rsaenh: Public keys should be exported with the CALG_RSA_KEYX alg_id.
[wine] / dlls / rsaenh / rsaenh.c
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public 
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22  */
23
24 #include "config.h"
25 #include "wine/port.h"
26 #include "wine/library.h"
27 #include "wine/debug.h"
28
29 #include <stdarg.h>
30 #include <stdio.h>
31
32 #include "windef.h"
33 #include "winbase.h"
34 #include "winreg.h"
35 #include "wincrypt.h"
36 #include "lmcons.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44  * CRYPTHASH - hash objects
45  */
46 #define RSAENH_MAGIC_HASH           0x85938417u
47 #define RSAENH_MAX_HASH_SIZE        104
48 #define RSAENH_HASHSTATE_IDLE       0
49 #define RSAENH_HASHSTATE_HASHING    1
50 #define RSAENH_HASHSTATE_FINISHED   2
51 typedef struct _RSAENH_TLS1PRF_PARAMS
52 {
53     CRYPT_DATA_BLOB blobLabel;
54     CRYPT_DATA_BLOB blobSeed;
55 } RSAENH_TLS1PRF_PARAMS;
56
57 typedef struct tagCRYPTHASH
58 {
59     OBJECTHDR    header;
60     ALG_ID       aiAlgid;
61     HCRYPTKEY    hKey;
62     HCRYPTPROV   hProv;
63     DWORD        dwHashSize;
64     DWORD        dwState;
65     HASH_CONTEXT context;
66     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
67     PHMAC_INFO   pHMACInfo;
68     RSAENH_TLS1PRF_PARAMS tpPRFParams;
69 } CRYPTHASH;
70
71 /******************************************************************************
72  * CRYPTKEY - key objects
73  */
74 #define RSAENH_MAGIC_KEY           0x73620457u
75 #define RSAENH_MAX_KEY_SIZE        48
76 #define RSAENH_MAX_BLOCK_SIZE      24
77 #define RSAENH_KEYSTATE_IDLE       0
78 #define RSAENH_KEYSTATE_ENCRYPTING 1
79 #define RSAENH_KEYSTATE_DECRYPTING 2
80 #define RSAENH_KEYSTATE_MASTERKEY  3
81 typedef struct _RSAENH_SCHANNEL_INFO 
82 {
83     SCHANNEL_ALG saEncAlg;
84     SCHANNEL_ALG saMACAlg;
85     CRYPT_DATA_BLOB blobClientRandom;
86     CRYPT_DATA_BLOB blobServerRandom;
87 } RSAENH_SCHANNEL_INFO;
88
89 typedef struct tagCRYPTKEY
90 {
91     OBJECTHDR   header;
92     ALG_ID      aiAlgid;
93     HCRYPTPROV  hProv;
94     DWORD       dwMode;
95     DWORD       dwModeBits;
96     DWORD       dwPermissions;
97     DWORD       dwKeyLen;
98     DWORD       dwSaltLen;
99     DWORD       dwBlockLen;
100     DWORD       dwState;
101     KEY_CONTEXT context;    
102     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
103     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
104     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
105     RSAENH_SCHANNEL_INFO siSChannelInfo;
106 } CRYPTKEY;
107
108 /******************************************************************************
109  * KEYCONTAINER - key containers
110  */
111 #define RSAENH_PERSONALITY_BASE        0u
112 #define RSAENH_PERSONALITY_STRONG      1u
113 #define RSAENH_PERSONALITY_ENHANCED    2u
114 #define RSAENH_PERSONALITY_SCHANNEL    3u
115
116 #define RSAENH_MAGIC_CONTAINER         0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119     OBJECTHDR    header;
120     DWORD        dwFlags;
121     DWORD        dwPersonality;
122     DWORD        dwEnumAlgsCtr;
123     DWORD        dwEnumContainersCtr;
124     CHAR         szName[MAX_PATH];
125     CHAR         szProvName[MAX_PATH];
126     HCRYPTKEY    hKeyExchangeKeyPair;
127     HCRYPTKEY    hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131  * Some magic constants
132  */
133 #define RSAENH_ENCRYPT                    1
134 #define RSAENH_DECRYPT                    0    
135 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN          64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
139 #define RSAENH_DES_STORAGE_KEYLEN        64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN   128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
143 #define RSAENH_3DES_STORAGE_KEYLEN      192
144 #define RSAENH_MAGIC_RSA2        0x32415352
145 #define RSAENH_MAGIC_RSA1        0x31415352
146 #define RSAENH_PKC_BLOCKTYPE           0x02
147 #define RSAENH_SSL3_VERSION_MAJOR         3
148 #define RSAENH_SSL3_VERSION_MINOR         0
149 #define RSAENH_TLS1_VERSION_MAJOR         3
150 #define RSAENH_TLS1_VERSION_MINOR         1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156  */
157 #define RSAENH_MAX_ENUMALGS 20
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 PROV_ENUMALGS_EX aProvEnumAlgsEx[4][RSAENH_MAX_ENUMALGS+1] =
160 {
161  {
162   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
163   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
164   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
165   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
166   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
167   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
168   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
169   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
171   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
174   {0,               0,  0,    0,0,                    1,"",         1,""}
175  },
176  {
177   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
178   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
179   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
180   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
181   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
182   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
183   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
184   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
185   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
186   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
188   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
191   {0,               0,  0,    0,0,                    1,"",         1,""}
192  },
193  {
194   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
195   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
196   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
197   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
198   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
199   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
200   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
201   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
202   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
203   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
205   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
208   {0,               0,  0,    0,0,                    1,"",         1,""}
209  },
210  {
211   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
212   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
213   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
214   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
216   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
220   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
223   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
224   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
225   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
226   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
227   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
229   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
231   {0,               0,  0,    0,0,                          1,"",            1,""}
232  }
233 };
234
235 /******************************************************************************
236  * API forward declarations
237  */
238 BOOL WINAPI 
239 RSAENH_CPGetKeyParam(
240     HCRYPTPROV hProv, 
241     HCRYPTKEY hKey, 
242     DWORD dwParam, 
243     BYTE *pbData, 
244     DWORD *pdwDataLen, 
245     DWORD dwFlags
246 );
247
248 BOOL WINAPI 
249 RSAENH_CPEncrypt(
250     HCRYPTPROV hProv, 
251     HCRYPTKEY hKey, 
252     HCRYPTHASH hHash, 
253     BOOL Final, 
254     DWORD dwFlags, 
255     BYTE *pbData,
256     DWORD *pdwDataLen, 
257     DWORD dwBufLen
258 );
259
260 BOOL WINAPI 
261 RSAENH_CPCreateHash(
262     HCRYPTPROV hProv, 
263     ALG_ID Algid, 
264     HCRYPTKEY hKey, 
265     DWORD dwFlags, 
266     HCRYPTHASH *phHash
267 );
268
269 BOOL WINAPI 
270 RSAENH_CPSetHashParam(
271     HCRYPTPROV hProv, 
272     HCRYPTHASH hHash, 
273     DWORD dwParam, 
274     BYTE *pbData, DWORD dwFlags
275 );
276
277 BOOL WINAPI 
278 RSAENH_CPGetHashParam(
279     HCRYPTPROV hProv, 
280     HCRYPTHASH hHash, 
281     DWORD dwParam, 
282     BYTE *pbData, 
283     DWORD *pdwDataLen, 
284     DWORD dwFlags
285 );
286
287 BOOL WINAPI 
288 RSAENH_CPDestroyHash(
289     HCRYPTPROV hProv, 
290     HCRYPTHASH hHash
291 );
292
293 BOOL WINAPI 
294 RSAENH_CPExportKey(
295     HCRYPTPROV hProv, 
296     HCRYPTKEY hKey, 
297     HCRYPTKEY hPubKey, 
298     DWORD dwBlobType, 
299     DWORD dwFlags, 
300     BYTE *pbData, 
301     DWORD *pdwDataLen
302 );
303
304 BOOL WINAPI 
305 RSAENH_CPImportKey(
306     HCRYPTPROV hProv, 
307     CONST BYTE *pbData, 
308     DWORD dwDataLen, 
309     HCRYPTKEY hPubKey, 
310     DWORD dwFlags, 
311     HCRYPTKEY *phKey
312 );
313
314 BOOL WINAPI 
315 RSAENH_CPHashData(
316     HCRYPTPROV hProv, 
317     HCRYPTHASH hHash, 
318     CONST BYTE *pbData, 
319     DWORD dwDataLen, 
320     DWORD dwFlags
321 );
322
323 /******************************************************************************
324  * CSP's handle table (used by all acquired key containers)
325  */
326 static HANDLETABLE handle_table;
327
328 /******************************************************************************
329  * DllMain (RSAENH.@)
330  *
331  * Initializes and destroys the handle table for the CSP's handles.
332  */
333 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
334 {
335     switch (fdwReason)
336     {
337         case DLL_PROCESS_ATTACH:
338             DisableThreadLibraryCalls(hInstance);
339             init_handle_table(&handle_table);
340             break;
341
342         case DLL_PROCESS_DETACH:
343             destroy_handle_table(&handle_table);
344             break;
345     }
346     return 1;
347 }
348
349 /******************************************************************************
350  * copy_param [Internal]
351  *
352  * Helper function that supports the standard WINAPI protocol for querying data
353  * of dynamic size.
354  *
355  * PARAMS
356  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
357  *                      May be NUL if the required buffer size is to be queried only.
358  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
359  *                      Out: Size of parameter pbParam
360  *  pbParam       [I]   Parameter value.
361  *  dwParamSize   [I]   Size of pbParam
362  *
363  * RETURN
364  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
365  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
366  */
367 static inline BOOL copy_param(
368     BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize) 
369 {
370     if (pbBuffer) 
371     {
372         if (dwParamSize > *pdwBufferSize) 
373         {
374             SetLastError(ERROR_MORE_DATA);
375             *pdwBufferSize = dwParamSize;
376             return FALSE;
377         }
378         memcpy(pbBuffer, pbParam, dwParamSize);
379     }
380     *pdwBufferSize = dwParamSize;
381     return TRUE;
382 }
383
384 /******************************************************************************
385  * get_algid_info [Internal]
386  *
387  * Query CSP capabilities for a given crypto algorithm.
388  * 
389  * PARAMS
390  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
391  *  algid [I] Identifier of the crypto algorithm about which information is requested.
392  *
393  * RETURNS
394  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
395  *  Failure: NULL (algid not supported)
396  */
397 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
398     PROV_ENUMALGS_EX *iterator;
399     KEYCONTAINER *pKeyContainer;
400
401     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
402         SetLastError(NTE_BAD_UID);
403         return NULL;
404     }
405
406     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
407         if (iterator->aiAlgid == algid) return iterator;
408     }
409
410     SetLastError(NTE_BAD_ALGID);
411     return NULL;
412 }
413
414 /******************************************************************************
415  * copy_data_blob [Internal] 
416  *
417  * deeply copies a DATA_BLOB
418  *
419  * PARAMS
420  *  dst [O] That's where the blob will be copied to
421  *  src [I] Source blob
422  *
423  * RETURNS
424  *  Success: TRUE
425  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
426  *
427  * NOTES
428  *  Use free_data_blob to release resources occupied by copy_data_blob.
429  */
430 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
431     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
432     if (!dst->pbData) {
433         SetLastError(NTE_NO_MEMORY);
434         return FALSE;
435     }    
436     dst->cbData = src->cbData;
437     memcpy(dst->pbData, src->pbData, src->cbData);
438     return TRUE;
439 }
440
441 /******************************************************************************
442  * concat_data_blobs [Internal]
443  *
444  * Concatenates two blobs
445  *
446  * PARAMS
447  *  dst  [O] The new blob will be copied here
448  *  src1 [I] Prefix blob
449  *  src2 [I] Appendix blob
450  *
451  * RETURNS
452  *  Success: TRUE
453  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
454  *
455  * NOTES
456  *  Release resources occupied by concat_data_blobs with free_data_blobs
457  */
458 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1, 
459                                      CONST PCRYPT_DATA_BLOB src2) 
460 {
461     dst->cbData = src1->cbData + src2->cbData;
462     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
463     if (!dst->pbData) {
464         SetLastError(NTE_NO_MEMORY);
465         return FALSE;
466     }
467     memcpy(dst->pbData, src1->pbData, src1->cbData);
468     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
469     return TRUE;
470 }
471
472 /******************************************************************************
473  * free_data_blob [Internal]
474  *
475  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
476  * 
477  * PARAMS
478  *  pBlob [I] Heap space occupied by pBlob->pbData is released
479  */
480 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
481     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
482 }
483
484 /******************************************************************************
485  * init_data_blob [Internal]
486  */
487 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
488     pBlob->pbData = NULL;
489     pBlob->cbData = 0;
490 }
491
492 /******************************************************************************
493  * free_hmac_info [Internal]
494  *
495  * Deeply free an HMAC_INFO struct.
496  *
497  * PARAMS
498  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
499  *
500  * NOTES
501  *  See Internet RFC 2104 for details on the HMAC algorithm.
502  */
503 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
504     if (!hmac_info) return;
505     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
506     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
507     HeapFree(GetProcessHeap(), 0, hmac_info);
508 }
509
510 /******************************************************************************
511  * copy_hmac_info [Internal]
512  *
513  * Deeply copy an HMAC_INFO struct
514  *
515  * PARAMS
516  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
517  *  src [I] Pointer to the HMAC_INFO struct to be copied.
