comctl32/listview: Free ID array when removing all items.
[wine] / dlls / rsaenh / rsaenh.c
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  * Copyright 2007 Vijay Kiran Kamuju
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23  */
24
25 #include "config.h"
26 #include "wine/port.h"
27 #include "wine/library.h"
28 #include "wine/debug.h"
29
30 #include <stdarg.h>
31 #include <stdio.h>
32
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winreg.h"
36 #include "wincrypt.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44  * CRYPTHASH - hash objects
45  */
46 #define RSAENH_MAGIC_HASH           0x85938417u
47 #define RSAENH_MAX_HASH_SIZE        104
48 #define RSAENH_HASHSTATE_HASHING    1
49 #define RSAENH_HASHSTATE_FINISHED   2
50 typedef struct _RSAENH_TLS1PRF_PARAMS
51 {
52     CRYPT_DATA_BLOB blobLabel;
53     CRYPT_DATA_BLOB blobSeed;
54 } RSAENH_TLS1PRF_PARAMS;
55
56 typedef struct tagCRYPTHASH
57 {
58     OBJECTHDR    header;
59     ALG_ID       aiAlgid;
60     HCRYPTKEY    hKey;
61     HCRYPTPROV   hProv;
62     DWORD        dwHashSize;
63     DWORD        dwState;
64     HASH_CONTEXT context;
65     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
66     PHMAC_INFO   pHMACInfo;
67     RSAENH_TLS1PRF_PARAMS tpPRFParams;
68 } CRYPTHASH;
69
70 /******************************************************************************
71  * CRYPTKEY - key objects
72  */
73 #define RSAENH_MAGIC_KEY           0x73620457u
74 #define RSAENH_MAX_KEY_SIZE        48
75 #define RSAENH_MAX_BLOCK_SIZE      24
76 #define RSAENH_KEYSTATE_IDLE       0
77 #define RSAENH_KEYSTATE_ENCRYPTING 1
78 #define RSAENH_KEYSTATE_MASTERKEY  2
79 typedef struct _RSAENH_SCHANNEL_INFO 
80 {
81     SCHANNEL_ALG saEncAlg;
82     SCHANNEL_ALG saMACAlg;
83     CRYPT_DATA_BLOB blobClientRandom;
84     CRYPT_DATA_BLOB blobServerRandom;
85 } RSAENH_SCHANNEL_INFO;
86
87 typedef struct tagCRYPTKEY
88 {
89     OBJECTHDR   header;
90     ALG_ID      aiAlgid;
91     HCRYPTPROV  hProv;
92     DWORD       dwMode;
93     DWORD       dwModeBits;
94     DWORD       dwPermissions;
95     DWORD       dwKeyLen;
96     DWORD       dwEffectiveKeyLen;
97     DWORD       dwSaltLen;
98     DWORD       dwBlockLen;
99     DWORD       dwState;
100     KEY_CONTEXT context;    
101     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
102     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
103     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
104     RSAENH_SCHANNEL_INFO siSChannelInfo;
105 } CRYPTKEY;
106
107 /******************************************************************************
108  * KEYCONTAINER - key containers
109  */
110 #define RSAENH_PERSONALITY_BASE        0u
111 #define RSAENH_PERSONALITY_STRONG      1u
112 #define RSAENH_PERSONALITY_ENHANCED    2u
113 #define RSAENH_PERSONALITY_SCHANNEL    3u
114 #define RSAENH_PERSONALITY_AES         4u
115
116 #define RSAENH_MAGIC_CONTAINER         0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119     OBJECTHDR    header;
120     DWORD        dwFlags;
121     DWORD        dwPersonality;
122     DWORD        dwEnumAlgsCtr;
123     DWORD        dwEnumContainersCtr;
124     CHAR         szName[MAX_PATH];
125     CHAR         szProvName[MAX_PATH];
126     HCRYPTKEY    hKeyExchangeKeyPair;
127     HCRYPTKEY    hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131  * Some magic constants
132  */
133 #define RSAENH_ENCRYPT                    1
134 #define RSAENH_DECRYPT                    0    
135 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN          64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
139 #define RSAENH_DES_STORAGE_KEYLEN        64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN   128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
143 #define RSAENH_3DES_STORAGE_KEYLEN      192
144 #define RSAENH_MAGIC_RSA2        0x32415352
145 #define RSAENH_MAGIC_RSA1        0x31415352
146 #define RSAENH_PKC_BLOCKTYPE           0x02
147 #define RSAENH_SSL3_VERSION_MAJOR         3
148 #define RSAENH_SSL3_VERSION_MINOR         0
149 #define RSAENH_TLS1_VERSION_MAJOR         3
150 #define RSAENH_TLS1_VERSION_MINOR         1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156  */
157 #define RSAENH_MAX_ENUMALGS 24
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
160 {
161  {
162   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
163   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
164   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
165   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
166   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
167   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
168   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
169   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
171   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
174   {0,               0,  0,    0,0,                    1,"",         1,""}
175  },
176  {
177   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
178   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
179   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
180   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
181   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
182   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
183   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
184   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
185   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
186   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
188   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
191   {0,               0,  0,    0,0,                    1,"",         1,""}
192  },
193  {
194   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
195   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
196   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
197   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
198   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
199   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
200   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
201   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
202   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
203   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
205   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
208   {0,               0,  0,    0,0,                    1,"",         1,""}
209  },
210  {
211   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
212   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
213   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
214   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
216   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
220   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
223   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
224   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
225   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
226   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
227   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
229   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
231   {0,               0,  0,    0,0,                          1,"",            1,""}
232  },
233  {
234   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
235   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
236   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
237   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
238   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
239   {CALG_AES,      128,128,  128,0,                    4,"AES",     35,"Advanced Encryption Standard (AES)"},
240   {CALG_AES_128,  128,128,  128,0,                    8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
241   {CALG_AES_192,  192,192,  192,0,                    8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
242   {CALG_AES_256,  256,256,  256,0,                    8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
243   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
244   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
245   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
246   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
247   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
248   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
249   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
250   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
251   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
252   {0,               0,  0,    0,0,                    1,"",         1,""}
253  }
254 };
255
256 /******************************************************************************
257  * API forward declarations
258  */
259 BOOL WINAPI 
260 RSAENH_CPGetKeyParam(
261     HCRYPTPROV hProv, 
262     HCRYPTKEY hKey, 
263     DWORD dwParam, 
264     BYTE *pbData, 
265     DWORD *pdwDataLen, 
266     DWORD dwFlags
267 );
268
269 BOOL WINAPI 
270 RSAENH_CPEncrypt(
271     HCRYPTPROV hProv, 
272     HCRYPTKEY hKey, 
273     HCRYPTHASH hHash, 
274     BOOL Final, 
275     DWORD dwFlags, 
276     BYTE *pbData,
277     DWORD *pdwDataLen, 
278     DWORD dwBufLen
279 );
280
281 BOOL WINAPI 
282 RSAENH_CPCreateHash(
283     HCRYPTPROV hProv, 
284     ALG_ID Algid, 
285     HCRYPTKEY hKey, 
286     DWORD dwFlags, 
287     HCRYPTHASH *phHash
288 );
289
290 BOOL WINAPI 
291 RSAENH_CPSetHashParam(
292     HCRYPTPROV hProv, 
293     HCRYPTHASH hHash, 
294     DWORD dwParam, 
295     BYTE *pbData, DWORD dwFlags
296 );
297
298 BOOL WINAPI 
299 RSAENH_CPGetHashParam(
300     HCRYPTPROV hProv, 
301     HCRYPTHASH hHash, 
302     DWORD dwParam, 
303     BYTE *pbData, 
304     DWORD *pdwDataLen, 
305     DWORD dwFlags
306 );
307
308 BOOL WINAPI 
309 RSAENH_CPDestroyHash(
310     HCRYPTPROV hProv, 
311     HCRYPTHASH hHash
312 );
313
314 static BOOL crypt_export_key(
315     CRYPTKEY *pCryptKey,
316     HCRYPTKEY hPubKey, 
317     DWORD dwBlobType, 
318     DWORD dwFlags, 
319     BOOL force,
320     BYTE *pbData, 
321     DWORD *pdwDataLen
322 );
323
324 static BOOL import_key(
325     HCRYPTPROV hProv, 
326     CONST BYTE *pbData, 
327     DWORD dwDataLen, 
328     HCRYPTKEY hPubKey, 
329     DWORD dwFlags, 
330     BOOL fStoreKey,
331     HCRYPTKEY *phKey
332 );
333
334 BOOL WINAPI 
335 RSAENH_CPHashData(
336     HCRYPTPROV hProv, 
337     HCRYPTHASH hHash, 
338     CONST BYTE *pbData, 
339     DWORD dwDataLen, 
340     DWORD dwFlags
341 );
342
343 /******************************************************************************
344  * CSP's handle table (used by all acquired key containers)
345  */
346 static struct handle_table handle_table;
347
348 /******************************************************************************
349  * DllMain (RSAENH.@)
350  *
351  * Initializes and destroys the handle table for the CSP's handles.
352  */
353 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
354 {
355     switch (fdwReason)
356     {
357         case DLL_PROCESS_ATTACH:
358             DisableThreadLibraryCalls(hInstance);
359             init_handle_table(&handle_table);
360             break;
361
362         case DLL_PROCESS_DETACH:
363             destroy_handle_table(&handle_table);
364             break;
365     }
366     return 1;
367 }
368
369 /******************************************************************************
370  * copy_param [Internal]
371  *
372  * Helper function that supports the standard WINAPI protocol for querying data
373  * of dynamic size.
374  *
375  * PARAMS
376  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
377  *                      May be NUL if the required buffer size is to be queried only.
378  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
379  *                      Out: Size of parameter pbParam
380  *  pbParam       [I]   Parameter value.
381  *  dwParamSize   [I]   Size of pbParam
382  *
383  * RETURN
384  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
385  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
386  */
387 static inline BOOL copy_param(
388     BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize) 
389 {
390     if (pbBuffer) 
391     {
392         if (dwParamSize > *pdwBufferSize) 
393         {
394             SetLastError(ERROR_MORE_DATA);
395             *pdwBufferSize = dwParamSize;
396             return FALSE;
397         }
398         memcpy(pbBuffer, pbParam, dwParamSize);
399     }
400     *pdwBufferSize = dwParamSize;
401     return TRUE;
402 }
403
404 /******************************************************************************
405  * get_algid_info [Internal]
406  *
407  * Query CSP capabilities for a given crypto algorithm.
408  * 
409  * PARAMS
410  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
411  *  algid [I] Identifier of the crypto algorithm about which information is requested.
412  *
413  * RETURNS
414  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
415  *  Failure: NULL (algid not supported)
416  */
417 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
418     const PROV_ENUMALGS_EX *iterator;
419     KEYCONTAINER *pKeyContainer;
420
421     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
422         SetLastError(NTE_BAD_UID);
423         return NULL;
424     }
425
426     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
427         if (iterator->aiAlgid == algid) return iterator;
428     }
429
430     SetLastError(NTE_BAD_ALGID);
431     return NULL;
432 }
433
434 /******************************************************************************
435  * copy_data_blob [Internal] 
436  *
437  * deeply copies a DATA_BLOB
438  *
439  * PARAMS
440  *  dst [O] That's where the blob will be copied to
441  *  src [I] Source blob
442  *
443  * RETURNS
444  *  Success: TRUE
445  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
446  *
447  * NOTES
448  *  Use free_data_blob to release resources occupied by copy_data_blob.
449  */
450 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
451     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
452     if (!dst->pbData) {
453         SetLastError(NTE_NO_MEMORY);
454         return FALSE;
455     }    
456     dst->cbData = src->cbData;
457     memcpy(dst->pbData, src->pbData, src->cbData);
458     return TRUE;
459 }
460
461 /******************************************************************************
462  * concat_data_blobs [Internal]
463  *
464  * Concatenates two blobs
465  *
466  * PARAMS
467  *  dst  [O] The new blob will be copied here
468  *  src1 [I] Prefix blob
469  *  src2 [I] Appendix blob
470  *
471  * RETURNS
472  *  Success: TRUE
473  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
474  *
475  * NOTES
476  *  Release resources occupied by concat_data_blobs with free_data_blobs
477  */
478 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1, 
479                                      CONST PCRYPT_DATA_BLOB src2) 
480 {
481     dst->cbData = src1->cbData + src2->cbData;
482     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
483     if (!dst->pbData) {
484         SetLastError(NTE_NO_MEMORY);
485         return FALSE;
486     }
487     memcpy(dst->pbData, src1->pbData, src1->cbData);
488     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
489     return TRUE;
490 }
491
492 /******************************************************************************
493  * free_data_blob [Internal]
494  *
495  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
496  * 
497  * PARAMS
498  *  pBlob [I] Heap space occupied by pBlob->pbData is released
499  */
500 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
501     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
502 }
503
504 /******************************************************************************
505  * init_data_blob [Internal]
506  */
507 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
508     pBlob->pbData = NULL;
509     pBlob->cbData = 0;
510 }
511
512 /******************************************************************************
513  * free_hmac_info [Internal]
514  *
515  * Deeply free an HMAC_INFO struct.
516  *
517  * PARAMS
518  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
519  *
520  * NOTES
521  *  See Internet RFC 2104 for details on the HMAC algorithm.
522  */
523 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
524     if (!hmac_info) return;
525     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
526     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
527     HeapFree(GetProcessHeap(), 0, hmac_info);
528 }
529
530 /******************************************************************************
531  * copy_hmac_info [Internal]
532  *
533  * Deeply copy an HMAC_INFO struct
534  *
535  * PARAMS
536  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
537  *  src [I] Pointer to the HMAC_INFO struct to be copied.
538  *
539  * RETURNS
540  *  Success: TRUE
541  *  Failure: FALSE
542  *
543  * NOTES
544  *  See Internet RFC 2104 for details on the HMAC algorithm.
545  */
546 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
547     if (!src) return FALSE;
548     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
549     if (!*dst) return FALSE;
550     **dst = *src;
551     (*dst)->pbInnerString = NULL;
552     (*dst)->pbOuterString = NULL;
553     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
554     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
555     if (!(*dst)->pbInnerString) {
556         free_hmac_info(*dst);
557         return FALSE;
558     }
559     if (src->cbInnerString) 
560         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
561     else 
562         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
563     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
564     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
565     if (!(*dst)->pbOuterString) {
566         free_hmac_info(*dst);
567         return FALSE;
568     }
569     if (src->cbOuterString) 
570         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
571     else 
572         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
573     return TRUE;
574 }
575
576 /******************************************************************************
577  * destroy_hash [Internal]
578  *
579  * Destructor for hash objects
580  *
581  * PARAMS
582  *  pCryptHash [I] Pointer to the hash object to be destroyed. 
583  *                 Will be invalid after function returns!
584  */
585 static void destroy_hash(OBJECTHDR *pObject)
586 {
587     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
588         
589     free_hmac_info(pCryptHash->pHMACInfo);
590     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
591     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
592     HeapFree(GetProcessHeap(), 0, pCryptHash);
593 }
594
595 /******************************************************************************
596  * init_hash [Internal]
597  *
598  * Initialize (or reset) a hash object
599  *
600  * PARAMS
601  *  pCryptHash    [I] The hash object to be initialized.
