randr12: Disable crt load detect again, until i know how to use it properly.
[nouveau] / src / nv_crtc.c
1 /*
2  * Copyright 2006 Dave Airlie
3  * Copyright 2007 Maarten Maathuis
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 /*
25  * this code uses ideas taken from the NVIDIA nv driver - the nvidia license
26  * decleration is at the bottom of this file as it is rather ugly 
27  */
28
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include <assert.h>
34 #include "xf86.h"
35 #include "os.h"
36 #include "mibank.h"
37 #include "globals.h"
38 #include "xf86.h"
39 #include "xf86Priv.h"
40 #include "xf86DDC.h"
41 #include "mipointer.h"
42 #include "windowstr.h"
43 #include <randrstr.h>
44 #include <X11/extensions/render.h>
45
46 #include "xf86Crtc.h"
47 #include "nv_include.h"
48
49 #include "vgaHW.h"
50
51 #define CRTC_INDEX 0x3d4
52 #define CRTC_DATA 0x3d5
53 #define CRTC_IN_STAT_1 0x3da
54
55 #define WHITE_VALUE 0x3F
56 #define BLACK_VALUE 0x00
57 #define OVERSCAN_VALUE 0x01
58
59 static void nv_crtc_load_state_vga(xf86CrtcPtr crtc, RIVA_HW_STATE *state);
60 static void nv_crtc_load_state_ext(xf86CrtcPtr crtc, RIVA_HW_STATE *state, Bool override);
61 static void nv_crtc_load_state_ramdac(xf86CrtcPtr crtc, RIVA_HW_STATE *state);
62 static void nv_crtc_save_state_ext(xf86CrtcPtr crtc, RIVA_HW_STATE *state);
63 static void nv_crtc_save_state_vga(xf86CrtcPtr crtc, RIVA_HW_STATE *state);
64 static void nv_crtc_save_state_ramdac(xf86CrtcPtr crtc, RIVA_HW_STATE *state);
65
66 static CARD8 NVReadPVIO(xf86CrtcPtr crtc, CARD32 address)
67 {
68         ScrnInfoPtr pScrn = crtc->scrn;
69         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
70         NVPtr pNv = NVPTR(pScrn);
71
72         /* Only NV4x have two pvio ranges */
73         if (nv_crtc->head == 1 && pNv->Architecture == NV_ARCH_40) {
74                 return NV_RD08(pNv->PVIO1, address);
75         } else {
76                 return NV_RD08(pNv->PVIO0, address);
77         }
78 }
79
80 static void NVWritePVIO(xf86CrtcPtr crtc, CARD32 address, CARD8 value)
81 {
82         ScrnInfoPtr pScrn = crtc->scrn;
83         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
84         NVPtr pNv = NVPTR(pScrn);
85
86         /* Only NV4x have two pvio ranges */
87         if (nv_crtc->head == 1 && pNv->Architecture == NV_ARCH_40) {
88                 NV_WR08(pNv->PVIO1, address, value);
89         } else {
90                 NV_WR08(pNv->PVIO0, address, value);
91         }
92 }
93
94 static void NVWriteMiscOut(xf86CrtcPtr crtc, CARD8 value)
95 {
96         NVWritePVIO(crtc, VGA_MISC_OUT_W, value);
97 }
98
99 static CARD8 NVReadMiscOut(xf86CrtcPtr crtc)
100 {
101         return NVReadPVIO(crtc, VGA_MISC_OUT_R);
102 }
103
104 void NVWriteVGA(NVPtr pNv, int head, CARD8 index, CARD8 value)
105 {
106         volatile CARD8 *pCRTCReg = head ? pNv->PCIO1 : pNv->PCIO0;
107
108         NV_WR08(pCRTCReg, CRTC_INDEX, index);
109         NV_WR08(pCRTCReg, CRTC_DATA, value);
110 }
111
112 CARD8 NVReadVGA(NVPtr pNv, int head, CARD8 index)
113 {
114         volatile CARD8 *pCRTCReg = head ? pNv->PCIO1 : pNv->PCIO0;
115
116         NV_WR08(pCRTCReg, CRTC_INDEX, index);
117         return NV_RD08(pCRTCReg, CRTC_DATA);
118 }
119
120 /* CR57 and CR58 are a fun pair of regs. CR57 provides an index (0-0xf) for CR58
121  * I suspect they in fact do nothing, but are merely a way to carry useful
122  * per-head variables around
123  *
124  * Known uses:
125  * CR57         CR58
126  * 0x00         index to the appropriate dcb entry (or 7f for inactive)
127  * 0x02         dcb entry's "or" value (or 00 for inactive)
128  * 0x03         bit0 set for dual link (LVDS, possibly elsewhere too)
129  * 0x08 or 0x09 pxclk in MHz
130  * 0x0f         laptop panel info -     low nibble for PEXTDEV_BOOT strap
131  *                                      high nibble for xlat strap value
132  */
133
134 void NVWriteVGACR5758(NVPtr pNv, int head, uint8_t index, uint8_t value)
135 {
136         NVWriteVGA(pNv, head, 0x57, index);
137         NVWriteVGA(pNv, head, 0x58, value);
138 }
139
140 uint8_t NVReadVGACR5758(NVPtr pNv, int head, uint8_t index)
141 {
142         NVWriteVGA(pNv, head, 0x57, index);
143         return NVReadVGA(pNv, head, 0x58);
144 }
145
146 void NVWriteVgaCrtc(xf86CrtcPtr crtc, CARD8 index, CARD8 value)
147 {
148         ScrnInfoPtr pScrn = crtc->scrn;
149         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
150         NVPtr pNv = NVPTR(pScrn);
151
152         NVWriteVGA(pNv, nv_crtc->head, index, value);
153 }
154
155 CARD8 NVReadVgaCrtc(xf86CrtcPtr crtc, CARD8 index)
156 {
157         ScrnInfoPtr pScrn = crtc->scrn;
158         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
159         NVPtr pNv = NVPTR(pScrn);
160
161         return NVReadVGA(pNv, nv_crtc->head, index);
162 }
163
164 static void NVWriteVgaSeq(xf86CrtcPtr crtc, CARD8 index, CARD8 value)
165 {
166         NVWritePVIO(crtc, VGA_SEQ_INDEX, index);
167         NVWritePVIO(crtc, VGA_SEQ_DATA, value);
168 }
169
170 static CARD8 NVReadVgaSeq(xf86CrtcPtr crtc, CARD8 index)
171 {
172         NVWritePVIO(crtc, VGA_SEQ_INDEX, index);
173         return NVReadPVIO(crtc, VGA_SEQ_DATA);
174 }
175
176 static void NVWriteVgaGr(xf86CrtcPtr crtc, CARD8 index, CARD8 value)
177 {
178         NVWritePVIO(crtc, VGA_GRAPH_INDEX, index);
179         NVWritePVIO(crtc, VGA_GRAPH_DATA, value);
180 }
181
182 static CARD8 NVReadVgaGr(xf86CrtcPtr crtc, CARD8 index)
183 {
184         NVWritePVIO(crtc, VGA_GRAPH_INDEX, index);
185         return NVReadPVIO(crtc, VGA_GRAPH_DATA);
186
187
188
189 static void NVWriteVgaAttr(xf86CrtcPtr crtc, CARD8 index, CARD8 value)
190 {
191   ScrnInfoPtr pScrn = crtc->scrn;
192   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
193   NVPtr pNv = NVPTR(pScrn);
194   volatile CARD8 *pCRTCReg = nv_crtc->head ? pNv->PCIO1 : pNv->PCIO0;
195
196   NV_RD08(pCRTCReg, CRTC_IN_STAT_1);
197   if (nv_crtc->paletteEnabled)
198     index &= ~0x20;
199   else
200     index |= 0x20;
201   NV_WR08(pCRTCReg, VGA_ATTR_INDEX, index);
202   NV_WR08(pCRTCReg, VGA_ATTR_DATA_W, value);
203 }
204
205 static CARD8 NVReadVgaAttr(xf86CrtcPtr crtc, CARD8 index)
206 {
207   ScrnInfoPtr pScrn = crtc->scrn;
208   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
209   NVPtr pNv = NVPTR(pScrn);
210   volatile CARD8 *pCRTCReg = nv_crtc->head ? pNv->PCIO1 : pNv->PCIO0;
211
212   NV_RD08(pCRTCReg, CRTC_IN_STAT_1);
213   if (nv_crtc->paletteEnabled)
214     index &= ~0x20;
215   else
216     index |= 0x20;
217   NV_WR08(pCRTCReg, VGA_ATTR_INDEX, index);
218   return NV_RD08(pCRTCReg, VGA_ATTR_DATA_R);
219 }
220
221 void NVCrtcSetOwner(xf86CrtcPtr crtc)
222 {
223         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
224         ScrnInfoPtr pScrn = crtc->scrn;
225         NVPtr pNv = NVPTR(pScrn);
226         /* Non standard beheaviour required by NV11 */
227         if (pNv) {
228                 uint8_t owner = NVReadVGA0(pNv, NV_VGA_CRTCX_OWNER);
229                 ErrorF("pre-Owner: 0x%X\n", owner);
230                 if (owner == 0x04) {
231                         uint32_t pbus84 = nvReadMC(pNv, 0x1084);
232                         ErrorF("pbus84: 0x%X\n", pbus84);
233                         pbus84 &= ~(1<<28);
234                         ErrorF("pbus84: 0x%X\n", pbus84);
235                         nvWriteMC(pNv, 0x1084, pbus84);
236                 }
237                 /* The blob never writes owner to pcio1, so should we */
238                 if (pNv->NVArch == 0x11) {
239                         NVWriteVGA0(pNv, NV_VGA_CRTCX_OWNER, 0xff);
240                 }
241                 NVWriteVGA0(pNv, NV_VGA_CRTCX_OWNER, nv_crtc->head * 0x3);
242                 owner = NVReadVGA0(pNv, NV_VGA_CRTCX_OWNER);
243                 ErrorF("post-Owner: 0x%X\n", owner);
244         } else {
245                 ErrorF("pNv pointer is NULL\n");
246         }
247 }
248
249 static void
250 NVEnablePalette(xf86CrtcPtr crtc)
251 {
252   ScrnInfoPtr pScrn = crtc->scrn;
253   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
254   NVPtr pNv = NVPTR(pScrn);
255   volatile CARD8 *pCRTCReg = nv_crtc->head ? pNv->PCIO1 : pNv->PCIO0;
256
257   NV_RD08(pCRTCReg, CRTC_IN_STAT_1);
258   NV_WR08(pCRTCReg, VGA_ATTR_INDEX, 0);
259   nv_crtc->paletteEnabled = TRUE;
260 }
261
262 static void
263 NVDisablePalette(xf86CrtcPtr crtc)
264 {
265   ScrnInfoPtr pScrn = crtc->scrn;
266   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
267   NVPtr pNv = NVPTR(pScrn);
268   volatile CARD8 *pCRTCReg = nv_crtc->head ? pNv->PCIO1 : pNv->PCIO0;
269
270   NV_RD08(pCRTCReg, CRTC_IN_STAT_1);
271   NV_WR08(pCRTCReg, VGA_ATTR_INDEX, 0x20);
272   nv_crtc->paletteEnabled = FALSE;
273 }
274
275 static void NVWriteVgaReg(xf86CrtcPtr crtc, CARD32 reg, CARD8 value)
276 {
277  ScrnInfoPtr pScrn = crtc->scrn;
278   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
279   NVPtr pNv = NVPTR(pScrn);
280   volatile CARD8 *pCRTCReg = nv_crtc->head ? pNv->PCIO1 : pNv->PCIO0;
281
282   NV_WR08(pCRTCReg, reg, value);
283 }
284
285 /* perform a sequencer reset */
286 static void NVVgaSeqReset(xf86CrtcPtr crtc, Bool start)
287 {
288   if (start)
289     NVWriteVgaSeq(crtc, 0x00, 0x1);
290   else
291     NVWriteVgaSeq(crtc, 0x00, 0x3);
292
293 }
294 static void NVVgaProtect(xf86CrtcPtr crtc, Bool on)
295 {
296         CARD8 tmp;
297
298         if (on) {
299                 tmp = NVReadVgaSeq(crtc, 0x1);
300                 NVVgaSeqReset(crtc, TRUE);
301                 NVWriteVgaSeq(crtc, 0x01, tmp | 0x20);
302
303                 NVEnablePalette(crtc);
304         } else {
305                 /*
306                  * Reenable sequencer, then turn on screen.
307                  */
308                 tmp = NVReadVgaSeq(crtc, 0x1);
309                 NVWriteVgaSeq(crtc, 0x01, tmp & ~0x20); /* reenable display */
310                 NVVgaSeqReset(crtc, FALSE);
311
312                 NVDisablePalette(crtc);
313         }
314 }
315
316 void NVCrtcLockUnlock(xf86CrtcPtr crtc, Bool Lock)
317 {
318         CARD8 cr11;
319
320         NVCrtcSetOwner(crtc);
321
322         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_LOCK, Lock ? 0x99 : 0x57);
323         cr11 = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_VSYNCE);
324         if (Lock) cr11 |= 0x80;
325         else cr11 &= ~0x80;
326         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_VSYNCE, cr11);
327 }
328
329 xf86OutputPtr 
330 NVGetOutputFromCRTC(xf86CrtcPtr crtc)
331 {
332         ScrnInfoPtr pScrn = crtc->scrn;
333         xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
334         int i;
335         for (i = 0; i < xf86_config->num_output; i++) {
336                 xf86OutputPtr output = xf86_config->output[i];
337
338                 if (output->crtc == crtc) {
339                         return output;
340                 }
341         }
342
343         return NULL;
344 }
345
346 xf86CrtcPtr
347 nv_find_crtc_by_index(ScrnInfoPtr pScrn, int index)
348 {
349         xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
350         int i;
351
352         for (i = 0; i < xf86_config->num_crtc; i++) {
353                 xf86CrtcPtr crtc = xf86_config->crtc[i];
354                 NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
355                 if (nv_crtc->head == index)
356                         return crtc;
357         }
358
359         return NULL;
360 }
361
362 /*
363  * Calculate the Video Clock parameters for the PLL.
364  */
365 /* Code taken from NVClock, with permission of the author (being a GPL->MIT code transfer). */
366
367 static void
368 CalculateVClkNV4x_SingleVCO(NVPtr pNv, struct pll_lims *pll_lim, uint32_t clockIn, uint32_t *n1_best, uint32_t *m1_best, uint32_t *p_best)
369 {
370         uint32_t clock, M, N, P;
371         uint32_t delta, bestDelta, minM, maxM, minN, maxN, maxP;
372         uint32_t minVCOInputFreq, minVCOFreq, maxVCOFreq;
373         uint32_t VCOFreq;
374         uint32_t refClk = pNv->CrystalFreqKHz;
375         bestDelta = clockIn;
376
377         /* bios clocks are in MHz, we use KHz */
378         minVCOInputFreq = pll_lim->vco1.min_inputfreq*1000;
379         minVCOFreq = pll_lim->vco1.minfreq*1000;
380         maxVCOFreq = pll_lim->vco1.maxfreq*1000;
381         minM = pll_lim->vco1.min_m;
382         maxM = pll_lim->vco1.max_m;
383         minN = pll_lim->vco1.min_n;
384         maxN = pll_lim->vco1.max_n;
385
386         maxP = 6;
387
388         /* The optimal frequency for the PLL to work at is somewhere in the center of its range.
389         /  Choose a post divider in such a way to achieve this.
390         /  The G8x nv driver does something similar but they they derive a minP and maxP. That
391         /  doesn't seem required as you get so many matching clocks that you don't enter a second
392         /  iteration for P. (The minP / maxP values in the nv driver only differ at most 1, so it is for
393         /  some rare corner cases.
394         */
395         for (P=0, VCOFreq=maxVCOFreq/2; clockIn<=VCOFreq && P <= maxP; P++)
396         {
397                 VCOFreq /= 2;
398         }
399
400         /* Calculate the m and n values. There are a lot of values which give the same speed;
401         /  We choose the speed for which the difference with the request speed is as small as possible.
