4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The alorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
43 #include "wine/debug.h"
45 WINE_DEFAULT_DEBUG_CHANNEL(variant);
47 const char * const wine_vtypes[VT_CLSID+1] =
49 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
50 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
51 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
52 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
53 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
54 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
55 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
56 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
57 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
60 const char * const wine_vflags[16] =
65 "|VT_VECTOR|VT_ARRAY",
67 "|VT_VECTOR|VT_ARRAY",
69 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
71 "|VT_VECTOR|VT_HARDTYPE",
72 "|VT_ARRAY|VT_HARDTYPE",
73 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
74 "|VT_BYREF|VT_HARDTYPE",
75 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
76 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
77 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
80 /* Convert a variant from one type to another */
81 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
82 VARIANTARG* ps, VARTYPE vt)
84 HRESULT res = DISP_E_TYPEMISMATCH;
85 VARTYPE vtFrom = V_TYPE(ps);
88 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
89 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
90 debugstr_vt(vt), debugstr_vf(vt));
92 if (vt == VT_BSTR || vtFrom == VT_BSTR)
94 /* All flags passed to low level function are only used for
95 * changing to or from strings. Map these here.
97 if (wFlags & VARIANT_LOCALBOOL)
98 dwFlags |= VAR_LOCALBOOL;
99 if (wFlags & VARIANT_CALENDAR_HIJRI)
100 dwFlags |= VAR_CALENDAR_HIJRI;
101 if (wFlags & VARIANT_CALENDAR_THAI)
102 dwFlags |= VAR_CALENDAR_THAI;
103 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
104 dwFlags |= VAR_CALENDAR_GREGORIAN;
105 if (wFlags & VARIANT_NOUSEROVERRIDE)
106 dwFlags |= LOCALE_NOUSEROVERRIDE;
107 if (wFlags & VARIANT_USE_NLS)
108 dwFlags |= LOCALE_USE_NLS;
111 /* Map int/uint to i4/ui4 */
114 else if (vt == VT_UINT)
117 if (vtFrom == VT_INT)
119 else if (vtFrom == VT_UINT)
123 return VariantCopy(pd, ps);
125 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
127 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
128 * accessing the default object property.
130 return DISP_E_TYPEMISMATCH;
136 if (vtFrom == VT_NULL)
137 return DISP_E_TYPEMISMATCH;
138 /* ... Fall through */
140 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
142 res = VariantClear( pd );
143 if (vt == VT_NULL && SUCCEEDED(res))
151 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
152 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
153 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
154 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
155 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
156 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
157 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
158 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
159 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
160 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
161 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
162 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
163 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
164 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
165 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
166 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
173 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
174 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
175 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
176 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
177 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
178 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
179 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
180 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
181 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
182 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
183 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
184 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
185 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
186 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
187 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
188 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
195 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
196 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
197 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
198 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
199 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
200 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
201 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
202 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
203 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
204 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
205 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
206 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
207 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
208 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
209 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
210 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
217 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
218 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
219 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
220 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
221 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
222 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
223 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
224 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
225 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
226 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
227 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
228 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
229 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
230 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
231 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
232 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
239 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
240 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
241 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
242 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
243 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
244 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
245 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
246 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
247 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
248 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
249 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
250 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
251 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
252 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
253 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
254 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
261 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
262 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
263 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
264 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
265 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
266 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
267 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
268 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
269 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
270 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
271 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
272 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
273 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
274 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
275 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
276 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
283 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
284 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
285 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
286 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
287 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
288 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
289 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
290 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
291 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
292 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
293 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
294 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
295 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
296 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
297 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
298 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
305 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
306 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
307 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
308 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
309 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
310 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
311 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
312 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
313 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
314 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
315 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
316 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
317 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
318 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
319 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
320 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
327 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
328 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
329 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
330 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
331 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
332 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
333 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
334 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
335 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
336 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
337 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
338 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
339 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
340 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
341 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
342 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
349 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
350 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
351 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
352 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
353 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
354 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
355 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
356 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
357 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
358 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
359 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
360 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
361 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
362 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
363 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
364 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
371 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
372 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
373 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
374 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
375 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
376 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
377 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
378 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
379 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
380 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
381 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
382 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
383 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
384 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
385 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
386 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
393 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
394 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
395 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
396 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
397 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
398 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
399 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
400 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
401 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
402 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
403 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
404 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
405 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
406 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
407 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
408 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
416 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
417 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
419 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
420 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
421 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
422 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
442 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
443 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
444 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
445 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
446 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
447 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
448 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
449 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
450 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
451 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
452 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
453 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
454 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
455 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
456 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
457 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
466 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
467 DEC_HI32(&V_DECIMAL(pd)) = 0;
468 DEC_MID32(&V_DECIMAL(pd)) = 0;
469 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
470 * VT_NULL and VT_EMPTY always give a 0 value.
472 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
474 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
475 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
476 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
477 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
478 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
479 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
480 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
481 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
482 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
483 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
484 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
485 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
486 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
487 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
495 if (V_DISPATCH(ps) == NULL)
496 V_UNKNOWN(pd) = NULL;
498 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
507 if (V_UNKNOWN(ps) == NULL)
508 V_DISPATCH(pd) = NULL;
510 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
521 /* Coerce to/from an array */
522 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
524 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
525 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
527 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
528 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
531 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
533 return DISP_E_TYPEMISMATCH;
536 /******************************************************************************
537 * Check if a variants type is valid.
539 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
541 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
545 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
547 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
549 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
550 return DISP_E_BADVARTYPE;
551 if (vt != (VARTYPE)15)
555 return DISP_E_BADVARTYPE;
558 /******************************************************************************
559 * VariantInit [OLEAUT32.8]
561 * Initialise a variant.
564 * pVarg [O] Variant to initialise
570 * This function simply sets the type of the variant to VT_EMPTY. It does not
571 * free any existing value, use VariantClear() for that.
573 void WINAPI VariantInit(VARIANTARG* pVarg)
575 TRACE("(%p)\n", pVarg);
577 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
580 /******************************************************************************
581 * VariantClear [OLEAUT32.9]
586 * pVarg [I/O] Variant to clear
589 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
590 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
592 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
596 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
598 hres = VARIANT_ValidateType(V_VT(pVarg));
602 if (!V_ISBYREF(pVarg))
604 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
607 hres = SafeArrayDestroy(V_ARRAY(pVarg));
609 else if (V_VT(pVarg) == VT_BSTR)
612 SysFreeString(V_BSTR(pVarg));
614 else if (V_VT(pVarg) == VT_RECORD)
616 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
619 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
620 IRecordInfo_Release(pBr->pRecInfo);
623 else if (V_VT(pVarg) == VT_DISPATCH ||
624 V_VT(pVarg) == VT_UNKNOWN)
626 if (V_UNKNOWN(pVarg))
627 IUnknown_Release(V_UNKNOWN(pVarg));
630 V_VT(pVarg) = VT_EMPTY;
635 /******************************************************************************
636 * Copy an IRecordInfo object contained in a variant.
638 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
646 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
649 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
651 hres = E_OUTOFMEMORY;
654 memcpy(pvRecord, pBr->pvRecord, ulSize);
655 pBr->pvRecord = pvRecord;
657 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
659 IRecordInfo_AddRef(pBr->pRecInfo);
663 else if (pBr->pvRecord)
668 /******************************************************************************
669 * VariantCopy [OLEAUT32.10]
674 * pvargDest [O] Destination for copy
675 * pvargSrc [I] Source variant to copy
678 * Success: S_OK. pvargDest contains a copy of pvargSrc.
679 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
680 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
681 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
682 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
685 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
686 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
687 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
688 * fails, so does this function.
689 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
690 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
691 * is copied rather than just any pointers to it.
692 * - For by-value object types the object pointer is copied and the objects
693 * reference count increased using IUnknown_AddRef().
694 * - For all by-reference types, only the referencing pointer is copied.
696 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
700 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
701 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
702 debugstr_VF(pvargSrc));
704 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
705 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
706 return DISP_E_BADVARTYPE;
708 if (pvargSrc != pvargDest &&
709 SUCCEEDED(hres = VariantClear(pvargDest)))
711 *pvargDest = *pvargSrc; /* Shallow copy the value */
713 if (!V_ISBYREF(pvargSrc))
715 if (V_ISARRAY(pvargSrc))
717 if (V_ARRAY(pvargSrc))
718 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
720 else if (V_VT(pvargSrc) == VT_BSTR)
722 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
723 if (!V_BSTR(pvargDest))
725 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
726 hres = E_OUTOFMEMORY;
729 else if (V_VT(pvargSrc) == VT_RECORD)
731 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
733 else if (V_VT(pvargSrc) == VT_DISPATCH ||
734 V_VT(pvargSrc) == VT_UNKNOWN)
736 if (V_UNKNOWN(pvargSrc))
737 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
744 /* Return the byte size of a variants data */
745 static inline size_t VARIANT_DataSize(const VARIANT* pv)
750 case VT_UI1: return sizeof(BYTE);
752 case VT_UI2: return sizeof(SHORT);
756 case VT_UI4: return sizeof(LONG);
758 case VT_UI8: return sizeof(LONGLONG);
759 case VT_R4: return sizeof(float);
760 case VT_R8: return sizeof(double);
761 case VT_DATE: return sizeof(DATE);
762 case VT_BOOL: return sizeof(VARIANT_BOOL);
765 case VT_BSTR: return sizeof(void*);
766 case VT_CY: return sizeof(CY);
767 case VT_ERROR: return sizeof(SCODE);
769 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
773 /******************************************************************************
774 * VariantCopyInd [OLEAUT32.11]
776 * Copy a variant, dereferencing it if it is by-reference.
779 * pvargDest [O] Destination for copy
780 * pvargSrc [I] Source variant to copy
783 * Success: S_OK. pvargDest contains a copy of pvargSrc.
784 * Failure: An HRESULT error code indicating the error.
787 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
788 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
789 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
790 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
791 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
794 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
795 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
797 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
798 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
799 * to it. If clearing pvargDest fails, so does this function.
801 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
803 VARIANTARG vTmp, *pSrc = pvargSrc;
807 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
808 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
809 debugstr_VF(pvargSrc));
811 if (!V_ISBYREF(pvargSrc))
812 return VariantCopy(pvargDest, pvargSrc);
814 /* Argument checking is more lax than VariantCopy()... */
815 vt = V_TYPE(pvargSrc);
816 if (V_ISARRAY(pvargSrc) ||
817 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
818 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
823 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
825 if (pvargSrc == pvargDest)
827 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
828 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
832 V_VT(pvargDest) = VT_EMPTY;
836 /* Copy into another variant. Free the variant in pvargDest */
837 if (FAILED(hres = VariantClear(pvargDest)))
839 TRACE("VariantClear() of destination failed\n");
846 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
847 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
849 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
851 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
852 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
854 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
856 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
857 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
859 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
860 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
862 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
863 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
864 if (*V_UNKNOWNREF(pSrc))
865 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
867 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
869 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
870 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
871 hres = E_INVALIDARG; /* Don't dereference more than one level */
873 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
875 /* Use the dereferenced variants type value, not VT_VARIANT */
876 goto VariantCopyInd_Return;
878 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
880 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
881 sizeof(DECIMAL) - sizeof(USHORT));
885 /* Copy the pointed to data into this variant */
886 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
889 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
891 VariantCopyInd_Return:
893 if (pSrc != pvargSrc)
896 TRACE("returning 0x%08x, %p->(%s%s)\n", hres, pvargDest,
897 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
901 /******************************************************************************
902 * VariantChangeType [OLEAUT32.12]
904 * Change the type of a variant.
907 * pvargDest [O] Destination for the converted variant
908 * pvargSrc [O] Source variant to change the type of
909 * wFlags [I] VARIANT_ flags from "oleauto.h"
910 * vt [I] Variant type to change pvargSrc into
913 * Success: S_OK. pvargDest contains the converted value.
914 * Failure: An HRESULT error code describing the failure.
917 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
918 * See VariantChangeTypeEx.
920 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
921 USHORT wFlags, VARTYPE vt)
923 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
926 /******************************************************************************
927 * VariantChangeTypeEx [OLEAUT32.147]
929 * Change the type of a variant.
932 * pvargDest [O] Destination for the converted variant
933 * pvargSrc [O] Source variant to change the type of
934 * lcid [I] LCID for the conversion
935 * wFlags [I] VARIANT_ flags from "oleauto.h"
936 * vt [I] Variant type to change pvargSrc into
939 * Success: S_OK. pvargDest contains the converted value.
940 * Failure: An HRESULT error code describing the failure.
943 * pvargDest and pvargSrc can point to the same variant to perform an in-place
944 * conversion. If the conversion is successful, pvargSrc will be freed.
