4 * Copyright 2002 Greg Turner
5 * Copyright 2005 Gerold Jens Wucherpfennig
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 #ifndef __WINE_CABINET_H
22 #define __WINE_CABINET_H
32 /* from msvcrt/sys/stat.h */
33 #define _S_IWRITE 0x0080
34 #define _S_IREAD 0x0100
36 /* from msvcrt/fcntl.h */
40 #define _O_ACCMODE (_O_RDONLY|_O_WRONLY|_O_RDWR)
41 #define _O_APPEND 0x0008
42 #define _O_RANDOM 0x0010
43 #define _O_SEQUENTIAL 0x0020
44 #define _O_TEMPORARY 0x0040
45 #define _O_NOINHERIT 0x0080
46 #define _O_CREAT 0x0100
47 #define _O_TRUNC 0x0200
48 #define _O_EXCL 0x0400
49 #define _O_SHORT_LIVED 0x1000
50 #define _O_TEXT 0x4000
51 #define _O_BINARY 0x8000
53 #define CAB_SPLITMAX (10)
55 #define CAB_SEARCH_SIZE (32*1024)
57 typedef unsigned char cab_UBYTE; /* 8 bits */
58 typedef UINT16 cab_UWORD; /* 16 bits */
59 typedef UINT32 cab_ULONG; /* 32 bits */
60 typedef INT32 cab_LONG; /* 32 bits */
62 typedef UINT32 cab_off_t;
64 /* number of bits in a ULONG */
68 #define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
70 /* structure offsets */
71 #define cfhead_Signature (0x00)
72 #define cfhead_CabinetSize (0x08)
73 #define cfhead_FileOffset (0x10)
74 #define cfhead_MinorVersion (0x18)
75 #define cfhead_MajorVersion (0x19)
76 #define cfhead_NumFolders (0x1A)
77 #define cfhead_NumFiles (0x1C)
78 #define cfhead_Flags (0x1E)
79 #define cfhead_SetID (0x20)
80 #define cfhead_CabinetIndex (0x22)
81 #define cfhead_SIZEOF (0x24)
82 #define cfheadext_HeaderReserved (0x00)
83 #define cfheadext_FolderReserved (0x02)
84 #define cfheadext_DataReserved (0x03)
85 #define cfheadext_SIZEOF (0x04)
86 #define cffold_DataOffset (0x00)
87 #define cffold_NumBlocks (0x04)
88 #define cffold_CompType (0x06)
89 #define cffold_SIZEOF (0x08)
90 #define cffile_UncompressedSize (0x00)
91 #define cffile_FolderOffset (0x04)
92 #define cffile_FolderIndex (0x08)
93 #define cffile_Date (0x0A)
94 #define cffile_Time (0x0C)
95 #define cffile_Attribs (0x0E)
96 #define cffile_SIZEOF (0x10)
97 #define cfdata_CheckSum (0x00)
98 #define cfdata_CompressedSize (0x04)
99 #define cfdata_UncompressedSize (0x06)
100 #define cfdata_SIZEOF (0x08)
103 #define cffoldCOMPTYPE_MASK (0x000f)
104 #define cffoldCOMPTYPE_NONE (0x0000)
105 #define cffoldCOMPTYPE_MSZIP (0x0001)
106 #define cffoldCOMPTYPE_QUANTUM (0x0002)
107 #define cffoldCOMPTYPE_LZX (0x0003)
108 #define cfheadPREV_CABINET (0x0001)
109 #define cfheadNEXT_CABINET (0x0002)
110 #define cfheadRESERVE_PRESENT (0x0004)
111 #define cffileCONTINUED_FROM_PREV (0xFFFD)
112 #define cffileCONTINUED_TO_NEXT (0xFFFE)
113 #define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
114 #define cffile_A_RDONLY (0x01)
115 #define cffile_A_HIDDEN (0x02)
116 #define cffile_A_SYSTEM (0x04)
117 #define cffile_A_ARCH (0x20)
118 #define cffile_A_EXEC (0x40)
119 #define cffile_A_NAME_IS_UTF (0x80)
121 /****************************************************************************/
122 /* our archiver information / state */
125 #define ZIPWSIZE 0x8000 /* window size */
126 #define ZIPLBITS 9 /* bits in base literal/length lookup table */
127 #define ZIPDBITS 6 /* bits in base distance lookup table */
128 #define ZIPBMAX 16 /* maximum bit length of any code */
129 #define ZIPN_MAX 288 /* maximum number of codes in any set */
132 cab_UBYTE e; /* number of extra bits or operation */
133 cab_UBYTE b; /* number of bits in this code or subcode */
135 cab_UWORD n; /* literal, length base, or distance base */
136 struct Ziphuft *t; /* pointer to next level of table */
141 cab_ULONG window_posn; /* current offset within the window */
142 cab_ULONG bb; /* bit buffer */
143 cab_ULONG bk; /* bits in bit buffer */
