2 * Copyright 2008 Jacek Caban for CodeWeavers
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * Code in this file is based on files:
23 * from Mozilla project, released under LGPL 2.1 or later.
25 * The Original Code is Mozilla Communicator client code, released
28 * The Initial Developer of the Original Code is
29 * Netscape Communications Corporation.
30 * Portions created by the Initial Developer are Copyright (C) 1998
31 * the Initial Developer. All Rights Reserved.
39 #include "wine/debug.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(jscript);
43 #define JSREG_FOLD 0x01 /* fold uppercase to lowercase */
44 #define JSREG_GLOB 0x02 /* global exec, creates array of matches */
45 #define JSREG_MULTILINE 0x04 /* treat ^ and $ as begin and end of line */
46 #define JSREG_STICKY 0x08 /* only match starting at lastIndex */
48 typedef BYTE JSPackedBool;
49 typedef BYTE jsbytecode;
52 * This struct holds a bitmap representation of a class from a regexp.
53 * There's a list of these referenced by the classList field in the JSRegExp
54 * struct below. The initial state has startIndex set to the offset in the
55 * original regexp source of the beginning of the class contents. The first
56 * use of the class converts the source representation into a bitmap.
59 typedef struct RECharSet {
60 JSPackedBool converted;
73 WORD flags; /* flags, see jsapi.h's JSREG_* defines */
74 size_t parenCount; /* number of parenthesized submatches */
75 size_t classCount; /* count [...] bitmaps */
76 RECharSet *classList; /* list of [...] bitmaps */
77 BSTR source; /* locked source string, sans // */
78 jsbytecode program[1]; /* regular expression bytecode */
87 jsval_t last_index_val;
90 static const WCHAR sourceW[] = {'s','o','u','r','c','e',0};
91 static const WCHAR globalW[] = {'g','l','o','b','a','l',0};
92 static const WCHAR ignoreCaseW[] = {'i','g','n','o','r','e','C','a','s','e',0};
93 static const WCHAR multilineW[] = {'m','u','l','t','i','l','i','n','e',0};
94 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
95 static const WCHAR toStringW[] = {'t','o','S','t','r','i','n','g',0};
96 static const WCHAR execW[] = {'e','x','e','c',0};
97 static const WCHAR testW[] = {'t','e','s','t',0};
99 static const WCHAR leftContextW[] =
100 {'l','e','f','t','C','o','n','t','e','x','t',0};
101 static const WCHAR rightContextW[] =
102 {'r','i','g','h','t','C','o','n','t','e','x','t',0};
104 static const WCHAR idx1W[] = {'$','1',0};
105 static const WCHAR idx2W[] = {'$','2',0};
106 static const WCHAR idx3W[] = {'$','3',0};
107 static const WCHAR idx4W[] = {'$','4',0};
108 static const WCHAR idx5W[] = {'$','5',0};
109 static const WCHAR idx6W[] = {'$','6',0};
110 static const WCHAR idx7W[] = {'$','7',0};
111 static const WCHAR idx8W[] = {'$','8',0};
112 static const WCHAR idx9W[] = {'$','9',0};
114 static const WCHAR undefinedW[] = {'u','n','d','e','f','i','n','e','d',0};
115 static const WCHAR emptyW[] = {0};
117 /* FIXME: Better error handling */
118 #define ReportRegExpError(a,b,c)
119 #define ReportRegExpErrorHelper(a,b,c,d)
120 #define JS_ReportErrorNumber(a,b,c,d)
121 #define JS_ReportErrorFlagsAndNumber(a,b,c,d,e,f)
122 #define js_ReportOutOfScriptQuota(a)
123 #define JS_ReportOutOfMemory(a)
124 #define JS_COUNT_OPERATION(a,b)
126 #define JSMSG_MIN_TOO_BIG 47
127 #define JSMSG_MAX_TOO_BIG 48
128 #define JSMSG_OUT_OF_ORDER 49
129 #define JSMSG_OUT_OF_MEMORY 137
131 #define LINE_SEPARATOR 0x2028
132 #define PARA_SEPARATOR 0x2029
134 #define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \
135 ((c >= 'a') && (c <= 'z')) )
136 #define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \
137 (c == LINE_SEPARATOR) || (c == PARA_SEPARATOR))
139 #define JS_ISWORD(c) ((c) < 128 && (isalnum(c) || (c) == '_'))
141 #define JS7_ISDEC(c) ((((unsigned)(c)) - '0') <= 9)
142 #define JS7_UNDEC(c) ((c) - '0')
194 REOP_LIMIT /* META: no operator >= to this */
197 #define REOP_IS_SIMPLE(op) ((op) <= REOP_NCLASS)
199 static const char *reop_names[] = {
252 typedef struct RECapture {
253 ptrdiff_t index; /* start of contents, -1 for empty */
254 size_t length; /* length of capture */
257 typedef struct REMatchState {
259 RECapture parens[1]; /* first of 're->parenCount' captures,
260 allocated at end of this struct */
263 typedef struct REProgState {
264 jsbytecode *continue_pc; /* current continuation data */
265 jsbytecode continue_op;
266 ptrdiff_t index; /* progress in text */
267 size_t parenSoFar; /* highest indexed paren started */
270 UINT min; /* current quantifier limits */
274 size_t top; /* backtrack stack state */
280 typedef struct REBackTrackData {
281 size_t sz; /* size of previous stack entry */
282 jsbytecode *backtrack_pc; /* where to backtrack to */
283 jsbytecode backtrack_op;
284 const WCHAR *cp; /* index in text of match at backtrack */
285 size_t parenIndex; /* start index of saved paren contents */
286 size_t parenCount; /* # of saved paren contents */
287 size_t saveStateStackTop; /* number of parent states */
288 /* saved parent states follow */
289 /* saved paren contents follow */
292 #define INITIAL_STATESTACK 100
293 #define INITIAL_BACKTRACK 8000
295 typedef struct REGlobalData {
297 JSRegExp *regexp; /* the RE in execution */
298 BOOL ok; /* runtime error (out_of_memory only?) */
299 size_t start; /* offset to start at */
300 ptrdiff_t skipped; /* chars skipped anchoring this r.e. */
301 const WCHAR *cpbegin; /* text base address */
302 const WCHAR *cpend; /* text limit address */
304 REProgState *stateStack; /* stack of state of current parents */
305 size_t stateStackTop;
306 size_t stateStackLimit;
308 REBackTrackData *backTrackStack;/* stack of matched-so-far positions */
309 REBackTrackData *backTrackSP;
310 size_t backTrackStackSize;
311 size_t cursz; /* size of current stack entry */
312 size_t backTrackCount; /* how many times we've backtracked */
313 size_t backTrackLimit; /* upper limit on backtrack states */
315 jsheap_t *pool; /* It's faster to use one malloc'd pool
316 than to malloc/free the three items
317 that are allocated from this pool */
320 typedef struct RENode RENode;
322 REOp op; /* r.e. op bytecode */
323 RENode *next; /* next in concatenation order */
324 void *kid; /* first operand */
326 void *kid2; /* second operand */
327 INT num; /* could be a number */
328 size_t parenIndex; /* or a parenthesis index */
329 struct { /* or a quantifier range */
334 struct { /* or a character class */
336 size_t kidlen; /* length of string at kid, in jschars */
337 size_t index; /* index into class list */
338 WORD bmsize; /* bitmap size, based on max char code */
341 struct { /* or a literal sequence */
342 WCHAR chr; /* of one character */
343 size_t length; /* or many (via the kid) */
346 RENode *kid2; /* second operand from ALT */
347 WCHAR ch1; /* match char for ALTPREREQ */
348 WCHAR ch2; /* ditto, or class index for ALTPREREQ2 */
353 #define CLASS_CACHE_SIZE 4
355 typedef struct CompilerState {
356 script_ctx_t *context;
357 const WCHAR *cpbegin;
361 size_t classCount; /* number of [] encountered */
362 size_t treeDepth; /* maximum depth of parse tree */
363 size_t progLength; /* estimated bytecode length */
365 size_t classBitmapsMem; /* memory to hold all class bitmaps */
367 const WCHAR *start; /* small cache of class strings */
368 size_t length; /* since they're often the same */
370 } classCache[CLASS_CACHE_SIZE];
374 typedef struct EmitStateStackEntry {
375 jsbytecode *altHead; /* start of REOP_ALT* opcode */
376 jsbytecode *nextAltFixup; /* fixup pointer to next-alt offset */
377 jsbytecode *nextTermFixup; /* fixup ptr. to REOP_JUMP offset */
378 jsbytecode *endTermFixup; /* fixup ptr. to REOPT_ALTPREREQ* offset */
379 RENode *continueNode; /* original REOP_ALT* node being stacked */
380 jsbytecode continueOp; /* REOP_JUMP or REOP_ENDALT continuation */
381 JSPackedBool jumpToJumpFlag; /* true if we've patched jump-to-jump to
382 avoid 16-bit unsigned offset overflow */
383 } EmitStateStackEntry;
386 * Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h,
387 * the getters and setters take the pc of the offset, not of the opcode before
391 #define GET_ARG(pc) ((WORD)(((pc)[0] << 8) | (pc)[1]))
392 #define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \
393 (pc)[1] = (jsbytecode) (arg))
395 #define OFFSET_LEN ARG_LEN
396 #define OFFSET_MAX ((1 << (ARG_LEN * 8)) - 1)
397 #define GET_OFFSET(pc) GET_ARG(pc)
399 static BOOL ParseRegExp(CompilerState*);
402 * Maximum supported tree depth is maximum size of EmitStateStackEntry stack.
403 * For sanity, we limit it to 2^24 bytes.
405 #define TREE_DEPTH_MAX ((1 << 24) / sizeof(EmitStateStackEntry))
408 * The maximum memory that can be allocated for class bitmaps.
409 * For sanity, we limit it to 2^24 bytes.
411 #define CLASS_BITMAPS_MEM_LIMIT (1 << 24)
414 * Functions to get size and write/read bytecode that represent small indexes
416 * Each byte in the code represent 7-bit chunk of the index. 8th bit when set
417 * indicates that the following byte brings more bits to the index. Otherwise
418 * this is the last byte in the index bytecode representing highest index bits.
421 GetCompactIndexWidth(size_t index)
425 for (width = 1; (index >>= 7) != 0; ++width) { }
429 static inline jsbytecode *
430 WriteCompactIndex(jsbytecode *pc, size_t index)
434 while ((next = index >> 7) != 0) {
435 *pc++ = (jsbytecode)(index | 0x80);
438 *pc++ = (jsbytecode)index;
442 static inline jsbytecode *
443 ReadCompactIndex(jsbytecode *pc, size_t *result)
448 if ((nextByte & 0x80) == 0) {
450 * Short-circuit the most common case when compact index <= 127.
455 *result = 0x7F & nextByte;
458 *result |= (nextByte & 0x7F) << shift;
460 } while ((nextByte & 0x80) != 0);
465 /* Construct and initialize an RENode, returning NULL for out-of-memory */
467 NewRENode(CompilerState *state, REOp op)
471 ren = jsheap_alloc(&state->context->tmp_heap, sizeof(*ren));
473 /* js_ReportOutOfScriptQuota(cx); */
483 * Validates and converts hex ascii value.
486 isASCIIHexDigit(WCHAR c, UINT *digit)
497 if (cv >= 'a' && cv <= 'f') {
498 *digit = cv - 'a' + 10;
510 #define JUMP_OFFSET_HI(off) ((jsbytecode)((off) >> 8))
511 #define JUMP_OFFSET_LO(off) ((jsbytecode)(off))
514 SetForwardJumpOffset(jsbytecode *jump, jsbytecode *target)
516 ptrdiff_t offset = target - jump;
518 /* Check that target really points forward. */
520 if ((size_t)offset > OFFSET_MAX)
523 jump[0] = JUMP_OFFSET_HI(offset);
524 jump[1] = JUMP_OFFSET_LO(offset);
529 * Generate bytecode for the tree rooted at t using an explicit stack instead
533 EmitREBytecode(CompilerState *state, JSRegExp *re, size_t treeDepth,
534 jsbytecode *pc, RENode *t)
536 EmitStateStackEntry *emitStateSP, *emitStateStack;
540 if (treeDepth == 0) {
541 emitStateStack = NULL;
543 emitStateStack = heap_alloc(sizeof(EmitStateStackEntry) * treeDepth);
547 emitStateSP = emitStateStack;
549 assert(op < REOP_LIMIT);
558 case REOP_ALTPREREQ2:
561 emitStateSP->altHead = pc - 1;
562 emitStateSP->endTermFixup = pc;
564 SET_ARG(pc, t->u.altprereq.ch1);
566 SET_ARG(pc, t->u.altprereq.ch2);
569 emitStateSP->nextAltFixup = pc; /* offset to next alternate */
572 emitStateSP->continueNode = t;
573 emitStateSP->continueOp = REOP_JUMP;
574 emitStateSP->jumpToJumpFlag = FALSE;
576 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
579 assert(op < REOP_LIMIT);
583 emitStateSP->nextTermFixup = pc; /* offset to following term */
585 if (!SetForwardJumpOffset(emitStateSP->nextAltFixup, pc))
587 emitStateSP->continueOp = REOP_ENDALT;
589 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
592 assert(op < REOP_LIMIT);
597 * If we already patched emitStateSP->nextTermFixup to jump to
598 * a nearer jump, to avoid 16-bit immediate offset overflow, we
601 if (emitStateSP->jumpToJumpFlag)
605 * Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT.
