory_word| without knowing
3788 what type it is; so we print it in all modes.
3789 @^dirty \PASCAL@>@^debugging@>
3792 void mp_print_word (MP mp,memory_word w) {
3793 /* prints |w| in all ways */
3794 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3795 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3796 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3797 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3798 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3799 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3800 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3801 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3802 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3803 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3804 mp_print_int(mp, w.qqqq.b3);
3808 @* \[10] Dynamic memory allocation.
3810 The \MP\ system does nearly all of its own memory allocation, so that it
3811 can readily be transported into environments that do not have automatic
3812 facilities for strings, garbage collection, etc., and so that it can be in
3813 control of what error messages the user receives. The dynamic storage
3814 requirements of \MP\ are handled by providing a large array |mem| in
3815 which consecutive blocks of words are used as nodes by the \MP\ routines.
3817 Pointer variables are indices into this array, or into another array
3818 called |eqtb| that will be explained later. A pointer variable might
3819 also be a special flag that lies outside the bounds of |mem|, so we
3820 allow pointers to assume any |halfword| value. The minimum memory
3821 index represents a null pointer.
3823 @d null 0 /* the null pointer */
3824 @d mp_void (null+1) /* a null pointer different from |null| */
3828 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3830 @ The |mem| array is divided into two regions that are allocated separately,
3831 but the dividing line between these two regions is not fixed; they grow
3832 together until finding their ``natural'' size in a particular job.
3833 Locations less than or equal to |lo_mem_max| are used for storing
3834 variable-length records consisting of two or more words each. This region
3835 is maintained using an algorithm similar to the one described in exercise
3836 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3837 appears in the allocated nodes; the program is responsible for knowing the
3838 relevant size when a node is freed. Locations greater than or equal to
3839 |hi_mem_min| are used for storing one-word records; a conventional
3840 \.{AVAIL} stack is used for allocation in this region.
3842 Locations of |mem| between |0| and |mem_top| may be dumped as part
3843 of preloaded format files, by the \.{INIMP} preprocessor.
3845 Production versions of \MP\ may extend the memory at the top end in order to
3846 provide more space; these locations, between |mem_top| and |mem_max|,
3847 are always used for single-word nodes.
3849 The key pointers that govern |mem| allocation have a prescribed order:
3850 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3853 memory_word *mem; /* the big dynamic storage area */
3854 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3855 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3859 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3860 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3861 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3862 @d xstrdup(A) mp_xstrdup(mp,A)
3863 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3865 @<Declare helpers@>=
3866 void mp_xfree (void *x);
3867 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3868 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3869 char *mp_xstrdup(MP mp, const char *s);
3871 @ The |max_size_test| guards against overflow, on the assumption that
3872 |size_t| is at least 31bits wide.
3874 @d max_size_test 0x7FFFFFFF
3877 void mp_xfree (void *x) {
3878 if (x!=NULL) free(x);
3880 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3882 if ((max_size_test/size)<nmem) {
3883 fprintf(stderr,"Memory size overflow!\n");
3884 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3886 w = realloc (p,(nmem*size));
3888 fprintf(stderr,"Out of memory!\n");
3889 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3893 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3895 if ((max_size_test/size)<nmem) {
3896 fprintf(stderr,"Memory size overflow!\n");
3897 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3899 w = malloc (nmem*size);
3901 fprintf(stderr,"Out of memory!\n");
3902 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3906 char *mp_xstrdup(MP mp, const char *s) {
3912 fprintf(stderr,"Out of memory!\n");
3913 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3920 @<Allocate or initialize ...@>=
3921 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3922 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3924 @ @<Dealloc variables@>=
3927 @ Users who wish to study the memory requirements of particular applications can
3928 can use optional special features that keep track of current and
3929 maximum memory usage. When code between the delimiters |stat| $\ldots$
3930 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3931 report these statistics when |mp_tracing_stats| is positive.
3934 integer var_used; integer dyn_used; /* how much memory is in use */
3936 @ Let's consider the one-word memory region first, since it's the
3937 simplest. The pointer variable |mem_end| holds the highest-numbered location
3938 of |mem| that has ever been used. The free locations of |mem| that
3939 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3940 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3941 and |rh| fields of |mem[p]| when it is of this type. The single-word
3942 free locations form a linked list
3943 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3944 terminated by |null|.
3946 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3947 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3950 pointer avail; /* head of the list of available one-word nodes */
3951 pointer mem_end; /* the last one-word node used in |mem| */
3953 @ If one-word memory is exhausted, it might mean that the user has forgotten
3954 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3955 later that try to help pinpoint the trouble.
3958 @<Declare the procedure called |show_token_list|@>;
3959 @<Declare the procedure called |runaway|@>
3961 @ The function |get_avail| returns a pointer to a new one-word node whose
3962 |link| field is null. However, \MP\ will halt if there is no more room left.
3966 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3967 pointer p; /* the new node being got */
3968 p=mp->avail; /* get top location in the |avail| stack */
3970 mp->avail=link(mp->avail); /* and pop it off */
3971 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3972 incr(mp->mem_end); p=mp->mem_end;
3974 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3975 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3976 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3977 mp_overflow(mp, "main memory size",mp->mem_max);
3978 /* quit; all one-word nodes are busy */
3979 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3982 link(p)=null; /* provide an oft-desired initialization of the new node */
3983 incr(mp->dyn_used);/* maintain statistics */
3987 @ Conversely, a one-word node is recycled by calling |free_avail|.
3989 @d free_avail(A) /* single-word node liberation */
3990 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3992 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3993 overhead at the expense of extra programming. This macro is used in
3994 the places that would otherwise account for the most calls of |get_avail|.
3997 @d fast_get_avail(A) {
3998 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3999 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4000 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4003 @ The available-space list that keeps track of the variable-size portion
4004 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4005 pointed to by the roving pointer |rover|.
4007 Each empty node has size 2 or more; the first word contains the special
4008 value |max_halfword| in its |link| field and the size in its |info| field;
4009 the second word contains the two pointers for double linking.
4011 Each nonempty node also has size 2 or more. Its first word is of type
4012 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4013 Otherwise there is complete flexibility with respect to the contents
4014 of its other fields and its other words.
4016 (We require |mem_max<max_halfword| because terrible things can happen
4017 when |max_halfword| appears in the |link| field of a nonempty node.)
4019 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4020 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4021 @d node_size info /* the size field in empty variable-size nodes */
4022 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4023 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4026 pointer rover; /* points to some node in the list of empties */
4028 @ A call to |get_node| with argument |s| returns a pointer to a new node
4029 of size~|s|, which must be 2~or more. The |link| field of the first word
4030 of this new node is set to null. An overflow stop occurs if no suitable
4033 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4034 areas and returns the value |max_halfword|.
4037 pointer mp_get_node (MP mp,integer s) ;
4040 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4041 pointer p; /* the node currently under inspection */
4042 pointer q; /* the node physically after node |p| */
4043 integer r; /* the newly allocated node, or a candidate for this honor */
4044 integer t,tt; /* temporary registers */
4047 p=mp->rover; /* start at some free node in the ring */
4049 @<Try to allocate within node |p| and its physical successors,
4050 and |goto found| if allocation was possible@>;
4051 if (rlink(p)==null || rlink(p)==p) {
4052 print_err("Free list garbled");
4053 help3("I found an entry in the list of free nodes that links")
4054 ("badly. I will try to ignore the broken link, but something")
4055 ("is seriously amiss. It is wise to warn the maintainers.")
4059 p=rlink(p); /* move to the next node in the ring */
4060 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4061 if ( s==010000000000 ) {
4062 return max_halfword;
4064 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4065 if ( mp->lo_mem_max+2<=max_halfword ) {
4066 @<Grow more variable-size memory and |goto restart|@>;
4069 mp_overflow(mp, "main memory size",mp->mem_max);
4070 /* sorry, nothing satisfactory is left */
4071 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4073 link(r)=null; /* this node is now nonempty */
4074 mp->var_used+=s; /* maintain usage statistics */
4078 @ The lower part of |mem| grows by 1000 words at a time, unless
4079 we are very close to going under. When it grows, we simply link
4080 a new node into the available-space list. This method of controlled
4081 growth helps to keep the |mem| usage consecutive when \MP\ is
4082 implemented on ``virtual memory'' systems.
4085 @<Grow more variable-size memory and |goto restart|@>=
4087 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4088 t=mp->lo_mem_max+1000;
4090 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4091 /* |lo_mem_max+2<=t<hi_mem_min| */
4093 if ( t>max_halfword ) t=max_halfword;
4094 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4095 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4096 node_size(q)=t-mp->lo_mem_max;
4097 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4102 @ @<Try to allocate...@>=
4103 q=p+node_size(p); /* find the physical successor */
4104 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4105 t=rlink(q); tt=llink(q);
4107 if ( q==mp->rover ) mp->rover=t;
4108 llink(t)=tt; rlink(tt)=t;
4113 @<Allocate from the top of node |p| and |goto found|@>;
4116 if ( rlink(p)!=p ) {
4117 @<Allocate entire node |p| and |goto found|@>;
4120 node_size(p)=q-p /* reset the size in case it grew */
4122 @ @<Allocate from the top...@>=
4124 node_size(p)=r-p; /* store the remaining size */
4125 mp->rover=p; /* start searching here next time */
4129 @ Here we delete node |p| from the ring, and let |rover| rove around.
4131 @<Allocate entire...@>=
4133 mp->rover=rlink(p); t=llink(p);
4134 llink(mp->rover)=t; rlink(t)=mp->rover;
4138 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4139 the operation |free_node(p,s)| will make its words available, by inserting
4140 |p| as a new empty node just before where |rover| now points.
4143 void mp_free_node (MP mp, pointer p, halfword s) ;
4146 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4148 pointer q; /* |llink(rover)| */
4149 node_size(p)=s; link(p)=empty_flag;
4151 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4152 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4153 mp->var_used-=s; /* maintain statistics */
4156 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4157 available space list. The list is probably very short at such times, so a
4158 simple insertion sort is used. The smallest available location will be
4159 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4162 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4164 pointer p,q,r; /* indices into |mem| */
4165 pointer old_rover; /* initial |rover| setting */
4166 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4167 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4168 while ( p!=old_rover ) {
4169 @<Sort |p| into the list starting at |rover|
4170 and advance |p| to |rlink(p)|@>;
4173 while ( rlink(p)!=max_halfword ) {
4174 llink(rlink(p))=p; p=rlink(p);
4176 rlink(p)=mp->rover; llink(mp->rover)=p;
4179 @ The following |while| loop is guaranteed to
4180 terminate, since the list that starts at
4181 |rover| ends with |max_halfword| during the sorting procedure.
4184 if ( p<mp->rover ) {
4185 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4188 while ( rlink(q)<p ) q=rlink(q);
4189 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4192 @* \[11] Memory layout.
4193 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4194 more efficient than dynamic allocation when we can get away with it. For
4195 example, locations |0| to |1| are always used to store a
4196 two-word dummy token whose second word is zero.
4197 The following macro definitions accomplish the static allocation by giving
4198 symbolic names to the fixed positions. Static variable-size nodes appear
4199 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4200 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4202 @d null_dash (2) /* the first two words are reserved for a null value */
4203 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4204 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4205 @d temp_val (zero_val+2) /* two words for a temporary value node */
4206 @d end_attr temp_val /* we use |end_attr+2| only */
4207 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4208 @d test_pen (inf_val+2)
4209 /* nine words for a pen used when testing the turning number */
4210 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4211 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4212 allocated word in the variable-size |mem| */
4214 @d sentinel mp->mem_top /* end of sorted lists */
4215 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4216 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4217 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4218 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4219 the one-word |mem| */
4221 @ The following code gets the dynamic part of |mem| off to a good start,
4222 when \MP\ is initializing itself the slow way.
4224 @<Initialize table entries (done by \.{INIMP} only)@>=
4225 @^data structure assumptions@>
4226 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4227 link(mp->rover)=empty_flag;
4228 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4229 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4230 mp->lo_mem_max=mp->rover+1000;
4231 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4232 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4233 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4235 mp->avail=null; mp->mem_end=mp->mem_top;
4236 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4237 mp->var_used=lo_mem_stat_max+1;
4238 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4239 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4241 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4242 nodes that starts at a given position, until coming to |sentinel| or a
4243 pointer that is not in the one-word region. Another procedure,
4244 |flush_node_list|, frees an entire linked list of one-word and two-word
4245 nodes, until coming to a |null| pointer.
4249 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4250 pointer q,r; /* list traversers */
4251 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4256 if ( r<mp->hi_mem_min ) break;
4257 } while (r!=sentinel);
4258 /* now |q| is the last node on the list */
4259 link(q)=mp->avail; mp->avail=p;
4263 void mp_flush_node_list (MP mp,pointer p) {
4264 pointer q; /* the node being recycled */
4267 if ( q<mp->hi_mem_min )
4268 mp_free_node(mp, q,2);
4274 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4275 For example, some pointers might be wrong, or some ``dead'' nodes might not
4276 have been freed when the last reference to them disappeared. Procedures
4277 |check_mem| and |search_mem| are available to help diagnose such
4278 problems. These procedures make use of two arrays called |free| and
4279 |was_free| that are present only if \MP's debugging routines have
4280 been included. (You may want to decrease the size of |mem| while you
4284 Because |boolean|s are typedef-d as ints, it is better to use
4285 unsigned chars here.
4288 unsigned char *free; /* free cells */
4289 unsigned char *was_free; /* previously free cells */
4290 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4291 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4292 boolean panicking; /* do we want to check memory constantly? */
4294 @ @<Allocate or initialize ...@>=
4295 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4296 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4298 @ @<Dealloc variables@>=
4300 xfree(mp->was_free);
4302 @ @<Allocate or ...@>=
4303 mp->was_mem_end=0; /* indicate that everything was previously free */
4304 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4305 mp->panicking=false;
4307 @ @<Declare |mp_reallocate| functions@>=
4308 void mp_reallocate_memory(MP mp, int l) ;
4311 void mp_reallocate_memory(MP mp, int l) {
4312 XREALLOC(mp->free, l, unsigned char);
4313 XREALLOC(mp->was_free, l, unsigned char);
4315 int newarea = l-mp->mem_max;
4316 XREALLOC(mp->mem, l, memory_word);
4317 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4319 XREALLOC(mp->mem, l, memory_word);
4320 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4323 if (mp->ini_version)
4329 @ Procedure |check_mem| makes sure that the available space lists of
4330 |mem| are well formed, and it optionally prints out all locations
4331 that are reserved now but were free the last time this procedure was called.
4334 void mp_check_mem (MP mp,boolean print_locs ) {
4335 pointer p,q,r; /* current locations of interest in |mem| */
4336 boolean clobbered; /* is something amiss? */
4337 for (p=0;p<=mp->lo_mem_max;p++) {
4338 mp->free[p]=false; /* you can probably do this faster */
4340 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4341 mp->free[p]=false; /* ditto */
4343 @<Check single-word |avail| list@>;
4344 @<Check variable-size |avail| list@>;
4345 @<Check flags of unavailable nodes@>;
4346 @<Check the list of linear dependencies@>;
4348 @<Print newly busy locations@>;
4350 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4351 mp->was_mem_end=mp->mem_end;
4352 mp->was_lo_max=mp->lo_mem_max;
4353 mp->was_hi_min=mp->hi_mem_min;
4356 @ @<Check single-word...@>=
4357 p=mp->avail; q=null; clobbered=false;
4359 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4360 else if ( mp->free[p] ) clobbered=true;
4362 mp_print_nl(mp, "AVAIL list clobbered at ");
4363 @.AVAIL list clobbered...@>
4364 mp_print_int(mp, q); break;
4366 mp->free[p]=true; q=p; p=link(q);
4369 @ @<Check variable-size...@>=
4370 p=mp->rover; q=null; clobbered=false;
4372 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4373 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4374 else if ( !(is_empty(p))||(node_size(p)<2)||
4375 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4377 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4378 @.Double-AVAIL list clobbered...@>
4379 mp_print_int(mp, q); break;
4381 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4382 if ( mp->free[q] ) {
4383 mp_print_nl(mp, "Doubly free location at ");
4384 @.Doubly free location...@>
4385 mp_print_int(mp, q); break;
4390 } while (p!=mp->rover)
4393 @ @<Check flags...@>=
4395 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4396 if ( is_empty(p) ) {
4397 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4400 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4401 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4404 @ @<Print newly busy...@>=
4406 @<Do intialization required before printing new busy locations@>;
4407 mp_print_nl(mp, "New busy locs:");
4409 for (p=0;p<= mp->lo_mem_max;p++ ) {
4410 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4411 @<Indicate that |p| is a new busy location@>;
4414 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4415 if ( ! mp->free[p] &&
4416 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4417 @<Indicate that |p| is a new busy location@>;
4420 @<Finish printing new busy locations@>;
4423 @ There might be many new busy locations so we are careful to print contiguous
4424 blocks compactly. During this operation |q| is the last new busy location and
4425 |r| is the start of the block containing |q|.
4427 @<Indicate that |p| is a new busy location@>=
4431 mp_print(mp, ".."); mp_print_int(mp, q);
4433 mp_print_char(mp, ' '); mp_print_int(mp, p);
4439 @ @<Do intialization required before printing new busy locations@>=
4440 q=mp->mem_max; r=mp->mem_max
4442 @ @<Finish printing new busy locations@>=
4444 mp_print(mp, ".."); mp_print_int(mp, q);
4447 @ The |search_mem| procedure attempts to answer the question ``Who points
4448 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4449 that might not be of type |two_halves|. Strictly speaking, this is
4451 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4452 point to |p| purely by coincidence). But for debugging purposes, we want
4453 to rule out the places that do {\sl not\/} point to |p|, so a few false
4454 drops are tolerable.
4457 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4458 integer q; /* current position being searched */
4459 for (q=0;q<=mp->lo_mem_max;q++) {
4461 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4464 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4467 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4469 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4472 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4475 @<Search |eqtb| for equivalents equal to |p|@>;
4478 @* \[12] The command codes.
4479 Before we can go much further, we need to define symbolic names for the internal
4480 code numbers that represent the various commands obeyed by \MP. These codes
4481 are somewhat arbitrary, but not completely so. For example,
4482 some codes have been made adjacent so that |case| statements in the
4483 program need not consider cases that are widely spaced, or so that |case|
4484 statements can be replaced by |if| statements. A command can begin an
4485 expression if and only if its code lies between |min_primary_command| and
4486 |max_primary_command|, inclusive. The first token of a statement that doesn't
4487 begin with an expression has a command code between |min_command| and
4488 |max_statement_command|, inclusive. Anything less than |min_command| is
4489 eliminated during macro expansions, and anything no more than |max_pre_command|
4490 is eliminated when expanding \TeX\ material. Ranges such as
4491 |min_secondary_command..max_secondary_command| are used when parsing
4492 expressions, but the relative ordering within such a range is generally not
4495 The ordering of the highest-numbered commands
4496 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4497 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4498 for the smallest two commands. The ordering is also important in the ranges
4499 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4501 At any rate, here is the list, for future reference.
4503 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4504 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4505 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4506 @d max_pre_command mpx_break
4507 @d if_test 4 /* conditional text (\&{if}) */
4508 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4509 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4510 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4511 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4512 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4513 @d relax 10 /* do nothing (\.{\char`\\}) */
4514 @d scan_tokens 11 /* put a string into the input buffer */
4515 @d expand_after 12 /* look ahead one token */
4516 @d defined_macro 13 /* a macro defined by the user */
4517 @d min_command (defined_macro+1)
4518 @d save_command 14 /* save a list of tokens (\&{save}) */
4519 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4520 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4521 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4522 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4523 @d ship_out_command 19 /* output a character (\&{shipout}) */
4524 @d add_to_command 20 /* add to edges (\&{addto}) */
4525 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4526 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4527 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4528 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4529 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4530 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4531 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4532 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4533 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4534 @d special_command 30 /* output special info (\&{special})
4535 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4536 @d write_command 31 /* write text to a file (\&{write}) */
4537 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4538 @d max_statement_command type_name
4539 @d min_primary_command type_name
4540 @d left_delimiter 33 /* the left delimiter of a matching pair */
4541 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4542 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4543 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4544 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4545 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4546 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4547 @d capsule_token 40 /* a value that has been put into a token list */
4548 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4549 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4550 @d min_suffix_token internal_quantity
4551 @d tag_token 43 /* a symbolic token without a primitive meaning */
4552 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4553 @d max_suffix_token numeric_token
4554 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4555 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4556 @d min_tertiary_command plus_or_minus
4557 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4558 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4559 @d max_tertiary_command tertiary_binary
4560 @d left_brace 48 /* the operator `\.{\char`\{}' */
4561 @d min_expression_command left_brace
4562 @d path_join 49 /* the operator `\.{..}' */
4563 @d ampersand 50 /* the operator `\.\&' */
4564 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4565 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4566 @d equals 53 /* the operator `\.=' */
4567 @d max_expression_command equals
4568 @d and_command 54 /* the operator `\&{and}' */
4569 @d min_secondary_command and_command
4570 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4571 @d slash 56 /* the operator `\./' */
4572 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4573 @d max_secondary_command secondary_binary
4574 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4575 @d controls 59 /* specify control points explicitly (\&{controls}) */
4576 @d tension 60 /* specify tension between knots (\&{tension}) */
4577 @d at_least 61 /* bounded tension value (\&{atleast}) */
4578 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4579 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4580 @d right_delimiter 64 /* the right delimiter of a matching pair */
4581 @d left_bracket 65 /* the operator `\.[' */
4582 @d right_bracket 66 /* the operator `\.]' */
4583 @d right_brace 67 /* the operator `\.{\char`\}}' */
4584 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4586 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4587 @d of_token 70 /* the operator `\&{of}' */
4588 @d to_token 71 /* the operator `\&{to}' */
4589 @d step_token 72 /* the operator `\&{step}' */
4590 @d until_token 73 /* the operator `\&{until}' */
4591 @d within_token 74 /* the operator `\&{within}' */
4592 @d lig_kern_token 75
4593 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4594 @d assignment 76 /* the operator `\.{:=}' */
4595 @d skip_to 77 /* the operation `\&{skipto}' */
4596 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4597 @d double_colon 79 /* the operator `\.{::}' */
4598 @d colon 80 /* the operator `\.:' */
4600 @d comma 81 /* the operator `\.,', must be |colon+1| */
4601 @d end_of_statement (mp->cur_cmd>comma)
4602 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4603 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4604 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4605 @d max_command_code stop
4606 @d outer_tag (max_command_code+1) /* protection code added to command code */
4609 typedef int command_code;
4611 @ Variables and capsules in \MP\ have a variety of ``types,''
4612 distinguished by the code numbers defined here. These numbers are also
4613 not completely arbitrary. Things that get expanded must have types
4614 |>mp_independent|; a type remaining after expansion is numeric if and only if
4615 its code number is at least |numeric_type|; objects containing numeric
4616 parts must have types between |transform_type| and |pair_type|;
4617 all other types must be smaller than |transform_type|; and among the types
4618 that are not unknown or vacuous, the smallest two must be |boolean_type|
4619 and |string_type| in that order.
4621 @d undefined 0 /* no type has been declared */
4622 @d unknown_tag 1 /* this constant is added to certain type codes below */
4623 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4624 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4627 enum mp_variable_type {
4628 mp_vacuous=1, /* no expression was present */
4629 mp_boolean_type, /* \&{boolean} with a known value */
4631 mp_string_type, /* \&{string} with a known value */
4633 mp_pen_type, /* \&{pen} with a known value */
4635 mp_path_type, /* \&{path} with a known value */
4637 mp_picture_type, /* \&{picture} with a known value */
4639 mp_transform_type, /* \&{transform} variable or capsule */
4640 mp_color_type, /* \&{color} variable or capsule */
4641 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4642 mp_pair_type, /* \&{pair} variable or capsule */
4643 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4644 mp_known, /* \&{numeric} with a known value */
4645 mp_dependent, /* a linear combination with |fraction| coefficients */
4646 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4647 mp_independent, /* \&{numeric} with unknown value */
4648 mp_token_list, /* variable name or suffix argument or text argument */
4649 mp_structured, /* variable with subscripts and attributes */
4650 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4651 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4655 void mp_print_type (MP mp,small_number t) ;
4657 @ @<Basic printing procedures@>=
4658 void mp_print_type (MP mp,small_number t) {
4660 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4661 case mp_boolean_type:mp_print(mp, "boolean"); break;
4662 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4663 case mp_string_type:mp_print(mp, "string"); break;
4664 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4665 case mp_pen_type:mp_print(mp, "pen"); break;
4666 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4667 case mp_path_type:mp_print(mp, "path"); break;
4668 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4669 case mp_picture_type:mp_print(mp, "picture"); break;
4670 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4671 case mp_transform_type:mp_print(mp, "transform"); break;
4672 case mp_color_type:mp_print(mp, "color"); break;
4673 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4674 case mp_pair_type:mp_print(mp, "pair"); break;
4675 case mp_known:mp_print(mp, "known numeric"); break;
4676 case mp_dependent:mp_print(mp, "dependent"); break;
4677 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4678 case mp_numeric_type:mp_print(mp, "numeric"); break;
4679 case mp_independent:mp_print(mp, "independent"); break;
4680 case mp_token_list:mp_print(mp, "token list"); break;
4681 case mp_structured:mp_print(mp, "mp_structured"); break;
4682 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4683 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4684 default: mp_print(mp, "undefined"); break;
4688 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4689 as well as a |type|. The possibilities for |name_type| are defined
4690 here; they will be explained in more detail later.
4694 mp_root=0, /* |name_type| at the top level of a variable */
4695 mp_saved_root, /* same, when the variable has been saved */
4696 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4697 mp_subscr, /* |name_type| in a subscript node */
4698 mp_attr, /* |name_type| in an attribute node */
4699 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4700 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4701 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4702 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4703 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4704 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4705 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4706 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4707 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4708 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4709 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4710 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4711 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4712 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4713 mp_capsule, /* |name_type| in stashed-away subexpressions */
4714 mp_token /* |name_type| in a numeric token or string token */
4717 @ Primitive operations that produce values have a secondary identification
4718 code in addition to their command code; it's something like genera and species.
4719 For example, `\.*' has the command code |primary_binary|, and its
4720 secondary identification is |times|. The secondary codes start at 30 so that
4721 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4722 are used as operators as well as type identifications. The relative values
4723 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4724 and |filled_op..bounded_op|. The restrictions are that
4725 |and_op-false_code=or_op-true_code|, that the ordering of
4726 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4727 and the ordering of |filled_op..bounded_op| must match that of the code
4728 values they test for.
4730 @d true_code 30 /* operation code for \.{true} */
4731 @d false_code 31 /* operation code for \.{false} */
4732 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4733 @d null_pen_code 33 /* operation code for \.{nullpen} */
4734 @d job_name_op 34 /* operation code for \.{jobname} */
4735 @d read_string_op 35 /* operation code for \.{readstring} */
4736 @d pen_circle 36 /* operation code for \.{pencircle} */
4737 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4738 @d read_from_op 38 /* operation code for \.{readfrom} */
4739 @d close_from_op 39 /* operation code for \.{closefrom} */
4740 @d odd_op 40 /* operation code for \.{odd} */
4741 @d known_op 41 /* operation code for \.{known} */
4742 @d unknown_op 42 /* operation code for \.{unknown} */
4743 @d not_op 43 /* operation code for \.{not} */
4744 @d decimal 44 /* operation code for \.{decimal} */
4745 @d reverse 45 /* operation code for \.{reverse} */
4746 @d make_path_op 46 /* operation code for \.{makepath} */
4747 @d make_pen_op 47 /* operation code for \.{makepen} */
4748 @d oct_op 48 /* operation code for \.{oct} */
4749 @d hex_op 49 /* operation code for \.{hex} */
4750 @d ASCII_op 50 /* operation code for \.{ASCII} */
4751 @d char_op 51 /* operation code for \.{char} */
4752 @d length_op 52 /* operation code for \.{length} */
4753 @d turning_op 53 /* operation code for \.{turningnumber} */
4754 @d color_model_part 54 /* operation code for \.{colormodel} */
4755 @d x_part 55 /* operation code for \.{xpart} */
4756 @d y_part 56 /* operation code for \.{ypart} */
4757 @d xx_part 57 /* operation code for \.{xxpart} */
4758 @d xy_part 58 /* operation code for \.{xypart} */
4759 @d yx_part 59 /* operation code for \.{yxpart} */
4760 @d yy_part 60 /* operation code for \.{yypart} */
4761 @d red_part 61 /* operation code for \.{redpart} */
4762 @d green_part 62 /* operation code for \.{greenpart} */
4763 @d blue_part 63 /* operation code for \.{bluepart} */
4764 @d cyan_part 64 /* operation code for \.{cyanpart} */
4765 @d magenta_part 65 /* operation code for \.{magentapart} */
4766 @d yellow_part 66 /* operation code for \.{yellowpart} */
4767 @d black_part 67 /* operation code for \.{blackpart} */
4768 @d grey_part 68 /* operation code for \.{greypart} */
4769 @d font_part 69 /* operation code for \.{fontpart} */
4770 @d text_part 70 /* operation code for \.{textpart} */
4771 @d path_part 71 /* operation code for \.{pathpart} */
4772 @d pen_part 72 /* operation code for \.{penpart} */
4773 @d dash_part 73 /* operation code for \.{dashpart} */
4774 @d sqrt_op 74 /* operation code for \.{sqrt} */
4775 @d m_exp_op 75 /* operation code for \.{mexp} */
4776 @d m_log_op 76 /* operation code for \.{mlog} */
4777 @d sin_d_op 77 /* operation code for \.{sind} */
4778 @d cos_d_op 78 /* operation code for \.{cosd} */
4779 @d floor_op 79 /* operation code for \.{floor} */
4780 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4781 @d char_exists_op 81 /* operation code for \.{charexists} */
4782 @d font_size 82 /* operation code for \.{fontsize} */
4783 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4784 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4785 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4786 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4787 @d arc_length 87 /* operation code for \.{arclength} */
4788 @d angle_op 88 /* operation code for \.{angle} */
4789 @d cycle_op 89 /* operation code for \.{cycle} */
4790 @d filled_op 90 /* operation code for \.{filled} */
4791 @d stroked_op 91 /* operation code for \.{stroked} */
4792 @d textual_op 92 /* operation code for \.{textual} */
4793 @d clipped_op 93 /* operation code for \.{clipped} */
4794 @d bounded_op 94 /* operation code for \.{bounded} */
4795 @d plus 95 /* operation code for \.+ */
4796 @d minus 96 /* operation code for \.- */
4797 @d times 97 /* operation code for \.* */
4798 @d over 98 /* operation code for \./ */
4799 @d pythag_add 99 /* operation code for \.{++} */
4800 @d pythag_sub 100 /* operation code for \.{+-+} */
4801 @d or_op 101 /* operation code for \.{or} */
4802 @d and_op 102 /* operation code for \.{and} */
4803 @d less_than 103 /* operation code for \.< */
4804 @d less_or_equal 104 /* operation code for \.{<=} */
4805 @d greater_than 105 /* operation code for \.> */
4806 @d greater_or_equal 106 /* operation code for \.{>=} */
4807 @d equal_to 107 /* operation code for \.= */
4808 @d unequal_to 108 /* operation code for \.{<>} */
4809 @d concatenate 109 /* operation code for \.\& */
4810 @d rotated_by 110 /* operation code for \.{rotated} */
4811 @d slanted_by 111 /* operation code for \.{slanted} */
4812 @d scaled_by 112 /* operation code for \.{scaled} */
4813 @d shifted_by 113 /* operation code for \.{shifted} */
4814 @d transformed_by 114 /* operation code for \.{transformed} */
4815 @d x_scaled 115 /* operation code for \.{xscaled} */
4816 @d y_scaled 116 /* operation code for \.{yscaled} */
4817 @d z_scaled 117 /* operation code for \.{zscaled} */
4818 @d in_font 118 /* operation code for \.{infont} */
4819 @d intersect 119 /* operation code for \.{intersectiontimes} */
4820 @d double_dot 120 /* operation code for improper \.{..} */
4821 @d substring_of 121 /* operation code for \.{substring} */
4822 @d min_of substring_of
4823 @d subpath_of 122 /* operation code for \.{subpath} */
4824 @d direction_time_of 123 /* operation code for \.{directiontime} */
4825 @d point_of 124 /* operation code for \.{point} */
4826 @d precontrol_of 125 /* operation code for \.{precontrol} */
4827 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4828 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4829 @d arc_time_of 128 /* operation code for \.{arctime} */
4830 @d mp_version 129 /* operation code for \.{mpversion} */
4831 @d envelope_of 130 /* operation code for \{.envelope} */
4833 @c void mp_print_op (MP mp,quarterword c) {
4834 if (c<=mp_numeric_type ) {
4835 mp_print_type(mp, c);
4838 case true_code:mp_print(mp, "true"); break;
4839 case false_code:mp_print(mp, "false"); break;
4840 case null_picture_code:mp_print(mp, "nullpicture"); break;
4841 case null_pen_code:mp_print(mp, "nullpen"); break;
4842 case job_name_op:mp_print(mp, "jobname"); break;
4843 case read_string_op:mp_print(mp, "readstring"); break;
4844 case pen_circle:mp_print(mp, "pencircle"); break;
4845 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4846 case read_from_op:mp_print(mp, "readfrom"); break;
4847 case close_from_op:mp_print(mp, "closefrom"); break;
4848 case odd_op:mp_print(mp, "odd"); break;
4849 case known_op:mp_print(mp, "known"); break;
4850 case unknown_op:mp_print(mp, "unknown"); break;
4851 case not_op:mp_print(mp, "not"); break;
4852 case decimal:mp_print(mp, "decimal"); break;
4853 case reverse:mp_print(mp, "reverse"); break;
4854 case make_path_op:mp_print(mp, "makepath"); break;
4855 case make_pen_op:mp_print(mp, "makepen"); break;
4856 case oct_op:mp_print(mp, "oct"); break;
4857 case hex_op:mp_print(mp, "hex"); break;
4858 case ASCII_op:mp_print(mp, "ASCII"); break;
4859 case char_op:mp_print(mp, "char"); break;
4860 case length_op:mp_print(mp, "length"); break;
4861 case turning_op:mp_print(mp, "turningnumber"); break;
4862 case x_part:mp_print(mp, "xpart"); break;
4863 case y_part:mp_print(mp, "ypart"); break;
4864 case xx_part:mp_print(mp, "xxpart"); break;
4865 case xy_part:mp_print(mp, "xypart"); break;
4866 case yx_part:mp_print(mp, "yxpart"); break;
4867 case yy_part:mp_print(mp, "yypart"); break;
4868 case red_part:mp_print(mp, "redpart"); break;
4869 case green_part:mp_print(mp, "greenpart"); break;
4870 case blue_part:mp_print(mp, "bluepart"); break;
4871 case cyan_part:mp_print(mp, "cyanpart"); break;
4872 case magenta_part:mp_print(mp, "magentapart"); break;
4873 case yellow_part:mp_print(mp, "yellowpart"); break;
4874 case black_part:mp_print(mp, "blackpart"); break;
4875 case grey_part:mp_print(mp, "greypart"); break;
4876 case color_model_part:mp_print(mp, "colormodel"); break;
4877 case font_part:mp_print(mp, "fontpart"); break;
4878 case text_part:mp_print(mp, "textpart"); break;
4879 case path_part:mp_print(mp, "pathpart"); break;
4880 case pen_part:mp_print(mp, "penpart"); break;
4881 case dash_part:mp_print(mp, "dashpart"); break;
4882 case sqrt_op:mp_print(mp, "sqrt"); break;
4883 case m_exp_op:mp_print(mp, "mexp"); break;
4884 case m_log_op:mp_print(mp, "mlog"); break;
4885 case sin_d_op:mp_print(mp, "sind"); break;
4886 case cos_d_op:mp_print(mp, "cosd"); break;
4887 case floor_op:mp_print(mp, "floor"); break;
4888 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4889 case char_exists_op:mp_print(mp, "charexists"); break;
4890 case font_size:mp_print(mp, "fontsize"); break;
4891 case ll_corner_op:mp_print(mp, "llcorner"); break;
4892 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4893 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4894 case ur_corner_op:mp_print(mp, "urcorner"); break;
4895 case arc_length:mp_print(mp, "arclength"); break;
4896 case angle_op:mp_print(mp, "angle"); break;
4897 case cycle_op:mp_print(mp, "cycle"); break;
4898 case filled_op:mp_print(mp, "filled"); break;
4899 case stroked_op:mp_print(mp, "stroked"); break;
4900 case textual_op:mp_print(mp, "textual"); break;
4901 case clipped_op:mp_print(mp, "clipped"); break;
4902 case bounded_op:mp_print(mp, "bounded"); break;
4903 case plus:mp_print_char(mp, '+'); break;
4904 case minus:mp_print_char(mp, '-'); break;
4905 case times:mp_print_char(mp, '*'); break;
4906 case over:mp_print_char(mp, '/'); break;
4907 case pythag_add:mp_print(mp, "++"); break;
4908 case pythag_sub:mp_print(mp, "+-+"); break;
4909 case or_op:mp_print(mp, "or"); break;
4910 case and_op:mp_print(mp, "and"); break;
4911 case less_than:mp_print_char(mp, '<'); break;
4912 case less_or_equal:mp_print(mp, "<="); break;
4913 case greater_than:mp_print_char(mp, '>'); break;
4914 case greater_or_equal:mp_print(mp, ">="); break;
4915 case equal_to:mp_print_char(mp, '='); break;
4916 case unequal_to:mp_print(mp, "<>"); break;
4917 case concatenate:mp_print(mp, "&"); break;
4918 case rotated_by:mp_print(mp, "rotated"); break;
4919 case slanted_by:mp_print(mp, "slanted"); break;
4920 case scaled_by:mp_print(mp, "scaled"); break;
4921 case shifted_by:mp_print(mp, "shifted"); break;
4922 case transformed_by:mp_print(mp, "transformed"); break;
4923 case x_scaled:mp_print(mp, "xscaled"); break;
4924 case y_scaled:mp_print(mp, "yscaled"); break;
4925 case z_scaled:mp_print(mp, "zscaled"); break;
4926 case in_font:mp_print(mp, "infont"); break;
4927 case intersect:mp_print(mp, "intersectiontimes"); break;
4928 case substring_of:mp_print(mp, "substring"); break;
4929 case subpath_of:mp_print(mp, "subpath"); break;
4930 case direction_time_of:mp_print(mp, "directiontime"); break;
4931 case point_of:mp_print(mp, "point"); break;
4932 case precontrol_of:mp_print(mp, "precontrol"); break;
4933 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4934 case pen_offset_of:mp_print(mp, "penoffset"); break;
4935 case arc_time_of:mp_print(mp, "arctime"); break;
4936 case mp_version:mp_print(mp, "mpversion"); break;
4937 case envelope_of:mp_print(mp, "envelope"); break;
4938 default: mp_print(mp, ".."); break;
4943 @ \MP\ also has a bunch of internal parameters that a user might want to
4944 fuss with. Every such parameter has an identifying code number, defined here.
4947 enum mp_given_internal {
4948 mp_tracing_titles=1, /* show titles online when they appear */
4949 mp_tracing_equations, /* show each variable when it becomes known */
4950 mp_tracing_capsules, /* show capsules too */
4951 mp_tracing_choices, /* show the control points chosen for paths */
4952 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4953 mp_tracing_commands, /* show commands and operations before they are performed */
4954 mp_tracing_restores, /* show when a variable or internal is restored */
4955 mp_tracing_macros, /* show macros before they are expanded */
4956 mp_tracing_output, /* show digitized edges as they are output */
4957 mp_tracing_stats, /* show memory usage at end of job */
4958 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4959 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4960 mp_year, /* the current year (e.g., 1984) */
4961 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4962 mp_day, /* the current day of the month */
4963 mp_time, /* the number of minutes past midnight when this job started */
4964 mp_char_code, /* the number of the next character to be output */
4965 mp_char_ext, /* the extension code of the next character to be output */
4966 mp_char_wd, /* the width of the next character to be output */
4967 mp_char_ht, /* the height of the next character to be output */
4968 mp_char_dp, /* the depth of the next character to be output */
4969 mp_char_ic, /* the italic correction of the next character to be output */
4970 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4971 mp_pausing, /* positive to display lines on the terminal before they are read */
4972 mp_showstopping, /* positive to stop after each \&{show} command */
4973 mp_fontmaking, /* positive if font metric output is to be produced */
4974 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4975 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4976 mp_miterlimit, /* controls miter length as in \ps */
4977 mp_warning_check, /* controls error message when variable value is large */
4978 mp_boundary_char, /* the right boundary character for ligatures */
4979 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4980 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4981 mp_default_color_model, /* the default color model for unspecified items */
4982 mp_restore_clip_color,
4983 mp_procset, /* wether or not create PostScript command shortcuts */
4984 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4989 @d max_given_internal mp_gtroffmode
4992 scaled *internal; /* the values of internal quantities */
4993 char **int_name; /* their names */
4994 int int_ptr; /* the maximum internal quantity defined so far */
4995 int max_internal; /* current maximum number of internal quantities */
4998 @ @<Option variables@>=
5001 @ @<Allocate or initialize ...@>=
5002 mp->max_internal=2*max_given_internal;
5003 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5004 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5005 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5007 @ @<Exported function ...@>=
5008 int mp_troff_mode(MP mp);
5011 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5013 @ @<Set initial ...@>=
5014 for (k=0;k<= mp->max_internal; k++ ) {
5016 mp->int_name[k]=NULL;
5018 mp->int_ptr=max_given_internal;
5020 @ The symbolic names for internal quantities are put into \MP's hash table
5021 by using a routine called |primitive|, which will be defined later. Let us
5022 enter them now, so that we don't have to list all those names again
5025 @<Put each of \MP's primitives into the hash table@>=
5026 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5027 @:tracingtitles_}{\&{tracingtitles} primitive@>
5028 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5029 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5030 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5031 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5032 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5033 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5034 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5035 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5036 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5037 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5038 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5039 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5040 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5041 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5042 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5043 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5044 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5045 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5046 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5047 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5048 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5049 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5050 mp_primitive(mp, "year",internal_quantity,mp_year);
5051 @:mp_year_}{\&{year} primitive@>
5052 mp_primitive(mp, "month",internal_quantity,mp_month);
5053 @:mp_month_}{\&{month} primitive@>
5054 mp_primitive(mp, "day",internal_quantity,mp_day);
5055 @:mp_day_}{\&{day} primitive@>
5056 mp_primitive(mp, "time",internal_quantity,mp_time);
5057 @:time_}{\&{time} primitive@>
5058 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5059 @:mp_char_code_}{\&{charcode} primitive@>
5060 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5061 @:mp_char_ext_}{\&{charext} primitive@>
5062 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5063 @:mp_char_wd_}{\&{charwd} primitive@>
5064 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5065 @:mp_char_ht_}{\&{charht} primitive@>
5066 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5067 @:mp_char_dp_}{\&{chardp} primitive@>
5068 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5069 @:mp_char_ic_}{\&{charic} primitive@>
5070 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5071 @:mp_design_size_}{\&{designsize} primitive@>
5072 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5073 @:mp_pausing_}{\&{pausing} primitive@>
5074 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5075 @:mp_showstopping_}{\&{showstopping} primitive@>
5076 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5077 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5078 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5079 @:mp_linejoin_}{\&{linejoin} primitive@>
5080 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5081 @:mp_linecap_}{\&{linecap} primitive@>
5082 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5083 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5084 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5085 @:mp_warning_check_}{\&{warningcheck} primitive@>
5086 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5087 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5088 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5089 @:mp_prologues_}{\&{prologues} primitive@>
5090 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5091 @:mp_true_corners_}{\&{truecorners} primitive@>
5092 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5093 @:mp_procset_}{\&{mpprocset} primitive@>
5094 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5095 @:troffmode_}{\&{troffmode} primitive@>
5096 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5097 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5098 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5099 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5101 @ Colors can be specified in four color models. In the special
5102 case of |no_model|, MetaPost does not output any color operator to
5103 the postscript output.
5105 Note: these values are passed directly on to |with_option|. This only
5106 works because the other possible values passed to |with_option| are
5107 8 and 10 respectively (from |with_pen| and |with_picture|).
5109 There is a first state, that is only used for |gs_colormodel|. It flags
5110 the fact that there has not been any kind of color specification by
5111 the user so far in the game.
5114 enum mp_color_model {
5119 mp_uninitialized_model=9,
5123 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5124 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5125 mp->internal[mp_restore_clip_color]=unity;
5127 @ Well, we do have to list the names one more time, for use in symbolic
5130 @<Initialize table...@>=
5131 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5132 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5133 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5134 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5135 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5136 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5137 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5138 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5139 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5140 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5141 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5142 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5143 mp->int_name[mp_year]=xstrdup("year");
5144 mp->int_name[mp_month]=xstrdup("month");
5145 mp->int_name[mp_day]=xstrdup("day");
5146 mp->int_name[mp_time]=xstrdup("time");
5147 mp->int_name[mp_char_code]=xstrdup("charcode");
5148 mp->int_name[mp_char_ext]=xstrdup("charext");
5149 mp->int_name[mp_char_wd]=xstrdup("charwd");
5150 mp->int_name[mp_char_ht]=xstrdup("charht");
5151 mp->int_name[mp_char_dp]=xstrdup("chardp");
5152 mp->int_name[mp_char_ic]=xstrdup("charic");
5153 mp->int_name[mp_design_size]=xstrdup("designsize");
5154 mp->int_name[mp_pausing]=xstrdup("pausing");
5155 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5156 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5157 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5158 mp->int_name[mp_linecap]=xstrdup("linecap");
5159 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5160 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5161 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5162 mp->int_name[mp_prologues]=xstrdup("prologues");
5163 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5164 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5165 mp->int_name[mp_procset]=xstrdup("mpprocset");
5166 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5167 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5169 @ The following procedure, which is called just before \MP\ initializes its
5170 input and output, establishes the initial values of the date and time.
5171 @^system dependencies@>
5173 Note that the values are |scaled| integers. Hence \MP\ can no longer
5174 be used after the year 32767.
5177 void mp_fix_date_and_time (MP mp) {
5178 time_t clock = time ((time_t *) 0);
5179 struct tm *tmptr = localtime (&clock);
5180 mp->internal[mp_time]=
5181 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5182 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5183 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5184 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5188 void mp_fix_date_and_time (MP mp) ;
5190 @ \MP\ is occasionally supposed to print diagnostic information that
5191 goes only into the transcript file, unless |mp_tracing_online| is positive.
5192 Now that we have defined |mp_tracing_online| we can define
5193 two routines that adjust the destination of print commands:
5196 void mp_begin_diagnostic (MP mp) ;
5197 void mp_end_diagnostic (MP mp,boolean blank_line);
5198 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5200 @ @<Basic printing...@>=
5201 @<Declare a function called |true_line|@>;
5202 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5203 mp->old_setting=mp->selector;
5204 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5205 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5207 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5211 void mp_end_diagnostic (MP mp,boolean blank_line) {
5212 /* restore proper conditions after tracing */
5213 mp_print_nl(mp, "");
5214 if ( blank_line ) mp_print_ln(mp);
5215 mp->selector=mp->old_setting;
5218 @ The global variable |non_ps_setting| is initialized when it is time to print
5222 unsigned int old_setting;
5223 unsigned int non_ps_setting;
5225 @ We will occasionally use |begin_diagnostic| in connection with line-number
5226 printing, as follows. (The parameter |s| is typically |"Path"| or
5227 |"Cycle spec"|, etc.)
5229 @<Basic printing...@>=
5230 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5231 mp_begin_diagnostic(mp);
5232 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5233 mp_print(mp, " at line ");
5234 mp_print_int(mp, mp_true_line(mp));
5235 mp_print(mp, t); mp_print_char(mp, ':');
5238 @ The 256 |ASCII_code| characters are grouped into classes by means of
5239 the |char_class| table. Individual class numbers have no semantic
5240 or syntactic significance, except in a few instances defined here.
5241 There's also |max_class|, which can be used as a basis for additional
5242 class numbers in nonstandard extensions of \MP.
5244 @d digit_class 0 /* the class number of \.{0123456789} */
5245 @d period_class 1 /* the class number of `\..' */
5246 @d space_class 2 /* the class number of spaces and nonstandard characters */
5247 @d percent_class 3 /* the class number of `\.\%' */
5248 @d string_class 4 /* the class number of `\."' */
5249 @d right_paren_class 8 /* the class number of `\.)' */
5250 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5251 @d letter_class 9 /* letters and the underline character */
5252 @d left_bracket_class 17 /* `\.[' */
5253 @d right_bracket_class 18 /* `\.]' */
5254 @d invalid_class 20 /* bad character in the input */
5255 @d max_class 20 /* the largest class number */
5258 int char_class[256]; /* the class numbers */
5260 @ If changes are made to accommodate non-ASCII character sets, they should
5261 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5262 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5263 @^system dependencies@>
5265 @<Set initial ...@>=
5266 for (k='0';k<='9';k++)
5267 mp->char_class[k]=digit_class;
5268 mp->char_class['.']=period_class;
5269 mp->char_class[' ']=space_class;
5270 mp->char_class['%']=percent_class;
5271 mp->char_class['"']=string_class;
5272 mp->char_class[',']=5;
5273 mp->char_class[';']=6;
5274 mp->char_class['(']=7;
5275 mp->char_class[')']=right_paren_class;
5276 for (k='A';k<= 'Z';k++ )
5277 mp->char_class[k]=letter_class;
5278 for (k='a';k<='z';k++)
5279 mp->char_class[k]=letter_class;
5280 mp->char_class['_']=letter_class;
5281 mp->char_class['<']=10;
5282 mp->char_class['=']=10;
5283 mp->char_class['>']=10;
5284 mp->char_class[':']=10;
5285 mp->char_class['|']=10;
5286 mp->char_class['`']=11;
5287 mp->char_class['\'']=11;
5288 mp->char_class['+']=12;
5289 mp->char_class['-']=12;
5290 mp->char_class['/']=13;
5291 mp->char_class['*']=13;
5292 mp->char_class['\\']=13;
5293 mp->char_class['!']=14;
5294 mp->char_class['?']=14;
5295 mp->char_class['#']=15;
5296 mp->char_class['&']=15;
5297 mp->char_class['@@']=15;
5298 mp->char_class['$']=15;
5299 mp->char_class['^']=16;
5300 mp->char_class['~']=16;
5301 mp->char_class['[']=left_bracket_class;
5302 mp->char_class[']']=right_bracket_class;
5303 mp->char_class['{']=19;
5304 mp->char_class['}']=19;
5306 mp->char_class[k]=invalid_class;
5307 mp->char_class['\t']=space_class;
5308 mp->char_class['\f']=space_class;
5309 for (k=127;k<=255;k++)
5310 mp->char_class[k]=invalid_class;
5312 @* \[13] The hash table.
5313 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5314 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5315 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5316 table, it is never removed.
5318 The actual sequence of characters forming a symbolic token is
5319 stored in the |str_pool| array together with all the other strings. An
5320 auxiliary array |hash| consists of items with two halfword fields per
5321 word. The first of these, called |next(p)|, points to the next identifier
5322 belonging to the same coalesced list as the identifier corresponding to~|p|;
5323 and the other, called |text(p)|, points to the |str_start| entry for
5324 |p|'s identifier. If position~|p| of the hash table is empty, we have
5325 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5326 hash list, we have |next(p)=0|.
5328 An auxiliary pointer variable called |hash_used| is maintained in such a
5329 way that all locations |p>=hash_used| are nonempty. The global variable
5330 |st_count| tells how many symbolic tokens have been defined, if statistics
5333 The first 256 locations of |hash| are reserved for symbols of length one.
5335 There's a parallel array called |eqtb| that contains the current equivalent
5336 values of each symbolic token. The entries of this array consist of
5337 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5338 piece of information that qualifies the |eq_type|).
5340 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5341 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5342 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5343 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5344 @d hash_base 257 /* hashing actually starts here */
5345 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5348 pointer hash_used; /* allocation pointer for |hash| */
5349 integer st_count; /* total number of known identifiers */
5351 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5352 since they are used in error recovery.
5354 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5355 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5356 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5357 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5358 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5359 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5360 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5361 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5362 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5363 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5364 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5365 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5366 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5367 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5368 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5369 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5370 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5373 two_halves *hash; /* the hash table */
5374 two_halves *eqtb; /* the equivalents */
5376 @ @<Allocate or initialize ...@>=
5377 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5378 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5380 @ @<Dealloc variables@>=
5385 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5386 for (k=2;k<=hash_end;k++) {
5387 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5390 @ @<Initialize table entries...@>=
5391 mp->hash_used=frozen_inaccessible; /* nothing is used */
5393 text(frozen_bad_vardef)=intern("a bad variable");
5394 text(frozen_etex)=intern("etex");
5395 text(frozen_mpx_break)=intern("mpxbreak");
5396 text(frozen_fi)=intern("fi");
5397 text(frozen_end_group)=intern("endgroup");
5398 text(frozen_end_def)=intern("enddef");
5399 text(frozen_end_for)=intern("endfor");
5400 text(frozen_semicolon)=intern(";");
5401 text(frozen_colon)=intern(":");
5402 text(frozen_slash)=intern("/");
5403 text(frozen_left_bracket)=intern("[");
5404 text(frozen_right_delimiter)=intern(")");
5405 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5406 eq_type(frozen_right_delimiter)=right_delimiter;
5408 @ @<Check the ``constant'' values...@>=
5409 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5411 @ Here is the subroutine that searches the hash table for an identifier
5412 that matches a given string of length~|l| appearing in |buffer[j..
5413 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5414 will always be found, and the corresponding hash table address
5418 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5419 integer h; /* hash code */
5420 pointer p; /* index in |hash| array */
5421 pointer k; /* index in |buffer| array */
5423 @<Treat special case of length 1 and |break|@>;
5425 @<Compute the hash code |h|@>;
5426 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5428 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5431 @<Insert a new symbolic token after |p|, then
5432 make |p| point to it and |break|@>;
5439 @ @<Treat special case of length 1...@>=
5440 p=mp->buffer[j]+1; text(p)=p-1; return p;
5443 @ @<Insert a new symbolic...@>=
5448 mp_overflow(mp, "hash size",mp->hash_size);
5449 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5450 decr(mp->hash_used);
5451 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5452 next(p)=mp->hash_used;
5456 for (k=j;k<=j+l-1;k++) {
5457 append_char(mp->buffer[k]);
5459 text(p)=mp_make_string(mp);
5460 mp->str_ref[text(p)]=max_str_ref;
5466 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5467 should be a prime number. The theory of hashing tells us to expect fewer
5468 than two table probes, on the average, when the search is successful.
5469 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5470 @^Vitter, Jeffrey Scott@>
5472 @<Compute the hash code |h|@>=
5474 for (k=j+1;k<=j+l-1;k++){
5475 h=h+h+mp->buffer[k];
5476 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5479 @ @<Search |eqtb| for equivalents equal to |p|@>=
5480 for (q=1;q<=hash_end;q++) {
5481 if ( equiv(q)==p ) {
5482 mp_print_nl(mp, "EQUIV(");
5483 mp_print_int(mp, q);
5484 mp_print_char(mp, ')');
5488 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5489 table, together with their command code (which will be the |eq_type|)
5490 and an operand (which will be the |equiv|). The |primitive| procedure
5491 does this, in a way that no \MP\ user can. The global value |cur_sym|
5492 contains the new |eqtb| pointer after |primitive| has acted.
5495 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5496 pool_pointer k; /* index into |str_pool| */
5497 small_number j; /* index into |buffer| */
5498 small_number l; /* length of the string */
5501 k=mp->str_start[s]; l=str_stop(s)-k;
5502 /* we will move |s| into the (empty) |buffer| */
5503 for (j=0;j<=l-1;j++) {
5504 mp->buffer[j]=mp->str_pool[k+j];
5506 mp->cur_sym=mp_id_lookup(mp, 0,l);
5507 if ( s>=256 ) { /* we don't want to have the string twice */
5508 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5510 eq_type(mp->cur_sym)=c;
5511 equiv(mp->cur_sym)=o;
5515 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5516 by their |eq_type| alone. These primitives are loaded into the hash table
5519 @<Put each of \MP's primitives into the hash table@>=
5520 mp_primitive(mp, "..",path_join,0);
5521 @:.._}{\.{..} primitive@>
5522 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5523 @:[ }{\.{[} primitive@>
5524 mp_primitive(mp, "]",right_bracket,0);
5525 @:] }{\.{]} primitive@>
5526 mp_primitive(mp, "}",right_brace,0);
5527 @:]]}{\.{\char`\}} primitive@>
5528 mp_primitive(mp, "{",left_brace,0);
5529 @:][}{\.{\char`\{} primitive@>
5530 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5531 @:: }{\.{:} primitive@>
5532 mp_primitive(mp, "::",double_colon,0);
5533 @::: }{\.{::} primitive@>
5534 mp_primitive(mp, "||:",bchar_label,0);
5535 @:::: }{\.{\char'174\char'174:} primitive@>
5536 mp_primitive(mp, ":=",assignment,0);
5537 @::=_}{\.{:=} primitive@>
5538 mp_primitive(mp, ",",comma,0);
5539 @:, }{\., primitive@>
5540 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5541 @:; }{\.; primitive@>
5542 mp_primitive(mp, "\\",relax,0);
5543 @:]]\\}{\.{\char`\\} primitive@>
5545 mp_primitive(mp, "addto",add_to_command,0);
5546 @:add_to_}{\&{addto} primitive@>
5547 mp_primitive(mp, "atleast",at_least,0);
5548 @:at_least_}{\&{atleast} primitive@>
5549 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5550 @:begin_group_}{\&{begingroup} primitive@>
5551 mp_primitive(mp, "controls",controls,0);
5552 @:controls_}{\&{controls} primitive@>
5553 mp_primitive(mp, "curl",curl_command,0);
5554 @:curl_}{\&{curl} primitive@>
5555 mp_primitive(mp, "delimiters",delimiters,0);
5556 @:delimiters_}{\&{delimiters} primitive@>
5557 mp_primitive(mp, "endgroup",end_group,0);
5558 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5559 @:endgroup_}{\&{endgroup} primitive@>
5560 mp_primitive(mp, "everyjob",every_job_command,0);
5561 @:every_job_}{\&{everyjob} primitive@>
5562 mp_primitive(mp, "exitif",exit_test,0);
5563 @:exit_if_}{\&{exitif} primitive@>
5564 mp_primitive(mp, "expandafter",expand_after,0);
5565 @:expand_after_}{\&{expandafter} primitive@>
5566 mp_primitive(mp, "interim",interim_command,0);
5567 @:interim_}{\&{interim} primitive@>
5568 mp_primitive(mp, "let",let_command,0);
5569 @:let_}{\&{let} primitive@>
5570 mp_primitive(mp, "newinternal",new_internal,0);
5571 @:new_internal_}{\&{newinternal} primitive@>
5572 mp_primitive(mp, "of",of_token,0);
5573 @:of_}{\&{of} primitive@>
5574 mp_primitive(mp, "randomseed",random_seed,0);
5575 @:random_seed_}{\&{randomseed} primitive@>
5576 mp_primitive(mp, "save",save_command,0);
5577 @:save_}{\&{save} primitive@>
5578 mp_primitive(mp, "scantokens",scan_tokens,0);
5579 @:scan_tokens_}{\&{scantokens} primitive@>
5580 mp_primitive(mp, "shipout",ship_out_command,0);
5581 @:ship_out_}{\&{shipout} primitive@>
5582 mp_primitive(mp, "skipto",skip_to,0);
5583 @:skip_to_}{\&{skipto} primitive@>
5584 mp_primitive(mp, "special",special_command,0);
5585 @:special}{\&{special} primitive@>
5586 mp_primitive(mp, "fontmapfile",special_command,1);
5587 @:fontmapfile}{\&{fontmapfile} primitive@>
5588 mp_primitive(mp, "fontmapline",special_command,2);
5589 @:fontmapline}{\&{fontmapline} primitive@>
5590 mp_primitive(mp, "step",step_token,0);
5591 @:step_}{\&{step} primitive@>
5592 mp_primitive(mp, "str",str_op,0);
5593 @:str_}{\&{str} primitive@>
5594 mp_primitive(mp, "tension",tension,0);
5595 @:tension_}{\&{tension} primitive@>
5596 mp_primitive(mp, "to",to_token,0);
5597 @:to_}{\&{to} primitive@>
5598 mp_primitive(mp, "until",until_token,0);
5599 @:until_}{\&{until} primitive@>
5600 mp_primitive(mp, "within",within_token,0);
5601 @:within_}{\&{within} primitive@>
5602 mp_primitive(mp, "write",write_command,0);
5603 @:write_}{\&{write} primitive@>
5605 @ Each primitive has a corresponding inverse, so that it is possible to
5606 display the cryptic numeric contents of |eqtb| in symbolic form.
5607 Every call of |primitive| in this program is therefore accompanied by some
5608 straightforward code that forms part of the |print_cmd_mod| routine
5611 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5612 case add_to_command:mp_print(mp, "addto"); break;
5613 case assignment:mp_print(mp, ":="); break;
5614 case at_least:mp_print(mp, "atleast"); break;
5615 case bchar_label:mp_print(mp, "||:"); break;
5616 case begin_group:mp_print(mp, "begingroup"); break;
5617 case colon:mp_print(mp, ":"); break;
5618 case comma:mp_print(mp, ","); break;
5619 case controls:mp_print(mp, "controls"); break;
5620 case curl_command:mp_print(mp, "curl"); break;
5621 case delimiters:mp_print(mp, "delimiters"); break;
5622 case double_colon:mp_print(mp, "::"); break;
5623 case end_group:mp_print(mp, "endgroup"); break;
5624 case every_job_command:mp_print(mp, "everyjob"); break;
5625 case exit_test:mp_print(mp, "exitif"); break;
5626 case expand_after:mp_print(mp, "expandafter"); break;
5627 case interim_command:mp_print(mp, "interim"); break;
5628 case left_brace:mp_print(mp, "{"); break;
5629 case left_bracket:mp_print(mp, "["); break;
5630 case let_command:mp_print(mp, "let"); break;
5631 case new_internal:mp_print(mp, "newinternal"); break;
5632 case of_token:mp_print(mp, "of"); break;
5633 case path_join:mp_print(mp, ".."); break;
5634 case random_seed:mp_print(mp, "randomseed"); break;
5635 case relax:mp_print_char(mp, '\\'); break;
5636 case right_brace:mp_print(mp, "}"); break;
5637 case right_bracket:mp_print(mp, "]"); break;
5638 case save_command:mp_print(mp, "save"); break;
5639 case scan_tokens:mp_print(mp, "scantokens"); break;
5640 case semicolon:mp_print(mp, ";"); break;
5641 case ship_out_command:mp_print(mp, "shipout"); break;
5642 case skip_to:mp_print(mp, "skipto"); break;
5643 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5644 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5645 mp_print(mp, "special"); break;
5646 case step_token:mp_print(mp, "step"); break;
5647 case str_op:mp_print(mp, "str"); break;
5648 case tension:mp_print(mp, "tension"); break;
5649 case to_token:mp_print(mp, "to"); break;
5650 case until_token:mp_print(mp, "until"); break;
5651 case within_token:mp_print(mp, "within"); break;
5652 case write_command:mp_print(mp, "write"); break;
5654 @ We will deal with the other primitives later, at some point in the program
5655 where their |eq_type| and |equiv| values are more meaningful. For example,
5656 the primitives for macro definitions will be loaded when we consider the
5657 routines that define macros.
5658 It is easy to find where each particular
5659 primitive was treated by looking in the index at the end; for example, the
5660 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5662 @* \[14] Token lists.
5663 A \MP\ token is either symbolic or numeric or a string, or it denotes
5664 a macro parameter or capsule; so there are five corresponding ways to encode it
5666 internally: (1)~A symbolic token whose hash code is~|p|
5667 is represented by the number |p|, in the |info| field of a single-word
5668 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5669 represented in a two-word node of~|mem|; the |type| field is |known|,
5670 the |name_type| field is |token|, and the |value| field holds~|v|.
5671 The fact that this token appears in a two-word node rather than a
5672 one-word node is, of course, clear from the node address.
5673 (3)~A string token is also represented in a two-word node; the |type|
5674 field is |mp_string_type|, the |name_type| field is |token|, and the
5675 |value| field holds the corresponding |str_number|. (4)~Capsules have
5676 |name_type=capsule|, and their |type| and |value| fields represent
5677 arbitrary values (in ways to be explained later). (5)~Macro parameters
5678 are like symbolic tokens in that they appear in |info| fields of
5679 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5680 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5681 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5682 Actual values of these parameters are kept in a separate stack, as we will
5683 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5684 of course, chosen so that there will be no confusion between symbolic
5685 tokens and parameters of various types.
5688 the `\\{type}' field of a node has nothing to do with ``type'' in a
5689 printer's sense. It's curious that the same word is used in such different ways.
5691 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5692 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5693 @d token_node_size 2 /* the number of words in a large token node */
5694 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5695 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5696 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5697 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5698 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5700 @<Check the ``constant''...@>=
5701 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5703 @ We have set aside a two word node beginning at |null| so that we can have
5704 |value(null)=0|. We will make use of this coincidence later.
5706 @<Initialize table entries...@>=
5707 link(null)=null; value(null)=0;
5709 @ A numeric token is created by the following trivial routine.
5712 pointer mp_new_num_tok (MP mp,scaled v) {
5713 pointer p; /* the new node */
5714 p=mp_get_node(mp, token_node_size); value(p)=v;
5715 type(p)=mp_known; name_type(p)=mp_token;
5719 @ A token list is a singly linked list of nodes in |mem|, where
5720 each node contains a token and a link. Here's a subroutine that gets rid
5721 of a token list when it is no longer needed.
5724 void mp_token_recycle (MP mp);
5727 @c void mp_flush_token_list (MP mp,pointer p) {
5728 pointer q; /* the node being recycled */
5731 if ( q>=mp->hi_mem_min ) {
5735 case mp_vacuous: case mp_boolean_type: case mp_known:
5737 case mp_string_type:
5738 delete_str_ref(value(q));
5740 case unknown_types: case mp_pen_type: case mp_path_type:
5741 case mp_picture_type: case mp_pair_type: case mp_color_type:
5742 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5743 case mp_proto_dependent: case mp_independent:
5744 mp->g_pointer=q; mp_token_recycle(mp);
5746 default: mp_confusion(mp, "token");
5747 @:this can't happen token}{\quad token@>
5749 mp_free_node(mp, q,token_node_size);
5754 @ The procedure |show_token_list|, which prints a symbolic form of
5755 the token list that starts at a given node |p|, illustrates these
5756 conventions. The token list being displayed should not begin with a reference
5757 count. However, the procedure is intended to be fairly robust, so that if the
5758 memory links are awry or if |p| is not really a pointer to a token list,
5759 almost nothing catastrophic can happen.
5761 An additional parameter |q| is also given; this parameter is either null
5762 or it points to a node in the token list where a certain magic computation
5763 takes place that will be explained later. (Basically, |q| is non-null when
5764 we are printing the two-line context information at the time of an error
5765 message; |q| marks the place corresponding to where the second line
5768 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5769 of printing exceeds a given limit~|l|; the length of printing upon entry is
5770 assumed to be a given amount called |null_tally|. (Note that
5771 |show_token_list| sometimes uses itself recursively to print
5772 variable names within a capsule.)
5775 Unusual entries are printed in the form of all-caps tokens
5776 preceded by a space, e.g., `\.{\char`\ BAD}'.
5779 void mp_print_capsule (MP mp);
5781 @ @<Declare the procedure called |show_token_list|@>=
5782 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5783 integer null_tally) ;
5786 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5787 integer null_tally) {
5788 small_number class,c; /* the |char_class| of previous and new tokens */
5789 integer r,v; /* temporary registers */
5790 class=percent_class;
5791 mp->tally=null_tally;
5792 while ( (p!=null) && (mp->tally<l) ) {
5794 @<Do magic computation@>;
5795 @<Display token |p| and set |c| to its class;
5796 but |return| if there are problems@>;
5800 mp_print(mp, " ETC.");
5805 @ @<Display token |p| and set |c| to its class...@>=
5806 c=letter_class; /* the default */
5807 if ( (p<0)||(p>mp->mem_end) ) {
5808 mp_print(mp, " CLOBBERED"); return;
5811 if ( p<mp->hi_mem_min ) {
5812 @<Display two-word token@>;
5815 if ( r>=expr_base ) {
5816 @<Display a parameter token@>;
5820 @<Display a collective subscript@>
5822 mp_print(mp, " IMPOSSIBLE");
5827 if ( (r<0)||(r>mp->max_str_ptr) ) {
5828 mp_print(mp, " NONEXISTENT");
5831 @<Print string |r| as a symbolic token
5832 and set |c| to its class@>;
5838 @ @<Display two-word token@>=
5839 if ( name_type(p)==mp_token ) {
5840 if ( type(p)==mp_known ) {
5841 @<Display a numeric token@>;
5842 } else if ( type(p)!=mp_string_type ) {
5843 mp_print(mp, " BAD");
5846 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5849 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5850 mp_print(mp, " BAD");
5852 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5855 @ @<Display a numeric token@>=
5856 if ( class==digit_class )
5857 mp_print_char(mp, ' ');
5860 if ( class==left_bracket_class )
5861 mp_print_char(mp, ' ');
5862 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5863 c=right_bracket_class;
5865 mp_print_scaled(mp, v); c=digit_class;
5869 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5870 But we will see later (in the |print_variable_name| routine) that
5871 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5873 @<Display a collective subscript@>=
5875 if ( class==left_bracket_class )
5876 mp_print_char(mp, ' ');
5877 mp_print(mp, "[]"); c=right_bracket_class;
5880 @ @<Display a parameter token@>=
5882 if ( r<suffix_base ) {
5883 mp_print(mp, "(EXPR"); r=r-(expr_base);
5885 } else if ( r<text_base ) {
5886 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5889 mp_print(mp, "(TEXT"); r=r-(text_base);
5892 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5896 @ @<Print string |r| as a symbolic token...@>=
5898 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5901 case letter_class:mp_print_char(mp, '.'); break;
5902 case isolated_classes: break;
5903 default: mp_print_char(mp, ' '); break;
5906 mp_print_str(mp, r);
5909 @ The following procedures have been declared |forward| with no parameters,
5910 because the author dislikes \PASCAL's convention about |forward| procedures
5911 with parameters. It was necessary to do something, because |show_token_list|
5912 is recursive (although the recursion is limited to one level), and because
5913 |flush_token_list| is syntactically (but not semantically) recursive.
5916 @<Declare miscellaneous procedures that were declared |forward|@>=
5917 void mp_print_capsule (MP mp) {
5918 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5921 void mp_token_recycle (MP mp) {
5922 mp_recycle_value(mp, mp->g_pointer);
5926 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5928 @ Macro definitions are kept in \MP's memory in the form of token lists
5929 that have a few extra one-word nodes at the beginning.
5931 The first node contains a reference count that is used to tell when the
5932 list is no longer needed. To emphasize the fact that a reference count is
5933 present, we shall refer to the |info| field of this special node as the
5935 @^reference counts@>
5937 The next node or nodes after the reference count serve to describe the
5938 formal parameters. They either contain a code word that specifies all
5939 of the parameters, or they contain zero or more parameter tokens followed
5940 by the code `|general_macro|'.
5943 /* reference count preceding a macro definition or picture header */
5944 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5945 @d general_macro 0 /* preface to a macro defined with a parameter list */
5946 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5947 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5948 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5949 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5950 @d of_macro 5 /* preface to a macro with
5951 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5952 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5953 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5956 void mp_delete_mac_ref (MP mp,pointer p) {
5957 /* |p| points to the reference count of a macro list that is
5958 losing one reference */
5959 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5960 else decr(ref_count(p));
5963 @ The following subroutine displays a macro, given a pointer to its
5967 @<Declare the procedure called |print_cmd_mod|@>;
5968 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5969 pointer r; /* temporary storage */
5970 p=link(p); /* bypass the reference count */
5971 while ( info(p)>text_macro ){
5972 r=link(p); link(p)=null;
5973 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5974 if ( l>0 ) l=l-mp->tally; else return;
5975 } /* control printing of `\.{ETC.}' */
5979 case general_macro:mp_print(mp, "->"); break;
5981 case primary_macro: case secondary_macro: case tertiary_macro:
5982 mp_print_char(mp, '<');
5983 mp_print_cmd_mod(mp, param_type,info(p));
5984 mp_print(mp, ">->");
5986 case expr_macro:mp_print(mp, "<expr>->"); break;
5987 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5988 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5989 case text_macro:mp_print(mp, "<text>->"); break;
5990 } /* there are no other cases */
5991 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5994 @* \[15] Data structures for variables.
5995 The variables of \MP\ programs can be simple, like `\.x', or they can
5996 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5997 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5998 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5999 things are represented inside of the computer.
6001 Each variable value occupies two consecutive words, either in a two-word
6002 node called a value node, or as a two-word subfield of a larger node. One
6003 of those two words is called the |value| field; it is an integer,
6004 containing either a |scaled| numeric value or the representation of some
6005 other type of quantity. (It might also be subdivided into halfwords, in
6006 which case it is referred to by other names instead of |value|.) The other
6007 word is broken into subfields called |type|, |name_type|, and |link|. The
6008 |type| field is a quarterword that specifies the variable's type, and
6009 |name_type| is a quarterword from which \MP\ can reconstruct the
6010 variable's name (sometimes by using the |link| field as well). Thus, only
6011 1.25 words are actually devoted to the value itself; the other
6012 three-quarters of a word are overhead, but they aren't wasted because they
6013 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6015 In this section we shall be concerned only with the structural aspects of
6016 variables, not their values. Later parts of the program will change the
6017 |type| and |value| fields, but we shall treat those fields as black boxes
6018 whose contents should not be touched.
6020 However, if the |type| field is |mp_structured|, there is no |value| field,
6021 and the second word is broken into two pointer fields called |attr_head|
6022 and |subscr_head|. Those fields point to additional nodes that
6023 contain structural information, as we shall see.
6025 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6026 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6027 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6028 @d value_node_size 2 /* the number of words in a value node */
6030 @ An attribute node is three words long. Two of these words contain |type|
6031 and |value| fields as described above, and the third word contains
6032 additional information: There is an |attr_loc| field, which contains the
6033 hash address of the token that names this attribute; and there's also a
6034 |parent| field, which points to the value node of |mp_structured| type at the
6035 next higher level (i.e., at the level to which this attribute is
6036 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6037 |link| field points to the next attribute with the same parent; these are
6038 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6039 final attribute node links to the constant |end_attr|, whose |attr_loc|
6040 field is greater than any legal hash address. The |attr_head| in the
6041 parent points to a node whose |name_type| is |mp_structured_root|; this
6042 node represents the null attribute, i.e., the variable that is relevant
6043 when no attributes are attached to the parent. The |attr_head| node is either
6044 a value node, a subscript node, or an attribute node, depending on what
6045 the parent would be if it were not structured; but the subscript and
6046 attribute fields are ignored, so it effectively contains only the data of
6047 a value node. The |link| field in this special node points to an attribute
6048 node whose |attr_loc| field is zero; the latter node represents a collective
6049 subscript `\.{[]}' attached to the parent, and its |link| field points to
6050 the first non-special attribute node (or to |end_attr| if there are none).
6052 A subscript node likewise occupies three words, with |type| and |value| fields
6053 plus extra information; its |name_type| is |subscr|. In this case the
6054 third word is called the |subscript| field, which is a |scaled| integer.
6055 The |link| field points to the subscript node with the next larger
6056 subscript, if any; otherwise the |link| points to the attribute node
6057 for collective subscripts at this level. We have seen that the latter node
6058 contains an upward pointer, so that the parent can be deduced.
6060 The |name_type| in a parent-less value node is |root|, and the |link|
6061 is the hash address of the token that names this value.
6063 In other words, variables have a hierarchical structure that includes
6064 enough threads running around so that the program is able to move easily
6065 between siblings, parents, and children. An example should be helpful:
6066 (The reader is advised to draw a picture while reading the following
6067 description, since that will help to firm up the ideas.)
6068 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6069 and `\.{x20b}' have been mentioned in a user's program, where
6070 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6071 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6072 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6073 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6074 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6075 node and |r| to a subscript node. (Are you still following this? Use
6076 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6077 |type(q)| and |value(q)|; furthermore
6078 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6079 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6080 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6081 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6082 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6083 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6084 |name_type(qq)=mp_structured_root|, and
6085 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6086 an attribute node representing `\.{x[][]}', which has never yet
6087 occurred; its |type| field is |undefined|, and its |value| field is
6088 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6089 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6090 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6091 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6092 (Maybe colored lines will help untangle your picture.)
6093 Node |r| is a subscript node with |type| and |value|
6094 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6095 and |link(r)=r1| is another subscript node. To complete the picture,
6096 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6097 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6098 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6099 and we finish things off with three more nodes
6100 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6101 with a larger sheet of paper.) The value of variable \.{x20b}
6102 appears in node~|qqq2|, as you can well imagine.
6104 If the example in the previous paragraph doesn't make things crystal
6105 clear, a glance at some of the simpler subroutines below will reveal how
6106 things work out in practice.
6108 The only really unusual thing about these conventions is the use of
6109 collective subscript attributes. The idea is to avoid repeating a lot of
6110 type information when many elements of an array are identical macros
6111 (for which distinct values need not be stored) or when they don't have
6112 all of the possible attributes. Branches of the structure below collective
6113 subscript attributes do not carry actual values except for macro identifiers;
6114 branches of the structure below subscript nodes do not carry significant
6115 information in their collective subscript attributes.
6117 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6118 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6119 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6120 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6121 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6122 @d attr_node_size 3 /* the number of words in an attribute node */
6123 @d subscr_node_size 3 /* the number of words in a subscript node */
6124 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6126 @<Initialize table...@>=
6127 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6129 @ Variables of type \&{pair} will have values that point to four-word
6130 nodes containing two numeric values. The first of these values has
6131 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6132 the |link| in the first points back to the node whose |value| points
6133 to this four-word node.
6135 Variables of type \&{transform} are similar, but in this case their
6136 |value| points to a 12-word node containing six values, identified by
6137 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6138 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6139 Finally, variables of type \&{color} have three values in six words
6140 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6142 When an entire structured variable is saved, the |root| indication
6143 is temporarily replaced by |saved_root|.
6145 Some variables have no name; they just are used for temporary storage
6146 while expressions are being evaluated. We call them {\sl capsules}.
6148 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6149 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6150 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6151 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6152 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6153 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6154 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6155 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6156 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6157 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6158 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6159 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6160 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6161 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6163 @d pair_node_size 4 /* the number of words in a pair node */
6164 @d transform_node_size 12 /* the number of words in a transform node */
6165 @d color_node_size 6 /* the number of words in a color node */
6166 @d cmykcolor_node_size 8 /* the number of words in a color node */
6169 small_number big_node_size[mp_pair_type+1];
6170 small_number sector0[mp_pair_type+1];
6171 small_number sector_offset[mp_black_part_sector+1];
6173 @ The |sector0| array gives for each big node type, |name_type| values
6174 for its first subfield; the |sector_offset| array gives for each
6175 |name_type| value, the offset from the first subfield in words;
6176 and the |big_node_size| array gives the size in words for each type of
6180 mp->big_node_size[mp_transform_type]=transform_node_size;
6181 mp->big_node_size[mp_pair_type]=pair_node_size;
6182 mp->big_node_size[mp_color_type]=color_node_size;
6183 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6184 mp->sector0[mp_transform_type]=mp_x_part_sector;
6185 mp->sector0[mp_pair_type]=mp_x_part_sector;
6186 mp->sector0[mp_color_type]=mp_red_part_sector;
6187 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6188 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6189 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6191 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6192 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6194 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6195 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6198 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6199 procedure call |init_big_node(p)| will allocate a pair or transform node
6200 for~|p|. The individual parts of such nodes are initially of type
6204 void mp_init_big_node (MP mp,pointer p) {
6205 pointer q; /* the new node */
6206 small_number s; /* its size */
6207 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6210 @<Make variable |q+s| newly independent@>;
6211 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6214 link(q)=p; value(p)=q;
6217 @ The |id_transform| function creates a capsule for the
6218 identity transformation.
