1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * We use function pointers here as there is no import library for NTDLL on
26 #include "ntdll_test.h"
29 /* Function ptrs for ntdll calls */
30 static HMODULE hntdll = 0;
31 static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T);
32 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
33 static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T);
34 static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE);
35 static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG);
36 static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T);
37 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
38 static ULONG (WINAPI *pRtlUniform)(PULONG);
39 static ULONG (WINAPI *pRtlRandom)(PULONG);
40 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
41 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
42 static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT);
43 static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *);
44 static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **);
45 static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *);
46 static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *);
47 static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *);
49 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */
50 static ULONG src_aligned_block[4];
51 static ULONG dest_aligned_block[32];
52 static const char *src = (const char*)src_aligned_block;
53 static char* dest = (char*)dest_aligned_block;
55 static void InitFunctionPtrs(void)
57 hntdll = LoadLibraryA("ntdll.dll");
58 ok(hntdll != 0, "LoadLibrary failed\n");
60 pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory");
61 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
62 pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory");
63 pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory");
64 pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong");
65 pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory");
66 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
67 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
68 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
69 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
70 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
71 pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32");
72 pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable");
73 pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle");
74 pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable");
75 pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle");
76 pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle");
78 strcpy((char*)src_aligned_block, src_src);
79 ok(strlen(src) == 15, "Source must be 16 bytes long!\n");
82 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
83 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
85 static void test_RtlCompareMemory(void)
89 if (!pRtlCompareMemory)
95 COMP(src,src,LEN,LEN);
100 static void test_RtlCompareMemoryUlong(void)
109 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
110 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %lu, expected 0\n", a, result);
111 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
112 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %lu, expected 0\n", a, result);
113 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
114 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %lu, expected 4\n", a, result);
115 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
116 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %lu, expected 4\n", a, result);
117 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
118 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %lu, expected 4\n", a, result);
119 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
120 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %lu, expected 4\n", a, result);
121 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
122 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %lu, expected 4\n", a, result);
123 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
124 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %lu, expected 0\n", a, result);
125 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
126 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %lu, expected 0\n", a, result);
127 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
128 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %lu, expected 0\n", a, result);
131 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
132 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %lu, expected 0\n", a, result);
133 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
134 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %lu, expected 4\n", a, result);
135 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
136 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %lu, expected 4\n", a, result);
137 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
138 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %lu, expected 4\n", a, result);
139 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
140 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %lu, expected 8\n", a, result);
141 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
142 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %lu, expected 8\n", a, result);
145 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
146 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
148 static void test_RtlMoveMemory(void)
153 /* Length should be in bytes and not rounded. Use strcmp to ensure we
154 * didn't write past the end (it checks for the final NUL left by memset)
160 COPY(4); CMP("This");
161 COPY(5); CMP("This ");
