4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 const char * const wine_vtypes[VT_CLSID+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags[16] =
66 "|VT_VECTOR|VT_ARRAY",
68 "|VT_VECTOR|VT_ARRAY",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 /* Convert a variant from one type to another */
82 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
83 VARIANTARG* ps, VARTYPE vt)
85 HRESULT res = DISP_E_TYPEMISMATCH;
86 VARTYPE vtFrom = V_TYPE(ps);
89 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
90 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
91 debugstr_vt(vt), debugstr_vf(vt));
93 if (vt == VT_BSTR || vtFrom == VT_BSTR)
95 /* All flags passed to low level function are only used for
96 * changing to or from strings. Map these here.
98 if (wFlags & VARIANT_LOCALBOOL)
99 dwFlags |= VAR_LOCALBOOL;
100 if (wFlags & VARIANT_CALENDAR_HIJRI)
101 dwFlags |= VAR_CALENDAR_HIJRI;
102 if (wFlags & VARIANT_CALENDAR_THAI)
103 dwFlags |= VAR_CALENDAR_THAI;
104 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
105 dwFlags |= VAR_CALENDAR_GREGORIAN;
106 if (wFlags & VARIANT_NOUSEROVERRIDE)
107 dwFlags |= LOCALE_NOUSEROVERRIDE;
108 if (wFlags & VARIANT_USE_NLS)
109 dwFlags |= LOCALE_USE_NLS;
112 /* Map int/uint to i4/ui4 */
115 else if (vt == VT_UINT)
118 if (vtFrom == VT_INT)
120 else if (vtFrom == VT_UINT)
124 return VariantCopy(pd, ps);
126 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH;
137 if (vtFrom == VT_NULL)
138 return DISP_E_TYPEMISMATCH;
139 /* ... Fall through */
141 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
143 res = VariantClear( pd );
144 if (vt == VT_NULL && SUCCEEDED(res))
152 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
153 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
154 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
155 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
156 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
157 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
158 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
159 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
160 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
161 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
162 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
163 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
164 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
165 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
166 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
167 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
174 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
175 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
176 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
177 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
178 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
179 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
180 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
181 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
182 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
183 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
184 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
185 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
186 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
187 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
188 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
189 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
196 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
197 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
198 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
199 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
200 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
201 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
202 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
203 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
204 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
205 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
206 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
207 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
208 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
209 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
210 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
211 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
218 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
219 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
220 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
221 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
222 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
223 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
224 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
225 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
226 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
227 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
228 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
229 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
230 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
231 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
232 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
233 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
240 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
241 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
242 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
243 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
244 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
245 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
246 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
247 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
248 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
249 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
250 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
251 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
252 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
253 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
254 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
255 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
262 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
263 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
264 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
265 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
266 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
267 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
268 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
269 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
270 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
271 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
272 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
273 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
274 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
275 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
276 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
277 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
284 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
285 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
286 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
287 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
288 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
289 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
290 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
291 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
292 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
293 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
294 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
295 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
296 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
297 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
298 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
299 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
306 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
307 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
308 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
309 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
310 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
311 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
312 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
313 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
314 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
315 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
316 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
317 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
318 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
319 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
320 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
321 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
328 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
329 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
330 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
331 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
332 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
333 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
334 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
335 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
336 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
337 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
338 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
339 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
340 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
341 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
342 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
343 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
350 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
351 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
352 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
353 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
354 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
355 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
356 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
357 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
358 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
359 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
360 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
361 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
362 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
363 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
364 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
365 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
372 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
373 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
374 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
375 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
376 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
377 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
378 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
379 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
380 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
381 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
382 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
383 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
384 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
385 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
386 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
387 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
394 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
395 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
396 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
397 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
398 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
399 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
400 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
401 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
402 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
403 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
404 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
405 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
406 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
407 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
408 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
409 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
417 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
418 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
420 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
421 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
422 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
436 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
443 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
444 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
445 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
446 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
447 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
448 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
449 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
450 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
451 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
452 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
453 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
454 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
455 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
456 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
457 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
458 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
467 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
468 DEC_HI32(&V_DECIMAL(pd)) = 0;
469 DEC_MID32(&V_DECIMAL(pd)) = 0;
470 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
471 * VT_NULL and VT_EMPTY always give a 0 value.
473 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
475 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
476 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
477 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
478 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
479 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
480 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
481 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
482 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
483 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
484 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
485 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
486 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
487 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
488 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
496 if (V_DISPATCH(ps) == NULL)
497 V_UNKNOWN(pd) = NULL;
499 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
508 if (V_UNKNOWN(ps) == NULL)
509 V_DISPATCH(pd) = NULL;
511 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
522 /* Coerce to/from an array */
523 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
525 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
526 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
528 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
529 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
532 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
534 return DISP_E_TYPEMISMATCH;
537 /******************************************************************************
538 * Check if a variants type is valid.
540 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
542 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
546 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
548 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
550 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
551 return DISP_E_BADVARTYPE;
552 if (vt != (VARTYPE)15)
556 return DISP_E_BADVARTYPE;
559 /******************************************************************************
560 * VariantInit [OLEAUT32.8]
562 * Initialise a variant.
565 * pVarg [O] Variant to initialise
571 * This function simply sets the type of the variant to VT_EMPTY. It does not
572 * free any existing value, use VariantClear() for that.
574 void WINAPI VariantInit(VARIANTARG* pVarg)
576 TRACE("(%p)\n", pVarg);
578 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
581 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
585 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
587 hres = VARIANT_ValidateType(V_VT(pVarg));
595 if (V_UNKNOWN(pVarg))
596 IUnknown_Release(V_UNKNOWN(pVarg));
598 case VT_UNKNOWN | VT_BYREF:
599 case VT_DISPATCH | VT_BYREF:
600 if(*V_UNKNOWNREF(pVarg))
601 IUnknown_Release(*V_UNKNOWNREF(pVarg));
604 SysFreeString(V_BSTR(pVarg));
606 case VT_BSTR | VT_BYREF:
607 SysFreeString(*V_BSTRREF(pVarg));
609 case VT_VARIANT | VT_BYREF:
610 VariantClear(V_VARIANTREF(pVarg));
613 case VT_RECORD | VT_BYREF:
615 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
618 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
619 IRecordInfo_Release(pBr->pRecInfo);
624 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
626 if (V_ISBYREF(pVarg))
628 if (*V_ARRAYREF(pVarg))
629 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
631 else if (V_ARRAY(pVarg))
632 hres = SafeArrayDestroy(V_ARRAY(pVarg));
637 V_VT(pVarg) = VT_EMPTY;
641 /******************************************************************************
642 * VariantClear [OLEAUT32.9]
647 * pVarg [I/O] Variant to clear
650 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
651 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
653 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
657 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
659 hres = VARIANT_ValidateType(V_VT(pVarg));
663 if (!V_ISBYREF(pVarg))
665 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
668 hres = SafeArrayDestroy(V_ARRAY(pVarg));
670 else if (V_VT(pVarg) == VT_BSTR)
672 SysFreeString(V_BSTR(pVarg));
674 else if (V_VT(pVarg) == VT_RECORD)
676 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
679 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
680 IRecordInfo_Release(pBr->pRecInfo);
683 else if (V_VT(pVarg) == VT_DISPATCH ||
684 V_VT(pVarg) == VT_UNKNOWN)
686 if (V_UNKNOWN(pVarg))
687 IUnknown_Release(V_UNKNOWN(pVarg));
690 V_VT(pVarg) = VT_EMPTY;
695 /******************************************************************************
696 * Copy an IRecordInfo object contained in a variant.
698 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
706 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
709 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
711 hres = E_OUTOFMEMORY;
714 memcpy(pvRecord, pBr->pvRecord, ulSize);
715 pBr->pvRecord = pvRecord;
717 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
719 IRecordInfo_AddRef(pBr->pRecInfo);
723 else if (pBr->pvRecord)
728 /******************************************************************************
729 * VariantCopy [OLEAUT32.10]
734 * pvargDest [O] Destination for copy
735 * pvargSrc [I] Source variant to copy
738 * Success: S_OK. pvargDest contains a copy of pvargSrc.
739 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
740 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
741 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
742 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
745 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
746 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
747 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
748 * fails, so does this function.
749 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
750 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
751 * is copied rather than just any pointers to it.
752 * - For by-value object types the object pointer is copied and the objects
753 * reference count increased using IUnknown_AddRef().
754 * - For all by-reference types, only the referencing pointer is copied.
756 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
760 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
761 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
762 debugstr_VF(pvargSrc));
764 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
765 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
766 return DISP_E_BADVARTYPE;
768 if (pvargSrc != pvargDest &&
769 SUCCEEDED(hres = VariantClear(pvargDest)))
771 *pvargDest = *pvargSrc; /* Shallow copy the value */
773 if (!V_ISBYREF(pvargSrc))
775 if (V_ISARRAY(pvargSrc))
777 if (V_ARRAY(pvargSrc))
778 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
780 else if (V_VT(pvargSrc) == VT_BSTR)
782 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
783 if (!V_BSTR(pvargDest))
785 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
786 hres = E_OUTOFMEMORY;
789 else if (V_VT(pvargSrc) == VT_RECORD)
791 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
793 else if (V_VT(pvargSrc) == VT_DISPATCH ||
794 V_VT(pvargSrc) == VT_UNKNOWN)
796 if (V_UNKNOWN(pvargSrc))
797 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
804 /* Return the byte size of a variants data */
805 static inline size_t VARIANT_DataSize(const VARIANT* pv)
810 case VT_UI1: return sizeof(BYTE);
812 case VT_UI2: return sizeof(SHORT);
816 case VT_UI4: return sizeof(LONG);
818 case VT_UI8: return sizeof(LONGLONG);
819 case VT_R4: return sizeof(float);
820 case VT_R8: return sizeof(double);
821 case VT_DATE: return sizeof(DATE);
822 case VT_BOOL: return sizeof(VARIANT_BOOL);
825 case VT_BSTR: return sizeof(void*);
826 case VT_CY: return sizeof(CY);
827 case VT_ERROR: return sizeof(SCODE);
829 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
833 /******************************************************************************
834 * VariantCopyInd [OLEAUT32.11]
836 * Copy a variant, dereferencing it if it is by-reference.
839 * pvargDest [O] Destination for copy
840 * pvargSrc [I] Source variant to copy
843 * Success: S_OK. pvargDest contains a copy of pvargSrc.
844 * Failure: An HRESULT error code indicating the error.
847 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
848 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
849 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
850 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
851 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
854 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
855 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
857 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
858 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
859 * to it. If clearing pvargDest fails, so does this function.
861 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
863 VARIANTARG vTmp, *pSrc = pvargSrc;
867 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
868 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
869 debugstr_VF(pvargSrc));
871 if (!V_ISBYREF(pvargSrc))
872 return VariantCopy(pvargDest, pvargSrc);
874 /* Argument checking is more lax than VariantCopy()... */
875 vt = V_TYPE(pvargSrc);
876 if (V_ISARRAY(pvargSrc) ||
877 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
878 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
883 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
885 if (pvargSrc == pvargDest)
887 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
888 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
892 V_VT(pvargDest) = VT_EMPTY;
896 /* Copy into another variant. Free the variant in pvargDest */
897 if (FAILED(hres = VariantClear(pvargDest)))
899 TRACE("VariantClear() of destination failed\n");
906 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
907 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
909 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
911 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
912 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
914 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
916 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
917 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
919 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
920 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
922 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
923 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
924 if (*V_UNKNOWNREF(pSrc))
925 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
927 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
929 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
930 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
931 hres = E_INVALIDARG; /* Don't dereference more than one level */
933 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
935 /* Use the dereferenced variants type value, not VT_VARIANT */
936 goto VariantCopyInd_Return;
938 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
940 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
941 sizeof(DECIMAL) - sizeof(USHORT));
945 /* Copy the pointed to data into this variant */
946 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
949 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
951 VariantCopyInd_Return:
953 if (pSrc != pvargSrc)
956 TRACE("returning 0x%08x, %p->(%s%s)\n", hres, pvargDest,
957 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
961 /******************************************************************************
962 * VariantChangeType [OLEAUT32.12]
964 * Change the type of a variant.
967 * pvargDest [O] Destination for the converted variant
968 * pvargSrc [O] Source variant to change the type of
969 * wFlags [I] VARIANT_ flags from "oleauto.h"
970 * vt [I] Variant type to change pvargSrc into
973 * Success: S_OK. pvargDest contains the converted value.
974 * Failure: An HRESULT error code describing the failure.
977 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
978 * See VariantChangeTypeEx.
980 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
981 USHORT wFlags, VARTYPE vt)
983 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
986 /******************************************************************************
987 * VariantChangeTypeEx [OLEAUT32.147]
989 * Change the type of a variant.
992 * pvargDest [O] Destination for the converted variant
993 * pvargSrc [O] Source variant to change the type of
994 * lcid [I] LCID for the conversion
995 * wFlags [I] VARIANT_ flags from "oleauto.h"
996 * vt [I] Variant type to change pvargSrc into
999 * Success: S_OK. pvargDest contains the converted value.
1000 * Failure: An HRESULT error code describing the failure.
1003 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1004 * conversion. If the conversion is successful, pvargSrc will be freed.