518  *
519  * RETURNS
520  *  Success: TRUE
521  *  Failure: FALSE
522  *
523  * NOTES
524  *  See Internet RFC 2104 for details on the HMAC algorithm.
525  */
526 static BOOL copy_hmac_info(PHMAC_INFO *dst, PHMAC_INFO src) {
527     if (!src) return FALSE;
528     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
529     if (!*dst) return FALSE;
530     memcpy(*dst, src, sizeof(HMAC_INFO));
531     (*dst)->pbInnerString = NULL;
532     (*dst)->pbOuterString = NULL;
533     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
534     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
535     if (!(*dst)->pbInnerString) {
536         free_hmac_info(*dst);
537         return FALSE;
538     }
539     if (src->cbInnerString) 
540         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
541     else 
542         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
543     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
544     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
545     if (!(*dst)->pbOuterString) {
546         free_hmac_info(*dst);
547         return FALSE;
548     }
549     if (src->cbOuterString) 
550         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
551     else 
552         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
553     return TRUE;
554 }
555
556 /******************************************************************************
557  * destroy_hash [Internal]
558  *
559  * Destructor for hash objects
560  *
561  * PARAMS
562  *  pCryptHash [I] Pointer to the hash object to be destroyed. 
563  *                 Will be invalid after function returns!
564  */
565 static void destroy_hash(OBJECTHDR *pObject)
566 {
567     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
568         
569     free_hmac_info(pCryptHash->pHMACInfo);
570     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
571     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
572     HeapFree(GetProcessHeap(), 0, pCryptHash);
573 }
574
575 /******************************************************************************
576  * init_hash [Internal]
577  *
578  * Initialize (or reset) a hash object
579  *
580  * PARAMS
581  *  pCryptHash    [I] The hash object to be initialized.
582  */
583 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
584     DWORD dwLen;
585         
586     switch (pCryptHash->aiAlgid) 
587     {
588         case CALG_HMAC:
589             if (pCryptHash->pHMACInfo) { 
590                 const PROV_ENUMALGS_EX *pAlgInfo;
591                 
592                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
593                 if (!pAlgInfo) return FALSE;
594                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
595                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
596                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
597                                  pCryptHash->pHMACInfo->pbInnerString, 
598                                  pCryptHash->pHMACInfo->cbInnerString);
599             }
600             return TRUE;
601             
602         case CALG_MAC:
603             dwLen = sizeof(DWORD);
604             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, 
605                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
606             pCryptHash->dwHashSize >>= 3;
607             return TRUE;
608
609         default:
610             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
611     }
612 }
613
614 /******************************************************************************
615  * update_hash [Internal]
616  *
617  * Hashes the given data and updates the hash object's state accordingly
618  *
619  * PARAMS
620  *  pCryptHash [I] Hash object to be updated.
621  *  pbData     [I] Pointer to data stream to be hashed.
622  *  dwDataLen  [I] Length of data stream.
623  */
624 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
625     BYTE *pbTemp;
626
627     switch (pCryptHash->aiAlgid)
628     {
629         case CALG_HMAC:
630             if (pCryptHash->pHMACInfo) 
631                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
632                                  pbData, dwDataLen);
633             break;
634
635         case CALG_MAC:
636             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
637             if (!pbTemp) return;
638             memcpy(pbTemp, pbData, dwDataLen);
639             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, (HCRYPTHASH)NULL, FALSE, 0, 
640                              pbTemp, &dwDataLen, dwDataLen);
641             HeapFree(GetProcessHeap(), 0, pbTemp);
642             break;
643
644         default:
645             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
646     }
647 }
648
649 /******************************************************************************
650  * finalize_hash [Internal]
651  *
652  * Finalizes the hash, after all data has been hashed with update_hash.
653  * No additional data can be hashed afterwards until the hash gets initialized again.
654  *
655  * PARAMS
656  *  pCryptHash [I] Hash object to be finalized.
657  */
658 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
659     DWORD dwDataLen;
660         
661     switch (pCryptHash->aiAlgid)
662     {
663         case CALG_HMAC:
664             if (pCryptHash->pHMACInfo) {
665                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
666
667                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
668                                    pCryptHash->abHashValue);
669                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
670                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
671                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
672                                  pCryptHash->pHMACInfo->pbOuterString, 
673                                  pCryptHash->pHMACInfo->cbOuterString);
674                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
675                                  abHashValue, pCryptHash->dwHashSize);
676                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
677                                    pCryptHash->abHashValue);
678             } 
679             break;
680
681         case CALG_MAC:
682             dwDataLen = 0;
683             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, (HCRYPTHASH)NULL, TRUE, 0, 
684                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
685             break;
686
687         default:
688             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
689     }
690 }
691
692 /******************************************************************************
693  * destroy_key [Internal]
694  *
695  * Destructor for key objects
696  *
697  * PARAMS
698  *  pCryptKey [I] Pointer to the key object to be destroyed. 
699  *                Will be invalid after function returns!
700  */
701 static void destroy_key(OBJECTHDR *pObject)
702 {
703     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
704         
705     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
706     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
707     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
708     HeapFree(GetProcessHeap(), 0, pCryptKey);
709 }
710
711 /******************************************************************************
712  * setup_key [Internal]
713  *
714  * Initialize (or reset) a key object
715  *
716  * PARAMS
717  *  pCryptKey    [I] The key object to be initialized.
718  */
719 static inline void setup_key(CRYPTKEY *pCryptKey) {
720     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
721     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
722     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, 
723                    pCryptKey->dwSaltLen, pCryptKey->abKeyValue);
724 }
725
726 /******************************************************************************
727  * new_key [Internal]
728  *
729  * Creates a new key object without assigning the actual binary key value. 
730  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
731  *
732  * PARAMS
733  *  hProv      [I] Handle to the provider to which the created key will belong.
734  *  aiAlgid    [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
735  *  dwFlags    [I] Upper 16 bits give the key length.
736  *                 Lower 16 bits: CRYPT_CREATE_SALT, CRYPT_NO_SALT
737  *  ppCryptKey [O] Pointer to the created key
738  *
739  * RETURNS
740  *  Success: Handle to the created key.
741  *  Failure: INVALID_HANDLE_VALUE
742  */
743 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
744 {
745     HCRYPTKEY hCryptKey;
746     CRYPTKEY *pCryptKey;
747     DWORD dwKeyLen = HIWORD(dwFlags);
748     const PROV_ENUMALGS_EX *peaAlgidInfo;
749
750     *ppCryptKey = NULL;
751     
752     /* 
753      * Retrieve the CSP's capabilities for the given ALG_ID value
754      */
755     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
756     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
757
758     /*
759      * Assume the default key length, if none is specified explicitly
760      */
761     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
762     
763     /*
764      * Check if the requested key length is supported by the current CSP.
765      * Adjust key length's for DES algorithms.
766      */
767     switch (aiAlgid) {
768         case CALG_DES:
769             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
770                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
771             }
772             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
773                 SetLastError(NTE_BAD_FLAGS);
774                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
775             }
776             break;
777
778         case CALG_3DES_112:
779             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
780                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
781             }
782             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
783                 SetLastError(NTE_BAD_FLAGS);
784                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
785             }
786             break;
787
788         case CALG_3DES:
789             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
790                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
791             }
792             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
793                 SetLastError(NTE_BAD_FLAGS);
794                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
795             }
796             break;
797         
798         default:
799             if (dwKeyLen % 8 || 
800                 dwKeyLen > peaAlgidInfo->dwMaxLen || 
801                 dwKeyLen < peaAlgidInfo->dwMinLen) 
802             {
803                 SetLastError(NTE_BAD_FLAGS);
804                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
805             }
806     }
807
808     hCryptKey = (HCRYPTKEY)new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, 
809                                       destroy_key, (OBJECTHDR**)&pCryptKey);
810     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
811     {
812         pCryptKey->aiAlgid = aiAlgid;
813         pCryptKey->hProv = hProv;
814         pCryptKey->dwModeBits = 0;
815         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | 
816                                    CRYPT_MAC;
817         pCryptKey->dwKeyLen = dwKeyLen >> 3;
818         if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) 
819             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
820         else
821             pCryptKey->dwSaltLen = 0;
822         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
823         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
824         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
825         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
826             
827         switch(aiAlgid)
828         {
829             case CALG_PCT1_MASTER:
830             case CALG_SSL2_MASTER:
831             case CALG_SSL3_MASTER:
832             case CALG_TLS1_MASTER:
833             case CALG_RC4:
834                 pCryptKey->dwBlockLen = 0;
835                 pCryptKey->dwMode = 0;
836                 break;
837
838             case CALG_RC2:
839             case CALG_DES:
840             case CALG_3DES_112:
841             case CALG_3DES:
842                 pCryptKey->dwBlockLen = 8;
843                 pCryptKey->dwMode = CRYPT_MODE_CBC;
844                 break;
845
846             case CALG_RSA_KEYX:
847             case CALG_RSA_SIGN:
848                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
849                 pCryptKey->dwMode = 0;
850                 break;
851         }
852
853         *ppCryptKey = pCryptKey;
854     }
855
856     return hCryptKey;
857 }
858
859 /******************************************************************************
860  * destroy_key_container [Internal]
861  *
862  * Destructor for key containers.
863  * 
864  * PARAMS
865  *  pObjectHdr [I] Pointer to the key container to be destroyed.
866  */
867 static void destroy_key_container(OBJECTHDR *pObjectHdr)
868 {
869     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
870     DATA_BLOB blobIn, blobOut;
871     CRYPTKEY *pKey;
872     CHAR szRSABase[MAX_PATH];
873     HKEY hKey, hRootKey;
874     DWORD dwLen;
875     BYTE *pbKey;
876
877     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT)) {
878         /* On WinXP, persistent keys are stored in a file located at: 
879          * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string 
880          */
881         sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
882
883         if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) {
884             hRootKey = HKEY_LOCAL_MACHINE;
885         } else {
886             hRootKey = HKEY_CURRENT_USER;
887         }
888         
889         /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
890         /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
891         if (RegCreateKeyExA(hRootKey, szRSABase, 0, NULL, REG_OPTION_NON_VOLATILE, 
892                             KEY_WRITE, NULL, &hKey, NULL) == ERROR_SUCCESS)
893         {
894             if (lookup_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
895                               (OBJECTHDR**)&pKey))
896             {
897                 if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hKeyExchangeKeyPair, 0, 
898                                        PRIVATEKEYBLOB, 0, 0, &dwLen)) 
899                 {
900                     pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
901                     if (pbKey) 
902                     {
903                         if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hKeyExchangeKeyPair, 0,
904                                                PRIVATEKEYBLOB, 0, pbKey, &dwLen))
905                         {
906                             blobIn.pbData = pbKey;
907                             blobIn.cbData = dwLen;
908                                     
909                             if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, 
910                                  (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) ? 
911                                    CRYPTPROTECT_LOCAL_MACHINE : 0, 
912                                  &blobOut)) 
913                             {
914                                 RegSetValueExA(hKey, "KeyExchangeKeyPair", 0, REG_BINARY,
915                                                blobOut.pbData, blobOut.cbData);
916                                 HeapFree(GetProcessHeap(), 0, blobOut.pbData);
917                             }
918                         }
919                         HeapFree(GetProcessHeap(), 0, pbKey);
920                     }
921                 }
922                 release_handle(&handle_table, (unsigned int)pKeyContainer->hKeyExchangeKeyPair, 
923                                RSAENH_MAGIC_KEY);
924             }
925
926             if (lookup_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
927                               (OBJECTHDR**)&pKey))
928             {
929                 if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hSignatureKeyPair, 0, 
930                                        PRIVATEKEYBLOB, 0, 0, &dwLen)) 
931                 {
932                     pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
933                     if (pbKey) 
934                     {
935                         if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hSignatureKeyPair, 0, 
936                                                PRIVATEKEYBLOB, 0, pbKey, &dwLen))
937                         {
938                             blobIn.pbData = pbKey;
939                             blobIn.cbData = dwLen;
940                                     
941                             if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, 
942                                  (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) ? 
943                                    CRYPTPROTECT_LOCAL_MACHINE : 0, 
944                                  &blobOut)) 
945                             {
946                                 RegSetValueExA(hKey, "SignatureKeyPair", 0, REG_BINARY, 
947                                                blobOut.pbData, blobOut.cbData);
948                                 HeapFree(GetProcessHeap(), 0, blobOut.pbData);
949                             }
950                         }
951                         HeapFree(GetProcessHeap(), 0, pbKey);
952                     }
953                 }
954                 release_handle(&handle_table, (unsigned int)pKeyContainer->hSignatureKeyPair, 
955                                RSAENH_MAGIC_KEY);
956             }
957         
958             RegCloseKey(hKey);
959         }
960     }
961     
962     HeapFree( GetProcessHeap(), 0, pKeyContainer );
963 }
964
965 /******************************************************************************
966  * new_key_container [Internal]
967  *
968  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) 
969  * of the CSP is determined via the pVTable->pszProvName string.
970  *
971  * PARAMS
972  *  pszContainerName [I] Name of the key container.
973  *  pVTable          [I] Callback functions and context info provided by the OS
974  *
975  * RETURNS
976  *  Success: Handle to the new key container.