162 COPY(6); CMP("This i");
163 COPY(7); CMP("This is");
164 COPY(8); CMP("This is ");
165 COPY(9); CMP("This is a");
168 strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1);
169 CMP("his is a test!!");
170 strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src));
171 CMP("TThis is a test!");
174 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
176 static void test_RtlFillMemory(void)
181 /* Length should be in bytes and not rounded. Use strcmp to ensure we
182 * didn't write past the end (the remainder of the string should match)
184 FILL(0); CMP("This is a test!");
185 FILL(1); CMP("xhis is a test!");
186 FILL(2); CMP("xxis is a test!");
187 FILL(3); CMP("xxxs is a test!");
188 FILL(4); CMP("xxxx is a test!");
189 FILL(5); CMP("xxxxxis a test!");
190 FILL(6); CMP("xxxxxxs a test!");
191 FILL(7); CMP("xxxxxxx a test!");
192 FILL(8); CMP("xxxxxxxxa test!");
193 FILL(9); CMP("xxxxxxxxx test!");
196 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
198 static void test_RtlFillMemoryUlong(void)
200 ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
201 if (!pRtlFillMemoryUlong)
204 /* Length should be in bytes and not rounded. Use strcmp to ensure we
205 * didn't write past the end (the remainder of the string should match)
207 LFILL(0); CMP("This is a test!");
208 LFILL(1); CMP("This is a test!");
209 LFILL(2); CMP("This is a test!");
210 LFILL(3); CMP("This is a test!");
211 LFILL(4); CMP("xxxx is a test!");
212 LFILL(5); CMP("xxxx is a test!");
213 LFILL(6); CMP("xxxx is a test!");
214 LFILL(7); CMP("xxxx is a test!");
215 LFILL(8); CMP("xxxxxxxxa test!");
216 LFILL(9); CMP("xxxxxxxxa test!");
219 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
220 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
222 static void test_RtlZeroMemory(void)
227 /* Length should be in bytes and not rounded. */
228 ZERO(0); MCMP("This is a test!");
229 ZERO(1); MCMP("\0his is a test!");
230 ZERO(2); MCMP("\0\0is is a test!");
231 ZERO(3); MCMP("\0\0\0s is a test!");
232 ZERO(4); MCMP("\0\0\0\0 is a test!");
233 ZERO(5); MCMP("\0\0\0\0\0is a test!");
234 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
235 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
236 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
237 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
240 static void test_RtlUlonglongByteSwap(void)
244 result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 );
245 ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result,
246 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%llx, expected 0x2143658710325476\n",
251 static void test_RtlUniform(void)
260 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
261 * algorithm. This algorithm is:
263 * seed = (seed * const_1 + const_2) % const_3;
265 * According to the documentation the random number is distributed over
266 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
268 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
270 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
271 * algorithm can be expressed without division as:
273 * seed = (seed * const_1 + const_2) & MAXLONG;
275 * To find out const_2 we just call RtlUniform with seed set to 0:
278 expected = 0x7fffffc3;
279 result = pRtlUniform(&seed);
280 ok(result == expected,
281 "RtlUniform(&seed (seed == 0)) returns %lx, expected %lx\n",
284 * The algorithm is now:
286 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
288 * To find out const_1 we can use:
290 * const_1 = RtlUniform(1) - 0x7fffffc3;
292 * If that does not work a search loop can try all possible values of
293 * const_1 and compare to the result to RtlUniform(1).
294 * This way we find out that const_1 is 0xffffffed.
296 * For seed = 1 the const_2 is 0x7fffffc4:
299 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
300 result = pRtlUniform(&seed);
301 ok(result == expected,
302 "RtlUniform(&seed (seed == 1)) returns %lx, expected %lx\n",
305 * For seed = 2 the const_2 is 0x7fffffc3:
308 expected = seed * 0xffffffed + 0x7fffffc3;
309 result = pRtlUniform(&seed);
310 ok(result == expected,
311 "RtlUniform(&seed (seed == 2)) returns %lx, expected %lx\n",
314 * More tests show that if seed is odd the result must be incremented by 1:
317 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
318 result = pRtlUniform(&seed);
319 ok(result == expected,
320 "RtlUniform(&seed (seed == 2)) returns %lx, expected %lx\n",
324 expected = seed * 0xffffffed + 0x7fffffc3;
325 result = pRtlUniform(&seed);
326 ok(result == expected,
327 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %lx, expected %lx\n",
331 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
332 result = pRtlUniform(&seed);
333 ok(result == expected,
334 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %lx, expected %lx\n",
337 * When seed is 0x6bca1ac there is an exception:
340 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
341 result = pRtlUniform(&seed);
342 ok(result == expected,
343 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %lx, expected %lx\n",
346 * Note that up to here const_3 is not used
347 * (the highest bit of the result is not set).
349 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
352 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
353 result = pRtlUniform(&seed);
354 ok(result == expected,
355 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %lx, expected %lx\n",
359 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
360 result = pRtlUniform(&seed);
361 ok(result == expected,
362 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %lx, expected %lx\n",
365 * There are several ranges where for odd or even seed the result must be
366 * incremented by 1. You can see this ranges in the following test.