402         */
403         for (M=minM; M<=maxM; M++)
404         {
405                 /* The VCO has a minimum input frequency */
406                 if ((refClk/M) < minVCOInputFreq)
407                         break;
408
409                 for (N=minN; N<=maxN; N++)
410                 {
411                         /* Calculate the frequency generated by VCO1 */
412                         clock = (int)(refClk * N / (float)M);
413
414                         /* Verify if the clock lies within the output limits of VCO1 */
415                         if (clock < minVCOFreq)
416                                 continue;
417                         else if (clock > maxVCOFreq) /* It is no use to continue as the clock will only become higher */
418                                 break;
419
420                         clock >>= P;
421                         delta = abs((int)(clockIn - clock));
422                         /* When the difference is 0 or less than .5% accept the speed */
423                         if (((delta == 0) || ((float)delta/(float)clockIn <= 0.005)))
424                         {
425                                 *m1_best = M;
426                                 *n1_best = N;
427                                 *p_best = P;
428                                 return;
429                         }
430
431                         /* When the new difference is smaller than the old one, use this one */
432                         if (delta < bestDelta)
433                         {
434                                 bestDelta = delta;
435                                 *m1_best = M;
436                                 *n1_best = N;
437                                 *p_best = P;
438                         }
439                 }
440         }
441 }
442
443 static void
444 CalculateVClkNV4x_DoubleVCO(NVPtr pNv, struct pll_lims *pll_lim, uint32_t clockIn, uint32_t *n1_best, uint32_t *n2_best, uint32_t *m1_best, uint32_t *m2_best, uint32_t *p_best)
445 {
446         uint32_t clock1, clock2, M, M2, N, N2, P;
447         uint32_t delta, bestDelta, minM, minM2, maxM, maxM2, minN, minN2, maxN, maxN2, maxP;
448         uint32_t minVCOInputFreq, minVCO2InputFreq, maxVCO2InputFreq, minVCOFreq, minVCO2Freq, maxVCOFreq, maxVCO2Freq;
449         uint32_t VCO2Freq, maxClock;
450         uint32_t refClk = pNv->CrystalFreqKHz;
451         bestDelta = clockIn;
452
453         /* bios clocks are in MHz, we use KHz */
454         minVCOInputFreq = pll_lim->vco1.min_inputfreq*1000;
455         minVCOFreq = pll_lim->vco1.minfreq*1000;
456         maxVCOFreq = pll_lim->vco1.maxfreq*1000;
457         minM = pll_lim->vco1.min_m;
458         maxM = pll_lim->vco1.max_m;
459         minN = pll_lim->vco1.min_n;
460         maxN = pll_lim->vco1.max_n;
461
462         minVCO2InputFreq = pll_lim->vco2.min_inputfreq*1000;
463         maxVCO2InputFreq = pll_lim->vco2.max_inputfreq*1000;
464         minVCO2Freq = pll_lim->vco2.minfreq*1000;
465         maxVCO2Freq = pll_lim->vco2.maxfreq*1000;
466         minM2 = pll_lim->vco2.min_m;
467         maxM2 = pll_lim->vco2.max_m;
468         minN2 = pll_lim->vco2.min_n;
469         maxN2 = pll_lim->vco2.max_n;
470
471         maxP = 6;
472
473         maxClock = maxVCO2Freq;
474         /* If the requested clock is behind the bios limits, try it anyway */
475         if (clockIn > maxVCO2Freq)
476                 maxClock = clockIn + clockIn/200; /* Add a .5% margin */
477
478         /* The optimal frequency for the PLL to work at is somewhere in the center of its range.
479         /  Choose a post divider in such a way to achieve this.
480         /  The G8x nv driver does something similar but they they derive a minP and maxP. That
481         /  doesn't seem required as you get so many matching clocks that you don't enter a second
482         /  iteration for P. (The minP / maxP values in the nv driver only differ at most 1, so it is for
483         /  some rare corner cases.
484         */
485         for (P=0, VCO2Freq=maxClock/2; clockIn<=VCO2Freq && P <= maxP; P++)
486         {
487                 VCO2Freq /= 2;
488         }
489
490         /* The PLLs on Geforce6/7 hardware can operate in a single stage made with only 1 VCO
491         /  and a cascade mode of two VCOs. This second mode is in general used for relatively high
492         /  frequencies. The loop below calculates the divider and multiplier ratios for the cascade
493         /  mode. The code takes into account limits defined in the video bios.
494         */
495         for (M=minM; M<=maxM; M++)
496         {
497                 /* The VCO has a minimum input frequency */
498                 if ((refClk/M) < minVCOInputFreq)
499                         break;
500
501                 for (N=minN; N<=maxN; N++)
502                 {
503                         /* Calculate the frequency generated by VCO1 */
504                         clock1 = (int)(refClk * N / (float)M);
505                         /* Verify if the clock lies within the output limits of VCO1 */
506                         if ( (clock1 < minVCOFreq) )
507                                 continue;
508                         else if (clock1 > maxVCOFreq) /* For future N, the clock will only increase so stop; xorg nv continues but that is useless */
509                                 break;
510
511                         for (M2=minM2; M2<=maxM2; M2++)
512                         {
513                                 /* The clock fed to the second VCO needs to lie within a certain input range */
514                                 if (clock1 / M2 < minVCO2InputFreq)
515                                         break;
516                                 else if (clock1 / M2 > maxVCO2InputFreq)
517                                         continue;
518
519                                 N2 = (int)((float)((clockIn << P) * M * M2) / (float)(refClk * N)+.5);
520                                 if( (N2 < minN2) || (N2 > maxN2) )
521                                         continue;
522
523                                 /* The clock before being fed to the post-divider needs to lie within a certain range.
524                                 /  Further there are some limits on N2/M2.
525                                 */
526                                 clock2 = (int)((float)(N*N2)/(M*M2) * refClk);
527                                 if( (clock2 < minVCO2Freq) || (clock2 > maxClock))// || ((N2 / M2) < 4) || ((N2 / M2) > 10) )
528                                         continue;
529
530                                 /* The post-divider delays the 'high' clock to create a low clock if requested.
531                                 /  This post-divider exists because the VCOs can only generate frequencies within
532                                 /  a limited frequency range. This range has been tuned to lie around half of its max
533                                 /  input frequency. It tries to calculate all clocks (including lower ones) around this
534                                 /  'center' frequency.
535                                 */
536                                 clock2 >>= P;
537                                 delta = abs((int)(clockIn - clock2));
538
539                                 /* When the difference is 0 or less than .5% accept the speed */
540                                 if (((delta == 0) || ((float)delta/(float)clockIn <= 0.005)))
541                                 {
542                                         *m1_best = M;
543                                         *m2_best = M2;
544                                         *n1_best = N;
545                                         *n2_best = N2;
546                                         *p_best = P;
547                                         return;
548                                 }
549
550                                 /* When the new difference is smaller than the old one, use this one */
551                                 if (delta < bestDelta)
552                                 {
553                                         bestDelta = delta;
554                                         *m1_best = M;
555                                         *m2_best = M2;
556                                         *n1_best = N;
557                                         *n2_best = N2;
558                                         *p_best = P;
559                                 }
560                         }
561                 }
562         }
563 }
564
565 /* BIG NOTE: modifying vpll1 and vpll2 does not work, what bit is the switch to allow it? */
566
567 /* Even though they are not yet used, i'm adding some notes about some of the 0x4000 regs */
568 /* They are only valid for NV4x, appearantly reordered for NV5x */
569 /* gpu pll: 0x4000 + 0x4004
570  * unknown pll: 0x4008 + 0x400c
571  * vpll1: 0x4010 + 0x4014
572  * vpll2: 0x4018 + 0x401c
573  * unknown pll: 0x4020 + 0x4024
574  * unknown pll: 0x4038 + 0x403c
575  * Some of the unknown's are probably memory pll's.
576  * The vpll's use two set's of multipliers and dividers. I refer to them as a and b.
577  * 1 and 2 refer to the registers of each pair. There is only one post divider.
578  * Logic: clock = reference_clock * ((n(a) * n(b))/(m(a) * m(b))) >> p
579  * 1) bit 0-7: familiar values, but redirected from were? (similar to PLL_SETUP_CONTROL)
580  *     bit8: A switch that turns of the second divider and multiplier off.
581  *     bit12: Also a switch, i haven't seen it yet.
582  *     bit16-19: p-divider
583  *     but 28-31: Something related to the mode that is used (see bit8).
584  * 2) bit0-7: m-divider (a)
585  *     bit8-15: n-multiplier (a)
586  *     bit16-23: m-divider (b)
587  *     bit24-31: n-multiplier (b)
588  */
589
590 /* Modifying the gpu pll for example requires:
591  * - Disable value 0x333 (inverse AND mask) on the 0xc040 register.
592  * This is not needed for the vpll's which have their own bits.
593  */
594
595 static void
596 CalculateVClkNV4x(
597         ScrnInfoPtr pScrn,
598         uint32_t requested_clock,
599         uint32_t *given_clock,
600         uint32_t *pll_a,
601         uint32_t *pll_b,
602         uint32_t *reg580,
603         Bool    *db1_ratio,
604         Bool primary
605 )
606 {
607         NVPtr pNv = NVPTR(pScrn);
608         struct pll_lims pll_lim;
609         /* We have 2 mulitpliers, 2 dividers and one post divider */
610         /* Note that p is only 3 bits */
611         uint32_t m1_best = 0, m2_best = 0, n1_best = 0, n2_best = 0, p_best = 0;
612         uint32_t special_bits = 0;
613
614         if (primary) {
615                 if (!get_pll_limits(pScrn, VPLL1, &pll_lim))
616                         return;
617         } else
618                 if (!get_pll_limits(pScrn, VPLL2, &pll_lim))
619                         return;
620
621         if (requested_clock < pll_lim.vco1.maxfreq*1000) { /* single VCO */
622                 *db1_ratio = TRUE;
623                 /* Turn the second set of divider and multiplier off */
624                 /* Bogus data, the same nvidia uses */
625                 n2_best = 1;
626                 m2_best = 31;
627                 CalculateVClkNV4x_SingleVCO(pNv, &pll_lim, requested_clock, &n1_best, &m1_best, &p_best);
628         } else { /* dual VCO */
629                 *db1_ratio = FALSE;
630                 CalculateVClkNV4x_DoubleVCO(pNv, &pll_lim, requested_clock, &n1_best, &n2_best, &m1_best, &m2_best, &p_best);
631         }
632
633         /* Are this all (relevant) G70 cards? */
634         if (pNv->NVArch == 0x4B || pNv->NVArch == 0x46 || pNv->NVArch == 0x47 || pNv->NVArch == 0x49) {
635                 /* This is a big guess, but should be reasonable until we can narrow it down. */
636                 if (*db1_ratio) {
637                         special_bits = 0x1;
638                 } else {
639                         special_bits = 0x3;
640                 }
641         }
642
643         /* What exactly are the purpose of the upper 2 bits of pll_a and pll_b? */
644         /* Let's keep the special bits, if the bios already set them */
645         *pll_a = (special_bits << 30) | (p_best << 16) | (n1_best << 8) | (m1_best << 0);
646         *pll_b = (1 << 31) | (n2_best << 8) | (m2_best << 0);
647
648         if (*db1_ratio) {
649                 if (primary) {
650                         *reg580 |= NV_RAMDAC_580_VPLL1_ACTIVE;
651                 } else {
652                         *reg580 |= NV_RAMDAC_580_VPLL2_ACTIVE;
653                 }
654         } else {
655                 if (primary) {
656                         *reg580 &= ~NV_RAMDAC_580_VPLL1_ACTIVE;
657                 } else {
658                         *reg580 &= ~NV_RAMDAC_580_VPLL2_ACTIVE;
659                 }
660         }
661
662         if (*db1_ratio) {
663                 ErrorF("vpll: n1 %d m1 %d p %d db1_ratio %d\n", n1_best, m1_best, p_best, *db1_ratio);
664         } else {
665                 ErrorF("vpll: n1 %d n2 %d m1 %d m2 %d p %d db1_ratio %d\n", n1_best, n2_best, m1_best, m2_best, p_best, *db1_ratio);
666         }
667 }
668
669 static void nv40_crtc_save_state_pll(NVPtr pNv, RIVA_HW_STATE *state)
670 {
671         state->vpll1_a = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL);
672         state->vpll1_b = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL_B);
673         state->vpll2_a = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL2);
674         state->vpll2_b = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL2_B);
675         state->pllsel = nvReadRAMDAC0(pNv, NV_RAMDAC_PLL_SELECT);
676         state->sel_clk = nvReadRAMDAC0(pNv, NV_RAMDAC_SEL_CLK);
677         state->reg580 = nvReadRAMDAC0(pNv, NV_RAMDAC_580);
678         state->reg594 = nvReadRAMDAC0(pNv, NV_RAMDAC_594);
679 }
680
681 static void nv40_crtc_load_state_pll(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
682 {
683         ScrnInfoPtr pScrn = crtc->scrn;
684         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
685         NVPtr pNv = NVPTR(pScrn);
686         CARD32 fp_debug_0[2];
687         uint32_t index[2];
688         fp_debug_0[0] = nvReadRAMDAC(pNv, 0, NV_RAMDAC_FP_DEBUG_0);
689         fp_debug_0[1] = nvReadRAMDAC(pNv, 1, NV_RAMDAC_FP_DEBUG_0);
690
691         uint32_t reg_c040_old = nvReadMC(pNv, 0xc040);
692
693         /* The TMDS_PLL switch is on the actual ramdac */
694         if (state->crosswired) {
695                 index[0] = 1;
696                 index[1] = 0;
697                 ErrorF("Crosswired pll state load\n");
698         } else {
699                 index[0] = 0;
700                 index[1] = 1;
701         }
702
703         if (state->vpll2_b) {
704                 nvWriteRAMDAC(pNv, index[1], NV_RAMDAC_FP_DEBUG_0,
705                         fp_debug_0[index[1]] | NV_RAMDAC_FP_DEBUG_0_PWRDOWN_TMDS_PLL);
706
707                 /* Wait for the situation to stabilise */
708                 usleep(5000);
709
710                 uint32_t reg_c040 = pNv->misc_info.reg_c040;
711                 /* for vpll2 change bits 18 and 19 are disabled */
712                 reg_c040 &= ~(0x3 << 18);
713                 nvWriteMC(pNv, 0xc040, reg_c040);
714
715                 ErrorF("writing vpll2_a %08X\n", state->vpll2_a);
716                 ErrorF("writing vpll2_b %08X\n", state->vpll2_b);
717
718                 nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL2, state->vpll2_a);
719                 nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL2_B, state->vpll2_b);
720
721                 ErrorF("writing pllsel %08X\n", state->pllsel & ~NV_RAMDAC_PLL_SELECT_PLL_SOURCE_ALL);
722                 /* Let's keep the primary vpll off */
723                 nvWriteRAMDAC0(pNv, NV_RAMDAC_PLL_SELECT, state->pllsel & ~NV_RAMDAC_PLL_SELECT_PLL_SOURCE_ALL);
724
725                 nvWriteRAMDAC0(pNv, NV_RAMDAC_580, state->reg580);
726                 ErrorF("writing reg580 %08X\n", state->reg580);
727
728                 /* We need to wait a while */
729                 usleep(5000);
730                 nvWriteMC(pNv, 0xc040, pNv->misc_info.reg_c040);
731
732                 nvWriteRAMDAC(pNv, index[1], NV_RAMDAC_FP_DEBUG_0, fp_debug_0[index[1]]);
733
734                 /* Wait for the situation to stabilise */
735                 usleep(5000);
736         }
737
738         if (state->vpll1_b) {
739                 nvWriteRAMDAC(pNv, index[0], NV_RAMDAC_FP_DEBUG_0,
740                         fp_debug_0[index[0]] | NV_RAMDAC_FP_DEBUG_0_PWRDOWN_TMDS_PLL);
741
742                 /* Wait for the situation to stabilise */
743                 usleep(5000);
744
745                 uint32_t reg_c040 = pNv->misc_info.reg_c040;
746                 /* for vpll2 change bits 16 and 17 are disabled */
747                 reg_c040 &= ~(0x3 << 16);
748                 nvWriteMC(pNv, 0xc040, reg_c040);
749
750                 ErrorF("writing vpll1_a %08X\n", state->vpll1_a);
751                 ErrorF("writing vpll1_b %08X\n", state->vpll1_b);
752
753                 nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL, state->vpll1_a);
754                 nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL_B, state->vpll1_b);
755
756                 ErrorF("writing pllsel %08X\n", state->pllsel);
757                 nvWriteRAMDAC0(pNv, NV_RAMDAC_PLL_SELECT, state->pllsel);
758
759                 nvWriteRAMDAC0(pNv, NV_RAMDAC_580, state->reg580);
760                 ErrorF("writing reg580 %08X\n", state->reg580);
761
762                 /* We need to wait a while */
763                 usleep(5000);
764                 nvWriteMC(pNv, 0xc040, pNv->misc_info.reg_c040);
765
766                 nvWriteRAMDAC(pNv, index[0], NV_RAMDAC_FP_DEBUG_0, fp_debug_0[index[0]]);
767
768                 /* Wait for the situation to stabilise */
769                 usleep(5000);
770         }
771
772         /* Let's be sure not to wake up any crtc's from dpms. */
773         /* But we do want to keep our newly set crtc awake. */
774         if (nv_crtc->head == 1) {
775                 nvWriteMC(pNv, 0xc040, reg_c040_old | (pNv->misc_info.reg_c040 & (0x3 << 18)));
776         } else {
777                 nvWriteMC(pNv, 0xc040, reg_c040_old | (pNv->misc_info.reg_c040 & (0x3 << 16)));
778         }
779
780         ErrorF("writing sel_clk %08X\n", state->sel_clk);
781         nvWriteRAMDAC0(pNv, NV_RAMDAC_SEL_CLK, state->sel_clk);
782
783         ErrorF("writing reg594 %08X\n", state->reg594);
784         nvWriteRAMDAC0(pNv, NV_RAMDAC_594, state->reg594);
785 }
786
787 static void nv_crtc_save_state_pll(NVPtr pNv, RIVA_HW_STATE *state)
788 {
789         state->vpll = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL);
790         if(pNv->twoHeads) {
791                 state->vpll2 = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL2);
792         }
793         if(pNv->twoStagePLL) {
794                 state->vpllB = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL_B);
795                 state->vpll2B = nvReadRAMDAC0(pNv, NV_RAMDAC_VPLL2_B);
796         }
797         state->pllsel = nvReadRAMDAC0(pNv, NV_RAMDAC_PLL_SELECT);
798         state->sel_clk = nvReadRAMDAC0(pNv, NV_RAMDAC_SEL_CLK);
799 }
800
801
802 static void nv_crtc_load_state_pll(NVPtr pNv, RIVA_HW_STATE *state)
803 {
804         /* This sequence is important, the NV28 is very sensitive in this area. */
805         /* Keep pllsel last and sel_clk first. */
806         ErrorF("writing sel_clk %08X\n", state->sel_clk);
807         nvWriteRAMDAC0(pNv, NV_RAMDAC_SEL_CLK, state->sel_clk);
808
809         if (state->vpll2) {
810                 if(pNv->twoHeads) {
811                         ErrorF("writing vpll2 %08X\n", state->vpll2);
812                         nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL2, state->vpll2);
813                 }
814                 if(pNv->twoStagePLL) {
815                         ErrorF("writing vpll2B %08X\n", state->vpll2B);
816                         nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL2_B, state->vpll2B);
817                 }
818         }
819
820         if (state->vpll) {
821                 ErrorF("writing vpll %08X\n", state->vpll);
822                 nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL, state->vpll);
823                 if(pNv->twoStagePLL) {
824                         ErrorF("writing vpllB %08X\n", state->vpllB);
825                         nvWriteRAMDAC0(pNv, NV_RAMDAC_VPLL_B, state->vpllB);
826                 }
827         }
828
829         ErrorF("writing pllsel %08X\n", state->pllsel);
830         nvWriteRAMDAC0(pNv, NV_RAMDAC_PLL_SELECT, state->pllsel);
831 }
832
833 #define IS_NV44P (pNv->NVArch >= 0x44 ? 1 : 0)
834 #define SEL_CLK_OFFSET (nv_get_sel_clk_offset(pNv->NVArch, nv_output->bus))
835
836 #define WIPE_OTHER_CLOCKS(_sel_clk, _head, _bus) (nv_wipe_other_clocks(_sel_clk, pNv->NVArch, _head, _bus))
837
838 /*
839  * Calculate extended mode parameters (SVGA) and save in a 
840  * mode state structure.
