Assorted spelling fixes.
[wine] / dlls / rsaenh / rsaenh.c
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  * Copyright 2007 Vijay Kiran Kamuju
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23  */
24
25 #include "config.h"
26 #include "wine/port.h"
27 #include "wine/library.h"
28 #include "wine/debug.h"
29
30 #include <stdarg.h>
31 #include <stdio.h>
32
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winreg.h"
36 #include "wincrypt.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40 #include "rpcproxy.h"
41
42 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
43
44 static HINSTANCE instance;
45
46 /******************************************************************************
47  * CRYPTHASH - hash objects
48  */
49 #define RSAENH_MAGIC_HASH           0x85938417u
50 #define RSAENH_MAX_HASH_SIZE        104
51 #define RSAENH_HASHSTATE_HASHING    1
52 #define RSAENH_HASHSTATE_FINISHED   2
53 typedef struct _RSAENH_TLS1PRF_PARAMS
54 {
55     CRYPT_DATA_BLOB blobLabel;
56     CRYPT_DATA_BLOB blobSeed;
57 } RSAENH_TLS1PRF_PARAMS;
58
59 typedef struct tagCRYPTHASH
60 {
61     OBJECTHDR    header;
62     ALG_ID       aiAlgid;
63     HCRYPTKEY    hKey;
64     HCRYPTPROV   hProv;
65     DWORD        dwHashSize;
66     DWORD        dwState;
67     HASH_CONTEXT context;
68     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
69     PHMAC_INFO   pHMACInfo;
70     RSAENH_TLS1PRF_PARAMS tpPRFParams;
71 } CRYPTHASH;
72
73 /******************************************************************************
74  * CRYPTKEY - key objects
75  */
76 #define RSAENH_MAGIC_KEY           0x73620457u
77 #define RSAENH_MAX_KEY_SIZE        64
78 #define RSAENH_MAX_BLOCK_SIZE      24
79 #define RSAENH_KEYSTATE_IDLE       0
80 #define RSAENH_KEYSTATE_ENCRYPTING 1
81 #define RSAENH_KEYSTATE_MASTERKEY  2
82 typedef struct _RSAENH_SCHANNEL_INFO 
83 {
84     SCHANNEL_ALG saEncAlg;
85     SCHANNEL_ALG saMACAlg;
86     CRYPT_DATA_BLOB blobClientRandom;
87     CRYPT_DATA_BLOB blobServerRandom;
88 } RSAENH_SCHANNEL_INFO;
89
90 typedef struct tagCRYPTKEY
91 {
92     OBJECTHDR   header;
93     ALG_ID      aiAlgid;
94     HCRYPTPROV  hProv;
95     DWORD       dwMode;
96     DWORD       dwModeBits;
97     DWORD       dwPermissions;
98     DWORD       dwKeyLen;
99     DWORD       dwEffectiveKeyLen;
100     DWORD       dwSaltLen;
101     DWORD       dwBlockLen;
102     DWORD       dwState;
103     KEY_CONTEXT context;    
104     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
105     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
106     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
107     RSAENH_SCHANNEL_INFO siSChannelInfo;
108     CRYPT_DATA_BLOB blobHmacKey;
109 } CRYPTKEY;
110
111 /******************************************************************************
112  * KEYCONTAINER - key containers
113  */
114 #define RSAENH_PERSONALITY_BASE        0u
115 #define RSAENH_PERSONALITY_STRONG      1u
116 #define RSAENH_PERSONALITY_ENHANCED    2u
117 #define RSAENH_PERSONALITY_SCHANNEL    3u
118 #define RSAENH_PERSONALITY_AES         4u
119
120 #define RSAENH_MAGIC_CONTAINER         0x26384993u
121 typedef struct tagKEYCONTAINER
122 {
123     OBJECTHDR    header;
124     DWORD        dwFlags;
125     DWORD        dwPersonality;
126     DWORD        dwEnumAlgsCtr;
127     DWORD        dwEnumContainersCtr;
128     CHAR         szName[MAX_PATH];
129     CHAR         szProvName[MAX_PATH];
130     HCRYPTKEY    hKeyExchangeKeyPair;
131     HCRYPTKEY    hSignatureKeyPair;
132 } KEYCONTAINER;
133
134 /******************************************************************************
135  * Some magic constants
136  */
137 #define RSAENH_ENCRYPT                    1
138 #define RSAENH_DECRYPT                    0    
139 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
140 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
141 #define RSAENH_HMAC_DEF_PAD_LEN          64
142 #define RSAENH_HMAC_BLOCK_LEN            64
143 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
144 #define RSAENH_DES_STORAGE_KEYLEN        64
145 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
146 #define RSAENH_3DES112_STORAGE_KEYLEN   128
147 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
148 #define RSAENH_3DES_STORAGE_KEYLEN      192
149 #define RSAENH_MAGIC_RSA2        0x32415352
150 #define RSAENH_MAGIC_RSA1        0x31415352
151 #define RSAENH_PKC_BLOCKTYPE           0x02
152 #define RSAENH_SSL3_VERSION_MAJOR         3
153 #define RSAENH_SSL3_VERSION_MINOR         0
154 #define RSAENH_TLS1_VERSION_MAJOR         3
155 #define RSAENH_TLS1_VERSION_MINOR         1
156 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
157
158 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
159 /******************************************************************************
160  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
161  */
162 #define RSAENH_MAX_ENUMALGS 24
163 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
164 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
165 {
166  {
167   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
168   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
169   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
170   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
171   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
172   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
173   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
174   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
175   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
176   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
177   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
178   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
179   {0,               0,  0,    0,0,                    1,"",         1,""}
180  },
181  {
182   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
183   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
184   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
185   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
186   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
187   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
188   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
189   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
190   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
191   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
192   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
193   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
194   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
195   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
196   {0,               0,  0,    0,0,                    1,"",         1,""}
197  },
198  {
199   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
200   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
201   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
202   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
203   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
204   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
205   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
206   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
207   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
208   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
209   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
210   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
211   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
212   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
213   {0,               0,  0,    0,0,                    1,"",         1,""}
214  },
215  {
216   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
217   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
218   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
219   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
220   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
221   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
222   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
223   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
224   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
225   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
226   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
227   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
228   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
229   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
230   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
231   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
232   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
233   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
234   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
235   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
236   {0,               0,  0,    0,0,                          1,"",            1,""}
237  },
238  {
239   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
240   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
241   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
242   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
243   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
244   {CALG_AES,      128,128,  128,0,                    4,"AES",     35,"Advanced Encryption Standard (AES)"},
245   {CALG_AES_128,  128,128,  128,0,                    8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
246   {CALG_AES_192,  192,192,  192,0,                    8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
247   {CALG_AES_256,  256,256,  256,0,                    8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
248   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
249   {CALG_SHA_256,  256,256,  256,CRYPT_FLAG_SIGNING,   6,"SHA-256", 30,"Secure Hash Algorithm (SHA-256)"},
250   {CALG_SHA_384,  384,384,  384,CRYPT_FLAG_SIGNING,   6,"SHA-384", 30,"Secure Hash Algorithm (SHA-284)"},
251   {CALG_SHA_512,  512,512,  512,CRYPT_FLAG_SIGNING,   6,"SHA-512", 30,"Secure Hash Algorithm (SHA-512)"},
252   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
253   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
254   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
255   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
256   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
257   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
258   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
259   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
260   {0,               0,  0,    0,0,                    1,"",         1,""}
261  }
262 };
263
264 /******************************************************************************
265  * API forward declarations
266  */
267 BOOL WINAPI 
268 RSAENH_CPGetKeyParam(
269     HCRYPTPROV hProv, 
270     HCRYPTKEY hKey, 
271     DWORD dwParam, 
272     BYTE *pbData, 
273     DWORD *pdwDataLen, 
274     DWORD dwFlags
275 );
276
277 BOOL WINAPI 
278 RSAENH_CPEncrypt(
279     HCRYPTPROV hProv, 
280     HCRYPTKEY hKey, 
281     HCRYPTHASH hHash, 
282     BOOL Final, 
283     DWORD dwFlags, 
284     BYTE *pbData,
285     DWORD *pdwDataLen, 
286     DWORD dwBufLen
287 );
288
289 BOOL WINAPI 
290 RSAENH_CPCreateHash(
291     HCRYPTPROV hProv, 
292     ALG_ID Algid, 
293     HCRYPTKEY hKey, 
294     DWORD dwFlags, 
295     HCRYPTHASH *phHash
296 );
297
298 BOOL WINAPI 
299 RSAENH_CPSetHashParam(
300     HCRYPTPROV hProv, 
301     HCRYPTHASH hHash, 
302     DWORD dwParam, 
303     BYTE *pbData, DWORD dwFlags
304 );
305
306 BOOL WINAPI 
307 RSAENH_CPGetHashParam(
308     HCRYPTPROV hProv, 
309     HCRYPTHASH hHash, 
310     DWORD dwParam, 
311     BYTE *pbData, 
312     DWORD *pdwDataLen, 
313     DWORD dwFlags
314 );
315
316 BOOL WINAPI 
317 RSAENH_CPDestroyHash(
318     HCRYPTPROV hProv, 
319     HCRYPTHASH hHash
320 );
321
322 static BOOL crypt_export_key(
323     CRYPTKEY *pCryptKey,
324     HCRYPTKEY hPubKey, 
325     DWORD dwBlobType, 
326     DWORD dwFlags, 
327     BOOL force,
328     BYTE *pbData, 
329     DWORD *pdwDataLen
330 );
331
332 static BOOL import_key(
333     HCRYPTPROV hProv, 
334     CONST BYTE *pbData, 
335     DWORD dwDataLen, 
336     HCRYPTKEY hPubKey, 
337     DWORD dwFlags, 
338     BOOL fStoreKey,
339     HCRYPTKEY *phKey
340 );
341
342 BOOL WINAPI 
343 RSAENH_CPHashData(
344     HCRYPTPROV hProv, 
345     HCRYPTHASH hHash, 
346     CONST BYTE *pbData, 
347     DWORD dwDataLen, 
348     DWORD dwFlags
349 );
350
351 /******************************************************************************
352  * CSP's handle table (used by all acquired key containers)
353  */
354 static struct handle_table handle_table;
355
356 /******************************************************************************
357  * DllMain (RSAENH.@)
358  *
359  * Initializes and destroys the handle table for the CSP's handles.
360  */
361 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
362 {
363     switch (fdwReason)
364     {
365         case DLL_PROCESS_ATTACH:
366             instance = hInstance;
367             DisableThreadLibraryCalls(hInstance);
368             init_handle_table(&handle_table);
369             break;
370
371         case DLL_PROCESS_DETACH:
372             destroy_handle_table(&handle_table);
373             break;
374     }
375     return 1;
376 }
377
378 /******************************************************************************
379  * copy_param [Internal]
380  *
381  * Helper function that supports the standard WINAPI protocol for querying data
382  * of dynamic size.
383  *
384  * PARAMS
385  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
386  *                      May be NUL if the required buffer size is to be queried only.
387  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
388  *                      Out: Size of parameter pbParam
389  *  pbParam       [I]   Parameter value.
390  *  dwParamSize   [I]   Size of pbParam
391  *
392  * RETURN
393  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
394  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
395  */
396 static inline BOOL copy_param(
397     BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize) 
398 {
399     if (pbBuffer) 
400     {
401         if (dwParamSize > *pdwBufferSize) 
402         {
403             SetLastError(ERROR_MORE_DATA);
404             *pdwBufferSize = dwParamSize;
405             return FALSE;
406         }
407         memcpy(pbBuffer, pbParam, dwParamSize);
408     }
409     *pdwBufferSize = dwParamSize;
410     return TRUE;
411 }
412
413 /******************************************************************************
414  * get_algid_info [Internal]
415  *
416  * Query CSP capabilities for a given crypto algorithm.
417  * 
418  * PARAMS
419  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
420  *  algid [I] Identifier of the crypto algorithm about which information is requested.
421  *
422  * RETURNS
423  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
424  *  Failure: NULL (algid not supported)
425  */
426 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
427     const PROV_ENUMALGS_EX *iterator;
428     KEYCONTAINER *pKeyContainer;
429
430     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
431         SetLastError(NTE_BAD_UID);
432         return NULL;
433     }
434
435     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
436         if (iterator->aiAlgid == algid) return iterator;
437     }
438
439     SetLastError(NTE_BAD_ALGID);
440     return NULL;
441 }
442
443 /******************************************************************************
444  * copy_data_blob [Internal] 
445  *
446  * deeply copies a DATA_BLOB
447  *
448  * PARAMS
449  *  dst [O] That's where the blob will be copied to
450  *  src [I] Source blob
451  *
452  * RETURNS
453  *  Success: TRUE
454  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
455  *
456  * NOTES
457  *  Use free_data_blob to release resources occupied by copy_data_blob.
458  */
459 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
460     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
461     if (!dst->pbData) {
462         SetLastError(NTE_NO_MEMORY);
463         return FALSE;
464     }    
465     dst->cbData = src->cbData;
466     memcpy(dst->pbData, src->pbData, src->cbData);
467     return TRUE;
468 }
469
470 /******************************************************************************
471  * concat_data_blobs [Internal]
472  *
473  * Concatenates two blobs
474  *
475  * PARAMS
476  *  dst  [O] The new blob will be copied here
477  *  src1 [I] Prefix blob
478  *  src2 [I] Appendix blob
479  *
480  * RETURNS
481  *  Success: TRUE
482  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
483  *
484  * NOTES
485  *  Release resources occupied by concat_data_blobs with free_data_blobs
486  */
487 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1, 
488                                      CONST PCRYPT_DATA_BLOB src2) 
489 {
490     dst->cbData = src1->cbData + src2->cbData;
491     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
492     if (!dst->pbData) {
493         SetLastError(NTE_NO_MEMORY);
494         return FALSE;
495     }
496     memcpy(dst->pbData, src1->pbData, src1->cbData);
497     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
498     return TRUE;
499 }
500
501 /******************************************************************************
502  * free_data_blob [Internal]
503  *
504  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
505  * 
506  * PARAMS
507  *  pBlob [I] Heap space occupied by pBlob->pbData is released
508  */
509 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
510     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
511 }
512
513 /******************************************************************************
514  * init_data_blob [Internal]
515  */
516 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
517     pBlob->pbData = NULL;
518     pBlob->cbData = 0;
519 }
520
521 /******************************************************************************
522  * free_hmac_info [Internal]
523  *
524  * Deeply free an HMAC_INFO struct.
525  *
526  * PARAMS
527  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
528  *
529  * NOTES
530  *  See Internet RFC 2104 for details on the HMAC algorithm.
531  */
532 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
533     if (!hmac_info) return;
534     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
535     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
536     HeapFree(GetProcessHeap(), 0, hmac_info);
537 }
538
539 /******************************************************************************
540  * copy_hmac_info [Internal]
541  *
542  * Deeply copy an HMAC_INFO struct
543  *
544  * PARAMS
545  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
546  *  src [I] Pointer to the HMAC_INFO struct to be copied.
547  *
548  * RETURNS
549  *  Success: TRUE
550  *  Failure: FALSE
551  *
552  * NOTES
553  *  See Internet RFC 2104 for details on the HMAC algorithm.