602  */
603 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
604     DWORD dwLen;
605         
606     switch (pCryptHash->aiAlgid) 
607     {
608         case CALG_HMAC:
609             if (pCryptHash->pHMACInfo) { 
610                 const PROV_ENUMALGS_EX *pAlgInfo;
611                 
612                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
613                 if (!pAlgInfo) return FALSE;
614                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
615                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
616                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
617                                  pCryptHash->pHMACInfo->pbInnerString, 
618                                  pCryptHash->pHMACInfo->cbInnerString);
619             }
620             return TRUE;
621             
622         case CALG_MAC:
623             dwLen = sizeof(DWORD);
624             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, 
625                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
626             pCryptHash->dwHashSize >>= 3;
627             return TRUE;
628
629         default:
630             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
631     }
632 }
633
634 /******************************************************************************
635  * update_hash [Internal]
636  *
637  * Hashes the given data and updates the hash object's state accordingly
638  *
639  * PARAMS
640  *  pCryptHash [I] Hash object to be updated.
641  *  pbData     [I] Pointer to data stream to be hashed.
642  *  dwDataLen  [I] Length of data stream.
643  */
644 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
645     BYTE *pbTemp;
646
647     switch (pCryptHash->aiAlgid)
648     {
649         case CALG_HMAC:
650             if (pCryptHash->pHMACInfo) 
651                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
652                                  pbData, dwDataLen);
653             break;
654
655         case CALG_MAC:
656             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
657             if (!pbTemp) return;
658             memcpy(pbTemp, pbData, dwDataLen);
659             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
660                              pbTemp, &dwDataLen, dwDataLen);
661             HeapFree(GetProcessHeap(), 0, pbTemp);
662             break;
663
664         default:
665             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
666     }
667 }
668
669 /******************************************************************************
670  * finalize_hash [Internal]
671  *
672  * Finalizes the hash, after all data has been hashed with update_hash.
673  * No additional data can be hashed afterwards until the hash gets initialized again.
674  *
675  * PARAMS
676  *  pCryptHash [I] Hash object to be finalized.
677  */
678 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
679     DWORD dwDataLen;
680         
681     switch (pCryptHash->aiAlgid)
682     {
683         case CALG_HMAC:
684             if (pCryptHash->pHMACInfo) {
685                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
686
687                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
688                                    pCryptHash->abHashValue);
689                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
690                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
691                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
692                                  pCryptHash->pHMACInfo->pbOuterString, 
693                                  pCryptHash->pHMACInfo->cbOuterString);
694                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
695                                  abHashValue, pCryptHash->dwHashSize);
696                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
697                                    pCryptHash->abHashValue);
698             } 
699             break;
700
701         case CALG_MAC:
702             dwDataLen = 0;
703             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
704                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
705             break;
706
707         default:
708             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
709     }
710 }
711
712 /******************************************************************************
713  * destroy_key [Internal]
714  *
715  * Destructor for key objects
716  *
717  * PARAMS
718  *  pCryptKey [I] Pointer to the key object to be destroyed. 
719  *                Will be invalid after function returns!
720  */
721 static void destroy_key(OBJECTHDR *pObject)
722 {
723     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
724         
725     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
726     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
727     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
728     HeapFree(GetProcessHeap(), 0, pCryptKey);
729 }
730
731 /******************************************************************************
732  * setup_key [Internal]
733  *
734  * Initialize (or reset) a key object
735  *
736  * PARAMS
737  *  pCryptKey    [I] The key object to be initialized.
738  */
739 static inline void setup_key(CRYPTKEY *pCryptKey) {
740     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
741     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
742     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, 
743                    pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
744                    pCryptKey->abKeyValue);
745 }
746
747 /******************************************************************************
748  * new_key [Internal]
749  *
750  * Creates a new key object without assigning the actual binary key value. 
751  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
752  *
753  * PARAMS
754  *  hProv      [I] Handle to the provider to which the created key will belong.
755  *  aiAlgid    [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
756  *  dwFlags    [I] Upper 16 bits give the key length.
757  *                 Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
758  *                 CRYPT_NO_SALT
759  *  ppCryptKey [O] Pointer to the created key
760  *
761  * RETURNS
762  *  Success: Handle to the created key.
763  *  Failure: INVALID_HANDLE_VALUE
764  */
765 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
766 {
767     HCRYPTKEY hCryptKey;
768     CRYPTKEY *pCryptKey;
769     DWORD dwKeyLen = HIWORD(dwFlags);
770     const PROV_ENUMALGS_EX *peaAlgidInfo;
771
772     *ppCryptKey = NULL;
773     
774     /* 
775      * Retrieve the CSP's capabilities for the given ALG_ID value
776      */
777     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
778     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
779
780     TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
781           dwKeyLen);
782     /*
783      * Assume the default key length, if none is specified explicitly
784      */
785     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
786     
787     /*
788      * Check if the requested key length is supported by the current CSP.
789      * Adjust key length's for DES algorithms.
790      */
791     switch (aiAlgid) {
792         case CALG_DES:
793             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
794                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
795             }
796             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
797                 SetLastError(NTE_BAD_FLAGS);
798                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
799             }
800             break;
801
802         case CALG_3DES_112:
803             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
804                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
805             }
806             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
807                 SetLastError(NTE_BAD_FLAGS);
808                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
809             }
810             break;
811
812         case CALG_3DES:
813             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
814                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
815             }
816             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
817                 SetLastError(NTE_BAD_FLAGS);
818                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
819             }
820             break;
821         
822         default:
823             if (dwKeyLen % 8 || 
824                 dwKeyLen > peaAlgidInfo->dwMaxLen || 
825                 dwKeyLen < peaAlgidInfo->dwMinLen) 
826             {
827                 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
828                       peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
829                 SetLastError(NTE_BAD_DATA);
830                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
831             }
832     }
833
834     hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
835                            destroy_key, (OBJECTHDR**)&pCryptKey);
836     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
837     {
838         pCryptKey->aiAlgid = aiAlgid;
839         pCryptKey->hProv = hProv;
840         pCryptKey->dwModeBits = 0;
841         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | 
842                                    CRYPT_MAC;
843         if (dwFlags & CRYPT_EXPORTABLE)
844             pCryptKey->dwPermissions |= CRYPT_EXPORT;
845         pCryptKey->dwKeyLen = dwKeyLen >> 3;
846         pCryptKey->dwEffectiveKeyLen = 0;
847         if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) 
848             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
849         else
850             pCryptKey->dwSaltLen = 0;
851         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
852         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
853         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
854         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
855             
856         switch(aiAlgid)
857         {
858             case CALG_PCT1_MASTER:
859             case CALG_SSL2_MASTER:
860             case CALG_SSL3_MASTER:
861             case CALG_TLS1_MASTER:
862             case CALG_RC4:
863                 pCryptKey->dwBlockLen = 0;
864                 pCryptKey->dwMode = 0;
865                 break;
866
867             case CALG_RC2:
868             case CALG_DES:
869             case CALG_3DES_112:
870             case CALG_3DES:
871                 pCryptKey->dwBlockLen = 8;
872                 pCryptKey->dwMode = CRYPT_MODE_CBC;
873                 break;
874
875             case CALG_AES:
876             case CALG_AES_128:
877             case CALG_AES_192:
878             case CALG_AES_256:
879                 pCryptKey->dwBlockLen = 16;
880                 pCryptKey->dwMode = CRYPT_MODE_ECB;
881                 break;
882
883             case CALG_RSA_KEYX:
884             case CALG_RSA_SIGN:
885                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
886                 pCryptKey->dwMode = 0;
887                 break;
888         }
889
890         *ppCryptKey = pCryptKey;
891     }
892
893     return hCryptKey;
894 }
895
896 /******************************************************************************
897  * map_key_spec_to_key_pair_name [Internal]
898  *
899  * Returns the name of the registry value associated with a key spec.
900  *
901  * PARAMS
902  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
903  *
904  * RETURNS
905  *  Success: Name of registry value.
906  *  Failure: NULL
907  */
908 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
909 {
910     LPCSTR szValueName;
911
912     switch (dwKeySpec)
913     {
914     case AT_KEYEXCHANGE:
915         szValueName = "KeyExchangeKeyPair";
916         break;
917     case AT_SIGNATURE:
918         szValueName = "SignatureKeyPair";
919         break;
920     default:
921         WARN("invalid key spec %d\n", dwKeySpec);
922         szValueName = NULL;
923     }
924     return szValueName;
925 }
926
927 /******************************************************************************
928  * store_key_pair [Internal]
929  *
930  * Stores a key pair to the registry
931  * 
932  * PARAMS
933  *  hCryptKey     [I] Handle to the key to be stored
934  *  hKey          [I] Registry key where the key pair is to be stored
935  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
936  *  dwFlags       [I] Flags for protecting the key
937  */
938 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
939 {
940     LPCSTR szValueName;
941     DATA_BLOB blobIn, blobOut;
942     CRYPTKEY *pKey;
943     DWORD dwLen;
944     BYTE *pbKey;
945
946     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
947         return;
948     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
949                       (OBJECTHDR**)&pKey))
950     {
951         if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
952         {
953             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
954             if (pbKey)
955             {
956                 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
957                     &dwLen))
958                 {
959                     blobIn.pbData = pbKey;
960                     blobIn.cbData = dwLen;
961
962                     if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
963                         dwFlags, &blobOut))
964                     {
965                         RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
966                                        blobOut.pbData, blobOut.cbData);
967                         LocalFree(blobOut.pbData);
968                     }
969                 }
970                 HeapFree(GetProcessHeap(), 0, pbKey);
971             }
972         }
973     }
974 }
975
976 /******************************************************************************
977  * map_key_spec_to_permissions_name [Internal]
978  *
979  * Returns the name of the registry value associated with the permissions for
980  * a key spec.
981  *
982  * PARAMS
983  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
984  *
985  * RETURNS
986  *  Success: Name of registry value.
987  *  Failure: NULL
988  */
989 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
990 {
991     LPCSTR szValueName;
992
993     switch (dwKeySpec)
994     {
995     case AT_KEYEXCHANGE:
996         szValueName = "KeyExchangePermissions";
997         break;
998     case AT_SIGNATURE:
999         szValueName = "SignaturePermissions";
1000         break;
1001     default:
1002         WARN("invalid key spec %d\n", dwKeySpec);
1003         szValueName = NULL;
1004     }
1005     return szValueName;
1006 }
1007
1008 /******************************************************************************
1009  * store_key_permissions [Internal]
1010  *
1011  * Stores a key's permissions to the registry
1012  *
1013  * PARAMS
1014  *  hCryptKey     [I] Handle to the key whose permissions are to be stored
1015  *  hKey          [I] Registry key where the key permissions are to be stored
1016  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1017  */
1018 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1019 {
1020     LPCSTR szValueName;
1021     CRYPTKEY *pKey;
1022
1023     if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1024         return;
1025     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1026                       (OBJECTHDR**)&pKey))
1027         RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1028                        (BYTE *)&pKey->dwPermissions,
1029                        sizeof(pKey->dwPermissions));
1030 }
1031
1032 /******************************************************************************
1033  * create_container_key [Internal]
1034  *
1035  * Creates the registry key for a key container's persistent storage.
1036  * 
1037  * PARAMS
1038  *  pKeyContainer [I] Pointer to the key container
1039  *  sam           [I] Desired registry access
1040  *  phKey         [O] Returned key
1041  */
1042 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1043 {
1044     CHAR szRSABase[MAX_PATH];
1045     HKEY hRootKey;
1046
1047     sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1048
1049     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1050         hRootKey = HKEY_LOCAL_MACHINE;
1051     else
1052         hRootKey = HKEY_CURRENT_USER;
1053
1054     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1055     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1056     return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1057                            REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1058                            == ERROR_SUCCESS;
1059 }
1060
1061 /******************************************************************************
1062  * open_container_key [Internal]
1063  *
1064  * Opens a key container's persistent storage for reading.
1065  *
1066  * PARAMS
1067  *  pszContainerName [I] Name of the container to be opened.  May be the empty
1068  *                       string if the parent key of all containers is to be
1069  *                       opened.
1070  *  dwFlags          [I] Flags indicating which keyset to be opened.
1071  *  phKey            [O] Returned key
1072  */
1073 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, HKEY *phKey)
1074 {
1075     CHAR szRSABase[MAX_PATH];
1076     HKEY hRootKey;
1077
1078     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1079
1080     if (dwFlags & CRYPT_MACHINE_KEYSET)
1081         hRootKey = HKEY_LOCAL_MACHINE;
1082     else
1083         hRootKey = HKEY_CURRENT_USER;
1084
1085     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1086     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1087     return RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, phKey) ==
1088                          ERROR_SUCCESS;
1089 }
1090
1091 /******************************************************************************
1092  * delete_container_key [Internal]
1093  *
1094  * Deletes a key container's persistent storage.
1095  *
1096  * PARAMS
1097  *  pszContainerName [I] Name of the container to be opened.
1098  *  dwFlags          [I] Flags indicating which keyset to be opened.
1099  */
1100 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1101 {
1102     CHAR szRegKey[MAX_PATH];
1103
1104     if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1105         SetLastError(NTE_BAD_KEYSET_PARAM);
1106         return FALSE;
1107     } else {
1108         HKEY hRootKey;
1109         if (dwFlags & CRYPT_MACHINE_KEYSET)
1110             hRootKey = HKEY_LOCAL_MACHINE;
1111         else
1112             hRootKey = HKEY_CURRENT_USER;
1113         if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1114             SetLastError(ERROR_SUCCESS);
1115             return TRUE;
1116         } else {
1117             SetLastError(NTE_BAD_KEYSET);
1118             return FALSE;
1119         }
1120     }
1121 }
1122
1123 /******************************************************************************
1124  * store_key_container_keys [Internal]
1125  *
1126  * Stores key container's keys in a persistent location.
1127  *
1128  * PARAMS
1129  *  pKeyContainer [I] Pointer to the key container whose keys are to be saved
1130  */
1131 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1132 {
1133     HKEY hKey;
1134     DWORD dwFlags;
1135
1136     /* On WinXP, persistent keys are stored in a file located at:
1137      * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1138      */
1139
1140     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1141         dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1142     else
1143         dwFlags = 0;
1144
1145     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1146     {
1147         store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1148                        AT_KEYEXCHANGE, dwFlags);
1149         store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1150                        AT_SIGNATURE, dwFlags);
1151         RegCloseKey(hKey);
1152     }
1153 }
1154
1155 /******************************************************************************
1156  * store_key_container_permissions [Internal]
1157  *
1158  * Stores key container's key permissions in a persistent location.
1159  *
1160  * PARAMS
1161  *  pKeyContainer [I] Pointer to the key container whose key permissions are to
1162  *                    be saved
1163  */
1164 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1165 {
1166     HKEY hKey;
1167     DWORD dwFlags;
1168
1169     /* On WinXP, persistent keys are stored in a file located at:
1170      * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1171      */
1172
1173     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1174         dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1175     else
1176         dwFlags = 0;
1177
1178     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1179     {
1180         store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1181                        AT_KEYEXCHANGE);
1182         store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1183                        AT_SIGNATURE);
1184         RegCloseKey(hKey);
1185     }
1186 }
1187
1188 /******************************************************************************
1189  * release_key_container_keys [Internal]
1190  *
1191  * Releases key container's keys.