946 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
947 LCID lcid, USHORT wFlags, VARTYPE vt)
951 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest,
952 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
953 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
954 debugstr_vt(vt), debugstr_vf(vt));
957 res = DISP_E_BADVARTYPE;
960 res = VARIANT_ValidateType(V_VT(pvargSrc));
964 res = VARIANT_ValidateType(vt);
968 VARIANTARG vTmp, vSrcDeref;
970 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
971 res = DISP_E_TYPEMISMATCH;
974 V_VT(&vTmp) = VT_EMPTY;
975 V_VT(&vSrcDeref) = VT_EMPTY;
977 VariantClear(&vSrcDeref);
982 res = VariantCopyInd(&vSrcDeref, pvargSrc);
985 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
986 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
988 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
990 if (SUCCEEDED(res)) {
992 VariantCopy(pvargDest, &vTmp);
995 VariantClear(&vSrcDeref);
1002 TRACE("returning 0x%08x, %p->(%s%s)\n", res, pvargDest,
1003 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1007 /* Date Conversions */
1009 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1011 /* Convert a VT_DATE value to a Julian Date */
1012 static inline int VARIANT_JulianFromDate(int dateIn)
1014 int julianDays = dateIn;
1016 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1017 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1021 /* Convert a Julian Date to a VT_DATE value */
1022 static inline int VARIANT_DateFromJulian(int dateIn)
1024 int julianDays = dateIn;
1026 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1027 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1031 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1032 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1038 l -= (n * 146097 + 3) / 4;
1039 i = (4000 * (l + 1)) / 1461001;
1040 l += 31 - (i * 1461) / 4;
1041 j = (l * 80) / 2447;
1042 *day = l - (j * 2447) / 80;
1044 *month = (j + 2) - (12 * l);
1045 *year = 100 * (n - 49) + i + l;
1048 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1049 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1051 int m12 = (month - 14) / 12;
1053 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1054 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1057 /* Macros for accessing DOS format date/time fields */
1058 #define DOS_YEAR(x) (1980 + (x >> 9))
1059 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1060 #define DOS_DAY(x) (x & 0x1f)
1061 #define DOS_HOUR(x) (x >> 11)
1062 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1063 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1064 /* Create a DOS format date/time */
1065 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1066 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1068 /* Roll a date forwards or backwards to correct it */
1069 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1071 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1073 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1074 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1076 /* Years < 100 are treated as 1900 + year */
1077 if (lpUd->st.wYear < 100)
1078 lpUd->st.wYear += 1900;
1080 if (!lpUd->st.wMonth)
1082 /* Roll back to December of the previous year */
1083 lpUd->st.wMonth = 12;
1086 else while (lpUd->st.wMonth > 12)
1088 /* Roll forward the correct number of months */
1090 lpUd->st.wMonth -= 12;
1093 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1094 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1095 return E_INVALIDARG; /* Invalid values */
1099 /* Roll back the date one day */
1100 if (lpUd->st.wMonth == 1)
1102 /* Roll back to December 31 of the previous year */
1104 lpUd->st.wMonth = 12;
1109 lpUd->st.wMonth--; /* Previous month */
1110 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1111 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1113 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1116 else if (lpUd->st.wDay > 28)
1118 int rollForward = 0;
1120 /* Possibly need to roll the date forward */
1121 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1122 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1124 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1126 if (rollForward > 0)
1128 lpUd->st.wDay = rollForward;
1130 if (lpUd->st.wMonth > 12)
1132 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1137 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1138 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1142 /**********************************************************************
1143 * DosDateTimeToVariantTime [OLEAUT32.14]
1145 * Convert a Dos format date and time into variant VT_DATE format.
1148 * wDosDate [I] Dos format date
1149 * wDosTime [I] Dos format time
1150 * pDateOut [O] Destination for VT_DATE format
1153 * Success: TRUE. pDateOut contains the converted time.
1154 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1157 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1158 * - Dos format times are accurate to only 2 second precision.
1159 * - The format of a Dos Date is:
1160 *| Bits Values Meaning
1161 *| ---- ------ -------
1162 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1163 *| the days in the month rolls forward the extra days.
1164 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1165 *| year. 13-15 are invalid.
1166 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1167 * - The format of a Dos Time is:
1168 *| Bits Values Meaning
1169 *| ---- ------ -------
1170 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1171 *| 5-10 0-59 Minutes. 60-63 are invalid.
1172 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1174 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1179 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1180 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1181 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1184 ud.st.wYear = DOS_YEAR(wDosDate);
1185 ud.st.wMonth = DOS_MONTH(wDosDate);
1186 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1188 ud.st.wDay = DOS_DAY(wDosDate);
1189 ud.st.wHour = DOS_HOUR(wDosTime);
1190 ud.st.wMinute = DOS_MINUTE(wDosTime);
1191 ud.st.wSecond = DOS_SECOND(wDosTime);
1192 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1194 return !VarDateFromUdate(&ud, 0, pDateOut);
1197 /**********************************************************************
1198 * VariantTimeToDosDateTime [OLEAUT32.13]
1200 * Convert a variant format date into a Dos format date and time.
1202 * dateIn [I] VT_DATE time format
1203 * pwDosDate [O] Destination for Dos format date
1204 * pwDosTime [O] Destination for Dos format time
1207 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1208 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1211 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1213 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1217 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1219 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1222 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1225 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1226 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1228 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1229 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1230 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1234 /***********************************************************************
1235 * SystemTimeToVariantTime [OLEAUT32.184]
1237 * Convert a System format date and time into variant VT_DATE format.
1240 * lpSt [I] System format date and time
1241 * pDateOut [O] Destination for VT_DATE format date
1244 * Success: TRUE. *pDateOut contains the converted value.
1245 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1247 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1251 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1252 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1254 if (lpSt->wMonth > 12)
1257 memcpy(&ud.st, lpSt, sizeof(ud.st));
1258 return !VarDateFromUdate(&ud, 0, pDateOut);
1261 /***********************************************************************
1262 * VariantTimeToSystemTime [OLEAUT32.185]
1264 * Convert a variant VT_DATE into a System format date and time.
1267 * datein [I] Variant VT_DATE format date
1268 * lpSt [O] Destination for System format date and time
1271 * Success: TRUE. *lpSt contains the converted value.
1272 * Failure: FALSE, if dateIn is too large or small.
1274 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1278 TRACE("(%g,%p)\n", dateIn, lpSt);
1280 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1283 memcpy(lpSt, &ud.st, sizeof(ud.st));
1287 /***********************************************************************
1288 * VarDateFromUdateEx [OLEAUT32.319]
1290 * Convert an unpacked format date and time to a variant VT_DATE.
1293 * pUdateIn [I] Unpacked format date and time to convert
1294 * lcid [I] Locale identifier for the conversion
1295 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1296 * pDateOut [O] Destination for variant VT_DATE.
1299 * Success: S_OK. *pDateOut contains the converted value.
1300 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1302 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1307 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1308 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1309 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1310 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1311 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1313 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1314 FIXME("lcid possibly not handled, treating as en-us\n");
1316 memcpy(&ud, pUdateIn, sizeof(ud));
1318 if (dwFlags & VAR_VALIDDATE)
1319 WARN("Ignoring VAR_VALIDDATE\n");
1321 if (FAILED(VARIANT_RollUdate(&ud)))
1322 return E_INVALIDARG;
1325 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1328 dateVal += ud.st.wHour / 24.0;
1329 dateVal += ud.st.wMinute / 1440.0;
1330 dateVal += ud.st.wSecond / 86400.0;
1331 dateVal += ud.st.wMilliseconds / 86400000.0;
1333 TRACE("Returning %g\n", dateVal);
1334 *pDateOut = dateVal;
1338 /***********************************************************************
1339 * VarDateFromUdate [OLEAUT32.330]
1341 * Convert an unpacked format date and time to a variant VT_DATE.
1344 * pUdateIn [I] Unpacked format date and time to convert
1345 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1346 * pDateOut [O] Destination for variant VT_DATE.
1349 * Success: S_OK. *pDateOut contains the converted value.
1350 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1353 * This function uses the United States English locale for the conversion. Use
1354 * VarDateFromUdateEx() for alternate locales.
1356 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1358 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1360 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1363 /***********************************************************************
1364 * VarUdateFromDate [OLEAUT32.331]
1366 * Convert a variant VT_DATE into an unpacked format date and time.
1369 * datein [I] Variant VT_DATE format date
1370 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1371 * lpUdate [O] Destination for unpacked format date and time
1374 * Success: S_OK. *lpUdate contains the converted value.
1375 * Failure: E_INVALIDARG, if dateIn is too large or small.
1377 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1379 /* Cumulative totals of days per month */
1380 static const USHORT cumulativeDays[] =
1382 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1384 double datePart, timePart;
1387 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1389 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1390 return E_INVALIDARG;
1392 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1393 /* Compensate for int truncation (always downwards) */
1394 timePart = dateIn - datePart + 0.00000000001;
1395 if (timePart >= 1.0)
1396 timePart -= 0.00000000001;
1399 julianDays = VARIANT_JulianFromDate(dateIn);
1400 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1403 datePart = (datePart + 1.5) / 7.0;
1404 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1405 if (lpUdate->st.wDayOfWeek == 0)
1406 lpUdate->st.wDayOfWeek = 5;
1407 else if (lpUdate->st.wDayOfWeek == 1)
1408 lpUdate->st.wDayOfWeek = 6;
1410 lpUdate->st.wDayOfWeek -= 2;
1412 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1413 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1415 lpUdate->wDayOfYear = 0;
1417 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1418 lpUdate->wDayOfYear += lpUdate->st.wDay;
1422 lpUdate->st.wHour = timePart;
1423 timePart -= lpUdate->st.wHour;
1425 lpUdate->st.wMinute = timePart;
1426 timePart -= lpUdate->st.wMinute;
1428 lpUdate->st.wSecond = timePart;
1429 timePart -= lpUdate->st.wSecond;
1430 lpUdate->st.wMilliseconds = 0;
1433 /* Round the milliseconds, adjusting the time/date forward if needed */
1434 if (lpUdate->st.wSecond < 59)
1435 lpUdate->st.wSecond++;
1438 lpUdate->st.wSecond = 0;
1439 if (lpUdate->st.wMinute < 59)
1440 lpUdate->st.wMinute++;
1443 lpUdate->st.wMinute = 0;
1444 if (lpUdate->st.wHour < 23)
1445 lpUdate->st.wHour++;
1448 lpUdate->st.wHour = 0;
1449 /* Roll over a whole day */
1450 if (++lpUdate->st.wDay > 28)
1451 VARIANT_RollUdate(lpUdate);
1459 #define GET_NUMBER_TEXT(fld,name) \
1461 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1462 WARN("buffer too small for " #fld "\n"); \
1464 if (buff[0]) lpChars->name = buff[0]; \
1465 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1467 /* Get the valid number characters for an lcid */
1468 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1470 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1471 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1474 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1475 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1476 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1477 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1478 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1479 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1480 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1482 /* Local currency symbols are often 2 characters */
1483 lpChars->cCurrencyLocal2 = '\0';
1484 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1486 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1487 case 2: lpChars->cCurrencyLocal = buff[0];
1489 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1491 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1492 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1495 /* Number Parsing States */
1496 #define B_PROCESSING_EXPONENT 0x1
1497 #define B_NEGATIVE_EXPONENT 0x2
1498 #define B_EXPONENT_START 0x4
1499 #define B_INEXACT_ZEROS 0x8
1500 #define B_LEADING_ZERO 0x10
1501 #define B_PROCESSING_HEX 0x20
1502 #define B_PROCESSING_OCT 0x40
1504 /**********************************************************************
1505 * VarParseNumFromStr [OLEAUT32.46]
1507 * Parse a string containing a number into a NUMPARSE structure.
1510 * lpszStr [I] String to parse number from
1511 * lcid [I] Locale Id for the conversion
1512 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1513 * pNumprs [I/O] Destination for parsed number
1514 * rgbDig [O] Destination for digits read in
1517 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1519 * Failure: E_INVALIDARG, if any parameter is invalid.
1520 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1522 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1525 * pNumprs must have the following fields set:
1526 * cDig: Set to the size of rgbDig.
1527 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1531 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1532 * numerals, so this has not been implemented.