554  */
555 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
556     if (!src) return FALSE;
557     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
558     if (!*dst) return FALSE;
559     **dst = *src;
560     (*dst)->pbInnerString = NULL;
561     (*dst)->pbOuterString = NULL;
562     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
563     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
564     if (!(*dst)->pbInnerString) {
565         free_hmac_info(*dst);
566         return FALSE;
567     }
568     if (src->cbInnerString) 
569         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
570     else 
571         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
572     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
573     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
574     if (!(*dst)->pbOuterString) {
575         free_hmac_info(*dst);
576         return FALSE;
577     }
578     if (src->cbOuterString) 
579         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
580     else 
581         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
582     return TRUE;
583 }
584
585 /******************************************************************************
586  * destroy_hash [Internal]
587  *
588  * Destructor for hash objects
589  *
590  * PARAMS
591  *  pCryptHash [I] Pointer to the hash object to be destroyed. 
592  *                 Will be invalid after function returns!
593  */
594 static void destroy_hash(OBJECTHDR *pObject)
595 {
596     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
597         
598     free_hmac_info(pCryptHash->pHMACInfo);
599     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
600     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
601     HeapFree(GetProcessHeap(), 0, pCryptHash);
602 }
603
604 /******************************************************************************
605  * init_hash [Internal]
606  *
607  * Initialize (or reset) a hash object
608  *
609  * PARAMS
610  *  pCryptHash    [I] The hash object to be initialized.
611  */
612 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
613     DWORD dwLen;
614         
615     switch (pCryptHash->aiAlgid) 
616     {
617         case CALG_HMAC:
618             if (pCryptHash->pHMACInfo) { 
619                 const PROV_ENUMALGS_EX *pAlgInfo;
620                 
621                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
622                 if (!pAlgInfo) return FALSE;
623                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
624                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
625                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
626                                  pCryptHash->pHMACInfo->pbInnerString, 
627                                  pCryptHash->pHMACInfo->cbInnerString);
628             }
629             return TRUE;
630             
631         case CALG_MAC:
632             dwLen = sizeof(DWORD);
633             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, 
634                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
635             pCryptHash->dwHashSize >>= 3;
636             return TRUE;
637
638         default:
639             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
640     }
641 }
642
643 /******************************************************************************
644  * update_hash [Internal]
645  *
646  * Hashes the given data and updates the hash object's state accordingly
647  *
648  * PARAMS
649  *  pCryptHash [I] Hash object to be updated.
650  *  pbData     [I] Pointer to data stream to be hashed.
651  *  dwDataLen  [I] Length of data stream.
652  */
653 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
654     BYTE *pbTemp;
655
656     switch (pCryptHash->aiAlgid)
657     {
658         case CALG_HMAC:
659             if (pCryptHash->pHMACInfo) 
660                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
661                                  pbData, dwDataLen);
662             break;
663
664         case CALG_MAC:
665             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
666             if (!pbTemp) return;
667             memcpy(pbTemp, pbData, dwDataLen);
668             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
669                              pbTemp, &dwDataLen, dwDataLen);
670             HeapFree(GetProcessHeap(), 0, pbTemp);
671             break;
672
673         default:
674             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
675     }
676 }
677
678 /******************************************************************************
679  * finalize_hash [Internal]
680  *
681  * Finalizes the hash, after all data has been hashed with update_hash.
682  * No additional data can be hashed afterwards until the hash gets initialized again.
683  *
684  * PARAMS
685  *  pCryptHash [I] Hash object to be finalized.
686  */
687 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
688     DWORD dwDataLen;
689         
690     switch (pCryptHash->aiAlgid)
691     {
692         case CALG_HMAC:
693             if (pCryptHash->pHMACInfo) {
694                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
695
696                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
697                                    pCryptHash->abHashValue);
698                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
699                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
700                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
701                                  pCryptHash->pHMACInfo->pbOuterString, 
702                                  pCryptHash->pHMACInfo->cbOuterString);
703                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
704                                  abHashValue, pCryptHash->dwHashSize);
705                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
706                                    pCryptHash->abHashValue);
707             } 
708             break;
709
710         case CALG_MAC:
711             dwDataLen = 0;
712             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
713                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
714             break;
715
716         default:
717             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
718     }
719 }
720
721 /******************************************************************************
722  * destroy_key [Internal]
723  *
724  * Destructor for key objects
725  *
726  * PARAMS
727  *  pCryptKey [I] Pointer to the key object to be destroyed. 
728  *                Will be invalid after function returns!
729  */
730 static void destroy_key(OBJECTHDR *pObject)
731 {
732     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
733         
734     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
735     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
736     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
737     free_data_blob(&pCryptKey->blobHmacKey);
738     HeapFree(GetProcessHeap(), 0, pCryptKey);
739 }
740
741 /******************************************************************************
742  * setup_key [Internal]
743  *
744  * Initialize (or reset) a key object
745  *
746  * PARAMS
747  *  pCryptKey    [I] The key object to be initialized.
748  */
749 static inline void setup_key(CRYPTKEY *pCryptKey) {
750     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
751     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
752     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, 
753                    pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
754                    pCryptKey->abKeyValue);
755 }
756
757 /******************************************************************************
758  * new_key [Internal]
759  *
760  * Creates a new key object without assigning the actual binary key value. 
761  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
762  *
763  * PARAMS
764  *  hProv      [I] Handle to the provider to which the created key will belong.
765  *  aiAlgid    [I] The new key shall use the crypto algorithm identified by aiAlgid.
766  *  dwFlags    [I] Upper 16 bits give the key length.
767  *                 Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
768  *                 CRYPT_NO_SALT
769  *  ppCryptKey [O] Pointer to the created key
770  *
771  * RETURNS
772  *  Success: Handle to the created key.
773  *  Failure: INVALID_HANDLE_VALUE
774  */
775 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
776 {
777     HCRYPTKEY hCryptKey;
778     CRYPTKEY *pCryptKey;
779     DWORD dwKeyLen = HIWORD(dwFlags);
780     const PROV_ENUMALGS_EX *peaAlgidInfo;
781
782     *ppCryptKey = NULL;
783     
784     /* 
785      * Retrieve the CSP's capabilities for the given ALG_ID value
786      */
787     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
788     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
789
790     TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
791           dwKeyLen);
792     /*
793      * Assume the default key length, if none is specified explicitly
794      */
795     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
796     
797     /*
798      * Check if the requested key length is supported by the current CSP.
799      * Adjust key length's for DES algorithms.
800      */
801     switch (aiAlgid) {
802         case CALG_DES:
803             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
804                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
805             }
806             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
807                 SetLastError(NTE_BAD_FLAGS);
808                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
809             }
810             break;
811
812         case CALG_3DES_112:
813             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
814                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
815             }
816             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
817                 SetLastError(NTE_BAD_FLAGS);
818                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
819             }
820             break;
821
822         case CALG_3DES:
823             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
824                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
825             }
826             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
827                 SetLastError(NTE_BAD_FLAGS);
828                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
829             }
830             break;
831
832         case CALG_HMAC:
833             /* Avoid the key length check for HMAC keys, which have unlimited
834              * length.
835              */
836             break;
837
838         default:
839             if (dwKeyLen % 8 || 
840                 dwKeyLen > peaAlgidInfo->dwMaxLen || 
841                 dwKeyLen < peaAlgidInfo->dwMinLen) 
842             {
843                 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
844                       peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
845                 SetLastError(NTE_BAD_DATA);
846                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
847             }
848     }
849
850     hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
851                            destroy_key, (OBJECTHDR**)&pCryptKey);
852     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
853     {
854         pCryptKey->aiAlgid = aiAlgid;
855         pCryptKey->hProv = hProv;
856         pCryptKey->dwModeBits = 0;
857         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | 
858                                    CRYPT_MAC;
859         if (dwFlags & CRYPT_EXPORTABLE)
860             pCryptKey->dwPermissions |= CRYPT_EXPORT;
861         pCryptKey->dwKeyLen = dwKeyLen >> 3;
862         pCryptKey->dwEffectiveKeyLen = 0;
863         if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) 
864             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
865         else
866             pCryptKey->dwSaltLen = 0;
867         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
868         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
869         memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg));
870         memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg));
871         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
872         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
873         init_data_blob(&pCryptKey->blobHmacKey);
874             
875         switch(aiAlgid)
876         {
877             case CALG_PCT1_MASTER:
878             case CALG_SSL2_MASTER:
879             case CALG_SSL3_MASTER:
880             case CALG_TLS1_MASTER:
881             case CALG_RC4:
882                 pCryptKey->dwBlockLen = 0;
883                 pCryptKey->dwMode = 0;
884                 break;
885
886             case CALG_RC2:
887             case CALG_DES:
888             case CALG_3DES_112:
889             case CALG_3DES:
890                 pCryptKey->dwBlockLen = 8;
891                 pCryptKey->dwMode = CRYPT_MODE_CBC;
892                 break;
893
894             case CALG_AES:
895             case CALG_AES_128:
896             case CALG_AES_192:
897             case CALG_AES_256:
898                 pCryptKey->dwBlockLen = 16;
899                 pCryptKey->dwMode = CRYPT_MODE_ECB;
900                 break;
901
902             case CALG_RSA_KEYX:
903             case CALG_RSA_SIGN:
904                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
905                 pCryptKey->dwMode = 0;
906                 break;
907
908             case CALG_HMAC:
909                 pCryptKey->dwBlockLen = 0;
910                 pCryptKey->dwMode = 0;
911                 break;
912         }
913
914         *ppCryptKey = pCryptKey;
915     }
916
917     return hCryptKey;
918 }
919
920 /******************************************************************************
921  * map_key_spec_to_key_pair_name [Internal]
922  *
923  * Returns the name of the registry value associated with a key spec.
924  *
925  * PARAMS
926  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
927  *
928  * RETURNS
929  *  Success: Name of registry value.
930  *  Failure: NULL
931  */
932 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
933 {
934     LPCSTR szValueName;
935
936     switch (dwKeySpec)
937     {
938     case AT_KEYEXCHANGE:
939         szValueName = "KeyExchangeKeyPair";
940         break;
941     case AT_SIGNATURE:
942         szValueName = "SignatureKeyPair";
943         break;
944     default:
945         WARN("invalid key spec %d\n", dwKeySpec);
946         szValueName = NULL;
947     }
948     return szValueName;
949 }
950
951 /******************************************************************************
952  * store_key_pair [Internal]
953  *
954  * Stores a key pair to the registry
955  * 
956  * PARAMS
957  *  hCryptKey     [I] Handle to the key to be stored
958  *  hKey          [I] Registry key where the key pair is to be stored
959  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
960  *  dwFlags       [I] Flags for protecting the key
961  */
962 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
963 {
964     LPCSTR szValueName;
965     DATA_BLOB blobIn, blobOut;
966     CRYPTKEY *pKey;
967     DWORD dwLen;
968     BYTE *pbKey;
969
970     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
971         return;
972     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
973                       (OBJECTHDR**)&pKey))
974     {
975         if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
976         {
977             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
978             if (pbKey)
979             {
980                 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
981                     &dwLen))
982                 {
983                     blobIn.pbData = pbKey;
984                     blobIn.cbData = dwLen;
985
986                     if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
987                         dwFlags, &blobOut))
988                     {
989                         RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
990                                        blobOut.pbData, blobOut.cbData);
991                         LocalFree(blobOut.pbData);
992                     }
993                 }
994                 HeapFree(GetProcessHeap(), 0, pbKey);
995             }
996         }
997     }
998 }
999
1000 /******************************************************************************
1001  * map_key_spec_to_permissions_name [Internal]
1002  *
1003  * Returns the name of the registry value associated with the permissions for
1004  * a key spec.
1005  *
1006  * PARAMS
1007  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1008  *
1009  * RETURNS
1010  *  Success: Name of registry value.
1011  *  Failure: NULL
1012  */
1013 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
1014 {
1015     LPCSTR szValueName;
1016
1017     switch (dwKeySpec)
1018     {
1019     case AT_KEYEXCHANGE:
1020         szValueName = "KeyExchangePermissions";
1021         break;
1022     case AT_SIGNATURE:
1023         szValueName = "SignaturePermissions";
1024         break;
1025     default:
1026         WARN("invalid key spec %d\n", dwKeySpec);
1027         szValueName = NULL;
1028     }
1029     return szValueName;
1030 }
1031
1032 /******************************************************************************
1033  * store_key_permissions [Internal]
1034  *
1035  * Stores a key's permissions to the registry
1036  *
1037  * PARAMS
1038  *  hCryptKey     [I] Handle to the key whose permissions are to be stored
1039  *  hKey          [I] Registry key where the key permissions are to be stored
1040  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1041  */
1042 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1043 {
1044     LPCSTR szValueName;
1045     CRYPTKEY *pKey;
1046
1047     if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1048         return;
1049     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1050                       (OBJECTHDR**)&pKey))
1051         RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1052                        (BYTE *)&pKey->dwPermissions,
1053                        sizeof(pKey->dwPermissions));
1054 }
1055
1056 /******************************************************************************
1057  * create_container_key [Internal]
1058  *
1059  * Creates the registry key for a key container's persistent storage.
1060  * 
1061  * PARAMS
1062  *  pKeyContainer [I] Pointer to the key container
1063  *  sam           [I] Desired registry access
1064  *  phKey         [O] Returned key
1065  */
1066 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1067 {
1068     CHAR szRSABase[MAX_PATH];
1069     HKEY hRootKey;
1070
1071     sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1072
1073     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1074         hRootKey = HKEY_LOCAL_MACHINE;
1075     else
1076         hRootKey = HKEY_CURRENT_USER;
1077
1078     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1079     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1080     return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1081                            REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1082                            == ERROR_SUCCESS;
1083 }
1084
1085 /******************************************************************************
1086  * open_container_key [Internal]
1087  *
1088  * Opens a key container's persistent storage for reading.
1089  *
1090  * PARAMS
1091  *  pszContainerName [I] Name of the container to be opened.  May be the empty
1092  *                       string if the parent key of all containers is to be
1093  *                       opened.
1094  *  dwFlags          [I] Flags indicating which keyset to be opened.
1095  *  phKey            [O] Returned key
1096  */
1097 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, HKEY *phKey)
1098 {
1099     CHAR szRSABase[MAX_PATH];
1100     HKEY hRootKey;
1101
1102     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1103
1104     if (dwFlags & CRYPT_MACHINE_KEYSET)
1105         hRootKey = HKEY_LOCAL_MACHINE;
1106     else
1107         hRootKey = HKEY_CURRENT_USER;
1108
1109     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1110     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1111     return RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, phKey) ==
1112                          ERROR_SUCCESS;
1113 }
1114
1115 /******************************************************************************
1116  * delete_container_key [Internal]
1117  *
1118  * Deletes a key container's persistent storage.
1119  *
1120  * PARAMS
1121  *  pszContainerName [I] Name of the container to be opened.
1122  *  dwFlags          [I] Flags indicating which keyset to be opened.
1123  */
1124 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1125 {
1126     CHAR szRegKey[MAX_PATH];
1127
1128     if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1129         SetLastError(NTE_BAD_KEYSET_PARAM);
1130         return FALSE;
1131     } else {
1132         HKEY hRootKey;
1133         if (dwFlags & CRYPT_MACHINE_KEYSET)
1134             hRootKey = HKEY_LOCAL_MACHINE;
1135         else
1136             hRootKey = HKEY_CURRENT_USER;
1137         if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1138             SetLastError(ERROR_SUCCESS);
1139             return TRUE;
1140         } else {
1141             SetLastError(NTE_BAD_KEYSET);
1142             return FALSE;
1143         }
1144     }
1145 }
1146
1147 /******************************************************************************
1148  * store_key_container_keys [Internal]
1149  *
1150  * Stores key container's keys in a persistent location.