1192  *
1193  * PARAMS
1194  *  pKeyContainer [I] Pointer to the key container whose keys are to be released.
1195  */
1196 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1197 {
1198     release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1199                    RSAENH_MAGIC_KEY);
1200     release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1201                    RSAENH_MAGIC_KEY);
1202 }
1203
1204 /******************************************************************************
1205  * destroy_key_container [Internal]
1206  *
1207  * Destructor for key containers.
1208  *
1209  * PARAMS
1210  *  pObjectHdr [I] Pointer to the key container to be destroyed.
1211  */
1212 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1213 {
1214     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1215
1216     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1217     {
1218         store_key_container_keys(pKeyContainer);
1219         store_key_container_permissions(pKeyContainer);
1220         release_key_container_keys(pKeyContainer);
1221     }
1222     HeapFree( GetProcessHeap(), 0, pKeyContainer );
1223 }
1224
1225 /******************************************************************************
1226  * new_key_container [Internal]
1227  *
1228  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) 
1229  * of the CSP is determined via the pVTable->pszProvName string.
1230  *
1231  * PARAMS
1232  *  pszContainerName [I] Name of the key container.
1233  *  pVTable          [I] Callback functions and context info provided by the OS
1234  *
1235  * RETURNS
1236  *  Success: Handle to the new key container.
1237  *  Failure: INVALID_HANDLE_VALUE
1238  */
1239 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1240 {
1241     KEYCONTAINER *pKeyContainer;
1242     HCRYPTPROV hKeyContainer;
1243
1244     hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1245                                destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1246     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1247     {
1248         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1249         pKeyContainer->dwFlags = dwFlags;
1250         pKeyContainer->dwEnumAlgsCtr = 0;
1251         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1252         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1253         if (pVTable && pVTable->pszProvName) {
1254             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1255             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1256                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1257             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1258                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1259             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { 
1260                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1261             } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A)) {
1262                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1263             } else {
1264                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1265             }
1266         }
1267
1268         /* The new key container has to be inserted into the CSP immediately 
1269          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1270         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1271             HKEY hKey;
1272
1273             if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1274                 RegCloseKey(hKey);
1275         }
1276     }
1277
1278     return hKeyContainer;
1279 }
1280
1281 /******************************************************************************
1282  * read_key_value [Internal]
1283  *
1284  * Reads a key pair value from the registry
1285  *
1286  * PARAMS
1287  *  hKeyContainer [I] Crypt provider to use to import the key
1288  *  hKey          [I] Registry key from which to read the key pair
1289  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1290  *  dwFlags       [I] Flags for unprotecting the key
1291  *  phCryptKey    [O] Returned key
1292  */
1293 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1294 {
1295     LPCSTR szValueName;
1296     DWORD dwValueType, dwLen;
1297     BYTE *pbKey;
1298     DATA_BLOB blobIn, blobOut;
1299     BOOL ret = FALSE;
1300
1301     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1302         return FALSE;
1303     if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1304         ERROR_SUCCESS)
1305     {
1306         pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1307         if (pbKey)
1308         {
1309             if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1310                 ERROR_SUCCESS)
1311             {
1312                 blobIn.pbData = pbKey;
1313                 blobIn.cbData = dwLen;
1314
1315                 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1316                     dwFlags, &blobOut))
1317                 {
1318                     ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1319                                      FALSE, phCryptKey);
1320                     LocalFree(blobOut.pbData);
1321                 }
1322             }
1323             HeapFree(GetProcessHeap(), 0, pbKey);
1324         }
1325     }
1326     if (ret)
1327     {
1328         CRYPTKEY *pKey;
1329
1330         if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1331                           (OBJECTHDR**)&pKey))
1332         {
1333             if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1334             {
1335                 dwLen = sizeof(pKey->dwPermissions);
1336                 RegQueryValueExA(hKey, szValueName, 0, NULL,
1337                                  (BYTE *)&pKey->dwPermissions, &dwLen);
1338             }
1339         }
1340     }
1341     return ret;
1342 }
1343
1344 /******************************************************************************
1345  * read_key_container [Internal]
1346  *
1347  * Tries to read the persistent state of the key container (mainly the signature
1348  * and key exchange private keys) given by pszContainerName.
1349  *
1350  * PARAMS
1351  *  pszContainerName [I] Name of the key container to read from the registry
1352  *  pVTable          [I] Pointer to context data provided by the operating system
1353  *
1354  * RETURNS
1355  *  Success: Handle to the key container read from the registry
1356  *  Failure: INVALID_HANDLE_VALUE
1357  */
1358 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1359 {
1360     HKEY hKey;
1361     KEYCONTAINER *pKeyContainer;
1362     HCRYPTPROV hKeyContainer;
1363     HCRYPTKEY hCryptKey;
1364
1365     if (!open_container_key(pszContainerName, dwFlags, &hKey))
1366     {
1367         SetLastError(NTE_BAD_KEYSET);
1368         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1369     }
1370
1371     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1372     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1373     {
1374         DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1375             CRYPTPROTECT_LOCAL_MACHINE : 0;
1376
1377         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, 
1378                            (OBJECTHDR**)&pKeyContainer))
1379             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1380     
1381         if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1382             dwProtectFlags, &hCryptKey))
1383             pKeyContainer->hKeyExchangeKeyPair = hCryptKey;
1384         if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1385             dwProtectFlags, &hCryptKey))
1386             pKeyContainer->hSignatureKeyPair = hCryptKey;
1387     }
1388
1389     return hKeyContainer;
1390 }
1391
1392 /******************************************************************************
1393  * build_hash_signature [Internal]
1394  *
1395  * Builds a padded version of a hash to match the length of the RSA key modulus.
1396  *
1397  * PARAMS
1398  *  pbSignature [O] The padded hash object is stored here.
1399  *  dwLen       [I] Length of the pbSignature buffer.
1400  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1401  *  abHashValue [I] The value of the hash object.
1402  *  dwHashLen   [I] Length of the hash value.
1403  *  dwFlags     [I] Selection of padding algorithm.
1404  *
1405  * RETURNS
1406  *  Success: TRUE
1407  *  Failure: FALSE (NTE_BAD_ALGID)
1408  */
1409 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, 
1410                                  CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) 
1411 {
1412     /* These prefixes are meant to be concatenated with hash values of the
1413      * respective kind to form a PKCS #7 DigestInfo. */
1414     static const struct tagOIDDescriptor {
1415         ALG_ID aiAlgid;
1416         DWORD dwLen;
1417         CONST BYTE abOID[18];
1418     } aOIDDescriptor[5] = {
1419         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1420                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1421         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 
1422                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1423         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1424                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1425         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 
1426                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1427         { 0,        0,  { 0 } }
1428     };
1429     DWORD dwIdxOID, i, j;
1430
1431     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1432         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1433     }
1434     
1435     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1436         SetLastError(NTE_BAD_ALGID);
1437         return FALSE;
1438     }
1439
1440     /* Build the padded signature */
1441     if (dwFlags & CRYPT_X931_FORMAT) {
1442         pbSignature[0] = 0x6b;
1443         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1444             pbSignature[i] = 0xbb;
1445         }
1446         pbSignature[i++] = 0xba;
1447         for (j=0; j < dwHashLen; j++, i++) {
1448             pbSignature[i] = abHashValue[j];
1449         }
1450         pbSignature[i++] = 0x33;
1451         pbSignature[i++] = 0xcc;
1452     } else {
1453         pbSignature[0] = 0x00;
1454         pbSignature[1] = 0x01;
1455         if (dwFlags & CRYPT_NOHASHOID) {
1456             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1457                 pbSignature[i] = 0xff;
1458             }
1459             pbSignature[i++] = 0x00;
1460         } else {
1461             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1462                 pbSignature[i] = 0xff;
1463             }
1464             pbSignature[i++] = 0x00;
1465             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1466                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1467             }
1468         }
1469         for (j=0; j < dwHashLen; j++) {
1470             pbSignature[i++] = abHashValue[j];
1471         }
1472     }
1473     
1474     return TRUE;
1475 }
1476
1477 /******************************************************************************
1478  * tls1_p [Internal]
1479  *
1480  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1481  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1482  * The pseudo random stream generated by this function is exclusive or'ed with
1483  * the data in pbBuffer.
1484  *
1485  * PARAMS
1486  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1487  *  pblobSeed   [I]   Seed value
1488  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1489  *  dwBufferLen [I]   Number of pseudo random bytes desired
1490  *
1491  * RETURNS
1492  *  Success: TRUE
1493  *  Failure: FALSE
1494  */
1495 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1496 {
1497     CRYPTHASH *pHMAC;
1498     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1499     DWORD i = 0;
1500
1501     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1502         SetLastError(NTE_BAD_HASH);
1503         return FALSE;
1504     }
1505     
1506     /* compute A_1 = HMAC(seed) */
1507     init_hash(pHMAC);
1508     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1509     finalize_hash(pHMAC);
1510     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1511
1512     do {
1513         /* compute HMAC(A_i + seed) */
1514         init_hash(pHMAC);
1515         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1516         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1517         finalize_hash(pHMAC);
1518
1519         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1520         do {
1521             if (i >= dwBufferLen) break;
1522             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1523             i++;
1524         } while (i % pHMAC->dwHashSize);
1525
1526         /* compute A_{i+1} = HMAC(A_i) */
1527         init_hash(pHMAC);
1528         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1529         finalize_hash(pHMAC);
1530         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1531     } while (i < dwBufferLen);
1532
1533     return TRUE;
1534 }
1535
1536 /******************************************************************************
1537  * tls1_prf [Internal]
1538  *
1539  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1540  *
1541  * PARAMS
1542  *  hProv       [I] Key container used to compute the pseudo random stream
1543  *  hSecret     [I] Key that holds the (pre-)master secret
1544  *  pblobLabel  [I] Descriptive label
1545  *  pblobSeed   [I] Seed value
1546  *  pbBuffer    [O] Pseudo random numbers will be stored here
1547  *  dwBufferLen [I] Number of pseudo random bytes desired
1548  *
1549  * RETURNS
1550  *  Success: TRUE
1551  *  Failure: FALSE
1552  */ 
1553 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1554                      CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1555 {
1556     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1557     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1558     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1559     CRYPTKEY *pHalfSecret, *pSecret;
1560     DWORD dwHalfSecretLen;
1561     BOOL result = FALSE;
1562     CRYPT_DATA_BLOB blobLabelSeed;
1563
1564     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1565           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1566
1567     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1568         SetLastError(NTE_FAIL);
1569         return FALSE;
1570     }
1571
1572     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1573     
1574     /* concatenation of the label and the seed */
1575     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1576    
1577     /* zero out the buffer, since two random streams will be xor'ed into it. */
1578     memset(pbBuffer, 0, dwBufferLen);
1579    
1580     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1581      * the biggest range of valid key lengths. */
1582     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1583     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1584
1585     /* Derive an HMAC_MD5 hash and call the helper function. */
1586     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1587     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1588     hmacInfo.HashAlgid = CALG_MD5;
1589     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1590     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1591
1592     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1593     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1594     hmacInfo.HashAlgid = CALG_SHA;
1595     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1596     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1597     
1598     result = TRUE;
1599 exit:
1600     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1601     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1602     free_data_blob(&blobLabelSeed);
1603     return result;
1604 }
1605
1606 /******************************************************************************
1607  * pad_data [Internal]
1608  *
1609  * Helper function for data padding according to PKCS1 #2
1610  *
1611  * PARAMS
1612  *  abData      [I] The data to be padded
1613  *  dwDataLen   [I] Length of the data 
1614  *  abBuffer    [O] Padded data will be stored here
1615  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1616  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1617  *
1618  * RETURN
1619  *  Success: TRUE
1620  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1621  */
1622 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, 
1623                      DWORD dwFlags)
1624 {
1625     DWORD i;
1626     
1627     /* Ensure there is enough space for PKCS1 #2 padding */
1628     if (dwDataLen > dwBufferLen-11) {
1629         SetLastError(NTE_BAD_LEN);
1630         return FALSE;
1631     }
1632
1633     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);            
1634     
1635     abBuffer[0] = 0x00;
1636     abBuffer[1] = RSAENH_PKC_BLOCKTYPE; 
1637     for (i=2; i < dwBufferLen - dwDataLen - 1; i++) 
1638         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1639     if (dwFlags & CRYPT_SSL2_FALLBACK) 
1640         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) 
1641             abBuffer[i] = 0x03;
1642     abBuffer[i] = 0x00;
1643     
1644     return TRUE; 
1645 }
1646
1647 /******************************************************************************
1648  * unpad_data [Internal]
1649  *
1650  * Remove the PKCS1 padding from RSA decrypted data
1651  *
1652  * PARAMS
1653  *  abData      [I]   The padded data
1654  *  dwDataLen   [I]   Length of the padded data
1655  *  abBuffer    [O]   Data without padding will be stored here
1656  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1657  *  dwFlags     [I]   Currently none defined
1658  *
1659  * RETURNS
1660  *  Success: TRUE
1661  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1662  */
1663 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, 
1664                        DWORD dwFlags)
1665 {
1666     DWORD i;
1667     
1668     for (i=2; i<dwDataLen; i++)
1669         if (!abData[i])
1670             break;
1671
1672     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1673         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1674     {
1675         SetLastError(NTE_BAD_DATA);
1676         return FALSE;
1677     }
1678
1679     *dwBufferLen = dwDataLen - i - 1;
1680     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1681     return TRUE;
1682 }
1683
1684 /******************************************************************************
1685  * CPAcquireContext (RSAENH.@)
1686  *
1687  * Acquire a handle to the key container specified by pszContainer
1688  *
1689  * PARAMS
1690  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1691  *  pszContainer [I] Name of the desired key container. See Notes
1692  *  dwFlags      [I] Flags. See Notes.
1693  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1694  * 
1695  * RETURNS
1696  *  Success: TRUE
1697  *  Failure: FALSE
1698  *
1699  * NOTES
1700  *  If pszContainer is NULL or points to a zero length string the user's login 
1701  *  name will be used as the key container name.
1702  *
1703  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1704  *  If a keyset with the given name already exists, the function fails and sets
1705  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1706  *  key container does not exist, function fails and sets last error to 
1707  *  NTE_BAD_KEYSET.