1006 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1007 LCID lcid, USHORT wFlags, VARTYPE vt)
1011 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest,
1012 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
1013 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
1014 debugstr_vt(vt), debugstr_vf(vt));
1017 res = DISP_E_BADVARTYPE;
1020 res = VARIANT_ValidateType(V_VT(pvargSrc));
1024 res = VARIANT_ValidateType(vt);
1028 VARIANTARG vTmp, vSrcDeref;
1030 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1031 res = DISP_E_TYPEMISMATCH;
1034 V_VT(&vTmp) = VT_EMPTY;
1035 V_VT(&vSrcDeref) = VT_EMPTY;
1036 VariantClear(&vTmp);
1037 VariantClear(&vSrcDeref);
1042 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1045 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1046 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1048 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1050 if (SUCCEEDED(res)) {
1052 VariantCopy(pvargDest, &vTmp);
1054 VariantClear(&vTmp);
1055 VariantClear(&vSrcDeref);
1062 TRACE("returning 0x%08x, %p->(%s%s)\n", res, pvargDest,
1063 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1067 /* Date Conversions */
1069 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1071 /* Convert a VT_DATE value to a Julian Date */
1072 static inline int VARIANT_JulianFromDate(int dateIn)
1074 int julianDays = dateIn;
1076 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1077 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1081 /* Convert a Julian Date to a VT_DATE value */
1082 static inline int VARIANT_DateFromJulian(int dateIn)
1084 int julianDays = dateIn;
1086 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1087 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1091 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1092 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1098 l -= (n * 146097 + 3) / 4;
1099 i = (4000 * (l + 1)) / 1461001;
1100 l += 31 - (i * 1461) / 4;
1101 j = (l * 80) / 2447;
1102 *day = l - (j * 2447) / 80;
1104 *month = (j + 2) - (12 * l);
1105 *year = 100 * (n - 49) + i + l;
1108 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1109 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1111 int m12 = (month - 14) / 12;
1113 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1114 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1117 /* Macros for accessing DOS format date/time fields */
1118 #define DOS_YEAR(x) (1980 + (x >> 9))
1119 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1120 #define DOS_DAY(x) (x & 0x1f)
1121 #define DOS_HOUR(x) (x >> 11)
1122 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1123 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1124 /* Create a DOS format date/time */
1125 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1126 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1128 /* Roll a date forwards or backwards to correct it */
1129 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1131 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1132 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1134 /* interpret values signed */
1135 iYear = lpUd->st.wYear;
1136 iMonth = lpUd->st.wMonth;
1137 iDay = lpUd->st.wDay;
1138 iHour = lpUd->st.wHour;
1139 iMinute = lpUd->st.wMinute;
1140 iSecond = lpUd->st.wSecond;
1142 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1143 iYear, iHour, iMinute, iSecond);
1145 if (iYear > 9999 || iYear < -9999)
1146 return E_INVALIDARG; /* Invalid value */
1147 /* Years < 100 are treated as 1900 + year */
1148 if (iYear >= 0 && iYear < 100)
1151 iMinute += (iSecond - (iSecond % 60)) / 60;
1152 iSecond = iSecond % 60;
1153 iHour += (iMinute - (iMinute % 60)) / 60;
1154 iMinute = iMinute % 60;
1155 iDay += (iHour - (iHour % 24)) / 24;
1157 /* FIXME: Roll Days */
1158 iYear += (iMonth - (iMonth % 12)) / 12;
1159 iMonth = iMonth % 12;
1161 if (iSecond<0){iSecond+=60; iMinute--;}
1162 if (iMinute<0){iMinute+=60; iHour--;}
1163 if (iHour<0) {iHour+=24; iDay--;}
1168 if (iMonth == 2 && IsLeapYear(iYear))
1171 if (iMonth<=0) {iMonth+=12; iYear--;}
1172 if (iYear<0) iYear+=2000;
1176 /* Roll back the date one day */
1177 if (lpUd->st.wMonth == 1)
1179 /* Roll back to December 31 of the previous year */
1181 lpUd->st.wMonth = 12;
1186 lpUd->st.wMonth--; /* Previous month */
1187 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1188 lpUd->st.wDay = 29; /* February has 29 days on leap years */
1190 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1193 else if (lpUd->st.wDay > 28)
1195 int rollForward = 0;
1197 /* Possibly need to roll the date forward */
1198 if (iMonth == 2 && IsLeapYear(iYear))
1199 rollForward = iDay - 29; /* February has 29 days on leap years */
1201 rollForward = iDay - days[iMonth];
1203 if (rollForward > 0)
1209 iMonth = 1; /* Roll forward into January of the next year */
1215 lpUd->st.wYear = iYear;
1216 lpUd->st.wMonth = iMonth;
1217 lpUd->st.wDay = iDay;
1218 lpUd->st.wHour = iHour;
1219 lpUd->st.wMinute = iMinute;
1220 lpUd->st.wSecond = iSecond;
1222 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1223 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1227 /**********************************************************************
1228 * DosDateTimeToVariantTime [OLEAUT32.14]
1230 * Convert a Dos format date and time into variant VT_DATE format.
1233 * wDosDate [I] Dos format date
1234 * wDosTime [I] Dos format time
1235 * pDateOut [O] Destination for VT_DATE format
1238 * Success: TRUE. pDateOut contains the converted time.
1239 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1242 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1243 * - Dos format times are accurate to only 2 second precision.
1244 * - The format of a Dos Date is:
1245 *| Bits Values Meaning
1246 *| ---- ------ -------
1247 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1248 *| the days in the month rolls forward the extra days.
1249 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1250 *| year. 13-15 are invalid.
1251 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1252 * - The format of a Dos Time is:
1253 *| Bits Values Meaning
1254 *| ---- ------ -------
1255 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1256 *| 5-10 0-59 Minutes. 60-63 are invalid.
1257 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1259 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1264 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1265 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1266 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1269 ud.st.wYear = DOS_YEAR(wDosDate);
1270 ud.st.wMonth = DOS_MONTH(wDosDate);
1271 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1273 ud.st.wDay = DOS_DAY(wDosDate);
1274 ud.st.wHour = DOS_HOUR(wDosTime);
1275 ud.st.wMinute = DOS_MINUTE(wDosTime);
1276 ud.st.wSecond = DOS_SECOND(wDosTime);
1277 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1278 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1279 return FALSE; /* Invalid values in Dos*/
1281 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1284 /**********************************************************************
1285 * VariantTimeToDosDateTime [OLEAUT32.13]
1287 * Convert a variant format date into a Dos format date and time.
1289 * dateIn [I] VT_DATE time format
1290 * pwDosDate [O] Destination for Dos format date
1291 * pwDosTime [O] Destination for Dos format time
1294 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1295 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1298 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1300 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1304 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1306 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1309 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1312 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1313 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1315 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1316 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1317 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1321 /***********************************************************************
1322 * SystemTimeToVariantTime [OLEAUT32.184]
1324 * Convert a System format date and time into variant VT_DATE format.
1327 * lpSt [I] System format date and time
1328 * pDateOut [O] Destination for VT_DATE format date
1331 * Success: TRUE. *pDateOut contains the converted value.
1332 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1334 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1338 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1339 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1341 if (lpSt->wMonth > 12)
1345 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1348 /***********************************************************************
1349 * VariantTimeToSystemTime [OLEAUT32.185]
1351 * Convert a variant VT_DATE into a System format date and time.
1354 * datein [I] Variant VT_DATE format date
1355 * lpSt [O] Destination for System format date and time
1358 * Success: TRUE. *lpSt contains the converted value.
1359 * Failure: FALSE, if dateIn is too large or small.
1361 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1365 TRACE("(%g,%p)\n", dateIn, lpSt);
1367 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1374 /***********************************************************************
1375 * VarDateFromUdateEx [OLEAUT32.319]
1377 * Convert an unpacked format date and time to a variant VT_DATE.
1380 * pUdateIn [I] Unpacked format date and time to convert
1381 * lcid [I] Locale identifier for the conversion
1382 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1383 * pDateOut [O] Destination for variant VT_DATE.
1386 * Success: S_OK. *pDateOut contains the converted value.
1387 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1389 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1394 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1395 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1396 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1397 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1398 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1400 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1401 FIXME("lcid possibly not handled, treating as en-us\n");
1405 if (dwFlags & VAR_VALIDDATE)
1406 WARN("Ignoring VAR_VALIDDATE\n");
1408 if (FAILED(VARIANT_RollUdate(&ud)))
1409 return E_INVALIDARG;
1412 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1415 dateVal += ud.st.wHour / 24.0;
1416 dateVal += ud.st.wMinute / 1440.0;
1417 dateVal += ud.st.wSecond / 86400.0;
1419 TRACE("Returning %g\n", dateVal);
1420 *pDateOut = dateVal;
1424 /***********************************************************************
1425 * VarDateFromUdate [OLEAUT32.330]
1427 * Convert an unpacked format date and time to a variant VT_DATE.
1430 * pUdateIn [I] Unpacked format date and time to convert
1431 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1432 * pDateOut [O] Destination for variant VT_DATE.
1435 * Success: S_OK. *pDateOut contains the converted value.
1436 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1439 * This function uses the United States English locale for the conversion. Use
1440 * VarDateFromUdateEx() for alternate locales.
1442 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1444 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1446 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1449 /***********************************************************************
1450 * VarUdateFromDate [OLEAUT32.331]
1452 * Convert a variant VT_DATE into an unpacked format date and time.
1455 * datein [I] Variant VT_DATE format date
1456 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1457 * lpUdate [O] Destination for unpacked format date and time
1460 * Success: S_OK. *lpUdate contains the converted value.
1461 * Failure: E_INVALIDARG, if dateIn is too large or small.
1463 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1465 /* Cumulative totals of days per month */
1466 static const USHORT cumulativeDays[] =
1468 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1470 double datePart, timePart;
1473 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1475 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1476 return E_INVALIDARG;
1478 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1479 /* Compensate for int truncation (always downwards) */
1480 timePart = dateIn - datePart + 0.00000000001;
1481 if (timePart >= 1.0)
1482 timePart -= 0.00000000001;
1485 julianDays = VARIANT_JulianFromDate(dateIn);
1486 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1489 datePart = (datePart + 1.5) / 7.0;
1490 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1491 if (lpUdate->st.wDayOfWeek == 0)
1492 lpUdate->st.wDayOfWeek = 5;
1493 else if (lpUdate->st.wDayOfWeek == 1)
1494 lpUdate->st.wDayOfWeek = 6;
1496 lpUdate->st.wDayOfWeek -= 2;
1498 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1499 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1501 lpUdate->wDayOfYear = 0;
1503 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1504 lpUdate->wDayOfYear += lpUdate->st.wDay;
1508 lpUdate->st.wHour = timePart;
1509 timePart -= lpUdate->st.wHour;
1511 lpUdate->st.wMinute = timePart;
1512 timePart -= lpUdate->st.wMinute;
1514 lpUdate->st.wSecond = timePart;
1515 timePart -= lpUdate->st.wSecond;
1516 lpUdate->st.wMilliseconds = 0;
1519 /* Round the milliseconds, adjusting the time/date forward if needed */
1520 if (lpUdate->st.wSecond < 59)
1521 lpUdate->st.wSecond++;
1524 lpUdate->st.wSecond = 0;
1525 if (lpUdate->st.wMinute < 59)
1526 lpUdate->st.wMinute++;
1529 lpUdate->st.wMinute = 0;
1530 if (lpUdate->st.wHour < 23)
1531 lpUdate->st.wHour++;
1534 lpUdate->st.wHour = 0;
1535 /* Roll over a whole day */
1536 if (++lpUdate->st.wDay > 28)
1537 VARIANT_RollUdate(lpUdate);
1545 #define GET_NUMBER_TEXT(fld,name) \
1547 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1548 WARN("buffer too small for " #fld "\n"); \
1550 if (buff[0]) lpChars->name = buff[0]; \
1551 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1553 /* Get the valid number characters for an lcid */
1554 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1556 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1557 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1558 static VARIANT_NUMBER_CHARS lastChars;
1559 static LCID lastLcid = -1;
1560 static DWORD lastFlags = 0;
1561 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1564 /* To make caching thread-safe, a critical section is needed */
1565 EnterCriticalSection(&csLastChars);
1567 /* Asking for default locale entries is very expensive: It is a registry
1568 server call. So cache one locally, as Microsoft does it too */
1569 if(lcid == lastLcid && dwFlags == lastFlags)
1571 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1572 LeaveCriticalSection(&csLastChars);
1576 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1577 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1578 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1579 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1580 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1581 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1582 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1584 /* Local currency symbols are often 2 characters */
1585 lpChars->cCurrencyLocal2 = '\0';
1586 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1588 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1589 case 2: lpChars->cCurrencyLocal = buff[0];
1591 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1593 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1594 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1596 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1598 lastFlags = dwFlags;
1599 LeaveCriticalSection(&csLastChars);
1602 /* Number Parsing States */
1603 #define B_PROCESSING_EXPONENT 0x1
1604 #define B_NEGATIVE_EXPONENT 0x2
1605 #define B_EXPONENT_START 0x4
1606 #define B_INEXACT_ZEROS 0x8
1607 #define B_LEADING_ZERO 0x10
1608 #define B_PROCESSING_HEX 0x20
1609 #define B_PROCESSING_OCT 0x40
1611 /**********************************************************************
1612 * VarParseNumFromStr [OLEAUT32.46]
1614 * Parse a string containing a number into a NUMPARSE structure.
1617 * lpszStr [I] String to parse number from
1618 * lcid [I] Locale Id for the conversion
1619 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1620 * pNumprs [I/O] Destination for parsed number
1621 * rgbDig [O] Destination for digits read in
1624 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1626 * Failure: E_INVALIDARG, if any parameter is invalid.
1627 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1629 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1632 * pNumprs must have the following fields set:
1633 * cDig: Set to the size of rgbDig.
1634 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1638 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1639 * numerals, so this has not been implemented.
