4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
8 * The alorithm for conversion from Julian days to day/month/year is based on
9 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
10 * Copyright 1994-7 Regents of the University of California
12 * This library is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * This library is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with this library; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 #define NONAMELESSUNION
35 #define NONAMELESSSTRUCT
39 #include "wine/unicode.h"
42 #include "wine/debug.h"
44 WINE_DEFAULT_DEBUG_CHANNEL(variant);
46 const char* wine_vtypes[VT_CLSID] =
48 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
49 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
50 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
51 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
52 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR""32","33","34","35",
53 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
54 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
55 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
56 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
59 const char* wine_vflags[16] =
64 "|VT_VECTOR|VT_ARRAY",
66 "|VT_VECTOR|VT_ARRAY",
68 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
70 "|VT_VECTOR|VT_HARDTYPE",
71 "|VT_ARRAY|VT_HARDTYPE",
72 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
73 "|VT_BYREF|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
79 /* Convert a variant from one type to another */
80 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
81 VARIANTARG* ps, VARTYPE vt)
83 HRESULT res = DISP_E_TYPEMISMATCH;
84 VARTYPE vtFrom = V_TYPE(ps);
85 BOOL bIgnoreOverflow = FALSE;
88 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
89 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
90 debugstr_vt(vt), debugstr_vf(vt));
92 if (vt == VT_BSTR || vtFrom == VT_BSTR)
94 /* All flags passed to low level function are only used for
95 * changing to or from strings. Map these here.
97 if (wFlags & VARIANT_LOCALBOOL)
98 dwFlags |= VAR_LOCALBOOL;
99 if (wFlags & VARIANT_CALENDAR_HIJRI)
100 dwFlags |= VAR_CALENDAR_HIJRI;
101 if (wFlags & VARIANT_CALENDAR_THAI)
102 dwFlags |= VAR_CALENDAR_THAI;
103 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
104 dwFlags |= VAR_CALENDAR_GREGORIAN;
105 if (wFlags & VARIANT_NOUSEROVERRIDE)
106 dwFlags |= LOCALE_NOUSEROVERRIDE;
107 if (wFlags & VARIANT_USE_NLS)
108 dwFlags |= LOCALE_USE_NLS;
111 /* Map int/uint to i4/ui4 */
114 else if (vt == VT_UINT)
117 if (vtFrom == VT_INT)
119 else if (vtFrom == VT_UINT)
123 bIgnoreOverflow = TRUE;
127 return VariantCopy(pd, ps);
129 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
131 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
132 * accessing the default object property.
134 return DISP_E_TYPEMISMATCH;
140 if (vtFrom == VT_NULL)
141 return DISP_E_TYPEMISMATCH;
142 /* ... Fall through */
144 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
146 res = VariantClear( pd );
147 if (vt == VT_NULL && SUCCEEDED(res))
155 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
156 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
157 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
158 case VT_UI1: return VarI1FromUI1(V_UI1(ps), &V_I1(pd));
159 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
160 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
161 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
162 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
163 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
164 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
165 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
166 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
167 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
168 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
169 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
170 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
177 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
178 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
179 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
180 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
181 case VT_UI2: return VarI2FromUI2(V_UI2(ps), &V_I2(pd));
182 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
183 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
184 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
185 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
186 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
187 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
188 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
189 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
190 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
191 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
192 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
199 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
200 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
201 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
202 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
203 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
211 return VarI4FromUI4(V_UI4(ps), &V_I4(pd));
212 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
213 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
214 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
215 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
216 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
217 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
218 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
219 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
220 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
221 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
228 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
229 case VT_I1: return VarUI1FromI1(V_I1(ps), &V_UI1(pd));
230 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
231 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
232 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
233 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
234 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
235 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
236 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
237 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
238 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
239 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
240 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
241 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
242 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
243 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
250 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
251 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
252 case VT_I2: return VarUI2FromI2(V_I2(ps), &V_UI2(pd));
253 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
254 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
255 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
256 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
257 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
258 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
259 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
260 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
261 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
262 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
263 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
264 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
265 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
272 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
273 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
274 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
275 case VT_I4: return VarUI4FromI4(V_I4(ps), &V_UI4(pd));
276 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
277 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
278 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
279 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
280 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
281 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
282 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
283 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
284 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
285 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
286 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
287 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
294 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
295 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
296 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
297 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
298 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
299 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
300 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
301 case VT_I8: return VarUI8FromI8(V_I8(ps), &V_UI8(pd));
302 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
303 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
304 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
305 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
306 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
307 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
308 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
309 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
316 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
317 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
318 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
319 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
320 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
321 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
322 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
323 case VT_UI8: return VarI8FromUI8(V_I8(ps), &V_I8(pd));
324 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
325 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
326 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
327 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
328 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
329 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
330 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
331 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
338 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
339 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
340 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
341 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
342 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
343 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
344 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
345 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
346 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
347 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
348 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
349 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
350 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
351 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
352 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
353 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
360 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
361 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
362 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
363 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
364 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
365 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
366 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
367 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
368 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
369 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
370 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
371 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
372 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
373 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
374 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
375 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
382 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
383 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
384 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
385 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
386 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
387 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
388 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
389 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
390 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
391 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
392 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
393 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
394 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
395 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
396 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
397 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
404 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
405 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
406 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
407 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
408 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
409 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
410 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
411 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
412 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
413 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
414 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
415 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
416 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
417 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
418 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
419 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
427 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
428 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
430 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
431 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
432 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
436 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
437 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
438 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
439 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
440 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
441 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
442 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
443 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
444 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
445 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
446 /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */
453 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
454 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
455 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
456 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
457 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
458 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
459 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
460 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
461 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
462 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
463 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
464 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
465 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
466 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
467 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
468 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
477 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
478 DEC_HI32(&V_DECIMAL(pd)) = 0;
479 DEC_MID32(&V_DECIMAL(pd)) = 0;
480 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
481 * VT_NULL and VT_EMPTY always give a 0 value.
483 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
485 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
486 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
487 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
488 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
489 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
490 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
491 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
492 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
493 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
494 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
495 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
496 case VT_CY: return VarDecFromCy(V_CY(pd), &V_DECIMAL(ps));
497 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(ps));
498 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
506 if (V_DISPATCH(ps) == NULL)
507 V_UNKNOWN(pd) = NULL;
509 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
518 if (V_UNKNOWN(ps) == NULL)
519 V_DISPATCH(pd) = NULL;
521 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
532 /* Coerce to/from an array */
533 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
535 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
536 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
538 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
539 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
542 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
544 return DISP_E_TYPEMISMATCH;
547 /******************************************************************************
548 * Check if a variants type is valid.
550 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
552 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
556 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
558 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
560 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
561 return DISP_E_BADVARTYPE;
562 if (vt != (VARTYPE)15)
566 return DISP_E_BADVARTYPE;
569 /******************************************************************************
570 * VariantInit [OLEAUT32.8]
572 * Initialise a variant.
575 * pVarg [O] Variant to initialise
581 * This function simply sets the type of the variant to VT_EMPTY. It does not
582 * free any existing value, use VariantClear() for that.
584 void WINAPI VariantInit(VARIANTARG* pVarg)
586 TRACE("(%p)\n", pVarg);
588 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
591 /******************************************************************************
592 * VariantClear [OLEAUT32.9]
597 * pVarg [I/O] Variant to clear
600 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
601 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
603 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
607 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
609 hres = VARIANT_ValidateType(V_VT(pVarg));
613 if (!V_ISBYREF(pVarg))
615 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
618 hres = SafeArrayDestroy(V_ARRAY(pVarg));
620 else if (V_VT(pVarg) == VT_BSTR)
623 SysFreeString(V_BSTR(pVarg));
625 else if (V_VT(pVarg) == VT_RECORD)
627 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
630 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
631 IRecordInfo_Release(pBr->pRecInfo);
634 else if (V_VT(pVarg) == VT_DISPATCH ||
635 V_VT(pVarg) == VT_UNKNOWN)
637 if (V_UNKNOWN(pVarg))
638 IUnknown_Release(V_UNKNOWN(pVarg));
640 else if (V_VT(pVarg) == VT_VARIANT)
642 if (V_VARIANTREF(pVarg))
643 VariantClear(V_VARIANTREF(pVarg));
646 V_VT(pVarg) = VT_EMPTY;
651 /******************************************************************************
652 * Copy an IRecordInfo object contained in a variant.
654 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
662 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
665 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
667 hres = E_OUTOFMEMORY;
670 memcpy(pvRecord, pBr->pvRecord, ulSize);
671 pBr->pvRecord = pvRecord;
673 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
675 IRecordInfo_AddRef(pBr->pRecInfo);
679 else if (pBr->pvRecord)
684 /******************************************************************************
685 * VariantCopy [OLEAUT32.10]
690 * pvargDest [O] Destination for copy
691 * pvargSrc [I] Source variant to copy
694 * Success: S_OK. pvargDest contains a copy of pvargSrc.
695 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
696 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
697 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
698 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
701 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
702 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
703 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
704 * fails, so does this function.
705 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
706 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
707 * is copied rather than just any pointers to it.
708 * - For by-value object types the object pointer is copied and the objects
709 * reference count increased using IUnknown_AddRef().
710 * - For all by-reference types, only the referencing pointer is copied.
712 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
716 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
717 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
718 debugstr_VF(pvargSrc));
720 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
721 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
722 return DISP_E_BADVARTYPE;
724 if (pvargSrc != pvargDest &&
725 SUCCEEDED(hres = VariantClear(pvargDest)))
727 *pvargDest = *pvargSrc; /* Shallow copy the value */
729 if (!V_ISBYREF(pvargSrc))
731 if (V_ISARRAY(pvargSrc))
733 if (V_ARRAY(pvargSrc))
734 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
736 else if (V_VT(pvargSrc) == VT_BSTR)
738 if (V_BSTR(pvargSrc))
740 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
741 if (!V_BSTR(pvargDest))
743 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
744 hres = E_OUTOFMEMORY;
748 else if (V_VT(pvargSrc) == VT_RECORD)
750 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
752 else if (V_VT(pvargSrc) == VT_DISPATCH ||
753 V_VT(pvargSrc) == VT_UNKNOWN)
755 if (V_UNKNOWN(pvargSrc))
756 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
763 /* Return the byte size of a variants data */
764 static inline size_t VARIANT_DataSize(const VARIANT* pv)
769 case VT_UI1: return sizeof(BYTE);
771 case VT_UI2: return sizeof(SHORT);
775 case VT_UI4: return sizeof(LONG);
777 case VT_UI8: return sizeof(LONGLONG);
778 case VT_R4: return sizeof(float);
779 case VT_R8: return sizeof(double);
780 case VT_DATE: return sizeof(DATE);
781 case VT_BOOL: return sizeof(VARIANT_BOOL);
784 case VT_BSTR: return sizeof(void*);
785 case VT_CY: return sizeof(CY);
786 case VT_ERROR: return sizeof(SCODE);
788 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
792 /******************************************************************************
793 * VariantCopyInd [OLEAUT32.11]
795 * Copy a variant, dereferencing it it is by-reference.
