2 * Various storage structures (pool allocation, vector, hash table)
4 * Copyright (C) 1993, Eric Youngdale.
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
26 #include "wine/debug.h"
28 #include "dbghelp_private.h"
33 WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
37 struct pool_arena* next;
41 void pool_init(struct pool* a, unsigned arena_size)
43 a->arena_size = arena_size;
47 void pool_destroy(struct pool* pool)
49 struct pool_arena* arena;
50 struct pool_arena* next;
53 unsigned alloc, used, num;
55 for (alloc = used = num = 0, arena = pool->first; arena; arena = arena->next)
57 alloc += pool->arena_size;
58 used += arena->current - (char*)arena;
61 FIXME("STATS: pool %p has allocated %u kbytes, used %u kbytes in %u arenas,\n"
62 "\t\t\t\tnon-allocation ratio: %.2f%%\n",
63 pool, alloc >> 10, used >> 10, num, 100.0 - (float)used / (float)alloc * 100.0);
66 for (arena = pool->first; arena; arena = next)
69 HeapFree(GetProcessHeap(), 0, arena);
74 void* pool_alloc(struct pool* pool, unsigned len)
76 struct pool_arena** parena;
77 struct pool_arena* arena;
80 len = (len + 3) & ~3; /* round up size on DWORD boundary */
81 assert(sizeof(struct pool_arena) + len <= pool->arena_size && len);
83 for (parena = &pool->first; *parena; parena = &(*parena)->next)
85 if ((char*)(*parena) + pool->arena_size - (*parena)->current >= len)
87 ret = (*parena)->current;
88 (*parena)->current += len;
93 arena = HeapAlloc(GetProcessHeap(), 0, pool->arena_size);
94 if (!arena) {FIXME("OOM\n");return NULL;}
98 ret = (char*)arena + sizeof(*arena);
100 arena->current = (char*)ret + len;
104 static struct pool_arena* pool_is_last(const struct pool* pool, const void* p, unsigned old_size)
106 struct pool_arena* arena;
108 for (arena = pool->first; arena; arena = arena->next)
110 if (arena->current == (const char*)p + old_size) return arena;
115 static void* pool_realloc(struct pool* pool, void* p, unsigned old_size, unsigned new_size)
117 struct pool_arena* arena;
120 if ((arena = pool_is_last(pool, p, old_size)) &&
121 (char*)p + new_size <= (char*)arena + pool->arena_size)
123 arena->current = (char*)p + new_size;
126 if ((new = pool_alloc(pool, new_size)) && old_size)
127 memcpy(new, p, min(old_size, new_size));
131 char* pool_strdup(struct pool* pool, const char* str)
134 if ((ret = pool_alloc(pool, strlen(str) + 1))) strcpy(ret, str);
138 void vector_init(struct vector* v, unsigned esz, unsigned bucket_sz)
141 /* align size on DWORD boundaries */
142 v->elt_size = (esz + 3) & ~3;
145 case 2: v->shift = 1; break;
146 case 4: v->shift = 2; break;
147 case 8: v->shift = 3; break;
148 case 16: v->shift = 4; break;
149 case 32: v->shift = 5; break;
150 case 64: v->shift = 6; break;
151 case 128: v->shift = 7; break;
152 case 256: v->shift = 8; break;
153 case 512: v->shift = 9; break;
154 case 1024: v->shift = 10; break;
161 unsigned vector_length(const struct vector* v)
166 void* vector_at(const struct vector* v, unsigned pos)
170 if (pos >= v->num_elts) return NULL;
171 o = pos & ((1 << v->shift) - 1);
172 return (char*)v->buckets[pos >> v->shift] + o * v->elt_size;
175 void* vector_add(struct vector* v, struct pool* pool)
177 unsigned ncurr = v->num_elts++;
179 /* check that we don't wrap around */
180 assert(v->num_elts > ncurr);
181 if (ncurr == (v->num_buckets << v->shift))
183 v->buckets = pool_realloc(pool, v->buckets,
184 v->num_buckets * sizeof(void*),
185 (v->num_buckets + 1) * sizeof(void*));
186 v->buckets[v->num_buckets] = pool_alloc(pool, v->elt_size << v->shift);
187 return v->buckets[v->num_buckets++];
189 return vector_at(v, ncurr);
192 static unsigned vector_position(const struct vector* v, const void* elt)
196 for (i = 0; i < v->num_buckets; i++)
198 if (v->buckets[i] <= elt &&
199 (const char*)elt < (const char*)v->buckets[i] + (v->elt_size << v->shift))
201 return (i << v->shift) +
202 ((const char*)elt - (const char*)v->buckets[i]) / v->elt_size;
209 void* vector_iter_up(const struct vector* v, const void* elt)
213 if (!elt) return vector_at(v, 0);
214 pos = vector_position(v, elt) + 1;
215 if (pos >= vector_length(v)) return NULL;
216 return vector_at(v, pos);
219 void* vector_iter_down(const struct vector* v, const void* elt)
222 if (!elt) return vector_at(v, vector_length(v) - 1);
223 pos = vector_position(v, elt);
224 if (pos == 0) return NULL;
225 return vector_at(v, pos - 1);
228 /* We construct the sparse array as two vectors (of equal size)
229 * The first vector (key2index) is the lookup table between the key and
230 * an index in the second vector (elements)
