2 * KERNEL32 thunks and other undocumented stuff
4 * Copyright 1997-1998 Marcus Meissner
5 * Copyright 1998 Ulrich Weigand
7 * BUG: The GetBinaryType implementation is not complete. See
8 * the function documentation for more details.
13 #include "wine/winbase16.h"
21 #include "stackframe.h"
23 #include "selectors.h"
28 #include "flatthunk.h"
33 /***********************************************************************
35 * Win95 internal thunks *
37 ***********************************************************************/
39 /***********************************************************************
40 * Generates a FT_Prolog call.
42 * 0FB6D1 movzbl edx,cl
43 * 8B1495xxxxxxxx mov edx,[4*edx + targetTable]
44 * 68xxxxxxxx push FT_Prolog
47 static void _write_ftprolog(LPBYTE relayCode ,DWORD *targetTable) {
51 *x++ = 0x0f;*x++=0xb6;*x++=0xd1; /* movzbl edx,cl */
52 *x++ = 0x8B;*x++=0x14;*x++=0x95;*(DWORD**)x= targetTable;
53 x+=4; /* mov edx, [4*edx + targetTable] */
54 *x++ = 0x68; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"FT_Prolog");
55 x+=4; /* push FT_Prolog */
56 *x++ = 0xC3; /* lret */
57 /* fill rest with 0xCC / int 3 */
60 /***********************************************************************
61 * _write_qtthunk (internal)
62 * Generates a QT_Thunk style call.
65 * 8A4DFC mov cl , [ebp-04]
66 * 8B148Dxxxxxxxx mov edx, [4*ecx + targetTable]
67 * B8yyyyyyyy mov eax, QT_Thunk
70 static void _write_qtthunk(
71 LPBYTE relayCode, /* [in] start of QT_Thunk stub */
72 DWORD *targetTable /* [in] start of thunk (for index lookup) */
77 *x++ = 0x33;*x++=0xC9; /* xor ecx,ecx */
78 *x++ = 0x8A;*x++=0x4D;*x++=0xFC; /* movb cl,[ebp-04] */
79 *x++ = 0x8B;*x++=0x14;*x++=0x8D;*(DWORD**)x= targetTable;
80 x+=4; /* mov edx, [4*ecx + targetTable */
81 *x++ = 0xB8; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"QT_Thunk");
82 x+=4; /* mov eax , QT_Thunk */
83 *x++ = 0xFF; *x++ = 0xE0; /* jmp eax */
84 /* should fill the rest of the 32 bytes with 0xCC */
87 /***********************************************************************
90 static LPVOID _loadthunk(LPCSTR module, LPCSTR func, LPCSTR module32,
91 struct ThunkDataCommon *TD32, DWORD checksum)
93 struct ThunkDataCommon *TD16;
97 if ((hmod = LoadLibrary16(module)) <= 32)
99 ERR(thunk, "(%s, %s, %s): Unable to load '%s', error %d\n",
100 module, func, module32, module, hmod);
104 if ( !(ordinal = NE_GetOrdinal(hmod, func))
105 || !(TD16 = PTR_SEG_TO_LIN(NE_GetEntryPointEx(hmod, ordinal, FALSE))))
107 ERR(thunk, "(%s, %s, %s): Unable to find '%s'\n",
108 module, func, module32, func);
112 if (TD32 && memcmp(TD16->magic, TD32->magic, 4))
114 ERR(thunk, "(%s, %s, %s): Bad magic %c%c%c%c (should be %c%c%c%c)\n",
115 module, func, module32,
116 TD16->magic[0], TD16->magic[1], TD16->magic[2], TD16->magic[3],
117 TD32->magic[0], TD32->magic[1], TD32->magic[2], TD32->magic[3]);
121 if (TD32 && TD16->checksum != TD32->checksum)
123 ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
124 module, func, module32, TD16->checksum, TD32->checksum);
128 if (!TD32 && checksum && checksum != *(LPDWORD)TD16)
130 ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
131 module, func, module32, *(LPDWORD)TD16, checksum);
138 /***********************************************************************
139 * GetThunkStuff (KERNEL32.53)
141 LPVOID WINAPI GetThunkStuff(LPSTR module, LPSTR func)
143 return _loadthunk(module, func, "<kernel>", NULL, 0L);
146 /***********************************************************************
147 * GetThunkBuff (KERNEL32.52)
148 * Returns a pointer to ThkBuf in the 16bit library SYSTHUNK.DLL.
150 LPVOID WINAPI GetThunkBuff(void)
152 return GetThunkStuff("SYSTHUNK.DLL", "ThkBuf");
155 /***********************************************************************
156 * ThunkConnect32 (KERNEL32)
157 * Connects a 32bit and a 16bit thunkbuffer.
