1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * We use function pointers here as there is no import library for NTDLL on
26 #include "ntdll_test.h"
28 #ifndef __WINE_WINTERNL_H
30 typedef struct _RTL_HANDLE
32 struct _RTL_HANDLE * Next;
35 typedef struct _RTL_HANDLE_TABLE
48 /* Function ptrs for ntdll calls */
49 static HMODULE hntdll = 0;
50 static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T);
51 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
52 static NTSTATUS (WINAPI *pRtlDeleteTimer)(HANDLE, HANDLE, HANDLE);
53 static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T);
54 static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE);
55 static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG);
56 static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T);
57 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
58 static ULONG (WINAPI *pRtlUniform)(PULONG);
59 static ULONG (WINAPI *pRtlRandom)(PULONG);
60 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
61 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
62 static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT);
63 static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *);
64 static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **);
65 static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *);
66 static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *);
67 static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *);
68 static NTSTATUS (WINAPI *pRtlAllocateAndInitializeSid)(PSID_IDENTIFIER_AUTHORITY,BYTE,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,PSID*);
69 static NTSTATUS (WINAPI *pRtlFreeSid)(PSID);
71 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */
72 static ULONG src_aligned_block[4];
73 static ULONG dest_aligned_block[32];
74 static const char *src = (const char*)src_aligned_block;
75 static char* dest = (char*)dest_aligned_block;
77 static void InitFunctionPtrs(void)
79 hntdll = LoadLibraryA("ntdll.dll");
80 ok(hntdll != 0, "LoadLibrary failed\n");
82 pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory");
83 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
84 pRtlDeleteTimer = (void *)GetProcAddress(hntdll, "RtlDeleteTimer");
85 pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory");
86 pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory");
87 pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong");
88 pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory");
89 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
90 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
91 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
92 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
93 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
94 pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32");
95 pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable");
96 pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle");
97 pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable");
98 pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle");
99 pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle");
100 pRtlAllocateAndInitializeSid = (void *)GetProcAddress(hntdll, "RtlAllocateAndInitializeSid");
101 pRtlFreeSid = (void *)GetProcAddress(hntdll, "RtlFreeSid");
103 strcpy((char*)src_aligned_block, src_src);
104 ok(strlen(src) == 15, "Source must be 16 bytes long!\n");
107 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
108 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
110 static void test_RtlCompareMemory(void)
114 if (!pRtlCompareMemory)
120 COMP(src,src,LEN,LEN);
122 COMP(src,dest,LEN,0);
125 static void test_RtlCompareMemoryUlong(void)
134 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
135 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a, result);
136 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
137 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
138 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
139 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
140 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
141 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
142 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
143 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
144 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
145 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a, result);
146 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
147 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a, result);
148 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
149 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a, result);
150 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
151 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a, result);
152 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
153 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a, result);
156 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
157 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
158 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
159 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
160 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
161 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
162 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
163 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
164 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
165 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a, result);
166 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
167 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a, result);
170 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
171 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