841  * State is not specific to a single crtc, but shared.
842  */
843 void nv_crtc_calc_state_ext(
844         xf86CrtcPtr     crtc,
845         int                     bpp,
846         int                     DisplayWidth, /* Does this change after setting the mode? */
847         int                     CrtcHDisplay,
848         int                     CrtcVDisplay,
849         int                     dotClock,
850         int                     flags 
851 )
852 {
853         ScrnInfoPtr pScrn = crtc->scrn;
854         uint32_t pixelDepth, VClk = 0;
855         CARD32 CursorStart;
856         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
857         xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
858         NVCrtcRegPtr regp;
859         NVPtr pNv = NVPTR(pScrn);
860         RIVA_HW_STATE *state;
861         int num_crtc_enabled, i;
862
863         state = &pNv->ModeReg;
864
865         regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];
866
867         xf86OutputPtr output = NVGetOutputFromCRTC(crtc);
868         NVOutputPrivatePtr nv_output = NULL;
869         if (output) {
870                 nv_output = output->driver_private;
871         }
872
873         /*
874          * Extended RIVA registers.
875          */
876         pixelDepth = (bpp + 1)/8;
877         if (pNv->Architecture == NV_ARCH_40) {
878                 /* Does register 0x580 already have a value? */
879                 if (!state->reg580) {
880                         state->reg580 = pNv->misc_info.ramdac_0_reg_580;
881                 }
882                 if (nv_crtc->head == 1) {
883                         CalculateVClkNV4x(pScrn, dotClock, &VClk, &state->vpll2_a, &state->vpll2_b, &state->reg580, &state->db1_ratio[1], FALSE);
884                 } else {
885                         CalculateVClkNV4x(pScrn, dotClock, &VClk, &state->vpll1_a, &state->vpll1_b, &state->reg580, &state->db1_ratio[0], TRUE);
886                 }
887         } else if (pNv->twoStagePLL) {
888                 struct pll_lims pll_lim;
889                 int NM1, NM2, log2P;
890                 get_pll_limits(pScrn, 0, &pll_lim);
891                 VClk = getMNP_double(pNv, &pll_lim, dotClock, &NM1, &NM2, &log2P);
892                 state->pll = log2P << 16 | NM1;
893                 state->pllB = 1 << 31 | NM2;
894         } else {
895                 int NM, log2P;
896                 VClk = getMNP_single(pNv, dotClock, &NM, &log2P);
897                 state->pll = log2P << 16 | NM;
898         }
899
900         switch (pNv->Architecture) {
901         case NV_ARCH_04:
902                 nv4UpdateArbitrationSettings(VClk, 
903                                                 pixelDepth * 8, 
904                                                 &(state->arbitration0),
905                                                 &(state->arbitration1),
906                                                 pNv);
907                 regp->CRTC[NV_VGA_CRTCX_CURCTL0] = 0x00;
908                 regp->CRTC[NV_VGA_CRTCX_CURCTL1] = 0xbC;
909                 if (flags & V_DBLSCAN)
910                         regp->CRTC[NV_VGA_CRTCX_CURCTL1] |= 2;
911                 regp->CRTC[NV_VGA_CRTCX_CURCTL2] = 0x00000000;
912                 state->pllsel   |= NV_RAMDAC_PLL_SELECT_VCLK_RATIO_DB2 | NV_RAMDAC_PLL_SELECT_PLL_SOURCE_ALL; 
913                 state->config   = 0x00001114;
914                 regp->CRTC[NV_VGA_CRTCX_REPAINT1] = CrtcHDisplay < 1280 ? 0x04 : 0x00;
915                 break;
916         case NV_ARCH_10:
917         case NV_ARCH_20:
918         case NV_ARCH_30:
919         default:
920                 if (((pNv->Chipset & 0xfff0) == CHIPSET_C51) ||
921                         ((pNv->Chipset & 0xfff0) == CHIPSET_C512)) {
922                         state->arbitration0 = 128; 
923                         state->arbitration1 = 0x0480; 
924                 } else if (((pNv->Chipset & 0xffff) == CHIPSET_NFORCE) ||
925                         ((pNv->Chipset & 0xffff) == CHIPSET_NFORCE2)) {
926                         nForceUpdateArbitrationSettings(VClk,
927                                                 pixelDepth * 8,
928                                                 &(state->arbitration0),
929                                                 &(state->arbitration1),
930                                                 pNv);
931                 } else if (pNv->Architecture < NV_ARCH_30) {
932                         nv10UpdateArbitrationSettings(VClk, 
933                                                 pixelDepth * 8, 
934                                                 &(state->arbitration0),
935                                                 &(state->arbitration1),
936                                                 pNv);
937                 } else {
938                         nv30UpdateArbitrationSettings(pNv,
939                                                 &(state->arbitration0),
940                                                 &(state->arbitration1));
941                 }
942
943                 if (nv_crtc->head == 1) {
944                         CursorStart = pNv->Cursor2->offset;
945                 } else {
946                         CursorStart = pNv->Cursor->offset;
947                 }
948
949                 regp->CRTC[NV_VGA_CRTCX_CURCTL0] = 0x80 | (CursorStart >> 17);
950                 regp->CRTC[NV_VGA_CRTCX_CURCTL1] = (CursorStart >> 11) << 2;
951                 regp->CRTC[NV_VGA_CRTCX_CURCTL2] = CursorStart >> 24;
952
953                 if (flags & V_DBLSCAN) 
954                         regp->CRTC[NV_VGA_CRTCX_CURCTL1] |= 2;
955
956                 state->config   = nvReadFB(pNv, NV_PFB_CFG0);
957                 regp->CRTC[NV_VGA_CRTCX_REPAINT1] = CrtcHDisplay < 1280 ? 0x04 : 0x00;
958                 break;
959         }
960
961         /* okay do we have 2 CRTCs running ? */
962         num_crtc_enabled = 0;
963         for (i = 0; i < xf86_config->num_crtc; i++) {
964                 if (xf86_config->crtc[i]->enabled) {
965                         num_crtc_enabled++;
966                 }
967         }
968
969         ErrorF("There are %d CRTC's enabled\n", num_crtc_enabled);
970
971         if (pNv->Architecture < NV_ARCH_40) {
972                 /* We need this before the next code */
973                 if (nv_crtc->head == 1) {
974                         state->vpll2 = state->pll;
975                         state->vpll2B = state->pllB;
976                 } else {
977                         state->vpll = state->pll;
978                         state->vpllB = state->pllB;
979                 }
980         }
981
982         /* The main stuff seems to be valid for NV3x also. */
983         if (pNv->Architecture >= NV_ARCH_30) {
984                 /* This register is only used on the primary ramdac */
985                 /* This seems to be needed to select the proper clocks, otherwise bad things happen */
986
987                 if (!state->sel_clk)
988                         state->sel_clk = pNv->misc_info.sel_clk & ~(0xf << 16);
989
990                 if (output && (nv_output->type == OUTPUT_TMDS || nv_output->type == OUTPUT_LVDS)) {
991                         /* Only wipe when are a relevant (digital) output. */
992                         state->sel_clk &= ~(0xf << 16);
993                         Bool crossed_clocks = nv_output->preferred_output ^ nv_crtc->head;
994                         /* Even with two dvi, this should not conflict. */
995                         if (crossed_clocks) {
996                                 state->sel_clk |= (0x1 << 16);
997                         } else {
998                                 state->sel_clk |= (0x4 << 16);
999                         }
1000                 }
1001
1002                 /* Some cards, specifically dual dvi/lvds cards set another bitrange.
1003                  * I suspect inverse beheaviour to the normal bitrange, but i am not a 100% certain about this.
1004                  * This is all based on default settings found in mmio-traces.
1005                  * The blob never changes these, as it doesn't run unusual output configurations.
1006                  * It seems to prefer situations that avoid changing these bits (for a good reason?).
1007                  * I still don't know the purpose of value 2, it's similar to 4, but what exactly does it do?
1008                  */
1009
1010                 /* Some extra info:
1011                  * nv30:
1012                  *      bit 0           NVClk spread spectrum on/off
1013                  *      bit 2           MemClk spread spectrum on/off
1014                  *      bit 4           PixClk1 spread spectrum on/off
1015                  *      bit 6           PixClk2 spread spectrum on/off
1016
1017                  *      nv40:
1018                  *      what causes setting of bits not obvious but:
1019                  *      bits 4&5                relate to headA
1020                  *      bits 6&7                relate to headB
1021                 */
1022                 if (pNv->Architecture == NV_ARCH_40) {
1023                         for (i = 0; i < 4; i++) {
1024                                 uint32_t var = (state->sel_clk & (0xf << 4*i)) >> 4*i;
1025                                 if (var == 0x1 || var == 0x4) {
1026                                         state->sel_clk &= ~(0xf << 4*i);
1027                                         Bool crossed_clocks = nv_output->preferred_output ^ nv_crtc->head;
1028                                         if (crossed_clocks) {
1029                                                 state->sel_clk |= (0x4 << 4*i);
1030                                         } else {
1031                                                 state->sel_clk |= (0x1 << 4*i);
1032                                         }
1033                                         break; /* This should only occur once. */
1034                                 }
1035                         }
1036                 }
1037
1038                 /* Are we crosswired? */
1039                 if (output && nv_crtc->head != nv_output->preferred_output) {
1040                         state->crosswired = TRUE;
1041                 } else {
1042                         state->crosswired = FALSE;
1043                 }
1044
1045                 if (nv_crtc->head == 1) {
1046                         if (state->db1_ratio[1])
1047                                 ErrorF("We are a lover of the DB1 VCLK ratio\n");
1048                 } else if (nv_crtc->head == 0) {
1049                         if (state->db1_ratio[0])
1050                                 ErrorF("We are a lover of the DB1 VCLK ratio\n");
1051                 }
1052         } else {
1053                 /* Do NV1x/NV2x cards need anything in sel_clk? */
1054                 state->sel_clk = 0x0;
1055                 state->crosswired = FALSE;
1056         }
1057
1058         /* The NV40 seems to have more similarities to NV3x than other cards. */
1059         if (pNv->NVArch < 0x41) {
1060                 state->pllsel |= NV_RAMDAC_PLL_SELECT_PLL_SOURCE_NVPLL;
1061                 state->pllsel |= NV_RAMDAC_PLL_SELECT_PLL_SOURCE_MPLL;
1062         }
1063
1064         if (nv_crtc->head == 1) {
1065                 if (!state->db1_ratio[1]) {
1066                         state->pllsel |= NV_RAMDAC_PLL_SELECT_VCLK2_RATIO_DB2;
1067                 } else {
1068                         state->pllsel &= ~NV_RAMDAC_PLL_SELECT_VCLK2_RATIO_DB2;
1069                 }
1070                 state->pllsel |= NV_RAMDAC_PLL_SELECT_PLL_SOURCE_VPLL2;
1071         } else {
1072                 if (!state->db1_ratio[0]) {
1073                         state->pllsel |= NV_RAMDAC_PLL_SELECT_VCLK_RATIO_DB2;
1074                 } else {
1075                         state->pllsel &= ~NV_RAMDAC_PLL_SELECT_VCLK_RATIO_DB2;
1076                 }
1077                 state->pllsel |= NV_RAMDAC_PLL_SELECT_PLL_SOURCE_VPLL;
1078         }
1079
1080         /* The blob uses this always, so let's do the same */
1081         if (pNv->Architecture == NV_ARCH_40) {
1082                 state->pllsel |= NV_RAMDAC_PLL_SELECT_USE_VPLL2_TRUE;
1083         }
1084
1085         /* The primary output doesn't seem to care */
1086         if (nv_output->preferred_output == 1) { /* This is the "output" */
1087                 /* non-zero values are for analog, don't know about tv-out and the likes */
1088                 if (output && nv_output->type != OUTPUT_ANALOG) {
1089                         state->reg594 = 0x0;
1090                 } else {
1091                         /* Are we a flexible output? */
1092                         if (ffs(pNv->dcb_table.entry[nv_output->dcb_entry].or) & OUTPUT_0) {
1093                                 state->reg594 = 0x1;
1094                                 pNv->restricted_mode = FALSE;
1095                         } else {
1096                                 state->reg594 = 0x0;
1097                                 pNv->restricted_mode = TRUE;
1098                         }
1099
1100                         /* More values exist, but they seem related to the 3rd dac (tv-out?) somehow */
1101                         /* bit 16-19 are bits that are set on some G70 cards */
1102                         /* Those bits are also set to the 3rd OUTPUT register */
1103                         if (nv_crtc->head == 1) {
1104                                 state->reg594 |= 0x100;
1105                         }
1106                 }
1107         }
1108
1109         regp->CRTC[NV_VGA_CRTCX_FIFO0] = state->arbitration0;
1110         regp->CRTC[NV_VGA_CRTCX_FIFO_LWM] = state->arbitration1 & 0xff;
1111         if (pNv->Architecture >= NV_ARCH_30) {
1112                 regp->CRTC[NV_VGA_CRTCX_FIFO_LWM_NV30] = state->arbitration1 >> 8;
1113         }
1114
1115         regp->CRTC[NV_VGA_CRTCX_REPAINT0] = (((DisplayWidth/8) * pixelDepth) & 0x700) >> 3;
1116         regp->CRTC[NV_VGA_CRTCX_PIXEL] = (pixelDepth > 2) ? 3 : pixelDepth;
1117 }
1118
1119 static void
1120 nv_crtc_dpms(xf86CrtcPtr crtc, int mode)
1121 {
1122         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
1123         ScrnInfoPtr pScrn = crtc->scrn;
1124         NVPtr pNv = NVPTR(pScrn);
1125         unsigned char seq1 = 0, crtc17 = 0;
1126         unsigned char crtc1A;
1127
1128         ErrorF("nv_crtc_dpms is called for CRTC %d with mode %d\n", nv_crtc->head, mode);
1129
1130         NVCrtcSetOwner(crtc);
1131
1132         crtc1A = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_REPAINT1) & ~0xC0;
1133         switch(mode) {
1134                 case DPMSModeStandby:
1135                 /* Screen: Off; HSync: Off, VSync: On -- Not Supported */
1136                 seq1 = 0x20;
1137                 crtc17 = 0x80;
1138                 crtc1A |= 0x80;
1139                 break;
1140         case DPMSModeSuspend:
1141                 /* Screen: Off; HSync: On, VSync: Off -- Not Supported */
1142                 seq1 = 0x20;
1143                 crtc17 = 0x80;
1144                 crtc1A |= 0x40;
1145                 break;
1146         case DPMSModeOff:
1147                 /* Screen: Off; HSync: Off, VSync: Off */
1148                 seq1 = 0x20;
1149                 crtc17 = 0x00;
1150                 crtc1A |= 0xC0;
1151                 break;
1152         case DPMSModeOn:
1153         default:
1154                 /* Screen: On; HSync: On, VSync: On */
