2 * Copyright 2008 Jacek Caban for CodeWeavers
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * Code in this file is based on files:
23 * from Mozilla project, released under LGPL 2.1 or later.
25 * The Original Code is Mozilla Communicator client code, released
28 * The Initial Developer of the Original Code is
29 * Netscape Communications Corporation.
30 * Portions created by the Initial Developer are Copyright (C) 1998
31 * the Initial Developer. All Rights Reserved.
38 #include "wine/debug.h"
40 WINE_DEFAULT_DEBUG_CHANNEL(jscript);
42 #define JSREG_FOLD 0x01 /* fold uppercase to lowercase */
43 #define JSREG_GLOB 0x02 /* global exec, creates array of matches */
44 #define JSREG_MULTILINE 0x04 /* treat ^ and $ as begin and end of line */
45 #define JSREG_STICKY 0x08 /* only match starting at lastIndex */
47 typedef BYTE JSPackedBool;
48 typedef BYTE jsbytecode;
51 * This struct holds a bitmap representation of a class from a regexp.
52 * There's a list of these referenced by the classList field in the JSRegExp
53 * struct below. The initial state has startIndex set to the offset in the
54 * original regexp source of the beginning of the class contents. The first
55 * use of the class converts the source representation into a bitmap.
58 typedef struct RECharSet {
59 JSPackedBool converted;
72 WORD flags; /* flags, see jsapi.h's JSREG_* defines */
73 size_t parenCount; /* number of parenthesized submatches */
74 size_t classCount; /* count [...] bitmaps */
75 RECharSet *classList; /* list of [...] bitmaps */
76 BSTR source; /* locked source string, sans // */
77 jsbytecode program[1]; /* regular expression bytecode */
87 static const WCHAR sourceW[] = {'s','o','u','r','c','e',0};
88 static const WCHAR globalW[] = {'g','l','o','b','a','l',0};
89 static const WCHAR ignoreCaseW[] = {'i','g','n','o','r','e','C','a','s','e',0};
90 static const WCHAR multilineW[] = {'m','u','l','t','i','l','i','n','e',0};
91 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
92 static const WCHAR toStringW[] = {'t','o','S','t','r','i','n','g',0};
93 static const WCHAR toLocaleStringW[] = {'t','o','L','o','c','a','l','e','S','t','r','i','n','g',0};
94 static const WCHAR hasOwnPropertyW[] = {'h','a','s','O','w','n','P','r','o','p','e','r','t','y',0};
95 static const WCHAR propertyIsEnumerableW[] =
96 {'p','r','o','p','e','r','t','y','I','s','E','n','u','m','e','r','a','b','l','e',0};
97 static const WCHAR isPrototypeOfW[] = {'i','s','P','r','o','t','o','t','y','p','e','O','f',0};
98 static const WCHAR execW[] = {'e','x','e','c',0};
99 static const WCHAR testW[] = {'t','e','s','t',0};
101 static const WCHAR emptyW[] = {0};
103 /* FIXME: Better error handling */
104 #define ReportRegExpError(a,b,c)
105 #define ReportRegExpErrorHelper(a,b,c,d)
106 #define JS_ReportErrorNumber(a,b,c,d)
107 #define JS_ReportErrorFlagsAndNumber(a,b,c,d,e,f)
108 #define js_ReportOutOfScriptQuota(a)
109 #define JS_ReportOutOfMemory(a)
110 #define JS_COUNT_OPERATION(a,b)
112 #define JSMSG_MIN_TOO_BIG 47
113 #define JSMSG_MAX_TOO_BIG 48
114 #define JSMSG_OUT_OF_ORDER 49
115 #define JSMSG_OUT_OF_MEMORY 137
117 #define LINE_SEPARATOR 0x2028
118 #define PARA_SEPARATOR 0x2029
120 #define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \
121 ((c >= 'a') && (c <= 'z')) )
122 #define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \
123 (c == LINE_SEPARATOR) || (c == PARA_SEPARATOR))
125 #define JS_ISWORD(c) ((c) < 128 && (isalnum(c) || (c) == '_'))
127 #define JS7_ISDEC(c) ((((unsigned)(c)) - '0') <= 9)
128 #define JS7_UNDEC(c) ((c) - '0')
180 REOP_LIMIT /* META: no operator >= to this */
183 #define REOP_IS_SIMPLE(op) ((op) <= REOP_NCLASS)
185 static const char *reop_names[] = {
238 typedef struct RECapture {
239 ptrdiff_t index; /* start of contents, -1 for empty */
240 size_t length; /* length of capture */
243 typedef struct REMatchState {
245 RECapture parens[1]; /* first of 're->parenCount' captures,
246 allocated at end of this struct */
249 typedef struct REProgState {
250 jsbytecode *continue_pc; /* current continuation data */
251 jsbytecode continue_op;
252 ptrdiff_t index; /* progress in text */
253 size_t parenSoFar; /* highest indexed paren started */
256 UINT min; /* current quantifier limits */
260 size_t top; /* backtrack stack state */
266 typedef struct REBackTrackData {
267 size_t sz; /* size of previous stack entry */
268 jsbytecode *backtrack_pc; /* where to backtrack to */
269 jsbytecode backtrack_op;
270 const WCHAR *cp; /* index in text of match at backtrack */
271 size_t parenIndex; /* start index of saved paren contents */
272 size_t parenCount; /* # of saved paren contents */
273 size_t saveStateStackTop; /* number of parent states */
274 /* saved parent states follow */
275 /* saved paren contents follow */
278 #define INITIAL_STATESTACK 100
279 #define INITIAL_BACKTRACK 8000
281 typedef struct REGlobalData {
283 JSRegExp *regexp; /* the RE in execution */
284 BOOL ok; /* runtime error (out_of_memory only?) */
285 size_t start; /* offset to start at */
286 ptrdiff_t skipped; /* chars skipped anchoring this r.e. */
287 const WCHAR *cpbegin; /* text base address */
288 const WCHAR *cpend; /* text limit address */
290 REProgState *stateStack; /* stack of state of current parents */
291 size_t stateStackTop;
292 size_t stateStackLimit;
294 REBackTrackData *backTrackStack;/* stack of matched-so-far positions */
295 REBackTrackData *backTrackSP;
296 size_t backTrackStackSize;
297 size_t cursz; /* size of current stack entry */
298 size_t backTrackCount; /* how many times we've backtracked */
299 size_t backTrackLimit; /* upper limit on backtrack states */
301 jsheap_t *pool; /* It's faster to use one malloc'd pool
302 than to malloc/free the three items
303 that are allocated from this pool */
306 typedef struct RENode RENode;
308 REOp op; /* r.e. op bytecode */
309 RENode *next; /* next in concatenation order */
310 void *kid; /* first operand */
312 void *kid2; /* second operand */
313 INT num; /* could be a number */
314 size_t parenIndex; /* or a parenthesis index */
315 struct { /* or a quantifier range */
320 struct { /* or a character class */
322 size_t kidlen; /* length of string at kid, in jschars */
323 size_t index; /* index into class list */
324 WORD bmsize; /* bitmap size, based on max char code */
327 struct { /* or a literal sequence */
328 WCHAR chr; /* of one character */
329 size_t length; /* or many (via the kid) */
332 RENode *kid2; /* second operand from ALT */
333 WCHAR ch1; /* match char for ALTPREREQ */
334 WCHAR ch2; /* ditto, or class index for ALTPREREQ2 */
339 #define CLASS_CACHE_SIZE 4
341 typedef struct CompilerState {
342 script_ctx_t *context;
343 const WCHAR *cpbegin;
347 size_t classCount; /* number of [] encountered */
348 size_t treeDepth; /* maximum depth of parse tree */
349 size_t progLength; /* estimated bytecode length */
351 size_t classBitmapsMem; /* memory to hold all class bitmaps */
353 const WCHAR *start; /* small cache of class strings */
354 size_t length; /* since they're often the same */
356 } classCache[CLASS_CACHE_SIZE];
360 typedef struct EmitStateStackEntry {
361 jsbytecode *altHead; /* start of REOP_ALT* opcode */
362 jsbytecode *nextAltFixup; /* fixup pointer to next-alt offset */
363 jsbytecode *nextTermFixup; /* fixup ptr. to REOP_JUMP offset */
364 jsbytecode *endTermFixup; /* fixup ptr. to REOPT_ALTPREREQ* offset */
365 RENode *continueNode; /* original REOP_ALT* node being stacked */
366 jsbytecode continueOp; /* REOP_JUMP or REOP_ENDALT continuation */
367 JSPackedBool jumpToJumpFlag; /* true if we've patched jump-to-jump to
368 avoid 16-bit unsigned offset overflow */
369 } EmitStateStackEntry;
372 * Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h,
373 * the getters and setters take the pc of the offset, not of the opcode before
377 #define GET_ARG(pc) ((WORD)(((pc)[0] << 8) | (pc)[1]))
378 #define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \
379 (pc)[1] = (jsbytecode) (arg))
381 #define OFFSET_LEN ARG_LEN
382 #define OFFSET_MAX ((1 << (ARG_LEN * 8)) - 1)
383 #define GET_OFFSET(pc) GET_ARG(pc)
385 static BOOL ParseRegExp(CompilerState*);
388 * Maximum supported tree depth is maximum size of EmitStateStackEntry stack.
389 * For sanity, we limit it to 2^24 bytes.
391 #define TREE_DEPTH_MAX ((1 << 24) / sizeof(EmitStateStackEntry))
394 * The maximum memory that can be allocated for class bitmaps.
395 * For sanity, we limit it to 2^24 bytes.
397 #define CLASS_BITMAPS_MEM_LIMIT (1 << 24)
400 * Functions to get size and write/read bytecode that represent small indexes
402 * Each byte in the code represent 7-bit chunk of the index. 8th bit when set
403 * indicates that the following byte brings more bits to the index. Otherwise
404 * this is the last byte in the index bytecode representing highest index bits.
407 GetCompactIndexWidth(size_t index)
411 for (width = 1; (index >>= 7) != 0; ++width) { }
415 static inline jsbytecode *
416 WriteCompactIndex(jsbytecode *pc, size_t index)
420 while ((next = index >> 7) != 0) {
421 *pc++ = (jsbytecode)(index | 0x80);
424 *pc++ = (jsbytecode)index;
428 static inline jsbytecode *
429 ReadCompactIndex(jsbytecode *pc, size_t *result)
434 if ((nextByte & 0x80) == 0) {
436 * Short-circuit the most common case when compact index <= 127.
441 *result = 0x7F & nextByte;
444 *result |= (nextByte & 0x7F) << shift;
446 } while ((nextByte & 0x80) != 0);
451 /* Construct and initialize an RENode, returning NULL for out-of-memory */
453 NewRENode(CompilerState *state, REOp op)
457 ren = jsheap_alloc(&state->context->tmp_heap, sizeof(*ren));
459 /* js_ReportOutOfScriptQuota(cx); */
469 * Validates and converts hex ascii value.
