2 * Copyright 2008 Jacek Caban for CodeWeavers
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * Code in this file is based on files:
23 * from Mozilla project, released under LGPL 2.1 or later.
25 * The Original Code is Mozilla Communicator client code, released
28 * The Initial Developer of the Original Code is
29 * Netscape Communications Corporation.
30 * Portions created by the Initial Developer are Copyright (C) 1998
31 * the Initial Developer. All Rights Reserved.
39 #include "wine/debug.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(jscript);
43 #define JSREG_FOLD 0x01 /* fold uppercase to lowercase */
44 #define JSREG_GLOB 0x02 /* global exec, creates array of matches */
45 #define JSREG_MULTILINE 0x04 /* treat ^ and $ as begin and end of line */
46 #define JSREG_STICKY 0x08 /* only match starting at lastIndex */
48 typedef BYTE JSPackedBool;
49 typedef BYTE jsbytecode;
52 * This struct holds a bitmap representation of a class from a regexp.
53 * There's a list of these referenced by the classList field in the JSRegExp
54 * struct below. The initial state has startIndex set to the offset in the
55 * original regexp source of the beginning of the class contents. The first
56 * use of the class converts the source representation into a bitmap.
59 typedef struct RECharSet {
60 JSPackedBool converted;
73 WORD flags; /* flags, see jsapi.h's JSREG_* defines */
74 size_t parenCount; /* number of parenthesized submatches */
75 size_t classCount; /* count [...] bitmaps */
76 RECharSet *classList; /* list of [...] bitmaps */
77 const WCHAR *source; /* locked source string, sans // */
79 jsbytecode program[1]; /* regular expression bytecode */
88 jsval_t last_index_val;
91 static const WCHAR sourceW[] = {'s','o','u','r','c','e',0};
92 static const WCHAR globalW[] = {'g','l','o','b','a','l',0};
93 static const WCHAR ignoreCaseW[] = {'i','g','n','o','r','e','C','a','s','e',0};
94 static const WCHAR multilineW[] = {'m','u','l','t','i','l','i','n','e',0};
95 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
96 static const WCHAR toStringW[] = {'t','o','S','t','r','i','n','g',0};
97 static const WCHAR execW[] = {'e','x','e','c',0};
98 static const WCHAR testW[] = {'t','e','s','t',0};
100 static const WCHAR leftContextW[] =
101 {'l','e','f','t','C','o','n','t','e','x','t',0};
102 static const WCHAR rightContextW[] =
103 {'r','i','g','h','t','C','o','n','t','e','x','t',0};
105 static const WCHAR idx1W[] = {'$','1',0};
106 static const WCHAR idx2W[] = {'$','2',0};
107 static const WCHAR idx3W[] = {'$','3',0};
108 static const WCHAR idx4W[] = {'$','4',0};
109 static const WCHAR idx5W[] = {'$','5',0};
110 static const WCHAR idx6W[] = {'$','6',0};
111 static const WCHAR idx7W[] = {'$','7',0};
112 static const WCHAR idx8W[] = {'$','8',0};
113 static const WCHAR idx9W[] = {'$','9',0};
115 static const WCHAR undefinedW[] = {'u','n','d','e','f','i','n','e','d',0};
116 static const WCHAR emptyW[] = {0};
118 /* FIXME: Better error handling */
119 #define ReportRegExpError(a,b,c)
120 #define ReportRegExpErrorHelper(a,b,c,d)
121 #define JS_ReportErrorNumber(a,b,c,d)
122 #define JS_ReportErrorFlagsAndNumber(a,b,c,d,e,f)
123 #define js_ReportOutOfScriptQuota(a)
124 #define JS_ReportOutOfMemory(a)
125 #define JS_COUNT_OPERATION(a,b)
127 #define JSMSG_MIN_TOO_BIG 47
128 #define JSMSG_MAX_TOO_BIG 48
129 #define JSMSG_OUT_OF_ORDER 49
130 #define JSMSG_OUT_OF_MEMORY 137
132 #define LINE_SEPARATOR 0x2028
133 #define PARA_SEPARATOR 0x2029
135 #define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \
136 ((c >= 'a') && (c <= 'z')) )
137 #define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \
138 (c == LINE_SEPARATOR) || (c == PARA_SEPARATOR))
140 #define JS_ISWORD(c) ((c) < 128 && (isalnum(c) || (c) == '_'))
142 #define JS7_ISDEC(c) ((((unsigned)(c)) - '0') <= 9)
143 #define JS7_UNDEC(c) ((c) - '0')
195 REOP_LIMIT /* META: no operator >= to this */
198 #define REOP_IS_SIMPLE(op) ((op) <= REOP_NCLASS)
200 static const char *reop_names[] = {
253 typedef struct RECapture {
254 ptrdiff_t index; /* start of contents, -1 for empty */
255 size_t length; /* length of capture */
258 typedef struct REMatchState {
260 RECapture parens[1]; /* first of 're->parenCount' captures,
261 allocated at end of this struct */
264 typedef struct REProgState {
265 jsbytecode *continue_pc; /* current continuation data */
266 jsbytecode continue_op;
267 ptrdiff_t index; /* progress in text */
268 size_t parenSoFar; /* highest indexed paren started */
271 UINT min; /* current quantifier limits */
275 size_t top; /* backtrack stack state */
281 typedef struct REBackTrackData {
282 size_t sz; /* size of previous stack entry */
283 jsbytecode *backtrack_pc; /* where to backtrack to */
284 jsbytecode backtrack_op;
285 const WCHAR *cp; /* index in text of match at backtrack */
286 size_t parenIndex; /* start index of saved paren contents */
287 size_t parenCount; /* # of saved paren contents */
288 size_t saveStateStackTop; /* number of parent states */
289 /* saved parent states follow */
290 /* saved paren contents follow */
293 #define INITIAL_STATESTACK 100
294 #define INITIAL_BACKTRACK 8000
296 typedef struct REGlobalData {
298 JSRegExp *regexp; /* the RE in execution */
299 BOOL ok; /* runtime error (out_of_memory only?) */
300 size_t start; /* offset to start at */
301 ptrdiff_t skipped; /* chars skipped anchoring this r.e. */
302 const WCHAR *cpbegin; /* text base address */
303 const WCHAR *cpend; /* text limit address */
305 REProgState *stateStack; /* stack of state of current parents */
306 size_t stateStackTop;
307 size_t stateStackLimit;
309 REBackTrackData *backTrackStack;/* stack of matched-so-far positions */
310 REBackTrackData *backTrackSP;
311 size_t backTrackStackSize;
312 size_t cursz; /* size of current stack entry */
313 size_t backTrackCount; /* how many times we've backtracked */
314 size_t backTrackLimit; /* upper limit on backtrack states */
316 heap_pool_t *pool; /* It's faster to use one malloc'd pool
317 than to malloc/free the three items
318 that are allocated from this pool */
321 typedef struct RENode RENode;
323 REOp op; /* r.e. op bytecode */
324 RENode *next; /* next in concatenation order */
325 void *kid; /* first operand */
327 void *kid2; /* second operand */
328 INT num; /* could be a number */
329 size_t parenIndex; /* or a parenthesis index */
330 struct { /* or a quantifier range */
335 struct { /* or a character class */
337 size_t kidlen; /* length of string at kid, in jschars */
338 size_t index; /* index into class list */
339 WORD bmsize; /* bitmap size, based on max char code */
342 struct { /* or a literal sequence */
343 WCHAR chr; /* of one character */
344 size_t length; /* or many (via the kid) */
347 RENode *kid2; /* second operand from ALT */
348 WCHAR ch1; /* match char for ALTPREREQ */
349 WCHAR ch2; /* ditto, or class index for ALTPREREQ2 */
354 #define CLASS_CACHE_SIZE 4
356 typedef struct CompilerState {
357 script_ctx_t *context;
358 const WCHAR *cpbegin;
362 size_t classCount; /* number of [] encountered */
363 size_t treeDepth; /* maximum depth of parse tree */
364 size_t progLength; /* estimated bytecode length */
366 size_t classBitmapsMem; /* memory to hold all class bitmaps */
368 const WCHAR *start; /* small cache of class strings */
369 size_t length; /* since they're often the same */
371 } classCache[CLASS_CACHE_SIZE];
375 typedef struct EmitStateStackEntry {
376 jsbytecode *altHead; /* start of REOP_ALT* opcode */
377 jsbytecode *nextAltFixup; /* fixup pointer to next-alt offset */
378 jsbytecode *nextTermFixup; /* fixup ptr. to REOP_JUMP offset */
379 jsbytecode *endTermFixup; /* fixup ptr. to REOPT_ALTPREREQ* offset */
380 RENode *continueNode; /* original REOP_ALT* node being stacked */
381 jsbytecode continueOp; /* REOP_JUMP or REOP_ENDALT continuation */
382 JSPackedBool jumpToJumpFlag; /* true if we've patched jump-to-jump to
383 avoid 16-bit unsigned offset overflow */
384 } EmitStateStackEntry;
387 * Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h,
388 * the getters and setters take the pc of the offset, not of the opcode before
392 #define GET_ARG(pc) ((WORD)(((pc)[0] << 8) | (pc)[1]))
393 #define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \
394 (pc)[1] = (jsbytecode) (arg))
396 #define OFFSET_LEN ARG_LEN
397 #define OFFSET_MAX ((1 << (ARG_LEN * 8)) - 1)
398 #define GET_OFFSET(pc) GET_ARG(pc)
400 static BOOL ParseRegExp(CompilerState*);
403 * Maximum supported tree depth is maximum size of EmitStateStackEntry stack.
404 * For sanity, we limit it to 2^24 bytes.
406 #define TREE_DEPTH_MAX ((1 << 24) / sizeof(EmitStateStackEntry))
409 * The maximum memory that can be allocated for class bitmaps.
410 * For sanity, we limit it to 2^24 bytes.
412 #define CLASS_BITMAPS_MEM_LIMIT (1 << 24)
415 * Functions to get size and write/read bytecode that represent small indexes
417 * Each byte in the code represent 7-bit chunk of the index. 8th bit when set
418 * indicates that the following byte brings more bits to the index. Otherwise
419 * this is the last byte in the index bytecode representing highest index bits.
422 GetCompactIndexWidth(size_t index)
426 for (width = 1; (index >>= 7) != 0; ++width) { }
430 static inline jsbytecode *
431 WriteCompactIndex(jsbytecode *pc, size_t index)
435 while ((next = index >> 7) != 0) {
436 *pc++ = (jsbytecode)(index | 0x80);
439 *pc++ = (jsbytecode)index;
443 static inline jsbytecode *
444 ReadCompactIndex(jsbytecode *pc, size_t *result)
449 if ((nextByte & 0x80) == 0) {
451 * Short-circuit the most common case when compact index <= 127.
456 *result = 0x7F & nextByte;
459 *result |= (nextByte & 0x7F) << shift;
461 } while ((nextByte & 0x80) != 0);
466 /* Construct and initialize an RENode, returning NULL for out-of-memory */
468 NewRENode(CompilerState *state, REOp op)
472 ren = heap_pool_alloc(&state->context->tmp_heap, sizeof(*ren));
474 /* js_ReportOutOfScriptQuota(cx); */
484 * Validates and converts hex ascii value.
487 isASCIIHexDigit(WCHAR c, UINT *digit)
498 if (cv >= 'a' && cv <= 'f') {
499 *digit = cv - 'a' + 10;
511 #define JUMP_OFFSET_HI(off) ((jsbytecode)((off) >> 8))
512 #define JUMP_OFFSET_LO(off) ((jsbytecode)(off))
515 SetForwardJumpOffset(jsbytecode *jump, jsbytecode *target)
517 ptrdiff_t offset = target - jump;
519 /* Check that target really points forward. */
521 if ((size_t)offset > OFFSET_MAX)
524 jump[0] = JUMP_OFFSET_HI(offset);
525 jump[1] = JUMP_OFFSET_LO(offset);
530 * Generate bytecode for the tree rooted at t using an explicit stack instead
534 EmitREBytecode(CompilerState *state, JSRegExp *re, size_t treeDepth,
535 jsbytecode *pc, RENode *t)
537 EmitStateStackEntry *emitStateSP, *emitStateStack;
541 if (treeDepth == 0) {
542 emitStateStack = NULL;
544 emitStateStack = heap_alloc(sizeof(EmitStateStackEntry) * treeDepth);
548 emitStateSP = emitStateStack;
550 assert(op < REOP_LIMIT);
559 case REOP_ALTPREREQ2:
562 emitStateSP->altHead = pc - 1;
563 emitStateSP->endTermFixup = pc;
565 SET_ARG(pc, t->u.altprereq.ch1);
567 SET_ARG(pc, t->u.altprereq.ch2);
570 emitStateSP->nextAltFixup = pc; /* offset to next alternate */
573 emitStateSP->continueNode = t;
574 emitStateSP->continueOp = REOP_JUMP;
575 emitStateSP->jumpToJumpFlag = FALSE;
577 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
580 assert(op < REOP_LIMIT);
584 emitStateSP->nextTermFixup = pc; /* offset to following term */
586 if (!SetForwardJumpOffset(emitStateSP->nextAltFixup, pc))
588 emitStateSP->continueOp = REOP_ENDALT;
590 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
593 assert(op < REOP_LIMIT);
598 * If we already patched emitStateSP->nextTermFixup to jump to
599 * a nearer jump, to avoid 16-bit immediate offset overflow, we
602 if (emitStateSP->jumpToJumpFlag)
606 * Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT.