977  *  Failure: INVALID_HANDLE_VALUE
978  */
979 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, PVTableProvStruc pVTable)
980 {
981     KEYCONTAINER *pKeyContainer;
982     HCRYPTPROV hKeyContainer;
983
984     hKeyContainer = (HCRYPTPROV)new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
985                                            destroy_key_container, (OBJECTHDR**)&pKeyContainer);
986     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
987     {
988         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
989         pKeyContainer->dwFlags = dwFlags;
990         pKeyContainer->dwEnumAlgsCtr = 0;
991         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
992         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
993         if (pVTable && pVTable->pszProvName) {
994             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
995             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
996                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
997             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
998                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
999             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { 
1000                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1001             } else {
1002                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1003             }
1004         }
1005
1006         /* The new key container has to be inserted into the CSP immediately 
1007          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1008         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1009             CHAR szRSABase[MAX_PATH];
1010             HKEY hRootKey, hKey;
1011
1012             sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1013
1014             if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) {
1015                 hRootKey = HKEY_LOCAL_MACHINE;
1016             } else {
1017                 hRootKey = HKEY_CURRENT_USER;
1018             }
1019
1020             /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1021             /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1022             RegCreateKeyA(hRootKey, szRSABase, &hKey);
1023             RegCloseKey(hKey);
1024         }
1025     }
1026
1027     return hKeyContainer;
1028 }
1029
1030 /******************************************************************************
1031  * read_key_container [Internal]
1032  *
1033  * Tries to read the persistent state of the key container (mainly the signature
1034  * and key exchange private keys) given by pszContainerName.
1035  *
1036  * PARAMS
1037  *  pszContainerName [I] Name of the key container to read from the registry
1038  *  pVTable          [I] Pointer to context data provided by the operating system
1039  *
1040  * RETURNS
1041  *  Success: Handle to the key container read from the registry
1042  *  Failure: INVALID_HANDLE_VALUE
1043  */
1044 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, PVTableProvStruc pVTable)
1045 {
1046     CHAR szRSABase[MAX_PATH];
1047     BYTE *pbKey;
1048     HKEY hKey, hRootKey;
1049     DWORD dwValueType, dwLen;
1050     KEYCONTAINER *pKeyContainer;
1051     HCRYPTPROV hKeyContainer;
1052     DATA_BLOB blobIn, blobOut;
1053     
1054     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1055
1056     if (dwFlags & CRYPT_MACHINE_KEYSET) {
1057         hRootKey = HKEY_LOCAL_MACHINE;
1058     } else {
1059         hRootKey = HKEY_CURRENT_USER;
1060     }
1061
1062     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1063     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1064     if (RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, &hKey) != ERROR_SUCCESS)
1065     {
1066         SetLastError(NTE_BAD_KEYSET);
1067         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1068     }
1069
1070     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1071     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1072     {
1073         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, 
1074                            (OBJECTHDR**)&pKeyContainer))
1075             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1076     
1077         if (RegQueryValueExA(hKey, "KeyExchangeKeyPair", 0, &dwValueType, NULL, &dwLen) == 
1078             ERROR_SUCCESS) 
1079         {
1080             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1081             if (pbKey) 
1082             {
1083                 if (RegQueryValueExA(hKey, "KeyExchangeKeyPair", 0, &dwValueType, pbKey, &dwLen) ==
1084                     ERROR_SUCCESS)
1085                 {
1086                     blobIn.pbData = pbKey;
1087                     blobIn.cbData = dwLen;
1088
1089                     if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, 
1090                          (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0, &blobOut))
1091                     {
1092                         RSAENH_CPImportKey(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1093                                            &pKeyContainer->hKeyExchangeKeyPair);
1094                         HeapFree(GetProcessHeap(), 0, blobOut.pbData);
1095                     }
1096                 }
1097                 HeapFree(GetProcessHeap(), 0, pbKey);
1098             }
1099         }
1100
1101         if (RegQueryValueExA(hKey, "SignatureKeyPair", 0, &dwValueType, NULL, &dwLen) == 
1102             ERROR_SUCCESS) 
1103         {
1104             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1105             if (pbKey) 
1106             {
1107                 if (RegQueryValueExA(hKey, "SignatureKeyPair", 0, &dwValueType, pbKey, &dwLen) == 
1108                     ERROR_SUCCESS)
1109                 {
1110                     blobIn.pbData = pbKey;
1111                     blobIn.cbData = dwLen;
1112
1113                     if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, 
1114                          (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0, &blobOut))
1115                     {
1116                         RSAENH_CPImportKey(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1117                                            &pKeyContainer->hSignatureKeyPair);
1118                         HeapFree(GetProcessHeap(), 0, blobOut.pbData);
1119                     }
1120                 }
1121                 HeapFree(GetProcessHeap(), 0, pbKey);
1122             }
1123         }
1124     }
1125
1126     return hKeyContainer;
1127 }
1128
1129 /******************************************************************************
1130  * build_hash_signature [Internal]
1131  *
1132  * Builds a padded version of a hash to match the length of the RSA key modulus.
1133  *
1134  * PARAMS
1135  *  pbSignature [O] The padded hash object is stored here.
1136  *  dwLen       [I] Length of the pbSignature buffer.
1137  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1138  *  abHashValue [I] The value of the hash object.
1139  *  dwHashLen   [I] Length of the hash value.
1140  *  dwFlags     [I] Selection of padding algorithm.
1141  *
1142  * RETURNS
1143  *  Success: TRUE
1144  *  Failure: FALSE (NTE_BAD_ALGID)
1145  */
1146 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, 
1147                                  CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) 
1148 {
1149     /* These prefixes are meant to be concatenated with hash values of the
1150      * respective kind to form a PKCS #7 DigestInfo. */
1151     static const struct tagOIDDescriptor {
1152         ALG_ID aiAlgid;
1153         DWORD dwLen;
1154         CONST BYTE abOID[18];
1155     } aOIDDescriptor[5] = {
1156         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1157                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1158         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 
1159                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1160         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1161                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1162         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 
1163                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1164         { 0,        0,  {} }
1165     };
1166     DWORD dwIdxOID, i, j;
1167
1168     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1169         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1170     }
1171     
1172     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1173         SetLastError(NTE_BAD_ALGID);
1174         return FALSE;
1175     }
1176
1177     /* Build the padded signature */
1178     if (dwFlags & CRYPT_X931_FORMAT) {
1179         pbSignature[0] = 0x6b;
1180         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1181             pbSignature[i] = 0xbb;
1182         }
1183         pbSignature[i++] = 0xba;
1184         for (j=0; j < dwHashLen; j++, i++) {
1185             pbSignature[i] = abHashValue[j];
1186         }
1187         pbSignature[i++] = 0x33;
1188         pbSignature[i++] = 0xcc;
1189     } else {
1190         pbSignature[0] = 0x00;
1191         pbSignature[1] = 0x01;
1192         if (dwFlags & CRYPT_NOHASHOID) {
1193             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1194                 pbSignature[i] = 0xff;
1195             }
1196             pbSignature[i++] = 0x00;
1197         } else {
1198             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1199                 pbSignature[i] = 0xff;
1200             }
1201             pbSignature[i++] = 0x00;
1202             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1203                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1204             }
1205         }
1206         for (j=0; j < dwHashLen; j++) {
1207             pbSignature[i++] = abHashValue[j];
1208         }
1209     }
1210     
1211     return TRUE;
1212 }
1213
1214 /******************************************************************************
1215  * tls1_p [Internal]
1216  *
1217  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1218  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1219  * The pseudo random stream generated by this function is exclusive or'ed with
1220  * the data in pbBuffer.
1221  *
1222  * PARAMS
1223  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1224  *  pblobSeed   [I]   Seed value
1225  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1226  *  dwBufferLen [I]   Number of pseudo random bytes desired
1227  *
1228  * RETURNS
1229  *  Success: TRUE
1230  *  Failure: FALSE
1231  */
1232 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1233 {
1234     CRYPTHASH *pHMAC;
1235     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1236     DWORD i = 0;
1237
1238     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1239         SetLastError(NTE_BAD_HASH);
1240         return FALSE;
1241     }
1242     
1243     /* compute A_1 = HMAC(seed) */
1244     init_hash(pHMAC);
1245     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1246     finalize_hash(pHMAC);
1247     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1248
1249     do {
1250         /* compute HMAC(A_i + seed) */
1251         init_hash(pHMAC);
1252         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1253         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1254         finalize_hash(pHMAC);
1255
1256         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1257         do {
1258             if (i >= dwBufferLen) break;
1259             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1260             i++;
1261         } while (i % pHMAC->dwHashSize);
1262
1263         /* compute A_{i+1} = HMAC(A_i) */
1264         init_hash(pHMAC);
1265         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1266         finalize_hash(pHMAC);
1267         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1268     } while (i < dwBufferLen);
1269
1270     return TRUE;
1271 }
1272
1273 /******************************************************************************
1274  * tls1_prf [Internal]
1275  *
1276  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1277  *
1278  * PARAMS
1279  *  hProv       [I] Key container used to compute the pseudo random stream
1280  *  hSecret     [I] Key that holds the (pre-)master secret
1281  *  pblobLabel  [I] Descriptive label
1282  *  pblobSeed   [I] Seed value
1283  *  pbBuffer    [O] Pseudo random numbers will be stored here
1284  *  dwBufferLen [I] Number of pseudo random bytes desired
1285  *
1286  * RETURNS
1287  *  Success: TRUE
1288  *  Failure: FALSE
1289  */ 
1290 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1291                      CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1292 {
1293     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1294     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1295     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1296     CRYPTKEY *pHalfSecret, *pSecret;
1297     DWORD dwHalfSecretLen;
1298     BOOL result = FALSE;
1299     CRYPT_DATA_BLOB blobLabelSeed;
1300
1301     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%ld)\n",
1302           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1303
1304     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1305         SetLastError(NTE_FAIL);
1306         return FALSE;
1307     }
1308
1309     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1310     
1311     /* concatenation of the label and the seed */
1312     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1313    
1314     /* zero out the buffer, since two random streams will be xor'ed into it. */
1315     memset(pbBuffer, 0, dwBufferLen);
1316    
1317     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1318      * the biggest range of valid key lengths. */
1319     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1320     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1321
1322     /* Derive an HMAC_MD5 hash and call the helper function. */
1323     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1324     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1325     hmacInfo.HashAlgid = CALG_MD5;
1326     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1327     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1328
1329     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1330     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1331     hmacInfo.HashAlgid = CALG_SHA;
1332     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1333     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1334     
1335     result = TRUE;
1336 exit:
1337     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1338     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1339     free_data_blob(&blobLabelSeed);
1340     return result;
1341 }
1342
1343 /******************************************************************************
1344  * pad_data [Internal]
1345  *
1346  * Helper function for data padding according to PKCS1 #2
1347  *
1348  * PARAMS
1349  *  abData      [I] The data to be padded
1350  *  dwDataLen   [I] Length of the data 
1351  *  abBuffer    [O] Padded data will be stored here
1352  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1353  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1354  *
1355  * RETURN
1356  *  Success: TRUE
1357  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1358  */
1359 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, 
1360                      DWORD dwFlags)
1361 {
1362     DWORD i;
1363     
1364     /* Ensure there is enough space for PKCS1 #2 padding */
1365     if (dwDataLen > dwBufferLen-11) {
1366         SetLastError(NTE_BAD_LEN);
1367         return FALSE;
1368     }
1369
1370     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);            
1371     
1372     abBuffer[0] = 0x00;
1373     abBuffer[1] = RSAENH_PKC_BLOCKTYPE; 
1374     for (i=2; i < dwBufferLen - dwDataLen - 1; i++) 
1375         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1376     if (dwFlags & CRYPT_SSL2_FALLBACK) 
1377         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) 
1378             abBuffer[i] = 0x03;
1379     abBuffer[i] = 0x00;
1380     
1381     return TRUE; 
1382 }
1383
1384 /******************************************************************************
1385  * unpad_data [Internal]
1386  *
1387  * Remove the PKCS1 padding from RSA decrypted data
1388  *
1389  * PARAMS
1390  *  abData      [I]   The padded data
1391  *  dwDataLen   [I]   Length of the padded data
1392  *  abBuffer    [O]   Data without padding will be stored here
1393  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1394  *  dwFlags     [I]   Currently none defined
1395  *
1396  * RETURNS
1397  *  Success: TRUE
1398  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1399  */
1400 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, 
1401                        DWORD dwFlags)
1402 {
1403     DWORD i;
1404     
1405     for (i=2; i<dwDataLen; i++)
1406         if (!abData[i])
1407             break;
1408
1409     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1410         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1411     {
1412         SetLastError(NTE_BAD_DATA);
1413         return FALSE;
1414     }
1415
1416     *dwBufferLen = dwDataLen - i - 1;
1417     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1418     return TRUE;
1419 }
1420
1421 /******************************************************************************
1422  * CPAcquireContext (RSAENH.@)
1423  *
1424  * Acquire a handle to the key container specified by pszContainer
1425  *
1426  * PARAMS
1427  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1428  *  pszContainer [I] Name of the desired key container. See Notes
1429  *  dwFlags      [I] Flags. See Notes.
1430  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1431  * 
1432  * RETURNS
1433  *  Success: TRUE
1434  *  Failure: FALSE
1435  *
1436  * NOTES
1437  *  If pszContainer is NULL or points to a zero length string the user's login 
1438  *  name will be used as the key container name.