1155                 seq1 = 0x00;
1156                 crtc17 = 0x80;
1157                 break;
1158         }
1159
1160         NVVgaSeqReset(crtc, TRUE);
1161         /* Each head has it's own sequencer, so we can turn it off when we want */
1162         seq1 |= (NVReadVgaSeq(crtc, 0x01) & ~0x20);
1163         NVWriteVgaSeq(crtc, 0x1, seq1);
1164         crtc17 |= (NVReadVgaCrtc(crtc, NV_VGA_CRTCX_MODECTL) & ~0x80);
1165         usleep(10000);
1166         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_MODECTL, crtc17);
1167         NVVgaSeqReset(crtc, FALSE);
1168
1169         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_REPAINT1, crtc1A);
1170
1171         /* We can completely disable a vpll if the crtc is off. */
1172         if (pNv->Architecture == NV_ARCH_40) {
1173                 uint32_t reg_c040_old = nvReadMC(pNv, 0xc040);
1174                 if (mode == DPMSModeOn) {
1175                         nvWriteMC(pNv, 0xc040, reg_c040_old | (pNv->misc_info.reg_c040 & (0x3 << (16 + 2*nv_crtc->head))));
1176                 } else {
1177                         nvWriteMC(pNv, 0xc040, reg_c040_old & ~(pNv->misc_info.reg_c040 & (0x3 << (16 + 2*nv_crtc->head))));
1178                 }
1179         }
1180
1181         /* I hope this is the right place */
1182         if (crtc->enabled && mode == DPMSModeOn) {
1183                 pNv->crtc_active[nv_crtc->head] = TRUE;
1184         } else {
1185                 pNv->crtc_active[nv_crtc->head] = FALSE;
1186         }
1187 }
1188
1189 static Bool
1190 nv_crtc_mode_fixup(xf86CrtcPtr crtc, DisplayModePtr mode,
1191                      DisplayModePtr adjusted_mode)
1192 {
1193         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
1194         ErrorF("nv_crtc_mode_fixup is called for CRTC %d\n", nv_crtc->head);
1195
1196         xf86OutputPtr output = NVGetOutputFromCRTC(crtc);
1197         NVOutputPrivatePtr nv_output = NULL;
1198         if (output) {
1199                 nv_output = output->driver_private;
1200         }
1201
1202         /* For internal panels and gpu scaling on DVI we need the native mode */
1203         if (output && (nv_output->type == OUTPUT_LVDS || (nv_output->type == OUTPUT_TMDS && nv_output->scaling_mode != SCALE_PANEL))) {
1204                 adjusted_mode->HDisplay = nv_output->native_mode->HDisplay;
1205                 adjusted_mode->HSkew = nv_output->native_mode->HSkew;
1206                 adjusted_mode->HSyncStart = nv_output->native_mode->HSyncStart;
1207                 adjusted_mode->HSyncEnd = nv_output->native_mode->HSyncEnd;
1208                 adjusted_mode->HTotal = nv_output->native_mode->HTotal;
1209                 adjusted_mode->VDisplay = nv_output->native_mode->VDisplay;
1210                 adjusted_mode->VScan = nv_output->native_mode->VScan;
1211                 adjusted_mode->VSyncStart = nv_output->native_mode->VSyncStart;
1212                 adjusted_mode->VSyncEnd = nv_output->native_mode->VSyncEnd;
1213                 adjusted_mode->VTotal = nv_output->native_mode->VTotal;
1214                 adjusted_mode->Clock = nv_output->native_mode->Clock;
1215
1216                 xf86SetModeCrtc(adjusted_mode, INTERLACE_HALVE_V);
1217         }
1218
1219         return TRUE;
1220 }
1221
1222 static void
1223 nv_crtc_mode_set_vga(xf86CrtcPtr crtc, DisplayModePtr mode, DisplayModePtr adjusted_mode)
1224 {
1225         ScrnInfoPtr pScrn = crtc->scrn;
1226         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
1227         NVCrtcRegPtr regp;
1228         NVPtr pNv = NVPTR(pScrn);
1229         NVFBLayout *pLayout = &pNv->CurrentLayout;
1230         int depth = pScrn->depth;
1231
1232         regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];
1233
1234         /* Calculate our timings */
1235         int horizDisplay        = (mode->CrtcHDisplay >> 3)     - 1;
1236         int horizStart          = (mode->CrtcHSyncStart >> 3)   - 1;
1237         int horizEnd            = (mode->CrtcHSyncEnd >> 3)     - 1;
1238         int horizTotal          = (mode->CrtcHTotal >> 3)               - 5;
1239         int horizBlankStart     = (mode->CrtcHDisplay >> 3)             - 1;
1240         int horizBlankEnd       = (mode->CrtcHTotal >> 3)               - 1;
1241         int vertDisplay         = mode->CrtcVDisplay                    - 1;
1242         int vertStart           = mode->CrtcVSyncStart          - 1;
1243         int vertEnd             = mode->CrtcVSyncEnd                    - 1;
1244         int vertTotal           = mode->CrtcVTotal                      - 2;
1245         int vertBlankStart      = mode->CrtcVDisplay                    - 1;
1246         int vertBlankEnd        = mode->CrtcVTotal                      - 1;
1247
1248         Bool is_fp = FALSE;
1249
1250         xf86OutputPtr output = NVGetOutputFromCRTC(crtc);
1251         NVOutputPrivatePtr nv_output = NULL;
1252         if (output) {
1253                 nv_output = output->driver_private;
1254
1255                 if ((nv_output->type == OUTPUT_LVDS) || (nv_output->type == OUTPUT_TMDS))
1256                         is_fp = TRUE;
1257         }
1258
1259         ErrorF("Mode clock: %d\n", mode->Clock);
1260         ErrorF("Adjusted mode clock: %d\n", adjusted_mode->Clock);
1261
1262         /* Reverted to what nv did, because that works for all resolutions on flatpanels */
1263         if (is_fp) {
1264                 vertStart = vertTotal - 3;  
1265                 vertEnd = vertTotal - 2;
1266                 vertBlankStart = vertStart;
1267                 horizStart = horizTotal - 5;
1268                 horizEnd = horizTotal - 2;   
1269                 horizBlankEnd = horizTotal + 4;   
1270                 if (pNv->overlayAdaptor) { 
1271                         /* This reportedly works around Xv some overlay bandwidth problems*/
1272                         horizTotal += 2;
1273                 }
1274         }
1275
1276         if(mode->Flags & V_INTERLACE) 
1277                 vertTotal |= 1;
1278
1279         ErrorF("horizDisplay: 0x%X \n", horizDisplay);
1280         ErrorF("horizStart: 0x%X \n", horizStart);
1281         ErrorF("horizEnd: 0x%X \n", horizEnd);
1282         ErrorF("horizTotal: 0x%X \n", horizTotal);
1283         ErrorF("horizBlankStart: 0x%X \n", horizBlankStart);
1284         ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd);
1285         ErrorF("vertDisplay: 0x%X \n", vertDisplay);
1286         ErrorF("vertStart: 0x%X \n", vertStart);
1287         ErrorF("vertEnd: 0x%X \n", vertEnd);
1288         ErrorF("vertTotal: 0x%X \n", vertTotal);
1289         ErrorF("vertBlankStart: 0x%X \n", vertBlankStart);
1290         ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd);
1291
1292         /*
1293         * compute correct Hsync & Vsync polarity 
1294         */
1295         if ((mode->Flags & (V_PHSYNC | V_NHSYNC))
1296                 && (mode->Flags & (V_PVSYNC | V_NVSYNC))) {
1297
1298                 regp->MiscOutReg = 0x23;
1299                 if (mode->Flags & V_NHSYNC) regp->MiscOutReg |= 0x40;
1300                 if (mode->Flags & V_NVSYNC) regp->MiscOutReg |= 0x80;
1301         } else {
1302                 int VDisplay = mode->VDisplay;
1303                 if (mode->Flags & V_DBLSCAN)
1304                         VDisplay *= 2;
1305                 if (mode->VScan > 1)
1306                         VDisplay *= mode->VScan;
1307                 if (VDisplay < 400) {
1308                         regp->MiscOutReg = 0xA3;                /* +hsync -vsync */
1309                 } else if (VDisplay < 480) {
1310                         regp->MiscOutReg = 0x63;                /* -hsync +vsync */
1311                 } else if (VDisplay < 768) {
1312                         regp->MiscOutReg = 0xE3;                /* -hsync -vsync */
1313                 } else {
1314                         regp->MiscOutReg = 0x23;                /* +hsync +vsync */
1315                 }
1316         }
1317
1318         regp->MiscOutReg |= (mode->ClockIndex & 0x03) << 2;
1319
1320         /*
1321         * Time Sequencer
1322         */
1323         if (depth == 4) {
1324                 regp->Sequencer[0] = 0x02;
1325         } else {
1326                 regp->Sequencer[0] = 0x00;
1327         }
1328         /* 0x20 disables the sequencer */
1329         if (mode->Flags & V_CLKDIV2) {
1330                 regp->Sequencer[1] = 0x29;
1331         } else {
1332                 regp->Sequencer[1] = 0x21;
1333         }
1334         if (depth == 1) {
1335                 regp->Sequencer[2] = 1 << BIT_PLANE;
1336         } else {
1337                 regp->Sequencer[2] = 0x0F;
1338                 regp->Sequencer[3] = 0x00;                     /* Font select */
1339         }
1340         if (depth < 8) {
1341                 regp->Sequencer[4] = 0x06;                             /* Misc */
1342         } else {
1343                 regp->Sequencer[4] = 0x0E;                             /* Misc */
1344         }
1345
1346         /*
1347         * CRTC Controller
1348         */
1349         regp->CRTC[NV_VGA_CRTCX_HTOTAL]  = Set8Bits(horizTotal);
1350         regp->CRTC[NV_VGA_CRTCX_HDISPE]  = Set8Bits(horizDisplay);
1351         regp->CRTC[NV_VGA_CRTCX_HBLANKS]  = Set8Bits(horizBlankStart);
1352         regp->CRTC[NV_VGA_CRTCX_HBLANKE]  = SetBitField(horizBlankEnd,4:0,4:0) 
1353                                 | SetBit(7);
1354         regp->CRTC[NV_VGA_CRTCX_HSYNCS]  = Set8Bits(horizStart);
1355         regp->CRTC[NV_VGA_CRTCX_HSYNCE]  = SetBitField(horizBlankEnd,5:5,7:7)
1356                                 | SetBitField(horizEnd,4:0,4:0);
1357         regp->CRTC[NV_VGA_CRTCX_VTOTAL]  = SetBitField(vertTotal,7:0,7:0);
1358         regp->CRTC[NV_VGA_CRTCX_OVERFLOW]  = SetBitField(vertTotal,8:8,0:0)
1359                                 | SetBitField(vertDisplay,8:8,1:1)
1360                                 | SetBitField(vertStart,8:8,2:2)
1361                                 | SetBitField(vertBlankStart,8:8,3:3)
1362                                 | SetBit(4)
1363                                 | SetBitField(vertTotal,9:9,5:5)
1364                                 | SetBitField(vertDisplay,9:9,6:6)
1365                                 | SetBitField(vertStart,9:9,7:7);
1366         regp->CRTC[NV_VGA_CRTCX_PRROWSCN]  = 0x00;
1367         regp->CRTC[NV_VGA_CRTCX_MAXSCLIN]  = SetBitField(vertBlankStart,9:9,5:5)
1368                                 | SetBit(6)
1369                                 | ((mode->Flags & V_DBLSCAN) ? 0x80 : 0x00);
1370         regp->CRTC[NV_VGA_CRTCX_VGACURCTRL] = 0x00;
1371         regp->CRTC[0xb] = 0x00;
1372         regp->CRTC[NV_VGA_CRTCX_FBSTADDH] = 0x00;
1373         regp->CRTC[NV_VGA_CRTCX_FBSTADDL] = 0x00;
1374         regp->CRTC[0xe] = 0x00;
1375         regp->CRTC[0xf] = 0x00;
1376         regp->CRTC[NV_VGA_CRTCX_VSYNCS] = Set8Bits(vertStart);
1377         regp->CRTC[NV_VGA_CRTCX_VSYNCE] = SetBitField(vertEnd,3:0,3:0) | SetBit(5);
1378         regp->CRTC[NV_VGA_CRTCX_VDISPE] = Set8Bits(vertDisplay);
1379         regp->CRTC[0x14] = 0x00;
1380         regp->CRTC[NV_VGA_CRTCX_PITCHL] = ((pScrn->displayWidth/8)*(pLayout->bitsPerPixel/8));
1381         regp->CRTC[NV_VGA_CRTCX_VBLANKS] = Set8Bits(vertBlankStart);
1382         regp->CRTC[NV_VGA_CRTCX_VBLANKE] = Set8Bits(vertBlankEnd);
1383         /* 0x80 enables the sequencer, we don't want that */
1384         if (depth < 8) {
1385                 regp->CRTC[NV_VGA_CRTCX_MODECTL] = 0xE3 & ~0x80;
1386         } else {
1387                 regp->CRTC[NV_VGA_CRTCX_MODECTL] = 0xC3 & ~0x80;
1388         }
1389         regp->CRTC[NV_VGA_CRTCX_LINECOMP] = 0xff;
1390
1391         /* 
1392          * Some extended CRTC registers (they are not saved with the rest of the vga regs).
1393          */
1394
1395         regp->CRTC[NV_VGA_CRTCX_LSR] = SetBitField(horizBlankEnd,6:6,4:4)
1396                                 | SetBitField(vertBlankStart,10:10,3:3)
1397                                 | SetBitField(vertStart,10:10,2:2)
1398                                 | SetBitField(vertDisplay,10:10,1:1)
1399                                 | SetBitField(vertTotal,10:10,0:0);
1400
1401         regp->CRTC[NV_VGA_CRTCX_HEB] = SetBitField(horizTotal,8:8,0:0) 
1402                                 | SetBitField(horizDisplay,8:8,1:1)
1403                                 | SetBitField(horizBlankStart,8:8,2:2)
1404                                 | SetBitField(horizStart,8:8,3:3);
1405
1406         regp->CRTC[NV_VGA_CRTCX_EXTRA] = SetBitField(vertTotal,11:11,0:0)
1407                                 | SetBitField(vertDisplay,11:11,2:2)
1408                                 | SetBitField(vertStart,11:11,4:4)
1409                                 | SetBitField(vertBlankStart,11:11,6:6);
1410
1411         if(mode->Flags & V_INTERLACE) {
1412                 horizTotal = (horizTotal >> 1) & ~1;
1413                 regp->CRTC[NV_VGA_CRTCX_INTERLACE] = Set8Bits(horizTotal);
1414                 regp->CRTC[NV_VGA_CRTCX_HEB] |= SetBitField(horizTotal,8:8,4:4);
1415         } else {
1416                 regp->CRTC[NV_VGA_CRTCX_INTERLACE] = 0xff;  /* interlace off */
1417         }
1418
1419         /*
1420         * Theory resumes here....
1421         */
1422
1423         /*
1424         * Graphics Display Controller
1425         */
1426         regp->Graphics[0] = 0x00;
1427         regp->Graphics[1] = 0x00;
1428         regp->Graphics[2] = 0x00;
1429         regp->Graphics[3] = 0x00;
1430         if (depth == 1) {
1431                 regp->Graphics[4] = BIT_PLANE;
1432                 regp->Graphics[5] = 0x00;
1433         } else {
1434                 regp->Graphics[4] = 0x00;
1435                 if (depth == 4) {
1436                         regp->Graphics[5] = 0x02;
1437                 } else {
1438                         regp->Graphics[5] = 0x40;
1439                 }
1440         }
1441         regp->Graphics[6] = 0x05;   /* only map 64k VGA memory !!!! */
1442         regp->Graphics[7] = 0x0F;
1443         regp->Graphics[8] = 0xFF;
1444
1445         /* I ditched the mono stuff */
1446         regp->Attribute[0]  = 0x00; /* standard colormap translation */
1447         regp->Attribute[1]  = 0x01;
1448         regp->Attribute[2]  = 0x02;
1449         regp->Attribute[3]  = 0x03;
1450         regp->Attribute[4]  = 0x04;
1451         regp->Attribute[5]  = 0x05;
1452         regp->Attribute[6]  = 0x06;
1453         regp->Attribute[7]  = 0x07;
1454         regp->Attribute[8]  = 0x08;
1455         regp->Attribute[9]  = 0x09;
1456         regp->Attribute[10] = 0x0A;
1457         regp->Attribute[11] = 0x0B;
1458         regp->Attribute[12] = 0x0C;
1459         regp->Attribute[13] = 0x0D;
1460         regp->Attribute[14] = 0x0E;
1461         regp->Attribute[15] = 0x0F;
1462         /* These two below are non-vga */
1463         regp->Attribute[16] = 0x01;
1464         regp->Attribute[17] = 0x00;
1465         regp->Attribute[18] = 0x0F;
1466         regp->Attribute[19] = 0x00;
1467         regp->Attribute[20] = 0x00;
1468 }
1469
1470 #define MAX_H_VALUE(i) ((0x1ff + i) << 3)
1471 #define MAX_V_VALUE(i) ((0xfff + i) << 0)
1472
1473 /**
1474  * Sets up registers for the given mode/adjusted_mode pair.
1475  *
1476  * The clocks, CRTCs and outputs attached to this CRTC must be off.
1477  *
1478  * This shouldn't enable any clocks, CRTCs, or outputs, but they should
1479  * be easily turned on/off after this.