159 UINT32 WINAPI ThunkConnect32(
160 struct ThunkDataCommon *TD, /* [in/out] thunkbuffer */
161 LPSTR thunkfun16, /* [in] win16 thunkfunction */
162 LPSTR module16, /* [in] name of win16 dll */
163 LPSTR module32, /* [in] name of win32 dll */
164 HMODULE32 hmod32, /* [in] hmodule of win32 dll */
165 DWORD dwReason /* [in] initialisation argument */
169 if (!lstrncmp32A(TD->magic, "SL01", 4))
173 TRACE(thunk, "SL01 thunk %s (%lx) <- %s (%s), Reason: %ld\n",
174 module32, (DWORD)TD, module16, thunkfun16, dwReason);
176 else if (!lstrncmp32A(TD->magic, "LS01", 4))
180 TRACE(thunk, "LS01 thunk %s (%lx) -> %s (%s), Reason: %ld\n",
181 module32, (DWORD)TD, module16, thunkfun16, dwReason);
185 ERR(thunk, "Invalid magic %c%c%c%c\n",
186 TD->magic[0], TD->magic[1], TD->magic[2], TD->magic[3]);
192 case DLL_PROCESS_ATTACH:
194 struct ThunkDataCommon *TD16;
195 if (!(TD16 = _loadthunk(module16, thunkfun16, module32, TD, 0L)))
200 struct ThunkDataSL32 *SL32 = (struct ThunkDataSL32 *)TD;
201 struct ThunkDataSL16 *SL16 = (struct ThunkDataSL16 *)TD16;
202 struct SLTargetDB *tdb;
204 if (SL16->fpData == NULL)
206 ERR(thunk, "ThunkConnect16 was not called!\n");
210 SL32->data = SL16->fpData;
212 tdb = HeapAlloc(GetProcessHeap(), 0, sizeof(*tdb));
213 tdb->process = PROCESS_Current();
214 tdb->targetTable = (DWORD *)(thunkfun16 + SL32->offsetTargetTable);
216 tdb->next = SL32->data->targetDB; /* FIXME: not thread-safe! */
217 SL32->data->targetDB = tdb;
219 TRACE(thunk, "Process %08lx allocated TargetDB entry for ThunkDataSL %08lx\n",
220 (DWORD)PROCESS_Current(), (DWORD)SL32->data);
224 struct ThunkDataLS32 *LS32 = (struct ThunkDataLS32 *)TD;
225 struct ThunkDataLS16 *LS16 = (struct ThunkDataLS16 *)TD16;
227 LS32->targetTable = PTR_SEG_TO_LIN(LS16->targetTable);
229 /* write QT_Thunk and FT_Prolog stubs */
230 _write_qtthunk ((LPBYTE)TD + LS32->offsetQTThunk, LS32->targetTable);
231 _write_ftprolog((LPBYTE)TD + LS32->offsetFTProlog, LS32->targetTable);
236 case DLL_PROCESS_DETACH:
244 /**********************************************************************
245 * QT_Thunk (KERNEL32)
247 * The target address is in EDX.
248 * The 16 bit arguments start at ESP+4.
249 * The number of 16bit argumentbytes is EBP-ESP-0x44 (68 Byte thunksetup).
252 REGS_ENTRYPOINT(QT_Thunk)
256 THDB *thdb = THREAD_Current();
258 memcpy(&context16,context,sizeof(context16));
260 CS_reg(&context16) = HIWORD(EDX_reg(context));
261 IP_reg(&context16) = LOWORD(EDX_reg(context));
262 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
263 + (WORD)&((STACK16FRAME*)0)->bp;
265 argsize = EBP_reg(context)-ESP_reg(context)-0x44;
267 memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
268 (LPBYTE)ESP_reg(context)+4, argsize );
270 EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
271 EDX_reg(context) = HIWORD(EAX_reg(context));
272 EAX_reg(context) = LOWORD(EAX_reg(context));
276 /**********************************************************************
277 * FT_Prolog (KERNEL32.233)
279 * The set of FT_... thunk routines is used instead of QT_Thunk,
280 * if structures have to be converted from 32-bit to 16-bit
281 * (change of member alignment, conversion of members).
283 * The thunk function (as created by the thunk compiler) calls
284 * FT_Prolog at the beginning, to set up a stack frame and
285 * allocate a 64 byte buffer on the stack.
286 * The input parameters (target address and some flags) are
287 * saved for later use by FT_Thunk.
289 * Input: EDX 16-bit target address (SEGPTR)
290 * CX bits 0..7 target number (in target table)
291 * bits 8..9 some flags (unclear???)
292 * bits 10..15 number of DWORD arguments
294 * Output: A new stackframe is created, and a 64 byte buffer
295 * allocated on the stack. The layout of the stack
296 * on return is as follows:
298 * (ebp+4) return address to caller of thunk function
300 * (ebp-4) saved EBX register of caller
301 * (ebp-8) saved ESI register of caller
302 * (ebp-12) saved EDI register of caller
303 * (ebp-16) saved ECX register, containing flags
304 * (ebp-20) bitmap containing parameters that are to be converted
305 * by FT_Thunk; it is initialized to 0 by FT_Prolog and
306 * filled in by the thunk code before calling FT_Thunk
310 * (ebp-48) saved EAX register of caller (unclear, never restored???)
311 * (ebp-52) saved EDX register, containing 16-bit thunk target
316 * ESP is EBP-68 on return.
320 REGS_ENTRYPOINT(FT_Prolog)
322 /* Pop return address to thunk code */
323 EIP_reg(context) = STACK32_POP(context);
325 /* Build stack frame */
326 STACK32_PUSH(context, EBP_reg(context));
327 EBP_reg(context) = ESP_reg(context);
329 /* Allocate 64-byte Thunk Buffer */
330 ESP_reg(context) -= 64;
331 memset((char *)ESP_reg(context), '\0', 64);
333 /* Store Flags (ECX) and Target Address (EDX) */
334 /* Save other registers to be restored later */
335 *(DWORD *)(EBP_reg(context) - 4) = EBX_reg(context);
336 *(DWORD *)(EBP_reg(context) - 8) = ESI_reg(context);
337 *(DWORD *)(EBP_reg(context) - 12) = EDI_reg(context);
338 *(DWORD *)(EBP_reg(context) - 16) = ECX_reg(context);
340 *(DWORD *)(EBP_reg(context) - 48) = EAX_reg(context);
341 *(DWORD *)(EBP_reg(context) - 52) = EDX_reg(context);
343 /* Push return address back onto stack */
344 STACK32_PUSH(context, EIP_reg(context));
347 /**********************************************************************
348 * FT_Thunk (KERNEL32.234)
350 * This routine performs the actual call to 16-bit code,
351 * similar to QT_Thunk. The differences are:
352 * - The call target is taken from the buffer created by FT_Prolog
353 * - Those arguments requested by the thunk code (by setting the
354 * corresponding bit in the bitmap at EBP-20) are converted
355 * from 32-bit pointers to segmented pointers (those pointers
356 * are guaranteed to point to structures copied to the stack
357 * by the thunk code, so we always use the 16-bit stack selector
358 * for those addresses).