144 cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
145 cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
146 cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
147 struct Ziphuft *u[ZIPBMAX]; /* table stack */
148 cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
149 cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
156 cab_UWORD sym, cumfreq;
160 int shiftsleft, entries;
161 struct QTMmodelsym *syms;
162 cab_UWORD tabloc[256];
166 cab_UBYTE *window; /* the actual decoding window */
167 cab_ULONG window_size; /* window size (1Kb through 2Mb) */
168 cab_ULONG actual_size; /* window size when it was first allocated */
169 cab_ULONG window_posn; /* current offset within the window */
171 struct QTMmodel model7;
172 struct QTMmodelsym m7sym[7+1];
174 struct QTMmodel model4, model5, model6pos, model6len;
175 struct QTMmodelsym m4sym[0x18 + 1];
176 struct QTMmodelsym m5sym[0x24 + 1];
177 struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
179 struct QTMmodel model00, model40, model80, modelC0;
180 struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
181 struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
186 /* some constants defined by the LZX specification */
187 #define LZX_MIN_MATCH (2)
188 #define LZX_MAX_MATCH (257)
189 #define LZX_NUM_CHARS (256)
190 #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
191 #define LZX_BLOCKTYPE_VERBATIM (1)
192 #define LZX_BLOCKTYPE_ALIGNED (2)
193 #define LZX_BLOCKTYPE_UNCOMPRESSED (3)
194 #define LZX_PRETREE_NUM_ELEMENTS (20)
195 #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
196 #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
197 #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
199 /* LZX huffman defines: tweak tablebits as desired */
200 #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
201 #define LZX_PRETREE_TABLEBITS (6)
202 #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
203 #define LZX_MAINTREE_TABLEBITS (12)
204 #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
205 #define LZX_LENGTH_TABLEBITS (12)
206 #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
207 #define LZX_ALIGNED_TABLEBITS (7)
209 #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
211 #define LZX_DECLARE_TABLE(tbl) \
212 cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
213 cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
216 cab_UBYTE *window; /* the actual decoding window */
217 cab_ULONG window_size; /* window size (32Kb through 2Mb) */
218 cab_ULONG actual_size; /* window size when it was first allocated */
219 cab_ULONG window_posn; /* current offset within the window */
220 cab_ULONG R0, R1, R2; /* for the LRU offset system */
221 cab_UWORD main_elements; /* number of main tree elements */
222 int header_read; /* have we started decoding at all yet? */
223 cab_UWORD block_type; /* type of this block */
224 cab_ULONG block_length; /* uncompressed length of this block */
225 cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
226 cab_ULONG frames_read; /* the number of CFDATA blocks processed */
227 cab_LONG intel_filesize; /* magic header value used for transform */
228 cab_LONG intel_curpos; /* current offset in transform space */
229 int intel_started; /* have we seen any translatable data yet? */
231 LZX_DECLARE_TABLE(PRETREE);
232 LZX_DECLARE_TABLE(MAINTREE);
233 LZX_DECLARE_TABLE(LENGTH);
234 LZX_DECLARE_TABLE(ALIGNED);
243 /* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
244 * blocks have zero growth. MSZIP guarantees that it won't grow above
245 * uncompressed size by more than 12 bytes. LZX guarantees it won't grow
246 * more than 6144 bytes.