1641 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1642 NUMPARSE *pNumprs, BYTE *rgbDig)
1644 VARIANT_NUMBER_CHARS chars;
1646 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1647 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1650 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1652 if (!pNumprs || !rgbDig)
1653 return E_INVALIDARG;
1655 if (pNumprs->cDig < iMaxDigits)
1656 iMaxDigits = pNumprs->cDig;
1659 pNumprs->dwOutFlags = 0;
1660 pNumprs->cchUsed = 0;
1661 pNumprs->nBaseShift = 0;
1662 pNumprs->nPwr10 = 0;
1665 return DISP_E_TYPEMISMATCH;
1667 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1669 /* First consume all the leading symbols and space from the string */
1672 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1674 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1679 } while (isspaceW(*lpszStr));
1681 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1682 *lpszStr == chars.cPositiveSymbol &&
1683 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1685 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1689 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1690 *lpszStr == chars.cNegativeSymbol &&
1691 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1693 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1697 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1698 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1699 *lpszStr == chars.cCurrencyLocal &&
1700 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1702 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1705 /* Only accept currency characters */
1706 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1707 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1709 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1710 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1712 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1720 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1722 /* Only accept non-currency characters */
1723 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1724 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1727 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1728 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1730 dwState |= B_PROCESSING_HEX;
1731 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1735 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1736 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1738 dwState |= B_PROCESSING_OCT;
1739 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1744 /* Strip Leading zeros */
1745 while (*lpszStr == '0')
1747 dwState |= B_LEADING_ZERO;
1754 if (isdigitW(*lpszStr))
1756 if (dwState & B_PROCESSING_EXPONENT)
1758 int exponentSize = 0;
1759 if (dwState & B_EXPONENT_START)
1761 if (!isdigitW(*lpszStr))
1762 break; /* No exponent digits - invalid */
1763 while (*lpszStr == '0')
1765 /* Skip leading zero's in the exponent */
1771 while (isdigitW(*lpszStr))
1774 exponentSize += *lpszStr - '0';
1778 if (dwState & B_NEGATIVE_EXPONENT)
1779 exponentSize = -exponentSize;
1780 /* Add the exponent into the powers of 10 */
1781 pNumprs->nPwr10 += exponentSize;
1782 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1783 lpszStr--; /* back up to allow processing of next char */
1787 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1788 && !(dwState & B_PROCESSING_OCT))
1790 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1792 if (*lpszStr != '0')
1793 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1795 /* This digit can't be represented, but count it in nPwr10 */
1796 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1803 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1804 return DISP_E_TYPEMISMATCH;
1807 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1808 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1810 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1816 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1818 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1821 else if (*lpszStr == chars.cDecimalPoint &&
1822 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1823 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1825 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1828 /* If we have no digits so far, skip leading zeros */
1831 while (lpszStr[1] == '0')
1833 dwState |= B_LEADING_ZERO;
1840 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1841 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1842 dwState & B_PROCESSING_HEX)
1844 if (pNumprs->cDig >= iMaxDigits)
1846 return DISP_E_OVERFLOW;
1850 if (*lpszStr >= 'a')
1851 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1853 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1858 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1859 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1860 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1862 dwState |= B_PROCESSING_EXPONENT;
1863 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1866 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1868 cchUsed++; /* Ignore positive exponent */
1870 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1872 dwState |= B_NEGATIVE_EXPONENT;
1876 break; /* Stop at an unrecognised character */
1881 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1883 /* Ensure a 0 on its own gets stored */
1888 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1890 pNumprs->cchUsed = cchUsed;
1891 WARN("didn't completely parse exponent\n");
1892 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1895 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1897 if (dwState & B_INEXACT_ZEROS)
1898 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1899 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1901 /* copy all of the digits into the output digit buffer */
1902 /* this is exactly what windows does although it also returns */
1903 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1904 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1906 if (dwState & B_PROCESSING_HEX) {
1907 /* hex numbers have always the same format */
1909 pNumprs->nBaseShift=4;
1911 if (dwState & B_PROCESSING_OCT) {
1912 /* oct numbers have always the same format */
1914 pNumprs->nBaseShift=3;
1916 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1925 /* Remove trailing zeros from the last (whole number or decimal) part */
1926 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1933 if (pNumprs->cDig <= iMaxDigits)
1934 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1936 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1938 /* Copy the digits we processed into rgbDig */
1939 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1941 /* Consume any trailing symbols and space */
1944 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1946 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1951 } while (isspaceW(*lpszStr));
1953 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1954 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1955 *lpszStr == chars.cPositiveSymbol)
1957 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1961 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1962 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1963 *lpszStr == chars.cNegativeSymbol)
1965 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1969 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1970 pNumprs->dwOutFlags & NUMPRS_PARENS)
1974 pNumprs->dwOutFlags |= NUMPRS_NEG;
1980 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1982 pNumprs->cchUsed = cchUsed;
1983 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1986 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1987 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1990 return DISP_E_TYPEMISMATCH; /* No Number found */
1992 pNumprs->cchUsed = cchUsed;
1996 /* VTBIT flags indicating an integer value */
1997 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1998 /* VTBIT flags indicating a real number value */
1999 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
2001 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
2002 #define FITS_AS_I1(x) ((x) >> 8 == 0)
2003 #define FITS_AS_I2(x) ((x) >> 16 == 0)
2004 #define FITS_AS_I4(x) ((x) >> 32 == 0)
2006 /**********************************************************************
2007 * VarNumFromParseNum [OLEAUT32.47]
2009 * Convert a NUMPARSE structure into a numeric Variant type.
2012 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
2013 * rgbDig [I] Source for the numbers digits
2014 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
2015 * pVarDst [O] Destination for the converted Variant value.
2018 * Success: S_OK. pVarDst contains the converted value.
2019 * Failure: E_INVALIDARG, if any parameter is invalid.
2020 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
2023 * - The smallest favoured type present in dwVtBits that can represent the
2024 * number in pNumprs without losing precision is used.
2025 * - Signed types are preferred over unsigned types of the same size.
2026 * - Preferred types in order are: integer, float, double, currency then decimal.
2027 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2028 * for details of the rounding method.
2029 * - pVarDst is not cleared before the result is stored in it.
2030 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2031 * design?): If some other VTBIT's for integers are specified together
2032 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2033 * the number to the smallest requested integer truncating this way the
2034 * number. Wine doesn't implement this "feature" (yet?).
2036 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2037 ULONG dwVtBits, VARIANT *pVarDst)
2039 /* Scale factors and limits for double arithmetic */
2040 static const double dblMultipliers[11] = {
2041 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2042 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2044 static const double dblMinimums[11] = {
2045 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2046 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2047 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2049 static const double dblMaximums[11] = {
2050 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2051 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2052 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2055 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2057 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2059 if (pNumprs->nBaseShift)
2061 /* nBaseShift indicates a hex or octal number */
2066 /* Convert the hex or octal number string into a UI64 */
2067 for (i = 0; i < pNumprs->cDig; i++)
2069 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2071 TRACE("Overflow multiplying digits\n");
2072 return DISP_E_OVERFLOW;
2074 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2077 /* also make a negative representation */
2080 /* Try signed and unsigned types in size order */
2081 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2083 V_VT(pVarDst) = VT_I1;
2084 V_I1(pVarDst) = ul64;
2087 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2089 V_VT(pVarDst) = VT_UI1;
2090 V_UI1(pVarDst) = ul64;
2093 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2095 V_VT(pVarDst) = VT_I2;
2096 V_I2(pVarDst) = ul64;
2099 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2101 V_VT(pVarDst) = VT_UI2;
2102 V_UI2(pVarDst) = ul64;
2105 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2107 V_VT(pVarDst) = VT_I4;
2108 V_I4(pVarDst) = ul64;
2111 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2113 V_VT(pVarDst) = VT_UI4;
2114 V_UI4(pVarDst) = ul64;
2117 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2119 V_VT(pVarDst) = VT_I8;
2120 V_I8(pVarDst) = ul64;
2123 else if (dwVtBits & VTBIT_UI8)
2125 V_VT(pVarDst) = VT_UI8;
2126 V_UI8(pVarDst) = ul64;
2129 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2131 V_VT(pVarDst) = VT_DECIMAL;
2132 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2133 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2134 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2137 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2139 V_VT(pVarDst) = VT_R4;
2141 V_R4(pVarDst) = ul64;
2143 V_R4(pVarDst) = l64;
2146 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2148 V_VT(pVarDst) = VT_R8;
2150 V_R8(pVarDst) = ul64;
2152 V_R8(pVarDst) = l64;
2156 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2157 return DISP_E_OVERFLOW;
2160 /* Count the number of relevant fractional and whole digits stored,
2161 * And compute the divisor/multiplier to scale the number by.
2163 if (pNumprs->nPwr10 < 0)
2165 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2167 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2168 wholeNumberDigits = 0;
2169 fractionalDigits = pNumprs->cDig;
2170 divisor10 = -pNumprs->nPwr10;
2174 /* An exactly represented real number e.g. 1.024 */
2175 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2176 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2177 divisor10 = pNumprs->cDig - wholeNumberDigits;
2180 else if (pNumprs->nPwr10 == 0)
2182 /* An exactly represented whole number e.g. 1024 */
2183 wholeNumberDigits = pNumprs->cDig;
2184 fractionalDigits = 0;
2186 else /* pNumprs->nPwr10 > 0 */
2188 /* A whole number followed by nPwr10 0's e.g. 102400 */
2189 wholeNumberDigits = pNumprs->cDig;
2190 fractionalDigits = 0;
2191 multiplier10 = pNumprs->nPwr10;
2194 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2195 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2196 multiplier10, divisor10);
2198 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2199 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2201 /* We have one or more integer output choices, and either:
2202 * 1) An integer input value, or
2203 * 2) A real number input value but no floating output choices.
2204 * Alternately, we have a DECIMAL output available and an integer input.
2206 * So, place the integer value into pVarDst, using the smallest type
2207 * possible and preferring signed over unsigned types.
2209 BOOL bOverflow = FALSE, bNegative;
2213 /* Convert the integer part of the number into a UI8 */
2214 for (i = 0; i < wholeNumberDigits; i++)
2216 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2218 TRACE("Overflow multiplying digits\n");
2222 ul64 = ul64 * 10 + rgbDig[i];
2225 /* Account for the scale of the number */
2226 if (!bOverflow && multiplier10)
2228 for (i = 0; i < multiplier10; i++)
2230 if (ul64 > (UI8_MAX / 10))
2232 TRACE("Overflow scaling number\n");
2240 /* If we have any fractional digits, round the value.
2241 * Note we don't have to do this if divisor10 is < 1,
2242 * because this means the fractional part must be < 0.5
2244 if (!bOverflow && fractionalDigits && divisor10 > 0)
2246 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2247 BOOL bAdjust = FALSE;
2249 TRACE("first decimal value is %d\n", *fracDig);
2252 bAdjust = TRUE; /* > 0.5 */
2253 else if (*fracDig == 5)
2255 for (i = 1; i < fractionalDigits; i++)
2259 bAdjust = TRUE; /* > 0.5 */
2263 /* If exactly 0.5, round only odd values */
2264 if (i == fractionalDigits && (ul64 & 1))
2270 if (ul64 == UI8_MAX)
2272 TRACE("Overflow after rounding\n");
2279 /* Zero is not a negative number */
2280 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2282 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2284 /* For negative integers, try the signed types in size order */
2285 if (!bOverflow && bNegative)
2287 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2289 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2291 V_VT(pVarDst) = VT_I1;
2292 V_I1(pVarDst) = -ul64;
2295 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2297 V_VT(pVarDst) = VT_I2;
2298 V_I2(pVarDst) = -ul64;
2301 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2303 V_VT(pVarDst) = VT_I4;
2304 V_I4(pVarDst) = -ul64;
2307 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2309 V_VT(pVarDst) = VT_I8;
2310 V_I8(pVarDst) = -ul64;
2313 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2315 /* Decimal is only output choice left - fast path */
2316 V_VT(pVarDst) = VT_DECIMAL;
2317 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2318 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2319 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2324 else if (!bOverflow)
2326 /* For positive integers, try signed then unsigned types in size order */
2327 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2329 V_VT(pVarDst) = VT_I1;
2330 V_I1(pVarDst) = ul64;
2333 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2335 V_VT(pVarDst) = VT_UI1;
2336 V_UI1(pVarDst) = ul64;
2339 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2341 V_VT(pVarDst) = VT_I2;
2342 V_I2(pVarDst) = ul64;
2345 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2347 V_VT(pVarDst) = VT_UI2;
2348 V_UI2(pVarDst) = ul64;
2351 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2353 V_VT(pVarDst) = VT_I4;
2354 V_I4(pVarDst) = ul64;
2357 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2359 V_VT(pVarDst) = VT_UI4;
2360 V_UI4(pVarDst) = ul64;
2363 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2365 V_VT(pVarDst) = VT_I8;
2366 V_I8(pVarDst) = ul64;
2369 else if (dwVtBits & VTBIT_UI8)
2371 V_VT(pVarDst) = VT_UI8;
2372 V_UI8(pVarDst) = ul64;
2375 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2377 /* Decimal is only output choice left - fast path */
2378 V_VT(pVarDst) = VT_DECIMAL;
2379 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2380 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2381 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2387 if (dwVtBits & REAL_VTBITS)
2389 /* Try to put the number into a float or real */
2390 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2394 /* Convert the number into a double */
2395 for (i = 0; i < pNumprs->cDig; i++)
2396 whole = whole * 10.0 + rgbDig[i];
2398 TRACE("Whole double value is %16.16g\n", whole);
2400 /* Account for the scale */
2401 while (multiplier10 > 10)
2403 if (whole > dblMaximums[10])
2405 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2409 whole = whole * dblMultipliers[10];
2412 if (multiplier10 && !bOverflow)
2414 if (whole > dblMaximums[multiplier10])
2416 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2420 whole = whole * dblMultipliers[multiplier10];
2424 TRACE("Scaled double value is %16.16g\n", whole);
2426 while (divisor10 > 10 && !bOverflow)
2428 if (whole < dblMinimums[10] && whole != 0)
2430 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2434 whole = whole / dblMultipliers[10];
2437 if (divisor10 && !bOverflow)
2439 if (whole < dblMinimums[divisor10] && whole != 0)
2441 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2445 whole = whole / dblMultipliers[divisor10];
2448 TRACE("Final double value is %16.16g\n", whole);
2450 if (dwVtBits & VTBIT_R4 &&
2451 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2453 TRACE("Set R4 to final value\n");
2454 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2455 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2459 if (dwVtBits & VTBIT_R8)
2461 TRACE("Set R8 to final value\n");
2462 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2463 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2467 if (dwVtBits & VTBIT_CY)
2469 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2471 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2472 TRACE("Set CY to final value\n");
2475 TRACE("Value Overflows CY\n");
2479 if (dwVtBits & VTBIT_DECIMAL)
2484 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2486 DECIMAL_SETZERO(*pDec);
2489 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2490 DEC_SIGN(pDec) = DECIMAL_NEG;
2492 DEC_SIGN(pDec) = DECIMAL_POS;
2494 /* Factor the significant digits */
2495 for (i = 0; i < pNumprs->cDig; i++)
2497 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2498 carry = (ULONG)(tmp >> 32);
2499 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2500 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2501 carry = (ULONG)(tmp >> 32);
2502 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2503 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2504 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2506 if (tmp >> 32 & UI4_MAX)
2508 VarNumFromParseNum_DecOverflow:
2509 TRACE("Overflow\n");
2510 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2511 return DISP_E_OVERFLOW;
2515 /* Account for the scale of the number */
2516 while (multiplier10 > 0)
2518 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2519 carry = (ULONG)(tmp >> 32);
2520 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2521 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2522 carry = (ULONG)(tmp >> 32);
2523 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2524 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2525 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2527 if (tmp >> 32 & UI4_MAX)
2528 goto VarNumFromParseNum_DecOverflow;
2531 DEC_SCALE(pDec) = divisor10;
2533 V_VT(pVarDst) = VT_DECIMAL;
2536 return DISP_E_OVERFLOW; /* No more output choices */
2539 /**********************************************************************
2540 * VarCat [OLEAUT32.318]
2542 * Concatenates one variant onto another.