1534 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1535 NUMPARSE *pNumprs, BYTE *rgbDig)
1537 VARIANT_NUMBER_CHARS chars;
1539 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1540 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1543 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1545 if (!pNumprs || !rgbDig)
1546 return E_INVALIDARG;
1548 if (pNumprs->cDig < iMaxDigits)
1549 iMaxDigits = pNumprs->cDig;
1552 pNumprs->dwOutFlags = 0;
1553 pNumprs->cchUsed = 0;
1554 pNumprs->nBaseShift = 0;
1555 pNumprs->nPwr10 = 0;
1558 return DISP_E_TYPEMISMATCH;
1560 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1562 /* First consume all the leading symbols and space from the string */
1565 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1567 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1572 } while (isspaceW(*lpszStr));
1574 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1575 *lpszStr == chars.cPositiveSymbol &&
1576 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1578 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1582 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1583 *lpszStr == chars.cNegativeSymbol &&
1584 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1586 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1590 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1591 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1592 *lpszStr == chars.cCurrencyLocal &&
1593 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1595 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1598 /* Only accept currency characters */
1599 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1600 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1602 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1603 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1605 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1613 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1615 /* Only accept non-currency characters */
1616 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1617 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1620 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1621 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1623 dwState |= B_PROCESSING_HEX;
1624 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1628 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1629 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1631 dwState |= B_PROCESSING_OCT;
1632 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1637 /* Strip Leading zeros */
1638 while (*lpszStr == '0')
1640 dwState |= B_LEADING_ZERO;
1647 if (isdigitW(*lpszStr))
1649 if (dwState & B_PROCESSING_EXPONENT)
1651 int exponentSize = 0;
1652 if (dwState & B_EXPONENT_START)
1654 if (!isdigitW(*lpszStr))
1655 break; /* No exponent digits - invalid */
1656 while (*lpszStr == '0')
1658 /* Skip leading zero's in the exponent */
1664 while (isdigitW(*lpszStr))
1667 exponentSize += *lpszStr - '0';
1671 if (dwState & B_NEGATIVE_EXPONENT)
1672 exponentSize = -exponentSize;
1673 /* Add the exponent into the powers of 10 */
1674 pNumprs->nPwr10 += exponentSize;
1675 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1676 lpszStr--; /* back up to allow processing of next char */
1680 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1681 && !(dwState & B_PROCESSING_OCT))
1683 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1685 if (*lpszStr != '0')
1686 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1688 /* This digit can't be represented, but count it in nPwr10 */
1689 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1696 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1697 return DISP_E_TYPEMISMATCH;
1700 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1701 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1703 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1709 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1711 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1714 else if (*lpszStr == chars.cDecimalPoint &&
1715 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1716 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1718 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1721 /* If we have no digits so far, skip leading zeros */
1724 while (lpszStr[1] == '0')
1726 dwState |= B_LEADING_ZERO;
1733 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1734 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1735 dwState & B_PROCESSING_HEX)
1737 if (pNumprs->cDig >= iMaxDigits)
1739 return DISP_E_OVERFLOW;
1743 if (*lpszStr >= 'a')
1744 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1746 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1751 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1752 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1753 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1755 dwState |= B_PROCESSING_EXPONENT;
1756 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1759 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1761 cchUsed++; /* Ignore positive exponent */
1763 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1765 dwState |= B_NEGATIVE_EXPONENT;
1769 break; /* Stop at an unrecognised character */
1774 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1776 /* Ensure a 0 on its own gets stored */
1781 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1783 pNumprs->cchUsed = cchUsed;
1784 WARN("didn't completely parse exponent\n");
1785 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1788 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1790 if (dwState & B_INEXACT_ZEROS)
1791 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1792 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1794 /* copy all of the digits into the output digit buffer */
1795 /* this is exactly what windows does although it also returns */
1796 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1797 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1799 if (dwState & B_PROCESSING_HEX) {
1800 /* hex numbers have always the same format */
1802 pNumprs->nBaseShift=4;
1804 if (dwState & B_PROCESSING_OCT) {
1805 /* oct numbers have always the same format */
1807 pNumprs->nBaseShift=3;
1809 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1818 /* Remove trailing zeros from the last (whole number or decimal) part */
1819 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1826 if (pNumprs->cDig <= iMaxDigits)
1827 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1829 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1831 /* Copy the digits we processed into rgbDig */
1832 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1834 /* Consume any trailing symbols and space */
1837 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1839 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1844 } while (isspaceW(*lpszStr));
1846 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1847 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1848 *lpszStr == chars.cPositiveSymbol)
1850 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1854 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1855 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1856 *lpszStr == chars.cNegativeSymbol)
1858 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1862 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1863 pNumprs->dwOutFlags & NUMPRS_PARENS)
1867 pNumprs->dwOutFlags |= NUMPRS_NEG;
1873 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1875 pNumprs->cchUsed = cchUsed;
1876 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1879 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1880 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1883 return DISP_E_TYPEMISMATCH; /* No Number found */
1885 pNumprs->cchUsed = cchUsed;
1889 /* VTBIT flags indicating an integer value */
1890 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1891 /* VTBIT flags indicating a real number value */
1892 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1894 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1895 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1896 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1897 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1899 /**********************************************************************
1900 * VarNumFromParseNum [OLEAUT32.47]
1902 * Convert a NUMPARSE structure into a numeric Variant type.
1905 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1906 * rgbDig [I] Source for the numbers digits
1907 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1908 * pVarDst [O] Destination for the converted Variant value.
1911 * Success: S_OK. pVarDst contains the converted value.
1912 * Failure: E_INVALIDARG, if any parameter is invalid.
1913 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1916 * - The smallest favoured type present in dwVtBits that can represent the
1917 * number in pNumprs without losing precision is used.
1918 * - Signed types are preferrred over unsigned types of the same size.
1919 * - Preferred types in order are: integer, float, double, currency then decimal.
1920 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1921 * for details of the rounding method.
1922 * - pVarDst is not cleared before the result is stored in it.
1923 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1924 * design?): If some other VTBIT's for integers are specified together
1925 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1926 * the number to the smallest requested integer truncating this way the
1927 * number. Wine dosn't implement this "feature" (yet?).
1929 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1930 ULONG dwVtBits, VARIANT *pVarDst)
1932 /* Scale factors and limits for double arithmetic */
1933 static const double dblMultipliers[11] = {
1934 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1935 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1937 static const double dblMinimums[11] = {
1938 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1939 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1940 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1942 static const double dblMaximums[11] = {
1943 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1944 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1945 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1948 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1950 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1952 if (pNumprs->nBaseShift)
1954 /* nBaseShift indicates a hex or octal number */
1959 /* Convert the hex or octal number string into a UI64 */
1960 for (i = 0; i < pNumprs->cDig; i++)
1962 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1964 TRACE("Overflow multiplying digits\n");
1965 return DISP_E_OVERFLOW;
1967 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1970 /* also make a negative representation */
1973 /* Try signed and unsigned types in size order */
1974 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
1976 V_VT(pVarDst) = VT_I1;
1977 V_I1(pVarDst) = ul64;
1980 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
1982 V_VT(pVarDst) = VT_UI1;
1983 V_UI1(pVarDst) = ul64;
1986 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
1988 V_VT(pVarDst) = VT_I2;
1989 V_I2(pVarDst) = ul64;
1992 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
1994 V_VT(pVarDst) = VT_UI2;
1995 V_UI2(pVarDst) = ul64;
1998 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2000 V_VT(pVarDst) = VT_I4;
2001 V_I4(pVarDst) = ul64;
2004 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2006 V_VT(pVarDst) = VT_UI4;
2007 V_UI4(pVarDst) = ul64;
2010 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2012 V_VT(pVarDst) = VT_I8;
2013 V_I8(pVarDst) = ul64;
2016 else if (dwVtBits & VTBIT_UI8)
2018 V_VT(pVarDst) = VT_UI8;
2019 V_UI8(pVarDst) = ul64;
2022 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2024 V_VT(pVarDst) = VT_DECIMAL;
2025 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2026 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2027 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2030 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2032 V_VT(pVarDst) = VT_R4;
2034 V_R4(pVarDst) = ul64;
2036 V_R4(pVarDst) = l64;
2039 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2041 V_VT(pVarDst) = VT_R8;
2043 V_R8(pVarDst) = ul64;
2045 V_R8(pVarDst) = l64;
2049 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2050 return DISP_E_OVERFLOW;
2053 /* Count the number of relevant fractional and whole digits stored,
2054 * And compute the divisor/multiplier to scale the number by.
2056 if (pNumprs->nPwr10 < 0)
2058 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2060 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2061 wholeNumberDigits = 0;
2062 fractionalDigits = pNumprs->cDig;
2063 divisor10 = -pNumprs->nPwr10;
2067 /* An exactly represented real number e.g. 1.024 */
2068 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2069 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2070 divisor10 = pNumprs->cDig - wholeNumberDigits;
2073 else if (pNumprs->nPwr10 == 0)
2075 /* An exactly represented whole number e.g. 1024 */
2076 wholeNumberDigits = pNumprs->cDig;
2077 fractionalDigits = 0;
2079 else /* pNumprs->nPwr10 > 0 */
2081 /* A whole number followed by nPwr10 0's e.g. 102400 */
2082 wholeNumberDigits = pNumprs->cDig;
2083 fractionalDigits = 0;
2084 multiplier10 = pNumprs->nPwr10;
2087 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2088 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2089 multiplier10, divisor10);
2091 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2092 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2094 /* We have one or more integer output choices, and either:
2095 * 1) An integer input value, or
2096 * 2) A real number input value but no floating output choices.
2097 * Alternately, we have a DECIMAL output available and an integer input.
2099 * So, place the integer value into pVarDst, using the smallest type
2100 * possible and preferring signed over unsigned types.
2102 BOOL bOverflow = FALSE, bNegative;
2106 /* Convert the integer part of the number into a UI8 */
2107 for (i = 0; i < wholeNumberDigits; i++)
2109 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2111 TRACE("Overflow multiplying digits\n");
2115 ul64 = ul64 * 10 + rgbDig[i];
2118 /* Account for the scale of the number */
2119 if (!bOverflow && multiplier10)
2121 for (i = 0; i < multiplier10; i++)
2123 if (ul64 > (UI8_MAX / 10))
2125 TRACE("Overflow scaling number\n");
2133 /* If we have any fractional digits, round the value.