6221 pointer mp_id_transform (MP mp) {
6222 pointer p,q,r; /* list manipulation registers */
6223 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6224 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6225 r=q+transform_node_size;
6228 type(r)=mp_known; value(r)=0;
6230 value(xx_part_loc(q))=unity;
6231 value(yy_part_loc(q))=unity;
6235 @ Tokens are of type |tag_token| when they first appear, but they point
6236 to |null| until they are first used as the root of a variable.
6237 The following subroutine establishes the root node on such grand occasions.
6240 void mp_new_root (MP mp,pointer x) {
6241 pointer p; /* the new node */
6242 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6243 link(p)=x; equiv(x)=p;
6246 @ These conventions for variable representation are illustrated by the
6247 |print_variable_name| routine, which displays the full name of a
6248 variable given only a pointer to its two-word value packet.
6251 void mp_print_variable_name (MP mp, pointer p);
6254 void mp_print_variable_name (MP mp, pointer p) {
6255 pointer q; /* a token list that will name the variable's suffix */
6256 pointer r; /* temporary for token list creation */
6257 while ( name_type(p)>=mp_x_part_sector ) {
6258 @<Preface the output with a part specifier; |return| in the
6259 case of a capsule@>;
6262 while ( name_type(p)>mp_saved_root ) {
6263 @<Ascend one level, pushing a token onto list |q|
6264 and replacing |p| by its parent@>;
6266 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6267 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6269 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6270 mp_flush_token_list(mp, r);
6273 @ @<Ascend one level, pushing a token onto list |q|...@>=
6275 if ( name_type(p)==mp_subscr ) {
6276 r=mp_new_num_tok(mp, subscript(p));
6279 } while (name_type(p)!=mp_attr);
6280 } else if ( name_type(p)==mp_structured_root ) {
6281 p=link(p); goto FOUND;
6283 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6284 @:this can't happen var}{\quad var@>
6285 r=mp_get_avail(mp); info(r)=attr_loc(p);
6292 @ @<Preface the output with a part specifier...@>=
6293 { switch (name_type(p)) {
6294 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6295 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6296 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6297 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6298 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6299 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6300 case mp_red_part_sector: mp_print(mp, "red"); break;
6301 case mp_green_part_sector: mp_print(mp, "green"); break;
6302 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6303 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6304 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6305 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6306 case mp_black_part_sector: mp_print(mp, "black"); break;
6307 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6309 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6312 } /* there are no other cases */
6313 mp_print(mp, "part ");
6314 p=link(p-mp->sector_offset[name_type(p)]);
6317 @ The |interesting| function returns |true| if a given variable is not
6318 in a capsule, or if the user wants to trace capsules.
6321 boolean mp_interesting (MP mp,pointer p) {
6322 small_number t; /* a |name_type| */
6323 if ( mp->internal[mp_tracing_capsules]>0 ) {
6327 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6328 t=name_type(link(p-mp->sector_offset[t]));
6329 return (t!=mp_capsule);
6333 @ Now here is a subroutine that converts an unstructured type into an
6334 equivalent structured type, by inserting a |mp_structured| node that is
6335 capable of growing. This operation is done only when |name_type(p)=root|,
6336 |subscr|, or |attr|.
6338 The procedure returns a pointer to the new node that has taken node~|p|'s
6339 place in the structure. Node~|p| itself does not move, nor are its
6340 |value| or |type| fields changed in any way.
6343 pointer mp_new_structure (MP mp,pointer p) {
6344 pointer q,r=0; /* list manipulation registers */
6345 switch (name_type(p)) {
6347 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6350 @<Link a new subscript node |r| in place of node |p|@>;
6353 @<Link a new attribute node |r| in place of node |p|@>;
6356 mp_confusion(mp, "struct");
6357 @:this can't happen struct}{\quad struct@>
6360 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6361 attr_head(r)=p; name_type(p)=mp_structured_root;
6362 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6363 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6364 attr_loc(q)=collective_subscript;
6368 @ @<Link a new subscript node |r| in place of node |p|@>=
6373 } while (name_type(q)!=mp_attr);
6374 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6378 r=mp_get_node(mp, subscr_node_size);
6379 link(q)=r; subscript(r)=subscript(p);
6382 @ If the attribute is |collective_subscript|, there are two pointers to
6383 node~|p|, so we must change both of them.
6385 @<Link a new attribute node |r| in place of node |p|@>=
6387 q=parent(p); r=attr_head(q);
6391 r=mp_get_node(mp, attr_node_size); link(q)=r;
6392 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6393 if ( attr_loc(p)==collective_subscript ) {
6394 q=subscr_head_loc(parent(p));
6395 while ( link(q)!=p ) q=link(q);
6400 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6401 list of suffixes; it returns a pointer to the corresponding two-word
6402 value. For example, if |t| points to token \.x followed by a numeric
6403 token containing the value~7, |find_variable| finds where the value of
6404 \.{x7} is stored in memory. This may seem a simple task, and it
6405 usually is, except when \.{x7} has never been referenced before.
6406 Indeed, \.x may never have even been subscripted before; complexities
6407 arise with respect to updating the collective subscript information.
6409 If a macro type is detected anywhere along path~|t|, or if the first
6410 item on |t| isn't a |tag_token|, the value |null| is returned.
6411 Otherwise |p| will be a non-null pointer to a node such that
6412 |undefined<type(p)<mp_structured|.
6414 @d abort_find { return null; }
6417 pointer mp_find_variable (MP mp,pointer t) {
6418 pointer p,q,r,s; /* nodes in the ``value'' line */
6419 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6420 integer n; /* subscript or attribute */
6421 memory_word save_word; /* temporary storage for a word of |mem| */
6423 p=info(t); t=link(t);
6424 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6425 if ( equiv(p)==null ) mp_new_root(mp, p);
6428 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6429 if ( t<mp->hi_mem_min ) {
6430 @<Descend one level for the subscript |value(t)|@>
6432 @<Descend one level for the attribute |info(t)|@>;
6436 if ( type(pp)>=mp_structured ) {
6437 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6439 if ( type(p)==mp_structured ) p=attr_head(p);
6440 if ( type(p)==undefined ) {
6441 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6442 type(p)=type(pp); value(p)=null;
6447 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6448 |pp|~stays in the collective line while |p|~goes through actual subscript
6451 @<Make sure that both nodes |p| and |pp|...@>=
6452 if ( type(pp)!=mp_structured ) {
6453 if ( type(pp)>mp_structured ) abort_find;
6454 ss=mp_new_structure(mp, pp);
6457 }; /* now |type(pp)=mp_structured| */
6458 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6459 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6461 @ We want this part of the program to be reasonably fast, in case there are
6463 lots of subscripts at the same level of the data structure. Therefore
6464 we store an ``infinite'' value in the word that appears at the end of the
6465 subscript list, even though that word isn't part of a subscript node.
6467 @<Descend one level for the subscript |value(t)|@>=
6470 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6471 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6472 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6475 } while (n>subscript(s));
6476 if ( n==subscript(s) ) {
6479 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6480 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6482 mp->mem[subscript_loc(q)]=save_word;
6485 @ @<Descend one level for the attribute |info(t)|@>=
6491 } while (n>attr_loc(ss));
6492 if ( n<attr_loc(ss) ) {
6493 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6494 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6495 parent(qq)=pp; ss=qq;
6500 pp=ss; s=attr_head(p);
6503 } while (n>attr_loc(s));
6504 if ( n==attr_loc(s) ) {
6507 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6508 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6514 @ Variables lose their former values when they appear in a type declaration,
6515 or when they are defined to be macros or \&{let} equal to something else.
6516 A subroutine will be defined later that recycles the storage associated
6517 with any particular |type| or |value|; our goal now is to study a higher
6518 level process called |flush_variable|, which selectively frees parts of a
6521 This routine has some complexity because of examples such as
6522 `\hbox{\tt numeric x[]a[]b}'
6523 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6524 `\hbox{\tt vardef x[]a[]=...}'
6525 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6526 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6527 to handle such examples is to use recursion; so that's what we~do.
6530 Parameter |p| points to the root information of the variable;
6531 parameter |t| points to a list of one-word nodes that represent
6532 suffixes, with |info=collective_subscript| for subscripts.
6535 @<Declare subroutines for printing expressions@>
6536 @<Declare basic dependency-list subroutines@>
6537 @<Declare the recycling subroutines@>
6538 void mp_flush_cur_exp (MP mp,scaled v) ;
6539 @<Declare the procedure called |flush_below_variable|@>
6542 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6543 pointer q,r; /* list manipulation */
6544 halfword n; /* attribute to match */
6546 if ( type(p)!=mp_structured ) return;
6547 n=info(t); t=link(t);
6548 if ( n==collective_subscript ) {
6549 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6550 while ( name_type(q)==mp_subscr ){
6551 mp_flush_variable(mp, q,t,discard_suffixes);
6553 if ( type(q)==mp_structured ) r=q;
6554 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6564 } while (attr_loc(p)<n);
6565 if ( attr_loc(p)!=n ) return;
6567 if ( discard_suffixes ) {
6568 mp_flush_below_variable(mp, p);
6570 if ( type(p)==mp_structured ) p=attr_head(p);
6571 mp_recycle_value(mp, p);
6575 @ The next procedure is simpler; it wipes out everything but |p| itself,
6576 which becomes undefined.
6578 @<Declare the procedure called |flush_below_variable|@>=
6579 void mp_flush_below_variable (MP mp, pointer p);
6582 void mp_flush_below_variable (MP mp,pointer p) {
6583 pointer q,r; /* list manipulation registers */
6584 if ( type(p)!=mp_structured ) {
6585 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6588 while ( name_type(q)==mp_subscr ) {
6589 mp_flush_below_variable(mp, q); r=q; q=link(q);
6590 mp_free_node(mp, r,subscr_node_size);
6592 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6593 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6594 else mp_free_node(mp, r,subscr_node_size);
6595 /* we assume that |subscr_node_size=attr_node_size| */
6597 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6598 } while (q!=end_attr);
6603 @ Just before assigning a new value to a variable, we will recycle the
6604 old value and make the old value undefined. The |und_type| routine
6605 determines what type of undefined value should be given, based on
6606 the current type before recycling.
6609 small_number mp_und_type (MP mp,pointer p) {
6611 case undefined: case mp_vacuous:
6613 case mp_boolean_type: case mp_unknown_boolean:
6614 return mp_unknown_boolean;
6615 case mp_string_type: case mp_unknown_string:
6616 return mp_unknown_string;
6617 case mp_pen_type: case mp_unknown_pen:
6618 return mp_unknown_pen;
6619 case mp_path_type: case mp_unknown_path:
6620 return mp_unknown_path;
6621 case mp_picture_type: case mp_unknown_picture:
6622 return mp_unknown_picture;
6623 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6624 case mp_pair_type: case mp_numeric_type:
6626 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6627 return mp_numeric_type;
6628 } /* there are no other cases */
6632 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6633 of a symbolic token. It must remove any variable structure or macro
6634 definition that is currently attached to that symbol. If the |saving|
6635 parameter is true, a subsidiary structure is saved instead of destroyed.
6638 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6639 pointer q; /* |equiv(p)| */
6641 switch (eq_type(p) % outer_tag) {
6643 case secondary_primary_macro:
6644 case tertiary_secondary_macro:
6645 case expression_tertiary_macro:
6646 if ( ! saving ) mp_delete_mac_ref(mp, q);
6651 name_type(q)=mp_saved_root;
6653 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6660 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6663 @* \[16] Saving and restoring equivalents.
6664 The nested structure given by \&{begingroup} and \&{endgroup}
6665 allows |eqtb| entries to be saved and restored, so that temporary changes
6666 can be made without difficulty. When the user requests a current value to
6667 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6668 \&{endgroup} ultimately causes the old values to be removed from the save
6669 stack and put back in their former places.
6671 The save stack is a linked list containing three kinds of entries,
6672 distinguished by their |info| fields. If |p| points to a saved item,
6676 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6677 such an item to the save stack and each \&{endgroup} cuts back the stack
6678 until the most recent such entry has been removed.
6681 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6682 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6683 commands or suitable \&{interim} commands.
6686 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6687 integer to be restored to internal parameter number~|q|. Such entries
6688 are generated by \&{interim} commands.
6691 The global variable |save_ptr| points to the top item on the save stack.
6693 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6694 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6695 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6696 link((A))=mp->save_ptr; mp->save_ptr=(A);
6700 pointer save_ptr; /* the most recently saved item */
6702 @ @<Set init...@>=mp->save_ptr=null;
6704 @ The |save_variable| routine is given a hash address |q|; it salts this
6705 address in the save stack, together with its current equivalent,
6706 then makes token~|q| behave as though it were brand new.
6708 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6709 things from the stack when the program is not inside a group, so there's
6710 no point in wasting the space.
6712 @c void mp_save_variable (MP mp,pointer q) {
6713 pointer p; /* temporary register */
6714 if ( mp->save_ptr!=null ){
6715 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6716 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6718 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6721 @ Similarly, |save_internal| is given the location |q| of an internal
6722 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6725 @c void mp_save_internal (MP mp,halfword q) {
6726 pointer p; /* new item for the save stack */
6727 if ( mp->save_ptr!=null ){
6728 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6729 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6733 @ At the end of a group, the |unsave| routine restores all of the saved
6734 equivalents in reverse order. This routine will be called only when there
6735 is at least one boundary item on the save stack.
6738 void mp_unsave (MP mp) {
6739 pointer q; /* index to saved item */
6740 pointer p; /* temporary register */
6741 while ( info(mp->save_ptr)!=0 ) {
6742 q=info(mp->save_ptr);
6744 if ( mp->internal[mp_tracing_restores]>0 ) {
6745 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6746 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6747 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6748 mp_end_diagnostic(mp, false);
6750 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6752 if ( mp->internal[mp_tracing_restores]>0 ) {
6753 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6754 mp_print_text(q); mp_print_char(mp, '}');
6755 mp_end_diagnostic(mp, false);
6757 mp_clear_symbol(mp, q,false);
6758 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6759 if ( eq_type(q) % outer_tag==tag_token ) {
6761 if ( p!=null ) name_type(p)=mp_root;
6764 p=link(mp->save_ptr);
6765 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6767 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6770 @* \[17] Data structures for paths.
6771 When a \MP\ user specifies a path, \MP\ will create a list of knots
6772 and control points for the associated cubic spline curves. If the
6773 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6774 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6775 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6776 @:Bezier}{B\'ezier, Pierre Etienne@>
6777 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6778 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6781 There is a 8-word node for each knot $z_k$, containing one word of
6782 control information and six words for the |x| and |y| coordinates of
6783 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6784 |left_type| and |right_type| fields, which each occupy a quarter of
6785 the first word in the node; they specify properties of the curve as it
6786 enters and leaves the knot. There's also a halfword |link| field,
6787 which points to the following knot, and a final supplementary word (of
6788 which only a quarter is used).
6790 If the path is a closed contour, knots 0 and |n| are identical;
6791 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6792 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6793 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6794 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6796 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6797 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6798 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6799 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6800 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6801 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6802 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6803 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6804 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6805 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6806 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6807 @d left_coord(A) mp->mem[(A)+2].sc
6808 /* coordinate of previous control point given |x_loc| or |y_loc| */
6809 @d right_coord(A) mp->mem[(A)+4].sc
6810 /* coordinate of next control point given |x_loc| or |y_loc| */
6811 @d knot_node_size 8 /* number of words in a knot node */
6815 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6816 mp_explicit, /* |left_type| or |right_type| when control points are known */
6817 mp_given, /* |left_type| or |right_type| when a direction is given */
6818 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6819 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6823 @ Before the B\'ezier control points have been calculated, the memory
6824 space they will ultimately occupy is taken up by information that can be
6825 used to compute them. There are four cases:
6828 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6829 the knot in the same direction it entered; \MP\ will figure out a
6833 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6834 knot in a direction depending on the angle at which it enters the next
6835 knot and on the curl parameter stored in |right_curl|.
6838 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6839 knot in a nonzero direction stored as an |angle| in |right_given|.
6842 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6843 point for leaving this knot has already been computed; it is in the
6844 |right_x| and |right_y| fields.
6847 The rules for |left_type| are similar, but they refer to the curve entering
6848 the knot, and to \\{left} fields instead of \\{right} fields.
6850 Non-|explicit| control points will be chosen based on ``tension'' parameters
6851 in the |left_tension| and |right_tension| fields. The
6852 `\&{atleast}' option is represented by negative tension values.
6853 @:at_least_}{\&{atleast} primitive@>
6855 For example, the \MP\ path specification
6856 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6858 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6860 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6861 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6862 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6864 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6865 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6866 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6867 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6868 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6869 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6870 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6871 Of course, this example is more complicated than anything a normal user
6874 These types must satisfy certain restrictions because of the form of \MP's
6876 (i)~|open| type never appears in the same node together with |endpoint|,
6878 (ii)~The |right_type| of a node is |explicit| if and only if the
6879 |left_type| of the following node is |explicit|.
6880 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6882 @d left_curl left_x /* curl information when entering this knot */
6883 @d left_given left_x /* given direction when entering this knot */
6884 @d left_tension left_y /* tension information when entering this knot */
6885 @d right_curl right_x /* curl information when leaving this knot */
6886 @d right_given right_x /* given direction when leaving this knot */
6887 @d right_tension right_y /* tension information when leaving this knot */
6889 @ Knots can be user-supplied, or they can be created by program code,
6890 like the |split_cubic| function, or |copy_path|. The distinction is
6891 needed for the cleanup routine that runs after |split_cubic|, because
6892 it should only delete knots it has previously inserted, and never
6893 anything that was user-supplied. In order to be able to differentiate
6894 one knot from another, we will set |originator(p):=mp_metapost_user| when
6895 it appeared in the actual metapost program, and
6896 |originator(p):=mp_program_code| in all other cases.
6898 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6902 mp_program_code=0, /* not created by a user */
6903 mp_metapost_user, /* created by a user */
6906 @ Here is a routine that prints a given knot list
6907 in symbolic form. It illustrates the conventions discussed above,
6908 and checks for anomalies that might arise while \MP\ is being debugged.
6910 @<Declare subroutines for printing expressions@>=
6911 void mp_pr_path (MP mp,pointer h);
6914 void mp_pr_path (MP mp,pointer h) {
6915 pointer p,q; /* for list traversal */
6919 if ( (p==null)||(q==null) ) {
6920 mp_print_nl(mp, "???"); return; /* this won't happen */
6923 @<Print information for adjacent knots |p| and |q|@>;
6926 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6927 @<Print two dots, followed by |given| or |curl| if present@>;
6930 if ( left_type(h)!=mp_endpoint )
6931 mp_print(mp, "cycle");
6934 @ @<Print information for adjacent knots...@>=
6935 mp_print_two(mp, x_coord(p),y_coord(p));
6936 switch (right_type(p)) {
6938 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6940 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6944 @<Print control points between |p| and |q|, then |goto done1|@>;
6947 @<Print information for a curve that begins |open|@>;
6951 @<Print information for a curve that begins |curl| or |given|@>;
6954 mp_print(mp, "???"); /* can't happen */
6958 if ( left_type(q)<=mp_explicit ) {
6959 mp_print(mp, "..control?"); /* can't happen */
6961 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6962 @<Print tension between |p| and |q|@>;
6965 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6966 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6968 @<Print two dots...@>=
6970 mp_print_nl(mp, " ..");
6971 if ( left_type(p)==mp_given ) {
6972 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6973 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6974 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6975 } else if ( left_type(p)==mp_curl ){
6976 mp_print(mp, "{curl ");
6977 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6981 @ @<Print tension between |p| and |q|@>=
6983 mp_print(mp, "..tension ");
6984 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6985 mp_print_scaled(mp, abs(right_tension(p)));
6986 if ( right_tension(p)!=left_tension(q) ){
6987 mp_print(mp, " and ");
6988 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6989 mp_print_scaled(mp, abs(left_tension(q)));
6993 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6995 mp_print(mp, "..controls ");
6996 mp_print_two(mp, right_x(p),right_y(p));
6997 mp_print(mp, " and ");
6998 if ( left_type(q)!=mp_explicit ) {
6999 mp_print(mp, "??"); /* can't happen */
7002 mp_print_two(mp, left_x(q),left_y(q));
7007 @ @<Print information for a curve that begins |open|@>=
7008 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7009 mp_print(mp, "{open?}"); /* can't happen */
7013 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7014 \MP's default curl is present.
7016 The code here uses the fact that |left_curl==left_given| and
7017 |right_curl==right_given|.
7019 @<Print information for a curve that begins |curl|...@>=
7021 if ( left_type(p)==mp_open )
7022 mp_print(mp, "??"); /* can't happen */
7024 if ( right_type(p)==mp_curl ) {
7025 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7027 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7028 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7029 mp_print_scaled(mp, mp->n_sin);
7031 mp_print_char(mp, '}');
7034 @ It is convenient to have another version of |pr_path| that prints the path
7035 as a diagnostic message.
7037 @<Declare subroutines for printing expressions@>=
7038 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7039 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7042 mp_end_diagnostic(mp, true);
7045 @ If we want to duplicate a knot node, we can say |copy_knot|:
7048 pointer mp_copy_knot (MP mp,pointer p) {
7049 pointer q; /* the copy */
7050 int k; /* runs through the words of a knot node */
7051 q=mp_get_node(mp, knot_node_size);
7052 for (k=0;k<knot_node_size;k++) {
7053 mp->mem[q+k]=mp->mem[p+k];
7055 originator(q)=originator(p);
7059 @ The |copy_path| routine makes a clone of a given path.
7062 pointer mp_copy_path (MP mp, pointer p) {
7063 pointer q,pp,qq; /* for list manipulation */
7064 q=mp_copy_knot(mp, p);
7067 link(qq)=mp_copy_knot(mp, pp);
7076 @ Just before |ship_out|, knot lists are exported for printing.
7078 @d gr_left_type(A) (A)->left_type_field
7079 @d gr_right_type(A) (A)->right_type_field
7080 @d gr_x_coord(A) (A)->x_coord_field
7081 @d gr_y_coord(A) (A)->y_coord_field
7082 @d gr_left_x(A) (A)->left_x_field
7083 @d gr_left_y(A) (A)->left_y_field
7084 @d gr_right_x(A) (A)->right_x_field
7085 @d gr_right_y(A) (A)->right_y_field
7086 @d gr_next_knot(A) (A)->next_field
7087 @d gr_originator(A) (A)->originator_field
7090 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7091 struct mp_knot *q; /* the copy */
7094 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7095 memset(q,0,sizeof (struct mp_knot));
7096 gr_left_type(q) = left_type(p);
7097 gr_right_type(q) = right_type(p);
7098 gr_x_coord(q) = x_coord(p);
7099 gr_y_coord(q) = y_coord(p);
7100 gr_left_x(q) = left_x(p);
7101 gr_left_y(q) = left_y(p);
7102 gr_right_x(q) = right_x(p);
7103 gr_right_y(q) = right_y(p);
7104 gr_originator(q) = originator(p);
7108 @ The |export_knot_list| routine therefore also makes a clone
7112 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7113 struct mp_knot *q, *qq; /* for list manipulation */
7114 pointer pp; /* for list manipulation */
7117 q=mp_export_knot(mp, p);
7120 gr_next_knot(qq)=mp_export_knot(mp, pp);
7121 qq=gr_next_knot(qq);
7129 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7130 returns a pointer to the first node of the copy, if the path is a cycle,
7131 but to the final node of a non-cyclic copy. The global
7132 variable |path_tail| will point to the final node of the original path;
7133 this trick makes it easier to implement `\&{doublepath}'.
7135 All node types are assumed to be |endpoint| or |explicit| only.
7138 pointer mp_htap_ypoc (MP mp,pointer p) {
7139 pointer q,pp,qq,rr; /* for list manipulation */
7140 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7143 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7144 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7145 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7146 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7147 originator(qq)=originator(pp);
7148 if ( link(pp)==p ) {
7149 link(q)=qq; mp->path_tail=pp; return q;
7151 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7156 pointer path_tail; /* the node that links to the beginning of a path */
7158 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7159 calling the following subroutine.
7161 @<Declare the recycling subroutines@>=
7162 void mp_toss_knot_list (MP mp,pointer p) ;
7165 void mp_toss_knot_list (MP mp,pointer p) {
7166 pointer q; /* the node being freed */
7167 pointer r; /* the next node */
7171 mp_free_node(mp, q,knot_node_size); q=r;
7175 @* \[18] Choosing control points.
7176 Now we must actually delve into one of \MP's more difficult routines,
7177 the |make_choices| procedure that chooses angles and control points for
7178 the splines of a curve when the user has not specified them explicitly.
7179 The parameter to |make_choices| points to a list of knots and
7180 path information, as described above.
7182 A path decomposes into independent segments at ``breakpoint'' knots,
7183 which are knots whose left and right angles are both prespecified in
7184 some way (i.e., their |left_type| and |right_type| aren't both open).
7187 @<Declare the procedure called |solve_choices|@>;
7188 void mp_make_choices (MP mp,pointer knots) {
7189 pointer h; /* the first breakpoint */
7190 pointer p,q; /* consecutive breakpoints being processed */
7191 @<Other local variables for |make_choices|@>;
7192 check_arith; /* make sure that |arith_error=false| */
7193 if ( mp->internal[mp_tracing_choices]>0 )
7194 mp_print_path(mp, knots,", before choices",true);
7195 @<If consecutive knots are equal, join them explicitly@>;
7196 @<Find the first breakpoint, |h|, on the path;
7197 insert an artificial breakpoint if the path is an unbroken cycle@>;
7200 @<Fill in the control points between |p| and the next breakpoint,
7201 then advance |p| to that breakpoint@>;
7203 if ( mp->internal[mp_tracing_choices]>0 )
7204 mp_print_path(mp, knots,", after choices",true);
7205 if ( mp->arith_error ) {
7206 @<Report an unexpected problem during the choice-making@>;
7210 @ @<Report an unexpected problem during the choice...@>=
7212 print_err("Some number got too big");
7213 @.Some number got too big@>
7214 help2("The path that I just computed is out of range.")
7215 ("So it will probably look funny. Proceed, for a laugh.");
7216 mp_put_get_error(mp); mp->arith_error=false;
7219 @ Two knots in a row with the same coordinates will always be joined
7220 by an explicit ``curve'' whose control points are identical with the
7223 @<If consecutive knots are equal, join them explicitly@>=
7227 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7228 right_type(p)=mp_explicit;
7229 if ( left_type(p)==mp_open ) {
7230 left_type(p)=mp_curl; left_curl(p)=unity;
7232 left_type(q)=mp_explicit;
7233 if ( right_type(q)==mp_open ) {
7234 right_type(q)=mp_curl; right_curl(q)=unity;
7236 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7237 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7242 @ If there are no breakpoints, it is necessary to compute the direction
7243 angles around an entire cycle. In this case the |left_type| of the first
7244 node is temporarily changed to |end_cycle|.
7246 @<Find the first breakpoint, |h|, on the path...@>=
7249 if ( left_type(h)!=mp_open ) break;
7250 if ( right_type(h)!=mp_open ) break;
7253 left_type(h)=mp_end_cycle; break;
7257 @ If |right_type(p)<given| and |q=link(p)|, we must have
7258 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7260 @<Fill in the control points between |p| and the next breakpoint...@>=
7262 if ( right_type(p)>=mp_given ) {
7263 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7264 @<Fill in the control information between
7265 consecutive breakpoints |p| and |q|@>;
7266 } else if ( right_type(p)==mp_endpoint ) {
7267 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7271 @ This step makes it possible to transform an explicitly computed path without
7272 checking the |left_type| and |right_type| fields.
7274 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7276 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7277 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7280 @ Before we can go further into the way choices are made, we need to
7281 consider the underlying theory. The basic ideas implemented in |make_choices|
7282 are due to John Hobby, who introduced the notion of ``mock curvature''
7283 @^Hobby, John Douglas@>
7284 at a knot. Angles are chosen so that they preserve mock curvature when
7285 a knot is passed, and this has been found to produce excellent results.
7287 It is convenient to introduce some notations that simplify the necessary
7288 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7289 between knots |k| and |k+1|; and let
7290 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7291 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7292 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7293 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7294 $$\eqalign{z_k^+&=z_k+
7295 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7297 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7298 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7299 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7300 corresponding ``offset angles.'' These angles satisfy the condition
7301 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7302 whenever the curve leaves an intermediate knot~|k| in the direction that
7305 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7306 the curve at its beginning and ending points. This means that
7307 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7308 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7309 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7310 z\k^-,z\k^{\phantom+};t)$
7313 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7314 \qquad{\rm and}\qquad
7315 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7316 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7318 approximation to this true curvature that arises in the limit for
7319 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7320 The standard velocity function satisfies
7321 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7322 hence the mock curvatures are respectively
7323 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7324 \qquad{\rm and}\qquad
7325 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7327 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7328 determines $\phi_k$ when $\theta_k$ is known, so the task of
7329 angle selection is essentially to choose appropriate values for each
7330 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7331 from $(**)$, we obtain a system of linear equations of the form
7332 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7334 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7335 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7336 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7337 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7338 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7339 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7340 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7341 hence they have a unique solution. Moreover, in most cases the tensions
7342 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7343 solution numerically stable, and there is an exponential damping
7344 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7345 a factor of~$O(2^{-j})$.
7347 @ However, we still must consider the angles at the starting and ending
7348 knots of a non-cyclic path. These angles might be given explicitly, or
7349 they might be specified implicitly in terms of an amount of ``curl.''
7351 Let's assume that angles need to be determined for a non-cyclic path
7352 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7353 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7354 have been given for $0<k<n$, and it will be convenient to introduce
7355 equations of the same form for $k=0$ and $k=n$, where
7356 $$A_0=B_0=C_n=D_n=0.$$
7357 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7358 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7359 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7360 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7361 mock curvature at $z_1$; i.e.,
7362 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7363 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7364 This equation simplifies to
7365 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7366 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7367 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7368 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7369 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7370 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7371 hence the linear equations remain nonsingular.
7373 Similar considerations apply at the right end, when the final angle $\phi_n$
7374 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7375 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7377 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7378 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7379 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7381 When |make_choices| chooses angles, it must compute the coefficients of
7382 these linear equations, then solve the equations. To compute the coefficients,
7383 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7384 When the equations are solved, the chosen directions $\theta_k$ are put
7385 back into the form of control points by essentially computing sines and
7388 @ OK, we are ready to make the hard choices of |make_choices|.
7389 Most of the work is relegated to an auxiliary procedure
7390 called |solve_choices|, which has been introduced to keep
7391 |make_choices| from being extremely long.
7393 @<Fill in the control information between...@>=
7394 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7395 set $n$ to the length of the path@>;
7396 @<Remove |open| types at the breakpoints@>;
7397 mp_solve_choices(mp, p,q,n)
7399 @ It's convenient to precompute quantities that will be needed several
7400 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7401 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7402 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7403 and $z\k-z_k$ will be stored in |psi[k]|.
7406 int path_size; /* maximum number of knots between breakpoints of a path */
7409 scaled *delta; /* knot differences */
7410 angle *psi; /* turning angles */
7412 @ @<Allocate or initialize ...@>=
7418 @ @<Dealloc variables@>=
7424 @ @<Other local variables for |make_choices|@>=
7425 int k,n; /* current and final knot numbers */
7426 pointer s,t; /* registers for list traversal */
7427 scaled delx,dely; /* directions where |open| meets |explicit| */
7428 fraction sine,cosine; /* trig functions of various angles */
7430 @ @<Calculate the turning angles...@>=
7433 k=0; s=p; n=mp->path_size;
7436 mp->delta_x[k]=x_coord(t)-x_coord(s);
7437 mp->delta_y[k]=y_coord(t)-y_coord(s);
7438 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7440 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7441 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7442 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7443 mp_take_fraction(mp, mp->delta_y[k],sine),
7444 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7445 mp_take_fraction(mp, mp->delta_x[k],sine));
7448 if ( k==mp->path_size ) {
7449 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7450 goto RESTART; /* retry, loop size has changed */
7453 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7454 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7457 @ When we get to this point of the code, |right_type(p)| is either
7458 |given| or |curl| or |open|. If it is |open|, we must have
7459 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7460 case, the |open| type is converted to |given|; however, if the
7461 velocity coming into this knot is zero, the |open| type is
7462 converted to a |curl|, since we don't know the incoming direction.
7464 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7465 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7467 @<Remove |open| types at the breakpoints@>=
7468 if ( left_type(q)==mp_open ) {
7469 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7470 if ( (delx==0)&&(dely==0) ) {
7471 left_type(q)=mp_curl; left_curl(q)=unity;
7473 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7476 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7477 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7478 if ( (delx==0)&&(dely==0) ) {
7479 right_type(p)=mp_curl; right_curl(p)=unity;
7481 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7485 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7486 and exactly one of the breakpoints involves a curl. The simplest case occurs
7487 when |n=1| and there is a curl at both breakpoints; then we simply draw
7490 But before coding up the simple cases, we might as well face the general case,
7491 since we must deal with it sooner or later, and since the general case
7492 is likely to give some insight into the way simple cases can be handled best.
7494 When there is no cycle, the linear equations to be solved form a tridiagonal
7495 system, and we can apply the standard technique of Gaussian elimination
7496 to convert that system to a sequence of equations of the form
7497 $$\theta_0+u_0\theta_1=v_0,\quad
7498 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7499 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7501 It is possible to do this diagonalization while generating the equations.
7502 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7503 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7505 The procedure is slightly more complex when there is a cycle, but the
7506 basic idea will be nearly the same. In the cyclic case the right-hand
7507 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7508 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7509 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7510 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7511 eliminate the $w$'s from the system, after which the solution can be
7514 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7515 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7516 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7517 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7520 angle *theta; /* values of $\theta_k$ */
7521 fraction *uu; /* values of $u_k$ */
7522 angle *vv; /* values of $v_k$ */
7523 fraction *ww; /* values of $w_k$ */
7525 @ @<Allocate or initialize ...@>=
7531 @ @<Dealloc variables@>=
7537 @ @<Declare |mp_reallocate| functions@>=
7538 void mp_reallocate_paths (MP mp, int l);
7541 void mp_reallocate_paths (MP mp, int l) {
7542 XREALLOC (mp->delta_x, l, scaled);
7543 XREALLOC (mp->delta_y, l, scaled);
7544 XREALLOC (mp->delta, l, scaled);
7545 XREALLOC (mp->psi, l, angle);
7546 XREALLOC (mp->theta, l, angle);
7547 XREALLOC (mp->uu, l, fraction);
7548 XREALLOC (mp->vv, l, angle);
7549 XREALLOC (mp->ww, l, fraction);
7553 @ Our immediate problem is to get the ball rolling by setting up the
7554 first equation or by realizing that no equations are needed, and to fit
7555 this initialization into a framework suitable for the overall computation.
7557 @<Declare the procedure called |solve_choices|@>=
7558 @<Declare subroutines needed by |solve_choices|@>;
7559 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7560 int k; /* current knot number */
7561 pointer r,s,t; /* registers for list traversal */
7562 @<Other local variables for |solve_choices|@>;
7567 @<Get the linear equations started; or |return|
7568 with the control points in place, if linear equations
7571 switch (left_type(s)) {
7572 case mp_end_cycle: case mp_open:
7573 @<Set up equation to match mock curvatures
7574 at $z_k$; then |goto found| with $\theta_n$
7575 adjusted to equal $\theta_0$, if a cycle has ended@>;
7578 @<Set up equation for a curl at $\theta_n$
7582 @<Calculate the given value of $\theta_n$
7585 } /* there are no other cases */
7590 @<Finish choosing angles and assigning control points@>;
7593 @ On the first time through the loop, we have |k=0| and |r| is not yet
7594 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7596 @<Get the linear equations started...@>=
7597 switch (right_type(s)) {
7599 if ( left_type(t)==mp_given ) {
7600 @<Reduce to simple case of two givens and |return|@>
7602 @<Set up the equation for a given value of $\theta_0$@>;
7606 if ( left_type(t)==mp_curl ) {
7607 @<Reduce to simple case of straight line and |return|@>
7609 @<Set up the equation for a curl at $\theta_0$@>;
7613 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7614 /* this begins a cycle */
7616 } /* there are no other cases */
7618 @ The general equation that specifies equality of mock curvature at $z_k$ is
7619 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7620 as derived above. We want to combine this with the already-derived equation
7621 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7623 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7625 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7626 -A_kw_{k-1}\theta_0$$
7627 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7628 fixed-point arithmetic, avoiding the chance of overflow while retaining
7631 The calculations will be performed in several registers that
7632 provide temporary storage for intermediate quantities.
7634 @<Other local variables for |solve_choices|@>=
7635 fraction aa,bb,cc,ff,acc; /* temporary registers */
7636 scaled dd,ee; /* likewise, but |scaled| */
7637 scaled lt,rt; /* tension values */
7639 @ @<Set up equation to match mock curvatures...@>=
7640 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7641 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7642 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7643 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7644 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7645 @<Calculate the values of $v_k$ and $w_k$@>;
7646 if ( left_type(s)==mp_end_cycle ) {
7647 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7651 @ Since tension values are never less than 3/4, the values |aa| and
7652 |bb| computed here are never more than 4/5.
7654 @<Calculate the values $\\{aa}=...@>=
7655 if ( abs(right_tension(r))==unity) {
7656 aa=fraction_half; dd=2*mp->delta[k];
7658 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7659 dd=mp_take_fraction(mp, mp->delta[k],
7660 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7662 if ( abs(left_tension(t))==unity ){
7663 bb=fraction_half; ee=2*mp->delta[k-1];
7665 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7666 ee=mp_take_fraction(mp, mp->delta[k-1],
7667 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7669 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7671 @ The ratio to be calculated in this step can be written in the form
7672 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7673 \\{cc}\cdot\\{dd},$$
7674 because of the quantities just calculated. The values of |dd| and |ee|
7675 will not be needed after this step has been performed.
7677 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7678 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7679 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7681 ff=mp_make_fraction(mp, lt,rt);
7682 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7683 dd=mp_take_fraction(mp, dd,ff);
7685 ff=mp_make_fraction(mp, rt,lt);
7686 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7687 ee=mp_take_fraction(mp, ee,ff);
7690 ff=mp_make_fraction(mp, ee,ee+dd)
7692 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7693 equation was specified by a curl. In that case we must use a special
7694 method of computation to prevent overflow.
7696 Fortunately, the calculations turn out to be even simpler in this ``hard''
7697 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7698 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7700 @<Calculate the values of $v_k$ and $w_k$@>=
7701 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7702 if ( right_type(r)==mp_curl ) {
7704 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7706 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7707 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7708 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7709 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7710 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7711 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7712 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7715 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7716 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7717 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7718 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7721 The idea in the following code is to observe that
7722 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7723 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7724 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7725 so we can solve for $\theta_n=\theta_0$.
7727 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7729 aa=0; bb=fraction_one; /* we have |k=n| */
7732 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7733 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7734 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7735 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7736 mp->theta[n]=aa; mp->vv[0]=aa;
7737 for (k=1;k<=n-1;k++) {
7738 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7743 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7744 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7746 @<Calculate the given value of $\theta_n$...@>=
7748 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7749 reduce_angle(mp->theta[n]);
7753 @ @<Set up the equation for a given value of $\theta_0$@>=
7755 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7756 reduce_angle(mp->vv[0]);
7757 mp->uu[0]=0; mp->ww[0]=0;
7760 @ @<Set up the equation for a curl at $\theta_0$@>=
7761 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7762 if ( (rt==unity)&&(lt==unity) )
7763 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7765 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7766 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7769 @ @<Set up equation for a curl at $\theta_n$...@>=
7770 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7771 if ( (rt==unity)&&(lt==unity) )
7772 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7774 ff=mp_curl_ratio(mp, cc,lt,rt);
7775 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7776 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7780 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7781 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7782 a somewhat tedious program to calculate
7783 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7784 \alpha^3\gamma+(3-\beta)\beta^2},$$
7785 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7786 is necessary only if the curl and tension are both large.)
7787 The values of $\alpha$ and $\beta$ will be at most~4/3.
7789 @<Declare subroutines needed by |solve_choices|@>=
7790 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7792 fraction alpha,beta,num,denom,ff; /* registers */
7793 alpha=mp_make_fraction(mp, unity,a_tension);
7794 beta=mp_make_fraction(mp, unity,b_tension);
7795 if ( alpha<=beta ) {
7796 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7797 gamma=mp_take_fraction(mp, gamma,ff);
7798 beta=beta / 010000; /* convert |fraction| to |scaled| */
7799 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7800 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7802 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7803 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7804 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7805 /* $1365\approx 2^{12}/3$ */
7806 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7808 if ( num>=denom+denom+denom+denom ) return fraction_four;
7809 else return mp_make_fraction(mp, num,denom);
7812 @ We're in the home stretch now.
7814 @<Finish choosing angles and assigning control points@>=
7815 for (k=n-1;k>=0;k--) {
7816 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7821 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7822 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7823 mp_set_controls(mp, s,t,k);
7827 @ The |set_controls| routine actually puts the control points into
7828 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7829 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7830 $\cos\phi$ needed in this calculation.
7836 fraction cf; /* sines and cosines */
7838 @ @<Declare subroutines needed by |solve_choices|@>=
7839 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7840 fraction rr,ss; /* velocities, divided by thrice the tension */
7841 scaled lt,rt; /* tensions */
7842 fraction sine; /* $\sin(\theta+\phi)$ */
7843 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7844 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7845 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7846 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7847 @<Decrease the velocities,
7848 if necessary, to stay inside the bounding triangle@>;
7850 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7851 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7852 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7853 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7854 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7855 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7856 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7857 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7858 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7859 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7860 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7861 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7862 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7865 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7866 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7867 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7868 there is no ``bounding triangle.''
7869 @:at_least_}{\&{atleast} primitive@>
7871 @<Decrease the velocities, if necessary...@>=
7872 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7873 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7874 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7876 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7877 if ( right_tension(p)<0 )
7878 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7879 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7880 if ( left_tension(q)<0 )
7881 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7882 ss=mp_make_fraction(mp, abs(mp->st),sine);
7886 @ Only the simple cases remain to be handled.
7888 @<Reduce to simple case of two givens and |return|@>=
7890 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7891 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7892 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7893 mp_set_controls(mp, p,q,0); return;
7896 @ @<Reduce to simple case of straight line and |return|@>=
7898 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7899 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7901 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7902 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7903 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7904 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7906 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7907 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7908 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7911 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7912 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7913 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7914 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7916 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7917 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7918 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7923 @* \[19] Measuring paths.
7924 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7925 allow the user to measure the bounding box of anything that can go into a
7926 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7927 by just finding the bounding box of the knots and the control points. We
7928 need a more accurate version of the bounding box, but we can still use the
7929 easy estimate to save time by focusing on the interesting parts of the path.
7931 @ Computing an accurate bounding box involves a theme that will come up again
7932 and again. Given a Bernshte{\u\i}n polynomial
7933 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7934 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7935 we can conveniently bisect its range as follows:
7938 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7941 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7942 |0<=k<n-j|, for |0<=j<n|.
7946 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7947 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7948 This formula gives us the coefficients of polynomials to use over the ranges
7949 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7951 @ Now here's a subroutine that's handy for all sorts of path computations:
7952 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7953 returns the unique |fraction| value |t| between 0 and~1 at which
7954 $B(a,b,c;t)$ changes from positive to negative, or returns
7955 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7956 is already negative at |t=0|), |crossing_point| returns the value zero.
7958 @d no_crossing { return (fraction_one+1); }
7959 @d one_crossing { return fraction_one; }
7960 @d zero_crossing { return 0; }
7961 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7963 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7964 integer d; /* recursive counter */
7965 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7966 if ( a<0 ) zero_crossing;
7969 if ( c>0 ) { no_crossing; }
7970 else if ( (a==0)&&(b==0) ) { no_crossing;}
7971 else { one_crossing; }
7973 if ( a==0 ) zero_crossing;
7974 } else if ( a==0 ) {
7975 if ( b<=0 ) zero_crossing;
7977 @<Use bisection to find the crossing point, if one exists@>;
7980 @ The general bisection method is quite simple when $n=2$, hence
7981 |crossing_point| does not take much time. At each stage in the
7982 recursion we have a subinterval defined by |l| and~|j| such that
7983 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7984 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7986 It is convenient for purposes of calculation to combine the values
7987 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7988 of bisection then corresponds simply to doubling $d$ and possibly
7989 adding~1. Furthermore it proves to be convenient to modify
7990 our previous conventions for bisection slightly, maintaining the
7991 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7992 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7993 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7995 The following code maintains the invariant relations
7996 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7997 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7998 it has been constructed in such a way that no arithmetic overflow
7999 will occur if the inputs satisfy
8000 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8002 @<Use bisection to find the crossing point...@>=
8003 d=1; x0=a; x1=a-b; x2=b-c;
8014 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8018 } while (d<fraction_one);
8019 return (d-fraction_one)
8021 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8022 a cubic corresponding to the |fraction| value~|t|.
8024 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8025 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8027 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8029 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8030 scaled x1,x2,x3; /* intermediate values */
8031 x1=t_of_the_way(knot_coord(p),right_coord(p));
8032 x2=t_of_the_way(right_coord(p),left_coord(q));
8033 x3=t_of_the_way(left_coord(q),knot_coord(q));
8034 x1=t_of_the_way(x1,x2);
8035 x2=t_of_the_way(x2,x3);
8036 return t_of_the_way(x1,x2);
8039 @ The actual bounding box information is stored in global variables.
8040 Since it is convenient to address the $x$ and $y$ information
8041 separately, we define arrays indexed by |x_code..y_code| and use
8042 macros to give them more convenient names.
8046 mp_x_code=0, /* index for |minx| and |maxx| */
8047 mp_y_code /* index for |miny| and |maxy| */
8051 @d minx mp->bbmin[mp_x_code]
8052 @d maxx mp->bbmax[mp_x_code]
8053 @d miny mp->bbmin[mp_y_code]
8054 @d maxy mp->bbmax[mp_y_code]
8057 scaled bbmin[mp_y_code+1];
8058 scaled bbmax[mp_y_code+1];
8059 /* the result of procedures that compute bounding box information */
8061 @ Now we're ready for the key part of the bounding box computation.
8062 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8063 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8064 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8066 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8067 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8068 The |c| parameter is |x_code| or |y_code|.
8070 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8071 boolean wavy; /* whether we need to look for extremes */
8072 scaled del1,del2,del3,del,dmax; /* proportional to the control
8073 points of a quadratic derived from a cubic */
8074 fraction t,tt; /* where a quadratic crosses zero */
8075 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8077 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8078 @<Check the control points against the bounding box and set |wavy:=true|
8079 if any of them lie outside@>;
8081 del1=right_coord(p)-knot_coord(p);
8082 del2=left_coord(q)-right_coord(p);
8083 del3=knot_coord(q)-left_coord(q);
8084 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8085 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8087 negate(del1); negate(del2); negate(del3);
8089 t=mp_crossing_point(mp, del1,del2,del3);
8090 if ( t<fraction_one ) {
8091 @<Test the extremes of the cubic against the bounding box@>;
8096 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8097 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8098 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8100 @ @<Check the control points against the bounding box and set...@>=
8102 if ( mp->bbmin[c]<=right_coord(p) )
8103 if ( right_coord(p)<=mp->bbmax[c] )
8104 if ( mp->bbmin[c]<=left_coord(q) )
8105 if ( left_coord(q)<=mp->bbmax[c] )
8108 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8109 section. We just set |del=0| in that case.
8111 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8112 if ( del1!=0 ) del=del1;
8113 else if ( del2!=0 ) del=del2;
8117 if ( abs(del2)>dmax ) dmax=abs(del2);
8118 if ( abs(del3)>dmax ) dmax=abs(del3);
8119 while ( dmax<fraction_half ) {
8120 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8124 @ Since |crossing_point| has tried to choose |t| so that
8125 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8126 slope, the value of |del2| computed below should not be positive.
8127 But rounding error could make it slightly positive in which case we
8128 must cut it to zero to avoid confusion.
8130 @<Test the extremes of the cubic against the bounding box@>=
8132 x=mp_eval_cubic(mp, p,q,t);
8133 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8134 del2=t_of_the_way(del2,del3);
8135 /* now |0,del2,del3| represent the derivative on the remaining interval */
8136 if ( del2>0 ) del2=0;
8137 tt=mp_crossing_point(mp, 0,-del2,-del3);
8138 if ( tt<fraction_one ) {
8139 @<Test the second extreme against the bounding box@>;
8143 @ @<Test the second extreme against the bounding box@>=
8145 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8146 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8149 @ Finding the bounding box of a path is basically a matter of applying
8150 |bound_cubic| twice for each pair of adjacent knots.
8152 @c void mp_path_bbox (MP mp,pointer h) {
8153 pointer p,q; /* a pair of adjacent knots */
8154 minx=x_coord(h); miny=y_coord(h);
8155 maxx=minx; maxy=miny;
8158 if ( right_type(p)==mp_endpoint ) return;
8160 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8161 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8166 @ Another important way to measure a path is to find its arc length. This
8167 is best done by using the general bisection algorithm to subdivide the path
8168 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8171 Since the arc length is the integral with respect to time of the magnitude of
8172 the velocity, it is natural to use Simpson's rule for the approximation.
8174 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8175 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8176 for the arc length of a path of length~1. For a cubic spline
8177 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8178 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8180 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8182 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8183 is the result of the bisection algorithm.
8185 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8186 This could be done via the theoretical error bound for Simpson's rule,
8188 but this is impractical because it requires an estimate of the fourth
8189 derivative of the quantity being integrated. It is much easier to just perform
8190 a bisection step and see how much the arc length estimate changes. Since the
8191 error for Simpson's rule is proportional to the fourth power of the sample
8192 spacing, the remaining error is typically about $1\over16$ of the amount of
8193 the change. We say ``typically'' because the error has a pseudo-random behavior
8194 that could cause the two estimates to agree when each contain large errors.
8196 To protect against disasters such as undetected cusps, the bisection process
8197 should always continue until all the $dz_i$ vectors belong to a single
8198 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8199 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8200 If such a spline happens to produce an erroneous arc length estimate that
8201 is little changed by bisection, the amount of the error is likely to be fairly
8202 small. We will try to arrange things so that freak accidents of this type do
8203 not destroy the inverse relationship between the \&{arclength} and
8204 \&{arctime} operations.
8205 @:arclength_}{\&{arclength} primitive@>
8206 @:arctime_}{\&{arctime} primitive@>
8208 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8210 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8211 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8212 returns the time when the arc length reaches |a_goal| if there is such a time.
8213 Thus the return value is either an arc length less than |a_goal| or, if the
8214 arc length would be at least |a_goal|, it returns a time value decreased by
8215 |two|. This allows the caller to use the sign of the result to distinguish
8216 between arc lengths and time values. On certain types of overflow, it is
8217 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8218 Otherwise, the result is always less than |a_goal|.
8220 Rather than halving the control point coordinates on each recursive call to
8221 |arc_test|, it is better to keep them proportional to velocity on the original
8222 curve and halve the results instead. This means that recursive calls can
8223 potentially use larger error tolerances in their arc length estimates. How
8224 much larger depends on to what extent the errors behave as though they are
8225 independent of each other. To save computing time, we use optimistic assumptions
8226 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8229 In addition to the tolerance parameter, |arc_test| should also have parameters
8230 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8231 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8232 and they are needed in different instances of |arc_test|.
8234 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8235 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8236 scaled dx2, scaled dy2, scaled v0, scaled v02,
8237 scaled v2, scaled a_goal, scaled tol) {
8238 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8239 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8241 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8242 scaled arc; /* best arc length estimate before recursion */
8243 @<Other local variables in |arc_test|@>;
8244 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8246 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8247 set |arc_test| and |return|@>;
8248 @<Test if the control points are confined to one quadrant or rotating them
8249 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8250 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8251 if ( arc < a_goal ) {
8254 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8255 that time minus |two|@>;
8258 @<Use one or two recursive calls to compute the |arc_test| function@>;
8262 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8263 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8264 |make_fraction| in this inner loop.
8267 @<Use one or two recursive calls to compute the |arc_test| function@>=
8269 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8270 large as possible@>;
8271 tol = tol + halfp(tol);
8272 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8273 halfp(v02), a_new, tol);
8275 return (-halfp(two-a));
8277 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8278 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8279 halfp(v02), v022, v2, a_new, tol);
8281 return (-halfp(-b) - half_unit);
8283 return (a + half(b-a));
8287 @ @<Other local variables in |arc_test|@>=
8288 scaled a,b; /* results of recursive calls */
8289 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8291 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8292 a_aux = el_gordo - a_goal;
8293 if ( a_goal > a_aux ) {
8294 a_aux = a_goal - a_aux;
8297 a_new = a_goal + a_goal;
8301 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8302 to force the additions and subtractions to be done in an order that avoids
8305 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8308 a_new = a_new + a_aux;
8311 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8312 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8313 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8314 this bound. Note that recursive calls will maintain this invariant.
8316 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8317 dx01 = half(dx0 + dx1);
8318 dx12 = half(dx1 + dx2);
8319 dx02 = half(dx01 + dx12);
8320 dy01 = half(dy0 + dy1);
8321 dy12 = half(dy1 + dy2);
8322 dy02 = half(dy01 + dy12)
8324 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8325 |a_goal=el_gordo| is guaranteed to yield the arc length.
8327 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8328 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8329 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8331 arc1 = v002 + half(halfp(v0+tmp) - v002);
8332 arc = v022 + half(halfp(v2+tmp) - v022);
8333 if ( (arc < el_gordo-arc1) ) {
8336 mp->arith_error = true;
8337 if ( a_goal==el_gordo ) return (el_gordo);
8341 @ @<Other local variables in |arc_test|@>=
8342 scaled tmp, tmp2; /* all purpose temporary registers */
8343 scaled arc1; /* arc length estimate for the first half */
8345 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8346 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8347 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8349 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8350 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8352 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8353 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8355 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8356 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8359 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8361 it is appropriate to use the same approximation to decide when the integral
8362 reaches the intermediate value |a_goal|. At this point
8364 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8365 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8366 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8367 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8368 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8372 $$ {\vb\dot B(t)\vb\over 3} \approx
8373 \cases{B\left(\hbox{|v0|},
8374 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8375 {1\over 2}\hbox{|v02|}; 2t \right)&
8376 if $t\le{1\over 2}$\cr
8377 B\left({1\over 2}\hbox{|v02|},
8378 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8379 \hbox{|v2|}; 2t-1 \right)&
8380 if $t\ge{1\over 2}$.\cr}
8383 We can integrate $\vb\dot B(t)\vb$ by using
8384 $$\int 3B(a,b,c;\tau)\,dt =
8385 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8388 This construction allows us to find the time when the arc length reaches
8389 |a_goal| by solving a cubic equation of the form
8390 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8391 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8392 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8393 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8394 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8395 $\tau$ given $a$, $b$, $c$, and $x$.
8397 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8399 tmp = (v02 + 2) / 4;
8400 if ( a_goal<=arc1 ) {
8403 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8406 return ((half_unit - two) +
8407 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8411 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8412 $$ B(0, a, a+b, a+b+c; t) = x. $$
8413 This routine is based on |crossing_point| but is simplified by the
8414 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8415 If rounding error causes this condition to be violated slightly, we just ignore
8416 it and proceed with binary search. This finds a time when the function value
8417 reaches |x| and the slope is positive.
8419 @<Declare subroutines needed by |arc_test|@>=
8420 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8421 scaled ab, bc, ac; /* bisection results */
8422 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8423 integer xx; /* temporary for updating |x| */
8424 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8425 @:this can't happen rising?}{\quad rising?@>
8428 } else if ( x >= a+b+c ) {
8432 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8436 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8437 xx = x - a - ab - ac;
8438 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8439 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8440 } while (t < unity);
8445 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8450 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8452 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8453 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8460 @ It is convenient to have a simpler interface to |arc_test| that requires no
8461 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8462 length less than |fraction_four|.
8464 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8466 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8467 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8468 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8469 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8470 v0 = mp_pyth_add(mp, dx0,dy0);
8471 v1 = mp_pyth_add(mp, dx1,dy1);
8472 v2 = mp_pyth_add(mp, dx2,dy2);
8473 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8474 mp->arith_error = true;
8475 if ( a_goal==el_gordo ) return el_gordo;
8478 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8479 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8480 v0, v02, v2, a_goal, arc_tol));
8484 @ Now it is easy to find the arc length of an entire path.
8486 @c scaled mp_get_arc_length (MP mp,pointer h) {
8487 pointer p,q; /* for traversing the path */
8488 scaled a,a_tot; /* current and total arc lengths */
8491 while ( right_type(p)!=mp_endpoint ){
8493 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8494 left_x(q)-right_x(p), left_y(q)-right_y(p),
8495 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8496 a_tot = mp_slow_add(mp, a, a_tot);
8497 if ( q==h ) break; else p=q;
8503 @ The inverse operation of finding the time on a path~|h| when the arc length
8504 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8505 is required to handle very large times or negative times on cyclic paths. For
8506 non-cyclic paths, |arc0| values that are negative or too large cause
8507 |get_arc_time| to return 0 or the length of path~|h|.
8509 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8510 time value greater than the length of the path. Since it could be much greater,
8511 we must be prepared to compute the arc length of path~|h| and divide this into
8512 |arc0| to find how many multiples of the length of path~|h| to add.
8514 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8515 pointer p,q; /* for traversing the path */
8516 scaled t_tot; /* accumulator for the result */
8517 scaled t; /* the result of |do_arc_test| */
8518 scaled arc; /* portion of |arc0| not used up so far */
8519 integer n; /* number of extra times to go around the cycle */
8521 @<Deal with a negative |arc0| value and |return|@>;
8523 if ( arc0==el_gordo ) decr(arc0);
8527 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8529 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8530 left_x(q)-right_x(p), left_y(q)-right_y(p),
8531 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8532 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8534 @<Update |t_tot| and |arc| to avoid going around the cyclic
8535 path too many times but set |arith_error:=true| and |goto done| on
8544 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8545 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8546 else { t_tot = t_tot + unity; arc = arc - t; }
8548 @ @<Deal with a negative |arc0| value and |return|@>=
8550 if ( left_type(h)==mp_endpoint ) {
8553 p = mp_htap_ypoc(mp, h);
8554 t_tot = -mp_get_arc_time(mp, p, -arc0);
8555 mp_toss_knot_list(mp, p);
8561 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8563 n = arc / (arc0 - arc);
8564 arc = arc - n*(arc0 - arc);
8565 if ( t_tot > el_gordo / (n+1) ) {
8566 mp->arith_error = true;
8570 t_tot = (n + 1)*t_tot;
8573 @* \[20] Data structures for pens.
8574 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8575 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8576 @:stroke}{\&{stroke} command@>
8577 converted into an area fill as described in the next part of this program.
8578 The mathematics behind this process is based on simple aspects of the theory
8579 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8580 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8581 Foundations of Computer Science {\bf 24} (1983), 100--111].
8583 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8584 @:makepen_}{\&{makepen} primitive@>
8585 This path representation is almost sufficient for our purposes except that
8586 a pen path should always be a convex polygon with the vertices in
8587 counter-clockwise order.
8588 Since we will need to scan pen polygons both forward and backward, a pen
8589 should be represented as a doubly linked ring of knot nodes. There is
8590 room for the extra back pointer because we do not need the
8591 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8592 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8593 so that certain procedures can operate on both pens and paths. In particular,
8594 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8597 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8599 @ The |make_pen| procedure turns a path into a pen by initializing
8600 the |knil| pointers and making sure the knots form a convex polygon.
8601 Thus each cubic in the given path becomes a straight line and the control
8602 points are ignored. If the path is not cyclic, the ends are connected by a
8605 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8607 @c @<Declare a function called |convex_hull|@>;
8608 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8609 pointer p,q; /* two consecutive knots */
8616 h=mp_convex_hull(mp, h);
8617 @<Make sure |h| isn't confused with an elliptical pen@>;
8622 @ The only information required about an elliptical pen is the overall
8623 transformation that has been applied to the original \&{pencircle}.
8624 @:pencircle_}{\&{pencircle} primitive@>
8625 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8626 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8627 knot node and transformed as if it were a path.
8629 @d pen_is_elliptical(A) ((A)==link((A)))
8631 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8632 pointer h; /* the knot node to return */
8633 h=mp_get_node(mp, knot_node_size);
8634 link(h)=h; knil(h)=h;
8635 originator(h)=mp_program_code;
8636 x_coord(h)=0; y_coord(h)=0;
8637 left_x(h)=diam; left_y(h)=0;
8638 right_x(h)=0; right_y(h)=diam;
8642 @ If the polygon being returned by |make_pen| has only one vertex, it will
8643 be interpreted as an elliptical pen. This is no problem since a degenerate
8644 polygon can equally well be thought of as a degenerate ellipse. We need only
8645 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8647 @<Make sure |h| isn't confused with an elliptical pen@>=
8648 if ( pen_is_elliptical( h) ){
8649 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8650 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8653 @ We have to cheat a little here but most operations on pens only use
8654 the first three words in each knot node.
8655 @^data structure assumptions@>
8657 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8658 x_coord(test_pen)=-half_unit;
8659 y_coord(test_pen)=0;
8660 x_coord(test_pen+3)=half_unit;
8661 y_coord(test_pen+3)=0;
8662 x_coord(test_pen+6)=0;
8663 y_coord(test_pen+6)=unity;
8664 link(test_pen)=test_pen+3;
8665 link(test_pen+3)=test_pen+6;
8666 link(test_pen+6)=test_pen;
8667 knil(test_pen)=test_pen+6;
8668 knil(test_pen+3)=test_pen;
8669 knil(test_pen+6)=test_pen+3
8671 @ Printing a polygonal pen is very much like printing a path
8673 @<Declare subroutines for printing expressions@>=
8674 void mp_pr_pen (MP mp,pointer h) {
8675 pointer p,q; /* for list traversal */
8676 if ( pen_is_elliptical(h) ) {
8677 @<Print the elliptical pen |h|@>;
8681 mp_print_two(mp, x_coord(p),y_coord(p));
8682 mp_print_nl(mp, " .. ");
8683 @<Advance |p| making sure the links are OK and |return| if there is
8686 mp_print(mp, "cycle");
8690 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8692 if ( (q==null) || (knil(q)!=p) ) {
8693 mp_print_nl(mp, "???"); return; /* this won't happen */
8698 @ @<Print the elliptical pen |h|@>=
8700 mp_print(mp, "pencircle transformed (");
8701 mp_print_scaled(mp, x_coord(h));
8702 mp_print_char(mp, ',');
8703 mp_print_scaled(mp, y_coord(h));
8704 mp_print_char(mp, ',');
8705 mp_print_scaled(mp, left_x(h)-x_coord(h));
8706 mp_print_char(mp, ',');
8707 mp_print_scaled(mp, right_x(h)-x_coord(h));
8708 mp_print_char(mp, ',');
8709 mp_print_scaled(mp, left_y(h)-y_coord(h));
8710 mp_print_char(mp, ',');
8711 mp_print_scaled(mp, right_y(h)-y_coord(h));
8712 mp_print_char(mp, ')');
8715 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8718 @<Declare subroutines for printing expressions@>=
8719 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8720 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8723 mp_end_diagnostic(mp, true);
8726 @ Making a polygonal pen into a path involves restoring the |left_type| and
8727 |right_type| fields and setting the control points so as to make a polygonal
8731 void mp_make_path (MP mp,pointer h) {
8732 pointer p; /* for traversing the knot list */
8733 small_number k; /* a loop counter */
8734 @<Other local variables in |make_path|@>;
8735 if ( pen_is_elliptical(h) ) {
8736 @<Make the elliptical pen |h| into a path@>;
8740 left_type(p)=mp_explicit;
8741 right_type(p)=mp_explicit;
8742 @<copy the coordinates of knot |p| into its control points@>;
8748 @ @<copy the coordinates of knot |p| into its control points@>=
8749 left_x(p)=x_coord(p);
8750 left_y(p)=y_coord(p);
8751 right_x(p)=x_coord(p);
8752 right_y(p)=y_coord(p)
8754 @ We need an eight knot path to get a good approximation to an ellipse.
8756 @<Make the elliptical pen |h| into a path@>=
8758 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8760 for (k=0;k<=7;k++ ) {
8761 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8762 transforming it appropriately@>;
8763 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8768 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8769 center_x=x_coord(h);
8770 center_y=y_coord(h);
8771 width_x=left_x(h)-center_x;
8772 width_y=left_y(h)-center_y;
8773 height_x=right_x(h)-center_x;
8774 height_y=right_y(h)-center_y
8776 @ @<Other local variables in |make_path|@>=
8777 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8778 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8779 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8780 scaled dx,dy; /* the vector from knot |p| to its right control point */
8782 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8784 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8785 find the point $k/8$ of the way around the circle and the direction vector
8788 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8790 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8791 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8792 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8793 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8794 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8795 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8796 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8797 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8798 right_x(p)=x_coord(p)+dx;
8799 right_y(p)=y_coord(p)+dy;
8800 left_x(p)=x_coord(p)-dx;
8801 left_y(p)=y_coord(p)-dy;
8802 left_type(p)=mp_explicit;
8803 right_type(p)=mp_explicit;
8804 originator(p)=mp_program_code
8807 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8808 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8810 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8811 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8812 function for $\theta=\phi=22.5^\circ$. This comes out to be
8813 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8814 \approx 0.132608244919772.
8818 mp->half_cos[0]=fraction_half;
8819 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8821 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8822 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8824 for (k=3;k<= 4;k++ ) {
8825 mp->half_cos[k]=-mp->half_cos[4-k];
8826 mp->d_cos[k]=-mp->d_cos[4-k];
8828 for (k=5;k<= 7;k++ ) {
8829 mp->half_cos[k]=mp->half_cos[8-k];
8830 mp->d_cos[k]=mp->d_cos[8-k];
8833 @ The |convex_hull| function forces a pen polygon to be convex when it is
8834 returned by |make_pen| and after any subsequent transformation where rounding
8835 error might allow the convexity to be lost.
8836 The convex hull algorithm used here is described by F.~P. Preparata and
8837 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8839 @<Declare a function called |convex_hull|@>=
8840 @<Declare a procedure called |move_knot|@>;
8841 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8842 pointer l,r; /* the leftmost and rightmost knots */
8843 pointer p,q; /* knots being scanned */
8844 pointer s; /* the starting point for an upcoming scan */
8845 scaled dx,dy; /* a temporary pointer */
8846 if ( pen_is_elliptical(h) ) {
8849 @<Set |l| to the leftmost knot in polygon~|h|@>;
8850 @<Set |r| to the rightmost knot in polygon~|h|@>;
8853 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8854 move them past~|r|@>;
8855 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8856 move them past~|l|@>;
8857 @<Sort the path from |l| to |r| by increasing $x$@>;
8858 @<Sort the path from |r| to |l| by decreasing $x$@>;
8861 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8867 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8869 @<Set |l| to the leftmost knot in polygon~|h|@>=
8873 if ( x_coord(p)<=x_coord(l) )
8874 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8879 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8883 if ( x_coord(p)>=x_coord(r) )
8884 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8889 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8890 dx=x_coord(r)-x_coord(l);
8891 dy=y_coord(r)-y_coord(l);
8895 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8896 mp_move_knot(mp, p, r);
8900 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8903 @ @<Declare a procedure called |move_knot|@>=
8904 void mp_move_knot (MP mp,pointer p, pointer q) {
8905 link(knil(p))=link(p);
8906 knil(link(p))=knil(p);
8913 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8917 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8918 mp_move_knot(mp, p,l);
8922 @ The list is likely to be in order already so we just do linear insertions.
8923 Secondary comparisons on $y$ ensure that the sort is consistent with the
8924 choice of |l| and |r|.
8926 @<Sort the path from |l| to |r| by increasing $x$@>=
8930 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8931 while ( x_coord(q)==x_coord(p) ) {
8932 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8934 if ( q==knil(p) ) p=link(p);
8935 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8938 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8942 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8943 while ( x_coord(q)==x_coord(p) ) {
8944 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8946 if ( q==knil(p) ) p=link(p);
8947 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8950 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8951 at knot |q|. There usually will be a left turn so we streamline the case
8952 where the |then| clause is not executed.
8954 @<Do a Gramm scan and remove vertices where there...@>=
8958 dx=x_coord(q)-x_coord(p);
8959 dy=y_coord(q)-y_coord(p);
8963 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8964 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8969 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8972 mp_free_node(mp, p,knot_node_size);
8973 link(s)=q; knil(q)=s;
8975 else { p=knil(s); q=s; };
8978 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8979 offset associated with the given direction |(x,y)|. If two different offsets
8980 apply, it chooses one of them.
8983 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8984 pointer p,q; /* consecutive knots */
8986 /* the transformation matrix for an elliptical pen */
8987 fraction xx,yy; /* untransformed offset for an elliptical pen */
8988 fraction d; /* a temporary register */
8989 if ( pen_is_elliptical(h) ) {
8990 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8995 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8998 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8999 mp->cur_x=x_coord(p);
9000 mp->cur_y=y_coord(p);
9006 scaled cur_y; /* all-purpose return value registers */
9008 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9009 if ( (x==0) && (y==0) ) {
9010 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9012 @<Find the non-constant part of the transformation for |h|@>;
9013 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9016 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9017 untransformed version of |(x,y)|@>;
9018 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9019 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9022 @ @<Find the non-constant part of the transformation for |h|@>=
9023 wx=left_x(h)-x_coord(h);
9024 wy=left_y(h)-y_coord(h);
9025 hx=right_x(h)-x_coord(h);
9026 hy=right_y(h)-y_coord(h)
9028 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9029 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9030 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9031 d=mp_pyth_add(mp, xx,yy);
9033 xx=half(mp_make_fraction(mp, xx,d));
9034 yy=half(mp_make_fraction(mp, yy,d));
9037 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9038 But we can handle that case by just calling |find_offset| twice. The answer
9039 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9042 void mp_pen_bbox (MP mp,pointer h) {
9043 pointer p; /* for scanning the knot list */
9044 if ( pen_is_elliptical(h) ) {
9045 @<Find the bounding box of an elliptical pen@>;
9047 minx=x_coord(h); maxx=minx;
9048 miny=y_coord(h); maxy=miny;
9051 if ( x_coord(p)<minx ) minx=x_coord(p);
9052 if ( y_coord(p)<miny ) miny=y_coord(p);
9053 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9054 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9060 @ @<Find the bounding box of an elliptical pen@>=
9062 mp_find_offset(mp, 0,fraction_one,h);
9064 minx=2*x_coord(h)-mp->cur_x;
9065 mp_find_offset(mp, -fraction_one,0,h);
9067 miny=2*y_coord(h)-mp->cur_y;
9070 @* \[21] Edge structures.
9071 Now we come to \MP's internal scheme for representing pictures.
9072 The representation is very different from \MF's edge structures
9073 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9074 images. However, the basic idea is somewhat similar in that shapes
9075 are represented via their boundaries.
9077 The main purpose of edge structures is to keep track of graphical objects
9078 until it is time to translate them into \ps. Since \MP\ does not need to
9079 know anything about an edge structure other than how to translate it into
9080 \ps\ and how to find its bounding box, edge structures can be just linked
9081 lists of graphical objects. \MP\ has no easy way to determine whether
9082 two such objects overlap, but it suffices to draw the first one first and
9083 let the second one overwrite it if necessary.
9086 enum mp_graphical_object_code {
9087 @<Graphical object codes@>
9090 @ Let's consider the types of graphical objects one at a time.
9091 First of all, a filled contour is represented by a eight-word node. The first
9092 word contains |type| and |link| fields, and the next six words contain a
9093 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9094 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9095 give the relevant information.
9097 @d path_p(A) link((A)+1)
9098 /* a pointer to the path that needs filling */
9099 @d pen_p(A) info((A)+1)
9100 /* a pointer to the pen to fill or stroke with */
9101 @d color_model(A) type((A)+2) /* the color model */
9102 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9103 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9104 @d obj_grey_loc obj_red_loc /* the location for the color */
9105 @d red_val(A) mp->mem[(A)+3].sc
9106 /* the red component of the color in the range $0\ldots1$ */
9109 @d green_val(A) mp->mem[(A)+4].sc
9110 /* the green component of the color in the range $0\ldots1$ */
9111 @d magenta_val green_val
9112 @d blue_val(A) mp->mem[(A)+5].sc
9113 /* the blue component of the color in the range $0\ldots1$ */
9114 @d yellow_val blue_val
9115 @d black_val(A) mp->mem[(A)+6].sc
9116 /* the blue component of the color in the range $0\ldots1$ */
9117 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9118 @:mp_linejoin_}{\&{linejoin} primitive@>
9119 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9120 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9121 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9122 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9123 @d pre_script(A) mp->mem[(A)+8].hh.lh
9124 @d post_script(A) mp->mem[(A)+8].hh.rh
9127 @ @<Graphical object codes@>=
9131 pointer mp_new_fill_node (MP mp,pointer p) {
9132 /* make a fill node for cyclic path |p| and color black */
9133 pointer t; /* the new node */
9134 t=mp_get_node(mp, fill_node_size);
9135 type(t)=mp_fill_code;
9137 pen_p(t)=null; /* |null| means don't use a pen */
9142 color_model(t)=mp_uninitialized_model;
9144 post_script(t)=null;
9145 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9149 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9150 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9151 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9152 else ljoin_val(t)=0;
9153 if ( mp->internal[mp_miterlimit]<unity )
9154 miterlim_val(t)=unity;
9156 miterlim_val(t)=mp->internal[mp_miterlimit]
9158 @ A stroked path is represented by an eight-word node that is like a filled
9159 contour node except that it contains the current \&{linecap} value, a scale
9160 factor for the dash pattern, and a pointer that is non-null if the stroke
9161 is to be dashed. The purpose of the scale factor is to allow a picture to
9162 be transformed without touching the picture that |dash_p| points to.
9164 @d dash_p(A) link((A)+9)
9165 /* a pointer to the edge structure that gives the dash pattern */
9166 @d lcap_val(A) type((A)+9)
9167 /* the value of \&{linecap} */
9168 @:mp_linecap_}{\&{linecap} primitive@>
9169 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9170 @d stroked_node_size 11
9172 @ @<Graphical object codes@>=
9176 pointer mp_new_stroked_node (MP mp,pointer p) {
9177 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9178 pointer t; /* the new node */
9179 t=mp_get_node(mp, stroked_node_size);
9180 type(t)=mp_stroked_code;
9181 path_p(t)=p; pen_p(t)=null;
9183 dash_scale(t)=unity;
9188 color_model(t)=mp_uninitialized_model;
9190 post_script(t)=null;
9191 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9192 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9193 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9198 @ When a dashed line is computed in a transformed coordinate system, the dash
9199 lengths get scaled like the pen shape and we need to compensate for this. Since
9200 there is no unique scale factor for an arbitrary transformation, we use the
9201 the square root of the determinant. The properties of the determinant make it
9202 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9203 except for the initialization of the scale factor |s|. The factor of 64 is
9204 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9205 to counteract the effect of |take_fraction|.
9207 @<Declare subroutines needed by |print_edges|@>=
9208 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9209 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9210 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9211 @<Initialize |maxabs|@>;
9213 while ( (maxabs<fraction_one) && (s>1) ){
9214 a+=a; b+=b; c+=c; d+=d;
9215 maxabs+=maxabs; s=halfp(s);
9217 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9220 scaled mp_get_pen_scale (MP mp,pointer p) {
9221 return mp_sqrt_det(mp,
9222 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9223 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9226 @ @<Internal library ...@>=
9227 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9230 @ @<Initialize |maxabs|@>=
9232 if ( abs(b)>maxabs ) maxabs=abs(b);
9233 if ( abs(c)>maxabs ) maxabs=abs(c);
9234 if ( abs(d)>maxabs ) maxabs=abs(d)
9236 @ When a picture contains text, this is represented by a fourteen-word node
9237 where the color information and |type| and |link| fields are augmented by
9238 additional fields that describe the text and how it is transformed.
9239 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9240 the font and a string number that gives the text to be displayed.
9241 The |width|, |height|, and |depth| fields
9242 give the dimensions of the text at its design size, and the remaining six
9243 words give a transformation to be applied to the text. The |new_text_node|
9244 function initializes everything to default values so that the text comes out
9245 black with its reference point at the origin.
9247 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9248 @d font_n(A) info((A)+1) /* the font number */
9249 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9250 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9251 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9252 @d text_tx_loc(A) ((A)+11)
9253 /* the first of six locations for transformation parameters */
9254 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9255 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9256 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9257 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9258 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9259 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9260 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9261 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9262 @d text_node_size 17
9264 @ @<Graphical object codes@>=
9267 @ @c @<Declare text measuring subroutines@>;
9268 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9269 /* make a text node for font |f| and text string |s| */
9270 pointer t; /* the new node */
9271 t=mp_get_node(mp, text_node_size);
9272 type(t)=mp_text_code;
9274 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9279 color_model(t)=mp_uninitialized_model;
9281 post_script(t)=null;
9282 tx_val(t)=0; ty_val(t)=0;
9283 txx_val(t)=unity; txy_val(t)=0;
9284 tyx_val(t)=0; tyy_val(t)=unity;
9285 mp_set_text_box(mp, t); /* this finds the bounding box */
9289 @ The last two types of graphical objects that can occur in an edge structure
9290 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9291 @:set_bounds_}{\&{setbounds} primitive@>
9292 to implement because we must keep track of exactly what is being clipped or
9293 bounded when pictures get merged together. For this reason, each clipping or
9294 \&{setbounds} operation is represented by a pair of nodes: first comes a
9295 two-word node whose |path_p| gives the relevant path, then there is the list
9296 of objects to clip or bound followed by a two-word node whose second word is
9299 Using at least two words for each graphical object node allows them all to be
9300 allocated and deallocated similarly with a global array |gr_object_size| to
9301 give the size in words for each object type.
9303 @d start_clip_size 2
9304 @d start_bounds_size 2
9305 @d stop_clip_size 2 /* the second word is not used here */
9306 @d stop_bounds_size 2 /* the second word is not used here */
9308 @d stop_type(A) ((A)+2)
9309 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9310 @d has_color(A) (type((A))<mp_start_clip_code)
9311 /* does a graphical object have color fields? */
9312 @d has_pen(A) (type((A))<mp_text_code)
9313 /* does a graphical object have a |pen_p| field? */
9314 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9315 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9317 @ @<Graphical object codes@>=
9318 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9319 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9320 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9321 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9325 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9326 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9327 pointer t; /* the new node */
9328 t=mp_get_node(mp, mp->gr_object_size[c]);
9334 @ We need an array to keep track of the sizes of graphical objects.