173 static void test_RtlMoveMemory(void)
178 /* Length should be in bytes and not rounded. Use strcmp to ensure we
179 * didn't write past the end (it checks for the final NUL left by memset)
185 COPY(4); CMP("This");
186 COPY(5); CMP("This ");
187 COPY(6); CMP("This i");
188 COPY(7); CMP("This is");
189 COPY(8); CMP("This is ");
190 COPY(9); CMP("This is a");
193 strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1);
194 CMP("his is a test!!");
195 strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src));
196 CMP("TThis is a test!");
199 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
201 static void test_RtlFillMemory(void)
206 /* Length should be in bytes and not rounded. Use strcmp to ensure we
207 * didn't write past the end (the remainder of the string should match)
209 FILL(0); CMP("This is a test!");
210 FILL(1); CMP("xhis is a test!");
211 FILL(2); CMP("xxis is a test!");
212 FILL(3); CMP("xxxs is a test!");
213 FILL(4); CMP("xxxx is a test!");
214 FILL(5); CMP("xxxxxis a test!");
215 FILL(6); CMP("xxxxxxs a test!");
216 FILL(7); CMP("xxxxxxx a test!");
217 FILL(8); CMP("xxxxxxxxa test!");
218 FILL(9); CMP("xxxxxxxxx test!");
221 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
223 static void test_RtlFillMemoryUlong(void)
225 ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
226 if (!pRtlFillMemoryUlong)
229 /* Length should be in bytes and not rounded. Use strcmp to ensure we
230 * didn't write past the end (the remainder of the string should match)
232 LFILL(0); CMP("This is a test!");
233 LFILL(1); CMP("This is a test!");
234 LFILL(2); CMP("This is a test!");
235 LFILL(3); CMP("This is a test!");
236 LFILL(4); CMP("xxxx is a test!");
237 LFILL(5); CMP("xxxx is a test!");
238 LFILL(6); CMP("xxxx is a test!");
239 LFILL(7); CMP("xxxx is a test!");
240 LFILL(8); CMP("xxxxxxxxa test!");
241 LFILL(9); CMP("xxxxxxxxa test!");
244 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
245 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
247 static void test_RtlZeroMemory(void)
252 /* Length should be in bytes and not rounded. */
253 ZERO(0); MCMP("This is a test!");
254 ZERO(1); MCMP("\0his is a test!");
255 ZERO(2); MCMP("\0\0is is a test!");
256 ZERO(3); MCMP("\0\0\0s is a test!");
257 ZERO(4); MCMP("\0\0\0\0 is a test!");
258 ZERO(5); MCMP("\0\0\0\0\0is a test!");
259 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
260 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
261 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
262 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
265 static void test_RtlUlonglongByteSwap(void)
269 if ( pRtlUlonglongByteSwap( 0 ) != 0 )
271 win_skip("Broken RtlUlonglongByteSwap in win2k\n");
275 result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 );
276 ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result,
277 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n",
278 (DWORD)(result >> 32), (DWORD)result);
282 static void test_RtlUniform(void)
291 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
292 * algorithm. This algorithm is:
294 * seed = (seed * const_1 + const_2) % const_3;
296 * According to the documentation the random number is distributed over
297 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
299 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
301 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
302 * algorithm can be expressed without division as:
304 * seed = (seed * const_1 + const_2) & MAXLONG;
306 * To find out const_2 we just call RtlUniform with seed set to 0:
309 expected = 0x7fffffc3;
310 result = pRtlUniform(&seed);
311 ok(result == expected,
312 "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n",
315 * The algorithm is now:
317 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
319 * To find out const_1 we can use:
321 * const_1 = RtlUniform(1) - 0x7fffffc3;
323 * If that does not work a search loop can try all possible values of
324 * const_1 and compare to the result to RtlUniform(1).
325 * This way we find out that const_1 is 0xffffffed.
327 * For seed = 1 the const_2 is 0x7fffffc4:
330 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
331 result = pRtlUniform(&seed);
332 ok(result == expected,
333 "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n",
336 * For seed = 2 the const_2 is 0x7fffffc3:
339 expected = seed * 0xffffffed + 0x7fffffc3;
340 result = pRtlUniform(&seed);
343 * Windows Vista uses different algorithms, so skip the rest of the tests
344 * until that is figured out. Trace output for the failures is about 10.5 MB!
347 if (result == 0x7fffff9f) {
348 skip("Most likely running on Windows Vista which uses a different algorithm\n");
352 ok(result == expected,
353 "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n",
357 * More tests show that if seed is odd the result must be incremented by 1:
360 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
361 result = pRtlUniform(&seed);
362 ok(result == expected,
363 "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n",
367 expected = seed * 0xffffffed + 0x7fffffc3;
368 result = pRtlUniform(&seed);
369 ok(result == expected,
370 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n",
374 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
375 result = pRtlUniform(&seed);
376 ok(result == expected,
377 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n",
380 * When seed is 0x6bca1ac there is an exception:
383 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
384 result = pRtlUniform(&seed);
385 ok(result == expected,
386 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n",
389 * Note that up to here const_3 is not used
390 * (the highest bit of the result is not set).