1480  */
1481 static void
1482 nv_crtc_mode_set_regs(xf86CrtcPtr crtc, DisplayModePtr mode, DisplayModePtr adjusted_mode)
1483 {
1484         ScrnInfoPtr pScrn = crtc->scrn;
1485         NVPtr pNv = NVPTR(pScrn);
1486         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
1487         NVFBLayout *pLayout = &pNv->CurrentLayout;
1488         NVCrtcRegPtr regp, savep;
1489         unsigned int i;
1490         Bool is_fp = FALSE;
1491         Bool is_lvds = FALSE;
1492
1493         regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];    
1494         savep = &pNv->SavedReg.crtc_reg[nv_crtc->head];
1495
1496         xf86OutputPtr output = NVGetOutputFromCRTC(crtc);
1497         NVOutputPrivatePtr nv_output = NULL;
1498         if (output) {
1499                 nv_output = output->driver_private;
1500
1501                 if ((nv_output->type == OUTPUT_LVDS) || (nv_output->type == OUTPUT_TMDS))
1502                         is_fp = TRUE;
1503
1504                 if (nv_output->type == OUTPUT_LVDS)
1505                         is_lvds = TRUE;
1506         }
1507
1508         /* Registers not directly related to the (s)vga mode */
1509
1510         /* bit2 = 0 -> fine pitched crtc granularity */
1511         /* The rest disables double buffering on CRTC access */
1512         regp->CRTC[NV_VGA_CRTCX_BUFFER] = 0xfa;
1513
1514         if (savep->CRTC[NV_VGA_CRTCX_LCD] <= 0xb) {
1515                 /* Common values are 0x0, 0x3, 0x8, 0xb, see logic below */
1516                 if (nv_crtc->head == 0) {
1517                         regp->CRTC[NV_VGA_CRTCX_LCD] = (1 << 3);
1518                 }
1519
1520                 if (is_fp) {
1521                         regp->CRTC[NV_VGA_CRTCX_LCD] |= (1 << 0) | (1 << 1);
1522                 }
1523         } else {
1524                 /* Let's keep any abnormal value there may be, like 0x54 or 0x79 */
1525                 regp->CRTC[NV_VGA_CRTCX_LCD] = savep->CRTC[NV_VGA_CRTCX_LCD];
1526         }
1527
1528         /* Sometimes 0x10 is used, what is this? */
1529         regp->CRTC[NV_VGA_CRTCX_59] = 0x0;
1530         /* Some kind of tmds switch for older cards */
1531         if (pNv->Architecture < NV_ARCH_40) {
1532                 regp->CRTC[NV_VGA_CRTCX_59] |= 0x1;
1533         }
1534
1535         /*
1536         * Initialize DAC palette.
1537         * Will only be written when depth != 8.
1538         */
1539         for (i = 0; i < 256; i++) {
1540                 regp->DAC[i*3] = i;
1541                 regp->DAC[(i*3)+1] = i;
1542                 regp->DAC[(i*3)+2] = i;
1543         }
1544
1545         /*
1546         * Calculate the extended registers.
1547         */
1548
1549         if(pLayout->depth < 24) {
1550                 i = pLayout->depth;
1551         } else {
1552                 i = 32;
1553         }
1554
1555         /* What is the meaning of this register? */
1556         /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */ 
1557         regp->CRTC[NV_VGA_CRTCX_FIFO1] = savep->CRTC[NV_VGA_CRTCX_FIFO1] & ~(1<<5);
1558
1559         /* NV40's don't set FPP units, unless in special conditions (then they set both) */
1560         /* But what are those special conditions? */
1561         if (pNv->Architecture <= NV_ARCH_30) {
1562                 if (is_fp) {
1563                         if(nv_crtc->head == 1) {
1564                                 regp->head |= NV_CRTC_FSEL_FPP1;
1565                         } else if (pNv->twoHeads) {
1566                                 regp->head |= NV_CRTC_FSEL_FPP2;
1567                         }
1568                 }
1569         } else {
1570                 /* Some G70 cards have either FPP1 or FPP2 set, copy this if it's already present */
1571                 if (nv_crtc->head == 1 && pNv->NVArch > 0x44) {
1572                         regp->head |= savep->head & (NV_CRTC_FSEL_FPP1 | NV_CRTC_FSEL_FPP2);
1573                 }
1574         }
1575
1576         /* Except for rare conditions I2C is enabled on the primary crtc */
1577         if (nv_crtc->head == 0) {
1578                 if (pNv->overlayAdaptor) {
1579                         regp->head |= NV_CRTC_FSEL_OVERLAY;
1580                 }
1581                 regp->head |= NV_CRTC_FSEL_I2C;
1582         }
1583
1584         /* This is not what nv does, but it is what the blob does (for nv4x at least) */
1585         /* This fixes my cursor corruption issue */
1586         regp->cursorConfig = 0x0;
1587         if(mode->Flags & V_DBLSCAN)
1588                 regp->cursorConfig |= (1 << 4);
1589         if (pNv->alphaCursor) {
1590                 /* bit28 means we go into alpha blend mode and not rely on the current ROP */
1591                 regp->cursorConfig |= 0x14011000;
1592         } else {
1593                 regp->cursorConfig |= 0x02000000;
1594         }
1595
1596         /* Unblock some timings */
1597         regp->CRTC[NV_VGA_CRTCX_FP_HTIMING] = 0;
1598         regp->CRTC[NV_VGA_CRTCX_FP_VTIMING] = 0;
1599
1600         /* What is the purpose of this register? */
1601         /* 0x14 may be disabled? */
1602         regp->CRTC[NV_VGA_CRTCX_26] = 0x20;
1603
1604         /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */
1605         if (is_lvds) {
1606                 regp->CRTC[NV_VGA_CRTCX_3B] = 0x11;
1607         } else if (is_fp) {
1608                 regp->CRTC[NV_VGA_CRTCX_3B] = 0x88;
1609         } else {
1610                 regp->CRTC[NV_VGA_CRTCX_3B] = 0x22;
1611         }
1612
1613         /* These values seem to vary */
1614         /* This register seems to be used by the bios to make certain decisions on some G70 cards? */
1615         regp->CRTC[NV_VGA_CRTCX_3C] = savep->CRTC[NV_VGA_CRTCX_3C];
1616
1617         /* 0x80 seems to be used very often, if not always */
1618         regp->CRTC[NV_VGA_CRTCX_45] = 0x80;
1619
1620         /* Some cards have 0x41 instead of 0x1 (for crtc 0), it doesn't hurt to just use the old value. */
1621         regp->CRTC[NV_VGA_CRTCX_4B] = savep->CRTC[NV_VGA_CRTCX_4B];
1622
1623         if (is_fp)
1624                 regp->CRTC[NV_VGA_CRTCX_4B] |= 0x80;
1625
1626         /* The blob seems to take the current value from crtc 0, add 4 to that and reuse the old value for crtc 1*/
1627         if (nv_crtc->head == 1) {
1628                 regp->CRTC[NV_VGA_CRTCX_52] = pNv->misc_info.crtc_0_reg_52;
1629         } else {
1630                 regp->CRTC[NV_VGA_CRTCX_52] = pNv->misc_info.crtc_0_reg_52 + 4;
1631         }
1632
1633         /* The exact purpose of this register is unknown, but we copy value from crtc0 */
1634         regp->unk81c = nvReadCRTC0(pNv, NV_CRTC_081C);
1635
1636         regp->unk830 = mode->CrtcVDisplay - 3;
1637         regp->unk834 = mode->CrtcVDisplay - 1;
1638
1639         /* This is what the blob does */
1640         regp->unk850 = nvReadCRTC(pNv, 0, NV_CRTC_0850);
1641
1642         /* Never ever modify gpio, unless you know very well what you're doing */
1643         regp->gpio = nvReadCRTC(pNv, 0, NV_CRTC_GPIO);
1644
1645         /* Switch to non-vga mode (the so called HSYNC mode) */
1646         regp->config = 0x2;
1647
1648         /* Some misc regs */
1649         regp->CRTC[NV_VGA_CRTCX_43] = 0x1;
1650         if (pNv->Architecture == NV_ARCH_40) {
1651                 regp->CRTC[NV_VGA_CRTCX_85] = 0xFF;
1652                 regp->CRTC[NV_VGA_CRTCX_86] = 0x1;
1653         }
1654
1655         /*
1656          * Calculate the state that is common to all crtc's (stored in the state struct).
1657          */
1658         ErrorF("crtc %d %d %d\n", nv_crtc->head, mode->CrtcHDisplay, pScrn->displayWidth);
1659         nv_crtc_calc_state_ext(crtc,
1660                                 i,
1661                                 pScrn->displayWidth,
1662                                 mode->CrtcHDisplay,
1663                                 mode->CrtcVDisplay,
1664                                 adjusted_mode->Clock,
1665                                 mode->Flags);
1666
1667         /* Enable slaved mode */
1668         if (is_fp) {
1669                 regp->CRTC[NV_VGA_CRTCX_PIXEL] |= (1 << 7);
1670         }
1671 }
1672
1673 static void
1674 nv_crtc_mode_set_ramdac_regs(xf86CrtcPtr crtc, DisplayModePtr mode, DisplayModePtr adjusted_mode)
1675 {
1676         ScrnInfoPtr pScrn = crtc->scrn;
1677         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
1678         NVCrtcRegPtr regp, savep;
1679         NVPtr pNv = NVPTR(pScrn);
1680         NVFBLayout *pLayout = &pNv->CurrentLayout;
1681         Bool is_fp = FALSE;
1682         Bool is_lvds = FALSE;
1683         float aspect_ratio, panel_ratio;
1684         uint32_t h_scale, v_scale;
1685
1686         regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];
1687         savep = &pNv->SavedReg.crtc_reg[nv_crtc->head];
1688
1689         xf86OutputPtr output = NVGetOutputFromCRTC(crtc);
1690         NVOutputPrivatePtr nv_output = NULL;
1691         if (output) {
1692                 nv_output = output->driver_private;
1693
1694                 if ((nv_output->type == OUTPUT_LVDS) || (nv_output->type == OUTPUT_TMDS))
1695                         is_fp = TRUE;
1696
1697                 if (nv_output->type == OUTPUT_LVDS)
1698                         is_lvds = TRUE;
1699         }
1700
1701         if (is_fp) {
1702                 regp->fp_horiz_regs[REG_DISP_END] = adjusted_mode->HDisplay - 1;
1703                 regp->fp_horiz_regs[REG_DISP_TOTAL] = adjusted_mode->HTotal - 1;
1704                 regp->fp_horiz_regs[REG_DISP_CRTC] = adjusted_mode->HDisplay;
1705                 regp->fp_horiz_regs[REG_DISP_SYNC_START] = adjusted_mode->HSyncStart - 1;
1706                 regp->fp_horiz_regs[REG_DISP_SYNC_END] = adjusted_mode->HSyncEnd - 1;
1707                 regp->fp_horiz_regs[REG_DISP_VALID_START] = adjusted_mode->HSkew;
1708                 regp->fp_horiz_regs[REG_DISP_VALID_END] = adjusted_mode->HDisplay - 1;
1709
1710                 regp->fp_vert_regs[REG_DISP_END] = adjusted_mode->VDisplay - 1;
1711                 regp->fp_vert_regs[REG_DISP_TOTAL] = adjusted_mode->VTotal - 1;
1712                 regp->fp_vert_regs[REG_DISP_CRTC] = adjusted_mode->VDisplay;
1713                 regp->fp_vert_regs[REG_DISP_SYNC_START] = adjusted_mode->VSyncStart - 1;
1714                 regp->fp_vert_regs[REG_DISP_SYNC_END] = adjusted_mode->VSyncEnd - 1;
1715                 regp->fp_vert_regs[REG_DISP_VALID_START] = 0;
1716                 regp->fp_vert_regs[REG_DISP_VALID_END] = adjusted_mode->VDisplay - 1;
1717
1718                 ErrorF("Horizontal:\n");
1719                 ErrorF("REG_DISP_END: 0x%X\n", regp->fp_horiz_regs[REG_DISP_END]);
1720                 ErrorF("REG_DISP_TOTAL: 0x%X\n", regp->fp_horiz_regs[REG_DISP_TOTAL]);
1721                 ErrorF("REG_DISP_CRTC: 0x%X\n", regp->fp_horiz_regs[REG_DISP_CRTC]);
1722                 ErrorF("REG_DISP_SYNC_START: 0x%X\n", regp->fp_horiz_regs[REG_DISP_SYNC_START]);
1723                 ErrorF("REG_DISP_SYNC_END: 0x%X\n", regp->fp_horiz_regs[REG_DISP_SYNC_END]);
1724                 ErrorF("REG_DISP_VALID_START: 0x%X\n", regp->fp_horiz_regs[REG_DISP_VALID_START]);
1725                 ErrorF("REG_DISP_VALID_END: 0x%X\n", regp->fp_horiz_regs[REG_DISP_VALID_END]);
1726
1727                 ErrorF("Vertical:\n");
1728                 ErrorF("REG_DISP_END: 0x%X\n", regp->fp_vert_regs[REG_DISP_END]);
1729                 ErrorF("REG_DISP_TOTAL: 0x%X\n", regp->fp_vert_regs[REG_DISP_TOTAL]);
1730                 ErrorF("REG_DISP_CRTC: 0x%X\n", regp->fp_vert_regs[REG_DISP_CRTC]);
1731                 ErrorF("REG_DISP_SYNC_START: 0x%X\n", regp->fp_vert_regs[REG_DISP_SYNC_START]);
1732                 ErrorF("REG_DISP_SYNC_END: 0x%X\n", regp->fp_vert_regs[REG_DISP_SYNC_END]);
1733                 ErrorF("REG_DISP_VALID_START: 0x%X\n", regp->fp_vert_regs[REG_DISP_VALID_START]);
1734                 ErrorF("REG_DISP_VALID_END: 0x%X\n", regp->fp_vert_regs[REG_DISP_VALID_END]);
1735         }
1736
1737         /*
1738         * bit0: positive vsync
1739         * bit4: positive hsync
1740         * bit8: enable center mode
1741         * bit9: enable native mode
1742         * bit26: a bit sometimes seen on some g70 cards
1743         * bit31: set for dual link LVDS
1744         * nv10reg contains a few more things, but i don't quite get what it all means.