606 * REOP_ENDALT is executed only on successful match of the last
607 * alternate in a group.
609 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
611 if (t->op != REOP_ALT) {
612 if (!SetForwardJumpOffset(emitStateSP->endTermFixup, pc))
617 * If the program is bigger than the REOP_JUMP offset range, then
618 * we must check for alternates before this one that are part of
619 * the same group, and fix up their jump offsets to target jumps
620 * close enough to fit in a 16-bit unsigned offset immediate.
622 if ((size_t)(pc - re->program) > OFFSET_MAX &&
623 emitStateSP > emitStateStack) {
624 EmitStateStackEntry *esp, *esp2;
625 jsbytecode *alt, *jump;
626 ptrdiff_t span, header;
630 for (esp = esp2 - 1; esp >= emitStateStack; --esp) {
631 if (esp->continueOp == REOP_ENDALT &&
632 !esp->jumpToJumpFlag &&
633 esp->nextTermFixup + OFFSET_LEN == alt &&
634 (size_t)(pc - ((esp->continueNode->op != REOP_ALT)
636 : esp->nextTermFixup)) > OFFSET_MAX) {
638 jump = esp->nextTermFixup;
641 * The span must be 1 less than the distance from
642 * jump offset to jump offset, so we actually jump
643 * to a REOP_JUMP bytecode, not to its offset!
646 assert(jump < esp2->nextTermFixup);
647 span = esp2->nextTermFixup - jump - 1;
648 if ((size_t)span <= OFFSET_MAX)
653 } while (esp2->continueOp != REOP_ENDALT);
656 jump[0] = JUMP_OFFSET_HI(span);
657 jump[1] = JUMP_OFFSET_LO(span);
659 if (esp->continueNode->op != REOP_ALT) {
661 * We must patch the offset at esp->endTermFixup
662 * as well, for the REOP_ALTPREREQ{,2} opcodes.
663 * If we're unlucky and endTermFixup is more than
664 * OFFSET_MAX bytes from its target, we cheat by
665 * jumping 6 bytes to the jump whose offset is at
666 * esp->nextTermFixup, which has the same target.
668 jump = esp->endTermFixup;
669 header = esp->nextTermFixup - jump;
671 if ((size_t)span > OFFSET_MAX)
674 jump[0] = JUMP_OFFSET_HI(span);
675 jump[1] = JUMP_OFFSET_LO(span);
678 esp->jumpToJumpFlag = TRUE;
686 emitStateSP->altHead = pc - 1;
687 emitStateSP->nextAltFixup = pc; /* offset to next alternate */
689 emitStateSP->continueNode = t;
690 emitStateSP->continueOp = REOP_JUMP;
691 emitStateSP->jumpToJumpFlag = FALSE;
693 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
696 assert(op < REOP_LIMIT);
701 * Coalesce FLATs if possible and if it would not increase bytecode
702 * beyond preallocated limit. The latter happens only when bytecode
703 * size for coalesced string with offset p and length 2 exceeds 6
704 * bytes preallocated for 2 single char nodes, i.e. when
705 * 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or
706 * GetCompactIndexWidth(p) > 4.
707 * Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more
708 * nodes strictly decreases bytecode size, the check has to be
709 * done only for the first coalescing.
712 GetCompactIndexWidth((WCHAR*)t->kid - state->cpbegin) <= 4)
715 t->next->op == REOP_FLAT &&
716 (WCHAR*)t->kid + t->u.flat.length ==
718 t->u.flat.length += t->next->u.flat.length;
719 t->next = t->next->next;
722 if (t->kid && t->u.flat.length > 1) {
723 pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLATi : REOP_FLAT;
724 pc = WriteCompactIndex(pc, (WCHAR*)t->kid - state->cpbegin);
725 pc = WriteCompactIndex(pc, t->u.flat.length);
726 } else if (t->u.flat.chr < 256) {
727 pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLAT1i : REOP_FLAT1;
728 *pc++ = (jsbytecode) t->u.flat.chr;
730 pc[-1] = (state->flags & JSREG_FOLD)
733 SET_ARG(pc, t->u.flat.chr);
740 pc = WriteCompactIndex(pc, t->u.parenIndex);
741 emitStateSP->continueNode = t;
742 emitStateSP->continueOp = REOP_RPAREN;
744 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
750 pc = WriteCompactIndex(pc, t->u.parenIndex);
754 pc = WriteCompactIndex(pc, t->u.parenIndex);
759 emitStateSP->nextTermFixup = pc;
761 emitStateSP->continueNode = t;
762 emitStateSP->continueOp = REOP_ASSERTTEST;
764 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
769 case REOP_ASSERTTEST:
770 case REOP_ASSERTNOTTEST:
771 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
775 case REOP_ASSERT_NOT:
777 emitStateSP->nextTermFixup = pc;
779 emitStateSP->continueNode = t;
780 emitStateSP->continueOp = REOP_ASSERTNOTTEST;
782 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
789 if (t->u.range.min == 0 && t->u.range.max == (UINT)-1) {
790 pc[-1] = (t->u.range.greedy) ? REOP_STAR : REOP_MINIMALSTAR;
791 } else if (t->u.range.min == 0 && t->u.range.max == 1) {
792 pc[-1] = (t->u.range.greedy) ? REOP_OPT : REOP_MINIMALOPT;
793 } else if (t->u.range.min == 1 && t->u.range.max == (UINT) -1) {
794 pc[-1] = (t->u.range.greedy) ? REOP_PLUS : REOP_MINIMALPLUS;
796 if (!t->u.range.greedy)
797 pc[-1] = REOP_MINIMALQUANT;
798 pc = WriteCompactIndex(pc, t->u.range.min);
800 * Write max + 1 to avoid using size_t(max) + 1 bytes
801 * for (UINT)-1 sentinel.
803 pc = WriteCompactIndex(pc, t->u.range.max + 1);
805 emitStateSP->nextTermFixup = pc;
807 emitStateSP->continueNode = t;
808 emitStateSP->continueOp = REOP_ENDCHILD;
810 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
816 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
821 if (!t->u.ucclass.sense)
822 pc[-1] = REOP_NCLASS;
823 pc = WriteCompactIndex(pc, t->u.ucclass.index);
824 charSet = &re->classList[t->u.ucclass.index];
825 charSet->converted = FALSE;
826 charSet->length = t->u.ucclass.bmsize;
827 charSet->u.src.startIndex = t->u.ucclass.startIndex;
828 charSet->u.src.length = t->u.ucclass.kidlen;
829 charSet->sense = t->u.ucclass.sense;
840 if (emitStateSP == emitStateStack)
843 t = emitStateSP->continueNode;
844 op = (REOp) emitStateSP->continueOp;
849 heap_free(emitStateStack);
853 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
859 * Process the op against the two top operands, reducing them to a single
860 * operand in the penultimate slot. Update progLength and treeDepth.
863 ProcessOp(CompilerState *state, REOpData *opData, RENode **operandStack,
868 switch (opData->op) {
870 result = NewRENode(state, REOP_ALT);
873 result->kid = operandStack[operandSP - 2];
874 result->u.kid2 = operandStack[operandSP - 1];
875 operandStack[operandSP - 2] = result;
877 if (state->treeDepth == TREE_DEPTH_MAX) {
878 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
884 * Look at both alternates to see if there's a FLAT or a CLASS at
885 * the start of each. If so, use a prerequisite match.
887 if (((RENode *) result->kid)->op == REOP_FLAT &&
888 ((RENode *) result->u.kid2)->op == REOP_FLAT &&
889 (state->flags & JSREG_FOLD) == 0) {
890 result->op = REOP_ALTPREREQ;
891 result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
892 result->u.altprereq.ch2 = ((RENode *) result->u.kid2)->u.flat.chr;
893 /* ALTPREREQ, <end>, uch1, uch2, <next>, ...,
894 JUMP, <end> ... ENDALT */
895 state->progLength += 13;
898 if (((RENode *) result->kid)->op == REOP_CLASS &&
899 ((RENode *) result->kid)->u.ucclass.index < 256 &&
900 ((RENode *) result->u.kid2)->op == REOP_FLAT &&
901 (state->flags & JSREG_FOLD) == 0) {
902 result->op = REOP_ALTPREREQ2;
903 result->u.altprereq.ch1 = ((RENode *) result->u.kid2)->u.flat.chr;
904 result->u.altprereq.ch2 = ((RENode *) result->kid)->u.ucclass.index;
905 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
906 JUMP, <end> ... ENDALT */
907 state->progLength += 13;
910 if (((RENode *) result->kid)->op == REOP_FLAT &&
911 ((RENode *) result->u.kid2)->op == REOP_CLASS &&
912 ((RENode *) result->u.kid2)->u.ucclass.index < 256 &&
913 (state->flags & JSREG_FOLD) == 0) {
914 result->op = REOP_ALTPREREQ2;
915 result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
916 result->u.altprereq.ch2 =
917 ((RENode *) result->u.kid2)->u.ucclass.index;
918 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
919 JUMP, <end> ... ENDALT */
920 state->progLength += 13;
923 /* ALT, <next>, ..., JUMP, <end> ... ENDALT */
924 state->progLength += 7;
929 result = operandStack[operandSP - 2];
931 result = result->next;
932 result->next = operandStack[operandSP - 1];
936 case REOP_ASSERT_NOT:
939 /* These should have been processed by a close paren. */
940 ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_MISSING_PAREN,
950 * Hack two bits in CompilerState.flags, for use within FindParenCount to flag
951 * its being on the stack, and to propagate errors to its callers.
953 #define JSREG_FIND_PAREN_COUNT 0x8000
954 #define JSREG_FIND_PAREN_ERROR 0x4000
957 * Magic return value from FindParenCount and GetDecimalValue, to indicate
958 * overflow beyond GetDecimalValue's max parameter, or a computed maximum if
959 * its findMax parameter is non-null.
961 #define OVERFLOW_VALUE ((UINT)-1)
964 FindParenCount(CompilerState *state)
969 if (state->flags & JSREG_FIND_PAREN_COUNT)
970 return OVERFLOW_VALUE;
973 * Copy state into temp, flag it so we never report an invalid backref,
974 * and reset its members to parse the entire regexp. This is obviously
975 * suboptimal, but GetDecimalValue calls us only if a backref appears to
976 * refer to a forward parenthetical, which is rare.
979 temp.flags |= JSREG_FIND_PAREN_COUNT;
980 temp.cp = temp.cpbegin;
985 temp.classBitmapsMem = 0;
986 for (i = 0; i < CLASS_CACHE_SIZE; i++)
987 temp.classCache[i].start = NULL;
989 if (!ParseRegExp(&temp)) {
990 state->flags |= JSREG_FIND_PAREN_ERROR;
991 return OVERFLOW_VALUE;
993 return temp.parenCount;
997 * Extract and return a decimal value at state->cp. The initial character c
998 * has already been read. Return OVERFLOW_VALUE if the result exceeds max.
999 * Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in
1000 * state->flags to discover whether an error occurred under findMax.
1003 GetDecimalValue(WCHAR c, UINT max, UINT (*findMax)(CompilerState *state),
1004 CompilerState *state)
1006 UINT value = JS7_UNDEC(c);
1007 BOOL overflow = (value > max && (!findMax || value > findMax(state)));
1009 /* The following restriction allows simpler overflow checks. */
1010 assert(max <= ((UINT)-1 - 9) / 10);
1011 while (state->cp < state->cpend) {
1015 value = 10 * value + JS7_UNDEC(c);
1016 if (!overflow && value > max && (!findMax || value > findMax(state)))
1020 return overflow ? OVERFLOW_VALUE : value;
1024 * Calculate the total size of the bitmap required for a class expression.