1151  *
1152  * PARAMS
1153  *  pKeyContainer [I] Pointer to the key container whose keys are to be saved
1154  */
1155 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1156 {
1157     HKEY hKey;
1158     DWORD dwFlags;
1159
1160     /* On WinXP, persistent keys are stored in a file located at:
1161      * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1162      */
1163
1164     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1165         dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1166     else
1167         dwFlags = 0;
1168
1169     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1170     {
1171         store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1172                        AT_KEYEXCHANGE, dwFlags);
1173         store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1174                        AT_SIGNATURE, dwFlags);
1175         RegCloseKey(hKey);
1176     }
1177 }
1178
1179 /******************************************************************************
1180  * store_key_container_permissions [Internal]
1181  *
1182  * Stores key container's key permissions in a persistent location.
1183  *
1184  * PARAMS
1185  *  pKeyContainer [I] Pointer to the key container whose key permissions are to
1186  *                    be saved
1187  */
1188 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1189 {
1190     HKEY hKey;
1191
1192     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1193     {
1194         store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1195                        AT_KEYEXCHANGE);
1196         store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1197                        AT_SIGNATURE);
1198         RegCloseKey(hKey);
1199     }
1200 }
1201
1202 /******************************************************************************
1203  * release_key_container_keys [Internal]
1204  *
1205  * Releases key container's keys.
1206  *
1207  * PARAMS
1208  *  pKeyContainer [I] Pointer to the key container whose keys are to be released.
1209  */
1210 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1211 {
1212     release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1213                    RSAENH_MAGIC_KEY);
1214     release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1215                    RSAENH_MAGIC_KEY);
1216 }
1217
1218 /******************************************************************************
1219  * destroy_key_container [Internal]
1220  *
1221  * Destructor for key containers.
1222  *
1223  * PARAMS
1224  *  pObjectHdr [I] Pointer to the key container to be destroyed.
1225  */
1226 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1227 {
1228     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1229
1230     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1231     {
1232         store_key_container_keys(pKeyContainer);
1233         store_key_container_permissions(pKeyContainer);
1234         release_key_container_keys(pKeyContainer);
1235     }
1236     else
1237         release_key_container_keys(pKeyContainer);
1238     HeapFree( GetProcessHeap(), 0, pKeyContainer );
1239 }
1240
1241 /******************************************************************************
1242  * new_key_container [Internal]
1243  *
1244  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) 
1245  * of the CSP is determined via the pVTable->pszProvName string.
1246  *
1247  * PARAMS
1248  *  pszContainerName [I] Name of the key container.
1249  *  pVTable          [I] Callback functions and context info provided by the OS
1250  *
1251  * RETURNS
1252  *  Success: Handle to the new key container.
1253  *  Failure: INVALID_HANDLE_VALUE
1254  */
1255 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1256 {
1257     KEYCONTAINER *pKeyContainer;
1258     HCRYPTPROV hKeyContainer;
1259
1260     hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1261                                destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1262     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1263     {
1264         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1265         pKeyContainer->dwFlags = dwFlags;
1266         pKeyContainer->dwEnumAlgsCtr = 0;
1267         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1268         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1269         if (pVTable && pVTable->pszProvName) {
1270             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1271             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1272                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1273             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1274                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1275             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { 
1276                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1277             } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A)) {
1278                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1279             } else {
1280                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1281             }
1282         }
1283
1284         /* The new key container has to be inserted into the CSP immediately 
1285          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1286         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1287             HKEY hKey;
1288
1289             if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1290                 RegCloseKey(hKey);
1291         }
1292     }
1293
1294     return hKeyContainer;
1295 }
1296
1297 /******************************************************************************
1298  * read_key_value [Internal]
1299  *
1300  * Reads a key pair value from the registry
1301  *
1302  * PARAMS
1303  *  hKeyContainer [I] Crypt provider to use to import the key
1304  *  hKey          [I] Registry key from which to read the key pair
1305  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1306  *  dwFlags       [I] Flags for unprotecting the key
1307  *  phCryptKey    [O] Returned key
1308  */
1309 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1310 {
1311     LPCSTR szValueName;
1312     DWORD dwValueType, dwLen;
1313     BYTE *pbKey;
1314     DATA_BLOB blobIn, blobOut;
1315     BOOL ret = FALSE;
1316
1317     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1318         return FALSE;
1319     if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1320         ERROR_SUCCESS)
1321     {
1322         pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1323         if (pbKey)
1324         {
1325             if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1326                 ERROR_SUCCESS)
1327             {
1328                 blobIn.pbData = pbKey;
1329                 blobIn.cbData = dwLen;
1330
1331                 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1332                     dwFlags, &blobOut))
1333                 {
1334                     ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1335                                      FALSE, phCryptKey);
1336                     LocalFree(blobOut.pbData);
1337                 }
1338             }
1339             HeapFree(GetProcessHeap(), 0, pbKey);
1340         }
1341     }
1342     if (ret)
1343     {
1344         CRYPTKEY *pKey;
1345
1346         if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1347                           (OBJECTHDR**)&pKey))
1348         {
1349             if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1350             {
1351                 dwLen = sizeof(pKey->dwPermissions);
1352                 RegQueryValueExA(hKey, szValueName, 0, NULL,
1353                                  (BYTE *)&pKey->dwPermissions, &dwLen);
1354             }
1355         }
1356     }
1357     return ret;
1358 }
1359
1360 /******************************************************************************
1361  * read_key_container [Internal]
1362  *
1363  * Tries to read the persistent state of the key container (mainly the signature
1364  * and key exchange private keys) given by pszContainerName.
1365  *
1366  * PARAMS
1367  *  pszContainerName [I] Name of the key container to read from the registry
1368  *  pVTable          [I] Pointer to context data provided by the operating system
1369  *
1370  * RETURNS
1371  *  Success: Handle to the key container read from the registry
1372  *  Failure: INVALID_HANDLE_VALUE
1373  */
1374 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1375 {
1376     HKEY hKey;
1377     KEYCONTAINER *pKeyContainer;
1378     HCRYPTPROV hKeyContainer;
1379     HCRYPTKEY hCryptKey;
1380
1381     if (!open_container_key(pszContainerName, dwFlags, &hKey))
1382     {
1383         SetLastError(NTE_BAD_KEYSET);
1384         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1385     }
1386
1387     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1388     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1389     {
1390         DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1391             CRYPTPROTECT_LOCAL_MACHINE : 0;
1392
1393         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, 
1394                            (OBJECTHDR**)&pKeyContainer))
1395             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1396     
1397         /* read_key_value calls import_key, which calls import_private_key,
1398          * which implicitly installs the key value into the appropriate key
1399          * container key.  Thus the ref count is incremented twice, once for
1400          * the output key value, and once for the implicit install, and needs
1401          * to be decremented to balance the two.
1402          */
1403         if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1404             dwProtectFlags, &hCryptKey))
1405             release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1406         if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1407             dwProtectFlags, &hCryptKey))
1408             release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1409     }
1410
1411     return hKeyContainer;
1412 }
1413
1414 /******************************************************************************
1415  * build_hash_signature [Internal]
1416  *
1417  * Builds a padded version of a hash to match the length of the RSA key modulus.
1418  *
1419  * PARAMS
1420  *  pbSignature [O] The padded hash object is stored here.
1421  *  dwLen       [I] Length of the pbSignature buffer.
1422  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1423  *  abHashValue [I] The value of the hash object.
1424  *  dwHashLen   [I] Length of the hash value.
1425  *  dwFlags     [I] Selection of padding algorithm.
1426  *
1427  * RETURNS
1428  *  Success: TRUE
1429  *  Failure: FALSE (NTE_BAD_ALGID)
1430  */
1431 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, 
1432                                  CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) 
1433 {
1434     /* These prefixes are meant to be concatenated with hash values of the
1435      * respective kind to form a PKCS #7 DigestInfo. */
1436     static const struct tagOIDDescriptor {
1437         ALG_ID aiAlgid;
1438         DWORD dwLen;
1439         CONST BYTE abOID[19];
1440     } aOIDDescriptor[] = {
1441         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1442                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1443         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 
1444                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1445         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1446                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1447         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 
1448                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1449         { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1450                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1451                               0x05, 0x00, 0x04, 0x20 } },
1452         { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1453                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1454                               0x05, 0x00, 0x04, 0x30 } },
1455         { CALG_SHA_384, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1456                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1457                               0x05, 0x00, 0x04, 0x40 } },
1458         { CALG_SSL3_SHAMD5, 0, { 0 } },
1459         { 0,        0,  { 0 } }
1460     };
1461     DWORD dwIdxOID, i, j;
1462
1463     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1464         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1465     }
1466     
1467     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1468         SetLastError(NTE_BAD_ALGID);
1469         return FALSE;
1470     }
1471
1472     /* Build the padded signature */
1473     if (dwFlags & CRYPT_X931_FORMAT) {
1474         pbSignature[0] = 0x6b;
1475         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1476             pbSignature[i] = 0xbb;
1477         }
1478         pbSignature[i++] = 0xba;
1479         for (j=0; j < dwHashLen; j++, i++) {
1480             pbSignature[i] = abHashValue[j];
1481         }
1482         pbSignature[i++] = 0x33;
1483         pbSignature[i++] = 0xcc;
1484     } else {
1485         pbSignature[0] = 0x00;
1486         pbSignature[1] = 0x01;
1487         if (dwFlags & CRYPT_NOHASHOID) {
1488             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1489                 pbSignature[i] = 0xff;
1490             }
1491             pbSignature[i++] = 0x00;
1492         } else {
1493             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1494                 pbSignature[i] = 0xff;
1495             }
1496             pbSignature[i++] = 0x00;
1497             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1498                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1499             }
1500         }
1501         for (j=0; j < dwHashLen; j++) {
1502             pbSignature[i++] = abHashValue[j];
1503         }
1504     }
1505     
1506     return TRUE;
1507 }
1508
1509 /******************************************************************************
1510  * tls1_p [Internal]
1511  *
1512  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1513  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1514  * The pseudo random stream generated by this function is exclusive or'ed with
1515  * the data in pbBuffer.
1516  *
1517  * PARAMS
1518  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1519  *  pblobSeed   [I]   Seed value
1520  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1521  *  dwBufferLen [I]   Number of pseudo random bytes desired
1522  *
1523  * RETURNS
1524  *  Success: TRUE
1525  *  Failure: FALSE
1526  */
1527 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1528 {
1529     CRYPTHASH *pHMAC;
1530     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1531     DWORD i = 0;
1532
1533     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1534         SetLastError(NTE_BAD_HASH);
1535         return FALSE;
1536     }
1537     
1538     /* compute A_1 = HMAC(seed) */
1539     init_hash(pHMAC);
1540     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1541     finalize_hash(pHMAC);
1542     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1543
1544     do {
1545         /* compute HMAC(A_i + seed) */
1546         init_hash(pHMAC);
1547         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1548         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1549         finalize_hash(pHMAC);
1550
1551         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1552         do {
1553             if (i >= dwBufferLen) break;
1554             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1555             i++;
1556         } while (i % pHMAC->dwHashSize);
1557
1558         /* compute A_{i+1} = HMAC(A_i) */
1559         init_hash(pHMAC);
1560         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1561         finalize_hash(pHMAC);
1562         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1563     } while (i < dwBufferLen);
1564
1565     return TRUE;
1566 }
1567
1568 /******************************************************************************
1569  * tls1_prf [Internal]
1570  *
1571  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1572  *
1573  * PARAMS
1574  *  hProv       [I] Key container used to compute the pseudo random stream
1575  *  hSecret     [I] Key that holds the (pre-)master secret
1576  *  pblobLabel  [I] Descriptive label
1577  *  pblobSeed   [I] Seed value
1578  *  pbBuffer    [O] Pseudo random numbers will be stored here
1579  *  dwBufferLen [I] Number of pseudo random bytes desired
1580  *
1581  * RETURNS
1582  *  Success: TRUE
1583  *  Failure: FALSE
1584  */ 
1585 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1586                      CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1587 {
1588     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1589     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1590     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1591     CRYPTKEY *pHalfSecret, *pSecret;
1592     DWORD dwHalfSecretLen;
1593     BOOL result = FALSE;
1594     CRYPT_DATA_BLOB blobLabelSeed;
1595
1596     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1597           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1598
1599     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1600         SetLastError(NTE_FAIL);
1601         return FALSE;
1602     }
1603
1604     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1605     
1606     /* concatenation of the label and the seed */
1607     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1608    
1609     /* zero out the buffer, since two random streams will be xor'ed into it. */
1610     memset(pbBuffer, 0, dwBufferLen);
1611    
1612     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1613      * the biggest range of valid key lengths. */
1614     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1615     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1616
1617     /* Derive an HMAC_MD5 hash and call the helper function. */
1618     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1619     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1620     hmacInfo.HashAlgid = CALG_MD5;
1621     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1622     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1623
1624     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1625     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1626     hmacInfo.HashAlgid = CALG_SHA;
1627     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1628     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1629     
1630     result = TRUE;
1631 exit:
1632     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1633     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1634     free_data_blob(&blobLabelSeed);
1635     return result;
1636 }
1637
1638 /******************************************************************************
1639  * pad_data [Internal]
1640  *
1641  * Helper function for data padding according to PKCS1 #2
1642  *
1643  * PARAMS
1644  *  abData      [I] The data to be padded
1645  *  dwDataLen   [I] Length of the data 
1646  *  abBuffer    [O] Padded data will be stored here
1647  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1648  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1649  *
1650  * RETURN
1651  *  Success: TRUE
1652  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1653  */
1654 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, 
1655                      DWORD dwFlags)
1656 {
1657     DWORD i;
1658     
1659     /* Ensure there is enough space for PKCS1 #2 padding */
1660     if (dwDataLen > dwBufferLen-11) {
1661         SetLastError(NTE_BAD_LEN);
1662         return FALSE;
1663     }
1664
1665     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);            
1666     
1667     abBuffer[0] = 0x00;
1668     abBuffer[1] = RSAENH_PKC_BLOCKTYPE; 
1669     for (i=2; i < dwBufferLen - dwDataLen - 1; i++) 
1670         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1671     if (dwFlags & CRYPT_SSL2_FALLBACK) 
1672         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) 
1673             abBuffer[i] = 0x03;
1674     abBuffer[i] = 0x00;
1675     
1676     return TRUE; 
1677 }
1678
1679 /******************************************************************************
1680  * unpad_data [Internal]
1681  *
1682  * Remove the PKCS1 padding from RSA decrypted data
1683  *
1684  * PARAMS
1685  *  abData      [I]   The padded data
1686  *  dwDataLen   [I]   Length of the padded data
1687  *  abBuffer    [O]   Data without padding will be stored here
1688  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1689  *  dwFlags     [I]   Currently none defined
1690  *
1691  * RETURNS
1692  *  Success: TRUE
1693  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1694  */
1695 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, 
1696                        DWORD dwFlags)
1697 {
1698     DWORD i;
1699     
1700     for (i=2; i<dwDataLen; i++)
1701         if (!abData[i])
1702             break;
1703
1704     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1705         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1706     {
1707         SetLastError(NTE_BAD_DATA);
1708         return FALSE;
1709     }
1710
1711     *dwBufferLen = dwDataLen - i - 1;
1712     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1713     return TRUE;
1714 }
1715
1716 /******************************************************************************
1717  * CPAcquireContext (RSAENH.@)
1718  *
1719  * Acquire a handle to the key container specified by pszContainer
1720  *
1721  * PARAMS
1722  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1723  *  pszContainer [I] Name of the desired key container. See Notes
1724  *  dwFlags      [I] Flags. See Notes.