368 * For a full test use one of the following loop heads:
370 * for (num = 0; num <= 0xffffffff; num++) {
375 * for (num = 0; num <= 0xffffffff; num++) {
379 for (num = 0; num <= 100000; num++) {
381 expected = seed * 0xffffffed + 0x7fffffc3;
382 if (seed < 0x6bca1ac) {
383 expected = expected + (seed & 1);
384 } else if (seed == 0x6bca1ac) {
385 expected = (expected + 2) & MAXLONG;
386 } else if (seed < 0xd79435c) {
387 expected = (expected + (~seed & 1)) & MAXLONG;
388 } else if (seed < 0x1435e50b) {
389 expected = expected + (seed & 1);
390 } else if (seed < 0x1af286ba) {
391 expected = (expected + (~seed & 1)) & MAXLONG;
392 } else if (seed < 0x21af2869) {
393 expected = expected + (seed & 1);
394 } else if (seed < 0x286bca18) {
395 expected = (expected + (~seed & 1)) & MAXLONG;
396 } else if (seed < 0x2f286bc7) {
397 expected = expected + (seed & 1);
398 } else if (seed < 0x35e50d77) {
399 expected = (expected + (~seed & 1)) & MAXLONG;
400 } else if (seed < 0x3ca1af26) {
401 expected = expected + (seed & 1);
402 } else if (seed < 0x435e50d5) {
403 expected = (expected + (~seed & 1)) & MAXLONG;
404 } else if (seed < 0x4a1af284) {
405 expected = expected + (seed & 1);
406 } else if (seed < 0x50d79433) {
407 expected = (expected + (~seed & 1)) & MAXLONG;
408 } else if (seed < 0x579435e2) {
409 expected = expected + (seed & 1);
410 } else if (seed < 0x5e50d792) {
411 expected = (expected + (~seed & 1)) & MAXLONG;
412 } else if (seed < 0x650d7941) {
413 expected = expected + (seed & 1);
414 } else if (seed < 0x6bca1af0) {
415 expected = (expected + (~seed & 1)) & MAXLONG;
416 } else if (seed < 0x7286bc9f) {
417 expected = expected + (seed & 1);
418 } else if (seed < 0x79435e4e) {
419 expected = (expected + (~seed & 1)) & MAXLONG;
420 } else if (seed < 0x7ffffffd) {
421 expected = expected + (seed & 1);
422 } else if (seed < 0x86bca1ac) {
423 expected = (expected + (~seed & 1)) & MAXLONG;
424 } else if (seed == 0x86bca1ac) {
425 expected = (expected + 1) & MAXLONG;
426 } else if (seed < 0x8d79435c) {
427 expected = expected + (seed & 1);
428 } else if (seed < 0x9435e50b) {
429 expected = (expected + (~seed & 1)) & MAXLONG;
430 } else if (seed < 0x9af286ba) {
431 expected = expected + (seed & 1);
432 } else if (seed < 0xa1af2869) {
433 expected = (expected + (~seed & 1)) & MAXLONG;
434 } else if (seed < 0xa86bca18) {
435 expected = expected + (seed & 1);
436 } else if (seed < 0xaf286bc7) {
437 expected = (expected + (~seed & 1)) & MAXLONG;
438 } else if (seed == 0xaf286bc7) {
439 expected = (expected + 2) & MAXLONG;
440 } else if (seed < 0xb5e50d77) {
441 expected = expected + (seed & 1);
442 } else if (seed < 0xbca1af26) {
443 expected = (expected + (~seed & 1)) & MAXLONG;
444 } else if (seed < 0xc35e50d5) {
445 expected = expected + (seed & 1);
446 } else if (seed < 0xca1af284) {
447 expected = (expected + (~seed & 1)) & MAXLONG;
448 } else if (seed < 0xd0d79433) {
449 expected = expected + (seed & 1);
450 } else if (seed < 0xd79435e2) {
451 expected = (expected + (~seed & 1)) & MAXLONG;
452 } else if (seed < 0xde50d792) {
453 expected = expected + (seed & 1);
454 } else if (seed < 0xe50d7941) {
455 expected = (expected + (~seed & 1)) & MAXLONG;
456 } else if (seed < 0xebca1af0) {
457 expected = expected + (seed & 1);
458 } else if (seed < 0xf286bc9f) {
459 expected = (expected + (~seed & 1)) & MAXLONG;
460 } else if (seed < 0xf9435e4e) {
461 expected = expected + (seed & 1);
462 } else if (seed < 0xfffffffd) {
463 expected = (expected + (~seed & 1)) & MAXLONG;
465 expected = expected + (seed & 1);
468 result = pRtlUniform(&seed);
469 ok(result == expected,
470 "test: %llu RtlUniform(&seed (seed == %lx)) returns %lx, expected %lx\n",
471 num, seed_bak, result, expected);
473 "test: %llu RtlUniform(&seed (seed == %lx)) sets seed to %lx, expected %lx\n",
474 num, seed_bak, seed, expected);
477 * Further investigation shows: In the different regions the highest bit
478 * is set or cleared when even or odd seeds need an increment by 1.
