quartz: Exclude unused headers.
[wine] / dlls / rsaenh / rsaenh.c
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22  */
23
24 #include "config.h"
25 #include "wine/port.h"
26 #include "wine/library.h"
27 #include "wine/debug.h"
28
29 #include <stdarg.h>
30 #include <stdio.h>
31
32 #include "windef.h"
33 #include "winbase.h"
34 #include "winreg.h"
35 #include "wincrypt.h"
36 #include "lmcons.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44  * CRYPTHASH - hash objects
45  */
46 #define RSAENH_MAGIC_HASH           0x85938417u
47 #define RSAENH_MAX_HASH_SIZE        104
48 #define RSAENH_HASHSTATE_IDLE       0
49 #define RSAENH_HASHSTATE_HASHING    1
50 #define RSAENH_HASHSTATE_FINISHED   2
51 typedef struct _RSAENH_TLS1PRF_PARAMS
52 {
53     CRYPT_DATA_BLOB blobLabel;
54     CRYPT_DATA_BLOB blobSeed;
55 } RSAENH_TLS1PRF_PARAMS;
56
57 typedef struct tagCRYPTHASH
58 {
59     OBJECTHDR    header;
60     ALG_ID       aiAlgid;
61     HCRYPTKEY    hKey;
62     HCRYPTPROV   hProv;
63     DWORD        dwHashSize;
64     DWORD        dwState;
65     HASH_CONTEXT context;
66     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
67     PHMAC_INFO   pHMACInfo;
68     RSAENH_TLS1PRF_PARAMS tpPRFParams;
69 } CRYPTHASH;
70
71 /******************************************************************************
72  * CRYPTKEY - key objects
73  */
74 #define RSAENH_MAGIC_KEY           0x73620457u
75 #define RSAENH_MAX_KEY_SIZE        48
76 #define RSAENH_MAX_BLOCK_SIZE      24
77 #define RSAENH_KEYSTATE_IDLE       0
78 #define RSAENH_KEYSTATE_ENCRYPTING 1
79 #define RSAENH_KEYSTATE_DECRYPTING 2
80 #define RSAENH_KEYSTATE_MASTERKEY  3
81 typedef struct _RSAENH_SCHANNEL_INFO 
82 {
83     SCHANNEL_ALG saEncAlg;
84     SCHANNEL_ALG saMACAlg;
85     CRYPT_DATA_BLOB blobClientRandom;
86     CRYPT_DATA_BLOB blobServerRandom;
87 } RSAENH_SCHANNEL_INFO;
88
89 typedef struct tagCRYPTKEY
90 {
91     OBJECTHDR   header;
92     ALG_ID      aiAlgid;
93     HCRYPTPROV  hProv;
94     DWORD       dwMode;
95     DWORD       dwModeBits;
96     DWORD       dwPermissions;
97     DWORD       dwKeyLen;
98     DWORD       dwSaltLen;
99     DWORD       dwBlockLen;
100     DWORD       dwState;
101     KEY_CONTEXT context;    
102     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
103     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
104     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
105     RSAENH_SCHANNEL_INFO siSChannelInfo;
106 } CRYPTKEY;
107
108 /******************************************************************************
109  * KEYCONTAINER - key containers
110  */
111 #define RSAENH_PERSONALITY_BASE        0u
112 #define RSAENH_PERSONALITY_STRONG      1u
113 #define RSAENH_PERSONALITY_ENHANCED    2u
114 #define RSAENH_PERSONALITY_SCHANNEL    3u
115
116 #define RSAENH_MAGIC_CONTAINER         0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119     OBJECTHDR    header;
120     DWORD        dwFlags;
121     DWORD        dwPersonality;
122     DWORD        dwEnumAlgsCtr;
123     DWORD        dwEnumContainersCtr;
124     CHAR         szName[MAX_PATH];
125     CHAR         szProvName[MAX_PATH];
126     HCRYPTKEY    hKeyExchangeKeyPair;
127     HCRYPTKEY    hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131  * Some magic constants
132  */
133 #define RSAENH_ENCRYPT                    1
134 #define RSAENH_DECRYPT                    0    
135 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN          64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
139 #define RSAENH_DES_STORAGE_KEYLEN        64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN   128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
143 #define RSAENH_3DES_STORAGE_KEYLEN      192
144 #define RSAENH_MAGIC_RSA2        0x32415352
145 #define RSAENH_MAGIC_RSA1        0x31415352
146 #define RSAENH_PKC_BLOCKTYPE           0x02
147 #define RSAENH_SSL3_VERSION_MAJOR         3
148 #define RSAENH_SSL3_VERSION_MINOR         0
149 #define RSAENH_TLS1_VERSION_MAJOR         3
150 #define RSAENH_TLS1_VERSION_MINOR         1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156  */
157 #define RSAENH_MAX_ENUMALGS 20
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[4][RSAENH_MAX_ENUMALGS+1] =
160 {
161  {
162   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
163   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
164   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
165   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
166   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
167   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
168   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
169   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
171   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
174   {0,               0,  0,    0,0,                    1,"",         1,""}
175  },
176  {
177   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
178   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
179   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
180   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
181   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
182   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
183   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
184   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
185   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
186   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
188   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
191   {0,               0,  0,    0,0,                    1,"",         1,""}
192  },
193  {
194   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
195   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
196   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
197   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
198   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
199   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
200   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
201   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
202   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
203   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
205   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
208   {0,               0,  0,    0,0,                    1,"",         1,""}
209  },
210  {
211   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
212   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
213   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
214   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
216   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
220   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
223   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
224   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
225   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
226   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
227   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
229   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
231   {0,               0,  0,    0,0,                          1,"",            1,""}
232  }
233 };
234
235 /******************************************************************************
236  * API forward declarations
237  */
238 BOOL WINAPI 
239 RSAENH_CPGetKeyParam(
240     HCRYPTPROV hProv, 
241     HCRYPTKEY hKey, 
242     DWORD dwParam, 
243     BYTE *pbData, 
244     DWORD *pdwDataLen, 
245     DWORD dwFlags
246 );
247
248 BOOL WINAPI 
249 RSAENH_CPEncrypt(
250     HCRYPTPROV hProv, 
251     HCRYPTKEY hKey, 
252     HCRYPTHASH hHash, 
253     BOOL Final, 
254     DWORD dwFlags, 
255     BYTE *pbData,
256     DWORD *pdwDataLen, 
257     DWORD dwBufLen
258 );
259
260 BOOL WINAPI 
261 RSAENH_CPCreateHash(
262     HCRYPTPROV hProv, 
263     ALG_ID Algid, 
264     HCRYPTKEY hKey, 
265     DWORD dwFlags, 
266     HCRYPTHASH *phHash
267 );
268
269 BOOL WINAPI 
270 RSAENH_CPSetHashParam(
271     HCRYPTPROV hProv, 
272     HCRYPTHASH hHash, 
273     DWORD dwParam, 
274     BYTE *pbData, DWORD dwFlags
275 );
276
277 BOOL WINAPI 
278 RSAENH_CPGetHashParam(
279     HCRYPTPROV hProv, 
280     HCRYPTHASH hHash, 
281     DWORD dwParam, 
282     BYTE *pbData, 
283     DWORD *pdwDataLen, 
284     DWORD dwFlags
285 );
286
287 BOOL WINAPI 
288 RSAENH_CPDestroyHash(
289     HCRYPTPROV hProv, 
290     HCRYPTHASH hHash
291 );
292
293 BOOL WINAPI 
294 RSAENH_CPExportKey(
295     HCRYPTPROV hProv, 
296     HCRYPTKEY hKey, 
297     HCRYPTKEY hPubKey, 
298     DWORD dwBlobType, 
299     DWORD dwFlags, 
300     BYTE *pbData, 
301     DWORD *pdwDataLen
302 );
303
304 BOOL WINAPI 
305 RSAENH_CPImportKey(
306     HCRYPTPROV hProv, 
307     CONST BYTE *pbData, 
308     DWORD dwDataLen, 
309     HCRYPTKEY hPubKey, 
310     DWORD dwFlags, 
311     HCRYPTKEY *phKey
312 );
313
314 BOOL WINAPI 
315 RSAENH_CPHashData(
316     HCRYPTPROV hProv, 
317     HCRYPTHASH hHash, 
318     CONST BYTE *pbData, 
319     DWORD dwDataLen, 
320     DWORD dwFlags
321 );
322
323 /******************************************************************************
324  * CSP's handle table (used by all acquired key containers)
325  */
326 static HANDLETABLE handle_table;
327
328 /******************************************************************************
329  * DllMain (RSAENH.@)
330  *
331  * Initializes and destroys the handle table for the CSP's handles.
332  */
333 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
334 {
335     switch (fdwReason)
336     {
337         case DLL_PROCESS_ATTACH:
338             DisableThreadLibraryCalls(hInstance);
339             init_handle_table(&handle_table);
340             break;
341
342         case DLL_PROCESS_DETACH:
343             destroy_handle_table(&handle_table);
344             break;
345     }
346     return 1;
347 }
348
349 /******************************************************************************
350  * copy_param [Internal]
351  *
352  * Helper function that supports the standard WINAPI protocol for querying data
353  * of dynamic size.
354  *
355  * PARAMS
356  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
357  *                      May be NUL if the required buffer size is to be queried only.
358  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
359  *                      Out: Size of parameter pbParam
360  *  pbParam       [I]   Parameter value.
361  *  dwParamSize   [I]   Size of pbParam
362  *
363  * RETURN
364  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
365  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
366  */
367 static inline BOOL copy_param(
368     BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize) 
369 {
370     if (pbBuffer) 
371     {
372         if (dwParamSize > *pdwBufferSize) 
373         {
374             SetLastError(ERROR_MORE_DATA);
375             *pdwBufferSize = dwParamSize;
376             return FALSE;
377         }
378         memcpy(pbBuffer, pbParam, dwParamSize);
379     }
380     *pdwBufferSize = dwParamSize;
381     return TRUE;
382 }
383
384 /******************************************************************************
385  * get_algid_info [Internal]
386  *
387  * Query CSP capabilities for a given crypto algorithm.
388  * 
389  * PARAMS
390  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
391  *  algid [I] Identifier of the crypto algorithm about which information is requested.
392  *
393  * RETURNS
394  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
395  *  Failure: NULL (algid not supported)
396  */
397 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
398     const PROV_ENUMALGS_EX *iterator;
399     KEYCONTAINER *pKeyContainer;
400
401     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
402         SetLastError(NTE_BAD_UID);
403         return NULL;
404     }
405
406     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
407         if (iterator->aiAlgid == algid) return iterator;
408     }
409
410     SetLastError(NTE_BAD_ALGID);
411     return NULL;
412 }
413
414 /******************************************************************************
415  * copy_data_blob [Internal] 
416  *
417  * deeply copies a DATA_BLOB
418  *
419  * PARAMS
420  *  dst [O] That's where the blob will be copied to
421  *  src [I] Source blob
422  *
423  * RETURNS
424  *  Success: TRUE
425  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
426  *
427  * NOTES
428  *  Use free_data_blob to release resources occupied by copy_data_blob.
429  */
430 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
431     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
432     if (!dst->pbData) {
433         SetLastError(NTE_NO_MEMORY);
434         return FALSE;
435     }    
436     dst->cbData = src->cbData;
437     memcpy(dst->pbData, src->pbData, src->cbData);
438     return TRUE;
439 }
440
441 /******************************************************************************
442  * concat_data_blobs [Internal]
443  *
444  * Concatenates two blobs
445  *
446  * PARAMS
447  *  dst  [O] The new blob will be copied here
448  *  src1 [I] Prefix blob
449  *  src2 [I] Appendix blob
450  *
451  * RETURNS
452  *  Success: TRUE
453  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
454  *
455  * NOTES
456  *  Release resources occupied by concat_data_blobs with free_data_blobs
457  */
458 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1, 
459                                      CONST PCRYPT_DATA_BLOB src2) 
460 {
461     dst->cbData = src1->cbData + src2->cbData;
462     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
463     if (!dst->pbData) {
464         SetLastError(NTE_NO_MEMORY);
465         return FALSE;
466     }
467     memcpy(dst->pbData, src1->pbData, src1->cbData);
468     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
469     return TRUE;
470 }
471
472 /******************************************************************************
473  * free_data_blob [Internal]
474  *
475  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
476  * 
477  * PARAMS
478  *  pBlob [I] Heap space occupied by pBlob->pbData is released
479  */
480 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
481     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
482 }
483
484 /******************************************************************************
485  * init_data_blob [Internal]
486  */
487 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
488     pBlob->pbData = NULL;
489     pBlob->cbData = 0;
490 }
491
492 /******************************************************************************
493  * free_hmac_info [Internal]
494  *
495  * Deeply free an HMAC_INFO struct.
496  *
497  * PARAMS
498  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
499  *
500  * NOTES
501  *  See Internet RFC 2104 for details on the HMAC algorithm.
502  */
503 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
504     if (!hmac_info) return;
505     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
506     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
507     HeapFree(GetProcessHeap(), 0, hmac_info);
508 }
509
510 /******************************************************************************
511  * copy_hmac_info [Internal]
512  *
513  * Deeply copy an HMAC_INFO struct
514  *
515  * PARAMS
516  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
517  *  src [I] Pointer to the HMAC_INFO struct to be copied.