1725  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1726  * 
1727  * RETURNS
1728  *  Success: TRUE
1729  *  Failure: FALSE
1730  *
1731  * NOTES
1732  *  If pszContainer is NULL or points to a zero length string the user's login 
1733  *  name will be used as the key container name.
1734  *
1735  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1736  *  If a keyset with the given name already exists, the function fails and sets
1737  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1738  *  key container does not exist, function fails and sets last error to 
1739  *  NTE_BAD_KEYSET.
1740  */                         
1741 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1742                    DWORD dwFlags, PVTableProvStruc pVTable)
1743 {
1744     CHAR szKeyContainerName[MAX_PATH];
1745
1746     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1747           debugstr_a(pszContainer), dwFlags, pVTable);
1748
1749     if (pszContainer && *pszContainer)
1750     {
1751         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1752     } 
1753     else
1754     {
1755         DWORD dwLen = sizeof(szKeyContainerName);
1756         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1757     }
1758
1759     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) 
1760     {
1761         case 0:
1762             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1763             break;
1764
1765         case CRYPT_DELETEKEYSET:
1766             return delete_container_key(szKeyContainerName, dwFlags);
1767
1768         case CRYPT_NEWKEYSET:
1769             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1770             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) 
1771             {
1772                 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1773                 TRACE("Can't create new keyset, already exists\n");
1774                 SetLastError(NTE_EXISTS);
1775                 return FALSE;
1776             }
1777             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1778             break;
1779
1780         case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1781         case CRYPT_VERIFYCONTEXT:
1782             if (pszContainer && *pszContainer) {
1783                 TRACE("pszContainer should be empty\n");
1784                 SetLastError(NTE_BAD_FLAGS);
1785                 return FALSE;
1786             }
1787             *phProv = new_key_container("", dwFlags, pVTable);
1788             break;
1789             
1790         default:
1791             *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1792             SetLastError(NTE_BAD_FLAGS);
1793             return FALSE;
1794     }
1795                 
1796     if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1797         SetLastError(ERROR_SUCCESS);
1798         return TRUE;
1799     } else {
1800         return FALSE;
1801     }
1802 }
1803
1804 /******************************************************************************
1805  * CPCreateHash (RSAENH.@)
1806  *
1807  * CPCreateHash creates and initializes a new hash object.
1808  *
1809  * PARAMS
1810  *  hProv   [I] Handle to the key container to which the new hash will belong.
1811  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1812  *  hKey    [I] Handle to a session key applied for keyed hashes.
1813  *  dwFlags [I] Currently no flags defined. Must be zero.
1814  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1815  *
1816  * RETURNS
1817  *  Success: TRUE
1818  *  Failure: FALSE
1819  *
1820  * NOTES
1821  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1822  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1823  */
1824 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, 
1825                                 HCRYPTHASH *phHash)
1826 {
1827     CRYPTKEY *pCryptKey;
1828     CRYPTHASH *pCryptHash;
1829     const PROV_ENUMALGS_EX *peaAlgidInfo;
1830         
1831     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1832           dwFlags, phHash);
1833
1834     peaAlgidInfo = get_algid_info(hProv, Algid);
1835     if (!peaAlgidInfo) return FALSE;
1836
1837     if (dwFlags)
1838     {
1839         SetLastError(NTE_BAD_FLAGS);
1840         return FALSE;
1841     }
1842
1843     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || 
1844         Algid == CALG_TLS1PRF) 
1845     {
1846         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1847             SetLastError(NTE_BAD_KEY);
1848             return FALSE;
1849         }
1850
1851         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1852             SetLastError(NTE_BAD_KEY);
1853             return FALSE;
1854         }
1855
1856         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && 
1857             (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) 
1858         {
1859             SetLastError(NTE_BAD_KEY);
1860             return FALSE;
1861         }
1862         if (Algid == CALG_SCHANNEL_MASTER_HASH &&
1863             ((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) ||
1864              (!pCryptKey->siSChannelInfo.blobServerRandom.cbData)))
1865         {
1866             SetLastError(ERROR_INVALID_PARAMETER);
1867             return FALSE;
1868         }
1869
1870         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1871             SetLastError(NTE_BAD_KEY_STATE);
1872             return FALSE;
1873         }
1874     }
1875
1876     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1877                          destroy_hash, (OBJECTHDR**)&pCryptHash);
1878     if (!pCryptHash) return FALSE;
1879
1880     pCryptHash->aiAlgid = Algid;
1881     pCryptHash->hKey = hKey;
1882     pCryptHash->hProv = hProv;
1883     pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1884     pCryptHash->pHMACInfo = NULL;
1885     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1886     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1887     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1888
1889     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1890         static const char keyex[] = "key expansion";
1891         BYTE key_expansion[sizeof keyex];
1892         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1893
1894         memcpy( key_expansion, keyex, sizeof keyex );
1895         
1896         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1897             static const char msec[] = "master secret";
1898             BYTE master_secret[sizeof msec];
1899             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1900             BYTE abKeyValue[48];
1901
1902             memcpy( master_secret, msec, sizeof msec );
1903     
1904             /* See RFC 2246, chapter 8.1 */
1905             if (!concat_data_blobs(&blobRandom, 
1906                                    &pCryptKey->siSChannelInfo.blobClientRandom, 
1907                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1908             {
1909                 return FALSE;
1910             }
1911             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1912             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; 
1913             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1914             free_data_blob(&blobRandom);
1915         }
1916
1917         /* See RFC 2246, chapter 6.3 */
1918         if (!concat_data_blobs(&blobRandom, 
1919                                   &pCryptKey->siSChannelInfo.blobServerRandom, 
1920                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1921         {
1922             return FALSE;
1923         }
1924         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, 
1925                  RSAENH_MAX_HASH_SIZE);
1926         free_data_blob(&blobRandom);
1927     }
1928
1929     return init_hash(pCryptHash);
1930 }
1931
1932 /******************************************************************************
1933  * CPDestroyHash (RSAENH.@)
1934  * 
1935  * Releases the handle to a hash object. The object is destroyed if its reference
1936  * count reaches zero.
1937  *
1938  * PARAMS
1939  *  hProv [I] Handle to the key container to which the hash object belongs.
1940  *  hHash [I] Handle to the hash object to be released.
1941  *
1942  * RETURNS
1943  *  Success: TRUE
1944  *  Failure: FALSE 
1945  */
1946 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1947 {
1948     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1949      
1950     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1951     {
1952         SetLastError(NTE_BAD_UID);
1953         return FALSE;
1954     }
1955         
1956     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) 
1957     {
1958         SetLastError(NTE_BAD_HASH);
1959         return FALSE;
1960     }
1961     
1962     return TRUE;
1963 }
1964
1965 /******************************************************************************
1966  * CPDestroyKey (RSAENH.@)
1967  *
1968  * Releases the handle to a key object. The object is destroyed if its reference
1969  * count reaches zero.
1970  *
1971  * PARAMS
1972  *  hProv [I] Handle to the key container to which the key object belongs.
1973  *  hKey  [I] Handle to the key object to be released.
1974  *
1975  * RETURNS
1976  *  Success: TRUE
1977  *  Failure: FALSE
1978  */
1979 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1980 {
1981     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1982         
1983     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1984     {
1985         SetLastError(NTE_BAD_UID);
1986         return FALSE;
1987     }
1988         
1989     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) 
1990     {
1991         SetLastError(NTE_BAD_KEY);
1992         return FALSE;
1993     }
1994     
1995     return TRUE;
1996 }
1997
1998 /******************************************************************************
1999  * CPDuplicateHash (RSAENH.@)
2000  *
2001  * Clones a hash object including its current state.
2002  *
2003  * PARAMS
2004  *  hUID        [I] Handle to the key container the hash belongs to.
2005  *  hHash       [I] Handle to the hash object to be cloned.
2006  *  pdwReserved [I] Reserved. Must be NULL.
2007  *  dwFlags     [I] No flags are currently defined. Must be 0.
2008  *  phHash      [O] Handle to the cloned hash object.
2009  *
2010  * RETURNS
2011  *  Success: TRUE.
2012  *  Failure: FALSE.
2013  */
2014 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, 
2015                                    DWORD dwFlags, HCRYPTHASH *phHash)
2016 {
2017     CRYPTHASH *pSrcHash, *pDestHash;
2018     
2019     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
2020            pdwReserved, dwFlags, phHash);
2021
2022     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2023     {
2024         SetLastError(NTE_BAD_UID);
2025         return FALSE;
2026     }
2027
2028     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
2029     {
2030         SetLastError(NTE_BAD_HASH);
2031         return FALSE;
2032     }
2033
2034     if (!phHash || pdwReserved || dwFlags) 
2035     {
2036         SetLastError(ERROR_INVALID_PARAMETER);
2037         return FALSE;
2038     }
2039
2040     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2041                          destroy_hash, (OBJECTHDR**)&pDestHash);
2042     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2043     {
2044         *pDestHash = *pSrcHash;
2045         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2046         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2047         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2048         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2049     }
2050
2051     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2052 }
2053
2054 /******************************************************************************
2055  * CPDuplicateKey (RSAENH.@)
2056  *
2057  * Clones a key object including its current state.
2058  *
2059  * PARAMS
2060  *  hUID        [I] Handle to the key container the hash belongs to.
2061  *  hKey        [I] Handle to the key object to be cloned.
2062  *  pdwReserved [I] Reserved. Must be NULL.
2063  *  dwFlags     [I] No flags are currently defined. Must be 0.
2064  *  phHash      [O] Handle to the cloned key object.
2065  *
2066  * RETURNS
2067  *  Success: TRUE.
2068  *  Failure: FALSE.
2069  */
2070 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, 
2071                                   DWORD dwFlags, HCRYPTKEY *phKey)
2072 {
2073     CRYPTKEY *pSrcKey, *pDestKey;
2074     
2075     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2076           pdwReserved, dwFlags, phKey);
2077
2078     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2079     {
2080         SetLastError(NTE_BAD_UID);
2081         return FALSE;
2082     }
2083
2084     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2085     {
2086         SetLastError(NTE_BAD_KEY);
2087         return FALSE;
2088     }
2089
2090     if (!phKey || pdwReserved || dwFlags) 
2091     {
2092         SetLastError(ERROR_INVALID_PARAMETER);
2093         return FALSE;
2094     }
2095
2096     *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2097                         (OBJECTHDR**)&pDestKey);
2098     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2099     {
2100         *pDestKey = *pSrcKey;
2101         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2102                        &pSrcKey->siSChannelInfo.blobServerRandom);
2103         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, 
2104                        &pSrcKey->siSChannelInfo.blobClientRandom);
2105         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2106         return TRUE;
2107     }
2108     else
2109     {
2110         return FALSE;
2111     }
2112 }
2113
2114 /******************************************************************************
2115  * CPEncrypt (RSAENH.@)
2116  *
2117  * Encrypt data.
2118  *
2119  * PARAMS
2120  *  hProv      [I]   The key container hKey and hHash belong to.
2121  *  hKey       [I]   The key used to encrypt the data.
2122  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2123  *  Final      [I]   Indicates if this is the last block of data to encrypt.
2124  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2125  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. 
2126  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2127  *  dwBufLen   [I]   Size of the buffer at pbData.
2128  *
2129  * RETURNS
2130  *  Success: TRUE.
2131  *  Failure: FALSE.
2132  *
2133  * NOTES
2134  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2135  *  This is useful for message signatures.
2136  *
2137  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2138  */
2139 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2140                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2141 {
2142     CRYPTKEY *pCryptKey;
2143     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2144     DWORD dwEncryptedLen, i, j, k;
2145         
2146     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2147           "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2148           dwBufLen);
2149     
2150     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2151     {
2152         SetLastError(NTE_BAD_UID);
2153         return FALSE;
2154     }
2155
2156     if (dwFlags)
2157     {
2158         SetLastError(NTE_BAD_FLAGS);
2159         return FALSE;
2160     }
2161
2162     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2163     {
2164         SetLastError(NTE_BAD_KEY);
2165         return FALSE;
2166     }
2167
2168     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2169         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2170
2171     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) 
2172     {
2173         SetLastError(NTE_BAD_DATA);
2174         return FALSE;
2175     }
2176
2177     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2178         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2179     }
2180     
2181     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2182         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2183             SetLastError(NTE_BAD_DATA);
2184             return FALSE;
2185         }
2186
2187         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2188
2189         if (pbData == NULL) {
2190             *pdwDataLen = dwEncryptedLen;
2191             return TRUE;
2192         }
2193         else if (dwEncryptedLen > dwBufLen) {
2194             *pdwDataLen = dwEncryptedLen;
2195             SetLastError(ERROR_MORE_DATA);
2196             return FALSE;
2197         }
2198
2199         /* Pad final block with length bytes */
2200         for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2201         *pdwDataLen = dwEncryptedLen;
2202
2203         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2204             switch (pCryptKey->dwMode) {
2205                 case CRYPT_MODE_ECB:
2206                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2207                                        RSAENH_ENCRYPT);
2208                     break;
2209                 
2210                 case CRYPT_MODE_CBC:
2211                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2212                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2213                                        RSAENH_ENCRYPT);
2214                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2215                     break;
2216
2217                 case CRYPT_MODE_CFB:
2218                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2219                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2220                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2221                         out[j] = in[j] ^ o[0];
2222                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2223                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2224                         pCryptKey->abChainVector[k] = out[j];
2225                     }
2226                     break;
2227                     
2228                 default:
2229                     SetLastError(NTE_BAD_ALGID);
2230                     return FALSE;
2231             }
2232             memcpy(in, out, pCryptKey->dwBlockLen); 
2233         }
2234     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2235         if (pbData == NULL) {
2236             *pdwDataLen = dwBufLen;
2237             return TRUE;
2238         }
2239         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2240     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2241         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2242             SetLastError(NTE_BAD_KEY);
2243             return FALSE;
2244         }
2245         if (!pbData) {
2246             *pdwDataLen = pCryptKey->dwBlockLen;
2247             return TRUE;
2248         }
2249         if (dwBufLen < pCryptKey->dwBlockLen) {
2250             SetLastError(ERROR_MORE_DATA);
2251             return FALSE;
2252         }
2253         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2254         encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2255         *pdwDataLen = pCryptKey->dwBlockLen;
2256         Final = TRUE;
2257     } else {
2258         SetLastError(NTE_BAD_TYPE);
2259         return FALSE;
2260     }
2261
2262     if (Final) setup_key(pCryptKey);
2263
2264     return TRUE;
2265 }
2266
2267 /******************************************************************************
2268  * CPDecrypt (RSAENH.@)
2269  *
2270  * Decrypt data.
2271  *
2272  * PARAMS
2273  *  hProv      [I]   The key container hKey and hHash belong to.
2274  *  hKey       [I]   The key used to decrypt the data.