9337 small_number gr_object_size[mp_stop_bounds_code+1];
9340 mp->gr_object_size[mp_fill_code]=fill_node_size;
9341 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9342 mp->gr_object_size[mp_text_code]=text_node_size;
9343 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9344 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9345 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9346 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9348 @ All the essential information in an edge structure is encoded as a linked list
9349 of graphical objects as we have just seen, but it is helpful to add some
9350 redundant information. A single edge structure might be used as a dash pattern
9351 many times, and it would be nice to avoid scanning the same structure
9352 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9353 has a header that gives a list of dashes in a sorted order designed for rapid
9354 translation into \ps.
9356 Each dash is represented by a three-word node containing the initial and final
9357 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9358 the dash node with the next higher $x$-coordinates and the final link points
9359 to a special location called |null_dash|. (There should be no overlap between
9360 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9361 the period of repetition, this needs to be stored in the edge header along
9362 with a pointer to the list of dash nodes.
9364 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9365 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9368 /* in an edge header this points to the first dash node */
9369 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9371 @ It is also convenient for an edge header to contain the bounding
9372 box information needed by the \&{llcorner} and \&{urcorner} operators
9373 so that this does not have to be recomputed unnecessarily. This is done by
9374 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9375 how far the bounding box computation has gotten. Thus if the user asks for
9376 the bounding box and then adds some more text to the picture before asking
9377 for more bounding box information, the second computation need only look at
9378 the additional text.
9380 When the bounding box has not been computed, the |bblast| pointer points
9381 to a dummy link at the head of the graphical object list while the |minx_val|
9382 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9383 fields contain |-el_gordo|.
9385 Since the bounding box of pictures containing objects of type
9386 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9387 @:mp_true_corners_}{\&{truecorners} primitive@>
9388 data might not be valid for all values of this parameter. Hence, the |bbtype|
9389 field is needed to keep track of this.
9391 @d minx_val(A) mp->mem[(A)+2].sc
9392 @d miny_val(A) mp->mem[(A)+3].sc
9393 @d maxx_val(A) mp->mem[(A)+4].sc
9394 @d maxy_val(A) mp->mem[(A)+5].sc
9395 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9396 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9397 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9399 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9401 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9403 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9406 void mp_init_bbox (MP mp,pointer h) {
9407 /* Initialize the bounding box information in edge structure |h| */
9408 bblast(h)=dummy_loc(h);
9409 bbtype(h)=no_bounds;
9410 minx_val(h)=el_gordo;
9411 miny_val(h)=el_gordo;
9412 maxx_val(h)=-el_gordo;
9413 maxy_val(h)=-el_gordo;
9416 @ The only other entries in an edge header are a reference count in the first
9417 word and a pointer to the tail of the object list in the last word.
9419 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9420 @d edge_header_size 8
9423 void mp_init_edges (MP mp,pointer h) {
9424 /* initialize an edge header to null values */
9425 dash_list(h)=null_dash;
9426 obj_tail(h)=dummy_loc(h);
9427 link(dummy_loc(h))=null;
9429 mp_init_bbox(mp, h);
9432 @ Here is how edge structures are deleted. The process can be recursive because
9433 of the need to dereference edge structures that are used as dash patterns.
9436 @d add_edge_ref(A) incr(ref_count(A))
9437 @d delete_edge_ref(A) {
9438 if ( ref_count((A))==null )
9439 mp_toss_edges(mp, A);
9444 @<Declare the recycling subroutines@>=
9445 void mp_flush_dash_list (MP mp,pointer h);
9446 pointer mp_toss_gr_object (MP mp,pointer p) ;
9447 void mp_toss_edges (MP mp,pointer h) ;
9449 @ @c void mp_toss_edges (MP mp,pointer h) {
9450 pointer p,q; /* pointers that scan the list being recycled */
9451 pointer r; /* an edge structure that object |p| refers to */
9452 mp_flush_dash_list(mp, h);
9453 q=link(dummy_loc(h));
9454 while ( (q!=null) ) {
9456 r=mp_toss_gr_object(mp, p);
9457 if ( r!=null ) delete_edge_ref(r);
9459 mp_free_node(mp, h,edge_header_size);
9461 void mp_flush_dash_list (MP mp,pointer h) {
9462 pointer p,q; /* pointers that scan the list being recycled */
9464 while ( q!=null_dash ) {
9466 mp_free_node(mp, p,dash_node_size);
9468 dash_list(h)=null_dash;
9470 pointer mp_toss_gr_object (MP mp,pointer p) {
9471 /* returns an edge structure that needs to be dereferenced */
9472 pointer e; /* the edge structure to return */
9474 @<Prepare to recycle graphical object |p|@>;
9475 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9479 @ @<Prepare to recycle graphical object |p|@>=
9482 mp_toss_knot_list(mp, path_p(p));
9483 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9484 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9485 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9487 case mp_stroked_code:
9488 mp_toss_knot_list(mp, path_p(p));
9489 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9490 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9491 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9495 delete_str_ref(text_p(p));
9496 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9497 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9499 case mp_start_clip_code:
9500 case mp_start_bounds_code:
9501 mp_toss_knot_list(mp, path_p(p));
9503 case mp_stop_clip_code:
9504 case mp_stop_bounds_code:
9506 } /* there are no other cases */
9508 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9509 to be done before making a significant change to an edge structure. Much of
9510 the work is done in a separate routine |copy_objects| that copies a list of
9511 graphical objects into a new edge header.
9513 @c @<Declare a function called |copy_objects|@>;
9514 pointer mp_private_edges (MP mp,pointer h) {
9515 /* make a private copy of the edge structure headed by |h| */
9516 pointer hh; /* the edge header for the new copy */
9517 pointer p,pp; /* pointers for copying the dash list */
9518 if ( ref_count(h)==null ) {
9522 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9523 @<Copy the dash list from |h| to |hh|@>;
9524 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9525 point into the new object list@>;
9530 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9531 @^data structure assumptions@>
9533 @<Copy the dash list from |h| to |hh|@>=
9534 pp=hh; p=dash_list(h);
9535 while ( (p!=null_dash) ) {
9536 link(pp)=mp_get_node(mp, dash_node_size);
9538 start_x(pp)=start_x(p);
9539 stop_x(pp)=stop_x(p);
9543 dash_y(hh)=dash_y(h)
9546 @ |h| is an edge structure
9548 @d gr_start_x(A) (A)->start_x_field
9549 @d gr_stop_x(A) (A)->stop_x_field
9550 @d gr_dash_link(A) (A)->next_field
9552 @d gr_dash_list(A) (A)->list_field
9553 @d gr_dash_y(A) (A)->y_field
9556 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9557 struct mp_dash_list *dl;
9558 struct mp_dash_item *dh, *di;
9560 if (h==null || dash_list(h)==null_dash)
9563 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9564 gr_dash_list(dl) = NULL;
9565 gr_dash_y(dl) = dash_y(h);
9567 while (p != null_dash) {
9568 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9569 gr_dash_link(di) = NULL;
9570 gr_start_x(di) = start_x(p);
9571 gr_stop_x(di) = stop_x(p);
9573 gr_dash_list(dl) = di;
9575 gr_dash_link(dh) = di;
9584 @ @<Copy the bounding box information from |h| to |hh|...@>=
9585 minx_val(hh)=minx_val(h);
9586 miny_val(hh)=miny_val(h);
9587 maxx_val(hh)=maxx_val(h);
9588 maxy_val(hh)=maxy_val(h);
9589 bbtype(hh)=bbtype(h);
9590 p=dummy_loc(h); pp=dummy_loc(hh);
9591 while ((p!=bblast(h)) ) {
9592 if ( p==null ) mp_confusion(mp, "bblast");
9593 @:this can't happen bblast}{\quad bblast@>
9594 p=link(p); pp=link(pp);
9598 @ Here is the promised routine for copying graphical objects into a new edge
9599 structure. It starts copying at object~|p| and stops just before object~|q|.
9600 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9601 structure requires further initialization by |init_bbox|.
9603 @<Declare a function called |copy_objects|@>=
9604 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9605 pointer hh; /* the new edge header */
9606 pointer pp; /* the last newly copied object */
9607 small_number k; /* temporary register */
9608 hh=mp_get_node(mp, edge_header_size);
9609 dash_list(hh)=null_dash;
9613 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9620 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9621 { k=mp->gr_object_size[type(p)];
9622 link(pp)=mp_get_node(mp, k);
9624 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9625 @<Fix anything in graphical object |pp| that should differ from the
9626 corresponding field in |p|@>;
9630 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9632 case mp_start_clip_code:
9633 case mp_start_bounds_code:
9634 path_p(pp)=mp_copy_path(mp, path_p(p));
9637 path_p(pp)=mp_copy_path(mp, path_p(p));
9638 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9640 case mp_stroked_code:
9641 path_p(pp)=mp_copy_path(mp, path_p(p));
9642 pen_p(pp)=copy_pen(pen_p(p));
9643 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9646 add_str_ref(text_p(pp));
9648 case mp_stop_clip_code:
9649 case mp_stop_bounds_code:
9651 } /* there are no other cases */
9653 @ Here is one way to find an acceptable value for the second argument to
9654 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9655 skips past one picture component, where a ``picture component'' is a single
9656 graphical object, or a start bounds or start clip object and everything up
9657 through the matching stop bounds or stop clip object. The macro version avoids
9658 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9659 unless |p| points to a stop bounds or stop clip node, in which case it executes
9662 @d skip_component(A)
9663 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9664 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9668 pointer mp_skip_1component (MP mp,pointer p) {
9669 integer lev; /* current nesting level */
9672 if ( is_start_or_stop(p) ) {
9673 if ( is_stop(p) ) decr(lev); else incr(lev);
9680 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9682 @<Declare subroutines for printing expressions@>=
9683 @<Declare subroutines needed by |print_edges|@>;
9684 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9685 pointer p; /* a graphical object to be printed */
9686 pointer hh,pp; /* temporary pointers */
9687 scaled scf; /* a scale factor for the dash pattern */
9688 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9689 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9691 while ( link(p)!=null ) {
9695 @<Cases for printing graphical object node |p|@>;
9697 mp_print(mp, "[unknown object type!]");
9701 mp_print_nl(mp, "End edges");
9702 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9704 mp_end_diagnostic(mp, true);
9707 @ @<Cases for printing graphical object node |p|@>=
9709 mp_print(mp, "Filled contour ");
9710 mp_print_obj_color(mp, p);
9711 mp_print_char(mp, ':'); mp_print_ln(mp);
9712 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9713 if ( (pen_p(p)!=null) ) {
9714 @<Print join type for graphical object |p|@>;
9715 mp_print(mp, " with pen"); mp_print_ln(mp);
9716 mp_pr_pen(mp, pen_p(p));
9720 @ @<Print join type for graphical object |p|@>=
9721 switch (ljoin_val(p)) {
9723 mp_print(mp, "mitered joins limited ");
9724 mp_print_scaled(mp, miterlim_val(p));
9727 mp_print(mp, "round joins");
9730 mp_print(mp, "beveled joins");
9733 mp_print(mp, "?? joins");
9738 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9740 @<Print join and cap types for stroked node |p|@>=
9741 switch (lcap_val(p)) {
9742 case 0:mp_print(mp, "butt"); break;
9743 case 1:mp_print(mp, "round"); break;
9744 case 2:mp_print(mp, "square"); break;
9745 default: mp_print(mp, "??"); break;
9748 mp_print(mp, " ends, ");
9749 @<Print join type for graphical object |p|@>
9751 @ Here is a routine that prints the color of a graphical object if it isn't
9752 black (the default color).
9754 @<Declare subroutines needed by |print_edges|@>=
9755 @<Declare a procedure called |print_compact_node|@>;
9756 void mp_print_obj_color (MP mp,pointer p) {
9757 if ( color_model(p)==mp_grey_model ) {
9758 if ( grey_val(p)>0 ) {
9759 mp_print(mp, "greyed ");
9760 mp_print_compact_node(mp, obj_grey_loc(p),1);
9762 } else if ( color_model(p)==mp_cmyk_model ) {
9763 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9764 (yellow_val(p)>0) || (black_val(p)>0) ) {
9765 mp_print(mp, "processcolored ");
9766 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9768 } else if ( color_model(p)==mp_rgb_model ) {
9769 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9770 mp_print(mp, "colored ");
9771 mp_print_compact_node(mp, obj_red_loc(p),3);
9776 @ We also need a procedure for printing consecutive scaled values as if they
9777 were a known big node.
9779 @<Declare a procedure called |print_compact_node|@>=
9780 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9781 pointer q; /* last location to print */
9783 mp_print_char(mp, '(');
9785 mp_print_scaled(mp, mp->mem[p].sc);
9786 if ( p<q ) mp_print_char(mp, ',');
9789 mp_print_char(mp, ')');
9792 @ @<Cases for printing graphical object node |p|@>=
9793 case mp_stroked_code:
9794 mp_print(mp, "Filled pen stroke ");
9795 mp_print_obj_color(mp, p);
9796 mp_print_char(mp, ':'); mp_print_ln(mp);
9797 mp_pr_path(mp, path_p(p));
9798 if ( dash_p(p)!=null ) {
9799 mp_print_nl(mp, "dashed (");
9800 @<Finish printing the dash pattern that |p| refers to@>;
9803 @<Print join and cap types for stroked node |p|@>;
9804 mp_print(mp, " with pen"); mp_print_ln(mp);
9805 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9807 else mp_pr_pen(mp, pen_p(p));
9810 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9811 when it is not known to define a suitable dash pattern. This is disallowed
9812 here because the |dash_p| field should never point to such an edge header.
9813 Note that memory is allocated for |start_x(null_dash)| and we are free to
9814 give it any convenient value.
9816 @<Finish printing the dash pattern that |p| refers to@>=
9817 ok_to_dash=pen_is_elliptical(pen_p(p));
9818 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9821 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9822 mp_print(mp, " ??");
9823 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9824 while ( pp!=null_dash ) {
9825 mp_print(mp, "on ");
9826 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9827 mp_print(mp, " off ");
9828 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9830 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9832 mp_print(mp, ") shifted ");
9833 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9834 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9837 @ @<Declare subroutines needed by |print_edges|@>=
9838 scaled mp_dash_offset (MP mp,pointer h) {
9839 scaled x; /* the answer */
9840 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9841 @:this can't happen dash0}{\quad dash0@>
9842 if ( dash_y(h)==0 ) {
9845 x=-(start_x(dash_list(h)) % dash_y(h));
9846 if ( x<0 ) x=x+dash_y(h);
9851 @ @<Cases for printing graphical object node |p|@>=
9853 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9854 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9855 mp_print_char(mp, '"'); mp_print_ln(mp);
9856 mp_print_obj_color(mp, p);
9857 mp_print(mp, "transformed ");
9858 mp_print_compact_node(mp, text_tx_loc(p),6);
9861 @ @<Cases for printing graphical object node |p|@>=
9862 case mp_start_clip_code:
9863 mp_print(mp, "clipping path:");
9865 mp_pr_path(mp, path_p(p));
9867 case mp_stop_clip_code:
9868 mp_print(mp, "stop clipping");
9871 @ @<Cases for printing graphical object node |p|@>=
9872 case mp_start_bounds_code:
9873 mp_print(mp, "setbounds path:");
9875 mp_pr_path(mp, path_p(p));
9877 case mp_stop_bounds_code:
9878 mp_print(mp, "end of setbounds");
9881 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9882 subroutine that scans an edge structure and tries to interpret it as a dash
9883 pattern. This can only be done when there are no filled regions or clipping
9884 paths and all the pen strokes have the same color. The first step is to let
9885 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9886 project all the pen stroke paths onto the line $y=y_0$ and require that there
9887 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9888 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9889 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9891 @c @<Declare a procedure called |x_retrace_error|@>;
9892 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9893 pointer p; /* this scans the stroked nodes in the object list */
9894 pointer p0; /* if not |null| this points to the first stroked node */
9895 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9896 pointer d,dd; /* pointers used to create the dash list */
9897 @<Other local variables in |make_dashes|@>;
9898 scaled y0=0; /* the initial $y$ coordinate */
9899 if ( dash_list(h)!=null_dash )
9902 p=link(dummy_loc(h));
9904 if ( type(p)!=mp_stroked_code ) {
9905 @<Compain that the edge structure contains a node of the wrong type
9906 and |goto not_found|@>;
9909 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9910 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9911 or |goto not_found| if there is an error@>;
9912 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9915 if ( dash_list(h)==null_dash )
9916 goto NOT_FOUND; /* No error message */
9917 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9918 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9921 @<Flush the dash list, recycle |h| and return |null|@>;
9924 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9926 print_err("Picture is too complicated to use as a dash pattern");
9927 help3("When you say `dashed p', picture p should not contain any")
9928 ("text, filled regions, or clipping paths. This time it did")
9929 ("so I'll just make it a solid line instead.");
9930 mp_put_get_error(mp);
9934 @ A similar error occurs when monotonicity fails.
9936 @<Declare a procedure called |x_retrace_error|@>=
9937 void mp_x_retrace_error (MP mp) {
9938 print_err("Picture is too complicated to use as a dash pattern");
9939 help3("When you say `dashed p', every path in p should be monotone")
9940 ("in x and there must be no overlapping. This failed")
9941 ("so I'll just make it a solid line instead.");
9942 mp_put_get_error(mp);
9945 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9946 handle the case where the pen stroke |p| is itself dashed.
9948 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9949 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9952 if ( link(pp)!=pp ) {
9955 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9956 if there is a problem@>;
9957 } while (right_type(rr)!=mp_endpoint);
9959 d=mp_get_node(mp, dash_node_size);
9960 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9961 if ( x_coord(pp)<x_coord(rr) ) {
9962 start_x(d)=x_coord(pp);
9963 stop_x(d)=x_coord(rr);
9965 start_x(d)=x_coord(rr);
9966 stop_x(d)=x_coord(pp);
9969 @ We also need to check for the case where the segment from |qq| to |rr| is
9970 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9972 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9977 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9978 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9979 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9980 mp_x_retrace_error(mp); goto NOT_FOUND;
9984 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9985 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9986 mp_x_retrace_error(mp); goto NOT_FOUND;
9990 @ @<Other local variables in |make_dashes|@>=
9991 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9993 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9994 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9995 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9996 print_err("Picture is too complicated to use as a dash pattern");
9997 help3("When you say `dashed p', everything in picture p should")
9998 ("be the same color. I can\'t handle your color changes")
9999 ("so I'll just make it a solid line instead.");
10000 mp_put_get_error(mp);
10004 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10005 start_x(null_dash)=stop_x(d);
10006 dd=h; /* this makes |link(dd)=dash_list(h)| */
10007 while ( start_x(link(dd))<stop_x(d) )
10010 if ( (stop_x(dd)>start_x(d)) )
10011 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10016 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10018 while ( (link(d)!=null_dash) )
10021 dash_y(h)=stop_x(d)-start_x(dd);
10022 if ( abs(y0)>dash_y(h) ) {
10024 } else if ( d!=dd ) {
10025 dash_list(h)=link(dd);
10026 stop_x(d)=stop_x(dd)+dash_y(h);
10027 mp_free_node(mp, dd,dash_node_size);
10030 @ We get here when the argument is a null picture or when there is an error.
10031 Recovering from an error involves making |dash_list(h)| empty to indicate
10032 that |h| is not known to be a valid dash pattern. We also dereference |h|
10033 since it is not being used for the return value.
10035 @<Flush the dash list, recycle |h| and return |null|@>=
10036 mp_flush_dash_list(mp, h);
10037 delete_edge_ref(h);
10040 @ Having carefully saved the dashed stroked nodes in the
10041 corresponding dash nodes, we must be prepared to break up these dashes into
10044 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10045 d=h; /* now |link(d)=dash_list(h)| */
10046 while ( link(d)!=null_dash ) {
10052 hsf=dash_scale(ds);
10053 if ( (hh==null) ) mp_confusion(mp, "dash1");
10054 @:this can't happen dash0}{\quad dash1@>
10055 if ( dash_y(hh)==0 ) {
10058 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10059 @:this can't happen dash0}{\quad dash1@>
10060 @<Replace |link(d)| by a dashed version as determined by edge header
10061 |hh| and scale factor |ds|@>;
10066 @ @<Other local variables in |make_dashes|@>=
10067 pointer dln; /* |link(d)| */
10068 pointer hh; /* an edge header that tells how to break up |dln| */
10069 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10070 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10071 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10073 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10076 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10077 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10078 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10079 +mp_take_scaled(mp, hsf,dash_y(hh));
10080 stop_x(null_dash)=start_x(null_dash);
10081 @<Advance |dd| until finding the first dash that overlaps |dln| when
10082 offset by |xoff|@>;
10083 while ( start_x(dln)<=stop_x(dln) ) {
10084 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10085 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10088 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10091 mp_free_node(mp, dln,dash_node_size)
10093 @ The name of this module is a bit of a lie because we actually just find the
10094 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10095 overlap possible. It could be that the unoffset version of dash |dln| falls
10096 in the gap between |dd| and its predecessor.
10098 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10099 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10103 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10104 if ( dd==null_dash ) {
10106 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10109 @ At this point we already know that
10110 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10112 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10113 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10114 link(d)=mp_get_node(mp, dash_node_size);
10117 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10118 start_x(d)=start_x(dln);
10120 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10121 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10122 stop_x(d)=stop_x(dln);
10124 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10127 @ The next major task is to update the bounding box information in an edge
10128 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10129 header's bounding box to accommodate the box computed by |path_bbox| or
10130 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10133 @c void mp_adjust_bbox (MP mp,pointer h) {
10134 if ( minx<minx_val(h) ) minx_val(h)=minx;
10135 if ( miny<miny_val(h) ) miny_val(h)=miny;
10136 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10137 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10140 @ Here is a special routine for updating the bounding box information in
10141 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10142 that is to be stroked with the pen~|pp|.
10144 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10145 pointer q; /* a knot node adjacent to knot |p| */
10146 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10147 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10148 scaled z; /* a coordinate being tested against the bounding box */
10149 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10150 integer i; /* a loop counter */
10151 if ( right_type(p)!=mp_endpoint ) {
10154 @<Make |(dx,dy)| the final direction for the path segment from
10155 |q| to~|p|; set~|d|@>;
10156 d=mp_pyth_add(mp, dx,dy);
10158 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10159 for (i=1;i<= 2;i++) {
10160 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10161 update the bounding box to accommodate it@>;
10165 if ( right_type(p)==mp_endpoint ) {
10168 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10174 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10175 if ( q==link(p) ) {
10176 dx=x_coord(p)-right_x(p);
10177 dy=y_coord(p)-right_y(p);
10178 if ( (dx==0)&&(dy==0) ) {
10179 dx=x_coord(p)-left_x(q);
10180 dy=y_coord(p)-left_y(q);
10183 dx=x_coord(p)-left_x(p);
10184 dy=y_coord(p)-left_y(p);
10185 if ( (dx==0)&&(dy==0) ) {
10186 dx=x_coord(p)-right_x(q);
10187 dy=y_coord(p)-right_y(q);
10190 dx=x_coord(p)-x_coord(q);
10191 dy=y_coord(p)-y_coord(q)
10193 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10194 dx=mp_make_fraction(mp, dx,d);
10195 dy=mp_make_fraction(mp, dy,d);
10196 mp_find_offset(mp, -dy,dx,pp);
10197 xx=mp->cur_x; yy=mp->cur_y
10199 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10200 mp_find_offset(mp, dx,dy,pp);
10201 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10202 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10203 mp_confusion(mp, "box_ends");
10204 @:this can't happen box ends}{\quad\\{box\_ends}@>
10205 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10206 if ( z<minx_val(h) ) minx_val(h)=z;
10207 if ( z>maxx_val(h) ) maxx_val(h)=z;
10208 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10209 if ( z<miny_val(h) ) miny_val(h)=z;
10210 if ( z>maxy_val(h) ) maxy_val(h)=z
10212 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10216 } while (right_type(p)!=mp_endpoint)
10218 @ The major difficulty in finding the bounding box of an edge structure is the
10219 effect of clipping paths. We treat them conservatively by only clipping to the
10220 clipping path's bounding box, but this still
10221 requires recursive calls to |set_bbox| in order to find the bounding box of
10223 the objects to be clipped. Such calls are distinguished by the fact that the
10224 boolean parameter |top_level| is false.
10226 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10227 pointer p; /* a graphical object being considered */
10228 scaled sminx,sminy,smaxx,smaxy;
10229 /* for saving the bounding box during recursive calls */
10230 scaled x0,x1,y0,y1; /* temporary registers */
10231 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10232 @<Wipe out any existing bounding box information if |bbtype(h)| is
10233 incompatible with |internal[mp_true_corners]|@>;
10234 while ( link(bblast(h))!=null ) {
10238 case mp_stop_clip_code:
10239 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10240 @:this can't happen bbox}{\quad bbox@>
10242 @<Other cases for updating the bounding box based on the type of object |p|@>;
10243 } /* all cases are enumerated above */
10245 if ( ! top_level ) mp_confusion(mp, "bbox");
10248 @ @<Internal library declarations@>=
10249 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10251 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10252 switch (bbtype(h)) {
10256 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10259 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10261 } /* there are no other cases */
10263 @ @<Other cases for updating the bounding box...@>=
10265 mp_path_bbox(mp, path_p(p));
10266 if ( pen_p(p)!=null ) {
10269 mp_pen_bbox(mp, pen_p(p));
10275 mp_adjust_bbox(mp, h);
10278 @ @<Other cases for updating the bounding box...@>=
10279 case mp_start_bounds_code:
10280 if ( mp->internal[mp_true_corners]>0 ) {
10281 bbtype(h)=bounds_unset;
10283 bbtype(h)=bounds_set;
10284 mp_path_bbox(mp, path_p(p));
10285 mp_adjust_bbox(mp, h);
10286 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10290 case mp_stop_bounds_code:
10291 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10292 @:this can't happen bbox2}{\quad bbox2@>
10295 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10298 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10299 @:this can't happen bbox2}{\quad bbox2@>
10301 if ( type(p)==mp_start_bounds_code ) incr(lev);
10302 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10306 @ It saves a lot of grief here to be slightly conservative and not account for
10307 omitted parts of dashed lines. We also don't worry about the material omitted
10308 when using butt end caps. The basic computation is for round end caps and
10309 |box_ends| augments it for square end caps.
10311 @<Other cases for updating the bounding box...@>=
10312 case mp_stroked_code:
10313 mp_path_bbox(mp, path_p(p));
10316 mp_pen_bbox(mp, pen_p(p));
10321 mp_adjust_bbox(mp, h);
10322 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10323 mp_box_ends(mp, path_p(p), pen_p(p), h);
10326 @ The height width and depth information stored in a text node determines a
10327 rectangle that needs to be transformed according to the transformation
10328 parameters stored in the text node.
10330 @<Other cases for updating the bounding box...@>=
10332 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10333 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10334 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10337 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10338 else { minx=minx+y1; maxx=maxx+y0; }
10339 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10340 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10341 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10342 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10345 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10346 else { miny=miny+y1; maxy=maxy+y0; }
10347 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10348 mp_adjust_bbox(mp, h);
10351 @ This case involves a recursive call that advances |bblast(h)| to the node of
10352 type |mp_stop_clip_code| that matches |p|.
10354 @<Other cases for updating the bounding box...@>=
10355 case mp_start_clip_code:
10356 mp_path_bbox(mp, path_p(p));
10359 sminx=minx_val(h); sminy=miny_val(h);
10360 smaxx=maxx_val(h); smaxy=maxy_val(h);
10361 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10362 starting at |link(p)|@>;
10363 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10365 minx=sminx; miny=sminy;
10366 maxx=smaxx; maxy=smaxy;
10367 mp_adjust_bbox(mp, h);
10370 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10371 minx_val(h)=el_gordo;
10372 miny_val(h)=el_gordo;
10373 maxx_val(h)=-el_gordo;
10374 maxy_val(h)=-el_gordo;
10375 mp_set_bbox(mp, h,false)
10377 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10378 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10379 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10380 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10381 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10383 @* \[22] Finding an envelope.
10384 When \MP\ has a path and a polygonal pen, it needs to express the desired
10385 shape in terms of things \ps\ can understand. The present task is to compute
10386 a new path that describes the region to be filled. It is convenient to
10387 define this as a two step process where the first step is determining what
10388 offset to use for each segment of the path.
10390 @ Given a pointer |c| to a cyclic path,
10391 and a pointer~|h| to the first knot of a pen polygon,
10392 the |offset_prep| routine changes the path into cubics that are
10393 associated with particular pen offsets. Thus if the cubic between |p|
10394 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10395 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10396 to because |l-k| could be negative.)
10398 After overwriting the type information with offset differences, we no longer
10399 have a true path so we refer to the knot list returned by |offset_prep| as an
10402 Since an envelope spec only determines relative changes in pen offsets,
10403 |offset_prep| sets a global variable |spec_offset| to the relative change from
10404 |h| to the first offset.
10406 @d zero_off 16384 /* added to offset changes to make them positive */
10409 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10411 @ @c @<Declare subroutines needed by |offset_prep|@>;
10412 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10413 halfword n; /* the number of vertices in the pen polygon */
10414 pointer p,q,q0,r,w, ww; /* for list manipulation */
10415 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10416 pointer w0; /* a pointer to pen offset to use just before |p| */
10417 scaled dxin,dyin; /* the direction into knot |p| */
10418 integer turn_amt; /* change in pen offsets for the current cubic */
10419 @<Other local variables for |offset_prep|@>;
10421 @<Initialize the pen size~|n|@>;
10422 @<Initialize the incoming direction and pen offset at |c|@>;
10426 @<Split the cubic between |p| and |q|, if necessary, into cubics
10427 associated with single offsets, after which |q| should
10428 point to the end of the final such cubic@>;
10430 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10431 might have been introduced by the splitting process@>;
10433 @<Fix the offset change in |info(c)| and set |c| to the return value of
10438 @ We shall want to keep track of where certain knots on the cyclic path
10439 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10440 knot nodes because some nodes are deleted while removing dead cubics. Thus
10441 |offset_prep| updates the following pointers
10445 pointer spec_p2; /* pointers to distinguished knots */
10448 mp->spec_p1=null; mp->spec_p2=null;
10450 @ @<Initialize the pen size~|n|@>=
10457 @ Since the true incoming direction isn't known yet, we just pick a direction
10458 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10461 @<Initialize the incoming direction and pen offset at |c|@>=
10462 dxin=x_coord(link(h))-x_coord(knil(h));
10463 dyin=y_coord(link(h))-y_coord(knil(h));
10464 if ( (dxin==0)&&(dyin==0) ) {
10465 dxin=y_coord(knil(h))-y_coord(h);
10466 dyin=x_coord(h)-x_coord(knil(h));
10470 @ We must be careful not to remove the only cubic in a cycle.
10472 But we must also be careful for another reason. If the user-supplied
10473 path starts with a set of degenerate cubics, the target node |q| can
10474 be collapsed to the initial node |p| which might be the same as the
10475 initial node |c| of the curve. This would cause the |offset_prep| routine
10476 to bail out too early, causing distress later on. (See for example
10477 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10480 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10484 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10485 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10486 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10488 @<Remove the cubic following |p| and update the data structures
10489 to merge |r| into |p|@>;
10493 /* Check if we removed too much */
10497 @ @<Remove the cubic following |p| and update the data structures...@>=
10498 { k_needed=info(p)-zero_off;
10502 info(p)=k_needed+info(r);
10505 if ( r==c ) { info(p)=info(c); c=p; };
10506 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10507 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10508 r=p; mp_remove_cubic(mp, p);
10511 @ Not setting the |info| field of the newly created knot allows the splitting
10512 routine to work for paths.
10514 @<Declare subroutines needed by |offset_prep|@>=
10515 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10516 scaled v; /* an intermediate value */
10517 pointer q,r; /* for list manipulation */
10518 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10519 originator(r)=mp_program_code;
10520 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10521 v=t_of_the_way(right_x(p),left_x(q));
10522 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10523 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10524 left_x(r)=t_of_the_way(right_x(p),v);
10525 right_x(r)=t_of_the_way(v,left_x(q));
10526 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10527 v=t_of_the_way(right_y(p),left_y(q));
10528 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10529 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10530 left_y(r)=t_of_the_way(right_y(p),v);
10531 right_y(r)=t_of_the_way(v,left_y(q));
10532 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10535 @ This does not set |info(p)| or |right_type(p)|.
10537 @<Declare subroutines needed by |offset_prep|@>=
10538 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10539 pointer q; /* the node that disappears */
10540 q=link(p); link(p)=link(q);
10541 right_x(p)=right_x(q); right_y(p)=right_y(q);
10542 mp_free_node(mp, q,knot_node_size);
10545 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10546 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10547 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10548 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10549 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10550 When listed by increasing $k$, these directions occur in counter-clockwise
10551 order so that $d_k\preceq d\k$ for all~$k$.
10552 The goal of |offset_prep| is to find an offset index~|k| to associate with
10553 each cubic, such that the direction $d(t)$ of the cubic satisfies
10554 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10555 We may have to split a cubic into many pieces before each
10556 piece corresponds to a unique offset.
10558 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10559 info(p)=zero_off+k_needed;
10561 @<Prepare for derivative computations;
10562 |goto not_found| if the current cubic is dead@>;
10563 @<Find the initial direction |(dx,dy)|@>;
10564 @<Update |info(p)| and find the offset $w_k$ such that
10565 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10566 the direction change at |p|@>;
10567 @<Find the final direction |(dxin,dyin)|@>;
10568 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10569 @<Complete the offset splitting process@>;
10570 w0=mp_pen_walk(mp, w0,turn_amt)
10572 @ @<Declare subroutines needed by |offset_prep|@>=
10573 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10574 /* walk |k| steps around a pen from |w| */
10575 while ( k>0 ) { w=link(w); decr(k); };
10576 while ( k<0 ) { w=knil(w); incr(k); };
10580 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10581 calculated from the quadratic polynomials
10582 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10583 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10584 Since we may be calculating directions from several cubics
10585 split from the current one, it is desirable to do these calculations
10586 without losing too much precision. ``Scaled up'' values of the
10587 derivatives, which will be less tainted by accumulated errors than
10588 derivatives found from the cubics themselves, are maintained in
10589 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10590 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10591 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10593 @<Other local variables for |offset_prep|@>=
10594 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10595 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10596 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10597 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10598 integer max_coef; /* used while scaling */
10599 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10600 fraction t; /* where the derivative passes through zero */
10601 fraction s; /* a temporary value */
10603 @ @<Prepare for derivative computations...@>=
10604 x0=right_x(p)-x_coord(p);
10605 x2=x_coord(q)-left_x(q);
10606 x1=left_x(q)-right_x(p);
10607 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10608 y1=left_y(q)-right_y(p);
10610 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10611 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10612 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10613 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10614 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10615 if ( max_coef==0 ) goto NOT_FOUND;
10616 while ( max_coef<fraction_half ) {
10618 double(x0); double(x1); double(x2);
10619 double(y0); double(y1); double(y2);
10622 @ Let us first solve a special case of the problem: Suppose we
10623 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10624 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10625 $d(0)\succ d_{k-1}$.
10626 Then, in a sense, we're halfway done, since one of the two relations
10627 in $(*)$ is satisfied, and the other couldn't be satisfied for
10628 any other value of~|k|.
10630 Actually, the conditions can be relaxed somewhat since a relation such as
10631 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10632 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10633 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10634 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10635 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10636 counterclockwise direction.
10638 The |fin_offset_prep| subroutine solves the stated subproblem.
10639 It has a parameter called |rise| that is |1| in
10640 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10641 the derivative of the cubic following |p|.
10642 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10643 be set properly. The |turn_amt| parameter gives the absolute value of the
10644 overall net change in pen offsets.
10646 @<Declare subroutines needed by |offset_prep|@>=
10647 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10648 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10649 integer rise, integer turn_amt) {
10650 pointer ww; /* for list manipulation */
10651 scaled du,dv; /* for slope calculation */
10652 integer t0,t1,t2; /* test coefficients */
10653 fraction t; /* place where the derivative passes a critical slope */
10654 fraction s; /* slope or reciprocal slope */
10655 integer v; /* intermediate value for updating |x0..y2| */
10656 pointer q; /* original |link(p)| */
10659 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10660 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10661 @<Compute test coefficients |(t0,t1,t2)|
10662 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10663 t=mp_crossing_point(mp, t0,t1,t2);
10664 if ( t>=fraction_one ) {
10665 if ( turn_amt>0 ) t=fraction_one; else return;
10667 @<Split the cubic at $t$,
10668 and split off another cubic if the derivative crosses back@>;
10673 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10674 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10675 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10678 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10679 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10680 if ( abs(du)>=abs(dv) ) {
10681 s=mp_make_fraction(mp, dv,du);
10682 t0=mp_take_fraction(mp, x0,s)-y0;
10683 t1=mp_take_fraction(mp, x1,s)-y1;
10684 t2=mp_take_fraction(mp, x2,s)-y2;
10685 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10687 s=mp_make_fraction(mp, du,dv);
10688 t0=x0-mp_take_fraction(mp, y0,s);
10689 t1=x1-mp_take_fraction(mp, y1,s);
10690 t2=x2-mp_take_fraction(mp, y2,s);
10691 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10693 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10695 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10696 $(*)$, and it might cross again, yielding another solution of $(*)$.
10698 @<Split the cubic at $t$, and split off another...@>=
10700 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10702 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10703 x0=t_of_the_way(v,x1);
10704 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10705 y0=t_of_the_way(v,y1);
10706 if ( turn_amt<0 ) {
10707 t1=t_of_the_way(t1,t2);
10708 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10709 t=mp_crossing_point(mp, 0,-t1,-t2);
10710 if ( t>fraction_one ) t=fraction_one;
10712 if ( (t==fraction_one)&&(link(p)!=q) ) {
10713 info(link(p))=info(link(p))-rise;
10715 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10716 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10717 x2=t_of_the_way(x1,v);
10718 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10719 y2=t_of_the_way(y1,v);
10724 @ Now we must consider the general problem of |offset_prep|, when
10725 nothing is known about a given cubic. We start by finding its
10726 direction in the vicinity of |t=0|.
10728 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10729 has not yet introduced any more numerical errors. Thus we can compute
10730 the true initial direction for the given cubic, even if it is almost
10733 @<Find the initial direction |(dx,dy)|@>=
10735 if ( dx==0 && dy==0 ) {
10737 if ( dx==0 && dy==0 ) {
10741 if ( p==c ) { dx0=dx; dy0=dy; }
10743 @ @<Find the final direction |(dxin,dyin)|@>=
10745 if ( dxin==0 && dyin==0 ) {
10747 if ( dxin==0 && dyin==0 ) {
10752 @ The next step is to bracket the initial direction between consecutive
10753 edges of the pen polygon. We must be careful to turn clockwise only if
10754 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10755 counter-clockwise in order to make \&{doublepath} envelopes come out
10756 @:double_path_}{\&{doublepath} primitive@>
10757 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10759 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10760 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10761 w=mp_pen_walk(mp, w0, turn_amt);
10763 info(p)=info(p)+turn_amt
10765 @ Decide how many pen offsets to go away from |w| in order to find the offset
10766 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10767 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10768 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10770 If the pen polygon has only two edges, they could both be parallel
10771 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10772 such edge in order to avoid an infinite loop.
10774 @<Declare subroutines needed by |offset_prep|@>=
10775 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10776 scaled dy, boolean ccw) {
10777 pointer ww; /* a neighbor of knot~|w| */
10778 integer s; /* turn amount so far */
10779 integer t; /* |ab_vs_cd| result */
10784 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10785 dx,(y_coord(ww)-y_coord(w)));
10792 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10793 dx,(y_coord(w)-y_coord(ww))) < 0) {
10801 @ When we're all done, the final offset is |w0| and the final curve direction
10802 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10803 can correct |info(c)| which was erroneously based on an incoming offset
10806 @d fix_by(A) info(c)=info(c)+(A)
10808 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10809 mp->spec_offset=info(c)-zero_off;
10810 if ( link(c)==c ) {
10811 info(c)=zero_off+n;
10814 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10815 while ( info(c)<=zero_off-n ) fix_by(n);
10816 while ( info(c)>zero_off ) fix_by(-n);
10817 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10821 @ Finally we want to reduce the general problem to situations that
10822 |fin_offset_prep| can handle. We split the cubic into at most three parts
10823 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10825 @<Complete the offset splitting process@>=
10827 @<Compute test coeff...@>;
10828 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10829 |t:=fraction_one+1|@>;
10830 if ( t>fraction_one ) {
10831 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10833 mp_split_cubic(mp, p,t); r=link(p);
10834 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10835 x2a=t_of_the_way(x1a,x1);
10836 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10837 y2a=t_of_the_way(y1a,y1);
10838 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10839 info(r)=zero_off-1;
10840 if ( turn_amt>=0 ) {
10841 t1=t_of_the_way(t1,t2);
10843 t=mp_crossing_point(mp, 0,-t1,-t2);
10844 if ( t>fraction_one ) t=fraction_one;
10845 @<Split off another rising cubic for |fin_offset_prep|@>;
10846 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10848 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10852 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10853 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10854 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10855 x0a=t_of_the_way(x1,x1a);
10856 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10857 y0a=t_of_the_way(y1,y1a);
10858 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10861 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10862 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10863 need to decide whether the directions are parallel or antiparallel. We
10864 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10865 should be avoided when the value of |turn_amt| already determines the
10866 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10867 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10868 crossing and the first crossing cannot be antiparallel.
10870 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10871 t=mp_crossing_point(mp, t0,t1,t2);
10872 if ( turn_amt>=0 ) {
10876 u0=t_of_the_way(x0,x1);
10877 u1=t_of_the_way(x1,x2);
10878 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10879 v0=t_of_the_way(y0,y1);
10880 v1=t_of_the_way(y1,y2);
10881 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10882 if ( ss<0 ) t=fraction_one+1;
10884 } else if ( t>fraction_one ) {
10888 @ @<Other local variables for |offset_prep|@>=
10889 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10890 integer ss = 0; /* the part of the dot product computed so far */
10891 int d_sign; /* sign of overall change in direction for this cubic */
10893 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10894 problem to decide which way it loops around but that's OK as long we're
10895 consistent. To make \&{doublepath} envelopes work properly, reversing
10896 the path should always change the sign of |turn_amt|.
10898 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10899 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10901 @<Check rotation direction based on node position@>
10905 if ( dy>0 ) d_sign=1; else d_sign=-1;
10907 if ( dx>0 ) d_sign=1; else d_sign=-1;
10910 @<Make |ss| negative if and only if the total change in direction is
10911 more than $180^\circ$@>;
10912 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10913 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10915 @ We check rotation direction by looking at the vector connecting the current
10916 node with the next. If its angle with incoming and outgoing tangents has the
10917 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10918 Otherwise we proceed to the cusp code.
10920 @<Check rotation direction based on node position@>=
10921 u0=x_coord(q)-x_coord(p);
10922 u1=y_coord(q)-y_coord(p);
10923 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10924 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10926 @ In order to be invariant under path reversal, the result of this computation
10927 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10928 then swapped with |(x2,y2)|. We make use of the identities
10929 |take_fraction(-a,-b)=take_fraction(a,b)| and
10930 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10932 @<Make |ss| negative if and only if the total change in direction is...@>=
10933 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10934 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10935 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10937 t=mp_crossing_point(mp, t0,t1,-t0);
10938 u0=t_of_the_way(x0,x1);
10939 u1=t_of_the_way(x1,x2);
10940 v0=t_of_the_way(y0,y1);
10941 v1=t_of_the_way(y1,y2);
10943 t=mp_crossing_point(mp, -t0,t1,t0);
10944 u0=t_of_the_way(x2,x1);
10945 u1=t_of_the_way(x1,x0);
10946 v0=t_of_the_way(y2,y1);
10947 v1=t_of_the_way(y1,y0);
10949 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10950 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10952 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10953 that the |cur_pen| has not been walked around to the first offset.
10956 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10957 pointer p,q; /* list traversal */
10958 pointer w; /* the current pen offset */
10959 mp_print_diagnostic(mp, "Envelope spec",s,true);
10960 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10962 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10963 mp_print(mp, " % beginning with offset ");
10964 mp_print_two(mp, x_coord(w),y_coord(w));
10968 @<Print the cubic between |p| and |q|@>;
10970 if ((p==cur_spec) || (info(p)!=zero_off))
10973 if ( info(p)!=zero_off ) {
10974 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10976 } while (p!=cur_spec);
10977 mp_print_nl(mp, " & cycle");
10978 mp_end_diagnostic(mp, true);
10981 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10983 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10984 mp_print(mp, " % ");
10985 if ( info(p)>zero_off ) mp_print(mp, "counter");
10986 mp_print(mp, "clockwise to offset ");
10987 mp_print_two(mp, x_coord(w),y_coord(w));
10990 @ @<Print the cubic between |p| and |q|@>=
10992 mp_print_nl(mp, " ..controls ");
10993 mp_print_two(mp, right_x(p),right_y(p));
10994 mp_print(mp, " and ");
10995 mp_print_two(mp, left_x(q),left_y(q));
10996 mp_print_nl(mp, " ..");
10997 mp_print_two(mp, x_coord(q),y_coord(q));
11000 @ Once we have an envelope spec, the remaining task to construct the actual
11001 envelope by offsetting each cubic as determined by the |info| fields in
11002 the knots. First we use |offset_prep| to convert the |c| into an envelope
11003 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11006 The |ljoin| and |miterlim| parameters control the treatment of points where the
11007 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11008 The endpoints are easily located because |c| is given in undoubled form
11009 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11010 track of the endpoints and treat them like very sharp corners.
11011 Butt end caps are treated like beveled joins; round end caps are treated like
11012 round joins; and square end caps are achieved by setting |join_type:=3|.
11014 None of these parameters apply to inside joins where the convolution tracing
11015 has retrograde lines. In such cases we use a simple connect-the-endpoints
11016 approach that is achieved by setting |join_type:=2|.
11018 @c @<Declare a function called |insert_knot|@>;
11019 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11020 small_number lcap, scaled miterlim) {
11021 pointer p,q,r,q0; /* for manipulating the path */
11022 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11023 pointer w,w0; /* the pen knot for the current offset */
11024 scaled qx,qy; /* unshifted coordinates of |q| */
11025 halfword k,k0; /* controls pen edge insertion */
11026 @<Other local variables for |make_envelope|@>;
11027 dxin=0; dyin=0; dxout=0; dyout=0;
11028 mp->spec_p1=null; mp->spec_p2=null;
11029 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11030 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11031 the initial offset@>;
11036 qx=x_coord(q); qy=y_coord(q);
11039 if ( k!=zero_off ) {
11040 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11042 @<Add offset |w| to the cubic from |p| to |q|@>;
11043 while ( k!=zero_off ) {
11044 @<Step |w| and move |k| one step closer to |zero_off|@>;
11045 if ( (join_type==1)||(k==zero_off) )
11046 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11048 if ( q!=link(p) ) {
11049 @<Set |p=link(p)| and add knots between |p| and |q| as
11050 required by |join_type|@>;
11057 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11058 c=mp_offset_prep(mp, c,h);
11059 if ( mp->internal[mp_tracing_specs]>0 )
11060 mp_print_spec(mp, c,h,"");
11061 h=mp_pen_walk(mp, h,mp->spec_offset)
11063 @ Mitered and squared-off joins depend on path directions that are difficult to
11064 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11065 have degenerate cubics only if the entire cycle collapses to a single
11066 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11067 envelope degenerate as well.
11069 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11070 if ( k<zero_off ) {
11073 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11074 else if ( lcap==2 ) join_type=3;
11075 else join_type=2-lcap;
11076 if ( (join_type==0)||(join_type==3) ) {
11077 @<Set the incoming and outgoing directions at |q|; in case of
11078 degeneracy set |join_type:=2|@>;
11079 if ( join_type==0 ) {
11080 @<If |miterlim| is less than the secant of half the angle at |q|
11081 then set |join_type:=2|@>;
11086 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11088 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11089 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11091 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11094 @ @<Other local variables for |make_envelope|@>=
11095 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11096 scaled tmp; /* a temporary value */
11098 @ The coordinates of |p| have already been shifted unless |p| is the first
11099 knot in which case they get shifted at the very end.
11101 @<Add offset |w| to the cubic from |p| to |q|@>=
11102 right_x(p)=right_x(p)+x_coord(w);
11103 right_y(p)=right_y(p)+y_coord(w);
11104 left_x(q)=left_x(q)+x_coord(w);
11105 left_y(q)=left_y(q)+y_coord(w);
11106 x_coord(q)=x_coord(q)+x_coord(w);
11107 y_coord(q)=y_coord(q)+y_coord(w);
11108 left_type(q)=mp_explicit;
11109 right_type(q)=mp_explicit
11111 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11112 if ( k>zero_off ){ w=link(w); decr(k); }
11113 else { w=knil(w); incr(k); }
11115 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11116 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11117 case the cubic containing these control points is ``yet to be examined.''
11119 @<Declare a function called |insert_knot|@>=
11120 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11121 /* returns the inserted knot */
11122 pointer r; /* the new knot */
11123 r=mp_get_node(mp, knot_node_size);
11124 link(r)=link(q); link(q)=r;
11125 right_x(r)=right_x(q);
11126 right_y(r)=right_y(q);
11129 right_x(q)=x_coord(q);
11130 right_y(q)=y_coord(q);
11131 left_x(r)=x_coord(r);
11132 left_y(r)=y_coord(r);
11133 left_type(r)=mp_explicit;
11134 right_type(r)=mp_explicit;
11135 originator(r)=mp_program_code;
11139 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11141 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11144 if ( (join_type==0)||(join_type==3) ) {
11145 if ( join_type==0 ) {
11146 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11148 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11152 right_x(r)=x_coord(r);
11153 right_y(r)=y_coord(r);
11158 @ For very small angles, adding a knot is unnecessary and would cause numerical
11159 problems, so we just set |r:=null| in that case.
11161 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11163 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11164 if ( abs(det)<26844 ) {
11165 r=null; /* sine $<10^{-4}$ */
11167 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11168 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11169 tmp=mp_make_fraction(mp, tmp,det);
11170 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11171 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11175 @ @<Other local variables for |make_envelope|@>=
11176 fraction det; /* a determinant used for mitered join calculations */
11178 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11180 ht_x=y_coord(w)-y_coord(w0);
11181 ht_y=x_coord(w0)-x_coord(w);
11182 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11183 ht_x+=ht_x; ht_y+=ht_y;
11185 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11186 product with |(ht_x,ht_y)|@>;
11187 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11188 mp_take_fraction(mp, dyin,ht_y));
11189 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11190 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11191 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11192 mp_take_fraction(mp, dyout,ht_y));
11193 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11194 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11197 @ @<Other local variables for |make_envelope|@>=
11198 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11199 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11200 halfword kk; /* keeps track of the pen vertices being scanned */
11201 pointer ww; /* the pen vertex being tested */
11203 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11204 from zero to |max_ht|.
11206 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11211 @<Step |ww| and move |kk| one step closer to |k0|@>;
11212 if ( kk==k0 ) break;
11213 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11214 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11215 if ( tmp>max_ht ) max_ht=tmp;
11219 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11220 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11221 else { ww=knil(ww); incr(kk); }
11223 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11224 if ( left_type(c)==mp_endpoint ) {
11225 mp->spec_p1=mp_htap_ypoc(mp, c);
11226 mp->spec_p2=mp->path_tail;
11227 originator(mp->spec_p1)=mp_program_code;
11228 link(mp->spec_p2)=link(mp->spec_p1);
11229 link(mp->spec_p1)=c;
11230 mp_remove_cubic(mp, mp->spec_p1);
11232 if ( c!=link(c) ) {
11233 originator(mp->spec_p2)=mp_program_code;
11234 mp_remove_cubic(mp, mp->spec_p2);
11236 @<Make |c| look like a cycle of length one@>;
11240 @ @<Make |c| look like a cycle of length one@>=
11242 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11243 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11244 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11247 @ In degenerate situations we might have to look at the knot preceding~|q|.
11248 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11250 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11251 dxin=x_coord(q)-left_x(q);
11252 dyin=y_coord(q)-left_y(q);
11253 if ( (dxin==0)&&(dyin==0) ) {
11254 dxin=x_coord(q)-right_x(p);
11255 dyin=y_coord(q)-right_y(p);
11256 if ( (dxin==0)&&(dyin==0) ) {
11257 dxin=x_coord(q)-x_coord(p);
11258 dyin=y_coord(q)-y_coord(p);
11259 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11260 dxin=dxin+x_coord(w);
11261 dyin=dyin+y_coord(w);
11265 tmp=mp_pyth_add(mp, dxin,dyin);
11269 dxin=mp_make_fraction(mp, dxin,tmp);
11270 dyin=mp_make_fraction(mp, dyin,tmp);
11271 @<Set the outgoing direction at |q|@>;
11274 @ If |q=c| then the coordinates of |r| and the control points between |q|
11275 and~|r| have already been offset by |h|.
11277 @<Set the outgoing direction at |q|@>=
11278 dxout=right_x(q)-x_coord(q);
11279 dyout=right_y(q)-y_coord(q);
11280 if ( (dxout==0)&&(dyout==0) ) {
11282 dxout=left_x(r)-x_coord(q);
11283 dyout=left_y(r)-y_coord(q);
11284 if ( (dxout==0)&&(dyout==0) ) {
11285 dxout=x_coord(r)-x_coord(q);
11286 dyout=y_coord(r)-y_coord(q);
11290 dxout=dxout-x_coord(h);
11291 dyout=dyout-y_coord(h);
11293 tmp=mp_pyth_add(mp, dxout,dyout);
11294 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11295 @:this can't happen degerate spec}{\quad degenerate spec@>
11296 dxout=mp_make_fraction(mp, dxout,tmp);
11297 dyout=mp_make_fraction(mp, dyout,tmp)
11299 @* \[23] Direction and intersection times.
11300 A path of length $n$ is defined parametrically by functions $x(t)$ and
11301 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11302 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11303 we shall consider operations that determine special times associated with
11304 given paths: the first time that a path travels in a given direction, and
11305 a pair of times at which two paths cross each other.
11307 @ Let's start with the easier task. The function |find_direction_time| is
11308 given a direction |(x,y)| and a path starting at~|h|. If the path never
11309 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11310 it will be nonnegative.
11312 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11313 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11314 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11315 assumed to match any given direction at time~|t|.
11317 The routine solves this problem in nondegenerate cases by rotating the path
11318 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11319 to find when a given path first travels ``due east.''
11322 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11323 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11324 pointer p,q; /* for list traversal */
11325 scaled n; /* the direction time at knot |p| */
11326 scaled tt; /* the direction time within a cubic */
11327 @<Other local variables for |find_direction_time|@>;
11328 @<Normalize the given direction for better accuracy;
11329 but |return| with zero result if it's zero@>;
11332 if ( right_type(p)==mp_endpoint ) break;
11334 @<Rotate the cubic between |p| and |q|; then
11335 |goto found| if the rotated cubic travels due east at some time |tt|;
11336 but |break| if an entire cyclic path has been traversed@>;
11344 @ @<Normalize the given direction for better accuracy...@>=
11345 if ( abs(x)<abs(y) ) {
11346 x=mp_make_fraction(mp, x,abs(y));
11347 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11348 } else if ( x==0 ) {
11351 y=mp_make_fraction(mp, y,abs(x));
11352 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11355 @ Since we're interested in the tangent directions, we work with the
11356 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11357 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11358 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11359 in order to achieve better accuracy.
11361 The given path may turn abruptly at a knot, and it might pass the critical
11362 tangent direction at such a time. Therefore we remember the direction |phi|
11363 in which the previous rotated cubic was traveling. (The value of |phi| will be
11364 undefined on the first cubic, i.e., when |n=0|.)
11366 @<Rotate the cubic between |p| and |q|; then...@>=
11368 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11369 points of the rotated derivatives@>;
11370 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11372 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11375 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11376 @<Exit to |found| if the curve whose derivatives are specified by
11377 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11379 @ @<Other local variables for |find_direction_time|@>=
11380 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11381 angle theta,phi; /* angles of exit and entry at a knot */
11382 fraction t; /* temp storage */
11384 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11385 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11386 x3=x_coord(q)-left_x(q);
11387 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11388 y3=y_coord(q)-left_y(q);
11390 if ( abs(x2)>max ) max=abs(x2);
11391 if ( abs(x3)>max ) max=abs(x3);
11392 if ( abs(y1)>max ) max=abs(y1);
11393 if ( abs(y2)>max ) max=abs(y2);
11394 if ( abs(y3)>max ) max=abs(y3);
11395 if ( max==0 ) goto FOUND;
11396 while ( max<fraction_half ){
11397 max+=max; x1+=x1; x2+=x2; x3+=x3;
11398 y1+=y1; y2+=y2; y3+=y3;
11400 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11401 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11402 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11403 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11404 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11405 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11407 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11408 theta=mp_n_arg(mp, x1,y1);
11409 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11410 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11412 @ In this step we want to use the |crossing_point| routine to find the
11413 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11414 Several complications arise: If the quadratic equation has a double root,
11415 the curve never crosses zero, and |crossing_point| will find nothing;
11416 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11417 equation has simple roots, or only one root, we may have to negate it
11418 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11419 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11422 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11423 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11424 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11425 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11426 either |goto found| or |goto done|@>;
11429 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11430 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11432 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11433 $B(x_1,x_2,x_3;t)\ge0$@>;
11436 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11437 two roots, because we know that it isn't identically zero.
11439 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11440 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11441 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11442 subject to rounding errors. Yet this code optimistically tries to
11443 do the right thing.
11445 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11447 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11448 t=mp_crossing_point(mp, y1,y2,y3);
11449 if ( t>fraction_one ) goto DONE;
11450 y2=t_of_the_way(y2,y3);
11451 x1=t_of_the_way(x1,x2);
11452 x2=t_of_the_way(x2,x3);
11453 x1=t_of_the_way(x1,x2);
11454 if ( x1>=0 ) we_found_it;
11456 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11457 if ( t>fraction_one ) goto DONE;
11458 x1=t_of_the_way(x1,x2);
11459 x2=t_of_the_way(x2,x3);
11460 if ( t_of_the_way(x1,x2)>=0 ) {
11461 t=t_of_the_way(tt,fraction_one); we_found_it;
11464 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11465 either |goto found| or |goto done|@>=
11467 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11468 t=mp_make_fraction(mp, y1,y1-y2);
11469 x1=t_of_the_way(x1,x2);
11470 x2=t_of_the_way(x2,x3);
11471 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11472 } else if ( y3==0 ) {
11474 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11475 } else if ( x3>=0 ) {
11476 tt=unity; goto FOUND;
11482 @ At this point we know that the derivative of |y(t)| is identically zero,
11483 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11486 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11488 t=mp_crossing_point(mp, -x1,-x2,-x3);
11489 if ( t<=fraction_one ) we_found_it;
11490 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11491 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11495 @ The intersection of two cubics can be found by an interesting variant
11496 of the general bisection scheme described in the introduction to
11498 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11499 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11500 if an intersection exists. First we find the smallest rectangle that
11501 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11502 the smallest rectangle that encloses
11503 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11504 But if the rectangles do overlap, we bisect the intervals, getting
11505 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11506 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11507 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11508 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11509 levels of bisection we will have determined the intersection times $t_1$
11510 and~$t_2$ to $l$~bits of accuracy.
11512 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11513 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11514 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11515 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11516 to determine when the enclosing rectangles overlap. Here's why:
11517 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11518 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11519 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11520 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11521 overlap if and only if $u\submin\L x\submax$ and
11522 $x\submin\L u\submax$. Letting
11523 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11524 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11525 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11527 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11528 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11529 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11530 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11531 because of the overlap condition; i.e., we know that $X\submin$,
11532 $X\submax$, and their relatives are bounded, hence $X\submax-
11533 U\submin$ and $X\submin-U\submax$ are bounded.
11535 @ Incidentally, if the given cubics intersect more than once, the process
11536 just sketched will not necessarily find the lexicographically smallest pair
11537 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11538 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11539 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11540 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11541 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11542 Shuffled order agrees with lexicographic order if all pairs of solutions
11543 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11544 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11545 and the bisection algorithm would be substantially less efficient if it were
11546 constrained by lexicographic order.
11548 For example, suppose that an overlap has been found for $l=3$ and
11549 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11550 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11551 Then there is probably an intersection in one of the subintervals
11552 $(.1011,.011x)$; but lexicographic order would require us to explore
11553 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11554 want to store all of the subdivision data for the second path, so the
11555 subdivisions would have to be regenerated many times. Such inefficiencies
11556 would be associated with every `1' in the binary representation of~$t_1$.
11558 @ The subdivision process introduces rounding errors, hence we need to
11559 make a more liberal test for overlap. It is not hard to show that the
11560 computed values of $U_i$ differ from the truth by at most~$l$, on
11561 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11562 If $\beta$ is an upper bound on the absolute error in the computed
11563 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11564 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11565 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11567 More accuracy is obtained if we try the algorithm first with |tol=0|;
11568 the more liberal tolerance is used only if an exact approach fails.
11569 It is convenient to do this double-take by letting `3' in the preceding
11570 paragraph be a parameter, which is first 0, then 3.
11573 unsigned int tol_step; /* either 0 or 3, usually */
11575 @ We shall use an explicit stack to implement the recursive bisection
11576 method described above. The |bisect_stack| array will contain numerous 5-word
11577 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11578 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11580 The following macros define the allocation of stack positions to
11581 the quantities needed for bisection-intersection.
11583 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11584 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11585 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11586 @d stack_min(A) mp->bisect_stack[(A)+3]
11587 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11588 @d stack_max(A) mp->bisect_stack[(A)+4]
11589 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11590 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11592 @d u_packet(A) ((A)-5)
11593 @d v_packet(A) ((A)-10)
11594 @d x_packet(A) ((A)-15)
11595 @d y_packet(A) ((A)-20)
11596 @d l_packets (mp->bisect_ptr-int_packets)
11597 @d r_packets mp->bisect_ptr
11598 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11599 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11600 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11601 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11602 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11603 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11604 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11605 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11607 @d u1l stack_1(ul_packet) /* $U'_1$ */
11608 @d u2l stack_2(ul_packet) /* $U'_2$ */
11609 @d u3l stack_3(ul_packet) /* $U'_3$ */
11610 @d v1l stack_1(vl_packet) /* $V'_1$ */
11611 @d v2l stack_2(vl_packet) /* $V'_2$ */
11612 @d v3l stack_3(vl_packet) /* $V'_3$ */
11613 @d x1l stack_1(xl_packet) /* $X'_1$ */
11614 @d x2l stack_2(xl_packet) /* $X'_2$ */
11615 @d x3l stack_3(xl_packet) /* $X'_3$ */
11616 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11617 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11618 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11619 @d u1r stack_1(ur_packet) /* $U''_1$ */
11620 @d u2r stack_2(ur_packet) /* $U''_2$ */
11621 @d u3r stack_3(ur_packet) /* $U''_3$ */
11622 @d v1r stack_1(vr_packet) /* $V''_1$ */
11623 @d v2r stack_2(vr_packet) /* $V''_2$ */
11624 @d v3r stack_3(vr_packet) /* $V''_3$ */
11625 @d x1r stack_1(xr_packet) /* $X''_1$ */
11626 @d x2r stack_2(xr_packet) /* $X''_2$ */
11627 @d x3r stack_3(xr_packet) /* $X''_3$ */
11628 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11629 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11630 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11632 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11633 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11634 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11635 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11636 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11637 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11640 integer *bisect_stack;
11641 unsigned int bisect_ptr;
11643 @ @<Allocate or initialize ...@>=
11644 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11646 @ @<Dealloc variables@>=
11647 xfree(mp->bisect_stack);
11649 @ @<Check the ``constant''...@>=
11650 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11652 @ Computation of the min and max is a tedious but fairly fast sequence of
11653 instructions; exactly four comparisons are made in each branch.
11656 if ( stack_1((A))<0 ) {
11657 if ( stack_3((A))>=0 ) {
11658 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11659 else stack_min((A))=stack_1((A));
11660 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11661 if ( stack_max((A))<0 ) stack_max((A))=0;
11663 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11664 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11665 stack_max((A))=stack_1((A))+stack_2((A));
11666 if ( stack_max((A))<0 ) stack_max((A))=0;
11668 } else if ( stack_3((A))<=0 ) {
11669 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11670 else stack_max((A))=stack_1((A));
11671 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11672 if ( stack_min((A))>0 ) stack_min((A))=0;
11674 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11675 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11676 stack_min((A))=stack_1((A))+stack_2((A));
11677 if ( stack_min((A))>0 ) stack_min((A))=0;
11680 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11681 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11682 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11683 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11684 plus the |scaled| values of $t_1$ and~$t_2$.
11686 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11687 finds no intersection. The routine gives up and gives an approximate answer
11688 if it has backtracked
11689 more than 5000 times (otherwise there are cases where several minutes
11690 of fruitless computation would be possible).
11692 @d max_patience 5000
11695 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11696 integer time_to_go; /* this many backtracks before giving up */
11697 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11699 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11700 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11701 and |(pp,link(pp))|, respectively.
11703 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11704 pointer q,qq; /* |link(p)|, |link(pp)| */
11705 mp->time_to_go=max_patience; mp->max_t=2;
11706 @<Initialize for intersections at level zero@>;
11709 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11710 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11711 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11712 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11714 if ( mp->cur_t>=mp->max_t ){
11715 if ( mp->max_t==two ) { /* we've done 17 bisections */
11716 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11718 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11720 @<Subdivide for a new level of intersection@>;
11723 if ( mp->time_to_go>0 ) {
11724 decr(mp->time_to_go);
11726 while ( mp->appr_t<unity ) {
11727 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11729 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11731 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11735 @ The following variables are global, although they are used only by
11736 |cubic_intersection|, because it is necessary on some machines to
11737 split |cubic_intersection| up into two procedures.
11740 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11741 integer tol; /* bound on the uncertainly in the overlap test */
11743 unsigned int xy; /* pointers to the current packets of interest */
11744 integer three_l; /* |tol_step| times the bisection level */
11745 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11747 @ We shall assume that the coordinates are sufficiently non-extreme that
11748 integer overflow will not occur.
11750 @<Initialize for intersections at level zero@>=
11751 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11752 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11753 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11754 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11755 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11756 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11757 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11758 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11759 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11760 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11761 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11762 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11764 @ @<Subdivide for a new level of intersection@>=
11765 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11766 stack_uv=mp->uv; stack_xy=mp->xy;
11767 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11768 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11769 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11770 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11771 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11772 u3l=half(u2l+u2r); u1r=u3l;
11773 set_min_max(ul_packet); set_min_max(ur_packet);
11774 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11775 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11776 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11777 v3l=half(v2l+v2r); v1r=v3l;
11778 set_min_max(vl_packet); set_min_max(vr_packet);
11779 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11780 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11781 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11782 x3l=half(x2l+x2r); x1r=x3l;
11783 set_min_max(xl_packet); set_min_max(xr_packet);
11784 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11785 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11786 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11787 y3l=half(y2l+y2r); y1r=y3l;
11788 set_min_max(yl_packet); set_min_max(yr_packet);
11789 mp->uv=l_packets; mp->xy=l_packets;
11790 mp->delx+=mp->delx; mp->dely+=mp->dely;
11791 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11792 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11794 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11796 if ( odd(mp->cur_tt) ) {
11797 if ( odd(mp->cur_t) ) {
11798 @<Descend to the previous level and |goto not_found|@>;
11801 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11802 +stack_3(u_packet(mp->uv));
11803 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11804 +stack_3(v_packet(mp->uv));
11805 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11806 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11807 /* switch from |r_packet| to |l_packet| */
11808 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11809 +stack_3(x_packet(mp->xy));
11810 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11811 +stack_3(y_packet(mp->xy));
11814 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11815 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11816 -stack_3(x_packet(mp->xy));
11817 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11818 -stack_3(y_packet(mp->xy));
11819 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11822 @ @<Descend to the previous level...@>=
11824 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11825 if ( mp->cur_t==0 ) return;
11826 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11827 mp->three_l=mp->three_l-mp->tol_step;
11828 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11829 mp->uv=stack_uv; mp->xy=stack_xy;
11833 @ The |path_intersection| procedure is much simpler.
11834 It invokes |cubic_intersection| in lexicographic order until finding a
11835 pair of cubics that intersect. The final intersection times are placed in
11836 |cur_t| and~|cur_tt|.
11838 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11839 pointer p,pp; /* link registers that traverse the given paths */
11840 integer n,nn; /* integer parts of intersection times, minus |unity| */
11841 @<Change one-point paths into dead cycles@>;
11846 if ( right_type(p)!=mp_endpoint ) {
11849 if ( right_type(pp)!=mp_endpoint ) {
11850 mp_cubic_intersection(mp, p,pp);
11851 if ( mp->cur_t>0 ) {
11852 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11856 nn=nn+unity; pp=link(pp);
11859 n=n+unity; p=link(p);
11861 mp->tol_step=mp->tol_step+3;
11862 } while (mp->tol_step<=3);
11863 mp->cur_t=-unity; mp->cur_tt=-unity;
11866 @ @<Change one-point paths...@>=
11867 if ( right_type(h)==mp_endpoint ) {
11868 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11869 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11871 if ( right_type(hh)==mp_endpoint ) {
11872 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11873 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11876 @* \[24] Dynamic linear equations.
11877 \MP\ users define variables implicitly by stating equations that should be
11878 satisfied; the computer is supposed to be smart enough to solve those equations.
11879 And indeed, the computer tries valiantly to do so, by distinguishing five
11880 different types of numeric values:
11883 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11884 of the variable whose address is~|p|.
11887 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11888 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11889 as a |scaled| number plus a sum of independent variables with |fraction|
11893 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11894 number'' reflecting the time this variable was first used in an equation;
11895 also |0<=m<64|, and each dependent variable
11896 that refers to this one is actually referring to the future value of
11897 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11898 scaling are sometimes needed to keep the coefficients in dependency lists
11899 from getting too large. The value of~|m| will always be even.)
11902 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11903 equation before, but it has been explicitly declared to be numeric.
11906 |type(p)=undefined| means that variable |p| hasn't appeared before.
11908 \smallskip\noindent
11909 We have actually discussed these five types in the reverse order of their
11910 history during a computation: Once |known|, a variable never again
11911 becomes |dependent|; once |dependent|, it almost never again becomes
11912 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11913 and once |mp_numeric_type|, it never again becomes |undefined| (except
11914 of course when the user specifically decides to scrap the old value
11915 and start again). A backward step may, however, take place: Sometimes
11916 a |dependent| variable becomes |mp_independent| again, when one of the
11917 independent variables it depends on is reverting to |undefined|.
11920 The next patch detects overflow of independent-variable serial
11921 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11923 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11924 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11925 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11926 @d new_indep(A) /* create a new independent variable */
11927 { if ( mp->serial_no==max_serial_no )
11928 mp_fatal_error(mp, "variable instance identifiers exhausted");
11929 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11930 value((A))=mp->serial_no;
11934 integer serial_no; /* the most recent serial number, times |s_scale| */
11936 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11938 @ But how are dependency lists represented? It's simple: The linear combination
11939 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11940 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11941 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11942 of $\alpha_1$; and |link(p)| points to the dependency list
11943 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11944 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11945 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11946 they appear in decreasing order of their |value| fields (i.e., of
11947 their serial numbers). \ (It is convenient to use decreasing order,
11948 since |value(null)=0|. If the independent variables were not sorted by
11949 serial number but by some other criterion, such as their location in |mem|,
11950 the equation-solving mechanism would be too system-dependent, because
11951 the ordering can affect the computed results.)
11953 The |link| field in the node that contains the constant term $\beta$ is
11954 called the {\sl final link\/} of the dependency list. \MP\ maintains
11955 a doubly-linked master list of all dependency lists, in terms of a permanently
11957 in |mem| called |dep_head|. If there are no dependencies, we have
11958 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11959 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11960 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11961 points to its dependency list. If the final link of that dependency list
11962 occurs in location~|q|, then |link(q)| points to the next dependent
11963 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11965 @d dep_list(A) link(value_loc((A)))
11966 /* half of the |value| field in a |dependent| variable */
11967 @d prev_dep(A) info(value_loc((A)))
11968 /* the other half; makes a doubly linked list */
11969 @d dep_node_size 2 /* the number of words per dependency node */
11971 @<Initialize table entries...@>= mp->serial_no=0;
11972 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11973 info(dep_head)=null; dep_list(dep_head)=null;
11975 @ Actually the description above contains a little white lie. There's
11976 another kind of variable called |mp_proto_dependent|, which is
11977 just like a |dependent| one except that the $\alpha$ coefficients
11978 in its dependency list are |scaled| instead of being fractions.
11979 Proto-dependency lists are mixed with dependency lists in the
11980 nodes reachable from |dep_head|.
11982 @ Here is a procedure that prints a dependency list in symbolic form.
11983 The second parameter should be either |dependent| or |mp_proto_dependent|,
11984 to indicate the scaling of the coefficients.
11986 @<Declare subroutines for printing expressions@>=
11987 void mp_print_dependency (MP mp,pointer p, small_number t) {
11988 integer v; /* a coefficient */
11989 pointer pp,q; /* for list manipulation */
11992 v=abs(value(p)); q=info(p);
11993 if ( q==null ) { /* the constant term */
11994 if ( (v!=0)||(p==pp) ) {
11995 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11996 mp_print_scaled(mp, value(p));
12000 @<Print the coefficient, unless it's $\pm1.0$@>;
12001 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12002 @:this can't happen dep}{\quad dep@>
12003 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12004 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12009 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12010 if ( value(p)<0 ) mp_print_char(mp, '-');
12011 else if ( p!=pp ) mp_print_char(mp, '+');
12012 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12013 if ( v!=unity ) mp_print_scaled(mp, v)
12015 @ The maximum absolute value of a coefficient in a given dependency list
12016 is returned by the following simple function.
12018 @c fraction mp_max_coef (MP mp,pointer p) {
12019 fraction x; /* the maximum so far */
12021 while ( info(p)!=null ) {
12022 if ( abs(value(p))>x ) x=abs(value(p));
12028 @ One of the main operations needed on dependency lists is to add a multiple
12029 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12030 to dependency lists and |f| is a fraction.
12032 If the coefficient of any independent variable becomes |coef_bound| or
12033 more, in absolute value, this procedure changes the type of that variable
12034 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12035 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12036 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12037 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12038 2.3723$, the safer value 7/3 is taken as the threshold.)
12040 The changes mentioned in the preceding paragraph are actually done only if
12041 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12042 it is |false| only when \MP\ is making a dependency list that will soon
12043 be equated to zero.
12045 Several procedures that act on dependency lists, including |p_plus_fq|,
12046 set the global variable |dep_final| to the final (constant term) node of
12047 the dependency list that they produce.
12049 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12050 @d independent_needing_fix 0
12053 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12054 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12055 pointer dep_final; /* location of the constant term and final link */
12058 mp->fix_needed=false; mp->watch_coefs=true;
12060 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12061 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12062 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12063 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12065 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12067 The final link of the dependency list or proto-dependency list returned
12068 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12069 constant term of the result will be located in the same |mem| location
12070 as the original constant term of~|p|.
12072 Coefficients of the result are assumed to be zero if they are less than
12073 a certain threshold. This compensates for inevitable rounding errors,
12074 and tends to make more variables `|known|'. The threshold is approximately
12075 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12076 proto-dependencies.
12078 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12079 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12080 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12081 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12083 @<Declare basic dependency-list subroutines@>=
12084 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12085 pointer q, small_number t, small_number tt) ;
12088 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12089 pointer q, small_number t, small_number tt) {
12090 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12091 pointer r,s; /* for list manipulation */
12092 integer mp_threshold; /* defines a neighborhood of zero */
12093 integer v; /* temporary register */
12094 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12095 else mp_threshold=scaled_threshold;
12096 r=temp_head; pp=info(p); qq=info(q);
12102 @<Contribute a term from |p|, plus |f| times the
12103 corresponding term from |q|@>
12105 } else if ( value(pp)<value(qq) ) {
12106 @<Contribute a term from |q|, multiplied by~|f|@>
12108 link(r)=p; r=p; p=link(p); pp=info(p);
12111 if ( t==mp_dependent )
12112 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12114 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12115 link(r)=p; mp->dep_final=p;
12116 return link(temp_head);
12119 @ @<Contribute a term from |p|, plus |f|...@>=
12121 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12122 else v=value(p)+mp_take_scaled(mp, f,value(q));
12123 value(p)=v; s=p; p=link(p);
12124 if ( abs(v)<mp_threshold ) {
12125 mp_free_node(mp, s,dep_node_size);
12127 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12128 type(qq)=independent_needing_fix; mp->fix_needed=true;
12132 pp=info(p); q=link(q); qq=info(q);
12135 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12137 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12138 else v=mp_take_scaled(mp, f,value(q));
12139 if ( abs(v)>halfp(mp_threshold) ) {
12140 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12141 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12142 type(qq)=independent_needing_fix; mp->fix_needed=true;
12146 q=link(q); qq=info(q);
12149 @ It is convenient to have another subroutine for the special case
12150 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12151 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12153 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12154 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12155 pointer r,s; /* for list manipulation */
12156 integer mp_threshold; /* defines a neighborhood of zero */
12157 integer v; /* temporary register */
12158 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12159 else mp_threshold=scaled_threshold;
12160 r=temp_head; pp=info(p); qq=info(q);
12166 @<Contribute a term from |p|, plus the
12167 corresponding term from |q|@>
12169 } else if ( value(pp)<value(qq) ) {
12170 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12171 q=link(q); qq=info(q); link(r)=s; r=s;
12173 link(r)=p; r=p; p=link(p); pp=info(p);
12176 value(p)=mp_slow_add(mp, value(p),value(q));
12177 link(r)=p; mp->dep_final=p;
12178 return link(temp_head);
12181 @ @<Contribute a term from |p|, plus the...@>=
12183 v=value(p)+value(q);
12184 value(p)=v; s=p; p=link(p); pp=info(p);
12185 if ( abs(v)<mp_threshold ) {
12186 mp_free_node(mp, s,dep_node_size);
12188 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12189 type(qq)=independent_needing_fix; mp->fix_needed=true;
12193 q=link(q); qq=info(q);
12196 @ A somewhat simpler routine will multiply a dependency list
12197 by a given constant~|v|. The constant is either a |fraction| less than
12198 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12199 convert a dependency list to a proto-dependency list.
12200 Parameters |t0| and |t1| are the list types before and after;
12201 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12202 and |v_is_scaled=true|.
12204 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12205 small_number t1, boolean v_is_scaled) {
12206 pointer r,s; /* for list manipulation */
12207 integer w; /* tentative coefficient */
12208 integer mp_threshold;
12209 boolean scaling_down;
12210 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12211 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12212 else mp_threshold=half_scaled_threshold;
12214 while ( info(p)!=null ) {
12215 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12216 else w=mp_take_scaled(mp, v,value(p));
12217 if ( abs(w)<=mp_threshold ) {
12218 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12220 if ( abs(w)>=coef_bound ) {
12221 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12223 link(r)=p; r=p; value(p)=w; p=link(p);
12227 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12228 else value(p)=mp_take_fraction(mp, value(p),v);
12229 return link(temp_head);
12232 @ Similarly, we sometimes need to divide a dependency list
12233 by a given |scaled| constant.