518  *
519  * RETURNS
520  *  Success: TRUE
521  *  Failure: FALSE
522  *
523  * NOTES
524  *  See Internet RFC 2104 for details on the HMAC algorithm.
525  */
526 static BOOL copy_hmac_info(PHMAC_INFO *dst, PHMAC_INFO src) {
527     if (!src) return FALSE;
528     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
529     if (!*dst) return FALSE;
530     memcpy(*dst, src, sizeof(HMAC_INFO));
531     (*dst)->pbInnerString = NULL;
532     (*dst)->pbOuterString = NULL;
533     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
534     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
535     if (!(*dst)->pbInnerString) {
536         free_hmac_info(*dst);
537         return FALSE;
538     }
539     if (src->cbInnerString) 
540         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
541     else 
542         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
543     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
544     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
545     if (!(*dst)->pbOuterString) {
546         free_hmac_info(*dst);
547         return FALSE;
548     }
549     if (src->cbOuterString) 
550         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
551     else 
552         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
553     return TRUE;
554 }
555
556 /******************************************************************************
557  * destroy_hash [Internal]
558  *
559  * Destructor for hash objects
560  *
561  * PARAMS
562  *  pCryptHash [I] Pointer to the hash object to be destroyed. 
563  *                 Will be invalid after function returns!
564  */
565 static void destroy_hash(OBJECTHDR *pObject)
566 {
567     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
568         
569     free_hmac_info(pCryptHash->pHMACInfo);
570     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
571     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
572     HeapFree(GetProcessHeap(), 0, pCryptHash);
573 }
574
575 /******************************************************************************
576  * init_hash [Internal]
577  *
578  * Initialize (or reset) a hash object
579  *
580  * PARAMS
581  *  pCryptHash    [I] The hash object to be initialized.
582  */
583 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
584     DWORD dwLen;
585         
586     switch (pCryptHash->aiAlgid) 
587     {
588         case CALG_HMAC:
589             if (pCryptHash->pHMACInfo) { 
590                 const PROV_ENUMALGS_EX *pAlgInfo;
591                 
592                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
593                 if (!pAlgInfo) return FALSE;
594                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
595                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
596                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
597                                  pCryptHash->pHMACInfo->pbInnerString, 
598                                  pCryptHash->pHMACInfo->cbInnerString);
599             }
600             return TRUE;
601             
602         case CALG_MAC:
603             dwLen = sizeof(DWORD);
604             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, 
605                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
606             pCryptHash->dwHashSize >>= 3;
607             return TRUE;
608
609         default:
610             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
611     }
612 }
613
614 /******************************************************************************
615  * update_hash [Internal]
616  *
617  * Hashes the given data and updates the hash object's state accordingly
618  *
619  * PARAMS
620  *  pCryptHash [I] Hash object to be updated.
621  *  pbData     [I] Pointer to data stream to be hashed.
622  *  dwDataLen  [I] Length of data stream.
623  */
624 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
625     BYTE *pbTemp;
626
627     switch (pCryptHash->aiAlgid)
628     {
629         case CALG_HMAC:
630             if (pCryptHash->pHMACInfo) 
631                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
632                                  pbData, dwDataLen);
633             break;
634
635         case CALG_MAC:
636             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
637             if (!pbTemp) return;
638             memcpy(pbTemp, pbData, dwDataLen);
639             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, (HCRYPTHASH)NULL, FALSE, 0, 
640                              pbTemp, &dwDataLen, dwDataLen);
641             HeapFree(GetProcessHeap(), 0, pbTemp);
642             break;
643
644         default:
645             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
646     }
647 }
648
649 /******************************************************************************
650  * finalize_hash [Internal]
651  *
652  * Finalizes the hash, after all data has been hashed with update_hash.
653  * No additional data can be hashed afterwards until the hash gets initialized again.
654  *
655  * PARAMS
656  *  pCryptHash [I] Hash object to be finalized.
657  */
658 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
659     DWORD dwDataLen;
660         
661     switch (pCryptHash->aiAlgid)
662     {
663         case CALG_HMAC:
664             if (pCryptHash->pHMACInfo) {
665                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
666
667                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
668                                    pCryptHash->abHashValue);
669                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
670                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
671                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
672                                  pCryptHash->pHMACInfo->pbOuterString, 
673                                  pCryptHash->pHMACInfo->cbOuterString);
674                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
675                                  abHashValue, pCryptHash->dwHashSize);
676                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
677                                    pCryptHash->abHashValue);
678             } 
679             break;
680
681         case CALG_MAC:
682             dwDataLen = 0;
683             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, (HCRYPTHASH)NULL, TRUE, 0, 
684                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
685             break;
686
687         default:
688             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
689     }
690 }
691
692 /******************************************************************************
693  * destroy_key [Internal]
694  *
695  * Destructor for key objects
696  *
697  * PARAMS
698  *  pCryptKey [I] Pointer to the key object to be destroyed. 
699  *                Will be invalid after function returns!
700  */
701 static void destroy_key(OBJECTHDR *pObject)
702 {
703     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
704         
705     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
706     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
707     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
708     HeapFree(GetProcessHeap(), 0, pCryptKey);
709 }
710
711 /******************************************************************************
712  * setup_key [Internal]
713  *
714  * Initialize (or reset) a key object
715  *
716  * PARAMS
717  *  pCryptKey    [I] The key object to be initialized.
718  */
719 static inline void setup_key(CRYPTKEY *pCryptKey) {
720     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
721     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
722     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, 
723                    pCryptKey->dwSaltLen, pCryptKey->abKeyValue);
724 }
725
726 /******************************************************************************
727  * new_key [Internal]
728  *
729  * Creates a new key object without assigning the actual binary key value. 
730  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
731  *
732  * PARAMS
733  *  hProv      [I] Handle to the provider to which the created key will belong.
734  *  aiAlgid    [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
735  *  dwFlags    [I] Upper 16 bits give the key length.
736  *                 Lower 16 bits: CRYPT_CREATE_SALT, CRYPT_NO_SALT
737  *  ppCryptKey [O] Pointer to the created key
738  *
739  * RETURNS
740  *  Success: Handle to the created key.
741  *  Failure: INVALID_HANDLE_VALUE
742  */
743 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
744 {
745     HCRYPTKEY hCryptKey;
746     CRYPTKEY *pCryptKey;
747     DWORD dwKeyLen = HIWORD(dwFlags);
748     const PROV_ENUMALGS_EX *peaAlgidInfo;
749
750     *ppCryptKey = NULL;
751     
752     /* 
753      * Retrieve the CSP's capabilities for the given ALG_ID value
754      */
755     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
756     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
757
758     /*
759      * Assume the default key length, if none is specified explicitly
760      */
761     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
762     
763     /*
764      * Check if the requested key length is supported by the current CSP.
765      * Adjust key length's for DES algorithms.
766      */
767     switch (aiAlgid) {
768         case CALG_DES:
769             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
770                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
771             }
772             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
773                 SetLastError(NTE_BAD_FLAGS);
774                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
775             }
776             break;
777
778         case CALG_3DES_112:
779             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
780                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
781             }
782             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
783                 SetLastError(NTE_BAD_FLAGS);
784                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
785             }
786             break;
787
788         case CALG_3DES:
789             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
790                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
791             }
792             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
793                 SetLastError(NTE_BAD_FLAGS);
794                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
795             }
796             break;
797         
798         default:
799             if (dwKeyLen % 8 || 
800                 dwKeyLen > peaAlgidInfo->dwMaxLen || 
801                 dwKeyLen < peaAlgidInfo->dwMinLen) 
802             {
803                 SetLastError(NTE_BAD_FLAGS);
804                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
805             }
806     }
807
808     hCryptKey = (HCRYPTKEY)new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, 
809                                       destroy_key, (OBJECTHDR**)&pCryptKey);
810     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
811     {
812         pCryptKey->aiAlgid = aiAlgid;
813         pCryptKey->hProv = hProv;
814         pCryptKey->dwModeBits = 0;
815         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | 
816                                    CRYPT_MAC;
817         pCryptKey->dwKeyLen = dwKeyLen >> 3;
818         if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) 
819             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
820         else
821             pCryptKey->dwSaltLen = 0;
822         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
823         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
824         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
825         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
826             
827         switch(aiAlgid)
828         {
829             case CALG_PCT1_MASTER:
830             case CALG_SSL2_MASTER:
831             case CALG_SSL3_MASTER:
832             case CALG_TLS1_MASTER:
833             case CALG_RC4:
834                 pCryptKey->dwBlockLen = 0;
835                 pCryptKey->dwMode = 0;
836                 break;
837
838             case CALG_RC2:
839             case CALG_DES:
840             case CALG_3DES_112:
841             case CALG_3DES:
842                 pCryptKey->dwBlockLen = 8;
843                 pCryptKey->dwMode = CRYPT_MODE_CBC;
844                 break;
845
846             case CALG_RSA_KEYX:
847             case CALG_RSA_SIGN:
848                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
849                 pCryptKey->dwMode = 0;
850                 break;
851         }
852
853         *ppCryptKey = pCryptKey;
854     }
855
856     return hCryptKey;
857 }
858
859 /******************************************************************************
860  * destroy_key_container [Internal]
861  *
862  * Destructor for key containers.
863  * 
864  * PARAMS
865  *  pObjectHdr [I] Pointer to the key container to be destroyed.
866  */
867 static void destroy_key_container(OBJECTHDR *pObjectHdr)
868 {
869     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
870     DATA_BLOB blobIn, blobOut;
871     CRYPTKEY *pKey;
872     CHAR szRSABase[MAX_PATH];
873     HKEY hKey, hRootKey;
874     DWORD dwLen;
875     BYTE *pbKey;
876
877     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT)) {
878         /* On WinXP, persistent keys are stored in a file located at: 
879          * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string 
880          */
881         sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
882
883         if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) {
884             hRootKey = HKEY_LOCAL_MACHINE;
885         } else {
886             hRootKey = HKEY_CURRENT_USER;
887         }
888         
889         /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
890         /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
891         if (RegCreateKeyExA(hRootKey, szRSABase, 0, NULL, REG_OPTION_NON_VOLATILE, 
892                             KEY_WRITE, NULL, &hKey, NULL) == ERROR_SUCCESS)
893         {
894             if (lookup_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
895                               (OBJECTHDR**)&pKey))
896             {
897                 if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hKeyExchangeKeyPair, 0, 
898                                        PRIVATEKEYBLOB, 0, 0, &dwLen)) 
899                 {
900                     pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
901                     if (pbKey) 
902                     {
903                         if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hKeyExchangeKeyPair, 0,
904                                                PRIVATEKEYBLOB, 0, pbKey, &dwLen))
905                         {
906                             blobIn.pbData = pbKey;
907                             blobIn.cbData = dwLen;
908                                     
909                             if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, 
910                                  (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) ? 
911                                    CRYPTPROTECT_LOCAL_MACHINE : 0, 
912                                  &blobOut)) 
913                             {
914                                 RegSetValueExA(hKey, "KeyExchangeKeyPair", 0, REG_BINARY,
915                                                blobOut.pbData, blobOut.cbData);
916                                 HeapFree(GetProcessHeap(), 0, blobOut.pbData);
917                             }
918                         }
919                         HeapFree(GetProcessHeap(), 0, pbKey);
920                     }
921                 }
922                 release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
923                                RSAENH_MAGIC_KEY);
924             }
925
926             if (lookup_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
927                               (OBJECTHDR**)&pKey))
928             {
929                 if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hSignatureKeyPair, 0, 
930                                        PRIVATEKEYBLOB, 0, 0, &dwLen)) 
931                 {
932                     pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
933                     if (pbKey) 
934                     {
935                         if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hSignatureKeyPair, 0, 
936                                                PRIVATEKEYBLOB, 0, pbKey, &dwLen))
937                         {
938                             blobIn.pbData = pbKey;
939                             blobIn.cbData = dwLen;
940                                     
941                             if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, 
942                                  (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) ? 
943                                    CRYPTPROTECT_LOCAL_MACHINE : 0, 
944                                  &blobOut)) 
945                             {
946                                 RegSetValueExA(hKey, "SignatureKeyPair", 0, REG_BINARY, 
947                                                blobOut.pbData, blobOut.cbData);
948                                 HeapFree(GetProcessHeap(), 0, blobOut.pbData);
949                             }
950                         }
951                         HeapFree(GetProcessHeap(), 0, pbKey);
952                     }
953                 }
954                 release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
955                                RSAENH_MAGIC_KEY);
956             }
957         
958             RegCloseKey(hKey);
959         }
960     }
961     
962     HeapFree( GetProcessHeap(), 0, pKeyContainer );
963 }
964
965 /******************************************************************************
966  * new_key_container [Internal]
967  *
968  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) 
969  * of the CSP is determined via the pVTable->pszProvName string.
970  *
971  * PARAMS
972  *  pszContainerName [I] Name of the key container.
973  *  pVTable          [I] Callback functions and context info provided by the OS
974  *
975  * RETURNS
976  *  Success: Handle to the new key container.