2545 * left [I] First variant
2546 * right [I] Second variant
2547 * result [O] Result variant
2551 * Failure: An HRESULT error code indicating the error.
2553 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2555 VARTYPE leftvt,rightvt,resultvt;
2557 static WCHAR str_true[32];
2558 static WCHAR str_false[32];
2559 static const WCHAR sz_empty[] = {'\0'};
2560 leftvt = V_VT(left);
2561 rightvt = V_VT(right);
2563 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2564 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2567 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2568 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2571 /* when both left and right are NULL the result is NULL */
2572 if (leftvt == VT_NULL && rightvt == VT_NULL)
2574 V_VT(out) = VT_NULL;
2579 resultvt = VT_EMPTY;
2581 /* There are many special case for errors and return types */
2582 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2583 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2584 hres = DISP_E_TYPEMISMATCH;
2585 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2586 leftvt == VT_R4 || leftvt == VT_R8 ||
2587 leftvt == VT_CY || leftvt == VT_BOOL ||
2588 leftvt == VT_BSTR || leftvt == VT_I1 ||
2589 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2590 leftvt == VT_UI4 || leftvt == VT_I8 ||
2591 leftvt == VT_UI8 || leftvt == VT_INT ||
2592 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2593 leftvt == VT_NULL || leftvt == VT_DATE ||
2594 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2596 (rightvt == VT_I2 || rightvt == VT_I4 ||
2597 rightvt == VT_R4 || rightvt == VT_R8 ||
2598 rightvt == VT_CY || rightvt == VT_BOOL ||
2599 rightvt == VT_BSTR || rightvt == VT_I1 ||
2600 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2601 rightvt == VT_UI4 || rightvt == VT_I8 ||
2602 rightvt == VT_UI8 || rightvt == VT_INT ||
2603 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2604 rightvt == VT_NULL || rightvt == VT_DATE ||
2605 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2607 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2608 hres = DISP_E_TYPEMISMATCH;
2609 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2610 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2611 hres = DISP_E_TYPEMISMATCH;
2612 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2613 rightvt == VT_DECIMAL)
2614 hres = DISP_E_BADVARTYPE;
2615 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2616 hres = DISP_E_TYPEMISMATCH;
2617 else if (leftvt == VT_VARIANT)
2618 hres = DISP_E_TYPEMISMATCH;
2619 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2620 leftvt == VT_NULL || leftvt == VT_I2 ||
2621 leftvt == VT_I4 || leftvt == VT_R4 ||
2622 leftvt == VT_R8 || leftvt == VT_CY ||
2623 leftvt == VT_DATE || leftvt == VT_BSTR ||
2624 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2625 leftvt == VT_I1 || leftvt == VT_UI1 ||
2626 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2627 leftvt == VT_I8 || leftvt == VT_UI8 ||
2628 leftvt == VT_INT || leftvt == VT_UINT))
2629 hres = DISP_E_TYPEMISMATCH;
2631 hres = DISP_E_BADVARTYPE;
2633 /* if result type is not S_OK, then no need to go further */
2636 V_VT(out) = resultvt;
2639 /* Else proceed with formatting inputs to strings */
2642 VARIANT bstrvar_left, bstrvar_right;
2643 V_VT(out) = VT_BSTR;
2645 VariantInit(&bstrvar_left);
2646 VariantInit(&bstrvar_right);
2648 /* Convert left side variant to string */
2649 if (leftvt != VT_BSTR)
2651 if (leftvt == VT_BOOL)
2653 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2654 V_VT(&bstrvar_left) = VT_BSTR;
2655 if (V_BOOL(left) == TRUE)
2656 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2658 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2660 /* Fill with empty string for later concat with right side */
2661 else if (leftvt == VT_NULL)
2663 V_VT(&bstrvar_left) = VT_BSTR;
2664 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2668 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2670 VariantClear(&bstrvar_left);
2671 VariantClear(&bstrvar_right);
2672 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2673 rightvt == VT_NULL || rightvt == VT_I2 ||
2674 rightvt == VT_I4 || rightvt == VT_R4 ||
2675 rightvt == VT_R8 || rightvt == VT_CY ||
2676 rightvt == VT_DATE || rightvt == VT_BSTR ||
2677 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2678 rightvt == VT_I1 || rightvt == VT_UI1 ||
2679 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2680 rightvt == VT_I8 || rightvt == VT_UI8 ||
2681 rightvt == VT_INT || rightvt == VT_UINT))
2682 return DISP_E_BADVARTYPE;
2688 /* convert right side variant to string */
2689 if (rightvt != VT_BSTR)
2691 if (rightvt == VT_BOOL)
2693 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2694 V_VT(&bstrvar_right) = VT_BSTR;
2695 if (V_BOOL(right) == TRUE)
2696 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2698 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2700 /* Fill with empty string for later concat with right side */
2701 else if (rightvt == VT_NULL)
2703 V_VT(&bstrvar_right) = VT_BSTR;
2704 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2708 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2710 VariantClear(&bstrvar_left);
2711 VariantClear(&bstrvar_right);
2712 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2713 leftvt == VT_NULL || leftvt == VT_I2 ||
2714 leftvt == VT_I4 || leftvt == VT_R4 ||
2715 leftvt == VT_R8 || leftvt == VT_CY ||
2716 leftvt == VT_DATE || leftvt == VT_BSTR ||
2717 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2718 leftvt == VT_I1 || leftvt == VT_UI1 ||
2719 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2720 leftvt == VT_I8 || leftvt == VT_UI8 ||
2721 leftvt == VT_INT || leftvt == VT_UINT))
2722 return DISP_E_BADVARTYPE;
2728 /* Concat the resulting strings together */
2729 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2730 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2731 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2732 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2733 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2734 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2735 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2736 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2738 VariantClear(&bstrvar_left);
2739 VariantClear(&bstrvar_right);
2745 /* Wrapper around VariantChangeTypeEx() which permits changing a
2746 variant with VT_RESERVED flag set. Needed by VarCmp. */
2747 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2748 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2753 flags = V_VT(pvargSrc) & ~VT_TYPEMASK;
2754 V_VT(pvargSrc) &= ~VT_RESERVED;
2755 res = VariantChangeTypeEx(pvargDest,pvargSrc,lcid,wFlags,vt);
2756 V_VT(pvargSrc) |= flags;
2761 /**********************************************************************
2762 * VarCmp [OLEAUT32.176]
2764 * Compare two variants.
2767 * left [I] First variant
2768 * right [I] Second variant
2769 * lcid [I] LCID (locale identifier) for the comparison
2770 * flags [I] Flags to be used in the comparison:
2771 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2772 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2775 * VARCMP_LT: left variant is less than right variant.
2776 * VARCMP_EQ: input variants are equal.
2777 * VARCMP_GT: left variant is greater than right variant.
2778 * VARCMP_NULL: either one of the input variants is NULL.
2779 * Failure: An HRESULT error code indicating the error.
2782 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2783 * UI8 and UINT as input variants. INT is accepted only as left variant.
2785 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2786 * an ERROR variant will trigger an error.
2788 * Both input variants can have VT_RESERVED flag set which is ignored
2789 * unless one and only one of the variants is a BSTR and the other one
2790 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2791 * different meaning:
2792 * - BSTR and other: BSTR is always greater than the other variant.
2793 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2794 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2795 * comparison will take place else the BSTR is always greater.
2796 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2797 * variant is ignored and the return value depends only on the sign
2798 * of the BSTR if it is a number else the BSTR is always greater. A
2799 * positive BSTR is greater, a negative one is smaller than the other
2803 * VarBstrCmp for the lcid and flags usage.
2805 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2807 VARTYPE lvt, rvt, vt;
2812 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left, debugstr_VT(left),
2813 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2815 lvt = V_VT(left) & VT_TYPEMASK;
2816 rvt = V_VT(right) & VT_TYPEMASK;
2817 xmask = (1 << lvt) | (1 << rvt);
2819 /* If we have any flag set except VT_RESERVED bail out.
2820 Same for the left input variant type > VT_INT and for the
2821 right input variant type > VT_I8. Yes, VT_INT is only supported
2822 as left variant. Go figure */
2823 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2824 lvt > VT_INT || rvt > VT_I8) {
2825 return DISP_E_BADVARTYPE;
2828 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2829 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2830 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2831 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2832 return DISP_E_TYPEMISMATCH;
2834 /* If both variants are VT_ERROR return VARCMP_EQ */
2835 if (xmask == VTBIT_ERROR)
2837 else if (xmask & VTBIT_ERROR)
2838 return DISP_E_TYPEMISMATCH;
2840 if (xmask & VTBIT_NULL)
2846 /* Two BSTRs, ignore VT_RESERVED */
2847 if (xmask == VTBIT_BSTR)
2848 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2850 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2851 if (xmask & VTBIT_BSTR) {
2852 VARIANT *bstrv, *nonbv;
2856 /* Swap the variants so the BSTR is always on the left */
2857 if (lvt == VT_BSTR) {
2868 /* BSTR and EMPTY: ignore VT_RESERVED */
2869 if (nonbvt == VT_EMPTY)
2870 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2872 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2873 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2875 if (!breserv && !nreserv)
2876 /* No VT_RESERVED set ==> BSTR always greater */
2878 else if (breserv && !nreserv) {
2879 /* BSTR has VT_RESERVED set. Do a string comparison */
2880 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2883 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2885 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2886 /* Non NULL nor empty BSTR */
2887 /* If the BSTR is not a number the BSTR is greater */
2888 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2891 else if (breserv && nreserv)
2892 /* FIXME: This is strange: with both VT_RESERVED set it
2893 looks like the result depends only on the sign of
2895 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2897 /* Numeric comparison, will be handled below.
2898 VARCMP_NULL used only to break out. */
2903 /* Empty or NULL BSTR */
2906 /* Fixup the return code if we swapped left and right */
2908 if (rc == VARCMP_GT)
2910 else if (rc == VARCMP_LT)
2913 if (rc != VARCMP_NULL)
2917 if (xmask & VTBIT_DECIMAL)
2919 else if (xmask & VTBIT_BSTR)
2921 else if (xmask & VTBIT_R4)
2923 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2925 else if (xmask & VTBIT_CY)
2931 /* Coerce the variants */
2932 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2933 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2934 /* Overflow, change to R8 */
2936 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2940 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2941 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2942 /* Overflow, change to R8 */
2944 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2947 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2952 #define _VARCMP(a,b) \
2953 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2957 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2959 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2961 return _VARCMP(V_I8(&lv), V_I8(&rv));
2963 return _VARCMP(V_R4(&lv), V_R4(&rv));
2965 return _VARCMP(V_R8(&lv), V_R8(&rv));
2967 /* We should never get here */
2973 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2976 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2978 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2979 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2980 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2981 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2984 hres = DISP_E_TYPEMISMATCH;
2989 /**********************************************************************
2990 * VarAnd [OLEAUT32.142]
2992 * Computes the logical AND of two variants.
2995 * left [I] First variant
2996 * right [I] Second variant
2997 * result [O] Result variant
3001 * Failure: An HRESULT error code indicating the error.