2134 * Note we don't have to do this if divisor10 is < 1,
2135 * because this means the fractional part must be < 0.5
2137 if (!bOverflow && fractionalDigits && divisor10 > 0)
2139 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2140 BOOL bAdjust = FALSE;
2142 TRACE("first decimal value is %d\n", *fracDig);
2145 bAdjust = TRUE; /* > 0.5 */
2146 else if (*fracDig == 5)
2148 for (i = 1; i < fractionalDigits; i++)
2152 bAdjust = TRUE; /* > 0.5 */
2156 /* If exactly 0.5, round only odd values */
2157 if (i == fractionalDigits && (ul64 & 1))
2163 if (ul64 == UI8_MAX)
2165 TRACE("Overflow after rounding\n");
2172 /* Zero is not a negative number */
2173 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2175 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2177 /* For negative integers, try the signed types in size order */
2178 if (!bOverflow && bNegative)
2180 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2182 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2184 V_VT(pVarDst) = VT_I1;
2185 V_I1(pVarDst) = -ul64;
2188 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2190 V_VT(pVarDst) = VT_I2;
2191 V_I2(pVarDst) = -ul64;
2194 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2196 V_VT(pVarDst) = VT_I4;
2197 V_I4(pVarDst) = -ul64;
2200 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2202 V_VT(pVarDst) = VT_I8;
2203 V_I8(pVarDst) = -ul64;
2206 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2208 /* Decimal is only output choice left - fast path */
2209 V_VT(pVarDst) = VT_DECIMAL;
2210 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2211 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2212 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2217 else if (!bOverflow)
2219 /* For positive integers, try signed then unsigned types in size order */
2220 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2222 V_VT(pVarDst) = VT_I1;
2223 V_I1(pVarDst) = ul64;
2226 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2228 V_VT(pVarDst) = VT_UI1;
2229 V_UI1(pVarDst) = ul64;
2232 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2234 V_VT(pVarDst) = VT_I2;
2235 V_I2(pVarDst) = ul64;
2238 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2240 V_VT(pVarDst) = VT_UI2;
2241 V_UI2(pVarDst) = ul64;
2244 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2246 V_VT(pVarDst) = VT_I4;
2247 V_I4(pVarDst) = ul64;
2250 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2252 V_VT(pVarDst) = VT_UI4;
2253 V_UI4(pVarDst) = ul64;
2256 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2258 V_VT(pVarDst) = VT_I8;
2259 V_I8(pVarDst) = ul64;
2262 else if (dwVtBits & VTBIT_UI8)
2264 V_VT(pVarDst) = VT_UI8;
2265 V_UI8(pVarDst) = ul64;
2268 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2270 /* Decimal is only output choice left - fast path */
2271 V_VT(pVarDst) = VT_DECIMAL;
2272 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2273 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2274 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2280 if (dwVtBits & REAL_VTBITS)
2282 /* Try to put the number into a float or real */
2283 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2287 /* Convert the number into a double */
2288 for (i = 0; i < pNumprs->cDig; i++)
2289 whole = whole * 10.0 + rgbDig[i];
2291 TRACE("Whole double value is %16.16g\n", whole);
2293 /* Account for the scale */
2294 while (multiplier10 > 10)
2296 if (whole > dblMaximums[10])
2298 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2302 whole = whole * dblMultipliers[10];
2307 if (whole > dblMaximums[multiplier10])
2309 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2313 whole = whole * dblMultipliers[multiplier10];
2316 TRACE("Scaled double value is %16.16g\n", whole);
2318 while (divisor10 > 10)
2320 if (whole < dblMinimums[10] && whole != 0)
2322 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2326 whole = whole / dblMultipliers[10];
2331 if (whole < dblMinimums[divisor10] && whole != 0)
2333 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2337 whole = whole / dblMultipliers[divisor10];
2340 TRACE("Final double value is %16.16g\n", whole);
2342 if (dwVtBits & VTBIT_R4 &&
2343 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2345 TRACE("Set R4 to final value\n");
2346 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2347 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2351 if (dwVtBits & VTBIT_R8)
2353 TRACE("Set R8 to final value\n");
2354 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2355 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2359 if (dwVtBits & VTBIT_CY)
2361 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2363 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2364 TRACE("Set CY to final value\n");
2367 TRACE("Value Overflows CY\n");
2371 if (dwVtBits & VTBIT_DECIMAL)
2376 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2378 DECIMAL_SETZERO(*pDec);
2381 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2382 DEC_SIGN(pDec) = DECIMAL_NEG;
2384 DEC_SIGN(pDec) = DECIMAL_POS;
2386 /* Factor the significant digits */
2387 for (i = 0; i < pNumprs->cDig; i++)
2389 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2390 carry = (ULONG)(tmp >> 32);
2391 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2392 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2393 carry = (ULONG)(tmp >> 32);
2394 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2395 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2396 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2398 if (tmp >> 32 & UI4_MAX)
2400 VarNumFromParseNum_DecOverflow:
2401 TRACE("Overflow\n");
2402 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2403 return DISP_E_OVERFLOW;
2407 /* Account for the scale of the number */
2408 while (multiplier10 > 0)
2410 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2411 carry = (ULONG)(tmp >> 32);
2412 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2413 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2414 carry = (ULONG)(tmp >> 32);
2415 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2416 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2417 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2419 if (tmp >> 32 & UI4_MAX)
2420 goto VarNumFromParseNum_DecOverflow;
2423 DEC_SCALE(pDec) = divisor10;
2425 V_VT(pVarDst) = VT_DECIMAL;
2428 return DISP_E_OVERFLOW; /* No more output choices */
2431 /**********************************************************************
2432 * VarCat [OLEAUT32.318]
2434 * Concatenates one variant onto another.
2437 * left [I] First variant
2438 * right [I] Second variant
2439 * result [O] Result variant
2443 * Failure: An HRESULT error code indicating the error.
2445 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2447 VARTYPE leftvt,rightvt,resultvt;
2449 static const WCHAR str_true[] = {'T','r','u','e','\0'};
2450 static const WCHAR str_false[] = {'F','a','l','s','e','\0'};
2451 static const WCHAR sz_empty[] = {'\0'};
2452 leftvt = V_VT(left);
2453 rightvt = V_VT(right);
2455 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2456 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2458 /* when both left and right are NULL the result is NULL */
2459 if (leftvt == VT_NULL && rightvt == VT_NULL)
2461 V_VT(out) = VT_NULL;
2466 resultvt = VT_EMPTY;
2468 /* There are many special case for errors and return types */
2469 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2470 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2471 hres = DISP_E_TYPEMISMATCH;
2472 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2473 leftvt == VT_R4 || leftvt == VT_R8 ||
2474 leftvt == VT_CY || leftvt == VT_BOOL ||
2475 leftvt == VT_BSTR || leftvt == VT_I1 ||
2476 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2477 leftvt == VT_UI4 || leftvt == VT_I8 ||
2478 leftvt == VT_UI8 || leftvt == VT_INT ||
2479 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2480 leftvt == VT_NULL || leftvt == VT_DATE ||
2481 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2483 (rightvt == VT_I2 || rightvt == VT_I4 ||
2484 rightvt == VT_R4 || rightvt == VT_R8 ||
2485 rightvt == VT_CY || rightvt == VT_BOOL ||
2486 rightvt == VT_BSTR || rightvt == VT_I1 ||
2487 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2488 rightvt == VT_UI4 || rightvt == VT_I8 ||
2489 rightvt == VT_UI8 || rightvt == VT_INT ||
2490 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2491 rightvt == VT_NULL || rightvt == VT_DATE ||
2492 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2494 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2495 hres = DISP_E_TYPEMISMATCH;
2496 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2497 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2498 hres = DISP_E_TYPEMISMATCH;
2499 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2500 rightvt == VT_DECIMAL)
2501 hres = DISP_E_BADVARTYPE;
2502 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2503 hres = DISP_E_TYPEMISMATCH;
2504 else if (leftvt == VT_VARIANT)
2505 hres = DISP_E_TYPEMISMATCH;
2506 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2507 leftvt == VT_NULL || leftvt == VT_I2 ||
2508 leftvt == VT_I4 || leftvt == VT_R4 ||
2509 leftvt == VT_R8 || leftvt == VT_CY ||
2510 leftvt == VT_DATE || leftvt == VT_BSTR ||
2511 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2512 leftvt == VT_I1 || leftvt == VT_UI1 ||
2513 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2514 leftvt == VT_I8 || leftvt == VT_UI8 ||
2515 leftvt == VT_INT || leftvt == VT_UINT))
2516 hres = DISP_E_TYPEMISMATCH;
2518 hres = DISP_E_BADVARTYPE;
2520 /* if resutl type is not S_OK, then no need to go further */
2523 V_VT(out) = resultvt;
2526 /* Else proceed with formatting inputs to strings */
2529 VARIANT bstrvar_left, bstrvar_right;
2530 V_VT(out) = VT_BSTR;
2532 VariantInit(&bstrvar_left);
2533 VariantInit(&bstrvar_right);
2535 /* Convert left side variant to string */
2536 if (leftvt != VT_BSTR)
2538 if (leftvt == VT_BOOL)
2540 /* Bools are handled as True/False strings instead of 0/-1 as in MSDN */
2541 V_VT(&bstrvar_left) = VT_BSTR;
2542 if (V_BOOL(left) == TRUE)
2543 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2545 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2547 /* Fill with empty string for later concat with right side */
2548 else if (leftvt == VT_NULL)
2550 V_VT(&bstrvar_left) = VT_BSTR;
2551 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2555 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2557 VariantClear(&bstrvar_left);
2558 VariantClear(&bstrvar_right);
2559 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2560 rightvt == VT_NULL || rightvt == VT_I2 ||
2561 rightvt == VT_I4 || rightvt == VT_R4 ||
2562 rightvt == VT_R8 || rightvt == VT_CY ||
2563 rightvt == VT_DATE || rightvt == VT_BSTR ||
2564 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2565 rightvt == VT_I1 || rightvt == VT_UI1 ||
2566 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2567 rightvt == VT_I8 || rightvt == VT_UI8 ||
2568 rightvt == VT_INT || rightvt == VT_UINT))
2569 return DISP_E_BADVARTYPE;
2575 /* convert right side variant to string */
2576 if (rightvt != VT_BSTR)
2578 if (rightvt == VT_BOOL)
2580 /* Bools are handled as True/False strings instead of 0/-1 as in MSDN */
2581 V_VT(&bstrvar_right) = VT_BSTR;
2582 if (V_BOOL(right) == TRUE)
2583 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2585 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2587 /* Fill with empty string for later concat with right side */
2588 else if (rightvt == VT_NULL)
2590 V_VT(&bstrvar_right) = VT_BSTR;
2591 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2595 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2597 VariantClear(&bstrvar_left);
2598 VariantClear(&bstrvar_right);
2599 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2600 leftvt == VT_NULL || leftvt == VT_I2 ||
2601 leftvt == VT_I4 || leftvt == VT_R4 ||
2602 leftvt == VT_R8 || leftvt == VT_CY ||
2603 leftvt == VT_DATE || leftvt == VT_BSTR ||
2604 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2605 leftvt == VT_I1 || leftvt == VT_UI1 ||
2606 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2607 leftvt == VT_I8 || leftvt == VT_UI8 ||
2608 leftvt == VT_INT || leftvt == VT_UINT))
2609 return DISP_E_BADVARTYPE;
2615 /* Concat the resulting strings together */
2616 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2617 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2618 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2619 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2620 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2621 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2622 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2623 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2625 VariantClear(&bstrvar_left);
2626 VariantClear(&bstrvar_right);
2632 /* Wrapper around VariantChangeTypeEx() which permits changing a
2633 variant with VT_RESERVED flag set. Needed by VarCmp. */
2634 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2635 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2640 flags = V_VT(pvargSrc) & ~VT_TYPEMASK;
2641 V_VT(pvargSrc) &= ~VT_RESERVED;
2642 res = VariantChangeTypeEx(pvargDest,pvargSrc,lcid,wFlags,vt);
2643 V_VT(pvargSrc) |= flags;
2648 /**********************************************************************
2649 * VarCmp [OLEAUT32.176]
2651 * Compare two variants.
2654 * left [I] First variant
2655 * right [I] Second variant
2656 * lcid [I] LCID (locale identifier) for the comparison
2657 * flags [I] Flags to be used in the comparision:
2658 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2659 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2662 * VARCMP_LT: left variant is less than right variant.
2663 * VARCMP_EQ: input variants are equal.
2664 * VARCMP_GT: left variant is greater than right variant.
2665 * VARCMP_NULL: either one of the input variants is NULL.
2666 * Failure: An HRESULT error code indicating the error.
2669 * Native VarCmp up to and including WinXP dosn't like as input variants
2670 * I1, UI2, VT_UI4, UI8 and UINT. INT is accepted only as left variant.
2672 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2673 * an ERROR variant will trigger an error.
2675 * Both input variants can have VT_RESERVED flag set which is ignored
2676 * unless one and only one of the variants is a BSTR and the other one
2677 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2678 * different meaning:
2679 * - BSTR and other: BSTR is always greater than the other variant.
2680 * - BSTR|VT_RESERVED and other: a string comparision is performed.
2681 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2682 * comparision will take place else the BSTR is always greater.
2683 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2684 * variant is ignored and the return value depends only on the sign
2685 * of the BSTR if it is a number else the BSTR is always greater. A
2686 * positive BSTR is greater, a negative one is smaller than the other
2690 * VarBstrCmp for the lcid and flags usage.
2692 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2694 VARTYPE lvt, rvt, vt;
2699 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left, debugstr_VT(left),
2700 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2702 lvt = V_VT(left) & VT_TYPEMASK;
2703 rvt = V_VT(right) & VT_TYPEMASK;
2704 xmask = (1 << lvt) | (1 << rvt);
2706 /* If we have any flag set except VT_RESERVED bail out.
2707 Same for the left input variant type > VT_INT and for the
2708 right input variant type > VT_I8. Yes, VT_INT is only supported
2709 as left variant. Go figure */
2710 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2711 lvt > VT_INT || rvt > VT_I8) {
2712 return DISP_E_BADVARTYPE;
2715 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2716 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2717 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2718 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2719 return DISP_E_TYPEMISMATCH;
2721 /* If both variants are VT_ERROR return VARCMP_EQ */
2722 if (xmask == VTBIT_ERROR)
2724 else if (xmask & VTBIT_ERROR)
2725 return DISP_E_TYPEMISMATCH;
2727 if (xmask & VTBIT_NULL)
2733 /* Two BSTRs, ignore VT_RESERVED */
2734 if (xmask == VTBIT_BSTR)
2735 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2737 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2738 if (xmask & VTBIT_BSTR) {
2739 VARIANT *bstrv, *nonbv;
2743 /* Swap the variants so the BSTR is always on the left */
2744 if (lvt == VT_BSTR) {
2755 /* BSTR and EMPTY: ignore VT_RESERVED */
2756 if (nonbvt == VT_EMPTY)
2757 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2759 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2760 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2762 if (!breserv && !nreserv)
2763 /* No VT_RESERVED set ==> BSTR always greater */
2765 else if (breserv && !nreserv) {
2766 /* BSTR has VT_RESERVED set. Do a string comparision */
2767 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2770 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2771 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2772 /* Non NULL nor empty BSTR */
2773 /* If the BSTR is not a number the BSTR is greater */
2774 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2777 else if (breserv && nreserv)
2778 /* FIXME: This is strange: with both VT_RESERVED set it
2779 looks like the result depends only on the sign of
2781 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2783 /* Numeric comparision, will be handled below.