360 * The bit #i of EBP-20 corresponds here to the DWORD starting at
363 * FIXME: It is unclear what happens if there are more than 32 WORDs
364 * of arguments, so that the single DWORD bitmap is no longer
368 REGS_ENTRYPOINT(FT_Thunk)
370 DWORD mapESPrelative = *(DWORD *)(EBP_reg(context) - 20);
371 DWORD callTarget = *(DWORD *)(EBP_reg(context) - 52);
375 LPBYTE newstack, oldstack;
376 THDB *thdb = THREAD_Current();
378 memcpy(&context16,context,sizeof(context16));
380 CS_reg(&context16) = HIWORD(callTarget);
381 IP_reg(&context16) = LOWORD(callTarget);
382 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
383 + (WORD)&((STACK16FRAME*)0)->bp;
385 argsize = EBP_reg(context)-ESP_reg(context)-0x44;
386 newstack = ((LPBYTE)THREAD_STACK16(thdb))-argsize;
387 oldstack = (LPBYTE)ESP_reg(context)+4;
389 memcpy( newstack, oldstack, argsize );
391 for (i = 0; i < 32; i++) /* NOTE: What about > 32 arguments? */
392 if (mapESPrelative & (1 << i))
394 SEGPTR *arg = (SEGPTR *)(newstack + 2*i);
395 *arg = PTR_SEG_OFF_TO_SEGPTR(SELECTOROF(thdb->cur_stack),
396 OFFSETOF(thdb->cur_stack) - argsize
397 + (*(LPBYTE *)arg - oldstack));
400 EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
401 EDX_reg(context) = HIWORD(EAX_reg(context));
402 EAX_reg(context) = LOWORD(EAX_reg(context));
405 /**********************************************************************
406 * FT_ExitNN (KERNEL32.218 - 232)
408 * One of the FT_ExitNN functions is called at the end of the thunk code.
409 * It removes the stack frame created by FT_Prolog, moves the function
410 * return from EBX to EAX (yes, FT_Thunk did use EAX for the return
411 * value, but the thunk code has moved it from EAX to EBX in the
412 * meantime ... :-), restores the caller's EBX, ESI, and EDI registers,
413 * and perform a return to the CALLER of the thunk code (while removing
414 * the given number of arguments from the caller's stack).
417 static void FT_Exit(CONTEXT *context, int nPopArgs)
419 /* Return value is in EBX */
420 EAX_reg(context) = EBX_reg(context);
422 /* Restore EBX, ESI, and EDI registers */
423 EBX_reg(context) = *(DWORD *)(EBP_reg(context) - 4);
424 ESI_reg(context) = *(DWORD *)(EBP_reg(context) - 8);
425 EDI_reg(context) = *(DWORD *)(EBP_reg(context) - 12);
427 /* Clean up stack frame */
428 ESP_reg(context) = EBP_reg(context);
429 EBP_reg(context) = STACK32_POP(context);
431 /* Pop return address to CALLER of thunk code */
432 EIP_reg(context) = STACK32_POP(context);
433 /* Remove arguments */
434 ESP_reg(context) += nPopArgs;
435 /* Push return address back onto stack */
436 STACK32_PUSH(context, EIP_reg(context));
439 REGS_ENTRYPOINT(FT_Exit0) { FT_Exit(context, 0); }
440 REGS_ENTRYPOINT(FT_Exit4) { FT_Exit(context, 4); }
441 REGS_ENTRYPOINT(FT_Exit8) { FT_Exit(context, 8); }
442 REGS_ENTRYPOINT(FT_Exit12) { FT_Exit(context, 12); }
443 REGS_ENTRYPOINT(FT_Exit16) { FT_Exit(context, 16); }
444 REGS_ENTRYPOINT(FT_Exit20) { FT_Exit(context, 20); }
445 REGS_ENTRYPOINT(FT_Exit24) { FT_Exit(context, 24); }
446 REGS_ENTRYPOINT(FT_Exit28) { FT_Exit(context, 28); }
447 REGS_ENTRYPOINT(FT_Exit32) { FT_Exit(context, 32); }
448 REGS_ENTRYPOINT(FT_Exit36) { FT_Exit(context, 36); }
449 REGS_ENTRYPOINT(FT_Exit40) { FT_Exit(context, 40); }
450 REGS_ENTRYPOINT(FT_Exit44) { FT_Exit(context, 44); }
451 REGS_ENTRYPOINT(FT_Exit48) { FT_Exit(context, 48); }
452 REGS_ENTRYPOINT(FT_Exit52) { FT_Exit(context, 52); }
453 REGS_ENTRYPOINT(FT_Exit56) { FT_Exit(context, 56); }
456 /**********************************************************************
457 * WOWCallback16 (KERNEL32.62)(WOW32.2)
458 * Calls a win16 function with a single DWORD argument.
462 DWORD WINAPI WOWCallback16(
463 FARPROC16 fproc, /* [in] win16 function to call */
464 DWORD arg /* [in] single DWORD argument to function */
467 TRACE(thunk,"(%p,0x%08lx)...\n",fproc,arg);
468 ret = Callbacks->CallWOWCallbackProc(fproc,arg);
469 TRACE(thunk,"... returns %ld\n",ret);
473 /**********************************************************************
474 * WOWCallback16Ex (KERNEL32.55)(WOW32.3)
475 * Calls a function in 16bit code.