2275  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2276  *  Final      [I]   Indicates if this is the last block of data to decrypt.
2277  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2278  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. 
2279  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2280  *
2281  * RETURNS
2282  *  Success: TRUE.
2283  *  Failure: FALSE.
2284  *
2285  * NOTES
2286  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2287  *  This is useful for message signatures.
2288  *
2289  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2290  */
2291 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2292                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2293 {
2294     CRYPTKEY *pCryptKey;
2295     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2296     DWORD i, j, k;
2297     DWORD dwMax;
2298
2299     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2300           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2301     
2302     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2303     {
2304         SetLastError(NTE_BAD_UID);
2305         return FALSE;
2306     }
2307
2308     if (dwFlags)
2309     {
2310         SetLastError(NTE_BAD_FLAGS);
2311         return FALSE;
2312     }
2313
2314     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2315     {
2316         SetLastError(NTE_BAD_KEY);
2317         return FALSE;
2318     }
2319
2320     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2321         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2322
2323     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2324     {
2325         SetLastError(NTE_BAD_DATA);
2326         return FALSE;
2327     }
2328
2329     dwMax=*pdwDataLen;
2330
2331     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2332         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2333             switch (pCryptKey->dwMode) {
2334                 case CRYPT_MODE_ECB:
2335                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2336                                        RSAENH_DECRYPT);
2337                     break;
2338                 
2339                 case CRYPT_MODE_CBC:
2340                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2341                                        RSAENH_DECRYPT);
2342                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2343                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2344                     break;
2345
2346                 case CRYPT_MODE_CFB:
2347                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2348                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2349                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2350                         out[j] = in[j] ^ o[0];
2351                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2352                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2353                         pCryptKey->abChainVector[k] = in[j];
2354                     }
2355                     break;
2356                     
2357                 default:
2358                     SetLastError(NTE_BAD_ALGID);
2359                     return FALSE;
2360             }
2361             memcpy(in, out, pCryptKey->dwBlockLen);
2362         }
2363         if (Final) {
2364             if (pbData[*pdwDataLen-1] &&
2365              pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2366              pbData[*pdwDataLen-1] <= *pdwDataLen) {
2367                 BOOL padOkay = TRUE;
2368
2369                 /* check that every bad byte has the same value */
2370                 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2371                     if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2372                         padOkay = FALSE;
2373                 if (padOkay)
2374                     *pdwDataLen -= pbData[*pdwDataLen-1];
2375                 else {
2376                     SetLastError(NTE_BAD_DATA);
2377                     return FALSE;
2378                 }
2379             }
2380             else {
2381                 SetLastError(NTE_BAD_DATA);
2382                 return FALSE;
2383             }
2384         }
2385
2386     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2387         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2388     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2389         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2390             SetLastError(NTE_BAD_KEY);
2391             return FALSE;
2392         }
2393         encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2394         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2395         Final = TRUE;
2396     } else {
2397         SetLastError(NTE_BAD_TYPE);
2398         return FALSE;
2399     } 
2400     
2401     if (Final) setup_key(pCryptKey);
2402
2403     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2404         if (*pdwDataLen>dwMax ||
2405             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2406     }
2407     
2408     return TRUE;
2409 }
2410
2411 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2412     DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2413 {
2414     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2415     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2416     DWORD dwDataLen;
2417
2418     if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2419         SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2420         return FALSE;
2421     }
2422
2423     dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2424     if (pbData) {
2425         if (*pdwDataLen < dwDataLen) {
2426             SetLastError(ERROR_MORE_DATA);
2427             *pdwDataLen = dwDataLen;
2428             return FALSE;
2429         }
2430
2431         pBlobHeader->bType = SIMPLEBLOB;
2432         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2433         pBlobHeader->reserved = 0;
2434         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2435
2436         *pAlgid = pPubKey->aiAlgid;
2437
2438         if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2439                       pPubKey->dwBlockLen, dwFlags))
2440         {
2441             return FALSE;
2442         }
2443
2444         encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2445                            (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2446     }
2447     *pdwDataLen = dwDataLen;
2448     return TRUE;
2449 }
2450
2451 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2452     DWORD *pdwDataLen)
2453 {
2454     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2455     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2456     DWORD dwDataLen;
2457
2458     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2459         SetLastError(NTE_BAD_KEY);
2460         return FALSE;
2461     }
2462
2463     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2464     if (pbData) {
2465         if (*pdwDataLen < dwDataLen) {
2466             SetLastError(ERROR_MORE_DATA);
2467             *pdwDataLen = dwDataLen;
2468             return FALSE;
2469         }
2470
2471         pBlobHeader->bType = PUBLICKEYBLOB;
2472         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2473         pBlobHeader->reserved = 0;
2474         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2475
2476         pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2477         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2478
2479         export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2480                                pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2481     }
2482     *pdwDataLen = dwDataLen;
2483     return TRUE;
2484 }
2485
2486 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2487     BYTE *pbData, DWORD *pdwDataLen)
2488 {
2489     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2490     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2491     DWORD dwDataLen;
2492
2493     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2494         SetLastError(NTE_BAD_KEY);
2495         return FALSE;
2496     }
2497     if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2498     {
2499         SetLastError(NTE_BAD_KEY_STATE);
2500         return FALSE;
2501     }
2502
2503     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2504                 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2505     if (pbData) {
2506         if (*pdwDataLen < dwDataLen) {
2507             SetLastError(ERROR_MORE_DATA);
2508             *pdwDataLen = dwDataLen;
2509             return FALSE;
2510         }
2511
2512         pBlobHeader->bType = PRIVATEKEYBLOB;
2513         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2514         pBlobHeader->reserved = 0;
2515         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2516
2517         pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2518         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2519
2520         export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2521                                 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2522     }
2523     *pdwDataLen = dwDataLen;
2524     return TRUE;
2525 }
2526
2527 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2528     DWORD *pdwDataLen)
2529 {
2530     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2531     DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2532     BYTE *pbKey = (BYTE*)(pKeyLen+1);
2533     DWORD dwDataLen;
2534
2535     dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2536     if (pbData) {
2537         if (*pdwDataLen < dwDataLen) {
2538             SetLastError(ERROR_MORE_DATA);
2539             *pdwDataLen = dwDataLen;
2540             return FALSE;
2541         }
2542
2543         pBlobHeader->bType = PLAINTEXTKEYBLOB;
2544         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2545         pBlobHeader->reserved = 0;
2546         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2547
2548         *pKeyLen = pCryptKey->dwKeyLen;
2549         memcpy(pbKey, &pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2550     }
2551     *pdwDataLen = dwDataLen;
2552     return TRUE;
2553 }
2554 /******************************************************************************
2555  * crypt_export_key [Internal]
2556  *
2557  * Export a key into a binary large object (BLOB).  Called by CPExportKey and
2558  * by store_key_pair.
2559  *
2560  * PARAMS
2561  *  pCryptKey  [I]   Key to be exported.
2562  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2563  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2564  *  dwFlags    [I]   Currently none defined.
2565  *  force      [I]   If TRUE, the key is written no matter what the key's
2566  *                   permissions are.  Otherwise the key's permissions are
2567  *                   checked before exporting.
2568  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2569  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2570  *
2571  * RETURNS
2572  *  Success: TRUE.
2573  *  Failure: FALSE.
2574  */
2575 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2576                              DWORD dwBlobType, DWORD dwFlags, BOOL force,
2577                              BYTE *pbData, DWORD *pdwDataLen)
2578 {
2579     CRYPTKEY *pPubKey;
2580     
2581     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2582         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2583             SetLastError(NTE_BAD_KEY);
2584             return FALSE;
2585         }
2586     }
2587     
2588     switch ((BYTE)dwBlobType)
2589     {
2590         case SIMPLEBLOB:
2591             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2592                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2593                 return FALSE;
2594             }
2595             return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2596                                        pdwDataLen);
2597             
2598         case PUBLICKEYBLOB:
2599             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2600                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2601                 return FALSE;
2602             }
2603
2604             return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2605
2606         case PRIVATEKEYBLOB:
2607             return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2608
2609         case PLAINTEXTKEYBLOB:
2610             return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2611             
2612         default:
2613             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2614             return FALSE;
2615     }
2616 }
2617
2618 /******************************************************************************
2619  * CPExportKey (RSAENH.@)
2620  *
2621  * Export a key into a binary large object (BLOB).
2622  *
2623  * PARAMS
2624  *  hProv      [I]   Key container from which a key is to be exported.
2625  *  hKey       [I]   Key to be exported.
2626  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2627  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2628  *  dwFlags    [I]   Currently none defined.
2629  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2630  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2631  *
2632  * RETURNS
2633  *  Success: TRUE.
2634  *  Failure: FALSE.
2635  */
2636 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2637                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2638 {
2639     CRYPTKEY *pCryptKey;
2640
2641     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2642           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2643
2644     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2645     {
2646         SetLastError(NTE_BAD_UID);
2647         return FALSE;
2648     }
2649
2650     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2651     {
2652         SetLastError(NTE_BAD_KEY);
2653         return FALSE;
2654     }
2655
2656     return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2657         pbData, pdwDataLen);
2658 }
2659
2660 /******************************************************************************
2661  * release_and_install_key [Internal]
2662  *
2663  * Release an existing key, if present, and replaces it with a new one.
2664  *
2665  * PARAMS
2666  *  hProv     [I] Key container into which the key is to be imported.
2667  *  src       [I] Key which will replace *dest
2668  *  dest      [I] Points to key to be released and replaced with src
2669  *  fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2670  */
2671 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2672                                     HCRYPTKEY *dest, DWORD fStoreKey)
2673 {
2674     RSAENH_CPDestroyKey(hProv, *dest);
2675     copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2676     if (fStoreKey)
2677     {
2678         KEYCONTAINER *pKeyContainer;
2679
2680         if (lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2681                           (OBJECTHDR**)&pKeyContainer))
2682         {
2683             store_key_container_keys(pKeyContainer);
2684             store_key_container_permissions(pKeyContainer);
2685         }
2686     }
2687 }
2688
2689 /******************************************************************************
2690  * import_private_key [Internal]
2691  *
2692  * Import a BLOB'ed private key into a key container.
2693  *
2694  * PARAMS
2695  *  hProv     [I] Key container into which the private key is to be imported.
2696  *  pbData    [I] Pointer to a buffer which holds the private key BLOB.
2697  *  dwDataLen [I] Length of data in buffer at pbData.
2698  *  dwFlags   [I] One of:
2699  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2700  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2701  *  phKey     [O] Handle to the imported key.
2702  *
2703  *
2704  * NOTES
2705  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2706  *  it's a PRIVATEKEYBLOB.
2707  *
2708  * RETURNS
2709  *  Success: TRUE.
2710  *  Failure: FALSE.
2711  */
2712 static BOOL import_private_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2713                                DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2714 {
2715     KEYCONTAINER *pKeyContainer;
2716     CRYPTKEY *pCryptKey;
2717     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2718     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2719     BOOL ret;
2720
2721     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2722     {
2723         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2724         SetLastError(NTE_BAD_FLAGS);
2725         return FALSE;
2726     }
2727     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2728                        (OBJECTHDR**)&pKeyContainer))
2729     {
2730         SetLastError(NTE_BAD_UID);
2731         return FALSE;
2732     }
2733
2734     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2735         (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2736         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2737             (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2738     {
2739         SetLastError(NTE_BAD_DATA);
2740         return FALSE;
2741     }
2742
2743     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2744     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2745     setup_key(pCryptKey);
2746     ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2747                                    pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2748     if (ret) {
2749         if (dwFlags & CRYPT_EXPORTABLE)
2750             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2751         switch (pBlobHeader->aiKeyAlg)
2752         {
2753         case AT_SIGNATURE:
2754         case CALG_RSA_SIGN:
2755             TRACE("installing signing key\n");
2756             release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2757                                     fStoreKey);
2758             break;
2759         case AT_KEYEXCHANGE:
2760         case CALG_RSA_KEYX:
2761             TRACE("installing key exchange key\n");
2762             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2763                                     fStoreKey);
2764             break;
2765         }
2766     }
2767     return ret;
2768 }
2769
2770 /******************************************************************************
2771  * import_public_key [Internal]
2772  *
2773  * Import a BLOB'ed public key into a key container.
2774  *
2775  * PARAMS
2776  *  hProv     [I] Key container into which the public key is to be imported.
2777  *  pbData    [I] Pointer to a buffer which holds the public key BLOB.
2778  *  dwDataLen [I] Length of data in buffer at pbData.
2779  *  dwFlags   [I] One of:
2780  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2781  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2782  *  phKey     [O] Handle to the imported key.
2783  *
2784  *
2785  * NOTES
2786  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2787  *  it's a PUBLICKEYBLOB.
2788  *
2789  * RETURNS
2790  *  Success: TRUE.
2791  *  Failure: FALSE.
2792  */
2793 static BOOL import_public_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2794                               DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2795 {
2796     KEYCONTAINER *pKeyContainer;
2797     CRYPTKEY *pCryptKey;
2798     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2799     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2800     ALG_ID algID;
2801     BOOL ret;
2802
2803     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2804     {
2805         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2806         SetLastError(NTE_BAD_FLAGS);
2807         return FALSE;
2808     }
2809     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2810                        (OBJECTHDR**)&pKeyContainer))
2811     {
2812         SetLastError(NTE_BAD_UID);
2813         return FALSE;
2814     }
2815
2816     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2817         (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2818         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2819     {
2820         SetLastError(NTE_BAD_DATA);
2821         return FALSE;
2822     }
2823
2824     /* Since this is a public key blob, only the public key is
2825      * available, so only signature verification is possible.
2826      */
2827     algID = pBlobHeader->aiKeyAlg;
2828     *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2829     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2830     setup_key(pCryptKey);
2831     ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2832                                   pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2833     if (ret) {
2834         if (dwFlags & CRYPT_EXPORTABLE)
2835             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2836         switch (pBlobHeader->aiKeyAlg)
2837         {
2838         case AT_KEYEXCHANGE:
2839         case CALG_RSA_KEYX:
2840             TRACE("installing public key\n");
2841             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2842                                     fStoreKey);
2843             break;
2844         }
2845     }
2846     return ret;
2847 }
2848
2849 /******************************************************************************
2850  * import_symmetric_key [Internal]
2851  *
2852  * Import a BLOB'ed symmetric key into a key container.
2853  *
2854  * PARAMS
2855  *  hProv     [I] Key container into which the symmetric key is to be imported.
2856  *  pbData    [I] Pointer to a buffer which holds the symmetric key BLOB.
2857  *  dwDataLen [I] Length of data in buffer at pbData.
2858  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2859  *  dwFlags   [I] One of:
2860  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2861  *  phKey     [O] Handle to the imported key.
2862  *
2863  *
2864  * NOTES
2865  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2866  *  it's a SIMPLEBLOB.
2867  *
2868  * RETURNS
2869  *  Success: TRUE.
2870  *  Failure: FALSE.