1439  *
1440  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1441  *  If a keyset with the given name already exists, the function fails and sets
1442  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1443  *  key container does not exist, function fails and sets last error to 
1444  *  NTE_BAD_KEYSET.
1445  */                         
1446 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1447                    DWORD dwFlags, PVTableProvStruc pVTable)
1448 {
1449     CHAR szKeyContainerName[MAX_PATH];
1450     CHAR szRegKey[MAX_PATH];
1451
1452     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08lx, pVTable=%p)\n", phProv, 
1453           debugstr_a(pszContainer), dwFlags, pVTable);
1454
1455     if (pszContainer && *pszContainer)
1456     {
1457         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1458     } 
1459     else
1460     {
1461         DWORD dwLen = sizeof(szKeyContainerName);
1462         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1463     }
1464
1465     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) 
1466     {
1467         case 0:
1468             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1469             break;
1470
1471         case CRYPT_DELETEKEYSET:
1472             if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainer) >= MAX_PATH) {
1473                 SetLastError(NTE_BAD_KEYSET_PARAM);
1474                 return FALSE;
1475             } else {
1476                 RegDeleteKeyA(HKEY_CURRENT_USER, szRegKey);
1477                 SetLastError(ERROR_SUCCESS);
1478                 return TRUE;
1479             }
1480             break;
1481
1482         case CRYPT_NEWKEYSET:
1483             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1484             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) 
1485             {
1486                 release_handle(&handle_table, (unsigned int)*phProv, RSAENH_MAGIC_CONTAINER);
1487                 SetLastError(NTE_EXISTS);
1488                 return FALSE;
1489             }
1490             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1491             break;
1492
1493         case CRYPT_VERIFYCONTEXT:
1494             if (pszContainer) {
1495                 SetLastError(NTE_BAD_FLAGS);
1496                 return FALSE;
1497             }
1498             *phProv = new_key_container("", dwFlags, pVTable);
1499             break;
1500             
1501         default:
1502             *phProv = (unsigned int)INVALID_HANDLE_VALUE;
1503             SetLastError(NTE_BAD_FLAGS);
1504             return FALSE;
1505     }
1506                 
1507     if (*phProv != (unsigned int)INVALID_HANDLE_VALUE) {
1508         SetLastError(ERROR_SUCCESS);
1509         return TRUE;
1510     } else {
1511         return FALSE;
1512     }
1513 }
1514
1515 /******************************************************************************
1516  * CPCreateHash (RSAENH.@)
1517  *
1518  * CPCreateHash creates and initalizes a new hash object.
1519  *
1520  * PARAMS
1521  *  hProv   [I] Handle to the key container to which the new hash will belong.
1522  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1523  *  hKey    [I] Handle to a session key applied for keyed hashes.
1524  *  dwFlags [I] Currently no flags defined. Must be zero.
1525  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1526  *
1527  * RETURNS
1528  *  Success: TRUE
1529  *  Failure: FALSE
1530  *
1531  * NOTES
1532  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1533  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1534  */
1535 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, 
1536                                 HCRYPTHASH *phHash)
1537 {
1538     CRYPTKEY *pCryptKey;
1539     CRYPTHASH *pCryptHash;
1540     const PROV_ENUMALGS_EX *peaAlgidInfo;
1541         
1542     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08lx, phHash=%p)\n", hProv, Algid, hKey, 
1543           dwFlags, phHash);
1544
1545     peaAlgidInfo = get_algid_info(hProv, Algid);
1546     if (!peaAlgidInfo) return FALSE;
1547
1548     if (dwFlags)
1549     {
1550         SetLastError(NTE_BAD_FLAGS);
1551         return FALSE;
1552     }
1553
1554     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || 
1555         Algid == CALG_TLS1PRF) 
1556     {
1557         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1558             SetLastError(NTE_BAD_KEY);
1559             return FALSE;
1560         }
1561
1562         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1563             SetLastError(NTE_BAD_KEY);
1564             return FALSE;
1565         }
1566
1567         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && 
1568             (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) 
1569         {
1570             SetLastError(NTE_BAD_KEY);
1571             return FALSE;
1572         }
1573
1574         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1575             SetLastError(NTE_BAD_KEY_STATE);
1576             return FALSE;
1577         }
1578     }
1579
1580     *phHash = (HCRYPTHASH)new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1581                                      destroy_hash, (OBJECTHDR**)&pCryptHash);
1582     if (!pCryptHash) return FALSE;
1583     
1584     pCryptHash->aiAlgid = Algid;
1585     pCryptHash->hKey = hKey;
1586     pCryptHash->hProv = hProv;
1587     pCryptHash->dwState = RSAENH_HASHSTATE_IDLE;
1588     pCryptHash->pHMACInfo = (PHMAC_INFO)NULL;
1589     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1590     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1591     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1592
1593     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1594         static const char keyex[] = "key expansion";
1595         BYTE key_expansion[sizeof keyex];
1596         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1597
1598         memcpy( key_expansion, keyex, sizeof keyex );
1599         
1600         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1601             static const char msec[] = "master secret";
1602             BYTE master_secret[sizeof msec];
1603             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1604             BYTE abKeyValue[48];
1605
1606             memcpy( master_secret, msec, sizeof msec );
1607     
1608             /* See RFC 2246, chapter 8.1 */
1609             if (!concat_data_blobs(&blobRandom, 
1610                                    &pCryptKey->siSChannelInfo.blobClientRandom, 
1611                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1612             {
1613                 return FALSE;
1614             }
1615             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1616             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; 
1617             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1618             free_data_blob(&blobRandom);
1619         }
1620
1621         /* See RFC 2246, chapter 6.3 */
1622         if (!concat_data_blobs(&blobRandom, 
1623                                   &pCryptKey->siSChannelInfo.blobServerRandom, 
1624                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1625         {
1626             return FALSE;
1627         }
1628         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, 
1629                  RSAENH_MAX_HASH_SIZE);
1630         free_data_blob(&blobRandom);
1631     }
1632
1633     return init_hash(pCryptHash);
1634 }
1635
1636 /******************************************************************************
1637  * CPDestroyHash (RSAENH.@)
1638  * 
1639  * Releases the handle to a hash object. The object is destroyed if it's reference
1640  * count reaches zero.
1641  *
1642  * PARAMS
1643  *  hProv [I] Handle to the key container to which the hash object belongs.
1644  *  hHash [I] Handle to the hash object to be released.
1645  *
1646  * RETURNS
1647  *  Success: TRUE
1648  *  Failure: FALSE 
1649  */
1650 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1651 {
1652     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1653      
1654     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1655     {
1656         SetLastError(NTE_BAD_UID);
1657         return FALSE;
1658     }
1659         
1660     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) 
1661     {
1662         SetLastError(NTE_BAD_HASH);
1663         return FALSE;
1664     }
1665     
1666     return TRUE;
1667 }
1668
1669 /******************************************************************************
1670  * CPDestroyKey (RSAENH.@)
1671  *
1672  * Releases the handle to a key object. The object is destroyed if it's reference
1673  * count reaches zero.
1674  *
1675  * PARAMS
1676  *  hProv [I] Handle to the key container to which the key object belongs.
1677  *  hKey  [I] Handle to the key object to be released.
1678  *
1679  * RETURNS
1680  *  Success: TRUE
1681  *  Failure: FALSE
1682  */
1683 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1684 {
1685     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1686         
1687     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1688     {
1689         SetLastError(NTE_BAD_UID);
1690         return FALSE;
1691     }
1692         
1693     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) 
1694     {
1695         SetLastError(NTE_BAD_KEY);
1696         return FALSE;
1697     }
1698     
1699     return TRUE;
1700 }
1701
1702 /******************************************************************************
1703  * CPDuplicateHash (RSAENH.@)
1704  *
1705  * Clones a hash object including it's current state.
1706  *
1707  * PARAMS
1708  *  hUID        [I] Handle to the key container the hash belongs to.
1709  *  hHash       [I] Handle to the hash object to be cloned.
1710  *  pdwReserved [I] Reserved. Must be NULL.
1711  *  dwFlags     [I] No flags are currently defined. Must be 0.
1712  *  phHash      [O] Handle to the cloned hash object.
1713  *
1714  * RETURNS
1715  *  Success: TRUE.
1716  *  Failure: FALSE.
1717  */
1718 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, 
1719                                    DWORD dwFlags, HCRYPTHASH *phHash)
1720 {
1721     CRYPTHASH *pSrcHash, *pDestHash;
1722     
1723     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08lx, phHash=%p)\n", hUID, hHash, 
1724            pdwReserved, dwFlags, phHash);
1725
1726     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1727     {
1728         SetLastError(NTE_BAD_UID);
1729         return FALSE;
1730     }
1731
1732     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
1733     {
1734         SetLastError(NTE_BAD_HASH);
1735         return FALSE;
1736     }
1737
1738     if (!phHash || pdwReserved || dwFlags) 
1739     {
1740         SetLastError(ERROR_INVALID_PARAMETER);
1741         return FALSE;
1742     }
1743
1744     *phHash = (HCRYPTHASH)new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, 
1745                                      destroy_hash, (OBJECTHDR**)&pDestHash);
1746     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
1747     {
1748         memcpy(pDestHash, pSrcHash, sizeof(CRYPTHASH));
1749         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
1750         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
1751         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
1752         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
1753     }
1754
1755     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
1756 }
1757
1758 /******************************************************************************
1759  * CPDuplicateKey (RSAENH.@)
1760  *
1761  * Clones a key object including it's current state.
1762  *
1763  * PARAMS
1764  *  hUID        [I] Handle to the key container the hash belongs to.
1765  *  hKey        [I] Handle to the key object to be cloned.
1766  *  pdwReserved [I] Reserved. Must be NULL.
1767  *  dwFlags     [I] No flags are currently defined. Must be 0.
1768  *  phHash      [O] Handle to the cloned key object.
1769  *
1770  * RETURNS
1771  *  Success: TRUE.
1772  *  Failure: FALSE.
1773  */
1774 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, 
1775                                   DWORD dwFlags, HCRYPTKEY *phKey)
1776 {
1777     CRYPTKEY *pSrcKey, *pDestKey;
1778     
1779     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08lx, phKey=%p)\n", hUID, hKey, 
1780           pdwReserved, dwFlags, phKey);
1781
1782     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1783     {
1784         SetLastError(NTE_BAD_UID);
1785         return FALSE;
1786     }
1787
1788     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
1789     {
1790         SetLastError(NTE_BAD_KEY);
1791         return FALSE;
1792     }
1793
1794     if (!phKey || pdwReserved || dwFlags) 
1795     {
1796         SetLastError(ERROR_INVALID_PARAMETER);
1797         return FALSE;
1798     }
1799
1800     *phKey = (HCRYPTKEY)new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key, 
1801                                    (OBJECTHDR**)&pDestKey);
1802     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
1803     {
1804         memcpy(pDestKey, pSrcKey, sizeof(CRYPTKEY));
1805         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
1806                        &pSrcKey->siSChannelInfo.blobServerRandom);
1807         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, 
1808                        &pSrcKey->siSChannelInfo.blobClientRandom);
1809         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
1810         return TRUE;
1811     }
1812     else
1813     {
1814         return FALSE;
1815     }
1816 }
1817
1818 /******************************************************************************
1819  * CPEncrypt (RSAENH.@)
1820  *
1821  * Encrypt data.
1822  *
1823  * PARAMS
1824  *  hProv      [I]   The key container hKey and hHash belong to.
1825  *  hKey       [I]   The key used to encrypt the data.
1826  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
1827  *  Final      [I]   Indicates if this is the last block of data to encrypt.
1828  *  dwFlags    [I]   Currently no flags defined. Must be zero.
1829  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. 
1830  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
1831  *  dwBufLen   [I]   Size of the buffer at pbData.
1832  *
1833  * RETURNS
1834  *  Success: TRUE.
1835  *  Failure: FALSE.
1836  *
1837  * NOTES
1838  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
1839  *  This is useful for message signatures.