1708  */                         
1709 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1710                    DWORD dwFlags, PVTableProvStruc pVTable)
1711 {
1712     CHAR szKeyContainerName[MAX_PATH];
1713
1714     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1715           debugstr_a(pszContainer), dwFlags, pVTable);
1716
1717     if (pszContainer && *pszContainer)
1718     {
1719         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1720     } 
1721     else
1722     {
1723         DWORD dwLen = sizeof(szKeyContainerName);
1724         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1725     }
1726
1727     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) 
1728     {
1729         case 0:
1730             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1731             break;
1732
1733         case CRYPT_DELETEKEYSET:
1734             return delete_container_key(szKeyContainerName, dwFlags);
1735
1736         case CRYPT_NEWKEYSET:
1737             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1738             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) 
1739             {
1740                 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1741                 TRACE("Can't create new keyset, already exists\n");
1742                 SetLastError(NTE_EXISTS);
1743                 return FALSE;
1744             }
1745             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1746             break;
1747
1748         case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1749         case CRYPT_VERIFYCONTEXT:
1750             if (pszContainer && *pszContainer) {
1751                 TRACE("pszContainer should be empty\n");
1752                 SetLastError(NTE_BAD_FLAGS);
1753                 return FALSE;
1754             }
1755             *phProv = new_key_container("", dwFlags, pVTable);
1756             break;
1757             
1758         default:
1759             *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1760             SetLastError(NTE_BAD_FLAGS);
1761             return FALSE;
1762     }
1763                 
1764     if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1765         SetLastError(ERROR_SUCCESS);
1766         return TRUE;
1767     } else {
1768         return FALSE;
1769     }
1770 }
1771
1772 /******************************************************************************
1773  * CPCreateHash (RSAENH.@)
1774  *
1775  * CPCreateHash creates and initalizes a new hash object.
1776  *
1777  * PARAMS
1778  *  hProv   [I] Handle to the key container to which the new hash will belong.
1779  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1780  *  hKey    [I] Handle to a session key applied for keyed hashes.
1781  *  dwFlags [I] Currently no flags defined. Must be zero.
1782  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1783  *
1784  * RETURNS
1785  *  Success: TRUE
1786  *  Failure: FALSE
1787  *
1788  * NOTES
1789  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1790  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1791  */
1792 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, 
1793                                 HCRYPTHASH *phHash)
1794 {
1795     CRYPTKEY *pCryptKey;
1796     CRYPTHASH *pCryptHash;
1797     const PROV_ENUMALGS_EX *peaAlgidInfo;
1798         
1799     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1800           dwFlags, phHash);
1801
1802     peaAlgidInfo = get_algid_info(hProv, Algid);
1803     if (!peaAlgidInfo) return FALSE;
1804
1805     if (dwFlags)
1806     {
1807         SetLastError(NTE_BAD_FLAGS);
1808         return FALSE;
1809     }
1810
1811     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || 
1812         Algid == CALG_TLS1PRF) 
1813     {
1814         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1815             SetLastError(NTE_BAD_KEY);
1816             return FALSE;
1817         }
1818
1819         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1820             SetLastError(NTE_BAD_KEY);
1821             return FALSE;
1822         }
1823
1824         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && 
1825             (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) 
1826         {
1827             SetLastError(NTE_BAD_KEY);
1828             return FALSE;
1829         }
1830
1831         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1832             SetLastError(NTE_BAD_KEY_STATE);
1833             return FALSE;
1834         }
1835     }
1836
1837     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1838                          destroy_hash, (OBJECTHDR**)&pCryptHash);
1839     if (!pCryptHash) return FALSE;
1840
1841     pCryptHash->aiAlgid = Algid;
1842     pCryptHash->hKey = hKey;
1843     pCryptHash->hProv = hProv;
1844     pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1845     pCryptHash->pHMACInfo = NULL;
1846     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1847     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1848     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1849
1850     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1851         static const char keyex[] = "key expansion";
1852         BYTE key_expansion[sizeof keyex];
1853         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1854
1855         memcpy( key_expansion, keyex, sizeof keyex );
1856         
1857         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1858             static const char msec[] = "master secret";
1859             BYTE master_secret[sizeof msec];
1860             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1861             BYTE abKeyValue[48];
1862
1863             memcpy( master_secret, msec, sizeof msec );
1864     
1865             /* See RFC 2246, chapter 8.1 */
1866             if (!concat_data_blobs(&blobRandom, 
1867                                    &pCryptKey->siSChannelInfo.blobClientRandom, 
1868                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1869             {
1870                 return FALSE;
1871             }
1872             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1873             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; 
1874             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1875             free_data_blob(&blobRandom);
1876         }
1877
1878         /* See RFC 2246, chapter 6.3 */
1879         if (!concat_data_blobs(&blobRandom, 
1880                                   &pCryptKey->siSChannelInfo.blobServerRandom, 
1881                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1882         {
1883             return FALSE;
1884         }
1885         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, 
1886                  RSAENH_MAX_HASH_SIZE);
1887         free_data_blob(&blobRandom);
1888     }
1889
1890     return init_hash(pCryptHash);
1891 }
1892
1893 /******************************************************************************
1894  * CPDestroyHash (RSAENH.@)
1895  * 
1896  * Releases the handle to a hash object. The object is destroyed if it's reference
1897  * count reaches zero.
1898  *
1899  * PARAMS
1900  *  hProv [I] Handle to the key container to which the hash object belongs.
1901  *  hHash [I] Handle to the hash object to be released.
1902  *
1903  * RETURNS
1904  *  Success: TRUE
1905  *  Failure: FALSE 
1906  */
1907 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1908 {
1909     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1910      
1911     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1912     {
1913         SetLastError(NTE_BAD_UID);
1914         return FALSE;
1915     }
1916         
1917     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) 
1918     {
1919         SetLastError(NTE_BAD_HASH);
1920         return FALSE;
1921     }
1922     
1923     return TRUE;
1924 }
1925
1926 /******************************************************************************
1927  * CPDestroyKey (RSAENH.@)
1928  *
1929  * Releases the handle to a key object. The object is destroyed if it's reference
1930  * count reaches zero.
1931  *
1932  * PARAMS
1933  *  hProv [I] Handle to the key container to which the key object belongs.
1934  *  hKey  [I] Handle to the key object to be released.
1935  *
1936  * RETURNS
1937  *  Success: TRUE
1938  *  Failure: FALSE
1939  */
1940 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1941 {
1942     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1943         
1944     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1945     {
1946         SetLastError(NTE_BAD_UID);
1947         return FALSE;
1948     }
1949         
1950     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) 
1951     {
1952         SetLastError(NTE_BAD_KEY);
1953         return FALSE;
1954     }
1955     
1956     return TRUE;
1957 }
1958
1959 /******************************************************************************
1960  * CPDuplicateHash (RSAENH.@)
1961  *
1962  * Clones a hash object including it's current state.
1963  *
1964  * PARAMS
1965  *  hUID        [I] Handle to the key container the hash belongs to.
1966  *  hHash       [I] Handle to the hash object to be cloned.
1967  *  pdwReserved [I] Reserved. Must be NULL.
1968  *  dwFlags     [I] No flags are currently defined. Must be 0.
1969  *  phHash      [O] Handle to the cloned hash object.
1970  *
1971  * RETURNS
1972  *  Success: TRUE.
1973  *  Failure: FALSE.
1974  */
1975 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, 
1976                                    DWORD dwFlags, HCRYPTHASH *phHash)
1977 {
1978     CRYPTHASH *pSrcHash, *pDestHash;
1979     
1980     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
1981            pdwReserved, dwFlags, phHash);
1982
1983     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1984     {
1985         SetLastError(NTE_BAD_UID);
1986         return FALSE;
1987     }
1988
1989     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
1990     {
1991         SetLastError(NTE_BAD_HASH);
1992         return FALSE;
1993     }
1994
1995     if (!phHash || pdwReserved || dwFlags) 
1996     {
1997         SetLastError(ERROR_INVALID_PARAMETER);
1998         return FALSE;
1999     }
2000
2001     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2002                          destroy_hash, (OBJECTHDR**)&pDestHash);
2003     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2004     {
2005         *pDestHash = *pSrcHash;
2006         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2007         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2008         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2009         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2010     }
2011
2012     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2013 }
2014
2015 /******************************************************************************
2016  * CPDuplicateKey (RSAENH.@)
2017  *
2018  * Clones a key object including it's current state.
2019  *
2020  * PARAMS
2021  *  hUID        [I] Handle to the key container the hash belongs to.
2022  *  hKey        [I] Handle to the key object to be cloned.
2023  *  pdwReserved [I] Reserved. Must be NULL.
2024  *  dwFlags     [I] No flags are currently defined. Must be 0.
2025  *  phHash      [O] Handle to the cloned key object.
2026  *
2027  * RETURNS
2028  *  Success: TRUE.
2029  *  Failure: FALSE.
2030  */
2031 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, 
2032                                   DWORD dwFlags, HCRYPTKEY *phKey)
2033 {
2034     CRYPTKEY *pSrcKey, *pDestKey;
2035     
2036     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2037           pdwReserved, dwFlags, phKey);
2038
2039     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2040     {
2041         SetLastError(NTE_BAD_UID);
2042         return FALSE;
2043     }
2044
2045     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2046     {
2047         SetLastError(NTE_BAD_KEY);
2048         return FALSE;
2049     }
2050
2051     if (!phKey || pdwReserved || dwFlags) 
2052     {
2053         SetLastError(ERROR_INVALID_PARAMETER);
2054         return FALSE;
2055     }
2056
2057     *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2058                         (OBJECTHDR**)&pDestKey);
2059     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2060     {
2061         *pDestKey = *pSrcKey;
2062         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2063                        &pSrcKey->siSChannelInfo.blobServerRandom);
2064         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, 
2065                        &pSrcKey->siSChannelInfo.blobClientRandom);
2066         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2067         return TRUE;
2068     }
2069     else
2070     {
2071         return FALSE;
2072     }
2073 }
2074
2075 /******************************************************************************
2076  * CPEncrypt (RSAENH.@)
2077  *
2078  * Encrypt data.
2079  *
2080  * PARAMS
2081  *  hProv      [I]   The key container hKey and hHash belong to.
2082  *  hKey       [I]   The key used to encrypt the data.
2083  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2084  *  Final      [I]   Indicates if this is the last block of data to encrypt.
2085  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2086  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. 
2087  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2088  *  dwBufLen   [I]   Size of the buffer at pbData.
2089  *
2090  * RETURNS
2091  *  Success: TRUE.
2092  *  Failure: FALSE.
2093  *
2094  * NOTES
2095  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2096  *  This is useful for message signatures.
2097  *
2098  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2099  */
2100 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2101                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2102 {
2103     CRYPTKEY *pCryptKey;
2104     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2105     DWORD dwEncryptedLen, i, j, k;
2106         
2107     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2108           "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2109           dwBufLen);
2110     
2111     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2112     {
2113         SetLastError(NTE_BAD_UID);
2114         return FALSE;
2115     }
2116
2117     if (dwFlags)
2118     {
2119         SetLastError(NTE_BAD_FLAGS);
2120         return FALSE;
2121     }
2122
2123     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2124     {
2125         SetLastError(NTE_BAD_KEY);
2126         return FALSE;
2127     }
2128
2129     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2130         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2131
2132     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) 
2133     {
2134         SetLastError(NTE_BAD_DATA);
2135         return FALSE;
2136     }
2137
2138     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2139         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2140     }
2141     
2142     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2143         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2144             SetLastError(NTE_BAD_DATA);
2145             return FALSE;
2146         }
2147
2148         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2149
2150         if (pbData == NULL) {
2151             *pdwDataLen = dwEncryptedLen;
2152             return TRUE;
2153         }
2154         else if (dwEncryptedLen > dwBufLen) {
2155             *pdwDataLen = dwEncryptedLen;
2156             SetLastError(ERROR_MORE_DATA);
2157             return FALSE;
2158         }
2159
2160         /* Pad final block with length bytes */
2161         for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2162         *pdwDataLen = dwEncryptedLen;
2163
2164         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2165             switch (pCryptKey->dwMode) {
2166                 case CRYPT_MODE_ECB:
2167                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2168                                        RSAENH_ENCRYPT);
2169                     break;
2170                 
2171                 case CRYPT_MODE_CBC:
2172                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2173                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2174                                        RSAENH_ENCRYPT);
2175                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2176                     break;
2177
2178                 case CRYPT_MODE_CFB:
2179                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2180                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2181                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2182                         out[j] = in[j] ^ o[0];
2183                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2184                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2185                         pCryptKey->abChainVector[k] = out[j];
2186                     }
2187                     break;
2188                     
2189                 default:
2190                     SetLastError(NTE_BAD_ALGID);
2191                     return FALSE;
2192             }
2193             memcpy(in, out, pCryptKey->dwBlockLen); 
2194         }
2195     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2196         if (pbData == NULL) {
2197             *pdwDataLen = dwBufLen;
2198             return TRUE;
2199         }
2200         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2201     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2202         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2203             SetLastError(NTE_BAD_KEY);
2204             return FALSE;
2205         }
2206         if (!pbData) {
2207             *pdwDataLen = pCryptKey->dwBlockLen;
2208             return TRUE;
2209         }
2210         if (dwBufLen < pCryptKey->dwBlockLen) {
2211             SetLastError(ERROR_MORE_DATA);
2212             return FALSE;
2213         }
2214         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2215         encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2216         *pdwDataLen = pCryptKey->dwBlockLen;
2217         Final = TRUE;
2218     } else {
2219         SetLastError(NTE_BAD_TYPE);
2220         return FALSE;
2221     }
2222
2223     if (Final) setup_key(pCryptKey);
2224
2225     return TRUE;
2226 }
2227
2228 /******************************************************************************
2229  * CPDecrypt (RSAENH.@)
2230  *
2231  * Decrypt data.
2232  *
2233  * PARAMS
2234  *  hProv      [I]   The key container hKey and hHash belong to.
2235  *  hKey       [I]   The key used to decrypt the data.
2236  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2237  *  Final      [I]   Indicates if this is the last block of data to decrypt.
2238  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2239  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. 
2240  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2241  *
2242  * RETURNS
2243  *  Success: TRUE.
2244  *  Failure: FALSE.
2245  *
2246  * NOTES
2247  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2248  *  This is useful for message signatures.