479 BOOL32 WINAPI WOWCallback16Ex(
480 FARPROC16 vpfn16, /* [in] win16 function to call */
481 DWORD dwFlags, /* [in] flags */
482 DWORD cbArgs, /* [in] nr of arguments */
483 LPVOID pArgs, /* [in] pointer to arguments (LPDWORD) */
484 LPDWORD pdwRetCode /* [out] return value of win16 function */
486 return Callbacks->CallWOWCallback16Ex(vpfn16,dwFlags,cbArgs,pArgs,pdwRetCode);
489 /***********************************************************************
490 * ThunkInitLS (KERNEL32.43)
491 * A thunkbuffer link routine
492 * The thunkbuf looks like:
494 * 00: DWORD length ? don't know exactly
495 * 04: SEGPTR ptr ? where does it point to?
496 * The pointer ptr is written into the first DWORD of 'thunk'.
497 * (probably correct implemented)
500 * segmented pointer to thunk?
502 DWORD WINAPI ThunkInitLS(
503 LPDWORD thunk, /* [in] win32 thunk */
504 LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
505 DWORD len, /* [in] thkbuffer length */
506 LPCSTR dll16, /* [in] name of win16 dll */
507 LPCSTR dll32 /* [in] name of win32 dll (FIXME: not used?) */
511 if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
516 *(DWORD*)thunk = addr[1];
521 /***********************************************************************
522 * Common32ThkLS (KERNEL32.45)
524 * This is another 32->16 thunk, independent of the QT_Thunk/FT_Thunk
525 * style thunks. The basic difference is that the parameter conversion
526 * is done completely on the *16-bit* side here. Thus we do not call
527 * the 16-bit target directly, but call a common entry point instead.
528 * This entry function then calls the target according to the target
529 * number passed in the DI register.
531 * Input: EAX SEGPTR to the common 16-bit entry point
532 * CX offset in thunk table (target number * 4)
533 * DX error return value if execution fails (unclear???)
534 * EDX.HI number of DWORD parameters
536 * (Note that we need to move the thunk table offset from CX to DI !)
538 * The called 16-bit stub expects its stack to look like this:
540 * (esp+40) 32-bit arguments
542 * (esp+8) 32 byte of stack space available as buffer
543 * (esp) 8 byte return address for use with 0x66 lret
545 * The called 16-bit stub uses a 0x66 lret to return to 32-bit code,
546 * and uses the EAX register to return a DWORD return value.
547 * Thus we need to use a special assembly glue routine
548 * (CallRegisterLongProc instead of CallRegisterShortProc).
550 * Finally, we return to the caller, popping the arguments off
553 * FIXME: The called function uses EBX to return the number of
554 * arguments that are to be popped off the caller's stack.
555 * This is clobbered by the assembly glue, so we simply use
556 * the original EDX.HI to get the number of arguments.
557 * (Those two values should be equal anyway ...?)
560 REGS_ENTRYPOINT(Common32ThkLS)
564 THDB *thdb = THREAD_Current();
566 memcpy(&context16,context,sizeof(context16));
568 DI_reg(&context16) = CX_reg(context);
569 CS_reg(&context16) = HIWORD(EAX_reg(context));
570 IP_reg(&context16) = LOWORD(EAX_reg(context));
571 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
572 + (WORD)&((STACK16FRAME*)0)->bp;
574 argsize = HIWORD(EDX_reg(context)) * 4;
576 /* FIXME: hack for stupid USER32 CallbackGlueLS routine */
577 if (EDX_reg(context) == EIP_reg(context))
580 memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
581 (LPBYTE)ESP_reg(context)+4, argsize );
583 EAX_reg(context) = Callbacks->CallRegisterLongProc(&context16, argsize + 32);
585 /* Clean up caller's stack frame */
587 EIP_reg(context) = STACK32_POP(context);
588 ESP_reg(context) += argsize;
589 STACK32_PUSH(context, EIP_reg(context));
592 /***********************************************************************
593 * OT_32ThkLSF (KERNEL32.40)
595 * YET Another 32->16 thunk. The difference to Common32ThkLS is that
596 * argument processing is done on both the 32-bit and the 16-bit side:
597 * The 32-bit side prepares arguments, copying them onto the stack.
599 * When this routine is called, the first word on the stack is the
600 * number of argument bytes prepared by the 32-bit code, and EDX
601 * contains the 16-bit target address.
603 * The called 16-bit routine is another relaycode, doing further
604 * argument processing and then calling the real 16-bit target
605 * whose address is stored at [bp-04].
607 * The call proceeds using a normal CallRegisterShortProc.
608 * After return from the 16-bit relaycode, the arguments need
609 * to be copied *back* to the 32-bit stack, since the 32-bit
610 * relaycode processes output parameters.
612 * Note that we copy twice the number of arguments, since some of the
613 * 16-bit relaycodes in SYSTHUNK.DLL directly access the original
614 * arguments of the caller!
616 * (Note that this function seems only to be used for
617 * OLECLI32 -> OLECLI and OLESVR32 -> OLESVR thunking.)
619 REGS_ENTRYPOINT(OT_32ThkLSF)
623 THDB *thdb = THREAD_Current();
625 memcpy(&context16,context,sizeof(context16));
627 CS_reg(&context16) = HIWORD(EDX_reg(context));
628 IP_reg(&context16) = LOWORD(EDX_reg(context));
629 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
630 + (WORD)&((STACK16FRAME*)0)->bp;
632 argsize = 2 * *(WORD *)(ESP_reg(context) + 4) + 2;
634 memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
635 (LPBYTE)ESP_reg(context)+4, argsize );
637 EAX_reg(context) = Callbacks->CallRegisterShortProc(&context16, argsize);
639 memcpy( (LPBYTE)ESP_reg(context)+4,
640 ((LPBYTE)THREAD_STACK16(thdb))-argsize, argsize );
643 /***********************************************************************
644 * ThunkInitLSF (KERNEL32.41)
645 * A thunk setup routine.