2871  */
2872 static BOOL import_symmetric_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2873                                  DWORD dwDataLen, HCRYPTKEY hPubKey,
2874                                  DWORD dwFlags, HCRYPTKEY *phKey)
2875 {
2876     CRYPTKEY *pCryptKey, *pPubKey;
2877     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2878     CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2879     CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2880     BYTE *pbDecrypted;
2881     DWORD dwKeyLen;
2882
2883     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2884     {
2885         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2886         SetLastError(NTE_BAD_FLAGS);
2887         return FALSE;
2888     }
2889     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2890         pPubKey->aiAlgid != CALG_RSA_KEYX)
2891     {
2892         SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2893         return FALSE;
2894     }
2895
2896     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2897     {
2898         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2899         return FALSE;
2900     }
2901
2902     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2903     if (!pbDecrypted) return FALSE;
2904     encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2905                        RSAENH_DECRYPT);
2906
2907     dwKeyLen = RSAENH_MAX_KEY_SIZE;
2908     if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2909         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2910         return FALSE;
2911     }
2912
2913     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2914     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2915     {
2916         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2917         return FALSE;
2918     }
2919     memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2920     HeapFree(GetProcessHeap(), 0, pbDecrypted);
2921     setup_key(pCryptKey);
2922     if (dwFlags & CRYPT_EXPORTABLE)
2923         pCryptKey->dwPermissions |= CRYPT_EXPORT;
2924     return TRUE;
2925 }
2926
2927 /******************************************************************************
2928  * import_plaintext_key [Internal]
2929  *
2930  * Import a plaintext key into a key container.
2931  *
2932  * PARAMS
2933  *  hProv     [I] Key container into which the symmetric key is to be imported.
2934  *  pbData    [I] Pointer to a buffer which holds the plaintext key BLOB.
2935  *  dwDataLen [I] Length of data in buffer at pbData.
2936  *  dwFlags   [I] One of:
2937  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2938  *  phKey     [O] Handle to the imported key.
2939  *
2940  *
2941  * NOTES
2942  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2943  *  it's a PLAINTEXTKEYBLOB.
2944  *
2945  * RETURNS
2946  *  Success: TRUE.
2947  *  Failure: FALSE.
2948  */
2949 static BOOL import_plaintext_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2950                                  DWORD dwDataLen, DWORD dwFlags,
2951                                  HCRYPTKEY *phKey)
2952 {
2953     CRYPTKEY *pCryptKey;
2954     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2955     CONST DWORD *pKeyLen = (CONST DWORD *)(pBlobHeader + 1);
2956     CONST BYTE *pbKeyStream = (CONST BYTE*)(pKeyLen + 1);
2957
2958     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2959     {
2960         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2961         return FALSE;
2962     }
2963
2964     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2965     {
2966         *phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey);
2967         if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2968             return FALSE;
2969         if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN))
2970         {
2971             memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
2972             pCryptKey->dwKeyLen = *pKeyLen;
2973         }
2974         else
2975         {
2976             CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream };
2977
2978             /* In order to initialize an HMAC key, the key material is hashed,
2979              * and the output of the hash function is used as the key material.
2980              * Unfortunately, the way the Crypto API is designed, we don't know
2981              * the hash algorithm yet, so we have to copy the entire key
2982              * material.
2983              */
2984             if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey))
2985             {
2986                 release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY);
2987                 *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
2988                 return FALSE;
2989             }
2990         }
2991         setup_key(pCryptKey);
2992         if (dwFlags & CRYPT_EXPORTABLE)
2993             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2994     }
2995     else
2996     {
2997         *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
2998         if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2999             return FALSE;
3000         memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3001         setup_key(pCryptKey);
3002         if (dwFlags & CRYPT_EXPORTABLE)
3003             pCryptKey->dwPermissions |= CRYPT_EXPORT;
3004     }
3005     return TRUE;
3006 }
3007
3008 /******************************************************************************
3009  * import_key [Internal]
3010  *
3011  * Import a BLOB'ed key into a key container, optionally storing the key's
3012  * value to the registry.
3013  *
3014  * PARAMS
3015  *  hProv     [I] Key container into which the key is to be imported.
3016  *  pbData    [I] Pointer to a buffer which holds the BLOB.
3017  *  dwDataLen [I] Length of data in buffer at pbData.
3018  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
3019  *  dwFlags   [I] One of:
3020  *                CRYPT_EXPORTABLE: the imported key is marked exportable
3021  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
3022  *  phKey     [O] Handle to the imported key.
3023  *
3024  * RETURNS
3025  *  Success: TRUE.
3026  *  Failure: FALSE.
3027  */
3028 static BOOL import_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
3029                        HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey,
3030                        HCRYPTKEY *phKey)
3031 {
3032     KEYCONTAINER *pKeyContainer;
3033     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
3034
3035     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3036                        (OBJECTHDR**)&pKeyContainer)) 
3037     {
3038         SetLastError(NTE_BAD_UID);
3039         return FALSE;
3040     }
3041
3042     if (dwDataLen < sizeof(BLOBHEADER) || 
3043         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
3044         pBlobHeader->reserved != 0) 
3045     {
3046         TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
3047               pBlobHeader->reserved);
3048         SetLastError(NTE_BAD_DATA);
3049         return FALSE;
3050     }
3051
3052     /* If this is a verify-only context, the key is not persisted regardless of
3053      * fStoreKey's original value.
3054      */
3055     fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
3056     TRACE("blob type: %x\n", pBlobHeader->bType);
3057     switch (pBlobHeader->bType)
3058     {
3059         case PRIVATEKEYBLOB:    
3060             return import_private_key(hProv, pbData, dwDataLen, dwFlags,
3061                                       fStoreKey, phKey);
3062                 
3063         case PUBLICKEYBLOB:
3064             return import_public_key(hProv, pbData, dwDataLen, dwFlags,
3065                                      fStoreKey, phKey);
3066                 
3067         case SIMPLEBLOB:
3068             return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
3069                                         dwFlags, phKey);
3070
3071         case PLAINTEXTKEYBLOB:
3072             return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
3073                                         phKey);
3074
3075         default:
3076             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
3077             return FALSE;
3078     }
3079 }
3080
3081 /******************************************************************************
3082  * CPImportKey (RSAENH.@)
3083  *
3084  * Import a BLOB'ed key into a key container.
3085  *
3086  * PARAMS
3087  *  hProv     [I] Key container into which the key is to be imported.
3088  *  pbData    [I] Pointer to a buffer which holds the BLOB.
3089  *  dwDataLen [I] Length of data in buffer at pbData.
3090  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
3091  *  dwFlags   [I] One of:
3092  *                CRYPT_EXPORTABLE: the imported key is marked exportable
3093  *  phKey     [O] Handle to the imported key.
3094  *
3095  * RETURNS
3096  *  Success: TRUE.
3097  *  Failure: FALSE.
3098  */
3099 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
3100                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3101 {
3102     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3103         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3104
3105     return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3106 }
3107
3108 /******************************************************************************
3109  * CPGenKey (RSAENH.@)
3110  *
3111  * Generate a key in the key container
3112  *
3113  * PARAMS
3114  *  hProv   [I] Key container for which a key is to be generated.
3115  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
3116  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3117  *  phKey   [O] Handle to the generated key.
3118  *
3119  * RETURNS
3120  *  Success: TRUE.
3121  *  Failure: FALSE.
3122  *
3123  * FIXME
3124  *  Flags currently not considered.
3125  *
3126  * NOTES
3127  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3128  *  and AT_SIGNATURE values.
3129  */
3130 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3131 {
3132     KEYCONTAINER *pKeyContainer;
3133     CRYPTKEY *pCryptKey;
3134
3135     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3136
3137     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3138                        (OBJECTHDR**)&pKeyContainer)) 
3139     {
3140         /* MSDN: hProv not containing valid context handle */
3141         SetLastError(NTE_BAD_UID);
3142         return FALSE;
3143     }
3144     
3145     switch (Algid)
3146     {
3147         case AT_SIGNATURE:
3148         case CALG_RSA_SIGN:
3149             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3150             if (pCryptKey) { 
3151                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3152                 setup_key(pCryptKey);
3153                 release_and_install_key(hProv, *phKey,
3154                                         &pKeyContainer->hSignatureKeyPair,
3155                                         FALSE);
3156             }
3157             break;
3158
3159         case AT_KEYEXCHANGE:
3160         case CALG_RSA_KEYX:
3161             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3162             if (pCryptKey) { 
3163                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3164                 setup_key(pCryptKey);
3165                 release_and_install_key(hProv, *phKey,
3166                                         &pKeyContainer->hKeyExchangeKeyPair,
3167                                         FALSE);
3168             }
3169             break;
3170             
3171         case CALG_RC2:
3172         case CALG_RC4:
3173         case CALG_DES:
3174         case CALG_3DES_112:
3175         case CALG_3DES:
3176         case CALG_AES:
3177         case CALG_AES_128:
3178         case CALG_AES_192:
3179         case CALG_AES_256:
3180         case CALG_PCT1_MASTER:
3181         case CALG_SSL2_MASTER:
3182         case CALG_SSL3_MASTER:
3183         case CALG_TLS1_MASTER:
3184             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3185             if (pCryptKey) {
3186                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3187                 switch (Algid) {
3188                     case CALG_SSL3_MASTER:
3189                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3190                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3191                         break;
3192
3193                     case CALG_TLS1_MASTER:
3194                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3195                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3196                         break;
3197                 }
3198                 setup_key(pCryptKey);
3199             }
3200             break;
3201             
3202         default:
3203             /* MSDN: Algorithm not supported specified by Algid */
3204             SetLastError(NTE_BAD_ALGID);
3205             return FALSE;
3206     }
3207             
3208     return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3209 }
3210
3211 /******************************************************************************
3212  * CPGenRandom (RSAENH.@)
3213  *
3214  * Generate a random byte stream.
3215  *
3216  * PARAMS
3217  *  hProv    [I] Key container that is used to generate random bytes.
3218  *  dwLen    [I] Specifies the number of requested random data bytes.
3219  *  pbBuffer [O] Random bytes will be stored here.
3220  *
3221  * RETURNS
3222  *  Success: TRUE
3223  *  Failure: FALSE
3224  */
3225 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3226 {
3227     TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3228     
3229     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3230     {
3231         /* MSDN: hProv not containing valid context handle */
3232         SetLastError(NTE_BAD_UID);
3233         return FALSE;
3234     }
3235
3236     return gen_rand_impl(pbBuffer, dwLen);
3237 }
3238
3239 /******************************************************************************
3240  * CPGetHashParam (RSAENH.@)
3241  *
3242  * Query parameters of an hash object.
3243  *
3244  * PARAMS
3245  *  hProv      [I]   The kea container, which the hash belongs to.
3246  *  hHash      [I]   The hash object that is to be queried.
3247  *  dwParam    [I]   Specifies the parameter that is to be queried.
3248  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3249  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3250  *  dwFlags    [I]   None currently defined.
3251  *
3252  * RETURNS
3253  *  Success: TRUE
3254  *  Failure: FALSE
3255  *
3256  * NOTES
3257  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be 
3258  *  finalized if HP_HASHVALUE is queried.
3259  */
3260 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, 
3261                                   DWORD *pdwDataLen, DWORD dwFlags) 
3262 {
3263     CRYPTHASH *pCryptHash;
3264         
3265     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3266         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3267     
3268     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3269     {
3270         SetLastError(NTE_BAD_UID);
3271         return FALSE;
3272     }
3273
3274     if (dwFlags)
3275     {
3276         SetLastError(NTE_BAD_FLAGS);
3277         return FALSE;
3278     }
3279     
3280     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3281                        (OBJECTHDR**)&pCryptHash))
3282     {
3283         SetLastError(NTE_BAD_HASH);
3284         return FALSE;
3285     }
3286
3287     if (!pdwDataLen)
3288     {
3289         SetLastError(ERROR_INVALID_PARAMETER);
3290         return FALSE;
3291     }
3292     
3293     switch (dwParam)
3294     {
3295         case HP_ALGID:
3296             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid, 
3297                               sizeof(ALG_ID));
3298
3299         case HP_HASHSIZE:
3300             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize, 
3301                               sizeof(DWORD));
3302
3303         case HP_HASHVAL:
3304             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3305                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3306                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3307             }
3308
3309             if ( pbData == NULL ) {
3310                 *pdwDataLen = pCryptHash->dwHashSize;
3311                 return TRUE;
3312             }
3313
3314             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
3315             {
3316                 finalize_hash(pCryptHash);
3317                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3318             }
3319
3320             return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3321                               pCryptHash->dwHashSize);
3322
3323         default:
3324             SetLastError(NTE_BAD_TYPE);
3325             return FALSE;
3326     }
3327 }
3328
3329 /******************************************************************************
3330  * CPSetKeyParam (RSAENH.@)
3331  *
3332  * Set a parameter of a key object
3333  *
3334  * PARAMS
3335  *  hProv   [I] The key container to which the key belongs.
3336  *  hKey    [I] The key for which a parameter is to be set.
3337  *  dwParam [I] Parameter type. See Notes.
3338  *  pbData  [I] Pointer to the parameter value.
3339  *  dwFlags [I] Currently none defined.
3340  *
3341  * RETURNS
3342  *  Success: TRUE.
3343  *  Failure: FALSE.
3344  *
3345  * NOTES:
3346  *  Defined dwParam types are:
3347  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3348  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3349  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
3350  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3351  *   - KP_IV: Initialization vector
3352  */
3353 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
3354                                  DWORD dwFlags)
3355 {
3356     CRYPTKEY *pCryptKey;
3357
3358     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
3359           dwParam, pbData, dwFlags);
3360
3361     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3362     {
3363         SetLastError(NTE_BAD_UID);
3364         return FALSE;
3365     }
3366
3367     if (dwFlags) {
3368         SetLastError(NTE_BAD_FLAGS);
3369         return FALSE;
3370     }
3371     
3372     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3373     {
3374         SetLastError(NTE_BAD_KEY);
3375         return FALSE;
3376     }
3377     
3378     switch (dwParam) {
3379         case KP_PADDING:
3380             /* The MS providers only support PKCS5_PADDING */
3381             if (*(DWORD *)pbData != PKCS5_PADDING) {
3382                 SetLastError(NTE_BAD_DATA);
3383                 return FALSE;
3384             }
3385             return TRUE;
3386
3387         case KP_MODE:
3388             pCryptKey->dwMode = *(DWORD*)pbData;
3389             return TRUE;
3390
3391         case KP_MODE_BITS:
3392             pCryptKey->dwModeBits = *(DWORD*)pbData;
3393             return TRUE;
3394
3395         case KP_PERMISSIONS:
3396         {
3397             DWORD perms = *(DWORD *)pbData;
3398
3399             if ((perms & CRYPT_EXPORT) &&
3400                 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3401             {
3402                 SetLastError(NTE_BAD_DATA);
3403                 return FALSE;
3404             }
3405             else if (!(perms & CRYPT_EXPORT) &&
3406                 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3407             {
3408                 /* Clearing the export permission appears to be ignored,
3409                  * see tests.
3410                  */
3411                 perms |= CRYPT_EXPORT;
3412             }
3413             pCryptKey->dwPermissions = perms;
3414             return TRUE;
3415         }
3416
3417         case KP_IV:
3418             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3419             setup_key(pCryptKey);
3420             return TRUE;
3421
3422         case KP_SALT:
3423             switch (pCryptKey->aiAlgid) {
3424                 case CALG_RC2:
3425                 case CALG_RC4:
3426                     if (!pbData)
3427                     {
3428                         SetLastError(ERROR_INVALID_PARAMETER);
3429                         return FALSE;
3430                     }
3431                     /* MSDN: the base provider always sets eleven bytes of
3432                      * salt value.