2249  *
2250  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2251  */
2252 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2253                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2254 {
2255     CRYPTKEY *pCryptKey;
2256     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2257     DWORD i, j, k;
2258     DWORD dwMax;
2259
2260     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2261           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2262     
2263     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2264     {
2265         SetLastError(NTE_BAD_UID);
2266         return FALSE;
2267     }
2268
2269     if (dwFlags)
2270     {
2271         SetLastError(NTE_BAD_FLAGS);
2272         return FALSE;
2273     }
2274
2275     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2276     {
2277         SetLastError(NTE_BAD_KEY);
2278         return FALSE;
2279     }
2280
2281     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2282         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2283
2284     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2285     {
2286         SetLastError(NTE_BAD_DATA);
2287         return FALSE;
2288     }
2289
2290     dwMax=*pdwDataLen;
2291
2292     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2293         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2294             switch (pCryptKey->dwMode) {
2295                 case CRYPT_MODE_ECB:
2296                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2297                                        RSAENH_DECRYPT);
2298                     break;
2299                 
2300                 case CRYPT_MODE_CBC:
2301                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2302                                        RSAENH_DECRYPT);
2303                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2304                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2305                     break;
2306
2307                 case CRYPT_MODE_CFB:
2308                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2309                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2310                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2311                         out[j] = in[j] ^ o[0];
2312                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2313                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2314                         pCryptKey->abChainVector[k] = in[j];
2315                     }
2316                     break;
2317                     
2318                 default:
2319                     SetLastError(NTE_BAD_ALGID);
2320                     return FALSE;
2321             }
2322             memcpy(in, out, pCryptKey->dwBlockLen);
2323         }
2324         if (Final) {
2325             if (pbData[*pdwDataLen-1] &&
2326              pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2327              pbData[*pdwDataLen-1] < *pdwDataLen) {
2328                 BOOL padOkay = TRUE;
2329
2330                 /* check that every bad byte has the same value */
2331                 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2332                     if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2333                         padOkay = FALSE;
2334                 if (padOkay)
2335                     *pdwDataLen -= pbData[*pdwDataLen-1];
2336                 else {
2337                     SetLastError(NTE_BAD_DATA);
2338                     return FALSE;
2339                 }
2340             }
2341             else {
2342                 SetLastError(NTE_BAD_DATA);
2343                 return FALSE;
2344             }
2345         }
2346
2347     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2348         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2349     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2350         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2351             SetLastError(NTE_BAD_KEY);
2352             return FALSE;
2353         }
2354         encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2355         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2356         Final = TRUE;
2357     } else {
2358         SetLastError(NTE_BAD_TYPE);
2359         return FALSE;
2360     } 
2361     
2362     if (Final) setup_key(pCryptKey);
2363
2364     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2365         if (*pdwDataLen>dwMax ||
2366             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2367     }
2368     
2369     return TRUE;
2370 }
2371
2372 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2373     DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2374 {
2375     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2376     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2377     DWORD dwDataLen;
2378
2379     if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2380         SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2381         return FALSE;
2382     }
2383
2384     dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2385     if (pbData) {
2386         if (*pdwDataLen < dwDataLen) {
2387             SetLastError(ERROR_MORE_DATA);
2388             *pdwDataLen = dwDataLen;
2389             return FALSE;
2390         }
2391
2392         pBlobHeader->bType = SIMPLEBLOB;
2393         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2394         pBlobHeader->reserved = 0;
2395         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2396
2397         *pAlgid = pPubKey->aiAlgid;
2398
2399         if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2400                       pPubKey->dwBlockLen, dwFlags))
2401         {
2402             return FALSE;
2403         }
2404
2405         encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2406                            (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2407     }
2408     *pdwDataLen = dwDataLen;
2409     return TRUE;
2410 }
2411
2412 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2413     DWORD *pdwDataLen)
2414 {
2415     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2416     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2417     DWORD dwDataLen;
2418
2419     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2420         SetLastError(NTE_BAD_KEY);
2421         return FALSE;
2422     }
2423
2424     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2425     if (pbData) {
2426         if (*pdwDataLen < dwDataLen) {
2427             SetLastError(ERROR_MORE_DATA);
2428             *pdwDataLen = dwDataLen;
2429             return FALSE;
2430         }
2431
2432         pBlobHeader->bType = PUBLICKEYBLOB;
2433         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2434         pBlobHeader->reserved = 0;
2435         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2436
2437         pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2438         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2439
2440         export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2441                                pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2442     }
2443     *pdwDataLen = dwDataLen;
2444     return TRUE;
2445 }
2446
2447 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2448     BYTE *pbData, DWORD *pdwDataLen)
2449 {
2450     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2451     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2452     DWORD dwDataLen;
2453
2454     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2455         SetLastError(NTE_BAD_KEY);
2456         return FALSE;
2457     }
2458     if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2459     {
2460         SetLastError(NTE_BAD_KEY_STATE);
2461         return FALSE;
2462     }
2463
2464     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2465                 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2466     if (pbData) {
2467         if (*pdwDataLen < dwDataLen) {
2468             SetLastError(ERROR_MORE_DATA);
2469             *pdwDataLen = dwDataLen;
2470             return FALSE;
2471         }
2472
2473         pBlobHeader->bType = PRIVATEKEYBLOB;
2474         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2475         pBlobHeader->reserved = 0;
2476         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2477
2478         pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2479         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2480
2481         export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2482                                 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2483     }
2484     *pdwDataLen = dwDataLen;
2485     return TRUE;
2486 }
2487
2488 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2489     DWORD *pdwDataLen)
2490 {
2491     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2492     DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2493     BYTE *pbKey = (BYTE*)(pKeyLen+1);
2494     DWORD dwDataLen;
2495
2496     dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2497     if (pbData) {
2498         if (*pdwDataLen < dwDataLen) {
2499             SetLastError(ERROR_MORE_DATA);
2500             *pdwDataLen = dwDataLen;
2501             return FALSE;
2502         }
2503
2504         pBlobHeader->bType = PLAINTEXTKEYBLOB;
2505         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2506         pBlobHeader->reserved = 0;
2507         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2508
2509         *pKeyLen = pCryptKey->dwKeyLen;
2510         memcpy(pbKey, &pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2511     }
2512     *pdwDataLen = dwDataLen;
2513     return TRUE;
2514 }
2515 /******************************************************************************
2516  * crypt_export_key [Internal]
2517  *
2518  * Export a key into a binary large object (BLOB).  Called by CPExportKey and
2519  * by store_key_pair.
2520  *
2521  * PARAMS
2522  *  pCryptKey  [I]   Key to be exported.
2523  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2524  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2525  *  dwFlags    [I]   Currently none defined.
2526  *  force      [I]   If TRUE, the key is written no matter what the key's
2527  *                   permissions are.  Otherwise the key's permissions are
2528  *                   checked before exporting.
2529  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2530  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2531  *
2532  * RETURNS
2533  *  Success: TRUE.
2534  *  Failure: FALSE.
2535  */
2536 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2537                              DWORD dwBlobType, DWORD dwFlags, BOOL force,
2538                              BYTE *pbData, DWORD *pdwDataLen)
2539 {
2540     CRYPTKEY *pPubKey;
2541     
2542     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2543         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2544             SetLastError(NTE_BAD_KEY);
2545             return FALSE;
2546         }
2547     }
2548     
2549     switch ((BYTE)dwBlobType)
2550     {
2551         case SIMPLEBLOB:
2552             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2553                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2554                 return FALSE;
2555             }
2556             return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2557                                        pdwDataLen);
2558             
2559         case PUBLICKEYBLOB:
2560             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2561                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2562                 return FALSE;
2563             }
2564
2565             return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2566
2567         case PRIVATEKEYBLOB:
2568             return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2569
2570         case PLAINTEXTKEYBLOB:
2571             return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2572             
2573         default:
2574             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2575             return FALSE;
2576     }
2577 }
2578
2579 /******************************************************************************
2580  * CPExportKey (RSAENH.@)
2581  *
2582  * Export a key into a binary large object (BLOB).
2583  *
2584  * PARAMS
2585  *  hProv      [I]   Key container from which a key is to be exported.
2586  *  hKey       [I]   Key to be exported.
2587  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2588  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2589  *  dwFlags    [I]   Currently none defined.
2590  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2591  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2592  *
2593  * RETURNS
2594  *  Success: TRUE.
2595  *  Failure: FALSE.
2596  */
2597 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2598                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2599 {
2600     CRYPTKEY *pCryptKey;
2601
2602     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2603           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2604
2605     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2606     {
2607         SetLastError(NTE_BAD_UID);
2608         return FALSE;
2609     }
2610
2611     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2612     {
2613         SetLastError(NTE_BAD_KEY);
2614         return FALSE;
2615     }
2616
2617     return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2618         pbData, pdwDataLen);
2619 }
2620
2621 /******************************************************************************
2622  * release_and_install_key [Internal]
2623  *
2624  * Release an existing key, if present, and replaces it with a new one.
2625  *
2626  * PARAMS
2627  *  hProv     [I] Key container into which the key is to be imported.
2628  *  src       [I] Key which will replace *dest
2629  *  dest      [I] Points to key to be released and replaced with src
2630  *  fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2631  */
2632 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2633                                     HCRYPTKEY *dest, DWORD fStoreKey)
2634 {
2635     RSAENH_CPDestroyKey(hProv, *dest);
2636     copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2637     if (fStoreKey)
2638     {
2639         KEYCONTAINER *pKeyContainer;
2640
2641         if (lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2642                           (OBJECTHDR**)&pKeyContainer))
2643         {
2644             store_key_container_keys(pKeyContainer);
2645             store_key_container_permissions(pKeyContainer);
2646         }
2647     }
2648 }
2649
2650 /******************************************************************************
2651  * import_private_key [Internal]
2652  *
2653  * Import a BLOB'ed private key into a key container.
2654  *
2655  * PARAMS
2656  *  hProv     [I] Key container into which the private key is to be imported.
2657  *  pbData    [I] Pointer to a buffer which holds the private key BLOB.
2658  *  dwDataLen [I] Length of data in buffer at pbData.
2659  *  dwFlags   [I] One of:
2660  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2661  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2662  *  phKey     [O] Handle to the imported key.
2663  *
2664  *
2665  * NOTES
2666  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2667  *  it's a PRIVATEKEYBLOB.
2668  *
2669  * RETURNS
2670  *  Success: TRUE.
2671  *  Failure: FALSE.
2672  */
2673 static BOOL import_private_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2674                                DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2675 {
2676     KEYCONTAINER *pKeyContainer;
2677     CRYPTKEY *pCryptKey;
2678     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2679     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2680     BOOL ret;
2681
2682     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2683                        (OBJECTHDR**)&pKeyContainer))
2684     {
2685         SetLastError(NTE_BAD_UID);
2686         return FALSE;
2687     }
2688
2689     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2690         (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2691         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2692             (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2693     {
2694         SetLastError(NTE_BAD_DATA);
2695         return FALSE;
2696     }
2697
2698     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2699     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2700     setup_key(pCryptKey);
2701     ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2702                                    pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2703     if (ret) {
2704         if (dwFlags & CRYPT_EXPORTABLE)
2705             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2706         switch (pBlobHeader->aiKeyAlg)
2707         {
2708         case AT_SIGNATURE:
2709         case CALG_RSA_SIGN:
2710             TRACE("installing signing key\n");
2711             release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2712                                     fStoreKey);
2713             break;
2714         case AT_KEYEXCHANGE:
2715         case CALG_RSA_KEYX:
2716             TRACE("installing key exchange key\n");
2717             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2718                                     fStoreKey);
2719             break;
2720         }
2721     }
2722     return ret;
2723 }
2724
2725 /******************************************************************************
2726  * import_public_key [Internal]
2727  *
2728  * Import a BLOB'ed public key into a key container.
2729  *
2730  * PARAMS
2731  *  hProv     [I] Key container into which the public key is to be imported.
2732  *  pbData    [I] Pointer to a buffer which holds the public key BLOB.
2733  *  dwDataLen [I] Length of data in buffer at pbData.
2734  *  dwFlags   [I] One of:
2735  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2736  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2737  *  phKey     [O] Handle to the imported key.
2738  *
2739  *
2740  * NOTES
2741  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2742  *  it's a PUBLICKEYBLOB.
2743  *
2744  * RETURNS
2745  *  Success: TRUE.
2746  *  Failure: FALSE.
2747  */
2748 static BOOL import_public_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2749                               DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2750 {
2751     KEYCONTAINER *pKeyContainer;
2752     CRYPTKEY *pCryptKey;
2753     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2754     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2755     ALG_ID algID;
2756     BOOL ret;
2757
2758     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2759                        (OBJECTHDR**)&pKeyContainer))
2760     {
2761         SetLastError(NTE_BAD_UID);
2762         return FALSE;
2763     }
2764
2765     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2766         (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2767         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2768     {
2769         SetLastError(NTE_BAD_DATA);
2770         return FALSE;
2771     }
2772
2773     /* Since this is a public key blob, only the public key is
2774      * available, so only signature verification is possible.
2775      */
2776     algID = pBlobHeader->aiKeyAlg;
2777     *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2778     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2779     setup_key(pCryptKey);
2780     ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2781                                   pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2782     if (ret) {
2783         if (dwFlags & CRYPT_EXPORTABLE)
2784             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2785         switch (pBlobHeader->aiKeyAlg)
2786         {
2787         case AT_KEYEXCHANGE:
2788         case CALG_RSA_KEYX:
2789             TRACE("installing public key\n");
2790             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2791                                     fStoreKey);
2792             break;
2793         }
2794     }
2795     return ret;
2796 }
2797
2798 /******************************************************************************
2799  * import_symmetric_key [Internal]
2800  *
2801  * Import a BLOB'ed symmetric key into a key container.
2802  *
2803  * PARAMS
2804  *  hProv     [I] Key container into which the symmetric key is to be imported.
2805  *  pbData    [I] Pointer to a buffer which holds the symmetric key BLOB.
2806  *  dwDataLen [I] Length of data in buffer at pbData.
2807  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2808  *  dwFlags   [I] One of:
2809  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2810  *  phKey     [O] Handle to the imported key.
2811  *
2812  *
2813  * NOTES
2814  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2815  *  it's a SIMPLEBLOB.
2816  *
2817  * RETURNS
2818  *  Success: TRUE.
2819  *  Failure: FALSE.
2820  */
2821 static BOOL import_symmetric_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2822                                  DWORD dwDataLen, HCRYPTKEY hPubKey,
2823                                  DWORD dwFlags, HCRYPTKEY *phKey)
2824 {
2825     CRYPTKEY *pCryptKey, *pPubKey;
2826     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2827     CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2828     CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2829     BYTE *pbDecrypted;
2830     DWORD dwKeyLen;
2831
2832     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2833         pPubKey->aiAlgid != CALG_RSA_KEYX)
2834     {
2835         SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2836         return FALSE;
2837     }
2838
2839     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2840     {
2841         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2842         return FALSE;
2843     }
2844
2845     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2846     if (!pbDecrypted) return FALSE;
2847     encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2848                        RSAENH_DECRYPT);
2849
2850     dwKeyLen = RSAENH_MAX_KEY_SIZE;
2851     if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2852         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2853         return FALSE;
2854     }
2855
2856     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2857     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2858     {
2859         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2860         return FALSE;
2861     }
2862     memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2863     HeapFree(GetProcessHeap(), 0, pbDecrypted);
2864     setup_key(pCryptKey);
2865     if (dwFlags & CRYPT_EXPORTABLE)
2866         pCryptKey->dwPermissions |= CRYPT_EXPORT;
2867     return TRUE;
2868 }
2869
2870 /******************************************************************************
2871  * import_plaintext_key [Internal]
2872  *
2873  * Import a plaintext key into a key container.
2874  *
2875  * PARAMS
2876  *  hProv     [I] Key container into which the symmetric key is to be imported.
2877  *  pbData    [I] Pointer to a buffer which holds the plaintext key BLOB.
2878  *  dwDataLen [I] Length of data in buffer at pbData.
2879  *  dwFlags   [I] One of:
2880  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2881  *  phKey     [O] Handle to the imported key.
2882  *
2883  *
2884  * NOTES
2885  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2886  *  it's a PLAINTEXTKEYBLOB.
2887  *
2888  * RETURNS
2889  *  Success: TRUE.
2890  *  Failure: FALSE.