12235 @<Declare basic dependency-list subroutines@>=
12236 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12237 t0, small_number t1) ;
12240 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12241 t0, small_number t1) {
12242 pointer r,s; /* for list manipulation */
12243 integer w; /* tentative coefficient */
12244 integer mp_threshold;
12245 boolean scaling_down;
12246 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12247 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12248 else mp_threshold=half_scaled_threshold;
12250 while ( info( p)!=null ) {
12251 if ( scaling_down ) {
12252 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12253 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12255 w=mp_make_scaled(mp, value(p),v);
12257 if ( abs(w)<=mp_threshold ) {
12258 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12260 if ( abs(w)>=coef_bound ) {
12261 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12263 link(r)=p; r=p; value(p)=w; p=link(p);
12266 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12267 return link(temp_head);
12270 @ Here's another utility routine for dependency lists. When an independent
12271 variable becomes dependent, we want to remove it from all existing
12272 dependencies. The |p_with_x_becoming_q| function computes the
12273 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12275 This procedure has basically the same calling conventions as |p_plus_fq|:
12276 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12277 final link are inherited from~|p|; and the fourth parameter tells whether
12278 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12279 is not altered if |x| does not occur in list~|p|.
12281 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12282 pointer x, pointer q, small_number t) {
12283 pointer r,s; /* for list manipulation */
12284 integer v; /* coefficient of |x| */
12285 integer sx; /* serial number of |x| */
12286 s=p; r=temp_head; sx=value(x);
12287 while ( value(info(s))>sx ) { r=s; s=link(s); };
12288 if ( info(s)!=x ) {
12291 link(temp_head)=p; link(r)=link(s); v=value(s);
12292 mp_free_node(mp, s,dep_node_size);
12293 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12297 @ Here's a simple procedure that reports an error when a variable
12298 has just received a known value that's out of the required range.
12300 @<Declare basic dependency-list subroutines@>=
12301 void mp_val_too_big (MP mp,scaled x) ;
12303 @ @c void mp_val_too_big (MP mp,scaled x) {
12304 if ( mp->internal[mp_warning_check]>0 ) {
12305 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12306 @.Value is too large@>
12307 help4("The equation I just processed has given some variable")
12308 ("a value of 4096 or more. Continue and I'll try to cope")
12309 ("with that big value; but it might be dangerous.")
12310 ("(Set warningcheck:=0 to suppress this message.)");
12315 @ When a dependent variable becomes known, the following routine
12316 removes its dependency list. Here |p| points to the variable, and
12317 |q| points to the dependency list (which is one node long).
12319 @<Declare basic dependency-list subroutines@>=
12320 void mp_make_known (MP mp,pointer p, pointer q) ;
12322 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12323 int t; /* the previous type */
12324 prev_dep(link(q))=prev_dep(p);
12325 link(prev_dep(p))=link(q); t=type(p);
12326 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12327 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12328 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12329 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12330 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12331 mp_print_variable_name(mp, p);
12332 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12333 mp_end_diagnostic(mp, false);
12335 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12336 mp->cur_type=mp_known; mp->cur_exp=value(p);
12337 mp_free_node(mp, p,value_node_size);
12341 @ The |fix_dependencies| routine is called into action when |fix_needed|
12342 has been triggered. The program keeps a list~|s| of independent variables
12343 whose coefficients must be divided by~4.
12345 In unusual cases, this fixup process might reduce one or more coefficients
12346 to zero, so that a variable will become known more or less by default.
12348 @<Declare basic dependency-list subroutines@>=
12349 void mp_fix_dependencies (MP mp);
12351 @ @c void mp_fix_dependencies (MP mp) {
12352 pointer p,q,r,s,t; /* list manipulation registers */
12353 pointer x; /* an independent variable */
12354 r=link(dep_head); s=null;
12355 while ( r!=dep_head ){
12357 @<Run through the dependency list for variable |t|, fixing
12358 all nodes, and ending with final link~|q|@>;
12360 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12362 while ( s!=null ) {
12363 p=link(s); x=info(s); free_avail(s); s=p;
12364 type(x)=mp_independent; value(x)=value(x)+2;
12366 mp->fix_needed=false;
12369 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12371 @<Run through the dependency list for variable |t|...@>=
12372 r=value_loc(t); /* |link(r)=dep_list(t)| */
12374 q=link(r); x=info(q);
12375 if ( x==null ) break;
12376 if ( type(x)<=independent_being_fixed ) {
12377 if ( type(x)<independent_being_fixed ) {
12378 p=mp_get_avail(mp); link(p)=s; s=p;
12379 info(s)=x; type(x)=independent_being_fixed;
12381 value(q)=value(q) / 4;
12382 if ( value(q)==0 ) {
12383 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12390 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12391 linking it into the list of all known dependencies. We assume that
12392 |dep_final| points to the final node of list~|p|.
12394 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12395 pointer r; /* what used to be the first dependency */
12396 dep_list(q)=p; prev_dep(q)=dep_head;
12397 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12401 @ Here is one of the ways a dependency list gets started.
12402 The |const_dependency| routine produces a list that has nothing but
12405 @c pointer mp_const_dependency (MP mp, scaled v) {
12406 mp->dep_final=mp_get_node(mp, dep_node_size);
12407 value(mp->dep_final)=v; info(mp->dep_final)=null;
12408 return mp->dep_final;
12411 @ And here's a more interesting way to start a dependency list from scratch:
12412 The parameter to |single_dependency| is the location of an
12413 independent variable~|x|, and the result is the simple dependency list
12416 In the unlikely event that the given independent variable has been doubled so
12417 often that we can't refer to it with a nonzero coefficient,
12418 |single_dependency| returns the simple list `0'. This case can be
12419 recognized by testing that the returned list pointer is equal to
12422 @c pointer mp_single_dependency (MP mp,pointer p) {
12423 pointer q; /* the new dependency list */
12424 integer m; /* the number of doublings */
12425 m=value(p) % s_scale;
12427 return mp_const_dependency(mp, 0);
12429 q=mp_get_node(mp, dep_node_size);
12430 value(q)=two_to_the(28-m); info(q)=p;
12431 link(q)=mp_const_dependency(mp, 0);
12436 @ We sometimes need to make an exact copy of a dependency list.
12438 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12439 pointer q; /* the new dependency list */
12440 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12442 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12443 if ( info(mp->dep_final)==null ) break;
12444 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12445 mp->dep_final=link(mp->dep_final); p=link(p);
12450 @ But how do variables normally become known? Ah, now we get to the heart of the
12451 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12452 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12453 appears. It equates this list to zero, by choosing an independent variable
12454 with the largest coefficient and making it dependent on the others. The
12455 newly dependent variable is eliminated from all current dependencies,
12456 thereby possibly making other dependent variables known.
12458 The given list |p| is, of course, totally destroyed by all this processing.
12460 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12461 pointer q,r,s; /* for link manipulation */
12462 pointer x; /* the variable that loses its independence */
12463 integer n; /* the number of times |x| had been halved */
12464 integer v; /* the coefficient of |x| in list |p| */
12465 pointer prev_r; /* lags one step behind |r| */
12466 pointer final_node; /* the constant term of the new dependency list */
12467 integer w; /* a tentative coefficient */
12468 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12469 x=info(q); n=value(x) % s_scale;
12470 @<Divide list |p| by |-v|, removing node |q|@>;
12471 if ( mp->internal[mp_tracing_equations]>0 ) {
12472 @<Display the new dependency@>;
12474 @<Simplify all existing dependencies by substituting for |x|@>;
12475 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12476 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12479 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12480 q=p; r=link(p); v=value(q);
12481 while ( info(r)!=null ) {
12482 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12486 @ Here we want to change the coefficients from |scaled| to |fraction|,
12487 except in the constant term. In the common case of a trivial equation
12488 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12490 @<Divide list |p| by |-v|, removing node |q|@>=
12491 s=temp_head; link(s)=p; r=p;
12494 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12496 w=mp_make_fraction(mp, value(r),v);
12497 if ( abs(w)<=half_fraction_threshold ) {
12498 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12504 } while (info(r)!=null);
12505 if ( t==mp_proto_dependent ) {
12506 value(r)=-mp_make_scaled(mp, value(r),v);
12507 } else if ( v!=-fraction_one ) {
12508 value(r)=-mp_make_fraction(mp, value(r),v);
12510 final_node=r; p=link(temp_head)
12512 @ @<Display the new dependency@>=
12513 if ( mp_interesting(mp, x) ) {
12514 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12515 mp_print_variable_name(mp, x);
12516 @:]]]\#\#_}{\.{\#\#}@>
12518 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12519 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12520 mp_end_diagnostic(mp, false);
12523 @ @<Simplify all existing dependencies by substituting for |x|@>=
12524 prev_r=dep_head; r=link(dep_head);
12525 while ( r!=dep_head ) {
12526 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12527 if ( info(q)==null ) {
12528 mp_make_known(mp, r,q);
12531 do { q=link(q); } while (info(q)!=null);
12537 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12538 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12539 if ( info(p)==null ) {
12542 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12543 mp_free_node(mp, p,dep_node_size);
12544 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12545 mp->cur_exp=value(x); mp->cur_type=mp_known;
12546 mp_free_node(mp, x,value_node_size);
12549 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12550 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12553 @ @<Divide list |p| by $2^n$@>=
12555 s=temp_head; link(temp_head)=p; r=p;
12558 else w=value(r) / two_to_the(n);
12559 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12561 mp_free_node(mp, r,dep_node_size);
12566 } while (info(s)!=null);
12570 @ The |check_mem| procedure, which is used only when \MP\ is being
12571 debugged, makes sure that the current dependency lists are well formed.
12573 @<Check the list of linear dependencies@>=
12574 q=dep_head; p=link(q);
12575 while ( p!=dep_head ) {
12576 if ( prev_dep(p)!=q ) {
12577 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12582 r=info(p); q=p; p=link(q);
12583 if ( r==null ) break;
12584 if ( value(info(p))>=value(r) ) {
12585 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12586 @.Out of order...@>
12591 @* \[25] Dynamic nonlinear equations.
12592 Variables of numeric type are maintained by the general scheme of
12593 independent, dependent, and known values that we have just studied;
12594 and the components of pair and transform variables are handled in the
12595 same way. But \MP\ also has five other types of values: \&{boolean},
12596 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12598 Equations are allowed between nonlinear quantities, but only in a
12599 simple form. Two variables that haven't yet been assigned values are
12600 either equal to each other, or they're not.
12602 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12603 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12604 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12605 |null| (which means that no other variables are equivalent to this one), or
12606 it points to another variable of the same undefined type. The pointers in the
12607 latter case form a cycle of nodes, which we shall call a ``ring.''
12608 Rings of undefined variables may include capsules, which arise as
12609 intermediate results within expressions or as \&{expr} parameters to macros.
12611 When one member of a ring receives a value, the same value is given to
12612 all the other members. In the case of paths and pictures, this implies
12613 making separate copies of a potentially large data structure; users should
12614 restrain their enthusiasm for such generality, unless they have lots and
12615 lots of memory space.
12617 @ The following procedure is called when a capsule node is being
12618 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12620 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12621 pointer q; /* the new capsule node */
12622 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12624 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12629 @ Conversely, we might delete a capsule or a variable before it becomes known.
12630 The following procedure simply detaches a quantity from its ring,
12631 without recycling the storage.
12633 @<Declare the recycling subroutines@>=
12634 void mp_ring_delete (MP mp,pointer p) {
12637 if ( q!=null ) if ( q!=p ){
12638 while ( value(q)!=p ) q=value(q);
12643 @ Eventually there might be an equation that assigns values to all of the
12644 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12645 propagation of values.
12647 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12648 value, it will soon be recycled.
12650 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12651 small_number t; /* the type of ring |p| */
12652 pointer q,r; /* link manipulation registers */
12653 t=type(p)-unknown_tag; q=value(p);
12654 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12656 r=value(q); type(q)=t;
12658 case mp_boolean_type: value(q)=v; break;
12659 case mp_string_type: value(q)=v; add_str_ref(v); break;
12660 case mp_pen_type: value(q)=copy_pen(v); break;
12661 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12662 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12663 } /* there ain't no more cases */
12668 @ If two members of rings are equated, and if they have the same type,
12669 the |ring_merge| procedure is called on to make them equivalent.
12671 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12672 pointer r; /* traverses one list */
12676 @<Exclaim about a redundant equation@>;
12681 r=value(p); value(p)=value(q); value(q)=r;
12684 @ @<Exclaim about a redundant equation@>=
12686 print_err("Redundant equation");
12687 @.Redundant equation@>
12688 help2("I already knew that this equation was true.")
12689 ("But perhaps no harm has been done; let's continue.");
12690 mp_put_get_error(mp);
12693 @* \[26] Introduction to the syntactic routines.
12694 Let's pause a moment now and try to look at the Big Picture.
12695 The \MP\ program consists of three main parts: syntactic routines,
12696 semantic routines, and output routines. The chief purpose of the
12697 syntactic routines is to deliver the user's input to the semantic routines,
12698 while parsing expressions and locating operators and operands. The
12699 semantic routines act as an interpreter responding to these operators,
12700 which may be regarded as commands. And the output routines are
12701 periodically called on to produce compact font descriptions that can be
12702 used for typesetting or for making interim proof drawings. We have
12703 discussed the basic data structures and many of the details of semantic
12704 operations, so we are good and ready to plunge into the part of \MP\ that
12705 actually controls the activities.
12707 Our current goal is to come to grips with the |get_next| procedure,
12708 which is the keystone of \MP's input mechanism. Each call of |get_next|
12709 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12710 representing the next input token.
12711 $$\vbox{\halign{#\hfil\cr
12712 \hbox{|cur_cmd| denotes a command code from the long list of codes
12714 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12715 \hbox{|cur_sym| is the hash address of the symbolic token that was
12717 \hbox{\qquad or zero in the case of a numeric or string
12718 or capsule token.}\cr}}$$
12719 Underlying this external behavior of |get_next| is all the machinery
12720 necessary to convert from character files to tokens. At a given time we
12721 may be only partially finished with the reading of several files (for
12722 which \&{input} was specified), and partially finished with the expansion
12723 of some user-defined macros and/or some macro parameters, and partially
12724 finished reading some text that the user has inserted online,
12725 and so on. When reading a character file, the characters must be
12726 converted to tokens; comments and blank spaces must
12727 be removed, numeric and string tokens must be evaluated.
12729 To handle these situations, which might all be present simultaneously,
12730 \MP\ uses various stacks that hold information about the incomplete
12731 activities, and there is a finite state control for each level of the
12732 input mechanism. These stacks record the current state of an implicitly
12733 recursive process, but the |get_next| procedure is not recursive.
12736 eight_bits cur_cmd; /* current command set by |get_next| */
12737 integer cur_mod; /* operand of current command */
12738 halfword cur_sym; /* hash address of current symbol */
12740 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12741 command code and its modifier.
12742 It consists of a rather tedious sequence of print
12743 commands, and most of it is essentially an inverse to the |primitive|
12744 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12745 all of this procedure appears elsewhere in the program, together with the
12746 corresponding |primitive| calls.
12748 @<Declare the procedure called |print_cmd_mod|@>=
12749 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12751 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12752 default: mp_print(mp, "[unknown command code!]"); break;
12756 @ Here is a procedure that displays a given command in braces, in the
12757 user's transcript file.
12759 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12762 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12763 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12764 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12765 mp_end_diagnostic(mp, false);
12768 @* \[27] Input stacks and states.
12769 The state of \MP's input mechanism appears in the input stack, whose
12770 entries are records with five fields, called |index|, |start|, |loc|,
12771 |limit|, and |name|. The top element of this stack is maintained in a
12772 global variable for which no subscripting needs to be done; the other
12773 elements of the stack appear in an array. Hence the stack is declared thus:
12777 quarterword index_field;
12778 halfword start_field, loc_field, limit_field, name_field;
12782 in_state_record *input_stack;
12783 integer input_ptr; /* first unused location of |input_stack| */
12784 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12785 in_state_record cur_input; /* the ``top'' input state */
12786 int stack_size; /* maximum number of simultaneous input sources */
12788 @ @<Allocate or initialize ...@>=
12789 mp->stack_size = 300;
12790 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12792 @ @<Dealloc variables@>=
12793 xfree(mp->input_stack);
12795 @ We've already defined the special variable |loc==cur_input.loc_field|
12796 in our discussion of basic input-output routines. The other components of
12797 |cur_input| are defined in the same way:
12799 @d index mp->cur_input.index_field /* reference for buffer information */
12800 @d start mp->cur_input.start_field /* starting position in |buffer| */
12801 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12802 @d name mp->cur_input.name_field /* name of the current file */
12804 @ Let's look more closely now at the five control variables
12805 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12806 assuming that \MP\ is reading a line of characters that have been input
12807 from some file or from the user's terminal. There is an array called
12808 |buffer| that acts as a stack of all lines of characters that are
12809 currently being read from files, including all lines on subsidiary
12810 levels of the input stack that are not yet completed. \MP\ will return to
12811 the other lines when it is finished with the present input file.
12813 (Incidentally, on a machine with byte-oriented addressing, it would be
12814 appropriate to combine |buffer| with the |str_pool| array,
12815 letting the buffer entries grow downward from the top of the string pool
12816 and checking that these two tables don't bump into each other.)
12818 The line we are currently working on begins in position |start| of the
12819 buffer; the next character we are about to read is |buffer[loc]|; and
12820 |limit| is the location of the last character present. We always have
12821 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12822 that the end of a line is easily sensed.
12824 The |name| variable is a string number that designates the name of
12825 the current file, if we are reading an ordinary text file. Special codes
12826 |is_term..max_spec_src| indicate other sources of input text.
12828 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12829 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12830 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12831 @d max_spec_src is_scantok
12833 @ Additional information about the current line is available via the
12834 |index| variable, which counts how many lines of characters are present
12835 in the buffer below the current level. We have |index=0| when reading
12836 from the terminal and prompting the user for each line; then if the user types,
12837 e.g., `\.{input figs}', we will have |index=1| while reading
12838 the file \.{figs.mp}. However, it does not follow that |index| is the
12839 same as the input stack pointer, since many of the levels on the input
12840 stack may come from token lists and some |index| values may correspond
12841 to \.{MPX} files that are not currently on the stack.
12843 The global variable |in_open| is equal to the highest |index| value counting
12844 \.{MPX} files but excluding token-list input levels. Thus, the number of
12845 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12846 when we are not reading a token list.
12848 If we are not currently reading from the terminal,
12849 we are reading from the file variable |input_file[index]|. We use
12850 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12851 and |cur_file| as an abbreviation for |input_file[index]|.
12853 When \MP\ is not reading from the terminal, the global variable |line| contains
12854 the line number in the current file, for use in error messages. More precisely,
12855 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12856 the line number for each file in the |input_file| array.
12858 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12859 array so that the name doesn't get lost when the file is temporarily removed
12860 from the input stack.
12861 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12862 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12863 Since this is not an \.{MPX} file, we have
12864 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12865 This |name| field is set to |finished| when |input_file[k]| is completely
12868 If more information about the input state is needed, it can be
12869 included in small arrays like those shown here. For example,
12870 the current page or segment number in the input file might be put
12871 into a variable |page|, that is really a macro for the current entry
12872 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12873 by analogy with |line_stack|.
12874 @^system dependencies@>
12876 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12877 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12878 @d line mp->line_stack[index] /* current line number in the current source file */
12879 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12880 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12881 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12882 @d mpx_reading (mp->mpx_name[index]>absent)
12883 /* when reading a file, is it an \.{MPX} file? */
12885 /* |name_field| value when the corresponding \.{MPX} file is finished */
12888 integer in_open; /* the number of lines in the buffer, less one */
12889 unsigned int open_parens; /* the number of open text files */
12890 FILE * *input_file ;
12891 integer *line_stack ; /* the line number for each file */
12892 char * *iname_stack; /* used for naming \.{MPX} files */
12893 char * *iarea_stack; /* used for naming \.{MPX} files */
12894 halfword*mpx_name ;
12896 @ @<Allocate or ...@>=
12897 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12898 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12899 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12900 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12901 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12904 for (k=0;k<=mp->max_in_open;k++) {
12905 mp->iname_stack[k] =NULL;
12906 mp->iarea_stack[k] =NULL;
12910 @ @<Dealloc variables@>=
12913 for (l=0;l<=mp->max_in_open;l++) {
12914 xfree(mp->iname_stack[l]);
12915 xfree(mp->iarea_stack[l]);
12918 xfree(mp->input_file);
12919 xfree(mp->line_stack);
12920 xfree(mp->iname_stack);
12921 xfree(mp->iarea_stack);
12922 xfree(mp->mpx_name);
12925 @ However, all this discussion about input state really applies only to the
12926 case that we are inputting from a file. There is another important case,
12927 namely when we are currently getting input from a token list. In this case
12928 |index>max_in_open|, and the conventions about the other state variables
12931 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12932 the node that will be read next. If |loc=null|, the token list has been
12935 \yskip\hang|start| points to the first node of the token list; this node
12936 may or may not contain a reference count, depending on the type of token
12939 \yskip\hang|token_type|, which takes the place of |index| in the
12940 discussion above, is a code number that explains what kind of token list
12943 \yskip\hang|name| points to the |eqtb| address of the control sequence
12944 being expanded, if the current token list is a macro not defined by
12945 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12946 can be deduced by looking at their first two parameters.
12948 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12949 the parameters of the current macro or loop text begin in the |param_stack|.
12951 \yskip\noindent The |token_type| can take several values, depending on
12952 where the current token list came from:
12955 \indent|forever_text|, if the token list being scanned is the body of
12956 a \&{forever} loop;
12958 \indent|loop_text|, if the token list being scanned is the body of
12959 a \&{for} or \&{forsuffixes} loop;
12961 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12963 \indent|backed_up|, if the token list being scanned has been inserted as
12964 `to be read again'.
12966 \indent|inserted|, if the token list being scanned has been inserted as
12967 part of error recovery;
12969 \indent|macro|, if the expansion of a user-defined symbolic token is being
12973 The token list begins with a reference count if and only if |token_type=
12975 @^reference counts@>
12977 @d token_type index /* type of current token list */
12978 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12979 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12980 @d param_start limit /* base of macro parameters in |param_stack| */
12981 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12982 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12983 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12984 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12985 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12986 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12988 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12989 lists for parameters at the current level and subsidiary levels of input.
12990 This stack grows at a different rate from the others.
12993 pointer *param_stack; /* token list pointers for parameters */
12994 integer param_ptr; /* first unused entry in |param_stack| */
12995 integer max_param_stack; /* largest value of |param_ptr| */
12997 @ @<Allocate or initialize ...@>=
12998 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13000 @ @<Dealloc variables@>=
13001 xfree(mp->param_stack);
13003 @ Notice that the |line| isn't valid when |token_state| is true because it
13004 depends on |index|. If we really need to know the line number for the
13005 topmost file in the index stack we use the following function. If a page
13006 number or other information is needed, this routine should be modified to
13007 compute it as well.
13008 @^system dependencies@>
13010 @<Declare a function called |true_line|@>=
13011 integer mp_true_line (MP mp) {
13012 int k; /* an index into the input stack */
13013 if ( file_state && (name>max_spec_src) ) {
13018 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13019 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13022 return mp->line_stack[(k-1)];
13027 @ Thus, the ``current input state'' can be very complicated indeed; there
13028 can be many levels and each level can arise in a variety of ways. The
13029 |show_context| procedure, which is used by \MP's error-reporting routine to
13030 print out the current input state on all levels down to the most recent
13031 line of characters from an input file, illustrates most of these conventions.
13032 The global variable |file_ptr| contains the lowest level that was
13033 displayed by this procedure.
13036 integer file_ptr; /* shallowest level shown by |show_context| */
13038 @ The status at each level is indicated by printing two lines, where the first
13039 line indicates what was read so far and the second line shows what remains
13040 to be read. The context is cropped, if necessary, so that the first line
13041 contains at most |half_error_line| characters, and the second contains
13042 at most |error_line|. Non-current input levels whose |token_type| is
13043 `|backed_up|' are shown only if they have not been fully read.
13045 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13046 int old_setting; /* saved |selector| setting */
13047 @<Local variables for formatting calculations@>
13048 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13049 /* store current state */
13051 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13052 @<Display the current context@>;
13054 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13055 decr(mp->file_ptr);
13057 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13060 @ @<Display the current context@>=
13061 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13062 (token_type!=backed_up) || (loc!=null) ) {
13063 /* we omit backed-up token lists that have already been read */
13064 mp->tally=0; /* get ready to count characters */
13065 old_setting=mp->selector;
13066 if ( file_state ) {
13067 @<Print location of current line@>;
13068 @<Pseudoprint the line@>;
13070 @<Print type of token list@>;
13071 @<Pseudoprint the token list@>;
13073 mp->selector=old_setting; /* stop pseudoprinting */
13074 @<Print two lines using the tricky pseudoprinted information@>;
13077 @ This routine should be changed, if necessary, to give the best possible
13078 indication of where the current line resides in the input file.
13079 For example, on some systems it is best to print both a page and line number.
13080 @^system dependencies@>
13082 @<Print location of current line@>=
13083 if ( name>max_spec_src ) {
13084 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13085 } else if ( terminal_input ) {
13086 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13087 else mp_print_nl(mp, "<insert>");
13088 } else if ( name==is_scantok ) {
13089 mp_print_nl(mp, "<scantokens>");
13091 mp_print_nl(mp, "<read>");
13093 mp_print_char(mp, ' ')
13095 @ Can't use case statement here because the |token_type| is not
13096 a constant expression.
13098 @<Print type of token list@>=
13100 if(token_type==forever_text) {
13101 mp_print_nl(mp, "<forever> ");
13102 } else if (token_type==loop_text) {
13103 @<Print the current loop value@>;
13104 } else if (token_type==parameter) {
13105 mp_print_nl(mp, "<argument> ");
13106 } else if (token_type==backed_up) {
13107 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13108 else mp_print_nl(mp, "<to be read again> ");
13109 } else if (token_type==inserted) {
13110 mp_print_nl(mp, "<inserted text> ");
13111 } else if (token_type==macro) {
13113 if ( name!=null ) mp_print_text(name);
13114 else @<Print the name of a \&{vardef}'d macro@>;
13115 mp_print(mp, "->");
13117 mp_print_nl(mp, "?");/* this should never happen */
13122 @ The parameter that corresponds to a loop text is either a token list
13123 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13124 We'll discuss capsules later; for now, all we need to know is that
13125 the |link| field in a capsule parameter is |void| and that
13126 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13128 @<Print the current loop value@>=
13129 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13131 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13132 else mp_show_token_list(mp, p,null,20,mp->tally);
13134 mp_print(mp, ")> ");
13137 @ The first two parameters of a macro defined by \&{vardef} will be token
13138 lists representing the macro's prefix and ``at point.'' By putting these
13139 together, we get the macro's full name.
13141 @<Print the name of a \&{vardef}'d macro@>=
13142 { p=mp->param_stack[param_start];
13144 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13147 while ( link(q)!=null ) q=link(q);
13148 link(q)=mp->param_stack[param_start+1];
13149 mp_show_token_list(mp, p,null,20,mp->tally);
13154 @ Now it is necessary to explain a little trick. We don't want to store a long
13155 string that corresponds to a token list, because that string might take up
13156 lots of memory; and we are printing during a time when an error message is
13157 being given, so we dare not do anything that might overflow one of \MP's
13158 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13159 that stores characters into a buffer of length |error_line|, where character
13160 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13161 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13162 |tally:=0| and |trick_count:=1000000|; then when we reach the
13163 point where transition from line 1 to line 2 should occur, we
13164 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13165 tally+1+error_line-half_error_line)|. At the end of the
13166 pseudoprinting, the values of |first_count|, |tally|, and
13167 |trick_count| give us all the information we need to print the two lines,
13168 and all of the necessary text is in |trick_buf|.
13170 Namely, let |l| be the length of the descriptive information that appears
13171 on the first line. The length of the context information gathered for that
13172 line is |k=first_count|, and the length of the context information
13173 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13174 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13175 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13176 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13177 and print `\.{...}' followed by
13178 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13179 where subscripts of |trick_buf| are circular modulo |error_line|. The
13180 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13181 unless |n+m>error_line|; in the latter case, further cropping is done.
13182 This is easier to program than to explain.
13184 @<Local variables for formatting...@>=
13185 int i; /* index into |buffer| */
13186 integer l; /* length of descriptive information on line 1 */
13187 integer m; /* context information gathered for line 2 */
13188 int n; /* length of line 1 */
13189 integer p; /* starting or ending place in |trick_buf| */
13190 integer q; /* temporary index */
13192 @ The following code tells the print routines to gather
13193 the desired information.
13195 @d begin_pseudoprint {
13196 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13197 mp->trick_count=1000000;
13199 @d set_trick_count {
13200 mp->first_count=mp->tally;
13201 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13202 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13205 @ And the following code uses the information after it has been gathered.
13207 @<Print two lines using the tricky pseudoprinted information@>=
13208 if ( mp->trick_count==1000000 ) set_trick_count;
13209 /* |set_trick_count| must be performed */
13210 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13211 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13212 if ( l+mp->first_count<=mp->half_error_line ) {
13213 p=0; n=l+mp->first_count;
13215 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13216 n=mp->half_error_line;
13218 for (q=p;q<=mp->first_count-1;q++) {
13219 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13222 for (q=1;q<=n;q++) {
13223 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13225 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13226 else p=mp->first_count+(mp->error_line-n-3);
13227 for (q=mp->first_count;q<=p-1;q++) {
13228 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13230 if ( m+n>mp->error_line ) mp_print(mp, "...")
13232 @ But the trick is distracting us from our current goal, which is to
13233 understand the input state. So let's concentrate on the data structures that
13234 are being pseudoprinted as we finish up the |show_context| procedure.
13236 @<Pseudoprint the line@>=
13239 for (i=start;i<=limit-1;i++) {
13240 if ( i==loc ) set_trick_count;
13241 mp_print_str(mp, mp->buffer[i]);
13245 @ @<Pseudoprint the token list@>=
13247 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13248 else mp_show_macro(mp, start,loc,100000)
13250 @ Here is the missing piece of |show_token_list| that is activated when the
13251 token beginning line~2 is about to be shown:
13253 @<Do magic computation@>=set_trick_count
13255 @* \[28] Maintaining the input stacks.
13256 The following subroutines change the input status in commonly needed ways.
13258 First comes |push_input|, which stores the current state and creates a
13259 new level (having, initially, the same properties as the old).
13261 @d push_input { /* enter a new input level, save the old */
13262 if ( mp->input_ptr>mp->max_in_stack ) {
13263 mp->max_in_stack=mp->input_ptr;
13264 if ( mp->input_ptr==mp->stack_size ) {
13265 int l = (mp->stack_size+(mp->stack_size>>2));
13266 XREALLOC(mp->input_stack, l, in_state_record);
13267 mp->stack_size = l;
13270 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13271 incr(mp->input_ptr);
13274 @ And of course what goes up must come down.
13276 @d pop_input { /* leave an input level, re-enter the old */
13277 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13280 @ Here is a procedure that starts a new level of token-list input, given
13281 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13282 set |name|, reset~|loc|, and increase the macro's reference count.
13284 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13286 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13287 push_input; start=p; token_type=t;
13288 param_start=mp->param_ptr; loc=p;
13291 @ When a token list has been fully scanned, the following computations
13292 should be done as we leave that level of input.
13295 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13296 pointer p; /* temporary register */
13297 if ( token_type>=backed_up ) { /* token list to be deleted */
13298 if ( token_type<=inserted ) {
13299 mp_flush_token_list(mp, start); goto DONE;
13301 mp_delete_mac_ref(mp, start); /* update reference count */
13304 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13305 decr(mp->param_ptr);
13306 p=mp->param_stack[mp->param_ptr];
13308 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13309 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13311 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13316 pop_input; check_interrupt;
13319 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13320 token by the |cur_tok| routine.
13323 @c @<Declare the procedure called |make_exp_copy|@>;
13324 pointer mp_cur_tok (MP mp) {
13325 pointer p; /* a new token node */
13326 small_number save_type; /* |cur_type| to be restored */
13327 integer save_exp; /* |cur_exp| to be restored */
13328 if ( mp->cur_sym==0 ) {
13329 if ( mp->cur_cmd==capsule_token ) {
13330 save_type=mp->cur_type; save_exp=mp->cur_exp;
13331 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13332 mp->cur_type=save_type; mp->cur_exp=save_exp;
13334 p=mp_get_node(mp, token_node_size);
13335 value(p)=mp->cur_mod; name_type(p)=mp_token;
13336 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13337 else type(p)=mp_string_type;
13340 fast_get_avail(p); info(p)=mp->cur_sym;
13345 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13346 seen. The |back_input| procedure takes care of this by putting the token
13347 just scanned back into the input stream, ready to be read again.
13348 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13351 void mp_back_input (MP mp);
13353 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13354 pointer p; /* a token list of length one */
13356 while ( token_state &&(loc==null) )
13357 mp_end_token_list(mp); /* conserve stack space */
13361 @ The |back_error| routine is used when we want to restore or replace an
13362 offending token just before issuing an error message. We disable interrupts
13363 during the call of |back_input| so that the help message won't be lost.
13366 void mp_error (MP mp);
13367 void mp_back_error (MP mp);
13369 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13370 mp->OK_to_interrupt=false;
13372 mp->OK_to_interrupt=true; mp_error(mp);
13374 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13375 mp->OK_to_interrupt=false;
13376 mp_back_input(mp); token_type=inserted;
13377 mp->OK_to_interrupt=true; mp_error(mp);
13380 @ The |begin_file_reading| procedure starts a new level of input for lines
13381 of characters to be read from a file, or as an insertion from the
13382 terminal. It does not take care of opening the file, nor does it set |loc|
13383 or |limit| or |line|.
13384 @^system dependencies@>
13386 @c void mp_begin_file_reading (MP mp) {
13387 if ( mp->in_open==mp->max_in_open )
13388 mp_overflow(mp, "text input levels",mp->max_in_open);
13389 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13390 if ( mp->first==mp->buf_size )
13391 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13392 incr(mp->in_open); push_input; index=mp->in_open;
13393 mp->mpx_name[index]=absent;
13395 name=is_term; /* |terminal_input| is now |true| */
13398 @ Conversely, the variables must be downdated when such a level of input
13399 is finished. Any associated \.{MPX} file must also be closed and popped
13400 off the file stack.
13402 @c void mp_end_file_reading (MP mp) {
13403 if ( mp->in_open>index ) {
13404 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13405 mp_confusion(mp, "endinput");
13406 @:this can't happen endinput}{\quad endinput@>
13408 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13409 delete_str_ref(mp->mpx_name[mp->in_open]);
13414 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13415 if ( name>max_spec_src ) {
13417 delete_str_ref(name);
13421 pop_input; decr(mp->in_open);
13424 @ Here is a function that tries to resume input from an \.{MPX} file already
13425 associated with the current input file. It returns |false| if this doesn't
13428 @c boolean mp_begin_mpx_reading (MP mp) {
13429 if ( mp->in_open!=index+1 ) {
13432 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13433 @:this can't happen mpx}{\quad mpx@>
13434 if ( mp->first==mp->buf_size )
13435 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13436 push_input; index=mp->in_open;
13438 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13439 @<Put an empty line in the input buffer@>;
13444 @ This procedure temporarily stops reading an \.{MPX} file.
13446 @c void mp_end_mpx_reading (MP mp) {
13447 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13448 @:this can't happen mpx}{\quad mpx@>
13450 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13456 @ Here we enforce a restriction that simplifies the input stacks considerably.
13457 This should not inconvenience the user because \.{MPX} files are generated
13458 by an auxiliary program called \.{DVItoMP}.
13460 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13462 print_err("`mpxbreak' must be at the end of a line");
13463 help4("This file contains picture expressions for btex...etex")
13464 ("blocks. Such files are normally generated automatically")
13465 ("but this one seems to be messed up. I'm going to ignore")
13466 ("the rest of this line.");
13470 @ In order to keep the stack from overflowing during a long sequence of
13471 inserted `\.{show}' commands, the following routine removes completed
13472 error-inserted lines from memory.
13474 @c void mp_clear_for_error_prompt (MP mp) {
13475 while ( file_state && terminal_input &&
13476 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13477 mp_print_ln(mp); clear_terminal;
13480 @ To get \MP's whole input mechanism going, we perform the following
13483 @<Initialize the input routines@>=
13484 { mp->input_ptr=0; mp->max_in_stack=0;
13485 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13486 mp->param_ptr=0; mp->max_param_stack=0;
13488 start=1; index=0; line=0; name=is_term;
13489 mp->mpx_name[0]=absent;
13490 mp->force_eof=false;
13491 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13492 limit=mp->last; mp->first=mp->last+1;
13493 /* |init_terminal| has set |loc| and |last| */
13496 @* \[29] Getting the next token.
13497 The heart of \MP's input mechanism is the |get_next| procedure, which
13498 we shall develop in the next few sections of the program. Perhaps we
13499 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13500 eyes and mouth, reading the source files and gobbling them up. And it also
13501 helps \MP\ to regurgitate stored token lists that are to be processed again.
13503 The main duty of |get_next| is to input one token and to set |cur_cmd|
13504 and |cur_mod| to that token's command code and modifier. Furthermore, if
13505 the input token is a symbolic token, that token's |hash| address
13506 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13508 Underlying this simple description is a certain amount of complexity
13509 because of all the cases that need to be handled.
13510 However, the inner loop of |get_next| is reasonably short and fast.
13512 @ Before getting into |get_next|, we need to consider a mechanism by which
13513 \MP\ helps keep errors from propagating too far. Whenever the program goes
13514 into a mode where it keeps calling |get_next| repeatedly until a certain
13515 condition is met, it sets |scanner_status| to some value other than |normal|.
13516 Then if an input file ends, or if an `\&{outer}' symbol appears,
13517 an appropriate error recovery will be possible.
13519 The global variable |warning_info| helps in this error recovery by providing
13520 additional information. For example, |warning_info| might indicate the
13521 name of a macro whose replacement text is being scanned.
13523 @d normal 0 /* |scanner_status| at ``quiet times'' */
13524 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13525 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13526 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13527 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13528 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13529 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13530 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13533 integer scanner_status; /* are we scanning at high speed? */
13534 integer warning_info; /* if so, what else do we need to know,
13535 in case an error occurs? */
13537 @ @<Initialize the input routines@>=
13538 mp->scanner_status=normal;
13540 @ The following subroutine
13541 is called when an `\&{outer}' symbolic token has been scanned or
13542 when the end of a file has been reached. These two cases are distinguished
13543 by |cur_sym|, which is zero at the end of a file.
13545 @c boolean mp_check_outer_validity (MP mp) {
13546 pointer p; /* points to inserted token list */
13547 if ( mp->scanner_status==normal ) {
13549 } else if ( mp->scanner_status==tex_flushing ) {
13550 @<Check if the file has ended while flushing \TeX\ material and set the
13551 result value for |check_outer_validity|@>;
13553 mp->deletions_allowed=false;
13554 @<Back up an outer symbolic token so that it can be reread@>;
13555 if ( mp->scanner_status>skipping ) {
13556 @<Tell the user what has run away and try to recover@>;
13558 print_err("Incomplete if; all text was ignored after line ");
13559 @.Incomplete if...@>
13560 mp_print_int(mp, mp->warning_info);
13561 help3("A forbidden `outer' token occurred in skipped text.")
13562 ("This kind of error happens when you say `if...' and forget")
13563 ("the matching `fi'. I've inserted a `fi'; this might work.");
13564 if ( mp->cur_sym==0 )
13565 mp->help_line[2]="The file ended while I was skipping conditional text.";
13566 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13568 mp->deletions_allowed=true;
13573 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13574 if ( mp->cur_sym!=0 ) {
13577 mp->deletions_allowed=false;
13578 print_err("TeX mode didn't end; all text was ignored after line ");
13579 mp_print_int(mp, mp->warning_info);
13580 help2("The file ended while I was looking for the `etex' to")
13581 ("finish this TeX material. I've inserted `etex' now.");
13582 mp->cur_sym = frozen_etex;
13584 mp->deletions_allowed=true;
13588 @ @<Back up an outer symbolic token so that it can be reread@>=
13589 if ( mp->cur_sym!=0 ) {
13590 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13591 back_list(p); /* prepare to read the symbolic token again */
13594 @ @<Tell the user what has run away...@>=
13596 mp_runaway(mp); /* print the definition-so-far */
13597 if ( mp->cur_sym==0 ) {
13598 print_err("File ended");
13599 @.File ended while scanning...@>
13601 print_err("Forbidden token found");
13602 @.Forbidden token found...@>
13604 mp_print(mp, " while scanning ");
13605 help4("I suspect you have forgotten an `enddef',")
13606 ("causing me to read past where you wanted me to stop.")
13607 ("I'll try to recover; but if the error is serious,")
13608 ("you'd better type `E' or `X' now and fix your file.");
13609 switch (mp->scanner_status) {
13610 @<Complete the error message,
13611 and set |cur_sym| to a token that might help recover from the error@>
13612 } /* there are no other cases */
13616 @ As we consider various kinds of errors, it is also appropriate to
13617 change the first line of the help message just given; |help_line[3]|
13618 points to the string that might be changed.
13620 @<Complete the error message,...@>=
13622 mp_print(mp, "to the end of the statement");
13623 mp->help_line[3]="A previous error seems to have propagated,";
13624 mp->cur_sym=frozen_semicolon;
13627 mp_print(mp, "a text argument");
13628 mp->help_line[3]="It seems that a right delimiter was left out,";
13629 if ( mp->warning_info==0 ) {
13630 mp->cur_sym=frozen_end_group;
13632 mp->cur_sym=frozen_right_delimiter;
13633 equiv(frozen_right_delimiter)=mp->warning_info;
13638 mp_print(mp, "the definition of ");
13639 if ( mp->scanner_status==op_defining )
13640 mp_print_text(mp->warning_info);
13642 mp_print_variable_name(mp, mp->warning_info);
13643 mp->cur_sym=frozen_end_def;
13645 case loop_defining:
13646 mp_print(mp, "the text of a ");
13647 mp_print_text(mp->warning_info);
13648 mp_print(mp, " loop");
13649 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13650 mp->cur_sym=frozen_end_for;
13653 @ The |runaway| procedure displays the first part of the text that occurred
13654 when \MP\ began its special |scanner_status|, if that text has been saved.
13656 @<Declare the procedure called |runaway|@>=
13657 void mp_runaway (MP mp) {
13658 if ( mp->scanner_status>flushing ) {
13659 mp_print_nl(mp, "Runaway ");
13660 switch (mp->scanner_status) {
13661 case absorbing: mp_print(mp, "text?"); break;
13663 case op_defining: mp_print(mp,"definition?"); break;
13664 case loop_defining: mp_print(mp, "loop?"); break;
13665 } /* there are no other cases */
13667 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13671 @ We need to mention a procedure that may be called by |get_next|.
13674 void mp_firm_up_the_line (MP mp);
13676 @ And now we're ready to take the plunge into |get_next| itself.
13677 Note that the behavior depends on the |scanner_status| because percent signs
13678 and double quotes need to be passed over when skipping TeX material.
13681 void mp_get_next (MP mp) {
13682 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13684 /*restart*/ /* go here to get the next input token */
13685 /*exit*/ /* go here when the next input token has been got */
13686 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13687 /*found*/ /* go here when the end of a symbolic token has been found */
13688 /*switch*/ /* go here to branch on the class of an input character */
13689 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13690 /* go here at crucial stages when scanning a number */
13691 int k; /* an index into |buffer| */
13692 ASCII_code c; /* the current character in the buffer */
13693 ASCII_code class; /* its class number */
13694 integer n,f; /* registers for decimal-to-binary conversion */
13697 if ( file_state ) {
13698 @<Input from external file; |goto restart| if no input found,
13699 or |return| if a non-symbolic token is found@>;
13701 @<Input from token list; |goto restart| if end of list or
13702 if a parameter needs to be expanded,
13703 or |return| if a non-symbolic token is found@>;
13706 @<Finish getting the symbolic token in |cur_sym|;
13707 |goto restart| if it is illegal@>;
13710 @ When a symbolic token is declared to be `\&{outer}', its command code
13711 is increased by |outer_tag|.
13714 @<Finish getting the symbolic token in |cur_sym|...@>=
13715 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13716 if ( mp->cur_cmd>=outer_tag ) {
13717 if ( mp_check_outer_validity(mp) )
13718 mp->cur_cmd=mp->cur_cmd-outer_tag;
13723 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13724 to have a special test for end-of-line.
13727 @<Input from external file;...@>=
13730 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13732 case digit_class: goto START_NUMERIC_TOKEN; break;
13734 class=mp->char_class[mp->buffer[loc]];
13735 if ( class>period_class ) {
13737 } else if ( class<period_class ) { /* |class=digit_class| */
13738 n=0; goto START_DECIMAL_TOKEN;
13742 case space_class: goto SWITCH; break;
13743 case percent_class:
13744 if ( mp->scanner_status==tex_flushing ) {
13745 if ( loc<limit ) goto SWITCH;
13747 @<Move to next line of file, or |goto restart| if there is no next line@>;
13752 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13753 else @<Get a string token and |return|@>;
13755 case isolated_classes:
13756 k=loc-1; goto FOUND; break;
13757 case invalid_class:
13758 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13759 else @<Decry the invalid character and |goto restart|@>;
13761 default: break; /* letters, etc. */
13764 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13766 START_NUMERIC_TOKEN:
13767 @<Get the integer part |n| of a numeric token;
13768 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13769 START_DECIMAL_TOKEN:
13770 @<Get the fraction part |f| of a numeric token@>;
13772 @<Pack the numeric and fraction parts of a numeric token
13775 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13778 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13779 |token_list| after the error has been dealt with
13780 (cf.\ |clear_for_error_prompt|).
13782 @<Decry the invalid...@>=
13784 print_err("Text line contains an invalid character");
13785 @.Text line contains...@>
13786 help2("A funny symbol that I can\'t read has just been input.")
13787 ("Continue, and I'll forget that it ever happened.");
13788 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13792 @ @<Get a string token and |return|@>=
13794 if ( mp->buffer[loc]=='"' ) {
13795 mp->cur_mod=rts("");
13797 k=loc; mp->buffer[limit+1]='"';
13800 } while (mp->buffer[loc]!='"');
13802 @<Decry the missing string delimiter and |goto restart|@>;
13805 mp->cur_mod=mp->buffer[k];
13809 append_char(mp->buffer[k]); incr(k);
13811 mp->cur_mod=mp_make_string(mp);
13814 incr(loc); mp->cur_cmd=string_token;
13818 @ We go to |restart| after this error message, not to |SWITCH|,
13819 because the |clear_for_error_prompt| routine might have reinstated
13820 |token_state| after |error| has finished.
13822 @<Decry the missing string delimiter and |goto restart|@>=
13824 loc=limit; /* the next character to be read on this line will be |"%"| */
13825 print_err("Incomplete string token has been flushed");
13826 @.Incomplete string token...@>
13827 help3("Strings should finish on the same line as they began.")
13828 ("I've deleted the partial string; you might want to")
13829 ("insert another by typing, e.g., `I\"new string\"'.");
13830 mp->deletions_allowed=false; mp_error(mp);
13831 mp->deletions_allowed=true;
13835 @ @<Get the integer part |n| of a numeric token...@>=
13837 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13838 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13841 if ( mp->buffer[loc]=='.' )
13842 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13845 goto FIN_NUMERIC_TOKEN;
13848 @ @<Get the fraction part |f| of a numeric token@>=
13851 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13852 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13855 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13856 f=mp_round_decimals(mp, k);
13861 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13863 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13864 } else if ( mp->scanner_status!=tex_flushing ) {
13865 print_err("Enormous number has been reduced");
13866 @.Enormous number...@>
13867 help2("I can\'t handle numbers bigger than 32767.99998;")
13868 ("so I've changed your constant to that maximum amount.");
13869 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13870 mp->cur_mod=el_gordo;
13872 mp->cur_cmd=numeric_token; return
13874 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13876 mp->cur_mod=n*unity+f;
13877 if ( mp->cur_mod>=fraction_one ) {
13878 if ( (mp->internal[mp_warning_check]>0) &&
13879 (mp->scanner_status!=tex_flushing) ) {
13880 print_err("Number is too large (");
13881 mp_print_scaled(mp, mp->cur_mod);
13882 mp_print_char(mp, ')');
13883 help3("It is at least 4096. Continue and I'll try to cope")
13884 ("with that big value; but it might be dangerous.")
13885 ("(Set warningcheck:=0 to suppress this message.)");
13891 @ Let's consider now what happens when |get_next| is looking at a token list.
13894 @<Input from token list;...@>=
13895 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13896 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13897 if ( mp->cur_sym>=expr_base ) {
13898 if ( mp->cur_sym>=suffix_base ) {
13899 @<Insert a suffix or text parameter and |goto restart|@>;
13901 mp->cur_cmd=capsule_token;
13902 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13903 mp->cur_sym=0; return;
13906 } else if ( loc>null ) {
13907 @<Get a stored numeric or string or capsule token and |return|@>
13908 } else { /* we are done with this token list */
13909 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13912 @ @<Insert a suffix or text parameter...@>=
13914 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13915 /* |param_size=text_base-suffix_base| */
13916 mp_begin_token_list(mp,
13917 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13922 @ @<Get a stored numeric or string or capsule token...@>=
13924 if ( name_type(loc)==mp_token ) {
13925 mp->cur_mod=value(loc);
13926 if ( type(loc)==mp_known ) {
13927 mp->cur_cmd=numeric_token;
13929 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13932 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13934 loc=link(loc); return;
13937 @ All of the easy branches of |get_next| have now been taken care of.
13938 There is one more branch.
13940 @<Move to next line of file, or |goto restart|...@>=
13941 if ( name>max_spec_src ) {
13942 @<Read next line of file into |buffer|, or
13943 |goto restart| if the file has ended@>;
13945 if ( mp->input_ptr>0 ) {
13946 /* text was inserted during error recovery or by \&{scantokens} */
13947 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13949 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13950 if ( mp->interaction>mp_nonstop_mode ) {
13951 if ( limit==start ) /* previous line was empty */
13952 mp_print_nl(mp, "(Please type a command or say `end')");
13954 mp_print_ln(mp); mp->first=start;
13955 prompt_input("*"); /* input on-line into |buffer| */
13957 limit=mp->last; mp->buffer[limit]='%';
13958 mp->first=limit+1; loc=start;
13960 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13962 /* nonstop mode, which is intended for overnight batch processing,
13963 never waits for on-line input */
13967 @ The global variable |force_eof| is normally |false|; it is set |true|
13968 by an \&{endinput} command.
13971 boolean force_eof; /* should the next \&{input} be aborted early? */
13973 @ We must decrement |loc| in order to leave the buffer in a valid state
13974 when an error condition causes us to |goto restart| without calling
13975 |end_file_reading|.
13977 @<Read next line of file into |buffer|, or
13978 |goto restart| if the file has ended@>=
13980 incr(line); mp->first=start;
13981 if ( ! mp->force_eof ) {
13982 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13983 mp_firm_up_the_line(mp); /* this sets |limit| */
13985 mp->force_eof=true;
13987 if ( mp->force_eof ) {
13988 mp->force_eof=false;
13990 if ( mpx_reading ) {
13991 @<Complain that the \.{MPX} file ended unexpectly; then set
13992 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13994 mp_print_char(mp, ')'); decr(mp->open_parens);
13995 update_terminal; /* show user that file has been read */
13996 mp_end_file_reading(mp); /* resume previous level */
13997 if ( mp_check_outer_validity(mp) ) goto RESTART;
14001 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14004 @ We should never actually come to the end of an \.{MPX} file because such
14005 files should have an \&{mpxbreak} after the translation of the last
14006 \&{btex}$\,\ldots\,$\&{etex} block.
14008 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14010 mp->mpx_name[index]=finished;
14011 print_err("mpx file ended unexpectedly");
14012 help4("The file had too few picture expressions for btex...etex")
14013 ("blocks. Such files are normally generated automatically")
14014 ("but this one got messed up. You might want to insert a")
14015 ("picture expression now.");
14016 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14017 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14020 @ Sometimes we want to make it look as though we have just read a blank line
14021 without really doing so.
14023 @<Put an empty line in the input buffer@>=
14024 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14025 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14027 @ If the user has set the |mp_pausing| parameter to some positive value,
14028 and if nonstop mode has not been selected, each line of input is displayed
14029 on the terminal and the transcript file, followed by `\.{=>}'.
14030 \MP\ waits for a response. If the response is null (i.e., if nothing is
14031 typed except perhaps a few blank spaces), the original
14032 line is accepted as it stands; otherwise the line typed is
14033 used instead of the line in the file.
14035 @c void mp_firm_up_the_line (MP mp) {
14036 size_t k; /* an index into |buffer| */
14038 if ( mp->internal[mp_pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
14039 wake_up_terminal; mp_print_ln(mp);
14040 if ( start<limit ) {
14041 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14042 mp_print_str(mp, mp->buffer[k]);
14045 mp->first=limit; prompt_input("=>"); /* wait for user response */
14047 if ( mp->last>mp->first ) {
14048 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14049 mp->buffer[k+start-mp->first]=mp->buffer[k];
14051 limit=start+mp->last-mp->first;
14056 @* \[30] Dealing with \TeX\ material.
14057 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14058 features need to be implemented at a low level in the scanning process
14059 so that \MP\ can stay in synch with the a preprocessor that treats
14060 blocks of \TeX\ material as they occur in the input file without trying
14061 to expand \MP\ macros. Thus we need a special version of |get_next|
14062 that does not expand macros and such but does handle \&{btex},
14063 \&{verbatimtex}, etc.
14065 The special version of |get_next| is called |get_t_next|. It works by flushing
14066 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14067 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14068 \&{btex}, and switching back when it sees \&{mpxbreak}.
14074 mp_primitive(mp, "btex",start_tex,btex_code);
14075 @:btex_}{\&{btex} primitive@>
14076 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14077 @:verbatimtex_}{\&{verbatimtex} primitive@>
14078 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14079 @:etex_}{\&{etex} primitive@>
14080 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14081 @:mpx_break_}{\&{mpxbreak} primitive@>
14083 @ @<Cases of |print_cmd...@>=
14084 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14085 else mp_print(mp, "verbatimtex"); break;
14086 case etex_marker: mp_print(mp, "etex"); break;
14087 case mpx_break: mp_print(mp, "mpxbreak"); break;
14089 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14090 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14093 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14096 void mp_start_mpx_input (MP mp);
14099 void mp_t_next (MP mp) {
14100 int old_status; /* saves the |scanner_status| */
14101 integer old_info; /* saves the |warning_info| */
14102 while ( mp->cur_cmd<=max_pre_command ) {
14103 if ( mp->cur_cmd==mpx_break ) {
14104 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14105 @<Complain about a misplaced \&{mpxbreak}@>;
14107 mp_end_mpx_reading(mp);
14110 } else if ( mp->cur_cmd==start_tex ) {
14111 if ( token_state || (name<=max_spec_src) ) {
14112 @<Complain that we are not reading a file@>;
14113 } else if ( mpx_reading ) {
14114 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14115 } else if ( (mp->cur_mod!=verbatim_code)&&
14116 (mp->mpx_name[index]!=finished) ) {
14117 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14122 @<Complain about a misplaced \&{etex}@>;
14124 goto COMMON_ENDING;
14126 @<Flush the \TeX\ material@>;
14132 @ We could be in the middle of an operation such as skipping false conditional
14133 text when \TeX\ material is encountered, so we must be careful to save the
14136 @<Flush the \TeX\ material@>=
14137 old_status=mp->scanner_status;
14138 old_info=mp->warning_info;
14139 mp->scanner_status=tex_flushing;
14140 mp->warning_info=line;
14141 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14142 mp->scanner_status=old_status;
14143 mp->warning_info=old_info
14145 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14146 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14147 help4("This file contains picture expressions for btex...etex")
14148 ("blocks. Such files are normally generated automatically")
14149 ("but this one seems to be messed up. I'll just keep going")
14150 ("and hope for the best.");
14154 @ @<Complain that we are not reading a file@>=
14155 { print_err("You can only use `btex' or `verbatimtex' in a file");
14156 help3("I'll have to ignore this preprocessor command because it")
14157 ("only works when there is a file to preprocess. You might")
14158 ("want to delete everything up to the next `etex`.");
14162 @ @<Complain about a misplaced \&{mpxbreak}@>=
14163 { print_err("Misplaced mpxbreak");
14164 help2("I'll ignore this preprocessor command because it")
14165 ("doesn't belong here");
14169 @ @<Complain about a misplaced \&{etex}@>=
14170 { print_err("Extra etex will be ignored");
14171 help1("There is no btex or verbatimtex for this to match");
14175 @* \[31] Scanning macro definitions.
14176 \MP\ has a variety of ways to tuck tokens away into token lists for later
14177 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14178 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14179 All such operations are handled by the routines in this part of the program.
14181 The modifier part of each command code is zero for the ``ending delimiters''
14182 like \&{enddef} and \&{endfor}.
14184 @d start_def 1 /* command modifier for \&{def} */
14185 @d var_def 2 /* command modifier for \&{vardef} */
14186 @d end_def 0 /* command modifier for \&{enddef} */
14187 @d start_forever 1 /* command modifier for \&{forever} */
14188 @d end_for 0 /* command modifier for \&{endfor} */
14191 mp_primitive(mp, "def",macro_def,start_def);
14192 @:def_}{\&{def} primitive@>
14193 mp_primitive(mp, "vardef",macro_def,var_def);
14194 @:var_def_}{\&{vardef} primitive@>
14195 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14196 @:primary_def_}{\&{primarydef} primitive@>
14197 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14198 @:secondary_def_}{\&{secondarydef} primitive@>
14199 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14200 @:tertiary_def_}{\&{tertiarydef} primitive@>
14201 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14202 @:end_def_}{\&{enddef} primitive@>
14204 mp_primitive(mp, "for",iteration,expr_base);
14205 @:for_}{\&{for} primitive@>
14206 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14207 @:for_suffixes_}{\&{forsuffixes} primitive@>
14208 mp_primitive(mp, "forever",iteration,start_forever);
14209 @:forever_}{\&{forever} primitive@>
14210 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14211 @:end_for_}{\&{endfor} primitive@>
14213 @ @<Cases of |print_cmd...@>=
14215 if ( m<=var_def ) {
14216 if ( m==start_def ) mp_print(mp, "def");
14217 else if ( m<start_def ) mp_print(mp, "enddef");
14218 else mp_print(mp, "vardef");
14219 } else if ( m==secondary_primary_macro ) {
14220 mp_print(mp, "primarydef");
14221 } else if ( m==tertiary_secondary_macro ) {
14222 mp_print(mp, "secondarydef");
14224 mp_print(mp, "tertiarydef");
14228 if ( m<=start_forever ) {
14229 if ( m==start_forever ) mp_print(mp, "forever");
14230 else mp_print(mp, "endfor");
14231 } else if ( m==expr_base ) {
14232 mp_print(mp, "for");
14234 mp_print(mp, "forsuffixes");
14238 @ Different macro-absorbing operations have different syntaxes, but they
14239 also have a lot in common. There is a list of special symbols that are to
14240 be replaced by parameter tokens; there is a special command code that
14241 ends the definition; the quotation conventions are identical. Therefore
14242 it makes sense to have most of the work done by a single subroutine. That
14243 subroutine is called |scan_toks|.
14245 The first parameter to |scan_toks| is the command code that will
14246 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14248 The second parameter, |subst_list|, points to a (possibly empty) list
14249 of two-word nodes whose |info| and |value| fields specify symbol tokens
14250 before and after replacement. The list will be returned to free storage
14253 The third parameter is simply appended to the token list that is built.
14254 And the final parameter tells how many of the special operations
14255 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14256 When such parameters are present, they are called \.{(SUFFIX0)},
14257 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14259 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14260 subst_list, pointer tail_end, small_number suffix_count) {
14261 pointer p; /* tail of the token list being built */
14262 pointer q; /* temporary for link management */
14263 integer balance; /* left delimiters minus right delimiters */
14264 p=hold_head; balance=1; link(hold_head)=null;
14267 if ( mp->cur_sym>0 ) {
14268 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14269 if ( mp->cur_cmd==terminator ) {
14270 @<Adjust the balance; |break| if it's zero@>;
14271 } else if ( mp->cur_cmd==macro_special ) {
14272 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14275 link(p)=mp_cur_tok(mp); p=link(p);
14277 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14278 return link(hold_head);
14281 @ @<Substitute for |cur_sym|...@>=
14284 while ( q!=null ) {
14285 if ( info(q)==mp->cur_sym ) {
14286 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14292 @ @<Adjust the balance; |break| if it's zero@>=
14293 if ( mp->cur_mod>0 ) {
14301 @ Four commands are intended to be used only within macro texts: \&{quote},
14302 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14303 code called |macro_special|.
14305 @d quote 0 /* |macro_special| modifier for \&{quote} */
14306 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14307 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14308 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14311 mp_primitive(mp, "quote",macro_special,quote);
14312 @:quote_}{\&{quote} primitive@>
14313 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14314 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14315 mp_primitive(mp, "@@",macro_special,macro_at);
14316 @:]]]\AT!_}{\.{\AT!} primitive@>
14317 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14318 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14320 @ @<Cases of |print_cmd...@>=
14321 case macro_special:
14323 case macro_prefix: mp_print(mp, "#@@"); break;
14324 case macro_at: mp_print_char(mp, '@@'); break;
14325 case macro_suffix: mp_print(mp, "@@#"); break;
14326 default: mp_print(mp, "quote"); break;
14330 @ @<Handle quoted...@>=
14332 if ( mp->cur_mod==quote ) { get_t_next; }
14333 else if ( mp->cur_mod<=suffix_count )
14334 mp->cur_sym=suffix_base-1+mp->cur_mod;
14337 @ Here is a routine that's used whenever a token will be redefined. If
14338 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14339 substituted; the latter is redefinable but essentially impossible to use,
14340 hence \MP's tables won't get fouled up.
14342 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14345 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14346 print_err("Missing symbolic token inserted");
14347 @.Missing symbolic token...@>
14348 help3("Sorry: You can\'t redefine a number, string, or expr.")
14349 ("I've inserted an inaccessible symbol so that your")
14350 ("definition will be completed without mixing me up too badly.");
14351 if ( mp->cur_sym>0 )
14352 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14353 else if ( mp->cur_cmd==string_token )
14354 delete_str_ref(mp->cur_mod);
14355 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14359 @ Before we actually redefine a symbolic token, we need to clear away its
14360 former value, if it was a variable. The following stronger version of
14361 |get_symbol| does that.
14363 @c void mp_get_clear_symbol (MP mp) {
14364 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14367 @ Here's another little subroutine; it checks that an equals sign
14368 or assignment sign comes along at the proper place in a macro definition.
14370 @c void mp_check_equals (MP mp) {
14371 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14372 mp_missing_err(mp, "=");
14374 help5("The next thing in this `def' should have been `=',")
14375 ("because I've already looked at the definition heading.")
14376 ("But don't worry; I'll pretend that an equals sign")
14377 ("was present. Everything from here to `enddef'")
14378 ("will be the replacement text of this macro.");
14383 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14384 handled now that we have |scan_toks|. In this case there are
14385 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14386 |expr_base| and |expr_base+1|).
14388 @c void mp_make_op_def (MP mp) {
14389 command_code m; /* the type of definition */
14390 pointer p,q,r; /* for list manipulation */
14392 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14393 info(q)=mp->cur_sym; value(q)=expr_base;
14394 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14395 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14396 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14397 get_t_next; mp_check_equals(mp);
14398 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14399 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14400 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14401 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14402 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14405 @ Parameters to macros are introduced by the keywords \&{expr},
14406 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14409 mp_primitive(mp, "expr",param_type,expr_base);
14410 @:expr_}{\&{expr} primitive@>
14411 mp_primitive(mp, "suffix",param_type,suffix_base);
14412 @:suffix_}{\&{suffix} primitive@>
14413 mp_primitive(mp, "text",param_type,text_base);
14414 @:text_}{\&{text} primitive@>
14415 mp_primitive(mp, "primary",param_type,primary_macro);
14416 @:primary_}{\&{primary} primitive@>
14417 mp_primitive(mp, "secondary",param_type,secondary_macro);
14418 @:secondary_}{\&{secondary} primitive@>
14419 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14420 @:tertiary_}{\&{tertiary} primitive@>
14422 @ @<Cases of |print_cmd...@>=
14424 if ( m>=expr_base ) {
14425 if ( m==expr_base ) mp_print(mp, "expr");
14426 else if ( m==suffix_base ) mp_print(mp, "suffix");
14427 else mp_print(mp, "text");
14428 } else if ( m<secondary_macro ) {
14429 mp_print(mp, "primary");
14430 } else if ( m==secondary_macro ) {
14431 mp_print(mp, "secondary");
14433 mp_print(mp, "tertiary");
14437 @ Let's turn next to the more complex processing associated with \&{def}
14438 and \&{vardef}. When the following procedure is called, |cur_mod|
14439 should be either |start_def| or |var_def|.
14441 @c @<Declare the procedure called |check_delimiter|@>;
14442 @<Declare the function called |scan_declared_variable|@>;
14443 void mp_scan_def (MP mp) {
14444 int m; /* the type of definition */
14445 int n; /* the number of special suffix parameters */
14446 int k; /* the total number of parameters */
14447 int c; /* the kind of macro we're defining */
14448 pointer r; /* parameter-substitution list */
14449 pointer q; /* tail of the macro token list */
14450 pointer p; /* temporary storage */
14451 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14452 pointer l_delim,r_delim; /* matching delimiters */
14453 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14454 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14455 @<Scan the token or variable to be defined;
14456 set |n|, |scanner_status|, and |warning_info|@>;
14458 if ( mp->cur_cmd==left_delimiter ) {
14459 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14461 if ( mp->cur_cmd==param_type ) {
14462 @<Absorb undelimited parameters, putting them into list |r|@>;
14464 mp_check_equals(mp);
14465 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14466 @<Attach the replacement text to the tail of node |p|@>;
14467 mp->scanner_status=normal; mp_get_x_next(mp);
14470 @ We don't put `|frozen_end_group|' into the replacement text of
14471 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14473 @<Attach the replacement text to the tail of node |p|@>=
14474 if ( m==start_def ) {
14475 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14477 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14478 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14479 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14481 if ( mp->warning_info==bad_vardef )
14482 mp_flush_token_list(mp, value(bad_vardef))
14486 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14488 @ @<Scan the token or variable to be defined;...@>=
14489 if ( m==start_def ) {
14490 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14491 mp->scanner_status=op_defining; n=0;
14492 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14494 p=mp_scan_declared_variable(mp);
14495 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14496 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14497 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14498 mp->scanner_status=var_defining; n=2;
14499 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14502 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14503 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14505 @ @<Change to `\.{a bad variable}'@>=
14507 print_err("This variable already starts with a macro");
14508 @.This variable already...@>
14509 help2("After `vardef a' you can\'t say `vardef a.b'.")
14510 ("So I'll have to discard this definition.");
14511 mp_error(mp); mp->warning_info=bad_vardef;
14514 @ @<Initialize table entries...@>=
14515 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14516 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14518 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14520 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14521 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14524 print_err("Missing parameter type; `expr' will be assumed");
14525 @.Missing parameter type@>
14526 help1("You should've had `expr' or `suffix' or `text' here.");
14527 mp_back_error(mp); base=expr_base;
14529 @<Absorb parameter tokens for type |base|@>;
14530 mp_check_delimiter(mp, l_delim,r_delim);
14532 } while (mp->cur_cmd==left_delimiter)
14534 @ @<Absorb parameter tokens for type |base|@>=
14536 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14537 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14538 value(p)=base+k; info(p)=mp->cur_sym;
14539 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14540 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14541 incr(k); link(p)=r; r=p; get_t_next;
14542 } while (mp->cur_cmd==comma)
14544 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14546 p=mp_get_node(mp, token_node_size);
14547 if ( mp->cur_mod<expr_base ) {
14548 c=mp->cur_mod; value(p)=expr_base+k;
14550 value(p)=mp->cur_mod+k;
14551 if ( mp->cur_mod==expr_base ) c=expr_macro;
14552 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14555 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14556 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14557 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14558 c=of_macro; p=mp_get_node(mp, token_node_size);
14559 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14560 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14561 link(p)=r; r=p; get_t_next;
14565 @* \[32] Expanding the next token.
14566 Only a few command codes |<min_command| can possibly be returned by
14567 |get_t_next|; in increasing order, they are
14568 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14569 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14571 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14572 like |get_t_next| except that it keeps getting more tokens until
14573 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14574 macros and removes conditionals or iterations or input instructions that
14577 It follows that |get_x_next| might invoke itself recursively. In fact,
14578 there is massive recursion, since macro expansion can involve the
14579 scanning of arbitrarily complex expressions, which in turn involve
14580 macro expansion and conditionals, etc.
14583 Therefore it's necessary to declare a whole bunch of |forward|
14584 procedures at this point, and to insert some other procedures
14585 that will be invoked by |get_x_next|.
14588 void mp_scan_primary (MP mp);
14589 void mp_scan_secondary (MP mp);
14590 void mp_scan_tertiary (MP mp);
14591 void mp_scan_expression (MP mp);
14592 void mp_scan_suffix (MP mp);
14593 @<Declare the procedure called |macro_call|@>;
14594 void mp_get_boolean (MP mp);
14595 void mp_pass_text (MP mp);
14596 void mp_conditional (MP mp);
14597 void mp_start_input (MP mp);
14598 void mp_begin_iteration (MP mp);
14599 void mp_resume_iteration (MP mp);
14600 void mp_stop_iteration (MP mp);
14602 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14603 when it has to do exotic expansion commands.
14605 @c void mp_expand (MP mp) {
14606 pointer p; /* for list manipulation */
14607 size_t k; /* something that we hope is |<=buf_size| */
14608 pool_pointer j; /* index into |str_pool| */
14609 if ( mp->internal[mp_tracing_commands]>unity )
14610 if ( mp->cur_cmd!=defined_macro )
14612 switch (mp->cur_cmd) {
14614 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14617 @<Terminate the current conditional and skip to \&{fi}@>;
14620 @<Initiate or terminate input from a file@>;
14623 if ( mp->cur_mod==end_for ) {
14624 @<Scold the user for having an extra \&{endfor}@>;
14626 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14633 @<Exit a loop if the proper time has come@>;
14638 @<Expand the token after the next token@>;
14641 @<Put a string into the input buffer@>;
14643 case defined_macro:
14644 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14646 }; /* there are no other cases */
14649 @ @<Scold the user...@>=
14651 print_err("Extra `endfor'");
14653 help2("I'm not currently working on a for loop,")
14654 ("so I had better not try to end anything.");
14658 @ The processing of \&{input} involves the |start_input| subroutine,
14659 which will be declared later; the processing of \&{endinput} is trivial.
14662 mp_primitive(mp, "input",input,0);
14663 @:input_}{\&{input} primitive@>
14664 mp_primitive(mp, "endinput",input,1);
14665 @:end_input_}{\&{endinput} primitive@>
14667 @ @<Cases of |print_cmd_mod|...@>=
14669 if ( m==0 ) mp_print(mp, "input");
14670 else mp_print(mp, "endinput");
14673 @ @<Initiate or terminate input...@>=
14674 if ( mp->cur_mod>0 ) mp->force_eof=true;
14675 else mp_start_input(mp)
14677 @ We'll discuss the complicated parts of loop operations later. For now
14678 it suffices to know that there's a global variable called |loop_ptr|
14679 that will be |null| if no loop is in progress.
14682 { while ( token_state &&(loc==null) )
14683 mp_end_token_list(mp); /* conserve stack space */
14684 if ( mp->loop_ptr==null ) {
14685 print_err("Lost loop");
14687 help2("I'm confused; after exiting from a loop, I still seem")
14688 ("to want to repeat it. I'll try to forget the problem.");
14691 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14695 @ @<Exit a loop if the proper time has come@>=
14696 { mp_get_boolean(mp);
14697 if ( mp->internal[mp_tracing_commands]>unity )
14698 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14699 if ( mp->cur_exp==true_code ) {
14700 if ( mp->loop_ptr==null ) {
14701 print_err("No loop is in progress");
14702 @.No loop is in progress@>
14703 help1("Why say `exitif' when there's nothing to exit from?");
14704 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14706 @<Exit prematurely from an iteration@>;
14708 } else if ( mp->cur_cmd!=semicolon ) {
14709 mp_missing_err(mp, ";");
14711 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14712 ("I shall pretend that one was there."); mp_back_error(mp);
14716 @ Here we use the fact that |forever_text| is the only |token_type| that
14717 is less than |loop_text|.
14719 @<Exit prematurely...@>=
14722 if ( file_state ) {
14723 mp_end_file_reading(mp);
14725 if ( token_type<=loop_text ) p=start;
14726 mp_end_token_list(mp);
14729 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14731 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14734 @ @<Expand the token after the next token@>=
14736 p=mp_cur_tok(mp); get_t_next;
14737 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14738 else mp_back_input(mp);
14742 @ @<Put a string into the input buffer@>=
14743 { mp_get_x_next(mp); mp_scan_primary(mp);
14744 if ( mp->cur_type!=mp_string_type ) {
14745 mp_disp_err(mp, null,"Not a string");
14747 help2("I'm going to flush this expression, since")
14748 ("scantokens should be followed by a known string.");
14749 mp_put_get_flush_error(mp, 0);
14752 if ( length(mp->cur_exp)>0 )
14753 @<Pretend we're reading a new one-line file@>;
14757 @ @<Pretend we're reading a new one-line file@>=
14758 { mp_begin_file_reading(mp); name=is_scantok;
14759 k=mp->first+length(mp->cur_exp);
14760 if ( k>=mp->max_buf_stack ) {
14761 while ( k>=mp->buf_size ) {
14762 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14764 mp->max_buf_stack=k+1;
14766 j=mp->str_start[mp->cur_exp]; limit=k;
14767 while ( mp->first<(size_t)limit ) {
14768 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14770 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14771 mp_flush_cur_exp(mp, 0);
14774 @ Here finally is |get_x_next|.
14776 The expression scanning routines to be considered later
14777 communicate via the global quantities |cur_type| and |cur_exp|;
14778 we must be very careful to save and restore these quantities while
14779 macros are being expanded.
14783 void mp_get_x_next (MP mp);
14785 @ @c void mp_get_x_next (MP mp) {
14786 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14788 if ( mp->cur_cmd<min_command ) {
14789 save_exp=mp_stash_cur_exp(mp);
14791 if ( mp->cur_cmd==defined_macro )
14792 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14796 } while (mp->cur_cmd<min_command);
14797 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14801 @ Now let's consider the |macro_call| procedure, which is used to start up
14802 all user-defined macros. Since the arguments to a macro might be expressions,
14803 |macro_call| is recursive.
14806 The first parameter to |macro_call| points to the reference count of the
14807 token list that defines the macro. The second parameter contains any
14808 arguments that have already been parsed (see below). The third parameter
14809 points to the symbolic token that names the macro. If the third parameter
14810 is |null|, the macro was defined by \&{vardef}, so its name can be
14811 reconstructed from the prefix and ``at'' arguments found within the
14814 What is this second parameter? It's simply a linked list of one-word items,
14815 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14816 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14817 the first scanned argument, and |link(arg_list)| points to the list of
14818 further arguments (if any).
14820 Arguments of type \&{expr} are so-called capsules, which we will
14821 discuss later when we concentrate on expressions; they can be
14822 recognized easily because their |link| field is |void|. Arguments of type
14823 \&{suffix} and \&{text} are token lists without reference counts.
14825 @ After argument scanning is complete, the arguments are moved to the
14826 |param_stack|. (They can't be put on that stack any sooner, because
14827 the stack is growing and shrinking in unpredictable ways as more arguments
14828 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14829 the replacement text of the macro is placed at the top of the \MP's
14830 input stack, so that |get_t_next| will proceed to read it next.
14832 @<Declare the procedure called |macro_call|@>=
14833 @<Declare the procedure called |print_macro_name|@>;
14834 @<Declare the procedure called |print_arg|@>;
14835 @<Declare the procedure called |scan_text_arg|@>;
14836 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14837 pointer macro_name) ;
14840 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14841 pointer macro_name) {
14842 /* invokes a user-defined control sequence */
14843 pointer r; /* current node in the macro's token list */
14844 pointer p,q; /* for list manipulation */
14845 integer n; /* the number of arguments */
14846 pointer tail = 0; /* tail of the argument list */
14847 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14848 r=link(def_ref); add_mac_ref(def_ref);
14849 if ( arg_list==null ) {
14852 @<Determine the number |n| of arguments already supplied,
14853 and set |tail| to the tail of |arg_list|@>;
14855 if ( mp->internal[mp_tracing_macros]>0 ) {
14856 @<Show the text of the macro being expanded, and the existing arguments@>;
14858 @<Scan the remaining arguments, if any; set |r| to the first token
14859 of the replacement text@>;
14860 @<Feed the arguments and replacement text to the scanner@>;
14863 @ @<Show the text of the macro...@>=
14864 mp_begin_diagnostic(mp); mp_print_ln(mp);
14865 mp_print_macro_name(mp, arg_list,macro_name);
14866 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14867 mp_show_macro(mp, def_ref,null,100000);
14868 if ( arg_list!=null ) {
14872 mp_print_arg(mp, q,n,0);
14873 incr(n); p=link(p);
14876 mp_end_diagnostic(mp, false)
14879 @ @<Declare the procedure called |print_macro_name|@>=
14880 void mp_print_macro_name (MP mp,pointer a, pointer n);
14883 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14884 pointer p,q; /* they traverse the first part of |a| */
14890 mp_print_text(info(info(link(a))));
14893 while ( link(q)!=null ) q=link(q);
14894 link(q)=info(link(a));
14895 mp_show_token_list(mp, p,null,1000,0);
14901 @ @<Declare the procedure called |print_arg|@>=
14902 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14905 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14906 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14907 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14908 else mp_print_nl(mp, "(TEXT");
14909 mp_print_int(mp, n); mp_print(mp, ")<-");
14910 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14911 else mp_show_token_list(mp, q,null,1000,0);
14914 @ @<Determine the number |n| of arguments already supplied...@>=
14916 n=1; tail=arg_list;
14917 while ( link(tail)!=null ) {
14918 incr(n); tail=link(tail);
14922 @ @<Scan the remaining arguments, if any; set |r|...@>=
14923 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14924 while ( info(r)>=expr_base ) {
14925 @<Scan the delimited argument represented by |info(r)|@>;
14928 if ( mp->cur_cmd==comma ) {
14929 print_err("Too many arguments to ");
14930 @.Too many arguments...@>
14931 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14932 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14934 mp_print(mp, "' has been inserted");
14935 help3("I'm going to assume that the comma I just read was a")
14936 ("right delimiter, and then I'll begin expanding the macro.")
14937 ("You might want to delete some tokens before continuing.");
14940 if ( info(r)!=general_macro ) {
14941 @<Scan undelimited argument(s)@>;
14945 @ At this point, the reader will find it advisable to review the explanation
14946 of token list format that was presented earlier, paying special attention to
14947 the conventions that apply only at the beginning of a macro's token list.
14949 On the other hand, the reader will have to take the expression-parsing
14950 aspects of the following program on faith; we will explain |cur_type|
14951 and |cur_exp| later. (Several things in this program depend on each other,
14952 and it's necessary to jump into the circle somewhere.)
14954 @<Scan the delimited argument represented by |info(r)|@>=
14955 if ( mp->cur_cmd!=comma ) {
14957 if ( mp->cur_cmd!=left_delimiter ) {
14958 print_err("Missing argument to ");
14959 @.Missing argument...@>
14960 mp_print_macro_name(mp, arg_list,macro_name);
14961 help3("That macro has more parameters than you thought.")