798 * pvargDest [O] Destination for copy
799 * pvargSrc [I] Source variant to copy
802 * Success: S_OK. pvargDest contains a copy of pvargSrc.
803 * Failure: An HRESULT error code indicating the error.
806 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
807 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
808 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
809 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
810 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
813 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
814 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
816 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
817 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
818 * to it. If clearing pvargDest fails, so does this function.
820 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
822 VARIANTARG vTmp, *pSrc = pvargSrc;
826 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
827 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
828 debugstr_VF(pvargSrc));
830 if (!V_ISBYREF(pvargSrc))
831 return VariantCopy(pvargDest, pvargSrc);
833 /* Argument checking is more lax than VariantCopy()... */
834 vt = V_TYPE(pvargSrc);
835 if (V_ISARRAY(pvargSrc) ||
836 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
837 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
842 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
844 if (pvargSrc == pvargDest)
846 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
847 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
851 V_VT(pvargDest) = VT_EMPTY;
855 /* Copy into another variant. Free the variant in pvargDest */
856 if (FAILED(hres = VariantClear(pvargDest)))
858 TRACE("VariantClear() of destination failed\n");
865 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
866 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
868 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
870 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
871 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
873 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
875 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
876 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
878 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
879 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
881 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
882 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
883 if (*V_UNKNOWNREF(pSrc))
884 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
886 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
888 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
889 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
890 hres = E_INVALIDARG; /* Don't dereference more than one level */
892 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
894 /* Use the dereferenced variants type value, not VT_VARIANT */
895 goto VariantCopyInd_Return;
897 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
899 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
900 sizeof(DECIMAL) - sizeof(USHORT));
904 /* Copy the pointed to data into this variant */
905 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
908 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
910 VariantCopyInd_Return:
912 if (pSrc != pvargSrc)
915 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
916 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
920 /******************************************************************************
921 * VariantChangeType [OLEAUT32.12]
923 * Change the type of a variant.
926 * pvargDest [O] Destination for the converted variant
927 * pvargSrc [O] Source variant to change the type of
928 * wFlags [I] VARIANT_ flags from "oleauto.h"
929 * vt [I] Variant type to change pvargSrc into
932 * Success: S_OK. pvargDest contains the converted value.
933 * Failure: An HRESULT error code describing the failure.
936 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
937 * See VariantChangeTypeEx.
939 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
940 USHORT wFlags, VARTYPE vt)
942 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
945 /******************************************************************************
946 * VariantChangeTypeEx [OLEAUT32.147]
948 * Change the type of a variant.
951 * pvargDest [O] Destination for the converted variant
952 * pvargSrc [O] Source variant to change the type of
953 * lcid [I] LCID for the conversion
954 * wFlags [I] VARIANT_ flags from "oleauto.h"
955 * vt [I] Variant type to change pvargSrc into
958 * Success: S_OK. pvargDest contains the converted value.
959 * Failure: An HRESULT error code describing the failure.
962 * pvargDest and pvargSrc can point to the same variant to perform an in-place
963 * conversion. If the conversion is successful, pvargSrc will be freed.
965 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
966 LCID lcid, USHORT wFlags, VARTYPE vt)
970 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
971 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
972 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
973 debugstr_vt(vt), debugstr_vf(vt));
976 res = DISP_E_BADVARTYPE;
979 res = VARIANT_ValidateType(V_VT(pvargSrc));
983 res = VARIANT_ValidateType(vt);
987 VARIANTARG vTmp, vSrcDeref;
989 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
990 res = DISP_E_TYPEMISMATCH;
993 V_VT(&vTmp) = VT_EMPTY;
994 V_VT(&vSrcDeref) = VT_EMPTY;
996 VariantClear(&vSrcDeref);
1001 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1004 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1005 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1007 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1009 if (SUCCEEDED(res)) {
1011 VariantCopy(pvargDest, &vTmp);
1013 VariantClear(&vTmp);
1014 VariantClear(&vSrcDeref);
1021 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
1022 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1026 /* Date Conversions */
1028 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1030 /* Convert a VT_DATE value to a Julian Date */
1031 static inline int VARIANT_JulianFromDate(int dateIn)
1033 int julianDays = dateIn;
1035 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1036 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1040 /* Convert a Julian Date to a VT_DATE value */
1041 static inline int VARIANT_DateFromJulian(int dateIn)
1043 int julianDays = dateIn;
1045 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1046 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1050 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1051 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1057 l -= (n * 146097 + 3) / 4;
1058 i = (4000 * (l + 1)) / 1461001;
1059 l += 31 - (i * 1461) / 4;
1060 j = (l * 80) / 2447;
1061 *day = l - (j * 2447) / 80;
1063 *month = (j + 2) - (12 * l);
1064 *year = 100 * (n - 49) + i + l;
1067 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1068 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1070 int m12 = (month - 14) / 12;
1072 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1073 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1076 /* Macros for accessing DOS format date/time fields */
1077 #define DOS_YEAR(x) (1980 + (x >> 9))
1078 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1079 #define DOS_DAY(x) (x & 0x1f)
1080 #define DOS_HOUR(x) (x >> 11)
1081 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1082 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1083 /* Create a DOS format date/time */
1084 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1085 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1087 /* Roll a date forwards or backwards to correct it */
1088 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1090 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1092 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1093 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1095 /* Years < 100 are treated as 1900 + year */
1096 if (lpUd->st.wYear < 100)
1097 lpUd->st.wYear += 1900;
1099 if (!lpUd->st.wMonth)
1101 /* Roll back to December of the previous year */
1102 lpUd->st.wMonth = 12;
1105 else while (lpUd->st.wMonth > 12)
1107 /* Roll forward the correct number of months */
1109 lpUd->st.wMonth -= 12;
1112 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1113 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1114 return E_INVALIDARG; /* Invalid values */
1118 /* Roll back the date one day */
1119 if (lpUd->st.wMonth == 1)
1121 /* Roll back to December 31 of the previous year */
1123 lpUd->st.wMonth = 12;
1128 lpUd->st.wMonth--; /* Previous month */
1129 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1130 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1132 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1135 else if (lpUd->st.wDay > 28)
1137 int rollForward = 0;
1139 /* Possibly need to roll the date forward */
1140 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1141 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1143 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1145 if (rollForward > 0)
1147 lpUd->st.wDay = rollForward;
1149 if (lpUd->st.wMonth > 12)
1151 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1156 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1157 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1161 /**********************************************************************
1162 * DosDateTimeToVariantTime [OLEAUT32.14]
1164 * Convert a Dos format date and time into variant VT_DATE format.
1167 * wDosDate [I] Dos format date
1168 * wDosTime [I] Dos format time
1169 * pDateOut [O] Destination for VT_DATE format
1172 * Success: TRUE. pDateOut contains the converted time.
1173 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1176 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1177 * - Dos format times are accurate to only 2 second precision.
1178 * - The format of a Dos Date is:
1179 *| Bits Values Meaning
1180 *| ---- ------ -------
1181 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1182 *| the days in the month rolls forward the extra days.
1183 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1184 *| year. 13-15 are invalid.
1185 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1186 * - The format of a Dos Time is:
1187 *| Bits Values Meaning
1188 *| ---- ------ -------
1189 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1190 *| 5-10 0-59 Minutes. 60-63 are invalid.
1191 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1193 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1198 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1199 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1200 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1203 ud.st.wYear = DOS_YEAR(wDosDate);
1204 ud.st.wMonth = DOS_MONTH(wDosDate);
1205 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1207 ud.st.wDay = DOS_DAY(wDosDate);
1208 ud.st.wHour = DOS_HOUR(wDosTime);
1209 ud.st.wMinute = DOS_MINUTE(wDosTime);
1210 ud.st.wSecond = DOS_SECOND(wDosTime);
1211 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1213 return !VarDateFromUdate(&ud, 0, pDateOut);
1216 /**********************************************************************
1217 * VariantTimeToDosDateTime [OLEAUT32.13]
1219 * Convert a variant format date into a Dos format date and time.
1221 * dateIn [I] VT_DATE time format
1222 * pwDosDate [O] Destination for Dos format date
1223 * pwDosTime [O] Destination for Dos format time
1226 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1227 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1230 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1232 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1236 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1238 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1241 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1244 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1245 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1247 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1248 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1249 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1253 /***********************************************************************
1254 * SystemTimeToVariantTime [OLEAUT32.184]
1256 * Convert a System format date and time into variant VT_DATE format.
1259 * lpSt [I] System format date and time
1260 * pDateOut [O] Destination for VT_DATE format date
1263 * Success: TRUE. *pDateOut contains the converted value.
1264 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1266 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1270 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1271 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1273 if (lpSt->wMonth > 12)
1276 memcpy(&ud.st, lpSt, sizeof(ud.st));
1277 return !VarDateFromUdate(&ud, 0, pDateOut);
1280 /***********************************************************************
1281 * VariantTimeToSystemTime [OLEAUT32.185]
1283 * Convert a variant VT_DATE into a System format date and time.
1286 * datein [I] Variant VT_DATE format date
1287 * lpSt [O] Destination for System format date and time
1290 * Success: TRUE. *lpSt contains the converted value.
1291 * Failure: FALSE, if dateIn is too large or small.
1293 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1297 TRACE("(%g,%p)\n", dateIn, lpSt);
1299 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1302 memcpy(lpSt, &ud.st, sizeof(ud.st));
1306 /***********************************************************************
1307 * VarDateFromUdateEx [OLEAUT32.319]
1309 * Convert an unpacked format date and time to a variant VT_DATE.