607 * REOP_ENDALT is executed only on successful match of the last
608 * alternate in a group.
610 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
612 if (t->op != REOP_ALT) {
613 if (!SetForwardJumpOffset(emitStateSP->endTermFixup, pc))
618 * If the program is bigger than the REOP_JUMP offset range, then
619 * we must check for alternates before this one that are part of
620 * the same group, and fix up their jump offsets to target jumps
621 * close enough to fit in a 16-bit unsigned offset immediate.
623 if ((size_t)(pc - re->program) > OFFSET_MAX &&
624 emitStateSP > emitStateStack) {
625 EmitStateStackEntry *esp, *esp2;
626 jsbytecode *alt, *jump;
627 ptrdiff_t span, header;
631 for (esp = esp2 - 1; esp >= emitStateStack; --esp) {
632 if (esp->continueOp == REOP_ENDALT &&
633 !esp->jumpToJumpFlag &&
634 esp->nextTermFixup + OFFSET_LEN == alt &&
635 (size_t)(pc - ((esp->continueNode->op != REOP_ALT)
637 : esp->nextTermFixup)) > OFFSET_MAX) {
639 jump = esp->nextTermFixup;
642 * The span must be 1 less than the distance from
643 * jump offset to jump offset, so we actually jump
644 * to a REOP_JUMP bytecode, not to its offset!
647 assert(jump < esp2->nextTermFixup);
648 span = esp2->nextTermFixup - jump - 1;
649 if ((size_t)span <= OFFSET_MAX)
654 } while (esp2->continueOp != REOP_ENDALT);
657 jump[0] = JUMP_OFFSET_HI(span);
658 jump[1] = JUMP_OFFSET_LO(span);
660 if (esp->continueNode->op != REOP_ALT) {
662 * We must patch the offset at esp->endTermFixup
663 * as well, for the REOP_ALTPREREQ{,2} opcodes.
664 * If we're unlucky and endTermFixup is more than
665 * OFFSET_MAX bytes from its target, we cheat by
666 * jumping 6 bytes to the jump whose offset is at
667 * esp->nextTermFixup, which has the same target.
669 jump = esp->endTermFixup;
670 header = esp->nextTermFixup - jump;
672 if ((size_t)span > OFFSET_MAX)
675 jump[0] = JUMP_OFFSET_HI(span);
676 jump[1] = JUMP_OFFSET_LO(span);
679 esp->jumpToJumpFlag = TRUE;
687 emitStateSP->altHead = pc - 1;
688 emitStateSP->nextAltFixup = pc; /* offset to next alternate */
690 emitStateSP->continueNode = t;
691 emitStateSP->continueOp = REOP_JUMP;
692 emitStateSP->jumpToJumpFlag = FALSE;
694 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
697 assert(op < REOP_LIMIT);
702 * Coalesce FLATs if possible and if it would not increase bytecode
703 * beyond preallocated limit. The latter happens only when bytecode
704 * size for coalesced string with offset p and length 2 exceeds 6
705 * bytes preallocated for 2 single char nodes, i.e. when
706 * 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or
707 * GetCompactIndexWidth(p) > 4.
708 * Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more
709 * nodes strictly decreases bytecode size, the check has to be
710 * done only for the first coalescing.
713 GetCompactIndexWidth((WCHAR*)t->kid - state->cpbegin) <= 4)
716 t->next->op == REOP_FLAT &&
717 (WCHAR*)t->kid + t->u.flat.length ==
719 t->u.flat.length += t->next->u.flat.length;
720 t->next = t->next->next;
723 if (t->kid && t->u.flat.length > 1) {
724 pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLATi : REOP_FLAT;
725 pc = WriteCompactIndex(pc, (WCHAR*)t->kid - state->cpbegin);
726 pc = WriteCompactIndex(pc, t->u.flat.length);
727 } else if (t->u.flat.chr < 256) {
728 pc[-1] = (state->flags & JSREG_FOLD) ? REOP_FLAT1i : REOP_FLAT1;
729 *pc++ = (jsbytecode) t->u.flat.chr;
731 pc[-1] = (state->flags & JSREG_FOLD)
734 SET_ARG(pc, t->u.flat.chr);
741 pc = WriteCompactIndex(pc, t->u.parenIndex);
742 emitStateSP->continueNode = t;
743 emitStateSP->continueOp = REOP_RPAREN;
745 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
751 pc = WriteCompactIndex(pc, t->u.parenIndex);
755 pc = WriteCompactIndex(pc, t->u.parenIndex);
760 emitStateSP->nextTermFixup = pc;
762 emitStateSP->continueNode = t;
763 emitStateSP->continueOp = REOP_ASSERTTEST;
765 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
770 case REOP_ASSERTTEST:
771 case REOP_ASSERTNOTTEST:
772 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
776 case REOP_ASSERT_NOT:
778 emitStateSP->nextTermFixup = pc;
780 emitStateSP->continueNode = t;
781 emitStateSP->continueOp = REOP_ASSERTNOTTEST;
783 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
790 if (t->u.range.min == 0 && t->u.range.max == (UINT)-1) {
791 pc[-1] = (t->u.range.greedy) ? REOP_STAR : REOP_MINIMALSTAR;
792 } else if (t->u.range.min == 0 && t->u.range.max == 1) {
793 pc[-1] = (t->u.range.greedy) ? REOP_OPT : REOP_MINIMALOPT;
794 } else if (t->u.range.min == 1 && t->u.range.max == (UINT) -1) {
795 pc[-1] = (t->u.range.greedy) ? REOP_PLUS : REOP_MINIMALPLUS;
797 if (!t->u.range.greedy)
798 pc[-1] = REOP_MINIMALQUANT;
799 pc = WriteCompactIndex(pc, t->u.range.min);
801 * Write max + 1 to avoid using size_t(max) + 1 bytes
802 * for (UINT)-1 sentinel.
804 pc = WriteCompactIndex(pc, t->u.range.max + 1);
806 emitStateSP->nextTermFixup = pc;
808 emitStateSP->continueNode = t;
809 emitStateSP->continueOp = REOP_ENDCHILD;
811 assert((size_t)(emitStateSP - emitStateStack) <= treeDepth);
817 if (!SetForwardJumpOffset(emitStateSP->nextTermFixup, pc))
822 if (!t->u.ucclass.sense)
823 pc[-1] = REOP_NCLASS;
824 pc = WriteCompactIndex(pc, t->u.ucclass.index);
825 charSet = &re->classList[t->u.ucclass.index];
826 charSet->converted = FALSE;
827 charSet->length = t->u.ucclass.bmsize;
828 charSet->u.src.startIndex = t->u.ucclass.startIndex;
829 charSet->u.src.length = t->u.ucclass.kidlen;
830 charSet->sense = t->u.ucclass.sense;
841 if (emitStateSP == emitStateStack)
844 t = emitStateSP->continueNode;
845 op = (REOp) emitStateSP->continueOp;
850 heap_free(emitStateStack);
854 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
860 * Process the op against the two top operands, reducing them to a single
861 * operand in the penultimate slot. Update progLength and treeDepth.
864 ProcessOp(CompilerState *state, REOpData *opData, RENode **operandStack,
869 switch (opData->op) {
871 result = NewRENode(state, REOP_ALT);
874 result->kid = operandStack[operandSP - 2];
875 result->u.kid2 = operandStack[operandSP - 1];
876 operandStack[operandSP - 2] = result;
878 if (state->treeDepth == TREE_DEPTH_MAX) {
879 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
885 * Look at both alternates to see if there's a FLAT or a CLASS at
886 * the start of each. If so, use a prerequisite match.
888 if (((RENode *) result->kid)->op == REOP_FLAT &&
889 ((RENode *) result->u.kid2)->op == REOP_FLAT &&
890 (state->flags & JSREG_FOLD) == 0) {
891 result->op = REOP_ALTPREREQ;
892 result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
893 result->u.altprereq.ch2 = ((RENode *) result->u.kid2)->u.flat.chr;
894 /* ALTPREREQ, <end>, uch1, uch2, <next>, ...,
895 JUMP, <end> ... ENDALT */
896 state->progLength += 13;
899 if (((RENode *) result->kid)->op == REOP_CLASS &&
900 ((RENode *) result->kid)->u.ucclass.index < 256 &&
901 ((RENode *) result->u.kid2)->op == REOP_FLAT &&
902 (state->flags & JSREG_FOLD) == 0) {
903 result->op = REOP_ALTPREREQ2;
904 result->u.altprereq.ch1 = ((RENode *) result->u.kid2)->u.flat.chr;
905 result->u.altprereq.ch2 = ((RENode *) result->kid)->u.ucclass.index;
906 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
907 JUMP, <end> ... ENDALT */
908 state->progLength += 13;
911 if (((RENode *) result->kid)->op == REOP_FLAT &&
912 ((RENode *) result->u.kid2)->op == REOP_CLASS &&
913 ((RENode *) result->u.kid2)->u.ucclass.index < 256 &&
914 (state->flags & JSREG_FOLD) == 0) {
915 result->op = REOP_ALTPREREQ2;
916 result->u.altprereq.ch1 = ((RENode *) result->kid)->u.flat.chr;
917 result->u.altprereq.ch2 =
918 ((RENode *) result->u.kid2)->u.ucclass.index;
919 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
920 JUMP, <end> ... ENDALT */
921 state->progLength += 13;
924 /* ALT, <next>, ..., JUMP, <end> ... ENDALT */
925 state->progLength += 7;
930 result = operandStack[operandSP - 2];
932 result = result->next;
933 result->next = operandStack[operandSP - 1];
937 case REOP_ASSERT_NOT:
940 /* These should have been processed by a close paren. */
941 ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_MISSING_PAREN,
951 * Hack two bits in CompilerState.flags, for use within FindParenCount to flag
952 * its being on the stack, and to propagate errors to its callers.
954 #define JSREG_FIND_PAREN_COUNT 0x8000
955 #define JSREG_FIND_PAREN_ERROR 0x4000
958 * Magic return value from FindParenCount and GetDecimalValue, to indicate
959 * overflow beyond GetDecimalValue's max parameter, or a computed maximum if
960 * its findMax parameter is non-null.
962 #define OVERFLOW_VALUE ((UINT)-1)
965 FindParenCount(CompilerState *state)
970 if (state->flags & JSREG_FIND_PAREN_COUNT)
971 return OVERFLOW_VALUE;
974 * Copy state into temp, flag it so we never report an invalid backref,
975 * and reset its members to parse the entire regexp. This is obviously
976 * suboptimal, but GetDecimalValue calls us only if a backref appears to
977 * refer to a forward parenthetical, which is rare.
980 temp.flags |= JSREG_FIND_PAREN_COUNT;
981 temp.cp = temp.cpbegin;
986 temp.classBitmapsMem = 0;
987 for (i = 0; i < CLASS_CACHE_SIZE; i++)
988 temp.classCache[i].start = NULL;
990 if (!ParseRegExp(&temp)) {
991 state->flags |= JSREG_FIND_PAREN_ERROR;
992 return OVERFLOW_VALUE;
994 return temp.parenCount;
998 * Extract and return a decimal value at state->cp. The initial character c
999 * has already been read. Return OVERFLOW_VALUE if the result exceeds max.
1000 * Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in
1001 * state->flags to discover whether an error occurred under findMax.
1004 GetDecimalValue(WCHAR c, UINT max, UINT (*findMax)(CompilerState *state),
1005 CompilerState *state)
1007 UINT value = JS7_UNDEC(c);
1008 BOOL overflow = (value > max && (!findMax || value > findMax(state)));
1010 /* The following restriction allows simpler overflow checks. */
1011 assert(max <= ((UINT)-1 - 9) / 10);
1012 while (state->cp < state->cpend) {
1016 value = 10 * value + JS7_UNDEC(c);
1017 if (!overflow && value > max && (!findMax || value > findMax(state)))
1021 return overflow ? OVERFLOW_VALUE : value;
1025 * Calculate the total size of the bitmap required for a class expression.