2891  */
2892 static BOOL import_plaintext_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2893                                  DWORD dwDataLen, DWORD dwFlags,
2894                                  HCRYPTKEY *phKey)
2895 {
2896     CRYPTKEY *pCryptKey;
2897     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2898     CONST DWORD *pKeyLen = (CONST DWORD *)(pBlobHeader + 1);
2899     CONST BYTE *pbKeyStream = (CONST BYTE*)(pKeyLen + 1);
2900
2901     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2902     {
2903         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2904         return FALSE;
2905     }
2906
2907     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
2908     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2909         return FALSE;
2910     memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
2911     setup_key(pCryptKey);
2912     if (dwFlags & CRYPT_EXPORTABLE)
2913         pCryptKey->dwPermissions |= CRYPT_EXPORT;
2914     return TRUE;
2915 }
2916
2917 /******************************************************************************
2918  * import_key [Internal]
2919  *
2920  * Import a BLOB'ed key into a key container, optionally storing the key's
2921  * value to the registry.
2922  *
2923  * PARAMS
2924  *  hProv     [I] Key container into which the key is to be imported.
2925  *  pbData    [I] Pointer to a buffer which holds the BLOB.
2926  *  dwDataLen [I] Length of data in buffer at pbData.
2927  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2928  *  dwFlags   [I] One of:
2929  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2930  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2931  *  phKey     [O] Handle to the imported key.
2932  *
2933  * RETURNS
2934  *  Success: TRUE.
2935  *  Failure: FALSE.
2936  */
2937 static BOOL import_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2938                        HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey,
2939                        HCRYPTKEY *phKey)
2940 {
2941     KEYCONTAINER *pKeyContainer;
2942     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2943
2944     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2945                        (OBJECTHDR**)&pKeyContainer)) 
2946     {
2947         SetLastError(NTE_BAD_UID);
2948         return FALSE;
2949     }
2950
2951     if (dwDataLen < sizeof(BLOBHEADER) || 
2952         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2953         pBlobHeader->reserved != 0) 
2954     {
2955         TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
2956               pBlobHeader->reserved);
2957         SetLastError(NTE_BAD_DATA);
2958         return FALSE;
2959     }
2960
2961     /* If this is a verify-only context, the key is not persisted regardless of
2962      * fStoreKey's original value.
2963      */
2964     fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
2965     TRACE("blob type: %x\n", pBlobHeader->bType);
2966     switch (pBlobHeader->bType)
2967     {
2968         case PRIVATEKEYBLOB:    
2969             return import_private_key(hProv, pbData, dwDataLen, dwFlags,
2970                                       fStoreKey, phKey);
2971                 
2972         case PUBLICKEYBLOB:
2973             return import_public_key(hProv, pbData, dwDataLen, dwFlags,
2974                                      fStoreKey, phKey);
2975                 
2976         case SIMPLEBLOB:
2977             return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
2978                                         dwFlags, phKey);
2979
2980         case PLAINTEXTKEYBLOB:
2981             return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
2982                                         phKey);
2983
2984         default:
2985             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2986             return FALSE;
2987     }
2988 }
2989
2990 /******************************************************************************
2991  * CPImportKey (RSAENH.@)
2992  *
2993  * Import a BLOB'ed key into a key container.
2994  *
2995  * PARAMS
2996  *  hProv     [I] Key container into which the key is to be imported.
2997  *  pbData    [I] Pointer to a buffer which holds the BLOB.
2998  *  dwDataLen [I] Length of data in buffer at pbData.
2999  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
3000  *  dwFlags   [I] One of:
3001  *                CRYPT_EXPORTABLE: the imported key is marked exportable
3002  *  phKey     [O] Handle to the imported key.
3003  *
3004  * RETURNS
3005  *  Success: TRUE.
3006  *  Failure: FALSE.
3007  */
3008 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
3009                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3010 {
3011     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3012         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3013
3014     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3015     {
3016         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3017         SetLastError(NTE_BAD_FLAGS);
3018         return FALSE;
3019     }
3020     return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3021 }
3022
3023 /******************************************************************************
3024  * CPGenKey (RSAENH.@)
3025  *
3026  * Generate a key in the key container
3027  *
3028  * PARAMS
3029  *  hProv   [I] Key container for which a key is to be generated.
3030  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
3031  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3032  *  phKey   [O] Handle to the generated key.
3033  *
3034  * RETURNS
3035  *  Success: TRUE.
3036  *  Failure: FALSE.
3037  *
3038  * FIXME
3039  *  Flags currently not considered.
3040  *
3041  * NOTES
3042  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3043  *  and AT_SIGNATURE values.
3044  */
3045 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3046 {
3047     KEYCONTAINER *pKeyContainer;
3048     CRYPTKEY *pCryptKey;
3049
3050     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3051
3052     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3053                        (OBJECTHDR**)&pKeyContainer)) 
3054     {
3055         /* MSDN: hProv not containing valid context handle */
3056         SetLastError(NTE_BAD_UID);
3057         return FALSE;
3058     }
3059     
3060     switch (Algid)
3061     {
3062         case AT_SIGNATURE:
3063         case CALG_RSA_SIGN:
3064             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3065             if (pCryptKey) { 
3066                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3067                 setup_key(pCryptKey);
3068                 RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
3069                 copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
3070                             &pKeyContainer->hSignatureKeyPair);
3071             }
3072             break;
3073
3074         case AT_KEYEXCHANGE:
3075         case CALG_RSA_KEYX:
3076             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3077             if (pCryptKey) { 
3078                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3079                 setup_key(pCryptKey);
3080                 RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
3081                 copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
3082                             &pKeyContainer->hKeyExchangeKeyPair);
3083             }
3084             break;
3085             
3086         case CALG_RC2:
3087         case CALG_RC4:
3088         case CALG_DES:
3089         case CALG_3DES_112:
3090         case CALG_3DES:
3091         case CALG_AES:
3092         case CALG_AES_128:
3093         case CALG_AES_192:
3094         case CALG_AES_256:
3095         case CALG_PCT1_MASTER:
3096         case CALG_SSL2_MASTER:
3097         case CALG_SSL3_MASTER:
3098         case CALG_TLS1_MASTER:
3099             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3100             if (pCryptKey) {
3101                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3102                 switch (Algid) {
3103                     case CALG_SSL3_MASTER:
3104                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3105                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3106                         break;
3107
3108                     case CALG_TLS1_MASTER:
3109                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3110                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3111                         break;
3112                 }
3113                 setup_key(pCryptKey);
3114             }
3115             break;
3116             
3117         default:
3118             /* MSDN: Algorithm not supported specified by Algid */
3119             SetLastError(NTE_BAD_ALGID);
3120             return FALSE;
3121     }
3122             
3123     return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3124 }
3125
3126 /******************************************************************************
3127  * CPGenRandom (RSAENH.@)
3128  *
3129  * Generate a random byte stream.
3130  *
3131  * PARAMS
3132  *  hProv    [I] Key container that is used to generate random bytes.
3133  *  dwLen    [I] Specifies the number of requested random data bytes.
3134  *  pbBuffer [O] Random bytes will be stored here.
3135  *
3136  * RETURNS
3137  *  Success: TRUE
3138  *  Failure: FALSE
3139  */
3140 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3141 {
3142     TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3143     
3144     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3145     {
3146         /* MSDN: hProv not containing valid context handle */
3147         SetLastError(NTE_BAD_UID);
3148         return FALSE;
3149     }
3150
3151     return gen_rand_impl(pbBuffer, dwLen);
3152 }
3153
3154 /******************************************************************************
3155  * CPGetHashParam (RSAENH.@)
3156  *
3157  * Query parameters of an hash object.
3158  *
3159  * PARAMS
3160  *  hProv      [I]   The kea container, which the hash belongs to.
3161  *  hHash      [I]   The hash object that is to be queried.
3162  *  dwParam    [I]   Specifies the parameter that is to be queried.
3163  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3164  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3165  *  dwFlags    [I]   None currently defined.
3166  *
3167  * RETURNS
3168  *  Success: TRUE
3169  *  Failure: FALSE
3170  *
3171  * NOTES
3172  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be 
3173  *  finalized if HP_HASHVALUE is queried.
3174  */
3175 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, 
3176                                   DWORD *pdwDataLen, DWORD dwFlags) 
3177 {
3178     CRYPTHASH *pCryptHash;
3179         
3180     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3181         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3182     
3183     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3184     {
3185         SetLastError(NTE_BAD_UID);
3186         return FALSE;
3187     }
3188
3189     if (dwFlags)
3190     {
3191         SetLastError(NTE_BAD_FLAGS);
3192         return FALSE;
3193     }
3194     
3195     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3196                        (OBJECTHDR**)&pCryptHash))
3197     {
3198         SetLastError(NTE_BAD_HASH);
3199         return FALSE;
3200     }
3201
3202     if (!pdwDataLen)
3203     {
3204         SetLastError(ERROR_INVALID_PARAMETER);
3205         return FALSE;
3206     }
3207     
3208     switch (dwParam)
3209     {
3210         case HP_ALGID:
3211             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid, 
3212                               sizeof(ALG_ID));
3213
3214         case HP_HASHSIZE:
3215             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize, 
3216                               sizeof(DWORD));
3217
3218         case HP_HASHVAL:
3219             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3220                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3221                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3222             }
3223
3224             if ( pbData == NULL ) {
3225                 *pdwDataLen = pCryptHash->dwHashSize;
3226                 return TRUE;
3227             }
3228
3229             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
3230             {
3231                 finalize_hash(pCryptHash);
3232                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3233             }
3234
3235             return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3236                               pCryptHash->dwHashSize);
3237
3238         default:
3239             SetLastError(NTE_BAD_TYPE);
3240             return FALSE;
3241     }
3242 }
3243
3244 /******************************************************************************
3245  * CPSetKeyParam (RSAENH.@)
3246  *
3247  * Set a parameter of a key object
3248  *
3249  * PARAMS
3250  *  hProv   [I] The key container to which the key belongs.
3251  *  hKey    [I] The key for which a parameter is to be set.
3252  *  dwParam [I] Parameter type. See Notes.
3253  *  pbData  [I] Pointer to the parameter value.
3254  *  dwFlags [I] Currently none defined.
3255  *
3256  * RETURNS
3257  *  Success: TRUE.
3258  *  Failure: FALSE.
3259  *
3260  * NOTES:
3261  *  Defined dwParam types are:
3262  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3263  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3264  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
3265  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3266  *   - KP_IV: Initialization vector
3267  */
3268 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
3269                                  DWORD dwFlags)
3270 {
3271     CRYPTKEY *pCryptKey;
3272
3273     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
3274           dwParam, pbData, dwFlags);
3275
3276     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3277     {
3278         SetLastError(NTE_BAD_UID);
3279         return FALSE;
3280     }
3281
3282     if (dwFlags) {
3283         SetLastError(NTE_BAD_FLAGS);
3284         return FALSE;
3285     }
3286     
3287     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3288     {
3289         SetLastError(NTE_BAD_KEY);
3290         return FALSE;
3291     }
3292     
3293     switch (dwParam) {
3294         case KP_PADDING:
3295             /* The MS providers only support PKCS5_PADDING */
3296             if (*(DWORD *)pbData != PKCS5_PADDING) {
3297                 SetLastError(NTE_BAD_DATA);
3298                 return FALSE;
3299             }
3300             return TRUE;
3301
3302         case KP_MODE:
3303             pCryptKey->dwMode = *(DWORD*)pbData;
3304             return TRUE;
3305
3306         case KP_MODE_BITS:
3307             pCryptKey->dwModeBits = *(DWORD*)pbData;
3308             return TRUE;
3309
3310         case KP_PERMISSIONS:
3311         {
3312             DWORD perms = *(DWORD *)pbData;
3313
3314             if ((perms & CRYPT_EXPORT) &&
3315                 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3316             {
3317                 SetLastError(NTE_BAD_DATA);
3318                 return FALSE;
3319             }
3320             else if (!(perms & CRYPT_EXPORT) &&
3321                 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3322             {
3323                 /* Clearing the export permission appears to be ignored,
3324                  * see tests.
3325                  */
3326                 perms |= CRYPT_EXPORT;
3327             }
3328             pCryptKey->dwPermissions = perms;
3329             return TRUE;
3330         }
3331
3332         case KP_IV:
3333             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3334             setup_key(pCryptKey);
3335             return TRUE;
3336
3337         case KP_SALT_EX:
3338         {
3339             CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3340
3341             /* salt length can't be greater than 184 bits = 24 bytes */
3342             if (blob->cbData > 24)
3343             {
3344                 SetLastError(NTE_BAD_DATA);
3345                 return FALSE;
3346             }
3347             memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3348                    blob->cbData);
3349             pCryptKey->dwSaltLen = blob->cbData;
3350             setup_key(pCryptKey);
3351             return TRUE;
3352         }
3353
3354         case KP_EFFECTIVE_KEYLEN:
3355             switch (pCryptKey->aiAlgid) {
3356                 case CALG_RC2:
3357                     if (!pbData)
3358                     {
3359                         SetLastError(ERROR_INVALID_PARAMETER);
3360                         return FALSE;
3361                     }
3362                     else if (!*(DWORD *)pbData || *(DWORD *)pbData > 1024)
3363                     {
3364                         SetLastError(NTE_BAD_DATA);
3365                         return FALSE;
3366                     }
3367                     else
3368                     {
3369                         pCryptKey->dwEffectiveKeyLen = *(DWORD *)pbData;
3370                         setup_key(pCryptKey);
3371                     }
3372                     break;
3373                 default:
3374                     SetLastError(NTE_BAD_TYPE);
3375                     return FALSE;
3376             }
3377             return TRUE;
3378
3379         case KP_SCHANNEL_ALG:
3380             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3381                 case SCHANNEL_ENC_KEY:
3382                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3383                     break;
3384
3385                 case SCHANNEL_MAC_KEY:
3386                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3387                     break;
3388
3389                 default:
3390                     SetLastError(NTE_FAIL); /* FIXME: error code */
3391                     return FALSE;
3392             }
3393             return TRUE;
3394
3395         case KP_CLIENT_RANDOM:
3396             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3397             
3398         case KP_SERVER_RANDOM:
3399             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3400
3401         default:
3402             SetLastError(NTE_BAD_TYPE);
3403             return FALSE;
3404     }
3405 }
3406
3407 /******************************************************************************
3408  * CPGetKeyParam (RSAENH.@)
3409  *
3410  * Query a key parameter.
3411  *
3412  * PARAMS
3413  *  hProv      [I]   The key container, which the key belongs to.
3414  *  hHash      [I]   The key object that is to be queried.
3415  *  dwParam    [I]   Specifies the parameter that is to be queried.
3416  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3417  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3418  *  dwFlags    [I]   None currently defined.
3419  *
3420  * RETURNS
3421  *  Success: TRUE
3422  *  Failure: FALSE
3423  *
3424  * NOTES
3425  *  Defined dwParam types are:
3426  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3427  *   - KP_MODE_BITS: Shift width for cipher feedback mode. 
3428  *                   (Currently ignored by MS CSP's - always eight)
3429  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
3430  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3431  *   - KP_IV: Initialization vector.
3432  *   - KP_KEYLEN: Bitwidth of the key.
3433  *   - KP_BLOCKLEN: Size of a block cipher block.
3434  *   - KP_SALT: Salt value.