1840  *
1841  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
1842  */
1843 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
1844                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
1845 {
1846     CRYPTKEY *pCryptKey;
1847     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
1848     DWORD dwEncryptedLen, i, j, k;
1849         
1850     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08lx, pbData=%p, "
1851           "pdwDataLen=%p, dwBufLen=%ld)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
1852           dwBufLen);
1853     
1854     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1855     {
1856         SetLastError(NTE_BAD_UID);
1857         return FALSE;
1858     }
1859
1860     if (dwFlags)
1861     {
1862         SetLastError(NTE_BAD_FLAGS);
1863         return FALSE;
1864     }
1865
1866     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
1867     {
1868         SetLastError(NTE_BAD_KEY);
1869         return FALSE;
1870     }
1871
1872     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
1873         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
1874
1875     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) 
1876     {
1877         SetLastError(NTE_BAD_DATA);
1878         return FALSE;
1879     }
1880
1881     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
1882         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
1883     }
1884     
1885     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
1886         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
1887             SetLastError(NTE_BAD_DATA);
1888             return FALSE;
1889         }
1890
1891         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
1892
1893         if (pbData == NULL) {
1894             *pdwDataLen = dwEncryptedLen;
1895             return TRUE;
1896         }
1897
1898         for (i=*pdwDataLen; i<dwEncryptedLen && i<dwBufLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
1899         *pdwDataLen = dwEncryptedLen; 
1900
1901         if (*pdwDataLen > dwBufLen) 
1902         {
1903             SetLastError(ERROR_MORE_DATA);
1904             return FALSE;
1905         }
1906     
1907         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
1908             switch (pCryptKey->dwMode) {
1909                 case CRYPT_MODE_ECB:
1910                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
1911                                        RSAENH_ENCRYPT);
1912                     break;
1913                 
1914                 case CRYPT_MODE_CBC:
1915                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
1916                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
1917                                        RSAENH_ENCRYPT);
1918                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
1919                     break;
1920
1921                 case CRYPT_MODE_CFB:
1922                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
1923                         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, 
1924                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
1925                         out[j] = in[j] ^ o[0];
1926                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
1927                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
1928                         pCryptKey->abChainVector[k] = out[j];
1929                     }
1930                     break;
1931                     
1932                 default:
1933                     SetLastError(NTE_BAD_ALGID);
1934                     return FALSE;
1935             }
1936             memcpy(in, out, pCryptKey->dwBlockLen); 
1937         }
1938     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
1939         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
1940     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
1941         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
1942             SetLastError(NTE_BAD_KEY);
1943             return FALSE;
1944         }
1945         if (dwBufLen < pCryptKey->dwBlockLen) {
1946             SetLastError(ERROR_MORE_DATA);
1947             return FALSE;
1948         }
1949         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
1950         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
1951         *pdwDataLen = pCryptKey->dwBlockLen;
1952         Final = TRUE;
1953     } else {
1954         SetLastError(NTE_BAD_TYPE);
1955         return FALSE;
1956     }
1957
1958     if (Final) setup_key(pCryptKey);
1959
1960     return TRUE;
1961 }
1962
1963 /******************************************************************************
1964  * CPDecrypt (RSAENH.@)
1965  *
1966  * Decrypt data.
1967  *
1968  * PARAMS
1969  *  hProv      [I]   The key container hKey and hHash belong to.
1970  *  hKey       [I]   The key used to decrypt the data.
1971  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
1972  *  Final      [I]   Indicates if this is the last block of data to decrypt.
1973  *  dwFlags    [I]   Currently no flags defined. Must be zero.
1974  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. 
1975  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
1976  *
1977  * RETURNS
1978  *  Success: TRUE.
1979  *  Failure: FALSE.
1980  *
1981  * NOTES
1982  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
1983  *  This is useful for message signatures.
1984  *
1985  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
1986  */
1987 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
1988                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
1989 {
1990     CRYPTKEY *pCryptKey;
1991     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
1992     DWORD i, j, k;
1993     DWORD dwMax;
1994
1995     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08lx, pbData=%p, "
1996           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
1997     
1998     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1999     {
2000         SetLastError(NTE_BAD_UID);
2001         return FALSE;
2002     }
2003
2004     if (dwFlags)
2005     {
2006         SetLastError(NTE_BAD_FLAGS);
2007         return FALSE;
2008     }
2009
2010     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2011     {
2012         SetLastError(NTE_BAD_KEY);
2013         return FALSE;
2014     }
2015
2016     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2017         pCryptKey->dwState = RSAENH_KEYSTATE_DECRYPTING;
2018
2019     if (pCryptKey->dwState != RSAENH_KEYSTATE_DECRYPTING)
2020     {
2021         SetLastError(NTE_BAD_DATA);
2022         return FALSE;
2023     }
2024
2025     dwMax=*pdwDataLen;
2026
2027     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2028         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2029             switch (pCryptKey->dwMode) {
2030                 case CRYPT_MODE_ECB:
2031                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
2032                                        RSAENH_DECRYPT);
2033                     break;
2034                 
2035                 case CRYPT_MODE_CBC:
2036                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
2037                                        RSAENH_DECRYPT);
2038                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2039                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2040                     break;
2041
2042                 case CRYPT_MODE_CFB:
2043                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2044                         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, 
2045                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2046                         out[j] = in[j] ^ o[0];
2047                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2048                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2049                         pCryptKey->abChainVector[k] = in[j];
2050                     }
2051                     break;
2052                     
2053                 default:
2054                     SetLastError(NTE_BAD_ALGID);
2055                     return FALSE;
2056             }
2057             memcpy(in, out, pCryptKey->dwBlockLen);
2058         }
2059         if (Final) *pdwDataLen -= pbData[*pdwDataLen-1]; 
2060
2061     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2062         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2063     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2064         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2065             SetLastError(NTE_BAD_KEY);
2066             return FALSE;
2067         }
2068         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2069         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2070         Final = TRUE;
2071     } else {
2072         SetLastError(NTE_BAD_TYPE);
2073         return FALSE;
2074     } 
2075     
2076     if (Final) setup_key(pCryptKey);
2077
2078     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2079         if (*pdwDataLen>dwMax ||
2080             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2081     }
2082     
2083     return TRUE;
2084 }
2085
2086 /******************************************************************************
2087  * CPExportKey (RSAENH.@)
2088  *
2089  * Export a key into a binary large object (BLOB).
2090  *
2091  * PARAMS
2092  *  hProv      [I]   Key container from which a key is to be exported.
2093  *  hKey       [I]   Key to be exported.
2094  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2095  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2096  *  dwFlags    [I]   Currently none defined.
2097  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2098  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2099  *
2100  * RETURNS
2101  *  Success: TRUE.
2102  *  Failure: FALSE.
2103  */
2104 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey, 
2105                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2106 {
2107     CRYPTKEY *pCryptKey, *pPubKey;
2108     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2109     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2110     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2111     DWORD dwDataLen;
2112     
2113     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08lx, dwFlags=%08lx, pbData=%p,"
2114           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2115     
2116     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2117     {
2118         SetLastError(NTE_BAD_UID);
2119         return FALSE;
2120     }
2121
2122     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2123     {
2124         SetLastError(NTE_BAD_KEY);
2125         return FALSE;
2126     }
2127
2128     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2129         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2130             SetLastError(NTE_BAD_KEY);
2131             return FALSE;
2132         }
2133     }
2134     
2135     switch ((BYTE)dwBlobType)
2136     {
2137         case SIMPLEBLOB:
2138             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2139                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2140                 return FALSE;
2141             }
2142
2143             if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2144                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2145                 return FALSE;
2146             }
2147
2148             dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2149             if (pbData) {
2150                 if (*pdwDataLen < dwDataLen) {
2151                     SetLastError(ERROR_MORE_DATA);
2152                     *pdwDataLen = dwDataLen;
2153                     return FALSE;
2154                 }
2155
2156                 pBlobHeader->bType = SIMPLEBLOB;
2157                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2158                 pBlobHeader->reserved = 0;
2159                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2160
2161                 *pAlgid = pPubKey->aiAlgid;
2162        
2163                 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1), 
2164                               pPubKey->dwBlockLen, dwFlags))
2165                 {
2166                     return FALSE;
2167                 }
2168                 
2169                 encrypt_block_impl(pPubKey->aiAlgid, &pPubKey->context, (BYTE*)(pAlgid+1), 
2170                                    (BYTE*)(pAlgid+1), RSAENH_ENCRYPT); 
2171             }
2172             *pdwDataLen = dwDataLen;
2173             return TRUE;
2174             
2175         case PUBLICKEYBLOB:
2176             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2177                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2178                 return FALSE;
2179             }
2180
2181             if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2182                 SetLastError(NTE_BAD_KEY);
2183                 return FALSE;
2184             }
2185
2186             dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2187             if (pbData) {
2188                 if (*pdwDataLen < dwDataLen) {
2189                     SetLastError(ERROR_MORE_DATA);
2190                     *pdwDataLen = dwDataLen;
2191                     return FALSE;
2192                 }
2193
2194                 pBlobHeader->bType = PUBLICKEYBLOB;
2195                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2196                 pBlobHeader->reserved = 0;
2197                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2198                 if (pBlobHeader->aiKeyAlg == CALG_RSA_SIGN)
2199                     pBlobHeader->aiKeyAlg = CALG_RSA_KEYX;
2200
2201                 pRSAPubKey->magic = RSAENH_MAGIC_RSA1; 
2202                 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2203         
2204                 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2205                                        pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2206             }
2207             *pdwDataLen = dwDataLen;
2208             return TRUE;
2209
2210         case PRIVATEKEYBLOB:
2211             if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2212                 SetLastError(NTE_BAD_KEY);
2213                 return FALSE;
2214             }
2215     
2216             dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 
2217                         2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2218             if (pbData) {
2219                 if (*pdwDataLen < dwDataLen) {
2220                     SetLastError(ERROR_MORE_DATA);
2221                     *pdwDataLen = dwDataLen;
2222                     return FALSE;
2223                 }
2224                 
2225                 pBlobHeader->bType = PRIVATEKEYBLOB;
2226                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2227                 pBlobHeader->reserved = 0;
2228                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2229
2230                 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2231                 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2232                 
2233                 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2234                                         pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2235             }
2236             *pdwDataLen = dwDataLen;
2237             return TRUE;
2238             
2239         default:
2240             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2241             return FALSE;
2242     }
2243 }
2244
2245 /******************************************************************************
2246  * CPImportKey (RSAENH.@)
2247  *
2248  * Import a BLOB'ed key into a key container.
2249  *
2250  * PARAMS
2251  *  hProv     [I] Key container into which the key is to be imported.
2252  *  pbData    [I] Pointer to a buffer which holds the BLOB.
2253  *  dwDataLen [I] Length of data in buffer at pbData.
2254  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2255  *  dwFlags   [I] Currently none defined.
2256  *  phKey     [O] Handle to the imported key.
2257  *
2258  * RETURNS
2259  *  Success: TRUE.
2260  *  Failure: FALSE.
2261  */
2262 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen, 
2263                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
2264 {
2265     CRYPTKEY *pCryptKey, *pPubKey;
2266     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2267     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2268     CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2269     CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2270     ALG_ID algID;
2271     BYTE *pbDecrypted;
2272     DWORD dwKeyLen;
2273
2274     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%ld, hPubKey=%08lx, dwFlags=%08lx, phKey=%p)\n", 
2275         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
2276     
2277     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2278     {
2279         SetLastError(NTE_BAD_UID);
2280         return FALSE;
2281     }
2282
2283     if (dwDataLen < sizeof(BLOBHEADER) || 
2284         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2285         pBlobHeader->reserved != 0) 
2286     {
2287         SetLastError(NTE_BAD_DATA);
2288         return FALSE;
2289     }
2290
2291     switch (pBlobHeader->bType)
2292     {
2293         case PRIVATEKEYBLOB:    
2294             if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || 
2295                 (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2296                 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 
2297                     (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)))) 
2298             {
2299                 SetLastError(NTE_BAD_DATA);
2300                 return FALSE;
2301             }
2302     
2303             *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2304             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2305             setup_key(pCryptKey);
2306             return import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2307                                            pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2308                 
2309         case PUBLICKEYBLOB:
2310             if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || 
2311                 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2312                 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3))) 
2313             {
2314                 SetLastError(NTE_BAD_DATA);
2315                 return FALSE;
2316             }
2317     
2318             /* Since this is a public key blob, only the public key is
2319              * available, so only signature verification is possible.
2320              */
2321             algID = pBlobHeader->aiKeyAlg;
2322             if (algID == CALG_RSA_KEYX)
2323                 algID = CALG_RSA_SIGN;
2324             *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); 
2325             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; 
2326             setup_key(pCryptKey);
2327             return import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2328                                           pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2329                 
2330         case SIMPLEBLOB:
2331             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2332                 pPubKey->aiAlgid != CALG_RSA_KEYX) 
2333             {
2334                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2335                 return FALSE;
2336             }
2337
2338             if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen) 
2339             {
2340                 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2341                 return FALSE;
2342             }
2343
2344             pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2345             if (!pbDecrypted) return FALSE;
2346             encrypt_block_impl(pPubKey->aiAlgid, &pPubKey->context, pbKeyStream, pbDecrypted, 
2347                                RSAENH_DECRYPT);
2348
2349             dwKeyLen = RSAENH_MAX_KEY_SIZE;
2350             if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2351                 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2352                 return FALSE;
2353             }
2354             
2355             *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2356             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2357             {
2358                 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2359                 return FALSE;
2360             }
2361             memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2362             HeapFree(GetProcessHeap(), 0, pbDecrypted);
2363             setup_key(pCryptKey);
2364             return TRUE;
2365
2366         default:
2367             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2368             return FALSE;
2369     }
2370 }
2371
2372 /******************************************************************************
2373  * CPGenKey (RSAENH.@)
2374  *
2375  * Generate a key in the key container
2376  *
2377  * PARAMS
2378  *  hProv   [I] Key container for which a key is to be generated.
2379  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
2380  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
2381  *  phKey   [O] Handle to the generated key.
2382  *
2383  * RETURNS
2384  *  Success: TRUE.
2385  *  Failure: FALSE.
2386  *
2387  * FIXME
2388  *  Flags currently not considered.
2389  *
2390  * NOTES
2391  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
2392  *  and AT_SIGNATURE values.