1027 CalculateBitmapSize(CompilerState *state, RENode *target, const WCHAR *src,
1031 BOOL inRange = FALSE;
1032 WCHAR c, rangeStart = 0;
1033 UINT n, digit, nDigits, i;
1035 target->u.ucclass.bmsize = 0;
1036 target->u.ucclass.sense = TRUE;
1043 target->u.ucclass.sense = FALSE;
1046 while (src != end) {
1047 BOOL canStartRange = TRUE;
1074 if (src < end && RE_IS_LETTER(*src)) {
1075 localMax = (UINT) (*src++) & 0x1F;
1088 for (i = 0; (i < nDigits) && (src < end); i++) {
1090 if (!isASCIIHexDigit(c, &digit)) {
1092 * Back off to accepting the original
1099 n = (n << 4) | digit;
1104 canStartRange = FALSE;
1106 JS_ReportErrorNumber(state->context,
1107 js_GetErrorMessage, NULL,
1108 JSMSG_BAD_CLASS_RANGE);
1118 canStartRange = FALSE;
1120 JS_ReportErrorNumber(state->context,
1121 js_GetErrorMessage, NULL,
1122 JSMSG_BAD_CLASS_RANGE);
1128 * If this is the start of a range, ensure that it's less than
1142 * This is a non-ECMA extension - decimal escapes (in this
1143 * case, octal!) are supposed to be an error inside class
1144 * ranges, but supported here for backwards compatibility.
1149 if ('0' <= c && c <= '7') {
1151 n = 8 * n + JS7_UNDEC(c);
1153 if ('0' <= c && c <= '7') {
1155 i = 8 * n + JS7_UNDEC(c);
1176 /* Throw a SyntaxError here, per ECMA-262, 15.10.2.15. */
1177 if (rangeStart > localMax) {
1178 JS_ReportErrorNumber(state->context,
1179 js_GetErrorMessage, NULL,
1180 JSMSG_BAD_CLASS_RANGE);
1185 if (canStartRange && src < end - 1) {
1189 rangeStart = (WCHAR)localMax;
1193 if (state->flags & JSREG_FOLD)
1194 rangeStart = localMax; /* one run of the uc/dc loop below */
1197 if (state->flags & JSREG_FOLD) {
1198 WCHAR maxch = localMax;
1200 for (i = rangeStart; i <= localMax; i++) {
1216 target->u.ucclass.bmsize = max;
1221 ParseMinMaxQuantifier(CompilerState *state, BOOL ignoreValues)
1225 const WCHAR *errp = state->cp++;
1230 min = GetDecimalValue(c, 0xFFFF, NULL, state);
1233 if (!ignoreValues && min == OVERFLOW_VALUE)
1234 return JSMSG_MIN_TOO_BIG;
1240 max = GetDecimalValue(c, 0xFFFF, NULL, state);
1242 if (!ignoreValues && max == OVERFLOW_VALUE)
1243 return JSMSG_MAX_TOO_BIG;
1244 if (!ignoreValues && min > max)
1245 return JSMSG_OUT_OF_ORDER;
1253 state->result = NewRENode(state, REOP_QUANT);
1255 return JSMSG_OUT_OF_MEMORY;
1256 state->result->u.range.min = min;
1257 state->result->u.range.max = max;
1259 * QUANT, <min>, <max>, <next> ... <ENDCHILD>
1260 * where <max> is written as compact(max+1) to make
1261 * (UINT)-1 sentinel to occupy 1 byte, not width_of(max)+1.
1263 state->progLength += (1 + GetCompactIndexWidth(min)
1264 + GetCompactIndexWidth(max + 1)
1275 ParseQuantifier(CompilerState *state)
1278 term = state->result;
1279 if (state->cp < state->cpend) {
1280 switch (*state->cp) {
1282 state->result = NewRENode(state, REOP_QUANT);
1285 state->result->u.range.min = 1;
1286 state->result->u.range.max = (UINT)-1;
1287 /* <PLUS>, <next> ... <ENDCHILD> */
1288 state->progLength += 4;
1291 state->result = NewRENode(state, REOP_QUANT);
1294 state->result->u.range.min = 0;
1295 state->result->u.range.max = (UINT)-1;
1296 /* <STAR>, <next> ... <ENDCHILD> */
1297 state->progLength += 4;
1300 state->result = NewRENode(state, REOP_QUANT);
1303 state->result->u.range.min = 0;
1304 state->result->u.range.max = 1;
1305 /* <OPT>, <next> ... <ENDCHILD> */
1306 state->progLength += 4;
1308 case '{': /* balance '}' */
1312 err = ParseMinMaxQuantifier(state, FALSE);
1318 ReportRegExpErrorHelper(state, JSREPORT_ERROR, err, errp);
1327 if (state->treeDepth == TREE_DEPTH_MAX) {
1328 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
1334 state->result->kid = term;
1335 if (state->cp < state->cpend && *state->cp == '?') {
1337 state->result->u.range.greedy = FALSE;
1339 state->result->u.range.greedy = TRUE;
1345 * item: assertion An item is either an assertion or
1346 * quantatom a quantified atom.
1348 * assertion: '^' Assertions match beginning of string
1349 * (or line if the class static property
1350 * RegExp.multiline is true).
1351 * '$' End of string (or line if the class
1352 * static property RegExp.multiline is
1354 * '\b' Word boundary (between \w and \W).
1355 * '\B' Word non-boundary.
1357 * quantatom: atom An unquantified atom.
1358 * quantatom '{' n ',' m '}'
1359 * Atom must occur between n and m times.
1360 * quantatom '{' n ',' '}' Atom must occur at least n times.
1361 * quantatom '{' n '}' Atom must occur exactly n times.
1362 * quantatom '*' Zero or more times (same as {0,}).
1363 * quantatom '+' One or more times (same as {1,}).
1364 * quantatom '?' Zero or one time (same as {0,1}).
1366 * any of which can be optionally followed by '?' for ungreedy
1368 * atom: '(' regexp ')' A parenthesized regexp (what matched
1369 * can be addressed using a backreference,
1371 * '.' Matches any char except '\n'.
1372 * '[' classlist ']' A character class.
1373 * '[' '^' classlist ']' A negated character class.
1375 * '\n' Newline (Line Feed).
1376 * '\r' Carriage Return.
1377 * '\t' Horizontal Tab.
1378 * '\v' Vertical Tab.
1379 * '\d' A digit (same as [0-9]).
1381 * '\w' A word character, [0-9a-z_A-Z].
1382 * '\W' A non-word character.
1383 * '\s' A whitespace character, [ \b\f\n\r\t\v].
1384 * '\S' A non-whitespace character.
1385 * '\' n A backreference to the nth (n decimal
1386 * and positive) parenthesized expression.
1387 * '\' octal An octal escape sequence (octal must be
1388 * two or three digits long, unless it is
1389 * 0 for the null character).
1390 * '\x' hex A hex escape (hex must be two digits).
1391 * '\u' unicode A unicode escape (must be four digits).
1392 * '\c' ctrl A control character, ctrl is a letter.
1393 * '\' literalatomchar Any character except one of the above
1394 * that follow '\' in an atom.
1395 * otheratomchar Any character not first among the other
1396 * atom right-hand sides.
1399 ParseTerm(CompilerState *state)
1401 WCHAR c = *state->cp++;
1403 UINT num, tmp, n, i;
1404 const WCHAR *termStart;
1407 /* assertions and atoms */
1409 state->result = NewRENode(state, REOP_BOL);
1412 state->progLength++;
1415 state->result = NewRENode(state, REOP_EOL);
1418 state->progLength++;
1421 if (state->cp >= state->cpend) {
1422 /* a trailing '\' is an error */
1423 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_TRAILING_SLASH);
1428 /* assertion escapes */
1430 state->result = NewRENode(state, REOP_WBDRY);
1433 state->progLength++;
1436 state->result = NewRENode(state, REOP_WNONBDRY);
1439 state->progLength++;
1441 /* Decimal escape */
1443 /* Give a strict warning. See also the note below. */
1444 WARN("non-octal digit in an escape sequence that doesn't match a back-reference\n");
1447 while (state->cp < state->cpend) {
1449 if (c < '0' || '7' < c)
1452 tmp = 8 * num + (UINT)JS7_UNDEC(c);
1459 state->result = NewRENode(state, REOP_FLAT);
1462 state->result->u.flat.chr = c;
1463 state->result->u.flat.length = 1;
1464 state->progLength += 3;
1475 termStart = state->cp - 1;
1476 num = GetDecimalValue(c, state->parenCount, FindParenCount, state);
1477 if (state->flags & JSREG_FIND_PAREN_ERROR)
1479 if (num == OVERFLOW_VALUE) {
1480 /* Give a strict mode warning. */
1481 WARN("back-reference exceeds number of capturing parentheses\n");
1484 * Note: ECMA 262, 15.10.2.9 says that we should throw a syntax
1485 * error here. However, for compatibility with IE, we treat the
1486 * whole backref as flat if the first character in it is not a
1487 * valid octal character, and as an octal escape otherwise.
1489 state->cp = termStart;
1491 /* Treat this as flat. termStart - 1 is the \. */
1496 /* Treat this as an octal escape. */
1499 assert(1 <= num && num <= 0x10000);
1500 state->result = NewRENode(state, REOP_BACKREF);
1503 state->result->u.parenIndex = num - 1;
1505 += 1 + GetCompactIndexWidth(state->result->u.parenIndex);
1507 /* Control escape */
1523 /* Control letter */
1525 if (state->cp < state->cpend && RE_IS_LETTER(*state->cp)) {
1526 c = (WCHAR) (*state->cp++ & 0x1F);
1528 /* back off to accepting the original '\' as a literal */
1533 /* HexEscapeSequence */
1537 /* UnicodeEscapeSequence */
1542 for (i = 0; i < nDigits && state->cp < state->cpend; i++) {
1545 if (!isASCIIHexDigit(c, &digit)) {
1547 * Back off to accepting the original 'u' or 'x' as a
1554 n = (n << 4) | digit;
1558 /* Character class escapes */
1560 state->result = NewRENode(state, REOP_DIGIT);
1564 state->progLength++;
1567 state->result = NewRENode(state, REOP_NONDIGIT);
1570 state->result = NewRENode(state, REOP_SPACE);
1573 state->result = NewRENode(state, REOP_NONSPACE);
1576 state->result = NewRENode(state, REOP_ALNUM);
1579 state->result = NewRENode(state, REOP_NONALNUM);
1581 /* IdentityEscape */
1583 state->result = NewRENode(state, REOP_FLAT);
1586 state->result->u.flat.chr = c;
1587 state->result->u.flat.length = 1;
1588 state->result->kid = (void *) (state->cp - 1);
1589 state->progLength += 3;
1594 state->result = NewRENode(state, REOP_CLASS);
1597 termStart = state->cp;
1598 state->result->u.ucclass.startIndex = termStart - state->cpbegin;
1600 if (state->cp == state->cpend) {
1601 ReportRegExpErrorHelper(state, JSREPORT_ERROR,
1602 JSMSG_UNTERM_CLASS, termStart);
1606 if (*state->cp == '\\') {
1608 if (state->cp != state->cpend)
1612 if (*state->cp == ']') {
1613 state->result->u.ucclass.kidlen = state->cp - termStart;
1618 for (i = 0; i < CLASS_CACHE_SIZE; i++) {
1619 if (!state->classCache[i].start) {
1620 state->classCache[i].start = termStart;
1621 state->classCache[i].length = state->result->u.ucclass.kidlen;
1622 state->classCache[i].index = state->classCount;
1625 if (state->classCache[i].length ==
1626 state->result->u.ucclass.kidlen) {
1627 for (n = 0; ; n++) {
1628 if (n == state->classCache[i].length) {
1629 state->result->u.ucclass.index
1630 = state->classCache[i].index;
1633 if (state->classCache[i].start[n] != termStart[n])
1638 state->result->u.ucclass.index = state->classCount++;
1642 * Call CalculateBitmapSize now as we want any errors it finds
1643 * to be reported during the parse phase, not at execution.
1645 if (!CalculateBitmapSize(state, state->result, termStart, state->cp++))
1648 * Update classBitmapsMem with number of bytes to hold bmsize bits,
1649 * which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8
1650 * or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize.
1652 n = (state->result->u.ucclass.bmsize >> 3) + 1;
1653 if (n > CLASS_BITMAPS_MEM_LIMIT - state->classBitmapsMem) {
1654 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
1657 state->classBitmapsMem += n;
1658 /* CLASS, <index> */
1660 += 1 + GetCompactIndexWidth(state->result->u.ucclass.index);
1664 state->result = NewRENode(state, REOP_DOT);
1669 const WCHAR *errp = state->cp--;
1672 err = ParseMinMaxQuantifier(state, TRUE);
1683 ReportRegExpErrorHelper(state, JSREPORT_ERROR,
1684 JSMSG_BAD_QUANTIFIER, state->cp - 1);
1688 state->result = NewRENode(state, REOP_FLAT);
1691 state->result->u.flat.chr = c;
1692 state->result->u.flat.length = 1;
1693 state->result->kid = (void *) (state->cp - 1);
1694 state->progLength += 3;
1697 return ParseQuantifier(state);
1701 * Top-down regular expression grammar, based closely on Perl4.
