2 * Low level variant functions
4 * Copyright 2003 Jon Griffiths
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22 #define NONAMELESSUNION
23 #define NONAMELESSSTRUCT
25 #include "wine/debug.h"
26 #include "wine/unicode.h"
33 WINE_DEFAULT_DEBUG_CHANNEL(variant);
35 extern HMODULE hProxyDll DECLSPEC_HIDDEN;
37 #define CY_MULTIPLIER 10000 /* 4 dp of precision */
38 #define CY_MULTIPLIER_F 10000.0
39 #define CY_HALF (CY_MULTIPLIER/2) /* 0.5 */
40 #define CY_HALF_F (CY_MULTIPLIER_F/2.0)
42 static const WCHAR szFloatFormatW[] = { '%','.','7','G','\0' };
43 static const WCHAR szDoubleFormatW[] = { '%','.','1','5','G','\0' };
45 /* Copy data from one variant to another. */
46 static inline void VARIANT_CopyData(const VARIANT *srcVar, VARTYPE vt, void *pOut)
51 case VT_UI1: memcpy(pOut, &V_UI1(srcVar), sizeof(BYTE)); break;
54 case VT_UI2: memcpy(pOut, &V_UI2(srcVar), sizeof(SHORT)); break;
59 case VT_UI4: memcpy(pOut, &V_UI4(srcVar), sizeof (LONG)); break;
64 case VT_UI8: memcpy(pOut, &V_UI8(srcVar), sizeof (LONG64)); break;
65 case VT_INT_PTR: memcpy(pOut, &V_INT_PTR(srcVar), sizeof (INT_PTR)); break;
66 case VT_DECIMAL: memcpy(pOut, &V_DECIMAL(srcVar), sizeof (DECIMAL)); break;
67 case VT_BSTR: memcpy(pOut, &V_BSTR(srcVar), sizeof(BSTR)); break;
69 FIXME("VT_ type %d unhandled, please report!\n", vt);
73 /* Macro to inline conversion from a float or double to any integer type,
74 * rounding according to the 'dutch' convention.
76 #define VARIANT_DutchRound(typ, value, res) do { \
77 double whole = value < 0 ? ceil(value) : floor(value); \
78 double fract = value - whole; \
79 if (fract > 0.5) res = (typ)whole + (typ)1; \
80 else if (fract == 0.5) { typ is_odd = (typ)whole & 1; res = whole + is_odd; } \
81 else if (fract >= 0.0) res = (typ)whole; \
82 else if (fract == -0.5) { typ is_odd = (typ)whole & 1; res = whole - is_odd; } \
83 else if (fract > -0.5) res = (typ)whole; \
84 else res = (typ)whole - (typ)1; \
88 /* Coerce VT_BSTR to a numeric type */
89 static HRESULT VARIANT_NumberFromBstr(OLECHAR* pStrIn, LCID lcid, ULONG ulFlags,
90 void* pOut, VARTYPE vt)
97 /* Use VarParseNumFromStr/VarNumFromParseNum as MSDN indicates */
98 np.cDig = sizeof(rgb) / sizeof(BYTE);
99 np.dwInFlags = NUMPRS_STD;
101 hRet = VarParseNumFromStr(pStrIn, lcid, ulFlags, &np, rgb);
105 /* 1 << vt gives us the VTBIT constant for the destination number type */
106 hRet = VarNumFromParseNum(&np, rgb, 1 << vt, &dstVar);
108 VARIANT_CopyData(&dstVar, vt, pOut);
113 /* Coerce VT_DISPATCH to another type */
114 static HRESULT VARIANT_FromDisp(IDispatch* pdispIn, LCID lcid, void* pOut,
115 VARTYPE vt, DWORD dwFlags)
117 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
118 VARIANTARG srcVar, dstVar;
122 return DISP_E_BADVARTYPE;
124 /* Get the default 'value' property from the IDispatch */
125 hRet = IDispatch_Invoke(pdispIn, DISPID_VALUE, &IID_NULL, lcid, DISPATCH_PROPERTYGET,
126 &emptyParams, &srcVar, NULL, NULL);
130 /* Convert the property to the requested type */
131 V_VT(&dstVar) = VT_EMPTY;
132 hRet = VariantChangeTypeEx(&dstVar, &srcVar, lcid, dwFlags, vt);
133 VariantClear(&srcVar);
137 VARIANT_CopyData(&dstVar, vt, pOut);
138 VariantClear(&srcVar);
142 hRet = DISP_E_TYPEMISMATCH;
146 /* Inline return type */
147 #define RETTYP static inline HRESULT
150 /* Simple compiler cast from one type to another */
151 #define SIMPLE(dest, src, func) RETTYP _##func(src in, dest* out) { \
152 *out = in; return S_OK; }
154 /* Compiler cast where input cannot be negative */
155 #define NEGTST(dest, src, func) RETTYP _##func(src in, dest* out) { \
156 if (in < 0) return DISP_E_OVERFLOW; *out = in; return S_OK; }
158 /* Compiler cast where input cannot be > some number */
159 #define POSTST(dest, src, func, tst) RETTYP _##func(src in, dest* out) { \
160 if (in > (dest)tst) return DISP_E_OVERFLOW; *out = in; return S_OK; }
162 /* Compiler cast where input cannot be < some number or >= some other number */
163 #define BOTHTST(dest, src, func, lo, hi) RETTYP _##func(src in, dest* out) { \
164 if (in < (dest)lo || in > hi) return DISP_E_OVERFLOW; *out = in; return S_OK; }
167 POSTST(signed char, BYTE, VarI1FromUI1, I1_MAX)
168 BOTHTST(signed char, SHORT, VarI1FromI2, I1_MIN, I1_MAX)
169 BOTHTST(signed char, LONG, VarI1FromI4, I1_MIN, I1_MAX)
170 SIMPLE(signed char, VARIANT_BOOL, VarI1FromBool)
171 POSTST(signed char, USHORT, VarI1FromUI2, I1_MAX)
172 POSTST(signed char, ULONG, VarI1FromUI4, I1_MAX)
173 BOTHTST(signed char, LONG64, VarI1FromI8, I1_MIN, I1_MAX)
174 POSTST(signed char, ULONG64, VarI1FromUI8, I1_MAX)
177 BOTHTST(BYTE, SHORT, VarUI1FromI2, UI1_MIN, UI1_MAX)
178 SIMPLE(BYTE, VARIANT_BOOL, VarUI1FromBool)
179 NEGTST(BYTE, signed char, VarUI1FromI1)
180 POSTST(BYTE, USHORT, VarUI1FromUI2, UI1_MAX)
181 BOTHTST(BYTE, LONG, VarUI1FromI4, UI1_MIN, UI1_MAX)
182 POSTST(BYTE, ULONG, VarUI1FromUI4, UI1_MAX)
183 BOTHTST(BYTE, LONG64, VarUI1FromI8, UI1_MIN, UI1_MAX)
184 POSTST(BYTE, ULONG64, VarUI1FromUI8, UI1_MAX)
187 SIMPLE(SHORT, BYTE, VarI2FromUI1)
188 BOTHTST(SHORT, LONG, VarI2FromI4, I2_MIN, I2_MAX)
189 SIMPLE(SHORT, VARIANT_BOOL, VarI2FromBool)
190 SIMPLE(SHORT, signed char, VarI2FromI1)
191 POSTST(SHORT, USHORT, VarI2FromUI2, I2_MAX)
192 POSTST(SHORT, ULONG, VarI2FromUI4, I2_MAX)
193 BOTHTST(SHORT, LONG64, VarI2FromI8, I2_MIN, I2_MAX)
194 POSTST(SHORT, ULONG64, VarI2FromUI8, I2_MAX)
197 SIMPLE(USHORT, BYTE, VarUI2FromUI1)
198 NEGTST(USHORT, SHORT, VarUI2FromI2)
199 BOTHTST(USHORT, LONG, VarUI2FromI4, UI2_MIN, UI2_MAX)
200 SIMPLE(USHORT, VARIANT_BOOL, VarUI2FromBool)
201 NEGTST(USHORT, signed char, VarUI2FromI1)
202 POSTST(USHORT, ULONG, VarUI2FromUI4, UI2_MAX)
203 BOTHTST(USHORT, LONG64, VarUI2FromI8, UI2_MIN, UI2_MAX)
204 POSTST(USHORT, ULONG64, VarUI2FromUI8, UI2_MAX)
207 SIMPLE(LONG, BYTE, VarI4FromUI1)
208 SIMPLE(LONG, SHORT, VarI4FromI2)
209 SIMPLE(LONG, VARIANT_BOOL, VarI4FromBool)
210 SIMPLE(LONG, signed char, VarI4FromI1)
211 SIMPLE(LONG, USHORT, VarI4FromUI2)
212 POSTST(LONG, ULONG, VarI4FromUI4, I4_MAX)
213 BOTHTST(LONG, LONG64, VarI4FromI8, I4_MIN, I4_MAX)
214 POSTST(LONG, ULONG64, VarI4FromUI8, I4_MAX)
217 SIMPLE(ULONG, BYTE, VarUI4FromUI1)
218 NEGTST(ULONG, SHORT, VarUI4FromI2)
219 NEGTST(ULONG, LONG, VarUI4FromI4)
220 SIMPLE(ULONG, VARIANT_BOOL, VarUI4FromBool)
221 NEGTST(ULONG, signed char, VarUI4FromI1)
222 SIMPLE(ULONG, USHORT, VarUI4FromUI2)
223 BOTHTST(ULONG, LONG64, VarUI4FromI8, UI4_MIN, UI4_MAX)
224 POSTST(ULONG, ULONG64, VarUI4FromUI8, UI4_MAX)
227 SIMPLE(LONG64, BYTE, VarI8FromUI1)
228 SIMPLE(LONG64, SHORT, VarI8FromI2)
229 SIMPLE(LONG64, signed char, VarI8FromI1)
230 SIMPLE(LONG64, USHORT, VarI8FromUI2)
231 SIMPLE(LONG64, ULONG, VarI8FromUI4)
232 POSTST(LONG64, ULONG64, VarI8FromUI8, I8_MAX)
235 SIMPLE(ULONG64, BYTE, VarUI8FromUI1)
236 NEGTST(ULONG64, SHORT, VarUI8FromI2)
237 NEGTST(ULONG64, signed char, VarUI8FromI1)
238 SIMPLE(ULONG64, USHORT, VarUI8FromUI2)
239 SIMPLE(ULONG64, ULONG, VarUI8FromUI4)
240 NEGTST(ULONG64, LONG64, VarUI8FromI8)
243 SIMPLE(float, BYTE, VarR4FromUI1)
244 SIMPLE(float, SHORT, VarR4FromI2)
245 SIMPLE(float, signed char, VarR4FromI1)
246 SIMPLE(float, USHORT, VarR4FromUI2)
247 SIMPLE(float, LONG, VarR4FromI4)
248 SIMPLE(float, ULONG, VarR4FromUI4)
249 SIMPLE(float, LONG64, VarR4FromI8)
250 SIMPLE(float, ULONG64, VarR4FromUI8)
253 SIMPLE(double, BYTE, VarR8FromUI1)
254 SIMPLE(double, SHORT, VarR8FromI2)
255 SIMPLE(double, float, VarR8FromR4)
256 RETTYP _VarR8FromCy(CY i, double* o) { *o = (double)i.int64 / CY_MULTIPLIER_F; return S_OK; }
257 SIMPLE(double, DATE, VarR8FromDate)
258 SIMPLE(double, signed char, VarR8FromI1)
259 SIMPLE(double, USHORT, VarR8FromUI2)
260 SIMPLE(double, LONG, VarR8FromI4)
261 SIMPLE(double, ULONG, VarR8FromUI4)
262 SIMPLE(double, LONG64, VarR8FromI8)
263 SIMPLE(double, ULONG64, VarR8FromUI8)
269 /************************************************************************
270 * VarI1FromUI1 (OLEAUT32.244)
272 * Convert a VT_UI1 to a VT_I1.
276 * pcOut [O] Destination
280 * Failure: E_INVALIDARG, if the source value is invalid
281 * DISP_E_OVERFLOW, if the value will not fit in the destination
283 HRESULT WINAPI VarI1FromUI1(BYTE bIn, signed char* pcOut)
285 return _VarI1FromUI1(bIn, pcOut);
288 /************************************************************************
289 * VarI1FromI2 (OLEAUT32.245)
291 * Convert a VT_I2 to a VT_I1.
295 * pcOut [O] Destination
299 * Failure: E_INVALIDARG, if the source value is invalid
300 * DISP_E_OVERFLOW, if the value will not fit in the destination
302 HRESULT WINAPI VarI1FromI2(SHORT sIn, signed char* pcOut)
304 return _VarI1FromI2(sIn, pcOut);
307 /************************************************************************
308 * VarI1FromI4 (OLEAUT32.246)
310 * Convert a VT_I4 to a VT_I1.
314 * pcOut [O] Destination
318 * Failure: E_INVALIDARG, if the source value is invalid
319 * DISP_E_OVERFLOW, if the value will not fit in the destination
321 HRESULT WINAPI VarI1FromI4(LONG iIn, signed char* pcOut)
323 return _VarI1FromI4(iIn, pcOut);
326 /************************************************************************
327 * VarI1FromR4 (OLEAUT32.247)
329 * Convert a VT_R4 to a VT_I1.
333 * pcOut [O] Destination
337 * Failure: E_INVALIDARG, if the source value is invalid
338 * DISP_E_OVERFLOW, if the value will not fit in the destination
340 HRESULT WINAPI VarI1FromR4(FLOAT fltIn, signed char* pcOut)
342 return VarI1FromR8(fltIn, pcOut);
345 /************************************************************************
346 * VarI1FromR8 (OLEAUT32.248)
348 * Convert a VT_R8 to a VT_I1.
352 * pcOut [O] Destination
356 * Failure: E_INVALIDARG, if the source value is invalid
357 * DISP_E_OVERFLOW, if the value will not fit in the destination
360 * See VarI8FromR8() for details concerning rounding.
362 HRESULT WINAPI VarI1FromR8(double dblIn, signed char* pcOut)
364 if (dblIn < (double)I1_MIN || dblIn > (double)I1_MAX)
365 return DISP_E_OVERFLOW;
366 VARIANT_DutchRound(CHAR, dblIn, *pcOut);
370 /************************************************************************
371 * VarI1FromDate (OLEAUT32.249)
373 * Convert a VT_DATE to a VT_I1.
377 * pcOut [O] Destination
381 * Failure: E_INVALIDARG, if the source value is invalid
382 * DISP_E_OVERFLOW, if the value will not fit in the destination
384 HRESULT WINAPI VarI1FromDate(DATE dateIn, signed char* pcOut)
386 return VarI1FromR8(dateIn, pcOut);
389 /************************************************************************
390 * VarI1FromCy (OLEAUT32.250)
392 * Convert a VT_CY to a VT_I1.
396 * pcOut [O] Destination
400 * Failure: E_INVALIDARG, if the source value is invalid
401 * DISP_E_OVERFLOW, if the value will not fit in the destination
403 HRESULT WINAPI VarI1FromCy(CY cyIn, signed char* pcOut)
407 VarI4FromCy(cyIn, &i);
408 return _VarI1FromI4(i, pcOut);
411 /************************************************************************
412 * VarI1FromStr (OLEAUT32.251)
414 * Convert a VT_BSTR to a VT_I1.
418 * lcid [I] LCID for the conversion
419 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
420 * pcOut [O] Destination
424 * Failure: E_INVALIDARG, if the source value is invalid
425 * DISP_E_OVERFLOW, if the value will not fit in the destination
426 * DISP_E_TYPEMISMATCH, if the type cannot be converted
428 HRESULT WINAPI VarI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, signed char* pcOut)
430 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pcOut, VT_I1);
433 /************************************************************************
434 * VarI1FromDisp (OLEAUT32.252)
436 * Convert a VT_DISPATCH to a VT_I1.
440 * lcid [I] LCID for conversion
441 * pcOut [O] Destination
445 * Failure: E_INVALIDARG, if the source value is invalid
446 * DISP_E_OVERFLOW, if the value will not fit in the destination
447 * DISP_E_TYPEMISMATCH, if the type cannot be converted
449 HRESULT WINAPI VarI1FromDisp(IDispatch* pdispIn, LCID lcid, signed char* pcOut)
451 return VARIANT_FromDisp(pdispIn, lcid, pcOut, VT_I1, 0);
454 /************************************************************************
455 * VarI1FromBool (OLEAUT32.253)
457 * Convert a VT_BOOL to a VT_I1.
461 * pcOut [O] Destination
466 HRESULT WINAPI VarI1FromBool(VARIANT_BOOL boolIn, signed char* pcOut)
468 return _VarI1FromBool(boolIn, pcOut);
471 /************************************************************************
472 * VarI1FromUI2 (OLEAUT32.254)
474 * Convert a VT_UI2 to a VT_I1.
478 * pcOut [O] Destination
482 * Failure: E_INVALIDARG, if the source value is invalid
483 * DISP_E_OVERFLOW, if the value will not fit in the destination
485 HRESULT WINAPI VarI1FromUI2(USHORT usIn, signed char* pcOut)
487 return _VarI1FromUI2(usIn, pcOut);
490 /************************************************************************
491 * VarI1FromUI4 (OLEAUT32.255)
493 * Convert a VT_UI4 to a VT_I1.
497 * pcOut [O] Destination
501 * Failure: E_INVALIDARG, if the source value is invalid
502 * DISP_E_OVERFLOW, if the value will not fit in the destination
503 * DISP_E_TYPEMISMATCH, if the type cannot be converted
505 HRESULT WINAPI VarI1FromUI4(ULONG ulIn, signed char* pcOut)
507 return _VarI1FromUI4(ulIn, pcOut);
510 /************************************************************************
511 * VarI1FromDec (OLEAUT32.256)
513 * Convert a VT_DECIMAL to a VT_I1.
517 * pcOut [O] Destination
521 * Failure: E_INVALIDARG, if the source value is invalid
522 * DISP_E_OVERFLOW, if the value will not fit in the destination
524 HRESULT WINAPI VarI1FromDec(DECIMAL *pdecIn, signed char* pcOut)
529 hRet = VarI8FromDec(pdecIn, &i64);
532 hRet = _VarI1FromI8(i64, pcOut);
536 /************************************************************************
537 * VarI1FromI8 (OLEAUT32.376)
539 * Convert a VT_I8 to a VT_I1.
543 * pcOut [O] Destination
547 * Failure: E_INVALIDARG, if the source value is invalid
548 * DISP_E_OVERFLOW, if the value will not fit in the destination
550 HRESULT WINAPI VarI1FromI8(LONG64 llIn, signed char* pcOut)
552 return _VarI1FromI8(llIn, pcOut);
555 /************************************************************************
556 * VarI1FromUI8 (OLEAUT32.377)
558 * Convert a VT_UI8 to a VT_I1.
562 * pcOut [O] Destination
566 * Failure: E_INVALIDARG, if the source value is invalid
567 * DISP_E_OVERFLOW, if the value will not fit in the destination
569 HRESULT WINAPI VarI1FromUI8(ULONG64 ullIn, signed char* pcOut)
571 return _VarI1FromUI8(ullIn, pcOut);
577 /************************************************************************
578 * VarUI1FromI2 (OLEAUT32.130)
580 * Convert a VT_I2 to a VT_UI1.
584 * pbOut [O] Destination
588 * Failure: E_INVALIDARG, if the source value is invalid
589 * DISP_E_OVERFLOW, if the value will not fit in the destination
591 HRESULT WINAPI VarUI1FromI2(SHORT sIn, BYTE* pbOut)
593 return _VarUI1FromI2(sIn, pbOut);
596 /************************************************************************
597 * VarUI1FromI4 (OLEAUT32.131)
599 * Convert a VT_I4 to a VT_UI1.
603 * pbOut [O] Destination
607 * Failure: E_INVALIDARG, if the source value is invalid
608 * DISP_E_OVERFLOW, if the value will not fit in the destination
610 HRESULT WINAPI VarUI1FromI4(LONG iIn, BYTE* pbOut)
612 return _VarUI1FromI4(iIn, pbOut);
615 /************************************************************************
616 * VarUI1FromR4 (OLEAUT32.132)
618 * Convert a VT_R4 to a VT_UI1.
622 * pbOut [O] Destination
626 * Failure: E_INVALIDARG, if the source value is invalid
627 * DISP_E_OVERFLOW, if the value will not fit in the destination
628 * DISP_E_TYPEMISMATCH, if the type cannot be converted
630 HRESULT WINAPI VarUI1FromR4(FLOAT fltIn, BYTE* pbOut)
632 return VarUI1FromR8(fltIn, pbOut);
635 /************************************************************************
636 * VarUI1FromR8 (OLEAUT32.133)
638 * Convert a VT_R8 to a VT_UI1.
642 * pbOut [O] Destination
646 * Failure: E_INVALIDARG, if the source value is invalid
647 * DISP_E_OVERFLOW, if the value will not fit in the destination
650 * See VarI8FromR8() for details concerning rounding.
652 HRESULT WINAPI VarUI1FromR8(double dblIn, BYTE* pbOut)
654 if (dblIn < -0.5 || dblIn > (double)UI1_MAX)
655 return DISP_E_OVERFLOW;
656 VARIANT_DutchRound(BYTE, dblIn, *pbOut);
660 /************************************************************************
661 * VarUI1FromCy (OLEAUT32.134)
663 * Convert a VT_CY to a VT_UI1.
667 * pbOut [O] Destination
671 * Failure: E_INVALIDARG, if the source value is invalid
672 * DISP_E_OVERFLOW, if the value will not fit in the destination
675 * Negative values >= -5000 will be converted to 0.
677 HRESULT WINAPI VarUI1FromCy(CY cyIn, BYTE* pbOut)
679 ULONG i = UI1_MAX + 1;
681 VarUI4FromCy(cyIn, &i);
682 return _VarUI1FromUI4(i, pbOut);
685 /************************************************************************
686 * VarUI1FromDate (OLEAUT32.135)
688 * Convert a VT_DATE to a VT_UI1.
692 * pbOut [O] Destination
696 * Failure: E_INVALIDARG, if the source value is invalid
697 * DISP_E_OVERFLOW, if the value will not fit in the destination
699 HRESULT WINAPI VarUI1FromDate(DATE dateIn, BYTE* pbOut)
701 return VarUI1FromR8(dateIn, pbOut);
704 /************************************************************************
705 * VarUI1FromStr (OLEAUT32.136)
707 * Convert a VT_BSTR to a VT_UI1.
711 * lcid [I] LCID for the conversion
712 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
713 * pbOut [O] Destination
717 * Failure: E_INVALIDARG, if the source value is invalid
718 * DISP_E_OVERFLOW, if the value will not fit in the destination
719 * DISP_E_TYPEMISMATCH, if the type cannot be converted
721 HRESULT WINAPI VarUI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, BYTE* pbOut)
723 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pbOut, VT_UI1);
726 /************************************************************************
727 * VarUI1FromDisp (OLEAUT32.137)
729 * Convert a VT_DISPATCH to a VT_UI1.
733 * lcid [I] LCID for conversion
734 * pbOut [O] Destination
738 * Failure: E_INVALIDARG, if the source value is invalid
739 * DISP_E_OVERFLOW, if the value will not fit in the destination
740 * DISP_E_TYPEMISMATCH, if the type cannot be converted
742 HRESULT WINAPI VarUI1FromDisp(IDispatch* pdispIn, LCID lcid, BYTE* pbOut)
744 return VARIANT_FromDisp(pdispIn, lcid, pbOut, VT_UI1, 0);
747 /************************************************************************
748 * VarUI1FromBool (OLEAUT32.138)
750 * Convert a VT_BOOL to a VT_UI1.
754 * pbOut [O] Destination
759 HRESULT WINAPI VarUI1FromBool(VARIANT_BOOL boolIn, BYTE* pbOut)
761 return _VarUI1FromBool(boolIn, pbOut);
764 /************************************************************************
765 * VarUI1FromI1 (OLEAUT32.237)
767 * Convert a VT_I1 to a VT_UI1.
771 * pbOut [O] Destination
775 * Failure: E_INVALIDARG, if the source value is invalid
776 * DISP_E_OVERFLOW, if the value will not fit in the destination
778 HRESULT WINAPI VarUI1FromI1(signed char cIn, BYTE* pbOut)
780 return _VarUI1FromI1(cIn, pbOut);
783 /************************************************************************
784 * VarUI1FromUI2 (OLEAUT32.238)
786 * Convert a VT_UI2 to a VT_UI1.
790 * pbOut [O] Destination
794 * Failure: E_INVALIDARG, if the source value is invalid
795 * DISP_E_OVERFLOW, if the value will not fit in the destination
797 HRESULT WINAPI VarUI1FromUI2(USHORT usIn, BYTE* pbOut)
799 return _VarUI1FromUI2(usIn, pbOut);
802 /************************************************************************
803 * VarUI1FromUI4 (OLEAUT32.239)
805 * Convert a VT_UI4 to a VT_UI1.
809 * pbOut [O] Destination
813 * Failure: E_INVALIDARG, if the source value is invalid
814 * DISP_E_OVERFLOW, if the value will not fit in the destination
816 HRESULT WINAPI VarUI1FromUI4(ULONG ulIn, BYTE* pbOut)
818 return _VarUI1FromUI4(ulIn, pbOut);
821 /************************************************************************
822 * VarUI1FromDec (OLEAUT32.240)
824 * Convert a VT_DECIMAL to a VT_UI1.