472 isASCIIHexDigit(WCHAR c, UINT *digit)
483 if (cv >= 'a' && cv <= 'f') {
484 *digit = cv - 'a' + 10;
496 #define JUMP_OFFSET_HI(off) ((jsbytecode)((off) >> 8))
497 #define JUMP_OFFSET_LO(off) ((jsbytecode)(off))
500 SetForwardJumpOffset(jsbytecode *jump, jsbytecode *target)
502 ptrdiff_t offset = target - jump;
504 /* Check that target really points forward. */
506 if ((size_t)offset > OFFSET_MAX)
509 jump[0] = JUMP_OFFSET_HI(offset);
510 jump[1] = JUMP_OFFSET_LO(offset);
515 * Generate bytecode for the tree rooted at t using an explicit stack instead
519 EmitREBytecode(CompilerState *state, JSRegExp *re, size_t treeDepth,
520 jsbytecode *pc, RENode *t)
522 EmitStateStackEntry *emitStateSP, *emitStateStack;
526 if (treeDepth == 0) {
527 emitStateStack = NULL;
529 emitStateStack = heap_alloc(sizeof(EmitStateStackEntry) * treeDepth);
533 emitStateSP = emitStateStack;
535 assert(op < REOP_LIMIT);
544 case REOP_ALTPREREQ2:
547 emitStateSP->altHead = pc - 1;
548 emitStateSP->endTermFixup = pc;
550 SET_ARG(pc, t->u.altprereq.ch1);
552 SET_ARG(pc, t->u.altprereq.ch2);
555 emitStateSP->nextAltFixup = pc; /* offset to next alternate */
558 emitStateSP->continueNode = t;
559 emitStateSP->continueOp = REOP_JUMP;
560 emitStateSP->jumpToJumpFlag = FALSE;
562 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
565 assert(op < REOP_LIMIT);
569 emitStateSP->nextTermFixup = pc; /* offset to following term */
571 if (!SetForwardJumpOffset(emitStateSP->nextAltFixup, pc))
573 emitStateSP->continueOp = REOP_ENDALT;
575 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
578 assert(op < REOP_LIMIT);
583 * If we already patched emitStateSP->nextTermFixup to jump to
584 * a nearer jump, to avoid 16-bit immediate offset overflow, we
587 if (emitStateSP->jumpToJumpFlag)
591 * Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT.
592 * REOP_ENDALT is executed only on successful match of the last
593 * alternate in a group.
595 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
597 if (t->op != REOP_ALT) {
598 if (!SetForwardJumpOffset(emitStateSP->endTermFixup, pc))
603 * If the program is bigger than the REOP_JUMP offset range, then
604 * we must check for alternates before this one that are part of
605 * the same group, and fix up their jump offsets to target jumps
606 * close enough to fit in a 16-bit unsigned offset immediate.
608 if ((size_t)(pc - re->program) > OFFSET_MAX &&
609 emitStateSP > emitStateStack) {
610 EmitStateStackEntry *esp, *esp2;
611 jsbytecode *alt, *jump;
612 ptrdiff_t span, header;
616 for (esp = esp2 - 1; esp >= emitStateStack; --esp) {
617 if (esp->continueOp == REOP_ENDALT &&
618 !esp->jumpToJumpFlag &&
619 esp->nextTermFixup + OFFSET_LEN == alt &&
620 (size_t)(pc - ((esp->continueNode->op != REOP_ALT)
622 : esp->nextTermFixup)) > OFFSET_MAX) {
624 jump = esp->nextTermFixup;
627 * The span must be 1 less than the distance from
628 * jump offset to jump offset, so we actually jump
629 * to a REOP_JUMP bytecode, not to its offset!
632 assert(jump < esp2->nextTermFixup);
633 span = esp2->nextTermFixup - jump - 1;
634 if ((size_t)span <= OFFSET_MAX)
639 } while (esp2->continueOp != REOP_ENDALT);
642 jump[0] = JUMP_OFFSET_HI(span);
643 jump[1] = JUMP_OFFSET_LO(span);
645 if (esp->continueNode->op != REOP_ALT) {
647 * We must patch the offset at esp->endTermFixup
648 * as well, for the REOP_ALTPREREQ{,2} opcodes.
649 * If we're unlucky and endTermFixup is more than
650 * OFFSET_MAX bytes from its target, we cheat by
651 * jumping 6 bytes to the jump whose offset is at
652 * esp->nextTermFixup, which has the same target.
654 jump = esp->endTermFixup;
655 header = esp->nextTermFixup - jump;
657 if ((size_t)span > OFFSET_MAX)
660 jump[0] = JUMP_OFFSET_HI(span);
661 jump[1] = JUMP_OFFSET_LO(span);
664 esp->jumpToJumpFlag = TRUE;
672 emitStateSP->altHead = pc - 1;
673 emitStateSP->nextAltFixup = pc; /* offset to next alternate */
675 emitStateSP->continueNode = t;
676 emitStateSP->continueOp = REOP_JUMP;
677 emitStateSP->jumpToJumpFlag = FALSE;
679 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
682 assert(op < REOP_LIMIT);
687 * Coalesce FLATs if possible and if it would not increase bytecode
688 * beyond preallocated limit. The latter happens only when bytecode
689 * size for coalesced string with offset p and length 2 exceeds 6
690 * bytes preallocated for 2 single char nodes, i.e. when
691 * 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or
692 * GetCompactIndexWidth(p) > 4.
693 * Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more
694 * nodes strictly decreases bytecode size, the check has to be
695 * done only for the first coalescing.
698 GetCompactIndexWidth((WCHAR*)t->kid - state->cpbegin) <= 4)
701 t->next->op == REOP_FLAT &&
702 (WCHAR*)t->kid + t->u.flat.length ==
704 t->u.flat.length += t->next->u.flat.length;
705 t->next = t->next->next;
708 if (t->kid && t->u.flat.length > 1) {
709 pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLATi : REOP_FLAT;
710 pc = WriteCompactIndex(pc, (WCHAR*)t->kid - state->cpbegin);
711 pc = WriteCompactIndex(pc, t->u.flat.length);
712 } else if (t->u.flat.chr < 256) {
713 pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLAT1i : REOP_FLAT1;
714 *pc++ = (jsbytecode) t->u.flat.chr;
716 pc[-1] = (state->flags & JSREG_FOLD)
719 SET_ARG(pc, t->u.flat.chr);
726 pc = WriteCompactIndex(pc, t->u.parenIndex);
727 emitStateSP->continueNode = t;
728 emitStateSP->continueOp = REOP_RPAREN;
730 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
736 pc = WriteCompactIndex(pc, t->u.parenIndex);
740 pc = WriteCompactIndex(pc, t->u.parenIndex);
745 emitStateSP->nextTermFixup = pc;
747 emitStateSP->continueNode = t;
748 emitStateSP->continueOp = REOP_ASSERTTEST;
750 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
755 case REOP_ASSERTTEST:
756 case REOP_ASSERTNOTTEST:
757 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
761 case REOP_ASSERT_NOT:
763 emitStateSP->nextTermFixup = pc;
765 emitStateSP->continueNode = t;
766 emitStateSP->continueOp = REOP_ASSERTNOTTEST;
768 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
775 if (t->u.range.min == 0 && t->u.range.max == (UINT)-1) {
776 pc[-1] = (t->u.range.greedy) ? REOP_STAR : REOP_MINIMALSTAR;
777 } else if (t->u.range.min == 0 && t->u.range.max == 1) {
778 pc[-1] = (t->u.range.greedy) ? REOP_OPT : REOP_MINIMALOPT;
779 } else if (t->u.range.min == 1 && t->u.range.max == (UINT) -1) {
780 pc[-1] = (t->u.range.greedy) ? REOP_PLUS : REOP_MINIMALPLUS;
782 if (!t->u.range.greedy)
783 pc[-1] = REOP_MINIMALQUANT;
784 pc = WriteCompactIndex(pc, t->u.range.min);
786 * Write max + 1 to avoid using size_t(max) + 1 bytes
787 * for (UINT)-1 sentinel.
789 pc = WriteCompactIndex(pc, t->u.range.max + 1);
791 emitStateSP->nextTermFixup = pc;
793 emitStateSP->continueNode = t;
794 emitStateSP->continueOp = REOP_ENDCHILD;
796 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
802 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
807 if (!t->u.ucclass.sense)
808 pc[-1] = REOP_NCLASS;
809 pc = WriteCompactIndex(pc, t->u.ucclass.index);
810 charSet = &re->classList[t->u.ucclass.index];
811 charSet->converted = FALSE;
812 charSet->length = t->u.ucclass.bmsize;
813 charSet->u.src.startIndex = t->u.ucclass.startIndex;
814 charSet->u.src.length = t->u.ucclass.kidlen;
815 charSet->sense = t->u.ucclass.sense;
826 if (emitStateSP == emitStateStack)
829 t = emitStateSP->continueNode;
830 op = (REOp) emitStateSP->continueOp;
835 heap_free(emitStateStack);
839 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
845 * Process the op against the two top operands, reducing them to a single
846 * operand in the penultimate slot. Update progLength and treeDepth.
849 ProcessOp(CompilerState *state, REOpData *opData, RENode **operandStack,
854 switch (opData->op) {
856 result = NewRENode(state, REOP_ALT);
859 result->kid = operandStack[operandSP - 2];
860 result->u.kid2 = operandStack[operandSP - 1];
861 operandStack[operandSP - 2] = result;
863 if (state->treeDepth == TREE_DEPTH_MAX) {
864 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
870 * Look at both alternates to see if there's a FLAT or a CLASS at
871 * the start of each. If so, use a prerequisite match.
873 if (((RENode *) result->kid)->op == REOP_FLAT &&
874 ((RENode *) result->u.kid2)->op == REOP_FLAT &&
875 (state->flags & JSREG_FOLD) == 0) {
876 result->op = REOP_ALTPREREQ;
877 result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
878 result->u.altprereq.ch2 = ((RENode *) result->u.kid2)->u.flat.chr;
879 /* ALTPREREQ, <end>, uch1, uch2, <next>, ...,
880 JUMP, <end> ... ENDALT */
881 state->progLength += 13;
884 if (((RENode *) result->kid)->op == REOP_CLASS &&
885 ((RENode *) result->kid)->u.ucclass.index < 256 &&
886 ((RENode *) result->u.kid2)->op == REOP_FLAT &&
887 (state->flags & JSREG_FOLD) == 0) {
888 result->op = REOP_ALTPREREQ2;
889 result->u.altprereq.ch1 = ((RENode *) result->u.kid2)->u.flat.chr;
890 result->u.altprereq.ch2 = ((RENode *) result->kid)->u.ucclass.index;
891 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
892 JUMP, <end> ... ENDALT */
893 state->progLength += 13;
896 if (((RENode *) result->kid)->op == REOP_FLAT &&
897 ((RENode *) result->u.kid2)->op == REOP_CLASS &&
898 ((RENode *) result->u.kid2)->u.ucclass.index < 256 &&
899 (state->flags & JSREG_FOLD) == 0) {
900 result->op = REOP_ALTPREREQ2;
901 result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
902 result->u.altprereq.ch2 =
903 ((RENode *) result->u.kid2)->u.ucclass.index;
904 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
905 JUMP, <end> ... ENDALT */
906 state->progLength += 13;
909 /* ALT, <next>, ..., JUMP, <end> ... ENDALT */
910 state->progLength += 7;
915 result = operandStack[operandSP - 2];
917 result = result->next;
918 result->next = operandStack[operandSP - 1];
922 case REOP_ASSERT_NOT:
925 /* These should have been processed by a close paren. */
926 ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_MISSING_PAREN,
936 * Hack two bits in CompilerState.flags, for use within FindParenCount to flag
937 * its being on the stack, and to propagate errors to its callers.