248 #define CAB_BLOCKMAX (32768)
249 #define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
252 struct cab_file *next; /* next file in sequence */
253 struct cab_folder *folder; /* folder that contains this file */
254 LPCSTR filename; /* output name of file */
255 HANDLE fh; /* open file handle or NULL */
256 cab_ULONG length; /* uncompressed length of file */
257 cab_ULONG offset; /* uncompressed offset in folder */
258 cab_UWORD index; /* magic index number of folder */
259 cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
264 struct cab_folder *next;
265 struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
266 cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
267 cab_UWORD comp_type; /* compression format/window size */
268 cab_ULONG comp_size; /* compressed size of folder */
269 cab_UBYTE num_splits; /* number of split blocks + 1 */
270 cab_UWORD num_blocks; /* total number of blocks */
271 struct cab_file *contfile; /* the first split file */
275 struct cabinet *next; /* for making a list of cabinets */
276 LPCSTR filename; /* input name of cabinet */
277 HANDLE *fh; /* open file handle or NULL */
278 cab_off_t filelen; /* length of cabinet file */
279 cab_off_t blocks_off; /* offset to data blocks in file */
280 struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
281 char *prevname, *nextname; /* and their filenames */
282 char *previnfo, *nextinfo; /* and their visible names */
283 struct cab_folder *folders; /* first folder in this cabinet */
284 struct cab_file *files; /* first file in this cabinet */
285 cab_UBYTE block_resv; /* reserved space in datablocks */
286 cab_UBYTE flags; /* header flags */
289 typedef struct cds_forward {
290 struct cab_folder *current; /* current folder we're extracting from */
291 cab_ULONG offset; /* uncompressed offset within folder */
292 cab_UBYTE *outpos; /* (high level) start of data to use up */
293 cab_UWORD outlen; /* (high level) amount of data to use up */
294 cab_UWORD split; /* at which split in current folder? */
295 int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
296 cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
297 cab_UBYTE outbuf[CAB_BLOCKMAX];
298 cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
299 cab_ULONG q_position_base[42];
300 cab_ULONG lzx_position_base[51];
301 cab_UBYTE extra_bits[51];
309 /* _Int as in "Internal" fyi */
312 unsigned int FCI_Intmagic;
314 PFNFCIFILEPLACED pfnfiledest;
315 PFNFCIALLOC pfnalloc;
319 PFNFCIWRITE pfnwrite;
320 PFNFCICLOSE pfnclose;
322 PFNFCIDELETE pfndelete;
323 PFNFCIGETTEMPFILE pfnfcigtf;
328 cab_ULONG statusFolderCopied;
329 cab_ULONG statusFolderTotal;
330 BOOL fGetNextCabInVain;
332 char szPrevCab[CB_MAX_CABINET_NAME]; /* previous cabinet name */
333 char szPrevDisk[CB_MAX_DISK_NAME]; /* disk name of previous cabinet */
335 char* data_in; /* uncompressed data blocks */
337 char* data_out; /* compressed data blocks */
338 ULONG cCompressedBytesInFolder;
341 cab_ULONG cDataBlocks;
342 cab_ULONG cbFileRemainer; /* uncompressed, yet to be written data */
343 /* of spanned file of a spanning folder of a spanning cabinet */
344 char szFileNameCFDATA1[CB_MAX_FILENAME];
346 char szFileNameCFFILE1[CB_MAX_FILENAME];
348 char szFileNameCFDATA2[CB_MAX_FILENAME];
350 char szFileNameCFFILE2[CB_MAX_FILENAME];
352 char szFileNameCFFOLDER[CB_MAX_FILENAME];
354 cab_ULONG sizeFileCFDATA1;
355 cab_ULONG sizeFileCFFILE1;
356 cab_ULONG sizeFileCFDATA2;
357 cab_ULONG sizeFileCFFILE2;
358 cab_ULONG sizeFileCFFOLDER;
360 cab_ULONG estimatedCabinetSize;
361 } FCI_Int, *PFCI_Int;
364 unsigned int FDI_Intmagic;
373 } FDI_Int, *PFDI_Int;
375 /* cast an HFCI into a PFCI_Int */
376 #define PFCI_INT(hfci) ((PFCI_Int)(hfci))
378 /* cast an HFDI into a PFDI_Int */
379 #define PFDI_INT(hfdi) ((PFDI_Int)(hfdi))