828 * pbOut [O] Destination
832 * Failure: E_INVALIDARG, if the source value is invalid
833 * DISP_E_OVERFLOW, if the value will not fit in the destination
835 HRESULT WINAPI VarUI1FromDec(DECIMAL *pdecIn, BYTE* pbOut)
840 hRet = VarI8FromDec(pdecIn, &i64);
843 hRet = _VarUI1FromI8(i64, pbOut);
847 /************************************************************************
848 * VarUI1FromI8 (OLEAUT32.372)
850 * Convert a VT_I8 to a VT_UI1.
854 * pbOut [O] Destination
858 * Failure: E_INVALIDARG, if the source value is invalid
859 * DISP_E_OVERFLOW, if the value will not fit in the destination
861 HRESULT WINAPI VarUI1FromI8(LONG64 llIn, BYTE* pbOut)
863 return _VarUI1FromI8(llIn, pbOut);
866 /************************************************************************
867 * VarUI1FromUI8 (OLEAUT32.373)
869 * Convert a VT_UI8 to a VT_UI1.
873 * pbOut [O] Destination
877 * Failure: E_INVALIDARG, if the source value is invalid
878 * DISP_E_OVERFLOW, if the value will not fit in the destination
880 HRESULT WINAPI VarUI1FromUI8(ULONG64 ullIn, BYTE* pbOut)
882 return _VarUI1FromUI8(ullIn, pbOut);
889 /************************************************************************
890 * VarI2FromUI1 (OLEAUT32.48)
892 * Convert a VT_UI2 to a VT_I2.
896 * psOut [O] Destination
901 HRESULT WINAPI VarI2FromUI1(BYTE bIn, SHORT* psOut)
903 return _VarI2FromUI1(bIn, psOut);
906 /************************************************************************
907 * VarI2FromI4 (OLEAUT32.49)
909 * Convert a VT_I4 to a VT_I2.
913 * psOut [O] Destination
917 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
919 HRESULT WINAPI VarI2FromI4(LONG iIn, SHORT* psOut)
921 return _VarI2FromI4(iIn, psOut);
924 /************************************************************************
925 * VarI2FromR4 (OLEAUT32.50)
927 * Convert a VT_R4 to a VT_I2.
931 * psOut [O] Destination
935 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
937 HRESULT WINAPI VarI2FromR4(FLOAT fltIn, SHORT* psOut)
939 return VarI2FromR8(fltIn, psOut);
942 /************************************************************************
943 * VarI2FromR8 (OLEAUT32.51)
945 * Convert a VT_R8 to a VT_I2.
949 * psOut [O] Destination
953 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
956 * See VarI8FromR8() for details concerning rounding.
958 HRESULT WINAPI VarI2FromR8(double dblIn, SHORT* psOut)
960 if (dblIn < (double)I2_MIN || dblIn > (double)I2_MAX)
961 return DISP_E_OVERFLOW;
962 VARIANT_DutchRound(SHORT, dblIn, *psOut);
966 /************************************************************************
967 * VarI2FromCy (OLEAUT32.52)
969 * Convert a VT_CY to a VT_I2.
973 * psOut [O] Destination
977 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
979 HRESULT WINAPI VarI2FromCy(CY cyIn, SHORT* psOut)
983 VarI4FromCy(cyIn, &i);
984 return _VarI2FromI4(i, psOut);
987 /************************************************************************
988 * VarI2FromDate (OLEAUT32.53)
990 * Convert a VT_DATE to a VT_I2.
994 * psOut [O] Destination
998 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1000 HRESULT WINAPI VarI2FromDate(DATE dateIn, SHORT* psOut)
1002 return VarI2FromR8(dateIn, psOut);
1005 /************************************************************************
1006 * VarI2FromStr (OLEAUT32.54)
1008 * Convert a VT_BSTR to a VT_I2.
1012 * lcid [I] LCID for the conversion
1013 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1014 * psOut [O] Destination
1018 * Failure: E_INVALIDARG, if any parameter is invalid
1019 * DISP_E_OVERFLOW, if the value will not fit in the destination
1020 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1022 HRESULT WINAPI VarI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, SHORT* psOut)
1024 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, psOut, VT_I2);
1027 /************************************************************************
1028 * VarI2FromDisp (OLEAUT32.55)
1030 * Convert a VT_DISPATCH to a VT_I2.
1033 * pdispIn [I] Source
1034 * lcid [I] LCID for conversion
1035 * psOut [O] Destination
1039 * Failure: E_INVALIDARG, if pdispIn is invalid,
1040 * DISP_E_OVERFLOW, if the value will not fit in the destination,
1041 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1043 HRESULT WINAPI VarI2FromDisp(IDispatch* pdispIn, LCID lcid, SHORT* psOut)
1045 return VARIANT_FromDisp(pdispIn, lcid, psOut, VT_I2, 0);
1048 /************************************************************************
1049 * VarI2FromBool (OLEAUT32.56)
1051 * Convert a VT_BOOL to a VT_I2.
1055 * psOut [O] Destination
1060 HRESULT WINAPI VarI2FromBool(VARIANT_BOOL boolIn, SHORT* psOut)
1062 return _VarI2FromBool(boolIn, psOut);
1065 /************************************************************************
1066 * VarI2FromI1 (OLEAUT32.205)
1068 * Convert a VT_I1 to a VT_I2.
1072 * psOut [O] Destination
1077 HRESULT WINAPI VarI2FromI1(signed char cIn, SHORT* psOut)
1079 return _VarI2FromI1(cIn, psOut);
1082 /************************************************************************
1083 * VarI2FromUI2 (OLEAUT32.206)
1085 * Convert a VT_UI2 to a VT_I2.
1089 * psOut [O] Destination
1093 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1095 HRESULT WINAPI VarI2FromUI2(USHORT usIn, SHORT* psOut)
1097 return _VarI2FromUI2(usIn, psOut);
1100 /************************************************************************
1101 * VarI2FromUI4 (OLEAUT32.207)
1103 * Convert a VT_UI4 to a VT_I2.
1107 * psOut [O] Destination
1111 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1113 HRESULT WINAPI VarI2FromUI4(ULONG ulIn, SHORT* psOut)
1115 return _VarI2FromUI4(ulIn, psOut);
1118 /************************************************************************
1119 * VarI2FromDec (OLEAUT32.208)
1121 * Convert a VT_DECIMAL to a VT_I2.
1125 * psOut [O] Destination
1129 * Failure: E_INVALIDARG, if the source value is invalid
1130 * DISP_E_OVERFLOW, if the value will not fit in the destination
1132 HRESULT WINAPI VarI2FromDec(DECIMAL *pdecIn, SHORT* psOut)
1137 hRet = VarI8FromDec(pdecIn, &i64);
1139 if (SUCCEEDED(hRet))
1140 hRet = _VarI2FromI8(i64, psOut);
1144 /************************************************************************
1145 * VarI2FromI8 (OLEAUT32.346)
1147 * Convert a VT_I8 to a VT_I2.
1151 * psOut [O] Destination
1155 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1157 HRESULT WINAPI VarI2FromI8(LONG64 llIn, SHORT* psOut)
1159 return _VarI2FromI8(llIn, psOut);
1162 /************************************************************************
1163 * VarI2FromUI8 (OLEAUT32.347)
1165 * Convert a VT_UI8 to a VT_I2.
1169 * psOut [O] Destination
1173 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1175 HRESULT WINAPI VarI2FromUI8(ULONG64 ullIn, SHORT* psOut)
1177 return _VarI2FromUI8(ullIn, psOut);
1183 /************************************************************************
1184 * VarUI2FromUI1 (OLEAUT32.257)
1186 * Convert a VT_UI1 to a VT_UI2.
1190 * pusOut [O] Destination
1195 HRESULT WINAPI VarUI2FromUI1(BYTE bIn, USHORT* pusOut)
1197 return _VarUI2FromUI1(bIn, pusOut);
1200 /************************************************************************
1201 * VarUI2FromI2 (OLEAUT32.258)
1203 * Convert a VT_I2 to a VT_UI2.
1207 * pusOut [O] Destination
1211 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1213 HRESULT WINAPI VarUI2FromI2(SHORT sIn, USHORT* pusOut)
1215 return _VarUI2FromI2(sIn, pusOut);
1218 /************************************************************************
1219 * VarUI2FromI4 (OLEAUT32.259)
1221 * Convert a VT_I4 to a VT_UI2.
1225 * pusOut [O] Destination
1229 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1231 HRESULT WINAPI VarUI2FromI4(LONG iIn, USHORT* pusOut)
1233 return _VarUI2FromI4(iIn, pusOut);
1236 /************************************************************************
1237 * VarUI2FromR4 (OLEAUT32.260)
1239 * Convert a VT_R4 to a VT_UI2.
1243 * pusOut [O] Destination
1247 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1249 HRESULT WINAPI VarUI2FromR4(FLOAT fltIn, USHORT* pusOut)
1251 return VarUI2FromR8(fltIn, pusOut);
1254 /************************************************************************
1255 * VarUI2FromR8 (OLEAUT32.261)
1257 * Convert a VT_R8 to a VT_UI2.
1261 * pusOut [O] Destination
1265 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1268 * See VarI8FromR8() for details concerning rounding.
1270 HRESULT WINAPI VarUI2FromR8(double dblIn, USHORT* pusOut)
1272 if (dblIn < -0.5 || dblIn > (double)UI2_MAX)
1273 return DISP_E_OVERFLOW;
1274 VARIANT_DutchRound(USHORT, dblIn, *pusOut);
1278 /************************************************************************
1279 * VarUI2FromDate (OLEAUT32.262)
1281 * Convert a VT_DATE to a VT_UI2.
1285 * pusOut [O] Destination
1289 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1291 HRESULT WINAPI VarUI2FromDate(DATE dateIn, USHORT* pusOut)
1293 return VarUI2FromR8(dateIn, pusOut);
1296 /************************************************************************
1297 * VarUI2FromCy (OLEAUT32.263)
1299 * Convert a VT_CY to a VT_UI2.
1303 * pusOut [O] Destination
1307 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1310 * Negative values >= -5000 will be converted to 0.
1312 HRESULT WINAPI VarUI2FromCy(CY cyIn, USHORT* pusOut)
1314 ULONG i = UI2_MAX + 1;
1316 VarUI4FromCy(cyIn, &i);
1317 return _VarUI2FromUI4(i, pusOut);
1320 /************************************************************************
1321 * VarUI2FromStr (OLEAUT32.264)
1323 * Convert a VT_BSTR to a VT_UI2.
1327 * lcid [I] LCID for the conversion
1328 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1329 * pusOut [O] Destination
1333 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1334 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1336 HRESULT WINAPI VarUI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, USHORT* pusOut)
1338 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pusOut, VT_UI2);
1341 /************************************************************************
1342 * VarUI2FromDisp (OLEAUT32.265)
1344 * Convert a VT_DISPATCH to a VT_UI2.
1347 * pdispIn [I] Source
1348 * lcid [I] LCID for conversion
1349 * pusOut [O] Destination
1353 * Failure: E_INVALIDARG, if the source value is invalid
1354 * DISP_E_OVERFLOW, if the value will not fit in the destination
1355 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1357 HRESULT WINAPI VarUI2FromDisp(IDispatch* pdispIn, LCID lcid, USHORT* pusOut)
1359 return VARIANT_FromDisp(pdispIn, lcid, pusOut, VT_UI2, 0);
1362 /************************************************************************
1363 * VarUI2FromBool (OLEAUT32.266)
1365 * Convert a VT_BOOL to a VT_UI2.
1369 * pusOut [O] Destination
1374 HRESULT WINAPI VarUI2FromBool(VARIANT_BOOL boolIn, USHORT* pusOut)
1376 return _VarUI2FromBool(boolIn, pusOut);
1379 /************************************************************************
1380 * VarUI2FromI1 (OLEAUT32.267)
1382 * Convert a VT_I1 to a VT_UI2.
1386 * pusOut [O] Destination
1390 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1392 HRESULT WINAPI VarUI2FromI1(signed char cIn, USHORT* pusOut)
1394 return _VarUI2FromI1(cIn, pusOut);
1397 /************************************************************************
1398 * VarUI2FromUI4 (OLEAUT32.268)
1400 * Convert a VT_UI4 to a VT_UI2.
1404 * pusOut [O] Destination
1408 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1410 HRESULT WINAPI VarUI2FromUI4(ULONG ulIn, USHORT* pusOut)
1412 return _VarUI2FromUI4(ulIn, pusOut);
1415 /************************************************************************
1416 * VarUI2FromDec (OLEAUT32.269)
1418 * Convert a VT_DECIMAL to a VT_UI2.
1422 * pusOut [O] Destination
1426 * Failure: E_INVALIDARG, if the source value is invalid
1427 * DISP_E_OVERFLOW, if the value will not fit in the destination
1429 HRESULT WINAPI VarUI2FromDec(DECIMAL *pdecIn, USHORT* pusOut)
1434 hRet = VarI8FromDec(pdecIn, &i64);
1436 if (SUCCEEDED(hRet))
1437 hRet = _VarUI2FromI8(i64, pusOut);
1441 /************************************************************************
1442 * VarUI2FromI8 (OLEAUT32.378)
1444 * Convert a VT_I8 to a VT_UI2.
1448 * pusOut [O] Destination
1452 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1454 HRESULT WINAPI VarUI2FromI8(LONG64 llIn, USHORT* pusOut)
1456 return _VarUI2FromI8(llIn, pusOut);
1459 /************************************************************************
1460 * VarUI2FromUI8 (OLEAUT32.379)
1462 * Convert a VT_UI8 to a VT_UI2.
1466 * pusOut [O] Destination
1470 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1472 HRESULT WINAPI VarUI2FromUI8(ULONG64 ullIn, USHORT* pusOut)
1474 return _VarUI2FromUI8(ullIn, pusOut);
1480 /************************************************************************
1481 * VarI4FromUI1 (OLEAUT32.58)
1483 * Convert a VT_UI1 to a VT_I4.
1487 * piOut [O] Destination
1492 HRESULT WINAPI VarI4FromUI1(BYTE bIn, LONG *piOut)
1494 return _VarI4FromUI1(bIn, piOut);
1497 /************************************************************************
1498 * VarI4FromI2 (OLEAUT32.59)
1500 * Convert a VT_I2 to a VT_I4.
1504 * piOut [O] Destination
1508 * Failure: E_INVALIDARG, if the source value is invalid
1509 * DISP_E_OVERFLOW, if the value will not fit in the destination
1511 HRESULT WINAPI VarI4FromI2(SHORT sIn, LONG *piOut)
1513 return _VarI4FromI2(sIn, piOut);
1516 /************************************************************************
1517 * VarI4FromR4 (OLEAUT32.60)
1519 * Convert a VT_R4 to a VT_I4.
1523 * piOut [O] Destination
1527 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1529 HRESULT WINAPI VarI4FromR4(FLOAT fltIn, LONG *piOut)
1531 return VarI4FromR8(fltIn, piOut);
1534 /************************************************************************
1535 * VarI4FromR8 (OLEAUT32.61)
1537 * Convert a VT_R8 to a VT_I4.
1541 * piOut [O] Destination
1545 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1548 * See VarI8FromR8() for details concerning rounding.
1550 HRESULT WINAPI VarI4FromR8(double dblIn, LONG *piOut)
1552 if (dblIn < (double)I4_MIN || dblIn > (double)I4_MAX)
1553 return DISP_E_OVERFLOW;
1554 VARIANT_DutchRound(LONG, dblIn, *piOut);
1558 /************************************************************************
1559 * VarI4FromCy (OLEAUT32.62)
1561 * Convert a VT_CY to a VT_I4.
1565 * piOut [O] Destination
1569 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1571 HRESULT WINAPI VarI4FromCy(CY cyIn, LONG *piOut)
1573 double d = cyIn.int64 / CY_MULTIPLIER_F;
1574 return VarI4FromR8(d, piOut);
1577 /************************************************************************
1578 * VarI4FromDate (OLEAUT32.63)
1580 * Convert a VT_DATE to a VT_I4.
1584 * piOut [O] Destination
1588 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1590 HRESULT WINAPI VarI4FromDate(DATE dateIn, LONG *piOut)
1592 return VarI4FromR8(dateIn, piOut);
1595 /************************************************************************
1596 * VarI4FromStr (OLEAUT32.64)
1598 * Convert a VT_BSTR to a VT_I4.
1602 * lcid [I] LCID for the conversion
1603 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1604 * piOut [O] Destination
1608 * Failure: E_INVALIDARG, if any parameter is invalid
1609 * DISP_E_OVERFLOW, if the value will not fit in the destination
1610 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1612 HRESULT WINAPI VarI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG *piOut)
1614 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, piOut, VT_I4);
1617 /************************************************************************
1618 * VarI4FromDisp (OLEAUT32.65)
1620 * Convert a VT_DISPATCH to a VT_I4.
1623 * pdispIn [I] Source
1624 * lcid [I] LCID for conversion
1625 * piOut [O] Destination
1629 * Failure: E_INVALIDARG, if the source value is invalid
1630 * DISP_E_OVERFLOW, if the value will not fit in the destination
1631 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1633 HRESULT WINAPI VarI4FromDisp(IDispatch* pdispIn, LCID lcid, LONG *piOut)
1635 return VARIANT_FromDisp(pdispIn, lcid, piOut, VT_I4, 0);
1638 /************************************************************************
1639 * VarI4FromBool (OLEAUT32.66)
1641 * Convert a VT_BOOL to a VT_I4.
1645 * piOut [O] Destination
1650 HRESULT WINAPI VarI4FromBool(VARIANT_BOOL boolIn, LONG *piOut)
1652 return _VarI4FromBool(boolIn, piOut);
1655 /************************************************************************
1656 * VarI4FromI1 (OLEAUT32.209)
1658 * Convert a VT_I1 to a VT_I4.
1662 * piOut [O] Destination
1667 HRESULT WINAPI VarI4FromI1(signed char cIn, LONG *piOut)
1669 return _VarI4FromI1(cIn, piOut);
1672 /************************************************************************
1673 * VarI4FromUI2 (OLEAUT32.210)
1675 * Convert a VT_UI2 to a VT_I4.
1679 * piOut [O] Destination
1684 HRESULT WINAPI VarI4FromUI2(USHORT usIn, LONG *piOut)
1686 return _VarI4FromUI2(usIn, piOut);
1689 /************************************************************************
1690 * VarI4FromUI4 (OLEAUT32.211)
1692 * Convert a VT_UI4 to a VT_I4.
1696 * piOut [O] Destination
1700 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1702 HRESULT WINAPI VarI4FromUI4(ULONG ulIn, LONG *piOut)
1704 return _VarI4FromUI4(ulIn, piOut);
1707 /************************************************************************
1708 * VarI4FromDec (OLEAUT32.212)
1710 * Convert a VT_DECIMAL to a VT_I4.
1714 * piOut [O] Destination
1718 * Failure: E_INVALIDARG, if pdecIn is invalid
1719 * DISP_E_OVERFLOW, if the value will not fit in the destination
1721 HRESULT WINAPI VarI4FromDec(DECIMAL *pdecIn, LONG *piOut)
1726 hRet = VarI8FromDec(pdecIn, &i64);
1728 if (SUCCEEDED(hRet))
1729 hRet = _VarI4FromI8(i64, piOut);
1733 /************************************************************************
1734 * VarI4FromI8 (OLEAUT32.348)
1736 * Convert a VT_I8 to a VT_I4.
1740 * piOut [O] Destination
1744 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1746 HRESULT WINAPI VarI4FromI8(LONG64 llIn, LONG *piOut)
1748 return _VarI4FromI8(llIn, piOut);
1751 /************************************************************************
1752 * VarI4FromUI8 (OLEAUT32.349)
1754 * Convert a VT_UI8 to a VT_I4.
1758 * piOut [O] Destination
1762 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1764 HRESULT WINAPI VarI4FromUI8(ULONG64 ullIn, LONG *piOut)
1766 return _VarI4FromUI8(ullIn, piOut);
1772 /************************************************************************
1773 * VarUI4FromUI1 (OLEAUT32.270)
1775 * Convert a VT_UI1 to a VT_UI4.
1779 * pulOut [O] Destination
1784 HRESULT WINAPI VarUI4FromUI1(BYTE bIn, ULONG *pulOut)
1786 return _VarUI4FromUI1(bIn, pulOut);
1789 /************************************************************************
1790 * VarUI4FromI2 (OLEAUT32.271)
1792 * Convert a VT_I2 to a VT_UI4.
1796 * pulOut [O] Destination
1800 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1802 HRESULT WINAPI VarUI4FromI2(SHORT sIn, ULONG *pulOut)
1804 return _VarUI4FromI2(sIn, pulOut);
1807 /************************************************************************
1808 * VarUI4FromI4 (OLEAUT32.272)
1810 * Convert a VT_I4 to a VT_UI4.
1814 * pulOut [O] Destination
1818 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1820 HRESULT WINAPI VarUI4FromI4(LONG iIn, ULONG *pulOut)
1822 return _VarUI4FromI4(iIn, pulOut);
1825 /************************************************************************
1826 * VarUI4FromR4 (OLEAUT32.273)
1828 * Convert a VT_R4 to a VT_UI4.
1832 * pulOut [O] Destination
1836 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1838 HRESULT WINAPI VarUI4FromR4(FLOAT fltIn, ULONG *pulOut)
1840 return VarUI4FromR8(fltIn, pulOut);
1843 /************************************************************************
1844 * VarUI4FromR8 (OLEAUT32.274)
1846 * Convert a VT_R8 to a VT_UI4.
1850 * pulOut [O] Destination
1854 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1857 * See VarI8FromR8() for details concerning rounding.
1859 HRESULT WINAPI VarUI4FromR8(double dblIn, ULONG *pulOut)
1861 if (dblIn < -0.5 || dblIn > (double)UI4_MAX)
1862 return DISP_E_OVERFLOW;
1863 VARIANT_DutchRound(ULONG, dblIn, *pulOut);
1867 /************************************************************************
1868 * VarUI4FromDate (OLEAUT32.275)
1870 * Convert a VT_DATE to a VT_UI4.
1874 * pulOut [O] Destination
1878 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1880 HRESULT WINAPI VarUI4FromDate(DATE dateIn, ULONG *pulOut)
1882 return VarUI4FromR8(dateIn, pulOut);
1885 /************************************************************************
1886 * VarUI4FromCy (OLEAUT32.276)
1888 * Convert a VT_CY to a VT_UI4.
1892 * pulOut [O] Destination
1896 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1898 HRESULT WINAPI VarUI4FromCy(CY cyIn, ULONG *pulOut)
1900 double d = cyIn.int64 / CY_MULTIPLIER_F;
1901 return VarUI4FromR8(d, pulOut);
1904 /************************************************************************
1905 * VarUI4FromStr (OLEAUT32.277)
1907 * Convert a VT_BSTR to a VT_UI4.
1911 * lcid [I] LCID for the conversion
1912 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1913 * pulOut [O] Destination
1917 * Failure: E_INVALIDARG, if any parameter is invalid
1918 * DISP_E_OVERFLOW, if the value will not fit in the destination
1919 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1921 HRESULT WINAPI VarUI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG *pulOut)
1923 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pulOut, VT_UI4);
1926 /************************************************************************
1927 * VarUI4FromDisp (OLEAUT32.278)
1929 * Convert a VT_DISPATCH to a VT_UI4.
1932 * pdispIn [I] Source
1933 * lcid [I] LCID for conversion
1934 * pulOut [O] Destination
1938 * Failure: E_INVALIDARG, if the source value is invalid
1939 * DISP_E_OVERFLOW, if the value will not fit in the destination
1940 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1942 HRESULT WINAPI VarUI4FromDisp(IDispatch* pdispIn, LCID lcid, ULONG *pulOut)
1944 return VARIANT_FromDisp(pdispIn, lcid, pulOut, VT_UI4, 0);
1947 /************************************************************************
1948 * VarUI4FromBool (OLEAUT32.279)
1950 * Convert a VT_BOOL to a VT_UI4.
1954 * pulOut [O] Destination
1959 HRESULT WINAPI VarUI4FromBool(VARIANT_BOOL boolIn, ULONG *pulOut)
1961 return _VarUI4FromBool(boolIn, pulOut);
1964 /************************************************************************
1965 * VarUI4FromI1 (OLEAUT32.280)
1967 * Convert a VT_I1 to a VT_UI4.
1971 * pulOut [O] Destination
1975 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1977 HRESULT WINAPI VarUI4FromI1(signed char cIn, ULONG *pulOut)
1979 return _VarUI4FromI1(cIn, pulOut);
1982 /************************************************************************
1983 * VarUI4FromUI2 (OLEAUT32.281)
1985 * Convert a VT_UI2 to a VT_UI4.
1989 * pulOut [O] Destination
1994 HRESULT WINAPI VarUI4FromUI2(USHORT usIn, ULONG *pulOut)
1996 return _VarUI4FromUI2(usIn, pulOut);
1999 /************************************************************************
2000 * VarUI4FromDec (OLEAUT32.282)
2002 * Convert a VT_DECIMAL to a VT_UI4.
2006 * pulOut [O] Destination
2010 * Failure: E_INVALIDARG, if pdecIn is invalid
2011 * DISP_E_OVERFLOW, if the value will not fit in the destination
2013 HRESULT WINAPI VarUI4FromDec(DECIMAL *pdecIn, ULONG *pulOut)
2018 hRet = VarI8FromDec(pdecIn, &i64);
2020 if (SUCCEEDED(hRet))
2021 hRet = _VarUI4FromI8(i64, pulOut);
2025 /************************************************************************
2026 * VarUI4FromI8 (OLEAUT32.425)
2028 * Convert a VT_I8 to a VT_UI4.