939 #define JSREG_FIND_PAREN_COUNT 0x8000
940 #define JSREG_FIND_PAREN_ERROR 0x4000
943 * Magic return value from FindParenCount and GetDecimalValue, to indicate
944 * overflow beyond GetDecimalValue's max parameter, or a computed maximum if
945 * its findMax parameter is non-null.
947 #define OVERFLOW_VALUE ((UINT)-1)
950 FindParenCount(CompilerState *state)
955 if (state->flags & JSREG_FIND_PAREN_COUNT)
956 return OVERFLOW_VALUE;
959 * Copy state into temp, flag it so we never report an invalid backref,
960 * and reset its members to parse the entire regexp. This is obviously
961 * suboptimal, but GetDecimalValue calls us only if a backref appears to
962 * refer to a forward parenthetical, which is rare.
965 temp.flags |= JSREG_FIND_PAREN_COUNT;
966 temp.cp = temp.cpbegin;
971 temp.classBitmapsMem = 0;
972 for (i = 0; i < CLASS_CACHE_SIZE; i++)
973 temp.classCache[i].start = NULL;
975 if (!ParseRegExp(&temp)) {
976 state->flags |= JSREG_FIND_PAREN_ERROR;
977 return OVERFLOW_VALUE;
979 return temp.parenCount;
983 * Extract and return a decimal value at state->cp. The initial character c
984 * has already been read. Return OVERFLOW_VALUE if the result exceeds max.
985 * Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in
986 * state->flags to discover whether an error occurred under findMax.
989 GetDecimalValue(WCHAR c, UINT max, UINT (*findMax)(CompilerState *state),
990 CompilerState *state)
992 UINT value = JS7_UNDEC(c);
993 BOOL overflow = (value > max && (!findMax || value > findMax(state)));
995 /* The following restriction allows simpler overflow checks. */
996 assert(max <= ((UINT)-1 - 9) / 10);
997 while (state->cp < state->cpend) {
1001 value = 10 * value + JS7_UNDEC(c);
1002 if (!overflow && value > max && (!findMax || value > findMax(state)))
1006 return overflow ? OVERFLOW_VALUE : value;
1010 * Calculate the total size of the bitmap required for a class expression.
1013 CalculateBitmapSize(CompilerState *state, RENode *target, const WCHAR *src,
1017 BOOL inRange = FALSE;
1018 WCHAR c, rangeStart = 0;
1019 UINT n, digit, nDigits, i;
1021 target->u.ucclass.bmsize = 0;
1022 target->u.ucclass.sense = TRUE;
1029 target->u.ucclass.sense = FALSE;
1032 while (src != end) {
1033 BOOL canStartRange = TRUE;
1060 if (src < end && RE_IS_LETTER(*src)) {
1061 localMax = (UINT) (*src++) & 0x1F;
1074 for (i = 0; (i < nDigits) && (src < end); i++) {
1076 if (!isASCIIHexDigit(c, &digit)) {
1078 * Back off to accepting the original
1085 n = (n << 4) | digit;
1090 canStartRange = FALSE;
1092 JS_ReportErrorNumber(state->context,
1093 js_GetErrorMessage, NULL,
1094 JSMSG_BAD_CLASS_RANGE);
1104 canStartRange = FALSE;
1106 JS_ReportErrorNumber(state->context,
1107 js_GetErrorMessage, NULL,
1108 JSMSG_BAD_CLASS_RANGE);
1114 * If this is the start of a range, ensure that it's less than
1128 * This is a non-ECMA extension - decimal escapes (in this
1129 * case, octal!) are supposed to be an error inside class
1130 * ranges, but supported here for backwards compatibility.
1135 if ('0' <= c && c <= '7') {
1137 n = 8 * n + JS7_UNDEC(c);
1139 if ('0' <= c && c <= '7') {
1141 i = 8 * n + JS7_UNDEC(c);
1162 /* Throw a SyntaxError here, per ECMA-262, 15.10.2.15. */
1163 if (rangeStart > localMax) {
1164 JS_ReportErrorNumber(state->context,
1165 js_GetErrorMessage, NULL,
1166 JSMSG_BAD_CLASS_RANGE);
1171 if (canStartRange && src < end - 1) {
1175 rangeStart = (WCHAR)localMax;
1179 if (state->flags & JSREG_FOLD)
1180 rangeStart = localMax; /* one run of the uc/dc loop below */
1183 if (state->flags & JSREG_FOLD) {
1184 WCHAR maxch = localMax;
1186 for (i = rangeStart; i <= localMax; i++) {
1202 target->u.ucclass.bmsize = max;
1207 ParseMinMaxQuantifier(CompilerState *state, BOOL ignoreValues)
1211 const WCHAR *errp = state->cp++;
1216 min = GetDecimalValue(c, 0xFFFF, NULL, state);
1219 if (!ignoreValues && min == OVERFLOW_VALUE)
1220 return JSMSG_MIN_TOO_BIG;
1226 max = GetDecimalValue(c, 0xFFFF, NULL, state);
1228 if (!ignoreValues && max == OVERFLOW_VALUE)
1229 return JSMSG_MAX_TOO_BIG;
1230 if (!ignoreValues && min > max)
1231 return JSMSG_OUT_OF_ORDER;
1239 state->result = NewRENode(state, REOP_QUANT);
1241 return JSMSG_OUT_OF_MEMORY;
1242 state->result->u.range.min = min;
1243 state->result->u.range.max = max;
1245 * QUANT, <min>, <max>, <next> ... <ENDCHILD>
1246 * where <max> is written as compact(max+1) to make
1247 * (UINT)-1 sentinel to occupy 1 byte, not width_of(max)+1.
1249 state->progLength += (1 + GetCompactIndexWidth(min)
1250 + GetCompactIndexWidth(max + 1)
1261 ParseQuantifier(CompilerState *state)
1264 term = state->result;
1265 if (state->cp < state->cpend) {
1266 switch (*state->cp) {
1268 state->result = NewRENode(state, REOP_QUANT);
1271 state->result->u.range.min = 1;
1272 state->result->u.range.max = (UINT)-1;
1273 /* <PLUS>, <next> ... <ENDCHILD> */
1274 state->progLength += 4;
1277 state->result = NewRENode(state, REOP_QUANT);
1280 state->result->u.range.min = 0;
1281 state->result->u.range.max = (UINT)-1;
1282 /* <STAR>, <next> ... <ENDCHILD> */
1283 state->progLength += 4;
1286 state->result = NewRENode(state, REOP_QUANT);
1289 state->result->u.range.min = 0;
1290 state->result->u.range.max = 1;
1291 /* <OPT>, <next> ... <ENDCHILD> */
1292 state->progLength += 4;
1294 case '{': /* balance '}' */
1298 err = ParseMinMaxQuantifier(state, FALSE);
1304 ReportRegExpErrorHelper(state, JSREPORT_ERROR, err, errp);
1313 if (state->treeDepth == TREE_DEPTH_MAX) {
1314 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
1320 state->result->kid = term;
1321 if (state->cp < state->cpend && *state->cp == '?') {
1323 state->result->u.range.greedy = FALSE;
1325 state->result->u.range.greedy = TRUE;
1331 * item: assertion An item is either an assertion or
1332 * quantatom a quantified atom.
1334 * assertion: '^' Assertions match beginning of string
1335 * (or line if the class static property
1336 * RegExp.multiline is true).
1337 * '$' End of string (or line if the class
1338 * static property RegExp.multiline is
1340 * '\b' Word boundary (between \w and \W).
1341 * '\B' Word non-boundary.
1343 * quantatom: atom An unquantified atom.
1344 * quantatom '{' n ',' m '}'
1345 * Atom must occur between n and m times.
1346 * quantatom '{' n ',' '}' Atom must occur at least n times.
1347 * quantatom '{' n '}' Atom must occur exactly n times.
1348 * quantatom '*' Zero or more times (same as {0,}).
1349 * quantatom '+' One or more times (same as {1,}).
1350 * quantatom '?' Zero or one time (same as {0,1}).
1352 * any of which can be optionally followed by '?' for ungreedy
1354 * atom: '(' regexp ')' A parenthesized regexp (what matched
1355 * can be addressed using a backreference,
1357 * '.' Matches any char except '\n'.
1358 * '[' classlist ']' A character class.
1359 * '[' '^' classlist ']' A negated character class.
1361 * '\n' Newline (Line Feed).
1362 * '\r' Carriage Return.
1363 * '\t' Horizontal Tab.
1364 * '\v' Vertical Tab.
1365 * '\d' A digit (same as [0-9]).
1367 * '\w' A word character, [0-9a-z_A-Z].
1368 * '\W' A non-word character.
1369 * '\s' A whitespace character, [ \b\f\n\r\t\v].
1370 * '\S' A non-whitespace character.
1371 * '\' n A backreference to the nth (n decimal
1372 * and positive) parenthesized expression.
1373 * '\' octal An octal escape sequence (octal must be
1374 * two or three digits long, unless it is
1375 * 0 for the null character).
1376 * '\x' hex A hex escape (hex must be two digits).
1377 * '\u' unicode A unicode escape (must be four digits).
1378 * '\c' ctrl A control character, ctrl is a letter.
1379 * '\' literalatomchar Any character except one of the above
1380 * that follow '\' in an atom.
1381 * otheratomchar Any character not first among the other
1382 * atom right-hand sides.