1703 * regexp: altern A regular expression is one or more
1704 * altern '|' regexp alternatives separated by vertical bar.
1706 #define INITIAL_STACK_SIZE 128
1709 ParseRegExp(CompilerState *state)
1713 REOpData *operatorStack;
1714 RENode **operandStack;
1717 BOOL result = FALSE;
1719 INT operatorSP = 0, operatorStackSize = INITIAL_STACK_SIZE;
1720 INT operandSP = 0, operandStackSize = INITIAL_STACK_SIZE;
1722 /* Watch out for empty regexp */
1723 if (state->cp == state->cpend) {
1724 state->result = NewRENode(state, REOP_EMPTY);
1725 return (state->result != NULL);
1728 operatorStack = heap_alloc(sizeof(REOpData) * operatorStackSize);
1732 operandStack = heap_alloc(sizeof(RENode *) * operandStackSize);
1737 parenIndex = state->parenCount;
1738 if (state->cp == state->cpend) {
1740 * If we are at the end of the regexp and we're short one or more
1741 * operands, the regexp must have the form /x|/ or some such, with
1742 * left parentheses making us short more than one operand.
1744 if (operatorSP >= operandSP) {
1745 operand = NewRENode(state, REOP_EMPTY);
1751 switch (*state->cp) {
1754 if (state->cp + 1 < state->cpend &&
1755 *state->cp == '?' &&
1756 (state->cp[1] == '=' ||
1757 state->cp[1] == '!' ||
1758 state->cp[1] == ':')) {
1759 switch (state->cp[1]) {
1762 /* ASSERT, <next>, ... ASSERTTEST */
1763 state->progLength += 4;
1766 op = REOP_ASSERT_NOT;
1767 /* ASSERTNOT, <next>, ... ASSERTNOTTEST */
1768 state->progLength += 4;
1771 op = REOP_LPARENNON;
1777 /* LPAREN, <index>, ... RPAREN, <index> */
1779 += 2 * (1 + GetCompactIndexWidth(parenIndex));
1780 state->parenCount++;
1781 if (state->parenCount == 65535) {
1782 ReportRegExpError(state, JSREPORT_ERROR,
1783 JSMSG_TOO_MANY_PARENS);
1791 * If there's no stacked open parenthesis, throw syntax error.
1793 for (i = operatorSP - 1; ; i--) {
1795 ReportRegExpError(state, JSREPORT_ERROR,
1796 JSMSG_UNMATCHED_RIGHT_PAREN);
1799 if (operatorStack[i].op == REOP_ASSERT ||
1800 operatorStack[i].op == REOP_ASSERT_NOT ||
1801 operatorStack[i].op == REOP_LPARENNON ||
1802 operatorStack[i].op == REOP_LPAREN) {
1809 /* Expected an operand before these, so make an empty one */
1810 operand = NewRENode(state, REOP_EMPTY);
1816 if (!ParseTerm(state))
1818 operand = state->result;
1820 if (operandSP == operandStackSize) {
1822 operandStackSize += operandStackSize;
1823 tmp = heap_realloc(operandStack, sizeof(RENode *) * operandStackSize);
1828 operandStack[operandSP++] = operand;
1833 /* At the end; process remaining operators. */
1835 if (state->cp == state->cpend) {
1836 while (operatorSP) {
1838 if (!ProcessOp(state, &operatorStack[operatorSP],
1839 operandStack, operandSP))
1843 assert(operandSP == 1);
1844 state->result = operandStack[0];
1849 switch (*state->cp) {
1851 /* Process any stacked 'concat' operators */
1853 while (operatorSP &&
1854 operatorStack[operatorSP - 1].op == REOP_CONCAT) {
1856 if (!ProcessOp(state, &operatorStack[operatorSP],
1857 operandStack, operandSP)) {
1867 * If there's no stacked open parenthesis, throw syntax error.
1869 for (i = operatorSP - 1; ; i--) {
1871 ReportRegExpError(state, JSREPORT_ERROR,
1872 JSMSG_UNMATCHED_RIGHT_PAREN);
1875 if (operatorStack[i].op == REOP_ASSERT ||
1876 operatorStack[i].op == REOP_ASSERT_NOT ||
1877 operatorStack[i].op == REOP_LPARENNON ||
1878 operatorStack[i].op == REOP_LPAREN) {
1884 /* Process everything on the stack until the open parenthesis. */
1888 switch (operatorStack[operatorSP].op) {
1890 case REOP_ASSERT_NOT:
1892 operand = NewRENode(state, operatorStack[operatorSP].op);
1895 operand->u.parenIndex =
1896 operatorStack[operatorSP].parenIndex;
1898 operand->kid = operandStack[operandSP - 1];
1899 operandStack[operandSP - 1] = operand;
1900 if (state->treeDepth == TREE_DEPTH_MAX) {
1901 ReportRegExpError(state, JSREPORT_ERROR,
1902 JSMSG_REGEXP_TOO_COMPLEX);
1908 case REOP_LPARENNON:
1909 state->result = operandStack[operandSP - 1];
1910 if (!ParseQuantifier(state))
1912 operandStack[operandSP - 1] = state->result;
1913 goto restartOperator;
1915 if (!ProcessOp(state, &operatorStack[operatorSP],
1916 operandStack, operandSP))
1926 const WCHAR *errp = state->cp;
1928 if (ParseMinMaxQuantifier(state, TRUE) < 0) {
1930 * This didn't even scan correctly as a quantifier, so we should
1944 ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_BAD_QUANTIFIER,
1950 /* Anything else is the start of the next term. */
1953 if (operatorSP == operatorStackSize) {
1955 operatorStackSize += operatorStackSize;
1956 tmp = heap_realloc(operatorStack, sizeof(REOpData) * operatorStackSize);
1959 operatorStack = tmp;
1961 operatorStack[operatorSP].op = op;
1962 operatorStack[operatorSP].errPos = state->cp;
1963 operatorStack[operatorSP++].parenIndex = parenIndex;
1968 heap_free(operatorStack);
1969 heap_free(operandStack);
1974 * Save the current state of the match - the position in the input
1975 * text as well as the position in the bytecode. The state of any
1976 * parent expressions is also saved (preceding state).
1977 * Contents of parenCount parentheses from parenIndex are also saved.
1979 static REBackTrackData *
1980 PushBackTrackState(REGlobalData *gData, REOp op,
1981 jsbytecode *target, REMatchState *x, const WCHAR *cp,
1982 size_t parenIndex, size_t parenCount)
1985 REBackTrackData *result =
1986 (REBackTrackData *) ((char *)gData->backTrackSP + gData->cursz);
1988 size_t sz = sizeof(REBackTrackData) +
1989 gData->stateStackTop * sizeof(REProgState) +
1990 parenCount * sizeof(RECapture);
1992 ptrdiff_t btsize = gData->backTrackStackSize;
1993 ptrdiff_t btincr = ((char *)result + sz) -
1994 ((char *)gData->backTrackStack + btsize);
1996 TRACE("\tBT_Push: %lu,%lu\n", (ULONG_PTR)parenIndex, (ULONG_PTR)parenCount);
1998 JS_COUNT_OPERATION(gData->cx, JSOW_JUMP * (1 + parenCount));
2000 ptrdiff_t offset = (char *)result - (char *)gData->backTrackStack;
2002 JS_COUNT_OPERATION(gData->cx, JSOW_ALLOCATION);
2003 btincr = ((btincr+btsize-1)/btsize)*btsize;
2004 gData->backTrackStack = jsheap_grow(gData->pool, gData->backTrackStack, btsize, btincr);
2005 if (!gData->backTrackStack) {
2006 js_ReportOutOfScriptQuota(gData->cx);
2010 gData->backTrackStackSize = btsize + btincr;
2011 result = (REBackTrackData *) ((char *)gData->backTrackStack + offset);
2013 gData->backTrackSP = result;
2014 result->sz = gData->cursz;
2017 result->backtrack_op = op;
2018 result->backtrack_pc = target;
2020 result->parenCount = parenCount;
2021 result->parenIndex = parenIndex;
2023 result->saveStateStackTop = gData->stateStackTop;
2024 assert(gData->stateStackTop);
2025 memcpy(result + 1, gData->stateStack,
2026 sizeof(REProgState) * result->saveStateStackTop);
2028 if (parenCount != 0) {
2029 memcpy((char *)(result + 1) +
2030 sizeof(REProgState) * result->saveStateStackTop,
2031 &x->parens[parenIndex],
2032 sizeof(RECapture) * parenCount);
2033 for (i = 0; i != parenCount; i++)
2034 x->parens[parenIndex + i].index = -1;
2040 static inline REMatchState *
2041 FlatNIMatcher(REGlobalData *gData, REMatchState *x, WCHAR *matchChars,
2045 assert(gData->cpend >= x->cp);
2046 if (length > (size_t)(gData->cpend - x->cp))
2048 for (i = 0; i != length; i++) {
2049 if (toupperW(matchChars[i]) != toupperW(x->cp[i]))
2057 * 1. Evaluate DecimalEscape to obtain an EscapeValue E.
2058 * 2. If E is not a character then go to step 6.
2059 * 3. Let ch be E's character.
2060 * 4. Let A be a one-element RECharSet containing the character ch.
2061 * 5. Call CharacterSetMatcher(A, false) and return its Matcher result.
2062 * 6. E must be an integer. Let n be that integer.
2063 * 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
2064 * 8. Return an internal Matcher closure that takes two arguments, a State x
2065 * and a Continuation c, and performs the following:
2066 * 1. Let cap be x's captures internal array.
2067 * 2. Let s be cap[n].
2068 * 3. If s is undefined, then call c(x) and return its result.
2069 * 4. Let e be x's endIndex.
2070 * 5. Let len be s's length.
2071 * 6. Let f be e+len.
2072 * 7. If f>InputLength, return failure.
2073 * 8. If there exists an integer i between 0 (inclusive) and len (exclusive)
2074 * such that Canonicalize(s[i]) is not the same character as
2075 * Canonicalize(Input [e+i]), then return failure.
2076 * 9. Let y be the State (f, cap).
2077 * 10. Call c(y) and return its result.
2079 static REMatchState *
2080 BackrefMatcher(REGlobalData *gData, REMatchState *x, size_t parenIndex)
2083 const WCHAR *parenContent;
2084 RECapture *cap = &x->parens[parenIndex];
2086 if (cap->index == -1)
2090 if (x->cp + len > gData->cpend)
2093 parenContent = &gData->cpbegin[cap->index];
2094 if (gData->regexp->flags & JSREG_FOLD) {
2095 for (i = 0; i < len; i++) {
2096 if (toupperW(parenContent[i]) != toupperW(x->cp[i]))
2100 for (i = 0; i < len; i++) {
2101 if (parenContent[i] != x->cp[i])
2109 /* Add a single character to the RECharSet */
2111 AddCharacterToCharSet(RECharSet *cs, WCHAR c)
2113 UINT byteIndex = (UINT)(c >> 3);
2114 assert(c <= cs->length);
2115 cs->u.bits[byteIndex] |= 1 << (c & 0x7);
2119 /* Add a character range, c1 to c2 (inclusive) to the RECharSet */
2121 AddCharacterRangeToCharSet(RECharSet *cs, UINT c1, UINT c2)
2125 UINT byteIndex1 = c1 >> 3;
2126 UINT byteIndex2 = c2 >> 3;
2128 assert(c2 <= cs->length && c1 <= c2);
2133 if (byteIndex1 == byteIndex2) {
2134 cs->u.bits[byteIndex1] |= ((BYTE)0xFF >> (7 - (c2 - c1))) << c1;
2136 cs->u.bits[byteIndex1] |= 0xFF << c1;
2137 for (i = byteIndex1 + 1; i < byteIndex2; i++)
2138 cs->u.bits[i] = 0xFF;
2139 cs->u.bits[byteIndex2] |= (BYTE)0xFF >> (7 - c2);
2143 /* Compile the source of the class into a RECharSet */
2145 ProcessCharSet(REGlobalData *gData, RECharSet *charSet)
2147 const WCHAR *src, *end;
2148 BOOL inRange = FALSE;
2149 WCHAR rangeStart = 0;
2154 assert(!charSet->converted);
2156 * Assert that startIndex and length points to chars inside [] inside
2159 assert(1 <= charSet->u.src.startIndex);
2160 assert(charSet->u.src.startIndex
2161 < SysStringLen(gData->regexp->source));
2162 assert(charSet->u.src.length <= SysStringLen(gData->regexp->source)
2163 - 1 - charSet->u.src.startIndex);
2165 charSet->converted = TRUE;
2166 src = gData->regexp->source + charSet->u.src.startIndex;
2168 end = src + charSet->u.src.length;
2170 assert(src[-1] == '[' && end[0] == ']');
2172 byteLength = (charSet->length >> 3) + 1;
2173 charSet->u.bits = heap_alloc(byteLength);
2174 if (!charSet->u.bits) {
2175 JS_ReportOutOfMemory(gData->cx);
2179 memset(charSet->u.bits, 0, byteLength);
2185 assert(charSet->sense == FALSE);
2188 assert(charSet->sense == TRUE);
2191 while (src != end) {
2216 if (src < end && JS_ISWORD(*src)) {
2217 thisCh = (WCHAR)(*src++ & 0x1F);
2230 for (i = 0; (i < nDigits) && (src < end); i++) {
2233 if (!isASCIIHexDigit(c, &digit)) {
2235 * Back off to accepting the original '\'
2242 n = (n << 4) | digit;
2255 * This is a non-ECMA extension - decimal escapes (in this
2256 * case, octal!) are supposed to be an error inside class
2257 * ranges, but supported here for backwards compatibility.