2032 * pulOut [O] Destination
2036 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2038 HRESULT WINAPI VarUI4FromI8(LONG64 llIn, ULONG *pulOut)
2040 return _VarUI4FromI8(llIn, pulOut);
2043 /************************************************************************
2044 * VarUI4FromUI8 (OLEAUT32.426)
2046 * Convert a VT_UI8 to a VT_UI4.
2050 * pulOut [O] Destination
2054 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2056 HRESULT WINAPI VarUI4FromUI8(ULONG64 ullIn, ULONG *pulOut)
2058 return _VarUI4FromUI8(ullIn, pulOut);
2064 /************************************************************************
2065 * VarI8FromUI1 (OLEAUT32.333)
2067 * Convert a VT_UI1 to a VT_I8.
2071 * pi64Out [O] Destination
2076 HRESULT WINAPI VarI8FromUI1(BYTE bIn, LONG64* pi64Out)
2078 return _VarI8FromUI1(bIn, pi64Out);
2082 /************************************************************************
2083 * VarI8FromI2 (OLEAUT32.334)
2085 * Convert a VT_I2 to a VT_I8.
2089 * pi64Out [O] Destination
2094 HRESULT WINAPI VarI8FromI2(SHORT sIn, LONG64* pi64Out)
2096 return _VarI8FromI2(sIn, pi64Out);
2099 /************************************************************************
2100 * VarI8FromR4 (OLEAUT32.335)
2102 * Convert a VT_R4 to a VT_I8.
2106 * pi64Out [O] Destination
2110 * Failure: E_INVALIDARG, if the source value is invalid
2111 * DISP_E_OVERFLOW, if the value will not fit in the destination
2113 HRESULT WINAPI VarI8FromR4(FLOAT fltIn, LONG64* pi64Out)
2115 return VarI8FromR8(fltIn, pi64Out);
2118 /************************************************************************
2119 * VarI8FromR8 (OLEAUT32.336)
2121 * Convert a VT_R8 to a VT_I8.
2125 * pi64Out [O] Destination
2129 * Failure: E_INVALIDARG, if the source value is invalid
2130 * DISP_E_OVERFLOW, if the value will not fit in the destination
2133 * Only values that fit into 63 bits are accepted. Due to rounding issues,
2134 * very high or low values will not be accurately converted.
2136 * Numbers are rounded using Dutch rounding, as follows:
2138 *| Fractional Part Sign Direction Example
2139 *| --------------- ---- --------- -------
2140 *| < 0.5 + Down 0.4 -> 0.0
2141 *| < 0.5 - Up -0.4 -> 0.0
2142 *| > 0.5 + Up 0.6 -> 1.0
2143 *| < 0.5 - Up -0.6 -> -1.0
2144 *| = 0.5 + Up/Down Down if even, Up if odd
2145 *| = 0.5 - Up/Down Up if even, Down if odd
2147 * This system is often used in supermarkets.
2149 HRESULT WINAPI VarI8FromR8(double dblIn, LONG64* pi64Out)
2151 if ( dblIn < -4611686018427387904.0 || dblIn >= 4611686018427387904.0)
2152 return DISP_E_OVERFLOW;
2153 VARIANT_DutchRound(LONG64, dblIn, *pi64Out);
2157 /************************************************************************
2158 * VarI8FromCy (OLEAUT32.337)
2160 * Convert a VT_CY to a VT_I8.
2164 * pi64Out [O] Destination
2170 * All negative numbers are rounded down by 1, including those that are
2171 * evenly divisible by 10000 (this is a Win32 bug that Wine mimics).
2172 * Positive numbers are rounded using Dutch rounding: See VarI8FromR8()
2175 HRESULT WINAPI VarI8FromCy(CY cyIn, LONG64* pi64Out)
2177 *pi64Out = cyIn.int64 / CY_MULTIPLIER;
2180 (*pi64Out)--; /* Mimic Win32 bug */
2183 cyIn.int64 -= *pi64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2185 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pi64Out & 0x1)))
2191 /************************************************************************
2192 * VarI8FromDate (OLEAUT32.338)
2194 * Convert a VT_DATE to a VT_I8.
2198 * pi64Out [O] Destination
2202 * Failure: E_INVALIDARG, if the source value is invalid
2203 * DISP_E_OVERFLOW, if the value will not fit in the destination
2204 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2206 HRESULT WINAPI VarI8FromDate(DATE dateIn, LONG64* pi64Out)
2208 return VarI8FromR8(dateIn, pi64Out);
2211 /************************************************************************
2212 * VarI8FromStr (OLEAUT32.339)
2214 * Convert a VT_BSTR to a VT_I8.
2218 * lcid [I] LCID for the conversion
2219 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2220 * pi64Out [O] Destination
2224 * Failure: E_INVALIDARG, if the source value is invalid
2225 * DISP_E_OVERFLOW, if the value will not fit in the destination
2226 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2228 HRESULT WINAPI VarI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG64* pi64Out)
2230 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pi64Out, VT_I8);
2233 /************************************************************************
2234 * VarI8FromDisp (OLEAUT32.340)
2236 * Convert a VT_DISPATCH to a VT_I8.
2239 * pdispIn [I] Source
2240 * lcid [I] LCID for conversion
2241 * pi64Out [O] Destination
2245 * Failure: E_INVALIDARG, if the source value is invalid
2246 * DISP_E_OVERFLOW, if the value will not fit in the destination
2247 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2249 HRESULT WINAPI VarI8FromDisp(IDispatch* pdispIn, LCID lcid, LONG64* pi64Out)
2251 return VARIANT_FromDisp(pdispIn, lcid, pi64Out, VT_I8, 0);
2254 /************************************************************************
2255 * VarI8FromBool (OLEAUT32.341)
2257 * Convert a VT_BOOL to a VT_I8.
2261 * pi64Out [O] Destination
2266 HRESULT WINAPI VarI8FromBool(VARIANT_BOOL boolIn, LONG64* pi64Out)
2268 return VarI8FromI2(boolIn, pi64Out);
2271 /************************************************************************
2272 * VarI8FromI1 (OLEAUT32.342)
2274 * Convert a VT_I1 to a VT_I8.
2278 * pi64Out [O] Destination
2283 HRESULT WINAPI VarI8FromI1(signed char cIn, LONG64* pi64Out)
2285 return _VarI8FromI1(cIn, pi64Out);
2288 /************************************************************************
2289 * VarI8FromUI2 (OLEAUT32.343)
2291 * Convert a VT_UI2 to a VT_I8.
2295 * pi64Out [O] Destination
2300 HRESULT WINAPI VarI8FromUI2(USHORT usIn, LONG64* pi64Out)
2302 return _VarI8FromUI2(usIn, pi64Out);
2305 /************************************************************************
2306 * VarI8FromUI4 (OLEAUT32.344)
2308 * Convert a VT_UI4 to a VT_I8.
2312 * pi64Out [O] Destination
2317 HRESULT WINAPI VarI8FromUI4(ULONG ulIn, LONG64* pi64Out)
2319 return _VarI8FromUI4(ulIn, pi64Out);
2322 /************************************************************************
2323 * VarI8FromDec (OLEAUT32.345)
2325 * Convert a VT_DECIMAL to a VT_I8.
2329 * pi64Out [O] Destination
2333 * Failure: E_INVALIDARG, if the source value is invalid
2334 * DISP_E_OVERFLOW, if the value will not fit in the destination
2336 HRESULT WINAPI VarI8FromDec(DECIMAL *pdecIn, LONG64* pi64Out)
2338 if (!DEC_SCALE(pdecIn))
2340 /* This decimal is just a 96 bit integer */
2341 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2342 return E_INVALIDARG;
2344 if (DEC_HI32(pdecIn) || DEC_MID32(pdecIn) & 0x80000000)
2345 return DISP_E_OVERFLOW;
2347 if (DEC_SIGN(pdecIn))
2348 *pi64Out = -DEC_LO64(pdecIn);
2350 *pi64Out = DEC_LO64(pdecIn);
2355 /* Decimal contains a floating point number */
2359 hRet = VarR8FromDec(pdecIn, &dbl);
2360 if (SUCCEEDED(hRet))
2361 hRet = VarI8FromR8(dbl, pi64Out);
2366 /************************************************************************
2367 * VarI8FromUI8 (OLEAUT32.427)
2369 * Convert a VT_UI8 to a VT_I8.
2373 * pi64Out [O] Destination
2377 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2379 HRESULT WINAPI VarI8FromUI8(ULONG64 ullIn, LONG64* pi64Out)
2381 return _VarI8FromUI8(ullIn, pi64Out);
2387 /************************************************************************
2388 * VarUI8FromI8 (OLEAUT32.428)
2390 * Convert a VT_I8 to a VT_UI8.
2394 * pui64Out [O] Destination
2398 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2400 HRESULT WINAPI VarUI8FromI8(LONG64 llIn, ULONG64* pui64Out)
2402 return _VarUI8FromI8(llIn, pui64Out);
2405 /************************************************************************
2406 * VarUI8FromUI1 (OLEAUT32.429)
2408 * Convert a VT_UI1 to a VT_UI8.
2412 * pui64Out [O] Destination
2417 HRESULT WINAPI VarUI8FromUI1(BYTE bIn, ULONG64* pui64Out)
2419 return _VarUI8FromUI1(bIn, pui64Out);
2422 /************************************************************************
2423 * VarUI8FromI2 (OLEAUT32.430)
2425 * Convert a VT_I2 to a VT_UI8.
2429 * pui64Out [O] Destination
2434 HRESULT WINAPI VarUI8FromI2(SHORT sIn, ULONG64* pui64Out)
2436 return _VarUI8FromI2(sIn, pui64Out);
2439 /************************************************************************
2440 * VarUI8FromR4 (OLEAUT32.431)
2442 * Convert a VT_R4 to a VT_UI8.
2446 * pui64Out [O] Destination
2450 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2452 HRESULT WINAPI VarUI8FromR4(FLOAT fltIn, ULONG64* pui64Out)
2454 return VarUI8FromR8(fltIn, pui64Out);
2457 /************************************************************************
2458 * VarUI8FromR8 (OLEAUT32.432)
2460 * Convert a VT_R8 to a VT_UI8.
2464 * pui64Out [O] Destination
2468 * Failure: E_INVALIDARG, if the source value is invalid
2469 * DISP_E_OVERFLOW, if the value will not fit in the destination
2472 * See VarI8FromR8() for details concerning rounding.
2474 HRESULT WINAPI VarUI8FromR8(double dblIn, ULONG64* pui64Out)
2476 if (dblIn < -0.5 || dblIn > 1.844674407370955e19)
2477 return DISP_E_OVERFLOW;
2478 VARIANT_DutchRound(ULONG64, dblIn, *pui64Out);
2482 /************************************************************************
2483 * VarUI8FromCy (OLEAUT32.433)
2485 * Convert a VT_CY to a VT_UI8.
2489 * pui64Out [O] Destination
2493 * Failure: E_INVALIDARG, if the source value is invalid
2494 * DISP_E_OVERFLOW, if the value will not fit in the destination
2497 * Negative values >= -5000 will be converted to 0.
2499 HRESULT WINAPI VarUI8FromCy(CY cyIn, ULONG64* pui64Out)
2503 if (cyIn.int64 < -CY_HALF)
2504 return DISP_E_OVERFLOW;
2509 *pui64Out = cyIn.int64 / CY_MULTIPLIER;
2511 cyIn.int64 -= *pui64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2513 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pui64Out & 0x1)))
2519 /************************************************************************
2520 * VarUI8FromDate (OLEAUT32.434)
2522 * Convert a VT_DATE to a VT_UI8.
2526 * pui64Out [O] Destination
2530 * Failure: E_INVALIDARG, if the source value is invalid
2531 * DISP_E_OVERFLOW, if the value will not fit in the destination
2532 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2534 HRESULT WINAPI VarUI8FromDate(DATE dateIn, ULONG64* pui64Out)
2536 return VarUI8FromR8(dateIn, pui64Out);
2539 /************************************************************************
2540 * VarUI8FromStr (OLEAUT32.435)
2542 * Convert a VT_BSTR to a VT_UI8.
2546 * lcid [I] LCID for the conversion
2547 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2548 * pui64Out [O] Destination
2552 * Failure: E_INVALIDARG, if the source value is invalid
2553 * DISP_E_OVERFLOW, if the value will not fit in the destination
2554 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2556 HRESULT WINAPI VarUI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG64* pui64Out)
2558 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pui64Out, VT_UI8);
2561 /************************************************************************
2562 * VarUI8FromDisp (OLEAUT32.436)
2564 * Convert a VT_DISPATCH to a VT_UI8.
2567 * pdispIn [I] Source
2568 * lcid [I] LCID for conversion
2569 * pui64Out [O] Destination
2573 * Failure: E_INVALIDARG, if the source value is invalid
2574 * DISP_E_OVERFLOW, if the value will not fit in the destination
2575 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2577 HRESULT WINAPI VarUI8FromDisp(IDispatch* pdispIn, LCID lcid, ULONG64* pui64Out)
2579 return VARIANT_FromDisp(pdispIn, lcid, pui64Out, VT_UI8, 0);
2582 /************************************************************************
2583 * VarUI8FromBool (OLEAUT32.437)
2585 * Convert a VT_BOOL to a VT_UI8.
2589 * pui64Out [O] Destination
2593 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2595 HRESULT WINAPI VarUI8FromBool(VARIANT_BOOL boolIn, ULONG64* pui64Out)
2597 return VarI8FromI2(boolIn, (LONG64 *)pui64Out);
2599 /************************************************************************
2600 * VarUI8FromI1 (OLEAUT32.438)
2602 * Convert a VT_I1 to a VT_UI8.
2606 * pui64Out [O] Destination
2610 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2612 HRESULT WINAPI VarUI8FromI1(signed char cIn, ULONG64* pui64Out)
2614 return _VarUI8FromI1(cIn, pui64Out);
2617 /************************************************************************
2618 * VarUI8FromUI2 (OLEAUT32.439)
2620 * Convert a VT_UI2 to a VT_UI8.
2624 * pui64Out [O] Destination
2629 HRESULT WINAPI VarUI8FromUI2(USHORT usIn, ULONG64* pui64Out)
2631 return _VarUI8FromUI2(usIn, pui64Out);
2634 /************************************************************************
2635 * VarUI8FromUI4 (OLEAUT32.440)
2637 * Convert a VT_UI4 to a VT_UI8.
2641 * pui64Out [O] Destination
2646 HRESULT WINAPI VarUI8FromUI4(ULONG ulIn, ULONG64* pui64Out)
2648 return _VarUI8FromUI4(ulIn, pui64Out);
2651 /************************************************************************
2652 * VarUI8FromDec (OLEAUT32.441)
2654 * Convert a VT_DECIMAL to a VT_UI8.
2658 * pui64Out [O] Destination
2662 * Failure: E_INVALIDARG, if the source value is invalid
2663 * DISP_E_OVERFLOW, if the value will not fit in the destination
2666 * Under native Win32, if the source value has a scale of 0, its sign is
2667 * ignored, i.e. this function takes the absolute value rather than fail
2668 * with DISP_E_OVERFLOW. This bug has been fixed in Wine's implementation
2669 * (use VarAbs() on pDecIn first if you really want this behaviour).
2671 HRESULT WINAPI VarUI8FromDec(DECIMAL *pdecIn, ULONG64* pui64Out)
2673 if (!DEC_SCALE(pdecIn))
2675 /* This decimal is just a 96 bit integer */
2676 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2677 return E_INVALIDARG;
2679 if (DEC_HI32(pdecIn))
2680 return DISP_E_OVERFLOW;
2682 if (DEC_SIGN(pdecIn))
2684 WARN("Sign would be ignored under Win32!\n");
2685 return DISP_E_OVERFLOW;
2688 *pui64Out = DEC_LO64(pdecIn);
2693 /* Decimal contains a floating point number */
2697 hRet = VarR8FromDec(pdecIn, &dbl);
2698 if (SUCCEEDED(hRet))
2699 hRet = VarUI8FromR8(dbl, pui64Out);
2707 /************************************************************************
2708 * VarR4FromUI1 (OLEAUT32.68)
2710 * Convert a VT_UI1 to a VT_R4.
2714 * pFltOut [O] Destination
2719 HRESULT WINAPI VarR4FromUI1(BYTE bIn, float *pFltOut)
2721 return _VarR4FromUI1(bIn, pFltOut);
2724 /************************************************************************
2725 * VarR4FromI2 (OLEAUT32.69)
2727 * Convert a VT_I2 to a VT_R4.
2731 * pFltOut [O] Destination
2736 HRESULT WINAPI VarR4FromI2(SHORT sIn, float *pFltOut)
2738 return _VarR4FromI2(sIn, pFltOut);
2741 /************************************************************************
2742 * VarR4FromI4 (OLEAUT32.70)
2744 * Convert a VT_I4 to a VT_R4.
2748 * pFltOut [O] Destination
2753 HRESULT WINAPI VarR4FromI4(LONG lIn, float *pFltOut)
2755 return _VarR4FromI4(lIn, pFltOut);
2758 /************************************************************************
2759 * VarR4FromR8 (OLEAUT32.71)
2761 * Convert a VT_R8 to a VT_R4.
2765 * pFltOut [O] Destination
2769 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2771 HRESULT WINAPI VarR4FromR8(double dblIn, float *pFltOut)
2773 double d = dblIn < 0.0 ? -dblIn : dblIn;
2774 if (d > R4_MAX) return DISP_E_OVERFLOW;
2779 /************************************************************************
2780 * VarR4FromCy (OLEAUT32.72)
2782 * Convert a VT_CY to a VT_R4.
2786 * pFltOut [O] Destination
2791 HRESULT WINAPI VarR4FromCy(CY cyIn, float *pFltOut)
2793 *pFltOut = (double)cyIn.int64 / CY_MULTIPLIER_F;
2797 /************************************************************************
2798 * VarR4FromDate (OLEAUT32.73)
2800 * Convert a VT_DATE to a VT_R4.
2804 * pFltOut [O] Destination
2808 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2810 HRESULT WINAPI VarR4FromDate(DATE dateIn, float *pFltOut)
2812 return VarR4FromR8(dateIn, pFltOut);
2815 /************************************************************************
2816 * VarR4FromStr (OLEAUT32.74)
2818 * Convert a VT_BSTR to a VT_R4.
2822 * lcid [I] LCID for the conversion
2823 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2824 * pFltOut [O] Destination
2828 * Failure: E_INVALIDARG, if strIn or pFltOut is invalid.
2829 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2831 HRESULT WINAPI VarR4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, float *pFltOut)
2833 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pFltOut, VT_R4);
2836 /************************************************************************
2837 * VarR4FromDisp (OLEAUT32.75)
2839 * Convert a VT_DISPATCH to a VT_R4.
2842 * pdispIn [I] Source
2843 * lcid [I] LCID for conversion
2844 * pFltOut [O] Destination
2848 * Failure: E_INVALIDARG, if the source value is invalid
2849 * DISP_E_OVERFLOW, if the value will not fit in the destination
2850 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2852 HRESULT WINAPI VarR4FromDisp(IDispatch* pdispIn, LCID lcid, float *pFltOut)
2854 return VARIANT_FromDisp(pdispIn, lcid, pFltOut, VT_R4, 0);
2857 /************************************************************************
2858 * VarR4FromBool (OLEAUT32.76)
2860 * Convert a VT_BOOL to a VT_R4.
2864 * pFltOut [O] Destination
2869 HRESULT WINAPI VarR4FromBool(VARIANT_BOOL boolIn, float *pFltOut)
2871 return VarR4FromI2(boolIn, pFltOut);
2874 /************************************************************************
2875 * VarR4FromI1 (OLEAUT32.213)
2877 * Convert a VT_I1 to a VT_R4.
2881 * pFltOut [O] Destination
2885 * Failure: E_INVALIDARG, if the source value is invalid
2886 * DISP_E_OVERFLOW, if the value will not fit in the destination
2887 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2889 HRESULT WINAPI VarR4FromI1(signed char cIn, float *pFltOut)
2891 return _VarR4FromI1(cIn, pFltOut);
2894 /************************************************************************
2895 * VarR4FromUI2 (OLEAUT32.214)
2897 * Convert a VT_UI2 to a VT_R4.
2901 * pFltOut [O] Destination
2905 * Failure: E_INVALIDARG, if the source value is invalid
2906 * DISP_E_OVERFLOW, if the value will not fit in the destination
2907 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2909 HRESULT WINAPI VarR4FromUI2(USHORT usIn, float *pFltOut)
2911 return _VarR4FromUI2(usIn, pFltOut);
2914 /************************************************************************
2915 * VarR4FromUI4 (OLEAUT32.215)
2917 * Convert a VT_UI4 to a VT_R4.
2921 * pFltOut [O] Destination
2925 * Failure: E_INVALIDARG, if the source value is invalid
2926 * DISP_E_OVERFLOW, if the value will not fit in the destination
2927 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2929 HRESULT WINAPI VarR4FromUI4(ULONG ulIn, float *pFltOut)
2931 return _VarR4FromUI4(ulIn, pFltOut);
2934 /************************************************************************
2935 * VarR4FromDec (OLEAUT32.216)
2937 * Convert a VT_DECIMAL to a VT_R4.
2941 * pFltOut [O] Destination
2945 * Failure: E_INVALIDARG, if the source value is invalid.
2947 HRESULT WINAPI VarR4FromDec(DECIMAL* pDecIn, float *pFltOut)
2949 BYTE scale = DEC_SCALE(pDecIn);
2953 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
2954 return E_INVALIDARG;
2959 if (DEC_SIGN(pDecIn))
2962 if (DEC_HI32(pDecIn))
2964 highPart = (double)DEC_HI32(pDecIn) / (double)divisor;
2965 highPart *= 4294967296.0F;
2966 highPart *= 4294967296.0F;
2971 *pFltOut = (double)DEC_LO64(pDecIn) / (double)divisor + highPart;
2975 /************************************************************************
2976 * VarR4FromI8 (OLEAUT32.360)
2978 * Convert a VT_I8 to a VT_R4.
2982 * pFltOut [O] Destination
2987 HRESULT WINAPI VarR4FromI8(LONG64 llIn, float *pFltOut)
2989 return _VarR4FromI8(llIn, pFltOut);
2992 /************************************************************************
2993 * VarR4FromUI8 (OLEAUT32.361)
2995 * Convert a VT_UI8 to a VT_R4.
2999 * pFltOut [O] Destination
3004 HRESULT WINAPI VarR4FromUI8(ULONG64 ullIn, float *pFltOut)
3006 return _VarR4FromUI8(ullIn, pFltOut);
3009 /************************************************************************
3010 * VarR4CmpR8 (OLEAUT32.316)
3012 * Compare a VT_R4 to a VT_R8.
3015 * fltLeft [I] Source
3016 * dblRight [I] Value to compare
3019 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that fltLeft is less than,
3020 * equal to or greater than dblRight respectively.
3022 HRESULT WINAPI VarR4CmpR8(float fltLeft, double dblRight)
3024 if (fltLeft < dblRight)
3026 else if (fltLeft > dblRight)
3034 /************************************************************************
3035 * VarR8FromUI1 (OLEAUT32.78)
3037 * Convert a VT_UI1 to a VT_R8.
3041 * pDblOut [O] Destination
3046 HRESULT WINAPI VarR8FromUI1(BYTE bIn, double *pDblOut)
3048 return _VarR8FromUI1(bIn, pDblOut);
3051 /************************************************************************
3052 * VarR8FromI2 (OLEAUT32.79)
3054 * Convert a VT_I2 to a VT_R8.
3058 * pDblOut [O] Destination
3063 HRESULT WINAPI VarR8FromI2(SHORT sIn, double *pDblOut)
3065 return _VarR8FromI2(sIn, pDblOut);
3068 /************************************************************************
3069 * VarR8FromI4 (OLEAUT32.80)
3071 * Convert a VT_I4 to a VT_R8.
3075 * pDblOut [O] Destination
3080 HRESULT WINAPI VarR8FromI4(LONG lIn, double *pDblOut)
3082 return _VarR8FromI4(lIn, pDblOut);
3085 /************************************************************************
3086 * VarR8FromR4 (OLEAUT32.81)
3088 * Convert a VT_R4 to a VT_R8.
3092 * pDblOut [O] Destination
3097 HRESULT WINAPI VarR8FromR4(FLOAT fltIn, double *pDblOut)
3099 return _VarR8FromR4(fltIn, pDblOut);
3102 /************************************************************************
3103 * VarR8FromCy (OLEAUT32.82)
3105 * Convert a VT_CY to a VT_R8.
3109 * pDblOut [O] Destination
3114 HRESULT WINAPI VarR8FromCy(CY cyIn, double *pDblOut)
3116 return _VarR8FromCy(cyIn, pDblOut);
3119 /************************************************************************
3120 * VarR8FromDate (OLEAUT32.83)
3122 * Convert a VT_DATE to a VT_R8.
3126 * pDblOut [O] Destination
3131 HRESULT WINAPI VarR8FromDate(DATE dateIn, double *pDblOut)
3133 return _VarR8FromDate(dateIn, pDblOut);
3136 /************************************************************************
3137 * VarR8FromStr (OLEAUT32.84)
3139 * Convert a VT_BSTR to a VT_R8.
3143 * lcid [I] LCID for the conversion
3144 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3145 * pDblOut [O] Destination
3149 * Failure: E_INVALIDARG, if strIn or pDblOut is invalid.