14962 ("I'll continue by pretending that each missing argument")
14963 ("is either zero or null.");
14964 if ( info(r)>=suffix_base ) {
14965 mp->cur_exp=null; mp->cur_type=mp_token_list;
14967 mp->cur_exp=0; mp->cur_type=mp_known;
14969 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14972 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14974 @<Scan the argument represented by |info(r)|@>;
14975 if ( mp->cur_cmd!=comma )
14976 @<Check that the proper right delimiter was present@>;
14978 @<Append the current expression to |arg_list|@>
14980 @ @<Check that the proper right delim...@>=
14981 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14982 if ( info(link(r))>=expr_base ) {
14983 mp_missing_err(mp, ",");
14985 help3("I've finished reading a macro argument and am about to")
14986 ("read another; the arguments weren't delimited correctly.")
14987 ("You might want to delete some tokens before continuing.");
14988 mp_back_error(mp); mp->cur_cmd=comma;
14990 mp_missing_err(mp, str(text(r_delim)));
14992 help2("I've gotten to the end of the macro parameter list.")
14993 ("You might want to delete some tokens before continuing.");
14998 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14999 a token list pointed to by |cur_exp|, in which case we will have
15000 |cur_type=token_list|.
15002 @<Append the current expression to |arg_list|@>=
15004 p=mp_get_avail(mp);
15005 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15006 else info(p)=mp_stash_cur_exp(mp);
15007 if ( mp->internal[mp_tracing_macros]>0 ) {
15008 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15009 mp_end_diagnostic(mp, false);
15011 if ( arg_list==null ) arg_list=p;
15016 @ @<Scan the argument represented by |info(r)|@>=
15017 if ( info(r)>=text_base ) {
15018 mp_scan_text_arg(mp, l_delim,r_delim);
15021 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15022 else mp_scan_expression(mp);
15025 @ The parameters to |scan_text_arg| are either a pair of delimiters
15026 or zero; the latter case is for undelimited text arguments, which
15027 end with the first semicolon or \&{endgroup} or \&{end} that is not
15028 contained in a group.
15030 @<Declare the procedure called |scan_text_arg|@>=
15031 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15034 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15035 integer balance; /* excess of |l_delim| over |r_delim| */
15036 pointer p; /* list tail */
15037 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15038 p=hold_head; balance=1; link(hold_head)=null;
15041 if ( l_delim==0 ) {
15042 @<Adjust the balance for an undelimited argument; |break| if done@>;
15044 @<Adjust the balance for a delimited argument; |break| if done@>;
15046 link(p)=mp_cur_tok(mp); p=link(p);
15048 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15049 mp->scanner_status=normal;
15052 @ @<Adjust the balance for a delimited argument...@>=
15053 if ( mp->cur_cmd==right_delimiter ) {
15054 if ( mp->cur_mod==l_delim ) {
15056 if ( balance==0 ) break;
15058 } else if ( mp->cur_cmd==left_delimiter ) {
15059 if ( mp->cur_mod==r_delim ) incr(balance);
15062 @ @<Adjust the balance for an undelimited...@>=
15063 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15064 if ( balance==1 ) { break; }
15065 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15066 } else if ( mp->cur_cmd==begin_group ) {
15070 @ @<Scan undelimited argument(s)@>=
15072 if ( info(r)<text_macro ) {
15074 if ( info(r)!=suffix_macro ) {
15075 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15079 case primary_macro:mp_scan_primary(mp); break;
15080 case secondary_macro:mp_scan_secondary(mp); break;
15081 case tertiary_macro:mp_scan_tertiary(mp); break;
15082 case expr_macro:mp_scan_expression(mp); break;
15084 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15087 @<Scan a suffix with optional delimiters@>;
15089 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15090 } /* there are no other cases */
15092 @<Append the current expression to |arg_list|@>;
15095 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15097 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15098 if ( mp->internal[mp_tracing_macros]>0 ) {
15099 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15100 mp_end_diagnostic(mp, false);
15102 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15104 if ( mp->cur_cmd!=of_token ) {
15105 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15107 mp_print_macro_name(mp, arg_list,macro_name);
15108 help1("I've got the first argument; will look now for the other.");
15111 mp_get_x_next(mp); mp_scan_primary(mp);
15114 @ @<Scan a suffix with optional delimiters@>=
15116 if ( mp->cur_cmd!=left_delimiter ) {
15119 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15121 mp_scan_suffix(mp);
15122 if ( l_delim!=null ) {
15123 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15124 mp_missing_err(mp, str(text(r_delim)));
15126 help2("I've gotten to the end of the macro parameter list.")
15127 ("You might want to delete some tokens before continuing.");
15134 @ Before we put a new token list on the input stack, it is wise to clean off
15135 all token lists that have recently been depleted. Then a user macro that ends
15136 with a call to itself will not require unbounded stack space.
15138 @<Feed the arguments and replacement text to the scanner@>=
15139 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15140 if ( mp->param_ptr+n>mp->max_param_stack ) {
15141 mp->max_param_stack=mp->param_ptr+n;
15142 if ( mp->max_param_stack>mp->param_size )
15143 mp_overflow(mp, "parameter stack size",mp->param_size);
15144 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15146 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15150 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15152 mp_flush_list(mp, arg_list);
15155 @ It's sometimes necessary to put a single argument onto |param_stack|.
15156 The |stack_argument| subroutine does this.
15158 @c void mp_stack_argument (MP mp,pointer p) {
15159 if ( mp->param_ptr==mp->max_param_stack ) {
15160 incr(mp->max_param_stack);
15161 if ( mp->max_param_stack>mp->param_size )
15162 mp_overflow(mp, "parameter stack size",mp->param_size);
15163 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15165 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15168 @* \[33] Conditional processing.
15169 Let's consider now the way \&{if} commands are handled.
15171 Conditions can be inside conditions, and this nesting has a stack
15172 that is independent of other stacks.
15173 Four global variables represent the top of the condition stack:
15174 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15175 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15176 the largest code of a |fi_or_else| command that is syntactically legal;
15177 and |if_line| is the line number at which the current conditional began.
15179 If no conditions are currently in progress, the condition stack has the
15180 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15181 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15182 |link| fields of the first word contain |if_limit|, |cur_if|, and
15183 |cond_ptr| at the next level, and the second word contains the
15184 corresponding |if_line|.
15186 @d if_node_size 2 /* number of words in stack entry for conditionals */
15187 @d if_line_field(A) mp->mem[(A)+1].cint
15188 @d if_code 1 /* code for \&{if} being evaluated */
15189 @d fi_code 2 /* code for \&{fi} */
15190 @d else_code 3 /* code for \&{else} */
15191 @d else_if_code 4 /* code for \&{elseif} */
15194 pointer cond_ptr; /* top of the condition stack */
15195 integer if_limit; /* upper bound on |fi_or_else| codes */
15196 small_number cur_if; /* type of conditional being worked on */
15197 integer if_line; /* line where that conditional began */
15200 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15203 mp_primitive(mp, "if",if_test,if_code);
15204 @:if_}{\&{if} primitive@>
15205 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15206 @:fi_}{\&{fi} primitive@>
15207 mp_primitive(mp, "else",fi_or_else,else_code);
15208 @:else_}{\&{else} primitive@>
15209 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15210 @:else_if_}{\&{elseif} primitive@>
15212 @ @<Cases of |print_cmd_mod|...@>=
15216 case if_code:mp_print(mp, "if"); break;
15217 case fi_code:mp_print(mp, "fi"); break;
15218 case else_code:mp_print(mp, "else"); break;
15219 default: mp_print(mp, "elseif"); break;
15223 @ Here is a procedure that ignores text until coming to an \&{elseif},
15224 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15225 nesting. After it has acted, |cur_mod| will indicate the token that
15228 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15229 makes the skipping process a bit simpler.
15232 void mp_pass_text (MP mp) {
15234 mp->scanner_status=skipping;
15235 mp->warning_info=mp_true_line(mp);
15238 if ( mp->cur_cmd<=fi_or_else ) {
15239 if ( mp->cur_cmd<fi_or_else ) {
15243 if ( mp->cur_mod==fi_code ) decr(l);
15246 @<Decrease the string reference count,
15247 if the current token is a string@>;
15250 mp->scanner_status=normal;
15253 @ @<Decrease the string reference count...@>=
15254 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15256 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15257 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15258 condition has been evaluated, a colon will be inserted.
15259 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15261 @<Push the condition stack@>=
15262 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15263 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15264 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15265 mp->cur_if=if_code;
15268 @ @<Pop the condition stack@>=
15269 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15270 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15271 mp_free_node(mp, p,if_node_size);
15274 @ Here's a procedure that changes the |if_limit| code corresponding to
15275 a given value of |cond_ptr|.
15277 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15279 if ( p==mp->cond_ptr ) {
15280 mp->if_limit=l; /* that's the easy case */
15284 if ( q==null ) mp_confusion(mp, "if");
15285 @:this can't happen if}{\quad if@>
15286 if ( link(q)==p ) {
15294 @ The user is supposed to put colons into the proper parts of conditional
15295 statements. Therefore, \MP\ has to check for their presence.
15298 void mp_check_colon (MP mp) {
15299 if ( mp->cur_cmd!=colon ) {
15300 mp_missing_err(mp, ":");
15302 help2("There should've been a colon after the condition.")
15303 ("I shall pretend that one was there.");;
15308 @ A condition is started when the |get_x_next| procedure encounters
15309 an |if_test| command; in that case |get_x_next| calls |conditional|,
15310 which is a recursive procedure.
15313 @c void mp_conditional (MP mp) {
15314 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15315 int new_if_limit; /* future value of |if_limit| */
15316 pointer p; /* temporary register */
15317 @<Push the condition stack@>;
15318 save_cond_ptr=mp->cond_ptr;
15320 mp_get_boolean(mp); new_if_limit=else_if_code;
15321 if ( mp->internal[mp_tracing_commands]>unity ) {
15322 @<Display the boolean value of |cur_exp|@>;
15325 mp_check_colon(mp);
15326 if ( mp->cur_exp==true_code ) {
15327 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15328 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15330 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15332 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15333 if ( mp->cur_mod==fi_code ) {
15334 @<Pop the condition stack@>
15335 } else if ( mp->cur_mod==else_if_code ) {
15338 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15343 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15344 \&{else}: \\{bar} \&{fi}', the first \&{else}
15345 that we come to after learning that the \&{if} is false is not the
15346 \&{else} we're looking for. Hence the following curious logic is needed.
15348 @<Skip to \&{elseif}...@>=
15351 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15352 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15356 @ @<Display the boolean value...@>=
15357 { mp_begin_diagnostic(mp);
15358 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15359 else mp_print(mp, "{false}");
15360 mp_end_diagnostic(mp, false);
15363 @ The processing of conditionals is complete except for the following
15364 code, which is actually part of |get_x_next|. It comes into play when
15365 \&{elseif}, \&{else}, or \&{fi} is scanned.
15367 @<Terminate the current conditional and skip to \&{fi}@>=
15368 if ( mp->cur_mod>mp->if_limit ) {
15369 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15370 mp_missing_err(mp, ":");
15372 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15374 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15378 help1("I'm ignoring this; it doesn't match any if.");
15382 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15383 @<Pop the condition stack@>;
15386 @* \[34] Iterations.
15387 To bring our treatment of |get_x_next| to a close, we need to consider what
15388 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15390 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15391 that are currently active. If |loop_ptr=null|, no loops are in progress;
15392 otherwise |info(loop_ptr)| points to the iterative text of the current
15393 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15394 loops that enclose the current one.
15396 A loop-control node also has two other fields, called |loop_type| and
15397 |loop_list|, whose contents depend on the type of loop:
15399 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15400 points to a list of one-word nodes whose |info| fields point to the
15401 remaining argument values of a suffix list and expression list.
15403 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15406 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15407 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15408 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15411 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15412 header and |loop_list(loop_ptr)| points into the graphical object list for
15415 \yskip\noindent In the case of a progression node, the first word is not used
15416 because the link field of words in the dynamic memory area cannot be arbitrary.
15418 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15419 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15420 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15421 @d loop_node_size 2 /* the number of words in a loop control node */
15422 @d progression_node_size 4 /* the number of words in a progression node */
15423 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15424 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15425 @d progression_flag (null+2)
15426 /* |loop_type| value when |loop_list| points to a progression node */
15429 pointer loop_ptr; /* top of the loop-control-node stack */
15434 @ If the expressions that define an arithmetic progression in
15435 a \&{for} loop don't have known numeric values, the |bad_for|
15436 subroutine screams at the user.
15438 @c void mp_bad_for (MP mp, char * s) {
15439 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15440 @.Improper...replaced by 0@>
15441 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15442 help4("When you say `for x=a step b until c',")
15443 ("the initial value `a' and the step size `b'")
15444 ("and the final value `c' must have known numeric values.")
15445 ("I'm zeroing this one. Proceed, with fingers crossed.");
15446 mp_put_get_flush_error(mp, 0);
15449 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15450 has just been scanned. (This code requires slight familiarity with
15451 expression-parsing routines that we have not yet discussed; but it seems
15452 to belong in the present part of the program, even though the original author
15453 didn't write it until later. The reader may wish to come back to it.)
15455 @c void mp_begin_iteration (MP mp) {
15456 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15457 halfword n; /* hash address of the current symbol */
15458 pointer s; /* the new loop-control node */
15459 pointer p; /* substitution list for |scan_toks| */
15460 pointer q; /* link manipulation register */
15461 pointer pp; /* a new progression node */
15462 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15463 if ( m==start_forever ){
15464 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15466 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15467 info(p)=mp->cur_sym; value(p)=m;
15469 if ( mp->cur_cmd==within_token ) {
15470 @<Set up a picture iteration@>;
15472 @<Check for the |"="| or |":="| in a loop header@>;
15473 @<Scan the values to be used in the loop@>;
15476 @<Check for the presence of a colon@>;
15477 @<Scan the loop text and put it on the loop control stack@>;
15478 mp_resume_iteration(mp);
15481 @ @<Check for the |"="| or |":="| in a loop header@>=
15482 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15483 mp_missing_err(mp, "=");
15485 help3("The next thing in this loop should have been `=' or `:='.")
15486 ("But don't worry; I'll pretend that an equals sign")
15487 ("was present, and I'll look for the values next.");
15491 @ @<Check for the presence of a colon@>=
15492 if ( mp->cur_cmd!=colon ) {
15493 mp_missing_err(mp, ":");
15495 help3("The next thing in this loop should have been a `:'.")
15496 ("So I'll pretend that a colon was present;")
15497 ("everything from here to `endfor' will be iterated.");
15501 @ We append a special |frozen_repeat_loop| token in place of the
15502 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15503 at the proper time to cause the loop to be repeated.
15505 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15506 he will be foiled by the |get_symbol| routine, which keeps frozen
15507 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15508 token, so it won't be lost accidentally.)
15510 @ @<Scan the loop text...@>=
15511 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15512 mp->scanner_status=loop_defining; mp->warning_info=n;
15513 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15514 link(s)=mp->loop_ptr; mp->loop_ptr=s
15516 @ @<Initialize table...@>=
15517 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15518 text(frozen_repeat_loop)=intern(" ENDFOR");
15520 @ The loop text is inserted into \MP's scanning apparatus by the
15521 |resume_iteration| routine.
15523 @c void mp_resume_iteration (MP mp) {
15524 pointer p,q; /* link registers */
15525 p=loop_type(mp->loop_ptr);
15526 if ( p==progression_flag ) {
15527 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15528 mp->cur_exp=value(p);
15529 if ( @<The arithmetic progression has ended@> ) {
15530 mp_stop_iteration(mp);
15533 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15534 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15535 } else if ( p==null ) {
15536 p=loop_list(mp->loop_ptr);
15538 mp_stop_iteration(mp);
15541 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15542 } else if ( p==mp_void ) {
15543 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15545 @<Make |q| a capsule containing the next picture component from
15546 |loop_list(loop_ptr)| or |goto not_found|@>;
15548 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15549 mp_stack_argument(mp, q);
15550 if ( mp->internal[mp_tracing_commands]>unity ) {
15551 @<Trace the start of a loop@>;
15555 mp_stop_iteration(mp);
15558 @ @<The arithmetic progression has ended@>=
15559 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15560 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15562 @ @<Trace the start of a loop@>=
15564 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15566 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15567 else mp_show_token_list(mp, q,null,50,0);
15568 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15571 @ @<Make |q| a capsule containing the next picture component from...@>=
15572 { q=loop_list(mp->loop_ptr);
15573 if ( q==null ) goto NOT_FOUND;
15574 skip_component(q) goto NOT_FOUND;
15575 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15576 mp_init_bbox(mp, mp->cur_exp);
15577 mp->cur_type=mp_picture_type;
15578 loop_list(mp->loop_ptr)=q;
15579 q=mp_stash_cur_exp(mp);
15582 @ A level of loop control disappears when |resume_iteration| has decided
15583 not to resume, or when an \&{exitif} construction has removed the loop text
15584 from the input stack.
15586 @c void mp_stop_iteration (MP mp) {
15587 pointer p,q; /* the usual */
15588 p=loop_type(mp->loop_ptr);
15589 if ( p==progression_flag ) {
15590 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15591 } else if ( p==null ){
15592 q=loop_list(mp->loop_ptr);
15593 while ( q!=null ) {
15596 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15597 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15599 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15602 p=q; q=link(q); free_avail(p);
15604 } else if ( p>progression_flag ) {
15605 delete_edge_ref(p);
15607 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15608 mp_free_node(mp, p,loop_node_size);
15611 @ Now that we know all about loop control, we can finish up
15612 the missing portion of |begin_iteration| and we'll be done.
15614 The following code is performed after the `\.=' has been scanned in
15615 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15616 (if |m=suffix_base|).
15618 @<Scan the values to be used in the loop@>=
15619 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15622 if ( m!=expr_base ) {
15623 mp_scan_suffix(mp);
15625 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15627 mp_scan_expression(mp);
15628 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15629 @<Prepare for step-until construction and |break|@>;
15631 mp->cur_exp=mp_stash_cur_exp(mp);
15633 link(q)=mp_get_avail(mp); q=link(q);
15634 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15637 } while (mp->cur_cmd==comma)
15639 @ @<Prepare for step-until construction and |break|@>=
15641 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15642 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15643 mp_get_x_next(mp); mp_scan_expression(mp);
15644 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15645 step_size(pp)=mp->cur_exp;
15646 if ( mp->cur_cmd!=until_token ) {
15647 mp_missing_err(mp, "until");
15648 @.Missing `until'@>
15649 help2("I assume you meant to say `until' after `step'.")
15650 ("So I'll look for the final value and colon next.");
15653 mp_get_x_next(mp); mp_scan_expression(mp);
15654 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15655 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15656 loop_type(s)=progression_flag;
15660 @ The last case is when we have just seen ``\&{within}'', and we need to
15661 parse a picture expression and prepare to iterate over it.
15663 @<Set up a picture iteration@>=
15664 { mp_get_x_next(mp);
15665 mp_scan_expression(mp);
15666 @<Make sure the current expression is a known picture@>;
15667 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15668 q=link(dummy_loc(mp->cur_exp));
15670 if ( is_start_or_stop(q) )
15671 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15675 @ @<Make sure the current expression is a known picture@>=
15676 if ( mp->cur_type!=mp_picture_type ) {
15677 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15678 help1("When you say `for x in p', p must be a known picture.");
15679 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15680 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15683 @* \[35] File names.
15684 It's time now to fret about file names. Besides the fact that different
15685 operating systems treat files in different ways, we must cope with the
15686 fact that completely different naming conventions are used by different
15687 groups of people. The following programs show what is required for one
15688 particular operating system; similar routines for other systems are not
15689 difficult to devise.
15690 @^system dependencies@>
15692 \MP\ assumes that a file name has three parts: the name proper; its
15693 ``extension''; and a ``file area'' where it is found in an external file
15694 system. The extension of an input file is assumed to be
15695 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15696 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15697 metric files that describe characters in any fonts created by \MP; it is
15698 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15699 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15700 The file area can be arbitrary on input files, but files are usually
15701 output to the user's current area. If an input file cannot be
15702 found on the specified area, \MP\ will look for it on a special system
15703 area; this special area is intended for commonly used input files.
15705 Simple uses of \MP\ refer only to file names that have no explicit
15706 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15707 instead of `\.{input} \.{cmr10.new}'. Simple file
15708 names are best, because they make the \MP\ source files portable;
15709 whenever a file name consists entirely of letters and digits, it should be
15710 treated in the same way by all implementations of \MP. However, users
15711 need the ability to refer to other files in their environment, especially
15712 when responding to error messages concerning unopenable files; therefore
15713 we want to let them use the syntax that appears in their favorite
15716 @ \MP\ uses the same conventions that have proved to be satisfactory for
15717 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15718 @^system dependencies@>
15719 the system-independent parts of \MP\ are expressed in terms
15720 of three system-dependent
15721 procedures called |begin_name|, |more_name|, and |end_name|. In
15722 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15723 the system-independent driver program does the operations
15724 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15726 These three procedures communicate with each other via global variables.
15727 Afterwards the file name will appear in the string pool as three strings
15728 called |cur_name|\penalty10000\hskip-.05em,
15729 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15730 |""|), unless they were explicitly specified by the user.
15732 Actually the situation is slightly more complicated, because \MP\ needs
15733 to know when the file name ends. The |more_name| routine is a function
15734 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15735 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15736 returns |false|; or, it returns |true| and $c_n$ is the last character
15737 on the current input line. In other words,
15738 |more_name| is supposed to return |true| unless it is sure that the
15739 file name has been completely scanned; and |end_name| is supposed to be able
15740 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15741 whether $|more_name|(c_n)$ returned |true| or |false|.
15744 char * cur_name; /* name of file just scanned */
15745 char * cur_area; /* file area just scanned, or \.{""} */
15746 char * cur_ext; /* file extension just scanned, or \.{""} */
15748 @ It is easier to maintain reference counts if we assign initial values.
15751 mp->cur_name=xstrdup("");
15752 mp->cur_area=xstrdup("");
15753 mp->cur_ext=xstrdup("");
15755 @ @<Dealloc variables@>=
15756 xfree(mp->cur_area);
15757 xfree(mp->cur_name);
15758 xfree(mp->cur_ext);
15760 @ The file names we shall deal with for illustrative purposes have the
15761 following structure: If the name contains `\.>' or `\.:', the file area
15762 consists of all characters up to and including the final such character;
15763 otherwise the file area is null. If the remaining file name contains
15764 `\..', the file extension consists of all such characters from the first
15765 remaining `\..' to the end, otherwise the file extension is null.
15766 @^system dependencies@>
15768 We can scan such file names easily by using two global variables that keep track
15769 of the occurrences of area and extension delimiters. Note that these variables
15770 cannot be of type |pool_pointer| because a string pool compaction could occur
15771 while scanning a file name.
15774 integer area_delimiter;
15775 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15776 integer ext_delimiter; /* the relevant `\..', if any */
15778 @ Input files that can't be found in the user's area may appear in standard
15779 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15780 extension is |".mf"|.) The standard system area for font metric files
15781 to be read is |MP_font_area|.
15782 This system area name will, of course, vary from place to place.
15783 @^system dependencies@>
15785 @d MP_area "MPinputs:"
15787 @d MF_area "MFinputs:"
15792 @ Here now is the first of the system-dependent routines for file name scanning.
15793 @^system dependencies@>
15795 @<Declare subroutines for parsing file names@>=
15796 void mp_begin_name (MP mp) {
15797 xfree(mp->cur_name);
15798 xfree(mp->cur_area);
15799 xfree(mp->cur_ext);
15800 mp->area_delimiter=-1;
15801 mp->ext_delimiter=-1;
15804 @ And here's the second.
15805 @^system dependencies@>
15807 @<Declare subroutines for parsing file names@>=
15808 boolean mp_more_name (MP mp, ASCII_code c) {
15812 if ( (c=='>')||(c==':') ) {
15813 mp->area_delimiter=mp->pool_ptr;
15814 mp->ext_delimiter=-1;
15815 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15816 mp->ext_delimiter=mp->pool_ptr;
15818 str_room(1); append_char(c); /* contribute |c| to the current string */
15824 @^system dependencies@>
15826 @d copy_pool_segment(A,B,C) {
15827 A = xmalloc(C+1,sizeof(char));
15828 strncpy(A,(char *)(mp->str_pool+B),C);
15831 @<Declare subroutines for parsing file names@>=
15832 void mp_end_name (MP mp) {
15833 pool_pointer s; /* length of area, name, and extension */
15836 s = mp->str_start[mp->str_ptr];
15837 if ( mp->area_delimiter<0 ) {
15838 mp->cur_area=xstrdup("");
15840 len = mp->area_delimiter-s;
15841 copy_pool_segment(mp->cur_area,s,len);
15844 if ( mp->ext_delimiter<0 ) {
15845 mp->cur_ext=xstrdup("");
15846 len = mp->pool_ptr-s;
15848 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15849 len = mp->ext_delimiter-s;
15851 copy_pool_segment(mp->cur_name,s,len);
15852 mp->pool_ptr=s; /* don't need this partial string */
15855 @ Conversely, here is a routine that takes three strings and prints a file
15856 name that might have produced them. (The routine is system dependent, because
15857 some operating systems put the file area last instead of first.)
15858 @^system dependencies@>
15860 @<Basic printing...@>=
15861 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15862 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15865 @ Another system-dependent routine is needed to convert three internal
15867 to the |name_of_file| value that is used to open files. The present code
15868 allows both lowercase and uppercase letters in the file name.
15869 @^system dependencies@>
15871 @d append_to_name(A) { c=(A);
15872 if ( k<file_name_size ) {
15873 mp->name_of_file[k]=xchr(c);
15878 @<Declare subroutines for parsing file names@>=
15879 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15880 integer k; /* number of positions filled in |name_of_file| */
15881 ASCII_code c; /* character being packed */
15882 char *j; /* a character index */
15886 for (j=a;*j;j++) { append_to_name(*j); }
15888 for (j=n;*j;j++) { append_to_name(*j); }
15890 for (j=e;*j;j++) { append_to_name(*j); }
15892 mp->name_of_file[k]=0;
15896 @ @<Internal library declarations@>=
15897 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15899 @ A messier routine is also needed, since mem file names must be scanned
15900 before \MP's string mechanism has been initialized. We shall use the
15901 global variable |MP_mem_default| to supply the text for default system areas
15902 and extensions related to mem files.
15903 @^system dependencies@>
15905 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15906 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15907 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15910 char *MP_mem_default;
15911 char *mem_name; /* for commandline */
15913 @ @<Option variables@>=
15914 char *mem_name; /* for commandline */
15916 @ @<Allocate or initialize ...@>=
15917 mp->MP_mem_default = xstrdup("plain.mem");
15918 mp->mem_name = xstrdup(opt->mem_name);
15920 @^system dependencies@>
15922 @ @<Dealloc variables@>=
15923 xfree(mp->MP_mem_default);
15924 xfree(mp->mem_name);
15926 @ @<Check the ``constant'' values for consistency@>=
15927 if ( mem_default_length>file_name_size ) mp->bad=20;
15929 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15930 from the first |n| characters of |MP_mem_default|, followed by
15931 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15934 We dare not give error messages here, since \MP\ calls this routine before
15935 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15936 since the error will be detected in another way when a strange file name
15938 @^system dependencies@>
15940 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15942 integer k; /* number of positions filled in |name_of_file| */
15943 ASCII_code c; /* character being packed */
15944 integer j; /* index into |buffer| or |MP_mem_default| */
15945 if ( n+b-a+1+mem_ext_length>file_name_size )
15946 b=a+file_name_size-n-1-mem_ext_length;
15948 for (j=0;j<n;j++) {
15949 append_to_name(xord((int)mp->MP_mem_default[j]));
15951 for (j=a;j<b;j++) {
15952 append_to_name(mp->buffer[j]);
15954 for (j=mem_default_length-mem_ext_length;
15955 j<mem_default_length;j++) {
15956 append_to_name(xord((int)mp->MP_mem_default[j]));
15958 mp->name_of_file[k]=0;
15962 @ Here is the only place we use |pack_buffered_name|. This part of the program
15963 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15964 the preliminary initialization, or when the user is substituting another
15965 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15966 contains the first line of input in |buffer[loc..(last-1)]|, where
15967 |loc<last| and |buffer[loc]<>" "|.
15970 boolean mp_open_mem_file (MP mp) ;
15973 boolean mp_open_mem_file (MP mp) {
15974 int j; /* the first space after the file name */
15975 if (mp->mem_name!=NULL) {
15976 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15977 if ( mp->mem_file ) return true;
15980 if ( mp->buffer[loc]=='&' ) {
15981 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15982 while ( mp->buffer[j]!=' ' ) incr(j);
15983 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15984 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15986 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15987 @.Sorry, I can't find...@>
15990 /* now pull out all the stops: try for the system \.{plain} file */
15991 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15992 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15994 wterm_ln("I can\'t find the PLAIN mem file!\n");
15995 @.I can't find PLAIN...@>
16000 loc=j; return true;
16003 @ Operating systems often make it possible to determine the exact name (and
16004 possible version number) of a file that has been opened. The following routine,
16005 which simply makes a \MP\ string from the value of |name_of_file|, should
16006 ideally be changed to deduce the full name of file~|f|, which is the file
16007 most recently opened, if it is possible to do this in a \PASCAL\ program.
16008 @^system dependencies@>
16011 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16012 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16013 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16016 str_number mp_make_name_string (MP mp) {
16017 int k; /* index into |name_of_file| */
16018 str_room(mp->name_length);
16019 for (k=0;k<mp->name_length;k++) {
16020 append_char(xord((int)mp->name_of_file[k]));
16022 return mp_make_string(mp);
16025 @ Now let's consider the ``driver''
16026 routines by which \MP\ deals with file names
16027 in a system-independent manner. First comes a procedure that looks for a
16028 file name in the input by taking the information from the input buffer.
16029 (We can't use |get_next|, because the conversion to tokens would
16030 destroy necessary information.)
16032 This procedure doesn't allow semicolons or percent signs to be part of
16033 file names, because of other conventions of \MP.
16034 {\sl The {\logos METAFONT\/}book} doesn't
16035 use semicolons or percents immediately after file names, but some users
16036 no doubt will find it natural to do so; therefore system-dependent
16037 changes to allow such characters in file names should probably
16038 be made with reluctance, and only when an entire file name that
16039 includes special characters is ``quoted'' somehow.
16040 @^system dependencies@>
16042 @c void mp_scan_file_name (MP mp) {
16044 while ( mp->buffer[loc]==' ' ) incr(loc);
16046 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16047 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16053 @ Here is another version that takes its input from a string.
16055 @<Declare subroutines for parsing file names@>=
16056 void mp_str_scan_file (MP mp, str_number s) {
16057 pool_pointer p,q; /* current position and stopping point */
16059 p=mp->str_start[s]; q=str_stop(s);
16061 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16067 @ And one that reads from a |char*|.
16069 @<Declare subroutines for parsing file names@>=
16070 void mp_ptr_scan_file (MP mp, char *s) {
16071 char *p, *q; /* current position and stopping point */
16073 p=s; q=p+strlen(s);
16075 if ( ! mp_more_name(mp, *p)) break;
16082 @ The global variable |job_name| contains the file name that was first
16083 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16084 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16087 char *job_name; /* principal file name */
16088 boolean log_opened; /* has the transcript file been opened? */
16089 char *log_name; /* full name of the log file */
16091 @ @<Option variables@>=
16092 char *job_name; /* principal file name */
16094 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16095 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16096 except of course for a short time just after |job_name| has become nonzero.
16098 @<Allocate or ...@>=
16099 mp->job_name=opt->job_name;
16100 mp->log_opened=false;
16102 @ @<Dealloc variables@>=
16103 xfree(mp->job_name);
16105 @ Here is a routine that manufactures the output file names, assuming that
16106 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16109 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16112 void mp_pack_job_name (MP mp, char *s) ;
16114 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16115 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16116 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16117 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16121 @ If some trouble arises when \MP\ tries to open a file, the following
16122 routine calls upon the user to supply another file name. Parameter~|s|
16123 is used in the error message to identify the type of file; parameter~|e|
16124 is the default extension if none is given. Upon exit from the routine,
16125 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16126 ready for another attempt at file opening.
16129 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16131 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16132 size_t k; /* index into |buffer| */
16133 char * saved_cur_name;
16134 if ( mp->interaction==mp_scroll_mode )
16136 if (strcmp(s,"input file name")==0) {
16137 print_err("I can\'t find file `");
16138 @.I can't find file x@>
16140 print_err("I can\'t write on file `");
16142 @.I can't write on file x@>
16143 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16144 mp_print(mp, "'.");
16145 if (strcmp(e,"")==0)
16146 mp_show_context(mp);
16147 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16149 if ( mp->interaction<mp_scroll_mode )
16150 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16151 @.job aborted, file error...@>
16152 saved_cur_name = xstrdup(mp->cur_name);
16153 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16154 if (strcmp(mp->cur_ext,"")==0)
16156 if (strlen(mp->cur_name)==0) {
16157 mp->cur_name=saved_cur_name;
16159 xfree(saved_cur_name);
16164 @ @<Scan file name in the buffer@>=
16166 mp_begin_name(mp); k=mp->first;
16167 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16169 if ( k==mp->last ) break;
16170 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16176 @ The |open_log_file| routine is used to open the transcript file and to help
16177 it catch up to what has previously been printed on the terminal.
16179 @c void mp_open_log_file (MP mp) {
16180 int old_setting; /* previous |selector| setting */
16181 int k; /* index into |months| and |buffer| */
16182 int l; /* end of first input line */
16183 integer m; /* the current month */
16184 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16185 /* abbreviations of month names */
16186 old_setting=mp->selector;
16187 if ( mp->job_name==NULL ) {
16188 mp->job_name=xstrdup("mpout");
16190 mp_pack_job_name(mp,".log");
16191 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16192 @<Try to get a different log file name@>;
16194 mp->log_name=xstrdup(mp->name_of_file);
16195 mp->selector=log_only; mp->log_opened=true;
16196 @<Print the banner line, including the date and time@>;
16197 mp->input_stack[mp->input_ptr]=mp->cur_input;
16198 /* make sure bottom level is in memory */
16199 mp_print_nl(mp, "**");
16201 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16202 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16203 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16204 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16207 @ @<Dealloc variables@>=
16208 xfree(mp->log_name);
16210 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16211 unable to print error messages or even to |show_context|.
16212 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16213 routine will not be invoked because |log_opened| will be false.
16215 The normal idea of |mp_batch_mode| is that nothing at all should be written
16216 on the terminal. However, in the unusual case that
16217 no log file could be opened, we make an exception and allow
16218 an explanatory message to be seen.
16220 Incidentally, the program always refers to the log file as a `\.{transcript
16221 file}', because some systems cannot use the extension `\.{.log}' for
16224 @<Try to get a different log file name@>=
16226 mp->selector=term_only;
16227 mp_prompt_file_name(mp, "transcript file name",".log");
16230 @ @<Print the banner...@>=
16233 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16234 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16235 mp_print_char(mp, ' ');
16236 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16237 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16238 mp_print_char(mp, ' ');
16239 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16240 mp_print_char(mp, ' ');
16241 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16242 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16245 @ The |try_extension| function tries to open an input file determined by
16246 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16247 can't find the file in |cur_area| or the appropriate system area.
16249 @c boolean mp_try_extension (MP mp,char *ext) {
16250 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16251 in_name=xstrdup(mp->cur_name);
16252 in_area=xstrdup(mp->cur_area);
16253 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16256 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16257 else in_area=xstrdup(MP_area);
16258 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16259 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16264 @ Let's turn now to the procedure that is used to initiate file reading
16265 when an `\.{input}' command is being processed.
16267 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16268 char *fname = NULL;
16269 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16271 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16272 if ( strlen(mp->cur_ext)==0 ) {
16273 if ( mp_try_extension(mp, ".mp") ) break;
16274 else if ( mp_try_extension(mp, "") ) break;
16275 else if ( mp_try_extension(mp, ".mf") ) break;
16276 /* |else do_nothing; | */
16277 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16280 mp_end_file_reading(mp); /* remove the level that didn't work */
16281 mp_prompt_file_name(mp, "input file name","");
16283 name=mp_a_make_name_string(mp, cur_file);
16284 fname = xstrdup(mp->name_of_file);
16285 if ( mp->job_name==NULL ) {
16286 mp->job_name=xstrdup(mp->cur_name);
16287 mp_open_log_file(mp);
16288 } /* |open_log_file| doesn't |show_context|, so |limit|
16289 and |loc| needn't be set to meaningful values yet */
16290 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16291 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16292 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16295 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16296 @<Read the first line of the new file@>;
16299 @ This code should be omitted if |a_make_name_string| returns something other
16300 than just a copy of its argument and the full file name is needed for opening
16301 \.{MPX} files or implementing the switch-to-editor option.
16302 @^system dependencies@>
16304 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16305 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16307 @ Here we have to remember to tell the |input_ln| routine not to
16308 start with a |get|. If the file is empty, it is considered to
16309 contain a single blank line.
16310 @^system dependencies@>
16312 @<Read the first line...@>=
16315 (void)mp_input_ln(mp, cur_file,false);
16316 mp_firm_up_the_line(mp);
16317 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16320 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16321 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16322 if ( token_state ) {
16323 print_err("File names can't appear within macros");
16324 @.File names can't...@>
16325 help3("Sorry...I've converted what follows to tokens,")
16326 ("possibly garbaging the name you gave.")
16327 ("Please delete the tokens and insert the name again.");
16330 if ( file_state ) {
16331 mp_scan_file_name(mp);
16333 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16334 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16335 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16338 @ Sometimes we need to deal with two file names at once. This procedure
16339 copies the given string into a special array for an old file name.
16341 @c void mp_copy_old_name (MP mp,str_number s) {
16342 integer k; /* number of positions filled in |old_file_name| */
16343 pool_pointer j; /* index into |str_pool| */
16345 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16347 if ( k<=file_name_size )
16348 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16350 mp->old_file_name[++k] = 0;
16354 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16356 @ The following simple routine starts reading the \.{MPX} file associated
16357 with the current input file.
16359 @c void mp_start_mpx_input (MP mp) {
16360 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16361 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16362 |goto not_found| if there is a problem@>;
16363 mp_begin_file_reading(mp);
16364 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16365 mp_end_file_reading(mp);
16368 name=mp_a_make_name_string(mp, cur_file);
16369 mp->mpx_name[index]=name; add_str_ref(name);
16370 @<Read the first line of the new file@>;
16373 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16376 @ This should ideally be changed to do whatever is necessary to create the
16377 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16378 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16379 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16380 completely different typesetting program if suitable postprocessor is
16381 available to perform the function of \.{DVItoMP}.)
16382 @^system dependencies@>
16384 @ @<Exported types@>=
16385 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16388 mp_run_make_mpx_command run_make_mpx;
16390 @ @<Option variables@>=
16391 mp_run_make_mpx_command run_make_mpx;
16393 @ @<Allocate or initialize ...@>=
16394 set_callback_option(run_make_mpx);
16396 @ @<Internal library declarations@>=
16397 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16399 @ The default does nothing.
16401 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16402 if (mp && origname && mtxname) /* for -W */
16409 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16410 |goto not_found| if there is a problem@>=
16411 mp_copy_old_name(mp, name);
16412 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16415 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16416 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16417 mp_print_nl(mp, ">> ");
16418 mp_print(mp, mp->old_file_name);
16419 mp_print_nl(mp, ">> ");
16420 mp_print(mp, mp->name_of_file);
16421 mp_print_nl(mp, "! Unable to make mpx file");
16422 help4("The two files given above are one of your source files")
16423 ("and an auxiliary file I need to read to find out what your")
16424 ("btex..etex blocks mean. If you don't know why I had trouble,")
16425 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16428 @ The last file-opening commands are for files accessed via the \&{readfrom}
16429 @:read_from_}{\&{readfrom} primitive@>
16430 operator and the \&{write} command. Such files are stored in separate arrays.
16431 @:write_}{\&{write} primitive@>
16433 @<Types in the outer block@>=
16434 typedef unsigned int readf_index; /* |0..max_read_files| */
16435 typedef unsigned int write_index; /* |0..max_write_files| */
16438 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16439 FILE ** rd_file; /* \&{readfrom} files */
16440 char ** rd_fname; /* corresponding file name or 0 if file not open */
16441 readf_index read_files; /* number of valid entries in the above arrays */
16442 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16443 FILE ** wr_file; /* \&{write} files */
16444 char ** wr_fname; /* corresponding file name or 0 if file not open */
16445 write_index write_files; /* number of valid entries in the above arrays */
16447 @ @<Allocate or initialize ...@>=
16448 mp->max_read_files=8;
16449 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16450 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16451 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16453 mp->max_write_files=8;
16454 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16455 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16456 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16460 @ This routine starts reading the file named by string~|s| without setting
16461 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16462 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16464 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16465 mp_ptr_scan_file(mp, s);
16467 mp_begin_file_reading(mp);
16468 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16470 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16471 fclose(mp->rd_file[n]);
16474 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16477 mp_end_file_reading(mp);
16481 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16484 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16486 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16487 mp_ptr_scan_file(mp, s);
16489 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16490 mp_prompt_file_name(mp, "file name for write output","");
16491 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16495 @* \[36] Introduction to the parsing routines.
16496 We come now to the central nervous system that sparks many of \MP's activities.
16497 By evaluating expressions, from their primary constituents to ever larger
16498 subexpressions, \MP\ builds the structures that ultimately define complete
16499 pictures or fonts of type.
16501 Four mutually recursive subroutines are involved in this process: We call them
16502 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16503 and |scan_expression|.}$$
16505 Each of them is parameterless and begins with the first token to be scanned
16506 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16507 the value of the primary or secondary or tertiary or expression that was
16508 found will appear in the global variables |cur_type| and |cur_exp|. The
16509 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16512 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16513 backup mechanisms have been added in order to provide reasonable error
16517 small_number cur_type; /* the type of the expression just found */
16518 integer cur_exp; /* the value of the expression just found */
16523 @ Many different kinds of expressions are possible, so it is wise to have
16524 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16527 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16528 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16529 construction in which there was no expression before the \&{endgroup}.
16530 In this case |cur_exp| has some irrelevant value.
16533 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16537 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16538 node that is in the ring of variables equivalent
16539 to at least one undefined boolean variable.
16542 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16543 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16544 includes this particular reference.
16547 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16548 node that is in the ring of variables equivalent
16549 to at least one undefined string variable.
16552 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16553 else points to any of the nodes in this pen. The pen may be polygonal or
16557 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16558 node that is in the ring of variables equivalent
16559 to at least one undefined pen variable.
16562 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16563 a path; nobody else points to this particular path. The control points of
16564 the path will have been chosen.
16567 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16568 node that is in the ring of variables equivalent
16569 to at least one undefined path variable.
16572 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16573 There may be other pointers to this particular set of edges. The header node
16574 contains a reference count that includes this particular reference.
16577 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16578 node that is in the ring of variables equivalent
16579 to at least one undefined picture variable.
16582 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16583 capsule node. The |value| part of this capsule
16584 points to a transform node that contains six numeric values,
16585 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16588 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16589 capsule node. The |value| part of this capsule
16590 points to a color node that contains three numeric values,
16591 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16594 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16595 capsule node. The |value| part of this capsule
16596 points to a color node that contains four numeric values,
16597 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16600 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16601 node whose type is |mp_pair_type|. The |value| part of this capsule
16602 points to a pair node that contains two numeric values,
16603 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16606 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16609 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16610 is |dependent|. The |dep_list| field in this capsule points to the associated
16614 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16615 capsule node. The |dep_list| field in this capsule
16616 points to the associated dependency list.
16619 |cur_type=independent| means that |cur_exp| points to a capsule node
16620 whose type is |independent|. This somewhat unusual case can arise, for
16621 example, in the expression
16622 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16625 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16626 tokens. This case arises only on the left-hand side of an assignment
16627 (`\.{:=}') operation, under very special circumstances.
16629 \smallskip\noindent
16630 The possible settings of |cur_type| have been listed here in increasing
16631 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16632 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16633 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16636 @ Capsules are two-word nodes that have a similar meaning
16637 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16638 and |link<=mp_void|; and their |type| field is one of the possibilities for
16639 |cur_type| listed above.
16641 The |value| field of a capsule is, in most cases, the value that
16642 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16643 However, when |cur_exp| would point to a capsule,
16644 no extra layer of indirection is present; the |value|
16645 field is what would have been called |value(cur_exp)| if it had not been
16646 encapsulated. Furthermore, if the type is |dependent| or
16647 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16648 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16649 always part of the general |dep_list| structure.
16651 The |get_x_next| routine is careful not to change the values of |cur_type|
16652 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16653 call a macro, which might parse an expression, which might execute lots of
16654 commands in a group; hence it's possible that |cur_type| might change
16655 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16656 |known| or |independent|, during the time |get_x_next| is called. The
16657 programs below are careful to stash sensitive intermediate results in
16658 capsules, so that \MP's generality doesn't cause trouble.
16660 Here's a procedure that illustrates these conventions. It takes
16661 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16662 and stashes them away in a
16663 capsule. It is not used when |cur_type=mp_token_list|.
16664 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16665 copy path lists or to update reference counts, etc.
16667 The special link |mp_void| is put on the capsule returned by
16668 |stash_cur_exp|, because this procedure is used to store macro parameters
16669 that must be easily distinguishable from token lists.
16671 @<Declare the stashing/unstashing routines@>=
16672 pointer mp_stash_cur_exp (MP mp) {
16673 pointer p; /* the capsule that will be returned */
16674 switch (mp->cur_type) {
16675 case unknown_types:
16676 case mp_transform_type:
16677 case mp_color_type:
16680 case mp_proto_dependent:
16681 case mp_independent:
16682 case mp_cmykcolor_type:
16686 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16687 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16690 mp->cur_type=mp_vacuous; link(p)=mp_void;
16694 @ The inverse of |stash_cur_exp| is the following procedure, which
16695 deletes an unnecessary capsule and puts its contents into |cur_type|
16698 The program steps of \MP\ can be divided into two categories: those in
16699 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16700 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16701 information or not. It's important not to ignore them when they're alive,
16702 and it's important not to pay attention to them when they're dead.
16704 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16705 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16706 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16707 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16708 only when they are alive or dormant.
16710 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16711 are alive or dormant. The \\{unstash} procedure assumes that they are
16712 dead or dormant; it resuscitates them.
16714 @<Declare the stashing/unstashing...@>=
16715 void mp_unstash_cur_exp (MP mp,pointer p) ;
16718 void mp_unstash_cur_exp (MP mp,pointer p) {
16719 mp->cur_type=type(p);
16720 switch (mp->cur_type) {
16721 case unknown_types:
16722 case mp_transform_type:
16723 case mp_color_type:
16726 case mp_proto_dependent:
16727 case mp_independent:
16728 case mp_cmykcolor_type:
16732 mp->cur_exp=value(p);
16733 mp_free_node(mp, p,value_node_size);
16738 @ The following procedure prints the values of expressions in an
16739 abbreviated format. If its first parameter |p| is null, the value of
16740 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16741 containing the desired value. The second parameter controls the amount of
16742 output. If it is~0, dependency lists will be abbreviated to
16743 `\.{linearform}' unless they consist of a single term. If it is greater
16744 than~1, complicated structures (pens, pictures, and paths) will be displayed
16747 @<Declare subroutines for printing expressions@>=
16748 @<Declare the procedure called |print_dp|@>;
16749 @<Declare the stashing/unstashing routines@>;
16750 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16751 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16752 small_number t; /* the type of the expression */
16753 pointer q; /* a big node being displayed */
16754 integer v=0; /* the value of the expression */
16756 restore_cur_exp=false;
16758 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16761 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16762 @<Print an abbreviated value of |v| with format depending on |t|@>;
16763 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16766 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16768 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16769 case mp_boolean_type:
16770 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16772 case unknown_types: case mp_numeric_type:
16773 @<Display a variable that's been declared but not defined@>;
16775 case mp_string_type:
16776 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16778 case mp_pen_type: case mp_path_type: case mp_picture_type:
16779 @<Display a complex type@>;
16781 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16782 if ( v==null ) mp_print_type(mp, t);
16783 else @<Display a big node@>;
16785 case mp_known:mp_print_scaled(mp, v); break;
16786 case mp_dependent: case mp_proto_dependent:
16787 mp_print_dp(mp, t,v,verbosity);
16789 case mp_independent:mp_print_variable_name(mp, p); break;
16790 default: mp_confusion(mp, "exp"); break;
16791 @:this can't happen exp}{\quad exp@>
16794 @ @<Display a big node@>=
16796 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16798 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16799 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16800 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16802 if ( v!=q ) mp_print_char(mp, ',');
16804 mp_print_char(mp, ')');
16807 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16808 in the log file only, unless the user has given a positive value to
16811 @<Display a complex type@>=
16812 if ( verbosity<=1 ) {
16813 mp_print_type(mp, t);
16815 if ( mp->selector==term_and_log )
16816 if ( mp->internal[mp_tracing_online]<=0 ) {
16817 mp->selector=term_only;
16818 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16819 mp->selector=term_and_log;
16822 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16823 case mp_path_type:mp_print_path(mp, v,"",false); break;
16824 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16825 } /* there are no other cases */
16828 @ @<Declare the procedure called |print_dp|@>=
16829 void mp_print_dp (MP mp,small_number t, pointer p,
16830 small_number verbosity) {
16831 pointer q; /* the node following |p| */
16833 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16834 else mp_print(mp, "linearform");
16837 @ The displayed name of a variable in a ring will not be a capsule unless
16838 the ring consists entirely of capsules.
16840 @<Display a variable that's been declared but not defined@>=
16841 { mp_print_type(mp, t);
16843 { mp_print_char(mp, ' ');
16844 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16845 mp_print_variable_name(mp, v);
16849 @ When errors are detected during parsing, it is often helpful to
16850 display an expression just above the error message, using |exp_err|
16851 or |disp_err| instead of |print_err|.
16853 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16855 @<Declare subroutines for printing expressions@>=
16856 void mp_disp_err (MP mp,pointer p, char *s) {
16857 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16858 mp_print_nl(mp, ">> ");
16860 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16862 mp_print_nl(mp, "! "); mp_print(mp, s);
16867 @ If |cur_type| and |cur_exp| contain relevant information that should
16868 be recycled, we will use the following procedure, which changes |cur_type|
16869 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16870 and |cur_exp| as either alive or dormant after this has been done,
16871 because |cur_exp| will not contain a pointer value.
16873 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16874 switch (mp->cur_type) {
16875 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16876 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16877 mp_recycle_value(mp, mp->cur_exp);
16878 mp_free_node(mp, mp->cur_exp,value_node_size);
16880 case mp_string_type:
16881 delete_str_ref(mp->cur_exp); break;
16882 case mp_pen_type: case mp_path_type:
16883 mp_toss_knot_list(mp, mp->cur_exp); break;
16884 case mp_picture_type:
16885 delete_edge_ref(mp->cur_exp); break;
16889 mp->cur_type=mp_known; mp->cur_exp=v;
16892 @ There's a much more general procedure that is capable of releasing
16893 the storage associated with any two-word value packet.
16895 @<Declare the recycling subroutines@>=
16896 void mp_recycle_value (MP mp,pointer p) ;
16898 @ @c void mp_recycle_value (MP mp,pointer p) {
16899 small_number t; /* a type code */
16900 integer vv; /* another value */
16901 pointer q,r,s,pp; /* link manipulation registers */
16902 integer v=0; /* a value */
16904 if ( t<mp_dependent ) v=value(p);
16906 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16907 case mp_numeric_type:
16909 case unknown_types:
16910 mp_ring_delete(mp, p); break;
16911 case mp_string_type:
16912 delete_str_ref(v); break;
16913 case mp_path_type: case mp_pen_type:
16914 mp_toss_knot_list(mp, v); break;
16915 case mp_picture_type:
16916 delete_edge_ref(v); break;
16917 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16918 case mp_transform_type:
16919 @<Recycle a big node@>; break;
16920 case mp_dependent: case mp_proto_dependent:
16921 @<Recycle a dependency list@>; break;
16922 case mp_independent:
16923 @<Recycle an independent variable@>; break;
16924 case mp_token_list: case mp_structured:
16925 mp_confusion(mp, "recycle"); break;
16926 @:this can't happen recycle}{\quad recycle@>
16927 case mp_unsuffixed_macro: case mp_suffixed_macro:
16928 mp_delete_mac_ref(mp, value(p)); break;
16929 } /* there are no other cases */
16933 @ @<Recycle a big node@>=
16935 q=v+mp->big_node_size[t];
16937 q=q-2; mp_recycle_value(mp, q);
16939 mp_free_node(mp, v,mp->big_node_size[t]);
16942 @ @<Recycle a dependency list@>=
16945 while ( info(q)!=null ) q=link(q);
16946 link(prev_dep(p))=link(q);
16947 prev_dep(link(q))=prev_dep(p);
16948 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16951 @ When an independent variable disappears, it simply fades away, unless
16952 something depends on it. In the latter case, a dependent variable whose
16953 coefficient of dependence is maximal will take its place.
16954 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16955 as part of his Ph.D. thesis (Stanford University, December 1982).
16956 @^Zabala Salelles, Ignacio Andres@>
16958 For example, suppose that variable $x$ is being recycled, and that the
16959 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16960 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16961 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16962 we will print `\.{\#\#\# -2x=-y+a}'.
16964 There's a slight complication, however: An independent variable $x$
16965 can occur both in dependency lists and in proto-dependency lists.
16966 This makes it necessary to be careful when deciding which coefficient
16969 Furthermore, this complication is not so slight when
16970 a proto-dependent variable is chosen to become independent. For example,
16971 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16972 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16973 large coefficient `50'.
16975 In order to deal with these complications without wasting too much time,
16976 we shall link together the occurrences of~$x$ among all the linear
16977 dependencies, maintaining separate lists for the dependent and
16978 proto-dependent cases.
16980 @<Recycle an independent variable@>=
16982 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16983 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16985 while ( q!=dep_head ) {
16986 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16989 if ( info(r)==null ) break;;
16990 if ( info(r)!=p ) {
16993 t=type(q); link(s)=link(r); info(r)=q;
16994 if ( abs(value(r))>mp->max_c[t] ) {
16995 @<Record a new maximum coefficient of type |t|@>;
16997 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17003 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17004 @<Choose a dependent variable to take the place of the disappearing
17005 independent variable, and change all remaining dependencies
17010 @ The code for independency removal makes use of three two-word arrays.
17013 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17014 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17015 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17017 @ @<Record a new maximum coefficient...@>=
17019 if ( mp->max_c[t]>0 ) {
17020 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17022 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17025 @ @<Choose a dependent...@>=
17027 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17030 t=mp_proto_dependent;
17031 @<Determine the dependency list |s| to substitute for the independent
17033 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17034 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17035 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17037 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17038 else { @<Substitute new proto-dependencies in place of |p|@>;}
17039 mp_flush_node_list(mp, s);
17040 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17044 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17045 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17046 whose dependency list we have removed node~|s|. We must reinsert
17047 node~|s| into the dependency list, with coefficient $-1.0$, and with
17048 |pp| as the new independent variable. Since |pp| will have a larger serial
17049 number than any other variable, we can put node |s| at the head of the
17052 @<Determine the dep...@>=
17053 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17054 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17055 r=dep_list(pp); link(s)=r;
17056 while ( info(r)!=null ) r=link(r);
17057 q=link(r); link(r)=null;
17058 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17060 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17061 if ( mp->internal[mp_tracing_equations]>0 ) {
17062 @<Show the transformed dependency@>;
17065 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17066 by the dependency list~|s|.
17068 @<Show the transformed...@>=
17069 if ( mp_interesting(mp, p) ) {
17070 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17071 @:]]]\#\#\#_}{\.{\#\#\#}@>
17072 if ( v>0 ) mp_print_char(mp, '-');
17073 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17074 else vv=mp->max_c[mp_proto_dependent];
17075 if ( vv!=unity ) mp_print_scaled(mp, vv);
17076 mp_print_variable_name(mp, p);
17077 while ( value(p) % s_scale>0 ) {
17078 mp_print(mp, "*4"); value(p)=value(p)-2;
17080 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17081 mp_print_dependency(mp, s,t);
17082 mp_end_diagnostic(mp, false);
17085 @ Finally, there are dependent and proto-dependent variables whose
17086 dependency lists must be brought up to date.
17088 @<Substitute new dependencies...@>=
17089 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17091 while ( r!=null ) {
17093 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17094 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17095 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17096 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17100 @ @<Substitute new proto...@>=
17101 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17103 while ( r!=null ) {
17105 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17106 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17107 mp->cur_type=mp_proto_dependent;
17108 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17109 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17111 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17112 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17113 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17114 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17118 @ Here are some routines that provide handy combinations of actions
17119 that are often needed during error recovery. For example,
17120 `|flush_error|' flushes the current expression, replaces it by
17121 a given value, and calls |error|.
17123 Errors often are detected after an extra token has already been scanned.
17124 The `\\{put\_get}' routines put that token back before calling |error|;
17125 then they get it back again. (Or perhaps they get another token, if
17126 the user has changed things.)
17129 void mp_flush_error (MP mp,scaled v);
17130 void mp_put_get_error (MP mp);
17131 void mp_put_get_flush_error (MP mp,scaled v) ;
17134 void mp_flush_error (MP mp,scaled v) {
17135 mp_error(mp); mp_flush_cur_exp(mp, v);
17137 void mp_put_get_error (MP mp) {
17138 mp_back_error(mp); mp_get_x_next(mp);
17140 void mp_put_get_flush_error (MP mp,scaled v) {
17141 mp_put_get_error(mp);
17142 mp_flush_cur_exp(mp, v);
17145 @ A global variable |var_flag| is set to a special command code
17146 just before \MP\ calls |scan_expression|, if the expression should be
17147 treated as a variable when this command code immediately follows. For
17148 example, |var_flag| is set to |assignment| at the beginning of a
17149 statement, because we want to know the {\sl location\/} of a variable at
17150 the left of `\.{:=}', not the {\sl value\/} of that variable.
17152 The |scan_expression| subroutine calls |scan_tertiary|,
17153 which calls |scan_secondary|, which calls |scan_primary|, which sets
17154 |var_flag:=0|. In this way each of the scanning routines ``knows''
17155 when it has been called with a special |var_flag|, but |var_flag| is
17158 A variable preceding a command that equals |var_flag| is converted to a
17159 token list rather than a value. Furthermore, an `\.{=}' sign following an
17160 expression with |var_flag=assignment| is not considered to be a relation
17161 that produces boolean expressions.
17165 int var_flag; /* command that wants a variable */
17170 @* \[37] Parsing primary expressions.
17171 The first parsing routine, |scan_primary|, is also the most complicated one,
17172 since it involves so many different cases. But each case---with one
17173 exception---is fairly simple by itself.
17175 When |scan_primary| begins, the first token of the primary to be scanned
17176 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17177 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17178 earlier. If |cur_cmd| is not between |min_primary_command| and
17179 |max_primary_command|, inclusive, a syntax error will be signaled.
17181 @<Declare the basic parsing subroutines@>=
17182 void mp_scan_primary (MP mp) {
17183 pointer p,q,r; /* for list manipulation */
17184 quarterword c; /* a primitive operation code */
17185 int my_var_flag; /* initial value of |my_var_flag| */
17186 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17187 @<Other local variables for |scan_primary|@>;
17188 my_var_flag=mp->var_flag; mp->var_flag=0;
17191 @<Supply diagnostic information, if requested@>;
17192 switch (mp->cur_cmd) {
17193 case left_delimiter:
17194 @<Scan a delimited primary@>; break;
17196 @<Scan a grouped primary@>; break;
17198 @<Scan a string constant@>; break;
17199 case numeric_token:
17200 @<Scan a primary that starts with a numeric token@>; break;
17202 @<Scan a nullary operation@>; break;
17203 case unary: case type_name: case cycle: case plus_or_minus:
17204 @<Scan a unary operation@>; break;
17205 case primary_binary:
17206 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17208 @<Convert a suffix to a string@>; break;
17209 case internal_quantity:
17210 @<Scan an internal numeric quantity@>; break;
17211 case capsule_token:
17212 mp_make_exp_copy(mp, mp->cur_mod); break;
17214 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17216 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17217 @.A primary expression...@>
17219 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17221 if ( mp->cur_cmd==left_bracket ) {
17222 if ( mp->cur_type>=mp_known ) {
17223 @<Scan a mediation construction@>;
17230 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17232 @c void mp_bad_exp (MP mp,char * s) {
17234 print_err(s); mp_print(mp, " expression can't begin with `");
17235 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17236 mp_print_char(mp, '\'');
17237 help4("I'm afraid I need some sort of value in order to continue,")
17238 ("so I've tentatively inserted `0'. You may want to")
17239 ("delete this zero and insert something else;")
17240 ("see Chapter 27 of The METAFONTbook for an example.");
17241 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17242 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17243 mp->cur_mod=0; mp_ins_error(mp);
17244 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17245 mp->var_flag=save_flag;
17248 @ @<Supply diagnostic information, if requested@>=
17250 if ( mp->panicking ) mp_check_mem(mp, false);
17252 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17253 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17256 @ @<Scan a delimited primary@>=
17258 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17259 mp_get_x_next(mp); mp_scan_expression(mp);
17260 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17261 @<Scan the rest of a delimited set of numerics@>;
17263 mp_check_delimiter(mp, l_delim,r_delim);
17267 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17268 within a ``big node.''
17270 @c void mp_stash_in (MP mp,pointer p) {
17271 pointer q; /* temporary register */
17272 type(p)=mp->cur_type;
17273 if ( mp->cur_type==mp_known ) {
17274 value(p)=mp->cur_exp;
17276 if ( mp->cur_type==mp_independent ) {
17277 @<Stash an independent |cur_exp| into a big node@>;
17279 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17280 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17281 link(prev_dep(p))=p;
17283 mp_free_node(mp, mp->cur_exp,value_node_size);
17285 mp->cur_type=mp_vacuous;
17288 @ In rare cases the current expression can become |independent|. There
17289 may be many dependency lists pointing to such an independent capsule,
17290 so we can't simply move it into place within a big node. Instead,
17291 we copy it, then recycle it.
17293 @ @<Stash an independent |cur_exp|...@>=
17295 q=mp_single_dependency(mp, mp->cur_exp);
17296 if ( q==mp->dep_final ){
17297 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17299 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17301 mp_recycle_value(mp, mp->cur_exp);
17304 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17305 are synonymous with |x_part_loc| and |y_part_loc|.
17307 @<Scan the rest of a delimited set of numerics@>=
17309 p=mp_stash_cur_exp(mp);
17310 mp_get_x_next(mp); mp_scan_expression(mp);
17311 @<Make sure the second part of a pair or color has a numeric type@>;
17312 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17313 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17314 else type(q)=mp_pair_type;
17315 mp_init_big_node(mp, q); r=value(q);
17316 mp_stash_in(mp, y_part_loc(r));
17317 mp_unstash_cur_exp(mp, p);
17318 mp_stash_in(mp, x_part_loc(r));
17319 if ( mp->cur_cmd==comma ) {
17320 @<Scan the last of a triplet of numerics@>;
17322 if ( mp->cur_cmd==comma ) {
17323 type(q)=mp_cmykcolor_type;
17324 mp_init_big_node(mp, q); t=value(q);
17325 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17326 value(cyan_part_loc(t))=value(red_part_loc(r));
17327 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17328 value(magenta_part_loc(t))=value(green_part_loc(r));
17329 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17330 value(yellow_part_loc(t))=value(blue_part_loc(r));
17331 mp_recycle_value(mp, r);
17333 @<Scan the last of a quartet of numerics@>;
17335 mp_check_delimiter(mp, l_delim,r_delim);
17336 mp->cur_type=type(q);
17340 @ @<Make sure the second part of a pair or color has a numeric type@>=
17341 if ( mp->cur_type<mp_known ) {
17342 exp_err("Nonnumeric ypart has been replaced by 0");
17343 @.Nonnumeric...replaced by 0@>
17344 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17345 ("but after finding a nice `a' I found a `b' that isn't")
17346 ("of numeric type. So I've changed that part to zero.")
17347 ("(The b that I didn't like appears above the error message.)");
17348 mp_put_get_flush_error(mp, 0);
17351 @ @<Scan the last of a triplet of numerics@>=
17353 mp_get_x_next(mp); mp_scan_expression(mp);
17354 if ( mp->cur_type<mp_known ) {
17355 exp_err("Nonnumeric third part has been replaced by 0");
17356 @.Nonnumeric...replaced by 0@>
17357 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17358 ("isn't of numeric type. So I've changed that part to zero.")
17359 ("(The c that I didn't like appears above the error message.)");
17360 mp_put_get_flush_error(mp, 0);
17362 mp_stash_in(mp, blue_part_loc(r));
17365 @ @<Scan the last of a quartet of numerics@>=
17367 mp_get_x_next(mp); mp_scan_expression(mp);
17368 if ( mp->cur_type<mp_known ) {
17369 exp_err("Nonnumeric blackpart has been replaced by 0");
17370 @.Nonnumeric...replaced by 0@>
17371 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17372 ("of numeric type. So I've changed that part to zero.")
17373 ("(The k that I didn't like appears above the error message.)");
17374 mp_put_get_flush_error(mp, 0);
17376 mp_stash_in(mp, black_part_loc(r));
17379 @ The local variable |group_line| keeps track of the line
17380 where a \&{begingroup} command occurred; this will be useful
17381 in an error message if the group doesn't actually end.
17383 @<Other local variables for |scan_primary|@>=
17384 integer group_line; /* where a group began */
17386 @ @<Scan a grouped primary@>=
17388 group_line=mp_true_line(mp);
17389 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17390 save_boundary_item(p);
17392 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17393 } while (! (mp->cur_cmd!=semicolon));
17394 if ( mp->cur_cmd!=end_group ) {
17395 print_err("A group begun on line ");
17396 @.A group...never ended@>
17397 mp_print_int(mp, group_line);
17398 mp_print(mp, " never ended");
17399 help2("I saw a `begingroup' back there that hasn't been matched")
17400 ("by `endgroup'. So I've inserted `endgroup' now.");
17401 mp_back_error(mp); mp->cur_cmd=end_group;
17404 /* this might change |cur_type|, if independent variables are recycled */
17405 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17408 @ @<Scan a string constant@>=
17410 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17413 @ Later we'll come to procedures that perform actual operations like
17414 addition, square root, and so on; our purpose now is to do the parsing.
17415 But we might as well mention those future procedures now, so that the
17416 suspense won't be too bad:
17419 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17420 `\&{true}' or `\&{pencircle}');
17423 |do_unary(c)| applies a primitive operation to the current expression;
17426 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17427 and the current expression.
17429 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17431 @ @<Scan a unary operation@>=
17433 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17434 mp_do_unary(mp, c); goto DONE;
17437 @ A numeric token might be a primary by itself, or it might be the
17438 numerator of a fraction composed solely of numeric tokens, or it might
17439 multiply the primary that follows (provided that the primary doesn't begin
17440 with a plus sign or a minus sign). The code here uses the facts that
17441 |max_primary_command=plus_or_minus| and
17442 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17443 than unity, we try to retain higher precision when we use it in scalar
17446 @<Other local variables for |scan_primary|@>=
17447 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17449 @ @<Scan a primary that starts with a numeric token@>=
17451 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17452 if ( mp->cur_cmd!=slash ) {
17456 if ( mp->cur_cmd!=numeric_token ) {
17458 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17461 num=mp->cur_exp; denom=mp->cur_mod;
17462 if ( denom==0 ) { @<Protest division by zero@>; }
17463 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17464 check_arith; mp_get_x_next(mp);
17466 if ( mp->cur_cmd>=min_primary_command ) {
17467 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17468 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17469 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17470 mp_do_binary(mp, p,times);
17472 mp_frac_mult(mp, num,denom);
17473 mp_free_node(mp, p,value_node_size);
17480 @ @<Protest division...@>=
17482 print_err("Division by zero");
17483 @.Division by zero@>
17484 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17487 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17489 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17490 if ( mp->cur_cmd!=of_token ) {
17491 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17492 mp_print_cmd_mod(mp, primary_binary,c);
17494 help1("I've got the first argument; will look now for the other.");
17497 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17498 mp_do_binary(mp, p,c); goto DONE;
17501 @ @<Convert a suffix to a string@>=
17503 mp_get_x_next(mp); mp_scan_suffix(mp);
17504 mp->old_setting=mp->selector; mp->selector=new_string;
17505 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17506 mp_flush_token_list(mp, mp->cur_exp);
17507 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17508 mp->cur_type=mp_string_type;
17512 @ If an internal quantity appears all by itself on the left of an
17513 assignment, we return a token list of length one, containing the address
17514 of the internal quantity plus |hash_end|. (This accords with the conventions
17515 of the save stack, as described earlier.)
17517 @<Scan an internal...@>=
17520 if ( my_var_flag==assignment ) {
17522 if ( mp->cur_cmd==assignment ) {
17523 mp->cur_exp=mp_get_avail(mp);
17524 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17529 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17532 @ The most difficult part of |scan_primary| has been saved for last, since
17533 it was necessary to build up some confidence first. We can now face the task
17534 of scanning a variable.
17536 As we scan a variable, we build a token list containing the relevant
17537 names and subscript values, simultaneously following along in the
17538 ``collective'' structure to see if we are actually dealing with a macro
17539 instead of a value.
17541 The local variables |pre_head| and |post_head| will point to the beginning
17542 of the prefix and suffix lists; |tail| will point to the end of the list
17543 that is currently growing.
17545 Another local variable, |tt|, contains partial information about the
17546 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17547 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17548 doesn't bother to update its information about type. And if
17549 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17551 @ @<Other local variables for |scan_primary|@>=
17552 pointer pre_head,post_head,tail;
17553 /* prefix and suffix list variables */
17554 small_number tt; /* approximation to the type of the variable-so-far */
17555 pointer t; /* a token */
17556 pointer macro_ref = 0; /* reference count for a suffixed macro */
17558 @ @<Scan a variable primary...@>=
17560 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17562 t=mp_cur_tok(mp); link(tail)=t;
17563 if ( tt!=undefined ) {
17564 @<Find the approximate type |tt| and corresponding~|q|@>;
17565 if ( tt>=mp_unsuffixed_macro ) {
17566 @<Either begin an unsuffixed macro call or
17567 prepare for a suffixed one@>;
17570 mp_get_x_next(mp); tail=t;
17571 if ( mp->cur_cmd==left_bracket ) {
17572 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17574 if ( mp->cur_cmd>max_suffix_token ) break;
17575 if ( mp->cur_cmd<min_suffix_token ) break;
17576 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17577 @<Handle unusual cases that masquerade as variables, and |goto restart|
17578 or |goto done| if appropriate;
17579 otherwise make a copy of the variable and |goto done|@>;
17582 @ @<Either begin an unsuffixed macro call or...@>=
17585 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17586 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17587 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17589 @<Set up unsuffixed macro call and |goto restart|@>;
17593 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17595 mp_get_x_next(mp); mp_scan_expression(mp);
17596 if ( mp->cur_cmd!=right_bracket ) {
17597 @<Put the left bracket and the expression back to be rescanned@>;
17599 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17600 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17604 @ The left bracket that we thought was introducing a subscript might have
17605 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17606 So we don't issue an error message at this point; but we do want to back up
17607 so as to avoid any embarrassment about our incorrect assumption.
17609 @<Put the left bracket and the expression back to be rescanned@>=
17611 mp_back_input(mp); /* that was the token following the current expression */
17612 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17613 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17616 @ Here's a routine that puts the current expression back to be read again.
17618 @c void mp_back_expr (MP mp) {
17619 pointer p; /* capsule token */
17620 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17623 @ Unknown subscripts lead to the following error message.
17625 @c void mp_bad_subscript (MP mp) {
17626 exp_err("Improper subscript has been replaced by zero");
17627 @.Improper subscript...@>
17628 help3("A bracketed subscript must have a known numeric value;")
17629 ("unfortunately, what I found was the value that appears just")
17630 ("above this error message. So I'll try a zero subscript.");
17631 mp_flush_error(mp, 0);
17634 @ Every time we call |get_x_next|, there's a chance that the variable we've
17635 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17636 into the variable structure; we need to start searching from the root each time.
17638 @<Find the approximate type |tt| and corresponding~|q|@>=
17641 p=link(pre_head); q=info(p); tt=undefined;
17642 if ( eq_type(q) % outer_tag==tag_token ) {
17644 if ( q==null ) goto DONE2;
17648 tt=type(q); goto DONE2;
17650 if ( type(q)!=mp_structured ) goto DONE2;
17651 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17652 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17653 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17654 if ( attr_loc(q)>info(p) ) goto DONE2;
17662 @ How do things stand now? Well, we have scanned an entire variable name,
17663 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17664 |cur_sym| represent the token that follows. If |post_head=null|, a
17665 token list for this variable name starts at |link(pre_head)|, with all
17666 subscripts evaluated. But if |post_head<>null|, the variable turned out
17667 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17668 |post_head| is the head of a token list containing both `\.{\AT!}' and
17671 Our immediate problem is to see if this variable still exists. (Variable
17672 structures can change drastically whenever we call |get_x_next|; users
17673 aren't supposed to do this, but the fact that it is possible means that
17674 we must be cautious.)
17676 The following procedure prints an error message when a variable
17677 unexpectedly disappears. Its help message isn't quite right for
17678 our present purposes, but we'll be able to fix that up.
17681 void mp_obliterated (MP mp,pointer q) {
17682 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17683 mp_print(mp, " has been obliterated");
17684 @.Variable...obliterated@>
17685 help5("It seems you did a nasty thing---probably by accident,")
17686 ("but nevertheless you nearly hornswoggled me...")
17687 ("While I was evaluating the right-hand side of this")
17688 ("command, something happened, and the left-hand side")
17689 ("is no longer a variable! So I won't change anything.");
17692 @ If the variable does exist, we also need to check
17693 for a few other special cases before deciding that a plain old ordinary
17694 variable has, indeed, been scanned.
17696 @<Handle unusual cases that masquerade as variables...@>=
17697 if ( post_head!=null ) {
17698 @<Set up suffixed macro call and |goto restart|@>;
17700 q=link(pre_head); free_avail(pre_head);
17701 if ( mp->cur_cmd==my_var_flag ) {
17702 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17704 p=mp_find_variable(mp, q);
17706 mp_make_exp_copy(mp, p);
17708 mp_obliterated(mp, q);
17709 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17710 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17711 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17712 mp_put_get_flush_error(mp, 0);
17714 mp_flush_node_list(mp, q);
17717 @ The only complication associated with macro calling is that the prefix
17718 and ``at'' parameters must be packaged in an appropriate list of lists.
17720 @<Set up unsuffixed macro call and |goto restart|@>=
17722 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17723 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17728 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17729 we don't care, because we have reserved a pointer (|macro_ref|) to its
17732 @<Set up suffixed macro call and |goto restart|@>=
17734 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17735 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17736 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17737 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17738 mp_get_x_next(mp); goto RESTART;
17741 @ Our remaining job is simply to make a copy of the value that has been
17742 found. Some cases are harder than others, but complexity arises solely
17743 because of the multiplicity of possible cases.
17745 @<Declare the procedure called |make_exp_copy|@>=
17746 @<Declare subroutines needed by |make_exp_copy|@>;
17747 void mp_make_exp_copy (MP mp,pointer p) {
17748 pointer q,r,t; /* registers for list manipulation */
17750 mp->cur_type=type(p);
17751 switch (mp->cur_type) {
17752 case mp_vacuous: case mp_boolean_type: case mp_known:
17753 mp->cur_exp=value(p); break;
17754 case unknown_types:
17755 mp->cur_exp=mp_new_ring_entry(mp, p);
17757 case mp_string_type:
17758 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17760 case mp_picture_type:
17761 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17764 mp->cur_exp=copy_pen(value(p));
17767 mp->cur_exp=mp_copy_path(mp, value(p));
17769 case mp_transform_type: case mp_color_type:
17770 case mp_cmykcolor_type: case mp_pair_type:
17771 @<Copy the big node |p|@>;
17773 case mp_dependent: case mp_proto_dependent:
17774 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17776 case mp_numeric_type:
17777 new_indep(p); goto RESTART;
17779 case mp_independent:
17780 q=mp_single_dependency(mp, p);
17781 if ( q==mp->dep_final ){
17782 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17784 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17788 mp_confusion(mp, "copy");
17789 @:this can't happen copy}{\quad copy@>
17794 @ The |encapsulate| subroutine assumes that |dep_final| is the
17795 tail of dependency list~|p|.
17797 @<Declare subroutines needed by |make_exp_copy|@>=
17798 void mp_encapsulate (MP mp,pointer p) {
17799 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17800 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17803 @ The most tedious case arises when the user refers to a
17804 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17805 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17808 @<Copy the big node |p|@>=
17810 if ( value(p)==null )
17811 mp_init_big_node(mp, p);
17812 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17813 mp_init_big_node(mp, t);
17814 q=value(p)+mp->big_node_size[mp->cur_type];
17815 r=value(t)+mp->big_node_size[mp->cur_type];
17817 q=q-2; r=r-2; mp_install(mp, r,q);
17818 } while (q!=value(p));
17822 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17823 a big node that will be part of a capsule.
17825 @<Declare subroutines needed by |make_exp_copy|@>=
17826 void mp_install (MP mp,pointer r, pointer q) {
17827 pointer p; /* temporary register */
17828 if ( type(q)==mp_known ){
17829 value(r)=value(q); type(r)=mp_known;
17830 } else if ( type(q)==mp_independent ) {
17831 p=mp_single_dependency(mp, q);
17832 if ( p==mp->dep_final ) {
17833 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17835 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17838 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17842 @ Expressions of the form `\.{a[b,c]}' are converted into
17843 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17844 provided that \.a is numeric.
17846 @<Scan a mediation...@>=
17848 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17849 if ( mp->cur_cmd!=comma ) {
17850 @<Put the left bracket and the expression back...@>;
17851 mp_unstash_cur_exp(mp, p);
17853 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17854 if ( mp->cur_cmd!=right_bracket ) {
17855 mp_missing_err(mp, "]");
17857 help3("I've scanned an expression of the form `a[b,c',")
17858 ("so a right bracket should have come next.")
17859 ("I shall pretend that one was there.");
17862 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17863 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17864 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17868 @ Here is a comparatively simple routine that is used to scan the
17869 \&{suffix} parameters of a macro.
17871 @<Declare the basic parsing subroutines@>=
17872 void mp_scan_suffix (MP mp) {
17873 pointer h,t; /* head and tail of the list being built */
17874 pointer p; /* temporary register */
17875 h=mp_get_avail(mp); t=h;
17877 if ( mp->cur_cmd==left_bracket ) {
17878 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17880 if ( mp->cur_cmd==numeric_token ) {
17881 p=mp_new_num_tok(mp, mp->cur_mod);
17882 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17883 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17887 link(t)=p; t=p; mp_get_x_next(mp);
17889 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17892 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17894 mp_get_x_next(mp); mp_scan_expression(mp);
17895 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17896 if ( mp->cur_cmd!=right_bracket ) {
17897 mp_missing_err(mp, "]");
17899 help3("I've seen a `[' and a subscript value, in a suffix,")
17900 ("so a right bracket should have come next.")
17901 ("I shall pretend that one was there.");
17904 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17907 @* \[38] Parsing secondary and higher expressions.