2261 if ('0' <= c && c <= '7') {
2263 n = 8 * n + JS7_UNDEC(c);
2265 if ('0' <= c && c <= '7') {
2267 i = 8 * n + JS7_UNDEC(c);
2278 AddCharacterRangeToCharSet(charSet, '0', '9');
2279 continue; /* don't need range processing */
2281 AddCharacterRangeToCharSet(charSet, 0, '0' - 1);
2282 AddCharacterRangeToCharSet(charSet,
2284 (WCHAR)charSet->length);
2287 for (i = (INT)charSet->length; i >= 0; i--)
2289 AddCharacterToCharSet(charSet, (WCHAR)i);
2292 for (i = (INT)charSet->length; i >= 0; i--)
2294 AddCharacterToCharSet(charSet, (WCHAR)i);
2297 for (i = (INT)charSet->length; i >= 0; i--)
2299 AddCharacterToCharSet(charSet, (WCHAR)i);
2302 for (i = (INT)charSet->length; i >= 0; i--)
2304 AddCharacterToCharSet(charSet, (WCHAR)i);
2319 if (gData->regexp->flags & JSREG_FOLD) {
2320 assert(rangeStart <= thisCh);
2321 for (i = rangeStart; i <= thisCh; i++) {
2324 AddCharacterToCharSet(charSet, i);
2328 AddCharacterToCharSet(charSet, uch);
2330 AddCharacterToCharSet(charSet, dch);
2333 AddCharacterRangeToCharSet(charSet, rangeStart, thisCh);
2337 if (gData->regexp->flags & JSREG_FOLD) {
2338 AddCharacterToCharSet(charSet, toupperW(thisCh));
2339 AddCharacterToCharSet(charSet, tolowerW(thisCh));
2341 AddCharacterToCharSet(charSet, thisCh);
2343 if (src < end - 1) {
2347 rangeStart = thisCh;
2356 ReallocStateStack(REGlobalData *gData)
2358 size_t limit = gData->stateStackLimit;
2359 size_t sz = sizeof(REProgState) * limit;
2361 gData->stateStack = jsheap_grow(gData->pool, gData->stateStack, sz, sz);
2362 if (!gData->stateStack) {
2363 js_ReportOutOfScriptQuota(gData->cx);
2367 gData->stateStackLimit = limit + limit;
2371 #define PUSH_STATE_STACK(data) \
2373 ++(data)->stateStackTop; \
2374 if ((data)->stateStackTop == (data)->stateStackLimit && \
2375 !ReallocStateStack((data))) { \
2381 * Apply the current op against the given input to see if it's going to match
2382 * or fail. Return false if we don't get a match, true if we do. If updatecp is
2383 * true, then update the current state's cp. Always update startpc to the next
2386 static inline REMatchState *
2387 SimpleMatch(REGlobalData *gData, REMatchState *x, REOp op,
2388 jsbytecode **startpc, BOOL updatecp)
2390 REMatchState *result = NULL;
2393 size_t offset, length, index;
2394 jsbytecode *pc = *startpc; /* pc has already been incremented past op */
2396 const WCHAR *startcp = x->cp;
2400 const char *opname = reop_names[op];
2401 TRACE("\n%06d: %*s%s\n", (int)(pc - gData->regexp->program),
2402 (int)gData->stateStackTop * 2, "", opname);
2409 if (x->cp != gData->cpbegin) {
2410 if (/*!gData->cx->regExpStatics.multiline && FIXME !!! */
2411 !(gData->regexp->flags & JSREG_MULTILINE)) {
2414 if (!RE_IS_LINE_TERM(x->cp[-1]))
2420 if (x->cp != gData->cpend) {
2421 if (/*!gData->cx->regExpStatics.multiline &&*/
2422 !(gData->regexp->flags & JSREG_MULTILINE)) {
2425 if (!RE_IS_LINE_TERM(*x->cp))
2431 if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
2432 !(x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
2437 if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
2438 (x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
2443 if (x->cp != gData->cpend && !RE_IS_LINE_TERM(*x->cp)) {
2449 if (x->cp != gData->cpend && JS7_ISDEC(*x->cp)) {
2455 if (x->cp != gData->cpend && !JS7_ISDEC(*x->cp)) {
2461 if (x->cp != gData->cpend && JS_ISWORD(*x->cp)) {
2467 if (x->cp != gData->cpend && !JS_ISWORD(*x->cp)) {
2473 if (x->cp != gData->cpend && isspaceW(*x->cp)) {
2479 if (x->cp != gData->cpend && !isspaceW(*x->cp)) {
2485 pc = ReadCompactIndex(pc, &parenIndex);
2486 assert(parenIndex < gData->regexp->parenCount);
2487 result = BackrefMatcher(gData, x, parenIndex);
2490 pc = ReadCompactIndex(pc, &offset);
2491 assert(offset < SysStringLen(gData->regexp->source));
2492 pc = ReadCompactIndex(pc, &length);
2493 assert(1 <= length);
2494 assert(length <= SysStringLen(gData->regexp->source) - offset);
2495 if (length <= (size_t)(gData->cpend - x->cp)) {
2496 source = gData->regexp->source + offset;
2497 TRACE("%s\n", debugstr_wn(source, length));
2498 for (index = 0; index != length; index++) {
2499 if (source[index] != x->cp[index])
2508 TRACE(" '%c' == '%c'\n", (char)matchCh, (char)*x->cp);
2509 if (x->cp != gData->cpend && *x->cp == matchCh) {
2515 pc = ReadCompactIndex(pc, &offset);
2516 assert(offset < SysStringLen(gData->regexp->source));
2517 pc = ReadCompactIndex(pc, &length);
2518 assert(1 <= length);
2519 assert(length <= SysStringLen(gData->regexp->source) - offset);
2520 source = gData->regexp->source;
2521 result = FlatNIMatcher(gData, x, source + offset, length);
2525 if (x->cp != gData->cpend && toupperW(*x->cp) == toupperW(matchCh)) {
2531 matchCh = GET_ARG(pc);
2532 TRACE(" '%c' == '%c'\n", (char)matchCh, (char)*x->cp);
2534 if (x->cp != gData->cpend && *x->cp == matchCh) {
2540 matchCh = GET_ARG(pc);
2542 if (x->cp != gData->cpend && toupperW(*x->cp) == toupperW(matchCh)) {
2548 pc = ReadCompactIndex(pc, &index);
2549 assert(index < gData->regexp->classCount);
2550 if (x->cp != gData->cpend) {
2551 charSet = &gData->regexp->classList[index];
2552 assert(charSet->converted);
2555 if (charSet->length != 0 &&
2556 ch <= charSet->length &&
2557 (charSet->u.bits[index] & (1 << (ch & 0x7)))) {
2564 pc = ReadCompactIndex(pc, &index);
2565 assert(index < gData->regexp->classCount);
2566 if (x->cp != gData->cpend) {
2567 charSet = &gData->regexp->classList[index];
2568 assert(charSet->converted);
2571 if (charSet->length == 0 ||
2572 ch > charSet->length ||
2573 !(charSet->u.bits[index] & (1 << (ch & 0x7)))) {
2594 static inline REMatchState *
2595 ExecuteREBytecode(REGlobalData *gData, REMatchState *x)
2597 REMatchState *result = NULL;
2598 REBackTrackData *backTrackData;
2599 jsbytecode *nextpc, *testpc;
2602 REProgState *curState;
2603 const WCHAR *startcp;
2604 size_t parenIndex, k;
2605 size_t parenSoFar = 0;
2607 WCHAR matchCh1, matchCh2;
2611 jsbytecode *pc = gData->regexp->program;
2612 REOp op = (REOp) *pc++;
2615 * If the first node is a simple match, step the index into the string
2616 * until that match is made, or fail if it can't be found at all.
2618 if (REOP_IS_SIMPLE(op) && !(gData->regexp->flags & JSREG_STICKY)) {
2620 while (x->cp <= gData->cpend) {
2621 nextpc = pc; /* reset back to start each time */
2622 result = SimpleMatch(gData, x, op, &nextpc, TRUE);
2626 pc = nextpc; /* accept skip to next opcode */
2628 assert(op < REOP_LIMIT);
2639 const char *opname = reop_names[op];
2640 TRACE("\n%06d: %*s%s\n", (int)(pc - gData->regexp->program),
2641 (int)gData->stateStackTop * 2, "", opname);
2643 if (REOP_IS_SIMPLE(op)) {
2644 result = SimpleMatch(gData, x, op, &pc, TRUE);
2646 curState = &gData->stateStack[gData->stateStackTop];
2650 case REOP_ALTPREREQ2:
2651 nextpc = pc + GET_OFFSET(pc); /* start of next op */
2653 matchCh2 = GET_ARG(pc);
2658 if (x->cp != gData->cpend) {
2659 if (*x->cp == matchCh2)
2662 charSet = &gData->regexp->classList[k];
2663 if (!charSet->converted && !ProcessCharSet(gData, charSet))
2667 if ((charSet->length == 0 ||
2668 matchCh1 > charSet->length ||
2669 !(charSet->u.bits[k] & (1 << (matchCh1 & 0x7)))) ^
2677 case REOP_ALTPREREQ:
2678 nextpc = pc + GET_OFFSET(pc); /* start of next op */
2680 matchCh1 = GET_ARG(pc);
2682 matchCh2 = GET_ARG(pc);
2684 if (x->cp == gData->cpend ||
2685 (*x->cp != matchCh1 && *x->cp != matchCh2)) {
2689 /* else fall through... */
2693 nextpc = pc + GET_OFFSET(pc); /* start of next alternate */
2694 pc += ARG_LEN; /* start of this alternate */
2695 curState->parenSoFar = parenSoFar;
2696 PUSH_STATE_STACK(gData);
2699 if (REOP_IS_SIMPLE(op)) {
2700 if (!SimpleMatch(gData, x, op, &pc, TRUE)) {
2701 op = (REOp) *nextpc++;
2708 nextop = (REOp) *nextpc++;
2709 if (!PushBackTrackState(gData, nextop, nextpc, x, startcp, 0, 0))
2714 * Occurs at (successful) end of REOP_ALT,
2718 * If we have not gotten a result here, it is because of an
2719 * empty match. Do the same thing REOP_EMPTY would do.
2724 --gData->stateStackTop;
2725 pc += GET_OFFSET(pc);
2730 * Occurs at last (successful) end of REOP_ALT,
2734 * If we have not gotten a result here, it is because of an
2735 * empty match. Do the same thing REOP_EMPTY would do.