3150 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3152 HRESULT WINAPI VarR8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, double *pDblOut)
3154 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDblOut, VT_R8);
3157 /************************************************************************
3158 * VarR8FromDisp (OLEAUT32.85)
3160 * Convert a VT_DISPATCH to a VT_R8.
3163 * pdispIn [I] Source
3164 * lcid [I] LCID for conversion
3165 * pDblOut [O] Destination
3169 * Failure: E_INVALIDARG, if the source value is invalid
3170 * DISP_E_OVERFLOW, if the value will not fit in the destination
3171 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3173 HRESULT WINAPI VarR8FromDisp(IDispatch* pdispIn, LCID lcid, double *pDblOut)
3175 return VARIANT_FromDisp(pdispIn, lcid, pDblOut, VT_R8, 0);
3178 /************************************************************************
3179 * VarR8FromBool (OLEAUT32.86)
3181 * Convert a VT_BOOL to a VT_R8.
3185 * pDblOut [O] Destination
3190 HRESULT WINAPI VarR8FromBool(VARIANT_BOOL boolIn, double *pDblOut)
3192 return VarR8FromI2(boolIn, pDblOut);
3195 /************************************************************************
3196 * VarR8FromI1 (OLEAUT32.217)
3198 * Convert a VT_I1 to a VT_R8.
3202 * pDblOut [O] Destination
3206 * Failure: E_INVALIDARG, if the source value is invalid
3207 * DISP_E_OVERFLOW, if the value will not fit in the destination
3208 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3210 HRESULT WINAPI VarR8FromI1(signed char cIn, double *pDblOut)
3212 return _VarR8FromI1(cIn, pDblOut);
3215 /************************************************************************
3216 * VarR8FromUI2 (OLEAUT32.218)
3218 * Convert a VT_UI2 to a VT_R8.
3222 * pDblOut [O] Destination
3226 * Failure: E_INVALIDARG, if the source value is invalid
3227 * DISP_E_OVERFLOW, if the value will not fit in the destination
3228 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3230 HRESULT WINAPI VarR8FromUI2(USHORT usIn, double *pDblOut)
3232 return _VarR8FromUI2(usIn, pDblOut);
3235 /************************************************************************
3236 * VarR8FromUI4 (OLEAUT32.219)
3238 * Convert a VT_UI4 to a VT_R8.
3242 * pDblOut [O] Destination
3246 * Failure: E_INVALIDARG, if the source value is invalid
3247 * DISP_E_OVERFLOW, if the value will not fit in the destination
3248 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3250 HRESULT WINAPI VarR8FromUI4(ULONG ulIn, double *pDblOut)
3252 return _VarR8FromUI4(ulIn, pDblOut);
3255 /************************************************************************
3256 * VarR8FromDec (OLEAUT32.220)
3258 * Convert a VT_DECIMAL to a VT_R8.
3262 * pDblOut [O] Destination
3266 * Failure: E_INVALIDARG, if the source value is invalid.
3268 HRESULT WINAPI VarR8FromDec(const DECIMAL* pDecIn, double *pDblOut)
3270 BYTE scale = DEC_SCALE(pDecIn);
3271 double divisor = 1.0, highPart;
3273 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
3274 return E_INVALIDARG;
3279 if (DEC_SIGN(pDecIn))
3282 if (DEC_HI32(pDecIn))
3284 highPart = (double)DEC_HI32(pDecIn) / divisor;
3285 highPart *= 4294967296.0F;
3286 highPart *= 4294967296.0F;
3291 *pDblOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
3295 /************************************************************************
3296 * VarR8FromI8 (OLEAUT32.362)
3298 * Convert a VT_I8 to a VT_R8.
3302 * pDblOut [O] Destination
3307 HRESULT WINAPI VarR8FromI8(LONG64 llIn, double *pDblOut)
3309 return _VarR8FromI8(llIn, pDblOut);
3312 /************************************************************************
3313 * VarR8FromUI8 (OLEAUT32.363)
3315 * Convert a VT_UI8 to a VT_R8.
3319 * pDblOut [O] Destination
3324 HRESULT WINAPI VarR8FromUI8(ULONG64 ullIn, double *pDblOut)
3326 return _VarR8FromUI8(ullIn, pDblOut);
3329 /************************************************************************
3330 * VarR8Pow (OLEAUT32.315)
3332 * Raise a VT_R8 to a power.
3335 * dblLeft [I] Source
3336 * dblPow [I] Power to raise dblLeft by
3337 * pDblOut [O] Destination
3340 * S_OK. pDblOut contains dblLeft to the power of dblRight.
3342 HRESULT WINAPI VarR8Pow(double dblLeft, double dblPow, double *pDblOut)
3344 *pDblOut = pow(dblLeft, dblPow);
3348 /************************************************************************
3349 * VarR8Round (OLEAUT32.317)
3351 * Round a VT_R8 to a given number of decimal points.
3355 * nDig [I] Number of decimal points to round to
3356 * pDblOut [O] Destination for rounded number
3359 * Success: S_OK. pDblOut is rounded to nDig digits.
3360 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3363 * The native version of this function rounds using the internal
3364 * binary representation of the number. Wine uses the dutch rounding
3365 * convention, so therefore small differences can occur in the value returned.
3366 * MSDN says that you should use your own rounding function if you want
3367 * rounding to be predictable in your application.
3369 HRESULT WINAPI VarR8Round(double dblIn, int nDig, double *pDblOut)
3371 double scale, whole, fract;
3374 return E_INVALIDARG;
3376 scale = pow(10.0, nDig);
3379 whole = dblIn < 0 ? ceil(dblIn) : floor(dblIn);
3380 fract = dblIn - whole;
3383 dblIn = whole + 1.0;
3384 else if (fract == 0.5)
3385 dblIn = whole + fmod(whole, 2.0);
3386 else if (fract >= 0.0)
3388 else if (fract == -0.5)
3389 dblIn = whole - fmod(whole, 2.0);
3390 else if (fract > -0.5)
3393 dblIn = whole - 1.0;
3395 *pDblOut = dblIn / scale;
3402 /* Powers of 10 from 0..4 D.P. */
3403 static const int CY_Divisors[5] = { CY_MULTIPLIER/10000, CY_MULTIPLIER/1000,
3404 CY_MULTIPLIER/100, CY_MULTIPLIER/10, CY_MULTIPLIER };
3406 /************************************************************************
3407 * VarCyFromUI1 (OLEAUT32.98)
3409 * Convert a VT_UI1 to a VT_CY.
3413 * pCyOut [O] Destination
3417 * Failure: E_INVALIDARG, if the source value is invalid
3418 * DISP_E_OVERFLOW, if the value will not fit in the destination
3419 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3421 HRESULT WINAPI VarCyFromUI1(BYTE bIn, CY* pCyOut)
3423 pCyOut->int64 = (ULONG64)bIn * CY_MULTIPLIER;
3427 /************************************************************************
3428 * VarCyFromI2 (OLEAUT32.99)
3430 * Convert a VT_I2 to a VT_CY.
3434 * pCyOut [O] Destination
3438 * Failure: E_INVALIDARG, if the source value is invalid
3439 * DISP_E_OVERFLOW, if the value will not fit in the destination
3440 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3442 HRESULT WINAPI VarCyFromI2(SHORT sIn, CY* pCyOut)
3444 pCyOut->int64 = (LONG64)sIn * CY_MULTIPLIER;
3448 /************************************************************************
3449 * VarCyFromI4 (OLEAUT32.100)
3451 * Convert a VT_I4 to a VT_CY.
3455 * pCyOut [O] Destination
3459 * Failure: E_INVALIDARG, if the source value is invalid
3460 * DISP_E_OVERFLOW, if the value will not fit in the destination
3461 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3463 HRESULT WINAPI VarCyFromI4(LONG lIn, CY* pCyOut)
3465 pCyOut->int64 = (LONG64)lIn * CY_MULTIPLIER;
3469 /************************************************************************
3470 * VarCyFromR4 (OLEAUT32.101)
3472 * Convert a VT_R4 to a VT_CY.
3476 * pCyOut [O] Destination
3480 * Failure: E_INVALIDARG, if the source value is invalid
3481 * DISP_E_OVERFLOW, if the value will not fit in the destination
3482 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3484 HRESULT WINAPI VarCyFromR4(FLOAT fltIn, CY* pCyOut)
3486 return VarCyFromR8(fltIn, pCyOut);
3489 /************************************************************************
3490 * VarCyFromR8 (OLEAUT32.102)
3492 * Convert a VT_R8 to a VT_CY.
3496 * pCyOut [O] Destination
3500 * Failure: E_INVALIDARG, if the source value is invalid
3501 * DISP_E_OVERFLOW, if the value will not fit in the destination
3502 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3504 HRESULT WINAPI VarCyFromR8(double dblIn, CY* pCyOut)
3506 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
3507 /* This code gives identical results to Win32 on Intel.
3508 * Here we use fp exceptions to catch overflows when storing the value.
3510 static const unsigned short r8_fpcontrol = 0x137f;
3511 static const double r8_multiplier = CY_MULTIPLIER_F;
3512 unsigned short old_fpcontrol, result_fpstatus;
3514 /* Clear exceptions, save the old fp state and load the new state */
3515 __asm__ __volatile__( "fnclex" );
3516 __asm__ __volatile__( "fstcw %0" : "=m" (old_fpcontrol) : );
3517 __asm__ __volatile__( "fldcw %0" : : "m" (r8_fpcontrol) );
3518 /* Perform the conversion. */
3519 __asm__ __volatile__( "fldl %0" : : "m" (dblIn) );
3520 __asm__ __volatile__( "fmull %0" : : "m" (r8_multiplier) );
3521 __asm__ __volatile__( "fistpll %0" : : "m" (*pCyOut) );
3522 /* Save the resulting fp state, load the old state and clear exceptions */
3523 __asm__ __volatile__( "fstsw %0" : "=m" (result_fpstatus) : );
3524 __asm__ __volatile__( "fnclex" );
3525 __asm__ __volatile__( "fldcw %0" : : "m" (old_fpcontrol) );
3527 if (result_fpstatus & 0x9) /* Overflow | Invalid */
3528 return DISP_E_OVERFLOW;
3530 /* This version produces slightly different results for boundary cases */
3531 if (dblIn < -922337203685477.5807 || dblIn >= 922337203685477.5807)
3532 return DISP_E_OVERFLOW;
3533 dblIn *= CY_MULTIPLIER_F;
3534 VARIANT_DutchRound(LONG64, dblIn, pCyOut->int64);
3539 /************************************************************************
3540 * VarCyFromDate (OLEAUT32.103)
3542 * Convert a VT_DATE to a VT_CY.
3546 * pCyOut [O] Destination
3550 * Failure: E_INVALIDARG, if the source value is invalid
3551 * DISP_E_OVERFLOW, if the value will not fit in the destination
3552 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3554 HRESULT WINAPI VarCyFromDate(DATE dateIn, CY* pCyOut)
3556 return VarCyFromR8(dateIn, pCyOut);
3559 /************************************************************************
3560 * VarCyFromStr (OLEAUT32.104)
3562 * Convert a VT_BSTR to a VT_CY.
3566 * lcid [I] LCID for the conversion
3567 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3568 * pCyOut [O] Destination
3572 * Failure: E_INVALIDARG, if the source value is invalid
3573 * DISP_E_OVERFLOW, if the value will not fit in the destination
3574 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3576 HRESULT WINAPI VarCyFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, CY* pCyOut)
3578 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pCyOut, VT_CY);
3581 /************************************************************************
3582 * VarCyFromDisp (OLEAUT32.105)
3584 * Convert a VT_DISPATCH to a VT_CY.
3587 * pdispIn [I] Source
3588 * lcid [I] LCID for conversion
3589 * pCyOut [O] Destination
3593 * Failure: E_INVALIDARG, if the source value is invalid
3594 * DISP_E_OVERFLOW, if the value will not fit in the destination
3595 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3597 HRESULT WINAPI VarCyFromDisp(IDispatch* pdispIn, LCID lcid, CY* pCyOut)
3599 return VARIANT_FromDisp(pdispIn, lcid, pCyOut, VT_CY, 0);
3602 /************************************************************************
3603 * VarCyFromBool (OLEAUT32.106)
3605 * Convert a VT_BOOL to a VT_CY.
3609 * pCyOut [O] Destination
3613 * Failure: E_INVALIDARG, if the source value is invalid
3614 * DISP_E_OVERFLOW, if the value will not fit in the destination
3615 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3618 * While the sign of the boolean is stored in the currency, the value is
3619 * converted to either 0 or 1.
3621 HRESULT WINAPI VarCyFromBool(VARIANT_BOOL boolIn, CY* pCyOut)
3623 pCyOut->int64 = (LONG64)boolIn * CY_MULTIPLIER;
3627 /************************************************************************
3628 * VarCyFromI1 (OLEAUT32.225)
3630 * Convert a VT_I1 to a VT_CY.
3634 * pCyOut [O] Destination
3638 * Failure: E_INVALIDARG, if the source value is invalid
3639 * DISP_E_OVERFLOW, if the value will not fit in the destination
3640 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3642 HRESULT WINAPI VarCyFromI1(signed char cIn, CY* pCyOut)
3644 pCyOut->int64 = (LONG64)cIn * CY_MULTIPLIER;
3648 /************************************************************************
3649 * VarCyFromUI2 (OLEAUT32.226)
3651 * Convert a VT_UI2 to a VT_CY.
3655 * pCyOut [O] Destination
3659 * Failure: E_INVALIDARG, if the source value is invalid
3660 * DISP_E_OVERFLOW, if the value will not fit in the destination
3661 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3663 HRESULT WINAPI VarCyFromUI2(USHORT usIn, CY* pCyOut)
3665 pCyOut->int64 = (ULONG64)usIn * CY_MULTIPLIER;
3669 /************************************************************************
3670 * VarCyFromUI4 (OLEAUT32.227)
3672 * Convert a VT_UI4 to a VT_CY.
3676 * pCyOut [O] Destination
3680 * Failure: E_INVALIDARG, if the source value is invalid
3681 * DISP_E_OVERFLOW, if the value will not fit in the destination
3682 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3684 HRESULT WINAPI VarCyFromUI4(ULONG ulIn, CY* pCyOut)
3686 pCyOut->int64 = (ULONG64)ulIn * CY_MULTIPLIER;
3690 /************************************************************************
3691 * VarCyFromDec (OLEAUT32.228)
3693 * Convert a VT_DECIMAL to a VT_CY.
3697 * pCyOut [O] Destination
3701 * Failure: E_INVALIDARG, if the source value is invalid
3702 * DISP_E_OVERFLOW, if the value will not fit in the destination
3703 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3705 HRESULT WINAPI VarCyFromDec(DECIMAL* pdecIn, CY* pCyOut)
3710 hRet = VarDecRound(pdecIn, 4, &rounded);
3712 if (SUCCEEDED(hRet))
3716 if (DEC_HI32(&rounded))
3717 return DISP_E_OVERFLOW;
3719 /* Note: Without the casts this promotes to int64 which loses precision */
3720 d = (double)DEC_LO64(&rounded) / (double)CY_Divisors[DEC_SCALE(&rounded)];
3721 if (DEC_SIGN(&rounded))
3723 return VarCyFromR8(d, pCyOut);
3728 /************************************************************************
3729 * VarCyFromI8 (OLEAUT32.366)
3731 * Convert a VT_I8 to a VT_CY.
3735 * pCyOut [O] Destination
3739 * Failure: E_INVALIDARG, if the source value is invalid
3740 * DISP_E_OVERFLOW, if the value will not fit in the destination
3741 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3743 HRESULT WINAPI VarCyFromI8(LONG64 llIn, CY* pCyOut)
3745 if (llIn <= (I8_MIN/CY_MULTIPLIER) || llIn >= (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3746 pCyOut->int64 = llIn * CY_MULTIPLIER;
3750 /************************************************************************
3751 * VarCyFromUI8 (OLEAUT32.375)
3753 * Convert a VT_UI8 to a VT_CY.
3757 * pCyOut [O] Destination
3761 * Failure: E_INVALIDARG, if the source value is invalid
3762 * DISP_E_OVERFLOW, if the value will not fit in the destination
3763 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3765 HRESULT WINAPI VarCyFromUI8(ULONG64 ullIn, CY* pCyOut)
3767 if (ullIn > (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3768 pCyOut->int64 = ullIn * CY_MULTIPLIER;
3772 /************************************************************************
3773 * VarCyAdd (OLEAUT32.299)
3775 * Add one CY to another.
3779 * cyRight [I] Value to add
3780 * pCyOut [O] Destination
3784 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3786 HRESULT WINAPI VarCyAdd(const CY cyLeft, const CY cyRight, CY* pCyOut)
3789 _VarR8FromCy(cyLeft, &l);
3790 _VarR8FromCy(cyRight, &r);
3792 return VarCyFromR8(l, pCyOut);
3795 /************************************************************************
3796 * VarCyMul (OLEAUT32.303)
3798 * Multiply one CY by another.
3802 * cyRight [I] Value to multiply by
3803 * pCyOut [O] Destination
3807 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3809 HRESULT WINAPI VarCyMul(const CY cyLeft, const CY cyRight, CY* pCyOut)
3812 _VarR8FromCy(cyLeft, &l);
3813 _VarR8FromCy(cyRight, &r);
3815 return VarCyFromR8(l, pCyOut);
3818 /************************************************************************
3819 * VarCyMulI4 (OLEAUT32.304)
3821 * Multiply one CY by a VT_I4.
3825 * lRight [I] Value to multiply by
3826 * pCyOut [O] Destination
3830 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3832 HRESULT WINAPI VarCyMulI4(const CY cyLeft, LONG lRight, CY* pCyOut)
3836 _VarR8FromCy(cyLeft, &d);
3838 return VarCyFromR8(d, pCyOut);
3841 /************************************************************************
3842 * VarCySub (OLEAUT32.305)
3844 * Subtract one CY from another.
3848 * cyRight [I] Value to subtract
3849 * pCyOut [O] Destination
3853 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3855 HRESULT WINAPI VarCySub(const CY cyLeft, const CY cyRight, CY* pCyOut)
3858 _VarR8FromCy(cyLeft, &l);
3859 _VarR8FromCy(cyRight, &r);
3861 return VarCyFromR8(l, pCyOut);
3864 /************************************************************************
3865 * VarCyAbs (OLEAUT32.306)
3867 * Convert a VT_CY into its absolute value.
3871 * pCyOut [O] Destination
3874 * Success: S_OK. pCyOut contains the absolute value.
3875 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3877 HRESULT WINAPI VarCyAbs(const CY cyIn, CY* pCyOut)
3879 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3880 return DISP_E_OVERFLOW;
3882 pCyOut->int64 = cyIn.int64 < 0 ? -cyIn.int64 : cyIn.int64;
3886 /************************************************************************
3887 * VarCyFix (OLEAUT32.307)
3889 * Return the integer part of a VT_CY.
3893 * pCyOut [O] Destination
3897 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3900 * - The difference between this function and VarCyInt() is that VarCyInt() rounds
3901 * negative numbers away from 0, while this function rounds them towards zero.
3903 HRESULT WINAPI VarCyFix(const CY cyIn, CY* pCyOut)
3905 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3906 pCyOut->int64 *= CY_MULTIPLIER;
3910 /************************************************************************
3911 * VarCyInt (OLEAUT32.308)
3913 * Return the integer part of a VT_CY.
3917 * pCyOut [O] Destination
3921 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3924 * - The difference between this function and VarCyFix() is that VarCyFix() rounds
3925 * negative numbers towards 0, while this function rounds them away from zero.
3927 HRESULT WINAPI VarCyInt(const CY cyIn, CY* pCyOut)
3929 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3930 pCyOut->int64 *= CY_MULTIPLIER;
3932 if (cyIn.int64 < 0 && cyIn.int64 % CY_MULTIPLIER != 0)
3934 pCyOut->int64 -= CY_MULTIPLIER;
3939 /************************************************************************
3940 * VarCyNeg (OLEAUT32.309)
3942 * Change the sign of a VT_CY.
3946 * pCyOut [O] Destination
3950 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3952 HRESULT WINAPI VarCyNeg(const CY cyIn, CY* pCyOut)
3954 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3955 return DISP_E_OVERFLOW;
3957 pCyOut->int64 = -cyIn.int64;
3961 /************************************************************************
3962 * VarCyRound (OLEAUT32.310)
3964 * Change the precision of a VT_CY.
3968 * cDecimals [I] New number of decimals to keep
3969 * pCyOut [O] Destination
3973 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3975 HRESULT WINAPI VarCyRound(const CY cyIn, int cDecimals, CY* pCyOut)
3978 return E_INVALIDARG;
3982 /* Rounding to more precision than we have */
3988 double d, div = CY_Divisors[cDecimals];
3990 _VarR8FromCy(cyIn, &d);
3992 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3993 d = (double)pCyOut->int64 / div * CY_MULTIPLIER_F;
3994 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3999 /************************************************************************
4000 * VarCyCmp (OLEAUT32.311)
4002 * Compare two VT_CY values.
4006 * cyRight [I] Value to compare
4009 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that the value to
4010 * compare is less, equal or greater than source respectively.
4011 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4013 HRESULT WINAPI VarCyCmp(const CY cyLeft, const CY cyRight)
4018 /* Subtract right from left, and compare the result to 0 */
4019 hRet = VarCySub(cyLeft, cyRight, &result);
4021 if (SUCCEEDED(hRet))
4023 if (result.int64 < 0)
4024 hRet = (HRESULT)VARCMP_LT;
4025 else if (result.int64 > 0)
4026 hRet = (HRESULT)VARCMP_GT;
4028 hRet = (HRESULT)VARCMP_EQ;
4033 /************************************************************************
4034 * VarCyCmpR8 (OLEAUT32.312)
4036 * Compare a VT_CY to a double
4039 * cyLeft [I] Currency Source
4040 * dblRight [I] double to compare to cyLeft
4043 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight is
4044 * less than, equal to or greater than cyLeft respectively.
4045 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4047 HRESULT WINAPI VarCyCmpR8(const CY cyLeft, double dblRight)
4052 hRet = VarCyFromR8(dblRight, &cyRight);
4054 if (SUCCEEDED(hRet))
4055 hRet = VarCyCmp(cyLeft, cyRight);
4060 /************************************************************************
4061 * VarCyMulI8 (OLEAUT32.329)
4063 * Multiply a VT_CY by a VT_I8.
4067 * llRight [I] Value to multiply by
4068 * pCyOut [O] Destination
4072 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4074 HRESULT WINAPI VarCyMulI8(const CY cyLeft, LONG64 llRight, CY* pCyOut)
4078 _VarR8FromCy(cyLeft, &d);
4079 d = d * (double)llRight;
4080 return VarCyFromR8(d, pCyOut);
4086 /************************************************************************
4087 * VarDecFromUI1 (OLEAUT32.190)
4089 * Convert a VT_UI1 to a DECIMAL.
4093 * pDecOut [O] Destination
4098 HRESULT WINAPI VarDecFromUI1(BYTE bIn, DECIMAL* pDecOut)
4100 return VarDecFromUI4(bIn, pDecOut);
4103 /************************************************************************
4104 * VarDecFromI2 (OLEAUT32.191)
4106 * Convert a VT_I2 to a DECIMAL.
4110 * pDecOut [O] Destination
4115 HRESULT WINAPI VarDecFromI2(SHORT sIn, DECIMAL* pDecOut)
4117 return VarDecFromI4(sIn, pDecOut);
4120 /************************************************************************
4121 * VarDecFromI4 (OLEAUT32.192)
4123 * Convert a VT_I4 to a DECIMAL.
4127 * pDecOut [O] Destination
4132 HRESULT WINAPI VarDecFromI4(LONG lIn, DECIMAL* pDecOut)
4134 DEC_HI32(pDecOut) = 0;
4135 DEC_MID32(pDecOut) = 0;
4139 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4140 DEC_LO32(pDecOut) = -lIn;
4144 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4145 DEC_LO32(pDecOut) = lIn;
4150 #define LOCALE_EN_US (MAKELCID(MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US),SORT_DEFAULT))
4152 /* internal representation of the value stored in a DECIMAL. The bytes are
4153 stored from LSB at index 0 to MSB at index 11
4155 typedef struct DECIMAL_internal
4157 DWORD bitsnum[3]; /* 96 significant bits, unsigned */
4158 unsigned char scale; /* number scaled * 10 ^ -(scale) */
4159 unsigned int sign : 1; /* 0 - positive, 1 - negative */
4162 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest);
4163 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest);
4164 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to);
4165 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to);
4167 /************************************************************************
4168 * VarDecFromR4 (OLEAUT32.193)
4170 * Convert a VT_R4 to a DECIMAL.
4174 * pDecOut [O] Destination
4179 HRESULT WINAPI VarDecFromR4(FLOAT fltIn, DECIMAL* pDecOut)
4184 hres = VARIANT_DI_FromR4(fltIn, &di);
4185 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4189 /************************************************************************
4190 * VarDecFromR8 (OLEAUT32.194)
4192 * Convert a VT_R8 to a DECIMAL.
4196 * pDecOut [O] Destination
4201 HRESULT WINAPI VarDecFromR8(double dblIn, DECIMAL* pDecOut)
4206 hres = VARIANT_DI_FromR8(dblIn, &di);
4207 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4211 /************************************************************************
4212 * VarDecFromDate (OLEAUT32.195)
4214 * Convert a VT_DATE to a DECIMAL.