1385 ParseTerm(CompilerState *state)
1387 WCHAR c = *state->cp++;
1389 UINT num, tmp, n, i;
1390 const WCHAR *termStart;
1393 /* assertions and atoms */
1395 state->result = NewRENode(state, REOP_BOL);
1398 state->progLength++;
1401 state->result = NewRENode(state, REOP_EOL);
1404 state->progLength++;
1407 if (state->cp >= state->cpend) {
1408 /* a trailing '\' is an error */
1409 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_TRAILING_SLASH);
1414 /* assertion escapes */
1416 state->result = NewRENode(state, REOP_WBDRY);
1419 state->progLength++;
1422 state->result = NewRENode(state, REOP_WNONBDRY);
1425 state->progLength++;
1427 /* Decimal escape */
1429 /* Give a strict warning. See also the note below. */
1430 WARN("non-octal digit in an escape sequence that doesn't match a back-reference\n");
1433 while (state->cp < state->cpend) {
1435 if (c < '0' || '7' < c)
1438 tmp = 8 * num + (UINT)JS7_UNDEC(c);
1445 state->result = NewRENode(state, REOP_FLAT);
1448 state->result->u.flat.chr = c;
1449 state->result->u.flat.length = 1;
1450 state->progLength += 3;
1461 termStart = state->cp - 1;
1462 num = GetDecimalValue(c, state->parenCount, FindParenCount, state);
1463 if (state->flags & JSREG_FIND_PAREN_ERROR)
1465 if (num == OVERFLOW_VALUE) {
1466 /* Give a strict mode warning. */
1467 WARN("back-reference exceeds number of capturing parentheses\n");
1470 * Note: ECMA 262, 15.10.2.9 says that we should throw a syntax
1471 * error here. However, for compatibility with IE, we treat the
1472 * whole backref as flat if the first character in it is not a
1473 * valid octal character, and as an octal escape otherwise.
1475 state->cp = termStart;
1477 /* Treat this as flat. termStart - 1 is the \. */
1482 /* Treat this as an octal escape. */
1485 assert(1 <= num && num <= 0x10000);
1486 state->result = NewRENode(state, REOP_BACKREF);
1489 state->result->u.parenIndex = num - 1;
1491 += 1 + GetCompactIndexWidth(state->result->u.parenIndex);
1493 /* Control escape */
1509 /* Control letter */
1511 if (state->cp < state->cpend && RE_IS_LETTER(*state->cp)) {
1512 c = (WCHAR) (*state->cp++ & 0x1F);
1514 /* back off to accepting the original '\' as a literal */
1519 /* HexEscapeSequence */
1523 /* UnicodeEscapeSequence */
1528 for (i = 0; i < nDigits && state->cp < state->cpend; i++) {
1531 if (!isASCIIHexDigit(c, &digit)) {
1533 * Back off to accepting the original 'u' or 'x' as a
1540 n = (n << 4) | digit;
1544 /* Character class escapes */
1546 state->result = NewRENode(state, REOP_DIGIT);
1550 state->progLength++;
1553 state->result = NewRENode(state, REOP_NONDIGIT);
1556 state->result = NewRENode(state, REOP_SPACE);
1559 state->result = NewRENode(state, REOP_NONSPACE);
1562 state->result = NewRENode(state, REOP_ALNUM);
1565 state->result = NewRENode(state, REOP_NONALNUM);
1567 /* IdentityEscape */
1569 state->result = NewRENode(state, REOP_FLAT);
1572 state->result->u.flat.chr = c;
1573 state->result->u.flat.length = 1;
1574 state->result->kid = (void *) (state->cp - 1);
1575 state->progLength += 3;
1580 state->result = NewRENode(state, REOP_CLASS);
1583 termStart = state->cp;
1584 state->result->u.ucclass.startIndex = termStart - state->cpbegin;
1586 if (state->cp == state->cpend) {
1587 ReportRegExpErrorHelper(state, JSREPORT_ERROR,
1588 JSMSG_UNTERM_CLASS, termStart);
1592 if (*state->cp == '\\') {
1594 if (state->cp != state->cpend)
1598 if (*state->cp == ']') {
1599 state->result->u.ucclass.kidlen = state->cp - termStart;
1604 for (i = 0; i < CLASS_CACHE_SIZE; i++) {
1605 if (!state->classCache[i].start) {
1606 state->classCache[i].start = termStart;
1607 state->classCache[i].length = state->result->u.ucclass.kidlen;
1608 state->classCache[i].index = state->classCount;
1611 if (state->classCache[i].length ==
1612 state->result->u.ucclass.kidlen) {
1613 for (n = 0; ; n++) {
1614 if (n == state->classCache[i].length) {
1615 state->result->u.ucclass.index
1616 = state->classCache[i].index;
1619 if (state->classCache[i].start[n] != termStart[n])
1624 state->result->u.ucclass.index = state->classCount++;
1628 * Call CalculateBitmapSize now as we want any errors it finds
1629 * to be reported during the parse phase, not at execution.
1631 if (!CalculateBitmapSize(state, state->result, termStart, state->cp++))
1634 * Update classBitmapsMem with number of bytes to hold bmsize bits,
1635 * which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8
1636 * or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize.
1638 n = (state->result->u.ucclass.bmsize >> 3) + 1;
1639 if (n > CLASS_BITMAPS_MEM_LIMIT - state->classBitmapsMem) {
1640 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
1643 state->classBitmapsMem += n;
1644 /* CLASS, <index> */
1646 += 1 + GetCompactIndexWidth(state->result->u.ucclass.index);
1650 state->result = NewRENode(state, REOP_DOT);
1655 const WCHAR *errp = state->cp--;
1658 err = ParseMinMaxQuantifier(state, TRUE);
1669 ReportRegExpErrorHelper(state, JSREPORT_ERROR,
1670 JSMSG_BAD_QUANTIFIER, state->cp - 1);
1674 state->result = NewRENode(state, REOP_FLAT);
1677 state->result->u.flat.chr = c;
1678 state->result->u.flat.length = 1;
1679 state->result->kid = (void *) (state->cp - 1);
1680 state->progLength += 3;
1683 return ParseQuantifier(state);
1687 * Top-down regular expression grammar, based closely on Perl4.
1689 * regexp: altern A regular expression is one or more
1690 * altern '|' regexp alternatives separated by vertical bar.
1692 #define INITIAL_STACK_SIZE 128
1695 ParseRegExp(CompilerState *state)
1699 REOpData *operatorStack;
1700 RENode **operandStack;
1703 BOOL result = FALSE;
1705 INT operatorSP = 0, operatorStackSize = INITIAL_STACK_SIZE;
1706 INT operandSP = 0, operandStackSize = INITIAL_STACK_SIZE;
1708 /* Watch out for empty regexp */
1709 if (state->cp == state->cpend) {
1710 state->result = NewRENode(state, REOP_EMPTY);
1711 return (state->result != NULL);
1714 operatorStack = heap_alloc(sizeof(REOpData) * operatorStackSize);
1718 operandStack = heap_alloc(sizeof(RENode *) * operandStackSize);
1723 parenIndex = state->parenCount;
1724 if (state->cp == state->cpend) {
1726 * If we are at the end of the regexp and we're short one or more
1727 * operands, the regexp must have the form /x|/ or some such, with
1728 * left parentheses making us short more than one operand.
1730 if (operatorSP >= operandSP) {
1731 operand = NewRENode(state, REOP_EMPTY);
1737 switch (*state->cp) {
1740 if (state->cp + 1 < state->cpend &&
1741 *state->cp == '?' &&
1742 (state->cp[1] == '=' ||
1743 state->cp[1] == '!' ||
1744 state->cp[1] == ':')) {
1745 switch (state->cp[1]) {
1748 /* ASSERT, <next>, ... ASSERTTEST */
1749 state->progLength += 4;
1752 op = REOP_ASSERT_NOT;
1753 /* ASSERTNOT, <next>, ... ASSERTNOTTEST */
1754 state->progLength += 4;
1757 op = REOP_LPARENNON;
1763 /* LPAREN, <index>, ... RPAREN, <index> */
1765 += 2 * (1 + GetCompactIndexWidth(parenIndex));
1766 state->parenCount++;
1767 if (state->parenCount == 65535) {
1768 ReportRegExpError(state, JSREPORT_ERROR,
1769 JSMSG_TOO_MANY_PARENS);
1777 * If there's no stacked open parenthesis, throw syntax error.
1779 for (i = operatorSP - 1; ; i--) {
1781 ReportRegExpError(state, JSREPORT_ERROR,
1782 JSMSG_UNMATCHED_RIGHT_PAREN);
1785 if (operatorStack[i].op == REOP_ASSERT ||
1786 operatorStack[i].op == REOP_ASSERT_NOT ||
1787 operatorStack[i].op == REOP_LPARENNON ||
1788 operatorStack[i].op == REOP_LPAREN) {
1795 /* Expected an operand before these, so make an empty one */
1796 operand = NewRENode(state, REOP_EMPTY);
1802 if (!ParseTerm(state))
1804 operand = state->result;
1806 if (operandSP == operandStackSize) {
1808 operandStackSize += operandStackSize;
1809 tmp = heap_realloc(operandStack, sizeof(RENode *) * operandStackSize);
1814 operandStack[operandSP++] = operand;
1819 /* At the end; process remaining operators. */
1821 if (state->cp == state->cpend) {
1822 while (operatorSP) {
1824 if (!ProcessOp(state, &operatorStack[operatorSP],
1825 operandStack, operandSP))
1829 assert(operandSP == 1);
1830 state->result = operandStack[0];
1835 switch (*state->cp) {
1837 /* Process any stacked 'concat' operators */
1839 while (operatorSP &&
1840 operatorStack[operatorSP - 1].op == REOP_CONCAT) {
1842 if (!ProcessOp(state, &operatorStack[operatorSP],
1843 operandStack, operandSP)) {
1853 * If there's no stacked open parenthesis, throw syntax error.
1855 for (i = operatorSP - 1; ; i--) {
1857 ReportRegExpError(state, JSREPORT_ERROR,
1858 JSMSG_UNMATCHED_RIGHT_PAREN);
1861 if (operatorStack[i].op == REOP_ASSERT ||
1862 operatorStack[i].op == REOP_ASSERT_NOT ||
1863 operatorStack[i].op == REOP_LPARENNON ||
1864 operatorStack[i].op == REOP_LPAREN) {
1870 /* Process everything on the stack until the open parenthesis. */
1874 switch (operatorStack[operatorSP].op) {
1876 case REOP_ASSERT_NOT:
1878 operand = NewRENode(state, operatorStack[operatorSP].op);
1881 operand->u.parenIndex =
1882 operatorStack[operatorSP].parenIndex;
1884 operand->kid = operandStack[operandSP - 1];
1885 operandStack[operandSP - 1] = operand;
1886 if (state->treeDepth == TREE_DEPTH_MAX) {
1887 ReportRegExpError(state, JSREPORT_ERROR,
1888 JSMSG_REGEXP_TOO_COMPLEX);
1894 case REOP_LPARENNON:
1895 state->result = operandStack[operandSP - 1];
1896 if (!ParseQuantifier(state))
1898 operandStack[operandSP - 1] = state->result;
1899 goto restartOperator;
1901 if (!ProcessOp(state, &operatorStack[operatorSP],
1902 operandStack, operandSP))
1912 const WCHAR *errp = state->cp;
1914 if (ParseMinMaxQuantifier(state, TRUE) < 0) {
1916 * This didn't even scan correctly as a quantifier, so we should
1930 ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_BAD_QUANTIFIER,
1936 /* Anything else is the start of the next term. */
1939 if (operatorSP == operatorStackSize) {
1941 operatorStackSize += operatorStackSize;
1942 tmp = heap_realloc(operatorStack, sizeof(REOpData) * operatorStackSize);
1945 operatorStack = tmp;
1947 operatorStack[operatorSP].op = op;
1948 operatorStack[operatorSP].errPos = state->cp;
1949 operatorStack[operatorSP++].parenIndex = parenIndex;
1954 heap_free(operatorStack);
1955 heap_free(operandStack);
1960 * Save the current state of the match - the position in the input
1961 * text as well as the position in the bytecode. The state of any
1962 * parent expressions is also saved (preceding state).