17908 After the intricacies of |scan_primary|\kern-1pt,
17909 the |scan_secondary| routine is
17910 refreshingly simple. It's not trivial, but the operations are relatively
17911 straightforward; the main difficulty is, again, that expressions and data
17912 structures might change drastically every time we call |get_x_next|, so a
17913 cautious approach is mandatory. For example, a macro defined by
17914 \&{primarydef} might have disappeared by the time its second argument has
17915 been scanned; we solve this by increasing the reference count of its token
17916 list, so that the macro can be called even after it has been clobbered.
17918 @<Declare the basic parsing subroutines@>=
17919 void mp_scan_secondary (MP mp) {
17920 pointer p; /* for list manipulation */
17921 halfword c,d; /* operation codes or modifiers */
17922 pointer mac_name; /* token defined with \&{primarydef} */
17924 if ((mp->cur_cmd<min_primary_command)||
17925 (mp->cur_cmd>max_primary_command) )
17926 mp_bad_exp(mp, "A secondary");
17927 @.A secondary expression...@>
17928 mp_scan_primary(mp);
17930 if ( mp->cur_cmd<=max_secondary_command )
17931 if ( mp->cur_cmd>=min_secondary_command ) {
17932 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17933 if ( d==secondary_primary_macro ) {
17934 mac_name=mp->cur_sym; add_mac_ref(c);
17936 mp_get_x_next(mp); mp_scan_primary(mp);
17937 if ( d!=secondary_primary_macro ) {
17938 mp_do_binary(mp, p,c);
17940 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17941 decr(ref_count(c)); mp_get_x_next(mp);
17948 @ The following procedure calls a macro that has two parameters,
17951 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17952 pointer q,r; /* nodes in the parameter list */
17953 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17954 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17955 mp_macro_call(mp, c,q,n);
17958 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17960 @<Declare the basic parsing subroutines@>=
17961 void mp_scan_tertiary (MP mp) {
17962 pointer p; /* for list manipulation */
17963 halfword c,d; /* operation codes or modifiers */
17964 pointer mac_name; /* token defined with \&{secondarydef} */
17966 if ((mp->cur_cmd<min_primary_command)||
17967 (mp->cur_cmd>max_primary_command) )
17968 mp_bad_exp(mp, "A tertiary");
17969 @.A tertiary expression...@>
17970 mp_scan_secondary(mp);
17972 if ( mp->cur_cmd<=max_tertiary_command ) {
17973 if ( mp->cur_cmd>=min_tertiary_command ) {
17974 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17975 if ( d==tertiary_secondary_macro ) {
17976 mac_name=mp->cur_sym; add_mac_ref(c);
17978 mp_get_x_next(mp); mp_scan_secondary(mp);
17979 if ( d!=tertiary_secondary_macro ) {
17980 mp_do_binary(mp, p,c);
17982 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17983 decr(ref_count(c)); mp_get_x_next(mp);
17991 @ Finally we reach the deepest level in our quartet of parsing routines.
17992 This one is much like the others; but it has an extra complication from
17993 paths, which materialize here.
17995 @d continue_path 25 /* a label inside of |scan_expression| */
17996 @d finish_path 26 /* another */
17998 @<Declare the basic parsing subroutines@>=
17999 void mp_scan_expression (MP mp) {
18000 pointer p,q,r,pp,qq; /* for list manipulation */
18001 halfword c,d; /* operation codes or modifiers */
18002 int my_var_flag; /* initial value of |var_flag| */
18003 pointer mac_name; /* token defined with \&{tertiarydef} */
18004 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18005 scaled x,y; /* explicit coordinates or tension at a path join */
18006 int t; /* knot type following a path join */
18008 my_var_flag=mp->var_flag; mac_name=null;
18010 if ((mp->cur_cmd<min_primary_command)||
18011 (mp->cur_cmd>max_primary_command) )
18012 mp_bad_exp(mp, "An");
18013 @.An expression...@>
18014 mp_scan_tertiary(mp);
18016 if ( mp->cur_cmd<=max_expression_command )
18017 if ( mp->cur_cmd>=min_expression_command ) {
18018 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18019 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18020 if ( d==expression_tertiary_macro ) {
18021 mac_name=mp->cur_sym; add_mac_ref(c);
18023 if ( (d<ampersand)||((d==ampersand)&&
18024 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18025 @<Scan a path construction operation;
18026 but |return| if |p| has the wrong type@>;
18028 mp_get_x_next(mp); mp_scan_tertiary(mp);
18029 if ( d!=expression_tertiary_macro ) {
18030 mp_do_binary(mp, p,c);
18032 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18033 decr(ref_count(c)); mp_get_x_next(mp);
18042 @ The reader should review the data structure conventions for paths before
18043 hoping to understand the next part of this code.
18045 @<Scan a path construction operation...@>=
18048 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18049 but |return| if |p| doesn't have a suitable type@>;
18051 @<Determine the path join parameters;
18052 but |goto finish_path| if there's only a direction specifier@>;
18053 if ( mp->cur_cmd==cycle ) {
18054 @<Get ready to close a cycle@>;
18056 mp_scan_tertiary(mp);
18057 @<Convert the right operand, |cur_exp|,
18058 into a partial path from |pp| to~|qq|@>;
18060 @<Join the partial paths and reset |p| and |q| to the head and tail
18062 if ( mp->cur_cmd>=min_expression_command )
18063 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18065 @<Choose control points for the path and put the result into |cur_exp|@>;
18068 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18070 mp_unstash_cur_exp(mp, p);
18071 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18072 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18075 while ( link(q)!=p ) q=link(q);
18076 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18077 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18079 left_type(p)=mp_open; right_type(q)=mp_open;
18082 @ A pair of numeric values is changed into a knot node for a one-point path
18083 when \MP\ discovers that the pair is part of a path.
18085 @c@<Declare the procedure called |known_pair|@>;
18086 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18087 pointer q; /* the new node */
18088 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18089 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18090 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18094 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18095 of the current expression, assuming that the current expression is a
18096 pair of known numerics. Unknown components are zeroed, and the
18097 current expression is flushed.
18099 @<Declare the procedure called |known_pair|@>=
18100 void mp_known_pair (MP mp) {
18101 pointer p; /* the pair node */
18102 if ( mp->cur_type!=mp_pair_type ) {
18103 exp_err("Undefined coordinates have been replaced by (0,0)");
18104 @.Undefined coordinates...@>
18105 help5("I need x and y numbers for this part of the path.")
18106 ("The value I found (see above) was no good;")
18107 ("so I'll try to keep going by using zero instead.")
18108 ("(Chapter 27 of The METAFONTbook explains that")
18109 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18110 ("you might want to type `I ??" "?' now.)");
18111 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18113 p=value(mp->cur_exp);
18114 @<Make sure that both |x| and |y| parts of |p| are known;
18115 copy them into |cur_x| and |cur_y|@>;
18116 mp_flush_cur_exp(mp, 0);
18120 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18121 if ( type(x_part_loc(p))==mp_known ) {
18122 mp->cur_x=value(x_part_loc(p));
18124 mp_disp_err(mp, x_part_loc(p),
18125 "Undefined x coordinate has been replaced by 0");
18126 @.Undefined coordinates...@>
18127 help5("I need a `known' x value for this part of the path.")
18128 ("The value I found (see above) was no good;")
18129 ("so I'll try to keep going by using zero instead.")
18130 ("(Chapter 27 of The METAFONTbook explains that")
18131 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18132 ("you might want to type `I ??" "?' now.)");
18133 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18135 if ( type(y_part_loc(p))==mp_known ) {
18136 mp->cur_y=value(y_part_loc(p));
18138 mp_disp_err(mp, y_part_loc(p),
18139 "Undefined y coordinate has been replaced by 0");
18140 help5("I need a `known' y value for this part of the path.")
18141 ("The value I found (see above) was no good;")
18142 ("so I'll try to keep going by using zero instead.")
18143 ("(Chapter 27 of The METAFONTbook explains that")
18144 ("you might want to type `I ??" "?' now.)");
18145 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18148 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18150 @<Determine the path join parameters...@>=
18151 if ( mp->cur_cmd==left_brace ) {
18152 @<Put the pre-join direction information into node |q|@>;
18155 if ( d==path_join ) {
18156 @<Determine the tension and/or control points@>;
18157 } else if ( d!=ampersand ) {
18161 if ( mp->cur_cmd==left_brace ) {
18162 @<Put the post-join direction information into |x| and |t|@>;
18163 } else if ( right_type(q)!=mp_explicit ) {
18167 @ The |scan_direction| subroutine looks at the directional information
18168 that is enclosed in braces, and also scans ahead to the following character.
18169 A type code is returned, either |open| (if the direction was $(0,0)$),
18170 or |curl| (if the direction was a curl of known value |cur_exp|), or
18171 |given| (if the direction is given by the |angle| value that now
18172 appears in |cur_exp|).
18174 There's nothing difficult about this subroutine, but the program is rather
18175 lengthy because a variety of potential errors need to be nipped in the bud.
18177 @c small_number mp_scan_direction (MP mp) {
18178 int t; /* the type of information found */
18179 scaled x; /* an |x| coordinate */
18181 if ( mp->cur_cmd==curl_command ) {
18182 @<Scan a curl specification@>;
18184 @<Scan a given direction@>;
18186 if ( mp->cur_cmd!=right_brace ) {
18187 mp_missing_err(mp, "}");
18188 @.Missing `\char`\}'@>
18189 help3("I've scanned a direction spec for part of a path,")
18190 ("so a right brace should have come next.")
18191 ("I shall pretend that one was there.");
18198 @ @<Scan a curl specification@>=
18199 { mp_get_x_next(mp); mp_scan_expression(mp);
18200 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18201 exp_err("Improper curl has been replaced by 1");
18203 help1("A curl must be a known, nonnegative number.");
18204 mp_put_get_flush_error(mp, unity);
18209 @ @<Scan a given direction@>=
18210 { mp_scan_expression(mp);
18211 if ( mp->cur_type>mp_pair_type ) {
18212 @<Get given directions separated by commas@>;
18216 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18217 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18220 @ @<Get given directions separated by commas@>=
18222 if ( mp->cur_type!=mp_known ) {
18223 exp_err("Undefined x coordinate has been replaced by 0");
18224 @.Undefined coordinates...@>
18225 help5("I need a `known' x value for this part of the path.")
18226 ("The value I found (see above) was no good;")
18227 ("so I'll try to keep going by using zero instead.")
18228 ("(Chapter 27 of The METAFONTbook explains that")
18229 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18230 ("you might want to type `I ??" "?' now.)");
18231 mp_put_get_flush_error(mp, 0);
18234 if ( mp->cur_cmd!=comma ) {
18235 mp_missing_err(mp, ",");
18237 help2("I've got the x coordinate of a path direction;")
18238 ("will look for the y coordinate next.");
18241 mp_get_x_next(mp); mp_scan_expression(mp);
18242 if ( mp->cur_type!=mp_known ) {
18243 exp_err("Undefined y coordinate has been replaced by 0");
18244 help5("I need a `known' y value for this part of the path.")
18245 ("The value I found (see above) was no good;")
18246 ("so I'll try to keep going by using zero instead.")
18247 ("(Chapter 27 of The METAFONTbook explains that")
18248 ("you might want to type `I ??" "?' now.)");
18249 mp_put_get_flush_error(mp, 0);
18251 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18254 @ At this point |right_type(q)| is usually |open|, but it may have been
18255 set to some other value by a previous splicing operation. We must maintain
18256 the value of |right_type(q)| in unusual cases such as
18257 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18259 @<Put the pre-join...@>=
18261 t=mp_scan_direction(mp);
18262 if ( t!=mp_open ) {
18263 right_type(q)=t; right_given(q)=mp->cur_exp;
18264 if ( left_type(q)==mp_open ) {
18265 left_type(q)=t; left_given(q)=mp->cur_exp;
18266 } /* note that |left_given(q)=left_curl(q)| */
18270 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18271 and since |left_given| is similarly equivalent to |left_x|, we use
18272 |x| and |y| to hold the given direction and tension information when
18273 there are no explicit control points.
18275 @<Put the post-join...@>=
18277 t=mp_scan_direction(mp);
18278 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18279 else t=mp_explicit; /* the direction information is superfluous */
18282 @ @<Determine the tension and/or...@>=
18285 if ( mp->cur_cmd==tension ) {
18286 @<Set explicit tensions@>;
18287 } else if ( mp->cur_cmd==controls ) {
18288 @<Set explicit control points@>;
18290 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18293 if ( mp->cur_cmd!=path_join ) {
18294 mp_missing_err(mp, "..");
18296 help1("A path join command should end with two dots.");
18303 @ @<Set explicit tensions@>=
18305 mp_get_x_next(mp); y=mp->cur_cmd;
18306 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18307 mp_scan_primary(mp);
18308 @<Make sure that the current expression is a valid tension setting@>;
18309 if ( y==at_least ) negate(mp->cur_exp);
18310 right_tension(q)=mp->cur_exp;
18311 if ( mp->cur_cmd==and_command ) {
18312 mp_get_x_next(mp); y=mp->cur_cmd;
18313 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18314 mp_scan_primary(mp);
18315 @<Make sure that the current expression is a valid tension setting@>;
18316 if ( y==at_least ) negate(mp->cur_exp);
18321 @ @d min_tension three_quarter_unit
18323 @<Make sure that the current expression is a valid tension setting@>=
18324 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18325 exp_err("Improper tension has been set to 1");
18326 @.Improper tension@>
18327 help1("The expression above should have been a number >=3/4.");
18328 mp_put_get_flush_error(mp, unity);
18331 @ @<Set explicit control points@>=
18333 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18334 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18335 if ( mp->cur_cmd!=and_command ) {
18336 x=right_x(q); y=right_y(q);
18338 mp_get_x_next(mp); mp_scan_primary(mp);
18339 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18343 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18345 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18346 else pp=mp->cur_exp;
18348 while ( link(qq)!=pp ) qq=link(qq);
18349 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18350 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18352 left_type(pp)=mp_open; right_type(qq)=mp_open;
18355 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18356 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18357 shouldn't have length zero.
18359 @<Get ready to close a cycle@>=
18361 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18362 if ( d==ampersand ) if ( p==q ) {
18363 d=path_join; right_tension(q)=unity; y=unity;
18367 @ @<Join the partial paths and reset |p| and |q|...@>=
18369 if ( d==ampersand ) {
18370 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18371 print_err("Paths don't touch; `&' will be changed to `..'");
18372 @.Paths don't touch@>
18373 help3("When you join paths `p&q', the ending point of p")
18374 ("must be exactly equal to the starting point of q.")
18375 ("So I'm going to pretend that you said `p..q' instead.");
18376 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18379 @<Plug an opening in |right_type(pp)|, if possible@>;
18380 if ( d==ampersand ) {
18381 @<Splice independent paths together@>;
18383 @<Plug an opening in |right_type(q)|, if possible@>;
18384 link(q)=pp; left_y(pp)=y;
18385 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18390 @ @<Plug an opening in |right_type(q)|...@>=
18391 if ( right_type(q)==mp_open ) {
18392 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18393 right_type(q)=left_type(q); right_given(q)=left_given(q);
18397 @ @<Plug an opening in |right_type(pp)|...@>=
18398 if ( right_type(pp)==mp_open ) {
18399 if ( (t==mp_curl)||(t==mp_given) ) {
18400 right_type(pp)=t; right_given(pp)=x;
18404 @ @<Splice independent paths together@>=
18406 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18407 left_type(q)=mp_curl; left_curl(q)=unity;
18409 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18410 right_type(pp)=mp_curl; right_curl(pp)=unity;
18412 right_type(q)=right_type(pp); link(q)=link(pp);
18413 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18414 mp_free_node(mp, pp,knot_node_size);
18415 if ( qq==pp ) qq=q;
18418 @ @<Choose control points for the path...@>=
18420 if ( d==ampersand ) p=q;
18422 left_type(p)=mp_endpoint;
18423 if ( right_type(p)==mp_open ) {
18424 right_type(p)=mp_curl; right_curl(p)=unity;
18426 right_type(q)=mp_endpoint;
18427 if ( left_type(q)==mp_open ) {
18428 left_type(q)=mp_curl; left_curl(q)=unity;
18432 mp_make_choices(mp, p);
18433 mp->cur_type=mp_path_type; mp->cur_exp=p
18435 @ Finally, we sometimes need to scan an expression whose value is
18436 supposed to be either |true_code| or |false_code|.
18438 @<Declare the basic parsing subroutines@>=
18439 void mp_get_boolean (MP mp) {
18440 mp_get_x_next(mp); mp_scan_expression(mp);
18441 if ( mp->cur_type!=mp_boolean_type ) {
18442 exp_err("Undefined condition will be treated as `false'");
18443 @.Undefined condition...@>
18444 help2("The expression shown above should have had a definite")
18445 ("true-or-false value. I'm changing it to `false'.");
18446 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18450 @* \[39] Doing the operations.
18451 The purpose of parsing is primarily to permit people to avoid piles of
18452 parentheses. But the real work is done after the structure of an expression
18453 has been recognized; that's when new expressions are generated. We
18454 turn now to the guts of \MP, which handles individual operators that
18455 have come through the parsing mechanism.
18457 We'll start with the easy ones that take no operands, then work our way
18458 up to operators with one and ultimately two arguments. In other words,
18459 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18460 that are invoked periodically by the expression scanners.
18462 First let's make sure that all of the primitive operators are in the
18463 hash table. Although |scan_primary| and its relatives made use of the
18464 \\{cmd} code for these operators, the \\{do} routines base everything
18465 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18466 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18469 mp_primitive(mp, "true",nullary,true_code);
18470 @:true_}{\&{true} primitive@>
18471 mp_primitive(mp, "false",nullary,false_code);
18472 @:false_}{\&{false} primitive@>
18473 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18474 @:null_picture_}{\&{nullpicture} primitive@>
18475 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18476 @:null_pen_}{\&{nullpen} primitive@>
18477 mp_primitive(mp, "jobname",nullary,job_name_op);
18478 @:job_name_}{\&{jobname} primitive@>
18479 mp_primitive(mp, "readstring",nullary,read_string_op);
18480 @:read_string_}{\&{readstring} primitive@>
18481 mp_primitive(mp, "pencircle",nullary,pen_circle);
18482 @:pen_circle_}{\&{pencircle} primitive@>
18483 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18484 @:normal_deviate_}{\&{normaldeviate} primitive@>
18485 mp_primitive(mp, "readfrom",unary,read_from_op);
18486 @:read_from_}{\&{readfrom} primitive@>
18487 mp_primitive(mp, "closefrom",unary,close_from_op);
18488 @:close_from_}{\&{closefrom} primitive@>
18489 mp_primitive(mp, "odd",unary,odd_op);
18490 @:odd_}{\&{odd} primitive@>
18491 mp_primitive(mp, "known",unary,known_op);
18492 @:known_}{\&{known} primitive@>
18493 mp_primitive(mp, "unknown",unary,unknown_op);
18494 @:unknown_}{\&{unknown} primitive@>
18495 mp_primitive(mp, "not",unary,not_op);
18496 @:not_}{\&{not} primitive@>
18497 mp_primitive(mp, "decimal",unary,decimal);
18498 @:decimal_}{\&{decimal} primitive@>
18499 mp_primitive(mp, "reverse",unary,reverse);
18500 @:reverse_}{\&{reverse} primitive@>
18501 mp_primitive(mp, "makepath",unary,make_path_op);
18502 @:make_path_}{\&{makepath} primitive@>
18503 mp_primitive(mp, "makepen",unary,make_pen_op);
18504 @:make_pen_}{\&{makepen} primitive@>
18505 mp_primitive(mp, "oct",unary,oct_op);
18506 @:oct_}{\&{oct} primitive@>
18507 mp_primitive(mp, "hex",unary,hex_op);
18508 @:hex_}{\&{hex} primitive@>
18509 mp_primitive(mp, "ASCII",unary,ASCII_op);
18510 @:ASCII_}{\&{ASCII} primitive@>
18511 mp_primitive(mp, "char",unary,char_op);
18512 @:char_}{\&{char} primitive@>
18513 mp_primitive(mp, "length",unary,length_op);
18514 @:length_}{\&{length} primitive@>
18515 mp_primitive(mp, "turningnumber",unary,turning_op);
18516 @:turning_number_}{\&{turningnumber} primitive@>
18517 mp_primitive(mp, "xpart",unary,x_part);
18518 @:x_part_}{\&{xpart} primitive@>
18519 mp_primitive(mp, "ypart",unary,y_part);
18520 @:y_part_}{\&{ypart} primitive@>
18521 mp_primitive(mp, "xxpart",unary,xx_part);
18522 @:xx_part_}{\&{xxpart} primitive@>
18523 mp_primitive(mp, "xypart",unary,xy_part);
18524 @:xy_part_}{\&{xypart} primitive@>
18525 mp_primitive(mp, "yxpart",unary,yx_part);
18526 @:yx_part_}{\&{yxpart} primitive@>
18527 mp_primitive(mp, "yypart",unary,yy_part);
18528 @:yy_part_}{\&{yypart} primitive@>
18529 mp_primitive(mp, "redpart",unary,red_part);
18530 @:red_part_}{\&{redpart} primitive@>
18531 mp_primitive(mp, "greenpart",unary,green_part);
18532 @:green_part_}{\&{greenpart} primitive@>
18533 mp_primitive(mp, "bluepart",unary,blue_part);
18534 @:blue_part_}{\&{bluepart} primitive@>
18535 mp_primitive(mp, "cyanpart",unary,cyan_part);
18536 @:cyan_part_}{\&{cyanpart} primitive@>
18537 mp_primitive(mp, "magentapart",unary,magenta_part);
18538 @:magenta_part_}{\&{magentapart} primitive@>
18539 mp_primitive(mp, "yellowpart",unary,yellow_part);
18540 @:yellow_part_}{\&{yellowpart} primitive@>
18541 mp_primitive(mp, "blackpart",unary,black_part);
18542 @:black_part_}{\&{blackpart} primitive@>
18543 mp_primitive(mp, "greypart",unary,grey_part);
18544 @:grey_part_}{\&{greypart} primitive@>
18545 mp_primitive(mp, "colormodel",unary,color_model_part);
18546 @:color_model_part_}{\&{colormodel} primitive@>
18547 mp_primitive(mp, "fontpart",unary,font_part);
18548 @:font_part_}{\&{fontpart} primitive@>
18549 mp_primitive(mp, "textpart",unary,text_part);
18550 @:text_part_}{\&{textpart} primitive@>
18551 mp_primitive(mp, "pathpart",unary,path_part);
18552 @:path_part_}{\&{pathpart} primitive@>
18553 mp_primitive(mp, "penpart",unary,pen_part);
18554 @:pen_part_}{\&{penpart} primitive@>
18555 mp_primitive(mp, "dashpart",unary,dash_part);
18556 @:dash_part_}{\&{dashpart} primitive@>
18557 mp_primitive(mp, "sqrt",unary,sqrt_op);
18558 @:sqrt_}{\&{sqrt} primitive@>
18559 mp_primitive(mp, "mexp",unary,m_exp_op);
18560 @:m_exp_}{\&{mexp} primitive@>
18561 mp_primitive(mp, "mlog",unary,m_log_op);
18562 @:m_log_}{\&{mlog} primitive@>
18563 mp_primitive(mp, "sind",unary,sin_d_op);
18564 @:sin_d_}{\&{sind} primitive@>
18565 mp_primitive(mp, "cosd",unary,cos_d_op);
18566 @:cos_d_}{\&{cosd} primitive@>
18567 mp_primitive(mp, "floor",unary,floor_op);
18568 @:floor_}{\&{floor} primitive@>
18569 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18570 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18571 mp_primitive(mp, "charexists",unary,char_exists_op);
18572 @:char_exists_}{\&{charexists} primitive@>
18573 mp_primitive(mp, "fontsize",unary,font_size);
18574 @:font_size_}{\&{fontsize} primitive@>
18575 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18576 @:ll_corner_}{\&{llcorner} primitive@>
18577 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18578 @:lr_corner_}{\&{lrcorner} primitive@>
18579 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18580 @:ul_corner_}{\&{ulcorner} primitive@>
18581 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18582 @:ur_corner_}{\&{urcorner} primitive@>
18583 mp_primitive(mp, "arclength",unary,arc_length);
18584 @:arc_length_}{\&{arclength} primitive@>
18585 mp_primitive(mp, "angle",unary,angle_op);
18586 @:angle_}{\&{angle} primitive@>
18587 mp_primitive(mp, "cycle",cycle,cycle_op);
18588 @:cycle_}{\&{cycle} primitive@>
18589 mp_primitive(mp, "stroked",unary,stroked_op);
18590 @:stroked_}{\&{stroked} primitive@>
18591 mp_primitive(mp, "filled",unary,filled_op);
18592 @:filled_}{\&{filled} primitive@>
18593 mp_primitive(mp, "textual",unary,textual_op);
18594 @:textual_}{\&{textual} primitive@>
18595 mp_primitive(mp, "clipped",unary,clipped_op);
18596 @:clipped_}{\&{clipped} primitive@>
18597 mp_primitive(mp, "bounded",unary,bounded_op);
18598 @:bounded_}{\&{bounded} primitive@>
18599 mp_primitive(mp, "+",plus_or_minus,plus);
18600 @:+ }{\.{+} primitive@>
18601 mp_primitive(mp, "-",plus_or_minus,minus);
18602 @:- }{\.{-} primitive@>
18603 mp_primitive(mp, "*",secondary_binary,times);
18604 @:* }{\.{*} primitive@>
18605 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18606 @:/ }{\.{/} primitive@>
18607 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18608 @:++_}{\.{++} primitive@>
18609 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18610 @:+-+_}{\.{+-+} primitive@>
18611 mp_primitive(mp, "or",tertiary_binary,or_op);
18612 @:or_}{\&{or} primitive@>
18613 mp_primitive(mp, "and",and_command,and_op);
18614 @:and_}{\&{and} primitive@>
18615 mp_primitive(mp, "<",expression_binary,less_than);
18616 @:< }{\.{<} primitive@>
18617 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18618 @:<=_}{\.{<=} primitive@>
18619 mp_primitive(mp, ">",expression_binary,greater_than);
18620 @:> }{\.{>} primitive@>
18621 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18622 @:>=_}{\.{>=} primitive@>
18623 mp_primitive(mp, "=",equals,equal_to);
18624 @:= }{\.{=} primitive@>
18625 mp_primitive(mp, "<>",expression_binary,unequal_to);
18626 @:<>_}{\.{<>} primitive@>
18627 mp_primitive(mp, "substring",primary_binary,substring_of);
18628 @:substring_}{\&{substring} primitive@>
18629 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18630 @:subpath_}{\&{subpath} primitive@>
18631 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18632 @:direction_time_}{\&{directiontime} primitive@>
18633 mp_primitive(mp, "point",primary_binary,point_of);
18634 @:point_}{\&{point} primitive@>
18635 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18636 @:precontrol_}{\&{precontrol} primitive@>
18637 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18638 @:postcontrol_}{\&{postcontrol} primitive@>
18639 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18640 @:pen_offset_}{\&{penoffset} primitive@>
18641 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18642 @:arc_time_of_}{\&{arctime} primitive@>
18643 mp_primitive(mp, "mpversion",nullary,mp_version);
18644 @:mp_verison_}{\&{mpversion} primitive@>
18645 mp_primitive(mp, "&",ampersand,concatenate);
18646 @:!!!}{\.{\&} primitive@>
18647 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18648 @:rotated_}{\&{rotated} primitive@>
18649 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18650 @:slanted_}{\&{slanted} primitive@>
18651 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18652 @:scaled_}{\&{scaled} primitive@>
18653 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18654 @:shifted_}{\&{shifted} primitive@>
18655 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18656 @:transformed_}{\&{transformed} primitive@>
18657 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18658 @:x_scaled_}{\&{xscaled} primitive@>
18659 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18660 @:y_scaled_}{\&{yscaled} primitive@>
18661 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18662 @:z_scaled_}{\&{zscaled} primitive@>
18663 mp_primitive(mp, "infont",secondary_binary,in_font);
18664 @:in_font_}{\&{infont} primitive@>
18665 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18666 @:intersection_times_}{\&{intersectiontimes} primitive@>
18667 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18668 @:envelope_}{\&{envelope} primitive@>
18670 @ @<Cases of |print_cmd...@>=
18673 case primary_binary:
18674 case secondary_binary:
18675 case tertiary_binary:
18676 case expression_binary:
18678 case plus_or_minus:
18683 mp_print_op(mp, m);
18686 @ OK, let's look at the simplest \\{do} procedure first.
18688 @c @<Declare nullary action procedure@>;
18689 void mp_do_nullary (MP mp,quarterword c) {
18691 if ( mp->internal[mp_tracing_commands]>two )
18692 mp_show_cmd_mod(mp, nullary,c);
18694 case true_code: case false_code:
18695 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18697 case null_picture_code:
18698 mp->cur_type=mp_picture_type;
18699 mp->cur_exp=mp_get_node(mp, edge_header_size);
18700 mp_init_edges(mp, mp->cur_exp);
18702 case null_pen_code:
18703 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18705 case normal_deviate:
18706 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18709 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18712 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18713 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18716 mp->cur_type=mp_string_type;
18717 mp->cur_exp=intern(metapost_version) ;
18719 case read_string_op:
18720 @<Read a string from the terminal@>;
18722 } /* there are no other cases */
18726 @ @<Read a string...@>=
18728 if ( mp->interaction<=mp_nonstop_mode )
18729 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18730 mp_begin_file_reading(mp); name=is_read;
18731 limit=start; prompt_input("");
18732 mp_finish_read(mp);
18735 @ @<Declare nullary action procedure@>=
18736 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18738 str_room((int)mp->last-start);
18739 for (k=start;k<=mp->last-1;k++) {
18740 append_char(mp->buffer[k]);
18742 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18743 mp->cur_exp=mp_make_string(mp);
18746 @ Things get a bit more interesting when there's an operand. The
18747 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18749 @c @<Declare unary action procedures@>;
18750 void mp_do_unary (MP mp,quarterword c) {
18751 pointer p,q,r; /* for list manipulation */
18752 integer x; /* a temporary register */
18754 if ( mp->internal[mp_tracing_commands]>two )
18755 @<Trace the current unary operation@>;
18758 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18761 @<Negate the current expression@>;
18763 @<Additional cases of unary operators@>;
18764 } /* there are no other cases */
18768 @ The |nice_pair| function returns |true| if both components of a pair
18771 @<Declare unary action procedures@>=
18772 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18773 if ( t==mp_pair_type ) {
18775 if ( type(x_part_loc(p))==mp_known )
18776 if ( type(y_part_loc(p))==mp_known )
18782 @ The |nice_color_or_pair| function is analogous except that it also accepts
18783 fully known colors.
18785 @<Declare unary action procedures@>=
18786 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18787 pointer q,r; /* for scanning the big node */
18788 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18792 r=q+mp->big_node_size[type(p)];
18795 if ( type(r)!=mp_known )
18802 @ @<Declare unary action...@>=
18803 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18804 mp_print_char(mp, '(');
18805 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18806 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18807 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18808 mp_print_type(mp, t);
18810 mp_print_char(mp, ')');
18813 @ @<Declare unary action...@>=
18814 void mp_bad_unary (MP mp,quarterword c) {
18815 exp_err("Not implemented: "); mp_print_op(mp, c);
18816 @.Not implemented...@>
18817 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18818 help3("I'm afraid I don't know how to apply that operation to that")
18819 ("particular type. Continue, and I'll simply return the")
18820 ("argument (shown above) as the result of the operation.");
18821 mp_put_get_error(mp);
18824 @ @<Trace the current unary operation@>=
18826 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18827 mp_print_op(mp, c); mp_print_char(mp, '(');
18828 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18829 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18832 @ Negation is easy except when the current expression
18833 is of type |independent|, or when it is a pair with one or more
18834 |independent| components.
18836 It is tempting to argue that the negative of an independent variable
18837 is an independent variable, hence we don't have to do anything when
18838 negating it. The fallacy is that other dependent variables pointing
18839 to the current expression must change the sign of their
18840 coefficients if we make no change to the current expression.
18842 Instead, we work around the problem by copying the current expression
18843 and recycling it afterwards (cf.~the |stash_in| routine).
18845 @<Negate the current expression@>=
18846 switch (mp->cur_type) {
18847 case mp_color_type:
18848 case mp_cmykcolor_type:
18850 case mp_independent:
18851 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18852 if ( mp->cur_type==mp_dependent ) {
18853 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18854 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18855 p=value(mp->cur_exp);
18856 r=p+mp->big_node_size[mp->cur_type];
18859 if ( type(r)==mp_known ) negate(value(r));
18860 else mp_negate_dep_list(mp, dep_list(r));
18862 } /* if |cur_type=mp_known| then |cur_exp=0| */
18863 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18866 case mp_proto_dependent:
18867 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18870 negate(mp->cur_exp);
18873 mp_bad_unary(mp, minus);
18877 @ @<Declare unary action...@>=
18878 void mp_negate_dep_list (MP mp,pointer p) {
18881 if ( info(p)==null ) return;
18886 @ @<Additional cases of unary operators@>=
18888 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18889 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18892 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18893 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18895 @<Additional cases of unary operators@>=
18902 case uniform_deviate:
18904 case char_exists_op:
18905 if ( mp->cur_type!=mp_known ) {
18906 mp_bad_unary(mp, c);
18909 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18910 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18911 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18914 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18915 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18916 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18918 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18919 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18921 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18922 mp->cur_type=mp_boolean_type;
18924 case char_exists_op:
18925 @<Determine if a character has been shipped out@>;
18927 } /* there are no other cases */
18931 @ @<Additional cases of unary operators@>=
18933 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18934 p=value(mp->cur_exp);
18935 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18936 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18937 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18939 mp_bad_unary(mp, angle_op);
18943 @ If the current expression is a pair, but the context wants it to
18944 be a path, we call |pair_to_path|.
18946 @<Declare unary action...@>=
18947 void mp_pair_to_path (MP mp) {
18948 mp->cur_exp=mp_new_knot(mp);
18949 mp->cur_type=mp_path_type;
18952 @ @<Additional cases of unary operators@>=
18955 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18956 mp_take_part(mp, c);
18957 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18958 else mp_bad_unary(mp, c);
18964 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18965 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18966 else mp_bad_unary(mp, c);
18971 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18972 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18973 else mp_bad_unary(mp, c);
18979 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18980 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18981 else mp_bad_unary(mp, c);
18984 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18985 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18986 else mp_bad_unary(mp, c);
18988 case color_model_part:
18989 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18990 else mp_bad_unary(mp, c);
18993 @ In the following procedure, |cur_exp| points to a capsule, which points to
18994 a big node. We want to delete all but one part of the big node.
18996 @<Declare unary action...@>=
18997 void mp_take_part (MP mp,quarterword c) {
18998 pointer p; /* the big node */
18999 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19000 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19001 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19002 mp_recycle_value(mp, temp_val);
19005 @ @<Initialize table entries...@>=
19006 name_type(temp_val)=mp_capsule;
19008 @ @<Additional cases of unary operators@>=
19014 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19015 else mp_bad_unary(mp, c);
19018 @ @<Declarations@>=
19019 void mp_scale_edges (MP mp);
19021 @ @<Declare unary action...@>=
19022 void mp_take_pict_part (MP mp,quarterword c) {
19023 pointer p; /* first graphical object in |cur_exp| */
19024 p=link(dummy_loc(mp->cur_exp));
19027 case x_part: case y_part: case xx_part:
19028 case xy_part: case yx_part: case yy_part:
19029 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19030 else goto NOT_FOUND;
19032 case red_part: case green_part: case blue_part:
19033 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19034 else goto NOT_FOUND;
19036 case cyan_part: case magenta_part: case yellow_part:
19038 if ( has_color(p) ) {
19039 if ( color_model(p)==mp_uninitialized_model )
19040 mp_flush_cur_exp(mp, unity);
19042 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19043 } else goto NOT_FOUND;
19046 if ( has_color(p) )
19047 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19048 else goto NOT_FOUND;
19050 case color_model_part:
19051 if ( has_color(p) ) {
19052 if ( color_model(p)==mp_uninitialized_model )
19053 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19055 mp_flush_cur_exp(mp, color_model(p)*unity);
19056 } else goto NOT_FOUND;
19058 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19059 } /* all cases have been enumerated */
19063 @<Convert the current expression to a null value appropriate
19067 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19069 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19071 mp_flush_cur_exp(mp, text_p(p));
19072 add_str_ref(mp->cur_exp);
19073 mp->cur_type=mp_string_type;
19077 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19079 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19080 add_str_ref(mp->cur_exp);
19081 mp->cur_type=mp_string_type;
19085 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19086 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19087 @:this can't happen pict}{\quad pict@>
19089 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19090 mp->cur_type=mp_path_type;
19094 if ( ! has_pen(p) ) goto NOT_FOUND;
19096 if ( pen_p(p)==null ) goto NOT_FOUND;
19097 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19098 mp->cur_type=mp_pen_type;
19103 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19104 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19105 else { add_edge_ref(dash_p(p));
19106 mp->se_sf=dash_scale(p);
19107 mp->se_pic=dash_p(p);
19108 mp_scale_edges(mp);
19109 mp_flush_cur_exp(mp, mp->se_pic);
19110 mp->cur_type=mp_picture_type;
19115 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19116 parameterless procedure even though it really takes two arguments and updates
19117 one of them. Hence the following globals are needed.
19120 pointer se_pic; /* edge header used and updated by |scale_edges| */
19121 scaled se_sf; /* the scale factor argument to |scale_edges| */
19123 @ @<Convert the current expression to a null value appropriate...@>=
19125 case text_part: case font_part:
19126 mp_flush_cur_exp(mp, rts(""));
19127 mp->cur_type=mp_string_type;
19130 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19131 left_type(mp->cur_exp)=mp_endpoint;
19132 right_type(mp->cur_exp)=mp_endpoint;
19133 link(mp->cur_exp)=mp->cur_exp;
19134 x_coord(mp->cur_exp)=0;
19135 y_coord(mp->cur_exp)=0;
19136 originator(mp->cur_exp)=mp_metapost_user;
19137 mp->cur_type=mp_path_type;
19140 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19141 mp->cur_type=mp_pen_type;
19144 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19145 mp_init_edges(mp, mp->cur_exp);
19146 mp->cur_type=mp_picture_type;
19149 mp_flush_cur_exp(mp, 0);
19153 @ @<Additional cases of unary...@>=
19155 if ( mp->cur_type!=mp_known ) {
19156 mp_bad_unary(mp, char_op);
19158 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19159 mp->cur_type=mp_string_type;
19160 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19164 if ( mp->cur_type!=mp_known ) {
19165 mp_bad_unary(mp, decimal);
19167 mp->old_setting=mp->selector; mp->selector=new_string;
19168 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19169 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19175 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19176 else mp_str_to_num(mp, c);
19179 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19180 else @<Find the design size of the font whose name is |cur_exp|@>;
19183 @ @<Declare unary action...@>=
19184 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19185 integer n; /* accumulator */
19186 ASCII_code m; /* current character */
19187 pool_pointer k; /* index into |str_pool| */
19188 int b; /* radix of conversion */
19189 boolean bad_char; /* did the string contain an invalid digit? */
19190 if ( c==ASCII_op ) {
19191 if ( length(mp->cur_exp)==0 ) n=-1;
19192 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19194 if ( c==oct_op ) b=8; else b=16;
19195 n=0; bad_char=false;
19196 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19198 if ( (m>='0')&&(m<='9') ) m=m-'0';
19199 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19200 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19201 else { bad_char=true; m=0; };
19202 if ( m>=b ) { bad_char=true; m=0; };
19203 if ( n<32768 / b ) n=n*b+m; else n=32767;
19205 @<Give error messages if |bad_char| or |n>=4096|@>;
19207 mp_flush_cur_exp(mp, n*unity);
19210 @ @<Give error messages if |bad_char|...@>=
19212 exp_err("String contains illegal digits");
19213 @.String contains illegal digits@>
19215 help1("I zeroed out characters that weren't in the range 0..7.");
19217 help1("I zeroed out characters that weren't hex digits.");
19219 mp_put_get_error(mp);
19222 if ( mp->internal[mp_warning_check]>0 ) {
19223 print_err("Number too large (");
19224 mp_print_int(mp, n); mp_print_char(mp, ')');
19225 @.Number too large@>
19226 help2("I have trouble with numbers greater than 4095; watch out.")
19227 ("(Set warningcheck:=0 to suppress this message.)");
19228 mp_put_get_error(mp);
19232 @ The length operation is somewhat unusual in that it applies to a variety
19233 of different types of operands.
19235 @<Additional cases of unary...@>=
19237 switch (mp->cur_type) {
19238 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19239 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19240 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19241 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19243 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19244 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19245 value(x_part_loc(value(mp->cur_exp))),
19246 value(y_part_loc(value(mp->cur_exp)))));
19247 else mp_bad_unary(mp, c);
19252 @ @<Declare unary action...@>=
19253 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19254 scaled n; /* the path length so far */
19255 pointer p; /* traverser */
19257 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19258 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19262 @ @<Declare unary action...@>=
19263 scaled mp_pict_length (MP mp) {
19264 /* counts interior components in picture |cur_exp| */
19265 scaled n; /* the count so far */
19266 pointer p; /* traverser */
19268 p=link(dummy_loc(mp->cur_exp));
19270 if ( is_start_or_stop(p) )
19271 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19272 while ( p!=null ) {
19273 skip_component(p) return n;
19280 @ Implement |turningnumber|
19282 @<Additional cases of unary...@>=
19284 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19285 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19286 else if ( left_type(mp->cur_exp)==mp_endpoint )
19287 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19289 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19292 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19293 argument is |origin|.
19295 @<Declare unary action...@>=
19296 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19297 if ( (! ((xpar==0) && (ypar==0))) )
19298 return mp_n_arg(mp, xpar,ypar);
19303 @ The actual turning number is (for the moment) computed in a C function
19304 that receives eight integers corresponding to the four controlling points,
19305 and returns a single angle. Besides those, we have to account for discrete
19306 moves at the actual points.
19308 @d floor(a) (a>=0 ? a : -(int)(-a))
19309 @d bezier_error (720<<20)+1
19310 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19311 @d print_roots(a) { if (debuglevel>(65536*2))
19312 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19313 @d out ((double)(xo>>20))
19314 @d mid ((double)(xm>>20))
19315 @d in ((double)(xi>>20))
19316 @d divisor (256*256)
19317 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19319 @<Declare unary action...@>=
19320 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19321 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19324 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19325 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19327 integer deltax,deltay;
19328 double ax,ay,bx,by,cx,cy,dx,dy;
19329 angle xi = 0, xo = 0, xm = 0;
19331 ax=AX/divisor; ay=AY/divisor;
19332 bx=BX/divisor; by=BY/divisor;
19333 cx=CX/divisor; cy=CY/divisor;
19334 dx=DX/divisor; dy=DY/divisor;
19336 deltax = (BX-AX); deltay = (BY-AY);
19337 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19338 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19339 xi = mp_an_angle(mp,deltax,deltay);
19341 deltax = (CX-BX); deltay = (CY-BY);
19342 xm = mp_an_angle(mp,deltax,deltay);
19344 deltax = (DX-CX); deltay = (DY-CY);
19345 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19346 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19347 xo = mp_an_angle(mp,deltax,deltay);
19349 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19350 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19351 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19353 if (debuglevel>(65536*2)) {
19355 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19356 ax,ay,bx,by,cx,cy,dx,dy);
19358 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19361 if ((a==0)&&(c==0)) {
19362 res = (b==0 ? 0 : (out-in));
19363 print_roots("no roots (a)");
19364 } else if ((a==0)||(c==0)) {
19365 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19366 res = out-in; /* ? */
19369 else if (res>180.0)
19371 print_roots("no roots (b)");
19373 res = out-in; /* ? */
19374 print_roots("one root (a)");
19376 } else if ((sign(a)*sign(c))<0) {
19377 res = out-in; /* ? */
19380 else if (res>180.0)
19382 print_roots("one root (b)");
19384 if (sign(a) == sign(b)) {
19385 res = out-in; /* ? */
19388 else if (res>180.0)
19390 print_roots("no roots (d)");
19392 if ((b*b) == (4*a*c)) {
19393 res = bezier_error;
19394 print_roots("double root"); /* cusp */
19395 } else if ((b*b) < (4*a*c)) {
19396 res = out-in; /* ? */
19397 if (res<=0.0 &&res>-180.0)
19399 else if (res>=0.0 && res<180.0)
19401 print_roots("no roots (e)");
19406 else if (res>180.0)
19408 print_roots("two roots"); /* two inflections */
19412 return double2angle(res);
19416 @d p_nextnext link(link(p))
19418 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19420 @<Declare unary action...@>=
19421 scaled mp_new_turn_cycles (MP mp,pointer c) {
19422 angle res,ang; /* the angles of intermediate results */
19423 scaled turns; /* the turn counter */
19424 pointer p; /* for running around the path */
19425 integer xp,yp; /* coordinates of next point */
19426 integer x,y; /* helper coordinates */
19427 angle in_angle,out_angle; /* helper angles */
19428 int old_setting; /* saved |selector| setting */
19432 old_setting = mp->selector; mp->selector=term_only;
19433 if ( mp->internal[mp_tracing_commands]>unity ) {
19434 mp_begin_diagnostic(mp);
19435 mp_print_nl(mp, "");
19436 mp_end_diagnostic(mp, false);
19439 xp = x_coord(p_next); yp = y_coord(p_next);
19440 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19441 left_x(p_next), left_y(p_next), xp, yp,
19442 mp->internal[mp_tracing_commands]);
19443 if ( ang>seven_twenty_deg ) {
19444 print_err("Strange path");
19446 mp->selector=old_setting;
19450 if ( res > one_eighty_deg ) {
19451 res = res - three_sixty_deg;
19452 turns = turns + unity;
19454 if ( res <= -one_eighty_deg ) {
19455 res = res + three_sixty_deg;
19456 turns = turns - unity;
19458 /* incoming angle at next point */
19459 x = left_x(p_next); y = left_y(p_next);
19460 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19461 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19462 in_angle = mp_an_angle(mp, xp - x, yp - y);
19463 /* outgoing angle at next point */
19464 x = right_x(p_next); y = right_y(p_next);
19465 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19466 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19467 out_angle = mp_an_angle(mp, x - xp, y- yp);
19468 ang = (out_angle - in_angle);
19472 if ( res >= one_eighty_deg ) {
19473 res = res - three_sixty_deg;
19474 turns = turns + unity;
19476 if ( res <= -one_eighty_deg ) {
19477 res = res + three_sixty_deg;
19478 turns = turns - unity;
19483 mp->selector=old_setting;
19488 @ This code is based on Bogus\l{}av Jackowski's
19489 |emergency_turningnumber| macro, with some minor changes by Taco
19490 Hoekwater. The macro code looked more like this:
19492 vardef turning\_number primary p =
19493 ~~save res, ang, turns;
19495 ~~if length p <= 2:
19496 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19498 ~~~~for t = 0 upto length p-1 :
19499 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19500 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19501 ~~~~~~if angc > 180: angc := angc - 360; fi;
19502 ~~~~~~if angc < -180: angc := angc + 360; fi;
19503 ~~~~~~res := res + angc;
19508 The general idea is to calculate only the sum of the angles of
19509 straight lines between the points, of a path, not worrying about cusps
19510 or self-intersections in the segments at all. If the segment is not
19511 well-behaved, the result is not necesarily correct. But the old code
19512 was not always correct either, and worse, it sometimes failed for
19513 well-behaved paths as well. All known bugs that were triggered by the
19514 original code no longer occur with this code, and it runs roughly 3
19515 times as fast because the algorithm is much simpler.
19517 @ It is possible to overflow the return value of the |turn_cycles|
19518 function when the path is sufficiently long and winding, but I am not
19519 going to bother testing for that. In any case, it would only return
19520 the looped result value, which is not a big problem.
19522 The macro code for the repeat loop was a bit nicer to look
19523 at than the pascal code, because it could use |point -1 of p|. In
19524 pascal, the fastest way to loop around the path is not to look
19525 backward once, but forward twice. These defines help hide the trick.
19527 @d p_to link(link(p))
19531 @<Declare unary action...@>=
19532 scaled mp_turn_cycles (MP mp,pointer c) {
19533 angle res,ang; /* the angles of intermediate results */
19534 scaled turns; /* the turn counter */
19535 pointer p; /* for running around the path */
19536 res=0; turns= 0; p=c;
19538 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19539 y_coord(p_to) - y_coord(p_here))
19540 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19541 y_coord(p_here) - y_coord(p_from));
19544 if ( res >= three_sixty_deg ) {
19545 res = res - three_sixty_deg;
19546 turns = turns + unity;
19548 if ( res <= -three_sixty_deg ) {
19549 res = res + three_sixty_deg;
19550 turns = turns - unity;
19557 @ @<Declare unary action...@>=
19558 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19560 scaled saved_t_o; /* tracing\_online saved */
19561 if ( (link(c)==c)||(link(link(c))==c) ) {
19562 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19567 nval = mp_new_turn_cycles(mp, c);
19568 oval = mp_turn_cycles(mp, c);
19569 if ( nval!=oval ) {
19570 saved_t_o=mp->internal[mp_tracing_online];
19571 mp->internal[mp_tracing_online]=unity;
19572 mp_begin_diagnostic(mp);
19573 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19574 " The current computed value is ");
19575 mp_print_scaled(mp, nval);
19576 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19577 mp_print_scaled(mp, oval);
19578 mp_end_diagnostic(mp, false);
19579 mp->internal[mp_tracing_online]=saved_t_o;
19585 @ @<Declare unary action...@>=
19586 scaled mp_count_turns (MP mp,pointer c) {
19587 pointer p; /* a knot in envelope spec |c| */
19588 integer t; /* total pen offset changes counted */
19591 t=t+info(p)-zero_off;
19594 return ((t / 3)*unity);
19597 @ @d type_range(A,B) {
19598 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19599 mp_flush_cur_exp(mp, true_code);
19600 else mp_flush_cur_exp(mp, false_code);
19601 mp->cur_type=mp_boolean_type;
19604 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19605 else mp_flush_cur_exp(mp, false_code);
19606 mp->cur_type=mp_boolean_type;
19609 @<Additional cases of unary operators@>=
19610 case mp_boolean_type:
19611 type_range(mp_boolean_type,mp_unknown_boolean); break;
19612 case mp_string_type:
19613 type_range(mp_string_type,mp_unknown_string); break;
19615 type_range(mp_pen_type,mp_unknown_pen); break;
19617 type_range(mp_path_type,mp_unknown_path); break;
19618 case mp_picture_type:
19619 type_range(mp_picture_type,mp_unknown_picture); break;
19620 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19622 type_test(c); break;
19623 case mp_numeric_type:
19624 type_range(mp_known,mp_independent); break;
19625 case known_op: case unknown_op:
19626 mp_test_known(mp, c); break;
19628 @ @<Declare unary action procedures@>=
19629 void mp_test_known (MP mp,quarterword c) {
19630 int b; /* is the current expression known? */
19631 pointer p,q; /* locations in a big node */
19633 switch (mp->cur_type) {
19634 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19635 case mp_pen_type: case mp_path_type: case mp_picture_type:
19639 case mp_transform_type:
19640 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19641 p=value(mp->cur_exp);
19642 q=p+mp->big_node_size[mp->cur_type];
19645 if ( type(q)!=mp_known )
19654 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19655 else mp_flush_cur_exp(mp, true_code+false_code-b);
19656 mp->cur_type=mp_boolean_type;
19659 @ @<Additional cases of unary operators@>=
19661 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19662 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19663 else mp_flush_cur_exp(mp, false_code);
19664 mp->cur_type=mp_boolean_type;
19667 @ @<Additional cases of unary operators@>=
19669 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19670 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19671 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19674 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19676 @^data structure assumptions@>
19678 @<Additional cases of unary operators@>=
19684 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19685 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19686 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19687 mp_flush_cur_exp(mp, true_code);
19688 else mp_flush_cur_exp(mp, false_code);
19689 mp->cur_type=mp_boolean_type;
19692 @ @<Additional cases of unary operators@>=
19694 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19695 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19697 mp->cur_type=mp_pen_type;
19698 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19702 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19704 mp->cur_type=mp_path_type;
19705 mp_make_path(mp, mp->cur_exp);
19709 if ( mp->cur_type==mp_path_type ) {
19710 p=mp_htap_ypoc(mp, mp->cur_exp);
19711 if ( right_type(p)==mp_endpoint ) p=link(p);
19712 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19713 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19714 else mp_bad_unary(mp, reverse);
19717 @ The |pair_value| routine changes the current expression to a
19718 given ordered pair of values.
19720 @<Declare unary action procedures@>=
19721 void mp_pair_value (MP mp,scaled x, scaled y) {
19722 pointer p; /* a pair node */
19723 p=mp_get_node(mp, value_node_size);
19724 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19725 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19727 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19728 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19731 @ @<Additional cases of unary operators@>=
19733 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19734 else mp_pair_value(mp, minx,miny);
19737 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19738 else mp_pair_value(mp, maxx,miny);
19741 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19742 else mp_pair_value(mp, minx,maxy);
19745 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19746 else mp_pair_value(mp, maxx,maxy);
19749 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19750 box of the current expression. The boolean result is |false| if the expression
19751 has the wrong type.
19753 @<Declare unary action procedures@>=
19754 boolean mp_get_cur_bbox (MP mp) {
19755 switch (mp->cur_type) {
19756 case mp_picture_type:
19757 mp_set_bbox(mp, mp->cur_exp,true);
19758 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19759 minx=0; maxx=0; miny=0; maxy=0;
19761 minx=minx_val(mp->cur_exp);
19762 maxx=maxx_val(mp->cur_exp);
19763 miny=miny_val(mp->cur_exp);
19764 maxy=maxy_val(mp->cur_exp);
19768 mp_path_bbox(mp, mp->cur_exp);
19771 mp_pen_bbox(mp, mp->cur_exp);
19779 @ @<Additional cases of unary operators@>=
19781 case close_from_op:
19782 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19783 else mp_do_read_or_close(mp,c);
19786 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19787 a line from the file or to close the file.
19789 @d close_file 46 /* go here when closing the file */
19791 @<Declare unary action procedures@>=
19792 void mp_do_read_or_close (MP mp,quarterword c) {
19793 readf_index n,n0; /* indices for searching |rd_fname| */
19794 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19795 call |start_read_input| and |goto found| or |not_found|@>;
19796 mp_begin_file_reading(mp);
19798 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19800 mp_end_file_reading(mp);
19802 @<Record the end of file and set |cur_exp| to a dummy value@>;
19805 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19808 mp_flush_cur_exp(mp, 0);
19809 mp_finish_read(mp);
19812 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19815 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19820 fn = str(mp->cur_exp);
19821 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19824 } else if ( c==close_from_op ) {
19827 if ( n0==mp->read_files ) {
19828 if ( mp->read_files<mp->max_read_files ) {
19829 incr(mp->read_files);
19834 l = mp->max_read_files + (mp->max_read_files>>2);
19835 rd_file = xmalloc((l+1), sizeof(FILE *));
19836 rd_fname = xmalloc((l+1), sizeof(char *));
19837 for (k=0;k<=l;k++) {
19838 if (k<=mp->max_read_files) {
19839 rd_file[k]=mp->rd_file[k];
19840 rd_fname[k]=mp->rd_fname[k];
19846 xfree(mp->rd_file); xfree(mp->rd_fname);
19847 mp->max_read_files = l;
19848 mp->rd_file = rd_file;
19849 mp->rd_fname = rd_fname;
19853 if ( mp_start_read_input(mp,fn,n) )
19858 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19860 if ( c==close_from_op ) {
19861 fclose(mp->rd_file[n]);
19866 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19867 xfree(mp->rd_fname[n]);
19868 mp->rd_fname[n]=NULL;
19869 if ( n==mp->read_files-1 ) mp->read_files=n;
19870 if ( c==close_from_op )
19872 mp_flush_cur_exp(mp, mp->eof_line);
19873 mp->cur_type=mp_string_type
19875 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19878 str_number eof_line;
19883 @ Finally, we have the operations that combine a capsule~|p|
19884 with the current expression.
19886 @c @<Declare binary action procedures@>;
19887 void mp_do_binary (MP mp,pointer p, quarterword c) {
19888 pointer q,r,rr; /* for list manipulation */
19889 pointer old_p,old_exp; /* capsules to recycle */
19890 integer v; /* for numeric manipulation */
19892 if ( mp->internal[mp_tracing_commands]>two ) {
19893 @<Trace the current binary operation@>;
19895 @<Sidestep |independent| cases in capsule |p|@>;
19896 @<Sidestep |independent| cases in the current expression@>;
19898 case plus: case minus:
19899 @<Add or subtract the current expression from |p|@>;
19901 @<Additional cases of binary operators@>;
19902 }; /* there are no other cases */
19903 mp_recycle_value(mp, p);
19904 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19906 @<Recycle any sidestepped |independent| capsules@>;
19909 @ @<Declare binary action...@>=
19910 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19911 mp_disp_err(mp, p,"");
19912 exp_err("Not implemented: ");
19913 @.Not implemented...@>
19914 if ( c>=min_of ) mp_print_op(mp, c);
19915 mp_print_known_or_unknown_type(mp, type(p),p);
19916 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19917 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19918 help3("I'm afraid I don't know how to apply that operation to that")
19919 ("combination of types. Continue, and I'll return the second")
19920 ("argument (see above) as the result of the operation.");
19921 mp_put_get_error(mp);
19923 void mp_bad_envelope_pen (MP mp) {
19924 mp_disp_err(mp, null,"");
19925 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19926 @.Not implemented...@>
19927 help3("I'm afraid I don't know how to apply that operation to that")
19928 ("combination of types. Continue, and I'll return the second")
19929 ("argument (see above) as the result of the operation.");
19930 mp_put_get_error(mp);
19933 @ @<Trace the current binary operation@>=
19935 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19936 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19937 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19938 mp_print_exp(mp,null,0); mp_print(mp,")}");
19939 mp_end_diagnostic(mp, false);
19942 @ Several of the binary operations are potentially complicated by the
19943 fact that |independent| values can sneak into capsules. For example,
19944 we've seen an instance of this difficulty in the unary operation
19945 of negation. In order to reduce the number of cases that need to be
19946 handled, we first change the two operands (if necessary)
19947 to rid them of |independent| components. The original operands are
19948 put into capsules called |old_p| and |old_exp|, which will be
19949 recycled after the binary operation has been safely carried out.
19951 @<Recycle any sidestepped |independent| capsules@>=
19952 if ( old_p!=null ) {
19953 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19955 if ( old_exp!=null ) {
19956 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19959 @ A big node is considered to be ``tarnished'' if it contains at least one
19960 independent component. We will define a simple function called `|tarnished|'
19961 that returns |null| if and only if its argument is not tarnished.
19963 @<Sidestep |independent| cases in capsule |p|@>=
19965 case mp_transform_type:
19966 case mp_color_type:
19967 case mp_cmykcolor_type:
19969 old_p=mp_tarnished(mp, p);
19971 case mp_independent: old_p=mp_void; break;
19972 default: old_p=null; break;
19974 if ( old_p!=null ) {
19975 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19976 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19979 @ @<Sidestep |independent| cases in the current expression@>=
19980 switch (mp->cur_type) {
19981 case mp_transform_type:
19982 case mp_color_type:
19983 case mp_cmykcolor_type:
19985 old_exp=mp_tarnished(mp, mp->cur_exp);
19987 case mp_independent:old_exp=mp_void; break;
19988 default: old_exp=null; break;
19990 if ( old_exp!=null ) {
19991 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19994 @ @<Declare binary action...@>=
19995 pointer mp_tarnished (MP mp,pointer p) {
19996 pointer q; /* beginning of the big node */
19997 pointer r; /* current position in the big node */
19998 q=value(p); r=q+mp->big_node_size[type(p)];
20001 if ( type(r)==mp_independent ) return mp_void;
20006 @ @<Add or subtract the current expression from |p|@>=
20007 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20008 mp_bad_binary(mp, p,c);
20010 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20011 mp_add_or_subtract(mp, p,null,c);
20013 if ( mp->cur_type!=type(p) ) {
20014 mp_bad_binary(mp, p,c);
20016 q=value(p); r=value(mp->cur_exp);
20017 rr=r+mp->big_node_size[mp->cur_type];
20019 mp_add_or_subtract(mp, q,r,c);
20026 @ The first argument to |add_or_subtract| is the location of a value node
20027 in a capsule or pair node that will soon be recycled. The second argument
20028 is either a location within a pair or transform node of |cur_exp|,
20029 or it is null (which means that |cur_exp| itself should be the second
20030 argument). The third argument is either |plus| or |minus|.
20032 The sum or difference of the numeric quantities will replace the second
20033 operand. Arithmetic overflow may go undetected; users aren't supposed to
20034 be monkeying around with really big values.
20036 @<Declare binary action...@>=
20037 @<Declare the procedure called |dep_finish|@>;
20038 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20039 small_number s,t; /* operand types */
20040 pointer r; /* list traverser */
20041 integer v; /* second operand value */
20044 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20047 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20049 if ( t==mp_known ) {
20050 if ( c==minus ) negate(v);
20051 if ( type(p)==mp_known ) {
20052 v=mp_slow_add(mp, value(p),v);
20053 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20056 @<Add a known value to the constant term of |dep_list(p)|@>;
20058 if ( c==minus ) mp_negate_dep_list(mp, v);
20059 @<Add operand |p| to the dependency list |v|@>;
20063 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20065 while ( info(r)!=null ) r=link(r);
20066 value(r)=mp_slow_add(mp, value(r),v);
20068 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20069 name_type(q)=mp_capsule;
20071 dep_list(q)=dep_list(p); type(q)=type(p);
20072 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20073 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20075 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20076 nice to retain the extra accuracy of |fraction| coefficients.
20077 But we have to handle both kinds, and mixtures too.
20079 @<Add operand |p| to the dependency list |v|@>=
20080 if ( type(p)==mp_known ) {
20081 @<Add the known |value(p)| to the constant term of |v|@>;
20083 s=type(p); r=dep_list(p);
20084 if ( t==mp_dependent ) {
20085 if ( s==mp_dependent ) {
20086 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20087 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20088 } /* |fix_needed| will necessarily be false */
20089 t=mp_proto_dependent;
20090 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20092 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20093 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20095 @<Output the answer, |v| (which might have become |known|)@>;
20098 @ @<Add the known |value(p)| to the constant term of |v|@>=
20100 while ( info(v)!=null ) v=link(v);
20101 value(v)=mp_slow_add(mp, value(p),value(v));
20104 @ @<Output the answer, |v| (which might have become |known|)@>=
20105 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20106 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20108 @ Here's the current situation: The dependency list |v| of type |t|
20109 should either be put into the current expression (if |q=null|) or
20110 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20111 or |q|) formerly held a dependency list with the same
20112 final pointer as the list |v|.
20114 @<Declare the procedure called |dep_finish|@>=
20115 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20116 pointer p; /* the destination */
20117 scaled vv; /* the value, if it is |known| */
20118 if ( q==null ) p=mp->cur_exp; else p=q;
20119 dep_list(p)=v; type(p)=t;
20120 if ( info(v)==null ) {
20123 mp_flush_cur_exp(mp, vv);
20125 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20127 } else if ( q==null ) {
20130 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20133 @ Let's turn now to the six basic relations of comparison.
20135 @<Additional cases of binary operators@>=
20136 case less_than: case less_or_equal: case greater_than:
20137 case greater_or_equal: case equal_to: case unequal_to:
20138 check_arith; /* at this point |arith_error| should be |false|? */
20139 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20140 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20141 } else if ( mp->cur_type!=type(p) ) {
20142 mp_bad_binary(mp, p,c); goto DONE;
20143 } else if ( mp->cur_type==mp_string_type ) {
20144 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20145 } else if ((mp->cur_type==mp_unknown_string)||
20146 (mp->cur_type==mp_unknown_boolean) ) {
20147 @<Check if unknowns have been equated@>;
20148 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20149 @<Reduce comparison of big nodes to comparison of scalars@>;
20150 } else if ( mp->cur_type==mp_boolean_type ) {
20151 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20153 mp_bad_binary(mp, p,c); goto DONE;
20155 @<Compare the current expression with zero@>;
20157 mp->arith_error=false; /* ignore overflow in comparisons */
20160 @ @<Compare the current expression with zero@>=
20161 if ( mp->cur_type!=mp_known ) {
20162 if ( mp->cur_type<mp_known ) {
20163 mp_disp_err(mp, p,"");
20164 help1("The quantities shown above have not been equated.")
20166 help2("Oh dear. I can\'t decide if the expression above is positive,")
20167 ("negative, or zero. So this comparison test won't be `true'.");
20169 exp_err("Unknown relation will be considered false");
20170 @.Unknown relation...@>
20171 mp_put_get_flush_error(mp, false_code);
20174 case less_than: boolean_reset(mp->cur_exp<0); break;
20175 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20176 case greater_than: boolean_reset(mp->cur_exp>0); break;
20177 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20178 case equal_to: boolean_reset(mp->cur_exp==0); break;
20179 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20180 }; /* there are no other cases */
20182 mp->cur_type=mp_boolean_type
20184 @ When two unknown strings are in the same ring, we know that they are
20185 equal. Otherwise, we don't know whether they are equal or not, so we
20188 @<Check if unknowns have been equated@>=
20190 q=value(mp->cur_exp);
20191 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20192 if ( q==p ) mp_flush_cur_exp(mp, 0);
20195 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20197 q=value(p); r=value(mp->cur_exp);
20198 rr=r+mp->big_node_size[mp->cur_type]-2;
20199 while (1) { mp_add_or_subtract(mp, q,r,minus);
20200 if ( type(r)!=mp_known ) break;
20201 if ( value(r)!=0 ) break;
20202 if ( r==rr ) break;
20205 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20208 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20210 @<Additional cases of binary operators@>=
20213 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20214 mp_bad_binary(mp, p,c);
20215 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20218 @ @<Additional cases of binary operators@>=
20220 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20221 mp_bad_binary(mp, p,times);
20222 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20223 @<Multiply when at least one operand is known@>;
20224 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20225 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20226 (type(p)>mp_pair_type)) ) {
20227 mp_hard_times(mp, p); return;
20229 mp_bad_binary(mp, p,times);
20233 @ @<Multiply when at least one operand is known@>=
20235 if ( type(p)==mp_known ) {
20236 v=value(p); mp_free_node(mp, p,value_node_size);
20238 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20240 if ( mp->cur_type==mp_known ) {
20241 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20242 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20243 (mp->cur_type==mp_cmykcolor_type) ) {
20244 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20246 p=p-2; mp_dep_mult(mp, p,v,true);
20247 } while (p!=value(mp->cur_exp));
20249 mp_dep_mult(mp, null,v,true);
20254 @ @<Declare binary action...@>=
20255 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20256 pointer q; /* the dependency list being multiplied by |v| */
20257 small_number s,t; /* its type, before and after */
20260 } else if ( type(p)!=mp_known ) {
20263 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20264 else value(p)=mp_take_fraction(mp, value(p),v);
20267 t=type(q); q=dep_list(q); s=t;
20268 if ( t==mp_dependent ) if ( v_is_scaled )
20269 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20270 t=mp_proto_dependent;
20271 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20272 mp_dep_finish(mp, q,p,t);
20275 @ Here is a routine that is similar to |times|; but it is invoked only
20276 internally, when |v| is a |fraction| whose magnitude is at most~1,
20277 and when |cur_type>=mp_color_type|.
20279 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20280 /* multiplies |cur_exp| by |n/d| */
20281 pointer p; /* a pair node */
20282 pointer old_exp; /* a capsule to recycle */
20283 fraction v; /* |n/d| */
20284 if ( mp->internal[mp_tracing_commands]>two ) {
20285 @<Trace the fraction multiplication@>;
20287 switch (mp->cur_type) {
20288 case mp_transform_type:
20289 case mp_color_type:
20290 case mp_cmykcolor_type:
20292 old_exp=mp_tarnished(mp, mp->cur_exp);
20294 case mp_independent: old_exp=mp_void; break;
20295 default: old_exp=null; break;
20297 if ( old_exp!=null ) {
20298 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20300 v=mp_make_fraction(mp, n,d);
20301 if ( mp->cur_type==mp_known ) {
20302 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20303 } else if ( mp->cur_type<=mp_pair_type ) {
20304 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20307 mp_dep_mult(mp, p,v,false);
20308 } while (p!=value(mp->cur_exp));
20310 mp_dep_mult(mp, null,v,false);
20312 if ( old_exp!=null ) {
20313 mp_recycle_value(mp, old_exp);
20314 mp_free_node(mp, old_exp,value_node_size);
20318 @ @<Trace the fraction multiplication@>=
20320 mp_begin_diagnostic(mp);
20321 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20322 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20324 mp_end_diagnostic(mp, false);
20327 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20329 @<Declare binary action procedures@>=
20330 void mp_hard_times (MP mp,pointer p) {
20331 pointer q; /* a copy of the dependent variable |p| */
20332 pointer r; /* a component of the big node for the nice color or pair */
20333 scaled v; /* the known value for |r| */
20334 if ( type(p)<=mp_pair_type ) {
20335 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20336 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20337 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20342 if ( r==value(mp->cur_exp) )
20344 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20345 mp_dep_mult(mp, r,v,true);
20347 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20348 link(prev_dep(p))=r;
20349 mp_free_node(mp, p,value_node_size);
20350 mp_dep_mult(mp, r,v,true);
20353 @ @<Additional cases of binary operators@>=
20355 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20356 mp_bad_binary(mp, p,over);
20358 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20360 @<Squeal about division by zero@>;
20362 if ( mp->cur_type==mp_known ) {
20363 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20364 } else if ( mp->cur_type<=mp_pair_type ) {
20365 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20367 p=p-2; mp_dep_div(mp, p,v);
20368 } while (p!=value(mp->cur_exp));
20370 mp_dep_div(mp, null,v);
20377 @ @<Declare binary action...@>=
20378 void mp_dep_div (MP mp,pointer p, scaled v) {
20379 pointer q; /* the dependency list being divided by |v| */
20380 small_number s,t; /* its type, before and after */
20381 if ( p==null ) q=mp->cur_exp;
20382 else if ( type(p)!=mp_known ) q=p;
20383 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20384 t=type(q); q=dep_list(q); s=t;
20385 if ( t==mp_dependent )
20386 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20387 t=mp_proto_dependent;
20388 q=mp_p_over_v(mp, q,v,s,t);
20389 mp_dep_finish(mp, q,p,t);
20392 @ @<Squeal about division by zero@>=
20394 exp_err("Division by zero");
20395 @.Division by zero@>
20396 help2("You're trying to divide the quantity shown above the error")
20397 ("message by zero. I'm going to divide it by one instead.");
20398 mp_put_get_error(mp);
20401 @ @<Additional cases of binary operators@>=
20404 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20405 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20406 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20407 } else mp_bad_binary(mp, p,c);
20410 @ The next few sections of the program deal with affine transformations
20411 of coordinate data.
20413 @<Additional cases of binary operators@>=
20414 case rotated_by: case slanted_by:
20415 case scaled_by: case shifted_by: case transformed_by:
20416 case x_scaled: case y_scaled: case z_scaled:
20417 if ( type(p)==mp_path_type ) {
20418 path_trans(c,p); return;
20419 } else if ( type(p)==mp_pen_type ) {
20421 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20422 /* rounding error could destroy convexity */
20424 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20425 mp_big_trans(mp, p,c);
20426 } else if ( type(p)==mp_picture_type ) {
20427 mp_do_edges_trans(mp, p,c); return;
20429 mp_bad_binary(mp, p,c);
20433 @ Let |c| be one of the eight transform operators. The procedure call
20434 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20435 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20436 change at all if |c=transformed_by|.)
20438 Then, if all components of the resulting transform are |known|, they are
20439 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20440 and |cur_exp| is changed to the known value zero.
20442 @<Declare binary action...@>=
20443 void mp_set_up_trans (MP mp,quarterword c) {
20444 pointer p,q,r; /* list manipulation registers */
20445 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20446 @<Put the current transform into |cur_exp|@>;
20448 @<If the current transform is entirely known, stash it in global variables;
20449 otherwise |return|@>;
20458 scaled ty; /* current transform coefficients */
20460 @ @<Put the current transform...@>=
20462 p=mp_stash_cur_exp(mp);
20463 mp->cur_exp=mp_id_transform(mp);
20464 mp->cur_type=mp_transform_type;
20465 q=value(mp->cur_exp);
20467 @<For each of the eight cases, change the relevant fields of |cur_exp|
20469 but do nothing if capsule |p| doesn't have the appropriate type@>;
20470 }; /* there are no other cases */
20471 mp_disp_err(mp, p,"Improper transformation argument");
20472 @.Improper transformation argument@>
20473 help3("The expression shown above has the wrong type,")
20474 ("so I can\'t transform anything using it.")
20475 ("Proceed, and I'll omit the transformation.");
20476 mp_put_get_error(mp);
20478 mp_recycle_value(mp, p);
20479 mp_free_node(mp, p,value_node_size);
20482 @ @<If the current transform is entirely known, ...@>=
20483 q=value(mp->cur_exp); r=q+transform_node_size;
20486 if ( type(r)!=mp_known ) return;
20488 mp->txx=value(xx_part_loc(q));
20489 mp->txy=value(xy_part_loc(q));
20490 mp->tyx=value(yx_part_loc(q));
20491 mp->tyy=value(yy_part_loc(q));
20492 mp->tx=value(x_part_loc(q));
20493 mp->ty=value(y_part_loc(q));
20494 mp_flush_cur_exp(mp, 0)
20496 @ @<For each of the eight cases...@>=
20498 if ( type(p)==mp_known )
20499 @<Install sines and cosines, then |goto done|@>;
20502 if ( type(p)>mp_pair_type ) {
20503 mp_install(mp, xy_part_loc(q),p); goto DONE;
20507 if ( type(p)>mp_pair_type ) {
20508 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20513 if ( type(p)==mp_pair_type ) {
20514 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20515 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20519 if ( type(p)>mp_pair_type ) {
20520 mp_install(mp, xx_part_loc(q),p); goto DONE;
20524 if ( type(p)>mp_pair_type ) {
20525 mp_install(mp, yy_part_loc(q),p); goto DONE;
20529 if ( type(p)==mp_pair_type )
20530 @<Install a complex multiplier, then |goto done|@>;
20532 case transformed_by:
20536 @ @<Install sines and cosines, then |goto done|@>=
20537 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20538 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20539 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20540 value(xy_part_loc(q))=-value(yx_part_loc(q));
20541 value(yy_part_loc(q))=value(xx_part_loc(q));
20545 @ @<Install a complex multiplier, then |goto done|@>=
20548 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20549 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20550 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20551 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20552 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20553 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20557 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20558 insists that the transformation be entirely known.
20560 @<Declare binary action...@>=
20561 void mp_set_up_known_trans (MP mp,quarterword c) {
20562 mp_set_up_trans(mp, c);
20563 if ( mp->cur_type!=mp_known ) {
20564 exp_err("Transform components aren't all known");
20565 @.Transform components...@>
20566 help3("I'm unable to apply a partially specified transformation")
20567 ("except to a fully known pair or transform.")
20568 ("Proceed, and I'll omit the transformation.");
20569 mp_put_get_flush_error(mp, 0);
20570 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20571 mp->tx=0; mp->ty=0;
20575 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20576 coordinates in locations |p| and~|q|.
20578 @<Declare binary action...@>=
20579 void mp_trans (MP mp,pointer p, pointer q) {
20580 scaled v; /* the new |x| value */
20581 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20582 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20583 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20584 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20588 @ The simplest transformation procedure applies a transform to all
20589 coordinates of a path. The |path_trans(c)(p)| macro applies
20590 a transformation defined by |cur_exp| and the transform operator |c|
20593 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20594 mp_unstash_cur_exp(mp, (B));
20595 mp_do_path_trans(mp, mp->cur_exp); }
20597 @<Declare binary action...@>=
20598 void mp_do_path_trans (MP mp,pointer p) {
20599 pointer q; /* list traverser */
20602 if ( left_type(q)!=mp_endpoint )
20603 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20604 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20605 if ( right_type(q)!=mp_endpoint )
20606 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20607 @^data structure assumptions@>
20612 @ Transforming a pen is very similar, except that there are no |left_type|
20613 and |right_type| fields.
20615 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20616 mp_unstash_cur_exp(mp, (B));
20617 mp_do_pen_trans(mp, mp->cur_exp); }
20619 @<Declare binary action...@>=
20620 void mp_do_pen_trans (MP mp,pointer p) {
20621 pointer q; /* list traverser */
20622 if ( pen_is_elliptical(p) ) {
20623 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20624 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20628 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20629 @^data structure assumptions@>
20634 @ The next transformation procedure applies to edge structures. It will do
20635 any transformation, but the results may be substandard if the picture contains
20636 text that uses downloaded bitmap fonts. The binary action procedure is
20637 |do_edges_trans|, but we also need a function that just scales a picture.
20638 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20639 should be thought of as procedures that update an edge structure |h|, except
20640 that they have to return a (possibly new) structure because of the need to call
20643 @<Declare binary action...@>=
20644 pointer mp_edges_trans (MP mp, pointer h) {
20645 pointer q; /* the object being transformed */
20646 pointer r,s; /* for list manipulation */
20647 scaled sx,sy; /* saved transformation parameters */
20648 scaled sqdet; /* square root of determinant for |dash_scale| */
20649 integer sgndet; /* sign of the determinant */
20650 scaled v; /* a temporary value */
20651 h=mp_private_edges(mp, h);
20652 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20653 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20654 if ( dash_list(h)!=null_dash ) {
20655 @<Try to transform the dash list of |h|@>;
20657 @<Make the bounding box of |h| unknown if it can't be updated properly
20658 without scanning the whole structure@>;
20659 q=link(dummy_loc(h));
20660 while ( q!=null ) {
20661 @<Transform graphical object |q|@>;
20666 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20667 mp_set_up_known_trans(mp, c);
20668 value(p)=mp_edges_trans(mp, value(p));
20669 mp_unstash_cur_exp(mp, p);
20671 void mp_scale_edges (MP mp) {
20672 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20673 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20674 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20677 @ @<Try to transform the dash list of |h|@>=
20678 if ( (mp->txy!=0)||(mp->tyx!=0)||
20679 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20680 mp_flush_dash_list(mp, h);
20682 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20683 @<Scale the dash list by |txx| and shift it by |tx|@>;
20684 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20687 @ @<Reverse the dash list of |h|@>=
20690 dash_list(h)=null_dash;
20691 while ( r!=null_dash ) {
20693 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20694 link(s)=dash_list(h);
20699 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20701 while ( r!=null_dash ) {
20702 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20703 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20707 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20708 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20709 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20710 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20711 mp_init_bbox(mp, h);
20714 if ( minx_val(h)<=maxx_val(h) ) {
20715 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20722 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20724 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20725 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20728 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20731 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20733 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20734 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20735 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20736 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20737 if ( mp->txx+mp->txy<0 ) {
20738 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20740 if ( mp->tyx+mp->tyy<0 ) {
20741 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20745 @ Now we ready for the main task of transforming the graphical objects in edge
20748 @<Transform graphical object |q|@>=
20750 case mp_fill_code: case mp_stroked_code:
20751 mp_do_path_trans(mp, path_p(q));
20752 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20754 case mp_start_clip_code: case mp_start_bounds_code:
20755 mp_do_path_trans(mp, path_p(q));
20759 @<Transform the compact transformation starting at |r|@>;
20761 case mp_stop_clip_code: case mp_stop_bounds_code:
20763 } /* there are no other cases */
20765 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20766 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20767 since the \ps\ output procedures will try to compensate for the transformation
20768 we are applying to |pen_p(q)|. Since this compensation is based on the square
20769 root of the determinant, |sqdet| is the appropriate factor.