4218 * pDecOut [O] Destination
4223 HRESULT WINAPI VarDecFromDate(DATE dateIn, DECIMAL* pDecOut)
4225 return VarDecFromR8(dateIn, pDecOut);
4228 /************************************************************************
4229 * VarDecFromCy (OLEAUT32.196)
4231 * Convert a VT_CY to a DECIMAL.
4235 * pDecOut [O] Destination
4240 HRESULT WINAPI VarDecFromCy(CY cyIn, DECIMAL* pDecOut)
4242 DEC_HI32(pDecOut) = 0;
4244 /* Note: This assumes 2s complement integer representation */
4245 if (cyIn.s.Hi & 0x80000000)
4247 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,4);
4248 DEC_LO64(pDecOut) = -cyIn.int64;
4252 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,4);
4253 DEC_MID32(pDecOut) = cyIn.s.Hi;
4254 DEC_LO32(pDecOut) = cyIn.s.Lo;
4259 /************************************************************************
4260 * VarDecFromStr (OLEAUT32.197)
4262 * Convert a VT_BSTR to a DECIMAL.
4266 * lcid [I] LCID for the conversion
4267 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
4268 * pDecOut [O] Destination
4272 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4274 HRESULT WINAPI VarDecFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DECIMAL* pDecOut)
4276 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDecOut, VT_DECIMAL);
4279 /************************************************************************
4280 * VarDecFromDisp (OLEAUT32.198)
4282 * Convert a VT_DISPATCH to a DECIMAL.
4285 * pdispIn [I] Source
4286 * lcid [I] LCID for conversion
4287 * pDecOut [O] Destination
4291 * Failure: DISP_E_TYPEMISMATCH, if the type cannot be converted
4293 HRESULT WINAPI VarDecFromDisp(IDispatch* pdispIn, LCID lcid, DECIMAL* pDecOut)
4295 return VARIANT_FromDisp(pdispIn, lcid, pDecOut, VT_DECIMAL, 0);
4298 /************************************************************************
4299 * VarDecFromBool (OLEAUT32.199)
4301 * Convert a VT_BOOL to a DECIMAL.
4305 * pDecOut [O] Destination
4311 * The value is converted to either 0 (if bIn is FALSE) or -1 (TRUE).
4313 HRESULT WINAPI VarDecFromBool(VARIANT_BOOL bIn, DECIMAL* pDecOut)
4315 DEC_HI32(pDecOut) = 0;
4316 DEC_MID32(pDecOut) = 0;
4319 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4320 DEC_LO32(pDecOut) = 1;
4324 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4325 DEC_LO32(pDecOut) = 0;
4330 /************************************************************************
4331 * VarDecFromI1 (OLEAUT32.241)
4333 * Convert a VT_I1 to a DECIMAL.
4337 * pDecOut [O] Destination
4342 HRESULT WINAPI VarDecFromI1(signed char cIn, DECIMAL* pDecOut)
4344 return VarDecFromI4(cIn, pDecOut);
4347 /************************************************************************
4348 * VarDecFromUI2 (OLEAUT32.242)
4350 * Convert a VT_UI2 to a DECIMAL.
4354 * pDecOut [O] Destination
4359 HRESULT WINAPI VarDecFromUI2(USHORT usIn, DECIMAL* pDecOut)
4361 return VarDecFromUI4(usIn, pDecOut);
4364 /************************************************************************
4365 * VarDecFromUI4 (OLEAUT32.243)
4367 * Convert a VT_UI4 to a DECIMAL.
4371 * pDecOut [O] Destination
4376 HRESULT WINAPI VarDecFromUI4(ULONG ulIn, DECIMAL* pDecOut)
4378 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4379 DEC_HI32(pDecOut) = 0;
4380 DEC_MID32(pDecOut) = 0;
4381 DEC_LO32(pDecOut) = ulIn;
4385 /************************************************************************
4386 * VarDecFromI8 (OLEAUT32.374)
4388 * Convert a VT_I8 to a DECIMAL.
4392 * pDecOut [O] Destination
4397 HRESULT WINAPI VarDecFromI8(LONG64 llIn, DECIMAL* pDecOut)
4399 PULARGE_INTEGER pLi = (PULARGE_INTEGER)&llIn;
4401 DEC_HI32(pDecOut) = 0;
4403 /* Note: This assumes 2s complement integer representation */
4404 if (pLi->u.HighPart & 0x80000000)
4406 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4407 DEC_LO64(pDecOut) = -pLi->QuadPart;
4411 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4412 DEC_MID32(pDecOut) = pLi->u.HighPart;
4413 DEC_LO32(pDecOut) = pLi->u.LowPart;
4418 /************************************************************************
4419 * VarDecFromUI8 (OLEAUT32.375)
4421 * Convert a VT_UI8 to a DECIMAL.
4425 * pDecOut [O] Destination
4430 HRESULT WINAPI VarDecFromUI8(ULONG64 ullIn, DECIMAL* pDecOut)
4432 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4433 DEC_HI32(pDecOut) = 0;
4434 DEC_LO64(pDecOut) = ullIn;
4438 /* Make two DECIMALS the same scale; used by math functions below */
4439 static HRESULT VARIANT_DecScale(const DECIMAL** ppDecLeft,
4440 const DECIMAL** ppDecRight,
4443 static DECIMAL scaleFactor;
4446 HRESULT hRet = S_OK;
4448 if (DEC_SIGN(*ppDecLeft) & ~DECIMAL_NEG || DEC_SIGN(*ppDecRight) & ~DECIMAL_NEG)
4449 return E_INVALIDARG;
4451 DEC_LO32(&scaleFactor) = 10;
4453 i = scaleAmount = DEC_SCALE(*ppDecLeft) - DEC_SCALE(*ppDecRight);
4456 return S_OK; /* Same scale */
4458 if (scaleAmount > 0)
4460 decTemp = *(*ppDecRight); /* Left is bigger - scale the right hand side */
4461 *ppDecRight = pDecOut;
4465 decTemp = *(*ppDecLeft); /* Right is bigger - scale the left hand side */
4466 *ppDecLeft = pDecOut;
4467 i = scaleAmount = -scaleAmount;
4470 if (DEC_SCALE(&decTemp) + scaleAmount > DEC_MAX_SCALE)
4471 return DISP_E_OVERFLOW; /* Can't scale up */
4473 /* Multiply up the value to be scaled by the correct amount */
4474 while (SUCCEEDED(hRet) && i--)
4476 /* Note we are multiplying by a value with a scale of 0, so we don't recurse */
4477 hRet = VarDecMul(&decTemp, &scaleFactor, pDecOut);
4480 DEC_SCALE(pDecOut) += scaleAmount; /* Set the new scale */
4484 /* Add two unsigned 32 bit values with overflow */
4485 static ULONG VARIANT_Add(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4487 ULARGE_INTEGER ul64;
4489 ul64.QuadPart = (ULONG64)ulLeft + (ULONG64)ulRight + (ULONG64)*pulHigh;
4490 *pulHigh = ul64.u.HighPart;
4491 return ul64.u.LowPart;
4494 /* Subtract two unsigned 32 bit values with underflow */
4495 static ULONG VARIANT_Sub(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4498 ULARGE_INTEGER ul64;
4500 ul64.QuadPart = (LONG64)ulLeft - (ULONG64)ulRight;
4501 if (ulLeft < ulRight)
4504 if (ul64.QuadPart > (ULONG64)*pulHigh)
4505 ul64.QuadPart -= (ULONG64)*pulHigh;
4508 ul64.QuadPart -= (ULONG64)*pulHigh;
4512 ul64.u.HighPart = -ul64.u.HighPart ;
4514 *pulHigh = ul64.u.HighPart;
4515 return ul64.u.LowPart;
4518 /* Multiply two unsigned 32 bit values with overflow */
4519 static ULONG VARIANT_Mul(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4521 ULARGE_INTEGER ul64;
4523 ul64.QuadPart = (ULONG64)ulLeft * (ULONG64)ulRight + (ULONG64)*pulHigh;
4524 *pulHigh = ul64.u.HighPart;
4525 return ul64.u.LowPart;
4528 /* Compare two decimals that have the same scale */
4529 static inline int VARIANT_DecCmp(const DECIMAL *pDecLeft, const DECIMAL *pDecRight)
4531 if ( DEC_HI32(pDecLeft) < DEC_HI32(pDecRight) ||
4532 (DEC_HI32(pDecLeft) <= DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) < DEC_LO64(pDecRight)))
4534 else if (DEC_HI32(pDecLeft) == DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) == DEC_LO64(pDecRight))
4539 /************************************************************************
4540 * VarDecAdd (OLEAUT32.177)
4542 * Add one DECIMAL to another.
4545 * pDecLeft [I] Source
4546 * pDecRight [I] Value to add
4547 * pDecOut [O] Destination
4551 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4553 HRESULT WINAPI VarDecAdd(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
4558 hRet = VARIANT_DecScale(&pDecLeft, &pDecRight, &scaled);
4560 if (SUCCEEDED(hRet))
4562 /* Our decimals now have the same scale, we can add them as 96 bit integers */
4564 BYTE sign = DECIMAL_POS;
4567 /* Correct for the sign of the result */
4568 if (DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4570 /* -x + -y : Negative */
4572 goto VarDecAdd_AsPositive;
4574 else if (DEC_SIGN(pDecLeft) && !DEC_SIGN(pDecRight))
4576 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4578 /* -x + y : Negative if x > y */
4582 VarDecAdd_AsNegative:
4583 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4584 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4585 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4589 VarDecAdd_AsInvertedNegative:
4590 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecRight), DEC_LO32(pDecLeft), &overflow);
4591 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecRight), DEC_MID32(pDecLeft), &overflow);
4592 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecRight), DEC_HI32(pDecLeft), &overflow);
4595 else if (!DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4597 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4599 /* x + -y : Negative if x <= y */
4603 goto VarDecAdd_AsInvertedNegative;
4605 goto VarDecAdd_AsNegative;
4609 /* x + y : Positive */
4610 VarDecAdd_AsPositive:
4611 DEC_LO32(pDecOut) = VARIANT_Add(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4612 DEC_MID32(pDecOut) = VARIANT_Add(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4613 DEC_HI32(pDecOut) = VARIANT_Add(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4617 return DISP_E_OVERFLOW; /* overflowed */
4619 DEC_SCALE(pDecOut) = DEC_SCALE(pDecLeft);
4620 DEC_SIGN(pDecOut) = sign;
4625 /* translate from external DECIMAL format into an internal representation */
4626 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to)
4628 to->scale = DEC_SCALE(from);
4629 to->sign = DEC_SIGN(from) ? 1 : 0;
4631 to->bitsnum[0] = DEC_LO32(from);
4632 to->bitsnum[1] = DEC_MID32(from);
4633 to->bitsnum[2] = DEC_HI32(from);
4636 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to)
4639 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_NEG, from->scale);
4641 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_POS, from->scale);
4644 DEC_LO32(to) = from->bitsnum[0];
4645 DEC_MID32(to) = from->bitsnum[1];
4646 DEC_HI32(to) = from->bitsnum[2];
4649 /* clear an internal representation of a DECIMAL */
4650 static void VARIANT_DI_clear(VARIANT_DI * i)
4652 memset(i, 0, sizeof(VARIANT_DI));
4655 /* divide the (unsigned) number stored in p (LSB) by a byte value (<= 0xff). Any nonzero
4656 size is supported. The value in p is replaced by the quotient of the division, and
4657 the remainder is returned as a result. This routine is most often used with a divisor
4658 of 10 in order to scale up numbers, and in the DECIMAL->string conversion.
4660 static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor)
4665 } else if (divisor == 1) {
4666 /* dividend remains unchanged */
4669 unsigned char remainder = 0;
4670 ULONGLONG iTempDividend;
4673 for (i = n - 1; i >= 0 && !p[i]; i--); /* skip leading zeros */
4674 for (; i >= 0; i--) {
4675 iTempDividend = ((ULONGLONG)remainder << 32) + p[i];
4676 remainder = iTempDividend % divisor;
4677 p[i] = iTempDividend / divisor;
4684 /* check to test if encoded number is a zero. Returns 1 if zero, 0 for nonzero */
4685 static int VARIANT_int_iszero(const DWORD * p, unsigned int n)
4687 for (; n > 0; n--) if (*p++ != 0) return 0;
4691 /* multiply two DECIMALS, without changing either one, and place result in third
4692 parameter. Result is normalized when scale is > 0. Attempts to remove significant
4693 digits when scale > 0 in order to fit an overflowing result. Final overflow
4696 static int VARIANT_DI_mul(const VARIANT_DI * a, const VARIANT_DI * b, VARIANT_DI * result)
4700 signed int mulstart;
4702 VARIANT_DI_clear(result);
4703 result->sign = (a->sign ^ b->sign) ? 1 : 0;
4705 /* Multiply 128-bit operands into a (max) 256-bit result. The scale
4706 of the result is formed by adding the scales of the operands.
4708 result->scale = a->scale + b->scale;
4709 memset(running, 0, sizeof(running));
4711 /* count number of leading zero-bytes in operand A */
4712 for (mulstart = sizeof(a->bitsnum)/sizeof(DWORD) - 1; mulstart >= 0 && !a->bitsnum[mulstart]; mulstart--);
4714 /* result is 0, because operand A is 0 */
4718 unsigned char remainder = 0;
4721 /* perform actual multiplication */
4722 for (iA = 0; iA <= mulstart; iA++) {
4726 for (iOverflowMul = 0, iB = 0; iB < sizeof(b->bitsnum)/sizeof(DWORD); iB++) {
4730 iRV = VARIANT_Mul(b->bitsnum[iB], a->bitsnum[iA], &iOverflowMul);
4733 running[iR] = VARIANT_Add(running[iR], 0, &iRV);
4739 /* Too bad - native oleaut does not do this, so we should not either */
4741 /* While the result is divisible by 10, and the scale > 0, divide by 10.
4742 This operation should not lose significant digits, and gives an
4743 opportunity to reduce the possibility of overflows in future
4744 operations issued by the application.
4746 while (result->scale > 0) {
4747 memcpy(quotient, running, sizeof(quotient));
4748 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4749 if (remainder > 0) break;
4750 memcpy(running, quotient, sizeof(quotient));
4754 /* While the 256-bit result overflows, and the scale > 0, divide by 10.
4755 This operation *will* lose significant digits of the result because
4756 all the factors of 10 were consumed by the previous operation.
4758 while (result->scale > 0 && !VARIANT_int_iszero(
4759 running + sizeof(result->bitsnum) / sizeof(DWORD),
4760 (sizeof(running) - sizeof(result->bitsnum)) / sizeof(DWORD))) {
4762 remainder = VARIANT_int_divbychar(running, sizeof(running) / sizeof(DWORD), 10);
4763 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4767 /* round up the result - native oleaut32 does this */
4768 if (remainder >= 5) {
4770 for (remainder = 1, i = 0; i < sizeof(running)/sizeof(DWORD) && remainder; i++) {
4771 ULONGLONG digit = running[i] + 1;
4772 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4773 running[i] = digit & 0xFFFFFFFF;
4777 /* Signal overflow if scale == 0 and 256-bit result still overflows,
4778 and copy result bits into result structure
4780 r_overflow = !VARIANT_int_iszero(
4781 running + sizeof(result->bitsnum)/sizeof(DWORD),
4782 (sizeof(running) - sizeof(result->bitsnum))/sizeof(DWORD));
4783 memcpy(result->bitsnum, running, sizeof(result->bitsnum));
4788 /* cast DECIMAL into string. Any scale should be handled properly. en_US locale is
4789 hardcoded (period for decimal separator, dash as negative sign). Returns 0 for
4790 success, nonzero if insufficient space in output buffer.
4792 static int VARIANT_DI_tostringW(const VARIANT_DI * a, WCHAR * s, unsigned int n)
4796 unsigned char remainder;
4799 /* place negative sign */
4800 if (!VARIANT_int_iszero(a->bitsnum, sizeof(a->bitsnum) / sizeof(DWORD)) && a->sign) {
4808 /* prepare initial 0 */
4813 } else overflow = 1;
4817 memcpy(quotient, a->bitsnum, sizeof(a->bitsnum));
4818 while (!overflow && !VARIANT_int_iszero(quotient, sizeof(quotient) / sizeof(DWORD))) {
4819 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4823 s[i++] = '0' + remainder;
4828 if (!overflow && !VARIANT_int_iszero(a->bitsnum, sizeof(a->bitsnum) / sizeof(DWORD))) {
4830 /* reverse order of digits */
4831 WCHAR * x = s; WCHAR * y = s + i - 1;
4838 /* check for decimal point. "i" now has string length */
4839 if (i <= a->scale) {
4840 unsigned int numzeroes = a->scale + 1 - i;
4841 if (i + 1 + numzeroes >= n) {
4844 memmove(s + numzeroes, s, (i + 1) * sizeof(WCHAR));
4846 while (numzeroes > 0) {
4847 s[--numzeroes] = '0';
4852 /* place decimal point */
4854 unsigned int periodpos = i - a->scale;
4858 memmove(s + periodpos + 1, s + periodpos, (i + 1 - periodpos) * sizeof(WCHAR));
4859 s[periodpos] = '.'; i++;
4861 /* remove extra zeros at the end, if any */
4862 while (s[i - 1] == '0') s[--i] = '\0';
4863 if (s[i - 1] == '.') s[--i] = '\0';
4871 /* shift the bits of a DWORD array to the left. p[0] is assumed LSB */
4872 static void VARIANT_int_shiftleft(DWORD * p, unsigned int n, unsigned int shift)
4877 /* shift whole DWORDs to the left */
4880 memmove(p + 1, p, (n - 1) * sizeof(DWORD));
4881 *p = 0; shift -= 32;
4884 /* shift remainder (1..31 bits) */
4886 if (shift > 0) for (i = 0; i < n; i++)
4889 b = p[i] >> (32 - shift);
4890 p[i] = (p[i] << shift) | shifted;
4895 /* add the (unsigned) numbers stored in two DWORD arrays with LSB at index 0.
4896 Value at v is incremented by the value at p. Any size is supported, provided
4897 that v is not shorter than p. Any unapplied carry is returned as a result.
4899 static unsigned char VARIANT_int_add(DWORD * v, unsigned int nv, const DWORD * p,
4902 unsigned char carry = 0;
4908 for (i = 0; i < np; i++) {
4909 sum = (ULONGLONG)v[i]
4912 v[i] = sum & 0xffffffff;
4915 for (; i < nv && carry; i++) {
4916 sum = (ULONGLONG)v[i]
4918 v[i] = sum & 0xffffffff;
4925 /* perform integral division with operand p as dividend. Parameter n indicates
4926 number of available DWORDs in divisor p, but available space in p must be
4927 actually at least 2 * n DWORDs, because the remainder of the integral
4928 division is built in the next n DWORDs past the start of the quotient. This
4929 routine replaces the dividend in p with the quotient, and appends n
4930 additional DWORDs for the remainder.
4932 Thanks to Lee & Mark Atkinson for their book _Using_C_ (my very first book on
4933 C/C++ :-) where the "longhand binary division" algorithm was exposed for the
4934 source code to the VLI (Very Large Integer) division operator. This algorithm
4935 was then heavily modified by me (Alex Villacis Lasso) in order to handle
4936 variably-scaled integers such as the MS DECIMAL representation.
4938 static void VARIANT_int_div(DWORD * p, unsigned int n, const DWORD * divisor,
4943 DWORD * negdivisor = tempsub + n;
4945 /* build 2s-complement of divisor */
4946 for (i = 0; i < n; i++) negdivisor[i] = (i < dn) ? ~divisor[i] : 0xFFFFFFFF;
4948 VARIANT_int_add(negdivisor, n, p + n, 1);
4949 memset(p + n, 0, n * sizeof(DWORD));
4951 /* skip all leading zero DWORDs in quotient */
4952 for (i = 0; i < n && !p[n - 1]; i++) VARIANT_int_shiftleft(p, n, 32);
4953 /* i is now number of DWORDs left to process */
4954 for (i <<= 5; i < (n << 5); i++) {
4955 VARIANT_int_shiftleft(p, n << 1, 1); /* shl quotient+remainder */
4957 /* trial subtraction */
4958 memcpy(tempsub, p + n, n * sizeof(DWORD));
4959 VARIANT_int_add(tempsub, n, negdivisor, n);
4961 /* check whether result of subtraction was negative */
4962 if ((tempsub[n - 1] & 0x80000000) == 0) {
4963 memcpy(p + n, tempsub, n * sizeof(DWORD));
4969 /* perform integral multiplication by a byte operand. Used for scaling by 10 */
4970 static unsigned char VARIANT_int_mulbychar(DWORD * p, unsigned int n, unsigned char m)
4975 for (iOverflowMul = 0, i = 0; i < n; i++)
4976 p[i] = VARIANT_Mul(p[i], m, &iOverflowMul);
4977 return (unsigned char)iOverflowMul;
4980 /* increment value in A by the value indicated in B, with scale adjusting.
4981 Modifies parameters by adjusting scales. Returns 0 if addition was
4982 successful, nonzero if a parameter underflowed before it could be
4983 successfully used in the addition.
4985 static int VARIANT_int_addlossy(
4986 DWORD * a, int * ascale, unsigned int an,
4987 DWORD * b, int * bscale, unsigned int bn)
4991 if (VARIANT_int_iszero(a, an)) {
4992 /* if A is zero, copy B into A, after removing digits */
4993 while (bn > an && !VARIANT_int_iszero(b + an, bn - an)) {
4994 VARIANT_int_divbychar(b, bn, 10);
4997 memcpy(a, b, an * sizeof(DWORD));
4999 } else if (!VARIANT_int_iszero(b, bn)) {
5000 unsigned int tn = an + 1;
5003 if (bn + 1 > tn) tn = bn + 1;
5004 if (*ascale != *bscale) {
5005 /* first (optimistic) try - try to scale down the one with the bigger
5006 scale, while this number is divisible by 10 */
5007 DWORD * digitchosen;
5008 unsigned int nchosen;
5012 if (*ascale < *bscale) {
5013 targetscale = *ascale;
5014 scalechosen = bscale;
5018 targetscale = *bscale;
5019 scalechosen = ascale;
5023 memset(t, 0, tn * sizeof(DWORD));
5024 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5026 /* divide by 10 until target scale is reached */
5027 while (*scalechosen > targetscale) {
5028 unsigned char remainder = VARIANT_int_divbychar(t, tn, 10);
5031 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5036 if (*ascale != *bscale) {
5037 DWORD * digitchosen;
5038 unsigned int nchosen;
5042 /* try to scale up the one with the smaller scale */
5043 if (*ascale > *bscale) {
5044 targetscale = *ascale;
5045 scalechosen = bscale;
5049 targetscale = *bscale;
5050 scalechosen = ascale;
5054 memset(t, 0, tn * sizeof(DWORD));
5055 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5057 /* multiply by 10 until target scale is reached, or
5058 significant bytes overflow the number
5060 while (*scalechosen < targetscale && t[nchosen] == 0) {
5061 VARIANT_int_mulbychar(t, tn, 10);
5062 if (t[nchosen] == 0) {
5063 /* still does not overflow */
5065 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5070 if (*ascale != *bscale) {
5071 /* still different? try to scale down the one with the bigger scale
5072 (this *will* lose significant digits) */
5073 DWORD * digitchosen;
5074 unsigned int nchosen;
5078 if (*ascale < *bscale) {
5079 targetscale = *ascale;
5080 scalechosen = bscale;
5084 targetscale = *bscale;
5085 scalechosen = ascale;
5089 memset(t, 0, tn * sizeof(DWORD));
5090 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5092 /* divide by 10 until target scale is reached */
5093 while (*scalechosen > targetscale) {
5094 VARIANT_int_divbychar(t, tn, 10);
5096 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5100 /* check whether any of the operands still has significant digits
5103 if (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn)) {
5106 /* at this step, both numbers have the same scale and can be added
5107 as integers. However, the result might not fit in A, so further
5108 scaling down might be necessary.
5110 while (!underflow) {
5111 memset(t, 0, tn * sizeof(DWORD));
5112 memcpy(t, a, an * sizeof(DWORD));
5114 VARIANT_int_add(t, tn, b, bn);
5115 if (VARIANT_int_iszero(t + an, tn - an)) {
5116 /* addition was successful */
5117 memcpy(a, t, an * sizeof(DWORD));
5120 /* addition overflowed - remove significant digits
5121 from both operands and try again */
5122 VARIANT_int_divbychar(a, an, 10); (*ascale)--;
5123 VARIANT_int_divbychar(b, bn, 10); (*bscale)--;
5124 /* check whether any operand keeps significant digits after
5125 scaledown (underflow case 2)
5127 underflow = (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn));
5135 /* perform complete DECIMAL division in the internal representation. Returns
5136 0 if the division was completed (even if quotient is set to 0), or nonzero
5137 in case of quotient overflow.