1745         */
1746
1747         if (pNv->Architecture >= NV_ARCH_30) {
1748                 regp->fp_control = 0x01100000;
1749         } else {
1750                 regp->fp_control = 0x00000000;
1751         }
1752
1753         if (is_fp) {
1754                 regp->fp_control |= (1 << 28);
1755         } else {
1756                 regp->fp_control |= (2 << 28);
1757                 if (pNv->Architecture < NV_ARCH_30)
1758                         regp->fp_control |= (1 << 24);
1759         }
1760
1761         /* Some 7300GO cards get a quad view if this bit is set, even though they are duallink. */
1762         /* This was seen on 2 cards. */
1763         if (is_lvds && pNv->VBIOS.fp.dual_link && pNv->NVArch != 0x46) {
1764                 regp->fp_control |= (8 << 28);
1765         } else {
1766                 /* If the special bit exists, it exists on both ramdac's */
1767                 regp->fp_control |= nvReadRAMDAC0(pNv, NV_RAMDAC_FP_CONTROL) & (1 << 26);
1768         }
1769
1770         if (is_fp) {
1771                 if (nv_output->scaling_mode == SCALE_PANEL || is_lvds) { /* panel needs to scale */
1772                         regp->fp_control |= NV_RAMDAC_FP_CONTROL_MODE_CENTER;
1773                 /* This is also true for panel scaling, so we must put the panel scale check first */
1774                 } else if (mode->Clock == adjusted_mode->Clock) { /* native mode */
1775                         regp->fp_control |= NV_RAMDAC_FP_CONTROL_MODE_NATIVE;
1776                 } else { /* gpu needs to scale */
1777                         regp->fp_control |= NV_RAMDAC_FP_CONTROL_MODE_SCALE;
1778                 }
1779         }
1780
1781         /* Deal with vsync/hsync polarity */
1782         /* LVDS screens don't set this. */
1783         if (is_fp && !is_lvds) {
1784                 if (adjusted_mode->Flags & V_PVSYNC) {
1785                         regp->fp_control |= NV_RAMDAC_FP_CONTROL_VSYNC_POS;
1786                 }
1787
1788                 if (adjusted_mode->Flags & V_PHSYNC) {
1789                         regp->fp_control |= NV_RAMDAC_FP_CONTROL_HSYNC_POS;
1790                 }
1791         } else if (!is_lvds) {
1792                 /* The blob doesn't always do this, but often */
1793                 regp->fp_control |= NV_RAMDAC_FP_CONTROL_VSYNC_DISABLE;
1794                 regp->fp_control |= NV_RAMDAC_FP_CONTROL_HSYNC_DISABLE;
1795         }
1796
1797         if (is_fp) {
1798                 ErrorF("Pre-panel scaling\n");
1799                 ErrorF("panel-size:%dx%d\n", nv_output->fpWidth, nv_output->fpHeight);
1800                 panel_ratio = (nv_output->fpWidth)/(float)(nv_output->fpHeight);
1801                 ErrorF("panel_ratio=%f\n", panel_ratio);
1802                 aspect_ratio = (mode->HDisplay)/(float)(mode->VDisplay);
1803                 ErrorF("aspect_ratio=%f\n", aspect_ratio);
1804                 /* Scale factors is the so called 20.12 format, taken from Haiku */
1805                 h_scale = ((1 << 12) * mode->HDisplay)/nv_output->fpWidth;
1806                 v_scale = ((1 << 12) * mode->VDisplay)/nv_output->fpHeight;
1807                 ErrorF("h_scale=%d\n", h_scale);
1808                 ErrorF("v_scale=%d\n", v_scale);
1809
1810                 /* This can override HTOTAL and VTOTAL */
1811                 regp->debug_2 = 0;
1812
1813                 /* We want automatic scaling */
1814                 regp->debug_1 = 0;
1815
1816                 regp->fp_hvalid_start = 0;
1817                 regp->fp_hvalid_end = (nv_output->fpWidth - 1);
1818
1819                 regp->fp_vvalid_start = 0;
1820                 regp->fp_vvalid_end = (nv_output->fpHeight - 1);
1821
1822                 /* 0 = panel scaling */
1823                 if (nv_output->scaling_mode == SCALE_PANEL) {
1824                         ErrorF("Flat panel is doing the scaling.\n");
1825                 } else {
1826                         ErrorF("GPU is doing the scaling.\n");
1827
1828                         if (nv_output->scaling_mode == SCALE_ASPECT) {
1829                                 /* GPU scaling happens automaticly at a ratio of 1.33 */
1830                                 /* A 1280x1024 panel has a ratio of 1.25, we don't want to scale that at 4:3 resolutions */
1831                                 if (h_scale != (1 << 12) && (panel_ratio > (aspect_ratio + 0.10))) {
1832                                         uint32_t diff;
1833
1834                                         ErrorF("Scaling resolution on a widescreen panel\n");
1835
1836                                         /* Scaling in both directions needs to the same */
1837                                         h_scale = v_scale;
1838
1839                                         /* Set a new horizontal scale factor and enable testmode (bit12) */
1840                                         regp->debug_1 = ((h_scale >> 1) & 0xfff) | (1 << 12);
1841
1842                                         diff = nv_output->fpWidth - (((1 << 12) * mode->HDisplay)/h_scale);
1843                                         regp->fp_hvalid_start = diff/2;
1844                                         regp->fp_hvalid_end = nv_output->fpWidth - (diff/2) - 1;
1845                                 }
1846
1847                                 /* Same scaling, just for panels with aspect ratio's smaller than 1 */
1848                                 if (v_scale != (1 << 12) && (panel_ratio < (aspect_ratio - 0.10))) {
1849                                         uint32_t diff;
1850
1851                                         ErrorF("Scaling resolution on a portrait panel\n");
1852
1853                                         /* Scaling in both directions needs to the same */
1854                                         v_scale = h_scale;
1855
1856                                         /* Set a new vertical scale factor and enable testmode (bit28) */
1857                                         regp->debug_1 = (((v_scale >> 1) & 0xfff) << 16) | (1 << (12 + 16));
1858
1859                                         diff = nv_output->fpHeight - (((1 << 12) * mode->VDisplay)/v_scale);
1860                                         regp->fp_vvalid_start = diff/2;
1861                                         regp->fp_vvalid_end = nv_output->fpHeight - (diff/2) - 1;
1862                                 }
1863                         }
1864                 }
1865
1866                 ErrorF("Post-panel scaling\n");
1867         }
1868
1869         if (pNv->Architecture >= NV_ARCH_10) {
1870                 /* Bios and blob don't seem to do anything (else) */
1871                 regp->nv10_cursync = (1<<25);
1872         }
1873
1874         /* These are the common blob values, minus a few fp specific bit's */
1875         /* Let's keep the TMDS pll and fpclock running in all situations */
1876         regp->debug_0 = 0x1101100;
1877
1878         if (is_fp && nv_output->scaling_mode != SCALE_NOSCALE) {
1879                 regp->debug_0 |= NV_RAMDAC_FP_DEBUG_0_XSCALE_ENABLED;
1880                 regp->debug_0 |= NV_RAMDAC_FP_DEBUG_0_YSCALE_ENABLED;
1881         } else if (is_fp) { /* no_scale mode, so we must center it */
1882                 uint32_t diff;
1883
1884                 diff = nv_output->fpWidth - mode->HDisplay;
1885                 regp->fp_hvalid_start = diff/2;
1886                 regp->fp_hvalid_end = (nv_output->fpWidth - diff/2 - 1);
1887
1888                 diff = nv_output->fpHeight - mode->VDisplay;
1889                 regp->fp_vvalid_start = diff/2;
1890                 regp->fp_vvalid_end = (nv_output->fpHeight - diff/2 - 1);
1891         }
1892
1893         /* Is this crtc bound or output bound? */
1894         /* Does the bios TMDS script try to change this sometimes? */
1895         if (is_fp) {
1896                 /* I am not completely certain, but seems to be set only for dfp's */
1897                 regp->debug_0 |= NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED;
1898         }
1899
1900         if (output)
1901                 ErrorF("output %d debug_0 %08X\n", nv_output->preferred_output, regp->debug_0);
1902
1903         /* Flatpanel support needs at least a NV10 */
1904         if (pNv->twoHeads) {
1905                 /* The blob does this differently. */
1906                 /* TODO: Find out what precisely and why. */
1907                 /* Let's not destroy any bits that were already present. */
1908                 if (pNv->FPDither || (is_lvds && pNv->VBIOS.fp.if_is_18bit)) {
1909                         if (pNv->NVArch == 0x11) {
1910                                 regp->dither = savep->dither | 0x00010000;
1911                         } else {
1912                                 regp->dither = savep->dither | 0x00000001;
1913                         }
1914                 } else {
1915                         regp->dither = savep->dither;
1916                 }
1917         }
1918
1919         /* Kindly borrowed from haiku driver */
1920         /* bit4 and bit5 activate indirect mode trough color palette */
1921         switch (pLayout->depth) {
1922                 case 32:
1923                 case 16:
1924                         regp->general = 0x00101130;
1925                         break;
1926                 case 24:
1927                 case 15:
1928                         regp->general = 0x00100130;
1929                         break;
1930                 case 8:
1931                 default:
1932                         regp->general = 0x00101100;
1933                         break;
1934         }
1935
1936         if (pNv->alphaCursor) {
1937                 /* PIPE_LONG mode, something to do with the size of the cursor? */
1938                 regp->general |= (1<<29);
1939         }
1940
1941         /* Some values the blob sets */
1942         /* This may apply to the real ramdac that is being used (for crosswired situations) */
1943         /* Nevertheless, it's unlikely to cause many problems, since the values are equal for both */
1944         regp->unk_a20 = 0x0;
1945         regp->unk_a24 = 0xfffff;
1946         regp->unk_a34 = 0x1;
1947 }
1948
1949 /**
1950  * Sets up registers for the given mode/adjusted_mode pair.
1951  *
1952  * The clocks, CRTCs and outputs attached to this CRTC must be off.
1953  *
1954  * This shouldn't enable any clocks, CRTCs, or outputs, but they should
1955  * be easily turned on/off after this.
1956  */
1957 static void
1958 nv_crtc_mode_set(xf86CrtcPtr crtc, DisplayModePtr mode,
1959                  DisplayModePtr adjusted_mode,
1960                  int x, int y)
1961 {
1962         ScrnInfoPtr pScrn = crtc->scrn;
1963         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
1964         NVPtr pNv = NVPTR(pScrn);
1965         NVFBLayout *pLayout = &pNv->CurrentLayout;
1966
1967         ErrorF("nv_crtc_mode_set is called for CRTC %d\n", nv_crtc->head);
1968
1969         xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Mode on CRTC %d\n", nv_crtc->head);
1970         xf86PrintModeline(pScrn->scrnIndex, mode);
1971         NVCrtcSetOwner(crtc);
1972
1973         nv_crtc_mode_set_vga(crtc, mode, adjusted_mode);
1974         nv_crtc_mode_set_regs(crtc, mode, adjusted_mode);
1975         nv_crtc_mode_set_ramdac_regs(crtc, mode, adjusted_mode);
1976
1977         NVVgaProtect(crtc, TRUE);
1978         nv_crtc_load_state_ramdac(crtc, &pNv->ModeReg);
1979         nv_crtc_load_state_ext(crtc, &pNv->ModeReg, FALSE);
1980         if (pLayout->depth != 8)
1981                 NVCrtcLoadPalette(crtc);
1982         nv_crtc_load_state_vga(crtc, &pNv->ModeReg);
1983         if (pNv->Architecture == NV_ARCH_40) {
1984                 nv40_crtc_load_state_pll(crtc, &pNv->ModeReg);
1985         } else {
1986                 nv_crtc_load_state_pll(pNv, &pNv->ModeReg);
1987         }
1988
1989         NVVgaProtect(crtc, FALSE);
1990
1991         NVCrtcSetBase(crtc, x, y);
1992
1993 #if X_BYTE_ORDER == X_BIG_ENDIAN
1994         /* turn on LFB swapping */
1995         {
1996                 unsigned char tmp;
1997
1998                 tmp = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_SWAPPING);
1999                 tmp |= (1 << 7);
2000                 NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_SWAPPING, tmp);
2001         }
2002 #endif
2003 }
2004
2005 /* This functions generates data that is not saved, but still is needed. */
2006 void nv_crtc_restore_generate(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
2007 {
2008         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2009         int i;
2010         NVCrtcRegPtr regp = &state->crtc_reg[nv_crtc->head];
2011
2012         /* It's a good idea to also save a default palette on shutdown. */
2013         for (i = 0; i < 256; i++) {
2014                 regp->DAC[i*3] = i;
2015                 regp->DAC[(i*3)+1] = i;
2016                 regp->DAC[(i*3)+2] = i;
2017         }
2018 }
2019
2020 void nv_crtc_save(xf86CrtcPtr crtc)
2021 {
2022         ScrnInfoPtr pScrn = crtc->scrn;
2023         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2024         NVPtr pNv = NVPTR(pScrn);
2025
2026         ErrorF("nv_crtc_save is called for CRTC %d\n", nv_crtc->head);
2027
2028         /* We just came back from terminal, so unlock */
2029         NVCrtcLockUnlock(crtc, FALSE);
2030
2031         NVCrtcSetOwner(crtc);
2032         nv_crtc_restore_generate(crtc, &pNv->SavedReg);
2033         nv_crtc_save_state_ramdac(crtc, &pNv->SavedReg);
2034         nv_crtc_save_state_vga(crtc, &pNv->SavedReg);
2035         nv_crtc_save_state_ext(crtc, &pNv->SavedReg);
2036         if (pNv->Architecture == NV_ARCH_40) {
2037                 nv40_crtc_save_state_pll(pNv, &pNv->SavedReg);
2038         } else {
2039                 nv_crtc_save_state_pll(pNv, &pNv->SavedReg);
2040         }
2041 }
2042
2043 void nv_crtc_restore(xf86CrtcPtr crtc)
2044 {
2045         ScrnInfoPtr pScrn = crtc->scrn;
2046         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2047         NVPtr pNv = NVPTR(pScrn);
2048         RIVA_HW_STATE *state;
2049         NVCrtcRegPtr savep;
2050
2051         state = &pNv->SavedReg;
2052         savep = &pNv->SavedReg.crtc_reg[nv_crtc->head];
2053
2054         ErrorF("nv_crtc_restore is called for CRTC %d\n", nv_crtc->head);
2055
2056         NVCrtcSetOwner(crtc);
2057
2058         /* Just to be safe */
2059         NVCrtcLockUnlock(crtc, FALSE);
2060
2061         NVVgaProtect(crtc, TRUE);
2062         nv_crtc_load_state_ramdac(crtc, &pNv->SavedReg);
2063         nv_crtc_load_state_ext(crtc, &pNv->SavedReg, TRUE);
2064         if (savep->general & 0x30) /* Palette mode */
2065                 NVCrtcLoadPalette(crtc);
2066         nv_crtc_load_state_vga(crtc, &pNv->SavedReg);
2067         if (pNv->Architecture == NV_ARCH_40) {
2068                 nv40_crtc_load_state_pll(crtc, &pNv->SavedReg);
2069         } else {
2070                 nv_crtc_load_state_pll(pNv, &pNv->SavedReg);
2071         }
2072         nvWriteVGA(pNv, NV_VGA_CRTCX_OWNER, pNv->vtOWNER);
2073         NVVgaProtect(crtc, FALSE);
2074 }
2075
2076 void
2077 NVResetCrtcConfig(xf86CrtcPtr crtc, Bool set)
2078 {
2079         ScrnInfoPtr pScrn = crtc->scrn;
2080         NVPtr pNv = NVPTR(pScrn);
2081         CARD32 val = 0;
2082
2083         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2084
2085         if (set) {
2086                 NVCrtcRegPtr regp;
2087
2088                 regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];
2089                 val = regp->head;
2090         }
2091
2092         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_FSEL, val);
2093 }
2094
2095 void nv_crtc_prepare(xf86CrtcPtr crtc)
2096 {
2097         ScrnInfoPtr pScrn = crtc->scrn;
2098         NVPtr pNv = NVPTR(pScrn);
2099         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2100
2101         ErrorF("nv_crtc_prepare is called for CRTC %d\n", nv_crtc->head);
2102
2103         /* Just in case */
2104         NVCrtcLockUnlock(crtc, 0);
2105
2106         NVResetCrtcConfig(crtc, FALSE);
2107
2108         crtc->funcs->dpms(crtc, DPMSModeOff);
2109
2110         /* Sync the engine before adjust mode */
2111         if (pNv->EXADriverPtr) {
2112                 exaMarkSync(pScrn->pScreen);
2113                 exaWaitSync(pScrn->pScreen);
2114         }
2115
2116         NVCrtcBlankScreen(crtc, FALSE); /* Blank screen */
2117
2118         /* Some more preperation. */
2119         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_CONFIG, 0x1); /* Go to non-vga mode/out of enhanced mode */
2120         uint32_t reg900 = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_900);
2121         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_900, reg900 & ~0x10000);
2122         /* Set FP_CONTROL to a neutral mode, (almost) off i believe. */
2123         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_CONTROL, 0x21100222);
2124
2125         usleep(5000); /* Give it some time to settle */
2126 }
2127
2128 void nv_crtc_commit(xf86CrtcPtr crtc)
2129 {
2130         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2131         ErrorF("nv_crtc_commit for CRTC %d\n", nv_crtc->head);
2132
2133         crtc->funcs->dpms (crtc, DPMSModeOn);
2134
2135         if (crtc->scrn->pScreen != NULL)
2136                 xf86_reload_cursors (crtc->scrn->pScreen);
2137
2138         NVResetCrtcConfig(crtc, TRUE);
2139 }
2140
2141 static Bool nv_crtc_lock(xf86CrtcPtr crtc)
2142 {
2143         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2144         ErrorF("nv_crtc_lock is called for CRTC %d\n", nv_crtc->head);
2145
2146         return FALSE;
2147 }
2148
2149 static void nv_crtc_unlock(xf86CrtcPtr crtc)
2150 {
2151         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2152         ErrorF("nv_crtc_unlock is called for CRTC %d\n", nv_crtc->head);
2153 }
2154
2155 static void
2156 nv_crtc_gamma_set(xf86CrtcPtr crtc, CARD16 *red, CARD16 *green, CARD16 *blue,
2157                                         int size)
2158 {
2159         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2160         ScrnInfoPtr pScrn = crtc->scrn;
2161         NVPtr pNv = NVPTR(pScrn);
2162         int i, j;
2163
2164         NVCrtcRegPtr regp;
2165         regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];
2166
2167         switch (pNv->CurrentLayout.depth) {
2168         case 15:
2169                 /* R5G5B5 */
2170                 /* We've got 5 bit (32 values) colors and 256 registers for each color */
2171                 for (i = 0; i < 32; i++) {
2172                         for (j = 0; j < 8; j++) {
2173                                 regp->DAC[(i*8 + j) * 3 + 0] = red[i] >> 8;
2174                                 regp->DAC[(i*8 + j) * 3 + 1] = green[i] >> 8;
2175                                 regp->DAC[(i*8 + j) * 3 + 2] = blue[i] >> 8;
2176                         }
2177                 }
2178                 break;
2179         case 16:
2180                 /* R5G6B5 */
2181                 /* First deal with the 5 bit colors */
2182                 for (i = 0; i < 32; i++) {
2183                         for (j = 0; j < 8; j++) {
2184                                 regp->DAC[(i*8 + j) * 3 + 0] = red[i] >> 8;
2185                                 regp->DAC[(i*8 + j) * 3 + 2] = blue[i] >> 8;
2186                         }
2187                 }
2188                 /* Now deal with the 6 bit color */
2189                 for (i = 0; i < 64; i++) {
2190                         for (j = 0; j < 4; j++) {
2191                                 regp->DAC[(i*4 + j) * 3 + 1] = green[i] >> 8;
2192                         }
2193                 }
2194                 break;
2195         default:
2196                 /* R8G8B8 */
2197                 for (i = 0; i < 256; i++) {
2198                         regp->DAC[i * 3] = red[i] >> 8;
2199                         regp->DAC[(i * 3) + 1] = green[i] >> 8;
2200                         regp->DAC[(i * 3) + 2] = blue[i] >> 8;
2201                 }
2202                 break;
2203         }
2204
2205         NVCrtcLoadPalette(crtc);
2206 }
2207
2208 /**
2209  * Allocates memory for a locked-in-framebuffer shadow of the given
2210  * width and height for this CRTC's rotated shadow framebuffer.