1312 * pUdateIn [I] Unpacked format date and time to convert
1313 * lcid [I] Locale identifier for the conversion
1314 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1315 * pDateOut [O] Destination for variant VT_DATE.
1318 * Success: S_OK. *pDateOut contains the converted value.
1319 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1321 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1326 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn,
1327 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1328 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1329 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1330 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1332 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1333 FIXME("lcid possibly not handled, treating as en-us\n");
1335 memcpy(&ud, pUdateIn, sizeof(ud));
1337 if (dwFlags & VAR_VALIDDATE)
1338 WARN("Ignoring VAR_VALIDDATE\n");
1340 if (FAILED(VARIANT_RollUdate(&ud)))
1341 return E_INVALIDARG;
1344 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1347 dateVal += ud.st.wHour / 24.0;
1348 dateVal += ud.st.wMinute / 1440.0;
1349 dateVal += ud.st.wSecond / 86400.0;
1350 dateVal += ud.st.wMilliseconds / 86400000.0;
1352 TRACE("Returning %g\n", dateVal);
1353 *pDateOut = dateVal;
1357 /***********************************************************************
1358 * VarDateFromUdate [OLEAUT32.330]
1360 * Convert an unpacked format date and time to a variant VT_DATE.
1363 * pUdateIn [I] Unpacked format date and time to convert
1364 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1365 * pDateOut [O] Destination for variant VT_DATE.
1368 * Success: S_OK. *pDateOut contains the converted value.
1369 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1372 * This function uses the United States English locale for the conversion. Use
1373 * VarDateFromUdateEx() for alternate locales.
1375 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1377 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1379 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1382 /***********************************************************************
1383 * VarUdateFromDate [OLEAUT32.331]
1385 * Convert a variant VT_DATE into an unpacked format date and time.
1388 * datein [I] Variant VT_DATE format date
1389 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1390 * lpUdate [O] Destination for unpacked format date and time
1393 * Success: S_OK. *lpUdate contains the converted value.
1394 * Failure: E_INVALIDARG, if dateIn is too large or small.
1396 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1398 /* Cumulative totals of days per month */
1399 static const USHORT cumulativeDays[] =
1401 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1403 double datePart, timePart;
1406 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1408 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1409 return E_INVALIDARG;
1411 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1412 /* Compensate for int truncation (always downwards) */
1413 timePart = dateIn - datePart + 0.00000000001;
1414 if (timePart >= 1.0)
1415 timePart -= 0.00000000001;
1418 julianDays = VARIANT_JulianFromDate(dateIn);
1419 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1422 datePart = (datePart + 1.5) / 7.0;
1423 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1424 if (lpUdate->st.wDayOfWeek == 0)
1425 lpUdate->st.wDayOfWeek = 5;
1426 else if (lpUdate->st.wDayOfWeek == 1)
1427 lpUdate->st.wDayOfWeek = 6;
1429 lpUdate->st.wDayOfWeek -= 2;
1431 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1432 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1434 lpUdate->wDayOfYear = 0;
1436 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1437 lpUdate->wDayOfYear += lpUdate->st.wDay;
1441 lpUdate->st.wHour = timePart;
1442 timePart -= lpUdate->st.wHour;
1444 lpUdate->st.wMinute = timePart;
1445 timePart -= lpUdate->st.wMinute;
1447 lpUdate->st.wSecond = timePart;
1448 timePart -= lpUdate->st.wSecond;
1449 lpUdate->st.wMilliseconds = 0;
1452 /* Round the milliseconds, adjusting the time/date forward if needed */
1453 if (lpUdate->st.wSecond < 59)
1454 lpUdate->st.wSecond++;
1457 lpUdate->st.wSecond = 0;
1458 if (lpUdate->st.wMinute < 59)
1459 lpUdate->st.wMinute++;
1462 lpUdate->st.wMinute = 0;
1463 if (lpUdate->st.wHour < 23)
1464 lpUdate->st.wHour++;
1467 lpUdate->st.wHour = 0;
1468 /* Roll over a whole day */
1469 if (++lpUdate->st.wDay > 28)
1470 VARIANT_RollUdate(lpUdate);
1478 #define GET_NUMBER_TEXT(fld,name) \
1480 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1481 WARN("buffer too small for " #fld "\n"); \
1483 if (buff[0]) lpChars->name = buff[0]; \
1484 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1486 /* Get the valid number characters for an lcid */
1487 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1489 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1490 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1493 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1494 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1495 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1496 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1497 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1498 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1499 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1501 /* Local currency symbols are often 2 characters */
1502 lpChars->cCurrencyLocal2 = '\0';
1503 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1505 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1506 case 2: lpChars->cCurrencyLocal = buff[0];
1508 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1510 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1511 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1514 /* Number Parsing States */
1515 #define B_PROCESSING_EXPONENT 0x1
1516 #define B_NEGATIVE_EXPONENT 0x2
1517 #define B_EXPONENT_START 0x4
1518 #define B_INEXACT_ZEROS 0x8
1519 #define B_LEADING_ZERO 0x10
1520 #define B_PROCESSING_HEX 0x20
1521 #define B_PROCESSING_OCT 0x40
1523 /**********************************************************************
1524 * VarParseNumFromStr [OLEAUT32.46]
1526 * Parse a string containing a number into a NUMPARSE structure.
1529 * lpszStr [I] String to parse number from
1530 * lcid [I] Locale Id for the conversion
1531 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1532 * pNumprs [I/O] Destination for parsed number
1533 * rgbDig [O] Destination for digits read in
1536 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1538 * Failure: E_INVALIDARG, if any parameter is invalid.
1539 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1541 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1544 * pNumprs must have the following fields set:
1545 * cDig: Set to the size of rgbDig.
1546 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1550 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1551 * numerals, so this has not been implemented.
1553 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1554 NUMPARSE *pNumprs, BYTE *rgbDig)
1556 VARIANT_NUMBER_CHARS chars;
1558 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1559 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1562 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1564 if (!pNumprs || !rgbDig)
1565 return E_INVALIDARG;
1567 if (pNumprs->cDig < iMaxDigits)
1568 iMaxDigits = pNumprs->cDig;
1571 pNumprs->dwOutFlags = 0;
1572 pNumprs->cchUsed = 0;
1573 pNumprs->nBaseShift = 0;
1574 pNumprs->nPwr10 = 0;
1577 return DISP_E_TYPEMISMATCH;
1579 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1581 /* First consume all the leading symbols and space from the string */
1584 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1586 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1591 } while (isspaceW(*lpszStr));
1593 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1594 *lpszStr == chars.cPositiveSymbol &&
1595 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1597 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1601 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1602 *lpszStr == chars.cNegativeSymbol &&
1603 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1605 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1609 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1610 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1611 *lpszStr == chars.cCurrencyLocal &&
1612 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1614 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1617 /* Only accept currency characters */
1618 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1619 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1621 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1622 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1624 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1632 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1634 /* Only accept non-currency characters */
1635 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1636 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1639 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1640 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1642 dwState |= B_PROCESSING_HEX;
1643 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1647 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1648 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1650 dwState |= B_PROCESSING_OCT;
1651 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1656 /* Strip Leading zeros */
1657 while (*lpszStr == '0')
1659 dwState |= B_LEADING_ZERO;
1666 if (isdigitW(*lpszStr))
1668 if (dwState & B_PROCESSING_EXPONENT)
1670 int exponentSize = 0;
1671 if (dwState & B_EXPONENT_START)
1673 if (!isdigitW(*lpszStr))
1674 break; /* No exponent digits - invalid */
1675 while (*lpszStr == '0')
1677 /* Skip leading zero's in the exponent */
1683 while (isdigitW(*lpszStr))
1686 exponentSize += *lpszStr - '0';
1690 if (dwState & B_NEGATIVE_EXPONENT)
1691 exponentSize = -exponentSize;
1692 /* Add the exponent into the powers of 10 */
1693 pNumprs->nPwr10 += exponentSize;
1694 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1695 lpszStr--; /* back up to allow processing of next char */
1699 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1700 && !(dwState & B_PROCESSING_OCT))
1702 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1704 if (*lpszStr != '0')
1705 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1707 /* This digit can't be represented, but count it in nPwr10 */
1708 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1715 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1716 return DISP_E_TYPEMISMATCH;
1719 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1720 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1722 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1728 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1730 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1733 else if (*lpszStr == chars.cDecimalPoint &&
1734 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1735 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1737 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1740 /* If we have no digits so far, skip leading zeros */
1743 while (lpszStr[1] == '0')
1745 dwState |= B_LEADING_ZERO;
1752 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1753 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1754 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1756 dwState |= B_PROCESSING_EXPONENT;
1757 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1760 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1762 cchUsed++; /* Ignore positive exponent */
1764 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1766 dwState |= B_NEGATIVE_EXPONENT;
1769 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1770 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1771 dwState & B_PROCESSING_HEX)
1773 if (pNumprs->cDig >= iMaxDigits)
1775 return DISP_E_OVERFLOW;
1779 if (*lpszStr >= 'a')
1780 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1782 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1788 break; /* Stop at an unrecognised character */
1793 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1795 /* Ensure a 0 on its own gets stored */
1800 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1802 pNumprs->cchUsed = cchUsed;
1803 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1806 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1808 if (dwState & B_INEXACT_ZEROS)
1809 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1810 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1812 /* copy all of the digits into the output digit buffer */
1813 /* this is exactly what windows does although it also returns */
1814 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1815 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1817 if (dwState & B_PROCESSING_HEX) {
1818 /* hex numbers have always the same format */
1820 pNumprs->nBaseShift=4;
1822 if (dwState & B_PROCESSING_OCT) {
1823 /* oct numbers have always the same format */
1825 pNumprs->nBaseShift=3;
1827 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1836 /* Remove trailing zeros from the last (whole number or decimal) part */
1837 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1844 if (pNumprs->cDig <= iMaxDigits)
1845 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1847 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1849 /* Copy the digits we processed into rgbDig */
1850 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1852 /* Consume any trailing symbols and space */
1855 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1857 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1862 } while (isspaceW(*lpszStr));
1864 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1865 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1866 *lpszStr == chars.cPositiveSymbol)
1868 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1872 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1873 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1874 *lpszStr == chars.cNegativeSymbol)
1876 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1880 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1881 pNumprs->dwOutFlags & NUMPRS_PARENS)
1885 pNumprs->dwOutFlags |= NUMPRS_NEG;
1891 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1893 pNumprs->cchUsed = cchUsed;
1894 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1897 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1898 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1901 return DISP_E_TYPEMISMATCH; /* No Number found */
1903 pNumprs->cchUsed = cchUsed;
1907 /* VTBIT flags indicating an integer value */
1908 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1909 /* VTBIT flags indicating a real number value */
1910 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1912 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1913 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1914 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1915 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1917 /**********************************************************************
1918 * VarNumFromParseNum [OLEAUT32.47]
1920 * Convert a NUMPARSE structure into a numeric Variant type.