5139 static HRESULT VARIANT_DI_div(const VARIANT_DI * dividend, const VARIANT_DI * divisor,
5140 VARIANT_DI * quotient)
5142 HRESULT r_overflow = S_OK;
5144 if (VARIANT_int_iszero(divisor->bitsnum, sizeof(divisor->bitsnum)/sizeof(DWORD))) {
5146 r_overflow = DISP_E_DIVBYZERO;
5147 } else if (VARIANT_int_iszero(dividend->bitsnum, sizeof(dividend->bitsnum)/sizeof(DWORD))) {
5148 VARIANT_DI_clear(quotient);
5150 int quotientscale, remainderscale, tempquotientscale;
5151 DWORD remainderplusquotient[8];
5154 quotientscale = remainderscale = (int)dividend->scale - (int)divisor->scale;
5155 tempquotientscale = quotientscale;
5156 VARIANT_DI_clear(quotient);
5157 quotient->sign = (dividend->sign ^ divisor->sign) ? 1 : 0;
5159 /* The following strategy is used for division
5160 1) if there was a nonzero remainder from previous iteration, use it as
5161 dividend for this iteration, else (for first iteration) use intended
5163 2) perform integer division in temporary buffer, develop quotient in
5164 low-order part, remainder in high-order part
5165 3) add quotient from step 2 to final result, with possible loss of
5167 4) multiply integer part of remainder by 10, while incrementing the
5168 scale of the remainder. This operation preserves the intended value
5170 5) loop to step 1 until one of the following is true:
5171 a) remainder is zero (exact division achieved)
5172 b) addition in step 3 fails to modify bits in quotient (remainder underflow)
5174 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5175 memcpy(remainderplusquotient, dividend->bitsnum, sizeof(dividend->bitsnum));
5178 remainderplusquotient, 4,
5179 divisor->bitsnum, sizeof(divisor->bitsnum)/sizeof(DWORD));
5180 underflow = VARIANT_int_addlossy(
5181 quotient->bitsnum, "ientscale, sizeof(quotient->bitsnum) / sizeof(DWORD),
5182 remainderplusquotient, &tempquotientscale, 4);
5183 VARIANT_int_mulbychar(remainderplusquotient + 4, 4, 10);
5184 memcpy(remainderplusquotient, remainderplusquotient + 4, 4 * sizeof(DWORD));
5185 tempquotientscale = ++remainderscale;
5186 } while (!underflow && !VARIANT_int_iszero(remainderplusquotient + 4, 4));
5188 /* quotient scale might now be negative (extremely big number). If, so, try
5189 to multiply quotient by 10 (without overflowing), while adjusting the scale,
5190 until scale is 0. If this cannot be done, it is a real overflow.
5192 while (r_overflow == S_OK && quotientscale < 0) {
5193 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5194 memcpy(remainderplusquotient, quotient->bitsnum, sizeof(quotient->bitsnum));
5195 VARIANT_int_mulbychar(remainderplusquotient, sizeof(remainderplusquotient)/sizeof(DWORD), 10);
5196 if (VARIANT_int_iszero(remainderplusquotient + sizeof(quotient->bitsnum)/sizeof(DWORD),
5197 (sizeof(remainderplusquotient) - sizeof(quotient->bitsnum))/sizeof(DWORD))) {
5199 memcpy(quotient->bitsnum, remainderplusquotient, sizeof(quotient->bitsnum));
5200 } else r_overflow = DISP_E_OVERFLOW;
5202 if (r_overflow == S_OK) {
5203 if (quotientscale <= 255) quotient->scale = quotientscale;
5204 else VARIANT_DI_clear(quotient);
5210 /* This procedure receives a VARIANT_DI with a defined mantissa and sign, but
5211 with an undefined scale, which will be assigned to (if possible). It also
5212 receives an exponent of 2. This procedure will then manipulate the mantissa
5213 and calculate a corresponding scale, so that the exponent2 value is assimilated
5214 into the VARIANT_DI and is therefore no longer necessary. Returns S_OK if
5215 successful, or DISP_E_OVERFLOW if the represented value is too big to fit into
5217 static HRESULT VARIANT_DI_normalize(VARIANT_DI * val, int exponent2, int isDouble)
5219 HRESULT hres = S_OK;
5220 int exponent5, exponent10;
5222 /* A factor of 2^exponent2 is equivalent to (10^exponent2)/(5^exponent2), and
5223 thus equal to (5^-exponent2)*(10^exponent2). After all manipulations,
5224 exponent10 might be used to set the VARIANT_DI scale directly. However,
5225 the value of 5^-exponent5 must be assimilated into the VARIANT_DI. */
5226 exponent5 = -exponent2;
5227 exponent10 = exponent2;
5229 /* Handle exponent5 > 0 */
5230 while (exponent5 > 0) {
5234 /* In order to multiply the value represented by the VARIANT_DI by 5, it
5235 is best to multiply by 10/2. Therefore, exponent10 is incremented, and
5236 somehow the mantissa should be divided by 2. */
5237 if ((val->bitsnum[0] & 1) == 0) {
5238 /* The mantissa is divisible by 2. Therefore the division can be done
5239 without losing significant digits. */
5240 exponent10++; exponent5--;
5243 bPrevCarryBit = val->bitsnum[2] & 1;
5244 val->bitsnum[2] >>= 1;
5245 bCurrCarryBit = val->bitsnum[1] & 1;
5246 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5247 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5249 /* The mantissa is NOT divisible by 2. Therefore the mantissa should
5250 be multiplied by 5, unless the multiplication overflows. */
5251 DWORD temp_bitsnum[3];
5255 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5256 if (0 == VARIANT_int_mulbychar(temp_bitsnum, 3, 5)) {
5257 /* Multiplication succeeded without overflow, so copy result back
5259 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5261 /* Mask out 3 extraneous bits introduced by the multiply */
5263 /* Multiplication by 5 overflows. The mantissa should be divided
5264 by 2, and therefore will lose significant digits. */
5268 bPrevCarryBit = val->bitsnum[2] & 1;
5269 val->bitsnum[2] >>= 1;
5270 bCurrCarryBit = val->bitsnum[1] & 1;
5271 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5272 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5277 /* Handle exponent5 < 0 */
5278 while (exponent5 < 0) {
5279 /* In order to divide the value represented by the VARIANT_DI by 5, it
5280 is best to multiply by 2/10. Therefore, exponent10 is decremented,
5281 and the mantissa should be multiplied by 2 */
5282 if ((val->bitsnum[2] & 0x80000000) == 0) {
5283 /* The mantissa can withstand a shift-left without overflowing */
5284 exponent10--; exponent5++;
5285 VARIANT_int_shiftleft(val->bitsnum, 3, 1);
5287 /* The mantissa would overflow if shifted. Therefore it should be
5288 directly divided by 5. This will lose significant digits, unless
5289 by chance the mantissa happens to be divisible by 5 */
5291 VARIANT_int_divbychar(val->bitsnum, 3, 5);
5295 /* At this point, the mantissa has assimilated the exponent5, but the
5296 exponent10 might not be suitable for assignment. The exponent10 must be
5297 in the range [-DEC_MAX_SCALE..0], so the mantissa must be scaled up or
5298 down appropriately. */
5299 while (hres == S_OK && exponent10 > 0) {
5300 /* In order to bring exponent10 down to 0, the mantissa should be
5301 multiplied by 10 to compensate. If the exponent10 is too big, this
5302 will cause the mantissa to overflow. */
5303 if (0 == VARIANT_int_mulbychar(val->bitsnum, 3, 10)) {
5306 hres = DISP_E_OVERFLOW;
5309 while (exponent10 < -DEC_MAX_SCALE) {
5311 /* In order to bring exponent up to -DEC_MAX_SCALE, the mantissa should
5312 be divided by 10 to compensate. If the exponent10 is too small, this
5313 will cause the mantissa to underflow and become 0 */
5314 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5316 if (VARIANT_int_iszero(val->bitsnum, 3)) {
5317 /* Underflow, unable to keep dividing */
5319 } else if (rem10 >= 5) {
5321 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5324 /* This step is required in order to remove excess bits of precision from the
5325 end of the bit representation, down to the precision guaranteed by the
5326 floating point number. */
5328 while (exponent10 < 0 && (val->bitsnum[2] != 0 || (val->bitsnum[2] == 0 && (val->bitsnum[1] & 0xFFE00000) != 0))) {
5331 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5335 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5339 while (exponent10 < 0 && (val->bitsnum[2] != 0 || val->bitsnum[1] != 0 ||
5340 (val->bitsnum[2] == 0 && val->bitsnum[1] == 0 && (val->bitsnum[0] & 0xFF000000) != 0))) {
5343 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5347 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5351 /* Remove multiples of 10 from the representation */
5352 while (exponent10 < 0) {
5353 DWORD temp_bitsnum[3];
5355 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5356 if (0 == VARIANT_int_divbychar(temp_bitsnum, 3, 10)) {
5358 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5362 /* Scale assignment */
5363 if (hres == S_OK) val->scale = -exponent10;
5372 unsigned int m : 23;
5373 unsigned int exp_bias : 8;
5374 unsigned int sign : 1;
5379 /* Convert a 32-bit floating point number into a DECIMAL, without using an
5380 intermediate string step. */
5381 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest)
5383 HRESULT hres = S_OK;
5388 /* Detect special cases */
5389 if (fx.i.m == 0 && fx.i.exp_bias == 0) {
5390 /* Floating-point zero */
5391 VARIANT_DI_clear(dest);
5392 } else if (fx.i.m == 0 && fx.i.exp_bias == 0xFF) {
5393 /* Floating-point infinity */
5394 hres = DISP_E_OVERFLOW;
5395 } else if (fx.i.exp_bias == 0xFF) {
5396 /* Floating-point NaN */
5397 hres = DISP_E_BADVARTYPE;
5400 VARIANT_DI_clear(dest);
5402 exponent2 = fx.i.exp_bias - 127; /* Get unbiased exponent */
5403 dest->sign = fx.i.sign; /* Sign is simply copied */
5405 /* Copy significant bits to VARIANT_DI mantissa */
5406 dest->bitsnum[0] = fx.i.m;
5407 dest->bitsnum[0] &= 0x007FFFFF;
5408 if (fx.i.exp_bias == 0) {
5409 /* Denormalized number - correct exponent */
5412 /* Add hidden bit to mantissa */
5413 dest->bitsnum[0] |= 0x00800000;
5416 /* The act of copying a FP mantissa as integer bits is equivalent to
5417 shifting left the mantissa 23 bits. The exponent2 is reduced to
5421 hres = VARIANT_DI_normalize(dest, exponent2, 0);
5431 unsigned int m_lo : 32; /* 52 bits of precision */
5432 unsigned int m_hi : 20;
5433 unsigned int exp_bias : 11; /* bias == 1023 */
5434 unsigned int sign : 1;
5439 /* Convert a 64-bit floating point number into a DECIMAL, without using an
5440 intermediate string step. */
5441 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest)
5443 HRESULT hres = S_OK;
5448 /* Detect special cases */
5449 if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0) {
5450 /* Floating-point zero */
5451 VARIANT_DI_clear(dest);
5452 } else if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0x7FF) {
5453 /* Floating-point infinity */
5454 hres = DISP_E_OVERFLOW;
5455 } else if (fx.i.exp_bias == 0x7FF) {
5456 /* Floating-point NaN */
5457 hres = DISP_E_BADVARTYPE;
5460 VARIANT_DI_clear(dest);
5462 exponent2 = fx.i.exp_bias - 1023; /* Get unbiased exponent */
5463 dest->sign = fx.i.sign; /* Sign is simply copied */
5465 /* Copy significant bits to VARIANT_DI mantissa */
5466 dest->bitsnum[0] = fx.i.m_lo;
5467 dest->bitsnum[1] = fx.i.m_hi;
5468 dest->bitsnum[1] &= 0x000FFFFF;
5469 if (fx.i.exp_bias == 0) {
5470 /* Denormalized number - correct exponent */
5473 /* Add hidden bit to mantissa */
5474 dest->bitsnum[1] |= 0x00100000;
5477 /* The act of copying a FP mantissa as integer bits is equivalent to
5478 shifting left the mantissa 52 bits. The exponent2 is reduced to
5482 hres = VARIANT_DI_normalize(dest, exponent2, 1);
5488 /************************************************************************
5489 * VarDecDiv (OLEAUT32.178)
5491 * Divide one DECIMAL by another.
5494 * pDecLeft [I] Source
5495 * pDecRight [I] Value to divide by
5496 * pDecOut [O] Destination
5500 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5502 HRESULT WINAPI VarDecDiv(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5504 HRESULT hRet = S_OK;
5505 VARIANT_DI di_left, di_right, di_result;
5508 if (!pDecLeft || !pDecRight || !pDecOut) return E_INVALIDARG;
5510 VARIANT_DIFromDec(pDecLeft, &di_left);
5511 VARIANT_DIFromDec(pDecRight, &di_right);
5512 divresult = VARIANT_DI_div(&di_left, &di_right, &di_result);
5513 if (divresult != S_OK)
5515 /* division actually overflowed */
5522 if (di_result.scale > DEC_MAX_SCALE)
5524 unsigned char remainder = 0;
5526 /* division underflowed. In order to comply with the MSDN
5527 specifications for DECIMAL ranges, some significant digits
5530 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5532 while (di_result.scale > DEC_MAX_SCALE &&
5533 !VARIANT_int_iszero(di_result.bitsnum, sizeof(di_result.bitsnum) / sizeof(DWORD)))
5535 remainder = VARIANT_int_divbychar(di_result.bitsnum, sizeof(di_result.bitsnum) / sizeof(DWORD), 10);
5538 if (di_result.scale > DEC_MAX_SCALE)
5540 WARN("result underflowed, setting to 0\n");
5541 di_result.scale = 0;
5544 else if (remainder >= 5) /* round up result - native oleaut32 does this */
5547 for (remainder = 1, i = 0; i < sizeof(di_result.bitsnum) / sizeof(DWORD) && remainder; i++) {
5548 ULONGLONG digit = di_result.bitsnum[i] + 1;
5549 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
5550 di_result.bitsnum[i] = digit & 0xFFFFFFFF;
5554 VARIANT_DecFromDI(&di_result, pDecOut);
5559 /************************************************************************
5560 * VarDecMul (OLEAUT32.179)
5562 * Multiply one DECIMAL by another.
5565 * pDecLeft [I] Source
5566 * pDecRight [I] Value to multiply by
5567 * pDecOut [O] Destination
5571 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5573 HRESULT WINAPI VarDecMul(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5575 HRESULT hRet = S_OK;
5576 VARIANT_DI di_left, di_right, di_result;
5579 VARIANT_DIFromDec(pDecLeft, &di_left);
5580 VARIANT_DIFromDec(pDecRight, &di_right);
5581 mulresult = VARIANT_DI_mul(&di_left, &di_right, &di_result);
5584 /* multiplication actually overflowed */
5585 hRet = DISP_E_OVERFLOW;
5589 if (di_result.scale > DEC_MAX_SCALE)
5591 /* multiplication underflowed. In order to comply with the MSDN
5592 specifications for DECIMAL ranges, some significant digits
5595 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5597 while (di_result.scale > DEC_MAX_SCALE &&
5598 !VARIANT_int_iszero(di_result.bitsnum, sizeof(di_result.bitsnum)/sizeof(DWORD)))
5600 VARIANT_int_divbychar(di_result.bitsnum, sizeof(di_result.bitsnum)/sizeof(DWORD), 10);
5603 if (di_result.scale > DEC_MAX_SCALE)
5605 WARN("result underflowed, setting to 0\n");
5606 di_result.scale = 0;
5610 VARIANT_DecFromDI(&di_result, pDecOut);
5615 /************************************************************************
5616 * VarDecSub (OLEAUT32.181)
5618 * Subtract one DECIMAL from another.
5621 * pDecLeft [I] Source
5622 * pDecRight [I] DECIMAL to subtract from pDecLeft
5623 * pDecOut [O] Destination
5626 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5628 HRESULT WINAPI VarDecSub(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5632 /* Implement as addition of the negative */
5633 VarDecNeg(pDecRight, &decRight);
5634 return VarDecAdd(pDecLeft, &decRight, pDecOut);
5637 /************************************************************************
5638 * VarDecAbs (OLEAUT32.182)
5640 * Convert a DECIMAL into its absolute value.
5644 * pDecOut [O] Destination
5647 * S_OK. This function does not fail.
5649 HRESULT WINAPI VarDecAbs(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5652 DEC_SIGN(pDecOut) &= ~DECIMAL_NEG;
5656 /************************************************************************
5657 * VarDecFix (OLEAUT32.187)
5659 * Return the integer portion of a DECIMAL.
5663 * pDecOut [O] Destination
5667 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5670 * - The difference between this function and VarDecInt() is that VarDecInt() rounds
5671 * negative numbers away from 0, while this function rounds them towards zero.
5673 HRESULT WINAPI VarDecFix(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5678 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5679 return E_INVALIDARG;
5681 if (!DEC_SCALE(pDecIn))
5683 *pDecOut = *pDecIn; /* Already an integer */
5687 hr = VarR8FromDec(pDecIn, &dbl);
5688 if (SUCCEEDED(hr)) {
5689 LONGLONG rounded = dbl;
5691 hr = VarDecFromI8(rounded, pDecOut);
5696 /************************************************************************
5697 * VarDecInt (OLEAUT32.188)
5699 * Return the integer portion of a DECIMAL.
5703 * pDecOut [O] Destination
5707 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5710 * - The difference between this function and VarDecFix() is that VarDecFix() rounds
5711 * negative numbers towards 0, while this function rounds them away from zero.
5713 HRESULT WINAPI VarDecInt(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5718 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5719 return E_INVALIDARG;
5721 if (!(DEC_SIGN(pDecIn) & DECIMAL_NEG) || !DEC_SCALE(pDecIn))
5722 return VarDecFix(pDecIn, pDecOut); /* The same, if +ve or no fractionals */
5724 hr = VarR8FromDec(pDecIn, &dbl);
5725 if (SUCCEEDED(hr)) {
5726 LONGLONG rounded = dbl >= 0.0 ? dbl + 0.5 : dbl - 0.5;
5728 hr = VarDecFromI8(rounded, pDecOut);
5733 /************************************************************************
5734 * VarDecNeg (OLEAUT32.189)
5736 * Change the sign of a DECIMAL.
5740 * pDecOut [O] Destination
5743 * S_OK. This function does not fail.
5745 HRESULT WINAPI VarDecNeg(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5748 DEC_SIGN(pDecOut) ^= DECIMAL_NEG;
5752 /************************************************************************
5753 * VarDecRound (OLEAUT32.203)
5755 * Change the precision of a DECIMAL.
5759 * cDecimals [I] New number of decimals to keep
5760 * pDecOut [O] Destination
5763 * Success: S_OK. pDecOut contains the rounded value.
5764 * Failure: E_INVALIDARG if any argument is invalid.
5766 HRESULT WINAPI VarDecRound(const DECIMAL* pDecIn, int cDecimals, DECIMAL* pDecOut)
5768 if (cDecimals < 0 || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG) || DEC_SCALE(pDecIn) > DEC_MAX_SCALE)
5769 return E_INVALIDARG;
5771 if (cDecimals >= DEC_SCALE(pDecIn))
5773 *pDecOut = *pDecIn; /* More precision than we have */
5777 FIXME("semi-stub!\n");
5779 return DISP_E_OVERFLOW;
5782 /************************************************************************
5783 * VarDecCmp (OLEAUT32.204)
5785 * Compare two DECIMAL values.
5788 * pDecLeft [I] Source
5789 * pDecRight [I] Value to compare
5792 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pDecLeft
5793 * is less than, equal to or greater than pDecRight respectively.
5794 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5796 HRESULT WINAPI VarDecCmp(const DECIMAL* pDecLeft, const DECIMAL* pDecRight)
5801 if (!pDecLeft || !pDecRight)
5804 if ((!(DEC_SIGN(pDecLeft) & DECIMAL_NEG)) && (DEC_SIGN(pDecRight) & DECIMAL_NEG) &&
5805 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5807 else if ((DEC_SIGN(pDecLeft) & DECIMAL_NEG) && (!(DEC_SIGN(pDecRight) & DECIMAL_NEG)) &&
5808 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5811 /* Subtract right from left, and compare the result to 0 */
5812 hRet = VarDecSub(pDecLeft, pDecRight, &result);
5814 if (SUCCEEDED(hRet))
5816 int non_zero = DEC_HI32(&result) | DEC_MID32(&result) | DEC_LO32(&result);
5818 if ((DEC_SIGN(&result) & DECIMAL_NEG) && non_zero)
5819 hRet = (HRESULT)VARCMP_LT;
5821 hRet = (HRESULT)VARCMP_GT;
5823 hRet = (HRESULT)VARCMP_EQ;
5828 /************************************************************************
5829 * VarDecCmpR8 (OLEAUT32.298)
5831 * Compare a DECIMAL to a double
5834 * pDecLeft [I] DECIMAL Source
5835 * dblRight [I] double to compare to pDecLeft
5838 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight
5839 * is less than, equal to or greater than pDecLeft respectively.
5840 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5842 HRESULT WINAPI VarDecCmpR8(const DECIMAL* pDecLeft, double dblRight)
5847 hRet = VarDecFromR8(dblRight, &decRight);
5849 if (SUCCEEDED(hRet))
5850 hRet = VarDecCmp(pDecLeft, &decRight);
5858 /************************************************************************
5859 * VarBoolFromUI1 (OLEAUT32.118)
5861 * Convert a VT_UI1 to a VT_BOOL.
5865 * pBoolOut [O] Destination
5870 HRESULT WINAPI VarBoolFromUI1(BYTE bIn, VARIANT_BOOL *pBoolOut)
5872 *pBoolOut = bIn ? VARIANT_TRUE : VARIANT_FALSE;
5876 /************************************************************************
5877 * VarBoolFromI2 (OLEAUT32.119)
5879 * Convert a VT_I2 to a VT_BOOL.
5883 * pBoolOut [O] Destination
5888 HRESULT WINAPI VarBoolFromI2(SHORT sIn, VARIANT_BOOL *pBoolOut)
5890 *pBoolOut = sIn ? VARIANT_TRUE : VARIANT_FALSE;
5894 /************************************************************************
5895 * VarBoolFromI4 (OLEAUT32.120)
5897 * Convert a VT_I4 to a VT_BOOL.
5901 * pBoolOut [O] Destination
5906 HRESULT WINAPI VarBoolFromI4(LONG lIn, VARIANT_BOOL *pBoolOut)
5908 *pBoolOut = lIn ? VARIANT_TRUE : VARIANT_FALSE;
5912 /************************************************************************
5913 * VarBoolFromR4 (OLEAUT32.121)
5915 * Convert a VT_R4 to a VT_BOOL.
5919 * pBoolOut [O] Destination
5924 HRESULT WINAPI VarBoolFromR4(FLOAT fltIn, VARIANT_BOOL *pBoolOut)
5926 *pBoolOut = fltIn ? VARIANT_TRUE : VARIANT_FALSE;
5930 /************************************************************************
5931 * VarBoolFromR8 (OLEAUT32.122)
5933 * Convert a VT_R8 to a VT_BOOL.
5937 * pBoolOut [O] Destination
5942 HRESULT WINAPI VarBoolFromR8(double dblIn, VARIANT_BOOL *pBoolOut)
5944 *pBoolOut = dblIn ? VARIANT_TRUE : VARIANT_FALSE;
5948 /************************************************************************
5949 * VarBoolFromDate (OLEAUT32.123)
5951 * Convert a VT_DATE to a VT_BOOL.
5955 * pBoolOut [O] Destination
5960 HRESULT WINAPI VarBoolFromDate(DATE dateIn, VARIANT_BOOL *pBoolOut)
5962 *pBoolOut = dateIn ? VARIANT_TRUE : VARIANT_FALSE;
5966 /************************************************************************
5967 * VarBoolFromCy (OLEAUT32.124)
5969 * Convert a VT_CY to a VT_BOOL.
5973 * pBoolOut [O] Destination
5978 HRESULT WINAPI VarBoolFromCy(CY cyIn, VARIANT_BOOL *pBoolOut)
5980 *pBoolOut = cyIn.int64 ? VARIANT_TRUE : VARIANT_FALSE;
5984 /************************************************************************
5985 * VARIANT_GetLocalisedText [internal]
5987 * Get a localized string from the resources
5990 BOOL VARIANT_GetLocalisedText(LANGID langId, DWORD dwId, WCHAR *lpszDest)
5994 hrsrc = FindResourceExW( hProxyDll, (LPWSTR)RT_STRING,
5995 MAKEINTRESOURCEW((dwId >> 4) + 1), langId );
5998 HGLOBAL hmem = LoadResource( hProxyDll, hrsrc );
6005 p = LockResource( hmem );
6006 for (i = 0; i < (dwId & 0x0f); i++) p += *p + 1;
6008 memcpy( lpszDest, p + 1, *p * sizeof(WCHAR) );
6009 lpszDest[*p] = '\0';
6010 TRACE("got %s for LANGID %08x\n", debugstr_w(lpszDest), langId);
6017 /************************************************************************
6018 * VarBoolFromStr (OLEAUT32.125)
6020 * Convert a VT_BSTR to a VT_BOOL.
6024 * lcid [I] LCID for the conversion
6025 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6026 * pBoolOut [O] Destination
6030 * Failure: E_INVALIDARG, if pBoolOut is invalid.
6031 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6034 * - strIn will be recognised if it contains "#TRUE#" or "#FALSE#". Additionally,
6035 * it may contain (in any case mapping) the text "true" or "false".
6036 * - If dwFlags includes VAR_LOCALBOOL, then the text may also match the
6037 * localised text of "True" or "False" in the language specified by lcid.
6038 * - If none of these matches occur, the string is treated as a numeric string
6039 * and the boolean pBoolOut will be set according to whether the number is zero
6040 * or not. The dwFlags parameter is passed to VarR8FromStr() for this conversion.
6041 * - If the text is not numeric and does not match any of the above, then
6042 * DISP_E_TYPEMISMATCH is returned.