1963 * Contents of parenCount parentheses from parenIndex are also saved.
1965 static REBackTrackData *
1966 PushBackTrackState(REGlobalData *gData, REOp op,
1967 jsbytecode *target, REMatchState *x, const WCHAR *cp,
1968 size_t parenIndex, size_t parenCount)
1971 REBackTrackData *result =
1972 (REBackTrackData *) ((char *)gData->backTrackSP + gData->cursz);
1974 size_t sz = sizeof(REBackTrackData) +
1975 gData->stateStackTop * sizeof(REProgState) +
1976 parenCount * sizeof(RECapture);
1978 ptrdiff_t btsize = gData->backTrackStackSize;
1979 ptrdiff_t btincr = ((char *)result + sz) -
1980 ((char *)gData->backTrackStack + btsize);
1982 TRACE("\tBT_Push: %lu,%lu\n", (unsigned long) parenIndex, (unsigned long) parenCount);
1984 JS_COUNT_OPERATION(gData->cx, JSOW_JUMP * (1 + parenCount));
1986 ptrdiff_t offset = (char *)result - (char *)gData->backTrackStack;
1988 JS_COUNT_OPERATION(gData->cx, JSOW_ALLOCATION);
1989 btincr = ((btincr+btsize-1)/btsize)*btsize;
1990 gData->backTrackStack = jsheap_grow(gData->pool, gData->backTrackStack, btsize, btincr);
1991 if (!gData->backTrackStack) {
1992 js_ReportOutOfScriptQuota(gData->cx);
1996 gData->backTrackStackSize = btsize + btincr;
1997 result = (REBackTrackData *) ((char *)gData->backTrackStack + offset);
1999 gData->backTrackSP = result;
2000 result->sz = gData->cursz;
2003 result->backtrack_op = op;
2004 result->backtrack_pc = target;
2006 result->parenCount = parenCount;
2007 result->parenIndex = parenIndex;
2009 result->saveStateStackTop = gData->stateStackTop;
2010 assert(gData->stateStackTop);
2011 memcpy(result + 1, gData->stateStack,
2012 sizeof(REProgState) * result->saveStateStackTop);
2014 if (parenCount != 0) {
2015 memcpy((char *)(result + 1) +
2016 sizeof(REProgState) * result->saveStateStackTop,
2017 &x->parens[parenIndex],
2018 sizeof(RECapture) * parenCount);
2019 for (i = 0; i != parenCount; i++)
2020 x->parens[parenIndex + i].index = -1;
2026 static inline REMatchState *
2027 FlatNIMatcher(REGlobalData *gData, REMatchState *x, WCHAR *matchChars,
2031 assert(gData->cpend >= x->cp);
2032 if (length > (size_t)(gData->cpend - x->cp))
2034 for (i = 0; i != length; i++) {
2035 if (toupperW(matchChars[i]) != toupperW(x->cp[i]))
2043 * 1. Evaluate DecimalEscape to obtain an EscapeValue E.
2044 * 2. If E is not a character then go to step 6.
2045 * 3. Let ch be E's character.
2046 * 4. Let A be a one-element RECharSet containing the character ch.
2047 * 5. Call CharacterSetMatcher(A, false) and return its Matcher result.
2048 * 6. E must be an integer. Let n be that integer.
2049 * 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
2050 * 8. Return an internal Matcher closure that takes two arguments, a State x
2051 * and a Continuation c, and performs the following:
2052 * 1. Let cap be x's captures internal array.
2053 * 2. Let s be cap[n].
2054 * 3. If s is undefined, then call c(x) and return its result.
2055 * 4. Let e be x's endIndex.
2056 * 5. Let len be s's length.
2057 * 6. Let f be e+len.
2058 * 7. If f>InputLength, return failure.
2059 * 8. If there exists an integer i between 0 (inclusive) and len (exclusive)
2060 * such that Canonicalize(s[i]) is not the same character as
2061 * Canonicalize(Input [e+i]), then return failure.
2062 * 9. Let y be the State (f, cap).
2063 * 10. Call c(y) and return its result.
2065 static REMatchState *
2066 BackrefMatcher(REGlobalData *gData, REMatchState *x, size_t parenIndex)
2069 const WCHAR *parenContent;
2070 RECapture *cap = &x->parens[parenIndex];
2072 if (cap->index == -1)
2076 if (x->cp + len > gData->cpend)
2079 parenContent = &gData->cpbegin[cap->index];
2080 if (gData->regexp->flags & JSREG_FOLD) {
2081 for (i = 0; i < len; i++) {
2082 if (toupperW(parenContent[i]) != toupperW(x->cp[i]))
2086 for (i = 0; i < len; i++) {
2087 if (parenContent[i] != x->cp[i])
2095 /* Add a single character to the RECharSet */
2097 AddCharacterToCharSet(RECharSet *cs, WCHAR c)
2099 UINT byteIndex = (UINT)(c >> 3);
2100 assert(c <= cs->length);
2101 cs->u.bits[byteIndex] |= 1 << (c & 0x7);
2105 /* Add a character range, c1 to c2 (inclusive) to the RECharSet */
2107 AddCharacterRangeToCharSet(RECharSet *cs, UINT c1, UINT c2)
2111 UINT byteIndex1 = c1 >> 3;
2112 UINT byteIndex2 = c2 >> 3;
2114 assert(c2 <= cs->length && c1 <= c2);
2119 if (byteIndex1 == byteIndex2) {
2120 cs->u.bits[byteIndex1] |= ((BYTE)0xFF >> (7 - (c2 - c1))) << c1;
2122 cs->u.bits[byteIndex1] |= 0xFF << c1;
2123 for (i = byteIndex1 + 1; i < byteIndex2; i++)
2124 cs->u.bits[i] = 0xFF;
2125 cs->u.bits[byteIndex2] |= (BYTE)0xFF >> (7 - c2);
2129 /* Compile the source of the class into a RECharSet */
2131 ProcessCharSet(REGlobalData *gData, RECharSet *charSet)
2133 const WCHAR *src, *end;
2134 BOOL inRange = FALSE;
2135 WCHAR rangeStart = 0;
2140 assert(!charSet->converted);
2142 * Assert that startIndex and length points to chars inside [] inside
2145 assert(1 <= charSet->u.src.startIndex);
2146 assert(charSet->u.src.startIndex
2147 < SysStringLen(gData->regexp->source));
2148 assert(charSet->u.src.length <= SysStringLen(gData->regexp->source)
2149 - 1 - charSet->u.src.startIndex);
2151 charSet->converted = TRUE;
2152 src = gData->regexp->source + charSet->u.src.startIndex;
2154 end = src + charSet->u.src.length;
2156 assert(src[-1] == '[' && end[0] == ']');
2158 byteLength = (charSet->length >> 3) + 1;
2159 charSet->u.bits = heap_alloc(byteLength);
2160 if (!charSet->u.bits) {
2161 JS_ReportOutOfMemory(gData->cx);
2165 memset(charSet->u.bits, 0, byteLength);
2171 assert(charSet->sense == FALSE);
2174 assert(charSet->sense == TRUE);
2177 while (src != end) {
2202 if (src < end && JS_ISWORD(*src)) {
2203 thisCh = (WCHAR)(*src++ & 0x1F);
2216 for (i = 0; (i < nDigits) && (src < end); i++) {
2219 if (!isASCIIHexDigit(c, &digit)) {
2221 * Back off to accepting the original '\'
2228 n = (n << 4) | digit;
2241 * This is a non-ECMA extension - decimal escapes (in this
2242 * case, octal!) are supposed to be an error inside class
2243 * ranges, but supported here for backwards compatibility.