1923 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1924 * rgbDig [I] Source for the numbers digits
1925 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1926 * pVarDst [O] Destination for the converted Variant value.
1929 * Success: S_OK. pVarDst contains the converted value.
1930 * Failure: E_INVALIDARG, if any parameter is invalid.
1931 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1934 * - The smallest favoured type present in dwVtBits that can represent the
1935 * number in pNumprs without losing precision is used.
1936 * - Signed types are preferrred over unsigned types of the same size.
1937 * - Preferred types in order are: integer, float, double, currency then decimal.
1938 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1939 * for details of the rounding method.
1940 * - pVarDst is not cleared before the result is stored in it.
1942 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1943 ULONG dwVtBits, VARIANT *pVarDst)
1945 /* Scale factors and limits for double arithmetic */
1946 static const double dblMultipliers[11] = {
1947 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1948 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1950 static const double dblMinimums[11] = {
1951 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1952 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1953 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1955 static const double dblMaximums[11] = {
1956 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1957 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1958 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1961 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1963 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1965 if (pNumprs->nBaseShift)
1967 /* nBaseShift indicates a hex or octal number */
1972 /* Convert the hex or octal number string into a UI64 */
1973 for (i = 0; i < pNumprs->cDig; i++)
1975 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1977 TRACE("Overflow multiplying digits\n");
1978 return DISP_E_OVERFLOW;
1980 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1983 /* also make a negative representation */
1986 /* Try signed and unsigned types in size order */
1987 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
1989 V_VT(pVarDst) = VT_I1;
1990 V_I1(pVarDst) = ul64;
1993 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
1995 V_VT(pVarDst) = VT_UI1;
1996 V_UI1(pVarDst) = ul64;
1999 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2001 V_VT(pVarDst) = VT_I2;
2002 V_I2(pVarDst) = ul64;
2005 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2007 V_VT(pVarDst) = VT_UI2;
2008 V_UI2(pVarDst) = ul64;
2011 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2013 V_VT(pVarDst) = VT_I4;
2014 V_I4(pVarDst) = ul64;
2017 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2019 V_VT(pVarDst) = VT_UI4;
2020 V_UI4(pVarDst) = ul64;
2023 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2025 V_VT(pVarDst) = VT_I8;
2026 V_I8(pVarDst) = ul64;
2029 else if (dwVtBits & VTBIT_UI8)
2031 V_VT(pVarDst) = VT_UI8;
2032 V_UI8(pVarDst) = ul64;
2035 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2037 V_VT(pVarDst) = VT_DECIMAL;
2038 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2039 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2040 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2043 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2045 V_VT(pVarDst) = VT_R4;
2047 V_R4(pVarDst) = ul64;
2049 V_R4(pVarDst) = l64;
2052 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2054 V_VT(pVarDst) = VT_R8;
2056 V_R8(pVarDst) = ul64;
2058 V_R8(pVarDst) = l64;
2062 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2063 return DISP_E_OVERFLOW;
2066 /* Count the number of relevant fractional and whole digits stored,
2067 * And compute the divisor/multiplier to scale the number by.
2069 if (pNumprs->nPwr10 < 0)
2071 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2073 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2074 wholeNumberDigits = 0;
2075 fractionalDigits = pNumprs->cDig;
2076 divisor10 = -pNumprs->nPwr10;
2080 /* An exactly represented real number e.g. 1.024 */
2081 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2082 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2083 divisor10 = pNumprs->cDig - wholeNumberDigits;
2086 else if (pNumprs->nPwr10 == 0)
2088 /* An exactly represented whole number e.g. 1024 */
2089 wholeNumberDigits = pNumprs->cDig;
2090 fractionalDigits = 0;
2092 else /* pNumprs->nPwr10 > 0 */
2094 /* A whole number followed by nPwr10 0's e.g. 102400 */
2095 wholeNumberDigits = pNumprs->cDig;
2096 fractionalDigits = 0;
2097 multiplier10 = pNumprs->nPwr10;
2100 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
2101 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
2102 TRACE("mult %d; div %d\n", multiplier10, divisor10);
2104 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2105 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2107 /* We have one or more integer output choices, and either:
2108 * 1) An integer input value, or
2109 * 2) A real number input value but no floating output choices.
2110 * Alternately, we have a DECIMAL output available and an integer input.
2112 * So, place the integer value into pVarDst, using the smallest type
2113 * possible and preferring signed over unsigned types.
2115 BOOL bOverflow = FALSE, bNegative;
2119 /* Convert the integer part of the number into a UI8 */
2120 for (i = 0; i < wholeNumberDigits; i++)
2122 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2124 TRACE("Overflow multiplying digits\n");
2128 ul64 = ul64 * 10 + rgbDig[i];
2131 /* Account for the scale of the number */
2132 if (!bOverflow && multiplier10)
2134 for (i = 0; i < multiplier10; i++)
2136 if (ul64 > (UI8_MAX / 10))
2138 TRACE("Overflow scaling number\n");
2146 /* If we have any fractional digits, round the value.
2147 * Note we don't have to do this if divisor10 is < 1,
2148 * because this means the fractional part must be < 0.5
2150 if (!bOverflow && fractionalDigits && divisor10 > 0)
2152 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2153 BOOL bAdjust = FALSE;
2155 TRACE("first decimal value is %d\n", *fracDig);
2158 bAdjust = TRUE; /* > 0.5 */
2159 else if (*fracDig == 5)
2161 for (i = 1; i < fractionalDigits; i++)
2165 bAdjust = TRUE; /* > 0.5 */
2169 /* If exactly 0.5, round only odd values */
2170 if (i == fractionalDigits && (ul64 & 1))
2176 if (ul64 == UI8_MAX)
2178 TRACE("Overflow after rounding\n");
2185 /* Zero is not a negative number */
2186 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2188 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
2190 /* For negative integers, try the signed types in size order */
2191 if (!bOverflow && bNegative)
2193 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2195 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2197 V_VT(pVarDst) = VT_I1;
2198 V_I1(pVarDst) = -ul64;
2201 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2203 V_VT(pVarDst) = VT_I2;
2204 V_I2(pVarDst) = -ul64;
2207 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2209 V_VT(pVarDst) = VT_I4;
2210 V_I4(pVarDst) = -ul64;
2213 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2215 V_VT(pVarDst) = VT_I8;
2216 V_I8(pVarDst) = -ul64;
2219 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2221 /* Decimal is only output choice left - fast path */
2222 V_VT(pVarDst) = VT_DECIMAL;
2223 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2224 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2225 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2230 else if (!bOverflow)
2232 /* For positive integers, try signed then unsigned types in size order */
2233 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2235 V_VT(pVarDst) = VT_I1;
2236 V_I1(pVarDst) = ul64;
2239 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2241 V_VT(pVarDst) = VT_UI1;
2242 V_UI1(pVarDst) = ul64;
2245 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2247 V_VT(pVarDst) = VT_I2;
2248 V_I2(pVarDst) = ul64;
2251 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2253 V_VT(pVarDst) = VT_UI2;
2254 V_UI2(pVarDst) = ul64;
2257 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2259 V_VT(pVarDst) = VT_I4;
2260 V_I4(pVarDst) = ul64;
2263 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2265 V_VT(pVarDst) = VT_UI4;
2266 V_UI4(pVarDst) = ul64;
2269 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2271 V_VT(pVarDst) = VT_I8;
2272 V_I8(pVarDst) = ul64;
2275 else if (dwVtBits & VTBIT_UI8)
2277 V_VT(pVarDst) = VT_UI8;
2278 V_UI8(pVarDst) = ul64;
2281 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2283 /* Decimal is only output choice left - fast path */
2284 V_VT(pVarDst) = VT_DECIMAL;
2285 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2286 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2287 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2293 if (dwVtBits & REAL_VTBITS)
2295 /* Try to put the number into a float or real */
2296 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2300 /* Convert the number into a double */
2301 for (i = 0; i < pNumprs->cDig; i++)
2302 whole = whole * 10.0 + rgbDig[i];
2304 TRACE("Whole double value is %16.16g\n", whole);
2306 /* Account for the scale */
2307 while (multiplier10 > 10)
2309 if (whole > dblMaximums[10])
2311 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2315 whole = whole * dblMultipliers[10];
2320 if (whole > dblMaximums[multiplier10])
2322 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2326 whole = whole * dblMultipliers[multiplier10];
2329 TRACE("Scaled double value is %16.16g\n", whole);
2331 while (divisor10 > 10)
2333 if (whole < dblMinimums[10] && whole != 0)
2335 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2339 whole = whole / dblMultipliers[10];
2344 if (whole < dblMinimums[divisor10] && whole != 0)