6044 HRESULT WINAPI VarBoolFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, VARIANT_BOOL *pBoolOut)
6046 /* Any VB/VBA programmers out there should recognise these strings... */
6047 static const WCHAR szFalse[] = { '#','F','A','L','S','E','#','\0' };
6048 static const WCHAR szTrue[] = { '#','T','R','U','E','#','\0' };
6050 LANGID langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6051 HRESULT hRes = S_OK;
6053 if (!strIn || !pBoolOut)
6054 return DISP_E_TYPEMISMATCH;
6056 /* Check if we should be comparing against localised text */
6057 if (dwFlags & VAR_LOCALBOOL)
6059 /* Convert our LCID into a usable value */
6060 lcid = ConvertDefaultLocale(lcid);
6062 langId = LANGIDFROMLCID(lcid);
6064 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6065 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6067 /* Note: Native oleaut32 always copies strIn and maps halfwidth characters.
6068 * I don't think this is needed unless any of the localised text strings
6069 * contain characters that can be so mapped. In the event that this is
6070 * true for a given language (possibly some Asian languages), then strIn
6071 * should be mapped here _only_ if langId is an Id for which this can occur.
6075 /* Note that if we are not comparing against localised strings, langId
6076 * will have its default value of LANG_ENGLISH. This allows us to mimic
6077 * the native behaviour of always checking against English strings even
6078 * after we've checked for localised ones.
6080 VarBoolFromStr_CheckLocalised:
6081 if (VARIANT_GetLocalisedText(langId, IDS_TRUE, szBuff))
6083 /* Compare against localised strings, ignoring case */
6084 if (!strcmpiW(strIn, szBuff))
6086 *pBoolOut = VARIANT_TRUE; /* Matched localised 'true' text */
6089 VARIANT_GetLocalisedText(langId, IDS_FALSE, szBuff);
6090 if (!strcmpiW(strIn, szBuff))
6092 *pBoolOut = VARIANT_FALSE; /* Matched localised 'false' text */
6097 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6099 /* We have checked the localised text, now check English */
6100 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6101 goto VarBoolFromStr_CheckLocalised;
6104 /* All checks against localised text have failed, try #TRUE#/#FALSE# */
6105 if (!strcmpW(strIn, szFalse))
6106 *pBoolOut = VARIANT_FALSE;
6107 else if (!strcmpW(strIn, szTrue))
6108 *pBoolOut = VARIANT_TRUE;
6113 /* If this string is a number, convert it as one */
6114 hRes = VarR8FromStr(strIn, lcid, dwFlags, &d);
6115 if (SUCCEEDED(hRes)) *pBoolOut = d ? VARIANT_TRUE : VARIANT_FALSE;
6120 /************************************************************************
6121 * VarBoolFromDisp (OLEAUT32.126)
6123 * Convert a VT_DISPATCH to a VT_BOOL.
6126 * pdispIn [I] Source
6127 * lcid [I] LCID for conversion
6128 * pBoolOut [O] Destination
6132 * Failure: E_INVALIDARG, if the source value is invalid
6133 * DISP_E_OVERFLOW, if the value will not fit in the destination
6134 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6136 HRESULT WINAPI VarBoolFromDisp(IDispatch* pdispIn, LCID lcid, VARIANT_BOOL *pBoolOut)
6138 return VARIANT_FromDisp(pdispIn, lcid, pBoolOut, VT_BOOL, 0);
6141 /************************************************************************
6142 * VarBoolFromI1 (OLEAUT32.233)
6144 * Convert a VT_I1 to a VT_BOOL.
6148 * pBoolOut [O] Destination
6153 HRESULT WINAPI VarBoolFromI1(signed char cIn, VARIANT_BOOL *pBoolOut)
6155 *pBoolOut = cIn ? VARIANT_TRUE : VARIANT_FALSE;
6159 /************************************************************************
6160 * VarBoolFromUI2 (OLEAUT32.234)
6162 * Convert a VT_UI2 to a VT_BOOL.
6166 * pBoolOut [O] Destination
6171 HRESULT WINAPI VarBoolFromUI2(USHORT usIn, VARIANT_BOOL *pBoolOut)
6173 *pBoolOut = usIn ? VARIANT_TRUE : VARIANT_FALSE;
6177 /************************************************************************
6178 * VarBoolFromUI4 (OLEAUT32.235)
6180 * Convert a VT_UI4 to a VT_BOOL.
6184 * pBoolOut [O] Destination
6189 HRESULT WINAPI VarBoolFromUI4(ULONG ulIn, VARIANT_BOOL *pBoolOut)
6191 *pBoolOut = ulIn ? VARIANT_TRUE : VARIANT_FALSE;
6195 /************************************************************************
6196 * VarBoolFromDec (OLEAUT32.236)
6198 * Convert a VT_DECIMAL to a VT_BOOL.
6202 * pBoolOut [O] Destination
6206 * Failure: E_INVALIDARG, if pDecIn is invalid.
6208 HRESULT WINAPI VarBoolFromDec(DECIMAL* pDecIn, VARIANT_BOOL *pBoolOut)
6210 if (DEC_SCALE(pDecIn) > DEC_MAX_SCALE || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG))
6211 return E_INVALIDARG;
6213 if (DEC_HI32(pDecIn) || DEC_MID32(pDecIn) || DEC_LO32(pDecIn))
6214 *pBoolOut = VARIANT_TRUE;
6216 *pBoolOut = VARIANT_FALSE;
6220 /************************************************************************
6221 * VarBoolFromI8 (OLEAUT32.370)
6223 * Convert a VT_I8 to a VT_BOOL.
6227 * pBoolOut [O] Destination
6232 HRESULT WINAPI VarBoolFromI8(LONG64 llIn, VARIANT_BOOL *pBoolOut)
6234 *pBoolOut = llIn ? VARIANT_TRUE : VARIANT_FALSE;
6238 /************************************************************************
6239 * VarBoolFromUI8 (OLEAUT32.371)
6241 * Convert a VT_UI8 to a VT_BOOL.
6245 * pBoolOut [O] Destination
6250 HRESULT WINAPI VarBoolFromUI8(ULONG64 ullIn, VARIANT_BOOL *pBoolOut)
6252 *pBoolOut = ullIn ? VARIANT_TRUE : VARIANT_FALSE;
6259 /* Write a number from a UI8 and sign */
6260 static WCHAR *VARIANT_WriteNumber(ULONG64 ulVal, WCHAR* szOut)
6264 WCHAR ulNextDigit = ulVal % 10;
6266 *szOut-- = '0' + ulNextDigit;
6267 ulVal = (ulVal - ulNextDigit) / 10;
6274 /* Create a (possibly localised) BSTR from a UI8 and sign */
6275 static BSTR VARIANT_MakeBstr(LCID lcid, DWORD dwFlags, WCHAR *szOut)
6277 WCHAR szConverted[256];
6279 if (dwFlags & VAR_NEGATIVE)
6282 if (dwFlags & LOCALE_USE_NLS)
6284 /* Format the number for the locale */
6285 szConverted[0] = '\0';
6286 GetNumberFormatW(lcid,
6287 dwFlags & LOCALE_NOUSEROVERRIDE,
6288 szOut, NULL, szConverted, sizeof(szConverted)/sizeof(WCHAR));
6289 szOut = szConverted;
6291 return SysAllocStringByteLen((LPCSTR)szOut, strlenW(szOut) * sizeof(WCHAR));
6294 /* Create a (possibly localised) BSTR from a UI8 and sign */
6295 static HRESULT VARIANT_BstrFromUInt(ULONG64 ulVal, LCID lcid, DWORD dwFlags, BSTR *pbstrOut)
6297 WCHAR szBuff[64], *szOut = szBuff + sizeof(szBuff)/sizeof(WCHAR) - 1;
6300 return E_INVALIDARG;
6302 /* Create the basic number string */
6304 szOut = VARIANT_WriteNumber(ulVal, szOut);
6306 *pbstrOut = VARIANT_MakeBstr(lcid, dwFlags, szOut);
6307 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6308 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6311 /******************************************************************************
6312 * VarBstrFromUI1 (OLEAUT32.108)
6314 * Convert a VT_UI1 to a VT_BSTR.
6318 * lcid [I] LCID for the conversion
6319 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6320 * pbstrOut [O] Destination
6324 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6325 * E_OUTOFMEMORY, if memory allocation fails.
6327 HRESULT WINAPI VarBstrFromUI1(BYTE bIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6329 return VARIANT_BstrFromUInt(bIn, lcid, dwFlags, pbstrOut);
6332 /******************************************************************************
6333 * VarBstrFromI2 (OLEAUT32.109)
6335 * Convert a VT_I2 to a VT_BSTR.
6339 * lcid [I] LCID for the conversion
6340 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6341 * pbstrOut [O] Destination
6345 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6346 * E_OUTOFMEMORY, if memory allocation fails.
6348 HRESULT WINAPI VarBstrFromI2(short sIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6355 dwFlags |= VAR_NEGATIVE;
6357 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6360 /******************************************************************************
6361 * VarBstrFromI4 (OLEAUT32.110)
6363 * Convert a VT_I4 to a VT_BSTR.
6367 * lcid [I] LCID for the conversion
6368 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6369 * pbstrOut [O] Destination
6373 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6374 * E_OUTOFMEMORY, if memory allocation fails.
6376 HRESULT WINAPI VarBstrFromI4(LONG lIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6383 dwFlags |= VAR_NEGATIVE;
6385 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6388 static BSTR VARIANT_BstrReplaceDecimal(const WCHAR * buff, LCID lcid, ULONG dwFlags)
6391 WCHAR lpDecimalSep[16];
6393 /* Native oleaut32 uses the locale-specific decimal separator even in the
6394 absence of the LOCALE_USE_NLS flag. For example, the Spanish/Latin
6395 American locales will see "one thousand and one tenth" as "1000,1"
6396 instead of "1000.1" (notice the comma). The following code checks for
6397 the need to replace the decimal separator, and if so, will prepare an
6398 appropriate NUMBERFMTW structure to do the job via GetNumberFormatW().
6400 GetLocaleInfoW(lcid, LOCALE_SDECIMAL | (dwFlags & LOCALE_NOUSEROVERRIDE),
6401 lpDecimalSep, sizeof(lpDecimalSep) / sizeof(WCHAR));
6402 if (lpDecimalSep[0] == '.' && lpDecimalSep[1] == '\0')
6404 /* locale is compatible with English - return original string */
6405 bstrOut = SysAllocString(buff);
6411 WCHAR empty[] = {'\0'};
6412 NUMBERFMTW minFormat;
6414 minFormat.NumDigits = 0;
6415 minFormat.LeadingZero = 0;
6416 minFormat.Grouping = 0;
6417 minFormat.lpDecimalSep = lpDecimalSep;
6418 minFormat.lpThousandSep = empty;
6419 minFormat.NegativeOrder = 1; /* NLS_NEG_LEFT */
6421 /* count number of decimal digits in string */
6422 p = strchrW( buff, '.' );
6423 if (p) minFormat.NumDigits = strlenW(p + 1);
6426 if (!GetNumberFormatW(lcid, 0, buff, &minFormat, numbuff, sizeof(numbuff) / sizeof(WCHAR)))
6428 WARN("GetNumberFormatW() failed, returning raw number string instead\n");
6429 bstrOut = SysAllocString(buff);
6433 TRACE("created minimal NLS string %s\n", debugstr_w(numbuff));
6434 bstrOut = SysAllocString(numbuff);
6440 static HRESULT VARIANT_BstrFromReal(DOUBLE dblIn, LCID lcid, ULONG dwFlags,
6441 BSTR* pbstrOut, LPCWSTR lpszFormat)
6446 return E_INVALIDARG;
6448 sprintfW( buff, lpszFormat, dblIn );
6450 /* Negative zeroes are disallowed (some applications depend on this).
6451 If buff starts with a minus, and then nothing follows but zeroes
6452 and/or a period, it is a negative zero and is replaced with a
6453 canonical zero. This duplicates native oleaut32 behavior.
6457 const WCHAR szAccept[] = {'0', '.', '\0'};
6458 if (strlenW(buff + 1) == strspnW(buff + 1, szAccept))
6459 { buff[0] = '0'; buff[1] = '\0'; }
6462 TRACE("created string %s\n", debugstr_w(buff));
6463 if (dwFlags & LOCALE_USE_NLS)
6467 /* Format the number for the locale */
6469 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6470 buff, NULL, numbuff, sizeof(numbuff) / sizeof(WCHAR));
6471 TRACE("created NLS string %s\n", debugstr_w(numbuff));
6472 *pbstrOut = SysAllocString(numbuff);
6476 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
6478 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6481 /******************************************************************************
6482 * VarBstrFromR4 (OLEAUT32.111)
6484 * Convert a VT_R4 to a VT_BSTR.
6488 * lcid [I] LCID for the conversion
6489 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6490 * pbstrOut [O] Destination
6494 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6495 * E_OUTOFMEMORY, if memory allocation fails.
6497 HRESULT WINAPI VarBstrFromR4(FLOAT fltIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6499 return VARIANT_BstrFromReal(fltIn, lcid, dwFlags, pbstrOut, szFloatFormatW);
6502 /******************************************************************************
6503 * VarBstrFromR8 (OLEAUT32.112)
6505 * Convert a VT_R8 to a VT_BSTR.
6509 * lcid [I] LCID for the conversion
6510 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6511 * pbstrOut [O] Destination
6515 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6516 * E_OUTOFMEMORY, if memory allocation fails.
6518 HRESULT WINAPI VarBstrFromR8(double dblIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6520 return VARIANT_BstrFromReal(dblIn, lcid, dwFlags, pbstrOut, szDoubleFormatW);
6523 /******************************************************************************
6524 * VarBstrFromCy [OLEAUT32.113]
6526 * Convert a VT_CY to a VT_BSTR.
6530 * lcid [I] LCID for the conversion
6531 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6532 * pbstrOut [O] Destination
6536 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6537 * E_OUTOFMEMORY, if memory allocation fails.
6539 HRESULT WINAPI VarBstrFromCy(CY cyIn, LCID lcid, ULONG dwFlags, BSTR *pbstrOut)
6545 return E_INVALIDARG;
6549 decVal.bitsnum[0] = cyIn.s.Lo;
6550 decVal.bitsnum[1] = cyIn.s.Hi;
6551 if (cyIn.s.Hi & 0x80000000UL) {
6554 /* Negative number! */
6556 decVal.bitsnum[0] = ~decVal.bitsnum[0];
6557 decVal.bitsnum[1] = ~decVal.bitsnum[1];
6558 VARIANT_int_add(decVal.bitsnum, 3, &one, 1);
6560 decVal.bitsnum[2] = 0;
6561 VARIANT_DI_tostringW(&decVal, buff, sizeof(buff)/sizeof(buff[0]));
6563 if (dwFlags & LOCALE_USE_NLS)
6567 /* Format the currency for the locale */
6569 GetCurrencyFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6570 buff, NULL, cybuff, sizeof(cybuff) / sizeof(WCHAR));
6571 *pbstrOut = SysAllocString(cybuff);
6574 *pbstrOut = VARIANT_BstrReplaceDecimal(buff,lcid,dwFlags);
6576 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6579 /******************************************************************************
6580 * VarBstrFromDate [OLEAUT32.114]
6582 * Convert a VT_DATE to a VT_BSTR.
6586 * lcid [I] LCID for the conversion
6587 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6588 * pbstrOut [O] Destination
6592 * Failure: E_INVALIDARG, if pbstrOut or dateIn is invalid.
6593 * E_OUTOFMEMORY, if memory allocation fails.
6595 HRESULT WINAPI VarBstrFromDate(DATE dateIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6598 DWORD dwFormatFlags = dwFlags & LOCALE_NOUSEROVERRIDE;
6599 WCHAR date[128], *time;
6601 TRACE("(%g,0x%08x,0x%08x,%p)\n", dateIn, lcid, dwFlags, pbstrOut);
6603 if (!pbstrOut || !VariantTimeToSystemTime(dateIn, &st))
6604 return E_INVALIDARG;
6608 if (dwFlags & VAR_CALENDAR_THAI)
6609 st.wYear += 553; /* Use the Thai buddhist calendar year */
6610 else if (dwFlags & (VAR_CALENDAR_HIJRI|VAR_CALENDAR_GREGORIAN))
6611 FIXME("VAR_CALENDAR_HIJRI/VAR_CALENDAR_GREGORIAN not handled\n");
6613 if (dwFlags & LOCALE_USE_NLS)
6614 dwFlags &= ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY);
6617 double whole = dateIn < 0 ? ceil(dateIn) : floor(dateIn);
6618 double partial = dateIn - whole;
6621 dwFlags |= VAR_TIMEVALUEONLY;
6622 else if (partial < 1e-12)
6623 dwFlags |= VAR_DATEVALUEONLY;
6626 if (dwFlags & VAR_TIMEVALUEONLY)
6629 if (!GetDateFormatW(lcid, dwFormatFlags|DATE_SHORTDATE, &st, NULL, date,
6630 sizeof(date)/sizeof(WCHAR)))
6631 return E_INVALIDARG;
6633 if (!(dwFlags & VAR_DATEVALUEONLY))
6635 time = date + strlenW(date);
6638 if (!GetTimeFormatW(lcid, dwFormatFlags, &st, NULL, time,
6639 sizeof(date)/sizeof(WCHAR)-(time-date)))
6640 return E_INVALIDARG;
6643 *pbstrOut = SysAllocString(date);
6645 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6646 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6649 /******************************************************************************
6650 * VarBstrFromBool (OLEAUT32.116)
6652 * Convert a VT_BOOL to a VT_BSTR.
6656 * lcid [I] LCID for the conversion
6657 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6658 * pbstrOut [O] Destination
6662 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6663 * E_OUTOFMEMORY, if memory allocation fails.
6666 * If dwFlags includes VARIANT_LOCALBOOL, this function converts to the
6667 * localised text of "True" or "False". To convert a bool into a
6668 * numeric string of "0" or "-1", use VariantChangeTypeTypeEx().
6670 HRESULT WINAPI VarBstrFromBool(VARIANT_BOOL boolIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6673 DWORD dwResId = IDS_TRUE;
6676 TRACE("%d,0x%08x,0x%08x,%p\n", boolIn, lcid, dwFlags, pbstrOut);
6679 return E_INVALIDARG;
6681 /* VAR_BOOLONOFF and VAR_BOOLYESNO are internal flags used
6682 * for variant formatting */
6683 switch (dwFlags & (VAR_LOCALBOOL|VAR_BOOLONOFF|VAR_BOOLYESNO))
6694 lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT),SORT_DEFAULT);
6697 lcid = ConvertDefaultLocale(lcid);
6698 langId = LANGIDFROMLCID(lcid);
6699 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6700 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6702 if (boolIn == VARIANT_FALSE)
6703 dwResId++; /* Use negative form */
6705 VarBstrFromBool_GetLocalised:
6706 if (VARIANT_GetLocalisedText(langId, dwResId, szBuff))
6708 *pbstrOut = SysAllocString(szBuff);
6709 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6712 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6714 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6715 goto VarBstrFromBool_GetLocalised;
6718 /* Should never get here */
6719 WARN("Failed to load bool text!\n");
6720 return E_OUTOFMEMORY;
6723 /******************************************************************************
6724 * VarBstrFromI1 (OLEAUT32.229)
6726 * Convert a VT_I1 to a VT_BSTR.
6730 * lcid [I] LCID for the conversion
6731 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6732 * pbstrOut [O] Destination
6736 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6737 * E_OUTOFMEMORY, if memory allocation fails.
6739 HRESULT WINAPI VarBstrFromI1(signed char cIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6746 dwFlags |= VAR_NEGATIVE;
6748 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6751 /******************************************************************************
6752 * VarBstrFromUI2 (OLEAUT32.230)
6754 * Convert a VT_UI2 to a VT_BSTR.
6758 * lcid [I] LCID for the conversion
6759 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6760 * pbstrOut [O] Destination
6764 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6765 * E_OUTOFMEMORY, if memory allocation fails.
6767 HRESULT WINAPI VarBstrFromUI2(USHORT usIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6769 return VARIANT_BstrFromUInt(usIn, lcid, dwFlags, pbstrOut);
6772 /******************************************************************************
6773 * VarBstrFromUI4 (OLEAUT32.231)
6775 * Convert a VT_UI4 to a VT_BSTR.
6779 * lcid [I] LCID for the conversion
6780 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6781 * pbstrOut [O] Destination
6785 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6786 * E_OUTOFMEMORY, if memory allocation fails.
6788 HRESULT WINAPI VarBstrFromUI4(ULONG ulIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6790 return VARIANT_BstrFromUInt(ulIn, lcid, dwFlags, pbstrOut);
6793 /******************************************************************************
6794 * VarBstrFromDec (OLEAUT32.232)
6796 * Convert a VT_DECIMAL to a VT_BSTR.
6800 * lcid [I] LCID for the conversion
6801 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6802 * pbstrOut [O] Destination
6806 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6807 * E_OUTOFMEMORY, if memory allocation fails.
6809 HRESULT WINAPI VarBstrFromDec(DECIMAL* pDecIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6815 return E_INVALIDARG;
6817 VARIANT_DIFromDec(pDecIn, &temp);
6818 VARIANT_DI_tostringW(&temp, buff, 256);
6820 if (dwFlags & LOCALE_USE_NLS)
6824 /* Format the number for the locale */
6826 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6827 buff, NULL, numbuff, sizeof(numbuff) / sizeof(WCHAR));
6828 TRACE("created NLS string %s\n", debugstr_w(numbuff));
6829 *pbstrOut = SysAllocString(numbuff);
6833 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
6836 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6837 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6840 /************************************************************************
6841 * VarBstrFromI8 (OLEAUT32.370)
6843 * Convert a VT_I8 to a VT_BSTR.
6847 * lcid [I] LCID for the conversion
6848 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6849 * pbstrOut [O] Destination
6853 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6854 * E_OUTOFMEMORY, if memory allocation fails.
6856 HRESULT WINAPI VarBstrFromI8(LONG64 llIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6858 ULONG64 ul64 = llIn;
6863 dwFlags |= VAR_NEGATIVE;
6865 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6868 /************************************************************************
6869 * VarBstrFromUI8 (OLEAUT32.371)
6871 * Convert a VT_UI8 to a VT_BSTR.
6875 * lcid [I] LCID for the conversion
6876 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6877 * pbstrOut [O] Destination
6881 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6882 * E_OUTOFMEMORY, if memory allocation fails.
6884 HRESULT WINAPI VarBstrFromUI8(ULONG64 ullIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6886 return VARIANT_BstrFromUInt(ullIn, lcid, dwFlags, pbstrOut);
6889 /************************************************************************
6890 * VarBstrFromDisp (OLEAUT32.115)
6892 * Convert a VT_DISPATCH to a BSTR.
6895 * pdispIn [I] Source
6896 * lcid [I] LCID for conversion
6897 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6898 * pbstrOut [O] Destination
6902 * Failure: E_INVALIDARG, if the source value is invalid
6903 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6905 HRESULT WINAPI VarBstrFromDisp(IDispatch* pdispIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6907 return VARIANT_FromDisp(pdispIn, lcid, pbstrOut, VT_BSTR, dwFlags);
6910 /**********************************************************************
6911 * VarBstrCat (OLEAUT32.313)
6913 * Concatenate two BSTR values.
6916 * pbstrLeft [I] Source
6917 * pbstrRight [I] Value to concatenate
6918 * pbstrOut [O] Destination
6922 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6923 * E_OUTOFMEMORY, if memory allocation fails.
6925 HRESULT WINAPI VarBstrCat(BSTR pbstrLeft, BSTR pbstrRight, BSTR *pbstrOut)
6927 unsigned int lenLeft, lenRight;
6930 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
6931 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), pbstrOut);
6934 return E_INVALIDARG;
6936 /* use byte length here to properly handle ansi-allocated BSTRs */
6937 lenLeft = pbstrLeft ? SysStringByteLen(pbstrLeft) : 0;
6938 lenRight = pbstrRight ? SysStringByteLen(pbstrRight) : 0;
6940 *pbstrOut = SysAllocStringByteLen(NULL, lenLeft + lenRight);
6942 return E_OUTOFMEMORY;
6944 (*pbstrOut)[0] = '\0';
6947 memcpy(*pbstrOut, pbstrLeft, lenLeft);
6950 memcpy((CHAR*)*pbstrOut + lenLeft, pbstrRight, lenRight);
6952 TRACE("%s\n", debugstr_wn(*pbstrOut, SysStringLen(*pbstrOut)));
6956 /**********************************************************************
6957 * VarBstrCmp (OLEAUT32.314)
6959 * Compare two BSTR values.
6962 * pbstrLeft [I] Source
6963 * pbstrRight [I] Value to compare
6964 * lcid [I] LCID for the comparison
6965 * dwFlags [I] Flags to pass directly to CompareStringW().
6968 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pbstrLeft is less
6969 * than, equal to or greater than pbstrRight respectively.
6972 * VARCMP_NULL is NOT returned if either string is NULL unlike MSDN
6973 * states. A NULL BSTR pointer is equivalent to an empty string.
6974 * If LCID is equal to 0, a byte by byte comparison is performed.