392 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
395 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
396 result = pRtlUniform(&seed);
397 ok(result == expected,
398 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n",
402 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
403 result = pRtlUniform(&seed);
404 ok(result == expected,
405 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n",
408 * There are several ranges where for odd or even seed the result must be
409 * incremented by 1. You can see this ranges in the following test.
411 * For a full test use one of the following loop heads:
413 * for (num = 0; num <= 0xffffffff; num++) {
418 * for (num = 0; num <= 0xffffffff; num++) {
422 for (num = 0; num <= 100000; num++) {
424 expected = seed * 0xffffffed + 0x7fffffc3;
425 if (seed < 0x6bca1ac) {
426 expected = expected + (seed & 1);
427 } else if (seed == 0x6bca1ac) {
428 expected = (expected + 2) & MAXLONG;
429 } else if (seed < 0xd79435c) {
430 expected = (expected + (~seed & 1)) & MAXLONG;
431 } else if (seed < 0x1435e50b) {
432 expected = expected + (seed & 1);
433 } else if (seed < 0x1af286ba) {
434 expected = (expected + (~seed & 1)) & MAXLONG;
435 } else if (seed < 0x21af2869) {
436 expected = expected + (seed & 1);
437 } else if (seed < 0x286bca18) {
438 expected = (expected + (~seed & 1)) & MAXLONG;
439 } else if (seed < 0x2f286bc7) {
440 expected = expected + (seed & 1);
441 } else if (seed < 0x35e50d77) {
442 expected = (expected + (~seed & 1)) & MAXLONG;
443 } else if (seed < 0x3ca1af26) {
444 expected = expected + (seed & 1);
445 } else if (seed < 0x435e50d5) {
446 expected = (expected + (~seed & 1)) & MAXLONG;
447 } else if (seed < 0x4a1af284) {
448 expected = expected + (seed & 1);
449 } else if (seed < 0x50d79433) {
450 expected = (expected + (~seed & 1)) & MAXLONG;
451 } else if (seed < 0x579435e2) {
452 expected = expected + (seed & 1);
453 } else if (seed < 0x5e50d792) {
454 expected = (expected + (~seed & 1)) & MAXLONG;
455 } else if (seed < 0x650d7941) {
456 expected = expected + (seed & 1);
457 } else if (seed < 0x6bca1af0) {
458 expected = (expected + (~seed & 1)) & MAXLONG;
459 } else if (seed < 0x7286bc9f) {
460 expected = expected + (seed & 1);
461 } else if (seed < 0x79435e4e) {
462 expected = (expected + (~seed & 1)) & MAXLONG;
463 } else if (seed < 0x7ffffffd) {
464 expected = expected + (seed & 1);
465 } else if (seed < 0x86bca1ac) {
466 expected = (expected + (~seed & 1)) & MAXLONG;
467 } else if (seed == 0x86bca1ac) {
468 expected = (expected + 1) & MAXLONG;
469 } else if (seed < 0x8d79435c) {
470 expected = expected + (seed & 1);
471 } else if (seed < 0x9435e50b) {
472 expected = (expected + (~seed & 1)) & MAXLONG;
473 } else if (seed < 0x9af286ba) {
474 expected = expected + (seed & 1);
475 } else if (seed < 0xa1af2869) {
476 expected = (expected + (~seed & 1)) & MAXLONG;
477 } else if (seed < 0xa86bca18) {
478 expected = expected + (seed & 1);
479 } else if (seed < 0xaf286bc7) {
480 expected = (expected + (~seed & 1)) & MAXLONG;
481 } else if (seed == 0xaf286bc7) {
482 expected = (expected + 2) & MAXLONG;
483 } else if (seed < 0xb5e50d77) {
484 expected = expected + (seed & 1);
485 } else if (seed < 0xbca1af26) {
486 expected = (expected + (~seed & 1)) & MAXLONG;
487 } else if (seed < 0xc35e50d5) {
488 expected = expected + (seed & 1);
489 } else if (seed < 0xca1af284) {
490 expected = (expected + (~seed & 1)) & MAXLONG;
491 } else if (seed < 0xd0d79433) {
492 expected = expected + (seed & 1);
493 } else if (seed < 0xd79435e2) {
494 expected = (expected + (~seed & 1)) & MAXLONG;
495 } else if (seed < 0xde50d792) {
496 expected = expected + (seed & 1);
497 } else if (seed < 0xe50d7941) {
498 expected = (expected + (~seed & 1)) & MAXLONG;
499 } else if (seed < 0xebca1af0) {
500 expected = expected + (seed & 1);
501 } else if (seed < 0xf286bc9f) {
502 expected = (expected + (~seed & 1)) & MAXLONG;
503 } else if (seed < 0xf9435e4e) {
504 expected = expected + (seed & 1);
505 } else if (seed < 0xfffffffd) {
506 expected = (expected + (~seed & 1)) & MAXLONG;
508 expected = expected + (seed & 1);
511 result = pRtlUniform(&seed);
512 ok(result == expected,
513 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
514 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
516 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
517 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
520 * Further investigation shows: In the different regions the highest bit
521 * is set or cleared when even or odd seeds need an increment by 1.