2346 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2350 whole = whole / dblMultipliers[divisor10];
2353 TRACE("Final double value is %16.16g\n", whole);
2355 if (dwVtBits & VTBIT_R4 &&
2356 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2358 TRACE("Set R4 to final value\n");
2359 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2360 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2364 if (dwVtBits & VTBIT_R8)
2366 TRACE("Set R8 to final value\n");
2367 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2368 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2372 if (dwVtBits & VTBIT_CY)
2374 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2376 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2377 TRACE("Set CY to final value\n");
2380 TRACE("Value Overflows CY\n");
2384 if (dwVtBits & VTBIT_DECIMAL)
2389 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2391 DECIMAL_SETZERO(*pDec);
2394 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2395 DEC_SIGN(pDec) = DECIMAL_NEG;
2397 DEC_SIGN(pDec) = DECIMAL_POS;
2399 /* Factor the significant digits */
2400 for (i = 0; i < pNumprs->cDig; i++)
2402 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2403 carry = (ULONG)(tmp >> 32);
2404 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2405 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2406 carry = (ULONG)(tmp >> 32);
2407 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2408 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2409 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2411 if (tmp >> 32 & UI4_MAX)
2413 VarNumFromParseNum_DecOverflow:
2414 TRACE("Overflow\n");
2415 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2416 return DISP_E_OVERFLOW;
2420 /* Account for the scale of the number */
2421 while (multiplier10 > 0)
2423 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2424 carry = (ULONG)(tmp >> 32);
2425 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2426 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2427 carry = (ULONG)(tmp >> 32);
2428 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2429 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2430 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2432 if (tmp >> 32 & UI4_MAX)
2433 goto VarNumFromParseNum_DecOverflow;
2436 DEC_SCALE(pDec) = divisor10;
2438 V_VT(pVarDst) = VT_DECIMAL;
2441 return DISP_E_OVERFLOW; /* No more output choices */
2444 /**********************************************************************
2445 * VarCat [OLEAUT32.318]
2447 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2449 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2450 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2452 /* Should we VariantClear out? */
2453 /* Can we handle array, vector, by ref etc. */
2454 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2455 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2457 V_VT(out) = VT_NULL;
2461 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2463 V_VT(out) = VT_BSTR;
2464 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2467 if (V_VT(left) == VT_BSTR) {
2471 V_VT(out) = VT_BSTR;
2472 VariantInit(&bstrvar);
2473 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2475 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2478 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2481 if (V_VT(right) == VT_BSTR) {
2485 V_VT(out) = VT_BSTR;
2486 VariantInit(&bstrvar);
2487 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2489 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2492 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2495 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2499 /**********************************************************************
2500 * VarCmp [OLEAUT32.176]
2503 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS
2504 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2507 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2517 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2518 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2520 VariantInit(&lv);VariantInit(&rv);
2521 V_VT(right) &= ~0x8000; /* hack since we sometime get this flag. */
2522 V_VT(left) &= ~0x8000; /* hack since we sometime get this flag. */
2524 /* If either are null, then return VARCMP_NULL */
2525 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL ||
2526 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2529 /* Strings - use VarBstrCmp */
2530 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2531 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2532 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2535 xmask = (1<<(V_VT(left)&VT_TYPEMASK))|(1<<(V_VT(right)&VT_TYPEMASK));
2536 if (xmask & VTBIT_R8) {
2537 rc = VariantChangeType(&lv,left,0,VT_R8);
2538 if (FAILED(rc)) return rc;
2539 rc = VariantChangeType(&rv,right,0,VT_R8);
2540 if (FAILED(rc)) return rc;
2542 if (V_R8(&lv) == V_R8(&rv)) return VARCMP_EQ;
2543 if (V_R8(&lv) < V_R8(&rv)) return VARCMP_LT;
2544 if (V_R8(&lv) > V_R8(&rv)) return VARCMP_GT;
2545 return E_FAIL; /* can't get here */
2547 if (xmask & VTBIT_R4) {
2548 rc = VariantChangeType(&lv,left,0,VT_R4);
2549 if (FAILED(rc)) return rc;
2550 rc = VariantChangeType(&rv,right,0,VT_R4);
2551 if (FAILED(rc)) return rc;
2553 if (V_R4(&lv) == V_R4(&rv)) return VARCMP_EQ;
2554 if (V_R4(&lv) < V_R4(&rv)) return VARCMP_LT;
2555 if (V_R4(&lv) > V_R4(&rv)) return VARCMP_GT;
2556 return E_FAIL; /* can't get here */
2559 /* Integers - Ideally like to use VarDecCmp, but no Dec support yet
2560 Use LONGLONG to maximize ranges */
2562 switch (V_VT(left)&VT_TYPEMASK) {
2563 case VT_I1 : lVal = V_I1(left); break;
2564 case VT_I2 : lVal = V_I2(left); break;
2566 case VT_INT : lVal = V_I4(left); break;
2567 case VT_UI1 : lVal = V_UI1(left); break;
2568 case VT_UI2 : lVal = V_UI2(left); break;
2570 case VT_UINT : lVal = V_UI4(left); break;
2571 case VT_BOOL : lVal = V_BOOL(left); break;
2572 default: lOk = FALSE;
2576 switch (V_VT(right)&VT_TYPEMASK) {
2577 case VT_I1 : rVal = V_I1(right); break;
2578 case VT_I2 : rVal = V_I2(right); break;
2580 case VT_INT : rVal = V_I4(right); break;
2581 case VT_UI1 : rVal = V_UI1(right); break;
2582 case VT_UI2 : rVal = V_UI2(right); break;
2584 case VT_UINT : rVal = V_UI4(right); break;
2585 case VT_BOOL : rVal = V_BOOL(right); break;
2586 default: rOk = FALSE;
2592 } else if (lVal > rVal) {
2599 /* Strings - use VarBstrCmp */
2600 if ((V_VT(left)&VT_TYPEMASK) == VT_DATE &&
2601 (V_VT(right)&VT_TYPEMASK) == VT_DATE) {
2603 if (floor(V_DATE(left)) == floor(V_DATE(right))) {
2604 /* Due to floating point rounding errors, calculate varDate in whole numbers) */
2605 double wholePart = 0.0;
2609 /* Get the fraction * 24*60*60 to make it into whole seconds */
2610 wholePart = (double) floor( V_DATE(left) );
2611 if (wholePart == 0) wholePart = 1;
2612 leftR = floor(fmod( V_DATE(left), wholePart ) * (24*60*60));
2614 wholePart = (double) floor( V_DATE(right) );
2615 if (wholePart == 0) wholePart = 1;
2616 rightR = floor(fmod( V_DATE(right), wholePart ) * (24*60*60));
2618 if (leftR < rightR) {
2620 } else if (leftR > rightR) {
2626 } else if (V_DATE(left) < V_DATE(right)) {
2628 } else if (V_DATE(left) > V_DATE(right)) {
2632 FIXME("VarCmp partial implementation, doesn't support vt 0x%x / 0x%x\n",V_VT(left), V_VT(right));
2636 /**********************************************************************
2637 * VarAnd [OLEAUT32.142]
2640 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2642 HRESULT rc = E_FAIL;
2644 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2645 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2647 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2648 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2650 V_VT(result) = VT_BOOL;
2651 if (V_BOOL(left) && V_BOOL(right)) {
2652 V_BOOL(result) = VARIANT_TRUE;
2654 V_BOOL(result) = VARIANT_FALSE;
2665 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2666 becomes I4, even unsigned ints (incl. UI2) */
2669 switch (V_VT(left)&VT_TYPEMASK) {
2670 case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
2671 case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
2673 case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
2674 case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
2675 case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
2677 case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
2678 case VT_BOOL : rVal = V_BOOL(left); resT=VT_I4; break;
2679 default: lOk = FALSE;
2683 switch (V_VT(right)&VT_TYPEMASK) {
2684 case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
2685 case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
2687 case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
2688 case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
2689 case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
2691 case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
2692 case VT_BOOL : rVal = V_BOOL(right); resT=VT_I4; break;
2693 default: rOk = FALSE;
2697 res = (lVal & rVal);
2698 V_VT(result) = resT;
2700 case VT_I2 : V_I2(result) = res; break;
2701 case VT_I4 : V_I4(result) = res; break;
2703 FIXME("Unexpected result variant type %x\n", resT);
2709 FIXME("VarAnd stub\n");
2713 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2714 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2718 /**********************************************************************
2719 * VarAdd [OLEAUT32.141]
2720 * FIXME: From MSDN: If ... Then
2721 * Both expressions are of the string type Concatenated.
2722 * One expression is a string type and the other a character Addition.
2723 * One expression is numeric and the other is a string Addition.
2724 * Both expressions are numeric Addition.
2725 * Either expression is NULL NULL is returned.
2726 * Both expressions are empty Integer subtype is returned.