2784 VARCMP_NULL used only to break out. */
2789 /* Empty or NULL BSTR */
2792 /* Fixup the return code if we swapped left and right */
2794 if (rc == VARCMP_GT)
2796 else if (rc == VARCMP_LT)
2799 if (rc != VARCMP_NULL)
2803 if (xmask & VTBIT_DECIMAL)
2805 else if (xmask & VTBIT_BSTR)
2807 else if (xmask & VTBIT_R4)
2809 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2811 else if (xmask & VTBIT_CY)
2817 /* Coerce the variants */
2818 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2819 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2820 /* Overflow, change to R8 */
2822 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2826 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2827 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2828 /* Overflow, change to R8 */
2830 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2833 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2838 #define _VARCMP(a,b) \
2839 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2843 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2845 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2847 return _VARCMP(V_I8(&lv), V_I8(&rv));
2849 return _VARCMP(V_R4(&lv), V_R4(&rv));
2851 return _VARCMP(V_R8(&lv), V_R8(&rv));
2853 /* We should never get here */
2859 /**********************************************************************
2860 * VarAnd [OLEAUT32.142]
2862 * Computes the logical AND of two variants.
2865 * left [I] First variant
2866 * right [I] Second variant
2867 * result [O] Result variant
2871 * Failure: An HRESULT error code indicating the error.
2873 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2875 HRESULT hres = S_OK;
2876 VARTYPE resvt = VT_EMPTY;
2877 VARTYPE leftvt,rightvt;
2878 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2879 VARIANT varLeft, varRight;
2881 VariantInit(&varLeft);
2882 VariantInit(&varRight);
2884 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2885 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2887 leftvt = V_VT(left)&VT_TYPEMASK;
2888 rightvt = V_VT(right)&VT_TYPEMASK;
2889 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2890 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2892 if (leftExtraFlags != rightExtraFlags)
2893 return DISP_E_BADVARTYPE;
2894 ExtraFlags = leftExtraFlags;
2896 /* Native VarAnd always returns a error when using any extra
2897 * flags or if the variant combination is I8 and INT.
2899 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2900 (leftvt == VT_INT && rightvt == VT_I8) ||
2902 return DISP_E_BADVARTYPE;
2904 /* Determine return type */
2905 else if (leftvt == VT_I8 || rightvt == VT_I8)
2907 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2908 leftvt == VT_UINT || rightvt == VT_UINT ||
2909 leftvt == VT_INT || rightvt == VT_INT ||
2910 leftvt == VT_UINT || rightvt == VT_UINT ||
2911 leftvt == VT_R4 || rightvt == VT_R4 ||
2912 leftvt == VT_R8 || rightvt == VT_R8 ||
2913 leftvt == VT_CY || rightvt == VT_CY ||
2914 leftvt == VT_DATE || rightvt == VT_DATE ||
2915 leftvt == VT_I1 || rightvt == VT_I1 ||
2916 leftvt == VT_UI2 || rightvt == VT_UI2 ||
2917 leftvt == VT_UI4 || rightvt == VT_UI4 ||
2918 leftvt == VT_UI8 || rightvt == VT_UI8 ||
2919 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2921 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
2922 leftvt == VT_I2 || rightvt == VT_I2 ||
2923 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
2924 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
2925 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
2926 (leftvt == VT_UI1 && rightvt == VT_UI1))
2930 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
2931 (leftvt == VT_BSTR && rightvt == VT_BSTR))
2933 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
2934 leftvt == VT_BSTR || rightvt == VT_BSTR)
2937 return DISP_E_BADVARTYPE;
2939 if (leftvt == VT_NULL || rightvt == VT_NULL)
2942 * Special cases for when left variant is VT_NULL
2943 * (NULL & 0 = NULL, NULL & value = value)
2945 if (leftvt == VT_NULL)
2950 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
2951 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
2952 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
2953 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
2954 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
2955 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
2956 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
2957 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
2958 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
2959 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
2960 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
2961 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
2962 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
2964 if(V_CY(right).int64)
2968 if (DEC_HI32(&V_DECIMAL(right)) ||
2969 DEC_LO64(&V_DECIMAL(right)))
2973 hres = VarBoolFromStr(V_BSTR(right),
2974 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
2978 V_VT(result) = VT_NULL;
2981 V_VT(result) = VT_BOOL;
2987 V_VT(result) = resvt;
2991 hres = VariantCopy(&varLeft, left);
2992 if (FAILED(hres)) goto VarAnd_Exit;
2994 hres = VariantCopy(&varRight, right);
2995 if (FAILED(hres)) goto VarAnd_Exit;
2997 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
2998 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3003 if (V_VT(&varLeft) == VT_BSTR &&
3004 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3005 LOCALE_USER_DEFAULT, 0, &d)))
3006 hres = VariantChangeType(&varLeft,&varLeft,
3007 VARIANT_LOCALBOOL, VT_BOOL);
3008 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3009 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3010 if (FAILED(hres)) goto VarAnd_Exit;
3013 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3014 V_VT(&varRight) = VT_I4; /* Don't overflow */
3019 if (V_VT(&varRight) == VT_BSTR &&
3020 FAILED(VarR8FromStr(V_BSTR(&varRight),
3021 LOCALE_USER_DEFAULT, 0, &d)))
3022 hres = VariantChangeType(&varRight, &varRight,
3023 VARIANT_LOCALBOOL, VT_BOOL);
3024 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3025 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3026 if (FAILED(hres)) goto VarAnd_Exit;
3029 V_VT(result) = resvt;
3033 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3036 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3039 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3042 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3045 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3048 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3053 VariantClear(&varLeft);
3054 VariantClear(&varRight);
3059 /**********************************************************************
3060 * VarAdd [OLEAUT32.141]
3065 * left [I] First variant
3066 * right [I] Second variant
3067 * result [O] Result variant
3071 * Failure: An HRESULT error code indicating the error.
3074 * Native VarAdd up to and including WinXP dosn't like as input variants
3075 * I1, UI2, UI4, UI8, INT and UINT.
3077 * Native VarAdd dosn't check for NULL in/out pointers and crashes. We do the
3081 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3084 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3087 VARTYPE lvt, rvt, resvt, tvt;
3091 /* Variant priority for coercion. Sorted from lowest to highest.
3092 VT_ERROR shows an invalid input variant type. */
3093 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3094 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3096 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3097 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3098 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3099 VT_NULL, VT_ERROR };
3101 /* Mapping for coercion from input variant to priority of result variant. */
3102 static const VARTYPE coerce[] = {
3103 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3104 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3105 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3106 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3107 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3108 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3109 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3110 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3113 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3114 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3120 lvt = V_VT(left)&VT_TYPEMASK;
3121 rvt = V_VT(right)&VT_TYPEMASK;
3123 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3124 Same for any input variant type > VT_I8 */
3125 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3126 lvt > VT_I8 || rvt > VT_I8) {
3127 hres = DISP_E_BADVARTYPE;
3131 /* Determine the variant type to coerce to. */
3132 if (coerce[lvt] > coerce[rvt]) {
3133 resvt = prio2vt[coerce[lvt]];
3134 tvt = prio2vt[coerce[rvt]];
3136 resvt = prio2vt[coerce[rvt]];
3137 tvt = prio2vt[coerce[lvt]];
3140 /* Special cases where the result variant type is defined by both
3141 input variants and not only that with the highest priority */
3142 if (resvt == VT_BSTR) {
3143 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3148 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3151 /* For overflow detection use the biggest compatible type for the
3155 hres = DISP_E_BADVARTYPE;
3159 V_VT(result) = VT_NULL;
3162 FIXME("cannot handle variant type VT_DISPATCH\n");
3163 hres = DISP_E_TYPEMISMATCH;
3182 /* Now coerce the variants */
3183 hres = VariantChangeType(&lv, left, 0, tvt);
3186 hres = VariantChangeType(&rv, right, 0, tvt);
3192 V_VT(result) = resvt;
3195 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3196 &V_DECIMAL(result));
3199 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3202 /* We do not add those, we concatenate them. */
3203 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3206 /* Overflow detection */
3207 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3208 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3209 V_VT(result) = VT_R8;
3210 V_R8(result) = r8res;
3214 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3219 /* FIXME: overflow detection */
3220 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3223 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3227 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3228 /* Overflow! Change to the vartype with the next higher priority.
3229 With one exception: I4 ==> R8 even if it would fit in I8 */
3233 resvt = prio2vt[coerce[resvt] + 1];
3234 hres = VariantChangeType(result, &tv, 0, resvt);
3237 hres = VariantCopy(result, &tv);
3241 V_VT(result) = VT_EMPTY;
3242 V_I4(result) = 0; /* No V_EMPTY */
3247 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3251 /**********************************************************************
3252 * VarMul [OLEAUT32.156]
3254 * Multiply two variants.
3257 * left [I] First variant
3258 * right [I] Second variant
3259 * result [O] Result variant
3263 * Failure: An HRESULT error code indicating the error.
3266 * Native VarMul up to and including WinXP dosn't like as input variants
3267 * I1, UI2, UI4, UI8, INT and UINT. But it can multiply apples with oranges.
3269 * Native VarMul dosn't check for NULL in/out pointers and crashes. We do the
3273 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3276 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3279 VARTYPE lvt, rvt, resvt, tvt;
3283 /* Variant priority for coercion. Sorted from lowest to highest.
3284 VT_ERROR shows an invalid input variant type. */
3285 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3286 vt_DECIMAL, vt_NULL, vt_ERROR };
3287 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3288 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3289 VT_DECIMAL, VT_NULL, VT_ERROR };
3291 /* Mapping for coercion from input variant to priority of result variant. */
3292 static const VARTYPE coerce[] = {
3293 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3294 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3295 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3296 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3297 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3298 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3299 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3300 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3303 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3304 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3310 lvt = V_VT(left)&VT_TYPEMASK;
3311 rvt = V_VT(right)&VT_TYPEMASK;
3313 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3314 Same for any input variant type > VT_I8 */
3315 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3316 lvt > VT_I8 || rvt > VT_I8) {
3317 hres = DISP_E_BADVARTYPE;
3321 /* Determine the variant type to coerce to. */
3322 if (coerce[lvt] > coerce[rvt]) {
3323 resvt = prio2vt[coerce[lvt]];
3324 tvt = prio2vt[coerce[rvt]];
3326 resvt = prio2vt[coerce[rvt]];
3327 tvt = prio2vt[coerce[lvt]];
3330 /* Special cases where the result variant type is defined by both
3331 input variants and not only that with the highest priority */
3332 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3334 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3337 /* For overflow detection use the biggest compatible type for the
3341 hres = DISP_E_BADVARTYPE;
3345 V_VT(result) = VT_NULL;
3360 /* Now coerce the variants */
3361 hres = VariantChangeType(&lv, left, 0, tvt);
3364 hres = VariantChangeType(&rv, right, 0, tvt);
3371 V_VT(result) = resvt;
3374 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3375 &V_DECIMAL(result));
3378 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3381 /* Overflow detection */
3382 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3383 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3384 V_VT(result) = VT_R8;
3385 V_R8(result) = r8res;
3388 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3391 /* FIXME: overflow detection */
3392 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3395 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3399 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3400 /* Overflow! Change to the vartype with the next higher priority.
3401 With one exception: I4 ==> R8 even if it would fit in I8 */
3405 resvt = prio2vt[coerce[resvt] + 1];
3408 hres = VariantCopy(result, &tv);
3412 V_VT(result) = VT_EMPTY;
3413 V_I4(result) = 0; /* No V_EMPTY */
3418 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3422 /**********************************************************************
3423 * VarDiv [OLEAUT32.143]
3425 * Divides one variant with another.
3428 * left [I] First variant
3429 * right [I] Second variant
3430 * result [O] Result variant
3434 * Failure: An HRESULT error code indicating the error.