977  *  Failure: INVALID_HANDLE_VALUE
978  */
979 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, PVTableProvStruc pVTable)
980 {
981     KEYCONTAINER *pKeyContainer;
982     HCRYPTPROV hKeyContainer;
983
984     hKeyContainer = (HCRYPTPROV)new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
985                                            destroy_key_container, (OBJECTHDR**)&pKeyContainer);
986     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
987     {
988         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
989         pKeyContainer->dwFlags = dwFlags;
990         pKeyContainer->dwEnumAlgsCtr = 0;
991         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
992         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
993         if (pVTable && pVTable->pszProvName) {
994             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
995             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
996                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
997             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
998                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
999             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { 
1000                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1001             } else {
1002                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1003             }
1004         }
1005
1006         /* The new key container has to be inserted into the CSP immediately 
1007          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1008         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1009             CHAR szRSABase[MAX_PATH];
1010             HKEY hRootKey, hKey;
1011
1012             sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1013
1014             if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) {
1015                 hRootKey = HKEY_LOCAL_MACHINE;
1016             } else {
1017                 hRootKey = HKEY_CURRENT_USER;
1018             }
1019
1020             /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1021             /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1022             RegCreateKeyA(hRootKey, szRSABase, &hKey);
1023             RegCloseKey(hKey);
1024         }
1025     }
1026
1027     return hKeyContainer;
1028 }
1029
1030 /******************************************************************************
1031  * read_key_container [Internal]
1032  *
1033  * Tries to read the persistent state of the key container (mainly the signature
1034  * and key exchange private keys) given by pszContainerName.
1035  *
1036  * PARAMS
1037  *  pszContainerName [I] Name of the key container to read from the registry
1038  *  pVTable          [I] Pointer to context data provided by the operating system
1039  *
1040  * RETURNS
1041  *  Success: Handle to the key container read from the registry
1042  *  Failure: INVALID_HANDLE_VALUE
1043  */
1044 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, PVTableProvStruc pVTable)
1045 {
1046     CHAR szRSABase[MAX_PATH];
1047     BYTE *pbKey;
1048     HKEY hKey, hRootKey;
1049     DWORD dwValueType, dwLen;
1050     KEYCONTAINER *pKeyContainer;
1051     HCRYPTPROV hKeyContainer;
1052     DATA_BLOB blobIn, blobOut;
1053     HCRYPTKEY hCryptKey;
1054
1055     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1056
1057     if (dwFlags & CRYPT_MACHINE_KEYSET) {
1058         hRootKey = HKEY_LOCAL_MACHINE;
1059     } else {
1060         hRootKey = HKEY_CURRENT_USER;
1061     }
1062
1063     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1064     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1065     if (RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, &hKey) != ERROR_SUCCESS)
1066     {
1067         SetLastError(NTE_BAD_KEYSET);
1068         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1069     }
1070
1071     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1072     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1073     {
1074         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, 
1075                            (OBJECTHDR**)&pKeyContainer))
1076             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1077     
1078         if (RegQueryValueExA(hKey, "KeyExchangeKeyPair", 0, &dwValueType, NULL, &dwLen) == 
1079             ERROR_SUCCESS) 
1080         {
1081             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1082             if (pbKey) 
1083             {
1084                 if (RegQueryValueExA(hKey, "KeyExchangeKeyPair", 0, &dwValueType, pbKey, &dwLen) ==
1085                     ERROR_SUCCESS)
1086                 {
1087                     blobIn.pbData = pbKey;
1088                     blobIn.cbData = dwLen;
1089
1090                     if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, 
1091                          (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0, &blobOut))
1092                     {
1093                         if(RSAENH_CPImportKey(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1094                                            &hCryptKey))
1095                             pKeyContainer->hKeyExchangeKeyPair = hCryptKey;
1096                         HeapFree(GetProcessHeap(), 0, blobOut.pbData);
1097                     }
1098                 }
1099                 HeapFree(GetProcessHeap(), 0, pbKey);
1100             }
1101         }
1102
1103         if (RegQueryValueExA(hKey, "SignatureKeyPair", 0, &dwValueType, NULL, &dwLen) == 
1104             ERROR_SUCCESS) 
1105         {
1106             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1107             if (pbKey) 
1108             {
1109                 if (RegQueryValueExA(hKey, "SignatureKeyPair", 0, &dwValueType, pbKey, &dwLen) == 
1110                     ERROR_SUCCESS)
1111                 {
1112                     blobIn.pbData = pbKey;
1113                     blobIn.cbData = dwLen;
1114
1115                     if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, 
1116                          (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0, &blobOut))
1117                     {
1118                         if(RSAENH_CPImportKey(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1119                                            &hCryptKey))
1120                             pKeyContainer->hSignatureKeyPair = hCryptKey;
1121                         HeapFree(GetProcessHeap(), 0, blobOut.pbData);
1122                     }
1123                 }
1124                 HeapFree(GetProcessHeap(), 0, pbKey);
1125             }
1126         }
1127     }
1128
1129     return hKeyContainer;
1130 }
1131
1132 /******************************************************************************
1133  * build_hash_signature [Internal]
1134  *
1135  * Builds a padded version of a hash to match the length of the RSA key modulus.
1136  *
1137  * PARAMS
1138  *  pbSignature [O] The padded hash object is stored here.
1139  *  dwLen       [I] Length of the pbSignature buffer.
1140  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1141  *  abHashValue [I] The value of the hash object.
1142  *  dwHashLen   [I] Length of the hash value.
1143  *  dwFlags     [I] Selection of padding algorithm.
1144  *
1145  * RETURNS
1146  *  Success: TRUE
1147  *  Failure: FALSE (NTE_BAD_ALGID)
1148  */
1149 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, 
1150                                  CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) 
1151 {
1152     /* These prefixes are meant to be concatenated with hash values of the
1153      * respective kind to form a PKCS #7 DigestInfo. */
1154     static const struct tagOIDDescriptor {
1155         ALG_ID aiAlgid;
1156         DWORD dwLen;
1157         CONST BYTE abOID[18];
1158     } aOIDDescriptor[5] = {
1159         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1160                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1161         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 
1162                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1163         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1164                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1165         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 
1166                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1167         { 0,        0,  {} }
1168     };
1169     DWORD dwIdxOID, i, j;
1170
1171     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1172         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1173     }
1174     
1175     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1176         SetLastError(NTE_BAD_ALGID);
1177         return FALSE;
1178     }
1179
1180     /* Build the padded signature */
1181     if (dwFlags & CRYPT_X931_FORMAT) {
1182         pbSignature[0] = 0x6b;
1183         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1184             pbSignature[i] = 0xbb;
1185         }
1186         pbSignature[i++] = 0xba;
1187         for (j=0; j < dwHashLen; j++, i++) {
1188             pbSignature[i] = abHashValue[j];
1189         }
1190         pbSignature[i++] = 0x33;
1191         pbSignature[i++] = 0xcc;
1192     } else {
1193         pbSignature[0] = 0x00;
1194         pbSignature[1] = 0x01;
1195         if (dwFlags & CRYPT_NOHASHOID) {
1196             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1197                 pbSignature[i] = 0xff;
1198             }
1199             pbSignature[i++] = 0x00;
1200         } else {
1201             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1202                 pbSignature[i] = 0xff;
1203             }
1204             pbSignature[i++] = 0x00;
1205             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1206                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1207             }
1208         }
1209         for (j=0; j < dwHashLen; j++) {
1210             pbSignature[i++] = abHashValue[j];
1211         }
1212     }
1213     
1214     return TRUE;
1215 }
1216
1217 /******************************************************************************
1218  * tls1_p [Internal]
1219  *
1220  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1221  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1222  * The pseudo random stream generated by this function is exclusive or'ed with
1223  * the data in pbBuffer.
1224  *
1225  * PARAMS
1226  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1227  *  pblobSeed   [I]   Seed value
1228  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1229  *  dwBufferLen [I]   Number of pseudo random bytes desired
1230  *
1231  * RETURNS
1232  *  Success: TRUE
1233  *  Failure: FALSE
1234  */
1235 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1236 {
1237     CRYPTHASH *pHMAC;
1238     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1239     DWORD i = 0;
1240
1241     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1242         SetLastError(NTE_BAD_HASH);
1243         return FALSE;
1244     }
1245     
1246     /* compute A_1 = HMAC(seed) */
1247     init_hash(pHMAC);
1248     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1249     finalize_hash(pHMAC);
1250     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1251
1252     do {
1253         /* compute HMAC(A_i + seed) */
1254         init_hash(pHMAC);
1255         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1256         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1257         finalize_hash(pHMAC);
1258
1259         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1260         do {
1261             if (i >= dwBufferLen) break;
1262             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1263             i++;
1264         } while (i % pHMAC->dwHashSize);
1265
1266         /* compute A_{i+1} = HMAC(A_i) */
1267         init_hash(pHMAC);
1268         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1269         finalize_hash(pHMAC);
1270         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1271     } while (i < dwBufferLen);
1272
1273     return TRUE;
1274 }
1275
1276 /******************************************************************************
1277  * tls1_prf [Internal]
1278  *
1279  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1280  *
1281  * PARAMS
1282  *  hProv       [I] Key container used to compute the pseudo random stream
1283  *  hSecret     [I] Key that holds the (pre-)master secret
1284  *  pblobLabel  [I] Descriptive label
1285  *  pblobSeed   [I] Seed value
1286  *  pbBuffer    [O] Pseudo random numbers will be stored here
1287  *  dwBufferLen [I] Number of pseudo random bytes desired
1288  *
1289  * RETURNS
1290  *  Success: TRUE
1291  *  Failure: FALSE
1292  */ 
1293 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1294                      CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1295 {
1296     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1297     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1298     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1299     CRYPTKEY *pHalfSecret, *pSecret;
1300     DWORD dwHalfSecretLen;
1301     BOOL result = FALSE;
1302     CRYPT_DATA_BLOB blobLabelSeed;
1303
1304     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1305           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1306
1307     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1308         SetLastError(NTE_FAIL);
1309         return FALSE;
1310     }
1311
1312     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1313     
1314     /* concatenation of the label and the seed */
1315     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1316    
1317     /* zero out the buffer, since two random streams will be xor'ed into it. */
1318     memset(pbBuffer, 0, dwBufferLen);
1319    
1320     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1321      * the biggest range of valid key lengths. */
1322     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1323     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1324
1325     /* Derive an HMAC_MD5 hash and call the helper function. */
1326     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1327     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1328     hmacInfo.HashAlgid = CALG_MD5;
1329     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1330     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1331
1332     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1333     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1334     hmacInfo.HashAlgid = CALG_SHA;
1335     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1336     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1337     
1338     result = TRUE;
1339 exit:
1340     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1341     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1342     free_data_blob(&blobLabelSeed);
1343     return result;
1344 }
1345
1346 /******************************************************************************
1347  * pad_data [Internal]
1348  *
1349  * Helper function for data padding according to PKCS1 #2
1350  *
1351  * PARAMS
1352  *  abData      [I] The data to be padded
1353  *  dwDataLen   [I] Length of the data 
1354  *  abBuffer    [O] Padded data will be stored here
1355  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1356  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1357  *
1358  * RETURN
1359  *  Success: TRUE
1360  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1361  */
1362 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, 
1363                      DWORD dwFlags)
1364 {
1365     DWORD i;
1366     
1367     /* Ensure there is enough space for PKCS1 #2 padding */
1368     if (dwDataLen > dwBufferLen-11) {
1369         SetLastError(NTE_BAD_LEN);
1370         return FALSE;
1371     }
1372
1373     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);            
1374     
1375     abBuffer[0] = 0x00;
1376     abBuffer[1] = RSAENH_PKC_BLOCKTYPE; 
1377     for (i=2; i < dwBufferLen - dwDataLen - 1; i++) 
1378         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1379     if (dwFlags & CRYPT_SSL2_FALLBACK) 
1380         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) 
1381             abBuffer[i] = 0x03;
1382     abBuffer[i] = 0x00;
1383     
1384     return TRUE; 
1385 }
1386
1387 /******************************************************************************
1388  * unpad_data [Internal]
1389  *
1390  * Remove the PKCS1 padding from RSA decrypted data
1391  *
1392  * PARAMS
1393  *  abData      [I]   The padded data
1394  *  dwDataLen   [I]   Length of the padded data
1395  *  abBuffer    [O]   Data without padding will be stored here
1396  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1397  *  dwFlags     [I]   Currently none defined
1398  *
1399  * RETURNS
1400  *  Success: TRUE
1401  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1402  */
1403 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, 
1404                        DWORD dwFlags)
1405 {
1406     DWORD i;
1407     
1408     for (i=2; i<dwDataLen; i++)
1409         if (!abData[i])
1410             break;
1411
1412     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1413         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1414     {
1415         SetLastError(NTE_BAD_DATA);
1416         return FALSE;
1417     }
1418
1419     *dwBufferLen = dwDataLen - i - 1;
1420     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1421     return TRUE;
1422 }
1423
1424 /******************************************************************************
1425  * CPAcquireContext (RSAENH.@)
1426  *
1427  * Acquire a handle to the key container specified by pszContainer
1428  *
1429  * PARAMS
1430  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1431  *  pszContainer [I] Name of the desired key container. See Notes
1432  *  dwFlags      [I] Flags. See Notes.