381 /* quick pfci method invokers */
382 #define PFCI_ALLOC(hfdi, size) ((*PFCI_INT(hfdi)->pfnalloc) (size))
383 #define PFCI_FREE(hfdi, ptr) ((*PFCI_INT(hfdi)->pfnfree) (ptr))
384 #define PFCI_GETTEMPFILE(hfci,name,length) ((*PFCI_INT(hfci)->pfnfcigtf)(name,length,PFCI_INT(hfci)->pv))
385 #define PFCI_DELETE(hfci,name,err,pv) ((*PFCI_INT(hfci)->pfndelete)(name,err,pv))
386 #define PFCI_OPEN(hfci,name,oflag,pmode,err,pv) ((*PFCI_INT(hfci)->pfnopen)(name,oflag,pmode,err,pv))
387 #define PFCI_READ(hfci,hf,memory,cb,err,pv)((*PFCI_INT(hfci)->pfnread)(hf,memory,cb,err,pv))
388 #define PFCI_WRITE(hfci,hf,memory,cb,err,pv) ((*PFCI_INT(hfci)->pfnwrite)(hf,memory,cb,err,pv))
389 #define PFCI_CLOSE(hfci,hf,err,pv) ((*PFCI_INT(hfci)->pfnclose)(hf,err,pv))
390 #define PFCI_SEEK(hfci,hf,dist,seektype,err,pv)((*PFCI_INT(hfci)->pfnseek)(hf,dist,seektype,err,pv))
391 #define PFCI_FILEPLACED(hfci,pccab,name,cb,cont,pv)((*PFCI_INT(hfci)->pfnfiledest)(pccab,name,cb,cont,pv))
393 /* quickie pfdi method invokers */
394 #define PFDI_ALLOC(hfdi, size) ((*PFDI_INT(hfdi)->pfnalloc) (size))
395 #define PFDI_FREE(hfdi, ptr) ((*PFDI_INT(hfdi)->pfnfree) (ptr))
396 #define PFDI_OPEN(hfdi, file, flag, mode) ((*PFDI_INT(hfdi)->pfnopen) (file, flag, mode))
397 #define PFDI_READ(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnread) (hf, pv, cb))
398 #define PFDI_WRITE(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnwrite) (hf, pv, cb))
399 #define PFDI_CLOSE(hfdi, hf) ((*PFDI_INT(hfdi)->pfnclose) (hf))
400 #define PFDI_SEEK(hfdi, hf, dist, type) ((*PFDI_INT(hfdi)->pfnseek) (hf, dist, type))
402 #define FCI_INT_MAGIC 0xfcfcfc05
403 #define FDI_INT_MAGIC 0xfdfdfd05
405 #define REALLY_IS_FCI(hfci) ( \
406 ((hfci) != NULL) && \
407 (PFCI_INT(hfci)->FCI_Intmagic == FCI_INT_MAGIC) )
409 #define REALLY_IS_FDI(hfdi) ( \
410 ((hfdi) != NULL) && \
411 (PFDI_INT(hfdi)->FDI_Intmagic == FDI_INT_MAGIC) )
414 * the rest of these are somewhat kludgy macros which are shared between fdi.c
418 #define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\
419 b|=((cab_ULONG)c)<<k;k+=8;}}
420 #define ZIPDUMPBITS(n) {b>>=(n);k-=(n);}
422 /* endian-neutral reading of little-endian data */
423 #define EndGetI32(a) ((((a)[3])<<24)|(((a)[2])<<16)|(((a)[1])<<8)|((a)[0]))
424 #define EndGetI16(a) ((((a)[1])<<8)|((a)[0]))
426 #define CAB(x) (decomp_state->x)
427 #define ZIP(x) (decomp_state->methods.zip.x)
428 #define QTM(x) (decomp_state->methods.qtm.x)
429 #define LZX(x) (decomp_state->methods.lzx.x)
431 #define DECR_DATAFORMAT (1)
432 #define DECR_ILLEGALDATA (2)
433 #define DECR_NOMEMORY (3)
434 #define DECR_CHECKSUM (4)
435 #define DECR_INPUT (5)
436 #define DECR_OUTPUT (6)
437 #define DECR_USERABORT (7)
439 /* Bitstream reading macros (Quantum / normal byte order)
441 * Q_INIT_BITSTREAM should be used first to set up the system
442 * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
443 * unlike LZX, this can loop several times to get the
444 * requisite number of bits.
445 * Q_FILL_BUFFER adds more data to the bit buffer, if there is room
446 * for another 16 bits.
447 * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
449 * Q_REMOVE_BITS(n) removes N bits from the bit buffer
451 * These bit access routines work by using the area beyond the MSB and the
452 * LSB as a free source of zeroes. This avoids having to mask any bits.
453 * So we have to know the bit width of the bitbuffer variable. This is
454 * defined as ULONG_BITS.
456 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
457 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
458 * need an assured number. Retrieving larger bitstrings can be done with
459 * multiple reads and fills of the bitbuffer. The code should work fine
460 * for machines where ULONG >= 32 bits.