3003 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3005 HRESULT hres = S_OK;
3006 VARTYPE resvt = VT_EMPTY;
3007 VARTYPE leftvt,rightvt;
3008 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3009 VARIANT varLeft, varRight;
3010 VARIANT tempLeft, tempRight;
3012 VariantInit(&varLeft);
3013 VariantInit(&varRight);
3014 VariantInit(&tempLeft);
3015 VariantInit(&tempRight);
3017 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3018 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3020 /* Handle VT_DISPATCH by storing and taking address of returned value */
3021 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3023 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3024 if (FAILED(hres)) goto VarAnd_Exit;
3027 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3029 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3030 if (FAILED(hres)) goto VarAnd_Exit;
3034 leftvt = V_VT(left)&VT_TYPEMASK;
3035 rightvt = V_VT(right)&VT_TYPEMASK;
3036 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3037 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3039 if (leftExtraFlags != rightExtraFlags)
3041 hres = DISP_E_BADVARTYPE;
3044 ExtraFlags = leftExtraFlags;
3046 /* Native VarAnd always returns an error when using extra
3047 * flags or if the variant combination is I8 and INT.
3049 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3050 (leftvt == VT_INT && rightvt == VT_I8) ||
3053 hres = DISP_E_BADVARTYPE;
3057 /* Determine return type */
3058 else if (leftvt == VT_I8 || rightvt == VT_I8)
3060 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3061 leftvt == VT_UINT || rightvt == VT_UINT ||
3062 leftvt == VT_INT || rightvt == VT_INT ||
3063 leftvt == VT_UINT || rightvt == VT_UINT ||
3064 leftvt == VT_R4 || rightvt == VT_R4 ||
3065 leftvt == VT_R8 || rightvt == VT_R8 ||
3066 leftvt == VT_CY || rightvt == VT_CY ||
3067 leftvt == VT_DATE || rightvt == VT_DATE ||
3068 leftvt == VT_I1 || rightvt == VT_I1 ||
3069 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3070 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3071 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3072 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3074 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3075 leftvt == VT_I2 || rightvt == VT_I2 ||
3076 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3077 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3078 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3079 (leftvt == VT_UI1 && rightvt == VT_UI1))
3083 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3084 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3086 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3087 leftvt == VT_BSTR || rightvt == VT_BSTR)
3091 hres = DISP_E_BADVARTYPE;
3095 if (leftvt == VT_NULL || rightvt == VT_NULL)
3098 * Special cases for when left variant is VT_NULL
3099 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3101 if (leftvt == VT_NULL)
3106 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3107 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3108 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3109 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3110 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3111 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3112 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3113 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3114 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3115 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3116 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3117 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3118 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3120 if(V_CY(right).int64)
3124 if (DEC_HI32(&V_DECIMAL(right)) ||
3125 DEC_LO64(&V_DECIMAL(right)))
3129 hres = VarBoolFromStr(V_BSTR(right),
3130 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3134 V_VT(result) = VT_NULL;
3137 V_VT(result) = VT_BOOL;
3143 V_VT(result) = resvt;
3147 hres = VariantCopy(&varLeft, left);
3148 if (FAILED(hres)) goto VarAnd_Exit;
3150 hres = VariantCopy(&varRight, right);
3151 if (FAILED(hres)) goto VarAnd_Exit;
3153 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3154 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3159 if (V_VT(&varLeft) == VT_BSTR &&
3160 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3161 LOCALE_USER_DEFAULT, 0, &d)))
3162 hres = VariantChangeType(&varLeft,&varLeft,
3163 VARIANT_LOCALBOOL, VT_BOOL);
3164 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3165 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3166 if (FAILED(hres)) goto VarAnd_Exit;
3169 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3170 V_VT(&varRight) = VT_I4; /* Don't overflow */
3175 if (V_VT(&varRight) == VT_BSTR &&
3176 FAILED(VarR8FromStr(V_BSTR(&varRight),
3177 LOCALE_USER_DEFAULT, 0, &d)))
3178 hres = VariantChangeType(&varRight, &varRight,
3179 VARIANT_LOCALBOOL, VT_BOOL);
3180 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3181 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3182 if (FAILED(hres)) goto VarAnd_Exit;
3185 V_VT(result) = resvt;
3189 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3192 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3195 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3198 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3201 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3204 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3209 VariantClear(&varLeft);
3210 VariantClear(&varRight);
3211 VariantClear(&tempLeft);
3212 VariantClear(&tempRight);
3217 /**********************************************************************
3218 * VarAdd [OLEAUT32.141]
3223 * left [I] First variant
3224 * right [I] Second variant
3225 * result [O] Result variant
3229 * Failure: An HRESULT error code indicating the error.
3232 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3233 * UI8, INT and UINT as input variants.
3235 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3239 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3242 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3245 VARTYPE lvt, rvt, resvt, tvt;
3247 VARIANT tempLeft, tempRight;
3250 /* Variant priority for coercion. Sorted from lowest to highest.
3251 VT_ERROR shows an invalid input variant type. */
3252 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3253 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3255 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3256 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3257 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3258 VT_NULL, VT_ERROR };
3260 /* Mapping for coercion from input variant to priority of result variant. */
3261 static const VARTYPE coerce[] = {
3262 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3263 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3264 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3265 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3266 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3267 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3268 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3269 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3272 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3273 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3279 VariantInit(&tempLeft);
3280 VariantInit(&tempRight);
3282 /* Handle VT_DISPATCH by storing and taking address of returned value */
3283 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3285 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3287 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3288 if (FAILED(hres)) goto end;
3291 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3293 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3294 if (FAILED(hres)) goto end;
3299 lvt = V_VT(left)&VT_TYPEMASK;
3300 rvt = V_VT(right)&VT_TYPEMASK;
3302 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3303 Same for any input variant type > VT_I8 */
3304 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3305 lvt > VT_I8 || rvt > VT_I8) {
3306 hres = DISP_E_BADVARTYPE;
3310 /* Determine the variant type to coerce to. */
3311 if (coerce[lvt] > coerce[rvt]) {
3312 resvt = prio2vt[coerce[lvt]];
3313 tvt = prio2vt[coerce[rvt]];
3315 resvt = prio2vt[coerce[rvt]];
3316 tvt = prio2vt[coerce[lvt]];
3319 /* Special cases where the result variant type is defined by both
3320 input variants and not only that with the highest priority */
3321 if (resvt == VT_BSTR) {
3322 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3327 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3330 /* For overflow detection use the biggest compatible type for the
3334 hres = DISP_E_BADVARTYPE;
3338 V_VT(result) = VT_NULL;
3341 FIXME("cannot handle variant type VT_DISPATCH\n");
3342 hres = DISP_E_TYPEMISMATCH;
3361 /* Now coerce the variants */
3362 hres = VariantChangeType(&lv, left, 0, tvt);
3365 hres = VariantChangeType(&rv, right, 0, tvt);
3371 V_VT(result) = resvt;
3374 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3375 &V_DECIMAL(result));
3378 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3381 /* We do not add those, we concatenate them. */
3382 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3385 /* Overflow detection */
3386 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3387 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3388 V_VT(result) = VT_R8;
3389 V_R8(result) = r8res;
3393 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3398 /* FIXME: overflow detection */
3399 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3402 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3406 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3407 /* Overflow! Change to the vartype with the next higher priority.
3408 With one exception: I4 ==> R8 even if it would fit in I8 */
3412 resvt = prio2vt[coerce[resvt] + 1];
3413 hres = VariantChangeType(result, &tv, 0, resvt);
3416 hres = VariantCopy(result, &tv);
3420 V_VT(result) = VT_EMPTY;
3421 V_I4(result) = 0; /* No V_EMPTY */
3426 VariantClear(&tempLeft);
3427 VariantClear(&tempRight);
3428 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3432 /**********************************************************************
3433 * VarMul [OLEAUT32.156]
3435 * Multiply two variants.
3438 * left [I] First variant
3439 * right [I] Second variant
3440 * result [O] Result variant
3444 * Failure: An HRESULT error code indicating the error.
3447 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3448 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3450 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3454 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3457 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3460 VARTYPE lvt, rvt, resvt, tvt;
3462 VARIANT tempLeft, tempRight;
3465 /* Variant priority for coercion. Sorted from lowest to highest.
3466 VT_ERROR shows an invalid input variant type. */
3467 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3468 vt_DECIMAL, vt_NULL, vt_ERROR };
3469 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3470 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3471 VT_DECIMAL, VT_NULL, VT_ERROR };
3473 /* Mapping for coercion from input variant to priority of result variant. */
3474 static const VARTYPE coerce[] = {
3475 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3476 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3477 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3478 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3479 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3480 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3481 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3482 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3485 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3486 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3492 VariantInit(&tempLeft);
3493 VariantInit(&tempRight);
3495 /* Handle VT_DISPATCH by storing and taking address of returned value */
3496 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3498 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3499 if (FAILED(hres)) goto end;
3502 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3504 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3505 if (FAILED(hres)) goto end;
3509 lvt = V_VT(left)&VT_TYPEMASK;
3510 rvt = V_VT(right)&VT_TYPEMASK;
3512 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3513 Same for any input variant type > VT_I8 */
3514 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3515 lvt > VT_I8 || rvt > VT_I8) {
3516 hres = DISP_E_BADVARTYPE;
3520 /* Determine the variant type to coerce to. */
3521 if (coerce[lvt] > coerce[rvt]) {
3522 resvt = prio2vt[coerce[lvt]];
3523 tvt = prio2vt[coerce[rvt]];
3525 resvt = prio2vt[coerce[rvt]];
3526 tvt = prio2vt[coerce[lvt]];
3529 /* Special cases where the result variant type is defined by both
3530 input variants and not only that with the highest priority */
3531 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3533 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3536 /* For overflow detection use the biggest compatible type for the
3540 hres = DISP_E_BADVARTYPE;
3544 V_VT(result) = VT_NULL;
3559 /* Now coerce the variants */
3560 hres = VariantChangeType(&lv, left, 0, tvt);
3563 hres = VariantChangeType(&rv, right, 0, tvt);
3570 V_VT(result) = resvt;
3573 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3574 &V_DECIMAL(result));
3577 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3580 /* Overflow detection */
3581 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3582 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3583 V_VT(result) = VT_R8;
3584 V_R8(result) = r8res;
3587 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3590 /* FIXME: overflow detection */
3591 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3594 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3598 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3599 /* Overflow! Change to the vartype with the next higher priority.
3600 With one exception: I4 ==> R8 even if it would fit in I8 */
3604 resvt = prio2vt[coerce[resvt] + 1];
3607 hres = VariantCopy(result, &tv);
3611 V_VT(result) = VT_EMPTY;
3612 V_I4(result) = 0; /* No V_EMPTY */
3617 VariantClear(&tempLeft);
3618 VariantClear(&tempRight);
3619 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3623 /**********************************************************************
3624 * VarDiv [OLEAUT32.143]
3626 * Divides one variant with another.
3629 * left [I] First variant
3630 * right [I] Second variant
3631 * result [O] Result variant
3635 * Failure: An HRESULT error code indicating the error.
3637 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3639 HRESULT hres = S_OK;
3640 VARTYPE resvt = VT_EMPTY;
3641 VARTYPE leftvt,rightvt;
3642 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3644 VARIANT tempLeft, tempRight;
3646 VariantInit(&tempLeft);
3647 VariantInit(&tempRight);
3651 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3652 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3654 /* Handle VT_DISPATCH by storing and taking address of returned value */
3655 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3657 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3658 if (FAILED(hres)) goto end;
3661 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3663 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3664 if (FAILED(hres)) goto end;
3668 leftvt = V_VT(left)&VT_TYPEMASK;
3669 rightvt = V_VT(right)&VT_TYPEMASK;
3670 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3671 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3673 if (leftExtraFlags != rightExtraFlags)
3675 hres = DISP_E_BADVARTYPE;
3678 ExtraFlags = leftExtraFlags;
3680 /* Native VarDiv always returns an error when using extra flags */
3681 if (ExtraFlags != 0)
3683 hres = DISP_E_BADVARTYPE;
3687 /* Determine return type */
3688 if (!(rightvt == VT_EMPTY))
3690 if (leftvt == VT_NULL || rightvt == VT_NULL)
3692 V_VT(result) = VT_NULL;
3696 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3698 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3699 leftvt == VT_CY || rightvt == VT_CY ||
3700 leftvt == VT_DATE || rightvt == VT_DATE ||
3701 leftvt == VT_I4 || rightvt == VT_I4 ||
3702 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3703 leftvt == VT_I2 || rightvt == VT_I2 ||
3704 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3705 leftvt == VT_R8 || rightvt == VT_R8 ||
3706 leftvt == VT_UI1 || rightvt == VT_UI1)
3708 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3709 (leftvt == VT_R4 && rightvt == VT_UI1))
3711 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3712 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3713 (leftvt == VT_BOOL || leftvt == VT_I2)))
3718 else if (leftvt == VT_R4 || rightvt == VT_R4)
3721 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3723 V_VT(result) = VT_NULL;
3729 hres = DISP_E_BADVARTYPE;
3733 /* coerce to the result type */
3734 hres = VariantChangeType(&lv, left, 0, resvt);
3735 if (hres != S_OK) goto end;
3737 hres = VariantChangeType(&rv, right, 0, resvt);
3738 if (hres != S_OK) goto end;
3741 V_VT(result) = resvt;
3745 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3747 hres = DISP_E_OVERFLOW;
3748 V_VT(result) = VT_EMPTY;
3750 else if (V_R4(&rv) == 0.0)
3752 hres = DISP_E_DIVBYZERO;
3753 V_VT(result) = VT_EMPTY;
3756 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3759 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3761 hres = DISP_E_OVERFLOW;
3762 V_VT(result) = VT_EMPTY;
3764 else if (V_R8(&rv) == 0.0)
3766 hres = DISP_E_DIVBYZERO;
3767 V_VT(result) = VT_EMPTY;
3770 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3773 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3780 VariantClear(&tempLeft);
3781 VariantClear(&tempRight);
3782 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3786 /**********************************************************************
3787 * VarSub [OLEAUT32.159]
3789 * Subtract two variants.