1433  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1434  * 
1435  * RETURNS
1436  *  Success: TRUE
1437  *  Failure: FALSE
1438  *
1439  * NOTES
1440  *  If pszContainer is NULL or points to a zero length string the user's login 
1441  *  name will be used as the key container name.
1442  *
1443  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1444  *  If a keyset with the given name already exists, the function fails and sets
1445  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1446  *  key container does not exist, function fails and sets last error to 
1447  *  NTE_BAD_KEYSET.
1448  */                         
1449 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1450                    DWORD dwFlags, PVTableProvStruc pVTable)
1451 {
1452     CHAR szKeyContainerName[MAX_PATH];
1453     CHAR szRegKey[MAX_PATH];
1454
1455     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1456           debugstr_a(pszContainer), dwFlags, pVTable);
1457
1458     if (pszContainer && *pszContainer)
1459     {
1460         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1461     } 
1462     else
1463     {
1464         DWORD dwLen = sizeof(szKeyContainerName);
1465         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1466     }
1467
1468     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) 
1469     {
1470         case 0:
1471             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1472             break;
1473
1474         case CRYPT_DELETEKEYSET:
1475             if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, szKeyContainerName) >= MAX_PATH) {
1476                 SetLastError(NTE_BAD_KEYSET_PARAM);
1477                 return FALSE;
1478             } else {
1479                 HKEY hRootKey;
1480                 if (dwFlags & CRYPT_MACHINE_KEYSET)
1481                     hRootKey = HKEY_LOCAL_MACHINE;
1482                 else
1483                     hRootKey = HKEY_CURRENT_USER;
1484                 if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1485                     SetLastError(ERROR_SUCCESS);
1486                     return TRUE;
1487                 } else {
1488                     SetLastError(NTE_BAD_KEYSET);
1489                     return FALSE;
1490                 }
1491             }
1492             break;
1493
1494         case CRYPT_NEWKEYSET:
1495             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1496             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) 
1497             {
1498                 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1499                 TRACE("Can't create new keyset, already exists\n");
1500                 SetLastError(NTE_EXISTS);
1501                 return FALSE;
1502             }
1503             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1504             break;
1505
1506         case CRYPT_VERIFYCONTEXT:
1507             if (pszContainer) {
1508                 TRACE("pszContainer should be NULL\n");
1509                 SetLastError(NTE_BAD_FLAGS);
1510                 return FALSE;
1511             }
1512             *phProv = new_key_container("", dwFlags, pVTable);
1513             break;
1514             
1515         default:
1516             *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1517             SetLastError(NTE_BAD_FLAGS);
1518             return FALSE;
1519     }
1520                 
1521     if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1522         SetLastError(ERROR_SUCCESS);
1523         return TRUE;
1524     } else {
1525         return FALSE;
1526     }
1527 }
1528
1529 /******************************************************************************
1530  * CPCreateHash (RSAENH.@)
1531  *
1532  * CPCreateHash creates and initalizes a new hash object.
1533  *
1534  * PARAMS
1535  *  hProv   [I] Handle to the key container to which the new hash will belong.
1536  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1537  *  hKey    [I] Handle to a session key applied for keyed hashes.
1538  *  dwFlags [I] Currently no flags defined. Must be zero.
1539  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1540  *
1541  * RETURNS
1542  *  Success: TRUE
1543  *  Failure: FALSE
1544  *
1545  * NOTES
1546  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1547  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1548  */
1549 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, 
1550                                 HCRYPTHASH *phHash)
1551 {
1552     CRYPTKEY *pCryptKey;
1553     CRYPTHASH *pCryptHash;
1554     const PROV_ENUMALGS_EX *peaAlgidInfo;
1555         
1556     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1557           dwFlags, phHash);
1558
1559     peaAlgidInfo = get_algid_info(hProv, Algid);
1560     if (!peaAlgidInfo) return FALSE;
1561
1562     if (dwFlags)
1563     {
1564         SetLastError(NTE_BAD_FLAGS);
1565         return FALSE;
1566     }
1567
1568     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || 
1569         Algid == CALG_TLS1PRF) 
1570     {
1571         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1572             SetLastError(NTE_BAD_KEY);
1573             return FALSE;
1574         }
1575
1576         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1577             SetLastError(NTE_BAD_KEY);
1578             return FALSE;
1579         }
1580
1581         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && 
1582             (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) 
1583         {
1584             SetLastError(NTE_BAD_KEY);
1585             return FALSE;
1586         }
1587
1588         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1589             SetLastError(NTE_BAD_KEY_STATE);
1590             return FALSE;
1591         }
1592     }
1593
1594     *phHash = (HCRYPTHASH)new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1595                                      destroy_hash, (OBJECTHDR**)&pCryptHash);
1596     if (!pCryptHash) return FALSE;
1597     
1598     pCryptHash->aiAlgid = Algid;
1599     pCryptHash->hKey = hKey;
1600     pCryptHash->hProv = hProv;
1601     pCryptHash->dwState = RSAENH_HASHSTATE_IDLE;
1602     pCryptHash->pHMACInfo = (PHMAC_INFO)NULL;
1603     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1604     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1605     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1606
1607     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1608         static const char keyex[] = "key expansion";
1609         BYTE key_expansion[sizeof keyex];
1610         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1611
1612         memcpy( key_expansion, keyex, sizeof keyex );
1613         
1614         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1615             static const char msec[] = "master secret";
1616             BYTE master_secret[sizeof msec];
1617             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1618             BYTE abKeyValue[48];
1619
1620             memcpy( master_secret, msec, sizeof msec );
1621     
1622             /* See RFC 2246, chapter 8.1 */
1623             if (!concat_data_blobs(&blobRandom, 
1624                                    &pCryptKey->siSChannelInfo.blobClientRandom, 
1625                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1626             {
1627                 return FALSE;
1628             }
1629             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1630             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; 
1631             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1632             free_data_blob(&blobRandom);
1633         }
1634
1635         /* See RFC 2246, chapter 6.3 */
1636         if (!concat_data_blobs(&blobRandom, 
1637                                   &pCryptKey->siSChannelInfo.blobServerRandom, 
1638                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1639         {
1640             return FALSE;
1641         }
1642         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, 
1643                  RSAENH_MAX_HASH_SIZE);
1644         free_data_blob(&blobRandom);
1645     }
1646
1647     return init_hash(pCryptHash);
1648 }
1649
1650 /******************************************************************************
1651  * CPDestroyHash (RSAENH.@)
1652  * 
1653  * Releases the handle to a hash object. The object is destroyed if it's reference
1654  * count reaches zero.
1655  *
1656  * PARAMS
1657  *  hProv [I] Handle to the key container to which the hash object belongs.
1658  *  hHash [I] Handle to the hash object to be released.
1659  *
1660  * RETURNS
1661  *  Success: TRUE
1662  *  Failure: FALSE 
1663  */
1664 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1665 {
1666     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1667      
1668     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1669     {
1670         SetLastError(NTE_BAD_UID);
1671         return FALSE;
1672     }
1673         
1674     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) 
1675     {
1676         SetLastError(NTE_BAD_HASH);
1677         return FALSE;
1678     }
1679     
1680     return TRUE;
1681 }
1682
1683 /******************************************************************************
1684  * CPDestroyKey (RSAENH.@)
1685  *
1686  * Releases the handle to a key object. The object is destroyed if it's reference
1687  * count reaches zero.
1688  *
1689  * PARAMS
1690  *  hProv [I] Handle to the key container to which the key object belongs.
1691  *  hKey  [I] Handle to the key object to be released.
1692  *
1693  * RETURNS
1694  *  Success: TRUE
1695  *  Failure: FALSE
1696  */
1697 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1698 {
1699     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1700         
1701     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1702     {
1703         SetLastError(NTE_BAD_UID);
1704         return FALSE;
1705     }
1706         
1707     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) 
1708     {
1709         SetLastError(NTE_BAD_KEY);
1710         return FALSE;
1711     }
1712     
1713     return TRUE;
1714 }
1715
1716 /******************************************************************************
1717  * CPDuplicateHash (RSAENH.@)
1718  *
1719  * Clones a hash object including it's current state.
1720  *
1721  * PARAMS
1722  *  hUID        [I] Handle to the key container the hash belongs to.
1723  *  hHash       [I] Handle to the hash object to be cloned.
1724  *  pdwReserved [I] Reserved. Must be NULL.
1725  *  dwFlags     [I] No flags are currently defined. Must be 0.
1726  *  phHash      [O] Handle to the cloned hash object.
1727  *
1728  * RETURNS
1729  *  Success: TRUE.
1730  *  Failure: FALSE.
1731  */
1732 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, 
1733                                    DWORD dwFlags, HCRYPTHASH *phHash)
1734 {
1735     CRYPTHASH *pSrcHash, *pDestHash;
1736     
1737     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
1738            pdwReserved, dwFlags, phHash);
1739
1740     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1741     {
1742         SetLastError(NTE_BAD_UID);
1743         return FALSE;
1744     }
1745
1746     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
1747     {
1748         SetLastError(NTE_BAD_HASH);
1749         return FALSE;
1750     }
1751
1752     if (!phHash || pdwReserved || dwFlags) 
1753     {
1754         SetLastError(ERROR_INVALID_PARAMETER);
1755         return FALSE;
1756     }
1757
1758     *phHash = (HCRYPTHASH)new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, 
1759                                      destroy_hash, (OBJECTHDR**)&pDestHash);
1760     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
1761     {
1762         memcpy(pDestHash, pSrcHash, sizeof(CRYPTHASH));
1763         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
1764         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
1765         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
1766         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
1767     }
1768
1769     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
1770 }
1771
1772 /******************************************************************************
1773  * CPDuplicateKey (RSAENH.@)
1774  *
1775  * Clones a key object including it's current state.
1776  *
1777  * PARAMS
1778  *  hUID        [I] Handle to the key container the hash belongs to.
1779  *  hKey        [I] Handle to the key object to be cloned.
1780  *  pdwReserved [I] Reserved. Must be NULL.
1781  *  dwFlags     [I] No flags are currently defined. Must be 0.
1782  *  phHash      [O] Handle to the cloned key object.
1783  *
1784  * RETURNS
1785  *  Success: TRUE.
1786  *  Failure: FALSE.
1787  */
1788 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, 
1789                                   DWORD dwFlags, HCRYPTKEY *phKey)
1790 {
1791     CRYPTKEY *pSrcKey, *pDestKey;
1792     
1793     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
1794           pdwReserved, dwFlags, phKey);
1795
1796     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1797     {
1798         SetLastError(NTE_BAD_UID);
1799         return FALSE;
1800     }
1801
1802     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
1803     {
1804         SetLastError(NTE_BAD_KEY);
1805         return FALSE;
1806     }
1807
1808     if (!phKey || pdwReserved || dwFlags) 
1809     {
1810         SetLastError(ERROR_INVALID_PARAMETER);
1811         return FALSE;
1812     }
1813
1814     *phKey = (HCRYPTKEY)new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key, 
1815                                    (OBJECTHDR**)&pDestKey);
1816     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
1817     {
1818         memcpy(pDestKey, pSrcKey, sizeof(CRYPTKEY));
1819         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
1820                        &pSrcKey->siSChannelInfo.blobServerRandom);
1821         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, 
1822                        &pSrcKey->siSChannelInfo.blobClientRandom);
1823         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
1824         return TRUE;
1825     }
1826     else
1827     {
1828         return FALSE;
1829     }
1830 }
1831
1832 /******************************************************************************
1833  * CPEncrypt (RSAENH.@)
1834  *
1835  * Encrypt data.
1836  *
1837  * PARAMS
1838  *  hProv      [I]   The key container hKey and hHash belong to.
1839  *  hKey       [I]   The key used to encrypt the data.
1840  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
1841  *  Final      [I]   Indicates if this is the last block of data to encrypt.
1842  *  dwFlags    [I]   Currently no flags defined. Must be zero.
1843  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. 
1844  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
1845  *  dwBufLen   [I]   Size of the buffer at pbData.
1846  *
1847  * RETURNS
1848  *  Success: TRUE.
1849  *  Failure: FALSE.
1850  *
1851  * NOTES
1852  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
1853  *  This is useful for message signatures.