462 * Also note that Quantum reads bytes in normal order; LZX is in
463 * little-endian order.
466 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
468 #define Q_FILL_BUFFER do { \
469 if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
470 bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
471 bitsleft += 16; inpos += 2; \
475 #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
476 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
478 #define Q_READ_BITS(v,n) do { \
480 for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
482 bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
483 (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
484 Q_REMOVE_BITS(bitrun); \
488 #define Q_MENTRIES(model) (QTM(model).entries)
489 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
490 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
492 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model
493 * and puts it in var. it may need to read the bitstream to do this.
495 #define GET_SYMBOL(m, var) do { \
496 range = ((H - L) & 0xFFFF) + 1; \
497 symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
499 for (i=1; i < Q_MENTRIES(m); i++) { \
500 if (Q_MSYMFREQ(m,i) <= symf) break; \
502 (var) = Q_MSYM(m,i-1); \
504 range = (H - L) + 1; \
505 H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
506 L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
508 if ((L & 0x8000) != (H & 0x8000)) { \
509 if ((L & 0x4000) && !(H & 0x4000)) { \
510 /* underflow case */ \
511 C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
515 L <<= 1; H = (H << 1) | 1; \
517 C = (C << 1) | Q_PEEK_BITS(1); \
521 QTMupdatemodel(&(QTM(m)), i); \
524 /* Bitstream reading macros (LZX / intel little-endian byte order)
526 * INIT_BITSTREAM should be used first to set up the system
527 * READ_BITS(var,n) takes N bits from the buffer and puts them in var
529 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
530 * it can guarantee up to 17 bits (i.e. it can read in
531 * 16 new bits when there is down to 1 bit in the buffer,
532 * and it can read 32 bits when there are 0 bits in the
534 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
535 * REMOVE_BITS(n) removes N bits from the bit buffer
537 * These bit access routines work by using the area beyond the MSB and the
538 * LSB as a free source of zeroes. This avoids having to mask any bits.
539 * So we have to know the bit width of the bitbuffer variable.
542 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
544 /* Quantum reads bytes in normal order; LZX is little-endian order */
545 #define ENSURE_BITS(n) \
546 while (bitsleft < (n)) { \
547 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
548 bitsleft += 16; inpos+=2; \
551 #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
552 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
554 #define READ_BITS(v,n) do { \
557 (v) = PEEK_BITS(n); \
567 #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
568 #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
569 #define SYMTABLE(tbl) (LZX(tbl##_table))
570 #define LENTABLE(tbl) (LZX(tbl##_len))
572 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
573 * In reality, it just calls make_decode_table() with the appropriate
574 * values - they're all fixed by some #defines anyway, so there's no point
575 * writing each call out in full by hand.
577 #define BUILD_TABLE(tbl) \
578 if (make_decode_table( \
579 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
580 )) { return DECR_ILLEGALDATA; }
582 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
583 * bitstream using the stated table and puts it in var.
585 #define READ_HUFFSYM(tbl,var) do { \
587 hufftbl = SYMTABLE(tbl); \
588 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
589 j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
591 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
592 if (!j) { return DECR_ILLEGALDATA; } \
593 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
595 j = LENTABLE(tbl)[(var) = i]; \
599 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
600 * first to last in the given table. The code lengths are stored in their
601 * own special LZX way.
603 #define READ_LENGTHS(tbl,first,last,fn) do { \
604 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
605 if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
606 return DECR_ILLEGALDATA; \
608 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
611 /* Tables for deflate from PKZIP's appnote.txt. */
613 #define THOSE_ZIP_CONSTS \
614 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
615 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
616 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
617 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
618 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
619 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
620 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
621 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
622 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
623 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
624 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
625 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
626 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
627 10, 11, 11, 12, 12, 13, 13}; \
628 /* And'ing with Zipmask[n] masks the lower n bits */ \
629 static const cab_UWORD Zipmask[17] = { \
630 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
631 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
634 /* SESSION Operation */
635 #define EXTRACT_FILLFILELIST 0x00000001
636 #define EXTRACT_EXTRACTFILES 0x00000002
640 struct FILELIST *next;
647 struct FILELIST *FileList;
650 CHAR Destination[MAX_PATH];
651 CHAR CurrentFile[MAX_PATH];
652 CHAR Reserved[MAX_PATH];
653 struct FILELIST *FilterList;
656 #endif /* __WINE_CABINET_H */