2247 if ('0' <= c && c <= '7') {
2249 n = 8 * n + JS7_UNDEC(c);
2251 if ('0' <= c && c <= '7') {
2253 i = 8 * n + JS7_UNDEC(c);
2264 AddCharacterRangeToCharSet(charSet, '0', '9');
2265 continue; /* don't need range processing */
2267 AddCharacterRangeToCharSet(charSet, 0, '0' - 1);
2268 AddCharacterRangeToCharSet(charSet,
2270 (WCHAR)charSet->length);
2273 for (i = (INT)charSet->length; i >= 0; i--)
2275 AddCharacterToCharSet(charSet, (WCHAR)i);
2278 for (i = (INT)charSet->length; i >= 0; i--)
2280 AddCharacterToCharSet(charSet, (WCHAR)i);
2283 for (i = (INT)charSet->length; i >= 0; i--)
2285 AddCharacterToCharSet(charSet, (WCHAR)i);
2288 for (i = (INT)charSet->length; i >= 0; i--)
2290 AddCharacterToCharSet(charSet, (WCHAR)i);
2305 if (gData->regexp->flags & JSREG_FOLD) {
2308 assert(rangeStart <= thisCh);
2309 for (i = rangeStart; i <= thisCh; i++) {
2312 AddCharacterToCharSet(charSet, i);
2316 AddCharacterToCharSet(charSet, uch);
2318 AddCharacterToCharSet(charSet, dch);
2321 AddCharacterRangeToCharSet(charSet, rangeStart, thisCh);
2325 if (gData->regexp->flags & JSREG_FOLD) {
2326 AddCharacterToCharSet(charSet, toupperW(thisCh));
2327 AddCharacterToCharSet(charSet, tolowerW(thisCh));
2329 AddCharacterToCharSet(charSet, thisCh);
2331 if (src < end - 1) {
2335 rangeStart = thisCh;
2344 ReallocStateStack(REGlobalData *gData)
2346 size_t limit = gData->stateStackLimit;
2347 size_t sz = sizeof(REProgState) * limit;
2349 gData->stateStack = jsheap_grow(gData->pool, gData->stateStack, sz, sz);
2350 if (!gData->stateStack) {
2351 js_ReportOutOfScriptQuota(gData->cx);
2355 gData->stateStackLimit = limit + limit;
2359 #define PUSH_STATE_STACK(data) \
2361 ++(data)->stateStackTop; \
2362 if ((data)->stateStackTop == (data)->stateStackLimit && \
2363 !ReallocStateStack((data))) { \
2369 * Apply the current op against the given input to see if it's going to match
2370 * or fail. Return false if we don't get a match, true if we do. If updatecp is
2371 * true, then update the current state's cp. Always update startpc to the next
2374 static inline REMatchState *
2375 SimpleMatch(REGlobalData *gData, REMatchState *x, REOp op,
2376 jsbytecode **startpc, BOOL updatecp)
2378 REMatchState *result = NULL;
2381 size_t offset, length, index;
2382 jsbytecode *pc = *startpc; /* pc has already been incremented past op */
2384 const WCHAR *startcp = x->cp;
2388 const char *opname = reop_names[op];
2389 TRACE("\n%06d: %*s%s\n", pc - gData->regexp->program,
2390 (int)gData->stateStackTop * 2, "", opname);
2397 if (x->cp != gData->cpbegin) {
2398 if (/*!gData->cx->regExpStatics.multiline && FIXME !!! */
2399 !(gData->regexp->flags & JSREG_MULTILINE)) {
2402 if (!RE_IS_LINE_TERM(x->cp[-1]))
2408 if (x->cp != gData->cpend) {
2409 if (/*!gData->cx->regExpStatics.multiline &&*/
2410 !(gData->regexp->flags & JSREG_MULTILINE)) {
2413 if (!RE_IS_LINE_TERM(*x->cp))
2419 if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
2420 !(x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
2425 if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
2426 (x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
2431 if (x->cp != gData->cpend && !RE_IS_LINE_TERM(*x->cp)) {
2437 if (x->cp != gData->cpend && JS7_ISDEC(*x->cp)) {
2443 if (x->cp != gData->cpend && !JS7_ISDEC(*x->cp)) {
2449 if (x->cp != gData->cpend && JS_ISWORD(*x->cp)) {
2455 if (x->cp != gData->cpend && !JS_ISWORD(*x->cp)) {
2461 if (x->cp != gData->cpend && isspaceW(*x->cp)) {
2467 if (x->cp != gData->cpend && !isspaceW(*x->cp)) {
2473 pc = ReadCompactIndex(pc, &parenIndex);
2474 assert(parenIndex < gData->regexp->parenCount);
2475 result = BackrefMatcher(gData, x, parenIndex);
2478 pc = ReadCompactIndex(pc, &offset);
2479 assert(offset < SysStringLen(gData->regexp->source));
2480 pc = ReadCompactIndex(pc, &length);
2481 assert(1 <= length);
2482 assert(length <= SysStringLen(gData->regexp->source) - offset);
2483 if (length <= (size_t)(gData->cpend - x->cp)) {
2484 source = gData->regexp->source + offset;
2485 TRACE("%s\n", debugstr_wn(source, length));
2486 for (index = 0; index != length; index++) {
2487 if (source[index] != x->cp[index])
2496 TRACE(" '%c' == '%c'\n", (char)matchCh, (char)*x->cp);
2497 if (x->cp != gData->cpend && *x->cp == matchCh) {
2503 pc = ReadCompactIndex(pc, &offset);
2504 assert(offset < SysStringLen(gData->regexp->source));
2505 pc = ReadCompactIndex(pc, &length);
2506 assert(1 <= length);
2507 assert(length <= SysStringLen(gData->regexp->source) - offset);
2508 source = gData->regexp->source;
2509 result = FlatNIMatcher(gData, x, source + offset, length);
2513 if (x->cp != gData->cpend && toupperW(*x->cp) == toupperW(matchCh)) {
2519 matchCh = GET_ARG(pc);
2520 TRACE(" '%c' == '%c'\n", (char)matchCh, (char)*x->cp);
2522 if (x->cp != gData->cpend && *x->cp == matchCh) {
2528 matchCh = GET_ARG(pc);
2530 if (x->cp != gData->cpend && toupperW(*x->cp) == toupperW(matchCh)) {
2536 pc = ReadCompactIndex(pc, &index);
2537 assert(index < gData->regexp->classCount);
2538 if (x->cp != gData->cpend) {
2539 charSet = &gData->regexp->classList[index];
2540 assert(charSet->converted);
2543 if (charSet->length != 0 &&
2544 ch <= charSet->length &&
2545 (charSet->u.bits[index] & (1 << (ch & 0x7)))) {
2552 pc = ReadCompactIndex(pc, &index);
2553 assert(index < gData->regexp->classCount);
2554 if (x->cp != gData->cpend) {
2555 charSet = &gData->regexp->classList[index];
2556 assert(charSet->converted);
2559 if (charSet->length == 0 ||
2560 ch > charSet->length ||
2561 !(charSet->u.bits[index] & (1 << (ch & 0x7)))) {
2582 static inline REMatchState *
2583 ExecuteREBytecode(REGlobalData *gData, REMatchState *x)
2585 REMatchState *result = NULL;
2586 REBackTrackData *backTrackData;
2587 jsbytecode *nextpc, *testpc;
2590 REProgState *curState;
2591 const WCHAR *startcp;
2592 size_t parenIndex, k;
2593 size_t parenSoFar = 0;
2595 WCHAR matchCh1, matchCh2;
2599 jsbytecode *pc = gData->regexp->program;
2600 REOp op = (REOp) *pc++;
2603 * If the first node is a simple match, step the index into the string
2604 * until that match is made, or fail if it can't be found at all.
2606 if (REOP_IS_SIMPLE(op) && !(gData->regexp->flags & JSREG_STICKY)) {
2608 while (x->cp <= gData->cpend) {
2609 nextpc = pc; /* reset back to start each time */
2610 result = SimpleMatch(gData, x, op, &nextpc, TRUE);
2614 pc = nextpc; /* accept skip to next opcode */
2616 assert(op < REOP_LIMIT);
2627 const char *opname = reop_names[op];
2628 TRACE("\n%06d: %*s%s\n", pc - gData->regexp->program,
2629 (int)gData->stateStackTop * 2, "", opname);
2631 if (REOP_IS_SIMPLE(op)) {
2632 result = SimpleMatch(gData, x, op, &pc, TRUE);
2634 curState = &gData->stateStack[gData->stateStackTop];
2638 case REOP_ALTPREREQ2:
2639 nextpc = pc + GET_OFFSET(pc); /* start of next op */
2641 matchCh2 = GET_ARG(pc);
2646 if (x->cp != gData->cpend) {
2647 if (*x->cp == matchCh2)
2650 charSet = &gData->regexp->classList[k];
2651 if (!charSet->converted && !ProcessCharSet(gData, charSet))
2655 if ((charSet->length == 0 ||
2656 matchCh1 > charSet->length ||
2657 !(charSet->u.bits[k] & (1 << (matchCh1 & 0x7)))) ^
2665 case REOP_ALTPREREQ:
2666 nextpc = pc + GET_OFFSET(pc); /* start of next op */
2668 matchCh1 = GET_ARG(pc);
2670 matchCh2 = GET_ARG(pc);
2672 if (x->cp == gData->cpend ||
2673 (*x->cp != matchCh1 && *x->cp != matchCh2)) {
2677 /* else false thru... */
2681 nextpc = pc + GET_OFFSET(pc); /* start of next alternate */
2682 pc += ARG_LEN; /* start of this alternate */
2683 curState->parenSoFar = parenSoFar;
2684 PUSH_STATE_STACK(gData);
2687 if (REOP_IS_SIMPLE(op)) {
2688 if (!SimpleMatch(gData, x, op, &pc, TRUE)) {
2689 op = (REOp) *nextpc++;
2696 nextop = (REOp) *nextpc++;
2697 if (!PushBackTrackState(gData, nextop, nextpc, x, startcp, 0, 0))
2702 * Occurs at (successful) end of REOP_ALT,
2706 * If we have not gotten a result here, it is because of an
2707 * empty match. Do the same thing REOP_EMPTY would do.
2712 --gData->stateStackTop;
2713 pc += GET_OFFSET(pc);
2718 * Occurs at last (successful) end of REOP_ALT,
2722 * If we have not gotten a result here, it is because of an
2723 * empty match. Do the same thing REOP_EMPTY would do.
2728 --gData->stateStackTop;
2733 pc = ReadCompactIndex(pc, &parenIndex);
2734 TRACE("[ %lu ]\n", (unsigned long) parenIndex);
2735 assert(parenIndex < gData->regexp->parenCount);
2736 if (parenIndex + 1 > parenSoFar)
2737 parenSoFar = parenIndex + 1;
2738 x->parens[parenIndex].index = x->cp - gData->cpbegin;
2739 x->parens[parenIndex].length = 0;
2747 pc = ReadCompactIndex(pc, &parenIndex);
2748 assert(parenIndex < gData->regexp->parenCount);
2749 cap = &x->parens[parenIndex];
2750 delta = x->cp - (gData->cpbegin + cap->index);
2751 cap->length = (delta < 0) ? 0 : (size_t) delta;
2759 nextpc = pc + GET_OFFSET(pc); /* start of term after ASSERT */
2760 pc += ARG_LEN; /* start of ASSERT child */
2763 if (REOP_IS_SIMPLE(op) &&
2764 !SimpleMatch(gData, x, op, &testpc, FALSE)) {
2768 curState->u.assertion.top =
2769 (char *)gData->backTrackSP - (char *)gData->backTrackStack;
2770 curState->u.assertion.sz = gData->cursz;
2771 curState->index = x->cp - gData->cpbegin;
2772 curState->parenSoFar = parenSoFar;
2773 PUSH_STATE_STACK(gData);
2774 if (!PushBackTrackState(gData, REOP_ASSERTTEST,
2775 nextpc, x, x->cp, 0, 0)) {
2780 case REOP_ASSERT_NOT:
2781 nextpc = pc + GET_OFFSET(pc);
2785 if (REOP_IS_SIMPLE(op) /* Note - fail to fail! */ &&
2786 SimpleMatch(gData, x, op, &testpc, FALSE) &&
2787 *testpc == REOP_ASSERTNOTTEST) {
2791 curState->u.assertion.top
2792 = (char *)gData->backTrackSP -
2793 (char *)gData->backTrackStack;
2794 curState->u.assertion.sz = gData->cursz;
2795 curState->index = x->cp - gData->cpbegin;
2796 curState->parenSoFar = parenSoFar;
2797 PUSH_STATE_STACK(gData);
2798 if (!PushBackTrackState(gData, REOP_ASSERTNOTTEST,
2799 nextpc, x, x->cp, 0, 0)) {
2804 case REOP_ASSERTTEST:
2805 --gData->stateStackTop;
2807 x->cp = gData->cpbegin + curState->index;
2808 gData->backTrackSP =
2809 (REBackTrackData *) ((char *)gData->backTrackStack +
2810 curState->u.assertion.top);
2811 gData->cursz = curState->u.assertion.sz;