3433                      */
3434                     memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
3435                            pbData, 11);
3436                     pCryptKey->dwSaltLen = 11;
3437                     setup_key(pCryptKey);
3438                     /* Strange but true: salt length reset to 0 after setting
3439                      * it via KP_SALT.
3440                      */
3441                     pCryptKey->dwSaltLen = 0;
3442                     break;
3443                 default:
3444                     SetLastError(NTE_BAD_KEY);
3445                     return FALSE;
3446             }
3447             return TRUE;
3448
3449         case KP_SALT_EX:
3450         {
3451             CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3452
3453             /* salt length can't be greater than 184 bits = 24 bytes */
3454             if (blob->cbData > 24)
3455             {
3456                 SetLastError(NTE_BAD_DATA);
3457                 return FALSE;
3458             }
3459             memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3460                    blob->cbData);
3461             pCryptKey->dwSaltLen = blob->cbData;
3462             setup_key(pCryptKey);
3463             return TRUE;
3464         }
3465
3466         case KP_EFFECTIVE_KEYLEN:
3467             switch (pCryptKey->aiAlgid) {
3468                 case CALG_RC2:
3469                     if (!pbData)
3470                     {
3471                         SetLastError(ERROR_INVALID_PARAMETER);
3472                         return FALSE;
3473                     }
3474                     else if (!*(DWORD *)pbData || *(DWORD *)pbData > 1024)
3475                     {
3476                         SetLastError(NTE_BAD_DATA);
3477                         return FALSE;
3478                     }
3479                     else
3480                     {
3481                         pCryptKey->dwEffectiveKeyLen = *(DWORD *)pbData;
3482                         setup_key(pCryptKey);
3483                     }
3484                     break;
3485                 default:
3486                     SetLastError(NTE_BAD_TYPE);
3487                     return FALSE;
3488             }
3489             return TRUE;
3490
3491         case KP_SCHANNEL_ALG:
3492             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3493                 case SCHANNEL_ENC_KEY:
3494                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3495                     break;
3496
3497                 case SCHANNEL_MAC_KEY:
3498                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3499                     break;
3500
3501                 default:
3502                     SetLastError(NTE_FAIL); /* FIXME: error code */
3503                     return FALSE;
3504             }
3505             return TRUE;
3506
3507         case KP_CLIENT_RANDOM:
3508             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3509             
3510         case KP_SERVER_RANDOM:
3511             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3512
3513         default:
3514             SetLastError(NTE_BAD_TYPE);
3515             return FALSE;
3516     }
3517 }
3518
3519 /******************************************************************************
3520  * CPGetKeyParam (RSAENH.@)
3521  *
3522  * Query a key parameter.
3523  *
3524  * PARAMS
3525  *  hProv      [I]   The key container, which the key belongs to.
3526  *  hHash      [I]   The key object that is to be queried.
3527  *  dwParam    [I]   Specifies the parameter that is to be queried.
3528  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3529  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3530  *  dwFlags    [I]   None currently defined.
3531  *
3532  * RETURNS
3533  *  Success: TRUE
3534  *  Failure: FALSE
3535  *
3536  * NOTES
3537  *  Defined dwParam types are:
3538  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3539  *   - KP_MODE_BITS: Shift width for cipher feedback mode. 
3540  *                   (Currently ignored by MS CSP's - always eight)
3541  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
3542  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3543  *   - KP_IV: Initialization vector.
3544  *   - KP_KEYLEN: Bitwidth of the key.
3545  *   - KP_BLOCKLEN: Size of a block cipher block.
3546  *   - KP_SALT: Salt value.
3547  */
3548 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
3549                                  DWORD *pdwDataLen, DWORD dwFlags)
3550 {
3551     CRYPTKEY *pCryptKey;
3552     DWORD dwValue;
3553         
3554     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
3555           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
3556
3557     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3558     {
3559         SetLastError(NTE_BAD_UID);
3560         return FALSE;
3561     }
3562
3563     if (dwFlags) {
3564         SetLastError(NTE_BAD_FLAGS);
3565         return FALSE;
3566     }
3567
3568     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3569     {
3570         SetLastError(NTE_BAD_KEY);
3571         return FALSE;
3572     }
3573
3574     switch (dwParam) 
3575     {
3576         case KP_IV:
3577             return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
3578                               pCryptKey->dwBlockLen);
3579         
3580         case KP_SALT:
3581             switch (pCryptKey->aiAlgid) {
3582                 case CALG_RC2:
3583                 case CALG_RC4:
3584                     return copy_param(pbData, pdwDataLen,
3585                             &pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
3586                             pCryptKey->dwSaltLen);
3587                 default:
3588                     SetLastError(NTE_BAD_KEY);
3589                     return FALSE;
3590             }
3591
3592         case KP_PADDING:
3593             dwValue = PKCS5_PADDING;
3594             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3595
3596         case KP_KEYLEN:
3597             dwValue = pCryptKey->dwKeyLen << 3;
3598             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3599         
3600         case KP_EFFECTIVE_KEYLEN:
3601             if (pCryptKey->dwEffectiveKeyLen)
3602                 dwValue = pCryptKey->dwEffectiveKeyLen;
3603             else
3604                 dwValue = pCryptKey->dwKeyLen << 3;
3605             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3606
3607         case KP_BLOCKLEN:
3608             dwValue = pCryptKey->dwBlockLen << 3;
3609             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3610     
3611         case KP_MODE:
3612             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
3613
3614         case KP_MODE_BITS:
3615             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits, 
3616                               sizeof(DWORD));
3617     
3618         case KP_PERMISSIONS:
3619             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions, 
3620                               sizeof(DWORD));
3621
3622         case KP_ALGID:
3623             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
3624             
3625         default:
3626             SetLastError(NTE_BAD_TYPE);
3627             return FALSE;
3628     }
3629 }
3630                         
3631 /******************************************************************************
3632  * CPGetProvParam (RSAENH.@)
3633  *
3634  * Query a CSP parameter.
3635  *
3636  * PARAMS
3637  *  hProv      [I]   The key container that is to be queried.
3638  *  dwParam    [I]   Specifies the parameter that is to be queried.
3639  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3640  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3641  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
3642  *
3643  * RETURNS
3644  *  Success: TRUE
3645  *  Failure: FALSE
3646  * NOTES:
3647  *  Defined dwParam types:
3648  *   - PP_CONTAINER: Name of the key container.
3649  *   - PP_NAME: Name of the cryptographic service provider.
3650  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
3651  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
3652  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
3653  */
3654 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, 
3655                                   DWORD *pdwDataLen, DWORD dwFlags)
3656 {
3657     KEYCONTAINER *pKeyContainer;
3658     PROV_ENUMALGS provEnumalgs;
3659     DWORD dwTemp;
3660     HKEY hKey;
3661    
3662     /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
3663      * IE6 SP1 asks for it in the 'About' dialog.
3664      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem 
3665      * to be 'don't care's. If you know anything more specific about
3666      * this provider parameter, please report to wine-devel@winehq.org */
3667     static CONST BYTE abWTF[96] = { 
3668         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37, 
3669         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 
3670         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 
3671         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 
3672         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 
3673         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 
3674         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 
3675         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 
3676         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 
3677         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 
3678         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 
3679         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca 
3680     };
3681
3682     TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3683            hProv, dwParam, pbData, pdwDataLen, dwFlags);
3684
3685     if (!pdwDataLen) {
3686         SetLastError(ERROR_INVALID_PARAMETER);
3687         return FALSE;
3688     }
3689     
3690     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3691                        (OBJECTHDR**)&pKeyContainer)) 
3692     {
3693         /* MSDN: hProv not containing valid context handle */
3694         SetLastError(NTE_BAD_UID);
3695         return FALSE;
3696     }
3697
3698     switch (dwParam) 
3699     {
3700         case PP_CONTAINER:
3701         case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
3702             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName, 
3703                               strlen(pKeyContainer->szName)+1);
3704
3705         case PP_NAME:
3706             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName, 
3707                               strlen(pKeyContainer->szProvName)+1);
3708
3709         case PP_PROVTYPE:
3710             dwTemp = PROV_RSA_FULL;
3711             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3712
3713         case PP_KEYSPEC:
3714             dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
3715             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3716
3717         case PP_KEYSET_TYPE:
3718             dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
3719             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3720
3721         case PP_KEYSTORAGE:
3722             dwTemp = CRYPT_SEC_DESCR;
3723             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3724
3725         case PP_SIG_KEYSIZE_INC:
3726         case PP_KEYX_KEYSIZE_INC:
3727             dwTemp = 8;
3728             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3729
3730         case PP_IMPTYPE:
3731             dwTemp = CRYPT_IMPL_SOFTWARE;
3732             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3733
3734         case PP_VERSION:
3735             dwTemp = 0x00000200;
3736             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3737             
3738         case PP_ENUMCONTAINERS:
3739             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
3740
3741             if (!pbData) {
3742                 *pdwDataLen = (DWORD)MAX_PATH + 1;
3743                 return TRUE;
3744             }
3745  
3746             if (!open_container_key("", dwFlags, &hKey))
3747             {
3748                 SetLastError(ERROR_NO_MORE_ITEMS);
3749                 return FALSE;
3750             }
3751
3752             dwTemp = *pdwDataLen;
3753             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
3754                     NULL, NULL, NULL, NULL))
3755             {
3756                 case ERROR_MORE_DATA:
3757                     *pdwDataLen = (DWORD)MAX_PATH + 1;
3758  
3759                 case ERROR_SUCCESS:
3760                     pKeyContainer->dwEnumContainersCtr++;
3761                     RegCloseKey(hKey);
3762                     return TRUE;
3763
3764                 case ERROR_NO_MORE_ITEMS:
3765                 default:
3766                     SetLastError(ERROR_NO_MORE_ITEMS);
3767                     RegCloseKey(hKey);
3768                     return FALSE;
3769             }
3770  
3771         case PP_ENUMALGS:
3772         case PP_ENUMALGS_EX:
3773             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
3774                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
3775                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && 
3776                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
3777             {
3778                 SetLastError(ERROR_NO_MORE_ITEMS);
3779                 return FALSE;
3780             }
3781
3782             if (dwParam == PP_ENUMALGS) {    
3783                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) 
3784                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3785                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3786             
3787                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3788                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3789                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3790                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3791                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3792                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3793                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3794                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 
3795                        20*sizeof(CHAR));
3796             
3797                 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs, 
3798                                   sizeof(PROV_ENUMALGS));
3799             } else {
3800                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) 
3801                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3802                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3803             
3804                 return copy_param(pbData, pdwDataLen, 
3805                                   (CONST BYTE*)&aProvEnumAlgsEx
3806                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], 
3807                                   sizeof(PROV_ENUMALGS_EX));
3808             }
3809
3810         case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
3811             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3812
3813         default:
3814             /* MSDN: Unknown parameter number in dwParam */
3815             SetLastError(NTE_BAD_TYPE);
3816             return FALSE;
3817     }
3818 }
3819
3820 /******************************************************************************
3821  * CPDeriveKey (RSAENH.@)
3822  *
3823  * Derives a key from a hash value.
3824  *
3825  * PARAMS
3826  *  hProv     [I] Key container for which a key is to be generated.
3827  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
3828  *  hBaseData [I] Hash from whose value the key will be derived.
3829  *  dwFlags   [I] See Notes.
3830  *  phKey     [O] The generated key.
3831  *
3832  * RETURNS
3833  *  Success: TRUE
3834  *  Failure: FALSE
3835  *
3836  * NOTES
3837  *  Defined flags:
3838  *   - CRYPT_EXPORTABLE: Key can be exported.
3839  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3840  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3841  */
3842 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, 
3843                                DWORD dwFlags, HCRYPTKEY *phKey)
3844 {
3845     CRYPTKEY *pCryptKey, *pMasterKey;
3846     CRYPTHASH *pCryptHash;
3847     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3848     DWORD dwLen;
3849     
3850     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3851            hBaseData, dwFlags, phKey);
3852     
3853     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3854     {
3855         SetLastError(NTE_BAD_UID);
3856         return FALSE;
3857     }
3858
3859     if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3860                        (OBJECTHDR**)&pCryptHash))
3861     {
3862         SetLastError(NTE_BAD_HASH);
3863         return FALSE;
3864     }
3865
3866     if (!phKey)
3867     {
3868         SetLastError(ERROR_INVALID_PARAMETER);
3869         return FALSE;
3870     }
3871
3872     switch (GET_ALG_CLASS(Algid))
3873     {
3874         case ALG_CLASS_DATA_ENCRYPT:
3875             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3876             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3877
3878             /* 
3879              * We derive the key material from the hash.
3880              * If the hash value is not large enough for the claimed key, we have to construct
3881              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3882              */
3883             dwLen = RSAENH_MAX_HASH_SIZE;
3884             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3885     
3886             if (dwLen < pCryptKey->dwKeyLen) {
3887                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3888                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3889                 DWORD i;
3890
3891                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3892             
3893                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3894                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3895                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3896                 }
3897                 
3898                 init_hash(pCryptHash);
3899                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3900                 finalize_hash(pCryptHash);
3901                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3902
3903                 init_hash(pCryptHash);
3904                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3905                 finalize_hash(pCryptHash);
3906                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, 
3907                        pCryptHash->dwHashSize);
3908
3909                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3910             }
3911     
3912             memcpy(pCryptKey->abKeyValue, abHashValue, 
3913                    RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3914             break;
3915
3916         case ALG_CLASS_MSG_ENCRYPT:
3917             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3918                                (OBJECTHDR**)&pMasterKey)) 
3919             {
3920                 SetLastError(NTE_FAIL); /* FIXME error code */
3921                 return FALSE;
3922             }
3923                 
3924             switch (Algid) 
3925             {
3926                 /* See RFC 2246, chapter 6.3 Key calculation */
3927                 case CALG_SCHANNEL_ENC_KEY:
3928                     if (!pMasterKey->siSChannelInfo.saEncAlg.Algid ||
3929                         !pMasterKey->siSChannelInfo.saEncAlg.cBits)
3930                     {
3931                         SetLastError(NTE_BAD_FLAGS);
3932                         return FALSE;
3933                     }
3934                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, 
3935                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3936                                      &pCryptKey);
3937                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3938                     memcpy(pCryptKey->abKeyValue, 
3939                            pCryptHash->abHashValue + (
3940                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3941                                ((dwFlags & CRYPT_SERVER) ? 
3942                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3943                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3944                     memcpy(pCryptKey->abInitVector,
3945                            pCryptHash->abHashValue + (
3946                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3947                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3948                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3949                            pCryptKey->dwBlockLen);
3950                     break;
3951                     
3952                 case CALG_SCHANNEL_MAC_KEY:
3953                     *phKey = new_key(hProv, Algid, 
3954                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3955                                      &pCryptKey);
3956                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3957                     memcpy(pCryptKey->abKeyValue,
3958                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? 
3959                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3960                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3961                     break;
3962                     
3963                 default:
3964                     SetLastError(NTE_BAD_ALGID);
3965                     return FALSE;
3966             }
3967             break;
3968
3969         default:
3970             SetLastError(NTE_BAD_ALGID);
3971             return FALSE;
3972     }
3973
3974     setup_key(pCryptKey);
3975     return TRUE;    
3976 }
3977
3978 /******************************************************************************
3979  * CPGetUserKey (RSAENH.@)
3980  *
3981  * Returns a handle to the user's private key-exchange- or signature-key.
