3 * RSA public key cryptographic functions
5 * Copyright 2004 Michael Jung
6 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This file contains code from the LibTomCrypt cryptographic
25 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
26 * is in the public domain. The code in this file is tailored to
27 * special requirements. Take a look at http://libtomcrypt.org for the
34 int mpi_code, ltc_code;
35 } mpi_to_ltc_codes[] = {
36 { MP_OKAY , CRYPT_OK},
37 { MP_MEM , CRYPT_MEM},
38 { MP_VAL , CRYPT_INVALID_ARG},
41 /* convert a MPI error to a LTC error (Possibly the most powerful function ever! Oh wait... no) */
42 int mpi_to_ltc_error(int err)
46 for (x = 0; x < (int)(sizeof(mpi_to_ltc_codes)/sizeof(mpi_to_ltc_codes[0])); x++) {
47 if (err == mpi_to_ltc_codes[x].mpi_code) {
48 return mpi_to_ltc_codes[x].ltc_code;
54 extern int gen_rand_impl(unsigned char *dst, unsigned int len);
56 static int rand_prime_helper(unsigned char *dst, int len, void *dat)
58 return gen_rand_impl(dst, len) ? len : 0;
61 int rand_prime(mp_int *N, long len)
65 /* allow sizes between 2 and 256 bytes for a prime size */
66 if (len < 16 || len > 8192) {
67 printf("Invalid prime size!\n");
68 return CRYPT_INVALID_PRIME_SIZE;
76 /* This seems to be what MS CSP's do: */
77 type = LTM_PRIME_2MSB_ON;
78 /* Original LibTomCrypt: type = 0; */
81 /* New prime generation makes the code even more cryptoish-insane. Do you know what this means!!!
82 -- Gir: Yeah, oh wait, er, no.
84 return mpi_to_ltc_error(mp_prime_random_ex(N, mp_prime_rabin_miller_trials(len), len, type, rand_prime_helper, NULL));
87 int rsa_make_key(int size, long e, rsa_key *key)
89 mp_int p, q, tmp1, tmp2, tmp3;
92 if ((size < (MIN_RSA_SIZE/8)) || (size > (MAX_RSA_SIZE/8))) {
93 return CRYPT_INVALID_KEYSIZE;
96 if ((e < 3) || ((e & 1) == 0)) {
97 return CRYPT_INVALID_ARG;
100 if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY) {
101 return mpi_to_ltc_error(err);
104 /* make primes p and q (optimization provided by Wayne Scott) */
105 if ((err = mp_set_int(&tmp3, e)) != MP_OKAY) { goto error; } /* tmp3 = e */
109 if ((err = rand_prime(&p, size*4)) != CRYPT_OK) { goto done; }
110 if ((err = mp_sub_d(&p, 1, &tmp1)) != MP_OKAY) { goto error; } /* tmp1 = p-1 */
111 if ((err = mp_gcd(&tmp1, &tmp3, &tmp2)) != MP_OKAY) { goto error; } /* tmp2 = gcd(p-1, e) */
112 } while (mp_cmp_d(&tmp2, 1) != 0); /* while e divides p-1 */
116 if ((err = rand_prime(&q, size*4)) != CRYPT_OK) { goto done; }
117 if ((err = mp_sub_d(&q, 1, &tmp1)) != MP_OKAY) { goto error; } /* tmp1 = q-1 */
118 if ((err = mp_gcd(&tmp1, &tmp3, &tmp2)) != MP_OKAY) { goto error; } /* tmp2 = gcd(q-1, e) */
119 } while (mp_cmp_d(&tmp2, 1) != 0); /* while e divides q-1 */
121 /* tmp1 = lcm(p-1, q-1) */
122 if ((err = mp_sub_d(&p, 1, &tmp2)) != MP_OKAY) { goto error; } /* tmp2 = p-1 */
123 /* tmp1 = q-1 (previous do/while loop) */
124 if ((err = mp_lcm(&tmp1, &tmp2, &tmp1)) != MP_OKAY) { goto error; } /* tmp1 = lcm(p-1, q-1) */
127 if ((err = mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP,
128 &key->qP, &key->p, &key->q, NULL)) != MP_OKAY) {
132 if ((err = mp_set_int(&key->e, e)) != MP_OKAY) { goto error2; } /* key->e = e */
133 if ((err = mp_invmod(&key->e, &tmp1, &key->d)) != MP_OKAY) { goto error2; } /* key->d = 1/e mod lcm(p-1,q-1) */
134 if ((err = mp_mul(&p, &q, &key->N)) != MP_OKAY) { goto error2; } /* key->N = pq */
136 /* optimize for CRT now */
137 /* find d mod q-1 and d mod p-1 */
138 if ((err = mp_sub_d(&p, 1, &tmp1)) != MP_OKAY) { goto error2; } /* tmp1 = q-1 */