522 * This leads to a simplified algorithm:
524 * seed = seed * 0xffffffed + 0x7fffffc3;
525 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
526 * seed = (seed + 2) & MAXLONG;
527 * } else if (seed == 0x7fffffff) {
529 * } else if ((seed & 0x80000000) == 0) {
530 * seed = seed + (~seed & 1);
532 * seed = (seed + (seed & 1)) & MAXLONG;
535 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
537 * Now comes the funny part:
538 * It took me one weekend, to find the complicated algorithm and one day more,
539 * to find the simplified algorithm. Several weeks later I found out: The value
540 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
541 * nor with the simplified algorithm. In reality the native function and our
542 * function return a random number distributed over [0..MAXLONG-1]. Note
543 * that this is different from what native documentation states [0..MAXLONG].
544 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
546 * seed = (seed * const_1 + const_2) % MAXLONG;
548 * Further investigations show that the real algorithm is:
550 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
552 * This is checked with the test below:
555 for (num = 0; num <= 100000; num++) {
556 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
558 result = pRtlUniform(&seed);
559 ok(result == expected,
560 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
561 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
563 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
564 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
567 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
568 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
569 * that there is more than one cycle of generated randon numbers ...
574 static ULONG my_RtlRandom(PULONG seed)
576 static ULONG saved_value[128] =
577 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
578 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
579 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
580 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
581 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
582 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
583 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
584 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
585 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
586 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
587 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
588 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
589 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
590 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
591 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
592 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
597 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
598 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
600 result = saved_value[pos];
601 saved_value[pos] = rand;
606 static void test_RtlRandom(void)
613 ULONG result_expected;
616 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
617 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
618 * the documentation of the RtlUniform function. This algorithm is:
620 * seed = (seed * const_1 + const_2) % const_3;
622 * According to the RtlUniform documentation the random number is
623 * distributed over [0..MAXLONG], but in reality it is distributed
624 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
627 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
631 * seed = (seed * const_1 + const_2) % MAXLONG;
633 * To find out const_2 we just call RtlRandom with seed set to 0:
636 result_expected = 0x320a1743;
637 seed_expected =0x44b;
638 result = pRtlRandom(&seed);
641 * Windows Vista uses different algorithms, so skip the rest of the tests
642 * until that is figured out. Trace output for the failures is about 10.5 MB!
646 skip("Most likely running on Windows Vista which uses a different algorithm\n");
650 ok(result == result_expected,
651 "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
652 result, result_expected);
653 ok(seed == seed_expected,
654 "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
655 seed, seed_expected);
657 * Seed is not equal to result as with RtlUniform. To see more we
658 * call RtlRandom again with seed set to 0:
661 result_expected = 0x7fffffc3;
662 seed_expected =0x44b;
663 result = pRtlRandom(&seed);
664 ok(result == result_expected,
665 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
666 result, result_expected);
667 ok(seed == seed_expected,
668 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
669 seed, seed_expected);
671 * Seed is set to the same value as before but the result is different.