231 * When inserting an element, it's always appended in second vector (and
232 * never moved in memory later on), only the first vector is reordered
240 void sparse_array_init(struct sparse_array* sa, unsigned elt_sz, unsigned bucket_sz)
242 vector_init(&sa->key2index, sizeof(struct key2index), bucket_sz);
243 vector_init(&sa->elements, elt_sz, bucket_sz);
246 /******************************************************************
247 * sparse_array_lookup
249 * Returns the first index which key is >= at passed key
251 static struct key2index* sparse_array_lookup(const struct sparse_array* sa,
252 unsigned long key, unsigned* idx)
254 struct key2index* pk2i;
257 if (!sa->elements.num_elts)
262 high = sa->elements.num_elts;
263 pk2i = vector_at(&sa->key2index, high - 1);
269 if (pk2i->key == key)
275 pk2i = vector_at(&sa->key2index, low);
276 if (pk2i->key >= key)
281 /* now we have: sa(lowest key) < key < sa(highest key) */
284 *idx = (low + high) / 2;
285 pk2i = vector_at(&sa->key2index, *idx);
286 if (pk2i->key > key) high = *idx;
287 else if (pk2i->key < key) low = *idx + 1;
290 /* binary search could return exact item, we search for highest one
294 pk2i = vector_at(&sa->key2index, ++(*idx));
298 void* sparse_array_find(const struct sparse_array* sa, unsigned long key)
301 struct key2index* pk2i;
303 if ((pk2i = sparse_array_lookup(sa, key, &idx)) && pk2i->key == key)
304 return vector_at(&sa->elements, pk2i->index);
308 void* sparse_array_add(struct sparse_array* sa, unsigned long key,
312 struct key2index* pk2i;
313 struct key2index* to;
315 pk2i = sparse_array_lookup(sa, key, &idx);
316 if (pk2i && pk2i->key == key)
318 FIXME("re adding an existing key\n");
321 to = vector_add(&sa->key2index, pool);
324 /* we need to shift vector's content... */
325 /* let's do it brute force... (FIXME) */
326 assert(sa->key2index.num_elts >= 2);
327 for (i = sa->key2index.num_elts - 1; i > idx; i--)
329 pk2i = vector_at(&sa->key2index, i - 1);
336 to->index = sa->elements.num_elts;
338 return vector_add(&sa->elements, pool);
341 unsigned sparse_array_length(const struct sparse_array* sa)
343 return sa->elements.num_elts;
346 unsigned hash_table_hash(const char* name, unsigned num_buckets)
352 hash += (hash << 10);
356 hash ^= (hash >> 11);
357 hash += (hash << 15);
358 return hash % num_buckets;
361 void hash_table_init(struct pool* pool, struct hash_table* ht, unsigned num_buckets)
364 ht->buckets = pool_alloc(pool, num_buckets * sizeof(struct hash_table_elt*));
366 ht->num_buckets = num_buckets;
367 memset(ht->buckets, 0, num_buckets * sizeof(struct hash_table_elt*));
370 void hash_table_destroy(struct hash_table* ht)
372 #if defined(USE_STATS)
375 unsigned min = 0xffffffff, max = 0, sq = 0;
376 struct hash_table_elt* elt;
377 double mean, variance;
379 for (i = 0; i < ht->num_buckets; i++)
381 for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++;
382 if (len < min) min = len;
383 if (len > max) max = len;
386 mean = (double)ht->num_elts / ht->num_buckets;
387 variance = (double)sq / ht->num_buckets - mean * mean;
388 FIXME("STATS: elts[num:%-4u size:%u mean:%f] buckets[min:%-4u variance:%+f max:%-4u]\n",
389 ht->num_elts, ht->num_buckets, mean, min, variance, max);
391 for (i = 0; i < ht->num_buckets; i++)
393 for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++;
396 FIXME("Longuest bucket:\n");
397 for (elt = ht->buckets[i]; elt; elt = elt->next)
398 FIXME("\t%s\n", elt->name);
407 void hash_table_add(struct hash_table* ht, struct hash_table_elt* elt)
409 unsigned hash = hash_table_hash(elt->name, ht->num_buckets);
410 struct hash_table_elt** p;
412 /* in some cases, we need to get back the symbols of same name in the order
413 * in which they've been inserted. So insert new elements at the end of the list.
415 for (p = &ht->buckets[hash]; *p; p = &((*p)->next));
421 void* hash_table_find(const struct hash_table* ht, const char* name)
423 unsigned hash = hash_table_hash(name, ht->num_buckets);
424 struct hash_table_elt* elt;
426 for (elt = ht->buckets[hash]; elt; elt = elt->next)
427 if (!strcmp(name, elt->name)) return elt;
431 void hash_table_iter_init(const struct hash_table* ht,
432 struct hash_table_iter* hti, const char* name)
437 hti->last = hash_table_hash(name, ht->num_buckets);
438 hti->index = hti->last - 1;
442 hti->last = ht->num_buckets - 1;
448 void* hash_table_iter_up(struct hash_table_iter* hti)
450 if (hti->element) hti->element = hti->element->next;
451 while (!hti->element && hti->index < hti->last)
452 hti->element = hti->ht->buckets[++hti->index];