1028 CalculateBitmapSize(CompilerState *state, RENode *target, const WCHAR *src,
1032 BOOL inRange = FALSE;
1033 WCHAR c, rangeStart = 0;
1034 UINT n, digit, nDigits, i;
1036 target->u.ucclass.bmsize = 0;
1037 target->u.ucclass.sense = TRUE;
1044 target->u.ucclass.sense = FALSE;
1047 while (src != end) {
1048 BOOL canStartRange = TRUE;
1075 if (src < end && RE_IS_LETTER(*src)) {
1076 localMax = (UINT) (*src++) & 0x1F;
1089 for (i = 0; (i < nDigits) && (src < end); i++) {
1091 if (!isASCIIHexDigit(c, &digit)) {
1093 * Back off to accepting the original
1100 n = (n << 4) | digit;
1105 canStartRange = FALSE;
1107 JS_ReportErrorNumber(state->context,
1108 js_GetErrorMessage, NULL,
1109 JSMSG_BAD_CLASS_RANGE);
1119 canStartRange = FALSE;
1121 JS_ReportErrorNumber(state->context,
1122 js_GetErrorMessage, NULL,
1123 JSMSG_BAD_CLASS_RANGE);
1129 * If this is the start of a range, ensure that it's less than
1143 * This is a non-ECMA extension - decimal escapes (in this
1144 * case, octal!) are supposed to be an error inside class
1145 * ranges, but supported here for backwards compatibility.
1150 if ('0' <= c && c <= '7') {
1152 n = 8 * n + JS7_UNDEC(c);
1154 if ('0' <= c && c <= '7') {
1156 i = 8 * n + JS7_UNDEC(c);
1177 /* Throw a SyntaxError here, per ECMA-262, 15.10.2.15. */
1178 if (rangeStart > localMax) {
1179 JS_ReportErrorNumber(state->context,
1180 js_GetErrorMessage, NULL,
1181 JSMSG_BAD_CLASS_RANGE);
1186 if (canStartRange && src < end - 1) {
1190 rangeStart = (WCHAR)localMax;
1194 if (state->flags & JSREG_FOLD)
1195 rangeStart = localMax; /* one run of the uc/dc loop below */
1198 if (state->flags & JSREG_FOLD) {
1199 WCHAR maxch = localMax;
1201 for (i = rangeStart; i <= localMax; i++) {
1217 target->u.ucclass.bmsize = max;
1222 ParseMinMaxQuantifier(CompilerState *state, BOOL ignoreValues)
1226 const WCHAR *errp = state->cp++;
1231 min = GetDecimalValue(c, 0xFFFF, NULL, state);
1234 if (!ignoreValues && min == OVERFLOW_VALUE)
1235 return JSMSG_MIN_TOO_BIG;
1241 max = GetDecimalValue(c, 0xFFFF, NULL, state);
1243 if (!ignoreValues && max == OVERFLOW_VALUE)
1244 return JSMSG_MAX_TOO_BIG;
1245 if (!ignoreValues && min > max)
1246 return JSMSG_OUT_OF_ORDER;
1254 state->result = NewRENode(state, REOP_QUANT);
1256 return JSMSG_OUT_OF_MEMORY;
1257 state->result->u.range.min = min;
1258 state->result->u.range.max = max;
1260 * QUANT, <min>, <max>, <next> ... <ENDCHILD>
1261 * where <max> is written as compact(max+1) to make
1262 * (UINT)-1 sentinel to occupy 1 byte, not width_of(max)+1.
1264 state->progLength += (1 + GetCompactIndexWidth(min)
1265 + GetCompactIndexWidth(max + 1)
1276 ParseQuantifier(CompilerState *state)
1279 term = state->result;
1280 if (state->cp < state->cpend) {
1281 switch (*state->cp) {
1283 state->result = NewRENode(state, REOP_QUANT);
1286 state->result->u.range.min = 1;
1287 state->result->u.range.max = (UINT)-1;
1288 /* <PLUS>, <next> ... <ENDCHILD> */
1289 state->progLength += 4;
1292 state->result = NewRENode(state, REOP_QUANT);
1295 state->result->u.range.min = 0;
1296 state->result->u.range.max = (UINT)-1;
1297 /* <STAR>, <next> ... <ENDCHILD> */
1298 state->progLength += 4;
1301 state->result = NewRENode(state, REOP_QUANT);
1304 state->result->u.range.min = 0;
1305 state->result->u.range.max = 1;
1306 /* <OPT>, <next> ... <ENDCHILD> */
1307 state->progLength += 4;
1309 case '{': /* balance '}' */
1313 err = ParseMinMaxQuantifier(state, FALSE);
1319 ReportRegExpErrorHelper(state, JSREPORT_ERROR, err, errp);
1328 if (state->treeDepth == TREE_DEPTH_MAX) {
1329 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
1335 state->result->kid = term;
1336 if (state->cp < state->cpend && *state->cp == '?') {
1338 state->result->u.range.greedy = FALSE;
1340 state->result->u.range.greedy = TRUE;
1346 * item: assertion An item is either an assertion or
1347 * quantatom a quantified atom.
1349 * assertion: '^' Assertions match beginning of string
1350 * (or line if the class static property
1351 * RegExp.multiline is true).
1352 * '$' End of string (or line if the class
1353 * static property RegExp.multiline is
1355 * '\b' Word boundary (between \w and \W).
1356 * '\B' Word non-boundary.
1358 * quantatom: atom An unquantified atom.
1359 * quantatom '{' n ',' m '}'
1360 * Atom must occur between n and m times.
1361 * quantatom '{' n ',' '}' Atom must occur at least n times.
1362 * quantatom '{' n '}' Atom must occur exactly n times.
1363 * quantatom '*' Zero or more times (same as {0,}).
1364 * quantatom '+' One or more times (same as {1,}).
1365 * quantatom '?' Zero or one time (same as {0,1}).
1367 * any of which can be optionally followed by '?' for ungreedy
1369 * atom: '(' regexp ')' A parenthesized regexp (what matched
1370 * can be addressed using a backreference,
1372 * '.' Matches any char except '\n'.
1373 * '[' classlist ']' A character class.
1374 * '[' '^' classlist ']' A negated character class.
1376 * '\n' Newline (Line Feed).
1377 * '\r' Carriage Return.
1378 * '\t' Horizontal Tab.
1379 * '\v' Vertical Tab.
1380 * '\d' A digit (same as [0-9]).
1382 * '\w' A word character, [0-9a-z_A-Z].
1383 * '\W' A non-word character.
1384 * '\s' A whitespace character, [ \b\f\n\r\t\v].
1385 * '\S' A non-whitespace character.
1386 * '\' n A backreference to the nth (n decimal
1387 * and positive) parenthesized expression.
1388 * '\' octal An octal escape sequence (octal must be
1389 * two or three digits long, unless it is
1390 * 0 for the null character).
1391 * '\x' hex A hex escape (hex must be two digits).
1392 * '\u' unicode A unicode escape (must be four digits).
1393 * '\c' ctrl A control character, ctrl is a letter.
1394 * '\' literalatomchar Any character except one of the above
1395 * that follow '\' in an atom.
1396 * otheratomchar Any character not first among the other
1397 * atom right-hand sides.
1400 ParseTerm(CompilerState *state)
1402 WCHAR c = *state->cp++;
1404 UINT num, tmp, n, i;
1405 const WCHAR *termStart;
1408 /* assertions and atoms */
1410 state->result = NewRENode(state, REOP_BOL);
1413 state->progLength++;
1416 state->result = NewRENode(state, REOP_EOL);
1419 state->progLength++;
1422 if (state->cp >= state->cpend) {
1423 /* a trailing '\' is an error */
1424 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_TRAILING_SLASH);
1429 /* assertion escapes */
1431 state->result = NewRENode(state, REOP_WBDRY);
1434 state->progLength++;
1437 state->result = NewRENode(state, REOP_WNONBDRY);
1440 state->progLength++;
1442 /* Decimal escape */
1444 /* Give a strict warning. See also the note below. */
1445 WARN("non-octal digit in an escape sequence that doesn't match a back-reference\n");
1448 while (state->cp < state->cpend) {
1450 if (c < '0' || '7' < c)
1453 tmp = 8 * num + (UINT)JS7_UNDEC(c);
1460 state->result = NewRENode(state, REOP_FLAT);
1463 state->result->u.flat.chr = c;
1464 state->result->u.flat.length = 1;
1465 state->progLength += 3;
1476 termStart = state->cp - 1;
1477 num = GetDecimalValue(c, state->parenCount, FindParenCount, state);
1478 if (state->flags & JSREG_FIND_PAREN_ERROR)
1480 if (num == OVERFLOW_VALUE) {
1481 /* Give a strict mode warning. */
1482 WARN("back-reference exceeds number of capturing parentheses\n");
1485 * Note: ECMA 262, 15.10.2.9 says that we should throw a syntax
1486 * error here. However, for compatibility with IE, we treat the
1487 * whole backref as flat if the first character in it is not a
1488 * valid octal character, and as an octal escape otherwise.
1490 state->cp = termStart;
1492 /* Treat this as flat. termStart - 1 is the \. */
1497 /* Treat this as an octal escape. */
1500 assert(1 <= num && num <= 0x10000);
1501 state->result = NewRENode(state, REOP_BACKREF);
1504 state->result->u.parenIndex = num - 1;
1506 += 1 + GetCompactIndexWidth(state->result->u.parenIndex);
1508 /* Control escape */
1524 /* Control letter */
1526 if (state->cp < state->cpend && RE_IS_LETTER(*state->cp)) {
1527 c = (WCHAR) (*state->cp++ & 0x1F);
1529 /* back off to accepting the original '\' as a literal */
1534 /* HexEscapeSequence */
1538 /* UnicodeEscapeSequence */
1543 for (i = 0; i < nDigits && state->cp < state->cpend; i++) {
1546 if (!isASCIIHexDigit(c, &digit)) {
1548 * Back off to accepting the original 'u' or 'x' as a
1555 n = (n << 4) | digit;
1559 /* Character class escapes */
1561 state->result = NewRENode(state, REOP_DIGIT);
1565 state->progLength++;
1568 state->result = NewRENode(state, REOP_NONDIGIT);
1571 state->result = NewRENode(state, REOP_SPACE);
1574 state->result = NewRENode(state, REOP_NONSPACE);
1577 state->result = NewRENode(state, REOP_ALNUM);
1580 state->result = NewRENode(state, REOP_NONALNUM);
1582 /* IdentityEscape */
1584 state->result = NewRENode(state, REOP_FLAT);
1587 state->result->u.flat.chr = c;
1588 state->result->u.flat.length = 1;
1589 state->result->kid = (void *) (state->cp - 1);
1590 state->progLength += 3;
1595 state->result = NewRENode(state, REOP_CLASS);
1598 termStart = state->cp;
1599 state->result->u.ucclass.startIndex = termStart - state->cpbegin;
1601 if (state->cp == state->cpend) {
1602 ReportRegExpErrorHelper(state, JSREPORT_ERROR,
1603 JSMSG_UNTERM_CLASS, termStart);
1607 if (*state->cp == '\\') {
1609 if (state->cp != state->cpend)
1613 if (*state->cp == ']') {
1614 state->result->u.ucclass.kidlen = state->cp - termStart;
1619 for (i = 0; i < CLASS_CACHE_SIZE; i++) {
1620 if (!state->classCache[i].start) {
1621 state->classCache[i].start = termStart;
1622 state->classCache[i].length = state->result->u.ucclass.kidlen;
1623 state->classCache[i].index = state->classCount;
1626 if (state->classCache[i].length ==
1627 state->result->u.ucclass.kidlen) {
1628 for (n = 0; ; n++) {
1629 if (n == state->classCache[i].length) {
1630 state->result->u.ucclass.index
1631 = state->classCache[i].index;
1634 if (state->classCache[i].start[n] != termStart[n])
1639 state->result->u.ucclass.index = state->classCount++;
1643 * Call CalculateBitmapSize now as we want any errors it finds
1644 * to be reported during the parse phase, not at execution.
1646 if (!CalculateBitmapSize(state, state->result, termStart, state->cp++))
1649 * Update classBitmapsMem with number of bytes to hold bmsize bits,
1650 * which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8
1651 * or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize.
1653 n = (state->result->u.ucclass.bmsize >> 3) + 1;
1654 if (n > CLASS_BITMAPS_MEM_LIMIT - state->classBitmapsMem) {
1655 ReportRegExpError(state, JSREPORT_ERROR, JSMSG_REGEXP_TOO_COMPLEX);
1658 state->classBitmapsMem += n;
1659 /* CLASS, <index> */
1661 += 1 + GetCompactIndexWidth(state->result->u.ucclass.index);
1665 state->result = NewRENode(state, REOP_DOT);
1670 const WCHAR *errp = state->cp--;
1673 err = ParseMinMaxQuantifier(state, TRUE);
1684 ReportRegExpErrorHelper(state, JSREPORT_ERROR,
1685 JSMSG_BAD_QUANTIFIER, state->cp - 1);
1689 state->result = NewRENode(state, REOP_FLAT);
1692 state->result->u.flat.chr = c;
1693 state->result->u.flat.length = 1;
1694 state->result->kid = (void *) (state->cp - 1);
1695 state->progLength += 3;
1698 return ParseQuantifier(state);
1702 * Top-down regular expression grammar, based closely on Perl4.