672 * To see more we call RtlRandom again with seed set to 0:
675 result_expected = 0x7fffffc3;
676 seed_expected =0x44b;
677 result = pRtlRandom(&seed);
678 ok(result == result_expected,
679 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
680 result, result_expected);
681 ok(seed == seed_expected,
682 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
683 seed, seed_expected);
685 * Seed is again set to the same value as before. This time we also
686 * have the same result as before. Interestingly the value of the
687 * result is 0x7fffffc3 which is the same value used in RtlUniform
688 * as const_2. If we do
691 * result = RtlUniform(&seed);
693 * we get the same result (0x7fffffc3) as with
698 * result = RtlRandom(&seed);
700 * And there is another interesting thing. If we do
706 * seed is set to the value 0x44b which ist the same value that
711 * assigns to seed. Putting these two findings together leads to
712 * the conclusion that RtlRandom saves the value in some variable,
713 * like in the following algorithm:
715 * result = saved_value;
716 * saved_value = RtlUniform(&seed);
720 * Now we do further tests with seed set to 1:
723 result_expected = 0x7a50bbc6;
724 seed_expected =0x5a1;
725 result = pRtlRandom(&seed);
726 ok(result == result_expected,
727 "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n",
728 result, result_expected);
729 ok(seed == seed_expected,
730 "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n",
731 seed, seed_expected);
733 * If there is just one saved_value the result now would be
734 * 0x7fffffc3. From this test we can see that there is more than
735 * one saved_value, like with this algorithm:
737 * result = saved_value[pos];
738 * saved_value[pos] = RtlUniform(&seed);
742 * But how is the value of pos determined? The calls to RtlUniform
743 * create a sequence of random numbers. Every second random number
744 * is put into the saved_value array and is used in some later call
745 * of RtlRandom as result. The only reasonable source to determine
746 * pos are the random numbers generated by RtlUniform which are not
747 * put into the saved_value array. This are the values of seed
748 * between the two calls of RtlUniform as in this algorithm:
750 * rand = RtlUniform(&seed);
752 * pos = position(seed);
753 * result = saved_value[pos];
754 * saved_value[pos] = rand;
757 * What remains to be determined is: The size of the saved_value array,
758 * the initial values of the saved_value array and the function
759 * position(seed). These tests are not shown here.
760 * The result of these tests is: The size of the saved_value array
761 * is 128, the initial values can be seen in the my_RtlRandom
762 * function and the position(seed) function is (seed & 0x7f).
764 * For a full test of RtlRandom use one of the following loop heads:
766 * for (num = 0; num <= 0xffffffff; num++) {
771 * for (num = 0; num <= 0xffffffff; num++) {
775 for (num = 0; num <= 100000; num++) {
777 seed_expected = seed;
778 result_expected = my_RtlRandom(&seed_expected);
779 /* The following corrections are necessary because the */
780 /* previous tests changed the saved_value array */
782 result_expected = 0x7fffffc3;
783 } else if (num == 81) {
784 result_expected = 0x7fffffb1;
786 result = pRtlRandom(&seed);
787 ok(result == result_expected,
788 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
789 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, result_expected);
790 ok(seed == seed_expected,
791 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
792 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, seed_expected);
798 ACCESS_MASK GrantedAccess;
799 ACCESS_MASK DesiredAccess;
803 static const all_accesses_t all_accesses[] = {
804 {0xFEDCBA76, 0xFEDCBA76, 1},
805 {0x00000000, 0xFEDCBA76, 0},
806 {0xFEDCBA76, 0x00000000, 1},
807 {0x00000000, 0x00000000, 1},
808 {0xFEDCBA76, 0xFEDCBA70, 1},
809 {0xFEDCBA70, 0xFEDCBA76, 0},
810 {0xFEDCBA76, 0xFEDC8A76, 1},
811 {0xFEDC8A76, 0xFEDCBA76, 0},
812 {0xFEDCBA76, 0xC8C4B242, 1},
813 {0xC8C4B242, 0xFEDCBA76, 0},
815 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