1854  *
1855  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
1856  */
1857 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
1858                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
1859 {
1860     CRYPTKEY *pCryptKey;
1861     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
1862     DWORD dwEncryptedLen, i, j, k;
1863         
1864     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
1865           "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
1866           dwBufLen);
1867     
1868     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1869     {
1870         SetLastError(NTE_BAD_UID);
1871         return FALSE;
1872     }
1873
1874     if (dwFlags)
1875     {
1876         SetLastError(NTE_BAD_FLAGS);
1877         return FALSE;
1878     }
1879
1880     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
1881     {
1882         SetLastError(NTE_BAD_KEY);
1883         return FALSE;
1884     }
1885
1886     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
1887         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
1888
1889     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) 
1890     {
1891         SetLastError(NTE_BAD_DATA);
1892         return FALSE;
1893     }
1894
1895     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
1896         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
1897     }
1898     
1899     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
1900         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
1901             SetLastError(NTE_BAD_DATA);
1902             return FALSE;
1903         }
1904
1905         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
1906
1907         if (pbData == NULL) {
1908             *pdwDataLen = dwEncryptedLen;
1909             return TRUE;
1910         }
1911
1912         for (i=*pdwDataLen; i<dwEncryptedLen && i<dwBufLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
1913         *pdwDataLen = dwEncryptedLen; 
1914
1915         if (*pdwDataLen > dwBufLen) 
1916         {
1917             SetLastError(ERROR_MORE_DATA);
1918             return FALSE;
1919         }
1920     
1921         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
1922             switch (pCryptKey->dwMode) {
1923                 case CRYPT_MODE_ECB:
1924                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
1925                                        RSAENH_ENCRYPT);
1926                     break;
1927                 
1928                 case CRYPT_MODE_CBC:
1929                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
1930                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
1931                                        RSAENH_ENCRYPT);
1932                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
1933                     break;
1934
1935                 case CRYPT_MODE_CFB:
1936                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
1937                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
1938                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
1939                         out[j] = in[j] ^ o[0];
1940                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
1941                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
1942                         pCryptKey->abChainVector[k] = out[j];
1943                     }
1944                     break;
1945                     
1946                 default:
1947                     SetLastError(NTE_BAD_ALGID);
1948                     return FALSE;
1949             }
1950             memcpy(in, out, pCryptKey->dwBlockLen); 
1951         }
1952     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
1953         if (pbData == NULL) {
1954             *pdwDataLen = dwBufLen;
1955             return TRUE;
1956         }
1957         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
1958     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
1959         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
1960             SetLastError(NTE_BAD_KEY);
1961             return FALSE;
1962         }
1963         if (!pbData) {
1964             *pdwDataLen = pCryptKey->dwBlockLen;
1965             return TRUE;
1966         }
1967         if (dwBufLen < pCryptKey->dwBlockLen) {
1968             SetLastError(ERROR_MORE_DATA);
1969             return FALSE;
1970         }
1971         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
1972         encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
1973         *pdwDataLen = pCryptKey->dwBlockLen;
1974         Final = TRUE;
1975     } else {
1976         SetLastError(NTE_BAD_TYPE);
1977         return FALSE;
1978     }
1979
1980     if (Final) setup_key(pCryptKey);
1981
1982     return TRUE;
1983 }
1984
1985 /******************************************************************************
1986  * CPDecrypt (RSAENH.@)
1987  *
1988  * Decrypt data.
1989  *
1990  * PARAMS
1991  *  hProv      [I]   The key container hKey and hHash belong to.
1992  *  hKey       [I]   The key used to decrypt the data.
1993  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
1994  *  Final      [I]   Indicates if this is the last block of data to decrypt.
1995  *  dwFlags    [I]   Currently no flags defined. Must be zero.
1996  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. 
1997  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
1998  *
1999  * RETURNS
2000  *  Success: TRUE.
2001  *  Failure: FALSE.
2002  *
2003  * NOTES
2004  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2005  *  This is useful for message signatures.
2006  *
2007  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2008  */
2009 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2010                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2011 {
2012     CRYPTKEY *pCryptKey;
2013     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2014     DWORD i, j, k;
2015     DWORD dwMax;
2016
2017     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2018           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2019     
2020     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2021     {
2022         SetLastError(NTE_BAD_UID);
2023         return FALSE;
2024     }
2025
2026     if (dwFlags)
2027     {
2028         SetLastError(NTE_BAD_FLAGS);
2029         return FALSE;
2030     }
2031
2032     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2033     {
2034         SetLastError(NTE_BAD_KEY);
2035         return FALSE;
2036     }
2037
2038     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2039         pCryptKey->dwState = RSAENH_KEYSTATE_DECRYPTING;
2040
2041     if (pCryptKey->dwState != RSAENH_KEYSTATE_DECRYPTING)
2042     {
2043         SetLastError(NTE_BAD_DATA);
2044         return FALSE;
2045     }
2046
2047     dwMax=*pdwDataLen;
2048
2049     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2050         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2051             switch (pCryptKey->dwMode) {
2052                 case CRYPT_MODE_ECB:
2053                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2054                                        RSAENH_DECRYPT);
2055                     break;
2056                 
2057                 case CRYPT_MODE_CBC:
2058                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2059                                        RSAENH_DECRYPT);
2060                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2061                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2062                     break;
2063
2064                 case CRYPT_MODE_CFB:
2065                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2066                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2067                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2068                         out[j] = in[j] ^ o[0];
2069                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2070                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2071                         pCryptKey->abChainVector[k] = in[j];
2072                     }
2073                     break;
2074                     
2075                 default:
2076                     SetLastError(NTE_BAD_ALGID);
2077                     return FALSE;
2078             }
2079             memcpy(in, out, pCryptKey->dwBlockLen);
2080         }
2081         if (Final) *pdwDataLen -= pbData[*pdwDataLen-1]; 
2082
2083     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2084         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2085     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2086         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2087             SetLastError(NTE_BAD_KEY);
2088             return FALSE;
2089         }
2090         encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2091         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2092         Final = TRUE;
2093     } else {
2094         SetLastError(NTE_BAD_TYPE);
2095         return FALSE;
2096     } 
2097     
2098     if (Final) setup_key(pCryptKey);
2099
2100     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2101         if (*pdwDataLen>dwMax ||
2102             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2103     }
2104     
2105     return TRUE;
2106 }
2107
2108 /******************************************************************************
2109  * CPExportKey (RSAENH.@)
2110  *
2111  * Export a key into a binary large object (BLOB).
2112  *
2113  * PARAMS
2114  *  hProv      [I]   Key container from which a key is to be exported.
2115  *  hKey       [I]   Key to be exported.
2116  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2117  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2118  *  dwFlags    [I]   Currently none defined.
2119  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2120  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2121  *
2122  * RETURNS
2123  *  Success: TRUE.
2124  *  Failure: FALSE.
2125  */
2126 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey, 
2127                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2128 {
2129     CRYPTKEY *pCryptKey, *pPubKey;
2130     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2131     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2132     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2133     DWORD dwDataLen;
2134     
2135     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2136           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2137     
2138     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2139     {
2140         SetLastError(NTE_BAD_UID);
2141         return FALSE;
2142     }
2143
2144     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2145     {
2146         SetLastError(NTE_BAD_KEY);
2147         return FALSE;
2148     }
2149
2150     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2151         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2152             SetLastError(NTE_BAD_KEY);
2153             return FALSE;
2154         }
2155     }
2156     
2157     switch ((BYTE)dwBlobType)
2158     {
2159         case SIMPLEBLOB:
2160             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2161                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2162                 return FALSE;
2163             }
2164
2165             if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2166                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2167                 return FALSE;
2168             }
2169
2170             dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2171             if (pbData) {
2172                 if (*pdwDataLen < dwDataLen) {
2173                     SetLastError(ERROR_MORE_DATA);
2174                     *pdwDataLen = dwDataLen;
2175                     return FALSE;
2176                 }
2177
2178                 pBlobHeader->bType = SIMPLEBLOB;
2179                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2180                 pBlobHeader->reserved = 0;
2181                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2182
2183                 *pAlgid = pPubKey->aiAlgid;
2184        
2185                 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1), 
2186                               pPubKey->dwBlockLen, dwFlags))
2187                 {
2188                     return FALSE;
2189                 }
2190                 
2191                 encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1), 
2192                                    (BYTE*)(pAlgid+1), RSAENH_ENCRYPT); 
2193             }
2194             *pdwDataLen = dwDataLen;
2195             return TRUE;
2196             
2197         case PUBLICKEYBLOB:
2198             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2199                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2200                 return FALSE;
2201             }
2202
2203             if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2204                 SetLastError(NTE_BAD_KEY);
2205                 return FALSE;
2206             }
2207
2208             dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2209             if (pbData) {
2210                 if (*pdwDataLen < dwDataLen) {
2211                     SetLastError(ERROR_MORE_DATA);
2212                     *pdwDataLen = dwDataLen;
2213                     return FALSE;
2214                 }
2215
2216                 pBlobHeader->bType = PUBLICKEYBLOB;
2217                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2218                 pBlobHeader->reserved = 0;
2219                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2220
2221                 pRSAPubKey->magic = RSAENH_MAGIC_RSA1; 
2222                 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2223         
2224                 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2225                                        pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2226             }
2227             *pdwDataLen = dwDataLen;
2228             return TRUE;
2229
2230         case PRIVATEKEYBLOB:
2231             if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2232                 SetLastError(NTE_BAD_KEY);
2233                 return FALSE;
2234             }
2235     
2236             dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 
2237                         2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2238             if (pbData) {
2239                 if (*pdwDataLen < dwDataLen) {
2240                     SetLastError(ERROR_MORE_DATA);
2241                     *pdwDataLen = dwDataLen;
2242                     return FALSE;
2243                 }
2244                 
2245                 pBlobHeader->bType = PRIVATEKEYBLOB;
2246                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2247                 pBlobHeader->reserved = 0;
2248                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2249
2250                 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2251                 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2252                 
2253                 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2254                                         pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2255             }
2256             *pdwDataLen = dwDataLen;
2257             return TRUE;
2258             
2259         default:
2260             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2261             return FALSE;
2262     }
2263 }
2264
2265 /******************************************************************************
2266  * CPImportKey (RSAENH.@)
2267  *
2268  * Import a BLOB'ed key into a key container.
2269  *
2270  * PARAMS
2271  *  hProv     [I] Key container into which the key is to be imported.
2272  *  pbData    [I] Pointer to a buffer which holds the BLOB.
2273  *  dwDataLen [I] Length of data in buffer at pbData.
2274  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2275  *  dwFlags   [I] Currently none defined.
2276  *  phKey     [O] Handle to the imported key.
2277  *
2278  * RETURNS
2279  *  Success: TRUE.
2280  *  Failure: FALSE.
2281  */
2282 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen, 
2283                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
2284 {
2285     KEYCONTAINER *pKeyContainer;
2286     CRYPTKEY *pCryptKey, *pPubKey;
2287     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2288     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2289     CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2290     CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2291     ALG_ID algID;
2292     BYTE *pbDecrypted;
2293     DWORD dwKeyLen;
2294     BOOL ret;
2295
2296     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
2297         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
2298     
2299     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2300                        (OBJECTHDR**)&pKeyContainer)) 
2301     {
2302         SetLastError(NTE_BAD_UID);
2303         return FALSE;
2304     }
2305
2306     if (dwDataLen < sizeof(BLOBHEADER) || 
2307         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2308         pBlobHeader->reserved != 0) 
2309     {
2310         SetLastError(NTE_BAD_DATA);
2311         return FALSE;
2312     }
2313
2314     switch (pBlobHeader->bType)
2315     {
2316         case PRIVATEKEYBLOB:    
2317             if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || 
2318                 (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2319                 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 
2320                     (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)))) 
2321             {
2322                 SetLastError(NTE_BAD_DATA);
2323                 return FALSE;
2324             }
2325     
2326             *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2327             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2328             setup_key(pCryptKey);
2329             ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2330                                            pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2331             if (ret) {
2332                 switch (pBlobHeader->aiKeyAlg)
2333                 {
2334                 case AT_SIGNATURE:
2335                 case CALG_RSA_SIGN:
2336                     TRACE("installing signing key\n");
2337                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
2338                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2339                                 &pKeyContainer->hSignatureKeyPair);
2340                     break;
2341                 case AT_KEYEXCHANGE:
2342                 case CALG_RSA_KEYX:
2343                     TRACE("installing key exchange key\n");
2344                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2345                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2346                                 &pKeyContainer->hKeyExchangeKeyPair);
2347                     break;
2348                 }
2349             }
2350             return ret;
2351                 
2352         case PUBLICKEYBLOB:
2353             if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || 
2354                 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2355                 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3))) 
2356             {
2357                 SetLastError(NTE_BAD_DATA);
2358                 return FALSE;
2359             }
2360     
2361             /* Since this is a public key blob, only the public key is
2362              * available, so only signature verification is possible.
2363              */
2364             algID = pBlobHeader->aiKeyAlg;
2365             *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); 
2366             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; 
2367             setup_key(pCryptKey);
2368             ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2369                                           pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2370             if (ret) {
2371                 switch (pBlobHeader->aiKeyAlg)
2372                 {
2373                 case AT_KEYEXCHANGE:
2374                 case CALG_RSA_KEYX:
2375                     TRACE("installing public key\n");
2376                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2377                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2378                                 &pKeyContainer->hKeyExchangeKeyPair);
2379                     break;
2380                 }
2381             }
2382             return ret;
2383                 
2384         case SIMPLEBLOB:
2385             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2386                 pPubKey->aiAlgid != CALG_RSA_KEYX) 
2387             {
2388                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2389                 return FALSE;
2390             }
2391
2392             if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen) 
2393             {
2394                 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2395                 return FALSE;
2396             }
2397
2398             pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2399             if (!pbDecrypted) return FALSE;
2400             encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted, 
2401                                RSAENH_DECRYPT);
2402
2403             dwKeyLen = RSAENH_MAX_KEY_SIZE;
2404             if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2405                 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2406                 return FALSE;
2407             }
2408             
2409             *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2410             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2411             {
2412                 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2413                 return FALSE;
2414             }
2415             memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2416             HeapFree(GetProcessHeap(), 0, pbDecrypted);
2417             setup_key(pCryptKey);
2418             return TRUE;
2419
2420         default:
2421             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2422             return FALSE;
2423     }
2424 }
2425
2426 /******************************************************************************
2427  * CPGenKey (RSAENH.@)
2428  *
2429  * Generate a key in the key container
2430  *
2431  * PARAMS
2432  *  hProv   [I] Key container for which a key is to be generated.