3982  *
3983  * PARAMS
3984  *  hProv     [I] The key container from which a user key is requested.
3985  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3986  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3987  *
3988  * RETURNS
3989  *  Success: TRUE.
3990  *  Failure: FALSE.
3991  *
3992  * NOTE
3993  *  A newly created key container does not contain private user key. Create them with CPGenKey.
3994  */
3995 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3996 {
3997     KEYCONTAINER *pKeyContainer;
3998
3999     TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
4000     
4001     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
4002                        (OBJECTHDR**)&pKeyContainer)) 
4003     {
4004         /* MSDN: hProv not containing valid context handle */
4005         SetLastError(NTE_BAD_UID);
4006         return FALSE;
4007     }
4008
4009     switch (dwKeySpec)
4010     {
4011         case AT_KEYEXCHANGE:
4012             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
4013                         phUserKey);
4014             break;
4015
4016         case AT_SIGNATURE:
4017             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
4018                         phUserKey);
4019             break;
4020
4021         default:
4022             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4023     }
4024
4025     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
4026     {
4027         /* MSDN: dwKeySpec parameter specifies nonexistent key */
4028         SetLastError(NTE_NO_KEY);
4029         return FALSE;
4030     }
4031
4032     return TRUE;
4033 }
4034
4035 /******************************************************************************
4036  * CPHashData (RSAENH.@)
4037  *
4038  * Updates a hash object with the given data.
4039  *
4040  * PARAMS
4041  *  hProv     [I] Key container to which the hash object belongs.
4042  *  hHash     [I] Hash object which is to be updated.
4043  *  pbData    [I] Pointer to data with which the hash object is to be updated.
4044  *  dwDataLen [I] Length of the data.
4045  *  dwFlags   [I] Currently none defined.
4046  *
4047  * RETURNS
4048  *  Success: TRUE.
4049  *  Failure: FALSE.
4050  *
4051  * NOTES
4052  *  The actual hash value is queried with CPGetHashParam, which will finalize 
4053  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
4054  */
4055 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData, 
4056                               DWORD dwDataLen, DWORD dwFlags)
4057 {
4058     CRYPTHASH *pCryptHash;
4059         
4060     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
4061           hProv, hHash, pbData, dwDataLen, dwFlags);
4062
4063     if (dwFlags)
4064     {
4065         SetLastError(NTE_BAD_FLAGS);
4066         return FALSE;
4067     }
4068
4069     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4070                        (OBJECTHDR**)&pCryptHash))
4071     {
4072         SetLastError(NTE_BAD_HASH);
4073         return FALSE;
4074     }
4075
4076     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
4077     {
4078         SetLastError(NTE_BAD_ALGID);
4079         return FALSE;
4080     }
4081     
4082     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
4083     {
4084         SetLastError(NTE_BAD_HASH_STATE);
4085         return FALSE;
4086     }
4087
4088     update_hash(pCryptHash, pbData, dwDataLen);
4089     return TRUE;
4090 }
4091
4092 /******************************************************************************
4093  * CPHashSessionKey (RSAENH.@)
4094  *
4095  * Updates a hash object with the binary representation of a symmetric key.
4096  *
4097  * PARAMS
4098  *  hProv     [I] Key container to which the hash object belongs.
4099  *  hHash     [I] Hash object which is to be updated.
4100  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
4101  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
4102  *
4103  * RETURNS
4104  *  Success: TRUE.
4105  *  Failure: FALSE.
4106  */
4107 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, 
4108                                     DWORD dwFlags)
4109 {
4110     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
4111     CRYPTKEY *pKey;
4112     DWORD i;
4113
4114     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
4115
4116     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
4117         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) 
4118     {
4119         SetLastError(NTE_BAD_KEY);
4120         return FALSE;
4121     }
4122
4123     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
4124         SetLastError(NTE_BAD_FLAGS);
4125         return FALSE;
4126     }
4127
4128     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
4129     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
4130         for (i=0; i<pKey->dwKeyLen/2; i++) {
4131             bTemp = abKeyValue[i];
4132             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
4133             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
4134         }
4135     }
4136
4137     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
4138 }
4139
4140 /******************************************************************************
4141  * CPReleaseContext (RSAENH.@)
4142  *
4143  * Release a key container.
4144  *
4145  * PARAMS
4146  *  hProv   [I] Key container to be released.
4147  *  dwFlags [I] Currently none defined.
4148  *
4149  * RETURNS
4150  *  Success: TRUE
4151  *  Failure: FALSE
4152  */
4153 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
4154 {
4155     TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
4156
4157     if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4158     {
4159         /* MSDN: hProv not containing valid context handle */
4160         SetLastError(NTE_BAD_UID);
4161         return FALSE;
4162     }
4163
4164     if (dwFlags) {
4165         SetLastError(NTE_BAD_FLAGS);
4166         return FALSE;
4167     }
4168     
4169     return TRUE;
4170 }
4171
4172 /******************************************************************************
4173  * CPSetHashParam (RSAENH.@)
4174  * 
4175  * Set a parameter of a hash object
4176  *
4177  * PARAMS
4178  *  hProv   [I] The key container to which the key belongs.
4179  *  hHash   [I] The hash object for which a parameter is to be set.
4180  *  dwParam [I] Parameter type. See Notes.
4181  *  pbData  [I] Pointer to the parameter value.
4182  *  dwFlags [I] Currently none defined.
4183  *
4184  * RETURNS
4185  *  Success: TRUE.
4186  *  Failure: FALSE.
4187  *
4188  * NOTES
4189  *  Currently only the HP_HMAC_INFO dwParam type is defined. 
4190  *  The HMAC_INFO struct will be deep copied into the hash object.
4191  *  See Internet RFC 2104 for details on the HMAC algorithm.
4192  */
4193 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, 
4194                                   BYTE *pbData, DWORD dwFlags)
4195 {
4196     CRYPTHASH *pCryptHash;
4197     CRYPTKEY *pCryptKey;
4198     DWORD i;
4199
4200     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
4201            hProv, hHash, dwParam, pbData, dwFlags);
4202
4203     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4204     {
4205         SetLastError(NTE_BAD_UID);
4206         return FALSE;
4207     }
4208
4209     if (dwFlags) {
4210         SetLastError(NTE_BAD_FLAGS);
4211         return FALSE;
4212     }
4213     
4214     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4215                        (OBJECTHDR**)&pCryptHash))
4216     {
4217         SetLastError(NTE_BAD_HASH);
4218         return FALSE;
4219     }
4220     
4221     switch (dwParam) {
4222         case HP_HMAC_INFO:
4223             free_hmac_info(pCryptHash->pHMACInfo);
4224             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4225
4226             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, 
4227                                (OBJECTHDR**)&pCryptKey)) 
4228             {
4229                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4230                 return FALSE;
4231             }
4232
4233             if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) {
4234                 HCRYPTHASH hKeyHash;
4235                 DWORD keyLen;
4236
4237                 if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0,
4238                     &hKeyHash))
4239                     return FALSE;
4240                 if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData,
4241                     pCryptKey->blobHmacKey.cbData, 0))
4242                 {
4243                     RSAENH_CPDestroyHash(hProv, hKeyHash);
4244                     return FALSE;
4245                 }
4246                 keyLen = sizeof(pCryptKey->abKeyValue);
4247                 if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue,
4248                     &keyLen, 0))
4249                 {
4250                     RSAENH_CPDestroyHash(hProv, hKeyHash);
4251                     return FALSE;
4252                 }
4253                 pCryptKey->dwKeyLen = keyLen;
4254                 RSAENH_CPDestroyHash(hProv, hKeyHash);
4255             }
4256             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4257                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4258             }
4259             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4260                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4261             }
4262             
4263             init_hash(pCryptHash);
4264             return TRUE;
4265
4266         case HP_HASHVAL:
4267             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4268             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4269             return TRUE;
4270            
4271         case HP_TLS1PRF_SEED:
4272             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4273
4274         case HP_TLS1PRF_LABEL:
4275             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4276             
4277         default:
4278             SetLastError(NTE_BAD_TYPE);
4279             return FALSE;
4280     }
4281 }
4282
4283 /******************************************************************************
4284  * CPSetProvParam (RSAENH.@)
4285  */
4286 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4287 {
4288     FIXME("(stub)\n");
4289     return FALSE;
4290 }
4291
4292 /******************************************************************************
4293  * CPSignHash (RSAENH.@)
4294  *
4295  * Sign a hash object
4296  *
4297  * PARAMS
4298  *  hProv        [I]   The key container, to which the hash object belongs.
4299  *  hHash        [I]   The hash object to be signed.
4300  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4301  *  sDescription [I]   Should be NULL for security reasons. 
4302  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4303  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
4304  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
4305  *
4306  * RETURNS
4307  *  Success: TRUE
4308  *  Failure: FALSE
4309  */
4310 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, 
4311                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, 
4312                               DWORD *pdwSigLen)
4313 {
4314     HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4315     CRYPTKEY *pCryptKey;
4316     DWORD dwHashLen;
4317     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4318     ALG_ID aiAlgid;
4319     BOOL ret = FALSE;
4320
4321     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
4322         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4323         dwFlags, pbSignature, pdwSigLen);
4324
4325     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4326         SetLastError(NTE_BAD_FLAGS);
4327         return FALSE;
4328     }
4329     
4330     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4331             
4332     if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4333                        (OBJECTHDR**)&pCryptKey))
4334     {
4335         SetLastError(NTE_NO_KEY);
4336         goto out;
4337     }
4338
4339     if (!pbSignature) {
4340         *pdwSigLen = pCryptKey->dwKeyLen;
4341         ret = TRUE;
4342         goto out;
4343     }
4344     if (pCryptKey->dwKeyLen > *pdwSigLen)
4345     {
4346         SetLastError(ERROR_MORE_DATA);
4347         *pdwSigLen = pCryptKey->dwKeyLen;
4348         goto out;
4349     }
4350     *pdwSigLen = pCryptKey->dwKeyLen;
4351
4352     if (sDescription) {
4353         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
4354                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4355         {
4356             goto out;
4357         }
4358     }
4359     
4360     dwHashLen = sizeof(DWORD);
4361     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
4362     
4363     dwHashLen = RSAENH_MAX_HASH_SIZE;
4364     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
4365  
4366
4367     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4368         goto out;
4369     }
4370
4371     ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4372 out:
4373     RSAENH_CPDestroyKey(hProv, hCryptKey);
4374     return ret;
4375 }
4376
4377 /******************************************************************************
4378  * CPVerifySignature (RSAENH.@)
4379  *
4380  * Verify the signature of a hash object.
4381  * 
4382  * PARAMS
4383  *  hProv        [I] The key container, to which the hash belongs.
4384  *  hHash        [I] The hash for which the signature is verified.
4385  *  pbSignature  [I] The binary signature.
4386  *  dwSigLen     [I] Length of the signature BLOB.
4387  *  hPubKey      [I] Public key used to verify the signature.
4388  *  sDescription [I] Should be NULL for security reasons.
4389  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4390  *
4391  * RETURNS
4392  *  Success: TRUE  (Signature is valid)
4393  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4394  */
4395 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature, 
4396                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, 
4397                                      DWORD dwFlags)
4398 {
4399     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4400     CRYPTKEY *pCryptKey;
4401     DWORD dwHashLen;
4402     ALG_ID aiAlgid;
4403     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4404     BOOL res = FALSE;
4405
4406     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
4407           "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4408           dwFlags);
4409         
4410     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4411         SetLastError(NTE_BAD_FLAGS);
4412         return FALSE;
4413     }
4414     
4415     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4416     {
4417         SetLastError(NTE_BAD_UID);
4418         return FALSE;
4419     }
4420  
4421     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4422                        (OBJECTHDR**)&pCryptKey))
4423     {
4424         SetLastError(NTE_BAD_KEY);
4425         return FALSE;
4426     }
4427
4428     /* in Microsoft implementation, the signature length is checked before
4429      * the signature pointer.
4430      */
4431     if (dwSigLen != pCryptKey->dwKeyLen)
4432     {
4433         SetLastError(NTE_BAD_SIGNATURE);
4434         return FALSE;
4435     }
4436
4437     if (!hHash || !pbSignature)
4438     {
4439         SetLastError(ERROR_INVALID_PARAMETER);
4440         return FALSE;
4441     }
4442
4443     if (sDescription) {
4444         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
4445                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4446         {
4447             return FALSE;
4448         }
4449     }
4450     
4451     dwHashLen = sizeof(DWORD);
4452     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4453     
4454     dwHashLen = RSAENH_MAX_HASH_SIZE;
4455     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4456
4457     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4458     if (!pbConstructed) {
4459         SetLastError(NTE_NO_MEMORY);
4460         goto cleanup;
4461     }
4462
4463     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4464     if (!pbDecrypted) {
4465         SetLastError(NTE_NO_MEMORY);
4466         goto cleanup;
4467     }
4468
4469     if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted, 
4470                             RSAENH_DECRYPT)) 
4471     {
4472         goto cleanup;
4473     }
4474
4475     if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) &&
4476         !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4477         res = TRUE;
4478         goto cleanup;
4479     }
4480
4481     if (!(dwFlags & CRYPT_NOHASHOID) &&
4482         build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) &&
4483         !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4484         res = TRUE;
4485         goto cleanup;
4486     }
4487
4488     SetLastError(NTE_BAD_SIGNATURE);
4489
4490 cleanup:
4491     HeapFree(GetProcessHeap(), 0, pbConstructed);
4492     HeapFree(GetProcessHeap(), 0, pbDecrypted);
4493     return res;
4494 }
4495
4496 static const WCHAR szProviderKeys[6][116] = {
4497     {   'S','o','f','t','w','a','r','e','\\',
4498         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4499         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4500         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
4501         'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4502         'o','v','i','d','e','r',' ','v','1','.','0',0 },
4503     {   'S','o','f','t','w','a','r','e','\\',
4504         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4505         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4506         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4507         'E','n','h','a','n','c','e','d',
4508         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4509         'o','v','i','d','e','r',' ','v','1','.','0',0 },
4510     {   'S','o','f','t','w','a','r','e','\\',
4511         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4512         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4513         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
4514         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4515         'o','v','i','d','e','r',0 },
4516     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4517         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4518         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4519         'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
4520         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4521     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4522         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4523         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4524         'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4525         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4526     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4527         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4528         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4529         'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4530         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',
4531         ' ','(','P','r','o','t','o','t','y','p','e',')',0 }
4532 };
4533 static const WCHAR szDefaultKeys[3][65] = {
4534     {   'S','o','f','t','w','a','r','e','\\',
4535         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4536         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4537         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
4538     {   'S','o','f','t','w','a','r','e','\\',
4539         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4540         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4541         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 },
4542     {   'S','o','f','t','w','a','r','e','\\',
4543         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4544         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4545         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','2','4',0 }
4546 };
4547
4548
4549 /******************************************************************************
4550  * DllRegisterServer (RSAENH.@)
4551  */
4552 HRESULT WINAPI DllRegisterServer(void)
4553 {
4554     return __wine_register_resources( instance );
4555 }
4556
4557 /******************************************************************************
4558  * DllUnregisterServer (RSAENH.@)
4559  */
4560 HRESULT WINAPI DllUnregisterServer(void)
4561 {
4562     return __wine_unregister_resources( instance );
4563 }