3792 * left [I] First variant
3793 * right [I] Second variant
3794 * result [O] Result variant
3798 * Failure: An HRESULT error code indicating the error.
3800 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3802 HRESULT hres = S_OK;
3803 VARTYPE resvt = VT_EMPTY;
3804 VARTYPE leftvt,rightvt;
3805 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3807 VARIANT tempLeft, tempRight;
3811 VariantInit(&tempLeft);
3812 VariantInit(&tempRight);
3814 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3815 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3817 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3818 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3819 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3821 if (NULL == V_DISPATCH(left)) {
3822 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3823 hres = DISP_E_BADVARTYPE;
3824 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3825 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3826 hres = DISP_E_BADVARTYPE;
3827 else switch (V_VT(right) & VT_TYPEMASK)
3835 hres = DISP_E_BADVARTYPE;
3837 if (FAILED(hres)) goto end;
3839 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3840 if (FAILED(hres)) goto end;
3843 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3844 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3845 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3847 if (NULL == V_DISPATCH(right))
3849 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3850 hres = DISP_E_BADVARTYPE;
3851 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3852 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3853 hres = DISP_E_BADVARTYPE;
3854 else switch (V_VT(left) & VT_TYPEMASK)
3862 hres = DISP_E_BADVARTYPE;
3864 if (FAILED(hres)) goto end;
3866 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3867 if (FAILED(hres)) goto end;
3871 leftvt = V_VT(left)&VT_TYPEMASK;
3872 rightvt = V_VT(right)&VT_TYPEMASK;
3873 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3874 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3876 if (leftExtraFlags != rightExtraFlags)
3878 hres = DISP_E_BADVARTYPE;
3881 ExtraFlags = leftExtraFlags;
3883 /* determine return type and return code */
3884 /* All extra flags produce errors */
3885 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3886 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3887 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3888 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3889 ExtraFlags == VT_VECTOR ||
3890 ExtraFlags == VT_BYREF ||
3891 ExtraFlags == VT_RESERVED)
3893 hres = DISP_E_BADVARTYPE;
3896 else if (ExtraFlags >= VT_ARRAY)
3898 hres = DISP_E_TYPEMISMATCH;
3901 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3902 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3903 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3904 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3905 leftvt == VT_I1 || rightvt == VT_I1 ||
3906 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3907 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3908 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3909 leftvt == VT_INT || rightvt == VT_INT ||
3910 leftvt == VT_UINT || rightvt == VT_UINT ||
3911 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3912 leftvt == VT_RECORD || rightvt == VT_RECORD)
3914 if (leftvt == VT_RECORD && rightvt == VT_I8)
3915 hres = DISP_E_TYPEMISMATCH;
3916 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3917 hres = DISP_E_TYPEMISMATCH;
3918 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3919 hres = DISP_E_TYPEMISMATCH;
3920 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3921 hres = DISP_E_TYPEMISMATCH;
3922 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3923 hres = DISP_E_BADVARTYPE;
3925 hres = DISP_E_BADVARTYPE;
3928 /* The following flags/types are invalid for left variant */
3929 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3930 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3931 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3933 hres = DISP_E_BADVARTYPE;
3936 /* The following flags/types are invalid for right variant */
3937 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3938 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3939 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3941 hres = DISP_E_BADVARTYPE;
3944 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3945 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3947 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3948 leftvt == VT_ERROR || rightvt == VT_ERROR)
3950 hres = DISP_E_TYPEMISMATCH;
3953 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3955 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3956 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3957 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3958 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3960 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3962 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3964 else if (leftvt == VT_CY || rightvt == VT_CY)
3966 else if (leftvt == VT_R8 || rightvt == VT_R8)
3968 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3970 else if (leftvt == VT_R4 || rightvt == VT_R4)
3972 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3973 leftvt == VT_I8 || rightvt == VT_I8)
3978 else if (leftvt == VT_I8 || rightvt == VT_I8)
3980 else if (leftvt == VT_I4 || rightvt == VT_I4)
3982 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3983 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3984 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3986 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3990 hres = DISP_E_TYPEMISMATCH;
3994 /* coerce to the result type */
3995 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3996 hres = VariantChangeType(&lv, left, 0, VT_R8);
3998 hres = VariantChangeType(&lv, left, 0, resvt);
3999 if (hres != S_OK) goto end;
4000 if (leftvt == VT_DATE && rightvt == VT_BSTR)
4001 hres = VariantChangeType(&rv, right, 0, VT_R8);
4003 hres = VariantChangeType(&rv, right, 0, resvt);
4004 if (hres != S_OK) goto end;
4007 V_VT(result) = resvt;
4013 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
4016 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
4019 V_R4(result) = V_R4(&lv) - V_R4(&rv);
4022 V_I8(result) = V_I8(&lv) - V_I8(&rv);
4025 V_I4(result) = V_I4(&lv) - V_I4(&rv);
4028 V_I2(result) = V_I2(&lv) - V_I2(&rv);
4031 V_I1(result) = V_I1(&lv) - V_I1(&rv);
4034 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
4037 V_R8(result) = V_R8(&lv) - V_R8(&rv);
4040 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
4047 VariantClear(&tempLeft);
4048 VariantClear(&tempRight);
4049 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
4054 /**********************************************************************
4055 * VarOr [OLEAUT32.157]
4057 * Perform a logical or (OR) operation on two variants.
4060 * pVarLeft [I] First variant
4061 * pVarRight [I] Variant to OR with pVarLeft
4062 * pVarOut [O] Destination for OR result
4065 * Success: S_OK. pVarOut contains the result of the operation with its type
4066 * taken from the table listed under VarXor().
4067 * Failure: An HRESULT error code indicating the error.
4070 * See the Notes section of VarXor() for further information.
4072 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4075 VARIANT varLeft, varRight, varStr;
4077 VARIANT tempLeft, tempRight;
4079 VariantInit(&tempLeft);
4080 VariantInit(&tempRight);
4081 VariantInit(&varLeft);
4082 VariantInit(&varRight);
4083 VariantInit(&varStr);
4085 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4086 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4087 debugstr_VF(pVarRight), pVarOut);
4089 /* Handle VT_DISPATCH by storing and taking address of returned value */
4090 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4092 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4093 if (FAILED(hRet)) goto VarOr_Exit;
4094 pVarLeft = &tempLeft;
4096 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4098 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4099 if (FAILED(hRet)) goto VarOr_Exit;
4100 pVarRight = &tempRight;
4103 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4104 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4105 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4106 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4108 hRet = DISP_E_BADVARTYPE;
4112 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4114 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4116 /* NULL OR Zero is NULL, NULL OR value is value */
4117 if (V_VT(pVarLeft) == VT_NULL)
4118 pVarLeft = pVarRight; /* point to the non-NULL var */
4120 V_VT(pVarOut) = VT_NULL;
4123 switch (V_VT(pVarLeft))
4125 case VT_DATE: case VT_R8:
4131 if (V_BOOL(pVarLeft))
4132 *pVarOut = *pVarLeft;
4135 case VT_I2: case VT_UI2:
4146 if (V_UI1(pVarLeft))
4147 *pVarOut = *pVarLeft;
4155 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4161 if (V_CY(pVarLeft).int64)
4165 case VT_I8: case VT_UI8:
4171 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4179 if (!V_BSTR(pVarLeft))
4181 hRet = DISP_E_BADVARTYPE;
4185 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4186 if (SUCCEEDED(hRet) && b)
4188 V_VT(pVarOut) = VT_BOOL;
4189 V_BOOL(pVarOut) = b;
4193 case VT_NULL: case VT_EMPTY:
4194 V_VT(pVarOut) = VT_NULL;
4198 hRet = DISP_E_BADVARTYPE;
4203 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4205 if (V_VT(pVarLeft) == VT_EMPTY)
4206 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4209 /* Since one argument is empty (0), OR'ing it with the other simply
4210 * gives the others value (as 0|x => x). So just convert the other
4211 * argument to the required result type.
4213 switch (V_VT(pVarLeft))
4216 if (!V_BSTR(pVarLeft))
4218 hRet = DISP_E_BADVARTYPE;
4222 hRet = VariantCopy(&varStr, pVarLeft);
4226 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4229 /* Fall Through ... */
4230 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4231 V_VT(pVarOut) = VT_I2;
4233 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4234 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4235 case VT_INT: case VT_UINT: case VT_UI8:
4236 V_VT(pVarOut) = VT_I4;
4239 V_VT(pVarOut) = VT_I8;
4242 hRet = DISP_E_BADVARTYPE;
4245 hRet = VariantCopy(&varLeft, pVarLeft);
4248 pVarLeft = &varLeft;
4249 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4253 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4255 V_VT(pVarOut) = VT_BOOL;
4256 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4261 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4263 V_VT(pVarOut) = VT_UI1;
4264 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4269 if (V_VT(pVarLeft) == VT_BSTR)
4271 hRet = VariantCopy(&varStr, pVarLeft);
4275 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4280 if (V_VT(pVarLeft) == VT_BOOL &&
4281 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4285 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4286 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4287 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4288 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4292 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4294 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4296 hRet = DISP_E_TYPEMISMATCH;
4302 hRet = VariantCopy(&varLeft, pVarLeft);
4306 hRet = VariantCopy(&varRight, pVarRight);
4310 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4311 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4316 if (V_VT(&varLeft) == VT_BSTR &&
4317 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4318 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4319 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4320 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4325 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4326 V_VT(&varRight) = VT_I4; /* Don't overflow */
4331 if (V_VT(&varRight) == VT_BSTR &&
4332 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4333 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4334 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4335 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4343 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4345 else if (vt == VT_I4)
4347 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4351 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4355 VariantClear(&varStr);
4356 VariantClear(&varLeft);
4357 VariantClear(&varRight);
4358 VariantClear(&tempLeft);
4359 VariantClear(&tempRight);
4363 /**********************************************************************
4364 * VarAbs [OLEAUT32.168]
4366 * Convert a variant to its absolute value.
4369 * pVarIn [I] Source variant
4370 * pVarOut [O] Destination for converted value
4373 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4374 * Failure: An HRESULT error code indicating the error.
4377 * - This function does not process by-reference variants.
4378 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4379 * according to the following table:
4380 *| Input Type Output Type
4381 *| ---------- -----------
4384 *| (All others) Unchanged
4386 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4389 HRESULT hRet = S_OK;
4394 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4395 debugstr_VF(pVarIn), pVarOut);
4397 /* Handle VT_DISPATCH by storing and taking address of returned value */
4398 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4400 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4401 if (FAILED(hRet)) goto VarAbs_Exit;
4405 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4406 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4407 V_VT(pVarIn) == VT_ERROR)
4409 hRet = DISP_E_TYPEMISMATCH;
4412 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4414 #define ABS_CASE(typ,min) \
4415 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4416 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4419 switch (V_VT(pVarIn))
4421 ABS_CASE(I1,I1_MIN);
4423 V_VT(pVarOut) = VT_I2;
4424 /* BOOL->I2, Fall through ... */
4425 ABS_CASE(I2,I2_MIN);
4427 ABS_CASE(I4,I4_MIN);
4428 ABS_CASE(I8,I8_MIN);
4429 ABS_CASE(R4,R4_MIN);
4431 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4434 V_VT(pVarOut) = VT_R8;
4436 /* Fall through ... */
4438 ABS_CASE(R8,R8_MIN);
4440 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4443 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4453 V_VT(pVarOut) = VT_I2;
4458 hRet = DISP_E_BADVARTYPE;
4462 VariantClear(&temp);
4466 /**********************************************************************
4467 * VarFix [OLEAUT32.169]
4469 * Truncate a variants value to a whole number.
4472 * pVarIn [I] Source variant
4473 * pVarOut [O] Destination for converted value
4476 * Success: S_OK. pVarOut contains the converted value.
4477 * Failure: An HRESULT error code indicating the error.
4480 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4481 * according to the following table:
4482 *| Input Type Output Type
4483 *| ---------- -----------
4487 *| All Others Unchanged
4488 * - The difference between this function and VarInt() is that VarInt() rounds
4489 * negative numbers away from 0, while this function rounds them towards zero.
4491 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4493 HRESULT hRet = S_OK;
4498 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4499 debugstr_VF(pVarIn), pVarOut);
4501 /* Handle VT_DISPATCH by storing and taking address of returned value */
4502 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4504 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4505 if (FAILED(hRet)) goto VarFix_Exit;
4508 V_VT(pVarOut) = V_VT(pVarIn);
4510 switch (V_VT(pVarIn))
4513 V_UI1(pVarOut) = V_UI1(pVarIn);
4516 V_VT(pVarOut) = VT_I2;
4519 V_I2(pVarOut) = V_I2(pVarIn);
4522 V_I4(pVarOut) = V_I4(pVarIn);
4525 V_I8(pVarOut) = V_I8(pVarIn);
4528 if (V_R4(pVarIn) < 0.0f)
4529 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4531 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4534 V_VT(pVarOut) = VT_R8;
4535 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4540 if (V_R8(pVarIn) < 0.0)
4541 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4543 V_R8(pVarOut) = floor(V_R8(pVarIn));
4546 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4549 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4552 V_VT(pVarOut) = VT_I2;
4559 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4560 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4561 hRet = DISP_E_BADVARTYPE;
4563 hRet = DISP_E_TYPEMISMATCH;
4567 V_VT(pVarOut) = VT_EMPTY;
4568 VariantClear(&temp);
4573 /**********************************************************************
4574 * VarInt [OLEAUT32.172]
4576 * Truncate a variants value to a whole number.
4579 * pVarIn [I] Source variant
4580 * pVarOut [O] Destination for converted value
4583 * Success: S_OK. pVarOut contains the converted value.