20771 @<Transform |pen_p(q)|, making sure...@>=
20772 if ( pen_p(q)!=null ) {
20773 sx=mp->tx; sy=mp->ty;
20774 mp->tx=0; mp->ty=0;
20775 mp_do_pen_trans(mp, pen_p(q));
20776 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20777 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20778 if ( ! pen_is_elliptical(pen_p(q)) )
20780 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20781 /* this unreverses the pen */
20782 mp->tx=sx; mp->ty=sy;
20785 @ This uses the fact that transformations are stored in the order
20786 |(tx,ty,txx,txy,tyx,tyy)|.
20787 @^data structure assumptions@>
20789 @<Transform the compact transformation starting at |r|@>=
20790 mp_trans(mp, r,r+1);
20791 sx=mp->tx; sy=mp->ty;
20792 mp->tx=0; mp->ty=0;
20793 mp_trans(mp, r+2,r+4);
20794 mp_trans(mp, r+3,r+5);
20795 mp->tx=sx; mp->ty=sy
20797 @ The hard cases of transformation occur when big nodes are involved,
20798 and when some of their components are unknown.
20800 @<Declare binary action...@>=
20801 @<Declare subroutines needed by |big_trans|@>;
20802 void mp_big_trans (MP mp,pointer p, quarterword c) {
20803 pointer q,r,pp,qq; /* list manipulation registers */
20804 small_number s; /* size of a big node */
20805 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20808 if ( type(r)!=mp_known ) {
20809 @<Transform an unknown big node and |return|@>;
20812 @<Transform a known big node@>;
20813 }; /* node |p| will now be recycled by |do_binary| */
20815 @ @<Transform an unknown big node and |return|@>=
20817 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20818 r=value(mp->cur_exp);
20819 if ( mp->cur_type==mp_transform_type ) {
20820 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20821 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20822 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20823 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20825 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20826 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20830 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20831 and let |q| point to a another value field. The |bilin1| procedure
20832 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20834 @<Declare subroutines needed by |big_trans|@>=
20835 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20836 scaled u, scaled delta) {
20837 pointer r; /* list traverser */
20838 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20840 if ( type(q)==mp_known ) {
20841 delta+=mp_take_scaled(mp, value(q),u);
20843 @<Ensure that |type(p)=mp_proto_dependent|@>;
20844 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20845 mp_proto_dependent,type(q));
20848 if ( type(p)==mp_known ) {
20852 while ( info(r)!=null ) r=link(r);
20854 if ( r!=dep_list(p) ) value(r)=delta;
20855 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20857 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20860 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20861 if ( type(p)!=mp_proto_dependent ) {
20862 if ( type(p)==mp_known )
20863 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20865 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20866 mp_proto_dependent,true);
20867 type(p)=mp_proto_dependent;
20870 @ @<Transform a known big node@>=
20871 mp_set_up_trans(mp, c);
20872 if ( mp->cur_type==mp_known ) {
20873 @<Transform known by known@>;
20875 pp=mp_stash_cur_exp(mp); qq=value(pp);
20876 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20877 if ( mp->cur_type==mp_transform_type ) {
20878 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20879 value(xy_part_loc(q)),yx_part_loc(qq),null);
20880 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20881 value(xx_part_loc(q)),yx_part_loc(qq),null);
20882 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20883 value(yy_part_loc(q)),xy_part_loc(qq),null);
20884 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20885 value(yx_part_loc(q)),xy_part_loc(qq),null);
20887 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20888 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20889 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20890 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20891 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20894 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20895 at |dep_final|. The following procedure adds |v| times another
20896 numeric quantity to~|p|.
20898 @<Declare subroutines needed by |big_trans|@>=
20899 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20900 if ( type(r)==mp_known ) {
20901 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20903 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20904 mp_proto_dependent,type(r));
20905 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20909 @ The |bilin2| procedure is something like |bilin1|, but with known
20910 and unknown quantities reversed. Parameter |p| points to a value field
20911 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20912 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20913 unless it is |null| (which stands for zero). Location~|p| will be
20914 replaced by $p\cdot t+v\cdot u+q$.
20916 @<Declare subroutines needed by |big_trans|@>=
20917 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20918 pointer u, pointer q) {
20919 scaled vv; /* temporary storage for |value(p)| */
20920 vv=value(p); type(p)=mp_proto_dependent;
20921 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20923 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20924 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20925 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20926 if ( dep_list(p)==mp->dep_final ) {
20927 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20928 type(p)=mp_known; value(p)=vv;
20932 @ @<Transform known by known@>=
20934 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20935 if ( mp->cur_type==mp_transform_type ) {
20936 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20937 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20938 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20939 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20941 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20942 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20945 @ Finally, in |bilin3| everything is |known|.
20947 @<Declare subroutines needed by |big_trans|@>=
20948 void mp_bilin3 (MP mp,pointer p, scaled t,
20949 scaled v, scaled u, scaled delta) {
20951 delta+=mp_take_scaled(mp, value(p),t);
20954 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20955 else value(p)=delta;
20958 @ @<Additional cases of binary operators@>=
20960 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20961 else mp_bad_binary(mp, p,concatenate);
20964 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20965 mp_chop_string(mp, value(p));
20966 else mp_bad_binary(mp, p,substring_of);
20969 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20970 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20971 mp_chop_path(mp, value(p));
20972 else mp_bad_binary(mp, p,subpath_of);
20975 @ @<Declare binary action...@>=
20976 void mp_cat (MP mp,pointer p) {
20977 str_number a,b; /* the strings being concatenated */
20978 pool_pointer k; /* index into |str_pool| */
20979 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20980 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20981 append_char(mp->str_pool[k]);
20983 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20984 append_char(mp->str_pool[k]);
20986 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20989 @ @<Declare binary action...@>=
20990 void mp_chop_string (MP mp,pointer p) {
20991 integer a, b; /* start and stop points */
20992 integer l; /* length of the original string */
20993 integer k; /* runs from |a| to |b| */
20994 str_number s; /* the original string */
20995 boolean reversed; /* was |a>b|? */
20996 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20997 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20998 if ( a<=b ) reversed=false;
20999 else { reversed=true; k=a; a=b; b=k; };
21000 s=mp->cur_exp; l=length(s);
21011 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21012 append_char(mp->str_pool[k]);
21015 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21016 append_char(mp->str_pool[k]);
21019 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21022 @ @<Declare binary action...@>=
21023 void mp_chop_path (MP mp,pointer p) {
21024 pointer q; /* a knot in the original path */
21025 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21026 scaled a,b,k,l; /* indices for chopping */
21027 boolean reversed; /* was |a>b|? */
21028 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21029 if ( a<=b ) reversed=false;
21030 else { reversed=true; k=a; a=b; b=k; };
21031 @<Dispense with the cases |a<0| and/or |b>l|@>;
21033 while ( a>=unity ) {
21034 q=link(q); a=a-unity; b=b-unity;
21037 @<Construct a path from |pp| to |qq| of length zero@>;
21039 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21041 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21042 mp_toss_knot_list(mp, mp->cur_exp);
21044 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21050 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21052 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21053 a=0; if ( b<0 ) b=0;
21055 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21059 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21060 b=l; if ( a>l ) a=l;
21068 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21070 pp=mp_copy_knot(mp, q); qq=pp;
21072 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21075 ss=pp; pp=link(pp);
21076 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21077 mp_free_node(mp, ss,knot_node_size);
21079 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21083 mp_split_cubic(mp, rr,(b+unity)*010000);
21084 mp_free_node(mp, qq,knot_node_size);
21089 @ @<Construct a path from |pp| to |qq| of length zero@>=
21091 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21092 pp=mp_copy_knot(mp, q); qq=pp;
21095 @ @<Additional cases of binary operators@>=
21096 case point_of: case precontrol_of: case postcontrol_of:
21097 if ( mp->cur_type==mp_pair_type )
21098 mp_pair_to_path(mp);
21099 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21100 mp_find_point(mp, value(p),c);
21102 mp_bad_binary(mp, p,c);
21104 case pen_offset_of:
21105 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21106 mp_set_up_offset(mp, value(p));
21108 mp_bad_binary(mp, p,pen_offset_of);
21110 case direction_time_of:
21111 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21112 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21113 mp_set_up_direction_time(mp, value(p));
21115 mp_bad_binary(mp, p,direction_time_of);
21118 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21119 mp_bad_binary(mp, p,envelope_of);
21121 mp_set_up_envelope(mp, p);
21124 @ @<Declare binary action...@>=
21125 void mp_set_up_offset (MP mp,pointer p) {
21126 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21127 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21129 void mp_set_up_direction_time (MP mp,pointer p) {
21130 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21131 value(y_part_loc(p)),mp->cur_exp));
21133 void mp_set_up_envelope (MP mp,pointer p) {
21134 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21135 mp_unstash_cur_exp(mp, p);
21136 /* TODO: accept elliptical pens for straight paths */
21137 if (pen_is_elliptical(mp->cur_exp)) {
21138 mp_bad_envelope_pen(mp);
21140 mp->cur_type = mp_path_type;
21143 small_number ljoin, lcap;
21145 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21146 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21148 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21149 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21151 if ( mp->internal[mp_miterlimit]<unity )
21154 miterlim=mp->internal[mp_miterlimit];
21155 mp->cur_exp = mp_make_envelope(mp, q, mp->cur_exp, ljoin,lcap,miterlim);
21156 mp->cur_type = mp_path_type;
21159 @ @<Declare binary action...@>=
21160 void mp_find_point (MP mp,scaled v, quarterword c) {
21161 pointer p; /* the path */
21162 scaled n; /* its length */
21164 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21165 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21168 } else if ( v<0 ) {
21169 if ( left_type(p)==mp_endpoint ) v=0;
21170 else v=n-1-((-v-1) % n);
21171 } else if ( v>n ) {
21172 if ( left_type(p)==mp_endpoint ) v=n;
21176 while ( v>=unity ) { p=link(p); v=v-unity; };
21178 @<Insert a fractional node by splitting the cubic@>;
21180 @<Set the current expression to the desired path coordinates@>;
21183 @ @<Insert a fractional node...@>=
21184 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21186 @ @<Set the current expression to the desired path coordinates...@>=
21189 mp_pair_value(mp, x_coord(p),y_coord(p));
21191 case precontrol_of:
21192 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21193 else mp_pair_value(mp, left_x(p),left_y(p));
21195 case postcontrol_of:
21196 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21197 else mp_pair_value(mp, right_x(p),right_y(p));
21199 } /* there are no other cases */
21201 @ @<Additional cases of binary operators@>=
21203 if ( mp->cur_type==mp_pair_type )
21204 mp_pair_to_path(mp);
21205 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21206 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21208 mp_bad_binary(mp, p,c);
21211 @ @<Additional cases of bin...@>=
21213 if ( type(p)==mp_pair_type ) {
21214 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21215 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21217 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21218 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21219 mp_path_intersection(mp, value(p),mp->cur_exp);
21220 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21222 mp_bad_binary(mp, p,intersect);
21226 @ @<Additional cases of bin...@>=
21228 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21229 mp_bad_binary(mp, p,in_font);
21230 else { mp_do_infont(mp, p); return; }
21233 @ Function |new_text_node| owns the reference count for its second argument
21234 (the text string) but not its first (the font name).
21236 @<Declare binary action...@>=
21237 void mp_do_infont (MP mp,pointer p) {
21239 q=mp_get_node(mp, edge_header_size);
21240 mp_init_edges(mp, q);
21241 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21242 obj_tail(q)=link(obj_tail(q));
21243 mp_free_node(mp, p,value_node_size);
21244 mp_flush_cur_exp(mp, q);
21245 mp->cur_type=mp_picture_type;
21248 @* \[40] Statements and commands.
21249 The chief executive of \MP\ is the |do_statement| routine, which
21250 contains the master switch that causes all the various pieces of \MP\
21251 to do their things, in the right order.
21253 In a sense, this is the grand climax of the program: It applies all the
21254 tools that we have worked so hard to construct. In another sense, this is
21255 the messiest part of the program: It necessarily refers to other pieces
21256 of code all over the place, so that a person can't fully understand what is
21257 going on without paging back and forth to be reminded of conventions that
21258 are defined elsewhere. We are now at the hub of the web.
21260 The structure of |do_statement| itself is quite simple. The first token
21261 of the statement is fetched using |get_x_next|. If it can be the first
21262 token of an expression, we look for an equation, an assignment, or a
21263 title. Otherwise we use a \&{case} construction to branch at high speed to
21264 the appropriate routine for various and sundry other types of commands,
21265 each of which has an ``action procedure'' that does the necessary work.
21267 The program uses the fact that
21268 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21269 to interpret a statement that starts with, e.g., `\&{string}',
21270 as a type declaration rather than a boolean expression.
21272 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21273 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21274 if ( mp->cur_cmd>max_primary_command ) {
21275 @<Worry about bad statement@>;
21276 } else if ( mp->cur_cmd>max_statement_command ) {
21277 @<Do an equation, assignment, title, or
21278 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21280 @<Do a statement that doesn't begin with an expression@>;
21282 if ( mp->cur_cmd<semicolon )
21283 @<Flush unparsable junk that was found after the statement@>;
21287 @ @<Declarations@>=
21288 @<Declare action procedures for use by |do_statement|@>;
21290 @ The only command codes |>max_primary_command| that can be present
21291 at the beginning of a statement are |semicolon| and higher; these
21292 occur when the statement is null.
21294 @<Worry about bad statement@>=
21296 if ( mp->cur_cmd<semicolon ) {
21297 print_err("A statement can't begin with `");
21298 @.A statement can't begin with x@>
21299 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21300 help5("I was looking for the beginning of a new statement.")
21301 ("If you just proceed without changing anything, I'll ignore")
21302 ("everything up to the next `;'. Please insert a semicolon")
21303 ("now in front of anything that you don't want me to delete.")
21304 ("(See Chapter 27 of The METAFONTbook for an example.)");
21305 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21306 mp_back_error(mp); mp_get_x_next(mp);
21310 @ The help message printed here says that everything is flushed up to
21311 a semicolon, but actually the commands |end_group| and |stop| will
21312 also terminate a statement.
21314 @<Flush unparsable junk that was found after the statement@>=
21316 print_err("Extra tokens will be flushed");
21317 @.Extra tokens will be flushed@>
21318 help6("I've just read as much of that statement as I could fathom,")
21319 ("so a semicolon should have been next. It's very puzzling...")
21320 ("but I'll try to get myself back together, by ignoring")
21321 ("everything up to the next `;'. Please insert a semicolon")
21322 ("now in front of anything that you don't want me to delete.")
21323 ("(See Chapter 27 of The METAFONTbook for an example.)");
21324 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21325 mp_back_error(mp); mp->scanner_status=flushing;
21328 @<Decrease the string reference count...@>;
21329 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21330 mp->scanner_status=normal;
21333 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21334 |cur_type=mp_vacuous| unless the statement was simply an expression;
21335 in the latter case, |cur_type| and |cur_exp| should represent that
21338 @<Do a statement that doesn't...@>=
21340 if ( mp->internal[mp_tracing_commands]>0 )
21342 switch (mp->cur_cmd ) {
21343 case type_name:mp_do_type_declaration(mp); break;
21345 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21346 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21348 @<Cases of |do_statement| that invoke particular commands@>;
21349 } /* there are no other cases */
21350 mp->cur_type=mp_vacuous;
21353 @ The most important statements begin with expressions.
21355 @<Do an equation, assignment, title, or...@>=
21357 mp->var_flag=assignment; mp_scan_expression(mp);
21358 if ( mp->cur_cmd<end_group ) {
21359 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21360 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21361 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21362 else if ( mp->cur_type!=mp_vacuous ){
21363 exp_err("Isolated expression");
21364 @.Isolated expression@>
21365 help3("I couldn't find an `=' or `:=' after the")
21366 ("expression that is shown above this error message,")
21367 ("so I guess I'll just ignore it and carry on.");
21368 mp_put_get_error(mp);
21370 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21376 if ( mp->internal[mp_tracing_titles]>0 ) {
21377 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21381 @ Equations and assignments are performed by the pair of mutually recursive
21383 routines |do_equation| and |do_assignment|. These routines are called when
21384 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21385 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21386 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21387 will be equal to the right-hand side (which will normally be equal
21388 to the left-hand side).
21390 @<Declare action procedures for use by |do_statement|@>=
21391 @<Declare the procedure called |try_eq|@>;
21392 @<Declare the procedure called |make_eq|@>;
21393 void mp_do_equation (MP mp) ;
21396 void mp_do_equation (MP mp) {
21397 pointer lhs; /* capsule for the left-hand side */
21398 pointer p; /* temporary register */
21399 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21400 mp->var_flag=assignment; mp_scan_expression(mp);
21401 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21402 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21403 if ( mp->internal[mp_tracing_commands]>two )
21404 @<Trace the current equation@>;
21405 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21406 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21407 }; /* in this case |make_eq| will change the pair to a path */
21408 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21411 @ And |do_assignment| is similar to |do_expression|:
21414 void mp_do_assignment (MP mp);
21416 @ @<Declare action procedures for use by |do_statement|@>=
21417 void mp_do_assignment (MP mp) ;
21420 void mp_do_assignment (MP mp) {
21421 pointer lhs; /* token list for the left-hand side */
21422 pointer p; /* where the left-hand value is stored */
21423 pointer q; /* temporary capsule for the right-hand value */
21424 if ( mp->cur_type!=mp_token_list ) {
21425 exp_err("Improper `:=' will be changed to `='");
21427 help2("I didn't find a variable name at the left of the `:=',")
21428 ("so I'm going to pretend that you said `=' instead.");
21429 mp_error(mp); mp_do_equation(mp);
21431 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21432 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21433 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21434 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21435 if ( mp->internal[mp_tracing_commands]>two )
21436 @<Trace the current assignment@>;
21437 if ( info(lhs)>hash_end ) {
21438 @<Assign the current expression to an internal variable@>;
21440 @<Assign the current expression to the variable |lhs|@>;
21442 mp_flush_node_list(mp, lhs);
21446 @ @<Trace the current equation@>=
21448 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21449 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21450 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21453 @ @<Trace the current assignment@>=
21455 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21456 if ( info(lhs)>hash_end )
21457 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21459 mp_show_token_list(mp, lhs,null,1000,0);
21460 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21461 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21464 @ @<Assign the current expression to an internal variable@>=
21465 if ( mp->cur_type==mp_known ) {
21466 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21468 exp_err("Internal quantity `");
21469 @.Internal quantity...@>
21470 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21471 mp_print(mp, "' must receive a known value");
21472 help2("I can\'t set an internal quantity to anything but a known")
21473 ("numeric value, so I'll have to ignore this assignment.");
21474 mp_put_get_error(mp);
21477 @ @<Assign the current expression to the variable |lhs|@>=
21479 p=mp_find_variable(mp, lhs);
21481 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21482 mp_recycle_value(mp, p);
21483 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21484 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21486 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21491 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21492 a pointer to a capsule that is to be equated to the current expression.
21494 @<Declare the procedure called |make_eq|@>=
21495 void mp_make_eq (MP mp,pointer lhs) ;
21499 @c void mp_make_eq (MP mp,pointer lhs) {
21500 small_number t; /* type of the left-hand side */
21501 pointer p,q; /* pointers inside of big nodes */
21502 integer v=0; /* value of the left-hand side */
21505 if ( t<=mp_pair_type ) v=value(lhs);
21507 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21508 is incompatible with~|t|@>;
21509 } /* all cases have been listed */
21510 @<Announce that the equation cannot be performed@>;
21512 check_arith; mp_recycle_value(mp, lhs);
21513 mp_free_node(mp, lhs,value_node_size);
21516 @ @<Announce that the equation cannot be performed@>=
21517 mp_disp_err(mp, lhs,"");
21518 exp_err("Equation cannot be performed (");
21519 @.Equation cannot be performed@>
21520 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21521 else mp_print(mp, "numeric");
21522 mp_print_char(mp, '=');
21523 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21524 else mp_print(mp, "numeric");
21525 mp_print_char(mp, ')');
21526 help2("I'm sorry, but I don't know how to make such things equal.")
21527 ("(See the two expressions just above the error message.)");
21528 mp_put_get_error(mp)
21530 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21531 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21532 case mp_path_type: case mp_picture_type:
21533 if ( mp->cur_type==t+unknown_tag ) {
21534 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21535 } else if ( mp->cur_type==t ) {
21536 @<Report redundant or inconsistent equation and |goto done|@>;
21539 case unknown_types:
21540 if ( mp->cur_type==t-unknown_tag ) {
21541 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21542 } else if ( mp->cur_type==t ) {
21543 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21544 } else if ( mp->cur_type==mp_pair_type ) {
21545 if ( t==mp_unknown_path ) {
21546 mp_pair_to_path(mp); goto RESTART;
21550 case mp_transform_type: case mp_color_type:
21551 case mp_cmykcolor_type: case mp_pair_type:
21552 if ( mp->cur_type==t ) {
21553 @<Do multiple equations and |goto done|@>;
21556 case mp_known: case mp_dependent:
21557 case mp_proto_dependent: case mp_independent:
21558 if ( mp->cur_type>=mp_known ) {
21559 mp_try_eq(mp, lhs,null); goto DONE;
21565 @ @<Report redundant or inconsistent equation and |goto done|@>=
21567 if ( mp->cur_type<=mp_string_type ) {
21568 if ( mp->cur_type==mp_string_type ) {
21569 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21572 } else if ( v!=mp->cur_exp ) {
21575 @<Exclaim about a redundant equation@>; goto DONE;
21577 print_err("Redundant or inconsistent equation");
21578 @.Redundant or inconsistent equation@>
21579 help2("An equation between already-known quantities can't help.")
21580 ("But don't worry; continue and I'll just ignore it.");
21581 mp_put_get_error(mp); goto DONE;
21583 print_err("Inconsistent equation");
21584 @.Inconsistent equation@>
21585 help2("The equation I just read contradicts what was said before.")
21586 ("But don't worry; continue and I'll just ignore it.");
21587 mp_put_get_error(mp); goto DONE;
21590 @ @<Do multiple equations and |goto done|@>=
21592 p=v+mp->big_node_size[t];
21593 q=value(mp->cur_exp)+mp->big_node_size[t];
21595 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21600 @ The first argument to |try_eq| is the location of a value node
21601 in a capsule that will soon be recycled. The second argument is
21602 either a location within a pair or transform node pointed to by
21603 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21604 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21605 but to equate the two operands.
21607 @<Declare the procedure called |try_eq|@>=
21608 void mp_try_eq (MP mp,pointer l, pointer r) ;
21611 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21612 pointer p; /* dependency list for right operand minus left operand */
21613 int t; /* the type of list |p| */
21614 pointer q; /* the constant term of |p| is here */
21615 pointer pp; /* dependency list for right operand */
21616 int tt; /* the type of list |pp| */
21617 boolean copied; /* have we copied a list that ought to be recycled? */
21618 @<Remove the left operand from its container, negate it, and
21619 put it into dependency list~|p| with constant term~|q|@>;
21620 @<Add the right operand to list |p|@>;
21621 if ( info(p)==null ) {
21622 @<Deal with redundant or inconsistent equation@>;
21624 mp_linear_eq(mp, p,t);
21625 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21626 if ( type(mp->cur_exp)==mp_known ) {
21627 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21628 mp_free_node(mp, pp,value_node_size);
21634 @ @<Remove the left operand from its container, negate it, and...@>=
21636 if ( t==mp_known ) {
21637 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21638 } else if ( t==mp_independent ) {
21639 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21642 p=dep_list(l); q=p;
21645 if ( info(q)==null ) break;
21648 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21652 @ @<Deal with redundant or inconsistent equation@>=
21654 if ( abs(value(p))>64 ) { /* off by .001 or more */
21655 print_err("Inconsistent equation");
21656 @.Inconsistent equation@>
21657 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21658 mp_print_char(mp, ')');
21659 help2("The equation I just read contradicts what was said before.")
21660 ("But don't worry; continue and I'll just ignore it.");
21661 mp_put_get_error(mp);
21662 } else if ( r==null ) {
21663 @<Exclaim about a redundant equation@>;
21665 mp_free_node(mp, p,dep_node_size);
21668 @ @<Add the right operand to list |p|@>=
21670 if ( mp->cur_type==mp_known ) {
21671 value(q)=value(q)+mp->cur_exp; goto DONE1;
21674 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21675 else pp=dep_list(mp->cur_exp);
21678 if ( type(r)==mp_known ) {
21679 value(q)=value(q)+value(r); goto DONE1;
21682 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21683 else pp=dep_list(r);
21686 if ( tt!=mp_independent ) copied=false;
21687 else { copied=true; tt=mp_dependent; };
21688 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21689 if ( copied ) mp_flush_node_list(mp, pp);
21692 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21693 mp->watch_coefs=false;
21695 p=mp_p_plus_q(mp, p,pp,t);
21696 } else if ( t==mp_proto_dependent ) {
21697 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21700 while ( info(q)!=null ) {
21701 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21703 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21705 mp->watch_coefs=true;
21707 @ Our next goal is to process type declarations. For this purpose it's
21708 convenient to have a procedure that scans a $\langle\,$declared
21709 variable$\,\rangle$ and returns the corresponding token list. After the
21710 following procedure has acted, the token after the declared variable
21711 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21714 @<Declare the function called |scan_declared_variable|@>=
21715 pointer mp_scan_declared_variable (MP mp) {
21716 pointer x; /* hash address of the variable's root */
21717 pointer h,t; /* head and tail of the token list to be returned */
21718 pointer l; /* hash address of left bracket */
21719 mp_get_symbol(mp); x=mp->cur_sym;
21720 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21721 h=mp_get_avail(mp); info(h)=x; t=h;
21724 if ( mp->cur_sym==0 ) break;
21725 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21726 if ( mp->cur_cmd==left_bracket ) {
21727 @<Descend past a collective subscript@>;
21732 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21734 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21735 if ( equiv(x)==null ) mp_new_root(mp, x);
21739 @ If the subscript isn't collective, we don't accept it as part of the
21742 @<Descend past a collective subscript@>=
21744 l=mp->cur_sym; mp_get_x_next(mp);
21745 if ( mp->cur_cmd!=right_bracket ) {
21746 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21748 mp->cur_sym=collective_subscript;
21752 @ Type declarations are introduced by the following primitive operations.
21755 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21756 @:numeric_}{\&{numeric} primitive@>
21757 mp_primitive(mp, "string",type_name,mp_string_type);
21758 @:string_}{\&{string} primitive@>
21759 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21760 @:boolean_}{\&{boolean} primitive@>
21761 mp_primitive(mp, "path",type_name,mp_path_type);
21762 @:path_}{\&{path} primitive@>
21763 mp_primitive(mp, "pen",type_name,mp_pen_type);
21764 @:pen_}{\&{pen} primitive@>
21765 mp_primitive(mp, "picture",type_name,mp_picture_type);
21766 @:picture_}{\&{picture} primitive@>
21767 mp_primitive(mp, "transform",type_name,mp_transform_type);
21768 @:transform_}{\&{transform} primitive@>
21769 mp_primitive(mp, "color",type_name,mp_color_type);
21770 @:color_}{\&{color} primitive@>
21771 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21772 @:color_}{\&{rgbcolor} primitive@>
21773 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21774 @:color_}{\&{cmykcolor} primitive@>
21775 mp_primitive(mp, "pair",type_name,mp_pair_type);
21776 @:pair_}{\&{pair} primitive@>
21778 @ @<Cases of |print_cmd...@>=
21779 case type_name: mp_print_type(mp, m); break;
21781 @ Now we are ready to handle type declarations, assuming that a
21782 |type_name| has just been scanned.
21784 @<Declare action procedures for use by |do_statement|@>=
21785 void mp_do_type_declaration (MP mp) ;
21788 void mp_do_type_declaration (MP mp) {
21789 small_number t; /* the type being declared */
21790 pointer p; /* token list for a declared variable */
21791 pointer q; /* value node for the variable */
21792 if ( mp->cur_mod>=mp_transform_type )
21795 t=mp->cur_mod+unknown_tag;
21797 p=mp_scan_declared_variable(mp);
21798 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21799 q=mp_find_variable(mp, p);
21801 type(q)=t; value(q)=null;
21803 print_err("Declared variable conflicts with previous vardef");
21804 @.Declared variable conflicts...@>
21805 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21806 ("Proceed, and I'll ignore the illegal redeclaration.");
21807 mp_put_get_error(mp);
21809 mp_flush_list(mp, p);
21810 if ( mp->cur_cmd<comma ) {
21811 @<Flush spurious symbols after the declared variable@>;
21813 } while (! end_of_statement);
21816 @ @<Flush spurious symbols after the declared variable@>=
21818 print_err("Illegal suffix of declared variable will be flushed");
21819 @.Illegal suffix...flushed@>
21820 help5("Variables in declarations must consist entirely of")
21821 ("names and collective subscripts, e.g., `x[]a'.")
21822 ("Are you trying to use a reserved word in a variable name?")
21823 ("I'm going to discard the junk I found here,")
21824 ("up to the next comma or the end of the declaration.");
21825 if ( mp->cur_cmd==numeric_token )
21826 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21827 mp_put_get_error(mp); mp->scanner_status=flushing;
21830 @<Decrease the string reference count...@>;
21831 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21832 mp->scanner_status=normal;
21835 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21836 until coming to the end of the user's program.
21837 Each execution of |do_statement| concludes with
21838 |cur_cmd=semicolon|, |end_group|, or |stop|.
21840 @c void mp_main_control (MP mp) {
21842 mp_do_statement(mp);
21843 if ( mp->cur_cmd==end_group ) {
21844 print_err("Extra `endgroup'");
21845 @.Extra `endgroup'@>
21846 help2("I'm not currently working on a `begingroup',")
21847 ("so I had better not try to end anything.");
21848 mp_flush_error(mp, 0);
21850 } while (mp->cur_cmd!=stop);
21852 int mp_run (MP mp) {
21853 @<Install and test the non-local jump buffer@>;
21854 mp_main_control(mp); /* come to life */
21855 mp_final_cleanup(mp); /* prepare for death */
21856 mp_close_files_and_terminate(mp);
21857 return mp->history;
21859 char * mp_mplib_version (MP mp) {
21861 return mplib_version;
21863 char * mp_metapost_version (MP mp) {
21865 return metapost_version;
21868 @ @<Exported function headers@>=
21869 int mp_run (MP mp);
21870 char * mp_mplib_version (MP mp);
21871 char * mp_metapost_version (MP mp);
21874 mp_primitive(mp, "end",stop,0);
21875 @:end_}{\&{end} primitive@>
21876 mp_primitive(mp, "dump",stop,1);
21877 @:dump_}{\&{dump} primitive@>
21879 @ @<Cases of |print_cmd...@>=
21881 if ( m==0 ) mp_print(mp, "end");
21882 else mp_print(mp, "dump");
21886 Let's turn now to statements that are classified as ``commands'' because
21887 of their imperative nature. We'll begin with simple ones, so that it
21888 will be clear how to hook command processing into the |do_statement| routine;
21889 then we'll tackle the tougher commands.
21891 Here's one of the simplest:
21893 @<Cases of |do_statement|...@>=
21894 case random_seed: mp_do_random_seed(mp); break;
21896 @ @<Declare action procedures for use by |do_statement|@>=
21897 void mp_do_random_seed (MP mp) ;
21899 @ @c void mp_do_random_seed (MP mp) {
21901 if ( mp->cur_cmd!=assignment ) {
21902 mp_missing_err(mp, ":=");
21904 help1("Always say `randomseed:=<numeric expression>'.");
21907 mp_get_x_next(mp); mp_scan_expression(mp);
21908 if ( mp->cur_type!=mp_known ) {
21909 exp_err("Unknown value will be ignored");
21910 @.Unknown value...ignored@>
21911 help2("Your expression was too random for me to handle,")
21912 ("so I won't change the random seed just now.");
21913 mp_put_get_flush_error(mp, 0);
21915 @<Initialize the random seed to |cur_exp|@>;
21919 @ @<Initialize the random seed to |cur_exp|@>=
21921 mp_init_randoms(mp, mp->cur_exp);
21922 if ( mp->selector>=log_only && mp->selector<write_file) {
21923 mp->old_setting=mp->selector; mp->selector=log_only;
21924 mp_print_nl(mp, "{randomseed:=");
21925 mp_print_scaled(mp, mp->cur_exp);
21926 mp_print_char(mp, '}');
21927 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21931 @ And here's another simple one (somewhat different in flavor):
21933 @<Cases of |do_statement|...@>=
21935 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21936 @<Initialize the print |selector| based on |interaction|@>;
21937 if ( mp->log_opened ) mp->selector=mp->selector+2;
21942 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21943 @:mp_batch_mode_}{\&{batchmode} primitive@>
21944 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21945 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21946 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21947 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21948 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21949 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21951 @ @<Cases of |print_cmd_mod|...@>=
21954 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21955 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21956 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21957 default: mp_print(mp, "errorstopmode"); break;
21961 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21963 @<Cases of |do_statement|...@>=
21964 case protection_command: mp_do_protection(mp); break;
21967 mp_primitive(mp, "inner",protection_command,0);
21968 @:inner_}{\&{inner} primitive@>
21969 mp_primitive(mp, "outer",protection_command,1);
21970 @:outer_}{\&{outer} primitive@>
21972 @ @<Cases of |print_cmd...@>=
21973 case protection_command:
21974 if ( m==0 ) mp_print(mp, "inner");
21975 else mp_print(mp, "outer");
21978 @ @<Declare action procedures for use by |do_statement|@>=
21979 void mp_do_protection (MP mp) ;
21981 @ @c void mp_do_protection (MP mp) {
21982 int m; /* 0 to unprotect, 1 to protect */
21983 halfword t; /* the |eq_type| before we change it */
21986 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21988 if ( t>=outer_tag )
21989 eq_type(mp->cur_sym)=t-outer_tag;
21990 } else if ( t<outer_tag ) {
21991 eq_type(mp->cur_sym)=t+outer_tag;
21994 } while (mp->cur_cmd==comma);
21997 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21998 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21999 declaration assigns the command code |left_delimiter| to `\.{(}' and
22000 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22001 hash address of its mate.
22003 @<Cases of |do_statement|...@>=
22004 case delimiters: mp_def_delims(mp); break;
22006 @ @<Declare action procedures for use by |do_statement|@>=
22007 void mp_def_delims (MP mp) ;
22009 @ @c void mp_def_delims (MP mp) {
22010 pointer l_delim,r_delim; /* the new delimiter pair */
22011 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22012 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22013 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22014 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22018 @ Here is a procedure that is called when \MP\ has reached a point
22019 where some right delimiter is mandatory.
22021 @<Declare the procedure called |check_delimiter|@>=
22022 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22023 if ( mp->cur_cmd==right_delimiter )
22024 if ( mp->cur_mod==l_delim )
22026 if ( mp->cur_sym!=r_delim ) {
22027 mp_missing_err(mp, str(text(r_delim)));
22029 help2("I found no right delimiter to match a left one. So I've")
22030 ("put one in, behind the scenes; this may fix the problem.");
22033 print_err("The token `"); mp_print_text(r_delim);
22034 @.The token...delimiter@>
22035 mp_print(mp, "' is no longer a right delimiter");
22036 help3("Strange: This token has lost its former meaning!")
22037 ("I'll read it as a right delimiter this time;")
22038 ("but watch out, I'll probably miss it later.");
22043 @ The next four commands save or change the values associated with tokens.
22045 @<Cases of |do_statement|...@>=
22048 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22049 } while (mp->cur_cmd==comma);
22051 case interim_command: mp_do_interim(mp); break;
22052 case let_command: mp_do_let(mp); break;
22053 case new_internal: mp_do_new_internal(mp); break;
22055 @ @<Declare action procedures for use by |do_statement|@>=
22056 void mp_do_statement (MP mp);
22057 void mp_do_interim (MP mp);
22059 @ @c void mp_do_interim (MP mp) {
22061 if ( mp->cur_cmd!=internal_quantity ) {
22062 print_err("The token `");
22063 @.The token...quantity@>
22064 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22065 else mp_print_text(mp->cur_sym);
22066 mp_print(mp, "' isn't an internal quantity");
22067 help1("Something like `tracingonline' should follow `interim'.");
22070 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22072 mp_do_statement(mp);
22075 @ The following procedure is careful not to undefine the left-hand symbol
22076 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22078 @<Declare action procedures for use by |do_statement|@>=
22079 void mp_do_let (MP mp) ;
22081 @ @c void mp_do_let (MP mp) {
22082 pointer l; /* hash location of the left-hand symbol */
22083 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22084 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22085 mp_missing_err(mp, "=");
22087 help3("You should have said `let symbol = something'.")
22088 ("But don't worry; I'll pretend that an equals sign")
22089 ("was present. The next token I read will be `something'.");
22093 switch (mp->cur_cmd) {
22094 case defined_macro: case secondary_primary_macro:
22095 case tertiary_secondary_macro: case expression_tertiary_macro:
22096 add_mac_ref(mp->cur_mod);
22101 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22102 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22103 else equiv(l)=mp->cur_mod;
22107 @ @<Declarations@>=
22108 void mp_grow_internals (MP mp, int l);
22109 void mp_do_new_internal (MP mp) ;
22112 void mp_grow_internals (MP mp, int l) {
22116 if ( hash_end+l>max_halfword ) {
22117 mp_confusion(mp, "out of memory space"); /* can't be reached */
22119 int_name = xmalloc ((l+1),sizeof(char *));
22120 internal = xmalloc ((l+1),sizeof(scaled));
22121 for (k=0;k<=l; k++ ) {
22122 if (k<=mp->max_internal) {
22123 internal[k]=mp->internal[k];
22124 int_name[k]=mp->int_name[k];
22130 xfree(mp->internal); xfree(mp->int_name);
22131 mp->int_name = int_name;
22132 mp->internal = internal;
22133 mp->max_internal = l;
22137 void mp_do_new_internal (MP mp) {
22139 if ( mp->int_ptr==mp->max_internal ) {
22140 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22142 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22143 eq_type(mp->cur_sym)=internal_quantity;
22144 equiv(mp->cur_sym)=mp->int_ptr;
22145 if(mp->int_name[mp->int_ptr]!=NULL)
22146 xfree(mp->int_name[mp->int_ptr]);
22147 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22148 mp->internal[mp->int_ptr]=0;
22150 } while (mp->cur_cmd==comma);
22153 @ @<Dealloc variables@>=
22154 for (k=0;k<=mp->max_internal;k++) {
22155 xfree(mp->int_name[k]);
22157 xfree(mp->internal);
22158 xfree(mp->int_name);
22161 @ The various `\&{show}' commands are distinguished by modifier fields
22164 @d show_token_code 0 /* show the meaning of a single token */
22165 @d show_stats_code 1 /* show current memory and string usage */
22166 @d show_code 2 /* show a list of expressions */
22167 @d show_var_code 3 /* show a variable and its descendents */
22168 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22171 mp_primitive(mp, "showtoken",show_command,show_token_code);
22172 @:show_token_}{\&{showtoken} primitive@>
22173 mp_primitive(mp, "showstats",show_command,show_stats_code);
22174 @:show_stats_}{\&{showstats} primitive@>
22175 mp_primitive(mp, "show",show_command,show_code);
22176 @:show_}{\&{show} primitive@>
22177 mp_primitive(mp, "showvariable",show_command,show_var_code);
22178 @:show_var_}{\&{showvariable} primitive@>
22179 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22180 @:show_dependencies_}{\&{showdependencies} primitive@>
22182 @ @<Cases of |print_cmd...@>=
22185 case show_token_code:mp_print(mp, "showtoken"); break;
22186 case show_stats_code:mp_print(mp, "showstats"); break;
22187 case show_code:mp_print(mp, "show"); break;
22188 case show_var_code:mp_print(mp, "showvariable"); break;
22189 default: mp_print(mp, "showdependencies"); break;
22193 @ @<Cases of |do_statement|...@>=
22194 case show_command:mp_do_show_whatever(mp); break;
22196 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22197 if it's |show_code|, complicated structures are abbreviated, otherwise
22200 @<Declare action procedures for use by |do_statement|@>=
22201 void mp_do_show (MP mp) ;
22203 @ @c void mp_do_show (MP mp) {
22205 mp_get_x_next(mp); mp_scan_expression(mp);
22206 mp_print_nl(mp, ">> ");
22208 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22209 } while (mp->cur_cmd==comma);
22212 @ @<Declare action procedures for use by |do_statement|@>=
22213 void mp_disp_token (MP mp) ;
22215 @ @c void mp_disp_token (MP mp) {
22216 mp_print_nl(mp, "> ");
22218 if ( mp->cur_sym==0 ) {
22219 @<Show a numeric or string or capsule token@>;
22221 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22222 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22223 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22224 if ( mp->cur_cmd==defined_macro ) {
22225 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22226 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22231 @ @<Show a numeric or string or capsule token@>=
22233 if ( mp->cur_cmd==numeric_token ) {
22234 mp_print_scaled(mp, mp->cur_mod);
22235 } else if ( mp->cur_cmd==capsule_token ) {
22236 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22238 mp_print_char(mp, '"');
22239 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22240 delete_str_ref(mp->cur_mod);
22244 @ The following cases of |print_cmd_mod| might arise in connection
22245 with |disp_token|, although they don't correspond to any
22248 @<Cases of |print_cmd_...@>=
22249 case left_delimiter:
22250 case right_delimiter:
22251 if ( c==left_delimiter ) mp_print(mp, "left");
22252 else mp_print(mp, "right");
22253 mp_print(mp, " delimiter that matches ");
22257 if ( m==null ) mp_print(mp, "tag");
22258 else mp_print(mp, "variable");
22260 case defined_macro:
22261 mp_print(mp, "macro:");
22263 case secondary_primary_macro:
22264 case tertiary_secondary_macro:
22265 case expression_tertiary_macro:
22266 mp_print_cmd_mod(mp, macro_def,c);
22267 mp_print(mp, "'d macro:");
22268 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22271 mp_print(mp, "[repeat the loop]");
22273 case internal_quantity:
22274 mp_print(mp, mp->int_name[m]);
22277 @ @<Declare action procedures for use by |do_statement|@>=
22278 void mp_do_show_token (MP mp) ;
22280 @ @c void mp_do_show_token (MP mp) {
22282 get_t_next; mp_disp_token(mp);
22284 } while (mp->cur_cmd==comma);
22287 @ @<Declare action procedures for use by |do_statement|@>=
22288 void mp_do_show_stats (MP mp) ;
22290 @ @c void mp_do_show_stats (MP mp) {
22291 mp_print_nl(mp, "Memory usage ");
22292 @.Memory usage...@>
22293 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22295 mp_print(mp, "unknown");
22296 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22297 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22298 mp_print_nl(mp, "String usage ");
22299 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22300 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22302 mp_print(mp, "unknown");
22303 mp_print(mp, " (");
22304 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22305 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22306 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22310 @ Here's a recursive procedure that gives an abbreviated account
22311 of a variable, for use by |do_show_var|.
22313 @<Declare action procedures for use by |do_statement|@>=
22314 void mp_disp_var (MP mp,pointer p) ;
22316 @ @c void mp_disp_var (MP mp,pointer p) {
22317 pointer q; /* traverses attributes and subscripts */
22318 int n; /* amount of macro text to show */
22319 if ( type(p)==mp_structured ) {
22320 @<Descend the structure@>;
22321 } else if ( type(p)>=mp_unsuffixed_macro ) {
22322 @<Display a variable macro@>;
22323 } else if ( type(p)!=undefined ){
22324 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22325 mp_print_char(mp, '=');
22326 mp_print_exp(mp, p,0);
22330 @ @<Descend the structure@>=
22333 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22335 while ( name_type(q)==mp_subscr ) {
22336 mp_disp_var(mp, q); q=link(q);
22340 @ @<Display a variable macro@>=
22342 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22343 if ( type(p)>mp_unsuffixed_macro )
22344 mp_print(mp, "@@#"); /* |suffixed_macro| */
22345 mp_print(mp, "=macro:");
22346 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22347 else n=mp->max_print_line-mp->file_offset-15;
22348 mp_show_macro(mp, value(p),null,n);
22351 @ @<Declare action procedures for use by |do_statement|@>=
22352 void mp_do_show_var (MP mp) ;
22354 @ @c void mp_do_show_var (MP mp) {
22357 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22358 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22359 mp_disp_var(mp, mp->cur_mod); goto DONE;
22364 } while (mp->cur_cmd==comma);
22367 @ @<Declare action procedures for use by |do_statement|@>=
22368 void mp_do_show_dependencies (MP mp) ;
22370 @ @c void mp_do_show_dependencies (MP mp) {
22371 pointer p; /* link that runs through all dependencies */
22373 while ( p!=dep_head ) {
22374 if ( mp_interesting(mp, p) ) {
22375 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22376 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22377 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22378 mp_print_dependency(mp, dep_list(p),type(p));
22381 while ( info(p)!=null ) p=link(p);
22387 @ Finally we are ready for the procedure that governs all of the
22390 @<Declare action procedures for use by |do_statement|@>=
22391 void mp_do_show_whatever (MP mp) ;
22393 @ @c void mp_do_show_whatever (MP mp) {
22394 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22395 switch (mp->cur_mod) {
22396 case show_token_code:mp_do_show_token(mp); break;
22397 case show_stats_code:mp_do_show_stats(mp); break;
22398 case show_code:mp_do_show(mp); break;
22399 case show_var_code:mp_do_show_var(mp); break;
22400 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22401 } /* there are no other cases */
22402 if ( mp->internal[mp_showstopping]>0 ){
22405 if ( mp->interaction<mp_error_stop_mode ) {
22406 help0; decr(mp->error_count);
22408 help1("This isn't an error message; I'm just showing something.");
22410 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22411 else mp_put_get_error(mp);
22415 @ The `\&{addto}' command needs the following additional primitives:
22417 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22418 @d contour_code 1 /* command modifier for `\&{contour}' */
22419 @d also_code 2 /* command modifier for `\&{also}' */
22421 @ Pre and postscripts need two new identifiers:
22423 @d with_pre_script 11
22424 @d with_post_script 13
22427 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22428 @:double_path_}{\&{doublepath} primitive@>
22429 mp_primitive(mp, "contour",thing_to_add,contour_code);
22430 @:contour_}{\&{contour} primitive@>
22431 mp_primitive(mp, "also",thing_to_add,also_code);
22432 @:also_}{\&{also} primitive@>
22433 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22434 @:with_pen_}{\&{withpen} primitive@>
22435 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22436 @:dashed_}{\&{dashed} primitive@>
22437 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22438 @:with_pre_script_}{\&{withprescript} primitive@>
22439 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22440 @:with_post_script_}{\&{withpostscript} primitive@>
22441 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22442 @:with_color_}{\&{withoutcolor} primitive@>
22443 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22444 @:with_color_}{\&{withgreyscale} primitive@>
22445 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22446 @:with_color_}{\&{withcolor} primitive@>
22447 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22448 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22449 @:with_color_}{\&{withrgbcolor} primitive@>
22450 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22451 @:with_color_}{\&{withcmykcolor} primitive@>
22453 @ @<Cases of |print_cmd...@>=
22455 if ( m==contour_code ) mp_print(mp, "contour");
22456 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22457 else mp_print(mp, "also");
22460 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22461 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22462 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22463 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22464 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22465 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22466 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22467 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22468 else mp_print(mp, "dashed");
22471 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22472 updates the list of graphical objects starting at |p|. Each $\langle$with
22473 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22474 Other objects are ignored.
22476 @<Declare action procedures for use by |do_statement|@>=
22477 void mp_scan_with_list (MP mp,pointer p) ;
22479 @ @c void mp_scan_with_list (MP mp,pointer p) {
22480 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22481 pointer q; /* for list manipulation */
22482 int old_setting; /* saved |selector| setting */
22483 pointer k; /* for finding the near-last item in a list */
22484 str_number s; /* for string cleanup after combining */
22485 pointer cp,pp,dp,ap,bp;
22486 /* objects being updated; |void| initially; |null| to suppress update */
22487 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22489 while ( mp->cur_cmd==with_option ){
22492 if ( t!=mp_no_model ) mp_scan_expression(mp);
22493 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22494 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22495 ((t==mp_uninitialized_model)&&
22496 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22497 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22498 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22499 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22500 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22501 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22502 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22503 @<Complain about improper type@>;
22504 } else if ( t==mp_uninitialized_model ) {
22505 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22507 @<Transfer a color from the current expression to object~|cp|@>;
22508 mp_flush_cur_exp(mp, 0);
22509 } else if ( t==mp_rgb_model ) {
22510 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22512 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22513 mp_flush_cur_exp(mp, 0);
22514 } else if ( t==mp_cmyk_model ) {
22515 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22517 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22518 mp_flush_cur_exp(mp, 0);
22519 } else if ( t==mp_grey_model ) {
22520 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22522 @<Transfer a greyscale from the current expression to object~|cp|@>;
22523 mp_flush_cur_exp(mp, 0);
22524 } else if ( t==mp_no_model ) {
22525 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22527 @<Transfer a noncolor from the current expression to object~|cp|@>;
22528 } else if ( t==mp_pen_type ) {
22529 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22531 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22532 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22534 } else if ( t==with_pre_script ) {
22537 while ( (ap!=null)&&(! has_color(ap)) )
22540 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22542 old_setting=mp->selector;
22543 mp->selector=new_string;
22544 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22545 mp_print_str(mp, mp->cur_exp);
22546 append_char(13); /* a forced \ps\ newline */
22547 mp_print_str(mp, pre_script(ap));
22548 pre_script(ap)=mp_make_string(mp);
22550 mp->selector=old_setting;
22552 pre_script(ap)=mp->cur_exp;
22554 mp->cur_type=mp_vacuous;
22556 } else if ( t==with_post_script ) {
22560 while ( link(k)!=null ) {
22562 if ( has_color(k) ) bp=k;
22565 if ( post_script(bp)!=null ) {
22567 old_setting=mp->selector;
22568 mp->selector=new_string;
22569 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22570 mp_print_str(mp, post_script(bp));
22571 append_char(13); /* a forced \ps\ newline */
22572 mp_print_str(mp, mp->cur_exp);
22573 post_script(bp)=mp_make_string(mp);
22575 mp->selector=old_setting;
22577 post_script(bp)=mp->cur_exp;
22579 mp->cur_type=mp_vacuous;
22582 if ( dp==mp_void ) {
22583 @<Make |dp| a stroked node in list~|p|@>;
22586 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22587 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22588 dash_scale(dp)=unity;
22589 mp->cur_type=mp_vacuous;
22593 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22597 @ @<Complain about improper type@>=
22598 { exp_err("Improper type");
22600 help2("Next time say `withpen <known pen expression>';")
22601 ("I'll ignore the bad `with' clause and look for another.");
22602 if ( t==with_pre_script )
22603 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22604 else if ( t==with_post_script )
22605 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22606 else if ( t==mp_picture_type )
22607 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22608 else if ( t==mp_uninitialized_model )
22609 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22610 else if ( t==mp_rgb_model )
22611 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22612 else if ( t==mp_cmyk_model )
22613 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22614 else if ( t==mp_grey_model )
22615 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22616 mp_put_get_flush_error(mp, 0);
22619 @ Forcing the color to be between |0| and |unity| here guarantees that no
22620 picture will ever contain a color outside the legal range for \ps\ graphics.
22622 @<Transfer a color from the current expression to object~|cp|@>=
22623 { if ( mp->cur_type==mp_color_type )
22624 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22625 else if ( mp->cur_type==mp_cmykcolor_type )
22626 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22627 else if ( mp->cur_type==mp_known )
22628 @<Transfer a greyscale from the current expression to object~|cp|@>
22629 else if ( mp->cur_exp==false_code )
22630 @<Transfer a noncolor from the current expression to object~|cp|@>;
22633 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22634 { q=value(mp->cur_exp);
22639 red_val(cp)=value(red_part_loc(q));
22640 green_val(cp)=value(green_part_loc(q));
22641 blue_val(cp)=value(blue_part_loc(q));
22642 color_model(cp)=mp_rgb_model;
22643 if ( red_val(cp)<0 ) red_val(cp)=0;
22644 if ( green_val(cp)<0 ) green_val(cp)=0;
22645 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22646 if ( red_val(cp)>unity ) red_val(cp)=unity;
22647 if ( green_val(cp)>unity ) green_val(cp)=unity;
22648 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22651 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22652 { q=value(mp->cur_exp);
22653 cyan_val(cp)=value(cyan_part_loc(q));
22654 magenta_val(cp)=value(magenta_part_loc(q));
22655 yellow_val(cp)=value(yellow_part_loc(q));
22656 black_val(cp)=value(black_part_loc(q));
22657 color_model(cp)=mp_cmyk_model;
22658 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22659 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22660 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22661 if ( black_val(cp)<0 ) black_val(cp)=0;
22662 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22663 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22664 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22665 if ( black_val(cp)>unity ) black_val(cp)=unity;
22668 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22675 color_model(cp)=mp_grey_model;
22676 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22677 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22680 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22687 color_model(cp)=mp_no_model;
22690 @ @<Make |cp| a colored object in object list~|p|@>=
22692 while ( cp!=null ){
22693 if ( has_color(cp) ) break;
22698 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22700 while ( pp!=null ) {
22701 if ( has_pen(pp) ) break;
22706 @ @<Make |dp| a stroked node in list~|p|@>=
22708 while ( dp!=null ) {
22709 if ( type(dp)==mp_stroked_code ) break;
22714 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22715 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22716 if ( pp>mp_void ) {
22717 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22719 if ( dp>mp_void ) {
22720 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22724 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22726 while ( q!=null ) {
22727 if ( has_color(q) ) {
22728 red_val(q)=red_val(cp);
22729 green_val(q)=green_val(cp);
22730 blue_val(q)=blue_val(cp);
22731 black_val(q)=black_val(cp);
22732 color_model(q)=color_model(cp);
22738 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22740 while ( q!=null ) {
22741 if ( has_pen(q) ) {
22742 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22743 pen_p(q)=copy_pen(pen_p(pp));
22749 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22751 while ( q!=null ) {
22752 if ( type(q)==mp_stroked_code ) {
22753 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22754 dash_p(q)=dash_p(dp);
22755 dash_scale(q)=unity;
22756 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22762 @ One of the things we need to do when we've parsed an \&{addto} or
22763 similar command is find the header of a supposed \&{picture} variable, given
22764 a token list for that variable. Since the edge structure is about to be
22765 updated, we use |private_edges| to make sure that this is possible.
22767 @<Declare action procedures for use by |do_statement|@>=
22768 pointer mp_find_edges_var (MP mp, pointer t) ;
22770 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22772 pointer cur_edges; /* the return value */
22773 p=mp_find_variable(mp, t); cur_edges=null;
22775 mp_obliterated(mp, t); mp_put_get_error(mp);
22776 } else if ( type(p)!=mp_picture_type ) {
22777 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22778 @.Variable x is the wrong type@>
22779 mp_print(mp, " is the wrong type (");
22780 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22781 help2("I was looking for a \"known\" picture variable.")
22782 ("So I'll not change anything just now.");
22783 mp_put_get_error(mp);
22785 value(p)=mp_private_edges(mp, value(p));
22786 cur_edges=value(p);
22788 mp_flush_node_list(mp, t);
22792 @ @<Cases of |do_statement|...@>=
22793 case add_to_command: mp_do_add_to(mp); break;
22794 case bounds_command:mp_do_bounds(mp); break;
22797 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22798 @:clip_}{\&{clip} primitive@>
22799 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22800 @:set_bounds_}{\&{setbounds} primitive@>
22802 @ @<Cases of |print_cmd...@>=
22803 case bounds_command:
22804 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22805 else mp_print(mp, "setbounds");
22808 @ The following function parses the beginning of an \&{addto} or \&{clip}
22809 command: it expects a variable name followed by a token with |cur_cmd=sep|
22810 and then an expression. The function returns the token list for the variable
22811 and stores the command modifier for the separator token in the global variable
22812 |last_add_type|. We must be careful because this variable might get overwritten
22813 any time we call |get_x_next|.
22816 quarterword last_add_type;
22817 /* command modifier that identifies the last \&{addto} command */
22819 @ @<Declare action procedures for use by |do_statement|@>=
22820 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22822 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22823 pointer lhv; /* variable to add to left */
22824 quarterword add_type=0; /* value to be returned in |last_add_type| */
22826 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22827 if ( mp->cur_type!=mp_token_list ) {
22828 @<Abandon edges command because there's no variable@>;
22830 lhv=mp->cur_exp; add_type=mp->cur_mod;
22831 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22833 mp->last_add_type=add_type;
22837 @ @<Abandon edges command because there's no variable@>=
22838 { exp_err("Not a suitable variable");
22839 @.Not a suitable variable@>
22840 help4("At this point I needed to see the name of a picture variable.")
22841 ("(Or perhaps you have indeed presented me with one; I might")
22842 ("have missed it, if it wasn't followed by the proper token.)")
22843 ("So I'll not change anything just now.");
22844 mp_put_get_flush_error(mp, 0);
22847 @ Here is an example of how to use |start_draw_cmd|.
22849 @<Declare action procedures for use by |do_statement|@>=
22850 void mp_do_bounds (MP mp) ;
22852 @ @c void mp_do_bounds (MP mp) {
22853 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22854 pointer p; /* for list manipulation */
22855 integer m; /* initial value of |cur_mod| */
22857 lhv=mp_start_draw_cmd(mp, to_token);
22859 lhe=mp_find_edges_var(mp, lhv);
22861 mp_flush_cur_exp(mp, 0);
22862 } else if ( mp->cur_type!=mp_path_type ) {
22863 exp_err("Improper `clip'");
22864 @.Improper `addto'@>
22865 help2("This expression should have specified a known path.")
22866 ("So I'll not change anything just now.");
22867 mp_put_get_flush_error(mp, 0);
22868 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22869 @<Complain about a non-cycle@>;
22871 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22876 @ @<Complain about a non-cycle@>=
22877 { print_err("Not a cycle");
22879 help2("That contour should have ended with `..cycle' or `&cycle'.")
22880 ("So I'll not change anything just now."); mp_put_get_error(mp);
22883 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22884 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22885 link(p)=link(dummy_loc(lhe));
22886 link(dummy_loc(lhe))=p;
22887 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22888 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22889 type(p)=stop_type(m);
22890 link(obj_tail(lhe))=p;
22892 mp_init_bbox(mp, lhe);
22895 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22896 cases to deal with.
22898 @<Declare action procedures for use by |do_statement|@>=
22899 void mp_do_add_to (MP mp) ;
22901 @ @c void mp_do_add_to (MP mp) {
22902 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22903 pointer p; /* the graphical object or list for |scan_with_list| to update */
22904 pointer e; /* an edge structure to be merged */
22905 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22906 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22908 if ( add_type==also_code ) {
22909 @<Make sure the current expression is a suitable picture and set |e| and |p|
22912 @<Create a graphical object |p| based on |add_type| and the current
22915 mp_scan_with_list(mp, p);
22916 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22920 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22921 setting |e:=null| prevents anything from being added to |lhe|.
22923 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22926 if ( mp->cur_type!=mp_picture_type ) {
22927 exp_err("Improper `addto'");
22928 @.Improper `addto'@>
22929 help2("This expression should have specified a known picture.")
22930 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22932 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22933 p=link(dummy_loc(e));
22937 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22938 attempts to add to the edge structure.
22940 @<Create a graphical object |p| based on |add_type| and the current...@>=
22942 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22943 if ( mp->cur_type!=mp_path_type ) {
22944 exp_err("Improper `addto'");
22945 @.Improper `addto'@>
22946 help2("This expression should have specified a known path.")
22947 ("So I'll not change anything just now.");
22948 mp_put_get_flush_error(mp, 0);
22949 } else if ( add_type==contour_code ) {
22950 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22951 @<Complain about a non-cycle@>;
22953 p=mp_new_fill_node(mp, mp->cur_exp);
22954 mp->cur_type=mp_vacuous;
22957 p=mp_new_stroked_node(mp, mp->cur_exp);
22958 mp->cur_type=mp_vacuous;
22962 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22963 lhe=mp_find_edges_var(mp, lhv);
22965 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22966 if ( e!=null ) delete_edge_ref(e);
22967 } else if ( add_type==also_code ) {
22969 @<Merge |e| into |lhe| and delete |e|@>;
22973 } else if ( p!=null ) {
22974 link(obj_tail(lhe))=p;
22976 if ( add_type==double_path_code )
22977 if ( pen_p(p)==null )
22978 pen_p(p)=mp_get_pen_circle(mp, 0);
22981 @ @<Merge |e| into |lhe| and delete |e|@>=
22982 { if ( link(dummy_loc(e))!=null ) {
22983 link(obj_tail(lhe))=link(dummy_loc(e));
22984 obj_tail(lhe)=obj_tail(e);
22985 obj_tail(e)=dummy_loc(e);
22986 link(dummy_loc(e))=null;
22987 mp_flush_dash_list(mp, lhe);
22989 mp_toss_edges(mp, e);
22992 @ @<Cases of |do_statement|...@>=
22993 case ship_out_command: mp_do_ship_out(mp); break;
22995 @ @<Declare action procedures for use by |do_statement|@>=
22996 @<Declare the function called |tfm_check|@>;
22997 @<Declare the \ps\ output procedures@>;
22998 void mp_do_ship_out (MP mp) ;
23000 @ @c void mp_do_ship_out (MP mp) {
23001 integer c; /* the character code */
23002 mp_get_x_next(mp); mp_scan_expression(mp);
23003 if ( mp->cur_type!=mp_picture_type ) {
23004 @<Complain that it's not a known picture@>;
23006 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23007 if ( c<0 ) c=c+256;
23008 @<Store the width information for character code~|c|@>;
23009 mp_ship_out(mp, mp->cur_exp);
23010 mp_flush_cur_exp(mp, 0);
23014 @ @<Complain that it's not a known picture@>=
23016 exp_err("Not a known picture");
23017 help1("I can only output known pictures.");
23018 mp_put_get_flush_error(mp, 0);
23021 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23024 @<Cases of |do_statement|...@>=
23025 case every_job_command:
23026 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23030 halfword start_sym; /* a symbolic token to insert at beginning of job */
23035 @ Finally, we have only the ``message'' commands remaining.
23038 @d err_message_code 1
23040 @d filename_template_code 3
23041 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23042 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23044 mp->pool_ptr = mp->pool_ptr - g;
23046 mp_print_char(mp, '0');
23049 mp_print_int(mp, (A));
23054 mp_primitive(mp, "message",message_command,message_code);
23055 @:message_}{\&{message} primitive@>
23056 mp_primitive(mp, "errmessage",message_command,err_message_code);
23057 @:err_message_}{\&{errmessage} primitive@>
23058 mp_primitive(mp, "errhelp",message_command,err_help_code);
23059 @:err_help_}{\&{errhelp} primitive@>
23060 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23061 @:filename_template_}{\&{filenametemplate} primitive@>
23063 @ @<Cases of |print_cmd...@>=
23064 case message_command:
23065 if ( m<err_message_code ) mp_print(mp, "message");
23066 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23067 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23068 else mp_print(mp, "errhelp");
23071 @ @<Cases of |do_statement|...@>=
23072 case message_command: mp_do_message(mp); break;
23074 @ @<Declare action procedures for use by |do_statement|@>=
23075 @<Declare a procedure called |no_string_err|@>;
23076 void mp_do_message (MP mp) ;
23079 @c void mp_do_message (MP mp) {
23080 int m; /* the type of message */
23081 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23082 if ( mp->cur_type!=mp_string_type )
23083 mp_no_string_err(mp, "A message should be a known string expression.");
23087 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23089 case err_message_code:
23090 @<Print string |cur_exp| as an error message@>;
23092 case err_help_code:
23093 @<Save string |cur_exp| as the |err_help|@>;
23095 case filename_template_code:
23096 @<Save the filename template@>;
23098 } /* there are no other cases */
23100 mp_flush_cur_exp(mp, 0);
23103 @ @<Declare a procedure called |no_string_err|@>=
23104 void mp_no_string_err (MP mp,char *s) {
23105 exp_err("Not a string");
23108 mp_put_get_error(mp);
23111 @ The global variable |err_help| is zero when the user has most recently
23112 given an empty help string, or if none has ever been given.
23114 @<Save string |cur_exp| as the |err_help|@>=
23116 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23117 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23118 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23121 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23122 \&{errhelp}, we don't want to give a long help message each time. So we
23123 give a verbose explanation only once.
23126 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23128 @ @<Set init...@>=mp->long_help_seen=false;
23130 @ @<Print string |cur_exp| as an error message@>=
23132 print_err(""); mp_print_str(mp, mp->cur_exp);
23133 if ( mp->err_help!=0 ) {
23134 mp->use_err_help=true;
23135 } else if ( mp->long_help_seen ) {
23136 help1("(That was another `errmessage'.)") ;
23138 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23139 help4("This error message was generated by an `errmessage'")
23140 ("command, so I can\'t give any explicit help.")
23141 ("Pretend that you're Miss Marple: Examine all clues,")
23143 ("and deduce the truth by inspired guesses.");
23145 mp_put_get_error(mp); mp->use_err_help=false;
23148 @ @<Cases of |do_statement|...@>=
23149 case write_command: mp_do_write(mp); break;
23151 @ @<Declare action procedures for use by |do_statement|@>=
23152 void mp_do_write (MP mp) ;
23154 @ @c void mp_do_write (MP mp) {
23155 str_number t; /* the line of text to be written */
23156 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23157 int old_setting; /* for saving |selector| during output */
23159 mp_scan_expression(mp);
23160 if ( mp->cur_type!=mp_string_type ) {
23161 mp_no_string_err(mp, "The text to be written should be a known string expression");
23162 } else if ( mp->cur_cmd!=to_token ) {
23163 print_err("Missing `to' clause");
23164 help1("A write command should end with `to <filename>'");
23165 mp_put_get_error(mp);
23167 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23169 mp_scan_expression(mp);
23170 if ( mp->cur_type!=mp_string_type )
23171 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23173 @<Write |t| to the file named by |cur_exp|@>;
23177 mp_flush_cur_exp(mp, 0);
23180 @ @<Write |t| to the file named by |cur_exp|@>=
23182 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23183 |cur_exp| must be inserted@>;
23184 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23185 @<Record the end of file on |wr_file[n]|@>;
23187 old_setting=mp->selector;
23188 mp->selector=n+write_file;
23189 mp_print_str(mp, t); mp_print_ln(mp);
23190 mp->selector = old_setting;
23194 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23196 char *fn = str(mp->cur_exp);
23198 n0=mp->write_files;
23199 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23200 if ( n==0 ) { /* bottom reached */
23201 if ( n0==mp->write_files ) {
23202 if ( mp->write_files<mp->max_write_files ) {
23203 incr(mp->write_files);
23208 l = mp->max_write_files + (mp->max_write_files>>2);
23209 wr_file = xmalloc((l+1),sizeof(FILE *));
23210 wr_fname = xmalloc((l+1),sizeof(char *));
23211 for (k=0;k<=l;k++) {
23212 if (k<=mp->max_write_files) {
23213 wr_file[k]=mp->wr_file[k];
23214 wr_fname[k]=mp->wr_fname[k];
23220 xfree(mp->wr_file); xfree(mp->wr_fname);
23221 mp->max_write_files = l;
23222 mp->wr_file = wr_file;
23223 mp->wr_fname = wr_fname;
23227 mp_open_write_file(mp, fn ,n);
23230 if ( mp->wr_fname[n]==NULL ) n0=n;
23235 @ @<Record the end of file on |wr_file[n]|@>=
23236 { fclose(mp->wr_file[n]);
23237 xfree(mp->wr_fname[n]);
23238 mp->wr_fname[n]=NULL;
23239 if ( n==mp->write_files-1 ) mp->write_files=n;
23243 @* \[42] Writing font metric data.
23244 \TeX\ gets its knowledge about fonts from font metric files, also called
23245 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23246 but other programs know about them too. One of \MP's duties is to
23247 write \.{TFM} files so that the user's fonts can readily be
23248 applied to typesetting.
23249 @:TFM files}{\.{TFM} files@>
23250 @^font metric files@>
23252 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23253 Since the number of bytes is always a multiple of~4, we could
23254 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23255 byte interpretation. The format of \.{TFM} files was designed by
23256 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23257 @^Ramshaw, Lyle Harold@>
23258 of information in a compact but useful form.
23261 FILE * tfm_file; /* the font metric output goes here */
23262 char * metric_file_name; /* full name of the font metric file */
23264 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23265 integers that give the lengths of the various subsequent portions
23266 of the file. These twelve integers are, in order:
23267 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23268 |lf|&length of the entire file, in words;\cr
23269 |lh|&length of the header data, in words;\cr
23270 |bc|&smallest character code in the font;\cr
23271 |ec|&largest character code in the font;\cr
23272 |nw|&number of words in the width table;\cr
23273 |nh|&number of words in the height table;\cr
23274 |nd|&number of words in the depth table;\cr
23275 |ni|&number of words in the italic correction table;\cr
23276 |nl|&number of words in the lig/kern table;\cr
23277 |nk|&number of words in the kern table;\cr
23278 |ne|&number of words in the extensible character table;\cr
23279 |np|&number of font parameter words.\cr}}$$
23280 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23282 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23283 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23284 and as few as 0 characters (if |bc=ec+1|).
23286 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23287 16 or more bits, the most significant bytes appear first in the file.
23288 This is called BigEndian order.
23289 @^BigEndian order@>
23291 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23294 The most important data type used here is a |fix_word|, which is
23295 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23296 quantity, with the two's complement of the entire word used to represent
23297 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23298 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23299 the smallest is $-2048$. We will see below, however, that all but two of
23300 the |fix_word| values must lie between $-16$ and $+16$.
23302 @ The first data array is a block of header information, which contains
23303 general facts about the font. The header must contain at least two words,
23304 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23305 header information of use to other software routines might also be
23306 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23307 For example, 16 more words of header information are in use at the Xerox
23308 Palo Alto Research Center; the first ten specify the character coding
23309 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23310 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23311 last gives the ``face byte.''
23313 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23314 the \.{GF} output file. This helps ensure consistency between files,
23315 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23316 should match the check sums on actual fonts that are used. The actual
23317 relation between this check sum and the rest of the \.{TFM} file is not
23318 important; the check sum is simply an identification number with the
23319 property that incompatible fonts almost always have distinct check sums.
23322 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23323 font, in units of \TeX\ points. This number must be at least 1.0; it is
23324 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23325 font, i.e., a font that was designed to look best at a 10-point size,
23326 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23327 $\delta$ \.{pt}', the effect is to override the design size and replace it
23328 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23329 the font image by a factor of $\delta$ divided by the design size. {\sl
23330 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23331 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23332 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23333 since many fonts have a design size equal to one em. The other dimensions
23334 must be less than 16 design-size units in absolute value; thus,
23335 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23336 \.{TFM} file whose first byte might be something besides 0 or 255.
23338 @ Next comes the |char_info| array, which contains one |char_info_word|
23339 per character. Each word in this part of the file contains six fields
23340 packed into four bytes as follows.
23342 \yskip\hang first byte: |width_index| (8 bits)\par
23343 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23345 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23347 \hang fourth byte: |remainder| (8 bits)\par
23349 The actual width of a character is \\{width}|[width_index]|, in design-size
23350 units; this is a device for compressing information, since many characters
23351 have the same width. Since it is quite common for many characters
23352 to have the same height, depth, or italic correction, the \.{TFM} format
23353 imposes a limit of 16 different heights, 16 different depths, and
23354 64 different italic corrections.
23356 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23357 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23358 value of zero. The |width_index| should never be zero unless the
23359 character does not exist in the font, since a character is valid if and
23360 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23362 @ The |tag| field in a |char_info_word| has four values that explain how to
23363 interpret the |remainder| field.
23365 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23366 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23367 program starting at location |remainder| in the |lig_kern| array.\par
23368 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23369 characters of ascending sizes, and not the largest in the chain. The
23370 |remainder| field gives the character code of the next larger character.\par
23371 \hang|tag=3| (|ext_tag|) means that this character code represents an
23372 extensible character, i.e., a character that is built up of smaller pieces
23373 so that it can be made arbitrarily large. The pieces are specified in
23374 |exten[remainder]|.\par
23376 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23377 unless they are used in special circumstances in math formulas. For example,
23378 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23379 operation looks for both |list_tag| and |ext_tag|.
23381 @d no_tag 0 /* vanilla character */
23382 @d lig_tag 1 /* character has a ligature/kerning program */
23383 @d list_tag 2 /* character has a successor in a charlist */
23384 @d ext_tag 3 /* character is extensible */
23386 @ The |lig_kern| array contains instructions in a simple programming language
23387 that explains what to do for special letter pairs. Each word in this array is a
23388 |lig_kern_command| of four bytes.
23390 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23391 step if the byte is 128 or more, otherwise the next step is obtained by
23392 skipping this number of intervening steps.\par
23393 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23394 then perform the operation and stop, otherwise continue.''\par
23395 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23396 a kern step otherwise.\par
23397 \hang fourth byte: |remainder|.\par
23400 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23401 between the current character and |next_char|. This amount is
23402 often negative, so that the characters are brought closer together
23403 by kerning; but it might be positive.
23405 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23406 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23407 |remainder| is inserted between the current character and |next_char|;
23408 then the current character is deleted if $b=0$, and |next_char| is
23409 deleted if $c=0$; then we pass over $a$~characters to reach the next
23410 current character (which may have a ligature/kerning program of its own).
23412 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23413 the |next_char| byte is the so-called right boundary character of this font;
23414 the value of |next_char| need not lie between |bc| and~|ec|.
23415 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23416 there is a special ligature/kerning program for a left boundary character,
23417 beginning at location |256*op_byte+remainder|.
23418 The interpretation is that \TeX\ puts implicit boundary characters
23419 before and after each consecutive string of characters from the same font.
23420 These implicit characters do not appear in the output, but they can affect
23421 ligatures and kerning.
23423 If the very first instruction of a character's |lig_kern| program has
23424 |skip_byte>128|, the program actually begins in location
23425 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23426 arrays, because the first instruction must otherwise
23427 appear in a location |<=255|.
23429 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23431 $$\hbox{|256*op_byte+remainder<nl|.}$$
23432 If such an instruction is encountered during
23433 normal program execution, it denotes an unconditional halt; no ligature
23434 command is performed.
23437 /* value indicating `\.{STOP}' in a lig/kern program */
23438 @d kern_flag (128) /* op code for a kern step */
23439 @d skip_byte(A) mp->lig_kern[(A)].b0
23440 @d next_char(A) mp->lig_kern[(A)].b1
23441 @d op_byte(A) mp->lig_kern[(A)].b2
23442 @d rem_byte(A) mp->lig_kern[(A)].b3
23444 @ Extensible characters are specified by an |extensible_recipe|, which
23445 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23446 order). These bytes are the character codes of individual pieces used to
23447 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23448 present in the built-up result. For example, an extensible vertical line is
23449 like an extensible bracket, except that the top and bottom pieces are missing.
23451 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23452 if the piece isn't present. Then the extensible characters have the form
23453 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23454 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23455 The width of the extensible character is the width of $R$; and the
23456 height-plus-depth is the sum of the individual height-plus-depths of the
23457 components used, since the pieces are butted together in a vertical list.
23459 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23460 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23461 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23462 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23464 @ The final portion of a \.{TFM} file is the |param| array, which is another
23465 sequence of |fix_word| values.
23467 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23468 to help position accents. For example, |slant=.25| means that when you go
23469 up one unit, you also go .25 units to the right. The |slant| is a pure
23470 number; it is the only |fix_word| other than the design size itself that is
23471 not scaled by the design size.
23473 \hang|param[2]=space| is the normal spacing between words in text.
23474 Note that character 040 in the font need not have anything to do with
23477 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23479 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23481 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23482 the height of letters for which accents don't have to be raised or lowered.
23484 \hang|param[6]=quad| is the size of one em in the font.
23486 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23490 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23495 @d space_stretch_code 3
23496 @d space_shrink_code 4
23499 @d extra_space_code 7
23501 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23502 information, and it does this all at once at the end of a job.
23503 In order to prepare for such frenetic activity, it squirrels away the
23504 necessary facts in various arrays as information becomes available.
23506 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23507 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23508 |tfm_ital_corr|. Other information about a character (e.g., about
23509 its ligatures or successors) is accessible via the |char_tag| and
23510 |char_remainder| arrays. Other information about the font as a whole
23511 is kept in additional arrays called |header_byte|, |lig_kern|,
23512 |kern|, |exten|, and |param|.