1704 * regexp: altern A regular expression is one or more
1705 * altern '|' regexp alternatives separated by vertical bar.
1707 #define INITIAL_STACK_SIZE 128
1710 ParseRegExp(CompilerState *state)
1714 REOpData *operatorStack;
1715 RENode **operandStack;
1718 BOOL result = FALSE;
1720 INT operatorSP = 0, operatorStackSize = INITIAL_STACK_SIZE;
1721 INT operandSP = 0, operandStackSize = INITIAL_STACK_SIZE;
1723 /* Watch out for empty regexp */
1724 if (state->cp == state->cpend) {
1725 state->result = NewRENode(state, REOP_EMPTY);
1726 return (state->result != NULL);
1729 operatorStack = heap_alloc(sizeof(REOpData) * operatorStackSize);
1733 operandStack = heap_alloc(sizeof(RENode *) * operandStackSize);
1738 parenIndex = state->parenCount;
1739 if (state->cp == state->cpend) {
1741 * If we are at the end of the regexp and we're short one or more
1742 * operands, the regexp must have the form /x|/ or some such, with
1743 * left parentheses making us short more than one operand.
1745 if (operatorSP >= operandSP) {
1746 operand = NewRENode(state, REOP_EMPTY);
1752 switch (*state->cp) {
1755 if (state->cp + 1 < state->cpend &&
1756 *state->cp == '?' &&
1757 (state->cp[1] == '=' ||
1758 state->cp[1] == '!' ||
1759 state->cp[1] == ':')) {
1760 switch (state->cp[1]) {
1763 /* ASSERT, <next>, ... ASSERTTEST */
1764 state->progLength += 4;
1767 op = REOP_ASSERT_NOT;
1768 /* ASSERTNOT, <next>, ... ASSERTNOTTEST */
1769 state->progLength += 4;
1772 op = REOP_LPARENNON;
1778 /* LPAREN, <index>, ... RPAREN, <index> */
1780 += 2 * (1 + GetCompactIndexWidth(parenIndex));
1781 state->parenCount++;
1782 if (state->parenCount == 65535) {
1783 ReportRegExpError(state, JSREPORT_ERROR,
1784 JSMSG_TOO_MANY_PARENS);
1792 * If there's no stacked open parenthesis, throw syntax error.
1794 for (i = operatorSP - 1; ; i--) {
1796 ReportRegExpError(state, JSREPORT_ERROR,
1797 JSMSG_UNMATCHED_RIGHT_PAREN);
1800 if (operatorStack[i].op == REOP_ASSERT ||
1801 operatorStack[i].op == REOP_ASSERT_NOT ||
1802 operatorStack[i].op == REOP_LPARENNON ||
1803 operatorStack[i].op == REOP_LPAREN) {
1810 /* Expected an operand before these, so make an empty one */
1811 operand = NewRENode(state, REOP_EMPTY);
1817 if (!ParseTerm(state))
1819 operand = state->result;
1821 if (operandSP == operandStackSize) {
1823 operandStackSize += operandStackSize;
1824 tmp = heap_realloc(operandStack, sizeof(RENode *) * operandStackSize);
1829 operandStack[operandSP++] = operand;
1834 /* At the end; process remaining operators. */
1836 if (state->cp == state->cpend) {
1837 while (operatorSP) {
1839 if (!ProcessOp(state, &operatorStack[operatorSP],
1840 operandStack, operandSP))
1844 assert(operandSP == 1);
1845 state->result = operandStack[0];
1850 switch (*state->cp) {
1852 /* Process any stacked 'concat' operators */
1854 while (operatorSP &&
1855 operatorStack[operatorSP - 1].op == REOP_CONCAT) {
1857 if (!ProcessOp(state, &operatorStack[operatorSP],
1858 operandStack, operandSP)) {
1868 * If there's no stacked open parenthesis, throw syntax error.
1870 for (i = operatorSP - 1; ; i--) {
1872 ReportRegExpError(state, JSREPORT_ERROR,
1873 JSMSG_UNMATCHED_RIGHT_PAREN);
1876 if (operatorStack[i].op == REOP_ASSERT ||
1877 operatorStack[i].op == REOP_ASSERT_NOT ||
1878 operatorStack[i].op == REOP_LPARENNON ||
1879 operatorStack[i].op == REOP_LPAREN) {
1885 /* Process everything on the stack until the open parenthesis. */
1889 switch (operatorStack[operatorSP].op) {
1891 case REOP_ASSERT_NOT:
1893 operand = NewRENode(state, operatorStack[operatorSP].op);
1896 operand->u.parenIndex =
1897 operatorStack[operatorSP].parenIndex;
1899 operand->kid = operandStack[operandSP - 1];
1900 operandStack[operandSP - 1] = operand;
1901 if (state->treeDepth == TREE_DEPTH_MAX) {
1902 ReportRegExpError(state, JSREPORT_ERROR,
1903 JSMSG_REGEXP_TOO_COMPLEX);
1909 case REOP_LPARENNON:
1910 state->result = operandStack[operandSP - 1];
1911 if (!ParseQuantifier(state))
1913 operandStack[operandSP - 1] = state->result;
1914 goto restartOperator;
1916 if (!ProcessOp(state, &operatorStack[operatorSP],
1917 operandStack, operandSP))
1927 const WCHAR *errp = state->cp;
1929 if (ParseMinMaxQuantifier(state, TRUE) < 0) {
1931 * This didn't even scan correctly as a quantifier, so we should
1945 ReportRegExpErrorHelper(state, JSREPORT_ERROR, JSMSG_BAD_QUANTIFIER,
1951 /* Anything else is the start of the next term. */
1954 if (operatorSP == operatorStackSize) {
1956 operatorStackSize += operatorStackSize;
1957 tmp = heap_realloc(operatorStack, sizeof(REOpData) * operatorStackSize);
1960 operatorStack = tmp;
1962 operatorStack[operatorSP].op = op;
1963 operatorStack[operatorSP].errPos = state->cp;
1964 operatorStack[operatorSP++].parenIndex = parenIndex;
1969 heap_free(operatorStack);
1970 heap_free(operandStack);
1975 * Save the current state of the match - the position in the input
1976 * text as well as the position in the bytecode. The state of any
1977 * parent expressions is also saved (preceding state).
1978 * Contents of parenCount parentheses from parenIndex are also saved.
1980 static REBackTrackData *
1981 PushBackTrackState(REGlobalData *gData, REOp op,
1982 jsbytecode *target, REMatchState *x, const WCHAR *cp,
1983 size_t parenIndex, size_t parenCount)
1986 REBackTrackData *result =
1987 (REBackTrackData *) ((char *)gData->backTrackSP + gData->cursz);
1989 size_t sz = sizeof(REBackTrackData) +
1990 gData->stateStackTop * sizeof(REProgState) +
1991 parenCount * sizeof(RECapture);
1993 ptrdiff_t btsize = gData->backTrackStackSize;
1994 ptrdiff_t btincr = ((char *)result + sz) -
1995 ((char *)gData->backTrackStack + btsize);
1997 TRACE("\tBT_Push: %lu,%lu\n", (ULONG_PTR)parenIndex, (ULONG_PTR)parenCount);
1999 JS_COUNT_OPERATION(gData->cx, JSOW_JUMP * (1 + parenCount));
2001 ptrdiff_t offset = (char *)result - (char *)gData->backTrackStack;
2003 JS_COUNT_OPERATION(gData->cx, JSOW_ALLOCATION);
2004 btincr = ((btincr+btsize-1)/btsize)*btsize;
2005 gData->backTrackStack = heap_pool_grow(gData->pool, gData->backTrackStack, btsize, btincr);
2006 if (!gData->backTrackStack) {
2007 js_ReportOutOfScriptQuota(gData->cx);
2011 gData->backTrackStackSize = btsize + btincr;
2012 result = (REBackTrackData *) ((char *)gData->backTrackStack + offset);
2014 gData->backTrackSP = result;
2015 result->sz = gData->cursz;
2018 result->backtrack_op = op;
2019 result->backtrack_pc = target;
2021 result->parenCount = parenCount;
2022 result->parenIndex = parenIndex;
2024 result->saveStateStackTop = gData->stateStackTop;
2025 assert(gData->stateStackTop);
2026 memcpy(result + 1, gData->stateStack,
2027 sizeof(REProgState) * result->saveStateStackTop);
2029 if (parenCount != 0) {
2030 memcpy((char *)(result + 1) +
2031 sizeof(REProgState) * result->saveStateStackTop,
2032 &x->parens[parenIndex],
2033 sizeof(RECapture) * parenCount);
2034 for (i = 0; i != parenCount; i++)
2035 x->parens[parenIndex + i].index = -1;
2041 static inline REMatchState *
2042 FlatNIMatcher(REGlobalData *gData, REMatchState *x, const WCHAR *matchChars,
2046 assert(gData->cpend >= x->cp);
2047 if (length > (size_t)(gData->cpend - x->cp))
2049 for (i = 0; i != length; i++) {
2050 if (toupperW(matchChars[i]) != toupperW(x->cp[i]))
2058 * 1. Evaluate DecimalEscape to obtain an EscapeValue E.
2059 * 2. If E is not a character then go to step 6.
2060 * 3. Let ch be E's character.
2061 * 4. Let A be a one-element RECharSet containing the character ch.
2062 * 5. Call CharacterSetMatcher(A, false) and return its Matcher result.
2063 * 6. E must be an integer. Let n be that integer.
2064 * 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
2065 * 8. Return an internal Matcher closure that takes two arguments, a State x
2066 * and a Continuation c, and performs the following:
2067 * 1. Let cap be x's captures internal array.
2068 * 2. Let s be cap[n].
2069 * 3. If s is undefined, then call c(x) and return its result.
2070 * 4. Let e be x's endIndex.
2071 * 5. Let len be s's length.
2072 * 6. Let f be e+len.
2073 * 7. If f>InputLength, return failure.
2074 * 8. If there exists an integer i between 0 (inclusive) and len (exclusive)
2075 * such that Canonicalize(s[i]) is not the same character as
2076 * Canonicalize(Input [e+i]), then return failure.
2077 * 9. Let y be the State (f, cap).
2078 * 10. Call c(y) and return its result.
2080 static REMatchState *
2081 BackrefMatcher(REGlobalData *gData, REMatchState *x, size_t parenIndex)
2084 const WCHAR *parenContent;
2085 RECapture *cap = &x->parens[parenIndex];
2087 if (cap->index == -1)
2091 if (x->cp + len > gData->cpend)
2094 parenContent = &gData->cpbegin[cap->index];
2095 if (gData->regexp->flags & JSREG_FOLD) {
2096 for (i = 0; i < len; i++) {
2097 if (toupperW(parenContent[i]) != toupperW(x->cp[i]))
2101 for (i = 0; i < len; i++) {
2102 if (parenContent[i] != x->cp[i])
2110 /* Add a single character to the RECharSet */
2112 AddCharacterToCharSet(RECharSet *cs, WCHAR c)
2114 UINT byteIndex = (UINT)(c >> 3);
2115 assert(c <= cs->length);
2116 cs->u.bits[byteIndex] |= 1 << (c & 0x7);
2120 /* Add a character range, c1 to c2 (inclusive) to the RECharSet */
2122 AddCharacterRangeToCharSet(RECharSet *cs, UINT c1, UINT c2)
2126 UINT byteIndex1 = c1 >> 3;
2127 UINT byteIndex2 = c2 >> 3;
2129 assert(c2 <= cs->length && c1 <= c2);
2134 if (byteIndex1 == byteIndex2) {
2135 cs->u.bits[byteIndex1] |= ((BYTE)0xFF >> (7 - (c2 - c1))) << c1;
2137 cs->u.bits[byteIndex1] |= 0xFF << c1;
2138 for (i = byteIndex1 + 1; i < byteIndex2; i++)
2139 cs->u.bits[i] = 0xFF;
2140 cs->u.bits[byteIndex2] |= (BYTE)0xFF >> (7 - c2);
2144 /* Compile the source of the class into a RECharSet */
2146 ProcessCharSet(REGlobalData *gData, RECharSet *charSet)
2148 const WCHAR *src, *end;
2149 BOOL inRange = FALSE;
2150 WCHAR rangeStart = 0;
2155 assert(!charSet->converted);
2157 * Assert that startIndex and length points to chars inside [] inside
2160 assert(1 <= charSet->u.src.startIndex);
2161 assert(charSet->u.src.startIndex < gData->regexp->source_len);
2162 assert(charSet->u.src.length <= gData->regexp->source_len
2163 - 1 - charSet->u.src.startIndex);
2165 charSet->converted = TRUE;
2166 src = gData->regexp->source + charSet->u.src.startIndex;
2168 end = src + charSet->u.src.length;
2170 assert(src[-1] == '[' && end[0] == ']');
2172 byteLength = (charSet->length >> 3) + 1;
2173 charSet->u.bits = heap_alloc(byteLength);
2174 if (!charSet->u.bits) {
2175 JS_ReportOutOfMemory(gData->cx);
2179 memset(charSet->u.bits, 0, byteLength);
2185 assert(charSet->sense == FALSE);
2188 assert(charSet->sense == TRUE);
2191 while (src != end) {
2216 if (src < end && JS_ISWORD(*src)) {
2217 thisCh = (WCHAR)(*src++ & 0x1F);
2230 for (i = 0; (i < nDigits) && (src < end); i++) {
2233 if (!isASCIIHexDigit(c, &digit)) {
2235 * Back off to accepting the original '\'
2242 n = (n << 4) | digit;
2255 * This is a non-ECMA extension - decimal escapes (in this
2256 * case, octal!) are supposed to be an error inside class
2257 * ranges, but supported here for backwards compatibility.