646 * Expects a pointer to a preinitialized thunkbuffer in the first argument
648 * 00..03: unknown (pointer, check _41, _43, _46)
651 * 06..23: unknown (space for replacement code, check .90)
653 * 24:>E800000000 call offset 29
654 * 29:>58 pop eax ( target of call )
655 * 2A: 2D25000000 sub eax,0x00000025 ( now points to offset 4 )
656 * 2F: BAxxxxxxxx mov edx,xxxxxxxx
657 * 34: 68yyyyyyyy push KERNEL32.90
661 * 3E ... 59: unknown (space for replacement code?)
662 * 5A: E8xxxxxxxx call <32bitoffset xxxxxxxx>
664 * 60: 81EA25xxxxxx sub edx, 0x25xxxxxx
666 * 67: 68xxxxxxxx push xxxxxxxx
667 * 6C: 68yyyyyyyy push KERNEL32.89
670 * This function checks if the code is there, and replaces the yyyyyyyy entries
671 * by the functionpointers.
672 * The thunkbuf looks like:
674 * 00: DWORD length ? don't know exactly
675 * 04: SEGPTR ptr ? where does it point to?
676 * The segpointer ptr is written into the first DWORD of 'thunk'.
679 * unclear, pointer to win16 thkbuffer?
681 LPVOID WINAPI ThunkInitLSF(
682 LPBYTE thunk, /* [in] win32 thunk */
683 LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
684 DWORD len, /* [in] length of thkbuffer */
685 LPCSTR dll16, /* [in] name of win16 dll */
686 LPCSTR dll32 /* [in] name of win32 dll */
688 HMODULE32 hkrnl32 = GetModuleHandle32A("KERNEL32");
691 /* FIXME: add checks for valid code ... */
692 /* write pointers to kernel32.89 and kernel32.90 (+ordinal base of 1) */
693 *(DWORD*)(thunk+0x35) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)90);
694 *(DWORD*)(thunk+0x6D) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)89);
697 if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
700 addr2 = PTR_SEG_TO_LIN(addr[1]);
702 *(DWORD*)thunk = (DWORD)addr2;
707 /***********************************************************************
708 * FT_PrologPrime (KERNEL32.89)
710 * This function is called from the relay code installed by
711 * ThunkInitLSF. It replaces the location from where it was
712 * called by a standard FT_Prolog call stub (which is 'primed'
713 * by inserting the correct target table pointer).
714 * Finally, it calls that stub.
716 * Input: ECX target number + flags (passed through to FT_Prolog)
717 * (ESP) offset of location where target table pointer
718 * is stored, relative to the start of the relay code
719 * (ESP+4) pointer to start of relay code
720 * (this is where the FT_Prolog call stub gets written to)
722 * Note: The two DWORD arguments get popped from the stack.
725 REGS_ENTRYPOINT(FT_PrologPrime)
727 DWORD targetTableOffset = STACK32_POP(context);
728 LPBYTE relayCode = (LPBYTE)STACK32_POP(context);
729 DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
730 DWORD targetNr = LOBYTE(ECX_reg(context));
732 _write_ftprolog(relayCode, targetTable);
734 /* We should actually call the relay code now, */
735 /* but we skip it and go directly to FT_Prolog */
736 EDX_reg(context) = targetTable[targetNr];
737 __regs_FT_Prolog(context);
740 /***********************************************************************
741 * QT_ThunkPrime (KERNEL32.90)
743 * This function corresponds to FT_PrologPrime, but installs a
744 * call stub for QT_Thunk instead.
746 * Input: (EBP-4) target number (passed through to QT_Thunk)
747 * EDX target table pointer location offset
748 * EAX start of relay code
751 REGS_ENTRYPOINT(QT_ThunkPrime)
753 DWORD targetTableOffset = EDX_reg(context);
754 LPBYTE relayCode = (LPBYTE)EAX_reg(context);
755 DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
756 DWORD targetNr = LOBYTE(*(DWORD *)(EBP_reg(context) - 4));
758 _write_qtthunk(relayCode, targetTable);
760 /* We should actually call the relay code now, */
761 /* but we skip it and go directly to QT_Thunk */
762 EDX_reg(context) = targetTable[targetNr];
763 __regs_QT_Thunk(context);
766 /***********************************************************************
768 * Another thunkbuf link routine.
769 * The start of the thunkbuf looks like this:
771 * 04: SEGPTR address for thunkbuffer pointer
774 VOID WINAPI ThunkInitSL(
775 LPBYTE thunk, /* [in] start of thunkbuffer */
776 LPCSTR thkbuf, /* [in] name/ordinal of thunkbuffer in win16 dll */
777 DWORD len, /* [in] length of thunkbuffer */
778 LPCSTR dll16, /* [in] name of win16 dll containing the thkbuf */
779 LPCSTR dll32 /* [in] win32 dll. FIXME: strange, unused */
783 if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
786 *(DWORD*)PTR_SEG_TO_LIN(addr[1]) = (DWORD)thunk;
789 /**********************************************************************
794 BOOL32 WINAPI SSInit()
799 /**********************************************************************
800 * SSOnBigStack KERNEL32.87
801 * Check if thunking is initialized (ss selector set up etc.)
802 * We do that differently, so just return TRUE.
807 BOOL32 WINAPI SSOnBigStack()
809 TRACE(thunk, "Yes, thunking is initialized\n");
813 /**********************************************************************
815 * One of the real thunking functions. This one seems to be for 32<->32
816 * thunks. It should probably be capable of crossing processboundaries.