3436 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3438 HRESULT hres = S_OK;
3439 VARTYPE resvt = VT_EMPTY;
3440 VARTYPE leftvt,rightvt;
3441 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3444 leftvt = V_VT(left)&VT_TYPEMASK;
3445 rightvt = V_VT(right)&VT_TYPEMASK;
3446 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3447 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3449 if (leftExtraFlags != rightExtraFlags)
3450 return DISP_E_BADVARTYPE;
3451 ExtraFlags = leftExtraFlags;
3453 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3454 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3456 /* Native VarPow always returns a error when using any extra flags */
3457 if (ExtraFlags != 0)
3458 return DISP_E_BADVARTYPE;
3460 /* Determine return type */
3461 if (!(rightvt == VT_EMPTY))
3463 if (leftvt == VT_NULL || rightvt == VT_NULL)
3465 V_VT(result) = VT_NULL;
3468 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3470 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3471 leftvt == VT_CY || rightvt == VT_CY ||
3472 leftvt == VT_DATE || rightvt == VT_DATE ||
3473 leftvt == VT_I4 || rightvt == VT_I4 ||
3474 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3475 leftvt == VT_I2 || rightvt == VT_I2 ||
3476 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3477 leftvt == VT_R8 || rightvt == VT_R8 ||
3478 leftvt == VT_UI1 || rightvt == VT_UI1)
3480 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3481 (leftvt == VT_R4 && rightvt == VT_UI1))
3483 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3484 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3485 (leftvt == VT_BOOL || leftvt == VT_I2)))
3490 else if (leftvt == VT_R4 || rightvt == VT_R4)
3493 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3495 V_VT(result) = VT_NULL;
3499 return DISP_E_BADVARTYPE;
3504 /* coerce to the result type */
3505 hres = VariantChangeType(&lv, left, 0, resvt);
3513 hres = VariantChangeType(&rv, right, 0, resvt);
3522 V_VT(result) = resvt;
3526 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3528 hres = DISP_E_OVERFLOW;
3529 V_VT(result) = VT_EMPTY;
3531 else if (V_R4(&rv) == 0.0)
3533 hres = DISP_E_DIVBYZERO;
3534 V_VT(result) = VT_EMPTY;
3537 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3540 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3542 hres = DISP_E_OVERFLOW;
3543 V_VT(result) = VT_EMPTY;
3545 else if (V_R8(&rv) == 0.0)
3547 hres = DISP_E_DIVBYZERO;
3548 V_VT(result) = VT_EMPTY;
3551 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3554 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3564 /**********************************************************************
3565 * VarSub [OLEAUT32.159]
3567 * Subtract two variants.
3570 * left [I] First variant
3571 * right [I] Second variant
3572 * result [O] Result variant
3576 * Failure: An HRESULT error code indicating the error.
3578 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3580 HRESULT hres = S_OK;
3581 VARTYPE resvt = VT_EMPTY;
3582 VARTYPE leftvt,rightvt;
3583 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3586 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3587 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3589 leftvt = V_VT(left)&VT_TYPEMASK;
3590 rightvt = V_VT(right)&VT_TYPEMASK;
3591 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3592 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3594 if (leftExtraFlags != rightExtraFlags)
3595 return DISP_E_BADVARTYPE;
3596 ExtraFlags = leftExtraFlags;
3598 /* determine return type and return code */
3599 /* All extra flags produce errors */
3600 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3601 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3602 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3603 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3604 ExtraFlags == VT_VECTOR ||
3605 ExtraFlags == VT_BYREF ||
3606 ExtraFlags == VT_RESERVED)
3607 return DISP_E_BADVARTYPE;
3608 else if (ExtraFlags >= VT_ARRAY)
3609 return DISP_E_TYPEMISMATCH;
3610 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3611 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3612 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3613 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3614 leftvt == VT_I1 || rightvt == VT_I1 ||
3615 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3616 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3617 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3618 leftvt == VT_INT || rightvt == VT_INT ||
3619 leftvt == VT_UINT || rightvt == VT_UINT ||
3620 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3621 leftvt == VT_RECORD || rightvt == VT_RECORD)
3623 if (leftvt == VT_RECORD && rightvt == VT_I8)
3624 return DISP_E_TYPEMISMATCH;
3625 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3626 return DISP_E_TYPEMISMATCH;
3627 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3628 return DISP_E_TYPEMISMATCH;
3629 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3630 return DISP_E_TYPEMISMATCH;
3631 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3632 return DISP_E_BADVARTYPE;
3634 return DISP_E_BADVARTYPE;
3636 /* The following flags/types are invalid for left variant */
3637 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3638 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3639 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3640 return DISP_E_BADVARTYPE;
3641 /* The following flags/types are invalid for right variant */
3642 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3643 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3644 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3645 return DISP_E_BADVARTYPE;
3646 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3647 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3649 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3650 leftvt == VT_ERROR || rightvt == VT_ERROR)
3651 return DISP_E_TYPEMISMATCH;
3652 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3654 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3655 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3656 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3657 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3659 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3661 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3663 else if (leftvt == VT_CY || rightvt == VT_CY)
3665 else if (leftvt == VT_R8 || rightvt == VT_R8)
3667 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3669 else if (leftvt == VT_R4 || rightvt == VT_R4)
3671 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3672 leftvt == VT_I8 || rightvt == VT_I8)
3677 else if (leftvt == VT_I8 || rightvt == VT_I8)
3679 else if (leftvt == VT_I4 || rightvt == VT_I4)
3681 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3682 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3683 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3685 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3688 return DISP_E_TYPEMISMATCH;
3693 /* coerce to the result type */
3694 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3695 hres = VariantChangeType(&lv, left, 0, VT_R8);
3697 hres = VariantChangeType(&lv, left, 0, resvt);
3704 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3705 hres = VariantChangeType(&rv, right, 0, VT_R8);
3707 hres = VariantChangeType(&rv, right, 0, resvt);
3716 V_VT(result) = resvt;
3722 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3725 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3728 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3731 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3734 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3737 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3740 V_I1(result) = V_I1(&lv) - V_I1(&rv);
3743 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3746 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3749 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3760 /**********************************************************************
3761 * VarOr [OLEAUT32.157]
3763 * Perform a logical or (OR) operation on two variants.
3766 * pVarLeft [I] First variant
3767 * pVarRight [I] Variant to OR with pVarLeft
3768 * pVarOut [O] Destination for OR result
3771 * Success: S_OK. pVarOut contains the result of the operation with its type
3772 * taken from the table listed under VarXor().
3773 * Failure: An HRESULT error code indicating the error.
3776 * See the Notes section of VarXor() for further information.
3778 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3781 VARIANT varLeft, varRight, varStr;
3784 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3785 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3786 debugstr_VF(pVarRight), pVarOut);
3788 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3789 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3790 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3791 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3792 return DISP_E_BADVARTYPE;
3794 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3796 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3798 /* NULL OR Zero is NULL, NULL OR value is value */
3799 if (V_VT(pVarLeft) == VT_NULL)
3800 pVarLeft = pVarRight; /* point to the non-NULL var */
3802 V_VT(pVarOut) = VT_NULL;
3805 switch (V_VT(pVarLeft))
3807 case VT_DATE: case VT_R8:
3812 if (V_BOOL(pVarLeft))
3813 *pVarOut = *pVarLeft;
3815 case VT_I2: case VT_UI2:
3824 if (V_UI1(pVarLeft))
3825 *pVarOut = *pVarLeft;
3831 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
3836 if (V_CY(pVarLeft).int64)
3839 case VT_I8: case VT_UI8:
3844 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
3851 if (!V_BSTR(pVarLeft))
3852 return DISP_E_BADVARTYPE;
3854 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3855 if (SUCCEEDED(hRet) && b)
3857 V_VT(pVarOut) = VT_BOOL;
3858 V_BOOL(pVarOut) = b;
3862 case VT_NULL: case VT_EMPTY:
3863 V_VT(pVarOut) = VT_NULL;
3866 return DISP_E_BADVARTYPE;
3870 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3872 if (V_VT(pVarLeft) == VT_EMPTY)
3873 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3876 /* Since one argument is empty (0), OR'ing it with the other simply
3877 * gives the others value (as 0|x => x). So just convert the other
3878 * argument to the required result type.
3880 switch (V_VT(pVarLeft))
3883 if (!V_BSTR(pVarLeft))
3884 return DISP_E_BADVARTYPE;
3886 hRet = VariantCopy(&varStr, pVarLeft);
3890 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3893 /* Fall Through ... */
3894 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3895 V_VT(pVarOut) = VT_I2;
3897 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3898 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3899 case VT_INT: case VT_UINT: case VT_UI8:
3900 V_VT(pVarOut) = VT_I4;
3903 V_VT(pVarOut) = VT_I8;
3906 return DISP_E_BADVARTYPE;
3908 hRet = VariantCopy(&varLeft, pVarLeft);
3911 pVarLeft = &varLeft;
3912 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
3916 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3918 V_VT(pVarOut) = VT_BOOL;
3919 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
3923 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3925 V_VT(pVarOut) = VT_UI1;
3926 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
3930 if (V_VT(pVarLeft) == VT_BSTR)
3932 hRet = VariantCopy(&varStr, pVarLeft);
3936 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3941 if (V_VT(pVarLeft) == VT_BOOL &&
3942 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
3946 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3947 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
3948 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3949 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
3953 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3955 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3956 return DISP_E_TYPEMISMATCH;
3960 hRet = VariantCopy(&varLeft, pVarLeft);
3964 hRet = VariantCopy(&varRight, pVarRight);
3968 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3969 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3974 if (V_VT(&varLeft) == VT_BSTR &&
3975 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
3976 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
3977 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
3978 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3983 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
3984 V_VT(&varRight) = VT_I4; /* Don't overflow */
3989 if (V_VT(&varRight) == VT_BSTR &&
3990 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
3991 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
3992 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
3993 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4001 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4003 else if (vt == VT_I4)
4005 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4009 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4013 VariantClear(&varStr);
4014 VariantClear(&varLeft);
4015 VariantClear(&varRight);
4019 /**********************************************************************
4020 * VarAbs [OLEAUT32.168]
4022 * Convert a variant to its absolute value.
4025 * pVarIn [I] Source variant
4026 * pVarOut [O] Destination for converted value
4029 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4030 * Failure: An HRESULT error code indicating the error.
4033 * - This function does not process by-reference variants.
4034 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4035 * according to the following table:
4036 *| Input Type Output Type
4037 *| ---------- -----------
4040 *| (All others) Unchanged
4042 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4045 HRESULT hRet = S_OK;
4047 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4048 debugstr_VF(pVarIn), pVarOut);
4050 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4051 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4052 V_VT(pVarIn) == VT_ERROR)
4053 return DISP_E_TYPEMISMATCH;
4055 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4057 #define ABS_CASE(typ,min) \
4058 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4059 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4062 switch (V_VT(pVarIn))
4064 ABS_CASE(I1,I1_MIN);
4066 V_VT(pVarOut) = VT_I2;
4067 /* BOOL->I2, Fall through ... */
4068 ABS_CASE(I2,I2_MIN);
4070 ABS_CASE(I4,I4_MIN);
4071 ABS_CASE(I8,I8_MIN);
4072 ABS_CASE(R4,R4_MIN);
4074 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4077 V_VT(pVarOut) = VT_R8;
4079 /* Fall through ... */
4081 ABS_CASE(R8,R8_MIN);
4083 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4086 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4096 V_VT(pVarOut) = VT_I2;
4101 hRet = DISP_E_BADVARTYPE;
4107 /**********************************************************************
4108 * VarFix [OLEAUT32.169]
4110 * Truncate a variants value to a whole number.
4113 * pVarIn [I] Source variant
4114 * pVarOut [O] Destination for converted value
4117 * Success: S_OK. pVarOut contains the converted value.
4118 * Failure: An HRESULT error code indicating the error.
4121 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4122 * according to the following table:
4123 *| Input Type Output Type
4124 *| ---------- -----------
4128 *| All Others Unchanged
4129 * - The difference between this function and VarInt() is that VarInt() rounds
4130 * negative numbers away from 0, while this function rounds them towards zero.
4132 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4134 HRESULT hRet = S_OK;
4136 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4137 debugstr_VF(pVarIn), pVarOut);
4139 V_VT(pVarOut) = V_VT(pVarIn);
4141 switch (V_VT(pVarIn))
4144 V_UI1(pVarOut) = V_UI1(pVarIn);
4147 V_VT(pVarOut) = VT_I2;
4150 V_I2(pVarOut) = V_I2(pVarIn);
4153 V_I4(pVarOut) = V_I4(pVarIn);
4156 V_I8(pVarOut) = V_I8(pVarIn);
4159 if (V_R4(pVarIn) < 0.0f)
4160 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4162 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4165 V_VT(pVarOut) = VT_R8;
4166 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4171 if (V_R8(pVarIn) < 0.0)
4172 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4174 V_R8(pVarOut) = floor(V_R8(pVarIn));
4177 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4180 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4183 V_VT(pVarOut) = VT_I2;
4190 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4191 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4192 hRet = DISP_E_BADVARTYPE;
4194 hRet = DISP_E_TYPEMISMATCH;
4197 V_VT(pVarOut) = VT_EMPTY;
4202 /**********************************************************************
4203 * VarInt [OLEAUT32.172]
4205 * Truncate a variants value to a whole number.