2393  */
2394 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
2395 {
2396     KEYCONTAINER *pKeyContainer;
2397     CRYPTKEY *pCryptKey;
2398
2399     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08lx, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
2400
2401     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
2402                        (OBJECTHDR**)&pKeyContainer)) 
2403     {
2404         /* MSDN: hProv not containing valid context handle */
2405         SetLastError(NTE_BAD_UID);
2406         return FALSE;
2407     }
2408     
2409     switch (Algid)
2410     {
2411         case AT_SIGNATURE:
2412         case CALG_RSA_SIGN:
2413             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
2414             if (pCryptKey) { 
2415                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2416                 setup_key(pCryptKey);
2417                 if (Algid == AT_SIGNATURE) {
2418                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
2419                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2420                                 (unsigned int*)&pKeyContainer->hSignatureKeyPair);
2421                 }
2422             }
2423             break;
2424
2425         case AT_KEYEXCHANGE:
2426         case CALG_RSA_KEYX:
2427             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
2428             if (pCryptKey) { 
2429                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2430                 setup_key(pCryptKey);
2431                 if (Algid == AT_KEYEXCHANGE) {
2432                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2433                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2434                                 (unsigned int*)&pKeyContainer->hKeyExchangeKeyPair);
2435                 }
2436             }
2437             break;
2438             
2439         case CALG_RC2:
2440         case CALG_RC4:
2441         case CALG_DES:
2442         case CALG_3DES_112:
2443         case CALG_3DES:
2444         case CALG_PCT1_MASTER:
2445         case CALG_SSL2_MASTER:
2446         case CALG_SSL3_MASTER:
2447         case CALG_TLS1_MASTER:
2448             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
2449             if (pCryptKey) {
2450                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
2451                 switch (Algid) {
2452                     case CALG_SSL3_MASTER:
2453                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
2454                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
2455                         break;
2456
2457                     case CALG_TLS1_MASTER:
2458                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
2459                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
2460                         break;
2461                 }
2462                 setup_key(pCryptKey);
2463             }
2464             break;
2465             
2466         default:
2467             /* MSDN: Algorithm not supported specified by Algid */
2468             SetLastError(NTE_BAD_ALGID);
2469             return FALSE;
2470     }
2471             
2472     return *phKey != (unsigned int)INVALID_HANDLE_VALUE;
2473 }
2474
2475 /******************************************************************************
2476  * CPGenRandom (RSAENH.@)
2477  *
2478  * Generate a random byte stream.
2479  *
2480  * PARAMS
2481  *  hProv    [I] Key container that is used to generate random bytes.
2482  *  dwLen    [I] Specifies the number of requested random data bytes.
2483  *  pbBuffer [O] Random bytes will be stored here.
2484  *
2485  * RETURNS
2486  *  Success: TRUE
2487  *  Failure: FALSE
2488  */
2489 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
2490 {
2491     TRACE("(hProv=%08lx, dwLen=%ld, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
2492     
2493     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
2494     {
2495         /* MSDN: hProv not containing valid context handle */
2496         SetLastError(NTE_BAD_UID);
2497         return FALSE;
2498     }
2499
2500     return gen_rand_impl(pbBuffer, dwLen);
2501 }
2502
2503 /******************************************************************************
2504  * CPGetHashParam (RSAENH.@)
2505  *
2506  * Query parameters of an hash object.
2507  *
2508  * PARAMS
2509  *  hProv      [I]   The kea container, which the hash belongs to.
2510  *  hHash      [I]   The hash object that is to be queried.
2511  *  dwParam    [I]   Specifies the parameter that is to be queried.
2512  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2513  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2514  *  dwFlags    [I]   None currently defined.
2515  *
2516  * RETURNS
2517  *  Success: TRUE
2518  *  Failure: FALSE
2519  *
2520  * NOTES
2521  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be 
2522  *  finalized if HP_HASHVALUE is queried.
2523  */
2524 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, 
2525                                   DWORD *pdwDataLen, DWORD dwFlags) 
2526 {
2527     CRYPTHASH *pCryptHash;
2528         
2529     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08lx, pbData=%p, pdwDataLen=%p, dwFlags=%08lx)\n", 
2530         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
2531     
2532     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
2533     {
2534         SetLastError(NTE_BAD_UID);
2535         return FALSE;
2536     }
2537
2538     if (dwFlags)
2539     {
2540         SetLastError(NTE_BAD_FLAGS);
2541         return FALSE;
2542     }
2543     
2544     if (!lookup_handle(&handle_table, (unsigned int)hHash, RSAENH_MAGIC_HASH, 
2545                        (OBJECTHDR**)&pCryptHash))
2546     {
2547         SetLastError(NTE_BAD_HASH);
2548         return FALSE;
2549     }
2550
2551     if (!pdwDataLen)
2552     {
2553         SetLastError(ERROR_INVALID_PARAMETER);
2554         return FALSE;
2555     }
2556     
2557     switch (dwParam)
2558     {
2559         case HP_ALGID:
2560             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid, 
2561                               sizeof(ALG_ID));
2562
2563         case HP_HASHSIZE:
2564             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize, 
2565                               sizeof(DWORD));
2566
2567         case HP_HASHVAL:
2568             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
2569                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
2570                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
2571             }
2572
2573             if ( pbData == NULL ) {
2574                 *pdwDataLen = pCryptHash->dwHashSize;
2575                 return TRUE;
2576             }
2577
2578             if (pCryptHash->dwState == RSAENH_HASHSTATE_IDLE) {
2579                 SetLastError(NTE_BAD_HASH_STATE);
2580                 return FALSE;
2581             }
2582             
2583             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
2584             {
2585                 finalize_hash(pCryptHash);
2586                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
2587             }
2588             
2589             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pCryptHash->abHashValue, 
2590                               pCryptHash->dwHashSize);
2591
2592         default:
2593             SetLastError(NTE_BAD_TYPE);
2594             return FALSE;
2595     }
2596 }
2597
2598 /******************************************************************************
2599  * CPSetKeyParam (RSAENH.@)
2600  *
2601  * Set a parameter of a key object
2602  *
2603  * PARAMS
2604  *  hProv   [I] The key container to which the key belongs.
2605  *  hKey    [I] The key for which a parameter is to be set.
2606  *  dwParam [I] Parameter type. See Notes.
2607  *  pbData  [I] Pointer to the parameter value.
2608  *  dwFlags [I] Currently none defined.
2609  *
2610  * RETURNS
2611  *  Success: TRUE.
2612  *  Failure: FALSE.
2613  *
2614  * NOTES:
2615  *  Defined dwParam types are:
2616  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
2617  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
2618  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
2619  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
2620  *   - KP_IV: Initialization vector
2621  */
2622 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
2623                                  DWORD dwFlags)
2624 {
2625     CRYPTKEY *pCryptKey;
2626
2627     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n", hProv, hKey, 
2628           dwParam, pbData, dwFlags);
2629
2630     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER))
2631     {
2632         SetLastError(NTE_BAD_UID);
2633         return FALSE;
2634     }
2635
2636     if (dwFlags) {
2637         SetLastError(NTE_BAD_FLAGS);
2638         return FALSE;
2639     }
2640     
2641     if (!lookup_handle(&handle_table, (unsigned int)hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2642     {
2643         SetLastError(NTE_BAD_KEY);
2644         return FALSE;
2645     }
2646     
2647     switch (dwParam) {
2648         case KP_MODE:
2649             pCryptKey->dwMode = *(DWORD*)pbData;
2650             return TRUE;
2651
2652         case KP_MODE_BITS:
2653             pCryptKey->dwModeBits = *(DWORD*)pbData;
2654             return TRUE;
2655
2656         case KP_PERMISSIONS:
2657             pCryptKey->dwPermissions = *(DWORD*)pbData;
2658             return TRUE;
2659
2660         case KP_IV:
2661             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
2662             return TRUE;
2663
2664         case KP_SCHANNEL_ALG:
2665             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
2666                 case SCHANNEL_ENC_KEY:
2667                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
2668                     break;
2669
2670                 case SCHANNEL_MAC_KEY:
2671                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
2672                     break;
2673
2674                 default:
2675                     SetLastError(NTE_FAIL); /* FIXME: error code */
2676                     return FALSE;
2677             }
2678             return TRUE;
2679
2680         case KP_CLIENT_RANDOM:
2681             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
2682             
2683         case KP_SERVER_RANDOM:
2684             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
2685
2686         default:
2687             SetLastError(NTE_BAD_TYPE);
2688             return FALSE;
2689     }
2690 }
2691
2692 /******************************************************************************
2693  * CPGetKeyParam (RSAENH.@)
2694  *
2695  * Query a key parameter.
2696  *
2697  * PARAMS
2698  *  hProv      [I]   The key container, which the key belongs to.
2699  *  hHash      [I]   The key object that is to be queried.
2700  *  dwParam    [I]   Specifies the parameter that is to be queried.
2701  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2702  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2703  *  dwFlags    [I]   None currently defined.
2704  *
2705  * RETURNS
2706  *  Success: TRUE
2707  *  Failure: FALSE
2708  *
2709  * NOTES
2710  *  Defined dwParam types are:
2711  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
2712  *   - KP_MODE_BITS: Shift width for cipher feedback mode. 
2713  *                   (Currently ignored by MS CSP's - always eight)
2714  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
2715  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
2716  *   - KP_IV: Initialization vector.
2717  *   - KP_KEYLEN: Bitwidth of the key.
2718  *   - KP_BLOCKLEN: Size of a block cipher block.
2719  *   - KP_SALT: Salt value.
2720  */
2721 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
2722                                  DWORD *pdwDataLen, DWORD dwFlags)
2723 {
2724     CRYPTKEY *pCryptKey;
2725     DWORD dwBitLen;
2726         
2727     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08lx, pbData=%p, pdwDataLen=%p dwFlags=%08lx)\n", 
2728           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
2729
2730     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
2731     {
2732         SetLastError(NTE_BAD_UID);
2733         return FALSE;
2734     }
2735
2736     if (dwFlags) {
2737         SetLastError(NTE_BAD_FLAGS);
2738         return FALSE;
2739     }
2740
2741     if (!lookup_handle(&handle_table, (unsigned int)hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2742     {
2743         SetLastError(NTE_BAD_KEY);
2744         return FALSE;
2745     }
2746
2747     switch (dwParam) 
2748     {
2749         case KP_IV:
2750             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pCryptKey->abInitVector, 
2751                               pCryptKey->dwBlockLen);
2752         
2753         case KP_SALT:
2754             return copy_param(pbData, pdwDataLen, 
2755                     (CONST BYTE*)&pCryptKey->abKeyValue[pCryptKey->dwKeyLen], pCryptKey->dwSaltLen);
2756         
2757         case KP_KEYLEN:
2758             dwBitLen = pCryptKey->dwKeyLen << 3;
2759             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwBitLen, sizeof(DWORD));
2760         
2761         case KP_BLOCKLEN:
2762             dwBitLen = pCryptKey->dwBlockLen << 3;
2763             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwBitLen, sizeof(DWORD));
2764     
2765         case KP_MODE:
2766             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
2767
2768         case KP_MODE_BITS:
2769             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits, 
2770                               sizeof(DWORD));
2771     
2772         case KP_PERMISSIONS:
2773             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions, 
2774                               sizeof(DWORD));
2775
2776         case KP_ALGID:
2777             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
2778             
2779         default:
2780             SetLastError(NTE_BAD_TYPE);
2781             return FALSE;
2782     }
2783 }
2784                         
2785 /******************************************************************************
2786  * CPGetProvParam (RSAENH.@)
2787  *
2788  * Query a CSP parameter.
2789  *
2790  * PARAMS
2791  *  hProv      [I]   The key container that is to be queried.
2792  *  dwParam    [I]   Specifies the parameter that is to be queried.
2793  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2794  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2795  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
2796  *
2797  * RETURNS
2798  *  Success: TRUE
2799  *  Failure: FALSE
2800  * NOTES:
2801  *  Defined dwParam types:
2802  *   - PP_CONTAINER: Name of the key container.
2803  *   - PP_NAME: Name of the cryptographic service provider.
2804  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
2805  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
2806  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
2807  */
2808 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, 
2809                                   DWORD *pdwDataLen, DWORD dwFlags)
2810 {
2811     KEYCONTAINER *pKeyContainer;
2812     PROV_ENUMALGS provEnumalgs;
2813     DWORD dwTemp;
2814     CHAR szRSABase[MAX_PATH];
2815     HKEY hKey, hRootKey;
2816    
2817     /* This is for dwParam 41, which does not seem to be documented
2818      * on MSDN. IE6 SP1 asks for it in the 'About' dialog, however.