818 * And YES, I've seen nr=48 (somewhere in the Win95 32<->16 OLE coupling)
821 DWORD WINAPIV SSCall(
822 DWORD nr, /* [in] number of argument bytes */
823 DWORD flags, /* [in] FIXME: flags ? */
824 FARPROC32 fun, /* [in] function to call */
825 ... /* [in/out] arguments */
828 DWORD *args = ((DWORD *)&fun) + 1;
831 dbg_decl_str(thunk, 256);
833 dsprintf(thunk,"0x%08lx,",args[i]);
834 TRACE(thunk,"(%ld,0x%08lx,%p,[%s])\n",
835 nr,flags,fun,dbg_str(thunk));
840 case 4: ret = fun(args[0]);
842 case 8: ret = fun(args[0],args[1]);
844 case 12: ret = fun(args[0],args[1],args[2]);
846 case 16: ret = fun(args[0],args[1],args[2],args[3]);
848 case 20: ret = fun(args[0],args[1],args[2],args[3],args[4]);
850 case 24: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5]);
852 case 28: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6]);
854 case 32: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7]);
856 case 36: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8]);
858 case 40: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]);
860 case 44: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10]);
862 case 48: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10],args[11]);
865 WARN(thunk,"Unsupported nr of arguments, %ld\n",nr);
870 TRACE(thunk," returning %ld ...\n",ret);
874 /**********************************************************************
875 * W32S_BackTo32 (KERNEL32.51)
877 REGS_ENTRYPOINT(W32S_BackTo32)
879 LPDWORD stack = (LPDWORD)ESP_reg( context );
880 FARPROC32 proc = (FARPROC32) stack[0];
882 EAX_reg( context ) = proc( stack[2], stack[3], stack[4], stack[5], stack[6],
883 stack[7], stack[8], stack[9], stack[10], stack[11] );
885 EIP_reg( context ) = stack[1];
888 /**********************************************************************
889 * AllocSLCallback (KERNEL32)
891 * Win95 uses some structchains for callbacks. It allocates them
892 * in blocks of 100 entries, size 32 bytes each, layout:
894 * 0: PTR nextblockstart
896 * 8: WORD sel ( start points to blockstart)
900 * 18: PDB *owning_process;
903 * We ignore this for now. (Just a note for further developers)
904 * FIXME: use this method, so we don't waste selectors...
906 * Following code is then generated by AllocSLCallback. The code is 16 bit, so
907 * the 0x66 prefix switches from word->long registers.
910 * 6668x arg2 x pushl <arg2>
912 * EAx arg1 x jmpf <arg1>
914 * returns the startaddress of this thunk.
916 * Note, that they look very similair to the ones allocates by THUNK_Alloc.
918 * segmented pointer to the start of the thunk
922 DWORD finalizer, /* [in] finalizer function */
923 DWORD callback /* [in] callback function */
925 LPBYTE x,thunk = HeapAlloc( GetProcessHeap(), 0, 32 );
929 *x++=0x66;*x++=0x5a; /* popl edx */
930 *x++=0x66;*x++=0x68;*(DWORD*)x=finalizer;x+=4; /* pushl finalizer */
931 *x++=0x66;*x++=0x52; /* pushl edx */
932 *x++=0xea;*(DWORD*)x=callback;x+=4; /* jmpf callback */
934 *(PDB32**)(thunk+18) = PROCESS_Current();
936 sel = SELECTOR_AllocBlock( thunk , 32, SEGMENT_CODE, FALSE, FALSE );
940 /**********************************************************************
941 * FreeSLCallback (KERNEL32.274)
942 * Frees the specified 16->32 callback
946 DWORD x /* [in] 16 bit callback (segmented pointer?) */
948 FIXME(win32,"(0x%08lx): stub\n",x);
952 /**********************************************************************
953 * GetTEBSelectorFS (KERNEL.475)
954 * Set the 16-bit %fs to the 32-bit %fs (current TEB selector)
956 VOID WINAPI GetTEBSelectorFS( CONTEXT *context )
958 GET_FS( FS_reg(context) );
961 /**********************************************************************
962 * KERNEL_431 (KERNEL.431)
963 * IsPeFormat (W32SYS.2)
964 * Checks the passed filename if it is a PE format executeable
969 BOOL16 WINAPI IsPeFormat(
970 LPSTR fn, /* [in] filename to executeable */
971 HFILE16 hf16 /* [in] open file, if filename is NULL */
973 IMAGE_DOS_HEADER mzh;
974 HFILE32 hf=FILE_GetHandle32(hf16);
979 hf = OpenFile32(fn,&ofs,OF_READ);
980 if (hf==HFILE_ERROR32)
983 _llseek32(hf,0,SEEK_SET);
984 if (sizeof(mzh)!=_lread32(hf,&mzh,sizeof(mzh))) {
988 if (mzh.e_magic!=IMAGE_DOS_SIGNATURE) {
989 WARN(dosmem,"File has not got dos signature!\n");
993 _llseek32(hf,mzh.e_lfanew,SEEK_SET);
994 if (sizeof(DWORD)!=_lread32(hf,&xmagic,sizeof(DWORD))) {
999 return (xmagic == IMAGE_NT_SIGNATURE);
1002 /***********************************************************************
1003 * WOWHandle32 (KERNEL32.57)(WOW32.16)
1004 * Converts a win16 handle of type into the respective win32 handle.
1005 * We currently just return this handle, since most handles are the same
1006 * for win16 and win32.
1010 HANDLE32 WINAPI WOWHandle32(
1011 WORD handle, /* [in] win16 handle */
1012 WOW_HANDLE_TYPE type /* [in] handle type */
1014 TRACE(win32,"(0x%04x,%d)\n",handle,type);
1015 return (HANDLE32)handle;
1018 /***********************************************************************
1019 * K32Thk1632Prolog (KERNEL32.492)
1021 REGS_ENTRYPOINT(K32Thk1632Prolog)
1023 LPBYTE code = (LPBYTE)EIP_reg(context) - 5;
1025 /* Arrrgh! SYSTHUNK.DLL just has to re-implement another method
1026 of 16->32 thunks instead of using one of the standard methods!