2816 case REOP_ASSERTNOTTEST:
2817 --gData->stateStackTop;
2819 x->cp = gData->cpbegin + curState->index;
2820 gData->backTrackSP =
2821 (REBackTrackData *) ((char *)gData->backTrackStack +
2822 curState->u.assertion.top);
2823 gData->cursz = curState->u.assertion.sz;
2824 result = (!result) ? x : NULL;
2827 curState->u.quantifier.min = 0;
2828 curState->u.quantifier.max = (UINT)-1;
2831 curState->u.quantifier.min = 1;
2832 curState->u.quantifier.max = (UINT)-1;
2835 curState->u.quantifier.min = 0;
2836 curState->u.quantifier.max = 1;
2839 pc = ReadCompactIndex(pc, &k);
2840 curState->u.quantifier.min = k;
2841 pc = ReadCompactIndex(pc, &k);
2842 /* max is k - 1 to use one byte for (UINT)-1 sentinel. */
2843 curState->u.quantifier.max = k - 1;
2844 assert(curState->u.quantifier.min <= curState->u.quantifier.max);
2846 if (curState->u.quantifier.max == 0) {
2847 pc = pc + GET_OFFSET(pc);
2852 /* Step over <next> */
2853 nextpc = pc + ARG_LEN;
2854 op = (REOp) *nextpc++;
2856 if (REOP_IS_SIMPLE(op)) {
2857 if (!SimpleMatch(gData, x, op, &nextpc, TRUE)) {
2858 if (curState->u.quantifier.min == 0)
2862 pc = pc + GET_OFFSET(pc);
2865 op = (REOp) *nextpc++;
2868 curState->index = startcp - gData->cpbegin;
2869 curState->continue_op = REOP_REPEAT;
2870 curState->continue_pc = pc;
2871 curState->parenSoFar = parenSoFar;
2872 PUSH_STATE_STACK(gData);
2873 if (curState->u.quantifier.min == 0 &&
2874 !PushBackTrackState(gData, REOP_REPEAT, pc, x, startcp,
2881 case REOP_ENDCHILD: /* marks the end of a quantifier child */
2882 pc = curState[-1].continue_pc;
2883 op = (REOp) curState[-1].continue_op;
2892 --gData->stateStackTop;
2894 /* Failed, see if we have enough children. */
2895 if (curState->u.quantifier.min == 0)
2899 if (curState->u.quantifier.min == 0 &&
2900 x->cp == gData->cpbegin + curState->index) {
2901 /* matched an empty string, that'll get us nowhere */
2905 if (curState->u.quantifier.min != 0)
2906 curState->u.quantifier.min--;
2907 if (curState->u.quantifier.max != (UINT) -1)
2908 curState->u.quantifier.max--;
2909 if (curState->u.quantifier.max == 0)
2911 nextpc = pc + ARG_LEN;
2912 nextop = (REOp) *nextpc;
2914 if (REOP_IS_SIMPLE(nextop)) {
2916 if (!SimpleMatch(gData, x, nextop, &nextpc, TRUE)) {
2917 if (curState->u.quantifier.min == 0)
2924 curState->index = startcp - gData->cpbegin;
2925 PUSH_STATE_STACK(gData);
2926 if (curState->u.quantifier.min == 0 &&
2927 !PushBackTrackState(gData, REOP_REPEAT,
2929 curState->parenSoFar,
2931 curState->parenSoFar)) {
2934 } while (*nextpc == REOP_ENDCHILD);
2937 parenSoFar = curState->parenSoFar;
2942 pc += GET_OFFSET(pc);
2945 case REOP_MINIMALSTAR:
2946 curState->u.quantifier.min = 0;
2947 curState->u.quantifier.max = (UINT)-1;
2948 goto minimalquantcommon;
2949 case REOP_MINIMALPLUS:
2950 curState->u.quantifier.min = 1;
2951 curState->u.quantifier.max = (UINT)-1;
2952 goto minimalquantcommon;
2953 case REOP_MINIMALOPT:
2954 curState->u.quantifier.min = 0;
2955 curState->u.quantifier.max = 1;
2956 goto minimalquantcommon;
2957 case REOP_MINIMALQUANT:
2958 pc = ReadCompactIndex(pc, &k);
2959 curState->u.quantifier.min = k;
2960 pc = ReadCompactIndex(pc, &k);
2961 /* See REOP_QUANT comments about k - 1. */
2962 curState->u.quantifier.max = k - 1;
2963 assert(curState->u.quantifier.min
2964 <= curState->u.quantifier.max);
2966 curState->index = x->cp - gData->cpbegin;
2967 curState->parenSoFar = parenSoFar;
2968 PUSH_STATE_STACK(gData);
2969 if (curState->u.quantifier.min != 0) {
2970 curState->continue_op = REOP_MINIMALREPEAT;
2971 curState->continue_pc = pc;
2972 /* step over <next> */
2976 if (!PushBackTrackState(gData, REOP_MINIMALREPEAT,
2977 pc, x, x->cp, 0, 0)) {
2980 --gData->stateStackTop;
2981 pc = pc + GET_OFFSET(pc);
2986 case REOP_MINIMALREPEAT:
2987 --gData->stateStackTop;
2990 TRACE("{%d,%d}\n", curState->u.quantifier.min, curState->u.quantifier.max);
2991 #define PREPARE_REPEAT() \
2993 curState->index = x->cp - gData->cpbegin; \
2994 curState->continue_op = REOP_MINIMALREPEAT; \
2995 curState->continue_pc = pc; \
2997 for (k = curState->parenSoFar; k < parenSoFar; k++) \
2998 x->parens[k].index = -1; \
2999 PUSH_STATE_STACK(gData); \
3000 op = (REOp) *pc++; \
3001 assert(op < REOP_LIMIT); \
3007 * Non-greedy failure - try to consume another child.
3009 if (curState->u.quantifier.max == (UINT) -1 ||
3010 curState->u.quantifier.max > 0) {
3014 /* Don't need to adjust pc since we're going to pop. */
3017 if (curState->u.quantifier.min == 0 &&
3018 x->cp == gData->cpbegin + curState->index) {
3019 /* Matched an empty string, that'll get us nowhere. */
3023 if (curState->u.quantifier.min != 0)
3024 curState->u.quantifier.min--;
3025 if (curState->u.quantifier.max != (UINT) -1)
3026 curState->u.quantifier.max--;
3027 if (curState->u.quantifier.min != 0) {
3031 curState->index = x->cp - gData->cpbegin;
3032 curState->parenSoFar = parenSoFar;
3033 PUSH_STATE_STACK(gData);
3034 if (!PushBackTrackState(gData, REOP_MINIMALREPEAT,
3036 curState->parenSoFar,
3037 parenSoFar - curState->parenSoFar)) {
3040 --gData->stateStackTop;
3041 pc = pc + GET_OFFSET(pc);
3043 assert(op < REOP_LIMIT);
3053 * If the match failed and there's a backtrack option, take it.
3054 * Otherwise this is a complete and utter failure.
3057 if (gData->cursz == 0)
3060 /* Potentially detect explosive regex here. */
3061 gData->backTrackCount++;
3062 if (gData->backTrackLimit &&
3063 gData->backTrackCount >= gData->backTrackLimit) {
3064 JS_ReportErrorNumber(gData->cx, js_GetErrorMessage, NULL,
3065 JSMSG_REGEXP_TOO_COMPLEX);
3070 backTrackData = gData->backTrackSP;
3071 gData->cursz = backTrackData->sz;
3072 gData->backTrackSP =
3073 (REBackTrackData *) ((char *)backTrackData - backTrackData->sz);
3074 x->cp = backTrackData->cp;
3075 pc = backTrackData->backtrack_pc;
3076 op = (REOp) backTrackData->backtrack_op;
3077 assert(op < REOP_LIMIT);
3078 gData->stateStackTop = backTrackData->saveStateStackTop;
3079 assert(gData->stateStackTop);
3081 memcpy(gData->stateStack, backTrackData + 1,
3082 sizeof(REProgState) * backTrackData->saveStateStackTop);
3083 curState = &gData->stateStack[gData->stateStackTop - 1];
3085 if (backTrackData->parenCount) {
3086 memcpy(&x->parens[backTrackData->parenIndex],
3087 (char *)(backTrackData + 1) +
3088 sizeof(REProgState) * backTrackData->saveStateStackTop,
3089 sizeof(RECapture) * backTrackData->parenCount);
3090 parenSoFar = backTrackData->parenIndex + backTrackData->parenCount;
3092 for (k = curState->parenSoFar; k < parenSoFar; k++)
3093 x->parens[k].index = -1;
3094 parenSoFar = curState->parenSoFar;
3097 TRACE("\tBT_Pop: %ld,%ld\n",
3098 (unsigned long) backTrackData->parenIndex,
3099 (unsigned long) backTrackData->parenCount);
3105 * Continue with the expression.
3108 assert(op < REOP_LIMIT);
3120 static REMatchState *MatchRegExp(REGlobalData *gData, REMatchState *x)
3122 REMatchState *result;
3123 const WCHAR *cp = x->cp;
3128 * Have to include the position beyond the last character
3129 * in order to detect end-of-input/line condition.
3131 for (cp2 = cp; cp2 <= gData->cpend; cp2++) {
3132 gData->skipped = cp2 - cp;
3134 for (j = 0; j < gData->regexp->parenCount; j++)
3135 x->parens[j].index = -1;
3136 result = ExecuteREBytecode(gData, x);
3137 if (!gData->ok || result || (gData->regexp->flags & JSREG_STICKY))
3139 gData->backTrackSP = gData->backTrackStack;
3141 gData->stateStackTop = 0;
3142 cp2 = cp + gData->skipped;
3147 #define MIN_BACKTRACK_LIMIT 400000
3149 static REMatchState *InitMatch(script_ctx_t *cx, REGlobalData *gData, JSRegExp *re, size_t length)
3151 REMatchState *result;
3154 gData->backTrackStackSize = INITIAL_BACKTRACK;
3155 gData->backTrackStack = jsheap_alloc(gData->pool, INITIAL_BACKTRACK);
3156 if (!gData->backTrackStack)
3159 gData->backTrackSP = gData->backTrackStack;
3161 gData->backTrackCount = 0;
3162 gData->backTrackLimit = 0;
3164 gData->stateStackLimit = INITIAL_STATESTACK;
3165 gData->stateStack = jsheap_alloc(gData->pool, sizeof(REProgState) * INITIAL_STATESTACK);
3166 if (!gData->stateStack)
3169 gData->stateStackTop = 0;
3174 result = jsheap_alloc(gData->pool, offsetof(REMatchState, parens) + re->parenCount * sizeof(RECapture));
3178 for (i = 0; i < re->classCount; i++) {
3179 if (!re->classList[i].converted &&
3180 !ProcessCharSet(gData, &re->classList[i])) {
3188 js_ReportOutOfScriptQuota(cx);
3194 js_DestroyRegExp(JSRegExp *re)
3196 if (re->classList) {
3198 for (i = 0; i < re->classCount; i++) {
3199 if (re->classList[i].converted)
3200 heap_free(re->classList[i].u.bits);
3201 re->classList[i].u.bits = NULL;
3203 heap_free(re->classList);
3209 js_NewRegExp(script_ctx_t *cx, BSTR str, UINT flags, BOOL flat)
3213 CompilerState state;
3220 mark = jsheap_mark(&cx->tmp_heap);
3221 len = SysStringLen(str);
3227 state.cpbegin = state.cp;
3228 state.cpend = state.cp + len;
3229 state.flags = flags;
3230 state.parenCount = 0;
3231 state.classCount = 0;
3232 state.progLength = 0;
3233 state.treeDepth = 0;
3234 state.classBitmapsMem = 0;
3235 for (i = 0; i < CLASS_CACHE_SIZE; i++)
3236 state.classCache[i].start = NULL;
3238 if (len != 0 && flat) {
3239 state.result = NewRENode(&state, REOP_FLAT);
3242 state.result->u.flat.chr = *state.cpbegin;
3243 state.result->u.flat.length = len;
3244 state.result->kid = (void *) state.cpbegin;
3245 /* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */
3246 state.progLength += 1 + GetCompactIndexWidth(0)
3247 + GetCompactIndexWidth(len);
3249 if (!ParseRegExp(&state))
3252 resize = offsetof(JSRegExp, program) + state.progLength + 1;
3253 re = heap_alloc(resize);
3257 assert(state.classBitmapsMem <= CLASS_BITMAPS_MEM_LIMIT);
3258 re->classCount = state.classCount;
3259 if (re->classCount) {
3260 re->classList = heap_alloc(re->classCount * sizeof(RECharSet));
3261 if (!re->classList) {
3262 js_DestroyRegExp(re);
3266 for (i = 0; i < re->classCount; i++)
3267 re->classList[i].converted = FALSE;
3269 re->classList = NULL;
3271 endPC = EmitREBytecode(&state, re, state.treeDepth, re->program, state.result);
3273 js_DestroyRegExp(re);
3277 *endPC++ = REOP_END;
3279 * Check whether size was overestimated and shrink using realloc.