3435  */
3436 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
3437                                  DWORD *pdwDataLen, DWORD dwFlags)
3438 {
3439     CRYPTKEY *pCryptKey;
3440     DWORD dwValue;
3441         
3442     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
3443           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
3444
3445     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3446     {
3447         SetLastError(NTE_BAD_UID);
3448         return FALSE;
3449     }
3450
3451     if (dwFlags) {
3452         SetLastError(NTE_BAD_FLAGS);
3453         return FALSE;
3454     }
3455
3456     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3457     {
3458         SetLastError(NTE_BAD_KEY);
3459         return FALSE;
3460     }
3461
3462     switch (dwParam) 
3463     {
3464         case KP_IV:
3465             return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
3466                               pCryptKey->dwBlockLen);
3467         
3468         case KP_SALT:
3469             return copy_param(pbData, pdwDataLen, 
3470                     &pCryptKey->abKeyValue[pCryptKey->dwKeyLen], pCryptKey->dwSaltLen);
3471
3472         case KP_PADDING:
3473             dwValue = PKCS5_PADDING;
3474             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3475
3476         case KP_KEYLEN:
3477             dwValue = pCryptKey->dwKeyLen << 3;
3478             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3479         
3480         case KP_EFFECTIVE_KEYLEN:
3481             if (pCryptKey->dwEffectiveKeyLen)
3482                 dwValue = pCryptKey->dwEffectiveKeyLen;
3483             else
3484                 dwValue = pCryptKey->dwKeyLen << 3;
3485             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3486
3487         case KP_BLOCKLEN:
3488             dwValue = pCryptKey->dwBlockLen << 3;
3489             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3490     
3491         case KP_MODE:
3492             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
3493
3494         case KP_MODE_BITS:
3495             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits, 
3496                               sizeof(DWORD));
3497     
3498         case KP_PERMISSIONS:
3499             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions, 
3500                               sizeof(DWORD));
3501
3502         case KP_ALGID:
3503             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
3504             
3505         default:
3506             SetLastError(NTE_BAD_TYPE);
3507             return FALSE;
3508     }
3509 }
3510                         
3511 /******************************************************************************
3512  * CPGetProvParam (RSAENH.@)
3513  *
3514  * Query a CSP parameter.
3515  *
3516  * PARAMS
3517  *  hProv      [I]   The key container that is to be queried.
3518  *  dwParam    [I]   Specifies the parameter that is to be queried.
3519  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3520  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3521  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
3522  *
3523  * RETURNS
3524  *  Success: TRUE
3525  *  Failure: FALSE
3526  * NOTES:
3527  *  Defined dwParam types:
3528  *   - PP_CONTAINER: Name of the key container.
3529  *   - PP_NAME: Name of the cryptographic service provider.
3530  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
3531  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
3532  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
3533  */
3534 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, 
3535                                   DWORD *pdwDataLen, DWORD dwFlags)
3536 {
3537     KEYCONTAINER *pKeyContainer;
3538     PROV_ENUMALGS provEnumalgs;
3539     DWORD dwTemp;
3540     HKEY hKey;
3541    
3542     /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
3543      * IE6 SP1 asks for it in the 'About' dialog.
3544      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem 
3545      * to be 'don't care's. If you know anything more specific about
3546      * this provider parameter, please report to wine-devel@winehq.org */
3547     static CONST BYTE abWTF[96] = { 
3548         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37, 
3549         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 
3550         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 
3551         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 
3552         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 
3553         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 
3554         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 
3555         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 
3556         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 
3557         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 
3558         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 
3559         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca 
3560     };
3561
3562     TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3563            hProv, dwParam, pbData, pdwDataLen, dwFlags);
3564
3565     if (!pdwDataLen) {
3566         SetLastError(ERROR_INVALID_PARAMETER);
3567         return FALSE;
3568     }
3569     
3570     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3571                        (OBJECTHDR**)&pKeyContainer)) 
3572     {
3573         /* MSDN: hProv not containing valid context handle */
3574         SetLastError(NTE_BAD_UID);
3575         return FALSE;
3576     }
3577
3578     switch (dwParam) 
3579     {
3580         case PP_CONTAINER:
3581         case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
3582             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName, 
3583                               strlen(pKeyContainer->szName)+1);
3584
3585         case PP_NAME:
3586             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName, 
3587                               strlen(pKeyContainer->szProvName)+1);
3588
3589         case PP_PROVTYPE:
3590             dwTemp = PROV_RSA_FULL;
3591             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3592
3593         case PP_KEYSPEC:
3594             dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
3595             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3596
3597         case PP_KEYSET_TYPE:
3598             dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
3599             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3600
3601         case PP_KEYSTORAGE:
3602             dwTemp = CRYPT_SEC_DESCR;
3603             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3604
3605         case PP_SIG_KEYSIZE_INC:
3606         case PP_KEYX_KEYSIZE_INC:
3607             dwTemp = 8;
3608             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3609
3610         case PP_IMPTYPE:
3611             dwTemp = CRYPT_IMPL_SOFTWARE;
3612             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3613
3614         case PP_VERSION:
3615             dwTemp = 0x00000200;
3616             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3617             
3618         case PP_ENUMCONTAINERS:
3619             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
3620
3621             if (!pbData) {
3622                 *pdwDataLen = (DWORD)MAX_PATH + 1;
3623                 return TRUE;
3624             }
3625  
3626             if (!open_container_key("", dwFlags, &hKey))
3627             {
3628                 SetLastError(ERROR_NO_MORE_ITEMS);
3629                 return FALSE;
3630             }
3631
3632             dwTemp = *pdwDataLen;
3633             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
3634                     NULL, NULL, NULL, NULL))
3635             {
3636                 case ERROR_MORE_DATA:
3637                     *pdwDataLen = (DWORD)MAX_PATH + 1;
3638  
3639                 case ERROR_SUCCESS:
3640                     pKeyContainer->dwEnumContainersCtr++;
3641                     RegCloseKey(hKey);
3642                     return TRUE;
3643
3644                 case ERROR_NO_MORE_ITEMS:
3645                 default:
3646                     SetLastError(ERROR_NO_MORE_ITEMS);
3647                     RegCloseKey(hKey);
3648                     return FALSE;
3649             }
3650  
3651         case PP_ENUMALGS:
3652         case PP_ENUMALGS_EX:
3653             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
3654                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
3655                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && 
3656                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
3657             {
3658                 SetLastError(ERROR_NO_MORE_ITEMS);
3659                 return FALSE;
3660             }
3661
3662             if (dwParam == PP_ENUMALGS) {    
3663                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) 
3664                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3665                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3666             
3667                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3668                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3669                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3670                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3671                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3672                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3673                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3674                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 
3675                        20*sizeof(CHAR));
3676             
3677                 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs, 
3678                                   sizeof(PROV_ENUMALGS));
3679             } else {
3680                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) 
3681                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3682                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3683             
3684                 return copy_param(pbData, pdwDataLen, 
3685                                   (CONST BYTE*)&aProvEnumAlgsEx
3686                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], 
3687                                   sizeof(PROV_ENUMALGS_EX));
3688             }
3689
3690         case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
3691             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3692
3693         default:
3694             /* MSDN: Unknown parameter number in dwParam */
3695             SetLastError(NTE_BAD_TYPE);
3696             return FALSE;
3697     }
3698 }
3699
3700 /******************************************************************************
3701  * CPDeriveKey (RSAENH.@)
3702  *
3703  * Derives a key from a hash value.
3704  *
3705  * PARAMS
3706  *  hProv     [I] Key container for which a key is to be generated.
3707  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
3708  *  hBaseData [I] Hash from whose value the key will be derived.
3709  *  dwFlags   [I] See Notes.
3710  *  phKey     [O] The generated key.
3711  *
3712  * RETURNS
3713  *  Success: TRUE
3714  *  Failure: FALSE
3715  *
3716  * NOTES
3717  *  Defined flags:
3718  *   - CRYPT_EXPORTABLE: Key can be exported.
3719  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3720  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3721  */
3722 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, 
3723                                DWORD dwFlags, HCRYPTKEY *phKey)
3724 {
3725     CRYPTKEY *pCryptKey, *pMasterKey;
3726     CRYPTHASH *pCryptHash;
3727     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3728     DWORD dwLen;
3729     
3730     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3731            hBaseData, dwFlags, phKey);
3732     
3733     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3734     {
3735         SetLastError(NTE_BAD_UID);
3736         return FALSE;
3737     }
3738
3739     if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3740                        (OBJECTHDR**)&pCryptHash))
3741     {
3742         SetLastError(NTE_BAD_HASH);
3743         return FALSE;
3744     }
3745
3746     if (!phKey)
3747     {
3748         SetLastError(ERROR_INVALID_PARAMETER);
3749         return FALSE;
3750     }
3751
3752     switch (GET_ALG_CLASS(Algid))
3753     {
3754         case ALG_CLASS_DATA_ENCRYPT:
3755             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3756             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3757
3758             /* 
3759              * We derive the key material from the hash.
3760              * If the hash value is not large enough for the claimed key, we have to construct
3761              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3762              */
3763             dwLen = RSAENH_MAX_HASH_SIZE;
3764             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3765     
3766             if (dwLen < pCryptKey->dwKeyLen) {
3767                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3768                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3769                 DWORD i;
3770
3771                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3772             
3773                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3774                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3775                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3776                 }
3777                 
3778                 init_hash(pCryptHash);
3779                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3780                 finalize_hash(pCryptHash);
3781                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3782
3783                 init_hash(pCryptHash);
3784                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3785                 finalize_hash(pCryptHash);
3786                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, 
3787                        pCryptHash->dwHashSize);
3788
3789                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3790             }
3791     
3792             memcpy(pCryptKey->abKeyValue, abHashValue, 
3793                    RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3794             break;
3795
3796         case ALG_CLASS_MSG_ENCRYPT:
3797             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3798                                (OBJECTHDR**)&pMasterKey)) 
3799             {
3800                 SetLastError(NTE_FAIL); /* FIXME error code */
3801                 return FALSE;
3802             }
3803                 
3804             switch (Algid) 
3805             {
3806                 /* See RFC 2246, chapter 6.3 Key calculation */
3807                 case CALG_SCHANNEL_ENC_KEY:
3808                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, 
3809                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3810                                      &pCryptKey);
3811                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3812                     memcpy(pCryptKey->abKeyValue, 
3813                            pCryptHash->abHashValue + (
3814                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3815                                ((dwFlags & CRYPT_SERVER) ? 
3816                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3817                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3818                     memcpy(pCryptKey->abInitVector,
3819                            pCryptHash->abHashValue + (
3820                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3821                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3822                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3823                            pCryptKey->dwBlockLen);
3824                     break;
3825                     
3826                 case CALG_SCHANNEL_MAC_KEY:
3827                     *phKey = new_key(hProv, Algid, 
3828                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3829                                      &pCryptKey);
3830                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3831                     memcpy(pCryptKey->abKeyValue,
3832                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? 
3833                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3834                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3835                     break;
3836                     
3837                 default:
3838                     SetLastError(NTE_BAD_ALGID);
3839                     return FALSE;
3840             }
3841             break;
3842
3843         default:
3844             SetLastError(NTE_BAD_ALGID);
3845             return FALSE;
3846     }
3847
3848     setup_key(pCryptKey);
3849     return TRUE;    
3850 }
3851
3852 /******************************************************************************
3853  * CPGetUserKey (RSAENH.@)
3854  *
3855  * Returns a handle to the user's private key-exchange- or signature-key.
3856  *
3857  * PARAMS
3858  *  hProv     [I] The key container from which a user key is requested.
3859  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3860  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3861  *
3862  * RETURNS
3863  *  Success: TRUE.
3864  *  Failure: FALSE.
3865  *
3866  * NOTE
3867  *  A newly created key container does not contain private user key. Create them with CPGenKey.
3868  */
3869 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3870 {
3871     KEYCONTAINER *pKeyContainer;
3872
3873     TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
3874     
3875     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3876                        (OBJECTHDR**)&pKeyContainer)) 
3877     {
3878         /* MSDN: hProv not containing valid context handle */
3879         SetLastError(NTE_BAD_UID);
3880         return FALSE;
3881     }
3882
3883     switch (dwKeySpec)
3884     {
3885         case AT_KEYEXCHANGE:
3886             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
3887                         phUserKey);
3888             break;
3889
3890         case AT_SIGNATURE:
3891             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
3892                         phUserKey);
3893             break;
3894
3895         default:
3896             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3897     }
3898
3899     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3900     {
3901         /* MSDN: dwKeySpec parameter specifies nonexistent key */
3902         SetLastError(NTE_NO_KEY);
3903         return FALSE;
3904     }
3905
3906     return TRUE;
3907 }
3908
3909 /******************************************************************************
3910  * CPHashData (RSAENH.@)
3911  *
3912  * Updates a hash object with the given data.
3913  *
3914  * PARAMS
3915  *  hProv     [I] Key container to which the hash object belongs.
3916  *  hHash     [I] Hash object which is to be updated.
3917  *  pbData    [I] Pointer to data with which the hash object is to be updated.
3918  *  dwDataLen [I] Length of the data.
3919  *  dwFlags   [I] Currently none defined.
3920  *
3921  * RETURNS
3922  *  Success: TRUE.
3923  *  Failure: FALSE.
3924  *
3925  * NOTES
3926  *  The actual hash value is queried with CPGetHashParam, which will finalize 
3927  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
3928  */
3929 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData, 
3930                               DWORD dwDataLen, DWORD dwFlags)
3931 {
3932     CRYPTHASH *pCryptHash;
3933         
3934     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
3935           hProv, hHash, pbData, dwDataLen, dwFlags);
3936
3937     if (dwFlags)
3938     {
3939         SetLastError(NTE_BAD_FLAGS);
3940         return FALSE;
3941     }
3942
3943     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3944                        (OBJECTHDR**)&pCryptHash))
3945     {
3946         SetLastError(NTE_BAD_HASH);
3947         return FALSE;
3948     }
3949
3950     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
3951     {
3952         SetLastError(NTE_BAD_ALGID);
3953         return FALSE;
3954     }
3955     
3956     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
3957     {
3958         SetLastError(NTE_BAD_HASH_STATE);
3959         return FALSE;
3960     }
3961
3962     update_hash(pCryptHash, pbData, dwDataLen);
3963     return TRUE;
3964 }
3965
3966 /******************************************************************************
3967  * CPHashSessionKey (RSAENH.@)
3968  *
3969  * Updates a hash object with the binary representation of a symmetric key.
3970  *
3971  * PARAMS
3972  *  hProv     [I] Key container to which the hash object belongs.
3973  *  hHash     [I] Hash object which is to be updated.
3974  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
3975  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
3976  *
3977  * RETURNS
3978  *  Success: TRUE.
3979  *  Failure: FALSE.
3980  */
3981 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, 
3982                                     DWORD dwFlags)
3983 {
3984     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
3985     CRYPTKEY *pKey;
3986     DWORD i;
3987
3988     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
3989
3990     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
3991         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) 
3992     {
3993         SetLastError(NTE_BAD_KEY);
3994         return FALSE;
3995     }
3996
3997     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
3998         SetLastError(NTE_BAD_FLAGS);
3999         return FALSE;
4000     }
4001
4002     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
4003     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
4004         for (i=0; i<pKey->dwKeyLen/2; i++) {
4005             bTemp = abKeyValue[i];
4006             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
4007             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
4008         }
4009     }
4010
4011     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
4012 }
4013
4014 /******************************************************************************
4015  * CPReleaseContext (RSAENH.@)
4016  *
4017  * Release a key container.