2211  */
2212  
2213 static void *
2214 nv_crtc_shadow_allocate (xf86CrtcPtr crtc, int width, int height)
2215 {
2216         ErrorF("nv_crtc_shadow_allocate is called\n");
2217         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2218         ScrnInfoPtr pScrn = crtc->scrn;
2219 #if !NOUVEAU_EXA_PIXMAPS
2220         ScreenPtr pScreen = pScrn->pScreen;
2221 #endif /* !NOUVEAU_EXA_PIXMAPS */
2222         NVPtr pNv = NVPTR(pScrn);
2223         void *offset;
2224
2225         unsigned long rotate_pitch;
2226         int size, align = 64;
2227
2228         rotate_pitch = pScrn->displayWidth * (pScrn->bitsPerPixel/8);
2229         size = rotate_pitch * height;
2230
2231         assert(nv_crtc->shadow == NULL);
2232 #if NOUVEAU_EXA_PIXMAPS
2233         if (nouveau_bo_new(pNv->dev, NOUVEAU_BO_VRAM | NOUVEAU_BO_PIN,
2234                         align, size, &nv_crtc->shadow)) {
2235                 ErrorF("Failed to allocate memory for shadow buffer!\n");
2236                 return NULL;
2237         }
2238
2239         if (nv_crtc->shadow && nouveau_bo_map(nv_crtc->shadow, NOUVEAU_BO_RDWR)) {
2240                 xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
2241                                 "Failed to map shadow buffer.\n");
2242                 return NULL;
2243         }
2244
2245         offset = nv_crtc->shadow->map;
2246 #else
2247         nv_crtc->shadow = exaOffscreenAlloc(pScreen, size, align, TRUE, NULL, NULL);
2248         if (nv_crtc->shadow == NULL) {
2249                 xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
2250                         "Couldn't allocate shadow memory for rotated CRTC\n");
2251                 return NULL;
2252         }
2253         offset = pNv->FB->map + nv_crtc->shadow->offset;
2254 #endif /* NOUVEAU_EXA_PIXMAPS */
2255
2256         return offset;
2257 }
2258
2259 /**
2260  * Creates a pixmap for this CRTC's rotated shadow framebuffer.
2261  */
2262 static PixmapPtr
2263 nv_crtc_shadow_create(xf86CrtcPtr crtc, void *data, int width, int height)
2264 {
2265         ErrorF("nv_crtc_shadow_create is called\n");
2266         ScrnInfoPtr pScrn = crtc->scrn;
2267 #if NOUVEAU_EXA_PIXMAPS
2268         ScreenPtr pScreen = pScrn->pScreen;
2269         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2270 #endif /* NOUVEAU_EXA_PIXMAPS */
2271         unsigned long rotate_pitch;
2272         PixmapPtr rotate_pixmap;
2273 #if NOUVEAU_EXA_PIXMAPS
2274         struct nouveau_pixmap *nvpix;
2275 #endif /* NOUVEAU_EXA_PIXMAPS */
2276
2277         if (!data)
2278                 data = crtc->funcs->shadow_allocate (crtc, width, height);
2279
2280         rotate_pitch = pScrn->displayWidth * (pScrn->bitsPerPixel/8);
2281
2282 #if NOUVEAU_EXA_PIXMAPS
2283         /* Create a dummy pixmap, to get a private that will be accepted by the system.*/
2284         rotate_pixmap = pScreen->CreatePixmap(pScreen, 
2285                                                                 0, /* width */
2286                                                                 0, /* height */
2287         #ifdef CREATE_PIXMAP_USAGE_SCRATCH /* there seems to have been no api bump */
2288                                                                 pScrn->depth,
2289                                                                 0);
2290         #else
2291                                                                 pScrn->depth);
2292         #endif /* CREATE_PIXMAP_USAGE_SCRATCH */
2293 #else
2294         rotate_pixmap = GetScratchPixmapHeader(pScrn->pScreen,
2295                                                                 width, height,
2296                                                                 pScrn->depth,
2297                                                                 pScrn->bitsPerPixel,
2298                                                                 rotate_pitch,
2299                                                                 data);
2300 #endif /* NOUVEAU_EXA_PIXMAPS */
2301
2302         if (rotate_pixmap == NULL) {
2303                 xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
2304                         "Couldn't allocate shadow pixmap for rotated CRTC\n");
2305         }
2306
2307 #if NOUVEAU_EXA_PIXMAPS
2308         nvpix = exaGetPixmapDriverPrivate(rotate_pixmap);
2309         if (!nvpix) {
2310                 ErrorF("No shadow private, stage 1\n");
2311         } else {
2312                 nvpix->bo = nv_crtc->shadow;
2313                 nvpix->mapped = TRUE;
2314         }
2315
2316         /* Modify the pixmap to actually be the one we need. */
2317         pScreen->ModifyPixmapHeader(rotate_pixmap,
2318                                         width,
2319                                         height,
2320                                         pScrn->depth,
2321                                         pScrn->bitsPerPixel,
2322                                         rotate_pitch,
2323                                         data);
2324
2325         nvpix = exaGetPixmapDriverPrivate(rotate_pixmap);
2326         if (!nvpix || !nvpix->bo)
2327                 ErrorF("No shadow private, stage 2\n");
2328 #endif /* NOUVEAU_EXA_PIXMAPS */
2329
2330         return rotate_pixmap;
2331 }
2332
2333 static void
2334 nv_crtc_shadow_destroy(xf86CrtcPtr crtc, PixmapPtr rotate_pixmap, void *data)
2335 {
2336         ErrorF("nv_crtc_shadow_destroy is called\n");
2337         ScrnInfoPtr pScrn = crtc->scrn;
2338         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2339         ScreenPtr pScreen = pScrn->pScreen;
2340
2341         if (rotate_pixmap) { /* This should also unmap the buffer object if relevant. */
2342                 pScreen->DestroyPixmap(rotate_pixmap);
2343         }
2344
2345 #if !NOUVEAU_EXA_PIXMAPS
2346         if (data && nv_crtc->shadow) {
2347                 exaOffscreenFree(pScreen, nv_crtc->shadow);
2348         }
2349 #endif /* !NOUVEAU_EXA_PIXMAPS */
2350
2351         nv_crtc->shadow = NULL;
2352 }
2353
2354 /* NV04-NV10 doesn't support alpha cursors */
2355 static const xf86CrtcFuncsRec nv_crtc_funcs = {
2356         .dpms = nv_crtc_dpms,
2357         .save = nv_crtc_save, /* XXX */
2358         .restore = nv_crtc_restore, /* XXX */
2359         .mode_fixup = nv_crtc_mode_fixup,
2360         .mode_set = nv_crtc_mode_set,
2361         .prepare = nv_crtc_prepare,
2362         .commit = nv_crtc_commit,
2363         .destroy = NULL, /* XXX */
2364         .lock = nv_crtc_lock,
2365         .unlock = nv_crtc_unlock,
2366         .set_cursor_colors = nv_crtc_set_cursor_colors,
2367         .set_cursor_position = nv_crtc_set_cursor_position,
2368         .show_cursor = nv_crtc_show_cursor,
2369         .hide_cursor = nv_crtc_hide_cursor,
2370         .load_cursor_image = nv_crtc_load_cursor_image,
2371         .gamma_set = nv_crtc_gamma_set,
2372         .shadow_create = nv_crtc_shadow_create,
2373         .shadow_allocate = nv_crtc_shadow_allocate,
2374         .shadow_destroy = nv_crtc_shadow_destroy,
2375 };
2376
2377 /* NV11 and up has support for alpha cursors. */ 
2378 /* Due to different maximum sizes we cannot allow it to use normal cursors */
2379 static const xf86CrtcFuncsRec nv11_crtc_funcs = {
2380         .dpms = nv_crtc_dpms,
2381         .save = nv_crtc_save, /* XXX */
2382         .restore = nv_crtc_restore, /* XXX */
2383         .mode_fixup = nv_crtc_mode_fixup,
2384         .mode_set = nv_crtc_mode_set,
2385         .prepare = nv_crtc_prepare,
2386         .commit = nv_crtc_commit,
2387         .destroy = NULL, /* XXX */
2388         .lock = nv_crtc_lock,
2389         .unlock = nv_crtc_unlock,
2390         .set_cursor_colors = NULL, /* Alpha cursors do not need this */
2391         .set_cursor_position = nv_crtc_set_cursor_position,
2392         .show_cursor = nv_crtc_show_cursor,
2393         .hide_cursor = nv_crtc_hide_cursor,
2394         .load_cursor_argb = nv_crtc_load_cursor_argb,
2395         .gamma_set = nv_crtc_gamma_set,
2396         .shadow_create = nv_crtc_shadow_create,
2397         .shadow_allocate = nv_crtc_shadow_allocate,
2398         .shadow_destroy = nv_crtc_shadow_destroy,
2399 };
2400
2401
2402 void
2403 nv_crtc_init(ScrnInfoPtr pScrn, int crtc_num)
2404 {
2405         NVPtr pNv = NVPTR(pScrn);
2406         xf86CrtcPtr crtc;
2407         NVCrtcPrivatePtr nv_crtc;
2408
2409         if (pNv->NVArch >= 0x11) {
2410                 crtc = xf86CrtcCreate (pScrn, &nv11_crtc_funcs);
2411         } else {
2412                 crtc = xf86CrtcCreate (pScrn, &nv_crtc_funcs);
2413         }
2414         if (crtc == NULL)
2415                 return;
2416
2417         nv_crtc = xnfcalloc (sizeof (NVCrtcPrivateRec), 1);
2418         nv_crtc->head = crtc_num;
2419
2420         crtc->driver_private = nv_crtc;
2421
2422         NVCrtcLockUnlock(crtc, FALSE);
2423 }
2424
2425 static void nv_crtc_load_state_vga(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
2426 {
2427         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2428         int i;
2429         NVCrtcRegPtr regp;
2430
2431         regp = &state->crtc_reg[nv_crtc->head];
2432
2433         NVWriteMiscOut(crtc, regp->MiscOutReg);
2434
2435         for (i = 1; i < 5; i++)
2436                 NVWriteVgaSeq(crtc, i, regp->Sequencer[i]);
2437
2438         /* Ensure CRTC registers 0-7 are unlocked by clearing bit 7 of CRTC[17] */
2439         NVWriteVgaCrtc(crtc, 17, regp->CRTC[17] & ~0x80);
2440
2441         for (i = 0; i < 25; i++)
2442                 NVWriteVgaCrtc(crtc, i, regp->CRTC[i]);
2443
2444         for (i = 0; i < 9; i++)
2445                 NVWriteVgaGr(crtc, i, regp->Graphics[i]);
2446
2447         NVEnablePalette(crtc);
2448         for (i = 0; i < 21; i++)
2449                 NVWriteVgaAttr(crtc, i, regp->Attribute[i]);
2450
2451         NVDisablePalette(crtc);
2452 }
2453
2454 static void nv_crtc_fix_nv40_hw_cursor(xf86CrtcPtr crtc)
2455 {
2456         /* TODO - implement this properly */
2457         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2458         ScrnInfoPtr pScrn = crtc->scrn;
2459         NVPtr pNv = NVPTR(pScrn);
2460
2461         if (pNv->Architecture == NV_ARCH_40) {  /* HW bug */
2462                 volatile CARD32 curpos = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_CURSOR_POS);
2463                 nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_CURSOR_POS, curpos);
2464         }
2465 }
2466 static void nv_crtc_load_state_ext(xf86CrtcPtr crtc, RIVA_HW_STATE *state, Bool override)
2467 {
2468         ScrnInfoPtr pScrn = crtc->scrn;
2469         NVPtr pNv = NVPTR(pScrn);    
2470         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2471         NVCrtcRegPtr regp;
2472         int i;
2473
2474         regp = &state->crtc_reg[nv_crtc->head];
2475
2476         /* If we ever get down to pre-nv10 cards, then we must reinstate some limits. */
2477         nvWriteVIDEO(pNv, NV_PVIDEO_STOP, 1);
2478         nvWriteVIDEO(pNv, NV_PVIDEO_INTR_EN, 0);
2479         nvWriteVIDEO(pNv, NV_PVIDEO_OFFSET_BUFF(0), 0);
2480         nvWriteVIDEO(pNv, NV_PVIDEO_OFFSET_BUFF(1), 0);
2481         nvWriteVIDEO(pNv, NV_PVIDEO_LIMIT(0), pNv->VRAMPhysicalSize - 1);
2482         nvWriteVIDEO(pNv, NV_PVIDEO_LIMIT(1), pNv->VRAMPhysicalSize - 1);
2483         nvWriteMC(pNv, 0x1588, 0);
2484
2485         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_BUFFER, regp->CRTC[NV_VGA_CRTCX_BUFFER]);
2486         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_CURSOR_CONFIG, regp->cursorConfig);
2487         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_GPIO, regp->gpio);
2488         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_0830, regp->unk830);
2489         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_0834, regp->unk834);
2490         if (pNv->Architecture == NV_ARCH_40) {
2491                 nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_0850, regp->unk850);
2492                 nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_081C, regp->unk81c);
2493         }
2494
2495         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_CONFIG, regp->config);
2496         uint32_t reg900 = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_900);
2497         if (pNv->Architecture == NV_ARCH_40) {
2498                 if (regp->config == 0x2) { /* enhanced "horizontal only" non-vga mode */
2499                         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_900, reg900 | 0x10000);
2500                 } else {
2501                         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_900, reg900 & ~0x10000);
2502                 }
2503         }
2504
2505         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_FP_HTIMING, regp->CRTC[NV_VGA_CRTCX_FP_HTIMING]);
2506         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_FP_VTIMING, regp->CRTC[NV_VGA_CRTCX_FP_VTIMING]);
2507
2508         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_26, regp->CRTC[NV_VGA_CRTCX_26]);
2509         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_3B, regp->CRTC[NV_VGA_CRTCX_3B]);
2510         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_3C, regp->CRTC[NV_VGA_CRTCX_3C]);
2511         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_45, regp->CRTC[NV_VGA_CRTCX_45]);
2512         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_4B, regp->CRTC[NV_VGA_CRTCX_4B]);
2513         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_52, regp->CRTC[NV_VGA_CRTCX_52]);
2514         if (override) {
2515                 for (i = 0; i < 0x10; i++)
2516                         NVWriteVGACR5758(pNv, nv_crtc->head, i, regp->CR58[i]);
2517         }
2518         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_59, regp->CRTC[NV_VGA_CRTCX_59]);
2519         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_EXTRA, regp->CRTC[NV_VGA_CRTCX_EXTRA]);
2520
2521         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_REPAINT0, regp->CRTC[NV_VGA_CRTCX_REPAINT0]);
2522         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_REPAINT1, regp->CRTC[NV_VGA_CRTCX_REPAINT1]);
2523         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_LSR, regp->CRTC[NV_VGA_CRTCX_LSR]);
2524         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_PIXEL, regp->CRTC[NV_VGA_CRTCX_PIXEL]);
2525         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_LCD, regp->CRTC[NV_VGA_CRTCX_LCD]);
2526         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_HEB, regp->CRTC[NV_VGA_CRTCX_HEB]);
2527         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_FIFO1, regp->CRTC[NV_VGA_CRTCX_FIFO1]);
2528         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_FIFO0, regp->CRTC[NV_VGA_CRTCX_FIFO0]);
2529         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_FIFO_LWM, regp->CRTC[NV_VGA_CRTCX_FIFO_LWM]);
2530         if (pNv->Architecture >= NV_ARCH_30) {
2531                 NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_FIFO_LWM_NV30, regp->CRTC[NV_VGA_CRTCX_FIFO_LWM_NV30]);
2532         }
2533
2534         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_43, regp->CRTC[NV_VGA_CRTCX_43]);
2535         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_85, regp->CRTC[NV_VGA_CRTCX_85]);
2536         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_86, regp->CRTC[NV_VGA_CRTCX_86]);
2537
2538         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_CURCTL0, regp->CRTC[NV_VGA_CRTCX_CURCTL0]);
2539         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_CURCTL1, regp->CRTC[NV_VGA_CRTCX_CURCTL1]);
2540         nv_crtc_fix_nv40_hw_cursor(crtc);
2541         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_CURCTL2, regp->CRTC[NV_VGA_CRTCX_CURCTL2]);
2542         NVWriteVgaCrtc(crtc, NV_VGA_CRTCX_INTERLACE, regp->CRTC[NV_VGA_CRTCX_INTERLACE]);
2543
2544         /* Setting 1 on this value gives you interrupts for every vblank period. */
2545         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_INTR_EN_0, 0);
2546         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_INTR_0, NV_CRTC_INTR_VBLANK);
2547
2548         pNv->CurrentState = state;
2549 }
2550
2551 static void nv_crtc_save_state_vga(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
2552 {
2553         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2554         int i;
2555         NVCrtcRegPtr regp;
2556
2557         regp = &state->crtc_reg[nv_crtc->head];
2558
2559         regp->MiscOutReg = NVReadMiscOut(crtc);
2560
2561         for (i = 0; i < 25; i++)
2562                 regp->CRTC[i] = NVReadVgaCrtc(crtc, i);
2563
2564         NVEnablePalette(crtc);
2565         for (i = 0; i < 21; i++)
2566                 regp->Attribute[i] = NVReadVgaAttr(crtc, i);
2567         NVDisablePalette(crtc);
2568
2569         for (i = 0; i < 9; i++)
2570                 regp->Graphics[i] = NVReadVgaGr(crtc, i);
2571
2572         for (i = 1; i < 5; i++)
2573                 regp->Sequencer[i] = NVReadVgaSeq(crtc, i);
2574   
2575 }
2576