479 * This leads to a simplified algorithm:
481 * seed = seed * 0xffffffed + 0x7fffffc3;
482 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
483 * seed = (seed + 2) & MAXLONG;
484 * } else if (seed == 0x7fffffff) {
486 * } else if ((seed & 0x80000000) == 0) {
487 * seed = seed + (~seed & 1);
489 * seed = (seed + (seed & 1)) & MAXLONG;
492 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
494 * Now comes the funny part:
495 * It took me one weekend, to find the complicated algorithm and one day more,
496 * to find the simplified algorithm. Several weeks later I found out: The value
497 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
498 * nor with the simplified algorithm. In reality the native function and our
499 * function return a random number distributed over [0..MAXLONG-1]. Note
500 * that this is different from what native documentation states [0..MAXLONG].
501 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
503 * seed = (seed * const_1 + const_2) % MAXLONG;
505 * Further investigations show that the real algorithm is:
507 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
509 * This is checked with the test below:
512 for (num = 0; num <= 100000; num++) {
513 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
515 result = pRtlUniform(&seed);
516 ok(result == expected,
517 "test: %llu RtlUniform(&seed (seed == %lx)) returns %lx, expected %lx\n",
518 num, seed_bak, result, expected);
520 "test: %llu RtlUniform(&seed (seed == %lx)) sets seed to %lx, expected %lx\n",
521 num, seed_bak, seed, expected);
524 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
525 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
526 * that there is more than one cycle of generated randon numbers ...
531 ULONG WINAPI my_RtlRandom(PULONG seed)
533 static ULONG saved_value[128] =
534 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
535 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
536 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
537 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
538 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
539 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
540 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
541 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
542 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
543 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
544 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
545 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
546 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
547 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
548 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
549 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
554 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
555 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
557 result = saved_value[pos];
558 saved_value[pos] = rand;
563 static void test_RtlRandom(void)
570 ULONG result_expected;
573 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
574 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
575 * the documentation of the RtlUniform function. This algorithm is:
577 * seed = (seed * const_1 + const_2) % const_3;
579 * According to the RtlUniform documentation the random number is
580 * distributed over [0..MAXLONG], but in reality it is distributed
581 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
584 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
588 * seed = (seed * const_1 + const_2) % MAXLONG;
590 * To find out const_2 we just call RtlRandom with seed set to 0:
593 result_expected = 0x320a1743;
594 seed_expected =0x44b;
595 result = pRtlRandom(&seed);
596 ok(result == result_expected,
597 "pRtlRandom(&seed (seed == 0)) returns %lx, expected %lx\n",
598 result, result_expected);
599 ok(seed == seed_expected,
600 "pRtlRandom(&seed (seed == 0)) sets seed to %lx, expected %lx\n",
601 seed, seed_expected);
603 * Seed is not equal to result as with RtlUniform. To see more we
604 * call RtlRandom aggain with seed set to 0:
607 result_expected = 0x7fffffc3;
608 seed_expected =0x44b;
609 result = pRtlRandom(&seed);
610 ok(result == result_expected,
611 "RtlRandom(&seed (seed == 0)) returns %lx, expected %lx\n",
612 result, result_expected);
613 ok(seed == seed_expected,
614 "RtlRandom(&seed (seed == 0)) sets seed to %lx, expected %lx\n",
615 seed, seed_expected);
617 * Seed is set to the same value as before but the result is different.