2433  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
2434  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
2435  *  phKey   [O] Handle to the generated key.
2436  *
2437  * RETURNS
2438  *  Success: TRUE.
2439  *  Failure: FALSE.
2440  *
2441  * FIXME
2442  *  Flags currently not considered.
2443  *
2444  * NOTES
2445  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
2446  *  and AT_SIGNATURE values.
2447  */
2448 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
2449 {
2450     KEYCONTAINER *pKeyContainer;
2451     CRYPTKEY *pCryptKey;
2452
2453     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
2454
2455     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2456                        (OBJECTHDR**)&pKeyContainer)) 
2457     {
2458         /* MSDN: hProv not containing valid context handle */
2459         SetLastError(NTE_BAD_UID);
2460         return FALSE;
2461     }
2462     
2463     switch (Algid)
2464     {
2465         case AT_SIGNATURE:
2466         case CALG_RSA_SIGN:
2467             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
2468             if (pCryptKey) { 
2469                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2470                 setup_key(pCryptKey);
2471                 if (Algid == AT_SIGNATURE) {
2472                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
2473                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2474                                 &pKeyContainer->hSignatureKeyPair);
2475                 }
2476             }
2477             break;
2478
2479         case AT_KEYEXCHANGE:
2480         case CALG_RSA_KEYX:
2481             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
2482             if (pCryptKey) { 
2483                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2484                 setup_key(pCryptKey);
2485                 if (Algid == AT_KEYEXCHANGE) {
2486                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2487                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2488                                 &pKeyContainer->hKeyExchangeKeyPair);
2489                 }
2490             }
2491             break;
2492             
2493         case CALG_RC2:
2494         case CALG_RC4:
2495         case CALG_DES:
2496         case CALG_3DES_112:
2497         case CALG_3DES:
2498         case CALG_PCT1_MASTER:
2499         case CALG_SSL2_MASTER:
2500         case CALG_SSL3_MASTER:
2501         case CALG_TLS1_MASTER:
2502             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
2503             if (pCryptKey) {
2504                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
2505                 switch (Algid) {
2506                     case CALG_SSL3_MASTER:
2507                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
2508                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
2509                         break;
2510
2511                     case CALG_TLS1_MASTER:
2512                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
2513                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
2514                         break;
2515                 }
2516                 setup_key(pCryptKey);
2517             }
2518             break;
2519             
2520         default:
2521             /* MSDN: Algorithm not supported specified by Algid */
2522             SetLastError(NTE_BAD_ALGID);
2523             return FALSE;
2524     }
2525             
2526     return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
2527 }
2528
2529 /******************************************************************************
2530  * CPGenRandom (RSAENH.@)
2531  *
2532  * Generate a random byte stream.
2533  *
2534  * PARAMS
2535  *  hProv    [I] Key container that is used to generate random bytes.
2536  *  dwLen    [I] Specifies the number of requested random data bytes.
2537  *  pbBuffer [O] Random bytes will be stored here.
2538  *
2539  * RETURNS
2540  *  Success: TRUE
2541  *  Failure: FALSE
2542  */
2543 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
2544 {
2545     TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
2546     
2547     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2548     {
2549         /* MSDN: hProv not containing valid context handle */
2550         SetLastError(NTE_BAD_UID);
2551         return FALSE;
2552     }
2553
2554     return gen_rand_impl(pbBuffer, dwLen);
2555 }
2556
2557 /******************************************************************************
2558  * CPGetHashParam (RSAENH.@)
2559  *
2560  * Query parameters of an hash object.
2561  *
2562  * PARAMS
2563  *  hProv      [I]   The kea container, which the hash belongs to.
2564  *  hHash      [I]   The hash object that is to be queried.
2565  *  dwParam    [I]   Specifies the parameter that is to be queried.
2566  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2567  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2568  *  dwFlags    [I]   None currently defined.
2569  *
2570  * RETURNS
2571  *  Success: TRUE
2572  *  Failure: FALSE
2573  *
2574  * NOTES
2575  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be 
2576  *  finalized if HP_HASHVALUE is queried.
2577  */
2578 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, 
2579                                   DWORD *pdwDataLen, DWORD dwFlags) 
2580 {
2581     CRYPTHASH *pCryptHash;
2582         
2583     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
2584         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
2585     
2586     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2587     {
2588         SetLastError(NTE_BAD_UID);
2589         return FALSE;
2590     }
2591
2592     if (dwFlags)
2593     {
2594         SetLastError(NTE_BAD_FLAGS);
2595         return FALSE;
2596     }
2597     
2598     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
2599                        (OBJECTHDR**)&pCryptHash))
2600     {
2601         SetLastError(NTE_BAD_HASH);
2602         return FALSE;
2603     }
2604
2605     if (!pdwDataLen)
2606     {
2607         SetLastError(ERROR_INVALID_PARAMETER);
2608         return FALSE;
2609     }
2610     
2611     switch (dwParam)
2612     {
2613         case HP_ALGID:
2614             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid, 
2615                               sizeof(ALG_ID));
2616
2617         case HP_HASHSIZE:
2618             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize, 
2619                               sizeof(DWORD));
2620
2621         case HP_HASHVAL:
2622             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
2623                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
2624                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
2625             }
2626
2627             if ( pbData == NULL ) {
2628                 *pdwDataLen = pCryptHash->dwHashSize;
2629                 return TRUE;
2630             }
2631
2632             if (pCryptHash->dwState == RSAENH_HASHSTATE_IDLE) {
2633                 SetLastError(NTE_BAD_HASH_STATE);
2634                 return FALSE;
2635             }
2636             
2637             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
2638             {
2639                 finalize_hash(pCryptHash);
2640                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
2641             }
2642             
2643             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pCryptHash->abHashValue, 
2644                               pCryptHash->dwHashSize);
2645
2646         default:
2647             SetLastError(NTE_BAD_TYPE);
2648             return FALSE;
2649     }
2650 }
2651
2652 /******************************************************************************
2653  * CPSetKeyParam (RSAENH.@)
2654  *
2655  * Set a parameter of a key object
2656  *
2657  * PARAMS
2658  *  hProv   [I] The key container to which the key belongs.
2659  *  hKey    [I] The key for which a parameter is to be set.
2660  *  dwParam [I] Parameter type. See Notes.
2661  *  pbData  [I] Pointer to the parameter value.
2662  *  dwFlags [I] Currently none defined.
2663  *
2664  * RETURNS
2665  *  Success: TRUE.
2666  *  Failure: FALSE.
2667  *
2668  * NOTES:
2669  *  Defined dwParam types are:
2670  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
2671  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
2672  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
2673  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
2674  *   - KP_IV: Initialization vector
2675  */
2676 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
2677                                  DWORD dwFlags)
2678 {
2679     CRYPTKEY *pCryptKey;
2680
2681     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
2682           dwParam, pbData, dwFlags);
2683
2684     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2685     {
2686         SetLastError(NTE_BAD_UID);
2687         return FALSE;
2688     }
2689
2690     if (dwFlags) {
2691         SetLastError(NTE_BAD_FLAGS);
2692         return FALSE;
2693     }
2694     
2695     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2696     {
2697         SetLastError(NTE_BAD_KEY);
2698         return FALSE;
2699     }
2700     
2701     switch (dwParam) {
2702         case KP_MODE:
2703             pCryptKey->dwMode = *(DWORD*)pbData;
2704             return TRUE;
2705
2706         case KP_MODE_BITS:
2707             pCryptKey->dwModeBits = *(DWORD*)pbData;
2708             return TRUE;
2709
2710         case KP_PERMISSIONS:
2711             pCryptKey->dwPermissions = *(DWORD*)pbData;
2712             return TRUE;
2713
2714         case KP_IV:
2715             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
2716             return TRUE;
2717
2718         case KP_SCHANNEL_ALG:
2719             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
2720                 case SCHANNEL_ENC_KEY:
2721                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
2722                     break;
2723
2724                 case SCHANNEL_MAC_KEY:
2725                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
2726                     break;
2727
2728                 default:
2729                     SetLastError(NTE_FAIL); /* FIXME: error code */
2730                     return FALSE;
2731             }
2732             return TRUE;
2733
2734         case KP_CLIENT_RANDOM:
2735             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
2736             
2737         case KP_SERVER_RANDOM:
2738             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
2739
2740         default:
2741             SetLastError(NTE_BAD_TYPE);
2742             return FALSE;
2743     }
2744 }
2745
2746 /******************************************************************************
2747  * CPGetKeyParam (RSAENH.@)
2748  *
2749  * Query a key parameter.
2750  *
2751  * PARAMS
2752  *  hProv      [I]   The key container, which the key belongs to.
2753  *  hHash      [I]   The key object that is to be queried.
2754  *  dwParam    [I]   Specifies the parameter that is to be queried.
2755  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2756  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2757  *  dwFlags    [I]   None currently defined.
2758  *
2759  * RETURNS
2760  *  Success: TRUE
2761  *  Failure: FALSE
2762  *
2763  * NOTES
2764  *  Defined dwParam types are:
2765  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
2766  *   - KP_MODE_BITS: Shift width for cipher feedback mode. 
2767  *                   (Currently ignored by MS CSP's - always eight)
2768  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
2769  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
2770  *   - KP_IV: Initialization vector.
2771  *   - KP_KEYLEN: Bitwidth of the key.
2772  *   - KP_BLOCKLEN: Size of a block cipher block.
2773  *   - KP_SALT: Salt value.
2774  */
2775 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
2776                                  DWORD *pdwDataLen, DWORD dwFlags)
2777 {
2778     CRYPTKEY *pCryptKey;
2779     DWORD dwBitLen;
2780         
2781     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
2782           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
2783
2784     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2785     {
2786         SetLastError(NTE_BAD_UID);
2787         return FALSE;
2788     }
2789
2790     if (dwFlags) {
2791         SetLastError(NTE_BAD_FLAGS);
2792         return FALSE;
2793     }
2794
2795     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2796     {
2797         SetLastError(NTE_BAD_KEY);
2798         return FALSE;
2799     }
2800
2801     switch (dwParam) 
2802     {
2803         case KP_IV:
2804             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pCryptKey->abInitVector, 
2805                               pCryptKey->dwBlockLen);
2806         
2807         case KP_SALT:
2808             return copy_param(pbData, pdwDataLen, 
2809                     (CONST BYTE*)&pCryptKey->abKeyValue[pCryptKey->dwKeyLen], pCryptKey->dwSaltLen);
2810         
2811         case KP_KEYLEN:
2812             dwBitLen = pCryptKey->dwKeyLen << 3;
2813             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwBitLen, sizeof(DWORD));
2814         
2815         case KP_BLOCKLEN:
2816             dwBitLen = pCryptKey->dwBlockLen << 3;
2817             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwBitLen, sizeof(DWORD));
2818     
2819         case KP_MODE:
2820             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
2821
2822         case KP_MODE_BITS:
2823             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits, 
2824                               sizeof(DWORD));
2825     
2826         case KP_PERMISSIONS:
2827             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions, 
2828                               sizeof(DWORD));
2829
2830         case KP_ALGID:
2831             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
2832             
2833         default:
2834             SetLastError(NTE_BAD_TYPE);
2835             return FALSE;
2836     }
2837 }
2838                         
2839 /******************************************************************************
2840  * CPGetProvParam (RSAENH.@)
2841  *
2842  * Query a CSP parameter.
2843  *
2844  * PARAMS
2845  *  hProv      [I]   The key container that is to be queried.
2846  *  dwParam    [I]   Specifies the parameter that is to be queried.
2847  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2848  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2849  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
2850  *
2851  * RETURNS
2852  *  Success: TRUE
2853  *  Failure: FALSE
2854  * NOTES:
2855  *  Defined dwParam types:
2856  *   - PP_CONTAINER: Name of the key container.
2857  *   - PP_NAME: Name of the cryptographic service provider.
2858  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
2859  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
2860  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
2861  */
2862 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, 
2863                                   DWORD *pdwDataLen, DWORD dwFlags)
2864 {
2865     KEYCONTAINER *pKeyContainer;
2866     PROV_ENUMALGS provEnumalgs;
2867     DWORD dwTemp;
2868     CHAR szRSABase[MAX_PATH];
2869     HKEY hKey, hRootKey;
2870    
2871     /* This is for dwParam 41, which does not seem to be documented
2872      * on MSDN. IE6 SP1 asks for it in the 'About' dialog, however.