139 if ((err = mp_sub_d(&q, 1, &tmp2)) != MP_OKAY) { goto error2; } /* tmp2 = p-1 */
140 if ((err = mp_mod(&key->d, &tmp1, &key->dP)) != MP_OKAY) { goto error2; } /* dP = d mod p-1 */
141 if ((err = mp_mod(&key->d, &tmp2, &key->dQ)) != MP_OKAY) { goto error2; } /* dQ = d mod q-1 */
142 if ((err = mp_invmod(&q, &p, &key->qP)) != MP_OKAY) { goto error2; } /* qP = 1/q mod p */
144 if ((err = mp_copy(&p, &key->p)) != MP_OKAY) { goto error2; }
145 if ((err = mp_copy(&q, &key->q)) != MP_OKAY) { goto error2; }
147 /* shrink ram required */
148 if ((err = mp_shrink(&key->e)) != MP_OKAY) { goto error2; }
149 if ((err = mp_shrink(&key->d)) != MP_OKAY) { goto error2; }
150 if ((err = mp_shrink(&key->N)) != MP_OKAY) { goto error2; }
151 if ((err = mp_shrink(&key->dQ)) != MP_OKAY) { goto error2; }
152 if ((err = mp_shrink(&key->dP)) != MP_OKAY) { goto error2; }
153 if ((err = mp_shrink(&key->qP)) != MP_OKAY) { goto error2; }
154 if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error2; }
155 if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error2; }
157 /* set key type (in this case it's CRT optimized) */
158 key->type = PK_PRIVATE;
160 /* return ok and free temps */
164 mp_clear_multi(&key->d, &key->e, &key->N, &key->dQ, &key->dP,
165 &key->qP, &key->p, &key->q, NULL);
167 err = mpi_to_ltc_error(err);
169 mp_clear_multi(&tmp3, &tmp2, &tmp1, &p, &q, NULL);
173 void rsa_free(rsa_key *key)
175 mp_clear_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP,
176 &key->qP, &key->p, &key->q, NULL);
179 /* compute an RSA modular exponentiation */
180 int rsa_exptmod(const unsigned char *in, unsigned long inlen,
181 unsigned char *out, unsigned long *outlen, int which,
184 mp_int tmp, tmpa, tmpb;
188 /* is the key of the right type for the operation? */
189 if (which == PK_PRIVATE && (key->type != PK_PRIVATE)) {
190 return CRYPT_PK_NOT_PRIVATE;
193 /* must be a private or public operation */
194 if (which != PK_PRIVATE && which != PK_PUBLIC) {
195 return CRYPT_PK_INVALID_TYPE;
198 /* init and copy into tmp */
199 if ((err = mp_init_multi(&tmp, &tmpa, &tmpb, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); }
200 if ((err = mp_read_unsigned_bin(&tmp, (unsigned char *)in, (int)inlen)) != MP_OKAY) { goto error; }
202 /* sanity check on the input */
203 if (mp_cmp(&key->N, &tmp) == MP_LT) {
204 err = CRYPT_PK_INVALID_SIZE;
208 /* are we using the private exponent and is the key optimized? */
209 if (which == PK_PRIVATE) {
210 /* tmpa = tmp^dP mod p */
211 if ((err = mpi_to_ltc_error(mp_exptmod(&tmp, &key->dP, &key->p, &tmpa))) != MP_OKAY) { goto error; }
213 /* tmpb = tmp^dQ mod q */
214 if ((err = mpi_to_ltc_error(mp_exptmod(&tmp, &key->dQ, &key->q, &tmpb))) != MP_OKAY) { goto error; }
216 /* tmp = (tmpa - tmpb) * qInv (mod p) */
217 if ((err = mp_sub(&tmpa, &tmpb, &tmp)) != MP_OKAY) { goto error; }
218 if ((err = mp_mulmod(&tmp, &key->qP, &key->p, &tmp)) != MP_OKAY) { goto error; }
220 /* tmp = tmpb + q * tmp */
221 if ((err = mp_mul(&tmp, &key->q, &tmp)) != MP_OKAY) { goto error; }
222 if ((err = mp_add(&tmp, &tmpb, &tmp)) != MP_OKAY) { goto error; }
225 if ((err = mp_exptmod(&tmp, &key->e, &key->N, &tmp)) != MP_OKAY) { goto error; }
229 x = (unsigned long)mp_unsigned_bin_size(&key->N);
231 err = CRYPT_BUFFER_OVERFLOW;
238 if ((err = mp_to_unsigned_bin(&tmp, out+(x-mp_unsigned_bin_size(&tmp)))) != MP_OKAY) { goto error; }
240 /* clean up and return */
244 err = mpi_to_ltc_error(err);
246 mp_clear_multi(&tmp, &tmpa, &tmpb, NULL);