2261 if ('0' <= c && c <= '7') {
2263 n = 8 * n + JS7_UNDEC(c);
2265 if ('0' <= c && c <= '7') {
2267 i = 8 * n + JS7_UNDEC(c);
2278 AddCharacterRangeToCharSet(charSet, '0', '9');
2279 continue; /* don't need range processing */
2281 AddCharacterRangeToCharSet(charSet, 0, '0' - 1);
2282 AddCharacterRangeToCharSet(charSet,
2284 (WCHAR)charSet->length);
2287 for (i = (INT)charSet->length; i >= 0; i--)
2289 AddCharacterToCharSet(charSet, (WCHAR)i);
2292 for (i = (INT)charSet->length; i >= 0; i--)
2294 AddCharacterToCharSet(charSet, (WCHAR)i);
2297 for (i = (INT)charSet->length; i >= 0; i--)
2299 AddCharacterToCharSet(charSet, (WCHAR)i);
2302 for (i = (INT)charSet->length; i >= 0; i--)
2304 AddCharacterToCharSet(charSet, (WCHAR)i);
2319 if (gData->regexp->flags & JSREG_FOLD) {
2320 assert(rangeStart <= thisCh);
2321 for (i = rangeStart; i <= thisCh; i++) {
2324 AddCharacterToCharSet(charSet, i);
2328 AddCharacterToCharSet(charSet, uch);
2330 AddCharacterToCharSet(charSet, dch);
2333 AddCharacterRangeToCharSet(charSet, rangeStart, thisCh);
2337 if (gData->regexp->flags & JSREG_FOLD) {
2338 AddCharacterToCharSet(charSet, toupperW(thisCh));
2339 AddCharacterToCharSet(charSet, tolowerW(thisCh));
2341 AddCharacterToCharSet(charSet, thisCh);
2343 if (src < end - 1) {
2347 rangeStart = thisCh;
2356 ReallocStateStack(REGlobalData *gData)
2358 size_t limit = gData->stateStackLimit;
2359 size_t sz = sizeof(REProgState) * limit;
2361 gData->stateStack = heap_pool_grow(gData->pool, gData->stateStack, sz, sz);
2362 if (!gData->stateStack) {
2363 js_ReportOutOfScriptQuota(gData->cx);
2367 gData->stateStackLimit = limit + limit;
2371 #define PUSH_STATE_STACK(data) \
2373 ++(data)->stateStackTop; \
2374 if ((data)->stateStackTop == (data)->stateStackLimit && \
2375 !ReallocStateStack((data))) { \
2381 * Apply the current op against the given input to see if it's going to match
2382 * or fail. Return false if we don't get a match, true if we do. If updatecp is
2383 * true, then update the current state's cp. Always update startpc to the next
2386 static inline REMatchState *
2387 SimpleMatch(REGlobalData *gData, REMatchState *x, REOp op,
2388 jsbytecode **startpc, BOOL updatecp)
2390 REMatchState *result = NULL;
2393 size_t offset, length, index;
2394 jsbytecode *pc = *startpc; /* pc has already been incremented past op */
2395 const WCHAR *source;
2396 const WCHAR *startcp = x->cp;
2400 const char *opname = reop_names[op];
2401 TRACE("\n%06d: %*s%s\n", (int)(pc - gData->regexp->program),
2402 (int)gData->stateStackTop * 2, "", opname);
2409 if (x->cp != gData->cpbegin) {
2410 if (/*!gData->cx->regExpStatics.multiline && FIXME !!! */
2411 !(gData->regexp->flags & JSREG_MULTILINE)) {
2414 if (!RE_IS_LINE_TERM(x->cp[-1]))
2420 if (x->cp != gData->cpend) {
2421 if (/*!gData->cx->regExpStatics.multiline &&*/
2422 !(gData->regexp->flags & JSREG_MULTILINE)) {
2425 if (!RE_IS_LINE_TERM(*x->cp))
2431 if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
2432 !(x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
2437 if ((x->cp == gData->cpbegin || !JS_ISWORD(x->cp[-1])) ^
2438 (x->cp != gData->cpend && JS_ISWORD(*x->cp))) {
2443 if (x->cp != gData->cpend && !RE_IS_LINE_TERM(*x->cp)) {
2449 if (x->cp != gData->cpend && JS7_ISDEC(*x->cp)) {
2455 if (x->cp != gData->cpend && !JS7_ISDEC(*x->cp)) {
2461 if (x->cp != gData->cpend && JS_ISWORD(*x->cp)) {
2467 if (x->cp != gData->cpend && !JS_ISWORD(*x->cp)) {
2473 if (x->cp != gData->cpend && isspaceW(*x->cp)) {
2479 if (x->cp != gData->cpend && !isspaceW(*x->cp)) {
2485 pc = ReadCompactIndex(pc, &parenIndex);
2486 assert(parenIndex < gData->regexp->parenCount);
2487 result = BackrefMatcher(gData, x, parenIndex);
2490 pc = ReadCompactIndex(pc, &offset);
2491 assert(offset < gData->regexp->source_len);
2492 pc = ReadCompactIndex(pc, &length);
2493 assert(1 <= length);
2494 assert(length <= gData->regexp->source_len - offset);
2495 if (length <= (size_t)(gData->cpend - x->cp)) {
2496 source = gData->regexp->source + offset;
2497 TRACE("%s\n", debugstr_wn(source, length));
2498 for (index = 0; index != length; index++) {
2499 if (source[index] != x->cp[index])
2508 TRACE(" '%c' == '%c'\n", (char)matchCh, (char)*x->cp);
2509 if (x->cp != gData->cpend && *x->cp == matchCh) {
2515 pc = ReadCompactIndex(pc, &offset);
2516 assert(offset < gData->regexp->source_len);
2517 pc = ReadCompactIndex(pc, &length);
2518 assert(1 <= length);
2519 assert(length <= gData->regexp->source_len - offset);
2520 source = gData->regexp->source;
2521 result = FlatNIMatcher(gData, x, source + offset, length);
2525 if (x->cp != gData->cpend && toupperW(*x->cp) == toupperW(matchCh)) {
2531 matchCh = GET_ARG(pc);
2532 TRACE(" '%c' == '%c'\n", (char)matchCh, (char)*x->cp);
2534 if (x->cp != gData->cpend && *x->cp == matchCh) {
2540 matchCh = GET_ARG(pc);
2542 if (x->cp != gData->cpend && toupperW(*x->cp) == toupperW(matchCh)) {
2548 pc = ReadCompactIndex(pc, &index);
2549 assert(index < gData->regexp->classCount);
2550 if (x->cp != gData->cpend) {
2551 charSet = &gData->regexp->classList[index];
2552 assert(charSet->converted);
2555 if (charSet->length != 0 &&
2556 ch <= charSet->length &&
2557 (charSet->u.bits[index] & (1 << (ch & 0x7)))) {
2564 pc = ReadCompactIndex(pc, &index);
2565 assert(index < gData->regexp->classCount);
2566 if (x->cp != gData->cpend) {
2567 charSet = &gData->regexp->classList[index];
2568 assert(charSet->converted);
2571 if (charSet->length == 0 ||
2572 ch > charSet->length ||
2573 !(charSet->u.bits[index] & (1 << (ch & 0x7)))) {
2594 static inline REMatchState *
2595 ExecuteREBytecode(REGlobalData *gData, REMatchState *x)
2597 REMatchState *result = NULL;
2598 REBackTrackData *backTrackData;
2599 jsbytecode *nextpc, *testpc;
2602 REProgState *curState;
2603 const WCHAR *startcp;
2604 size_t parenIndex, k;
2605 size_t parenSoFar = 0;
2607 WCHAR matchCh1, matchCh2;
2611 jsbytecode *pc = gData->regexp->program;
2612 REOp op = (REOp) *pc++;
2615 * If the first node is a simple match, step the index into the string
2616 * until that match is made, or fail if it can't be found at all.
2618 if (REOP_IS_SIMPLE(op) && !(gData->regexp->flags & JSREG_STICKY)) {
2620 while (x->cp <= gData->cpend) {
2621 nextpc = pc; /* reset back to start each time */
2622 result = SimpleMatch(gData, x, op, &nextpc, TRUE);
2626 pc = nextpc; /* accept skip to next opcode */
2628 assert(op < REOP_LIMIT);
2639 const char *opname = reop_names[op];
2640 TRACE("\n%06d: %*s%s\n", (int)(pc - gData->regexp->program),
2641 (int)gData->stateStackTop * 2, "", opname);
2643 if (REOP_IS_SIMPLE(op)) {
2644 result = SimpleMatch(gData, x, op, &pc, TRUE);
2646 curState = &gData->stateStack[gData->stateStackTop];
2650 case REOP_ALTPREREQ2:
2651 nextpc = pc + GET_OFFSET(pc); /* start of next op */
2653 matchCh2 = GET_ARG(pc);
2658 if (x->cp != gData->cpend) {
2659 if (*x->cp == matchCh2)
2662 charSet = &gData->regexp->classList[k];
2663 if (!charSet->converted && !ProcessCharSet(gData, charSet))
2667 if ((charSet->length == 0 ||
2668 matchCh1 > charSet->length ||
2669 !(charSet->u.bits[k] & (1 << (matchCh1 & 0x7)))) ^
2677 case REOP_ALTPREREQ:
2678 nextpc = pc + GET_OFFSET(pc); /* start of next op */
2680 matchCh1 = GET_ARG(pc);
2682 matchCh2 = GET_ARG(pc);
2684 if (x->cp == gData->cpend ||
2685 (*x->cp != matchCh1 && *x->cp != matchCh2)) {
2689 /* else fall through... */
2693 nextpc = pc + GET_OFFSET(pc); /* start of next alternate */
2694 pc += ARG_LEN; /* start of this alternate */
2695 curState->parenSoFar = parenSoFar;
2696 PUSH_STATE_STACK(gData);
2699 if (REOP_IS_SIMPLE(op)) {
2700 if (!SimpleMatch(gData, x, op, &pc, TRUE)) {
2701 op = (REOp) *nextpc++;
2708 nextop = (REOp) *nextpc++;
2709 if (!PushBackTrackState(gData, nextop, nextpc, x, startcp, 0, 0))
2714 * Occurs at (successful) end of REOP_ALT,
2718 * If we have not gotten a result here, it is because of an
2719 * empty match. Do the same thing REOP_EMPTY would do.
2724 --gData->stateStackTop;
2725 pc += GET_OFFSET(pc);
2730 * Occurs at last (successful) end of REOP_ALT,
2734 * If we have not gotten a result here, it is because of an
2735 * empty match. Do the same thing REOP_EMPTY would do.