2873      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem 
2874      * to be 'don't care's. If you know anything more specific about
2875      * provider parameter 41, please report to wine-devel@winehq.org */
2876     static CONST BYTE abWTF[96] = { 
2877         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37, 
2878         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 
2879         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 
2880         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 
2881         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 
2882         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 
2883         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 
2884         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 
2885         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 
2886         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 
2887         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 
2888         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca 
2889     };
2890
2891     TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
2892            hProv, dwParam, pbData, pdwDataLen, dwFlags);
2893
2894     if (!pdwDataLen) {
2895         SetLastError(ERROR_INVALID_PARAMETER);
2896         return FALSE;
2897     }
2898     
2899     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2900                        (OBJECTHDR**)&pKeyContainer)) 
2901     {
2902         /* MSDN: hProv not containing valid context handle */
2903         SetLastError(NTE_BAD_UID);
2904         return FALSE;
2905     }
2906
2907     switch (dwParam) 
2908     {
2909         case PP_CONTAINER:
2910         case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
2911             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName, 
2912                               strlen(pKeyContainer->szName)+1);
2913
2914         case PP_NAME:
2915             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName, 
2916                               strlen(pKeyContainer->szProvName)+1);
2917
2918         case PP_PROVTYPE:
2919             dwTemp = PROV_RSA_FULL;
2920             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2921
2922         case PP_KEYSPEC:
2923             dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
2924             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2925
2926         case PP_KEYSET_TYPE:
2927             dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
2928             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2929
2930         case PP_KEYSTORAGE:
2931             dwTemp = CRYPT_SEC_DESCR;
2932             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2933
2934         case PP_SIG_KEYSIZE_INC:
2935         case PP_KEYX_KEYSIZE_INC:
2936             dwTemp = 8;
2937             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2938
2939         case PP_IMPTYPE:
2940             dwTemp = CRYPT_IMPL_SOFTWARE;
2941             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2942
2943         case PP_VERSION:
2944             dwTemp = 0x00000200;
2945             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2946             
2947         case PP_ENUMCONTAINERS:
2948             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
2949
2950             if (!pbData) {
2951                 *pdwDataLen = (DWORD)MAX_PATH + 1;
2952                 return TRUE;
2953             }
2954  
2955             sprintf(szRSABase, RSAENH_REGKEY, "");
2956
2957             if (dwFlags & CRYPT_MACHINE_KEYSET) {
2958                 hRootKey = HKEY_LOCAL_MACHINE;
2959             } else {
2960                 hRootKey = HKEY_CURRENT_USER;
2961             }
2962
2963             if (RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, &hKey) != ERROR_SUCCESS)
2964             {
2965                 SetLastError(ERROR_NO_MORE_ITEMS);
2966                 return FALSE;
2967             }
2968
2969             dwTemp = *pdwDataLen;
2970             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
2971                     NULL, NULL, NULL, NULL))
2972             {
2973                 case ERROR_MORE_DATA:
2974                     *pdwDataLen = (DWORD)MAX_PATH + 1;
2975  
2976                 case ERROR_SUCCESS:
2977                     pKeyContainer->dwEnumContainersCtr++;
2978                     RegCloseKey(hKey);
2979                     return TRUE;
2980
2981                 case ERROR_NO_MORE_ITEMS:
2982                 default:
2983                     SetLastError(ERROR_NO_MORE_ITEMS);
2984                     RegCloseKey(hKey);
2985                     return FALSE;
2986             }
2987  
2988         case PP_ENUMALGS:
2989         case PP_ENUMALGS_EX:
2990             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
2991                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
2992                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && 
2993                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
2994             {
2995                 SetLastError(ERROR_NO_MORE_ITEMS);
2996                 return FALSE;
2997             }
2998
2999             if (dwParam == PP_ENUMALGS) {    
3000                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) 
3001                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3002                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3003             
3004                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3005                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3006                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3007                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3008                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3009                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3010                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3011                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 
3012                        20*sizeof(CHAR));
3013             
3014                 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs, 
3015                                   sizeof(PROV_ENUMALGS));
3016             } else {
3017                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) 
3018                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3019                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3020             
3021                 return copy_param(pbData, pdwDataLen, 
3022                                   (CONST BYTE*)&aProvEnumAlgsEx
3023                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], 
3024                                   sizeof(PROV_ENUMALGS_EX));
3025             }
3026
3027         case 41: /* Undocumented. Asked for by IE About dialog */
3028             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3029
3030         default:
3031             /* MSDN: Unknown parameter number in dwParam */
3032             SetLastError(NTE_BAD_TYPE);
3033             return FALSE;
3034     }
3035 }
3036
3037 /******************************************************************************
3038  * CPDeriveKey (RSAENH.@)
3039  *
3040  * Derives a key from a hash value.
3041  *
3042  * PARAMS
3043  *  hProv     [I] Key container for which a key is to be generated.
3044  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
3045  *  hBaseData [I] Hash from whose value the key will be derived.
3046  *  dwFlags   [I] See Notes.
3047  *  phKey     [O] The generated key.
3048  *
3049  * RETURNS
3050  *  Success: TRUE
3051  *  Failure: FALSE
3052  *
3053  * NOTES
3054  *  Defined flags:
3055  *   - CRYPT_EXPORTABLE: Key can be exported.
3056  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3057  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3058  */
3059 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, 
3060                                DWORD dwFlags, HCRYPTKEY *phKey)
3061 {
3062     CRYPTKEY *pCryptKey, *pMasterKey;
3063     CRYPTHASH *pCryptHash;
3064     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3065     DWORD dwLen;
3066     
3067     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3068            hBaseData, dwFlags, phKey);
3069     
3070     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3071     {
3072         SetLastError(NTE_BAD_UID);
3073         return FALSE;
3074     }
3075
3076     if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3077                        (OBJECTHDR**)&pCryptHash))
3078     {
3079         SetLastError(NTE_BAD_HASH);
3080         return FALSE;
3081     }
3082
3083     if (!phKey)
3084     {
3085         SetLastError(ERROR_INVALID_PARAMETER);
3086         return FALSE;
3087     }
3088
3089     switch (GET_ALG_CLASS(Algid))
3090     {
3091         case ALG_CLASS_DATA_ENCRYPT:
3092             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3093             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3094
3095             /* 
3096              * We derive the key material from the hash.
3097              * If the hash value is not large enough for the claimed key, we have to construct
3098              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3099              */
3100             dwLen = RSAENH_MAX_HASH_SIZE;
3101             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3102     
3103             if (dwLen < pCryptKey->dwKeyLen) {
3104                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3105                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3106                 DWORD i;
3107
3108                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3109             
3110                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3111                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3112                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3113                 }
3114                 
3115                 init_hash(pCryptHash);
3116                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3117                 finalize_hash(pCryptHash);
3118                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3119
3120                 init_hash(pCryptHash);
3121                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3122                 finalize_hash(pCryptHash);
3123                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, 
3124                        pCryptHash->dwHashSize);
3125
3126                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3127             }
3128     
3129             memcpy(pCryptKey->abKeyValue, abHashValue, 
3130                    RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3131             break;
3132
3133         case ALG_CLASS_MSG_ENCRYPT:
3134             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3135                                (OBJECTHDR**)&pMasterKey)) 
3136             {
3137                 SetLastError(NTE_FAIL); /* FIXME error code */
3138                 return FALSE;
3139             }
3140                 
3141             switch (Algid) 
3142             {
3143                 /* See RFC 2246, chapter 6.3 Key calculation */
3144                 case CALG_SCHANNEL_ENC_KEY:
3145                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, 
3146                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3147                                      &pCryptKey);
3148                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3149                     memcpy(pCryptKey->abKeyValue, 
3150                            pCryptHash->abHashValue + (
3151                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3152                                ((dwFlags & CRYPT_SERVER) ? 
3153                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3154                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3155                     memcpy(pCryptKey->abInitVector,
3156                            pCryptHash->abHashValue + (
3157                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3158                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3159                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3160                            pCryptKey->dwBlockLen);
3161                     break;
3162                     
3163                 case CALG_SCHANNEL_MAC_KEY:
3164                     *phKey = new_key(hProv, Algid, 
3165                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3166                                      &pCryptKey);
3167                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3168                     memcpy(pCryptKey->abKeyValue,
3169                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? 
3170                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3171                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3172                     break;
3173                     
3174                 default:
3175                     SetLastError(NTE_BAD_ALGID);
3176                     return FALSE;
3177             }
3178             break;
3179
3180         default:
3181             SetLastError(NTE_BAD_ALGID);
3182             return FALSE;
3183     }
3184
3185     setup_key(pCryptKey);
3186     return TRUE;    
3187 }
3188
3189 /******************************************************************************
3190  * CPGetUserKey (RSAENH.@)
3191  *
3192  * Returns a handle to the user's private key-exchange- or signature-key.
3193  *
3194  * PARAMS
3195  *  hProv     [I] The key container from which a user key is requested.
3196  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3197  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3198  *
3199  * RETURNS
3200  *  Success: TRUE.
3201  *  Failure: FALSE.
3202  *
3203  * NOTE
3204  *  A newly created key container does not contain private user key. Create them with CPGenKey.
3205  */
3206 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3207 {
3208     KEYCONTAINER *pKeyContainer;
3209
3210     TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
3211     
3212     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3213                        (OBJECTHDR**)&pKeyContainer)) 
3214     {
3215         /* MSDN: hProv not containing valid context handle */
3216         SetLastError(NTE_BAD_UID);
3217         return FALSE;
3218     }
3219
3220     switch (dwKeySpec)
3221     {
3222         case AT_KEYEXCHANGE:
3223             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
3224                         phUserKey);
3225             break;
3226
3227         case AT_SIGNATURE:
3228             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
3229                         phUserKey);
3230             break;
3231
3232         default:
3233             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3234     }
3235
3236     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3237     {
3238         /* MSDN: dwKeySpec parameter specifies nonexistent key */
3239         SetLastError(NTE_NO_KEY);
3240         return FALSE;
3241     }
3242
3243     return TRUE;
3244 }
3245
3246 /******************************************************************************
3247  * CPHashData (RSAENH.@)
3248  *
3249  * Updates a hash object with the given data.
3250  *
3251  * PARAMS
3252  *  hProv     [I] Key container to which the hash object belongs.
3253  *  hHash     [I] Hash object which is to be updated.
3254  *  pbData    [I] Pointer to data with which the hash object is to be updated.
3255  *  dwDataLen [I] Length of the data.
3256  *  dwFlags   [I] Currently none defined.
3257  *
3258  * RETURNS
3259  *  Success: TRUE.
3260  *  Failure: FALSE.
3261  *
3262  * NOTES
3263  *  The actual hash value is queried with CPGetHashParam, which will finalize 
3264  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
3265  */
3266 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData, 
3267                               DWORD dwDataLen, DWORD dwFlags)
3268 {
3269     CRYPTHASH *pCryptHash;
3270         
3271     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
3272           hProv, hHash, pbData, dwDataLen, dwFlags);
3273
3274     if (dwFlags)
3275     {
3276         SetLastError(NTE_BAD_FLAGS);
3277         return FALSE;
3278     }
3279
3280     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3281                        (OBJECTHDR**)&pCryptHash))
3282     {
3283         SetLastError(NTE_BAD_HASH);
3284         return FALSE;
3285     }
3286
3287     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
3288     {
3289         SetLastError(NTE_BAD_ALGID);
3290         return FALSE;
3291     }
3292     
3293     if (pCryptHash->dwState == RSAENH_HASHSTATE_IDLE)
3294         pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
3295     
3296     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
3297     {
3298         SetLastError(NTE_BAD_HASH_STATE);
3299         return FALSE;
3300     }
3301
3302     update_hash(pCryptHash, pbData, dwDataLen);
3303     return TRUE;
3304 }
3305
3306 /******************************************************************************
3307  * CPHashSessionKey (RSAENH.@)
3308  *
3309  * Updates a hash object with the binary representation of a symmetric key.
3310  *
3311  * PARAMS
3312  *  hProv     [I] Key container to which the hash object belongs.
3313  *  hHash     [I] Hash object which is to be updated.
3314  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
3315  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
3316  *
3317  * RETURNS
3318  *  Success: TRUE.
3319  *  Failure: FALSE.
3320  */
3321 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, 
3322                                     DWORD dwFlags)
3323 {
3324     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
3325     CRYPTKEY *pKey;
3326     DWORD i;
3327
3328     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
3329
3330     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
3331         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) 
3332     {
3333         SetLastError(NTE_BAD_KEY);
3334         return FALSE;
3335     }
3336
3337     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
3338         SetLastError(NTE_BAD_FLAGS);
3339         return FALSE;
3340     }
3341
3342     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
3343     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
3344         for (i=0; i<pKey->dwKeyLen/2; i++) {
3345             bTemp = abKeyValue[i];
3346             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
3347             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
3348         }
3349     }
3350
3351     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
3352 }
3353
3354 /******************************************************************************
3355  * CPReleaseContext (RSAENH.@)
3356  *
3357  * Release a key container.
3358  *
3359  * PARAMS
3360  *  hProv   [I] Key container to be released.
3361  *  dwFlags [I] Currently none defined.
3362  *
3363  * RETURNS
3364  *  Success: TRUE
3365  *  Failure: FALSE
3366  */
3367 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
3368 {
3369     TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
3370
3371     if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3372     {
3373         /* MSDN: hProv not containing valid context handle */
3374         SetLastError(NTE_BAD_UID);
3375         return FALSE;
3376     }
3377
3378     if (dwFlags) {
3379         SetLastError(NTE_BAD_FLAGS);
3380         return FALSE;
3381     }
3382     
3383     return TRUE;
3384 }
3385
3386 /******************************************************************************
3387  * CPSetHashParam (RSAENH.@)
3388  * 
3389  * Set a parameter of a hash object
3390  *
3391  * PARAMS
3392  *  hProv   [I] The key container to which the key belongs.