6976 HRESULT WINAPI VarBstrCmp(BSTR pbstrLeft, BSTR pbstrRight, LCID lcid, DWORD dwFlags)
6981 TRACE("%s,%s,%d,%08x\n",
6982 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
6983 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), lcid, dwFlags);
6985 if (!pbstrLeft || !*pbstrLeft)
6987 if (pbstrRight && *pbstrRight)
6990 else if (!pbstrRight || !*pbstrRight)
6995 unsigned int lenLeft = SysStringByteLen(pbstrLeft);
6996 unsigned int lenRight = SysStringByteLen(pbstrRight);
6997 ret = memcmp(pbstrLeft, pbstrRight, min(lenLeft, lenRight));
7002 if (lenLeft < lenRight)
7004 if (lenLeft > lenRight)
7010 unsigned int lenLeft = SysStringLen(pbstrLeft);
7011 unsigned int lenRight = SysStringLen(pbstrRight);
7013 if (lenLeft == 0 || lenRight == 0)
7015 if (lenLeft == 0 && lenRight == 0) return VARCMP_EQ;
7016 return lenLeft < lenRight ? VARCMP_LT : VARCMP_GT;
7019 hres = CompareStringW(lcid, dwFlags, pbstrLeft, lenLeft,
7020 pbstrRight, lenRight) - 1;
7021 TRACE("%d\n", hres);
7030 /******************************************************************************
7031 * VarDateFromUI1 (OLEAUT32.88)
7033 * Convert a VT_UI1 to a VT_DATE.
7037 * pdateOut [O] Destination
7042 HRESULT WINAPI VarDateFromUI1(BYTE bIn, DATE* pdateOut)
7044 return VarR8FromUI1(bIn, pdateOut);
7047 /******************************************************************************
7048 * VarDateFromI2 (OLEAUT32.89)
7050 * Convert a VT_I2 to a VT_DATE.
7054 * pdateOut [O] Destination
7059 HRESULT WINAPI VarDateFromI2(short sIn, DATE* pdateOut)
7061 return VarR8FromI2(sIn, pdateOut);
7064 /******************************************************************************
7065 * VarDateFromI4 (OLEAUT32.90)
7067 * Convert a VT_I4 to a VT_DATE.
7071 * pdateOut [O] Destination
7076 HRESULT WINAPI VarDateFromI4(LONG lIn, DATE* pdateOut)
7078 return VarDateFromR8(lIn, pdateOut);
7081 /******************************************************************************
7082 * VarDateFromR4 (OLEAUT32.91)
7084 * Convert a VT_R4 to a VT_DATE.
7088 * pdateOut [O] Destination
7093 HRESULT WINAPI VarDateFromR4(FLOAT fltIn, DATE* pdateOut)
7095 return VarR8FromR4(fltIn, pdateOut);
7098 /******************************************************************************
7099 * VarDateFromR8 (OLEAUT32.92)
7101 * Convert a VT_R8 to a VT_DATE.
7105 * pdateOut [O] Destination
7110 HRESULT WINAPI VarDateFromR8(double dblIn, DATE* pdateOut)
7112 if (dblIn <= (DATE_MIN - 1.0) || dblIn >= (DATE_MAX + 1.0)) return DISP_E_OVERFLOW;
7113 *pdateOut = (DATE)dblIn;
7117 /**********************************************************************
7118 * VarDateFromDisp (OLEAUT32.95)
7120 * Convert a VT_DISPATCH to a VT_DATE.
7123 * pdispIn [I] Source
7124 * lcid [I] LCID for conversion
7125 * pdateOut [O] Destination
7129 * Failure: E_INVALIDARG, if the source value is invalid
7130 * DISP_E_OVERFLOW, if the value will not fit in the destination
7131 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7133 HRESULT WINAPI VarDateFromDisp(IDispatch* pdispIn, LCID lcid, DATE* pdateOut)
7135 return VARIANT_FromDisp(pdispIn, lcid, pdateOut, VT_DATE, 0);
7138 /******************************************************************************
7139 * VarDateFromBool (OLEAUT32.96)
7141 * Convert a VT_BOOL to a VT_DATE.
7145 * pdateOut [O] Destination
7150 HRESULT WINAPI VarDateFromBool(VARIANT_BOOL boolIn, DATE* pdateOut)
7152 return VarR8FromBool(boolIn, pdateOut);
7155 /**********************************************************************
7156 * VarDateFromCy (OLEAUT32.93)
7158 * Convert a VT_CY to a VT_DATE.
7162 * pdateOut [O] Destination
7167 HRESULT WINAPI VarDateFromCy(CY cyIn, DATE* pdateOut)
7169 return VarR8FromCy(cyIn, pdateOut);
7172 /* Date string parsing */
7173 #define DP_TIMESEP 0x01 /* Time separator ( _must_ remain 0x1, used as a bitmask) */
7174 #define DP_DATESEP 0x02 /* Date separator */
7175 #define DP_MONTH 0x04 /* Month name */
7176 #define DP_AM 0x08 /* AM */
7177 #define DP_PM 0x10 /* PM */
7179 typedef struct tagDATEPARSE
7181 DWORD dwCount; /* Number of fields found so far (maximum 6) */
7182 DWORD dwParseFlags; /* Global parse flags (DP_ Flags above) */
7183 DWORD dwFlags[6]; /* Flags for each field */
7184 DWORD dwValues[6]; /* Value of each field */
7187 #define TIMEFLAG(i) ((dp.dwFlags[i] & DP_TIMESEP) << i)
7189 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
7191 /* Determine if a day is valid in a given month of a given year */
7192 static BOOL VARIANT_IsValidMonthDay(DWORD day, DWORD month, DWORD year)
7194 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
7196 if (day && month && month < 13)
7198 if (day <= days[month] || (month == 2 && day == 29 && IsLeapYear(year)))
7204 /* Possible orders for 3 numbers making up a date */
7205 #define ORDER_MDY 0x01
7206 #define ORDER_YMD 0x02
7207 #define ORDER_YDM 0x04
7208 #define ORDER_DMY 0x08
7209 #define ORDER_MYD 0x10 /* Synthetic order, used only for funky 2 digit dates */
7211 /* Determine a date for a particular locale, from 3 numbers */
7212 static inline HRESULT VARIANT_MakeDate(DATEPARSE *dp, DWORD iDate,
7213 DWORD offset, SYSTEMTIME *st)
7215 DWORD dwAllOrders, dwTry, dwCount = 0, v1, v2, v3;
7219 v1 = 30; /* Default to (Variant) 0 date part */
7222 goto VARIANT_MakeDate_OK;
7225 v1 = dp->dwValues[offset + 0];
7226 v2 = dp->dwValues[offset + 1];
7227 if (dp->dwCount == 2)
7230 GetSystemTime(¤t);
7234 v3 = dp->dwValues[offset + 2];
7236 TRACE("(%d,%d,%d,%d,%d)\n", v1, v2, v3, iDate, offset);
7238 /* If one number must be a month (Because a month name was given), then only
7239 * consider orders with the month in that position.
7240 * If we took the current year as 'v3', then only allow a year in that position.
7242 if (dp->dwFlags[offset + 0] & DP_MONTH)
7244 dwAllOrders = ORDER_MDY;
7246 else if (dp->dwFlags[offset + 1] & DP_MONTH)
7248 dwAllOrders = ORDER_DMY;
7249 if (dp->dwCount > 2)
7250 dwAllOrders |= ORDER_YMD;
7252 else if (dp->dwCount > 2 && dp->dwFlags[offset + 2] & DP_MONTH)
7254 dwAllOrders = ORDER_YDM;
7258 dwAllOrders = ORDER_MDY|ORDER_DMY;
7259 if (dp->dwCount > 2)
7260 dwAllOrders |= (ORDER_YMD|ORDER_YDM);
7263 VARIANT_MakeDate_Start:
7264 TRACE("dwAllOrders is 0x%08x\n", dwAllOrders);
7272 /* First: Try the order given by iDate */
7275 case 0: dwTry = dwAllOrders & ORDER_MDY; break;
7276 case 1: dwTry = dwAllOrders & ORDER_DMY; break;
7277 default: dwTry = dwAllOrders & ORDER_YMD; break;
7280 else if (dwCount == 1)
7282 /* Second: Try all the orders compatible with iDate */
7285 case 0: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7286 case 1: dwTry = dwAllOrders & ~(ORDER_MDY|ORDER_YDM|ORDER_MYD); break;
7287 default: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7292 /* Finally: Try any remaining orders */
7293 dwTry = dwAllOrders;
7296 TRACE("Attempt %d, dwTry is 0x%08x\n", dwCount, dwTry);
7302 #define DATE_SWAP(x,y) do { dwTemp = x; x = y; y = dwTemp; } while (0)
7304 if (dwTry & ORDER_MDY)
7306 if (VARIANT_IsValidMonthDay(v2,v1,v3))
7309 goto VARIANT_MakeDate_OK;
7311 dwAllOrders &= ~ORDER_MDY;
7313 if (dwTry & ORDER_YMD)
7315 if (VARIANT_IsValidMonthDay(v3,v2,v1))
7318 goto VARIANT_MakeDate_OK;
7320 dwAllOrders &= ~ORDER_YMD;
7322 if (dwTry & ORDER_YDM)
7324 if (VARIANT_IsValidMonthDay(v2,v3,v1))
7328 goto VARIANT_MakeDate_OK;
7330 dwAllOrders &= ~ORDER_YDM;
7332 if (dwTry & ORDER_DMY)
7334 if (VARIANT_IsValidMonthDay(v1,v2,v3))
7335 goto VARIANT_MakeDate_OK;
7336 dwAllOrders &= ~ORDER_DMY;
7338 if (dwTry & ORDER_MYD)
7340 /* Only occurs if we are trying a 2 year date as M/Y not D/M */
7341 if (VARIANT_IsValidMonthDay(v3,v1,v2))
7345 goto VARIANT_MakeDate_OK;
7347 dwAllOrders &= ~ORDER_MYD;
7351 if (dp->dwCount == 2)
7353 /* We couldn't make a date as D/M or M/D, so try M/Y or Y/M */
7354 v3 = 1; /* 1st of the month */
7355 dwAllOrders = ORDER_YMD|ORDER_MYD;
7356 dp->dwCount = 0; /* Don't return to this code path again */
7358 goto VARIANT_MakeDate_Start;
7361 /* No valid dates were able to be constructed */
7362 return DISP_E_TYPEMISMATCH;
7364 VARIANT_MakeDate_OK:
7366 /* Check that the time part is ok */
7367 if (st->wHour > 23 || st->wMinute > 59 || st->wSecond > 59)
7368 return DISP_E_TYPEMISMATCH;
7370 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7371 if (st->wHour < 12 && (dp->dwParseFlags & DP_PM))
7373 else if (st->wHour == 12 && (dp->dwParseFlags & DP_AM))
7375 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7379 /* FIXME: For 2 digit dates, I'm not sure if 30 is hard coded or not. It may
7380 * be retrieved from:
7381 * HKCU\Control Panel\International\Calendars\TwoDigitYearMax
7382 * But Wine doesn't have/use that key as at the time of writing.
7384 st->wYear = v3 < 30 ? 2000 + v3 : v3 < 100 ? 1900 + v3 : v3;
7385 TRACE("Returning date %d/%d/%d\n", v1, v2, st->wYear);
7389 /******************************************************************************
7390 * VarDateFromStr [OLEAUT32.94]
7392 * Convert a VT_BSTR to at VT_DATE.
7395 * strIn [I] String to convert
7396 * lcid [I] Locale identifier for the conversion
7397 * dwFlags [I] Flags affecting the conversion (VAR_ flags from "oleauto.h")
7398 * pdateOut [O] Destination for the converted value
7401 * Success: S_OK. pdateOut contains the converted value.
7402 * FAILURE: An HRESULT error code indicating the problem.
7405 * Any date format that can be created using the date formats from lcid
7406 * (Either from kernel Nls functions, variant conversion or formatting) is a
7407 * valid input to this function. In addition, a few more esoteric formats are
7408 * also supported for compatibility with the native version. The date is
7409 * interpreted according to the date settings in the control panel, unless
7410 * the date is invalid in that format, in which the most compatible format
7411 * that produces a valid date will be used.
7413 HRESULT WINAPI VarDateFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DATE* pdateOut)
7415 static const USHORT ParseDateTokens[] =
7417 LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4,
7418 LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8,
7419 LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12,
7420 LOCALE_SMONTHNAME13,
7421 LOCALE_SABBREVMONTHNAME1, LOCALE_SABBREVMONTHNAME2, LOCALE_SABBREVMONTHNAME3,
7422 LOCALE_SABBREVMONTHNAME4, LOCALE_SABBREVMONTHNAME5, LOCALE_SABBREVMONTHNAME6,
7423 LOCALE_SABBREVMONTHNAME7, LOCALE_SABBREVMONTHNAME8, LOCALE_SABBREVMONTHNAME9,
7424 LOCALE_SABBREVMONTHNAME10, LOCALE_SABBREVMONTHNAME11, LOCALE_SABBREVMONTHNAME12,
7425 LOCALE_SABBREVMONTHNAME13,
7426 LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3, LOCALE_SDAYNAME4,
7427 LOCALE_SDAYNAME5, LOCALE_SDAYNAME6, LOCALE_SDAYNAME7,
7428 LOCALE_SABBREVDAYNAME1, LOCALE_SABBREVDAYNAME2, LOCALE_SABBREVDAYNAME3,
7429 LOCALE_SABBREVDAYNAME4, LOCALE_SABBREVDAYNAME5, LOCALE_SABBREVDAYNAME6,
7430 LOCALE_SABBREVDAYNAME7,
7431 LOCALE_S1159, LOCALE_S2359,
7434 static const BYTE ParseDateMonths[] =
7436 1,2,3,4,5,6,7,8,9,10,11,12,13,
7437 1,2,3,4,5,6,7,8,9,10,11,12,13
7440 BSTR tokens[sizeof(ParseDateTokens)/sizeof(ParseDateTokens[0])];
7442 DWORD dwDateSeps = 0, iDate = 0;
7443 HRESULT hRet = S_OK;
7445 if ((dwFlags & (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY)) ==
7446 (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
7447 return E_INVALIDARG;
7450 return DISP_E_TYPEMISMATCH;
7454 TRACE("(%s,0x%08x,0x%08x,%p)\n", debugstr_w(strIn), lcid, dwFlags, pdateOut);
7456 memset(&dp, 0, sizeof(dp));
7458 GetLocaleInfoW(lcid, LOCALE_IDATE|LOCALE_RETURN_NUMBER|(dwFlags & LOCALE_NOUSEROVERRIDE),
7459 (LPWSTR)&iDate, sizeof(iDate)/sizeof(WCHAR));
7460 TRACE("iDate is %d\n", iDate);
7462 /* Get the month/day/am/pm tokens for this locale */
7463 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7466 LCTYPE lctype = ParseDateTokens[i] | (dwFlags & LOCALE_NOUSEROVERRIDE);
7468 /* FIXME: Alternate calendars - should use GetCalendarInfo() and/or
7469 * GetAltMonthNames(). We should really cache these strings too.
7472 GetLocaleInfoW(lcid, lctype, buff, sizeof(buff)/sizeof(WCHAR));
7473 tokens[i] = SysAllocString(buff);
7474 TRACE("token %d is %s\n", i, debugstr_w(tokens[i]));
7477 /* Parse the string into our structure */
7480 if (dp.dwCount >= 6)
7483 if (isdigitW(*strIn))
7485 dp.dwValues[dp.dwCount] = strtoulW(strIn, &strIn, 10);
7489 else if (isalpha(*strIn))
7491 BOOL bFound = FALSE;
7493 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7495 DWORD dwLen = strlenW(tokens[i]);
7496 if (dwLen && !strncmpiW(strIn, tokens[i], dwLen))
7500 dp.dwValues[dp.dwCount] = ParseDateMonths[i];
7501 dp.dwFlags[dp.dwCount] |= (DP_MONTH|DP_DATESEP);
7504 else if (i > 39 && i < 42)
7506 if (!dp.dwCount || dp.dwParseFlags & (DP_AM|DP_PM))
7507 hRet = DISP_E_TYPEMISMATCH;
7510 dp.dwFlags[dp.dwCount - 1] |= (i == 40 ? DP_AM : DP_PM);
7511 dp.dwParseFlags |= (i == 40 ? DP_AM : DP_PM);
7514 strIn += (dwLen - 1);
7522 if ((*strIn == 'a' || *strIn == 'A' || *strIn == 'p' || *strIn == 'P') &&
7523 (dp.dwCount && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7525 /* Special case - 'a' and 'p' are recognised as short for am/pm */
7526 if (*strIn == 'a' || *strIn == 'A')
7528 dp.dwFlags[dp.dwCount - 1] |= DP_AM;
7529 dp.dwParseFlags |= DP_AM;
7533 dp.dwFlags[dp.dwCount - 1] |= DP_PM;
7534 dp.dwParseFlags |= DP_PM;
7540 TRACE("No matching token for %s\n", debugstr_w(strIn));
7541 hRet = DISP_E_TYPEMISMATCH;
7546 else if (*strIn == ':' || *strIn == '.')
7548 if (!dp.dwCount || !strIn[1])
7549 hRet = DISP_E_TYPEMISMATCH;
7551 if (tokens[42][0] == *strIn)
7555 hRet = DISP_E_TYPEMISMATCH;
7557 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7560 dp.dwFlags[dp.dwCount - 1] |= DP_TIMESEP;
7562 else if (*strIn == '-' || *strIn == '/')
7565 if (dwDateSeps > 2 || !dp.dwCount || !strIn[1])
7566 hRet = DISP_E_TYPEMISMATCH;
7568 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7570 else if (*strIn == ',' || isspaceW(*strIn))
7572 if (*strIn == ',' && !strIn[1])
7573 hRet = DISP_E_TYPEMISMATCH;
7577 hRet = DISP_E_TYPEMISMATCH;
7582 if (!dp.dwCount || dp.dwCount > 6 ||
7583 (dp.dwCount == 1 && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7584 hRet = DISP_E_TYPEMISMATCH;
7586 if (SUCCEEDED(hRet))
7589 DWORD dwOffset = 0; /* Start of date fields in dp.dwValues */
7591 st.wDayOfWeek = st.wHour = st.wMinute = st.wSecond = st.wMilliseconds = 0;
7593 /* Figure out which numbers correspond to which fields.
7595 * This switch statement works based on the fact that native interprets any
7596 * fields that are not joined with a time separator ('.' or ':') as date
7597 * fields. Thus we construct a value from 0-32 where each set bit indicates
7598 * a time field. This encapsulates the hundreds of permutations of 2-6 fields.
7599 * For valid permutations, we set dwOffset to point to the first date field
7600 * and shorten dp.dwCount by the number of time fields found. The real
7601 * magic here occurs in VARIANT_MakeDate() above, where we determine what
7602 * each date number must represent in the context of iDate.
7604 TRACE("0x%08x\n", TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4));
7606 switch (TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4))
7608 case 0x1: /* TT TTDD TTDDD */
7609 if (dp.dwCount > 3 &&
7610 ((dp.dwFlags[2] & (DP_AM|DP_PM)) || (dp.dwFlags[3] & (DP_AM|DP_PM)) ||
7611 (dp.dwFlags[4] & (DP_AM|DP_PM))))
7612 hRet = DISP_E_TYPEMISMATCH;
7613 else if (dp.dwCount != 2 && dp.dwCount != 4 && dp.dwCount != 5)
7614 hRet = DISP_E_TYPEMISMATCH;
7615 st.wHour = dp.dwValues[0];
7616 st.wMinute = dp.dwValues[1];
7621 case 0x3: /* TTT TTTDD TTTDDD */
7622 if (dp.dwCount > 4 &&
7623 ((dp.dwFlags[3] & (DP_AM|DP_PM)) || (dp.dwFlags[4] & (DP_AM|DP_PM)) ||
7624 (dp.dwFlags[5] & (DP_AM|DP_PM))))
7625 hRet = DISP_E_TYPEMISMATCH;
7626 else if (dp.dwCount != 3 && dp.dwCount != 5 && dp.dwCount != 6)
7627 hRet = DISP_E_TYPEMISMATCH;
7628 st.wHour = dp.dwValues[0];
7629 st.wMinute = dp.dwValues[1];
7630 st.wSecond = dp.dwValues[2];
7635 case 0x4: /* DDTT */
7636 if (dp.dwCount != 4 ||
7637 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7638 hRet = DISP_E_TYPEMISMATCH;
7640 st.wHour = dp.dwValues[2];
7641 st.wMinute = dp.dwValues[3];
7645 case 0x0: /* T DD DDD TDDD TDDD */
7646 if (dp.dwCount == 1 && (dp.dwParseFlags & (DP_AM|DP_PM)))
7648 st.wHour = dp.dwValues[0]; /* T */
7652 else if (dp.dwCount > 4 || (dp.dwCount < 3 && dp.dwParseFlags & (DP_AM|DP_PM)))
7654 hRet = DISP_E_TYPEMISMATCH;
7656 else if (dp.dwCount == 3)
7658 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDD */
7661 st.wHour = dp.dwValues[0];
7665 if (dp.dwFlags[2] & (DP_AM|DP_PM)) /* DDT */
7668 st.wHour = dp.dwValues[2];
7671 else if (dp.dwParseFlags & (DP_AM|DP_PM))
7672 hRet = DISP_E_TYPEMISMATCH;
7674 else if (dp.dwCount == 4)
7677 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDDD */
7679 st.wHour = dp.dwValues[0];
7682 else if (dp.dwFlags[3] & (DP_AM|DP_PM)) /* DDDT */
7684 st.wHour = dp.dwValues[3];
7687 hRet = DISP_E_TYPEMISMATCH;
7690 /* .. fall through .. */
7692 case 0x8: /* DDDTT */
7693 if ((dp.dwCount == 2 && (dp.dwParseFlags & (DP_AM|DP_PM))) ||
7694 (dp.dwCount == 5 && ((dp.dwFlags[0] & (DP_AM|DP_PM)) ||
7695 (dp.dwFlags[1] & (DP_AM|DP_PM)) || (dp.dwFlags[2] & (DP_AM|DP_PM)))) ||
7696 dp.dwCount == 4 || dp.dwCount == 6)
7697 hRet = DISP_E_TYPEMISMATCH;
7698 st.wHour = dp.dwValues[3];
7699 st.wMinute = dp.dwValues[4];
7700 if (dp.dwCount == 5)
7704 case 0xC: /* DDTTT */
7705 if (dp.dwCount != 5 ||
7706 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7707 hRet = DISP_E_TYPEMISMATCH;
7708 st.wHour = dp.dwValues[2];
7709 st.wMinute = dp.dwValues[3];
7710 st.wSecond = dp.dwValues[4];
7714 case 0x18: /* DDDTTT */
7715 if ((dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)) ||
7716 (dp.dwFlags[2] & (DP_AM|DP_PM)))
7717 hRet = DISP_E_TYPEMISMATCH;
7718 st.wHour = dp.dwValues[3];
7719 st.wMinute = dp.dwValues[4];
7720 st.wSecond = dp.dwValues[5];
7725 hRet = DISP_E_TYPEMISMATCH;
7729 if (SUCCEEDED(hRet))
7731 hRet = VARIANT_MakeDate(&dp, iDate, dwOffset, &st);
7733 if (dwFlags & VAR_TIMEVALUEONLY)
7739 else if (dwFlags & VAR_DATEVALUEONLY)
7740 st.wHour = st.wMinute = st.wSecond = 0;
7742 /* Finally, convert the value to a VT_DATE */
7743 if (SUCCEEDED(hRet))
7744 hRet = SystemTimeToVariantTime(&st, pdateOut) ? S_OK : DISP_E_TYPEMISMATCH;
7748 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7749 SysFreeString(tokens[i]);
7753 /******************************************************************************
7754 * VarDateFromI1 (OLEAUT32.221)
7756 * Convert a VT_I1 to a VT_DATE.
7760 * pdateOut [O] Destination
7765 HRESULT WINAPI VarDateFromI1(signed char cIn, DATE* pdateOut)
7767 return VarR8FromI1(cIn, pdateOut);
7770 /******************************************************************************
7771 * VarDateFromUI2 (OLEAUT32.222)
7773 * Convert a VT_UI2 to a VT_DATE.
7777 * pdateOut [O] Destination
7782 HRESULT WINAPI VarDateFromUI2(USHORT uiIn, DATE* pdateOut)
7784 return VarR8FromUI2(uiIn, pdateOut);
7787 /******************************************************************************
7788 * VarDateFromUI4 (OLEAUT32.223)
7790 * Convert a VT_UI4 to a VT_DATE.
7794 * pdateOut [O] Destination
7799 HRESULT WINAPI VarDateFromUI4(ULONG ulIn, DATE* pdateOut)
7801 return VarDateFromR8(ulIn, pdateOut);
7804 /**********************************************************************
7805 * VarDateFromDec (OLEAUT32.224)
7807 * Convert a VT_DECIMAL to a VT_DATE.
7811 * pdateOut [O] Destination
7816 HRESULT WINAPI VarDateFromDec(DECIMAL *pdecIn, DATE* pdateOut)
7818 return VarR8FromDec(pdecIn, pdateOut);
7821 /******************************************************************************
7822 * VarDateFromI8 (OLEAUT32.364)
7824 * Convert a VT_I8 to a VT_DATE.
7828 * pdateOut [O] Destination
7832 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
7834 HRESULT WINAPI VarDateFromI8(LONG64 llIn, DATE* pdateOut)
7836 if (llIn < DATE_MIN || llIn > DATE_MAX) return DISP_E_OVERFLOW;
7837 *pdateOut = (DATE)llIn;
7841 /******************************************************************************
7842 * VarDateFromUI8 (OLEAUT32.365)
7844 * Convert a VT_UI8 to a VT_DATE.
7848 * pdateOut [O] Destination
7852 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
7854 HRESULT WINAPI VarDateFromUI8(ULONG64 ullIn, DATE* pdateOut)
7856 if (ullIn > DATE_MAX) return DISP_E_OVERFLOW;
7857 *pdateOut = (DATE)ullIn;