4208 * pVarIn [I] Source variant
4209 * pVarOut [O] Destination for converted value
4212 * Success: S_OK. pVarOut contains the converted value.
4213 * Failure: An HRESULT error code indicating the error.
4216 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4217 * according to the following table:
4218 *| Input Type Output Type
4219 *| ---------- -----------
4223 *| All Others Unchanged
4224 * - The difference between this function and VarFix() is that VarFix() rounds
4225 * negative numbers towards 0, while this function rounds them away from zero.
4227 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4229 HRESULT hRet = S_OK;
4231 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4232 debugstr_VF(pVarIn), pVarOut);
4234 V_VT(pVarOut) = V_VT(pVarIn);
4236 switch (V_VT(pVarIn))
4239 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4242 V_VT(pVarOut) = VT_R8;
4243 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4248 V_R8(pVarOut) = floor(V_R8(pVarIn));
4251 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4254 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4257 return VarFix(pVarIn, pVarOut);
4263 /**********************************************************************
4264 * VarXor [OLEAUT32.167]
4266 * Perform a logical exclusive-or (XOR) operation on two variants.
4269 * pVarLeft [I] First variant
4270 * pVarRight [I] Variant to XOR with pVarLeft
4271 * pVarOut [O] Destination for XOR result
4274 * Success: S_OK. pVarOut contains the result of the operation with its type
4275 * taken from the table below).
4276 * Failure: An HRESULT error code indicating the error.
4279 * - Neither pVarLeft or pVarRight are modified by this function.
4280 * - This function does not process by-reference variants.
4281 * - Input types of VT_BSTR may be numeric strings or boolean text.
4282 * - The type of result stored in pVarOut depends on the types of pVarLeft
4283 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4284 * or VT_NULL if the function succeeds.
4285 * - Type promotion is inconsistent and as a result certain combinations of
4286 * values will return DISP_E_OVERFLOW even when they could be represented.
4287 * This matches the behaviour of native oleaut32.
4289 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4292 VARIANT varLeft, varRight;
4296 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4297 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4298 debugstr_VF(pVarRight), pVarOut);
4300 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4301 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4302 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4303 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4304 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4305 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4306 return DISP_E_BADVARTYPE;
4308 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4310 /* NULL XOR anything valid is NULL */
4311 V_VT(pVarOut) = VT_NULL;
4315 /* Copy our inputs so we don't disturb anything */
4316 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4318 hRet = VariantCopy(&varLeft, pVarLeft);
4322 hRet = VariantCopy(&varRight, pVarRight);
4326 /* Try any strings first as numbers, then as VT_BOOL */
4327 if (V_VT(&varLeft) == VT_BSTR)
4329 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4330 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4331 FAILED(hRet) ? VT_BOOL : VT_I4);
4336 if (V_VT(&varRight) == VT_BSTR)
4338 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4339 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4340 FAILED(hRet) ? VT_BOOL : VT_I4);
4345 /* Determine the result type */
4346 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4348 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4349 return DISP_E_TYPEMISMATCH;
4354 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4356 case (VT_BOOL << 16) | VT_BOOL:
4359 case (VT_UI1 << 16) | VT_UI1:
4362 case (VT_EMPTY << 16) | VT_EMPTY:
4363 case (VT_EMPTY << 16) | VT_UI1:
4364 case (VT_EMPTY << 16) | VT_I2:
4365 case (VT_EMPTY << 16) | VT_BOOL:
4366 case (VT_UI1 << 16) | VT_EMPTY:
4367 case (VT_UI1 << 16) | VT_I2:
4368 case (VT_UI1 << 16) | VT_BOOL:
4369 case (VT_I2 << 16) | VT_EMPTY:
4370 case (VT_I2 << 16) | VT_UI1:
4371 case (VT_I2 << 16) | VT_I2:
4372 case (VT_I2 << 16) | VT_BOOL:
4373 case (VT_BOOL << 16) | VT_EMPTY:
4374 case (VT_BOOL << 16) | VT_UI1:
4375 case (VT_BOOL << 16) | VT_I2:
4384 /* VT_UI4 does not overflow */
4387 if (V_VT(&varLeft) == VT_UI4)
4388 V_VT(&varLeft) = VT_I4;
4389 if (V_VT(&varRight) == VT_UI4)
4390 V_VT(&varRight) = VT_I4;
4393 /* Convert our input copies to the result type */
4394 if (V_VT(&varLeft) != vt)
4395 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4399 if (V_VT(&varRight) != vt)
4400 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4406 /* Calculate the result */
4410 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4413 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4417 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4420 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4425 VariantClear(&varLeft);
4426 VariantClear(&varRight);
4430 /**********************************************************************
4431 * VarEqv [OLEAUT32.172]
4433 * Determine if two variants contain the same value.
4436 * pVarLeft [I] First variant to compare
4437 * pVarRight [I] Variant to compare to pVarLeft
4438 * pVarOut [O] Destination for comparison result
4441 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4442 * if equivalent or non-zero otherwise.
4443 * Failure: An HRESULT error code indicating the error.
4446 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4449 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4453 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4454 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4455 debugstr_VF(pVarRight), pVarOut);
4457 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4458 if (SUCCEEDED(hRet))
4460 if (V_VT(pVarOut) == VT_I8)
4461 V_I8(pVarOut) = ~V_I8(pVarOut);
4463 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4468 /**********************************************************************
4469 * VarNeg [OLEAUT32.173]
4471 * Negate the value of a variant.
4474 * pVarIn [I] Source variant
4475 * pVarOut [O] Destination for converted value
4478 * Success: S_OK. pVarOut contains the converted value.
4479 * Failure: An HRESULT error code indicating the error.
4482 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4483 * according to the following table:
4484 *| Input Type Output Type
4485 *| ---------- -----------
4490 *| All Others Unchanged (unless promoted)
4491 * - Where the negated value of a variant does not fit in its base type, the type
4492 * is promoted according to the following table:
4493 *| Input Type Promoted To
4494 *| ---------- -----------
4498 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4499 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4500 * for types which are not valid. Since this is in contravention of the
4501 * meaning of those error codes and unlikely to be relied on by applications,
4502 * this implementation returns errors consistent with the other high level
4503 * variant math functions.
4505 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4507 HRESULT hRet = S_OK;
4509 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4510 debugstr_VF(pVarIn), pVarOut);
4512 V_VT(pVarOut) = V_VT(pVarIn);
4514 switch (V_VT(pVarIn))
4517 V_VT(pVarOut) = VT_I2;
4518 V_I2(pVarOut) = -V_UI1(pVarIn);
4521 V_VT(pVarOut) = VT_I2;
4524 if (V_I2(pVarIn) == I2_MIN)
4526 V_VT(pVarOut) = VT_I4;
4527 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4530 V_I2(pVarOut) = -V_I2(pVarIn);
4533 if (V_I4(pVarIn) == I4_MIN)
4535 V_VT(pVarOut) = VT_R8;
4536 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4539 V_I4(pVarOut) = -V_I4(pVarIn);
4542 if (V_I8(pVarIn) == I8_MIN)
4544 V_VT(pVarOut) = VT_R8;
4545 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4546 V_R8(pVarOut) *= -1.0;
4549 V_I8(pVarOut) = -V_I8(pVarIn);
4552 V_R4(pVarOut) = -V_R4(pVarIn);
4556 V_R8(pVarOut) = -V_R8(pVarIn);
4559 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4562 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4565 V_VT(pVarOut) = VT_R8;
4566 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4567 V_R8(pVarOut) = -V_R8(pVarOut);
4570 V_VT(pVarOut) = VT_I2;
4577 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4578 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4579 hRet = DISP_E_BADVARTYPE;
4581 hRet = DISP_E_TYPEMISMATCH;
4584 V_VT(pVarOut) = VT_EMPTY;
4589 /**********************************************************************
4590 * VarNot [OLEAUT32.174]
4592 * Perform a not operation on a variant.
4595 * pVarIn [I] Source variant
4596 * pVarOut [O] Destination for converted value
4599 * Success: S_OK. pVarOut contains the converted value.
4600 * Failure: An HRESULT error code indicating the error.
4603 * - Strictly speaking, this function performs a bitwise ones complement
4604 * on the variants value (after possibly converting to VT_I4, see below).
4605 * This only behaves like a boolean not operation if the value in
4606 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4607 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4608 * before calling this function.
4609 * - This function does not process by-reference variants.
4610 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4611 * according to the following table:
4612 *| Input Type Output Type
4613 *| ---------- -----------
4620 *| (All others) Unchanged
4622 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4625 HRESULT hRet = S_OK;
4627 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4628 debugstr_VF(pVarIn), pVarOut);
4630 V_VT(pVarOut) = V_VT(pVarIn);
4632 switch (V_VT(pVarIn))
4635 V_I4(pVarOut) = ~V_I1(pVarIn);
4636 V_VT(pVarOut) = VT_I4;
4638 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4640 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4642 V_I4(pVarOut) = ~V_UI2(pVarIn);
4643 V_VT(pVarOut) = VT_I4;
4646 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4650 /* Fall through ... */
4652 V_VT(pVarOut) = VT_I4;
4653 /* Fall through ... */
4654 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
4657 V_I4(pVarOut) = ~V_UI4(pVarIn);
4658 V_VT(pVarOut) = VT_I4;
4660 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
4662 V_I4(pVarOut) = ~V_UI8(pVarIn);
4663 V_VT(pVarOut) = VT_I4;
4666 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
4667 V_I4(pVarOut) = ~V_I4(pVarOut);
4668 V_VT(pVarOut) = VT_I4;
4671 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4675 /* Fall through ... */
4678 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4679 V_I4(pVarOut) = ~V_I4(pVarOut);
4680 V_VT(pVarOut) = VT_I4;
4683 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4684 V_I4(pVarOut) = ~V_I4(pVarOut);
4685 V_VT(pVarOut) = VT_I4;
4689 V_VT(pVarOut) = VT_I2;
4695 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4696 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4697 hRet = DISP_E_BADVARTYPE;
4699 hRet = DISP_E_TYPEMISMATCH;
4702 V_VT(pVarOut) = VT_EMPTY;
4707 /**********************************************************************
4708 * VarRound [OLEAUT32.175]
4710 * Perform a round operation on a variant.
4713 * pVarIn [I] Source variant
4714 * deci [I] Number of decimals to round to
4715 * pVarOut [O] Destination for converted value
4718 * Success: S_OK. pVarOut contains the converted value.
4719 * Failure: An HRESULT error code indicating the error.
4722 * - Floating point values are rounded to the desired number of decimals.
4723 * - Some integer types are just copied to the return variable.
4724 * - Some other integer types are not handled and fail.
4726 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
4729 HRESULT hRet = S_OK;
4732 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
4734 switch (V_VT(pVarIn))
4736 /* cases that fail on windows */
4741 hRet = DISP_E_BADVARTYPE;
4744 /* cases just copying in to out */
4746 V_VT(pVarOut) = V_VT(pVarIn);
4747 V_UI1(pVarOut) = V_UI1(pVarIn);
4750 V_VT(pVarOut) = V_VT(pVarIn);
4751 V_I2(pVarOut) = V_I2(pVarIn);
4754 V_VT(pVarOut) = V_VT(pVarIn);
4755 V_I4(pVarOut) = V_I4(pVarIn);
4758 V_VT(pVarOut) = V_VT(pVarIn);
4759 /* value unchanged */
4762 /* cases that change type */
4764 V_VT(pVarOut) = VT_I2;
4768 V_VT(pVarOut) = VT_I2;
4769 V_I2(pVarOut) = V_BOOL(pVarIn);
4772 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4777 /* Fall through ... */
4779 /* cases we need to do math */
4781 if (V_R8(pVarIn)>0) {
4782 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4784 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4786 V_VT(pVarOut) = V_VT(pVarIn);
4789 if (V_R4(pVarIn)>0) {
4790 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4792 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4794 V_VT(pVarOut) = V_VT(pVarIn);
4797 if (V_DATE(pVarIn)>0) {
4798 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4800 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4802 V_VT(pVarOut) = V_VT(pVarIn);
4808 factor=pow(10, 4-deci);
4810 if (V_CY(pVarIn).int64>0) {
4811 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
4813 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
4815 V_VT(pVarOut) = V_VT(pVarIn);
4818 /* cases we don't know yet */
4820 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4821 V_VT(pVarIn) & VT_TYPEMASK, deci);
4822 hRet = DISP_E_BADVARTYPE;
4826 V_VT(pVarOut) = VT_EMPTY;
4828 TRACE("returning 0x%08x (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
4829 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
4830 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
4835 /**********************************************************************
4836 * VarIdiv [OLEAUT32.153]
4838 * Converts input variants to integers and divides them.