2740 --gData->stateStackTop;
2745 pc = ReadCompactIndex(pc, &parenIndex);
2746 TRACE("[ %lu ]\n", (ULONG_PTR)parenIndex);
2747 assert(parenIndex < gData->regexp->parenCount);
2748 if (parenIndex + 1 > parenSoFar)
2749 parenSoFar = parenIndex + 1;
2750 x->parens[parenIndex].index = x->cp - gData->cpbegin;
2751 x->parens[parenIndex].length = 0;
2759 pc = ReadCompactIndex(pc, &parenIndex);
2760 assert(parenIndex < gData->regexp->parenCount);
2761 cap = &x->parens[parenIndex];
2762 delta = x->cp - (gData->cpbegin + cap->index);
2763 cap->length = (delta < 0) ? 0 : (size_t) delta;
2771 nextpc = pc + GET_OFFSET(pc); /* start of term after ASSERT */
2772 pc += ARG_LEN; /* start of ASSERT child */
2775 if (REOP_IS_SIMPLE(op) &&
2776 !SimpleMatch(gData, x, op, &testpc, FALSE)) {
2780 curState->u.assertion.top =
2781 (char *)gData->backTrackSP - (char *)gData->backTrackStack;
2782 curState->u.assertion.sz = gData->cursz;
2783 curState->index = x->cp - gData->cpbegin;
2784 curState->parenSoFar = parenSoFar;
2785 PUSH_STATE_STACK(gData);
2786 if (!PushBackTrackState(gData, REOP_ASSERTTEST,
2787 nextpc, x, x->cp, 0, 0)) {
2792 case REOP_ASSERT_NOT:
2793 nextpc = pc + GET_OFFSET(pc);
2797 if (REOP_IS_SIMPLE(op) /* Note - fail to fail! */ &&
2798 SimpleMatch(gData, x, op, &testpc, FALSE) &&
2799 *testpc == REOP_ASSERTNOTTEST) {
2803 curState->u.assertion.top
2804 = (char *)gData->backTrackSP -
2805 (char *)gData->backTrackStack;
2806 curState->u.assertion.sz = gData->cursz;
2807 curState->index = x->cp - gData->cpbegin;
2808 curState->parenSoFar = parenSoFar;
2809 PUSH_STATE_STACK(gData);
2810 if (!PushBackTrackState(gData, REOP_ASSERTNOTTEST,
2811 nextpc, x, x->cp, 0, 0)) {
2816 case REOP_ASSERTTEST:
2817 --gData->stateStackTop;
2819 x->cp = gData->cpbegin + curState->index;
2820 gData->backTrackSP =
2821 (REBackTrackData *) ((char *)gData->backTrackStack +
2822 curState->u.assertion.top);
2823 gData->cursz = curState->u.assertion.sz;
2828 case REOP_ASSERTNOTTEST:
2829 --gData->stateStackTop;
2831 x->cp = gData->cpbegin + curState->index;
2832 gData->backTrackSP =
2833 (REBackTrackData *) ((char *)gData->backTrackStack +
2834 curState->u.assertion.top);
2835 gData->cursz = curState->u.assertion.sz;
2836 result = (!result) ? x : NULL;
2839 curState->u.quantifier.min = 0;
2840 curState->u.quantifier.max = (UINT)-1;
2843 curState->u.quantifier.min = 1;
2844 curState->u.quantifier.max = (UINT)-1;
2847 curState->u.quantifier.min = 0;
2848 curState->u.quantifier.max = 1;
2851 pc = ReadCompactIndex(pc, &k);
2852 curState->u.quantifier.min = k;
2853 pc = ReadCompactIndex(pc, &k);
2854 /* max is k - 1 to use one byte for (UINT)-1 sentinel. */
2855 curState->u.quantifier.max = k - 1;
2856 assert(curState->u.quantifier.min <= curState->u.quantifier.max);
2858 if (curState->u.quantifier.max == 0) {
2859 pc = pc + GET_OFFSET(pc);
2864 /* Step over <next> */
2865 nextpc = pc + ARG_LEN;
2866 op = (REOp) *nextpc++;
2868 if (REOP_IS_SIMPLE(op)) {
2869 if (!SimpleMatch(gData, x, op, &nextpc, TRUE)) {
2870 if (curState->u.quantifier.min == 0)
2874 pc = pc + GET_OFFSET(pc);
2877 op = (REOp) *nextpc++;
2880 curState->index = startcp - gData->cpbegin;
2881 curState->continue_op = REOP_REPEAT;
2882 curState->continue_pc = pc;
2883 curState->parenSoFar = parenSoFar;
2884 PUSH_STATE_STACK(gData);
2885 if (curState->u.quantifier.min == 0 &&
2886 !PushBackTrackState(gData, REOP_REPEAT, pc, x, startcp,
2893 case REOP_ENDCHILD: /* marks the end of a quantifier child */
2894 pc = curState[-1].continue_pc;
2895 op = (REOp) curState[-1].continue_op;
2904 --gData->stateStackTop;
2906 /* Failed, see if we have enough children. */
2907 if (curState->u.quantifier.min == 0)
2911 if (curState->u.quantifier.min == 0 &&
2912 x->cp == gData->cpbegin + curState->index) {
2913 /* matched an empty string, that'll get us nowhere */
2917 if (curState->u.quantifier.min != 0)
2918 curState->u.quantifier.min--;
2919 if (curState->u.quantifier.max != (UINT) -1)
2920 curState->u.quantifier.max--;
2921 if (curState->u.quantifier.max == 0)
2923 nextpc = pc + ARG_LEN;
2924 nextop = (REOp) *nextpc;
2926 if (REOP_IS_SIMPLE(nextop)) {
2928 if (!SimpleMatch(gData, x, nextop, &nextpc, TRUE)) {
2929 if (curState->u.quantifier.min == 0)
2936 curState->index = startcp - gData->cpbegin;
2937 PUSH_STATE_STACK(gData);
2938 if (curState->u.quantifier.min == 0 &&
2939 !PushBackTrackState(gData, REOP_REPEAT,
2941 curState->parenSoFar,
2943 curState->parenSoFar)) {
2946 } while (*nextpc == REOP_ENDCHILD);
2949 parenSoFar = curState->parenSoFar;
2954 pc += GET_OFFSET(pc);
2957 case REOP_MINIMALSTAR:
2958 curState->u.quantifier.min = 0;
2959 curState->u.quantifier.max = (UINT)-1;
2960 goto minimalquantcommon;
2961 case REOP_MINIMALPLUS:
2962 curState->u.quantifier.min = 1;
2963 curState->u.quantifier.max = (UINT)-1;
2964 goto minimalquantcommon;
2965 case REOP_MINIMALOPT:
2966 curState->u.quantifier.min = 0;
2967 curState->u.quantifier.max = 1;
2968 goto minimalquantcommon;
2969 case REOP_MINIMALQUANT:
2970 pc = ReadCompactIndex(pc, &k);
2971 curState->u.quantifier.min = k;
2972 pc = ReadCompactIndex(pc, &k);
2973 /* See REOP_QUANT comments about k - 1. */
2974 curState->u.quantifier.max = k - 1;
2975 assert(curState->u.quantifier.min
2976 <= curState->u.quantifier.max);
2978 curState->index = x->cp - gData->cpbegin;
2979 curState->parenSoFar = parenSoFar;
2980 PUSH_STATE_STACK(gData);
2981 if (curState->u.quantifier.min != 0) {
2982 curState->continue_op = REOP_MINIMALREPEAT;
2983 curState->continue_pc = pc;
2984 /* step over <next> */
2988 if (!PushBackTrackState(gData, REOP_MINIMALREPEAT,
2989 pc, x, x->cp, 0, 0)) {
2992 --gData->stateStackTop;
2993 pc = pc + GET_OFFSET(pc);
2998 case REOP_MINIMALREPEAT:
2999 --gData->stateStackTop;
3002 TRACE("{%d,%d}\n", curState->u.quantifier.min, curState->u.quantifier.max);
3003 #define PREPARE_REPEAT() \
3005 curState->index = x->cp - gData->cpbegin; \
3006 curState->continue_op = REOP_MINIMALREPEAT; \
3007 curState->continue_pc = pc; \
3009 for (k = curState->parenSoFar; k < parenSoFar; k++) \
3010 x->parens[k].index = -1; \
3011 PUSH_STATE_STACK(gData); \
3012 op = (REOp) *pc++; \
3013 assert(op < REOP_LIMIT); \
3019 * Non-greedy failure - try to consume another child.
3021 if (curState->u.quantifier.max == (UINT) -1 ||
3022 curState->u.quantifier.max > 0) {
3026 /* Don't need to adjust pc since we're going to pop. */
3029 if (curState->u.quantifier.min == 0 &&
3030 x->cp == gData->cpbegin + curState->index) {
3031 /* Matched an empty string, that'll get us nowhere. */
3035 if (curState->u.quantifier.min != 0)
3036 curState->u.quantifier.min--;
3037 if (curState->u.quantifier.max != (UINT) -1)
3038 curState->u.quantifier.max--;
3039 if (curState->u.quantifier.min != 0) {
3043 curState->index = x->cp - gData->cpbegin;
3044 curState->parenSoFar = parenSoFar;
3045 PUSH_STATE_STACK(gData);
3046 if (!PushBackTrackState(gData, REOP_MINIMALREPEAT,
3048 curState->parenSoFar,
3049 parenSoFar - curState->parenSoFar)) {
3052 --gData->stateStackTop;
3053 pc = pc + GET_OFFSET(pc);
3055 assert(op < REOP_LIMIT);
3065 * If the match failed and there's a backtrack option, take it.
3066 * Otherwise this is a complete and utter failure.
3069 if (gData->cursz == 0)
3072 /* Potentially detect explosive regex here. */
3073 gData->backTrackCount++;
3074 if (gData->backTrackLimit &&
3075 gData->backTrackCount >= gData->backTrackLimit) {
3076 JS_ReportErrorNumber(gData->cx, js_GetErrorMessage, NULL,
3077 JSMSG_REGEXP_TOO_COMPLEX);
3082 backTrackData = gData->backTrackSP;
3083 gData->cursz = backTrackData->sz;
3084 gData->backTrackSP =
3085 (REBackTrackData *) ((char *)backTrackData - backTrackData->sz);
3086 x->cp = backTrackData->cp;
3087 pc = backTrackData->backtrack_pc;
3088 op = (REOp) backTrackData->backtrack_op;
3089 assert(op < REOP_LIMIT);
3090 gData->stateStackTop = backTrackData->saveStateStackTop;
3091 assert(gData->stateStackTop);
3093 memcpy(gData->stateStack, backTrackData + 1,
3094 sizeof(REProgState) * backTrackData->saveStateStackTop);
3095 curState = &gData->stateStack[gData->stateStackTop - 1];
3097 if (backTrackData->parenCount) {
3098 memcpy(&x->parens[backTrackData->parenIndex],
3099 (char *)(backTrackData + 1) +
3100 sizeof(REProgState) * backTrackData->saveStateStackTop,
3101 sizeof(RECapture) * backTrackData->parenCount);
3102 parenSoFar = backTrackData->parenIndex + backTrackData->parenCount;
3104 for (k = curState->parenSoFar; k < parenSoFar; k++)
3105 x->parens[k].index = -1;
3106 parenSoFar = curState->parenSoFar;
3109 TRACE("\tBT_Pop: %ld,%ld\n",
3110 (ULONG_PTR)backTrackData->parenIndex,
3111 (ULONG_PTR)backTrackData->parenCount);
3117 * Continue with the expression.
3120 assert(op < REOP_LIMIT);
3132 static REMatchState *MatchRegExp(REGlobalData *gData, REMatchState *x)
3134 REMatchState *result;
3135 const WCHAR *cp = x->cp;
3140 * Have to include the position beyond the last character
3141 * in order to detect end-of-input/line condition.