4584 * Failure: An HRESULT error code indicating the error.
4587 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4588 * according to the following table:
4589 *| Input Type Output Type
4590 *| ---------- -----------
4594 *| All Others Unchanged
4595 * - The difference between this function and VarFix() is that VarFix() rounds
4596 * negative numbers towards 0, while this function rounds them away from zero.
4598 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4600 HRESULT hRet = S_OK;
4605 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4606 debugstr_VF(pVarIn), pVarOut);
4608 /* Handle VT_DISPATCH by storing and taking address of returned value */
4609 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4611 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4612 if (FAILED(hRet)) goto VarInt_Exit;
4615 V_VT(pVarOut) = V_VT(pVarIn);
4617 switch (V_VT(pVarIn))
4620 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4623 V_VT(pVarOut) = VT_R8;
4624 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4629 V_R8(pVarOut) = floor(V_R8(pVarIn));
4632 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4635 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4638 hRet = VarFix(pVarIn, pVarOut);
4641 VariantClear(&temp);
4646 /**********************************************************************
4647 * VarXor [OLEAUT32.167]
4649 * Perform a logical exclusive-or (XOR) operation on two variants.
4652 * pVarLeft [I] First variant
4653 * pVarRight [I] Variant to XOR with pVarLeft
4654 * pVarOut [O] Destination for XOR result
4657 * Success: S_OK. pVarOut contains the result of the operation with its type
4658 * taken from the table below).
4659 * Failure: An HRESULT error code indicating the error.
4662 * - Neither pVarLeft or pVarRight are modified by this function.
4663 * - This function does not process by-reference variants.
4664 * - Input types of VT_BSTR may be numeric strings or boolean text.
4665 * - The type of result stored in pVarOut depends on the types of pVarLeft
4666 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4667 * or VT_NULL if the function succeeds.
4668 * - Type promotion is inconsistent and as a result certain combinations of
4669 * values will return DISP_E_OVERFLOW even when they could be represented.
4670 * This matches the behaviour of native oleaut32.
4672 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4675 VARIANT varLeft, varRight;
4676 VARIANT tempLeft, tempRight;
4680 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4681 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4682 debugstr_VF(pVarRight), pVarOut);
4684 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4685 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4686 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4687 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4688 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4689 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4690 return DISP_E_BADVARTYPE;
4692 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4694 /* NULL XOR anything valid is NULL */
4695 V_VT(pVarOut) = VT_NULL;
4699 VariantInit(&tempLeft);
4700 VariantInit(&tempRight);
4702 /* Handle VT_DISPATCH by storing and taking address of returned value */
4703 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4705 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4706 if (FAILED(hRet)) goto VarXor_Exit;
4707 pVarLeft = &tempLeft;
4709 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4711 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4712 if (FAILED(hRet)) goto VarXor_Exit;
4713 pVarRight = &tempRight;
4716 /* Copy our inputs so we don't disturb anything */
4717 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4719 hRet = VariantCopy(&varLeft, pVarLeft);
4723 hRet = VariantCopy(&varRight, pVarRight);
4727 /* Try any strings first as numbers, then as VT_BOOL */
4728 if (V_VT(&varLeft) == VT_BSTR)
4730 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4731 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4732 FAILED(hRet) ? VT_BOOL : VT_I4);
4737 if (V_VT(&varRight) == VT_BSTR)
4739 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4740 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4741 FAILED(hRet) ? VT_BOOL : VT_I4);
4746 /* Determine the result type */
4747 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4749 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4751 hRet = DISP_E_TYPEMISMATCH;
4758 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4760 case (VT_BOOL << 16) | VT_BOOL:
4763 case (VT_UI1 << 16) | VT_UI1:
4766 case (VT_EMPTY << 16) | VT_EMPTY:
4767 case (VT_EMPTY << 16) | VT_UI1:
4768 case (VT_EMPTY << 16) | VT_I2:
4769 case (VT_EMPTY << 16) | VT_BOOL:
4770 case (VT_UI1 << 16) | VT_EMPTY:
4771 case (VT_UI1 << 16) | VT_I2:
4772 case (VT_UI1 << 16) | VT_BOOL:
4773 case (VT_I2 << 16) | VT_EMPTY:
4774 case (VT_I2 << 16) | VT_UI1:
4775 case (VT_I2 << 16) | VT_I2:
4776 case (VT_I2 << 16) | VT_BOOL:
4777 case (VT_BOOL << 16) | VT_EMPTY:
4778 case (VT_BOOL << 16) | VT_UI1:
4779 case (VT_BOOL << 16) | VT_I2:
4788 /* VT_UI4 does not overflow */
4791 if (V_VT(&varLeft) == VT_UI4)
4792 V_VT(&varLeft) = VT_I4;
4793 if (V_VT(&varRight) == VT_UI4)
4794 V_VT(&varRight) = VT_I4;
4797 /* Convert our input copies to the result type */
4798 if (V_VT(&varLeft) != vt)
4799 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4803 if (V_VT(&varRight) != vt)
4804 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4810 /* Calculate the result */
4814 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4817 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4821 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4824 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4829 VariantClear(&varLeft);
4830 VariantClear(&varRight);
4831 VariantClear(&tempLeft);
4832 VariantClear(&tempRight);
4836 /**********************************************************************
4837 * VarEqv [OLEAUT32.172]
4839 * Determine if two variants contain the same value.
4842 * pVarLeft [I] First variant to compare
4843 * pVarRight [I] Variant to compare to pVarLeft
4844 * pVarOut [O] Destination for comparison result
4847 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4848 * if equivalent or non-zero otherwise.
4849 * Failure: An HRESULT error code indicating the error.
4852 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4855 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4859 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4860 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4861 debugstr_VF(pVarRight), pVarOut);
4863 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4864 if (SUCCEEDED(hRet))
4866 if (V_VT(pVarOut) == VT_I8)
4867 V_I8(pVarOut) = ~V_I8(pVarOut);
4869 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4874 /**********************************************************************
4875 * VarNeg [OLEAUT32.173]
4877 * Negate the value of a variant.
4880 * pVarIn [I] Source variant
4881 * pVarOut [O] Destination for converted value
4884 * Success: S_OK. pVarOut contains the converted value.
4885 * Failure: An HRESULT error code indicating the error.
4888 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4889 * according to the following table:
4890 *| Input Type Output Type
4891 *| ---------- -----------
4896 *| All Others Unchanged (unless promoted)
4897 * - Where the negated value of a variant does not fit in its base type, the type
4898 * is promoted according to the following table:
4899 *| Input Type Promoted To
4900 *| ---------- -----------
4904 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4905 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4906 * for types which are not valid. Since this is in contravention of the
4907 * meaning of those error codes and unlikely to be relied on by applications,
4908 * this implementation returns errors consistent with the other high level
4909 * variant math functions.
4911 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4913 HRESULT hRet = S_OK;
4918 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4919 debugstr_VF(pVarIn), pVarOut);
4921 /* Handle VT_DISPATCH by storing and taking address of returned value */
4922 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4924 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4925 if (FAILED(hRet)) goto VarNeg_Exit;
4928 V_VT(pVarOut) = V_VT(pVarIn);
4930 switch (V_VT(pVarIn))
4933 V_VT(pVarOut) = VT_I2;
4934 V_I2(pVarOut) = -V_UI1(pVarIn);
4937 V_VT(pVarOut) = VT_I2;
4940 if (V_I2(pVarIn) == I2_MIN)
4942 V_VT(pVarOut) = VT_I4;
4943 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4946 V_I2(pVarOut) = -V_I2(pVarIn);
4949 if (V_I4(pVarIn) == I4_MIN)
4951 V_VT(pVarOut) = VT_R8;
4952 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4955 V_I4(pVarOut) = -V_I4(pVarIn);
4958 if (V_I8(pVarIn) == I8_MIN)
4960 V_VT(pVarOut) = VT_R8;
4961 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4962 V_R8(pVarOut) *= -1.0;
4965 V_I8(pVarOut) = -V_I8(pVarIn);
4968 V_R4(pVarOut) = -V_R4(pVarIn);
4972 V_R8(pVarOut) = -V_R8(pVarIn);
4975 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4978 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4981 V_VT(pVarOut) = VT_R8;
4982 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4983 V_R8(pVarOut) = -V_R8(pVarOut);
4986 V_VT(pVarOut) = VT_I2;
4993 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4994 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4995 hRet = DISP_E_BADVARTYPE;
4997 hRet = DISP_E_TYPEMISMATCH;
5001 V_VT(pVarOut) = VT_EMPTY;
5002 VariantClear(&temp);
5007 /**********************************************************************
5008 * VarNot [OLEAUT32.174]
5010 * Perform a not operation on a variant.
5013 * pVarIn [I] Source variant
5014 * pVarOut [O] Destination for converted value
5017 * Success: S_OK. pVarOut contains the converted value.
5018 * Failure: An HRESULT error code indicating the error.
5021 * - Strictly speaking, this function performs a bitwise ones complement
5022 * on the variants value (after possibly converting to VT_I4, see below).
5023 * This only behaves like a boolean not operation if the value in
5024 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
5025 * - To perform a genuine not operation, convert the variant to a VT_BOOL
5026 * before calling this function.
5027 * - This function does not process by-reference variants.
5028 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5029 * according to the following table:
5030 *| Input Type Output Type
5031 *| ---------- -----------
5038 *| (All others) Unchanged
5040 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
5043 HRESULT hRet = S_OK;
5048 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
5049 debugstr_VF(pVarIn), pVarOut);
5051 /* Handle VT_DISPATCH by storing and taking address of returned value */
5052 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5054 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5055 if (FAILED(hRet)) goto VarNot_Exit;
5059 V_VT(pVarOut) = V_VT(pVarIn);
5061 switch (V_VT(pVarIn))
5064 V_I4(pVarOut) = ~V_I1(pVarIn);
5065 V_VT(pVarOut) = VT_I4;
5067 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5069 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5071 V_I4(pVarOut) = ~V_UI2(pVarIn);
5072 V_VT(pVarOut) = VT_I4;
5075 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5079 /* Fall through ... */
5081 V_VT(pVarOut) = VT_I4;
5082 /* Fall through ... */
5083 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5086 V_I4(pVarOut) = ~V_UI4(pVarIn);
5087 V_VT(pVarOut) = VT_I4;
5089 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5091 V_I4(pVarOut) = ~V_UI8(pVarIn);
5092 V_VT(pVarOut) = VT_I4;
5095 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5096 V_I4(pVarOut) = ~V_I4(pVarOut);
5097 V_VT(pVarOut) = VT_I4;
5100 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5104 /* Fall through ... */
5107 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5108 V_I4(pVarOut) = ~V_I4(pVarOut);
5109 V_VT(pVarOut) = VT_I4;
5112 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5113 V_I4(pVarOut) = ~V_I4(pVarOut);
5114 V_VT(pVarOut) = VT_I4;
5118 V_VT(pVarOut) = VT_I2;
5124 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5125 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5126 hRet = DISP_E_BADVARTYPE;
5128 hRet = DISP_E_TYPEMISMATCH;
5132 V_VT(pVarOut) = VT_EMPTY;
5133 VariantClear(&temp);
5138 /**********************************************************************
5139 * VarRound [OLEAUT32.175]
5141 * Perform a round operation on a variant.
5144 * pVarIn [I] Source variant
5145 * deci [I] Number of decimals to round to
5146 * pVarOut [O] Destination for converted value
5149 * Success: S_OK. pVarOut contains the converted value.
5150 * Failure: An HRESULT error code indicating the error.
5153 * - Floating point values are rounded to the desired number of decimals.
5154 * - Some integer types are just copied to the return variable.
5155 * - Some other integer types are not handled and fail.
5157 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5160 HRESULT hRet = S_OK;
5166 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
5168 /* Handle VT_DISPATCH by storing and taking address of returned value */
5169 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5171 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5172 if (FAILED(hRet)) goto VarRound_Exit;
5176 switch (V_VT(pVarIn))
5178 /* cases that fail on windows */
5183 hRet = DISP_E_BADVARTYPE;
5186 /* cases just copying in to out */
5188 V_VT(pVarOut) = V_VT(pVarIn);
5189 V_UI1(pVarOut) = V_UI1(pVarIn);
5192 V_VT(pVarOut) = V_VT(pVarIn);
5193 V_I2(pVarOut) = V_I2(pVarIn);
5196 V_VT(pVarOut) = V_VT(pVarIn);
5197 V_I4(pVarOut) = V_I4(pVarIn);
5200 V_VT(pVarOut) = V_VT(pVarIn);
5201 /* value unchanged */
5204 /* cases that change type */
5206 V_VT(pVarOut) = VT_I2;
5210 V_VT(pVarOut) = VT_I2;
5211 V_I2(pVarOut) = V_BOOL(pVarIn);
5214 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5219 /* Fall through ... */
5221 /* cases we need to do math */
5223 if (V_R8(pVarIn)>0) {
5224 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5226 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5228 V_VT(pVarOut) = V_VT(pVarIn);
5231 if (V_R4(pVarIn)>0) {
5232 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5234 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5236 V_VT(pVarOut) = V_VT(pVarIn);
5239 if (V_DATE(pVarIn)>0) {
5240 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5242 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5244 V_VT(pVarOut) = V_VT(pVarIn);
5250 factor=pow(10, 4-deci);
5252 if (V_CY(pVarIn).int64>0) {
5253 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5255 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5257 V_VT(pVarOut) = V_VT(pVarIn);
5260 /* cases we don't know yet */
5262 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5263 V_VT(pVarIn) & VT_TYPEMASK, deci);
5264 hRet = DISP_E_BADVARTYPE;
5268 V_VT(pVarOut) = VT_EMPTY;
5269 VariantClear(&temp);
5271 TRACE("returning 0x%08x (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
5272 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
5273 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
5278 /**********************************************************************
5279 * VarIdiv [OLEAUT32.153]
5281 * Converts input variants to integers and divides them.