2729 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2731 HRESULT rc = E_FAIL;
2733 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2734 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2736 if ((V_VT(left)&VT_TYPEMASK) == VT_EMPTY)
2737 return VariantCopy(result,right);
2739 if ((V_VT(right)&VT_TYPEMASK) == VT_EMPTY)
2740 return VariantCopy(result,left);
2742 /* check if we add doubles */
2743 if (((V_VT(left)&VT_TYPEMASK) == VT_R8) || ((V_VT(right)&VT_TYPEMASK) == VT_R8)) {
2751 switch (V_VT(left)&VT_TYPEMASK) {
2752 case VT_I1 : lVal = V_I1(left); break;
2753 case VT_I2 : lVal = V_I2(left); break;
2755 case VT_INT : lVal = V_I4(left); break;
2756 case VT_UI1 : lVal = V_UI1(left); break;
2757 case VT_UI2 : lVal = V_UI2(left); break;
2759 case VT_UINT : lVal = V_UI4(left); break;
2760 case VT_R4 : lVal = V_R4(left); break;
2761 case VT_R8 : lVal = V_R8(left); break;
2762 case VT_NULL : lVal = 0.0; break;
2763 default: lOk = FALSE;
2767 switch (V_VT(right)&VT_TYPEMASK) {
2768 case VT_I1 : rVal = V_I1(right); break;
2769 case VT_I2 : rVal = V_I2(right); break;
2771 case VT_INT : rVal = V_I4(right); break;
2772 case VT_UI1 : rVal = V_UI1(right); break;
2773 case VT_UI2 : rVal = V_UI2(right); break;
2775 case VT_UINT : rVal = V_UI4(right); break;
2776 case VT_R4 : rVal = V_R4(right);break;
2777 case VT_R8 : rVal = V_R8(right);break;
2778 case VT_NULL : rVal = 0.0; break;
2779 default: rOk = FALSE;
2783 res = (lVal + rVal);
2784 V_VT(result) = VT_R8;
2788 FIXME("Unhandled type pair %d / %d in double addition.\n",
2789 (V_VT(left)&VT_TYPEMASK),
2790 (V_VT(right)&VT_TYPEMASK)
2796 /* now check if we add floats. VT_R8 can no longer happen here! */
2797 if (((V_VT(left)&VT_TYPEMASK) == VT_R4) || ((V_VT(right)&VT_TYPEMASK) == VT_R4)) {
2805 switch (V_VT(left)&VT_TYPEMASK) {
2806 case VT_I1 : lVal = V_I1(left); break;
2807 case VT_I2 : lVal = V_I2(left); break;
2809 case VT_INT : lVal = V_I4(left); break;
2810 case VT_UI1 : lVal = V_UI1(left); break;
2811 case VT_UI2 : lVal = V_UI2(left); break;
2813 case VT_UINT : lVal = V_UI4(left); break;
2814 case VT_R4 : lVal = V_R4(left); break;
2815 case VT_NULL : lVal = 0.0; break;
2816 default: lOk = FALSE;
2820 switch (V_VT(right)&VT_TYPEMASK) {
2821 case VT_I1 : rVal = V_I1(right); break;
2822 case VT_I2 : rVal = V_I2(right); break;
2824 case VT_INT : rVal = V_I4(right); break;
2825 case VT_UI1 : rVal = V_UI1(right); break;
2826 case VT_UI2 : rVal = V_UI2(right); break;
2828 case VT_UINT : rVal = V_UI4(right); break;
2829 case VT_R4 : rVal = V_R4(right);break;
2830 case VT_NULL : rVal = 0.0; break;
2831 default: rOk = FALSE;
2835 res = (lVal + rVal);
2836 V_VT(result) = VT_R4;
2840 FIXME("Unhandled type pair %d / %d in float addition.\n",
2841 (V_VT(left)&VT_TYPEMASK),
2842 (V_VT(right)&VT_TYPEMASK)
2848 /* Handle strings as concat */
2849 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2850 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2851 V_VT(result) = VT_BSTR;
2852 return VarBstrCat(V_BSTR(left), V_BSTR(right), &V_BSTR(result));
2861 int resT = 0; /* Testing has shown I2 + I2 == I2, all else
2865 switch (V_VT(left)&VT_TYPEMASK) {
2866 case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
2867 case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
2869 case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
2870 case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
2871 case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
2873 case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
2874 case VT_NULL : lVal = 0; resT = VT_I4; break;
2875 default: lOk = FALSE;
2879 switch (V_VT(right)&VT_TYPEMASK) {
2880 case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
2881 case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
2883 case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
2884 case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
2885 case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
2887 case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
2888 case VT_NULL : rVal = 0; resT=VT_I4; break;
2889 default: rOk = FALSE;
2893 res = (lVal + rVal);
2894 V_VT(result) = resT;
2896 case VT_I2 : V_I2(result) = res; break;
2897 case VT_I4 : V_I4(result) = res; break;
2899 FIXME("Unexpected result variant type %x\n", resT);
2905 FIXME("unimplemented part (0x%x + 0x%x)\n",V_VT(left), V_VT(right));
2909 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2910 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2914 /**********************************************************************
2915 * VarMul [OLEAUT32.156]
2918 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2920 HRESULT rc = E_FAIL;
2921 VARTYPE lvt,rvt,resvt;
2925 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2926 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2928 VariantInit(&lv);VariantInit(&rv);
2929 lvt = V_VT(left)&VT_TYPEMASK;
2930 rvt = V_VT(right)&VT_TYPEMASK;
2931 found = FALSE;resvt=VT_VOID;
2932 if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8)) {
2936 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|(1<<VT_INT)|(1<<VT_UINT)))) {
2941 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2944 rc = VariantChangeType(&lv, left, 0, resvt);
2946 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2949 rc = VariantChangeType(&rv, right, 0, resvt);
2951 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2956 V_VT(result) = resvt;
2957 V_R8(result) = V_R8(&lv) * V_R8(&rv);
2961 V_VT(result) = resvt;
2962 V_I4(result) = V_I4(&lv) * V_I4(&rv);
2966 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2967 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2971 /**********************************************************************
2972 * VarDiv [OLEAUT32.143]
2975 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2977 HRESULT rc = E_FAIL;
2978 VARTYPE lvt,rvt,resvt;
2982 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2983 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2985 VariantInit(&lv);VariantInit(&rv);
2986 lvt = V_VT(left)&VT_TYPEMASK;
2987 rvt = V_VT(right)&VT_TYPEMASK;
2988 found = FALSE;resvt = VT_VOID;
2989 if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8)) {
2993 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|(1<<VT_INT)|(1<<VT_UINT)))) {
2998 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3001 rc = VariantChangeType(&lv, left, 0, resvt);
3003 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3006 rc = VariantChangeType(&rv, right, 0, resvt);
3008 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3013 if (V_R8(&rv) == 0) return DISP_E_DIVBYZERO;
3014 V_VT(result) = resvt;
3015 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3019 if (V_I4(&rv) == 0) return DISP_E_DIVBYZERO;
3020 V_VT(result) = resvt;
3021 V_I4(result) = V_I4(&lv) / V_I4(&rv);
3025 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3026 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3030 /**********************************************************************
3031 * VarSub [OLEAUT32.159]
3034 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3036 HRESULT rc = E_FAIL;
3037 VARTYPE lvt,rvt,resvt;
3041 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3042 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3044 VariantInit(&lv);VariantInit(&rv);
3045 lvt = V_VT(left)&VT_TYPEMASK;
3046 rvt = V_VT(right)&VT_TYPEMASK;
3047 found = FALSE;resvt = VT_VOID;
3048 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_DATE)|(1<<VT_R4)|(1<<VT_R8))) {
3052 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|(1<<VT_INT)|(1<<VT_UINT)))) {
3057 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3060 rc = VariantChangeType(&lv, left, 0, resvt);
3062 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3065 rc = VariantChangeType(&rv, right, 0, resvt);
3067 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3072 V_VT(result) = resvt;
3073 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3077 V_VT(result) = resvt;
3078 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3082 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3083 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3087 /**********************************************************************
3088 * VarOr [OLEAUT32.157]
3090 * Perform a logical or (OR) operation on two variants.
3093 * pVarLeft [I] First variant
3094 * pVarRight [I] Variant to OR with pVarLeft
3095 * pVarOut [O] Destination for OR result
3098 * Success: S_OK. pVarOut contains the result of the operation with its type
3099 * taken from the table listed under VarXor().
3100 * Failure: An HRESULT error code indicating the error.
3103 * See the Notes section of VarXor() for further information.
3105 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3108 VARIANT varLeft, varRight, varStr;
3111 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3112 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3113 debugstr_VF(pVarRight), pVarOut);
3115 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3116 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3117 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3118 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3119 return DISP_E_BADVARTYPE;
3121 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3123 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3125 /* NULL OR Zero is NULL, NULL OR value is value */
3126 if (V_VT(pVarLeft) == VT_NULL)
3127 pVarLeft = pVarRight; /* point to the non-NULL var */
3129 V_VT(pVarOut) = VT_NULL;
3132 switch (V_VT(pVarLeft))
3134 case VT_DATE: case VT_R8:
3139 if (V_BOOL(pVarLeft))
3140 *pVarOut = *pVarLeft;
3142 case VT_I2: case VT_UI2:
3151 if (V_UI1(pVarLeft))
3152 *pVarOut = *pVarLeft;
3158 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
3163 if (V_CY(pVarLeft).int64)
3166 case VT_I8: case VT_UI8:
3171 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
3178 if (!V_BSTR(pVarLeft))
3179 return DISP_E_BADVARTYPE;
3181 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3182 if (SUCCEEDED(hRet) && b)
3184 V_VT(pVarOut) = VT_BOOL;
3185 V_BOOL(pVarOut) = b;
3189 case VT_NULL: case VT_EMPTY:
3190 V_VT(pVarOut) = VT_NULL;
3193 return DISP_E_BADVARTYPE;
3197 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3199 if (V_VT(pVarLeft) == VT_EMPTY)
3200 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3203 /* Since one argument is empty (0), OR'ing it with the other simply
3204 * gives the others value (as 0|x => x). So just convert the other
3205 * argument to the required result type.
3207 switch (V_VT(pVarLeft))
3210 if (!V_BSTR(pVarLeft))
3211 return DISP_E_BADVARTYPE;
3213 hRet = VariantCopy(&varStr, pVarLeft);
3217 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3220 /* Fall Through ... */
3221 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3222 V_VT(pVarOut) = VT_I2;
3224 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3225 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3226 case VT_INT: case VT_UINT: case VT_UI8:
3227 V_VT(pVarOut) = VT_I4;
3230 V_VT(pVarOut) = VT_I8;
3233 return DISP_E_BADVARTYPE;
3235 hRet = VariantCopy(&varLeft, pVarLeft);
3238 pVarLeft = &varLeft;
3239 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
3243 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3245 V_VT(pVarOut) = VT_BOOL;
3246 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
3250 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3252 V_VT(pVarOut) = VT_UI1;
3253 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
3257 if (V_VT(pVarLeft) == VT_BSTR)
3259 hRet = VariantCopy(&varStr, pVarLeft);
3263 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3268 if (V_VT(pVarLeft) == VT_BOOL &&
3269 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
3273 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3274 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
3275 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3276 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
3280 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3282 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3283 return DISP_E_TYPEMISMATCH;
3287 hRet = VariantCopy(&varLeft, pVarLeft);
3291 hRet = VariantCopy(&varRight, pVarRight);
3295 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3296 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3301 if (V_VT(&varLeft) == VT_BSTR &&
3302 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
3303 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
3304 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
3305 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3310 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
3311 V_VT(&varRight) = VT_I4; /* Don't overflow */
3316 if (V_VT(&varRight) == VT_BSTR &&
3317 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
3318 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
3319 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
3320 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3328 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
3330 else if (vt == VT_I4)
3332 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
3336 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
3340 VariantClear(&varStr);
3341 VariantClear(&varLeft);
3342 VariantClear(&varRight);
3346 /**********************************************************************
3347 * VarAbs [OLEAUT32.168]
3349 * Convert a variant to its absolute value.
3352 * pVarIn [I] Source variant
3353 * pVarOut [O] Destination for converted value
3356 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3357 * Failure: An HRESULT error code indicating the error.
3360 * - This function does not process by-reference variants.