3393  *  hHash   [I] The hash object for which a parameter is to be set.
3394  *  dwParam [I] Parameter type. See Notes.
3395  *  pbData  [I] Pointer to the parameter value.
3396  *  dwFlags [I] Currently none defined.
3397  *
3398  * RETURNS
3399  *  Success: TRUE.
3400  *  Failure: FALSE.
3401  *
3402  * NOTES
3403  *  Currently only the HP_HMAC_INFO dwParam type is defined. 
3404  *  The HMAC_INFO struct will be deep copied into the hash object.
3405  *  See Internet RFC 2104 for details on the HMAC algorithm.
3406  */
3407 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, 
3408                                   BYTE *pbData, DWORD dwFlags)
3409 {
3410     CRYPTHASH *pCryptHash;
3411     CRYPTKEY *pCryptKey;
3412     int i;
3413
3414     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
3415            hProv, hHash, dwParam, pbData, dwFlags);
3416
3417     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3418     {
3419         SetLastError(NTE_BAD_UID);
3420         return FALSE;
3421     }
3422
3423     if (dwFlags) {
3424         SetLastError(NTE_BAD_FLAGS);
3425         return FALSE;
3426     }
3427     
3428     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3429                        (OBJECTHDR**)&pCryptHash))
3430     {
3431         SetLastError(NTE_BAD_HASH);
3432         return FALSE;
3433     }
3434     
3435     switch (dwParam) {
3436         case HP_HMAC_INFO:
3437             free_hmac_info(pCryptHash->pHMACInfo);
3438             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
3439
3440             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, 
3441                                (OBJECTHDR**)&pCryptKey)) 
3442             {
3443                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
3444                 return FALSE;
3445             }
3446
3447             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
3448                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
3449             }
3450             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
3451                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
3452             }
3453             
3454             init_hash(pCryptHash);
3455             return TRUE;
3456
3457         case HP_HASHVAL:
3458             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
3459             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3460             return TRUE;
3461            
3462         case HP_TLS1PRF_SEED:
3463             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
3464
3465         case HP_TLS1PRF_LABEL:
3466             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
3467             
3468         default:
3469             SetLastError(NTE_BAD_TYPE);
3470             return FALSE;
3471     }
3472 }
3473
3474 /******************************************************************************
3475  * CPSetProvParam (RSAENH.@)
3476  */
3477 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
3478 {
3479     FIXME("(stub)\n");
3480     return FALSE;
3481 }
3482
3483 /******************************************************************************
3484  * CPSignHash (RSAENH.@)
3485  *
3486  * Sign a hash object
3487  *
3488  * PARAMS
3489  *  hProv        [I]   The key container, to which the hash object belongs.
3490  *  hHash        [I]   The hash object to be signed.
3491  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
3492  *  sDescription [I]   Should be NULL for security reasons. 
3493  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
3494  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
3495  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
3496  *
3497  * RETURNS
3498  *  Success: TRUE
3499  *  Failure: FALSE
3500  */
3501 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, 
3502                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, 
3503                               DWORD *pdwSigLen)
3504 {
3505     HCRYPTKEY hCryptKey;
3506     CRYPTKEY *pCryptKey;
3507     DWORD dwHashLen;
3508     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
3509     ALG_ID aiAlgid;
3510
3511     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
3512         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
3513         dwFlags, pbSignature, pdwSigLen);
3514
3515     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
3516         SetLastError(NTE_BAD_FLAGS);
3517         return FALSE;
3518     }
3519     
3520     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
3521             
3522     if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
3523                        (OBJECTHDR**)&pCryptKey))
3524     {
3525         SetLastError(NTE_NO_KEY);
3526         return FALSE;
3527     }
3528
3529     if (!pbSignature) {
3530         *pdwSigLen = pCryptKey->dwKeyLen;
3531         return TRUE;
3532     }
3533     if (pCryptKey->dwKeyLen > *pdwSigLen)
3534     {
3535         SetLastError(ERROR_MORE_DATA);
3536         *pdwSigLen = pCryptKey->dwKeyLen;
3537         return FALSE;
3538     }
3539     *pdwSigLen = pCryptKey->dwKeyLen;
3540
3541     if (sDescription) {
3542         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
3543                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
3544         {
3545             return FALSE;
3546         }
3547     }
3548     
3549     dwHashLen = sizeof(DWORD);
3550     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
3551     
3552     dwHashLen = RSAENH_MAX_HASH_SIZE;
3553     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
3554  
3555
3556     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
3557         return FALSE;
3558     }
3559
3560     return encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
3561 }
3562
3563 /******************************************************************************
3564  * CPVerifySignature (RSAENH.@)
3565  *
3566  * Verify the signature of a hash object.
3567  * 
3568  * PARAMS
3569  *  hProv        [I] The key container, to which the hash belongs.
3570  *  hHash        [I] The hash for which the signature is verified.
3571  *  pbSignature  [I] The binary signature.
3572  *  dwSigLen     [I] Length of the signature BLOB.
3573  *  hPubKey      [I] Public key used to verify the signature.
3574  *  sDescription [I] Should be NULL for security reasons.
3575  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
3576  *
3577  * RETURNS
3578  *  Success: TRUE  (Signature is valid)
3579  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
3580  */
3581 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature, 
3582                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, 
3583                                      DWORD dwFlags)
3584 {
3585     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
3586     CRYPTKEY *pCryptKey;
3587     DWORD dwHashLen;
3588     ALG_ID aiAlgid;
3589     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
3590     BOOL res = FALSE;
3591
3592     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
3593           "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
3594           dwFlags);
3595         
3596     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
3597         SetLastError(NTE_BAD_FLAGS);
3598         return FALSE;
3599     }
3600     
3601     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3602     {
3603         SetLastError(NTE_BAD_UID);
3604         return FALSE;
3605     }
3606  
3607     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
3608                        (OBJECTHDR**)&pCryptKey))
3609     {
3610         SetLastError(NTE_BAD_KEY);
3611         return FALSE;
3612     }
3613
3614     /* in Microsoft implementation, the signature length is checked before
3615      * the signature pointer.
3616      */
3617     if (dwSigLen != pCryptKey->dwKeyLen)
3618     {
3619         SetLastError(NTE_BAD_SIGNATURE);
3620         return FALSE;
3621     }
3622
3623     if (!hHash || !pbSignature)
3624     {
3625         SetLastError(ERROR_INVALID_PARAMETER);
3626         return FALSE;
3627     }
3628
3629     if (sDescription) {
3630         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
3631                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
3632         {
3633             return FALSE;
3634         }
3635     }
3636     
3637     dwHashLen = sizeof(DWORD);
3638     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
3639     
3640     dwHashLen = RSAENH_MAX_HASH_SIZE;
3641     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
3642
3643     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
3644     if (!pbConstructed) {
3645         SetLastError(NTE_NO_MEMORY);
3646         goto cleanup;
3647     }
3648
3649     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
3650     if (!pbDecrypted) {
3651         SetLastError(NTE_NO_MEMORY);
3652         goto cleanup;
3653     }
3654
3655     if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted, 
3656                             RSAENH_DECRYPT)) 
3657     {
3658         goto cleanup;
3659     }
3660
3661     if (!build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
3662         goto cleanup;
3663     }
3664
3665     if (memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
3666         SetLastError(NTE_BAD_SIGNATURE);
3667         goto cleanup;
3668     }
3669     
3670     res = TRUE;
3671 cleanup:
3672     HeapFree(GetProcessHeap(), 0, pbConstructed);
3673     HeapFree(GetProcessHeap(), 0, pbDecrypted);
3674     return res;
3675 }
3676
3677 static const WCHAR szProviderKeys[4][97] = {
3678     {   'S','o','f','t','w','a','r','e','\\',
3679         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3680         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3681         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
3682         'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3683         'o','v','i','d','e','r',' ','v','1','.','0',0 },
3684     {   'S','o','f','t','w','a','r','e','\\',
3685         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3686         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3687         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
3688         'E','n','h','a','n','c','e','d',
3689         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3690         'o','v','i','d','e','r',' ','v','1','.','0',0 },
3691     {   'S','o','f','t','w','a','r','e','\\',
3692         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3693         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3694         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
3695         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3696         'o','v','i','d','e','r',0 },
3697     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
3698         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
3699         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
3700         'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
3701         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 }
3702 };
3703 static const WCHAR szDefaultKeys[2][65] = {
3704     {   'S','o','f','t','w','a','r','e','\\',
3705         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3706         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3707         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
3708     {   'S','o','f','t','w','a','r','e','\\',
3709         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3710         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3711         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 }
3712 };
3713
3714
3715 /******************************************************************************
3716  * DllRegisterServer (RSAENH.@)
3717  *
3718  * Dll self registration. 
3719  *
3720  * PARAMS
3721  *
3722  * RETURNS
3723  *  Success: S_OK.
3724  *    Failure: != S_OK
3725  * 
3726  * NOTES
3727  *  Registers the following keys:
3728  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3729  *       Microsoft Base Cryptographic Provider v1.0
3730  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3731  *       Microsoft Enhanced Cryptographic Provider
3732  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3733  *       Microsoft Strong Cryptographpic Provider
3734  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001
3735  */
3736 HRESULT WINAPI DllRegisterServer(void)
3737 {
3738     HKEY key;
3739     DWORD dp;
3740     long apiRet;
3741     int i;
3742
3743     for (i=0; i<4; i++) {
3744         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szProviderKeys[i], 0, NULL,
3745             REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
3746
3747         if (apiRet == ERROR_SUCCESS)
3748         {
3749             if (dp == REG_CREATED_NEW_KEY)
3750             {
3751                 static const WCHAR szImagePath[] = { 'I','m','a','g','e',' ','P','a','t','h',0 };
3752                 static const WCHAR szRSABase[] = { 'r','s','a','e','n','h','.','d','l','l',0 };
3753                 static const WCHAR szType[] = { 'T','y','p','e',0 };
3754                 static const WCHAR szSignature[] = { 'S','i','g','n','a','t','u','r','e',0 };
3755                 DWORD type = (i == 3) ? PROV_RSA_SCHANNEL : PROV_RSA_FULL;
3756                 DWORD sign = 0xdeadbeef;
3757                 RegSetValueExW(key, szImagePath, 0, REG_SZ, (const BYTE *)szRSABase,
3758                                (lstrlenW(szRSABase) + 1) * sizeof(WCHAR));
3759                 RegSetValueExW(key, szType, 0, REG_DWORD, (LPBYTE)&type, sizeof(type));
3760                 RegSetValueExW(key, szSignature, 0, REG_BINARY, (LPBYTE)&sign, sizeof(sign));
3761             }
3762             RegCloseKey(key);
3763         }
3764     }
3765     
3766     for (i=0; i<2; i++) {
3767         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szDefaultKeys[i], 0, NULL, 
3768                                  REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
3769         if (apiRet == ERROR_SUCCESS)
3770         {
3771             if (dp == REG_CREATED_NEW_KEY)
3772             {
3773                 static const WCHAR szName[] = { 'N','a','m','e',0 };
3774                 static const WCHAR szRSAName[2][46] = {
3775                   { 'M','i','c','r','o','s','o','f','t',' ', 'B','a','s','e',' ',
3776                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ', 
3777                     'P','r','o','v','i','d','e','r',' ','v','1','.','0',0 },
3778                   { 'M','i','c','r','o','s','o','f','t',' ','R','S','A',' ',
3779                     'S','C','h','a','n','n','e','l',' ',
3780                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
3781                     'P','r','o','v','i','d','e','r',0 } };
3782                 static const WCHAR szTypeName[] = { 'T','y','p','e','N','a','m','e',0 };
3783                 static const WCHAR szRSATypeName[2][38] = { 
3784                   { 'R','S','A',' ','F','u','l','l',' ',
3785                        '(','S','i','g','n','a','t','u','r','e',' ','a','n','d',' ',
3786                     'K','e','y',' ','E','x','c','h','a','n','g','e',')',0 },
3787                   { 'R','S','A',' ','S','C','h','a','n','n','e','l',0 } };
3788
3789                 RegSetValueExW(key, szName, 0, REG_SZ, 
3790                                 (const BYTE *)szRSAName[i], lstrlenW(szRSAName[i])*sizeof(WCHAR)+sizeof(WCHAR));
3791                 RegSetValueExW(key, szTypeName, 0, REG_SZ, 
3792                                 (const BYTE *)szRSATypeName[i], lstrlenW(szRSATypeName[i])*sizeof(WCHAR)+sizeof(WCHAR));
3793             }
3794         }
3795         RegCloseKey(key);
3796     }
3797     
3798     return HRESULT_FROM_WIN32(apiRet);
3799 }
3800
3801 /******************************************************************************
3802  * DllUnregisterServer (RSAENH.@)
3803  *
3804  * Dll self unregistration. 
3805  *
3806  * PARAMS
3807  *
3808  * RETURNS
3809  *  Success: S_OK
3810  *
3811  * NOTES
3812  *  For the relevant keys see DllRegisterServer.
3813  */
3814 HRESULT WINAPI DllUnregisterServer(void)
3815 {
3816     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[0]);
3817     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[1]);
3818     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[2]);
3819     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[3]);
3820     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[0]);
3821     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[1]);
3822     return S_OK;
3823 }