2577 static void nv_crtc_save_state_ext(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
2578 {
2579         ScrnInfoPtr pScrn = crtc->scrn;
2580         NVPtr pNv = NVPTR(pScrn);    
2581         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2582         NVCrtcRegPtr regp;
2583         int i;
2584
2585         regp = &state->crtc_reg[nv_crtc->head];
2586
2587         /* If we ever get down to pre-nv10 cards, then we must reinstate some limits. */
2588         regp->CRTC[NV_VGA_CRTCX_LCD] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_LCD);
2589         regp->CRTC[NV_VGA_CRTCX_REPAINT0] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_REPAINT0);
2590         regp->CRTC[NV_VGA_CRTCX_REPAINT1] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_REPAINT1);
2591         regp->CRTC[NV_VGA_CRTCX_LSR] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_LSR);
2592         regp->CRTC[NV_VGA_CRTCX_PIXEL] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_PIXEL);
2593         regp->CRTC[NV_VGA_CRTCX_HEB] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_HEB);
2594         regp->CRTC[NV_VGA_CRTCX_FIFO1] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_FIFO1);
2595
2596         regp->CRTC[NV_VGA_CRTCX_FIFO0] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_FIFO0);
2597         regp->CRTC[NV_VGA_CRTCX_FIFO_LWM] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_FIFO_LWM);
2598         if (pNv->Architecture >= NV_ARCH_30) {
2599                 regp->CRTC[NV_VGA_CRTCX_FIFO_LWM_NV30] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_FIFO_LWM_NV30);
2600         }
2601         regp->CRTC[NV_VGA_CRTCX_CURCTL0] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_CURCTL0);
2602         regp->CRTC[NV_VGA_CRTCX_CURCTL1] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_CURCTL1);
2603         regp->CRTC[NV_VGA_CRTCX_CURCTL2] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_CURCTL2);
2604         regp->CRTC[NV_VGA_CRTCX_INTERLACE] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_INTERLACE);
2605
2606         regp->gpio = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_GPIO);
2607         regp->unk830 = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_0830);
2608         regp->unk834 = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_0834);
2609         if (pNv->Architecture == NV_ARCH_40) {
2610                 regp->unk850 = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_0850);
2611                 regp->unk81c = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_081C);
2612         }
2613
2614         regp->config = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_CONFIG);
2615
2616         regp->head = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_FSEL);
2617         regp->crtcOwner = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_OWNER);
2618         regp->CRTC[NV_VGA_CRTCX_EXTRA] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_EXTRA);
2619
2620         regp->cursorConfig = nvReadCRTC(pNv, nv_crtc->head, NV_CRTC_CURSOR_CONFIG);
2621
2622         regp->CRTC[NV_VGA_CRTCX_26] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_26);
2623         regp->CRTC[NV_VGA_CRTCX_3B] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_3B);
2624         regp->CRTC[NV_VGA_CRTCX_3C] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_3C);
2625         regp->CRTC[NV_VGA_CRTCX_45] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_45);
2626         regp->CRTC[NV_VGA_CRTCX_4B] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_4B);
2627         regp->CRTC[NV_VGA_CRTCX_52] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_52);
2628         for (i = 0; i < 0x10; i++)
2629                 regp->CR58[i] = NVReadVGACR5758(pNv, nv_crtc->head, i);
2630
2631         regp->CRTC[NV_VGA_CRTCX_59] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_59);
2632         regp->CRTC[NV_VGA_CRTCX_BUFFER] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_BUFFER);
2633         regp->CRTC[NV_VGA_CRTCX_FP_HTIMING] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_FP_HTIMING);
2634         regp->CRTC[NV_VGA_CRTCX_FP_VTIMING] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_FP_VTIMING);
2635
2636         regp->CRTC[NV_VGA_CRTCX_43] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_43);
2637         regp->CRTC[NV_VGA_CRTCX_85] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_85);
2638         regp->CRTC[NV_VGA_CRTCX_86] = NVReadVgaCrtc(crtc, NV_VGA_CRTCX_86);
2639 }
2640
2641 static void nv_crtc_save_state_ramdac(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
2642 {
2643         ScrnInfoPtr pScrn = crtc->scrn;
2644         NVPtr pNv = NVPTR(pScrn);    
2645         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2646         NVCrtcRegPtr regp;
2647         int i;
2648
2649         regp = &state->crtc_reg[nv_crtc->head];
2650
2651         regp->general = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_GENERAL_CONTROL);
2652
2653         regp->fp_control        = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_CONTROL);
2654         regp->debug_0   = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DEBUG_0);
2655         regp->debug_1   = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DEBUG_1);
2656         regp->debug_2   = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DEBUG_2);
2657
2658         regp->unk_a20 = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_A20);
2659         regp->unk_a24 = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_A24);
2660         regp->unk_a34 = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_A34);
2661
2662         if (pNv->NVArch == 0x11) {
2663                 regp->dither = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_DITHER_NV11);
2664         } else if (pNv->twoHeads) {
2665                 regp->dither = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DITHER);
2666         }
2667         regp->nv10_cursync = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_NV10_CURSYNC);
2668
2669         /* The regs below are 0 for non-flatpanels, so you can load and save them */
2670
2671         for (i = 0; i < 7; i++) {
2672                 uint32_t ramdac_reg = NV_RAMDAC_FP_HDISP_END + (i * 4);
2673                 regp->fp_horiz_regs[i] = nvReadRAMDAC(pNv, nv_crtc->head, ramdac_reg);
2674         }
2675
2676         for (i = 0; i < 7; i++) {
2677                 uint32_t ramdac_reg = NV_RAMDAC_FP_VDISP_END + (i * 4);
2678                 regp->fp_vert_regs[i] = nvReadRAMDAC(pNv, nv_crtc->head, ramdac_reg);
2679         }
2680
2681         regp->fp_hvalid_start = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_HVALID_START);
2682         regp->fp_hvalid_end = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_HVALID_END);
2683         regp->fp_vvalid_start = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_VVALID_START);
2684         regp->fp_vvalid_end = nvReadRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_VVALID_END);
2685 }
2686
2687 static void nv_crtc_load_state_ramdac(xf86CrtcPtr crtc, RIVA_HW_STATE *state)
2688 {
2689         ScrnInfoPtr pScrn = crtc->scrn;
2690         NVPtr pNv = NVPTR(pScrn);    
2691         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2692         NVCrtcRegPtr regp;
2693         int i;
2694
2695         regp = &state->crtc_reg[nv_crtc->head];
2696
2697         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_GENERAL_CONTROL, regp->general);
2698
2699         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_CONTROL, regp->fp_control);
2700         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DEBUG_0, regp->debug_0);
2701         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DEBUG_1, regp->debug_1);
2702         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DEBUG_2, regp->debug_2);
2703
2704         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_A20, regp->unk_a20);
2705         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_A24, regp->unk_a24);
2706         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_A34, regp->unk_a34);
2707
2708         if (pNv->NVArch == 0x11) {
2709                 nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_DITHER_NV11, regp->dither);
2710         } else if (pNv->twoHeads) {
2711                 nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_DITHER, regp->dither);
2712         }
2713         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync);
2714
2715         /* The regs below are 0 for non-flatpanels, so you can load and save them */
2716
2717         for (i = 0; i < 7; i++) {
2718                 uint32_t ramdac_reg = NV_RAMDAC_FP_HDISP_END + (i * 4);
2719                 nvWriteRAMDAC(pNv, nv_crtc->head, ramdac_reg, regp->fp_horiz_regs[i]);
2720         }
2721
2722         for (i = 0; i < 7; i++) {
2723                 uint32_t ramdac_reg = NV_RAMDAC_FP_VDISP_END + (i * 4);
2724                 nvWriteRAMDAC(pNv, nv_crtc->head, ramdac_reg, regp->fp_vert_regs[i]);
2725         }
2726
2727         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_HVALID_START, regp->fp_hvalid_start);
2728         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_HVALID_END, regp->fp_hvalid_end);
2729         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_VVALID_START, regp->fp_vvalid_start);
2730         nvWriteRAMDAC(pNv, nv_crtc->head, NV_RAMDAC_FP_VVALID_END, regp->fp_vvalid_end);
2731 }
2732
2733 void
2734 NVCrtcSetBase (xf86CrtcPtr crtc, int x, int y)
2735 {
2736         ScrnInfoPtr pScrn = crtc->scrn;
2737         NVPtr pNv = NVPTR(pScrn);    
2738         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2739         NVFBLayout *pLayout = &pNv->CurrentLayout;
2740         CARD32 start = 0;
2741
2742         ErrorF("NVCrtcSetBase: x: %d y: %d\n", x, y);
2743
2744         start += ((y * pScrn->displayWidth + x) * (pLayout->bitsPerPixel/8));
2745         if (crtc->rotatedData != NULL) { /* we do not exist on the real framebuffer */
2746 #if NOUVEAU_EXA_PIXMAPS
2747                 start = nv_crtc->shadow->offset;
2748 #else
2749                 start = pNv->FB->offset + nv_crtc->shadow->offset; /* We do exist relative to the framebuffer */
2750 #endif
2751         } else {
2752                 start += pNv->FB->offset;
2753         }
2754
2755         /* 30 bits addresses in 32 bits according to haiku */
2756         nvWriteCRTC(pNv, nv_crtc->head, NV_CRTC_START, start & 0xfffffffc);
2757
2758         /* set NV4/NV10 byte adress: (bit0 - 1) */
2759         NVWriteVgaAttr(crtc, 0x13, (start & 0x3) << 1);
2760
2761         crtc->x = x;
2762         crtc->y = y;
2763 }
2764
2765 static void NVCrtcWriteDacMask(xf86CrtcPtr crtc, CARD8 value)
2766 {
2767   ScrnInfoPtr pScrn = crtc->scrn;
2768   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2769   NVPtr pNv = NVPTR(pScrn);
2770   volatile CARD8 *pDACReg = nv_crtc->head ? pNv->PDIO1 : pNv->PDIO0;
2771
2772   NV_WR08(pDACReg, VGA_DAC_MASK, value);
2773 }
2774
2775 static CARD8 NVCrtcReadDacMask(xf86CrtcPtr crtc)
2776 {
2777   ScrnInfoPtr pScrn = crtc->scrn;
2778   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2779   NVPtr pNv = NVPTR(pScrn);
2780   volatile CARD8 *pDACReg = nv_crtc->head ? pNv->PDIO1 : pNv->PDIO0;
2781   
2782   return NV_RD08(pDACReg, VGA_DAC_MASK);
2783 }
2784
2785 static void NVCrtcWriteDacReadAddr(xf86CrtcPtr crtc, CARD8 value)
2786 {
2787   ScrnInfoPtr pScrn = crtc->scrn;
2788   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2789   NVPtr pNv = NVPTR(pScrn);
2790   volatile CARD8 *pDACReg = nv_crtc->head ? pNv->PDIO1 : pNv->PDIO0;
2791
2792   NV_WR08(pDACReg, VGA_DAC_READ_ADDR, value);
2793 }
2794
2795 static void NVCrtcWriteDacWriteAddr(xf86CrtcPtr crtc, CARD8 value)
2796 {
2797   ScrnInfoPtr pScrn = crtc->scrn;
2798   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2799   NVPtr pNv = NVPTR(pScrn);
2800   volatile CARD8 *pDACReg = nv_crtc->head ? pNv->PDIO1 : pNv->PDIO0;
2801
2802   NV_WR08(pDACReg, VGA_DAC_WRITE_ADDR, value);
2803 }
2804
2805 static void NVCrtcWriteDacData(xf86CrtcPtr crtc, CARD8 value)
2806 {
2807   ScrnInfoPtr pScrn = crtc->scrn;
2808   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2809   NVPtr pNv = NVPTR(pScrn);
2810   volatile CARD8 *pDACReg = nv_crtc->head ? pNv->PDIO1 : pNv->PDIO0;
2811
2812   NV_WR08(pDACReg, VGA_DAC_DATA, value);
2813 }
2814
2815 static CARD8 NVCrtcReadDacData(xf86CrtcPtr crtc, CARD8 value)
2816 {
2817   ScrnInfoPtr pScrn = crtc->scrn;
2818   NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2819   NVPtr pNv = NVPTR(pScrn);
2820   volatile CARD8 *pDACReg = nv_crtc->head ? pNv->PDIO1 : pNv->PDIO0;
2821
2822   return NV_RD08(pDACReg, VGA_DAC_DATA);
2823 }
2824
2825 void NVCrtcLoadPalette(xf86CrtcPtr crtc)
2826 {
2827         int i;
2828         NVCrtcPrivatePtr nv_crtc = crtc->driver_private;
2829         NVCrtcRegPtr regp;
2830         ScrnInfoPtr pScrn = crtc->scrn;
2831         NVPtr pNv = NVPTR(pScrn);
2832
2833         regp = &pNv->ModeReg.crtc_reg[nv_crtc->head];
2834
2835         NVCrtcSetOwner(crtc);
2836         NVCrtcWriteDacMask(crtc, 0xff);
2837         NVCrtcWriteDacWriteAddr(crtc, 0x00);
2838
2839         for (i = 0; i<768; i++) {
2840                 NVCrtcWriteDacData(crtc, regp->DAC[i]);
2841         }
2842         NVDisablePalette(crtc);
2843 }
2844
2845 /* on = unblank */
2846 void NVCrtcBlankScreen(xf86CrtcPtr crtc, Bool on)
2847 {
2848         unsigned char scrn;
2849
2850         NVCrtcSetOwner(crtc);
2851
2852         scrn = NVReadVgaSeq(crtc, 0x01);
2853         if (on) {
2854                 scrn &= ~0x20;
2855         } else {
2856                 scrn |= 0x20;
2857         }
2858
2859         NVVgaSeqReset(crtc, TRUE);
2860         NVWriteVgaSeq(crtc, 0x01, scrn);
2861         NVVgaSeqReset(crtc, FALSE);
2862 }
2863
2864 /*************************************************************************** \
2865 |*                                                                           *|
2866 |*       Copyright 1993-2003 NVIDIA, Corporation.  All rights reserved.      *|
2867 |*                                                                           *|
2868 |*     NOTICE TO USER:   The source code  is copyrighted under  U.S. and     *|
2869 |*     international laws.  Users and possessors of this source code are     *|
2870 |*     hereby granted a nonexclusive,  royalty-free copyright license to     *|
2871 |*     use this code in individual and commercial software.                  *|
2872 |*                                                                           *|
2873 |*     Any use of this source code must include,  in the user documenta-     *|
2874 |*     tion and  internal comments to the code,  notices to the end user     *|
2875 |*     as follows:                                                           *|
2876 |*                                                                           *|
2877 |*       Copyright 1993-1999 NVIDIA, Corporation.  All rights reserved.      *|
2878 |*                                                                           *|
2879 |*     NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY     *|
2880 |*     OF  THIS SOURCE  CODE  FOR ANY PURPOSE.  IT IS  PROVIDED  "AS IS"     *|
2881 |*     WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.  NVIDIA, CORPOR-     *|
2882 |*     ATION DISCLAIMS ALL WARRANTIES  WITH REGARD  TO THIS SOURCE CODE,     *|
2883 |*     INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE-     *|
2884 |*     MENT,  AND FITNESS  FOR A PARTICULAR PURPOSE.   IN NO EVENT SHALL     *|
2885 |*     NVIDIA, CORPORATION  BE LIABLE FOR ANY SPECIAL,  INDIRECT,  INCI-     *|
2886 |*     DENTAL, OR CONSEQUENTIAL DAMAGES,  OR ANY DAMAGES  WHATSOEVER RE-     *|
2887 |*     SULTING FROM LOSS OF USE,  DATA OR PROFITS,  WHETHER IN AN ACTION     *|
2888 |*     OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,  ARISING OUT OF     *|
2889 |*     OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE.     *|
2890 |*                                                                           *|
2891 |*     U.S. Government  End  Users.   This source code  is a "commercial     *|
2892 |*     item,"  as that  term is  defined at  48 C.F.R. 2.101 (OCT 1995),     *|
2893 |*     consisting  of "commercial  computer  software"  and  "commercial     *|
2894 |*     computer  software  documentation,"  as such  terms  are  used in     *|
2895 |*     48 C.F.R. 12.212 (SEPT 1995)  and is provided to the U.S. Govern-     *|
2896 |*     ment only as  a commercial end item.   Consistent with  48 C.F.R.     *|
2897 |*     12.212 and  48 C.F.R. 227.7202-1 through  227.7202-4 (JUNE 1995),     *|
2898 |*     all U.S. Government End Users  acquire the source code  with only     *|
2899 |*     those rights set forth herein.                                        *|
2900 |*                                                                           *|
2901  \***************************************************************************/