3143 for (cp2 = cp; cp2 <= gData->cpend; cp2++) {
3144 gData->skipped = cp2 - cp;
3146 for (j = 0; j < gData->regexp->parenCount; j++)
3147 x->parens[j].index = -1;
3148 result = ExecuteREBytecode(gData, x);
3149 if (!gData->ok || result || (gData->regexp->flags & JSREG_STICKY))
3151 gData->backTrackSP = gData->backTrackStack;
3153 gData->stateStackTop = 0;
3154 cp2 = cp + gData->skipped;
3159 #define MIN_BACKTRACK_LIMIT 400000
3161 static REMatchState *InitMatch(script_ctx_t *cx, REGlobalData *gData, JSRegExp *re, size_t length)
3163 REMatchState *result;
3166 gData->backTrackStackSize = INITIAL_BACKTRACK;
3167 gData->backTrackStack = jsheap_alloc(gData->pool, INITIAL_BACKTRACK);
3168 if (!gData->backTrackStack)
3171 gData->backTrackSP = gData->backTrackStack;
3173 gData->backTrackCount = 0;
3174 gData->backTrackLimit = 0;
3176 gData->stateStackLimit = INITIAL_STATESTACK;
3177 gData->stateStack = jsheap_alloc(gData->pool, sizeof(REProgState) * INITIAL_STATESTACK);
3178 if (!gData->stateStack)
3181 gData->stateStackTop = 0;
3186 result = jsheap_alloc(gData->pool, offsetof(REMatchState, parens) + re->parenCount * sizeof(RECapture));
3190 for (i = 0; i < re->classCount; i++) {
3191 if (!re->classList[i].converted &&
3192 !ProcessCharSet(gData, &re->classList[i])) {
3200 js_ReportOutOfScriptQuota(cx);
3206 js_DestroyRegExp(JSRegExp *re)
3208 if (re->classList) {
3210 for (i = 0; i < re->classCount; i++) {
3211 if (re->classList[i].converted)
3212 heap_free(re->classList[i].u.bits);
3213 re->classList[i].u.bits = NULL;
3215 heap_free(re->classList);
3221 js_NewRegExp(script_ctx_t *cx, BSTR str, UINT flags, BOOL flat)
3225 CompilerState state;
3232 mark = jsheap_mark(&cx->tmp_heap);
3233 len = SysStringLen(str);
3239 state.cpbegin = state.cp;
3240 state.cpend = state.cp + len;
3241 state.flags = flags;
3242 state.parenCount = 0;
3243 state.classCount = 0;
3244 state.progLength = 0;
3245 state.treeDepth = 0;
3246 state.classBitmapsMem = 0;
3247 for (i = 0; i < CLASS_CACHE_SIZE; i++)
3248 state.classCache[i].start = NULL;
3250 if (len != 0 && flat) {
3251 state.result = NewRENode(&state, REOP_FLAT);
3254 state.result->u.flat.chr = *state.cpbegin;
3255 state.result->u.flat.length = len;
3256 state.result->kid = (void *) state.cpbegin;
3257 /* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */
3258 state.progLength += 1 + GetCompactIndexWidth(0)
3259 + GetCompactIndexWidth(len);
3261 if (!ParseRegExp(&state))
3264 resize = offsetof(JSRegExp, program) + state.progLength + 1;
3265 re = heap_alloc(resize);
3269 assert(state.classBitmapsMem <= CLASS_BITMAPS_MEM_LIMIT);
3270 re->classCount = state.classCount;
3271 if (re->classCount) {
3272 re->classList = heap_alloc(re->classCount * sizeof(RECharSet));
3273 if (!re->classList) {
3274 js_DestroyRegExp(re);
3278 for (i = 0; i < re->classCount; i++)
3279 re->classList[i].converted = FALSE;
3281 re->classList = NULL;
3283 endPC = EmitREBytecode(&state, re, state.treeDepth, re->program, state.result);
3285 js_DestroyRegExp(re);
3289 *endPC++ = REOP_END;
3291 * Check whether size was overestimated and shrink using realloc.
3292 * This is safe since no pointers to newly parsed regexp or its parts
3293 * besides re exist here.
3295 if ((size_t)(endPC - re->program) != state.progLength + 1) {
3297 assert((size_t)(endPC - re->program) < state.progLength + 1);
3298 resize = offsetof(JSRegExp, program) + (endPC - re->program);
3299 tmp = heap_realloc(re, resize);
3305 re->parenCount = state.parenCount;
3313 static inline RegExpInstance *regexp_from_vdisp(vdisp_t *vdisp)
3315 return (RegExpInstance*)vdisp->u.jsdisp;
3318 static void set_last_index(RegExpInstance *This, DWORD last_index)
3320 This->last_index = last_index;
3321 jsval_release(This->last_index_val);
3322 This->last_index_val = jsval_number(last_index);
3325 static HRESULT do_regexp_match_next(script_ctx_t *ctx, RegExpInstance *regexp, DWORD rem_flags,
3326 const WCHAR *str, DWORD len, const WCHAR **cp, match_result_t **parens, DWORD *parens_size,
3327 DWORD *parens_cnt, match_result_t *ret)
3329 REMatchState *x, *result;
3333 gData.cpbegin = str;
3334 gData.cpend = str + len;
3335 gData.start = *cp-str;
3337 gData.pool = &ctx->tmp_heap;
3339 x = InitMatch(NULL, &gData, regexp->jsregexp, gData.cpend - gData.cpbegin);
3341 WARN("InitMatch failed\n");
3346 result = MatchRegExp(&gData, x);
3348 WARN("MatchRegExp failed\n");
3353 if(rem_flags & REM_RESET_INDEX)
3354 set_last_index(regexp, 0);
3359 if(regexp->jsregexp->parenCount > *parens_size) {
3360 match_result_t *new_parens;
3363 new_parens = heap_realloc(*parens, sizeof(match_result_t)*regexp->jsregexp->parenCount);
3365 new_parens = heap_alloc(sizeof(match_result_t)*regexp->jsregexp->parenCount);
3367 return E_OUTOFMEMORY;
3369 *parens = new_parens;
3373 /* FIXME: We often already have a copy of input string that we could use to store last match */
3374 if(!(rem_flags & REM_NO_CTX_UPDATE) &&
3375 (!ctx->last_match || len != SysStringLen(ctx->last_match) || strncmpW(ctx->last_match, str, len))) {
3378 last_match = SysAllocStringLen(str, len);
3380 return E_OUTOFMEMORY;
3381 SysFreeString(ctx->last_match);
3382 ctx->last_match = last_match;
3388 *parens_cnt = regexp->jsregexp->parenCount;
3390 for(i=0; i < regexp->jsregexp->parenCount; i++) {
3391 if(result->parens[i].index == -1) {
3392 (*parens)[i].str = NULL;
3393 (*parens)[i].len = 0;
3395 (*parens)[i].str = str + result->parens[i].index;
3396 (*parens)[i].len = result->parens[i].length;
3401 if(!(rem_flags & REM_NO_CTX_UPDATE)) {
3402 DWORD i, n = min(sizeof(ctx->match_parens)/sizeof(ctx->match_parens[0]), regexp->jsregexp->parenCount);
3404 for(i=0; i < n; i++) {
3405 if(result->parens[i].index == -1) {
3406 ctx->match_parens[i].str = NULL;
3407 ctx->match_parens[i].len = 0;
3409 ctx->match_parens[i].str = ctx->last_match + result->parens[i].index;
3410 ctx->match_parens[i].len = result->parens[i].length;
3414 if(n < sizeof(ctx->match_parens)/sizeof(ctx->match_parens[0]))
3415 memset(ctx->match_parens+n, 0, sizeof(ctx->match_parens) - n*sizeof(ctx->match_parens[0]));
3418 matchlen = (result->cp-*cp) - gData.skipped;
3420 ret->str = result->cp-matchlen;
3421 ret->len = matchlen;
3422 set_last_index(regexp, result->cp-str);
3424 if(!(rem_flags & REM_NO_CTX_UPDATE)) {
3425 ctx->last_match_index = ret->str-str;
3426 ctx->last_match_length = matchlen;
3432 HRESULT regexp_match_next(script_ctx_t *ctx, jsdisp_t *dispex, DWORD rem_flags, const WCHAR *str,
3433 DWORD len, const WCHAR **cp, match_result_t **parens, DWORD *parens_size, DWORD *parens_cnt,
3434 match_result_t *ret)
3436 RegExpInstance *regexp = (RegExpInstance*)dispex;
3440 if((rem_flags & REM_CHECK_GLOBAL) && !(regexp->jsregexp->flags & JSREG_GLOB))
3443 mark = jsheap_mark(&ctx->tmp_heap);
3445 hres = do_regexp_match_next(ctx, regexp, rem_flags, str, len, cp, parens, parens_size, parens_cnt, ret);
3451 static HRESULT regexp_match(script_ctx_t *ctx, jsdisp_t *dispex, const WCHAR *str, DWORD len, BOOL gflag,
3452 match_result_t **match_result, DWORD *result_cnt)
3454 RegExpInstance *This = (RegExpInstance*)dispex;
3455 match_result_t *ret = NULL, cres;
3456 const WCHAR *cp = str;
3457 DWORD i=0, ret_size = 0;
3461 mark = jsheap_mark(&ctx->tmp_heap);
3464 hres = do_regexp_match_next(ctx, This, 0, str, len, &cp, NULL, NULL, NULL, &cres);
3465 if(hres == S_FALSE) {
3475 ret = heap_realloc(ret, (ret_size <<= 1) * sizeof(match_result_t));
3477 ret = heap_alloc((ret_size=4) * sizeof(match_result_t));
3479 hres = E_OUTOFMEMORY;
3486 if(!gflag && !(This->jsregexp->flags & JSREG_GLOB)) {
3498 *match_result = ret;
3503 static HRESULT RegExp_source(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3509 case DISPATCH_PROPERTYGET: {
3510 RegExpInstance *This = regexp_from_vdisp(jsthis);
3511 BSTR ret = SysAllocString(This->str);
3513 return E_OUTOFMEMORY;
3514 *r = jsval_string(ret);
3518 FIXME("Unimplemented flags %x\n", flags);
3525 static HRESULT RegExp_global(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3532 static HRESULT RegExp_ignoreCase(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3539 static HRESULT RegExp_multiline(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3546 static INT index_from_val(script_ctx_t *ctx, jsval_t v)
3551 hres = to_number(ctx, v, &n);
3553 clear_ei(ctx); /* FIXME: Move ignoring exceptions to to_primitive */
3558 return is_int32(n) ? n : 0;
3561 static HRESULT RegExp_lastIndex(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3567 case DISPATCH_PROPERTYGET: {
3568 RegExpInstance *regexp = regexp_from_vdisp(jsthis);
3570 return jsval_copy(regexp->last_index_val, r);
3572 case DISPATCH_PROPERTYPUT: {
3573 RegExpInstance *regexp = regexp_from_vdisp(jsthis);
3576 hres = jsval_copy(argv[0], ®exp->last_index_val);
3580 regexp->last_index = index_from_val(ctx, argv[0]);
3584 FIXME("unimplemented flags: %x\n", flags);
3591 static HRESULT RegExp_toString(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3598 static HRESULT create_match_array(script_ctx_t *ctx, BSTR input, const match_result_t *result,
3599 const match_result_t *parens, DWORD parens_cnt, IDispatch **ret)
3604 HRESULT hres = S_OK;
3606 static const WCHAR indexW[] = {'i','n','d','e','x',0};
3607 static const WCHAR inputW[] = {'i','n','p','u','t',0};
3608 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
3609 static const WCHAR zeroW[] = {'0',0};
3611 hres = create_array(ctx, parens_cnt+1, &array);
3615 for(i=0; i < parens_cnt; i++) {
3616 str = SysAllocStringLen(parens[i].str, parens[i].len);
3618 hres = E_OUTOFMEMORY;
3622 hres = jsdisp_propput_idx(array, i+1, jsval_string(str));
3628 while(SUCCEEDED(hres)) {
3629 hres = jsdisp_propput_name(array, indexW, jsval_number(result->str-input));
3633 hres = jsdisp_propput_name(array, lastIndexW, jsval_number(result->str-input+result->len));
3637 hres = jsdisp_propput_name(array, inputW, jsval_string(input));
3641 str = SysAllocStringLen(result->str, result->len);
3643 hres = E_OUTOFMEMORY;
3646 hres = jsdisp_propput_name(array, zeroW, jsval_string(str));
3652 jsdisp_release(array);
3656 *ret = to_disp(array);
3660 static HRESULT run_exec(script_ctx_t *ctx, vdisp_t *jsthis, jsval_t arg, BSTR *input,
3661 match_result_t *match, match_result_t **parens, DWORD *parens_cnt, BOOL *ret)
3663 RegExpInstance *regexp;
3664 DWORD parens_size = 0, last_index = 0, length;
3669 if(!is_vclass(jsthis, JSCLASS_REGEXP)) {
3670 FIXME("Not a RegExp\n");
3674 regexp = regexp_from_vdisp(jsthis);
3676 hres = to_string(ctx, arg, &string);
3679 length = SysStringLen(string);
3681 if(regexp->jsregexp->flags & JSREG_GLOB) {
3682 if(regexp->last_index < 0) {