618 * To see more we call RtlRandom aggain with seed set to 0:
621 result_expected = 0x7fffffc3;
622 seed_expected =0x44b;
623 result = pRtlRandom(&seed);
624 ok(result == result_expected,
625 "RtlRandom(&seed (seed == 0)) returns %lx, expected %lx\n",
626 result, result_expected);
627 ok(seed == seed_expected,
628 "RtlRandom(&seed (seed == 0)) sets seed to %lx, expected %lx\n",
629 seed, seed_expected);
631 * Seed is aggain set to the same value as before. This time we also
632 * have the same result as before. Interestingly the value of the
633 * result is 0x7fffffc3 which is the same value used in RtlUniform
634 * as const_2. If we do
637 * result = RtlUniform(&seed);
639 * we get the same result (0x7fffffc3) as with
644 * result = RtlRandom(&seed);
646 * And there is another interesting thing. If we do
652 * seed is set to the value 0x44b which ist the same value that
657 * assigns to seed. Putting this two findings together leads to
658 * the concluson that RtlRandom saves the value in some variable,
659 * like in the following algorithm:
661 * result = saved_value;
662 * saved_value = RtlUniform(&seed);
666 * Now we do further tests with seed set to 1:
669 result_expected = 0x7a50bbc6;
670 seed_expected =0x5a1;
671 result = pRtlRandom(&seed);
672 ok(result == result_expected,
673 "RtlRandom(&seed (seed == 1)) returns %lx, expected %lx\n",
674 result, result_expected);
675 ok(seed == seed_expected,
676 "RtlRandom(&seed (seed == 1)) sets seed to %lx, expected %lx\n",
677 seed, seed_expected);
679 * If there is just one saved_value the result now would be
680 * 0x7fffffc3. From this test we can see that there is more than
681 * one saved_value, like with this algorithm:
683 * result = saved_value[pos];
684 * saved_value[pos] = RtlUniform(&seed);
688 * But how the value of pos is determined? The calls to RtlUniform
689 * create a sequence of random numbers. Every second random number
690 * is put into the saved_value array and is used in some later call
691 * of RtlRandom as result. The only reasonable source to determine
692 * pos are the random numbers generated by RtlUniform which are not
693 * put into the saved_value array. This are the values of seed
694 * between the two calls of RtlUniform as in this altorithm:
696 * rand = RtlUniform(&seed);
698 * pos = position(seed);
699 * result = saved_value[pos];
700 * saved_value[pos] = rand;
703 * What remains to determine is: The size of the saved_value array,
704 * the initial values of the saved_value array and the function
705 * position(seed). This tests are not shown here.
706 * The result of this tests ist: The size of the saved_value array
707 * is 128, the initial values can be seen in the my_RtlRandom
708 * function and the position(seed) function is (seed & 0x7f).