1027 This means that SYSTHUNK.DLL itself switches to a 32-bit stack,
1028 and does a far call to the 32-bit code segment of OLECLI32/OLESVR32.
1029 Unfortunately, our CallTo/CallFrom mechanism is therefore completely
1030 bypassed, which means it will crash the next time the 32-bit OLE
1031 code thunks down again to 16-bit (this *will* happen!).
1033 The following hack tries to recognize this situation.
1034 This is possible since the called stubs in OLECLI32/OLESVR32 all
1035 look exactly the same:
1036 00 E8xxxxxxxx call K32Thk1632Prolog
1037 05 FF55FC call [ebp-04]
1038 08 E8xxxxxxxx call K32Thk1632Epilog
1041 If we recognize this situation, we try to simulate the actions
1042 of our CallTo/CallFrom mechanism by copying the 16-bit stack
1043 to our 32-bit stack, creating a proper STACK16FRAME and
1044 updating thdb->cur_stack. */
1046 if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
1047 && code[13] == 0x66 && code[14] == 0xCB)
1049 WORD stackSel = NtCurrentTeb()->stack_sel;
1050 DWORD stackBase = GetSelectorBase(stackSel);
1052 THDB *thdb = THREAD_Current();
1053 DWORD argSize = EBP_reg(context) - ESP_reg(context);
1054 char *stack16 = (char *)ESP_reg(context);
1055 char *stack32 = (char *)thdb->cur_stack - argSize;
1056 STACK16FRAME *frame16 = (STACK16FRAME *)stack16 - 1;
1058 TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1059 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1061 memset(frame16, '\0', sizeof(STACK16FRAME));
1062 frame16->frame32 = (STACK32FRAME *)thdb->cur_stack;
1063 frame16->ebp = EBP_reg(context);
1065 memcpy(stack32, stack16, argSize);
1066 thdb->cur_stack = PTR_SEG_OFF_TO_SEGPTR(stackSel, (DWORD)frame16 - stackBase);
1068 ESP_reg(context) = (DWORD)stack32;
1069 EBP_reg(context) = ESP_reg(context) + argSize;
1071 TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1072 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1075 SYSLEVEL_ReleaseWin16Lock();
1078 /***********************************************************************
1079 * K32Thk1632Epilog (KERNEL32.491)
1081 REGS_ENTRYPOINT(K32Thk1632Epilog)
1083 LPBYTE code = (LPBYTE)EIP_reg(context) - 13;
1085 SYSLEVEL_RestoreWin16Lock();
1087 /* We undo the SYSTHUNK hack if necessary. See K32Thk1632Prolog. */
1089 if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
1090 && code[13] == 0x66 && code[14] == 0xCB)
1092 THDB *thdb = THREAD_Current();
1093 STACK16FRAME *frame16 = (STACK16FRAME *)PTR_SEG_TO_LIN(thdb->cur_stack);
1094 char *stack16 = (char *)(frame16 + 1);
1095 DWORD argSize = frame16->ebp - (DWORD)stack16;
1096 char *stack32 = (char *)frame16->frame32 - argSize;
1098 DWORD nArgsPopped = ESP_reg(context) - (DWORD)stack32;
1100 TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1101 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1103 thdb->cur_stack = (DWORD)frame16->frame32;
1105 ESP_reg(context) = (DWORD)stack16 + nArgsPopped;
1106 EBP_reg(context) = frame16->ebp;
1108 TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1109 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1113 /***********************************************************************
1114 * UpdateResource32A (KERNEL32.707)
1116 BOOL32 WINAPI UpdateResource32A(
1124 FIXME(win32, ": stub\n");
1125 SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
1129 /***********************************************************************
1130 * UpdateResource32W (KERNEL32.708)
1132 BOOL32 WINAPI UpdateResource32W(
1140 FIXME(win32, ": stub\n");
1141 SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
1146 /***********************************************************************
1147 * WaitNamedPipe32A [KERNEL32.725]
1149 BOOL32 WINAPI WaitNamedPipe32A (LPCSTR lpNamedPipeName, DWORD nTimeOut)
1150 { FIXME (win32,"%s 0x%08lx\n",lpNamedPipeName,nTimeOut);
1151 SetLastError(ERROR_PIPE_NOT_CONNECTED);
1154 /***********************************************************************
1155 * WaitNamedPipe32W [KERNEL32.726]
1157 BOOL32 WINAPI WaitNamedPipe32W (LPCWSTR lpNamedPipeName, DWORD nTimeOut)
1158 { FIXME (win32,"%s 0x%08lx\n",debugstr_w(lpNamedPipeName),nTimeOut);
1159 SetLastError(ERROR_PIPE_NOT_CONNECTED);
1163 /***********************************************************************
1164 * GetBinaryType32A [KERNEL32.280]
1166 * The GetBinaryType function determines whether a file is executable
1167 * or not and if it is it returns what type of executable it is.
1168 * The type of executable is a property that determines in which
1169 * subsystem an executable file runs under.
1171 * lpApplicationName: points to a fully qualified path of the file to test
1172 * lpBinaryType: points to a variable that will receive the binary type info
1174 * Binary types returned:
1175 * SCS_32BIT_BINARY: A win32 based application
1176 * SCS_DOS_BINARY: An MS-Dos based application
1177 * SCS_WOW_BINARY: A 16bit OS/2 based application
1178 * SCS_PIF_BINARY: A PIF file that executes an MS-Dos based app ( Not implemented )
1179 * SCS_POSIX_BINARY: A POSIX based application ( Not implemented )
1180 * SCS_OS216_BINARY: A 16bit Windows based application ( Not implemented )
1182 * Returns TRUE if the file is an executable in which case
1183 * the value pointed by lpBinaryType is set.