4841 * left [I] Left hand variant
4842 * right [I] Right hand variant
4843 * result [O] Destination for quotient
4846 * Success: S_OK. result contains the quotient.
4847 * Failure: An HRESULT error code indicating the error.
4850 * If either expression is null, null is returned, as per MSDN
4852 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4854 HRESULT hres = S_OK;
4855 VARTYPE resvt = VT_EMPTY;
4856 VARTYPE leftvt,rightvt;
4857 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
4860 leftvt = V_VT(left)&VT_TYPEMASK;
4861 rightvt = V_VT(right)&VT_TYPEMASK;
4862 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
4863 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
4865 if (leftExtraFlags != rightExtraFlags)
4866 return DISP_E_BADVARTYPE;
4867 ExtraFlags = leftExtraFlags;
4869 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
4870 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
4872 /* Native VarIdiv always returns a error when using any extra
4873 * flags or if the variant combination is I8 and INT.
4875 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
4876 (leftvt == VT_INT && rightvt == VT_I8) ||
4877 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
4879 return DISP_E_BADVARTYPE;
4881 /* Determine variant type */
4882 else if (leftvt == VT_NULL || rightvt == VT_NULL)
4884 V_VT(result) = VT_NULL;
4887 else if (leftvt == VT_I8 || rightvt == VT_I8)
4889 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
4890 leftvt == VT_INT || rightvt == VT_INT ||
4891 leftvt == VT_UINT || rightvt == VT_UINT ||
4892 leftvt == VT_UI8 || rightvt == VT_UI8 ||
4893 leftvt == VT_UI4 || rightvt == VT_UI4 ||
4894 leftvt == VT_UI2 || rightvt == VT_UI2 ||
4895 leftvt == VT_I1 || rightvt == VT_I1 ||
4896 leftvt == VT_BSTR || rightvt == VT_BSTR ||
4897 leftvt == VT_DATE || rightvt == VT_DATE ||
4898 leftvt == VT_CY || rightvt == VT_CY ||
4899 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
4900 leftvt == VT_R8 || rightvt == VT_R8 ||
4901 leftvt == VT_R4 || rightvt == VT_R4)
4903 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
4904 leftvt == VT_BOOL || rightvt == VT_BOOL ||
4907 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
4910 return DISP_E_BADVARTYPE;
4915 /* coerce to the result type */
4916 hres = VariantChangeType(&lv, left, 0, resvt);
4923 hres = VariantChangeType(&rv, right, 0, resvt);
4932 V_VT(result) = resvt;
4936 if (V_UI1(&rv) == 0)
4938 hres = DISP_E_DIVBYZERO;
4939 V_VT(result) = VT_EMPTY;
4942 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
4947 hres = DISP_E_DIVBYZERO;
4948 V_VT(result) = VT_EMPTY;
4951 V_I2(result) = V_I2(&lv) / V_I2(&rv);
4956 hres = DISP_E_DIVBYZERO;
4957 V_VT(result) = VT_EMPTY;
4960 V_I4(result) = V_I4(&lv) / V_I4(&rv);
4965 hres = DISP_E_DIVBYZERO;
4966 V_VT(result) = VT_EMPTY;
4969 V_I8(result) = V_I8(&lv) / V_I8(&rv);
4972 FIXME("Couldn't integer divide variant types %d,%d\n",
4983 /**********************************************************************
4984 * VarMod [OLEAUT32.155]
4986 * Perform the modulus operation of the right hand variant on the left
4989 * left [I] Left hand variant
4990 * right [I] Right hand variant
4991 * result [O] Destination for converted value
4994 * Success: S_OK. result contains the remainder.
4995 * Failure: An HRESULT error code indicating the error.
4998 * If an error occurs the type of result will be modified but the value will not be.
4999 * Doesn't support arrays or any special flags yet.
5001 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5005 HRESULT rc = E_FAIL;
5012 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5013 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5015 /* check for invalid inputs */
5017 switch (V_VT(left) & VT_TYPEMASK) {
5038 V_VT(result) = VT_EMPTY;
5039 return DISP_E_TYPEMISMATCH;
5041 V_VT(result) = VT_EMPTY;
5042 return E_INVALIDARG;
5044 return DISP_E_TYPEMISMATCH;
5046 V_VT(result) = VT_EMPTY;
5047 return DISP_E_TYPEMISMATCH;
5051 V_VT(result) = VT_EMPTY;
5052 return DISP_E_BADVARTYPE;
5057 switch (V_VT(right) & VT_TYPEMASK) {
5063 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5065 V_VT(result) = VT_EMPTY;
5066 return DISP_E_TYPEMISMATCH;
5069 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5071 V_VT(result) = VT_EMPTY;
5072 return DISP_E_TYPEMISMATCH;
5082 if(V_VT(left) == VT_EMPTY)
5084 V_VT(result) = VT_I4;
5090 if(V_VT(left) == VT_NULL)
5092 V_VT(result) = VT_NULL;
5098 V_VT(result) = VT_EMPTY;
5099 return DISP_E_BADVARTYPE;
5101 if(V_VT(left) == VT_VOID)
5103 V_VT(result) = VT_EMPTY;
5104 return DISP_E_BADVARTYPE;
5105 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5108 V_VT(result) = VT_NULL;
5112 V_VT(result) = VT_NULL;
5113 return DISP_E_BADVARTYPE;
5117 V_VT(result) = VT_EMPTY;
5118 return DISP_E_TYPEMISMATCH;
5120 if(V_VT(left) == VT_ERROR)
5122 V_VT(result) = VT_EMPTY;
5123 return DISP_E_TYPEMISMATCH;
5126 V_VT(result) = VT_EMPTY;
5127 return E_INVALIDARG;
5130 return DISP_E_TYPEMISMATCH;
5132 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5134 V_VT(result) = VT_EMPTY;
5135 return DISP_E_BADVARTYPE;
5138 V_VT(result) = VT_EMPTY;
5139 return DISP_E_TYPEMISMATCH;
5142 V_VT(result) = VT_EMPTY;
5143 return DISP_E_BADVARTYPE;
5146 /* determine the result type */
5147 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5148 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5149 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5150 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5151 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5152 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5153 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5154 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5155 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5156 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5157 else resT = VT_I4; /* most outputs are I4 */
5159 /* convert to I8 for the modulo */
5160 rc = VariantChangeType(&lv, left, 0, VT_I8);
5163 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5167 rc = VariantChangeType(&rv, right, 0, VT_I8);
5170 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5174 /* if right is zero set VT_EMPTY and return divide by zero */
5177 V_VT(result) = VT_EMPTY;
5178 return DISP_E_DIVBYZERO;
5181 /* perform the modulo operation */
5182 V_VT(result) = VT_I8;
5183 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5185 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
5187 /* convert left and right to the destination type */
5188 rc = VariantChangeType(result, result, 0, resT);
5191 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5198 /**********************************************************************
5199 * VarPow [OLEAUT32.158]
5201 * Computes the power of one variant to another variant.
5204 * left [I] First variant
5205 * right [I] Second variant
5206 * result [O] Result variant
5210 * Failure: An HRESULT error code indicating the error.
5212 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5216 VARTYPE resvt = VT_EMPTY;
5217 VARTYPE leftvt,rightvt;
5218 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5220 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
5221 right, debugstr_VT(right), debugstr_VF(right), result);
5226 leftvt = V_VT(left)&VT_TYPEMASK;
5227 rightvt = V_VT(right)&VT_TYPEMASK;
5228 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5229 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5231 if (leftExtraFlags != rightExtraFlags)
5232 return DISP_E_BADVARTYPE;
5233 ExtraFlags = leftExtraFlags;
5235 /* Native VarPow always returns a error when using any extra flags */
5236 if (ExtraFlags != 0)
5237 return DISP_E_BADVARTYPE;
5239 /* Determine return type */
5240 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5241 V_VT(result) = VT_NULL;
5244 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5245 leftvt == VT_I4 || leftvt == VT_R4 ||
5246 leftvt == VT_R8 || leftvt == VT_CY ||
5247 leftvt == VT_DATE || leftvt == VT_BSTR ||
5248 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5249 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5250 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5251 rightvt == VT_I4 || rightvt == VT_R4 ||
5252 rightvt == VT_R8 || rightvt == VT_CY ||
5253 rightvt == VT_DATE || rightvt == VT_BSTR ||
5254 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5255 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5258 return DISP_E_BADVARTYPE;
5260 hr = VariantChangeType(&dl,left,0,resvt);
5261 if (!SUCCEEDED(hr)) {
5262 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5267 hr = VariantChangeType(&dr,right,0,resvt);
5268 if (!SUCCEEDED(hr)) {
5269 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5275 V_VT(result) = VT_R8;
5276 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5284 /**********************************************************************
5285 * VarImp [OLEAUT32.154]
5287 * Bitwise implication of two variants.
5290 * left [I] First variant
5291 * right [I] Second variant
5292 * result [O] Result variant
5296 * Failure: An HRESULT error code indicating the error.
5298 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5300 HRESULT hres = S_OK;
5301 VARTYPE resvt = VT_EMPTY;
5302 VARTYPE leftvt,rightvt;
5303 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5307 leftvt = V_VT(left)&VT_TYPEMASK;
5308 rightvt = V_VT(right)&VT_TYPEMASK;
5309 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5310 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5312 if (leftExtraFlags != rightExtraFlags)
5313 return DISP_E_BADVARTYPE;
5314 ExtraFlags = leftExtraFlags;
5316 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5317 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5319 /* Native VarImp always returns a error when using any extra
5320 * flags or if the variants are I8 and INT.
5322 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5324 return DISP_E_BADVARTYPE;
5326 /* Determine result type */
5327 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5328 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5330 V_VT(result) = VT_NULL;
5333 else if (leftvt == VT_I8 || rightvt == VT_I8)
5335 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5336 leftvt == VT_INT || rightvt == VT_INT ||
5337 leftvt == VT_UINT || rightvt == VT_UINT ||
5338 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5339 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5340 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5341 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5342 leftvt == VT_DATE || rightvt == VT_DATE ||
5343 leftvt == VT_CY || rightvt == VT_CY ||
5344 leftvt == VT_R8 || rightvt == VT_R8 ||
5345 leftvt == VT_R4 || rightvt == VT_R4 ||
5346 leftvt == VT_I1 || rightvt == VT_I1)
5348 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5349 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5350 (leftvt == VT_NULL && rightvt == VT_UI1))
5352 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5353 leftvt == VT_I2 || rightvt == VT_I2 ||
5354 leftvt == VT_UI1 || rightvt == VT_UI1)
5356 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5357 leftvt == VT_BSTR || rightvt == VT_BSTR)
5363 /* VT_NULL requires special handling for when the opposite
5364 * variant is equal to something other than -1.
5365 * (NULL Imp 0 = NULL, NULL Imp n = n)
5367 if (leftvt == VT_NULL)
5372 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5373 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5374 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5375 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5376 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5377 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5378 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5379 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5380 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5381 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5382 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5383 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5384 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5385 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5386 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5388 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5392 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5393 if (FAILED(hres)) goto VarImp_Exit;
5395 V_VT(result) = VT_NULL;
5398 V_VT(result) = VT_BOOL;
5403 if (resvt == VT_NULL)
5405 V_VT(result) = resvt;
5410 hres = VariantChangeType(result,right,0,resvt);
5415 /* Special handling is required when NULL is the right variant.
5416 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5418 else if (rightvt == VT_NULL)
5423 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5424 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5425 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5426 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5427 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5428 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5429 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5430 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5431 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5432 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5433 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5434 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5435 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5436 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5438 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5442 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5443 if (FAILED(hres)) goto VarImp_Exit;
5444 else if (b == VARIANT_TRUE)
5447 if (resvt == VT_NULL)
5449 V_VT(result) = resvt;
5454 hres = VariantCopy(&lv, left);
5455 if (FAILED(hres)) goto VarImp_Exit;
5457 if (rightvt == VT_NULL)
5461 hres = VariantCopy(&rv, right);
5462 if (FAILED(hres)) goto VarImp_Exit;
5465 if (V_VT(&lv) == VT_BSTR &&
5466 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5467 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5468 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5469 hres = VariantChangeType(&lv,&lv,0,resvt);
5470 if (FAILED(hres)) goto VarImp_Exit;
5472 if (V_VT(&rv) == VT_BSTR &&
5473 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5474 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5475 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5476 hres = VariantChangeType(&rv, &rv, 0, resvt);
5477 if (FAILED(hres)) goto VarImp_Exit;
5480 V_VT(result) = resvt;
5484 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5487 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5490 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5493 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5496 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5499 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",