710 * For a full test of RtlRandom use one of the following loop heads:
712 * for (num = 0; num <= 0xffffffff; num++) {
717 * for (num = 0; num <= 0xffffffff; num++) {
721 for (num = 0; num <= 100000; num++) {
723 seed_expected = seed;
724 result_expected = my_RtlRandom(&seed_expected);
725 /* The following corrections are necessary because the */
726 /* previous tests changed the saved_value array */
728 result_expected = 0x7fffffc3;
729 } else if (num == 81) {
730 result_expected = 0x7fffffb1;
732 result = pRtlRandom(&seed);
733 ok(result == result_expected,
734 "test: %llu RtlUniform(&seed (seed == %lx)) returns %lx, expected %lx\n",
735 num, seed_bak, result, result_expected);
736 ok(seed == seed_expected,
737 "test: %llu RtlUniform(&seed (seed == %lx)) sets seed to %lx, expected %lx\n",
738 num, seed_bak, seed, seed_expected);
744 ACCESS_MASK GrantedAccess;
745 ACCESS_MASK DesiredAccess;
749 static const all_accesses_t all_accesses[] = {
750 {0xFEDCBA76, 0xFEDCBA76, 1},
751 {0x00000000, 0xFEDCBA76, 0},
752 {0xFEDCBA76, 0x00000000, 1},
753 {0x00000000, 0x00000000, 1},
754 {0xFEDCBA76, 0xFEDCBA70, 1},
755 {0xFEDCBA70, 0xFEDCBA76, 0},
756 {0xFEDCBA76, 0xFEDC8A76, 1},
757 {0xFEDC8A76, 0xFEDCBA76, 0},
758 {0xFEDCBA76, 0xC8C4B242, 1},
759 {0xC8C4B242, 0xFEDCBA76, 0},
761 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
764 static void test_RtlAreAllAccessesGranted(void)
769 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
770 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
771 all_accesses[test_num].DesiredAccess);
772 ok(all_accesses[test_num].result == result,
773 "(test %d): RtlAreAllAccessesGranted(%08lx, %08lx) returns %d, expected %d\n",
774 test_num, all_accesses[test_num].GrantedAccess,
775 all_accesses[test_num].DesiredAccess,
776 result, all_accesses[test_num].result);
782 ACCESS_MASK GrantedAccess;
783 ACCESS_MASK DesiredAccess;
787 static const any_accesses_t any_accesses[] = {
788 {0xFEDCBA76, 0xFEDCBA76, 1},
789 {0x00000000, 0xFEDCBA76, 0},
790 {0xFEDCBA76, 0x00000000, 0},
791 {0x00000000, 0x00000000, 0},
792 {0xFEDCBA76, 0x01234589, 0},
793 {0x00040000, 0xFEDCBA76, 1},
794 {0x00040000, 0xFED8BA76, 0},
795 {0xFEDCBA76, 0x00040000, 1},
796 {0xFED8BA76, 0x00040000, 0},
798 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
801 static void test_RtlAreAnyAccessesGranted(void)
806 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
807 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
808 any_accesses[test_num].DesiredAccess);
809 ok(any_accesses[test_num].result == result,
810 "(test %d): RtlAreAnyAccessesGranted(%08lx, %08lx) returns %d, expected %d\n",
811 test_num, any_accesses[test_num].GrantedAccess,
812 any_accesses[test_num].DesiredAccess,
813 result, any_accesses[test_num].result);
817 static void test_RtlComputeCrc32()
821 if (!pRtlComputeCrc32)
824 crc = pRtlComputeCrc32(crc, src, LEN);
825 ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8lx\n", crc);
829 typedef struct MY_HANDLE
831 RTL_HANDLE RtlHandle;
835 static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle)
837 ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next);
838 *AllocatedBit = *AllocatedBit | 1;
841 static void test_HandleTables()
846 MY_HANDLE * MyHandle;
847 RTL_HANDLE_TABLE HandleTable;
849 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable);
850 MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index);
851 ok(MyHandle != NULL, "RtlAllocateHandle failed\n");
852 RtlpMakeHandleAllocated(&MyHandle->RtlHandle);
854 result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle);
855 ok(result, "Handle %p wasn't valid\n", MyHandle);
856 result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle);
857 ok(result, "Couldn't free handle %p\n", MyHandle);
858 status = pRtlDestroyHandleTable(&HandleTable);
859 ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08lx\n", status);
866 if (pRtlCompareMemory)
867 test_RtlCompareMemory();
868 if (pRtlCompareMemoryUlong)
869 test_RtlCompareMemoryUlong();
871 test_RtlMoveMemory();
873 test_RtlFillMemory();
874 if (pRtlFillMemoryUlong)
875 test_RtlFillMemoryUlong();
877 test_RtlZeroMemory();
878 if (pRtlUlonglongByteSwap)
879 test_RtlUlonglongByteSwap();
884 if (pRtlAreAllAccessesGranted)
885 test_RtlAreAllAccessesGranted();
886 if (pRtlAreAnyAccessesGranted)
887 test_RtlAreAnyAccessesGranted();
888 if (pRtlComputeCrc32)
889 test_RtlComputeCrc32();
890 if (pRtlInitializeHandleTable)