2819      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem 
2820      * to be 'don't care's. If you know anything more specific about
2821      * provider parameter 41, please report to wine-devel@winehq.org */
2822     static CONST BYTE abWTF[96] = { 
2823         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37, 
2824         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 
2825         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 
2826         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 
2827         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 
2828         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 
2829         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 
2830         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 
2831         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 
2832         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 
2833         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 
2834         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca 
2835     };
2836
2837     TRACE("(hProv=%08lx, dwParam=%08lx, pbData=%p, pdwDataLen=%p, dwFlags=%08lx)\n", 
2838            hProv, dwParam, pbData, pdwDataLen, dwFlags);
2839
2840     if (!pdwDataLen) {
2841         SetLastError(ERROR_INVALID_PARAMETER);
2842         return FALSE;
2843     }
2844     
2845     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
2846                        (OBJECTHDR**)&pKeyContainer)) 
2847     {
2848         /* MSDN: hProv not containing valid context handle */
2849         SetLastError(NTE_BAD_UID);
2850         return FALSE;
2851     }
2852
2853     switch (dwParam) 
2854     {
2855         case PP_CONTAINER:
2856             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName, 
2857                               strlen(pKeyContainer->szName)+1);
2858
2859         case PP_NAME:
2860             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName, 
2861                               strlen(pKeyContainer->szProvName)+1);
2862
2863         case PP_SIG_KEYSIZE_INC:
2864         case PP_KEYX_KEYSIZE_INC:
2865             dwTemp = 8;
2866             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2867
2868         case PP_IMPTYPE:
2869             dwTemp = CRYPT_IMPL_SOFTWARE;
2870             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2871
2872         case PP_VERSION:
2873             dwTemp = 0x00000200;
2874             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2875             
2876         case PP_ENUMCONTAINERS:
2877             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
2878
2879             if (!pbData) {
2880                 *pdwDataLen = (DWORD)MAX_PATH + 1;
2881                 return TRUE;
2882             }
2883  
2884             sprintf(szRSABase, RSAENH_REGKEY, "");
2885
2886             if (dwFlags & CRYPT_MACHINE_KEYSET) {
2887                 hRootKey = HKEY_LOCAL_MACHINE;
2888             } else {
2889                 hRootKey = HKEY_CURRENT_USER;
2890             }
2891
2892             if (RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, &hKey) != ERROR_SUCCESS)
2893             {
2894                 SetLastError(ERROR_NO_MORE_ITEMS);
2895                 return FALSE;
2896             }
2897
2898             dwTemp = *pdwDataLen;
2899             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
2900                     NULL, NULL, NULL, NULL))
2901             {
2902                 case ERROR_MORE_DATA:
2903                     *pdwDataLen = (DWORD)MAX_PATH + 1;
2904  
2905                 case ERROR_SUCCESS:
2906                     pKeyContainer->dwEnumContainersCtr++;
2907                     RegCloseKey(hKey);
2908                     return TRUE;
2909
2910                 case ERROR_NO_MORE_ITEMS:
2911                 default:
2912                     SetLastError(ERROR_NO_MORE_ITEMS);
2913                     RegCloseKey(hKey);
2914                     return FALSE;
2915             }
2916  
2917         case PP_ENUMALGS:
2918         case PP_ENUMALGS_EX:
2919             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
2920                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
2921                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && 
2922                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
2923             {
2924                 SetLastError(ERROR_NO_MORE_ITEMS);
2925                 return FALSE;
2926             }
2927
2928             if (dwParam == PP_ENUMALGS) {    
2929                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) 
2930                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
2931                         0 : pKeyContainer->dwEnumAlgsCtr+1;
2932             
2933                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
2934                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
2935                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
2936                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
2937                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
2938                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
2939                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
2940                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 
2941                        20*sizeof(CHAR));
2942             
2943                 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs, 
2944                                   sizeof(PROV_ENUMALGS));
2945             } else {
2946                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) 
2947                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
2948                         0 : pKeyContainer->dwEnumAlgsCtr+1;
2949             
2950                 return copy_param(pbData, pdwDataLen, 
2951                                   (CONST BYTE*)&aProvEnumAlgsEx
2952                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], 
2953                                   sizeof(PROV_ENUMALGS_EX));
2954             }
2955
2956         case 41: /* Undocumented. Asked for by IE About dialog */
2957             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
2958
2959         default:
2960             /* MSDN: Unknown parameter number in dwParam */
2961             SetLastError(NTE_BAD_TYPE);
2962             return FALSE;
2963     }
2964 }
2965
2966 /******************************************************************************
2967  * CPDeriveKey (RSAENH.@)
2968  *
2969  * Derives a key from a hash value.
2970  *
2971  * PARAMS
2972  *  hProv     [I] Key container for which a key is to be generated.
2973  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
2974  *  hBaseData [I] Hash from whose value the key will be derived.
2975  *  dwFlags   [I] See Notes.
2976  *  phKey     [O] The generated key.
2977  *
2978  * RETURNS
2979  *  Success: TRUE
2980  *  Failure: FALSE
2981  *
2982  * NOTES
2983  *  Defined flags:
2984  *   - CRYPT_EXPORTABLE: Key can be exported.
2985  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
2986  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
2987  */
2988 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, 
2989                                DWORD dwFlags, HCRYPTKEY *phKey)
2990 {
2991     CRYPTKEY *pCryptKey, *pMasterKey;
2992     CRYPTHASH *pCryptHash;
2993     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
2994     DWORD dwLen;
2995     
2996     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08lx phKey=%p)\n", hProv, Algid, 
2997            hBaseData, dwFlags, phKey);
2998     
2999     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER))
3000     {
3001         SetLastError(NTE_BAD_UID);
3002         return FALSE;
3003     }
3004
3005     if (!lookup_handle(&handle_table, (unsigned int)hBaseData, RSAENH_MAGIC_HASH, 
3006                        (OBJECTHDR**)&pCryptHash))
3007     {
3008         SetLastError(NTE_BAD_HASH);
3009         return FALSE;
3010     }
3011
3012     if (!phKey)
3013     {
3014         SetLastError(ERROR_INVALID_PARAMETER);
3015         return FALSE;
3016     }
3017
3018     switch (GET_ALG_CLASS(Algid))
3019     {
3020         case ALG_CLASS_DATA_ENCRYPT:
3021             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3022             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3023
3024             /* 
3025              * We derive the key material from the hash.
3026              * If the hash value is not large enough for the claimed key, we have to construct
3027              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3028              */
3029             dwLen = RSAENH_MAX_HASH_SIZE;
3030             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3031     
3032             if (dwLen < pCryptKey->dwKeyLen) {
3033                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3034                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3035                 DWORD i;
3036
3037                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3038             
3039                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3040                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3041                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3042                 }
3043                 
3044                 init_hash(pCryptHash);
3045                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3046                 finalize_hash(pCryptHash);
3047                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3048
3049                 init_hash(pCryptHash);
3050                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3051                 finalize_hash(pCryptHash);
3052                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, 
3053                        pCryptHash->dwHashSize);
3054
3055                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3056             }
3057     
3058             memcpy(pCryptKey->abKeyValue, abHashValue, 
3059                    RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3060             break;
3061
3062         case ALG_CLASS_MSG_ENCRYPT:
3063             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3064                                (OBJECTHDR**)&pMasterKey)) 
3065             {
3066                 SetLastError(NTE_FAIL); /* FIXME error code */
3067                 return FALSE;
3068             }
3069                 
3070             switch (Algid) 
3071             {
3072                 /* See RFC 2246, chapter 6.3 Key calculation */
3073                 case CALG_SCHANNEL_ENC_KEY:
3074                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, 
3075                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3076                                      &pCryptKey);
3077                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3078                     memcpy(pCryptKey->abKeyValue, 
3079                            pCryptHash->abHashValue + (
3080                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3081                                ((dwFlags & CRYPT_SERVER) ? 
3082                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3083                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3084                     memcpy(pCryptKey->abInitVector,
3085                            pCryptHash->abHashValue + (
3086                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3087                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3088                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3089                            pCryptKey->dwBlockLen);
3090                     break;
3091                     
3092                 case CALG_SCHANNEL_MAC_KEY:
3093                     *phKey = new_key(hProv, Algid, 
3094                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3095                                      &pCryptKey);
3096                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3097                     memcpy(pCryptKey->abKeyValue,
3098                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? 
3099                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3100                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3101                     break;
3102                     
3103                 default:
3104                     SetLastError(NTE_BAD_ALGID);
3105                     return FALSE;
3106             }
3107             break;
3108
3109         default:
3110             SetLastError(NTE_BAD_ALGID);
3111             return FALSE;
3112     }
3113
3114     setup_key(pCryptKey);
3115     return TRUE;    
3116 }
3117
3118 /******************************************************************************
3119  * CPGetUserKey (RSAENH.@)
3120  *
3121  * Returns a handle to the user's private key-exchange- or signature-key.
3122  *
3123  * PARAMS
3124  *  hProv     [I] The key container from which a user key is requested.
3125  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3126  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3127  *
3128  * RETURNS
3129  *  Success: TRUE.
3130  *  Failure: FALSE.
3131  *
3132  * NOTE
3133  *  A newly created key container does not contain private user key. Create them with CPGenKey.
3134  */
3135 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3136 {
3137     KEYCONTAINER *pKeyContainer;
3138
3139     TRACE("(hProv=%08lx, dwKeySpec=%08lx, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
3140     
3141     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
3142                        (OBJECTHDR**)&pKeyContainer)) 
3143     {
3144         /* MSDN: hProv not containing valid context handle */
3145         SetLastError(NTE_BAD_UID);
3146         return FALSE;
3147     }
3148
3149     switch (dwKeySpec)
3150     {
3151         case AT_KEYEXCHANGE:
3152             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
3153                         (unsigned int*)phUserKey);
3154             break;
3155
3156         case AT_SIGNATURE:
3157             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
3158                         (unsigned int*)phUserKey);
3159             break;
3160
3161         default:
3162             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3163     }
3164
3165     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3166     {
3167         /* MSDN: dwKeySpec parameter specifies nonexistent key */
3168         SetLastError(NTE_NO_KEY);
3169         return FALSE;
3170     }
3171
3172     return TRUE;
3173 }
3174
3175 /******************************************************************************
3176  * CPHashData (RSAENH.@)
3177  *
3178  * Updates a hash object with the given data.
3179  *
3180  * PARAMS
3181  *  hProv     [I] Key container to which the hash object belongs.
3182  *  hHash     [I] Hash object which is to be updated.
3183  *  pbData    [I] Pointer to data with which the hash object is to be updated.
3184  *  dwDataLen [I] Length of the data.
3185  *  dwFlags   [I] Currently none defined.
3186  *
3187  * RETURNS
3188  *  Success: TRUE.
3189  *  Failure: FALSE.
3190  *
3191  * NOTES
3192  *  The actual hash value is queried with CPGetHashParam, which will finalize 
3193  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
3194  */
3195 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData, 
3196                               DWORD dwDataLen, DWORD dwFlags)
3197 {
3198     CRYPTHASH *pCryptHash;
3199         
3200     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%ld, dwFlags=%08lx)\n", 
3201           hProv, hHash, pbData, dwDataLen, dwFlags);
3202
3203     if (dwFlags)
3204     {
3205         SetLastError(NTE_BAD_FLAGS);
3206         return FALSE;
3207     }
3208
3209     if (!lookup_handle(&handle_table, (unsigned int)hHash, RSAENH_MAGIC_HASH, 
3210                        (OBJECTHDR**)&pCryptHash))
3211     {
3212         SetLastError(NTE_BAD_HASH);
3213         return FALSE;
3214     }
3215
3216     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
3217     {
3218         SetLastError(NTE_BAD_ALGID);
3219         return FALSE;
3220     }
3221     
3222     if (pCryptHash->dwState == RSAENH_HASHSTATE_IDLE)
3223         pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
3224     
3225     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
3226     {
3227         SetLastError(NTE_BAD_HASH_STATE);
3228         return FALSE;
3229     }
3230
3231     update_hash(pCryptHash, pbData, dwDataLen);
3232     return TRUE;
3233 }
3234
3235 /******************************************************************************
3236  * CPHashSessionKey (RSAENH.@)
3237  *
3238  * Updates a hash object with the binary representation of a symmetric key.
3239  *
3240  * PARAMS
3241  *  hProv     [I] Key container to which the hash object belongs.
3242  *  hHash     [I] Hash object which is to be updated.
3243  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
3244  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
3245  *
3246  * RETURNS
3247  *  Success: TRUE.
3248  *  Failure: FALSE.
3249  */
3250 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, 
3251                                     DWORD dwFlags)
3252 {
3253     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
3254     CRYPTKEY *pKey;
3255     DWORD i;
3256
3257     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08lx)\n", hProv, hHash, hKey, dwFlags);
3258
3259     if (!lookup_handle(&handle_table, (unsigned int)hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
3260         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) 
3261     {
3262         SetLastError(NTE_BAD_KEY);
3263         return FALSE;
3264     }
3265
3266     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
3267         SetLastError(NTE_BAD_FLAGS);
3268         return FALSE;
3269     }
3270
3271     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
3272     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
3273         for (i=0; i<pKey->dwKeyLen/2; i++) {
3274             bTemp = abKeyValue[i];
3275             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
3276             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
3277         }
3278     }
3279
3280     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
3281 }
3282
3283 /******************************************************************************
3284  * CPReleaseContext (RSAENH.@)
3285  *
3286  * Release a key container.
3287  *
3288  * PARAMS
3289  *  hProv   [I] Key container to be released.
3290  *  dwFlags [I] Currently none defined.
3291  *
3292  * RETURNS
3293  *  Success: TRUE
3294  *  Failure: FALSE
3295  */
3296 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
3297 {
3298     TRACE("(hProv=%08lx, dwFlags=%08lx)\n", hProv, dwFlags);
3299
3300     if (!release_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
3301     {
3302         /* MSDN: hProv not containing valid context handle */
3303         SetLastError(NTE_BAD_UID);
3304         return FALSE;
3305     }
3306
3307     if (dwFlags) {
3308         SetLastError(NTE_BAD_FLAGS);
3309         return FALSE;
3310     }
3311     
3312     return TRUE;
3313 }
3314
3315 /******************************************************************************
3316  * CPSetHashParam (RSAENH.@)
3317  * 
3318  * Set a parameter of a hash object
3319  *
3320  * PARAMS
3321  *  hProv   [I] The key container to which the key belongs.