5284 * left [I] Left hand variant
5285 * right [I] Right hand variant
5286 * result [O] Destination for quotient
5289 * Success: S_OK. result contains the quotient.
5290 * Failure: An HRESULT error code indicating the error.
5293 * If either expression is null, null is returned, as per MSDN
5295 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5297 HRESULT hres = S_OK;
5298 VARTYPE resvt = VT_EMPTY;
5299 VARTYPE leftvt,rightvt;
5300 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5302 VARIANT tempLeft, tempRight;
5304 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5305 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5309 VariantInit(&tempLeft);
5310 VariantInit(&tempRight);
5312 leftvt = V_VT(left)&VT_TYPEMASK;
5313 rightvt = V_VT(right)&VT_TYPEMASK;
5314 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5315 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5317 if (leftExtraFlags != rightExtraFlags)
5319 hres = DISP_E_BADVARTYPE;
5322 ExtraFlags = leftExtraFlags;
5324 /* Native VarIdiv always returns an error when using extra
5325 * flags or if the variant combination is I8 and INT.
5327 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5328 (leftvt == VT_INT && rightvt == VT_I8) ||
5329 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5332 hres = DISP_E_BADVARTYPE;
5336 /* Determine variant type */
5337 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5339 V_VT(result) = VT_NULL;
5343 else if (leftvt == VT_I8 || rightvt == VT_I8)
5345 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5346 leftvt == VT_INT || rightvt == VT_INT ||
5347 leftvt == VT_UINT || rightvt == VT_UINT ||
5348 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5349 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5350 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5351 leftvt == VT_I1 || rightvt == VT_I1 ||
5352 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5353 leftvt == VT_DATE || rightvt == VT_DATE ||
5354 leftvt == VT_CY || rightvt == VT_CY ||
5355 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5356 leftvt == VT_R8 || rightvt == VT_R8 ||
5357 leftvt == VT_R4 || rightvt == VT_R4)
5359 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5360 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5363 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5367 hres = DISP_E_BADVARTYPE;
5371 /* coerce to the result type */
5372 hres = VariantChangeType(&lv, left, 0, resvt);
5373 if (hres != S_OK) goto end;
5374 hres = VariantChangeType(&rv, right, 0, resvt);
5375 if (hres != S_OK) goto end;
5378 V_VT(result) = resvt;
5382 if (V_UI1(&rv) == 0)
5384 hres = DISP_E_DIVBYZERO;
5385 V_VT(result) = VT_EMPTY;
5388 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5393 hres = DISP_E_DIVBYZERO;
5394 V_VT(result) = VT_EMPTY;
5397 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5402 hres = DISP_E_DIVBYZERO;
5403 V_VT(result) = VT_EMPTY;
5406 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5411 hres = DISP_E_DIVBYZERO;
5412 V_VT(result) = VT_EMPTY;
5415 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5418 FIXME("Couldn't integer divide variant types %d,%d\n",
5425 VariantClear(&tempLeft);
5426 VariantClear(&tempRight);
5432 /**********************************************************************
5433 * VarMod [OLEAUT32.155]
5435 * Perform the modulus operation of the right hand variant on the left
5438 * left [I] Left hand variant
5439 * right [I] Right hand variant
5440 * result [O] Destination for converted value
5443 * Success: S_OK. result contains the remainder.
5444 * Failure: An HRESULT error code indicating the error.
5447 * If an error occurs the type of result will be modified but the value will not be.
5448 * Doesn't support arrays or any special flags yet.
5450 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5454 HRESULT rc = E_FAIL;
5457 VARIANT tempLeft, tempRight;
5459 VariantInit(&tempLeft);
5460 VariantInit(&tempRight);
5464 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5465 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5467 /* Handle VT_DISPATCH by storing and taking address of returned value */
5468 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5470 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5471 if (FAILED(rc)) goto end;
5474 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5476 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5477 if (FAILED(rc)) goto end;
5481 /* check for invalid inputs */
5483 switch (V_VT(left) & VT_TYPEMASK) {
5505 V_VT(result) = VT_EMPTY;
5506 rc = DISP_E_TYPEMISMATCH;
5509 rc = DISP_E_TYPEMISMATCH;
5512 V_VT(result) = VT_EMPTY;
5513 rc = DISP_E_TYPEMISMATCH;
5518 V_VT(result) = VT_EMPTY;
5519 rc = DISP_E_BADVARTYPE;
5525 switch (V_VT(right) & VT_TYPEMASK) {
5531 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5533 V_VT(result) = VT_EMPTY;
5534 rc = DISP_E_TYPEMISMATCH;
5538 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5540 V_VT(result) = VT_EMPTY;
5541 rc = DISP_E_TYPEMISMATCH;
5552 if(V_VT(left) == VT_EMPTY)
5554 V_VT(result) = VT_I4;
5561 if(V_VT(left) == VT_ERROR)
5563 V_VT(result) = VT_EMPTY;
5564 rc = DISP_E_TYPEMISMATCH;
5568 if(V_VT(left) == VT_NULL)
5570 V_VT(result) = VT_NULL;
5577 V_VT(result) = VT_EMPTY;
5578 rc = DISP_E_BADVARTYPE;
5581 if(V_VT(left) == VT_VOID)
5583 V_VT(result) = VT_EMPTY;
5584 rc = DISP_E_BADVARTYPE;
5585 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5588 V_VT(result) = VT_NULL;
5592 V_VT(result) = VT_NULL;
5593 rc = DISP_E_BADVARTYPE;
5598 V_VT(result) = VT_EMPTY;
5599 rc = DISP_E_TYPEMISMATCH;
5602 rc = DISP_E_TYPEMISMATCH;
5605 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5607 V_VT(result) = VT_EMPTY;
5608 rc = DISP_E_BADVARTYPE;
5611 V_VT(result) = VT_EMPTY;
5612 rc = DISP_E_TYPEMISMATCH;
5616 V_VT(result) = VT_EMPTY;
5617 rc = DISP_E_BADVARTYPE;
5621 /* determine the result type */
5622 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5623 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5624 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5625 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5626 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5627 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5628 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5629 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5630 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5631 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5632 else resT = VT_I4; /* most outputs are I4 */
5634 /* convert to I8 for the modulo */
5635 rc = VariantChangeType(&lv, left, 0, VT_I8);
5638 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5642 rc = VariantChangeType(&rv, right, 0, VT_I8);
5645 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5649 /* if right is zero set VT_EMPTY and return divide by zero */
5652 V_VT(result) = VT_EMPTY;
5653 rc = DISP_E_DIVBYZERO;
5657 /* perform the modulo operation */
5658 V_VT(result) = VT_I8;
5659 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5661 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5662 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5663 wine_dbgstr_longlong(V_I8(result)));
5665 /* convert left and right to the destination type */
5666 rc = VariantChangeType(result, result, 0, resT);
5669 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5670 /* fall to end of function */
5676 VariantClear(&tempLeft);
5677 VariantClear(&tempRight);
5681 /**********************************************************************
5682 * VarPow [OLEAUT32.158]
5684 * Computes the power of one variant to another variant.
5687 * left [I] First variant
5688 * right [I] Second variant
5689 * result [O] Result variant
5693 * Failure: An HRESULT error code indicating the error.
5695 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5699 VARTYPE resvt = VT_EMPTY;
5700 VARTYPE leftvt,rightvt;
5701 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5702 VARIANT tempLeft, tempRight;
5704 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
5705 right, debugstr_VT(right), debugstr_VF(right), result);
5709 VariantInit(&tempLeft);
5710 VariantInit(&tempRight);
5712 /* Handle VT_DISPATCH by storing and taking address of returned value */
5713 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5715 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5716 if (FAILED(hr)) goto end;
5719 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5721 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5722 if (FAILED(hr)) goto end;
5726 leftvt = V_VT(left)&VT_TYPEMASK;
5727 rightvt = V_VT(right)&VT_TYPEMASK;
5728 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5729 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5731 if (leftExtraFlags != rightExtraFlags)
5733 hr = DISP_E_BADVARTYPE;
5736 ExtraFlags = leftExtraFlags;
5738 /* Native VarPow always returns an error when using extra flags */
5739 if (ExtraFlags != 0)
5741 hr = DISP_E_BADVARTYPE;
5745 /* Determine return type */
5746 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5747 V_VT(result) = VT_NULL;
5751 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5752 leftvt == VT_I4 || leftvt == VT_R4 ||
5753 leftvt == VT_R8 || leftvt == VT_CY ||
5754 leftvt == VT_DATE || leftvt == VT_BSTR ||
5755 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5756 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5757 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5758 rightvt == VT_I4 || rightvt == VT_R4 ||
5759 rightvt == VT_R8 || rightvt == VT_CY ||
5760 rightvt == VT_DATE || rightvt == VT_BSTR ||
5761 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5762 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5766 hr = DISP_E_BADVARTYPE;
5770 hr = VariantChangeType(&dl,left,0,resvt);
5772 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5777 hr = VariantChangeType(&dr,right,0,resvt);
5779 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5784 V_VT(result) = VT_R8;
5785 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5790 VariantClear(&tempLeft);
5791 VariantClear(&tempRight);
5796 /**********************************************************************
5797 * VarImp [OLEAUT32.154]
5799 * Bitwise implication of two variants.
5802 * left [I] First variant
5803 * right [I] Second variant
5804 * result [O] Result variant
5808 * Failure: An HRESULT error code indicating the error.
5810 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5812 HRESULT hres = S_OK;
5813 VARTYPE resvt = VT_EMPTY;
5814 VARTYPE leftvt,rightvt;
5815 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5818 VARIANT tempLeft, tempRight;
5822 VariantInit(&tempLeft);
5823 VariantInit(&tempRight);
5825 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5826 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5828 /* Handle VT_DISPATCH by storing and taking address of returned value */
5829 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5831 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5832 if (FAILED(hres)) goto VarImp_Exit;
5835 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5837 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5838 if (FAILED(hres)) goto VarImp_Exit;
5842 leftvt = V_VT(left)&VT_TYPEMASK;
5843 rightvt = V_VT(right)&VT_TYPEMASK;
5844 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5845 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5847 if (leftExtraFlags != rightExtraFlags)
5849 hres = DISP_E_BADVARTYPE;
5852 ExtraFlags = leftExtraFlags;
5854 /* Native VarImp always returns an error when using extra
5855 * flags or if the variants are I8 and INT.
5857 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5860 hres = DISP_E_BADVARTYPE;
5864 /* Determine result type */
5865 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5866 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5868 V_VT(result) = VT_NULL;
5872 else if (leftvt == VT_I8 || rightvt == VT_I8)
5874 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5875 leftvt == VT_INT || rightvt == VT_INT ||
5876 leftvt == VT_UINT || rightvt == VT_UINT ||
5877 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5878 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5879 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5880 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5881 leftvt == VT_DATE || rightvt == VT_DATE ||
5882 leftvt == VT_CY || rightvt == VT_CY ||
5883 leftvt == VT_R8 || rightvt == VT_R8 ||
5884 leftvt == VT_R4 || rightvt == VT_R4 ||
5885 leftvt == VT_I1 || rightvt == VT_I1)
5887 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5888 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5889 (leftvt == VT_NULL && rightvt == VT_UI1))
5891 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5892 leftvt == VT_I2 || rightvt == VT_I2 ||
5893 leftvt == VT_UI1 || rightvt == VT_UI1)
5895 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5896 leftvt == VT_BSTR || rightvt == VT_BSTR)
5899 /* VT_NULL requires special handling for when the opposite
5900 * variant is equal to something other than -1.
5901 * (NULL Imp 0 = NULL, NULL Imp n = n)
5903 if (leftvt == VT_NULL)
5908 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5909 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5910 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5911 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5912 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5913 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5914 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5915 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5916 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5917 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5918 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5919 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5920 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5921 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5922 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5924 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5928 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5929 if (FAILED(hres)) goto VarImp_Exit;
5931 V_VT(result) = VT_NULL;
5934 V_VT(result) = VT_BOOL;
5939 if (resvt == VT_NULL)
5941 V_VT(result) = resvt;
5946 hres = VariantChangeType(result,right,0,resvt);
5951 /* Special handling is required when NULL is the right variant.
5952 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5954 else if (rightvt == VT_NULL)
5959 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5960 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5961 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5962 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5963 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5964 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5965 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5966 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5967 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5968 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5969 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5970 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5971 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5972 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5974 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5978 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5979 if (FAILED(hres)) goto VarImp_Exit;
5980 else if (b == VARIANT_TRUE)
5983 if (resvt == VT_NULL)
5985 V_VT(result) = resvt;
5990 hres = VariantCopy(&lv, left);
5991 if (FAILED(hres)) goto VarImp_Exit;
5993 if (rightvt == VT_NULL)
5995 memset( &rv, 0, sizeof(rv) );
6000 hres = VariantCopy(&rv, right);
6001 if (FAILED(hres)) goto VarImp_Exit;
6004 if (V_VT(&lv) == VT_BSTR &&
6005 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
6006 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
6007 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
6008 hres = VariantChangeType(&lv,&lv,0,resvt);
6009 if (FAILED(hres)) goto VarImp_Exit;
6011 if (V_VT(&rv) == VT_BSTR &&
6012 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
6013 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
6014 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
6015 hres = VariantChangeType(&rv, &rv, 0, resvt);
6016 if (FAILED(hres)) goto VarImp_Exit;
6019 V_VT(result) = resvt;
6023 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
6026 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
6029 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
6032 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
6035 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
6038 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6046 VariantClear(&tempLeft);
6047 VariantClear(&tempRight);