4018  *
4019  * PARAMS
4020  *  hProv   [I] Key container to be released.
4021  *  dwFlags [I] Currently none defined.
4022  *
4023  * RETURNS
4024  *  Success: TRUE
4025  *  Failure: FALSE
4026  */
4027 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
4028 {
4029     TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
4030
4031     if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4032     {
4033         /* MSDN: hProv not containing valid context handle */
4034         SetLastError(NTE_BAD_UID);
4035         return FALSE;
4036     }
4037
4038     if (dwFlags) {
4039         SetLastError(NTE_BAD_FLAGS);
4040         return FALSE;
4041     }
4042     
4043     return TRUE;
4044 }
4045
4046 /******************************************************************************
4047  * CPSetHashParam (RSAENH.@)
4048  * 
4049  * Set a parameter of a hash object
4050  *
4051  * PARAMS
4052  *  hProv   [I] The key container to which the key belongs.
4053  *  hHash   [I] The hash object for which a parameter is to be set.
4054  *  dwParam [I] Parameter type. See Notes.
4055  *  pbData  [I] Pointer to the parameter value.
4056  *  dwFlags [I] Currently none defined.
4057  *
4058  * RETURNS
4059  *  Success: TRUE.
4060  *  Failure: FALSE.
4061  *
4062  * NOTES
4063  *  Currently only the HP_HMAC_INFO dwParam type is defined. 
4064  *  The HMAC_INFO struct will be deep copied into the hash object.
4065  *  See Internet RFC 2104 for details on the HMAC algorithm.
4066  */
4067 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, 
4068                                   BYTE *pbData, DWORD dwFlags)
4069 {
4070     CRYPTHASH *pCryptHash;
4071     CRYPTKEY *pCryptKey;
4072     DWORD i;
4073
4074     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
4075            hProv, hHash, dwParam, pbData, dwFlags);
4076
4077     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4078     {
4079         SetLastError(NTE_BAD_UID);
4080         return FALSE;
4081     }
4082
4083     if (dwFlags) {
4084         SetLastError(NTE_BAD_FLAGS);
4085         return FALSE;
4086     }
4087     
4088     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4089                        (OBJECTHDR**)&pCryptHash))
4090     {
4091         SetLastError(NTE_BAD_HASH);
4092         return FALSE;
4093     }
4094     
4095     switch (dwParam) {
4096         case HP_HMAC_INFO:
4097             free_hmac_info(pCryptHash->pHMACInfo);
4098             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4099
4100             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, 
4101                                (OBJECTHDR**)&pCryptKey)) 
4102             {
4103                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4104                 return FALSE;
4105             }
4106
4107             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4108                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4109             }
4110             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4111                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4112             }
4113             
4114             init_hash(pCryptHash);
4115             return TRUE;
4116
4117         case HP_HASHVAL:
4118             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4119             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4120             return TRUE;
4121            
4122         case HP_TLS1PRF_SEED:
4123             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4124
4125         case HP_TLS1PRF_LABEL:
4126             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4127             
4128         default:
4129             SetLastError(NTE_BAD_TYPE);
4130             return FALSE;
4131     }
4132 }
4133
4134 /******************************************************************************
4135  * CPSetProvParam (RSAENH.@)
4136  */
4137 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4138 {
4139     FIXME("(stub)\n");
4140     return FALSE;
4141 }
4142
4143 /******************************************************************************
4144  * CPSignHash (RSAENH.@)
4145  *
4146  * Sign a hash object
4147  *
4148  * PARAMS
4149  *  hProv        [I]   The key container, to which the hash object belongs.
4150  *  hHash        [I]   The hash object to be signed.
4151  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4152  *  sDescription [I]   Should be NULL for security reasons. 
4153  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4154  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
4155  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
4156  *
4157  * RETURNS
4158  *  Success: TRUE
4159  *  Failure: FALSE
4160  */
4161 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, 
4162                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, 
4163                               DWORD *pdwSigLen)
4164 {
4165     HCRYPTKEY hCryptKey;
4166     CRYPTKEY *pCryptKey;
4167     DWORD dwHashLen;
4168     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4169     ALG_ID aiAlgid;
4170
4171     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
4172         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4173         dwFlags, pbSignature, pdwSigLen);
4174
4175     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4176         SetLastError(NTE_BAD_FLAGS);
4177         return FALSE;
4178     }
4179     
4180     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4181             
4182     if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4183                        (OBJECTHDR**)&pCryptKey))
4184     {
4185         SetLastError(NTE_NO_KEY);
4186         return FALSE;
4187     }
4188
4189     if (!pbSignature) {
4190         *pdwSigLen = pCryptKey->dwKeyLen;
4191         return TRUE;
4192     }
4193     if (pCryptKey->dwKeyLen > *pdwSigLen)
4194     {
4195         SetLastError(ERROR_MORE_DATA);
4196         *pdwSigLen = pCryptKey->dwKeyLen;
4197         return FALSE;
4198     }
4199     *pdwSigLen = pCryptKey->dwKeyLen;
4200
4201     if (sDescription) {
4202         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
4203                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4204         {
4205             return FALSE;
4206         }
4207     }
4208     
4209     dwHashLen = sizeof(DWORD);
4210     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4211     
4212     dwHashLen = RSAENH_MAX_HASH_SIZE;
4213     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4214  
4215
4216     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4217         return FALSE;
4218     }
4219
4220     return encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4221 }
4222
4223 /******************************************************************************
4224  * CPVerifySignature (RSAENH.@)
4225  *
4226  * Verify the signature of a hash object.
4227  * 
4228  * PARAMS
4229  *  hProv        [I] The key container, to which the hash belongs.
4230  *  hHash        [I] The hash for which the signature is verified.
4231  *  pbSignature  [I] The binary signature.
4232  *  dwSigLen     [I] Length of the signature BLOB.
4233  *  hPubKey      [I] Public key used to verify the signature.
4234  *  sDescription [I] Should be NULL for security reasons.
4235  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4236  *
4237  * RETURNS
4238  *  Success: TRUE  (Signature is valid)
4239  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4240  */
4241 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature, 
4242                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, 
4243                                      DWORD dwFlags)
4244 {
4245     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4246     CRYPTKEY *pCryptKey;
4247     DWORD dwHashLen;
4248     ALG_ID aiAlgid;
4249     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4250     BOOL res = FALSE;
4251
4252     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
4253           "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4254           dwFlags);
4255         
4256     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4257         SetLastError(NTE_BAD_FLAGS);
4258         return FALSE;
4259     }
4260     
4261     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4262     {
4263         SetLastError(NTE_BAD_UID);
4264         return FALSE;
4265     }
4266  
4267     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4268                        (OBJECTHDR**)&pCryptKey))
4269     {
4270         SetLastError(NTE_BAD_KEY);
4271         return FALSE;
4272     }
4273
4274     /* in Microsoft implementation, the signature length is checked before
4275      * the signature pointer.
4276      */
4277     if (dwSigLen != pCryptKey->dwKeyLen)
4278     {
4279         SetLastError(NTE_BAD_SIGNATURE);
4280         return FALSE;
4281     }
4282
4283     if (!hHash || !pbSignature)
4284     {
4285         SetLastError(ERROR_INVALID_PARAMETER);
4286         return FALSE;
4287     }
4288
4289     if (sDescription) {
4290         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
4291                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4292         {
4293             return FALSE;
4294         }
4295     }
4296     
4297     dwHashLen = sizeof(DWORD);
4298     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4299     
4300     dwHashLen = RSAENH_MAX_HASH_SIZE;
4301     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4302
4303     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4304     if (!pbConstructed) {
4305         SetLastError(NTE_NO_MEMORY);
4306         goto cleanup;
4307     }
4308
4309     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4310     if (!pbDecrypted) {
4311         SetLastError(NTE_NO_MEMORY);
4312         goto cleanup;
4313     }
4314
4315     if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted, 
4316                             RSAENH_DECRYPT)) 
4317     {
4318         goto cleanup;
4319     }
4320
4321     if (!build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4322         goto cleanup;
4323     }
4324
4325     if (memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4326         SetLastError(NTE_BAD_SIGNATURE);
4327         goto cleanup;
4328     }
4329     
4330     res = TRUE;
4331 cleanup:
4332     HeapFree(GetProcessHeap(), 0, pbConstructed);
4333     HeapFree(GetProcessHeap(), 0, pbDecrypted);
4334     return res;
4335 }
4336
4337 static const WCHAR szProviderKeys[6][116] = {
4338     {   'S','o','f','t','w','a','r','e','\\',
4339         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4340         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4341         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
4342         'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4343         'o','v','i','d','e','r',' ','v','1','.','0',0 },
4344     {   'S','o','f','t','w','a','r','e','\\',
4345         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4346         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4347         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4348         'E','n','h','a','n','c','e','d',
4349         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4350         'o','v','i','d','e','r',' ','v','1','.','0',0 },
4351     {   'S','o','f','t','w','a','r','e','\\',
4352         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4353         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4354         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
4355         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4356         'o','v','i','d','e','r',0 },
4357     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4358         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4359         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4360         'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
4361         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4362     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4363         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4364         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4365         'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4366         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4367     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4368         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4369         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4370         'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4371         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',
4372         ' ','(','P','r','o','t','o','t','y','p','e',')',0 }
4373 };
4374 static const WCHAR szDefaultKeys[3][65] = {
4375     {   'S','o','f','t','w','a','r','e','\\',
4376         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4377         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4378         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
4379     {   'S','o','f','t','w','a','r','e','\\',
4380         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4381         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4382         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 },
4383     {   'S','o','f','t','w','a','r','e','\\',
4384         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4385         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4386         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','2','4',0 }
4387 };
4388
4389
4390 /******************************************************************************
4391  * DllRegisterServer (RSAENH.@)
4392  *
4393  * Dll self registration. 
4394  *
4395  * PARAMS
4396  *
4397  * RETURNS
4398  *  Success: S_OK.
4399  *    Failure: != S_OK
4400  * 
4401  * NOTES
4402  *  Registers the following keys:
4403  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4404  *       Microsoft Base Cryptographic Provider v1.0
4405  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4406  *       Microsoft Enhanced Cryptographic Provider
4407  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4408  *       Microsoft Strong Cryptographpic Provider
4409  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001
4410  */
4411 HRESULT WINAPI DllRegisterServer(void)
4412 {
4413     HKEY key;
4414     DWORD dp;
4415     long apiRet;
4416     int i;
4417
4418     for (i=0; i<6; i++) {
4419         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szProviderKeys[i], 0, NULL,
4420             REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
4421
4422         if (apiRet == ERROR_SUCCESS)
4423         {
4424             if (dp == REG_CREATED_NEW_KEY)
4425             {
4426                 static const WCHAR szImagePath[] = { 'I','m','a','g','e',' ','P','a','t','h',0 };
4427                 static const WCHAR szRSABase[] = { 'r','s','a','e','n','h','.','d','l','l',0 };
4428                 static const WCHAR szType[] = { 'T','y','p','e',0 };
4429                 static const WCHAR szSignature[] = { 'S','i','g','n','a','t','u','r','e',0 };
4430                 DWORD type, sign;
4431
4432                 switch(i)
4433                 {
4434                     case 3:
4435                         type=PROV_RSA_SCHANNEL;
4436                         break;
4437                     case 4:
4438                     case 5:
4439                         type=PROV_RSA_AES;
4440                         break;
4441                     default:
4442                         type=PROV_RSA_FULL;
4443                         break;
4444                 }
4445                 sign = 0xdeadbeef;
4446                 RegSetValueExW(key, szImagePath, 0, REG_SZ, (const BYTE *)szRSABase,
4447                                (lstrlenW(szRSABase) + 1) * sizeof(WCHAR));
4448                 RegSetValueExW(key, szType, 0, REG_DWORD, (LPBYTE)&type, sizeof(type));
4449                 RegSetValueExW(key, szSignature, 0, REG_BINARY, (LPBYTE)&sign, sizeof(sign));
4450             }
4451             RegCloseKey(key);
4452         }
4453     }
4454     
4455     for (i=0; i<3; i++) {
4456         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szDefaultKeys[i], 0, NULL,
4457                                  REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
4458         if (apiRet == ERROR_SUCCESS)
4459         {
4460             if (dp == REG_CREATED_NEW_KEY)
4461             {
4462                 static const WCHAR szName[] = { 'N','a','m','e',0 };
4463                 static const WCHAR szRSAName[3][54] = {
4464                   { 'M','i','c','r','o','s','o','f','t',' ',
4465                     'E','n','h','a','n','c','e','d',' ',
4466                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ', 
4467                     'P','r','o','v','i','d','e','r',' ','v','1','.','0',0 },
4468                   { 'M','i','c','r','o','s','o','f','t',' ','R','S','A',' ',
4469                     'S','C','h','a','n','n','e','l',' ',
4470                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4471                     'P','r','o','v','i','d','e','r',0 },
4472                   { 'M','i','c','r','o','s','o','f','t',' ','E','n','h','a','n','c','e','d',' ',
4473                     'R','S','A',' ','a','n','d',' ','A','E','S',' ',
4474                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4475                     'P','r','o','v','i','d','e','r',0 } };
4476                 static const WCHAR szTypeName[] = { 'T','y','p','e','N','a','m','e',0 };
4477                 static const WCHAR szRSATypeName[3][38] = {
4478                   { 'R','S','A',' ','F','u','l','l',' ',
4479                        '(','S','i','g','n','a','t','u','r','e',' ','a','n','d',' ',
4480                     'K','e','y',' ','E','x','c','h','a','n','g','e',')',0 },
4481                   { 'R','S','A',' ','S','C','h','a','n','n','e','l',0 },
4482                   { 'R','S','A',' ','F','u','l','l',' ','a','n','d',' ','A','E','S',0 } };
4483
4484                 RegSetValueExW(key, szName, 0, REG_SZ,
4485                                 (const BYTE *)szRSAName[i], lstrlenW(szRSAName[i])*sizeof(WCHAR)+sizeof(WCHAR));
4486                 RegSetValueExW(key, szTypeName, 0, REG_SZ, 
4487                                 (const BYTE *)szRSATypeName[i], lstrlenW(szRSATypeName[i])*sizeof(WCHAR)+sizeof(WCHAR));
4488             }
4489         }
4490         RegCloseKey(key);
4491     }
4492     
4493     return HRESULT_FROM_WIN32(apiRet);
4494 }
4495
4496 /******************************************************************************
4497  * DllUnregisterServer (RSAENH.@)
4498  *
4499  * Dll self unregistration. 
4500  *
4501  * PARAMS
4502  *
4503  * RETURNS
4504  *  Success: S_OK
4505  *
4506  * NOTES
4507  *  For the relevant keys see DllRegisterServer.
4508  */
4509 HRESULT WINAPI DllUnregisterServer(void)
4510 {
4511     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[0]);
4512     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[1]);
4513     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[2]);
4514     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[3]);
4515     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[4]);
4516     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[5]);
4517     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[0]);
4518     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[1]);
4519     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[2]);
4520     return S_OK;
4521 }