3322  *  hHash   [I] The hash object for which a parameter is to be set.
3323  *  dwParam [I] Parameter type. See Notes.
3324  *  pbData  [I] Pointer to the parameter value.
3325  *  dwFlags [I] Currently none defined.
3326  *
3327  * RETURNS
3328  *  Success: TRUE.
3329  *  Failure: FALSE.
3330  *
3331  * NOTES
3332  *  Currently only the HP_HMAC_INFO dwParam type is defined. 
3333  *  The HMAC_INFO struct will be deep copied into the hash object.
3334  *  See Internet RFC 2104 for details on the HMAC algorithm.
3335  */
3336 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, 
3337                                   BYTE *pbData, DWORD dwFlags)
3338 {
3339     CRYPTHASH *pCryptHash;
3340     CRYPTKEY *pCryptKey;
3341     int i;
3342
3343     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n", 
3344            hProv, hHash, dwParam, pbData, dwFlags);
3345
3346     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER))
3347     {
3348         SetLastError(NTE_BAD_UID);
3349         return FALSE;
3350     }
3351
3352     if (dwFlags) {
3353         SetLastError(NTE_BAD_FLAGS);
3354         return FALSE;
3355     }
3356     
3357     if (!lookup_handle(&handle_table, (unsigned int)hHash, RSAENH_MAGIC_HASH, 
3358                        (OBJECTHDR**)&pCryptHash))
3359     {
3360         SetLastError(NTE_BAD_HASH);
3361         return FALSE;
3362     }
3363     
3364     switch (dwParam) {
3365         case HP_HMAC_INFO:
3366             free_hmac_info(pCryptHash->pHMACInfo);
3367             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
3368
3369             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, 
3370                                (OBJECTHDR**)&pCryptKey)) 
3371             {
3372                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
3373                 return FALSE;
3374             }
3375
3376             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
3377                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
3378             }
3379             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
3380                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
3381             }
3382             
3383             init_hash(pCryptHash);
3384             return TRUE;
3385
3386         case HP_HASHVAL:
3387             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
3388             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3389             return TRUE;
3390            
3391         case HP_TLS1PRF_SEED:
3392             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
3393
3394         case HP_TLS1PRF_LABEL:
3395             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
3396             
3397         default:
3398             SetLastError(NTE_BAD_TYPE);
3399             return FALSE;
3400     }
3401 }
3402
3403 /******************************************************************************
3404  * CPSetProvParam (RSAENH.@)
3405  */
3406 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
3407 {
3408     FIXME("(stub)\n");
3409     return FALSE;
3410 }
3411
3412 /******************************************************************************
3413  * CPSignHash (RSAENH.@)
3414  *
3415  * Sign a hash object
3416  *
3417  * PARAMS
3418  *  hProv        [I]   The key container, to which the hash object belongs.
3419  *  hHash        [I]   The hash object to be signed.
3420  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
3421  *  sDescription [I]   Should be NULL for security reasons. 
3422  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
3423  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
3424  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
3425  *
3426  * RETURNS
3427  *  Success: TRUE
3428  *  Failure: FALSE
3429  */
3430 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, 
3431                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, 
3432                               DWORD *pdwSigLen)
3433 {
3434     HCRYPTKEY hCryptKey;
3435     CRYPTKEY *pCryptKey;
3436     DWORD dwHashLen;
3437     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
3438     ALG_ID aiAlgid;
3439
3440     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08lx, sDescription=%s, dwFlags=%08lx, "
3441         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
3442         dwFlags, pbSignature, pdwSigLen);
3443
3444     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
3445         SetLastError(NTE_BAD_FLAGS);
3446         return FALSE;
3447     }
3448     
3449     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
3450             
3451     if (!lookup_handle(&handle_table, (unsigned int)hCryptKey, RSAENH_MAGIC_KEY, 
3452                        (OBJECTHDR**)&pCryptKey))
3453     {
3454         SetLastError(NTE_NO_KEY);
3455         return FALSE;
3456     }
3457
3458     if (!pbSignature) {
3459         *pdwSigLen = pCryptKey->dwKeyLen;
3460         return TRUE;
3461     }
3462     if (pCryptKey->dwKeyLen > *pdwSigLen)
3463     {
3464         SetLastError(ERROR_MORE_DATA);
3465         *pdwSigLen = pCryptKey->dwKeyLen;
3466         return FALSE;
3467     }
3468     *pdwSigLen = pCryptKey->dwKeyLen;
3469
3470     if (sDescription) {
3471         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
3472                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
3473         {
3474             return FALSE;
3475         }
3476     }
3477     
3478     dwHashLen = sizeof(DWORD);
3479     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
3480     
3481     dwHashLen = RSAENH_MAX_HASH_SIZE;
3482     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
3483  
3484
3485     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
3486         return FALSE;
3487     }
3488
3489     return encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
3490 }
3491
3492 /******************************************************************************
3493  * CPVerifySignature (RSAENH.@)
3494  *
3495  * Verify the signature of a hash object.
3496  * 
3497  * PARAMS
3498  *  hProv        [I] The key container, to which the hash belongs.
3499  *  hHash        [I] The hash for which the signature is verified.
3500  *  pbSignature  [I] The binary signature.
3501  *  dwSigLen     [I] Length of the signature BLOB.
3502  *  hPubKey      [I] Public key used to verify the signature.
3503  *  sDescription [I] Should be NULL for security reasons.
3504  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
3505  *
3506  * RETURNS
3507  *  Success: TRUE  (Signature is valid)
3508  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
3509  */
3510 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature, 
3511                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, 
3512                                      DWORD dwFlags)
3513 {
3514     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
3515     CRYPTKEY *pCryptKey;
3516     DWORD dwHashLen;
3517     ALG_ID aiAlgid;
3518     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
3519     BOOL res = FALSE;
3520
3521     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%ld, hPubKey=%08lx, sDescription=%s, "
3522           "dwFlags=%08lx)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
3523           dwFlags);
3524         
3525     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
3526         SetLastError(NTE_BAD_FLAGS);
3527         return FALSE;
3528     }
3529     
3530     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3531     {
3532         SetLastError(NTE_BAD_UID);
3533         return FALSE;
3534     }
3535  
3536     if (!lookup_handle(&handle_table, (unsigned int)hPubKey, RSAENH_MAGIC_KEY, 
3537                        (OBJECTHDR**)&pCryptKey))
3538     {
3539         SetLastError(NTE_BAD_KEY);
3540         return FALSE;
3541     }
3542
3543     if (sDescription) {
3544         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
3545                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
3546         {
3547             return FALSE;
3548         }
3549     }
3550     
3551     dwHashLen = sizeof(DWORD);
3552     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
3553     
3554     dwHashLen = RSAENH_MAX_HASH_SIZE;
3555     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
3556
3557     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
3558     if (!pbConstructed) {
3559         SetLastError(NTE_NO_MEMORY);
3560         goto cleanup;
3561     }
3562
3563     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
3564     if (!pbDecrypted) {
3565         SetLastError(NTE_NO_MEMORY);
3566         goto cleanup;
3567     }
3568
3569     if (!encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbSignature, pbDecrypted, 
3570                             RSAENH_DECRYPT)) 
3571     {
3572         goto cleanup;
3573     }
3574
3575     if (!build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
3576         goto cleanup;
3577     }
3578
3579     if (memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
3580         SetLastError(NTE_BAD_SIGNATURE);
3581         goto cleanup;
3582     }
3583     
3584     res = TRUE;
3585 cleanup:
3586     HeapFree(GetProcessHeap(), 0, pbConstructed);
3587     HeapFree(GetProcessHeap(), 0, pbDecrypted);
3588     return res;
3589 }
3590
3591 static const WCHAR szProviderKeys[4][97] = {
3592     {   'S','o','f','t','w','a','r','e','\\',
3593         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3594         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3595         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
3596         'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3597         'o','v','i','d','e','r',' ','v','1','.','0',0 },
3598     {   'S','o','f','t','w','a','r','e','\\',
3599         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3600         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3601         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
3602         'E','n','h','a','n','c','e','d',
3603         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3604         'o','v','i','d','e','r',' ','v','1','.','0',0 },
3605     {   'S','o','f','t','w','a','r','e','\\',
3606         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3607         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3608         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
3609         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3610         'o','v','i','d','e','r',0 },
3611     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
3612         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
3613         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
3614         'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
3615         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 }
3616 };
3617 static const WCHAR szDefaultKeys[2][65] = {
3618     {   'S','o','f','t','w','a','r','e','\\',
3619         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3620         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3621         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
3622     {   'S','o','f','t','w','a','r','e','\\',
3623         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3624         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3625         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 }
3626 };
3627
3628
3629 /******************************************************************************
3630  * DllRegisterServer (RSAENH.@)
3631  *
3632  * Dll self registration. 
3633  *
3634  * PARAMS
3635  *
3636  * RETURNS
3637  *  Success: S_OK.
3638  *    Failure: != S_OK
3639  * 
3640  * NOTES
3641  *  Registers the following keys:
3642  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3643  *       Microsoft Base Cryptographic Provider v1.0
3644  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3645  *       Microsoft Enhanced Cryptographic Provider
3646  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3647  *       Microsoft Strong Cryptographpic Provider
3648  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001
3649  */
3650 HRESULT WINAPI DllRegisterServer(void)
3651 {
3652     HKEY key;
3653     DWORD dp;
3654     long apiRet;
3655     int i;
3656
3657     for (i=0; i<4; i++) {
3658         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szProviderKeys[i], 0, NULL,
3659             REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
3660
3661         if (apiRet == ERROR_SUCCESS)
3662         {
3663             if (dp == REG_CREATED_NEW_KEY)
3664             {
3665                 static const WCHAR szImagePath[] = { 'I','m','a','g','e',' ','P','a','t','h',0 };
3666                 static const WCHAR szRSABase[] = { 'r','s','a','e','n','h','.','d','l','l',0 };
3667                 static const WCHAR szType[] = { 'T','y','p','e',0 };
3668                 static const WCHAR szSignature[] = { 'S','i','g','n','a','t','u','r','e',0 };
3669                 DWORD type = (i == 3) ? PROV_RSA_SCHANNEL : PROV_RSA_FULL;
3670                 DWORD sign = 0xdeadbeef;
3671                 RegSetValueExW(key, szImagePath, 0, REG_SZ, (LPBYTE)szRSABase, 
3672                                (lstrlenW(szRSABase) + 1) * sizeof(WCHAR));
3673                 RegSetValueExW(key, szType, 0, REG_DWORD, (LPBYTE)&type, sizeof(type));
3674                 RegSetValueExW(key, szSignature, 0, REG_BINARY, (LPBYTE)&sign, sizeof(sign));
3675             }
3676             RegCloseKey(key);
3677         }
3678     }
3679     
3680     for (i=0; i<2; i++) {
3681         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szDefaultKeys[i], 0, NULL, 
3682                                  REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
3683         if (apiRet == ERROR_SUCCESS)
3684         {
3685             if (dp == REG_CREATED_NEW_KEY)
3686             {
3687                 static const WCHAR szName[] = { 'N','a','m','e',0 };
3688                 static const WCHAR szRSAName[2][46] = {
3689                   { 'M','i','c','r','o','s','o','f','t',' ', 'B','a','s','e',' ',
3690                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ', 
3691                     'P','r','o','v','i','d','e','r',' ','v','1','.','0',0 },
3692                   { 'M','i','c','r','o','s','o','f','t',' ','R','S','A',' ',
3693                     'S','C','h','a','n','n','e','l',' ',
3694                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
3695                     'P','r','o','v','i','d','e','r',0 } };
3696                 static const WCHAR szTypeName[] = { 'T','y','p','e','N','a','m','e',0 };
3697                 static const WCHAR szRSATypeName[2][38] = { 
3698                   { 'R','S','A',' ','F','u','l','l',' ',
3699                        '(','S','i','g','n','a','t','u','r','e',' ','a','n','d',' ',
3700                     'K','e','y',' ','E','x','c','h','a','n','g','e',')',0 },
3701                   { 'R','S','A',' ','S','C','h','a','n','n','e','l',0 } };
3702
3703                 RegSetValueExW(key, szName, 0, REG_SZ, 
3704                                 (LPBYTE)szRSAName[i], lstrlenW(szRSAName[i])*sizeof(WCHAR)+sizeof(WCHAR));
3705                 RegSetValueExW(key, szTypeName, 0, REG_SZ, 
3706                                 (LPBYTE)szRSATypeName[i], lstrlenW(szRSATypeName[i])*sizeof(WCHAR)+sizeof(WCHAR));
3707             }
3708         }
3709         RegCloseKey(key);
3710     }
3711     
3712     return HRESULT_FROM_WIN32(apiRet);
3713 }
3714
3715 /******************************************************************************
3716  * DllUnregisterServer (RSAENH.@)
3717  *
3718  * Dll self unregistration. 
3719  *
3720  * PARAMS
3721  *
3722  * RETURNS
3723  *  Success: S_OK
3724  *
3725  * NOTES
3726  *  For the relevant keys see DllRegisterServer.
3727  */
3728 HRESULT WINAPI DllUnregisterServer(void)
3729 {
3730     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[0]);
3731     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[1]);
3732     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[2]);
3733     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[3]);
3734     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[0]);
3735     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[1]);
3736     return S_OK;
3737 }