3280 * This is safe since no pointers to newly parsed regexp or its parts
3281 * besides re exist here.
3283 if ((size_t)(endPC - re->program) != state.progLength + 1) {
3285 assert((size_t)(endPC - re->program) < state.progLength + 1);
3286 resize = offsetof(JSRegExp, program) + (endPC - re->program);
3287 tmp = heap_realloc(re, resize);
3293 re->parenCount = state.parenCount;
3301 static HRESULT do_regexp_match_next(RegExpInstance *regexp, const WCHAR *str, DWORD len,
3302 const WCHAR **cp, match_result_t **parens, DWORD *parens_size, DWORD *parens_cnt, match_result_t *ret)
3304 REMatchState *x, *result;
3308 gData.cpbegin = *cp;
3309 gData.cpend = str + len;
3310 gData.start = *cp-str;
3312 gData.pool = ®exp->dispex.ctx->tmp_heap;
3314 x = InitMatch(NULL, &gData, regexp->jsregexp, gData.cpend - gData.cpbegin);
3316 WARN("InitMatch failed\n");
3321 result = MatchRegExp(&gData, x);
3323 WARN("MatchRegExp failed\n");
3333 if(regexp->jsregexp->parenCount > *parens_size) {
3334 match_result_t *new_parens;
3337 new_parens = heap_realloc(*parens, sizeof(match_result_t)*regexp->jsregexp->parenCount);
3339 new_parens = heap_alloc(sizeof(match_result_t)*regexp->jsregexp->parenCount);
3341 return E_OUTOFMEMORY;
3343 *parens = new_parens;
3346 *parens_cnt = regexp->jsregexp->parenCount;
3348 for(i=0; i < regexp->jsregexp->parenCount; i++) {
3349 (*parens)[i].str = *cp + result->parens[i].index;
3350 (*parens)[i].len = result->parens[i].length;
3354 matchlen = (result->cp-*cp) - gData.skipped;
3356 ret->str = result->cp-matchlen;
3357 ret->len = matchlen;
3362 HRESULT regexp_match_next(DispatchEx *dispex, BOOL gcheck, const WCHAR *str, DWORD len,
3363 const WCHAR **cp, match_result_t **parens, DWORD *parens_size, DWORD *parens_cnt, match_result_t *ret)
3365 RegExpInstance *regexp = (RegExpInstance*)dispex;
3369 if(gcheck && !(regexp->jsregexp->flags & JSREG_GLOB))
3372 mark = jsheap_mark(®exp->dispex.ctx->tmp_heap);
3374 hres = do_regexp_match_next(regexp, str, len, cp, parens, parens_size, parens_cnt, ret);
3380 HRESULT regexp_match(DispatchEx *dispex, const WCHAR *str, DWORD len, BOOL gflag, match_result_t **match_result,
3383 RegExpInstance *This = (RegExpInstance*)dispex;
3384 match_result_t *ret = NULL, cres;
3385 const WCHAR *cp = str;
3386 DWORD i=0, ret_size = 0;
3390 mark = jsheap_mark(&This->dispex.ctx->tmp_heap);
3393 hres = do_regexp_match_next(This, str, len, &cp, NULL, NULL, NULL, &cres);
3394 if(hres == S_FALSE) {
3404 ret = heap_realloc(ret, (ret_size <<= 1) * sizeof(match_result_t));
3406 ret = heap_alloc((ret_size=4) * sizeof(match_result_t));
3408 hres = E_OUTOFMEMORY;
3415 if(!gflag && !(This->jsregexp->flags & JSREG_GLOB)) {
3427 *match_result = ret;
3432 static HRESULT RegExp_source(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3433 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3439 static HRESULT RegExp_global(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3440 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3446 static HRESULT RegExp_ignoreCase(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3447 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3453 static HRESULT RegExp_multiline(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3454 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3460 static HRESULT RegExp_lastIndex(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3461 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3467 static HRESULT RegExp_toString(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3468 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3474 static HRESULT RegExp_toLocaleString(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3475 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3481 static HRESULT RegExp_hasOwnProperty(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3482 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3488 static HRESULT RegExp_propertyIsEnumerable(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3489 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3495 static HRESULT RegExp_isPrototypeOf(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3496 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3502 static HRESULT RegExp_exec(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3503 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3509 static HRESULT RegExp_test(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3510 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3516 static HRESULT RegExp_value(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3517 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3523 static void RegExp_destructor(DispatchEx *dispex)
3525 RegExpInstance *This = (RegExpInstance*)dispex;
3528 js_DestroyRegExp(This->jsregexp);
3529 SysFreeString(This->str);
3533 static const builtin_prop_t RegExp_props[] = {
3534 {execW, RegExp_exec, PROPF_METHOD},
3535 {globalW, RegExp_global, 0},
3536 {hasOwnPropertyW, RegExp_hasOwnProperty, PROPF_METHOD},
3537 {ignoreCaseW, RegExp_ignoreCase, 0},
3538 {isPrototypeOfW, RegExp_isPrototypeOf, PROPF_METHOD},
3539 {lastIndexW, RegExp_lastIndex, 0},
3540 {multilineW, RegExp_multiline, 0},
3541 {propertyIsEnumerableW, RegExp_propertyIsEnumerable, PROPF_METHOD},
3542 {sourceW, RegExp_source, 0},
3543 {testW, RegExp_test, PROPF_METHOD},
3544 {toLocaleStringW, RegExp_toLocaleString, PROPF_METHOD},
3545 {toStringW, RegExp_toString, PROPF_METHOD}
3548 static const builtin_info_t RegExp_info = {
3550 {NULL, RegExp_value, 0},
3551 sizeof(RegExp_props)/sizeof(*RegExp_props),
3557 static HRESULT alloc_regexp(script_ctx_t *ctx, BOOL use_constr, RegExpInstance **ret)
3559 RegExpInstance *regexp;
3562 regexp = heap_alloc_zero(sizeof(RegExpInstance));
3564 return E_OUTOFMEMORY;
3567 hres = init_dispex_from_constr(®exp->dispex, ctx, &RegExp_info, ctx->regexp_constr);
3569 hres = init_dispex(®exp->dispex, ctx, &RegExp_info, NULL);
3580 static HRESULT create_regexp(script_ctx_t *ctx, const WCHAR *exp, int len, DWORD flags, DispatchEx **ret)
3582 RegExpInstance *regexp;
3585 TRACE("%s %x\n", debugstr_w(exp), flags);
3587 hres = alloc_regexp(ctx, TRUE, ®exp);
3592 regexp->str = SysAllocString(exp);
3594 regexp->str = SysAllocStringLen(exp, len);
3596 jsdisp_release(®exp->dispex);
3597 return E_OUTOFMEMORY;
3600 regexp->jsregexp = js_NewRegExp(ctx, regexp->str, flags, FALSE);
3601 if(!regexp->jsregexp) {
3602 WARN("js_NewRegExp failed\n");
3603 jsdisp_release(®exp->dispex);
3607 *ret = ®exp->dispex;
3611 static HRESULT regexp_constructor(script_ctx_t *ctx, DISPPARAMS *dp, VARIANT *retv)
3613 const WCHAR *opt = emptyW, *src;
3623 arg = get_arg(dp,0);
3624 if(V_VT(arg) == VT_DISPATCH) {
3627 obj = iface_to_jsdisp((IUnknown*)V_DISPATCH(arg));
3629 if(is_class(obj, JSCLASS_REGEXP)) {
3630 RegExpInstance *regexp = (RegExpInstance*)obj;
3632 hres = create_regexp(ctx, regexp->str, -1, regexp->jsregexp->flags, &ret);
3633 jsdisp_release(obj);
3637 V_VT(retv) = VT_DISPATCH;
3638 V_DISPATCH(retv) = (IDispatch*)_IDispatchEx_(ret);
3642 jsdisp_release(obj);
3646 if(V_VT(arg) != VT_BSTR) {
3647 FIXME("vt arg0 = %d\n", V_VT(arg));
3653 if(arg_cnt(dp) >= 2) {
3654 arg = get_arg(dp,1);
3655 if(V_VT(arg) != VT_BSTR) {
3656 FIXME("unimplemented for vt %d\n", V_VT(arg));
3663 hres = create_regexp_str(ctx, src, -1, opt, strlenW(opt), &ret);
3667 V_VT(retv) = VT_DISPATCH;
3668 V_DISPATCH(retv) = (IDispatch*)_IDispatchEx_(ret);
3672 static HRESULT RegExpConstr_value(DispatchEx *dispex, LCID lcid, WORD flags, DISPPARAMS *dp,
3673 VARIANT *retv, jsexcept_t *ei, IServiceProvider *sp)
3678 case DISPATCH_CONSTRUCT:
3679 return regexp_constructor(dispex->ctx, dp, retv);
3681 FIXME("unimplemented flags: %x\n", flags);
3688 HRESULT create_regexp_constr(script_ctx_t *ctx, DispatchEx **ret)
3690 RegExpInstance *regexp;
3693 hres = alloc_regexp(ctx, FALSE, ®exp);
3697 hres = create_builtin_function(ctx, RegExpConstr_value, NULL, PROPF_CONSTR, ®exp->dispex, ret);
3699 jsdisp_release(®exp->dispex);
3703 HRESULT create_regexp_str(script_ctx_t *ctx, const WCHAR *exp, DWORD exp_len, const WCHAR *opt,
3704 DWORD opt_len, DispatchEx **ret)
3710 for (p = opt; p < opt+opt_len; p++) {
3713 flags |= JSREG_GLOB;
3716 flags |= JSREG_FOLD;
3719 flags |= JSREG_MULTILINE;
3722 flags |= JSREG_STICKY;
3725 WARN("wrong flag %c\n", *p);
3731 return create_regexp(ctx, exp, exp_len, flags, ret);