2740 --gData->stateStackTop;
2745 pc = ReadCompactIndex(pc, &parenIndex);
2746 TRACE("[ %lu ]\n", (ULONG_PTR)parenIndex);
2747 assert(parenIndex < gData->regexp->parenCount);
2748 if (parenIndex + 1 > parenSoFar)
2749 parenSoFar = parenIndex + 1;
2750 x->parens[parenIndex].index = x->cp - gData->cpbegin;
2751 x->parens[parenIndex].length = 0;
2759 pc = ReadCompactIndex(pc, &parenIndex);
2760 assert(parenIndex < gData->regexp->parenCount);
2761 cap = &x->parens[parenIndex];
2762 delta = x->cp - (gData->cpbegin + cap->index);
2763 cap->length = (delta < 0) ? 0 : (size_t) delta;
2771 nextpc = pc + GET_OFFSET(pc); /* start of term after ASSERT */
2772 pc += ARG_LEN; /* start of ASSERT child */
2775 if (REOP_IS_SIMPLE(op) &&
2776 !SimpleMatch(gData, x, op, &testpc, FALSE)) {
2780 curState->u.assertion.top =
2781 (char *)gData->backTrackSP - (char *)gData->backTrackStack;
2782 curState->u.assertion.sz = gData->cursz;
2783 curState->index = x->cp - gData->cpbegin;
2784 curState->parenSoFar = parenSoFar;
2785 PUSH_STATE_STACK(gData);
2786 if (!PushBackTrackState(gData, REOP_ASSERTTEST,
2787 nextpc, x, x->cp, 0, 0)) {
2792 case REOP_ASSERT_NOT:
2793 nextpc = pc + GET_OFFSET(pc);
2797 if (REOP_IS_SIMPLE(op) /* Note - fail to fail! */ &&
2798 SimpleMatch(gData, x, op, &testpc, FALSE) &&
2799 *testpc == REOP_ASSERTNOTTEST) {
2803 curState->u.assertion.top
2804 = (char *)gData->backTrackSP -
2805 (char *)gData->backTrackStack;
2806 curState->u.assertion.sz = gData->cursz;
2807 curState->index = x->cp - gData->cpbegin;
2808 curState->parenSoFar = parenSoFar;
2809 PUSH_STATE_STACK(gData);
2810 if (!PushBackTrackState(gData, REOP_ASSERTNOTTEST,
2811 nextpc, x, x->cp, 0, 0)) {
2816 case REOP_ASSERTTEST:
2817 --gData->stateStackTop;
2819 x->cp = gData->cpbegin + curState->index;
2820 gData->backTrackSP =
2821 (REBackTrackData *) ((char *)gData->backTrackStack +
2822 curState->u.assertion.top);
2823 gData->cursz = curState->u.assertion.sz;
2828 case REOP_ASSERTNOTTEST:
2829 --gData->stateStackTop;
2831 x->cp = gData->cpbegin + curState->index;
2832 gData->backTrackSP =
2833 (REBackTrackData *) ((char *)gData->backTrackStack +
2834 curState->u.assertion.top);
2835 gData->cursz = curState->u.assertion.sz;
2836 result = (!result) ? x : NULL;
2839 curState->u.quantifier.min = 0;
2840 curState->u.quantifier.max = (UINT)-1;
2843 curState->u.quantifier.min = 1;
2844 curState->u.quantifier.max = (UINT)-1;
2847 curState->u.quantifier.min = 0;
2848 curState->u.quantifier.max = 1;
2851 pc = ReadCompactIndex(pc, &k);
2852 curState->u.quantifier.min = k;
2853 pc = ReadCompactIndex(pc, &k);
2854 /* max is k - 1 to use one byte for (UINT)-1 sentinel. */
2855 curState->u.quantifier.max = k - 1;
2856 assert(curState->u.quantifier.min <= curState->u.quantifier.max);
2858 if (curState->u.quantifier.max == 0) {
2859 pc = pc + GET_OFFSET(pc);
2864 /* Step over <next> */
2865 nextpc = pc + ARG_LEN;
2866 op = (REOp) *nextpc++;
2868 if (REOP_IS_SIMPLE(op)) {
2869 if (!SimpleMatch(gData, x, op, &nextpc, TRUE)) {
2870 if (curState->u.quantifier.min == 0)
2874 pc = pc + GET_OFFSET(pc);
2877 op = (REOp) *nextpc++;
2880 curState->index = startcp - gData->cpbegin;
2881 curState->continue_op = REOP_REPEAT;
2882 curState->continue_pc = pc;
2883 curState->parenSoFar = parenSoFar;
2884 PUSH_STATE_STACK(gData);
2885 if (curState->u.quantifier.min == 0 &&
2886 !PushBackTrackState(gData, REOP_REPEAT, pc, x, startcp,
2893 case REOP_ENDCHILD: /* marks the end of a quantifier child */
2894 pc = curState[-1].continue_pc;
2895 op = (REOp) curState[-1].continue_op;
2904 --gData->stateStackTop;
2906 /* Failed, see if we have enough children. */
2907 if (curState->u.quantifier.min == 0)
2911 if (curState->u.quantifier.min == 0 &&
2912 x->cp == gData->cpbegin + curState->index) {
2913 /* matched an empty string, that'll get us nowhere */
2917 if (curState->u.quantifier.min != 0)
2918 curState->u.quantifier.min--;
2919 if (curState->u.quantifier.max != (UINT) -1)
2920 curState->u.quantifier.max--;
2921 if (curState->u.quantifier.max == 0)
2923 nextpc = pc + ARG_LEN;
2924 nextop = (REOp) *nextpc;
2926 if (REOP_IS_SIMPLE(nextop)) {
2928 if (!SimpleMatch(gData, x, nextop, &nextpc, TRUE)) {
2929 if (curState->u.quantifier.min == 0)
2936 curState->index = startcp - gData->cpbegin;
2937 PUSH_STATE_STACK(gData);
2938 if (curState->u.quantifier.min == 0 &&
2939 !PushBackTrackState(gData, REOP_REPEAT,
2941 curState->parenSoFar,
2943 curState->parenSoFar)) {
2946 } while (*nextpc == REOP_ENDCHILD);
2949 parenSoFar = curState->parenSoFar;
2954 pc += GET_OFFSET(pc);
2957 case REOP_MINIMALSTAR:
2958 curState->u.quantifier.min = 0;
2959 curState->u.quantifier.max = (UINT)-1;
2960 goto minimalquantcommon;
2961 case REOP_MINIMALPLUS:
2962 curState->u.quantifier.min = 1;
2963 curState->u.quantifier.max = (UINT)-1;
2964 goto minimalquantcommon;
2965 case REOP_MINIMALOPT:
2966 curState->u.quantifier.min = 0;
2967 curState->u.quantifier.max = 1;
2968 goto minimalquantcommon;
2969 case REOP_MINIMALQUANT:
2970 pc = ReadCompactIndex(pc, &k);
2971 curState->u.quantifier.min = k;
2972 pc = ReadCompactIndex(pc, &k);
2973 /* See REOP_QUANT comments about k - 1. */
2974 curState->u.quantifier.max = k - 1;
2975 assert(curState->u.quantifier.min
2976 <= curState->u.quantifier.max);
2978 curState->index = x->cp - gData->cpbegin;
2979 curState->parenSoFar = parenSoFar;
2980 PUSH_STATE_STACK(gData);
2981 if (curState->u.quantifier.min != 0) {
2982 curState->continue_op = REOP_MINIMALREPEAT;
2983 curState->continue_pc = pc;
2984 /* step over <next> */
2988 if (!PushBackTrackState(gData, REOP_MINIMALREPEAT,
2989 pc, x, x->cp, 0, 0)) {
2992 --gData->stateStackTop;
2993 pc = pc + GET_OFFSET(pc);
2998 case REOP_MINIMALREPEAT:
2999 --gData->stateStackTop;
3002 TRACE("{%d,%d}\n", curState->u.quantifier.min, curState->u.quantifier.max);
3003 #define PREPARE_REPEAT() \
3005 curState->index = x->cp - gData->cpbegin; \
3006 curState->continue_op = REOP_MINIMALREPEAT; \
3007 curState->continue_pc = pc; \
3009 for (k = curState->parenSoFar; k < parenSoFar; k++) \
3010 x->parens[k].index = -1; \
3011 PUSH_STATE_STACK(gData); \
3012 op = (REOp) *pc++; \
3013 assert(op < REOP_LIMIT); \
3019 * Non-greedy failure - try to consume another child.
3021 if (curState->u.quantifier.max == (UINT) -1 ||
3022 curState->u.quantifier.max > 0) {
3026 /* Don't need to adjust pc since we're going to pop. */
3029 if (curState->u.quantifier.min == 0 &&
3030 x->cp == gData->cpbegin + curState->index) {
3031 /* Matched an empty string, that'll get us nowhere. */
3035 if (curState->u.quantifier.min != 0)
3036 curState->u.quantifier.min--;
3037 if (curState->u.quantifier.max != (UINT) -1)
3038 curState->u.quantifier.max--;
3039 if (curState->u.quantifier.min != 0) {
3043 curState->index = x->cp - gData->cpbegin;
3044 curState->parenSoFar = parenSoFar;
3045 PUSH_STATE_STACK(gData);
3046 if (!PushBackTrackState(gData, REOP_MINIMALREPEAT,
3048 curState->parenSoFar,
3049 parenSoFar - curState->parenSoFar)) {
3052 --gData->stateStackTop;
3053 pc = pc + GET_OFFSET(pc);
3055 assert(op < REOP_LIMIT);
3065 * If the match failed and there's a backtrack option, take it.
3066 * Otherwise this is a complete and utter failure.
3069 if (gData->cursz == 0)
3072 /* Potentially detect explosive regex here. */
3073 gData->backTrackCount++;
3074 if (gData->backTrackLimit &&
3075 gData->backTrackCount >= gData->backTrackLimit) {
3076 JS_ReportErrorNumber(gData->cx, js_GetErrorMessage, NULL,
3077 JSMSG_REGEXP_TOO_COMPLEX);
3082 backTrackData = gData->backTrackSP;
3083 gData->cursz = backTrackData->sz;
3084 gData->backTrackSP =
3085 (REBackTrackData *) ((char *)backTrackData - backTrackData->sz);
3086 x->cp = backTrackData->cp;
3087 pc = backTrackData->backtrack_pc;
3088 op = (REOp) backTrackData->backtrack_op;
3089 assert(op < REOP_LIMIT);
3090 gData->stateStackTop = backTrackData->saveStateStackTop;
3091 assert(gData->stateStackTop);
3093 memcpy(gData->stateStack, backTrackData + 1,
3094 sizeof(REProgState) * backTrackData->saveStateStackTop);
3095 curState = &gData->stateStack[gData->stateStackTop - 1];
3097 if (backTrackData->parenCount) {
3098 memcpy(&x->parens[backTrackData->parenIndex],
3099 (char *)(backTrackData + 1) +
3100 sizeof(REProgState) * backTrackData->saveStateStackTop,
3101 sizeof(RECapture) * backTrackData->parenCount);
3102 parenSoFar = backTrackData->parenIndex + backTrackData->parenCount;
3104 for (k = curState->parenSoFar; k < parenSoFar; k++)
3105 x->parens[k].index = -1;
3106 parenSoFar = curState->parenSoFar;
3109 TRACE("\tBT_Pop: %ld,%ld\n",
3110 (ULONG_PTR)backTrackData->parenIndex,
3111 (ULONG_PTR)backTrackData->parenCount);
3117 * Continue with the expression.
3120 assert(op < REOP_LIMIT);
3132 static REMatchState *MatchRegExp(REGlobalData *gData, REMatchState *x)
3134 REMatchState *result;
3135 const WCHAR *cp = x->cp;
3140 * Have to include the position beyond the last character
3141 * in order to detect end-of-input/line condition.