818 static void test_RtlAreAllAccessesGranted(void)
820 unsigned int test_num;
823 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
824 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
825 all_accesses[test_num].DesiredAccess);
826 ok(all_accesses[test_num].result == result,
827 "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n",
828 test_num, all_accesses[test_num].GrantedAccess,
829 all_accesses[test_num].DesiredAccess,
830 result, all_accesses[test_num].result);
836 ACCESS_MASK GrantedAccess;
837 ACCESS_MASK DesiredAccess;
841 static const any_accesses_t any_accesses[] = {
842 {0xFEDCBA76, 0xFEDCBA76, 1},
843 {0x00000000, 0xFEDCBA76, 0},
844 {0xFEDCBA76, 0x00000000, 0},
845 {0x00000000, 0x00000000, 0},
846 {0xFEDCBA76, 0x01234589, 0},
847 {0x00040000, 0xFEDCBA76, 1},
848 {0x00040000, 0xFED8BA76, 0},
849 {0xFEDCBA76, 0x00040000, 1},
850 {0xFED8BA76, 0x00040000, 0},
852 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
855 static void test_RtlAreAnyAccessesGranted(void)
857 unsigned int test_num;
860 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
861 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
862 any_accesses[test_num].DesiredAccess);
863 ok(any_accesses[test_num].result == result,
864 "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n",
865 test_num, any_accesses[test_num].GrantedAccess,
866 any_accesses[test_num].DesiredAccess,
867 result, any_accesses[test_num].result);
871 static void test_RtlComputeCrc32(void)
875 if (!pRtlComputeCrc32)
878 crc = pRtlComputeCrc32(crc, (const BYTE *)src, LEN);
879 ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc);
883 typedef struct MY_HANDLE
885 RTL_HANDLE RtlHandle;
889 static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle)
891 ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next);
892 *AllocatedBit = *AllocatedBit | 1;
895 static void test_HandleTables(void)
900 MY_HANDLE * MyHandle;
901 RTL_HANDLE_TABLE HandleTable;
903 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable);
904 MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index);
905 ok(MyHandle != NULL, "RtlAllocateHandle failed\n");
906 RtlpMakeHandleAllocated(&MyHandle->RtlHandle);
908 result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle);
909 ok(result, "Handle %p wasn't valid\n", MyHandle);
910 result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle);
911 ok(result, "Couldn't free handle %p\n", MyHandle);
912 status = pRtlDestroyHandleTable(&HandleTable);
913 ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08x\n", status);
916 static void test_RtlAllocateAndInitializeSid(void)
919 SID_IDENTIFIER_AUTHORITY sia = {{ 1, 2, 3, 4, 5, 6 }};
922 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
923 ok(!ret, "RtlAllocateAndInitializeSid error %08x\n", ret);
924 ret = pRtlFreeSid(psid);
925 ok(!ret, "RtlFreeSid error %08x\n", ret);
927 /* these tests crash on XP
928 ret = pRtlAllocateAndInitializeSid(NULL, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
929 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL);*/
931 ret = pRtlAllocateAndInitializeSid(&sia, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
932 ok(ret == STATUS_INVALID_SID, "wrong error %08x\n", ret);
935 static void test_RtlDeleteTimer(void)
938 ret = pRtlDeleteTimer(NULL, NULL, NULL);
939 ok(ret == STATUS_INVALID_PARAMETER_1 ||
940 ret == STATUS_INVALID_PARAMETER, /* W2K */
941 "expected STATUS_INVALID_PARAMETER_1 or STATUS_INVALID_PARAMETER, got %x\n", ret);
948 if (pRtlCompareMemory)
949 test_RtlCompareMemory();
950 if (pRtlCompareMemoryUlong)
951 test_RtlCompareMemoryUlong();
953 test_RtlMoveMemory();
955 test_RtlFillMemory();
956 if (pRtlFillMemoryUlong)
957 test_RtlFillMemoryUlong();
959 test_RtlZeroMemory();
960 if (pRtlUlonglongByteSwap)
961 test_RtlUlonglongByteSwap();
966 if (pRtlAreAllAccessesGranted)
967 test_RtlAreAllAccessesGranted();
968 if (pRtlAreAnyAccessesGranted)
969 test_RtlAreAnyAccessesGranted();
970 if (pRtlComputeCrc32)
971 test_RtlComputeCrc32();
972 if (pRtlInitializeHandleTable)
974 if (pRtlAllocateAndInitializeSid)
975 test_RtlAllocateAndInitializeSid();
977 test_RtlDeleteTimer();