3361 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3362 * according to the following table:
3363 *| Input Type Output Type
3364 *| ---------- -----------
3367 *| (All others) Unchanged
3369 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
3372 HRESULT hRet = S_OK;
3374 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3375 debugstr_VF(pVarIn), pVarOut);
3377 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
3378 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
3379 V_VT(pVarIn) == VT_ERROR)
3380 return DISP_E_TYPEMISMATCH;
3382 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
3384 #define ABS_CASE(typ,min) \
3385 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3386 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3389 switch (V_VT(pVarIn))
3391 ABS_CASE(I1,I1_MIN);
3393 V_VT(pVarOut) = VT_I2;
3394 /* BOOL->I2, Fall through ... */
3395 ABS_CASE(I2,I2_MIN);
3397 ABS_CASE(I4,I4_MIN);
3398 ABS_CASE(I8,I8_MIN);
3399 ABS_CASE(R4,R4_MIN);
3401 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3404 V_VT(pVarOut) = VT_R8;
3406 /* Fall through ... */
3408 ABS_CASE(R8,R8_MIN);
3410 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3413 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3423 V_VT(pVarOut) = VT_I2;
3428 hRet = DISP_E_BADVARTYPE;
3434 /**********************************************************************
3435 * VarFix [OLEAUT32.169]
3437 * Truncate a variants value to a whole number.
3440 * pVarIn [I] Source variant
3441 * pVarOut [O] Destination for converted value
3444 * Success: S_OK. pVarOut contains the converted value.
3445 * Failure: An HRESULT error code indicating the error.
3448 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3449 * according to the following table:
3450 *| Input Type Output Type
3451 *| ---------- -----------
3455 *| All Others Unchanged
3456 * - The difference between this function and VarInt() is that VarInt() rounds
3457 * negative numbers away from 0, while this function rounds them towards zero.
3459 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3461 HRESULT hRet = S_OK;
3463 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3464 debugstr_VF(pVarIn), pVarOut);
3466 V_VT(pVarOut) = V_VT(pVarIn);
3468 switch (V_VT(pVarIn))
3471 V_UI1(pVarOut) = V_UI1(pVarIn);
3474 V_VT(pVarOut) = VT_I2;
3477 V_I2(pVarOut) = V_I2(pVarIn);
3480 V_I4(pVarOut) = V_I4(pVarIn);
3483 V_I8(pVarOut) = V_I8(pVarIn);
3486 if (V_R4(pVarIn) < 0.0f)
3487 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3489 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3492 V_VT(pVarOut) = VT_R8;
3493 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3498 if (V_R8(pVarIn) < 0.0)
3499 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3501 V_R8(pVarOut) = floor(V_R8(pVarIn));
3504 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3507 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3510 V_VT(pVarOut) = VT_I2;
3517 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3518 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3519 hRet = DISP_E_BADVARTYPE;
3521 hRet = DISP_E_TYPEMISMATCH;
3524 V_VT(pVarOut) = VT_EMPTY;
3529 /**********************************************************************
3530 * VarInt [OLEAUT32.172]
3532 * Truncate a variants value to a whole number.
3535 * pVarIn [I] Source variant
3536 * pVarOut [O] Destination for converted value
3539 * Success: S_OK. pVarOut contains the converted value.
3540 * Failure: An HRESULT error code indicating the error.
3543 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3544 * according to the following table:
3545 *| Input Type Output Type
3546 *| ---------- -----------
3550 *| All Others Unchanged
3551 * - The difference between this function and VarFix() is that VarFix() rounds
3552 * negative numbers towards 0, while this function rounds them away from zero.
3554 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3556 HRESULT hRet = S_OK;
3558 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3559 debugstr_VF(pVarIn), pVarOut);
3561 V_VT(pVarOut) = V_VT(pVarIn);
3563 switch (V_VT(pVarIn))
3566 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3569 V_VT(pVarOut) = VT_R8;
3570 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3575 V_R8(pVarOut) = floor(V_R8(pVarIn));
3578 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3581 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3584 return VarFix(pVarIn, pVarOut);
3590 /**********************************************************************
3591 * VarXor [OLEAUT32.167]
3593 * Perform a logical exclusive-or (XOR) operation on two variants.
3596 * pVarLeft [I] First variant
3597 * pVarRight [I] Variant to XOR with pVarLeft
3598 * pVarOut [O] Destination for XOR result
3601 * Success: S_OK. pVarOut contains the result of the operation with its type
3602 * taken from the table below).
3603 * Failure: An HRESULT error code indicating the error.
3606 * - Neither pVarLeft or pVarRight are modified by this function.
3607 * - This function does not process by-reference variants.
3608 * - Input types of VT_BSTR may be numeric strings or boolean text.
3609 * - The type of result stored in pVarOut depends on the types of pVarLeft
3610 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
3611 * or VT_NULL if the function succeeds.
3612 * - Type promotion is inconsistent and as a result certain combinations of
3613 * values will return DISP_E_OVERFLOW even when they could be represented.
3614 * This matches the behaviour of native oleaut32.
3616 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3619 VARIANT varLeft, varRight;
3623 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3624 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3625 debugstr_VF(pVarRight), pVarOut);
3627 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3628 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
3629 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
3630 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3631 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
3632 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
3633 return DISP_E_BADVARTYPE;
3635 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3637 /* NULL XOR anything valid is NULL */
3638 V_VT(pVarOut) = VT_NULL;
3642 /* Copy our inputs so we don't disturb anything */
3643 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
3645 hRet = VariantCopy(&varLeft, pVarLeft);
3649 hRet = VariantCopy(&varRight, pVarRight);
3653 /* Try any strings first as numbers, then as VT_BOOL */
3654 if (V_VT(&varLeft) == VT_BSTR)
3656 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
3657 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
3658 FAILED(hRet) ? VT_BOOL : VT_I4);
3663 if (V_VT(&varRight) == VT_BSTR)
3665 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
3666 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
3667 FAILED(hRet) ? VT_BOOL : VT_I4);
3672 /* Determine the result type */
3673 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
3675 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3676 return DISP_E_TYPEMISMATCH;
3681 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
3683 case (VT_BOOL << 16) | VT_BOOL:
3686 case (VT_UI1 << 16) | VT_UI1:
3689 case (VT_EMPTY << 16) | VT_EMPTY:
3690 case (VT_EMPTY << 16) | VT_UI1:
3691 case (VT_EMPTY << 16) | VT_I2:
3692 case (VT_EMPTY << 16) | VT_BOOL:
3693 case (VT_UI1 << 16) | VT_EMPTY:
3694 case (VT_UI1 << 16) | VT_I2:
3695 case (VT_UI1 << 16) | VT_BOOL:
3696 case (VT_I2 << 16) | VT_EMPTY:
3697 case (VT_I2 << 16) | VT_UI1:
3698 case (VT_I2 << 16) | VT_I2:
3699 case (VT_I2 << 16) | VT_BOOL:
3700 case (VT_BOOL << 16) | VT_EMPTY:
3701 case (VT_BOOL << 16) | VT_UI1:
3702 case (VT_BOOL << 16) | VT_I2:
3711 /* VT_UI4 does not overflow */
3714 if (V_VT(&varLeft) == VT_UI4)
3715 V_VT(&varLeft) = VT_I4;
3716 if (V_VT(&varRight) == VT_UI4)
3717 V_VT(&varRight) = VT_I4;
3720 /* Convert our input copies to the result type */
3721 if (V_VT(&varLeft) != vt)
3722 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3726 if (V_VT(&varRight) != vt)
3727 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3733 /* Calculate the result */
3737 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
3740 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
3744 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
3747 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
3752 VariantClear(&varLeft);
3753 VariantClear(&varRight);
3757 /**********************************************************************
3758 * VarEqv [OLEAUT32.172]
3760 * Determine if two variants contain the same value.
3763 * pVarLeft [I] First variant to compare
3764 * pVarRight [I] Variant to compare to pVarLeft
3765 * pVarOut [O] Destination for comparison result
3768 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
3769 * if equivalent or non-zero otherwise.
3770 * Failure: An HRESULT error code indicating the error.
3773 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
3776 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3780 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3781 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3782 debugstr_VF(pVarRight), pVarOut);
3784 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
3785 if (SUCCEEDED(hRet))
3787 if (V_VT(pVarOut) == VT_I8)
3788 V_I8(pVarOut) = ~V_I8(pVarOut);
3790 V_UI4(pVarOut) = ~V_UI4(pVarOut);
3795 /**********************************************************************
3796 * VarNeg [OLEAUT32.173]
3798 * Negate the value of a variant.
3801 * pVarIn [I] Source variant
3802 * pVarOut [O] Destination for converted value
3805 * Success: S_OK. pVarOut contains the converted value.
3806 * Failure: An HRESULT error code indicating the error.
3809 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3810 * according to the following table:
3811 *| Input Type Output Type
3812 *| ---------- -----------
3817 *| All Others Unchanged (unless promoted)
3818 * - Where the negated value of a variant does not fit in its base type, the type
3819 * is promoted according to the following table:
3820 *| Input Type Promoted To
3821 *| ---------- -----------
3825 * - The native version of this function returns DISP_E_BADVARTYPE for valid
3826 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
3827 * for types which are not valid. Since this is in contravention of the
3828 * meaning of those error codes and unlikely to be relied on by applications,
3829 * this implementation returns errors consistent with the other high level
3830 * variant math functions.
3832 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
3834 HRESULT hRet = S_OK;
3836 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3837 debugstr_VF(pVarIn), pVarOut);
3839 V_VT(pVarOut) = V_VT(pVarIn);
3841 switch (V_VT(pVarIn))
3844 V_VT(pVarOut) = VT_I2;
3845 V_I2(pVarOut) = -V_UI1(pVarIn);
3848 V_VT(pVarOut) = VT_I2;
3851 if (V_I2(pVarIn) == I2_MIN)
3853 V_VT(pVarOut) = VT_I4;
3854 V_I4(pVarOut) = -(int)V_I2(pVarIn);
3857 V_I2(pVarOut) = -V_I2(pVarIn);
3860 if (V_I4(pVarIn) == I4_MIN)
3862 V_VT(pVarOut) = VT_R8;
3863 V_R8(pVarOut) = -(double)V_I4(pVarIn);
3866 V_I4(pVarOut) = -V_I4(pVarIn);
3869 if (V_I8(pVarIn) == I8_MIN)
3871 V_VT(pVarOut) = VT_R8;
3872 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
3873 V_R8(pVarOut) *= -1.0;
3876 V_I8(pVarOut) = -V_I8(pVarIn);
3879 V_R4(pVarOut) = -V_R4(pVarIn);
3883 V_R8(pVarOut) = -V_R8(pVarIn);
3886 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
3889 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3892 V_VT(pVarOut) = VT_R8;
3893 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3894 V_R8(pVarOut) = -V_R8(pVarOut);
3897 V_VT(pVarOut) = VT_I2;
3904 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3905 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3906 hRet = DISP_E_BADVARTYPE;
3908 hRet = DISP_E_TYPEMISMATCH;
3911 V_VT(pVarOut) = VT_EMPTY;
3916 /**********************************************************************
3917 * VarNot [OLEAUT32.174]
3919 * Perform a not operation on a variant.