3143 for (cp2 = cp; cp2 <= gData->cpend; cp2++) {
3144 gData->skipped = cp2 - cp;
3146 for (j = 0; j < gData->regexp->parenCount; j++)
3147 x->parens[j].index = -1;
3148 result = ExecuteREBytecode(gData, x);
3149 if (!gData->ok || result || (gData->regexp->flags & JSREG_STICKY))
3151 gData->backTrackSP = gData->backTrackStack;
3153 gData->stateStackTop = 0;
3154 cp2 = cp + gData->skipped;
3159 #define MIN_BACKTRACK_LIMIT 400000
3161 static REMatchState *InitMatch(script_ctx_t *cx, REGlobalData *gData, JSRegExp *re, size_t length)
3163 REMatchState *result;
3166 gData->backTrackStackSize = INITIAL_BACKTRACK;
3167 gData->backTrackStack = heap_pool_alloc(gData->pool, INITIAL_BACKTRACK);
3168 if (!gData->backTrackStack)
3171 gData->backTrackSP = gData->backTrackStack;
3173 gData->backTrackCount = 0;
3174 gData->backTrackLimit = 0;
3176 gData->stateStackLimit = INITIAL_STATESTACK;
3177 gData->stateStack = heap_pool_alloc(gData->pool, sizeof(REProgState) * INITIAL_STATESTACK);
3178 if (!gData->stateStack)
3181 gData->stateStackTop = 0;
3186 result = heap_pool_alloc(gData->pool, offsetof(REMatchState, parens) + re->parenCount * sizeof(RECapture));
3190 for (i = 0; i < re->classCount; i++) {
3191 if (!re->classList[i].converted &&
3192 !ProcessCharSet(gData, &re->classList[i])) {
3200 js_ReportOutOfScriptQuota(cx);
3205 static HRESULT MatchRegExpNext(JSRegExp *jsregexp, const WCHAR *str, DWORD str_len,
3206 const WCHAR **cp, heap_pool_t *pool, REMatchState **result, DWORD *matchlen)
3208 REMatchState *x, *res;
3211 gData.cpbegin = str;
3212 gData.cpend = str+str_len;
3213 gData.start = *cp-str;
3217 x = InitMatch(NULL, &gData, jsregexp, gData.cpend - gData.cpbegin);
3219 WARN("InitMatch failed\n");
3224 res = MatchRegExp(&gData, x);
3226 WARN("MatchRegExp failed\n");
3236 *matchlen = (res->cp-*cp) - gData.skipped;
3242 js_DestroyRegExp(JSRegExp *re)
3244 if (re->classList) {
3246 for (i = 0; i < re->classCount; i++) {
3247 if (re->classList[i].converted)
3248 heap_free(re->classList[i].u.bits);
3249 re->classList[i].u.bits = NULL;
3251 heap_free(re->classList);
3257 js_NewRegExp(script_ctx_t *cx, const WCHAR *str, DWORD str_len, UINT flags, BOOL flat)
3261 CompilerState state;
3268 mark = heap_pool_mark(&cx->tmp_heap);
3275 state.cpbegin = state.cp;
3276 state.cpend = state.cp + len;
3277 state.flags = flags;
3278 state.parenCount = 0;
3279 state.classCount = 0;
3280 state.progLength = 0;
3281 state.treeDepth = 0;
3282 state.classBitmapsMem = 0;
3283 for (i = 0; i < CLASS_CACHE_SIZE; i++)
3284 state.classCache[i].start = NULL;
3286 if (len != 0 && flat) {
3287 state.result = NewRENode(&state, REOP_FLAT);
3290 state.result->u.flat.chr = *state.cpbegin;
3291 state.result->u.flat.length = len;
3292 state.result->kid = (void *) state.cpbegin;
3293 /* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */
3294 state.progLength += 1 + GetCompactIndexWidth(0)
3295 + GetCompactIndexWidth(len);
3297 if (!ParseRegExp(&state))
3300 resize = offsetof(JSRegExp, program) + state.progLength + 1;
3301 re = heap_alloc(resize);
3305 assert(state.classBitmapsMem <= CLASS_BITMAPS_MEM_LIMIT);
3306 re->classCount = state.classCount;
3307 if (re->classCount) {
3308 re->classList = heap_alloc(re->classCount * sizeof(RECharSet));
3309 if (!re->classList) {
3310 js_DestroyRegExp(re);
3314 for (i = 0; i < re->classCount; i++)
3315 re->classList[i].converted = FALSE;
3317 re->classList = NULL;
3319 endPC = EmitREBytecode(&state, re, state.treeDepth, re->program, state.result);
3321 js_DestroyRegExp(re);
3325 *endPC++ = REOP_END;
3327 * Check whether size was overestimated and shrink using realloc.
3328 * This is safe since no pointers to newly parsed regexp or its parts
3329 * besides re exist here.
3331 if ((size_t)(endPC - re->program) != state.progLength + 1) {
3333 assert((size_t)(endPC - re->program) < state.progLength + 1);
3334 resize = offsetof(JSRegExp, program) + (endPC - re->program);
3335 tmp = heap_realloc(re, resize);
3341 re->parenCount = state.parenCount;
3343 re->source_len = str_len;
3346 heap_pool_clear(mark);
3350 static inline RegExpInstance *regexp_from_vdisp(vdisp_t *vdisp)
3352 return (RegExpInstance*)vdisp->u.jsdisp;
3355 static void set_last_index(RegExpInstance *This, DWORD last_index)
3357 This->last_index = last_index;
3358 jsval_release(This->last_index_val);
3359 This->last_index_val = jsval_number(last_index);
3362 static HRESULT do_regexp_match_next(script_ctx_t *ctx, RegExpInstance *regexp, DWORD rem_flags,
3363 jsstr_t *str, const WCHAR **cp, match_result_t **parens, DWORD *parens_size,
3364 DWORD *parens_cnt, match_result_t *ret)
3366 REMatchState *result;
3370 hres = MatchRegExpNext(regexp->jsregexp, str->str, jsstr_length(str),
3371 cp, &ctx->tmp_heap, &result, &matchlen);
3374 if(hres == S_FALSE) {
3375 if(rem_flags & REM_RESET_INDEX)
3376 set_last_index(regexp, 0);
3381 if(regexp->jsregexp->parenCount > *parens_size) {
3382 match_result_t *new_parens;
3385 new_parens = heap_realloc(*parens, sizeof(match_result_t)*regexp->jsregexp->parenCount);
3387 new_parens = heap_alloc(sizeof(match_result_t)*regexp->jsregexp->parenCount);
3389 return E_OUTOFMEMORY;
3391 *parens_size = regexp->jsregexp->parenCount;
3392 *parens = new_parens;
3396 if(!(rem_flags & REM_NO_CTX_UPDATE) && ctx->last_match != str) {
3397 jsstr_release(ctx->last_match);
3398 ctx->last_match = jsstr_addref(str);
3404 *parens_cnt = regexp->jsregexp->parenCount;
3406 for(i=0; i < regexp->jsregexp->parenCount; i++) {
3407 if(result->parens[i].index == -1) {
3408 (*parens)[i].str = NULL;
3409 (*parens)[i].len = 0;
3411 (*parens)[i].str = str->str + result->parens[i].index;
3412 (*parens)[i].len = result->parens[i].length;
3417 if(!(rem_flags & REM_NO_CTX_UPDATE)) {
3418 DWORD i, n = min(sizeof(ctx->match_parens)/sizeof(ctx->match_parens[0]), regexp->jsregexp->parenCount);
3420 for(i=0; i < n; i++) {
3421 if(result->parens[i].index == -1) {
3422 ctx->match_parens[i].str = NULL;
3423 ctx->match_parens[i].len = 0;
3425 ctx->match_parens[i].str = ctx->last_match->str + result->parens[i].index;
3426 ctx->match_parens[i].len = result->parens[i].length;
3430 if(n < sizeof(ctx->match_parens)/sizeof(ctx->match_parens[0]))
3431 memset(ctx->match_parens+n, 0, sizeof(ctx->match_parens) - n*sizeof(ctx->match_parens[0]));
3434 ret->str = result->cp-matchlen;
3435 ret->len = matchlen;
3436 set_last_index(regexp, result->cp-str->str);
3438 if(!(rem_flags & REM_NO_CTX_UPDATE)) {
3439 ctx->last_match_index = ret->str-str->str;
3440 ctx->last_match_length = matchlen;
3446 HRESULT regexp_match_next(script_ctx_t *ctx, jsdisp_t *dispex, DWORD rem_flags, jsstr_t *str,
3447 const WCHAR **cp, match_result_t **parens, DWORD *parens_size, DWORD *parens_cnt,
3448 match_result_t *ret)
3450 RegExpInstance *regexp = (RegExpInstance*)dispex;
3454 if((rem_flags & REM_CHECK_GLOBAL) && !(regexp->jsregexp->flags & JSREG_GLOB))
3457 mark = heap_pool_mark(&ctx->tmp_heap);
3459 hres = do_regexp_match_next(ctx, regexp, rem_flags, str, cp, parens, parens_size, parens_cnt, ret);
3461 heap_pool_clear(mark);
3465 static HRESULT regexp_match(script_ctx_t *ctx, jsdisp_t *dispex, jsstr_t *str, BOOL gflag,
3466 match_result_t **match_result, DWORD *result_cnt)
3468 RegExpInstance *This = (RegExpInstance*)dispex;
3469 match_result_t *ret = NULL, cres;
3470 const WCHAR *cp = str->str;
3471 DWORD i=0, ret_size = 0;
3475 mark = heap_pool_mark(&ctx->tmp_heap);
3478 hres = do_regexp_match_next(ctx, This, 0, str, &cp, NULL, NULL, NULL, &cres);
3479 if(hres == S_FALSE) {
3489 match_result_t *old_ret = ret;
3491 ret = heap_realloc(old_ret, (ret_size <<= 1) * sizeof(match_result_t));
3495 ret = heap_alloc((ret_size=4) * sizeof(match_result_t));
3498 hres = E_OUTOFMEMORY;
3505 if(!gflag && !(This->jsregexp->flags & JSREG_GLOB)) {
3511 heap_pool_clear(mark);
3517 *match_result = ret;
3522 static HRESULT RegExp_source(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3528 case DISPATCH_PROPERTYGET: {
3529 RegExpInstance *This = regexp_from_vdisp(jsthis);
3530 *r = jsval_string(jsstr_addref(This->str));
3534 FIXME("Unimplemented flags %x\n", flags);
3541 static HRESULT RegExp_global(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3548 static HRESULT RegExp_ignoreCase(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3555 static HRESULT RegExp_multiline(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3562 static INT index_from_val(script_ctx_t *ctx, jsval_t v)
3567 hres = to_number(ctx, v, &n);
3569 clear_ei(ctx); /* FIXME: Move ignoring exceptions to to_primitive */
3574 return is_int32(n) ? n : 0;
3577 static HRESULT RegExp_lastIndex(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3583 case DISPATCH_PROPERTYGET: {
3584 RegExpInstance *regexp = regexp_from_vdisp(jsthis);
3586 return jsval_copy(regexp->last_index_val, r);
3588 case DISPATCH_PROPERTYPUT: {
3589 RegExpInstance *regexp = regexp_from_vdisp(jsthis);
3592 hres = jsval_copy(argv[0], ®exp->last_index_val);
3596 regexp->last_index = index_from_val(ctx, argv[0]);
3600 FIXME("unimplemented flags: %x\n", flags);
3607 static HRESULT RegExp_toString(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3614 static HRESULT create_match_array(script_ctx_t *ctx, jsstr_t *input, const match_result_t *result,
3615 const match_result_t *parens, DWORD parens_cnt, IDispatch **ret)
3620 HRESULT hres = S_OK;
3622 static const WCHAR indexW[] = {'i','n','d','e','x',0};
3623 static const WCHAR inputW[] = {'i','n','p','u','t',0};
3624 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
3625 static const WCHAR zeroW[] = {'0',0};
3627 hres = create_array(ctx, parens_cnt+1, &array);
3631 for(i=0; i < parens_cnt; i++) {
3632 str = jsstr_alloc_len(parens[i].str, parens[i].len);
3634 hres = E_OUTOFMEMORY;
3638 hres = jsdisp_propput_idx(array, i+1, jsval_string(str));
3644 while(SUCCEEDED(hres)) {
3645 hres = jsdisp_propput_name(array, indexW, jsval_number(result->str-input->str));
3649 hres = jsdisp_propput_name(array, lastIndexW, jsval_number(result->str-input->str+result->len));
3653 hres = jsdisp_propput_name(array, inputW, jsval_string(jsstr_addref(input)));
3657 str = jsstr_alloc_len(result->str, result->len);
3659 hres = E_OUTOFMEMORY;
3662 hres = jsdisp_propput_name(array, zeroW, jsval_string(str));
3668 jsdisp_release(array);
3672 *ret = to_disp(array);
3676 static HRESULT run_exec(script_ctx_t *ctx, vdisp_t *jsthis, jsval_t arg, jsstr_t **input,
3677 match_result_t *match, match_result_t **parens, DWORD *parens_cnt, BOOL *ret)
3679 RegExpInstance *regexp;
3680 DWORD parens_size = 0, last_index = 0;
3685 if(!is_vclass(jsthis, JSCLASS_REGEXP)) {
3686 FIXME("Not a RegExp\n");
3690 regexp = regexp_from_vdisp(jsthis);
3692 hres = to_string(ctx, arg, &string);