1184 * Returns FALSE if the file is not an executable or if the function fails.
1186 * This function is not complete. It can only determine if a file
1187 * is a DOS, 32bit/16bit Windows executable. Also .COM file support
1189 * To do so it opens the file and reads in the header information
1190 * if the extended header information is not presend it will
1191 * assume that that the file is a DOS executable.
1192 * If the extended header information is present it will
1193 * determine if the file is an 16 or 32 bit Windows executable
1194 * by check the flags in the header.
1196 BOOL32 WINAPI GetBinaryType32A (LPCSTR lpApplicationName, LPDWORD lpBinaryType)
1201 IMAGE_DOS_HEADER mz_header;
1204 TRACE (win32,"%s\n",lpApplicationName);
1208 if( lpApplicationName == NULL || lpBinaryType == NULL )
1213 /* Open the file indicated by lpApplicationName for reading.
1215 hfile = OpenFile32( lpApplicationName, &ofs, OF_READ );
1217 /* If we cannot read the file return failed.
1219 if( hfile == HFILE_ERROR32 )
1224 /* Seek to the start of the file and read the DOS header information.
1226 if( _llseek32( hfile, 0, SEEK_SET ) >= 0 &&
1227 _lread32( hfile, &mz_header, sizeof(mz_header) ) == sizeof(mz_header) )
1229 /* Now that we have the header check the e_magic field
1230 * to see if this is a dos image.
1232 if( mz_header.e_magic == IMAGE_DOS_SIGNATURE )
1234 BOOL32 lfanewValid = FALSE;
1235 /* We do have a DOS image so we will now try to seek into
1236 * the file by the amount indicated by the field
1237 * "Offset to extended header" and read in the
1238 * "magic" field information at that location.
1239 * This will tell us if there is more header information
1243 /* But before we do we will make sure that header
1244 * structure encompasses the "Offset to extended header"
1247 if( (mz_header.e_cparhdr<<4) >= sizeof(IMAGE_DOS_HEADER) )
1249 if( ( mz_header.e_crlc == 0 && mz_header.e_lfarlc == 0 ) ||
1250 ( mz_header.e_lfarlc >= sizeof(IMAGE_DOS_HEADER) ) )
1252 if( mz_header.e_lfanew >= sizeof(IMAGE_DOS_HEADER) &&
1253 _llseek32( hfile, mz_header.e_lfanew, SEEK_SET ) >= 0 &&
1254 _lread32( hfile, magic, sizeof(magic) ) == sizeof(magic) )
1261 if( lfanewValid == FALSE )
1263 /* If we cannot read this "extended header" we will
1264 * assume that we have a simple DOS executable.
1266 FIXME( win32, "Determine if this check is complete enough\n" );
1267 *lpBinaryType = SCS_DOS_BINARY;
1272 /* Reading the magic field succeeded so
1273 * we will not try to determine what type it is.
1275 if( *(DWORD*)magic == IMAGE_NT_SIGNATURE )
1277 /* This is an NT signature.
1279 *lpBinaryType = SCS_32BIT_BINARY;
1282 else if( *(WORD*)magic == IMAGE_OS2_SIGNATURE )
1284 /* The IMAGE_OS2_SIGNATURE indicates that the
1285 * "extended header is a Windows executable (NE)
1286 * header. This is a bit misleading, but it is
1287 * documented in the SDK. ( for more details see
1288 * the neexe.h file )
1291 /* Now we know that it is a Windows executable
1292 * we will read in the Windows header and
1293 * determine if it is a 16/32bit Windows executable.
1295 IMAGE_OS2_HEADER ne_header;
1296 if( _lread32( hfile, &ne_header, sizeof(ne_header) ) == sizeof(ne_header) )
1298 /* Check the format flag to determine if it is
1301 if( ne_header.format_flags & NE_FFLAGS_WIN32 )
1303 *lpBinaryType = SCS_32BIT_BINARY;
1308 /* We will assume it is a 16bit Windows executable.
1309 * I'm not sure if this check is sufficient.
1311 FIXME( win32, "Determine if this check is complete enough\n" );
1312 *lpBinaryType = SCS_WOW_BINARY;
1323 CloseHandle( hfile );
1329 /***********************************************************************
1330 * GetBinaryType32W [KERNEL32.281]
1332 * See GetBinaryType32A.
1334 BOOL32 WINAPI GetBinaryType32W (LPCWSTR lpApplicationName, LPDWORD lpBinaryType)
1337 LPSTR strNew = NULL;
1339 TRACE (win32,"%s\n",debugstr_w(lpApplicationName));
1343 if( lpApplicationName == NULL || lpBinaryType == NULL )
1349 /* Convert the wide string to a ascii string.
1351 strNew = HEAP_strdupWtoA( GetProcessHeap(), 0, lpApplicationName );
1353 if( strNew != NULL )
1355 ret = GetBinaryType32A( strNew, lpBinaryType );
1357 /* Free the allocated string.
1359 HeapFree( GetProcessHeap(), 0, strNew );
1365 /*********************************************************************
1366 * PK16FNF [KERNEL32.91]
1368 * This routine fills in the supplied 13-byte (8.3 plus terminator)
1369 * string buffer with the 8.3 filename of a recently loaded 16-bit
1370 * module. It is unknown exactly what modules trigger this
1371 * mechanism or what purpose this serves. Win98 Explorer (and
1372 * probably also Win95 with IE 4 shell integration) calls this
1373 * several times during initialization.
1375 * FIXME: find out what this really does and make it work.
1377 void WINAPI PK16FNF(LPSTR strPtr)
1379 FIXME(win32, "(%p): stub\n", strPtr);
1381 /* fill in a fake filename that'll be easy to recognize */
1382 lstrcpy32A(strPtr, "WINESTUB.FIX");