23514 @d max_tfm_int 32510
23515 @d undefined_label max_tfm_int /* an undefined local label */
23518 #define TFM_ITEMS 257
23520 eight_bits ec; /* smallest and largest character codes shipped out */
23521 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23522 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23523 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23524 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23525 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23526 int char_tag[TFM_ITEMS]; /* |remainder| category */
23527 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23528 char *header_byte; /* bytes of the \.{TFM} header */
23529 int header_last; /* last initialized \.{TFM} header byte */
23530 int header_size; /* size of the \.{TFM} header */
23531 four_quarters *lig_kern; /* the ligature/kern table */
23532 short nl; /* the number of ligature/kern steps so far */
23533 scaled *kern; /* distinct kerning amounts */
23534 short nk; /* the number of distinct kerns so far */
23535 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23536 short ne; /* the number of extensible characters so far */
23537 scaled *param; /* \&{fontinfo} parameters */
23538 short np; /* the largest \&{fontinfo} parameter specified so far */
23539 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23540 short skip_table[TFM_ITEMS]; /* local label status */
23541 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23542 integer bchar; /* right boundary character */
23543 short bch_label; /* left boundary starting location */
23544 short ll;short lll; /* registers used for lig/kern processing */
23545 short label_loc[257]; /* lig/kern starting addresses */
23546 eight_bits label_char[257]; /* characters for |label_loc| */
23547 short label_ptr; /* highest position occupied in |label_loc| */
23549 @ @<Allocate or initialize ...@>=
23550 mp->header_last = 0; mp->header_size = 128; /* just for init */
23551 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23552 mp->lig_kern = NULL; /* allocated when needed */
23553 mp->kern = NULL; /* allocated when needed */
23554 mp->param = NULL; /* allocated when needed */
23556 @ @<Dealloc variables@>=
23557 xfree(mp->header_byte);
23558 xfree(mp->lig_kern);
23563 for (k=0;k<= 255;k++ ) {
23564 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23565 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23566 mp->skip_table[k]=undefined_label;
23568 memset(mp->header_byte,0,mp->header_size);
23569 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23570 mp->internal[mp_boundary_char]=-unity;
23571 mp->bch_label=undefined_label;
23572 mp->label_loc[0]=-1; mp->label_ptr=0;
23574 @ @<Declarations@>=
23575 scaled mp_tfm_check (MP mp,small_number m) ;
23577 @ @<Declare the function called |tfm_check|@>=
23578 scaled mp_tfm_check (MP mp,small_number m) {
23579 if ( abs(mp->internal[m])>=fraction_half ) {
23580 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23581 @.Enormous charwd...@>
23582 @.Enormous chardp...@>
23583 @.Enormous charht...@>
23584 @.Enormous charic...@>
23585 @.Enormous designsize...@>
23586 mp_print(mp, " has been reduced");
23587 help1("Font metric dimensions must be less than 2048pt.");
23588 mp_put_get_error(mp);
23589 if ( mp->internal[m]>0 ) return (fraction_half-1);
23590 else return (1-fraction_half);
23592 return mp->internal[m];
23596 @ @<Store the width information for character code~|c|@>=
23597 if ( c<mp->bc ) mp->bc=c;
23598 if ( c>mp->ec ) mp->ec=c;
23599 mp->char_exists[c]=true;
23600 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23601 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23602 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23603 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23605 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23607 @<Cases of |do_statement|...@>=
23608 case tfm_command: mp_do_tfm_command(mp); break;
23610 @ @d char_list_code 0
23611 @d lig_table_code 1
23612 @d extensible_code 2
23613 @d header_byte_code 3
23614 @d font_dimen_code 4
23617 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23618 @:char_list_}{\&{charlist} primitive@>
23619 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23620 @:lig_table_}{\&{ligtable} primitive@>
23621 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23622 @:extensible_}{\&{extensible} primitive@>
23623 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23624 @:header_byte_}{\&{headerbyte} primitive@>
23625 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23626 @:font_dimen_}{\&{fontdimen} primitive@>
23628 @ @<Cases of |print_cmd...@>=
23631 case char_list_code:mp_print(mp, "charlist"); break;
23632 case lig_table_code:mp_print(mp, "ligtable"); break;
23633 case extensible_code:mp_print(mp, "extensible"); break;
23634 case header_byte_code:mp_print(mp, "headerbyte"); break;
23635 default: mp_print(mp, "fontdimen"); break;
23639 @ @<Declare action procedures for use by |do_statement|@>=
23640 eight_bits mp_get_code (MP mp) ;
23642 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23643 integer c; /* the code value found */
23644 mp_get_x_next(mp); mp_scan_expression(mp);
23645 if ( mp->cur_type==mp_known ) {
23646 c=mp_round_unscaled(mp, mp->cur_exp);
23647 if ( c>=0 ) if ( c<256 ) return c;
23648 } else if ( mp->cur_type==mp_string_type ) {
23649 if ( length(mp->cur_exp)==1 ) {
23650 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23654 exp_err("Invalid code has been replaced by 0");
23655 @.Invalid code...@>
23656 help2("I was looking for a number between 0 and 255, or for a")
23657 ("string of length 1. Didn't find it; will use 0 instead.");
23658 mp_put_get_flush_error(mp, 0); c=0;
23662 @ @<Declare action procedures for use by |do_statement|@>=
23663 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23665 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23666 if ( mp->char_tag[c]==no_tag ) {
23667 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23669 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23670 mp->label_char[mp->label_ptr]=c;
23673 @<Complain about a character tag conflict@>;
23677 @ @<Complain about a character tag conflict@>=
23679 print_err("Character ");
23680 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23681 else if ( c==256 ) mp_print(mp, "||");
23682 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23683 mp_print(mp, " is already ");
23684 @.Character c is already...@>
23685 switch (mp->char_tag[c]) {
23686 case lig_tag: mp_print(mp, "in a ligtable"); break;
23687 case list_tag: mp_print(mp, "in a charlist"); break;
23688 case ext_tag: mp_print(mp, "extensible"); break;
23689 } /* there are no other cases */
23690 help2("It's not legal to label a character more than once.")
23691 ("So I'll not change anything just now.");
23692 mp_put_get_error(mp);
23695 @ @<Declare action procedures for use by |do_statement|@>=
23696 void mp_do_tfm_command (MP mp) ;
23698 @ @c void mp_do_tfm_command (MP mp) {
23699 int c,cc; /* character codes */
23700 int k; /* index into the |kern| array */
23701 int j; /* index into |header_byte| or |param| */
23702 switch (mp->cur_mod) {
23703 case char_list_code:
23705 /* we will store a list of character successors */
23706 while ( mp->cur_cmd==colon ) {
23707 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23710 case lig_table_code:
23711 if (mp->lig_kern==NULL)
23712 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23713 if (mp->kern==NULL)
23714 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23715 @<Store a list of ligature/kern steps@>;
23717 case extensible_code:
23718 @<Define an extensible recipe@>;
23720 case header_byte_code:
23721 case font_dimen_code:
23722 c=mp->cur_mod; mp_get_x_next(mp);
23723 mp_scan_expression(mp);
23724 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23725 exp_err("Improper location");
23726 @.Improper location@>
23727 help2("I was looking for a known, positive number.")
23728 ("For safety's sake I'll ignore the present command.");
23729 mp_put_get_error(mp);
23731 j=mp_round_unscaled(mp, mp->cur_exp);
23732 if ( mp->cur_cmd!=colon ) {
23733 mp_missing_err(mp, ":");
23735 help1("A colon should follow a headerbyte or fontinfo location.");
23738 if ( c==header_byte_code ) {
23739 @<Store a list of header bytes@>;
23741 if (mp->param==NULL)
23742 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23743 @<Store a list of font dimensions@>;
23747 } /* there are no other cases */
23750 @ @<Store a list of ligature/kern steps@>=
23752 mp->lk_started=false;
23755 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23756 @<Process a |skip_to| command and |goto done|@>;
23757 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23758 else { mp_back_input(mp); c=mp_get_code(mp); };
23759 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23760 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23762 if ( mp->cur_cmd==lig_kern_token ) {
23763 @<Compile a ligature/kern command@>;
23765 print_err("Illegal ligtable step");
23766 @.Illegal ligtable step@>
23767 help1("I was looking for `=:' or `kern' here.");
23768 mp_back_error(mp); next_char(mp->nl)=qi(0);
23769 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23770 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23772 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23774 if ( mp->cur_cmd==comma ) goto CONTINUE;
23775 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23780 mp_primitive(mp, "=:",lig_kern_token,0);
23781 @:=:_}{\.{=:} primitive@>
23782 mp_primitive(mp, "=:|",lig_kern_token,1);
23783 @:=:/_}{\.{=:\char'174} primitive@>
23784 mp_primitive(mp, "=:|>",lig_kern_token,5);
23785 @:=:/>_}{\.{=:\char'174>} primitive@>
23786 mp_primitive(mp, "|=:",lig_kern_token,2);
23787 @:=:/_}{\.{\char'174=:} primitive@>
23788 mp_primitive(mp, "|=:>",lig_kern_token,6);
23789 @:=:/>_}{\.{\char'174=:>} primitive@>
23790 mp_primitive(mp, "|=:|",lig_kern_token,3);
23791 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23792 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23793 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23794 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23795 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23796 mp_primitive(mp, "kern",lig_kern_token,128);
23797 @:kern_}{\&{kern} primitive@>
23799 @ @<Cases of |print_cmd...@>=
23800 case lig_kern_token:
23802 case 0:mp_print(mp, "=:"); break;
23803 case 1:mp_print(mp, "=:|"); break;
23804 case 2:mp_print(mp, "|=:"); break;
23805 case 3:mp_print(mp, "|=:|"); break;
23806 case 5:mp_print(mp, "=:|>"); break;
23807 case 6:mp_print(mp, "|=:>"); break;
23808 case 7:mp_print(mp, "|=:|>"); break;
23809 case 11:mp_print(mp, "|=:|>>"); break;
23810 default: mp_print(mp, "kern"); break;
23814 @ Local labels are implemented by maintaining the |skip_table| array,
23815 where |skip_table[c]| is either |undefined_label| or the address of the
23816 most recent lig/kern instruction that skips to local label~|c|. In the
23817 latter case, the |skip_byte| in that instruction will (temporarily)
23818 be zero if there were no prior skips to this label, or it will be the
23819 distance to the prior skip.
23821 We may need to cancel skips that span more than 127 lig/kern steps.
23823 @d cancel_skips(A) mp->ll=(A);
23825 mp->lll=qo(skip_byte(mp->ll));
23826 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23827 } while (mp->lll!=0)
23828 @d skip_error(A) { print_err("Too far to skip");
23829 @.Too far to skip@>
23830 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23831 mp_error(mp); cancel_skips((A));
23834 @<Process a |skip_to| command and |goto done|@>=
23837 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23838 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23840 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23841 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23842 mp->skip_table[c]=mp->nl-1; goto DONE;
23845 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23847 if ( mp->cur_cmd==colon ) {
23848 if ( c==256 ) mp->bch_label=mp->nl;
23849 else mp_set_tag(mp, c,lig_tag,mp->nl);
23850 } else if ( mp->skip_table[c]<undefined_label ) {
23851 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23853 mp->lll=qo(skip_byte(mp->ll));
23854 if ( mp->nl-mp->ll>128 ) {
23855 skip_error(mp->ll); goto CONTINUE;
23857 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23858 } while (mp->lll!=0);
23863 @ @<Compile a ligature/kern...@>=
23865 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23866 if ( mp->cur_mod<128 ) { /* ligature op */
23867 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23869 mp_get_x_next(mp); mp_scan_expression(mp);
23870 if ( mp->cur_type!=mp_known ) {
23871 exp_err("Improper kern");
23873 help2("The amount of kern should be a known numeric value.")
23874 ("I'm zeroing this one. Proceed, with fingers crossed.");
23875 mp_put_get_flush_error(mp, 0);
23877 mp->kern[mp->nk]=mp->cur_exp;
23879 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23881 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23884 op_byte(mp->nl)=kern_flag+(k / 256);
23885 rem_byte(mp->nl)=qi((k % 256));
23887 mp->lk_started=true;
23890 @ @d missing_extensible_punctuation(A)
23891 { mp_missing_err(mp, (A));
23892 @.Missing `\char`\#'@>
23893 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23896 @<Define an extensible recipe@>=
23898 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23899 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23900 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23901 ext_top(mp->ne)=qi(mp_get_code(mp));
23902 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23903 ext_mid(mp->ne)=qi(mp_get_code(mp));
23904 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23905 ext_bot(mp->ne)=qi(mp_get_code(mp));
23906 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23907 ext_rep(mp->ne)=qi(mp_get_code(mp));
23911 @ The header could contain ASCII zeroes, so can't use |strdup|.
23913 @<Store a list of header bytes@>=
23915 if ( j>=mp->header_size ) {
23916 int l = mp->header_size + (mp->header_size >> 2);
23917 char *t = xmalloc(l,sizeof(char));
23919 memcpy(t,mp->header_byte,mp->header_size);
23920 xfree (mp->header_byte);
23921 mp->header_byte = t;
23922 mp->header_size = l;
23924 mp->header_byte[j]=mp_get_code(mp);
23925 incr(j); incr(mp->header_last);
23926 } while (mp->cur_cmd==comma)
23928 @ @<Store a list of font dimensions@>=
23930 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23931 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23932 mp_get_x_next(mp); mp_scan_expression(mp);
23933 if ( mp->cur_type!=mp_known ){
23934 exp_err("Improper font parameter");
23935 @.Improper font parameter@>
23936 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23937 mp_put_get_flush_error(mp, 0);
23939 mp->param[j]=mp->cur_exp; incr(j);
23940 } while (mp->cur_cmd==comma)
23942 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23943 All that remains is to output it in the correct format.
23945 An interesting problem needs to be solved in this connection, because
23946 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23947 and 64~italic corrections. If the data has more distinct values than
23948 this, we want to meet the necessary restrictions by perturbing the
23949 given values as little as possible.
23951 \MP\ solves this problem in two steps. First the values of a given
23952 kind (widths, heights, depths, or italic corrections) are sorted;
23953 then the list of sorted values is perturbed, if necessary.
23955 The sorting operation is facilitated by having a special node of
23956 essentially infinite |value| at the end of the current list.
23958 @<Initialize table entries...@>=
23959 value(inf_val)=fraction_four;
23961 @ Straight linear insertion is good enough for sorting, since the lists
23962 are usually not terribly long. As we work on the data, the current list
23963 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23964 list will be in increasing order of their |value| fields.
23966 Given such a list, the |sort_in| function takes a value and returns a pointer
23967 to where that value can be found in the list. The value is inserted in
23968 the proper place, if necessary.
23970 At the time we need to do these operations, most of \MP's work has been
23971 completed, so we will have plenty of memory to play with. The value nodes
23972 that are allocated for sorting will never be returned to free storage.
23974 @d clear_the_list link(temp_head)=inf_val
23976 @c pointer mp_sort_in (MP mp,scaled v) {
23977 pointer p,q,r; /* list manipulation registers */
23981 if ( v<=value(q) ) break;
23984 if ( v<value(q) ) {
23985 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23990 @ Now we come to the interesting part, where we reduce the list if necessary
23991 until it has the required size. The |min_cover| routine is basic to this
23992 process; it computes the minimum number~|m| such that the values of the
23993 current sorted list can be covered by |m|~intervals of width~|d|. It
23994 also sets the global value |perturbation| to the smallest value $d'>d$
23995 such that the covering found by this algorithm would be different.
23997 In particular, |min_cover(0)| returns the number of distinct values in the
23998 current list and sets |perturbation| to the minimum distance between
24001 @c integer mp_min_cover (MP mp,scaled d) {
24002 pointer p; /* runs through the current list */
24003 scaled l; /* the least element covered by the current interval */
24004 integer m; /* lower bound on the size of the minimum cover */
24005 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24006 while ( p!=inf_val ){
24007 incr(m); l=value(p);
24008 do { p=link(p); } while (value(p)<=l+d);
24009 if ( value(p)-l<mp->perturbation )
24010 mp->perturbation=value(p)-l;
24016 scaled perturbation; /* quantity related to \.{TFM} rounding */
24017 integer excess; /* the list is this much too long */
24019 @ The smallest |d| such that a given list can be covered with |m| intervals
24020 is determined by the |threshold| routine, which is sort of an inverse
24021 to |min_cover|. The idea is to increase the interval size rapidly until
24022 finding the range, then to go sequentially until the exact borderline has
24025 @c scaled mp_threshold (MP mp,integer m) {
24026 scaled d; /* lower bound on the smallest interval size */
24027 mp->excess=mp_min_cover(mp, 0)-m;
24028 if ( mp->excess<=0 ) {
24032 d=mp->perturbation;
24033 } while (mp_min_cover(mp, d+d)>m);
24034 while ( mp_min_cover(mp, d)>m )
24035 d=mp->perturbation;
24040 @ The |skimp| procedure reduces the current list to at most |m| entries,
24041 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24042 is the |k|th distinct value on the resulting list, and it sets
24043 |perturbation| to the maximum amount by which a |value| field has
24044 been changed. The size of the resulting list is returned as the
24047 @c integer mp_skimp (MP mp,integer m) {
24048 scaled d; /* the size of intervals being coalesced */
24049 pointer p,q,r; /* list manipulation registers */
24050 scaled l; /* the least value in the current interval */
24051 scaled v; /* a compromise value */
24052 d=mp_threshold(mp, m); mp->perturbation=0;
24053 q=temp_head; m=0; p=link(temp_head);
24054 while ( p!=inf_val ) {
24055 incr(m); l=value(p); info(p)=m;
24056 if ( value(link(p))<=l+d ) {
24057 @<Replace an interval of values by its midpoint@>;
24064 @ @<Replace an interval...@>=
24067 p=link(p); info(p)=m;
24068 decr(mp->excess); if ( mp->excess==0 ) d=0;
24069 } while (value(link(p))<=l+d);
24070 v=l+halfp(value(p)-l);
24071 if ( value(p)-v>mp->perturbation )
24072 mp->perturbation=value(p)-v;
24075 r=link(r); value(r)=v;
24077 link(q)=p; /* remove duplicate values from the current list */
24080 @ A warning message is issued whenever something is perturbed by
24081 more than 1/16\thinspace pt.
24083 @c void mp_tfm_warning (MP mp,small_number m) {
24084 mp_print_nl(mp, "(some ");
24085 mp_print(mp, mp->int_name[m]);
24086 @.some charwds...@>
24087 @.some chardps...@>
24088 @.some charhts...@>
24089 @.some charics...@>
24090 mp_print(mp, " values had to be adjusted by as much as ");
24091 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24094 @ Here's an example of how we use these routines.
24095 The width data needs to be perturbed only if there are 256 distinct
24096 widths, but \MP\ must check for this case even though it is
24099 An integer variable |k| will be defined when we use this code.
24100 The |dimen_head| array will contain pointers to the sorted
24101 lists of dimensions.
24103 @<Massage the \.{TFM} widths@>=
24105 for (k=mp->bc;k<=mp->ec;k++) {
24106 if ( mp->char_exists[k] )
24107 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24109 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24110 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24113 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24115 @ Heights, depths, and italic corrections are different from widths
24116 not only because their list length is more severely restricted, but
24117 also because zero values do not need to be put into the lists.
24119 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24121 for (k=mp->bc;k<=mp->ec;k++) {
24122 if ( mp->char_exists[k] ) {
24123 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24124 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24127 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24128 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24130 for (k=mp->bc;k<=mp->ec;k++) {
24131 if ( mp->char_exists[k] ) {
24132 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24133 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24136 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24137 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24139 for (k=mp->bc;k<=mp->ec;k++) {
24140 if ( mp->char_exists[k] ) {
24141 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24142 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24145 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24146 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24148 @ @<Initialize table entries...@>=
24149 value(zero_val)=0; info(zero_val)=0;
24151 @ Bytes 5--8 of the header are set to the design size, unless the user has
24152 some crazy reason for specifying them differently.
24154 Error messages are not allowed at the time this procedure is called,
24155 so a warning is printed instead.
24157 The value of |max_tfm_dimen| is calculated so that
24158 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24159 < \\{three\_bytes}.$$
24161 @d three_bytes 0100000000 /* $2^{24}$ */
24164 void mp_fix_design_size (MP mp) {
24165 scaled d; /* the design size */
24166 d=mp->internal[mp_design_size];
24167 if ( (d<unity)||(d>=fraction_half) ) {
24169 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24170 @.illegal design size...@>
24171 d=040000000; mp->internal[mp_design_size]=d;
24173 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24174 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24175 mp->header_byte[4]=d / 04000000;
24176 mp->header_byte[5]=(d / 4096) % 256;
24177 mp->header_byte[6]=(d / 16) % 256;
24178 mp->header_byte[7]=(d % 16)*16;
24180 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24181 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24184 @ The |dimen_out| procedure computes a |fix_word| relative to the
24185 design size. If the data was out of range, it is corrected and the
24186 global variable |tfm_changed| is increased by~one.
24188 @c integer mp_dimen_out (MP mp,scaled x) {
24189 if ( abs(x)>mp->max_tfm_dimen ) {
24190 incr(mp->tfm_changed);
24191 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24193 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24199 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24200 integer tfm_changed; /* the number of data entries that were out of bounds */
24202 @ If the user has not specified any of the first four header bytes,
24203 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24204 from the |tfm_width| data relative to the design size.
24207 @c void mp_fix_check_sum (MP mp) {
24208 eight_bits k; /* runs through character codes */
24209 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24210 integer x; /* hash value used in check sum computation */
24211 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24212 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24213 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24214 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24215 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24220 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24221 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24222 for (k=mp->bc;k<=mp->ec;k++) {
24223 if ( mp->char_exists[k] ) {
24224 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24225 B1=(B1+B1+x) % 255;
24226 B2=(B2+B2+x) % 253;
24227 B3=(B3+B3+x) % 251;
24228 B4=(B4+B4+x) % 247;
24232 @ Finally we're ready to actually write the \.{TFM} information.
24233 Here are some utility routines for this purpose.
24235 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
24237 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24238 tfm_out(x / 256); tfm_out(x % 256);
24240 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24241 if ( x>=0 ) tfm_out(x / three_bytes);
24243 x=x+010000000000; /* use two's complement for negative values */
24245 tfm_out((x / three_bytes) + 128);
24247 x=x % three_bytes; tfm_out(x / unity);
24248 x=x % unity; tfm_out(x / 0400);
24251 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24252 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24253 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24256 @ @<Finish the \.{TFM} file@>=
24257 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24258 mp_pack_job_name(mp, ".tfm");
24259 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24260 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24261 mp->metric_file_name=xstrdup(mp->name_of_file);
24262 @<Output the subfile sizes and header bytes@>;
24263 @<Output the character information bytes, then
24264 output the dimensions themselves@>;
24265 @<Output the ligature/kern program@>;
24266 @<Output the extensible character recipes and the font metric parameters@>;
24267 if ( mp->internal[mp_tracing_stats]>0 )
24268 @<Log the subfile sizes of the \.{TFM} file@>;
24269 mp_print_nl(mp, "Font metrics written on ");
24270 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24271 @.Font metrics written...@>
24272 fclose(mp->tfm_file)
24274 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24277 @<Output the subfile sizes and header bytes@>=
24279 LH=(k+3) / 4; /* this is the number of header words */
24280 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24281 @<Compute the ligature/kern program offset and implant the
24282 left boundary label@>;
24283 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24284 +lk_offset+mp->nk+mp->ne+mp->np);
24285 /* this is the total number of file words that will be output */
24286 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24287 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24288 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24289 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24290 mp_tfm_two(mp, mp->np);
24291 for (k=0;k< 4*LH;k++) {
24292 tfm_out(mp->header_byte[k]);
24295 @ @<Output the character information bytes...@>=
24296 for (k=mp->bc;k<=mp->ec;k++) {
24297 if ( ! mp->char_exists[k] ) {
24298 mp_tfm_four(mp, 0);
24300 tfm_out(info(mp->tfm_width[k])); /* the width index */
24301 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24302 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24303 tfm_out(mp->char_remainder[k]);
24307 for (k=1;k<=4;k++) {
24308 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24309 while ( p!=inf_val ) {
24310 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24315 @ We need to output special instructions at the beginning of the
24316 |lig_kern| array in order to specify the right boundary character
24317 and/or to handle starting addresses that exceed 255. The |label_loc|
24318 and |label_char| arrays have been set up to record all the
24319 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24320 \le|label_loc|[|label_ptr]|$.
24322 @<Compute the ligature/kern program offset...@>=
24323 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24324 if ((mp->bchar<0)||(mp->bchar>255))
24325 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24326 else { mp->lk_started=true; lk_offset=1; };
24327 @<Find the minimum |lk_offset| and adjust all remainders@>;
24328 if ( mp->bch_label<undefined_label )
24329 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24330 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24331 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24332 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24335 @ @<Find the minimum |lk_offset|...@>=
24336 k=mp->label_ptr; /* pointer to the largest unallocated label */
24337 if ( mp->label_loc[k]+lk_offset>255 ) {
24338 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24340 mp->char_remainder[mp->label_char[k]]=lk_offset;
24341 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24342 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24344 incr(lk_offset); decr(k);
24345 } while (! (lk_offset+mp->label_loc[k]<256));
24346 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24348 if ( lk_offset>0 ) {
24350 mp->char_remainder[mp->label_char[k]]
24351 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24356 @ @<Output the ligature/kern program@>=
24357 for (k=0;k<= 255;k++ ) {
24358 if ( mp->skip_table[k]<undefined_label ) {
24359 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24360 @.local label l:: was missing@>
24361 cancel_skips(mp->skip_table[k]);
24364 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24365 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24367 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24368 mp->ll=mp->label_loc[mp->label_ptr];
24369 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24370 else { tfm_out(255); tfm_out(mp->bchar); };
24371 mp_tfm_two(mp, mp->ll+lk_offset);
24373 decr(mp->label_ptr);
24374 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24377 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24378 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24380 @ @<Output the extensible character recipes...@>=
24381 for (k=0;k<=mp->ne-1;k++)
24382 mp_tfm_qqqq(mp, mp->exten[k]);
24383 for (k=1;k<=mp->np;k++) {
24385 if ( abs(mp->param[1])<fraction_half ) {
24386 mp_tfm_four(mp, mp->param[1]*16);
24388 incr(mp->tfm_changed);
24389 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24390 else mp_tfm_four(mp, -el_gordo);
24393 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24396 if ( mp->tfm_changed>0 ) {
24397 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24398 @.a font metric dimension...@>
24400 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24401 @.font metric dimensions...@>
24402 mp_print(mp, " font metric dimensions");
24404 mp_print(mp, " had to be decreased)");
24407 @ @<Log the subfile sizes of the \.{TFM} file@>=
24411 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24412 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24413 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24417 @* \[43] Reading font metric data.
24419 \MP\ isn't a typesetting program but it does need to find the bounding box
24420 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24421 well as write them.
24426 @ All the width, height, and depth information is stored in an array called
24427 |font_info|. This array is allocated sequentially and each font is stored
24428 as a series of |char_info| words followed by the width, height, and depth
24429 tables. Since |font_name| entries are permanent, their |str_ref| values are
24430 set to |max_str_ref|.
24433 typedef unsigned int font_number; /* |0..font_max| */
24435 @ The |font_info| array is indexed via a group directory arrays.
24436 For example, the |char_info| data for character~|c| in font~|f| will be
24437 in |font_info[char_base[f]+c].qqqq|.
24440 font_number font_max; /* maximum font number for included text fonts */
24441 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24442 memory_word *font_info; /* height, width, and depth data */
24443 char **font_enc_name; /* encoding names, if any */
24444 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24445 int next_fmem; /* next unused entry in |font_info| */
24446 font_number last_fnum; /* last font number used so far */
24447 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24448 char **font_name; /* name as specified in the \&{infont} command */
24449 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24450 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24451 eight_bits *font_bc;
24452 eight_bits *font_ec; /* first and last character code */
24453 int *char_base; /* base address for |char_info| */
24454 int *width_base; /* index for zeroth character width */
24455 int *height_base; /* index for zeroth character height */
24456 int *depth_base; /* index for zeroth character depth */
24457 pointer *font_sizes;
24459 @ @<Allocate or initialize ...@>=
24460 mp->font_mem_size = 10000;
24461 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24462 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24463 mp->font_enc_name = NULL;
24464 mp->font_ps_name_fixed = NULL;
24465 mp->font_dsize = NULL;
24466 mp->font_name = NULL;
24467 mp->font_ps_name = NULL;
24468 mp->font_bc = NULL;
24469 mp->font_ec = NULL;
24470 mp->last_fnum = null_font;
24471 mp->char_base = NULL;
24472 mp->width_base = NULL;
24473 mp->height_base = NULL;
24474 mp->depth_base = NULL;
24475 mp->font_sizes = null;
24477 @ @<Dealloc variables@>=
24478 xfree(mp->font_info);
24479 xfree(mp->font_enc_name);
24480 xfree(mp->font_ps_name_fixed);
24481 xfree(mp->font_dsize);
24482 xfree(mp->font_name);
24483 xfree(mp->font_ps_name);
24484 xfree(mp->font_bc);
24485 xfree(mp->font_ec);
24486 xfree(mp->char_base);
24487 xfree(mp->width_base);
24488 xfree(mp->height_base);
24489 xfree(mp->depth_base);
24490 xfree(mp->font_sizes);
24494 void mp_reallocate_fonts (MP mp, font_number l) {
24496 XREALLOC(mp->font_enc_name, l, char *);
24497 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24498 XREALLOC(mp->font_dsize, l, scaled);
24499 XREALLOC(mp->font_name, l, char *);
24500 XREALLOC(mp->font_ps_name, l, char *);
24501 XREALLOC(mp->font_bc, l, eight_bits);
24502 XREALLOC(mp->font_ec, l, eight_bits);
24503 XREALLOC(mp->char_base, l, int);
24504 XREALLOC(mp->width_base, l, int);
24505 XREALLOC(mp->height_base, l, int);
24506 XREALLOC(mp->depth_base, l, int);
24507 XREALLOC(mp->font_sizes, l, pointer);
24508 for (f=(mp->last_fnum+1);f<=l;f++) {
24509 mp->font_enc_name[f]=NULL;
24510 mp->font_ps_name_fixed[f] = false;
24511 mp->font_name[f]=NULL;
24512 mp->font_ps_name[f]=NULL;
24513 mp->font_sizes[f]=null;
24518 @ @<Declare |mp_reallocate| functions@>=
24519 void mp_reallocate_fonts (MP mp, font_number l);
24522 @ A |null_font| containing no characters is useful for error recovery. Its
24523 |font_name| entry starts out empty but is reset each time an erroneous font is
24524 found. This helps to cut down on the number of duplicate error messages without
24525 wasting a lot of space.
24527 @d null_font 0 /* the |font_number| for an empty font */
24529 @<Set initial...@>=
24530 mp->font_dsize[null_font]=0;
24531 mp->font_bc[null_font]=1;
24532 mp->font_ec[null_font]=0;
24533 mp->char_base[null_font]=0;
24534 mp->width_base[null_font]=0;
24535 mp->height_base[null_font]=0;
24536 mp->depth_base[null_font]=0;
24538 mp->last_fnum=null_font;
24539 mp->last_ps_fnum=null_font;
24540 mp->font_name[null_font]="nullfont";
24541 mp->font_ps_name[null_font]="";
24543 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24544 the |width index|; the |b1| field contains the height
24545 index; the |b2| fields contains the depth index, and the |b3| field used only
24546 for temporary storage. (It is used to keep track of which characters occur in
24547 an edge structure that is being shipped out.)
24548 The corresponding words in the width, height, and depth tables are stored as
24549 |scaled| values in units of \ps\ points.
24551 With the macros below, the |char_info| word for character~|c| in font~|f| is
24552 |char_info(f)(c)| and the width is
24553 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24555 @d char_info_end(A) (A)].qqqq
24556 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24557 @d char_width_end(A) (A).b0].sc
24558 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24559 @d char_height_end(A) (A).b1].sc
24560 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24561 @d char_depth_end(A) (A).b2].sc
24562 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24563 @d ichar_exists(A) ((A).b0>0)
24565 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24566 A preliminary name is obtained here from the \.{TFM} name as given in the
24567 |fname| argument. This gets updated later from an external table if necessary.
24569 @<Declare text measuring subroutines@>=
24570 @<Declare subroutines for parsing file names@>;
24571 font_number mp_read_font_info (MP mp, char*fname) {
24572 boolean file_opened; /* has |tfm_infile| been opened? */
24573 font_number n; /* the number to return */
24574 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24575 size_t whd_size; /* words needed for heights, widths, and depths */
24576 int i,ii; /* |font_info| indices */
24577 int jj; /* counts bytes to be ignored */
24578 scaled z; /* used to compute the design size */
24580 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24581 eight_bits h_and_d; /* height and depth indices being unpacked */
24582 int tfbyte; /* a byte read from the file */
24584 @<Open |tfm_infile| for input@>;
24585 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24586 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24588 @<Complain that the \.{TFM} file is bad@>;
24590 if ( file_opened ) fclose(mp->tfm_infile);
24591 if ( n!=null_font ) {
24592 mp->font_ps_name[n]=fname;
24593 mp->font_name[n]=fname;
24598 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24599 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24600 @.TFtoPL@> @.PLtoTF@>
24601 and \.{PLtoTF} can be used to debug \.{TFM} files.
24603 @<Complain that the \.{TFM} file is bad@>=
24604 print_err("Font ");
24605 mp_print(mp, fname);
24606 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24607 else mp_print(mp, " not usable: TFM file not found");
24608 help3("I wasn't able to read the size data for this font so this")
24609 ("`infont' operation won't produce anything. If the font name")
24610 ("is right, you might ask an expert to make a TFM file");
24612 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24615 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24616 @<Read the \.{TFM} size fields@>;
24617 @<Use the size fields to allocate space in |font_info|@>;
24618 @<Read the \.{TFM} header@>;
24619 @<Read the character data and the width, height, and depth tables and
24622 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24623 might try to read past the end of the file if this happens. Changes will be
24624 needed if it causes a system error to refer to |tfm_infile^| or call
24625 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24626 @^system dependencies@>
24627 of |tfget| could be changed to
24628 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24630 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24631 @d read_two(A) { (A)=tfbyte;
24632 if ( (A)>127 ) goto BAD_TFM;
24633 tfget; (A)=(A)*0400+tfbyte;
24635 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24637 @<Read the \.{TFM} size fields@>=
24638 tfget; read_two(lf);
24639 tfget; read_two(tfm_lh);
24640 tfget; read_two(bc);
24641 tfget; read_two(ec);
24642 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24643 tfget; read_two(nw);
24644 tfget; read_two(nh);
24645 tfget; read_two(nd);
24646 whd_size=(ec+1-bc)+nw+nh+nd;
24647 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24650 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24651 necessary to apply the |so| and |qo| macros when looking up the width of a
24652 character in the string pool. In order to ensure nonnegative |char_base|
24653 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24656 @<Use the size fields to allocate space in |font_info|@>=
24657 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24658 if (mp->last_fnum==mp->font_max)
24659 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24660 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24661 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24662 memory_word *font_info;
24663 font_info = xmalloc ((l+1),sizeof(memory_word));
24664 memset (font_info,0,sizeof(memory_word)*(l+1));
24665 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24666 xfree(mp->font_info);
24667 mp->font_info = font_info;
24668 mp->font_mem_size = l;
24670 incr(mp->last_fnum);
24674 mp->char_base[n]=mp->next_fmem-bc;
24675 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24676 mp->height_base[n]=mp->width_base[n]+nw;
24677 mp->depth_base[n]=mp->height_base[n]+nh;
24678 mp->next_fmem=mp->next_fmem+whd_size;
24681 @ @<Read the \.{TFM} header@>=
24682 if ( tfm_lh<2 ) goto BAD_TFM;
24684 tfget; read_two(z);
24685 tfget; z=z*0400+tfbyte;
24686 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24687 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24688 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24689 tf_ignore(4*(tfm_lh-2))
24691 @ @<Read the character data and the width, height, and depth tables...@>=
24692 ii=mp->width_base[n];
24693 i=mp->char_base[n]+bc;
24695 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24696 tfget; h_and_d=tfbyte;
24697 mp->font_info[i].qqqq.b1=h_and_d / 16;
24698 mp->font_info[i].qqqq.b2=h_and_d % 16;
24702 while ( i<mp->next_fmem ) {
24703 @<Read a four byte dimension, scale it by the design size, store it in
24704 |font_info[i]|, and increment |i|@>;
24706 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24709 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24710 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24711 we can multiply it by sixteen and think of it as a |fraction| that has been
24712 divided by sixteen. This cancels the extra scale factor contained in
24715 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24718 if ( d>=0200 ) d=d-0400;
24719 tfget; d=d*0400+tfbyte;
24720 tfget; d=d*0400+tfbyte;
24721 tfget; d=d*0400+tfbyte;
24722 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24726 @ This function does no longer use the file name parser, because |fname| is
24727 a C string already.
24728 @<Open |tfm_infile| for input@>=
24730 mp_ptr_scan_file(mp, fname);
24731 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24732 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24734 mp->tfm_infile = mp_open_file(mp, mp->name_of_file, "rb",mp_filetype_metrics);
24735 if ( !mp->tfm_infile ) goto BAD_TFM;
24738 @ When we have a font name and we don't know whether it has been loaded yet,
24739 we scan the |font_name| array before calling |read_font_info|.
24741 @<Declare text measuring subroutines@>=
24742 font_number mp_find_font (MP mp, char *f) {
24744 for (n=0;n<=mp->last_fnum;n++) {
24745 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24748 return mp_read_font_info(mp, f);
24751 @ One simple application of |find_font| is the implementation of the |font_size|
24752 operator that gets the design size for a given font name.
24754 @<Find the design size of the font whose name is |cur_exp|@>=
24755 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24757 @ If we discover that the font doesn't have a requested character, we omit it
24758 from the bounding box computation and expect the \ps\ interpreter to drop it.
24759 This routine issues a warning message if the user has asked for it.
24761 @<Declare text measuring subroutines@>=
24762 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24763 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24764 mp_begin_diagnostic(mp);
24765 if ( mp->selector==log_only ) incr(mp->selector);
24766 mp_print_nl(mp, "Missing character: There is no ");
24767 @.Missing character@>
24768 mp_print_str(mp, mp->str_pool[k]);
24769 mp_print(mp, " in font ");
24770 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24771 mp_end_diagnostic(mp, false);
24775 @ The whole purpose of saving the height, width, and depth information is to be
24776 able to find the bounding box of an item of text in an edge structure. The
24777 |set_text_box| procedure takes a text node and adds this information.
24779 @<Declare text measuring subroutines@>=
24780 void mp_set_text_box (MP mp,pointer p) {
24781 font_number f; /* |font_n(p)| */
24782 ASCII_code bc,ec; /* range of valid characters for font |f| */
24783 pool_pointer k,kk; /* current character and character to stop at */
24784 four_quarters cc; /* the |char_info| for the current character */
24785 scaled h,d; /* dimensions of the current character */
24787 height_val(p)=-el_gordo;
24788 depth_val(p)=-el_gordo;
24792 kk=str_stop(text_p(p));
24793 k=mp->str_start[text_p(p)];
24795 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24797 @<Set the height and depth to zero if the bounding box is empty@>;
24800 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24802 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24803 mp_lost_warning(mp, f,k);
24805 cc=char_info(f)(mp->str_pool[k]);
24806 if ( ! ichar_exists(cc) ) {
24807 mp_lost_warning(mp, f,k);
24809 width_val(p)=width_val(p)+char_width(f)(cc);
24810 h=char_height(f)(cc);
24811 d=char_depth(f)(cc);
24812 if ( h>height_val(p) ) height_val(p)=h;
24813 if ( d>depth_val(p) ) depth_val(p)=d;
24819 @ Let's hope modern compilers do comparisons correctly when the difference would
24822 @<Set the height and depth to zero if the bounding box is empty@>=
24823 if ( height_val(p)<-depth_val(p) ) {
24828 @ The new primitives fontmapfile and fontmapline.
24830 @<Declare action procedures for use by |do_statement|@>=
24831 void mp_do_mapfile (MP mp) ;
24832 void mp_do_mapline (MP mp) ;
24834 @ @c void mp_do_mapfile (MP mp) {
24835 mp_get_x_next(mp); mp_scan_expression(mp);
24836 if ( mp->cur_type!=mp_string_type ) {
24837 @<Complain about improper map operation@>;
24839 mp_map_file(mp,mp->cur_exp);
24842 void mp_do_mapline (MP mp) {
24843 mp_get_x_next(mp); mp_scan_expression(mp);
24844 if ( mp->cur_type!=mp_string_type ) {
24845 @<Complain about improper map operation@>;
24847 mp_map_line(mp,mp->cur_exp);
24851 @ @<Complain about improper map operation@>=
24853 exp_err("Unsuitable expression");
24854 help1("Only known strings can be map files or map lines.");
24855 mp_put_get_error(mp);
24858 @ This is temporary.
24860 @d ps_room(A) mp_ps_room(mp,A)
24862 @ To print |scaled| value to PDF output we need some subroutines to ensure
24865 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24868 scaled one_bp; /* scaled value corresponds to 1bp */
24869 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24870 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24871 integer ten_pow[10]; /* $10^0..10^9$ */
24872 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24875 mp->one_bp = 65782; /* 65781.76 */
24876 mp->one_hundred_bp = 6578176;
24877 mp->one_hundred_inch = 473628672;
24878 mp->ten_pow[0] = 1;
24879 for (i = 1;i<= 9; i++ ) {
24880 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24883 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24885 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24889 if ( s < 0 ) { sign = -sign; s = -s; }
24890 if ( m < 0 ) { sign = -sign; m = -m; }
24892 mp_confusion(mp, "arithmetic: divided by zero");
24893 else if ( m >= (max_integer / 10) )
24894 mp_confusion(mp, "arithmetic: number too big");
24897 for (i = 1;i<=dd;i++) {
24898 q = 10*q + (10*r) / m;
24901 if ( 2*r >= m ) { incr(q); r = r - m; }
24902 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24906 @* \[44] Shipping pictures out.
24907 The |ship_out| procedure, to be described below, is given a pointer to
24908 an edge structure. Its mission is to output a file containing the \ps\
24909 description of an edge structure.
24911 @ Each time an edge structure is shipped out we write a new \ps\ output
24912 file named according to the current \&{charcode}.
24913 @:char_code_}{\&{charcode} primitive@>
24915 @<Declare the \ps\ output procedures@>=
24916 void mp_open_output_file (MP mp) ;
24918 @ @c void mp_open_output_file (MP mp) {
24919 integer c; /* \&{charcode} rounded to the nearest integer */
24920 int old_setting; /* previous |selector| setting */
24921 pool_pointer i; /* indexes into |filename_template| */
24922 integer cc; /* a temporary integer for template building */
24923 integer f,g=0; /* field widths */
24924 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24925 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24926 if ( mp->filename_template==0 ) {
24927 char *s; /* a file extension derived from |c| */
24931 @<Use |c| to compute the file extension |s|@>;
24932 mp_pack_job_name(mp, s);
24934 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24935 mp_prompt_file_name(mp, "file name for output",s);
24936 } else { /* initializations */
24937 str_number s, n; /* a file extension derived from |c| */
24938 old_setting=mp->selector;
24939 mp->selector=new_string;
24941 i = mp->str_start[mp->filename_template];
24942 n = rts(""); /* initialize */
24943 while ( i<str_stop(mp->filename_template) ) {
24944 if ( mp->str_pool[i]=='%' ) {
24947 if ( i<str_stop(mp->filename_template) ) {
24948 if ( mp->str_pool[i]=='j' ) {
24949 mp_print(mp, mp->job_name);
24950 } else if ( mp->str_pool[i]=='d' ) {
24951 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24952 print_with_leading_zeroes(cc);
24953 } else if ( mp->str_pool[i]=='m' ) {
24954 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24955 print_with_leading_zeroes(cc);
24956 } else if ( mp->str_pool[i]=='y' ) {
24957 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24958 print_with_leading_zeroes(cc);
24959 } else if ( mp->str_pool[i]=='H' ) {
24960 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24961 print_with_leading_zeroes(cc);
24962 } else if ( mp->str_pool[i]=='M' ) {
24963 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24964 print_with_leading_zeroes(cc);
24965 } else if ( mp->str_pool[i]=='c' ) {
24966 if ( c<0 ) mp_print(mp, "ps");
24967 else print_with_leading_zeroes(c);
24968 } else if ( (mp->str_pool[i]>='0') &&
24969 (mp->str_pool[i]<='9') ) {
24971 f = (f*10) + mp->str_pool[i]-'0';
24974 mp_print_str(mp, mp->str_pool[i]);
24978 if ( mp->str_pool[i]=='.' )
24980 n = mp_make_string(mp);
24981 mp_print_str(mp, mp->str_pool[i]);
24985 s = mp_make_string(mp);
24986 mp->selector= old_setting;
24987 if (length(n)==0) {
24991 mp_pack_file_name(mp, str(n),"",str(s));
24992 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24993 mp_prompt_file_name(mp, "file name for output",str(s));
24997 @<Store the true output file name if appropriate@>;
24998 @<Begin the progress report for the output of picture~|c|@>;
25001 @ The file extension created here could be up to five characters long in
25002 extreme cases so it may have to be shortened on some systems.
25003 @^system dependencies@>
25005 @<Use |c| to compute the file extension |s|@>=
25008 snprintf(s,7,".%i",(int)c);
25011 @ The user won't want to see all the output file names so we only save the
25012 first and last ones and a count of how many there were. For this purpose
25013 files are ordered primarily by \&{charcode} and secondarily by order of
25015 @:char_code_}{\&{charcode} primitive@>
25017 @<Store the true output file name if appropriate@>=
25018 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25019 mp->first_output_code=c;
25020 xfree(mp->first_file_name);
25021 mp->first_file_name=xstrdup(mp->name_of_file);
25023 if ( c>=mp->last_output_code ) {
25024 mp->last_output_code=c;
25025 xfree(mp->last_file_name);
25026 mp->last_file_name=xstrdup(mp->name_of_file);
25030 char * first_file_name;
25031 char * last_file_name; /* full file names */
25032 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25033 @:char_code_}{\&{charcode} primitive@>
25034 integer total_shipped; /* total number of |ship_out| operations completed */
25037 mp->first_file_name=xstrdup("");
25038 mp->last_file_name=xstrdup("");
25039 mp->first_output_code=32768;
25040 mp->last_output_code=-32768;
25041 mp->total_shipped=0;
25043 @ @<Dealloc variables@>=
25044 xfree(mp->first_file_name);
25045 xfree(mp->last_file_name);
25047 @ @<Begin the progress report for the output of picture~|c|@>=
25048 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25049 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25050 mp_print_char(mp, '[');
25051 if ( c>=0 ) mp_print_int(mp, c)
25053 @ @<End progress report@>=
25054 mp_print_char(mp, ']');
25056 incr(mp->total_shipped)
25058 @ @<Explain what output files were written@>=
25059 if ( mp->total_shipped>0 ) {
25060 mp_print_nl(mp, "");
25061 mp_print_int(mp, mp->total_shipped);
25062 mp_print(mp, " output file");
25063 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25064 mp_print(mp, " written: ");
25065 mp_print(mp, mp->first_file_name);
25066 if ( mp->total_shipped>1 ) {
25067 if ( 31+strlen(mp->first_file_name)+
25068 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25070 mp_print(mp, " .. ");
25071 mp_print(mp, mp->last_file_name);
25075 @ A text node may specify an arbitrary transformation but the usual case
25076 involves only shifting, scaling, and occasionally rotation. The purpose
25077 of |choose_scale| is to select a scale factor so that the remaining
25078 transformation is as ``nice'' as possible. The definition of ``nice''
25079 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25080 nice because they work out well for bitmap fonts. The code here selects
25081 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25082 non-shifting part of the transformation matrix. It is careful to avoid
25083 additions that might cause undetected overflow.
25085 @<Declare the \ps\ output procedures@>=
25086 scaled mp_choose_scale (MP mp,pointer p) ;
25088 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25089 /* |p| should point to a text node */
25090 scaled a,b,c,d,ad,bc; /* temporary values */
25095 if ( (a<0) ) negate(a);
25096 if ( (b<0) ) negate(b);
25097 if ( (c<0) ) negate(c);
25098 if ( (d<0) ) negate(d);
25101 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25104 @ There may be many sizes of one font and we need to keep track of the
25105 characters used for each size. This is done by keeping a linked list of
25106 sizes for each font with a counter in each text node giving the appropriate
25107 position in the size list for its font.
25109 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25110 @d font_size_size 2 /* size of a font size node */
25112 @ @<Internal library declarations@>=
25113 boolean mp_has_font_size(MP mp, font_number f );
25116 boolean mp_has_font_size(MP mp, font_number f ) {
25117 return (mp->font_sizes[f]!=null);
25121 @ The potential overflow here is caused by the fact the returned value
25122 has to fit in a |name_type|, which is a quarterword.
25124 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25126 @<Declare the \ps\ output procedures@>=
25127 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25128 pointer p,q; /* the previous and current font size nodes */
25129 quarterword i; /* the size index for |q| */
25130 q=mp->font_sizes[f];
25132 while ( q!=null ) {
25133 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25136 { p=q; q=link(q); incr(i); };
25137 if ( i==max_quarterword )
25138 mp_overflow(mp, "sizes per font",max_quarterword);
25139 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25141 q=mp_get_node(mp, font_size_size);
25143 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25147 @ @<Internal library ...@>=
25148 scaled mp_indexed_size (MP mp,font_number f, quarterword j);
25151 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25152 pointer p; /* a font size node */
25153 quarterword i; /* the size index for |p| */
25154 p=mp->font_sizes[f];
25156 if ( p==null ) mp_confusion(mp, "size");
25158 incr(i); p=link(p);
25159 if ( p==null ) mp_confusion(mp, "size");
25161 return sc_factor(p);
25164 @ @<Declare the \ps\ output procedures@>=
25165 void mp_clear_sizes (MP mp) ;
25167 @ @c void mp_clear_sizes (MP mp) {
25168 font_number f; /* the font whose size list is being cleared */
25169 pointer p; /* current font size nodes */
25170 for (f=null_font+1;f<=mp->last_fnum;f++) {
25171 while ( mp->font_sizes[f]!=null ) {
25172 p=mp->font_sizes[f];
25173 mp->font_sizes[f]=link(p);
25174 mp_free_node(mp, p,font_size_size);
25179 @ The \&{special} command saves up lines of text to be printed during the next
25180 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25183 pointer last_pending; /* the last token in a list of pending specials */
25186 mp->last_pending=spec_head;
25188 @ @<Cases of |do_statement|...@>=
25189 case special_command:
25190 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25191 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25195 @ @<Declare action procedures for use by |do_statement|@>=
25196 void mp_do_special (MP mp) ;
25198 @ @c void mp_do_special (MP mp) {
25199 mp_get_x_next(mp); mp_scan_expression(mp);
25200 if ( mp->cur_type!=mp_string_type ) {
25201 @<Complain about improper special operation@>;
25203 link(mp->last_pending)=mp_stash_cur_exp(mp);
25204 mp->last_pending=link(mp->last_pending);
25205 link(mp->last_pending)=null;
25209 @ @<Complain about improper special operation@>=
25211 exp_err("Unsuitable expression");
25212 help1("Only known strings are allowed for output as specials.");
25213 mp_put_get_error(mp);
25216 @ @<Print any pending specials@>=
25218 while ( t!=null ) {
25219 mp_print_str(mp, value(t));
25223 mp_flush_token_list(mp, link(spec_head));
25224 link(spec_head)=null;
25225 mp->last_pending=spec_head
25227 @ We are now ready for the main output procedure. Note that the |selector|
25228 setting is saved in a global variable so that |begin_diagnostic| can access it.
25230 @<Declare the \ps\ output procedures@>=
25231 void mp_ship_out (MP mp, pointer h) ;
25234 @d gr_type(A) (A)->_type_field
25235 @d gr_link(A) (A)->_link_field
25236 @d gr_name_type(A) (A)->name_type_field
25237 @d gr_path_p(A) (A)->path_p_field
25238 @d gr_htap_p(A) (A)->htap_p_field
25239 @d gr_pen_p(A) (A)->pen_p_field
25240 @d gr_ljoin_val(A) (A)->ljoin_field
25241 @d gr_lcap_val(A) (A)->lcap_field
25242 @d gr_dash_scale(A) (A)->dash_scale_field
25243 @d gr_miterlim_val(A) (A)->miterlim_field
25244 @d gr_pre_script(A) (A)->pre_script_field
25245 @d gr_post_script(A) (A)->post_script_field
25246 @d gr_dash_p(A) (A)->dash_p_field
25247 @d gr_text_p(A) (A)->text_p_field
25248 @d gr_font_n(A) (A)->font_n_field
25249 @d gr_width_val(A) (A)->width_field
25250 @d gr_height_val(A) (A)->height_field
25251 @d gr_depth_val(A) (A)->depth_field
25252 @d gr_tx_val(A) (A)->tx_field
25253 @d gr_ty_val(A) (A)->ty_field
25254 @d gr_txx_val(A) (A)->txx_field
25255 @d gr_txy_val(A) (A)->txy_field
25256 @d gr_tyx_val(A) (A)->tyx_field
25257 @d gr_tyy_val(A) (A)->tyy_field
25260 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25261 pointer p; /* the current graphical object */
25262 integer t; /* a temporary value */
25263 font_number f; /* fonts used in a text node or as loop counters */
25264 mp_open_output_file(mp);
25265 mp->non_ps_setting=mp->selector;
25266 mp->selector=ps_file_only;
25267 mp_set_bbox(mp, h, true);
25268 mp_print_initial_comment(mp, minx_val(h),miny_val(h),maxx_val(h),maxy_val(h));
25269 if ( (mp->internal[mp_prologues]==two)||(mp->internal[mp_prologues]==three) ) {
25270 @<Scan all the text nodes and mark the used characters@>;
25271 @<Update encoding names@>;
25272 mp_print_improved_prologue(mp, h);
25274 @<Scan all the text nodes and set the |font_sizes| lists;
25275 if |internal[mp_prologues]<=0| list the sizes selected by |choose_scale|,
25276 apply |unmark_font| to each font encountered, and call |mark_string|
25277 whenever the size index is zero@>;
25278 mp_print_prologue(mp, h);
25280 @<Print any pending specials@>;
25282 struct mp_edge_object *hh; /* the first graphical object */
25283 struct mp_graphic_object *hp; /* the current graphical object */
25284 struct mp_graphic_object *hq; /* something |hp| points to */
25285 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25287 p=link(dummy_loc(h));
25288 while ( p!=null ) {
25289 hq = mp_new_graphic_object(mp,type(p));
25292 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25293 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25294 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25297 pc = mp_copy_path(mp, path_p(p));
25298 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25299 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25300 mp_toss_knot_list(mp, pp);
25301 pc = mp_htap_ypoc(mp, path_p(p));
25302 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25303 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25304 mp_toss_knot_list(mp, pp);
25306 @<Export object color@>;
25307 @<Export object scripts@>;
25308 gr_ljoin_val(hq) = ljoin_val(p);
25309 gr_miterlim_val(hq) = miterlim_val(p);
25311 case mp_stroked_code:
25312 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25313 if (pen_is_elliptical(pen_p(p))) {
25314 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25317 pc=mp_copy_path(mp, path_p(p));
25319 if ( left_type(pc)!=mp_endpoint ) {
25320 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25321 right_type(pc)=mp_endpoint;
25325 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25326 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25327 mp_toss_knot_list(mp, pc);
25329 @<Export object color@>;
25330 @<Export object scripts@>;
25331 gr_ljoin_val(hq) = ljoin_val(p);
25332 gr_miterlim_val(hq) = miterlim_val(p);
25333 gr_lcap_val(hq) = lcap_val(p);
25334 gr_dash_scale(hq) = dash_scale(p);
25335 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25338 gr_text_p(hq) = str(text_p(p));
25339 gr_font_n(hq) = font_n(p);
25340 @<Export object color@>;
25341 @<Export object scripts@>;
25342 gr_width_val(hq) = width_val(p);
25343 gr_height_val(hq) = height_val(p);
25344 gr_depth_val(hq) = depth_val(p);
25345 gr_tx_val(hq) = tx_val(p);
25346 gr_ty_val(hq) = ty_val(p);
25347 gr_txx_val(hq) = txx_val(p);
25348 gr_txy_val(hq) = txy_val(p);
25349 gr_tyx_val(hq) = tyx_val(p);
25350 gr_tyy_val(hq) = tyy_val(p);
25352 case mp_start_clip_code:
25353 case mp_start_bounds_code:
25354 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25356 case mp_stop_clip_code:
25357 case mp_stop_bounds_code:
25358 /* nothing to do here */
25361 if (hh->body==NULL) {
25362 hh->body=hq; hp = hq;
25369 mp_gr_ship_out (mp, hh->body);
25372 fclose(mp->ps_file);
25373 mp->selector=mp->non_ps_setting;
25374 if ( mp->internal[mp_prologues]<=0 ) mp_clear_sizes(mp);
25375 @<End progress report@>;
25376 if ( mp->internal[mp_tracing_output]>0 )
25377 mp_print_edges(mp, h," (just shipped out)",true);
25381 @d gr_color_model(A) (A)->color_model_field
25382 @d gr_red_val(A) (A)->color_field.rgb._red_val
25383 @d gr_green_val(A) (A)->color_field.rgb._green_val
25384 @d gr_blue_val(A) (A)->color_field.rgb._blue_val
25385 @d gr_cyan_val(A) (A)->color_field.cmyk._cyan_val
25386 @d gr_magenta_val(A) (A)->color_field.cmyk._magenta_val
25387 @d gr_yellow_val(A) (A)->color_field.cmyk._yellow_val
25388 @d gr_black_val(A) (A)->color_field.cmyk._black_val
25389 @d gr_grey_val(A) (A)->color_field.grey._grey_val
25391 @<Export object color@>=
25392 gr_color_model(hq) = color_model(p);
25393 gr_cyan_val(hq) = cyan_val(p);
25394 gr_magenta_val(hq) = magenta_val(p);
25395 gr_yellow_val(hq) = yellow_val(p);
25396 gr_black_val(hq) = black_val(p);
25397 gr_red_val(hq) = red_val(p);
25398 gr_green_val(hq) = green_val(p);
25399 gr_blue_val(hq) = blue_val(p);
25400 gr_grey_val(hq) = grey_val(p)
25403 @ @<Export object scripts@>=
25404 if (pre_script(p)!=null)
25405 gr_pre_script(hq) = str(pre_script(p));
25406 if (post_script(p)!=null)
25407 gr_post_script(hq) = str(post_script(p));
25409 @ @<Internal library declarations@>=
25410 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25413 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25415 p=link(dummy_loc(h));
25416 while ( p!=null ) {
25417 if ( type(p)==mp_text_code )
25418 if ( font_n(p)!=null_font )
25419 if ( name_type(p)==next_size )
25420 mp_mark_string_chars(mp, font_n(p),text_p(p));
25425 @ @<Scan all the text nodes and mark the used ...@>=
25426 for (f=null_font+1;f<=mp->last_fnum;f++) {
25427 if ( mp->font_sizes[f]!=null ) {
25428 mp_unmark_font(mp, f);
25429 mp->font_sizes[f]=null;
25432 for (f=null_font+1;f<=mp->last_fnum;f++) {
25433 p=link(dummy_loc(h));
25434 while ( p!=null ) {
25435 if ( type(p)==mp_text_code ) {
25436 if ( font_n(p)!=null_font ) {
25437 mp->font_sizes[font_n(p)] = mp_void;
25438 mp_mark_string_chars(mp, font_n(p),text_p(p));
25439 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25440 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25447 @ @<Update encoding names@>=
25448 mp_reload_encodings(mp);
25449 p=link(dummy_loc(h));
25450 while ( p!=null ) {
25451 if ( type(p)==mp_text_code )
25452 if ( font_n(p)!=null_font )
25453 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25454 if ( mp->font_enc_name[font_n(p)]==NULL )
25455 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25460 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25461 for (f=null_font+1;f<=mp->last_fnum;f++)
25462 mp->font_sizes[f]=null;
25463 p=link(dummy_loc(h));
25464 while ( p!=null ) {
25465 if ( type(p)==mp_text_code ) {
25466 if ( font_n(p)!=null_font ) {
25468 if ( mp->internal[mp_prologues]>0 ) {
25469 mp->font_sizes[f]=mp_void;
25471 if ( mp->font_sizes[f]==null )
25472 mp_unmark_font(mp, f);
25473 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25474 if ( name_type(p)==0 )
25475 mp_mark_string_chars(mp, f,text_p(p));
25482 @ Now that we've finished |ship_out|, let's look at the other commands
25483 by which a user can send things to the \.{GF} file.
25485 @ @<Determine if a character has been shipped out@>=
25487 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25488 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25489 boolean_reset(mp->char_exists[mp->cur_exp]);
25490 mp->cur_type=mp_boolean_type;
25496 @ @<Allocate or initialize ...@>=
25497 mp_backend_initialize(mp);
25500 mp_backend_free(mp);
25503 @* \[45] Dumping and undumping the tables.
25504 After \.{INIMP} has seen a collection of macros, it
25505 can write all the necessary information on an auxiliary file so
25506 that production versions of \MP\ are able to initialize their
25507 memory at high speed. The present section of the program takes
25508 care of such output and input. We shall consider simultaneously
25509 the processes of storing and restoring,
25510 so that the inverse relation between them is clear.
25513 The global variable |mem_ident| is a string that is printed right
25514 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25515 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25516 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25517 month, and day that the mem file was created. We have |mem_ident=0|
25518 before \MP's tables are loaded.
25524 mp->mem_ident=NULL;
25526 @ @<Initialize table entries...@>=
25527 mp->mem_ident=xstrdup(" (INIMP)");
25529 @ @<Declare act...@>=
25530 void mp_store_mem_file (MP mp) ;
25532 @ @c void mp_store_mem_file (MP mp) {
25533 integer k; /* all-purpose index */
25534 pointer p,q; /* all-purpose pointers */
25535 integer x; /* something to dump */
25536 four_quarters w; /* four ASCII codes */
25538 @<Create the |mem_ident|, open the mem file,
25539 and inform the user that dumping has begun@>;
25540 @<Dump constants for consistency check@>;
25541 @<Dump the string pool@>;
25542 @<Dump the dynamic memory@>;
25543 @<Dump the table of equivalents and the hash table@>;
25544 @<Dump a few more things and the closing check word@>;
25545 @<Close the mem file@>;
25548 @ Corresponding to the procedure that dumps a mem file, we also have a function
25549 that reads~one~in. The function returns |false| if the dumped mem is
25550 incompatible with the present \MP\ table sizes, etc.
25552 @d off_base 6666 /* go here if the mem file is unacceptable */
25553 @d too_small(A) { wake_up_terminal;
25554 wterm_ln("---! Must increase the "); wterm((A));
25555 @.Must increase the x@>
25560 boolean mp_load_mem_file (MP mp) {
25561 integer k; /* all-purpose index */
25562 pointer p,q; /* all-purpose pointers */
25563 integer x; /* something undumped */
25564 str_number s; /* some temporary string */
25565 four_quarters w; /* four ASCII codes */
25567 @<Undump constants for consistency check@>;
25568 @<Undump the string pool@>;
25569 @<Undump the dynamic memory@>;
25570 @<Undump the table of equivalents and the hash table@>;
25571 @<Undump a few more things and the closing check word@>;
25572 return true; /* it worked! */
25575 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25576 @.Fatal mem file error@>
25580 @ @<Declarations@>=
25581 boolean mp_load_mem_file (MP mp) ;
25583 @ Mem files consist of |memory_word| items, and we use the following
25584 macros to dump words of different types:
25586 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25587 @d dump_int(A) { int cint=(A); fwrite(&cint,sizeof(cint),1,mp->mem_file); }
25588 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25589 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25590 @d dump_string(A) { dump_int(strlen(A)+1);
25591 fwrite(A,strlen(A)+1,1,mp->mem_file); }
25594 FILE * mem_file; /* for input or output of mem information */
25596 @ The inverse macros are slightly more complicated, since we need to check
25597 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25598 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25600 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW; }
25601 @d undump_int(A) { int cint; fread(&cint,sizeof(cint),1,mp->mem_file); A=cint; }
25602 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW.hh; }
25603 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW.qqqq; }
25604 @d undump_strings(A,B,C) {
25605 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25606 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25607 @d undump_size(A,B,C,D) { undump_int(x);
25608 if (x<(A)) goto OFF_BASE;
25609 if (x>(B)) { too_small((C)); } else { D=x;} }
25610 @d undump_string(A) { integer XX=0; undump_int(XX);
25611 A = xmalloc(XX,sizeof(char));
25612 fread(A,XX,1,mp->mem_file); }
25614 @ The next few sections of the program should make it clear how we use the
25615 dump/undump macros.
25617 @<Dump constants for consistency check@>=
25618 dump_int(mp->mem_top);
25619 dump_int(mp->hash_size);
25620 dump_int(mp->hash_prime)
25621 dump_int(mp->param_size);
25622 dump_int(mp->max_in_open);
25624 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25625 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25626 the same strings. (And it is, of course, a good thing that they do.)
25630 @<Undump constants for consistency check@>=
25631 undump_int(x); mp->mem_top = x;
25632 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25633 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25634 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25635 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25637 @ We do string pool compaction to avoid dumping unused strings.
25640 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25641 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25644 @<Dump the string pool@>=
25645 mp_do_compaction(mp, mp->pool_size);
25646 dump_int(mp->pool_ptr);
25647 dump_int(mp->max_str_ptr);
25648 dump_int(mp->str_ptr);
25650 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25653 while ( k<=mp->max_str_ptr ) {
25654 dump_int(mp->next_str[k]); incr(k);
25658 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25659 if ( k==mp->str_ptr ) {
25666 while (k+4<mp->pool_ptr ) {
25667 dump_four_ASCII; k=k+4;
25669 k=mp->pool_ptr-4; dump_four_ASCII;
25670 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25671 mp_print(mp, " strings of total length ");
25672 mp_print_int(mp, mp->pool_ptr)
25674 @ @d undump_four_ASCII
25676 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25677 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25679 @<Undump the string pool@>=
25680 undump_int(mp->pool_ptr);
25681 mp_reallocate_pool(mp, mp->pool_ptr) ;
25682 undump_int(mp->max_str_ptr);
25683 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25684 undump(0,mp->max_str_ptr,mp->str_ptr);
25685 undump(0,mp->max_str_ptr+1,s);
25686 for (k=0;k<=s-1;k++)
25687 mp->next_str[k]=k+1;
25688 for (k=s;k<=mp->max_str_ptr;k++)
25689 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25690 mp->fixed_str_use=0;
25693 undump(0,mp->pool_ptr,mp->str_start[k]);
25694 if ( k==mp->str_ptr ) break;
25695 mp->str_ref[k]=max_str_ref;
25696 incr(mp->fixed_str_use);
25697 mp->last_fixed_str=k; k=mp->next_str[k];
25700 while ( k+4<mp->pool_ptr ) {
25701 undump_four_ASCII; k=k+4;
25703 k=mp->pool_ptr-4; undump_four_ASCII;
25704 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25705 mp->max_pool_ptr=mp->pool_ptr;
25706 mp->strs_used_up=mp->fixed_str_use;
25707 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25708 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25709 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25711 @ By sorting the list of available spaces in the variable-size portion of
25712 |mem|, we are usually able to get by without having to dump very much
25713 of the dynamic memory.
25715 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25716 information even when it has not been gathering statistics.
25718 @<Dump the dynamic memory@>=
25719 mp_sort_avail(mp); mp->var_used=0;
25720 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25721 p=0; q=mp->rover; x=0;
25723 for (k=p;k<= q+1;k++)
25724 dump_wd(mp->mem[k]);
25725 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25726 p=q+node_size(q); q=rlink(q);
25727 } while (q!=mp->rover);
25728 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25729 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25730 for (k=p;k<= mp->lo_mem_max;k++ )
25731 dump_wd(mp->mem[k]);
25732 x=x+mp->lo_mem_max+1-p;
25733 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25734 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25735 dump_wd(mp->mem[k]);
25736 x=x+mp->mem_end+1-mp->hi_mem_min;
25738 while ( p!=null ) {
25739 decr(mp->dyn_used); p=link(p);
25741 dump_int(mp->var_used); dump_int(mp->dyn_used);
25742 mp_print_ln(mp); mp_print_int(mp, x);
25743 mp_print(mp, " memory locations dumped; current usage is ");
25744 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25746 @ @<Undump the dynamic memory@>=
25747 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25748 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25751 for (k=p;k<= q+1; k++)
25752 undump_wd(mp->mem[k]);
25754 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25757 } while (q!=mp->rover);
25758 for (k=p;k<=mp->lo_mem_max;k++ )
25759 undump_wd(mp->mem[k]);
25760 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25761 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25762 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25763 undump_wd(mp->mem[k]);
25764 undump_int(mp->var_used); undump_int(mp->dyn_used)
25766 @ A different scheme is used to compress the hash table, since its lower region
25767 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25768 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25769 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25771 @<Dump the table of equivalents and the hash table@>=
25772 dump_int(mp->hash_used);
25773 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25774 for (p=1;p<=mp->hash_used;p++) {
25775 if ( text(p)!=0 ) {
25776 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25779 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25780 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25782 dump_int(mp->st_count);
25783 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25785 @ @<Undump the table of equivalents and the hash table@>=
25786 undump(1,frozen_inaccessible,mp->hash_used);
25789 undump(p+1,mp->hash_used,p);
25790 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25791 } while (p!=mp->hash_used);
25792 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25793 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25795 undump_int(mp->st_count)
25797 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25798 to prevent them appearing again.
25800 @<Dump a few more things and the closing check word@>=
25801 dump_int(mp->max_internal);
25802 dump_int(mp->int_ptr);
25803 for (k=1;k<= mp->int_ptr;k++ ) {
25804 dump_int(mp->internal[k]);
25805 dump_string(mp->int_name[k]);
25807 dump_int(mp->start_sym);
25808 dump_int(mp->interaction);
25809 dump_string(mp->mem_ident);
25810 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25811 mp->internal[mp_tracing_stats]=0
25813 @ @<Undump a few more things and the closing check word@>=
25815 if (x>mp->max_internal) mp_grow_internals(mp,x);
25816 undump_int(mp->int_ptr);
25817 for (k=1;k<= mp->int_ptr;k++) {
25818 undump_int(mp->internal[k]);
25819 undump_string(mp->int_name[k]);
25821 undump(0,frozen_inaccessible,mp->start_sym);
25822 if (mp->interaction==mp_unspecified_mode) {
25823 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25825 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25827 undump_string(mp->mem_ident);
25828 undump(1,hash_end,mp->bg_loc);
25829 undump(1,hash_end,mp->eg_loc);
25830 undump_int(mp->serial_no);
25832 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
25834 @ @<Create the |mem_ident|...@>=
25836 xfree(mp->mem_ident);
25837 mp->mem_ident = xmalloc(256,1);
25838 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25840 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25841 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25842 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25843 mp_pack_job_name(mp, mem_extension);
25844 while (! mp_w_open_out(mp, &mp->mem_file) )
25845 mp_prompt_file_name(mp, "mem file name", mem_extension);
25846 mp_print_nl(mp, "Beginning to dump on file ");
25847 @.Beginning to dump...@>
25848 mp_print(mp, mp->name_of_file);
25849 mp_print_nl(mp, mp->mem_ident);
25852 @ @<Dealloc variables@>=
25853 xfree(mp->mem_ident);
25855 @ @<Close the mem file@>=
25856 fclose(mp->mem_file)
25858 @* \[46] The main program.
25859 This is it: the part of \MP\ that executes all those procedures we have
25862 Well---almost. We haven't put the parsing subroutines into the
25863 program yet; and we'd better leave space for a few more routines that may
25864 have been forgotten.
25866 @c @<Declare the basic parsing subroutines@>;
25867 @<Declare miscellaneous procedures that were declared |forward|@>;
25868 @<Last-minute procedures@>
25870 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25872 has to be run first; it initializes everything from scratch, without
25873 reading a mem file, and it has the capability of dumping a mem file.
25874 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25876 to input a mem file in order to get started. \.{VIRMP} typically has
25877 a bit more memory capacity than \.{INIMP}, because it does not need the
25878 space consumed by the dumping/undumping routines and the numerous calls on
25881 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25882 the best implementations therefore allow for production versions of \MP\ that
25883 not only avoid the loading routine for \PASCAL\ object code, they also have
25884 a mem file pre-loaded.
25887 boolean ini_version; /* are we iniMP? */
25889 @ @<Option variables@>=
25890 int ini_version; /* are we iniMP? */
25892 @ @<Set |ini_version|@>=
25893 mp->ini_version = (opt->ini_version ? true : false);
25895 @ Here we do whatever is needed to complete \MP's job gracefully on the
25896 local operating system. The code here might come into play after a fatal
25897 error; it must therefore consist entirely of ``safe'' operations that
25898 cannot produce error messages. For example, it would be a mistake to call
25899 |str_room| or |make_string| at this time, because a call on |overflow|
25900 might lead to an infinite loop.
25901 @^system dependencies@>
25903 This program doesn't bother to close the input files that may still be open.
25905 @<Last-minute...@>=
25906 void mp_close_files_and_terminate (MP mp) {
25907 integer k; /* all-purpose index */
25908 integer LH; /* the length of the \.{TFM} header, in words */
25909 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25910 pointer p; /* runs through a list of \.{TFM} dimensions */
25911 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25912 if ( mp->internal[mp_tracing_stats]>0 )
25913 @<Output statistics about this job@>;
25915 @<Do all the finishing work on the \.{TFM} file@>;
25916 @<Explain what output files were written@>;
25917 if ( mp->log_opened ){
25919 fclose(mp->log_file); mp->selector=mp->selector-2;
25920 if ( mp->selector==term_only ) {
25921 mp_print_nl(mp, "Transcript written on ");
25922 @.Transcript written...@>
25923 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25929 @ @<Declarations@>=
25930 void mp_close_files_and_terminate (MP mp) ;
25932 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25933 if (mp->rd_fname!=NULL) {
25934 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25935 if ( mp->rd_fname[k]!=NULL ) {
25936 fclose(mp->rd_file[k]);
25940 if (mp->wr_fname!=NULL) {
25941 for (k=0;k<=(int)mp->write_files-1;k++) {
25942 if ( mp->wr_fname[k]!=NULL ) {
25943 fclose(mp->wr_file[k]);
25949 for (k=0;k<(int)mp->max_read_files;k++ ) {
25950 if ( mp->rd_fname[k]!=NULL ) {
25951 fclose(mp->rd_file[k]);
25952 mp_xfree(mp->rd_fname[k]);
25955 mp_xfree(mp->rd_file);
25956 mp_xfree(mp->rd_fname);
25957 for (k=0;k<(int)mp->max_write_files;k++) {
25958 if ( mp->wr_fname[k]!=NULL ) {
25959 fclose(mp->wr_file[k]);
25960 mp_xfree(mp->wr_fname[k]);
25963 mp_xfree(mp->wr_file);
25964 mp_xfree(mp->wr_fname);
25967 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25969 We reclaim all of the variable-size memory at this point, so that
25970 there is no chance of another memory overflow after the memory capacity
25971 has already been exceeded.
25973 @<Do all the finishing work on the \.{TFM} file@>=
25974 if ( mp->internal[mp_fontmaking]>0 ) {
25975 @<Make the dynamic memory into one big available node@>;
25976 @<Massage the \.{TFM} widths@>;
25977 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25978 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25979 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25980 @<Finish the \.{TFM} file@>;
25983 @ @<Make the dynamic memory into one big available node@>=
25984 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25985 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25986 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25987 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25988 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25990 @ The present section goes directly to the log file instead of using
25991 |print| commands, because there's no need for these strings to take
25992 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25994 @<Output statistics...@>=
25995 if ( mp->log_opened ) {
25998 wlog_ln("Here is how much of MetaPost's memory you used:");
25999 @.Here is how much...@>
26000 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26001 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26002 (int)(mp->max_strings-1-mp->init_str_use));
26004 snprintf(s,128," %i string characters out of %i",
26005 (int)mp->max_pl_used-mp->init_pool_ptr,
26006 (int)mp->pool_size-mp->init_pool_ptr);
26008 snprintf(s,128," %i words of memory out of %i",
26009 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26010 (int)mp->mem_end+1);
26012 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26014 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
26015 (int)mp->max_in_stack,(int)mp->int_ptr,
26016 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26017 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26019 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26020 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26024 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26027 @<Last-minute...@>=
26028 void mp_final_cleanup (MP mp) {
26029 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
26031 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26032 while ( mp->input_ptr>0 ) {
26033 if ( token_state ) mp_end_token_list(mp);
26034 else mp_end_file_reading(mp);
26036 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26037 while ( mp->open_parens>0 ) {
26038 mp_print(mp, " )"); decr(mp->open_parens);
26040 while ( mp->cond_ptr!=null ) {
26041 mp_print_nl(mp, "(end occurred when ");
26042 @.end occurred...@>
26043 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26044 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26045 if ( mp->if_line!=0 ) {
26046 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26048 mp_print(mp, " was incomplete)");
26049 mp->if_line=if_line_field(mp->cond_ptr);
26050 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26052 if ( mp->history!=mp_spotless )
26053 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26054 if ( mp->selector==term_and_log ) {
26055 mp->selector=term_only;
26056 mp_print_nl(mp, "(see the transcript file for additional information)");
26057 @.see the transcript file...@>
26058 mp->selector=term_and_log;
26061 if (mp->ini_version) {
26062 mp_store_mem_file(mp); return;
26064 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26065 @.dump...only by INIMP@>
26069 @ @<Declarations@>=
26070 void mp_final_cleanup (MP mp) ;
26071 void mp_init_prim (MP mp) ;
26072 void mp_init_tab (MP mp) ;
26074 @ @<Last-minute...@>=
26075 void mp_init_prim (MP mp) { /* initialize all the primitives */
26079 void mp_init_tab (MP mp) { /* initialize other tables */
26080 integer k; /* all-purpose index */
26081 @<Initialize table entries (done by \.{INIMP} only)@>;
26085 @ When we begin the following code, \MP's tables may still contain garbage;
26086 the strings might not even be present. Thus we must proceed cautiously to get
26089 But when we finish this part of the program, \MP\ is ready to call on the
26090 |main_control| routine to do its work.
26092 @<Get the first line...@>=
26094 @<Initialize the input routines@>;
26095 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26096 if ( mp->mem_ident!=NULL ) {
26097 mp_do_initialize(mp); /* erase preloaded mem */
26099 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26100 if ( ! mp_load_mem_file(mp) ) {
26101 fclose( mp->mem_file); return mp_fatal_error_stop;
26103 fclose( mp->mem_file);
26104 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26106 mp->buffer[limit]='%';
26107 mp_fix_date_and_time(mp);
26108 mp->sys_random_seed = (scaled)(mp->get_random_seed)(mp);
26109 mp_init_randoms(mp, mp->sys_random_seed);
26110 @<Initialize the print |selector|...@>;
26111 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26112 mp_start_input(mp); /* \&{input} assumed */
26115 @ @<Run inimpost commands@>=
26117 mp_get_strings_started(mp);
26118 mp_init_tab(mp); /* initialize the tables */
26119 mp_init_prim(mp); /* call |primitive| for each primitive */
26120 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26121 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26122 mp_fix_date_and_time(mp);
26126 @* \[47] Debugging.
26127 Once \MP\ is working, you should be able to diagnose most errors with
26128 the \.{show} commands and other diagnostic features. But for the initial
26129 stages of debugging, and for the revelation of really deep mysteries, you
26130 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26131 checks and its debugger. An additional routine called |debug_help|
26132 will also come into play when you type `\.D' after an error message;
26133 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26135 @^system dependencies@>
26137 The interface to |debug_help| is primitive, but it is good enough when used
26138 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26139 variables and change their values. After getting the prompt `\.{debug \#}', you
26140 type either a negative number (this exits |debug_help|), or zero (this
26141 goes to a location where you can set a breakpoint, thereby entering into
26142 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26143 an argument |n|. The meaning of |m| and |n| will be clear from the
26144 program below. (If |m=13|, there is an additional argument, |l|.)
26147 @<Last-minute...@>=
26148 void mp_debug_help (MP mp) { /* routine to display various things */
26153 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26156 fscanf(mp->term_in,"%i",&m);
26160 fscanf(mp->term_in,"%i",&n);
26162 @<Numbered cases for |debug_help|@>;
26163 default: mp_print(mp, "?"); break;
26168 @ @<Numbered cases...@>=
26169 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26171 case 2: mp_print_int(mp, info(n));
26173 case 3: mp_print_int(mp, link(n));
26175 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26177 case 5: mp_print_variable_name(mp, n);
26179 case 6: mp_print_int(mp, mp->internal[n]);
26181 case 7: mp_do_show_dependencies(mp);
26183 case 9: mp_show_token_list(mp, n,null,100000,0);
26185 case 10: mp_print_str(mp, n);
26187 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26189 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26191 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26193 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26195 case 15: mp->panicking=! mp->panicking;
26199 @ Saving the filename template
26201 @<Save the filename template@>=
26203 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26204 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26206 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26210 @* \[48] System-dependent changes.
26211 This section should be replaced, if necessary, by any special
26212 modification of the program
26213 that are necessary to make \MP\ work at a particular installation.
26214 It is usually best to design your change file so that all changes to
26215 previous sections preserve the section numbering; then everybody's version
26216 will be consistent with the published program. More extensive changes,
26217 which introduce new sections, can be inserted here; then only the index
26218 itself will get a new section number.
26219 @^system dependencies@>
26222 Here is where you can find all uses of each identifier in the program,
26223 with underlined entries pointing to where the identifier was defined.
26224 If the identifier is only one letter long, however, you get to see only
26225 the underlined entries. {\sl All references are to section numbers instead of
26228 This index also lists error messages and other aspects of the program
26229 that you might want to look up some day. For example, the entry
26230 for ``system dependencies'' lists all sections that should receive
26231 special attention from people who are installing \MP\ in a new
26232 operating environment. A list of various things that can't happen appears
26233 under ``this can't happen''.
26234 Approximately 25 sections are listed under ``inner loop''; these account
26235 for more than 60\pct! of \MP's running time, exclusive of input and output.