3922 * pVarIn [I] Source variant
3923 * pVarOut [O] Destination for converted value
3926 * Success: S_OK. pVarOut contains the converted value.
3927 * Failure: An HRESULT error code indicating the error.
3930 * - Strictly speaking, this function performs a bitwise ones complement
3931 * on the variants value (after possibly converting to VT_I4, see below).
3932 * This only behaves like a boolean not operation if the value in
3933 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
3934 * - To perform a genuine not operation, convert the variant to a VT_BOOL
3935 * before calling this function.
3936 * - This function does not process by-reference variants.
3937 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3938 * according to the following table:
3939 *| Input Type Output Type
3940 *| ---------- -----------
3947 *| (All others) Unchanged
3949 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
3952 HRESULT hRet = S_OK;
3954 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3955 debugstr_VF(pVarIn), pVarOut);
3957 V_VT(pVarOut) = V_VT(pVarIn);
3959 switch (V_VT(pVarIn))
3962 V_I4(pVarOut) = ~V_I1(pVarIn);
3963 V_VT(pVarOut) = VT_I4;
3965 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
3967 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
3969 V_I4(pVarOut) = ~V_UI2(pVarIn);
3970 V_VT(pVarOut) = VT_I4;
3973 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
3977 /* Fall through ... */
3979 V_VT(pVarOut) = VT_I4;
3980 /* Fall through ... */
3981 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
3984 V_I4(pVarOut) = ~V_UI4(pVarIn);
3985 V_VT(pVarOut) = VT_I4;
3987 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
3989 V_I4(pVarOut) = ~V_UI8(pVarIn);
3990 V_VT(pVarOut) = VT_I4;
3993 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
3994 V_I4(pVarOut) = ~V_I4(pVarOut);
3995 V_VT(pVarOut) = VT_I4;
3998 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4002 /* Fall through ... */
4005 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4006 V_I4(pVarOut) = ~V_I4(pVarOut);
4007 V_VT(pVarOut) = VT_I4;
4010 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4011 V_I4(pVarOut) = ~V_I4(pVarOut);
4012 V_VT(pVarOut) = VT_I4;
4016 V_VT(pVarOut) = VT_I2;
4022 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4023 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4024 hRet = DISP_E_BADVARTYPE;
4026 hRet = DISP_E_TYPEMISMATCH;
4029 V_VT(pVarOut) = VT_EMPTY;
4034 /**********************************************************************
4035 * VarRound [OLEAUT32.175]
4037 * Perform a round operation on a variant.
4040 * pVarIn [I] Source variant
4041 * deci [I] Number of decimals to round to
4042 * pVarOut [O] Destination for converted value
4045 * Success: S_OK. pVarOut contains the converted value.
4046 * Failure: An HRESULT error code indicating the error.
4049 * - Floating point values are rounded to the desired number of decimals.
4050 * - Some integer types are just copied to the return variable.
4051 * - Some other integer types are not handled and fail.
4053 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
4056 HRESULT hRet = S_OK;
4059 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
4061 switch (V_VT(pVarIn))
4063 /* cases that fail on windows */
4068 hRet = DISP_E_BADVARTYPE;
4071 /* cases just copying in to out */
4073 V_VT(pVarOut) = V_VT(pVarIn);
4074 V_UI1(pVarOut) = V_UI1(pVarIn);
4077 V_VT(pVarOut) = V_VT(pVarIn);
4078 V_I2(pVarOut) = V_I2(pVarIn);
4081 V_VT(pVarOut) = V_VT(pVarIn);
4082 V_I4(pVarOut) = V_I4(pVarIn);
4085 V_VT(pVarOut) = V_VT(pVarIn);
4086 /* value unchanged */
4089 /* cases that change type */
4091 V_VT(pVarOut) = VT_I2;
4095 V_VT(pVarOut) = VT_I2;
4096 V_I2(pVarOut) = V_BOOL(pVarIn);
4099 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4104 /* Fall through ... */
4106 /* cases we need to do math */
4108 if (V_R8(pVarIn)>0) {
4109 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4111 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4113 V_VT(pVarOut) = V_VT(pVarIn);
4116 if (V_R4(pVarIn)>0) {
4117 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4119 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4121 V_VT(pVarOut) = V_VT(pVarIn);
4124 if (V_DATE(pVarIn)>0) {
4125 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4127 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4129 V_VT(pVarOut) = V_VT(pVarIn);
4135 factor=pow(10, 4-deci);
4137 if (V_CY(pVarIn).int64>0) {
4138 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
4140 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
4142 V_VT(pVarOut) = V_VT(pVarIn);
4145 /* cases we don't know yet */
4147 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4148 V_VT(pVarIn) & VT_TYPEMASK, deci);
4149 hRet = DISP_E_BADVARTYPE;
4153 V_VT(pVarOut) = VT_EMPTY;
4155 TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
4156 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
4157 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
4162 /**********************************************************************
4163 * VarIdiv [OLEAUT32.153]
4165 * Converts input variants to integers and divides them.
4168 * left [I] Left hand variant
4169 * right [I] Right hand variant
4170 * result [O] Destination for quotient
4173 * Success: S_OK. result contains the quotient.
4174 * Failure: An HRESULT error code indicating the error.
4177 * If either expression is null, null is returned, as per MSDN
4179 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4187 if ((V_VT(left) == VT_NULL) || (V_VT(right) == VT_NULL)) {
4188 hr = VariantChangeType(result, result, 0, VT_NULL);
4190 /* This should never happen */
4191 FIXME("Failed to convert return value to VT_NULL.\n");
4197 hr = VariantChangeType(&lv, left, 0, VT_I4);
4201 hr = VariantChangeType(&rv, right, 0, VT_I4);
4206 hr = VarDiv(&lv, &rv, result);
4211 /**********************************************************************
4212 * VarMod [OLEAUT32.155]
4214 * Perform the modulus operation of the right hand variant on the left
4217 * left [I] Left hand variant
4218 * right [I] Right hand variant
4219 * result [O] Destination for converted value
4222 * Success: S_OK. result contains the remainder.
4223 * Failure: An HRESULT error code indicating the error.
4226 * If an error occurs the type of result will be modified but the value will not be.
4227 * Doesn't support arrays or any special flags yet.
4229 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4233 HRESULT rc = E_FAIL;
4240 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
4241 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
4243 /* check for invalid inputs */
4245 switch (V_VT(left) & VT_TYPEMASK) {
4266 V_VT(result) = VT_EMPTY;
4267 return DISP_E_TYPEMISMATCH;
4269 V_VT(result) = VT_EMPTY;
4270 return E_INVALIDARG;
4272 return DISP_E_TYPEMISMATCH;
4274 V_VT(result) = VT_EMPTY;
4275 return DISP_E_TYPEMISMATCH;
4279 V_VT(result) = VT_EMPTY;
4280 return DISP_E_BADVARTYPE;
4285 switch (V_VT(right) & VT_TYPEMASK) {
4291 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
4293 V_VT(result) = VT_EMPTY;
4294 return DISP_E_TYPEMISMATCH;
4297 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
4299 V_VT(result) = VT_EMPTY;
4300 return DISP_E_TYPEMISMATCH;
4310 if(V_VT(left) == VT_EMPTY)
4312 V_VT(result) = VT_I4;
4318 if(V_VT(left) == VT_NULL)
4320 V_VT(result) = VT_NULL;
4326 V_VT(result) = VT_EMPTY;
4327 return DISP_E_BADVARTYPE;
4329 if(V_VT(left) == VT_VOID)
4331 V_VT(result) = VT_EMPTY;
4332 return DISP_E_BADVARTYPE;
4333 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
4336 V_VT(result) = VT_NULL;
4340 V_VT(result) = VT_NULL;
4341 return DISP_E_BADVARTYPE;
4345 V_VT(result) = VT_EMPTY;
4346 return DISP_E_TYPEMISMATCH;
4348 if(V_VT(left) == VT_ERROR)
4350 V_VT(result) = VT_EMPTY;
4351 return DISP_E_TYPEMISMATCH;
4354 V_VT(result) = VT_EMPTY;
4355 return E_INVALIDARG;
4358 return DISP_E_TYPEMISMATCH;
4360 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
4362 V_VT(result) = VT_EMPTY;
4363 return DISP_E_BADVARTYPE;
4366 V_VT(result) = VT_EMPTY;
4367 return DISP_E_TYPEMISMATCH;
4370 V_VT(result) = VT_EMPTY;
4371 return DISP_E_BADVARTYPE;
4374 /* determine the result type */
4375 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
4376 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4377 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
4378 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
4379 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4380 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4381 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
4382 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4383 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4384 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
4385 else resT = VT_I4; /* most outputs are I4 */
4387 /* convert to I8 for the modulo */
4388 rc = VariantChangeType(&lv, left, 0, VT_I8);
4391 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
4395 rc = VariantChangeType(&rv, right, 0, VT_I8);
4398 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
4402 /* if right is zero set VT_EMPTY and return divide by zero */
4405 V_VT(result) = VT_EMPTY;
4406 return DISP_E_DIVBYZERO;
4409 /* perform the modulo operation */
4410 V_VT(result) = VT_I8;
4411 V_I8(result) = V_I8(&lv) % V_I8(&rv);
4413 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
4415 /* convert left and right to the destination type */
4416 rc = VariantChangeType(result, result, 0, resT);
4419 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
4426 /**********************************************************************
4427 * VarPow [OLEAUT32.158]
4430 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4435 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
4436 right, debugstr_VT(right), debugstr_VF(right), result);
4438 hr = VariantChangeType(&dl,left,0,VT_R8);
4439 if (!SUCCEEDED(hr)) {
4440 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4443 hr = VariantChangeType(&dr,right,0,VT_R8);
4444 if (!SUCCEEDED(hr)) {
4445 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4448 V_VT(result) = VT_R8;
4449 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));