3696 if(regexp->jsregexp->flags & JSREG_GLOB) {
3697 if(regexp->last_index < 0) {
3698 jsstr_release(string);
3699 set_last_index(regexp, 0);
3702 *input = jsstr_empty();
3706 last_index = regexp->last_index;
3709 cp = string->str + last_index;
3710 hres = regexp_match_next(ctx, ®exp->dispex, REM_RESET_INDEX, string, &cp, parens,
3711 parens ? &parens_size : NULL, parens_cnt, match);
3713 jsstr_release(string);
3717 *ret = hres == S_OK;
3721 jsstr_release(string);
3725 static HRESULT RegExp_exec(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3728 match_result_t *parens = NULL, match;
3729 DWORD parens_cnt = 0;
3736 hres = run_exec(ctx, jsthis, argc ? argv[0] : jsval_string(jsstr_empty()), &string, &match, &parens, &parens_cnt, &b);
3746 hres = create_match_array(ctx, string, &match, parens, parens_cnt, &ret);
3748 *r = jsval_disp(ret);
3755 jsstr_release(string);
3759 static HRESULT RegExp_test(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3762 match_result_t match;
3770 undef_str = jsstr_alloc(undefinedW);
3772 return E_OUTOFMEMORY;
3775 hres = run_exec(ctx, jsthis, argc ? argv[0] : jsval_string(undef_str), NULL, &match, NULL, NULL, &b);
3777 jsstr_release(undef_str);
3786 static HRESULT RegExp_value(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
3793 return throw_type_error(ctx, JS_E_FUNCTION_EXPECTED, NULL);
3795 FIXME("unimplemented flags %x\n", flags);
3802 static void RegExp_destructor(jsdisp_t *dispex)
3804 RegExpInstance *This = (RegExpInstance*)dispex;
3807 js_DestroyRegExp(This->jsregexp);
3808 jsval_release(This->last_index_val);
3809 jsstr_release(This->str);
3813 static const builtin_prop_t RegExp_props[] = {
3814 {execW, RegExp_exec, PROPF_METHOD|1},
3815 {globalW, RegExp_global, 0},
3816 {ignoreCaseW, RegExp_ignoreCase, 0},
3817 {lastIndexW, RegExp_lastIndex, 0},
3818 {multilineW, RegExp_multiline, 0},
3819 {sourceW, RegExp_source, 0},
3820 {testW, RegExp_test, PROPF_METHOD|1},
3821 {toStringW, RegExp_toString, PROPF_METHOD}
3824 static const builtin_info_t RegExp_info = {
3826 {NULL, RegExp_value, 0},
3827 sizeof(RegExp_props)/sizeof(*RegExp_props),
3833 static const builtin_prop_t RegExpInst_props[] = {
3834 {globalW, RegExp_global, 0},
3835 {ignoreCaseW, RegExp_ignoreCase, 0},
3836 {lastIndexW, RegExp_lastIndex, 0},
3837 {multilineW, RegExp_multiline, 0},
3838 {sourceW, RegExp_source, 0}
3841 static const builtin_info_t RegExpInst_info = {
3843 {NULL, RegExp_value, 0},
3844 sizeof(RegExpInst_props)/sizeof(*RegExpInst_props),
3850 static HRESULT alloc_regexp(script_ctx_t *ctx, jsdisp_t *object_prototype, RegExpInstance **ret)
3852 RegExpInstance *regexp;
3855 regexp = heap_alloc_zero(sizeof(RegExpInstance));
3857 return E_OUTOFMEMORY;
3859 if(object_prototype)
3860 hres = init_dispex(®exp->dispex, ctx, &RegExp_info, object_prototype);
3862 hres = init_dispex_from_constr(®exp->dispex, ctx, &RegExpInst_info, ctx->regexp_constr);
3873 HRESULT create_regexp(script_ctx_t *ctx, jsstr_t *src, DWORD flags, jsdisp_t **ret)
3875 RegExpInstance *regexp;
3878 TRACE("%s %x\n", debugstr_jsstr(src), flags);
3880 hres = alloc_regexp(ctx, NULL, ®exp);
3884 regexp->str = jsstr_addref(src);
3885 regexp->last_index_val = jsval_number(0);
3887 regexp->jsregexp = js_NewRegExp(ctx, regexp->str->str,
3888 jsstr_length(regexp->str), flags, FALSE);
3889 if(!regexp->jsregexp) {
3890 WARN("js_NewRegExp failed\n");
3891 jsdisp_release(®exp->dispex);
3895 *ret = ®exp->dispex;
3899 HRESULT create_regexp_var(script_ctx_t *ctx, jsval_t src_arg, jsval_t *flags_arg, jsdisp_t **ret)
3901 jsstr_t *src, *opt = NULL;
3905 if(is_object_instance(src_arg)) {
3908 obj = iface_to_jsdisp((IUnknown*)get_object(src_arg));
3910 if(is_class(obj, JSCLASS_REGEXP)) {
3911 RegExpInstance *regexp = (RegExpInstance*)obj;
3913 hres = create_regexp(ctx, regexp->str, regexp->jsregexp->flags, ret);
3914 jsdisp_release(obj);
3918 jsdisp_release(obj);
3922 if(!is_string(src_arg)) {
3923 FIXME("src_arg = %s\n", debugstr_jsval(src_arg));
3927 src = get_string(src_arg);
3930 if(!is_string(*flags_arg)) {
3931 FIXME("unimplemented for %s\n", debugstr_jsval(*flags_arg));
3935 opt = get_string(*flags_arg);
3938 hres = parse_regexp_flags(opt ? opt->str : NULL, opt ? jsstr_length(opt) : 0, &flags);
3942 return create_regexp(ctx, src, flags, ret);
3945 HRESULT regexp_string_match(script_ctx_t *ctx, jsdisp_t *re, jsstr_t *str, jsval_t *r)
3947 static const WCHAR indexW[] = {'i','n','d','e','x',0};
3948 static const WCHAR inputW[] = {'i','n','p','u','t',0};
3949 static const WCHAR lastIndexW[] = {'l','a','s','t','I','n','d','e','x',0};
3951 RegExpInstance *regexp = (RegExpInstance*)re;
3952 match_result_t *match_result;
3953 unsigned match_cnt, i;
3957 if(!(regexp->jsregexp->flags & JSREG_GLOB)) {
3958 match_result_t match, *parens = NULL;
3959 DWORD parens_cnt, parens_size = 0;
3960 const WCHAR *cp = str->str;
3962 hres = regexp_match_next(ctx, ®exp->dispex, 0, str, &cp, &parens, &parens_size, &parens_cnt, &match);
3972 hres = create_match_array(ctx, str, &match, parens, parens_cnt, &ret);
3974 *r = jsval_disp(ret);
3984 hres = regexp_match(ctx, ®exp->dispex, str, FALSE, &match_result, &match_cnt);
3989 TRACE("no match\n");
3996 hres = create_array(ctx, match_cnt, &array);
4000 for(i=0; i < match_cnt; i++) {
4003 tmp_str = jsstr_alloc_len(match_result[i].str, match_result[i].len);
4005 hres = E_OUTOFMEMORY;
4009 hres = jsdisp_propput_idx(array, i, jsval_string(tmp_str));
4010 jsstr_release(tmp_str);
4015 while(SUCCEEDED(hres)) {
4016 hres = jsdisp_propput_name(array, indexW, jsval_number(match_result[match_cnt-1].str-str->str));
4020 hres = jsdisp_propput_name(array, lastIndexW,
4021 jsval_number(match_result[match_cnt-1].str-str->str+match_result[match_cnt-1].len));
4025 hres = jsdisp_propput_name(array, inputW, jsval_string(str));
4029 heap_free(match_result);
4031 if(SUCCEEDED(hres) && r)
4032 *r = jsval_obj(array);
4034 jsdisp_release(array);
4038 static HRESULT global_idx(script_ctx_t *ctx, DWORD flags, DWORD idx, jsval_t *r)
4041 case DISPATCH_PROPERTYGET: {
4044 ret = jsstr_alloc_len(ctx->match_parens[idx].str, ctx->match_parens[idx].len);
4046 return E_OUTOFMEMORY;
4048 *r = jsval_string(ret);
4051 case DISPATCH_PROPERTYPUT:
4054 FIXME("unsupported flags\n");
4061 static HRESULT RegExpConstr_idx1(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4062 unsigned argc, jsval_t *argv, jsval_t *r)
4065 return global_idx(ctx, flags, 0, r);
4068 static HRESULT RegExpConstr_idx2(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4069 unsigned argc, jsval_t *argv, jsval_t *r)
4072 return global_idx(ctx, flags, 1, r);
4075 static HRESULT RegExpConstr_idx3(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4076 unsigned argc, jsval_t *argv, jsval_t *r)
4079 return global_idx(ctx, flags, 2, r);
4082 static HRESULT RegExpConstr_idx4(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4083 unsigned argc, jsval_t *argv, jsval_t *r)
4086 return global_idx(ctx, flags, 3, r);
4089 static HRESULT RegExpConstr_idx5(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4090 unsigned argc, jsval_t *argv, jsval_t *r)
4093 return global_idx(ctx, flags, 4, r);
4096 static HRESULT RegExpConstr_idx6(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4097 unsigned argc, jsval_t *argv, jsval_t *r)
4100 return global_idx(ctx, flags, 5, r);
4103 static HRESULT RegExpConstr_idx7(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4104 unsigned argc, jsval_t *argv, jsval_t *r)
4107 return global_idx(ctx, flags, 6, r);
4110 static HRESULT RegExpConstr_idx8(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4111 unsigned argc, jsval_t *argv, jsval_t *r)
4114 return global_idx(ctx, flags, 7, r);
4117 static HRESULT RegExpConstr_idx9(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4118 unsigned argc, jsval_t *argv, jsval_t *r)
4121 return global_idx(ctx, flags, 8, r);
4124 static HRESULT RegExpConstr_leftContext(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4125 unsigned argc, jsval_t *argv, jsval_t *r)
4130 case DISPATCH_PROPERTYGET: {
4133 ret = jsstr_alloc_len(ctx->last_match->str, ctx->last_match_index);
4135 return E_OUTOFMEMORY;
4137 *r = jsval_string(ret);
4140 case DISPATCH_PROPERTYPUT:
4143 FIXME("unsupported flags\n");
4150 static HRESULT RegExpConstr_rightContext(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags,
4151 unsigned argc, jsval_t *argv, jsval_t *r)
4156 case DISPATCH_PROPERTYGET: {
4159 ret = jsstr_alloc(ctx->last_match->str+ctx->last_match_index+ctx->last_match_length);
4161 return E_OUTOFMEMORY;
4163 *r = jsval_string(ret);
4166 case DISPATCH_PROPERTYPUT:
4169 FIXME("unsupported flags\n");
4176 static HRESULT RegExpConstr_value(script_ctx_t *ctx, vdisp_t *jsthis, WORD flags, unsigned argc, jsval_t *argv,
4182 case DISPATCH_METHOD:
4184 if(is_object_instance(argv[0])) {
4185 jsdisp_t *jsdisp = iface_to_jsdisp((IUnknown*)get_object(argv[0]));
4187 if(is_class(jsdisp, JSCLASS_REGEXP)) {
4188 if(argc > 1 && !is_undefined(argv[1])) {
4189 jsdisp_release(jsdisp);
4190 return throw_regexp_error(ctx, JS_E_REGEXP_SYNTAX, NULL);
4194 *r = jsval_obj(jsdisp);
4196 jsdisp_release(jsdisp);
4199 jsdisp_release(jsdisp);
4204 case DISPATCH_CONSTRUCT: {
4213 hres = create_regexp_var(ctx, argv[0], argc > 1 ? argv+1 : NULL, &ret);
4218 *r = jsval_obj(ret);
4220 jsdisp_release(ret);
4224 FIXME("unimplemented flags: %x\n", flags);
4231 static const builtin_prop_t RegExpConstr_props[] = {
4232 {idx1W, RegExpConstr_idx1, 0},
4233 {idx2W, RegExpConstr_idx2, 0},
4234 {idx3W, RegExpConstr_idx3, 0},
4235 {idx4W, RegExpConstr_idx4, 0},
4236 {idx5W, RegExpConstr_idx5, 0},
4237 {idx6W, RegExpConstr_idx6, 0},
4238 {idx7W, RegExpConstr_idx7, 0},
4239 {idx8W, RegExpConstr_idx8, 0},
4240 {idx9W, RegExpConstr_idx9, 0},
4241 {leftContextW, RegExpConstr_leftContext, 0},
4242 {rightContextW, RegExpConstr_rightContext, 0}
4245 static const builtin_info_t RegExpConstr_info = {
4247 {NULL, Function_value, 0},
4248 sizeof(RegExpConstr_props)/sizeof(*RegExpConstr_props),
4254 HRESULT create_regexp_constr(script_ctx_t *ctx, jsdisp_t *object_prototype, jsdisp_t **ret)
4256 RegExpInstance *regexp;
4259 static const WCHAR RegExpW[] = {'R','e','g','E','x','p',0};
4261 hres = alloc_regexp(ctx, object_prototype, ®exp);
4265 hres = create_builtin_constructor(ctx, RegExpConstr_value, RegExpW, &RegExpConstr_info,
4266 PROPF_CONSTR|2, ®exp->dispex, ret);
4268 jsdisp_release(®exp->dispex);
4272 HRESULT parse_regexp_flags(const WCHAR *str, DWORD str_len, DWORD *ret)
4277 for (p = str; p < str+str_len; p++) {
4280 flags |= JSREG_GLOB;
4283 flags |= JSREG_FOLD;
4286 flags |= JSREG_MULTILINE;
4289 flags |= JSREG_STICKY;
4292 WARN("wrong flag %c\n", *p);