3683 SysFreeString(string);
3684 set_last_index(regexp, 0);
3692 last_index = regexp->last_index;
3695 cp = string + last_index;
3696 hres = regexp_match_next(ctx, ®exp->dispex, REM_RESET_INDEX, string, length, &cp, parens,
3697 parens ? &parens_size : NULL, parens_cnt, match);
3699 SysFreeString(string);
3703 *ret = hres == S_OK;
3707 SysFreeString(string);
3712 static HRESULT RegExp_exec(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3715 match_result_t *parens = NULL, match;
3716 DWORD parens_cnt = 0;
3723 hres = run_exec(ctx, jsthis, argc ? argv[0] : jsval_string(NULL), &string, &match, &parens, &parens_cnt, &b);
3731 hres = create_match_array(ctx, string, &match, parens, parens_cnt, &ret);
3733 *r = jsval_disp(ret);
3740 SysFreeString(string);
3744 static HRESULT RegExp_test(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3747 match_result_t match;
3755 undef_str = SysAllocString(undefinedW);
3757 return E_OUTOFMEMORY;
3760 hres = run_exec(ctx, jsthis, argc ? argv[0] : jsval_string(undef_str), NULL, &match, NULL, NULL, &b);
3762 SysFreeString(undef_str);
3771 static HRESULT RegExp_value(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3778 return throw_type_error(ctx, JS_E_FUNCTION_EXPECTED, NULL);
3780 FIXME("unimplemented flags %x\n", flags);
3787 static void RegExp_destructor(jsdisp_t *dispex)
3789 RegExpInstance *This = (RegExpInstance*)dispex;
3792 js_DestroyRegExp(This->jsregexp);
3793 jsval_release(This->last_index_val);
3794 SysFreeString(This->str);
3798 static const builtin_prop_t RegExp_props[] = {
3799 {execW, RegExp_exec, PROPF_METHOD|1},
3800 {globalW, RegExp_global, 0},
3801 {ignoreCaseW, RegExp_ignoreCase, 0},
3802 {lastIndexW, RegExp_lastIndex, 0},
3803 {multilineW, RegExp_multiline, 0},
3804 {sourceW, RegExp_source, 0},
3805 {testW, RegExp_test, PROPF_METHOD|1},
3806 {toStringW, RegExp_toString, PROPF_METHOD}
3809 static const builtin_info_t RegExp_info = {
3811 {NULL, RegExp_value, 0},
3812 sizeof(RegExp_props)/sizeof(*RegExp_props),
3818 static const builtin_prop_t RegExpInst_props[] = {
3819 {globalW, RegExp_global, 0},
3820 {ignoreCaseW, RegExp_ignoreCase, 0},
3821 {lastIndexW, RegExp_lastIndex, 0},
3822 {multilineW, RegExp_multiline, 0},
3823 {sourceW, RegExp_source, 0}
3826 static const builtin_info_t RegExpInst_info = {
3828 {NULL, RegExp_value, 0},
3829 sizeof(RegExpInst_props)/sizeof(*RegExpInst_props),
3835 static HRESULT alloc_regexp(script_ctx_t *ctx, jsdisp_t *object_prototype, RegExpInstance **ret)
3837 RegExpInstance *regexp;
3840 regexp = heap_alloc_zero(sizeof(RegExpInstance));
3842 return E_OUTOFMEMORY;
3844 if(object_prototype)
3845 hres = init_dispex(®exp->dispex, ctx, &RegExp_info, object_prototype);
3847 hres = init_dispex_from_constr(®exp->dispex, ctx, &RegExpInst_info, ctx->regexp_constr);
3858 HRESULT create_regexp(script_ctx_t *ctx, const WCHAR *exp, int len, DWORD flags, jsdisp_t **ret)
3860 RegExpInstance *regexp;
3863 TRACE("%s %x\n", debugstr_wn(exp, len), flags);
3865 hres = alloc_regexp(ctx, NULL, ®exp);
3870 regexp->str = SysAllocString(exp);
3872 regexp->str = SysAllocStringLen(exp, len);
3874 jsdisp_release(®exp->dispex);
3875 return E_OUTOFMEMORY;
3878 regexp->jsregexp = js_NewRegExp(ctx, regexp->str, flags, FALSE);
3879 if(!regexp->jsregexp) {
3880 WARN("js_NewRegExp failed\n");
3881 jsdisp_release(®exp->dispex);
3885 regexp->last_index_val = jsval_number(0);
3887 *ret = ®exp->dispex;
3891 HRESULT create_regexp_var(script_ctx_t *ctx, jsval_t src_arg, jsval_t *flags_arg, jsdisp_t **ret)
3893 const WCHAR *opt = emptyW, *src;
3897 if(is_object_instance(src_arg)) {
3900 obj = iface_to_jsdisp((IUnknown*)get_object(src_arg));
3902 if(is_class(obj, JSCLASS_REGEXP)) {
3903 RegExpInstance *regexp = (RegExpInstance*)obj;
3905 hres = create_regexp(ctx, regexp->str, -1, regexp->jsregexp->flags, ret);
3906 jsdisp_release(obj);
3910 jsdisp_release(obj);
3914 if(!is_string(src_arg)) {
3915 FIXME("src_arg = %s\n", debugstr_jsval(src_arg));
3919 src = get_string(src_arg);
3922 if(!is_string(*flags_arg)) {
3923 FIXME("unimplemented for %s\n", debugstr_jsval(*flags_arg));
3927 opt = get_string(*flags_arg);
3930 hres = parse_regexp_flags(opt, strlenW(opt), &flags);
3934 return create_regexp(ctx, src, -1, flags, ret);
3937 HRESULT regexp_string_match(script_ctx_t *ctx, jsdisp_t *re, BSTR str, jsval_t *r)
3939 static const WCHAR indexW[] = {'i','n','d','e','x',0};
3940 static const WCHAR inputW[] = {'i','n','p','u','t',0};
3941 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
3943 RegExpInstance *regexp = (RegExpInstance*)re;
3944 match_result_t *match_result;
3945 DWORD match_cnt, i, length;
3949 length = SysStringLen(str);
3951 if(!(regexp->jsregexp->flags & JSREG_GLOB)) {
3952 match_result_t match, *parens = NULL;
3953 DWORD parens_cnt, parens_size = 0;
3954 const WCHAR *cp = str;
3956 hres = regexp_match_next(ctx, ®exp->dispex, 0, str, length, &cp, &parens, &parens_size, &parens_cnt, &match);
3964 hres = create_match_array(ctx, str, &match, parens, parens_cnt, &ret);
3966 *r = jsval_disp(ret);
3976 hres = regexp_match(ctx, ®exp->dispex, str, length, FALSE, &match_result, &match_cnt);
3981 TRACE("no match\n");
3988 hres = create_array(ctx, match_cnt, &array);
3992 for(i=0; i < match_cnt; i++) {
3995 tmp_str = SysAllocStringLen(match_result[i].str, match_result[i].len);
3997 hres = E_OUTOFMEMORY;
4001 hres = jsdisp_propput_idx(array, i, jsval_string(tmp_str));
4002 SysFreeString(tmp_str);
4007 while(SUCCEEDED(hres)) {
4008 hres = jsdisp_propput_name(array, indexW, jsval_number(match_result[match_cnt-1].str-str));
4012 hres = jsdisp_propput_name(array, lastIndexW,
4013 jsval_number(match_result[match_cnt-1].str-str+match_result[match_cnt-1].len));
4017 hres = jsdisp_propput_name(array, inputW, jsval_string(str));
4021 heap_free(match_result);
4023 if(SUCCEEDED(hres) && r)
4024 *r = jsval_obj(array);
4026 jsdisp_release(array);
4030 static HRESULT global_idx(script_ctx_t *ctx, DWORD flags, DWORD idx, jsval_t *r)
4033 case DISPATCH_PROPERTYGET: {
4036 ret = SysAllocStringLen(ctx->match_parens[idx].str, ctx->match_parens[idx].len);
4038 return E_OUTOFMEMORY;
4040 *r = jsval_string(ret);
4043 case DISPATCH_PROPERTYPUT:
4046 FIXME("unsupported flags\n");
4053 static HRESULT RegExpConstr_idx1(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4054 unsigned argc, jsval_t *argv, jsval_t *r)
4057 return global_idx(ctx, flags, 0, r);
4060 static HRESULT RegExpConstr_idx2(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4061 unsigned argc, jsval_t *argv, jsval_t *r)
4064 return global_idx(ctx, flags, 1, r);
4067 static HRESULT RegExpConstr_idx3(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4068 unsigned argc, jsval_t *argv, jsval_t *r)
4071 return global_idx(ctx, flags, 2, r);
4074 static HRESULT RegExpConstr_idx4(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4075 unsigned argc, jsval_t *argv, jsval_t *r)
4078 return global_idx(ctx, flags, 3, r);
4081 static HRESULT RegExpConstr_idx5(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4082 unsigned argc, jsval_t *argv, jsval_t *r)
4085 return global_idx(ctx, flags, 4, r);
4088 static HRESULT RegExpConstr_idx6(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4089 unsigned argc, jsval_t *argv, jsval_t *r)
4092 return global_idx(ctx, flags, 5, r);
4095 static HRESULT RegExpConstr_idx7(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4096 unsigned argc, jsval_t *argv, jsval_t *r)
4099 return global_idx(ctx, flags, 6, r);
4102 static HRESULT RegExpConstr_idx8(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4103 unsigned argc, jsval_t *argv, jsval_t *r)
4106 return global_idx(ctx, flags, 7, r);
4109 static HRESULT RegExpConstr_idx9(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4110 unsigned argc, jsval_t *argv, jsval_t *r)
4113 return global_idx(ctx, flags, 8, r);
4116 static HRESULT RegExpConstr_leftContext(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4117 unsigned argc, jsval_t *argv, jsval_t *r)
4122 case DISPATCH_PROPERTYGET: {
4125 ret = SysAllocStringLen(ctx->last_match, ctx->last_match_index);
4127 return E_OUTOFMEMORY;
4129 *r = jsval_string(ret);
4132 case DISPATCH_PROPERTYPUT:
4135 FIXME("unsupported flags\n");
4142 static HRESULT RegExpConstr_rightContext(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4143 unsigned argc, jsval_t *argv, jsval_t *r)
4148 case DISPATCH_PROPERTYGET: {
4151 ret = SysAllocString(ctx->last_match+ctx->last_match_index+ctx->last_match_length);
4153 return E_OUTOFMEMORY;
4155 *r = jsval_string(ret);
4158 case DISPATCH_PROPERTYPUT:
4161 FIXME("unsupported flags\n");
4168 static HRESULT RegExpConstr_value(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
4174 case DISPATCH_METHOD:
4176 if(is_object_instance(argv[0])) {
4177 jsdisp_t *jsdisp = iface_to_jsdisp((IUnknown*)get_object(argv[0]));
4179 if(is_class(jsdisp, JSCLASS_REGEXP)) {
4180 if(argc > 1 && !is_undefined(argv[1])) {
4181 jsdisp_release(jsdisp);
4182 return throw_regexp_error(ctx, JS_E_REGEXP_SYNTAX, NULL);
4186 *r = jsval_obj(jsdisp);
4188 jsdisp_release(jsdisp);
4191 jsdisp_release(jsdisp);
4196 case DISPATCH_CONSTRUCT: {
4205 hres = create_regexp_var(ctx, argv[0], argc > 1 ? argv+1 : NULL, &ret);
4210 *r = jsval_obj(ret);
4212 jsdisp_release(ret);
4216 FIXME("unimplemented flags: %x\n", flags);
4223 static const builtin_prop_t RegExpConstr_props[] = {
4224 {idx1W, RegExpConstr_idx1, 0},
4225 {idx2W, RegExpConstr_idx2, 0},
4226 {idx3W, RegExpConstr_idx3, 0},
4227 {idx4W, RegExpConstr_idx4, 0},
4228 {idx5W, RegExpConstr_idx5, 0},
4229 {idx6W, RegExpConstr_idx6, 0},
4230 {idx7W, RegExpConstr_idx7, 0},
4231 {idx8W, RegExpConstr_idx8, 0},
4232 {idx9W, RegExpConstr_idx9, 0},
4233 {leftContextW, RegExpConstr_leftContext, 0},
4234 {rightContextW, RegExpConstr_rightContext, 0}
4237 static const builtin_info_t RegExpConstr_info = {
4239 {NULL, Function_value, 0},
4240 sizeof(RegExpConstr_props)/sizeof(*RegExpConstr_props),
4246 HRESULT create_regexp_constr(script_ctx_t *ctx, jsdisp_t *object_prototype, jsdisp_t **ret)
4248 RegExpInstance *regexp;
4251 static const WCHAR RegExpW[] = {'R','e','g','E','x','p',0};
4253 hres = alloc_regexp(ctx, object_prototype, ®exp);
4257 hres = create_builtin_constructor(ctx, RegExpConstr_value, RegExpW, &RegExpConstr_info,
4258 PROPF_CONSTR|2, ®exp->dispex, ret);
4260 jsdisp_release(®exp->dispex);
4264 HRESULT parse_regexp_flags(const WCHAR *str, DWORD str_len, DWORD *ret)
4269 for (p = str; p < str+str_len; p++) {
4272 flags |= JSREG_GLOB;
4275 flags |= JSREG_FOLD;
4278 flags |= JSREG_MULTILINE;
4281 flags |= JSREG_STICKY;
4284 WARN("wrong flag %c\n", *p);