mciwave: Fix some typos.
[wine] / dlls / rsaenh / rsaenh.c
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  * Copyright 2007 Vijay Kiran Kamuju
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23  */
24
25 #include "config.h"
26 #include "wine/port.h"
27 #include "wine/library.h"
28 #include "wine/debug.h"
29
30 #include <stdarg.h>
31 #include <stdio.h>
32
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winreg.h"
36 #include "wincrypt.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44  * CRYPTHASH - hash objects
45  */
46 #define RSAENH_MAGIC_HASH           0x85938417u
47 #define RSAENH_MAX_HASH_SIZE        104
48 #define RSAENH_HASHSTATE_HASHING    1
49 #define RSAENH_HASHSTATE_FINISHED   2
50 typedef struct _RSAENH_TLS1PRF_PARAMS
51 {
52     CRYPT_DATA_BLOB blobLabel;
53     CRYPT_DATA_BLOB blobSeed;
54 } RSAENH_TLS1PRF_PARAMS;
55
56 typedef struct tagCRYPTHASH
57 {
58     OBJECTHDR    header;
59     ALG_ID       aiAlgid;
60     HCRYPTKEY    hKey;
61     HCRYPTPROV   hProv;
62     DWORD        dwHashSize;
63     DWORD        dwState;
64     HASH_CONTEXT context;
65     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
66     PHMAC_INFO   pHMACInfo;
67     RSAENH_TLS1PRF_PARAMS tpPRFParams;
68 } CRYPTHASH;
69
70 /******************************************************************************
71  * CRYPTKEY - key objects
72  */
73 #define RSAENH_MAGIC_KEY           0x73620457u
74 #define RSAENH_MAX_KEY_SIZE        48
75 #define RSAENH_MAX_BLOCK_SIZE      24
76 #define RSAENH_KEYSTATE_IDLE       0
77 #define RSAENH_KEYSTATE_ENCRYPTING 1
78 #define RSAENH_KEYSTATE_MASTERKEY  2
79 typedef struct _RSAENH_SCHANNEL_INFO 
80 {
81     SCHANNEL_ALG saEncAlg;
82     SCHANNEL_ALG saMACAlg;
83     CRYPT_DATA_BLOB blobClientRandom;
84     CRYPT_DATA_BLOB blobServerRandom;
85 } RSAENH_SCHANNEL_INFO;
86
87 typedef struct tagCRYPTKEY
88 {
89     OBJECTHDR   header;
90     ALG_ID      aiAlgid;
91     HCRYPTPROV  hProv;
92     DWORD       dwMode;
93     DWORD       dwModeBits;
94     DWORD       dwPermissions;
95     DWORD       dwKeyLen;
96     DWORD       dwEffectiveKeyLen;
97     DWORD       dwSaltLen;
98     DWORD       dwBlockLen;
99     DWORD       dwState;
100     KEY_CONTEXT context;    
101     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
102     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
103     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
104     RSAENH_SCHANNEL_INFO siSChannelInfo;
105 } CRYPTKEY;
106
107 /******************************************************************************
108  * KEYCONTAINER - key containers
109  */
110 #define RSAENH_PERSONALITY_BASE        0u
111 #define RSAENH_PERSONALITY_STRONG      1u
112 #define RSAENH_PERSONALITY_ENHANCED    2u
113 #define RSAENH_PERSONALITY_SCHANNEL    3u
114 #define RSAENH_PERSONALITY_AES         4u
115
116 #define RSAENH_MAGIC_CONTAINER         0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119     OBJECTHDR    header;
120     DWORD        dwFlags;
121     DWORD        dwPersonality;
122     DWORD        dwEnumAlgsCtr;
123     DWORD        dwEnumContainersCtr;
124     CHAR         szName[MAX_PATH];
125     CHAR         szProvName[MAX_PATH];
126     HCRYPTKEY    hKeyExchangeKeyPair;
127     HCRYPTKEY    hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131  * Some magic constants
132  */
133 #define RSAENH_ENCRYPT                    1
134 #define RSAENH_DECRYPT                    0    
135 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN          64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
139 #define RSAENH_DES_STORAGE_KEYLEN        64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN   128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
143 #define RSAENH_3DES_STORAGE_KEYLEN      192
144 #define RSAENH_MAGIC_RSA2        0x32415352
145 #define RSAENH_MAGIC_RSA1        0x31415352
146 #define RSAENH_PKC_BLOCKTYPE           0x02
147 #define RSAENH_SSL3_VERSION_MAJOR         3
148 #define RSAENH_SSL3_VERSION_MINOR         0
149 #define RSAENH_TLS1_VERSION_MAJOR         3
150 #define RSAENH_TLS1_VERSION_MINOR         1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156  */
157 #define RSAENH_MAX_ENUMALGS 24
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
160 {
161  {
162   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
163   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
164   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
165   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
166   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
167   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
168   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
169   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
171   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
174   {0,               0,  0,    0,0,                    1,"",         1,""}
175  },
176  {
177   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
178   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
179   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
180   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
181   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
182   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
183   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
184   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
185   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
186   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
188   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
191   {0,               0,  0,    0,0,                    1,"",         1,""}
192  },
193  {
194   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
195   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
196   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
197   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
198   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
199   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
200   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
201   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
202   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
203   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
205   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
208   {0,               0,  0,    0,0,                    1,"",         1,""}
209  },
210  {
211   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
212   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
213   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
214   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
216   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
220   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
223   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
224   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
225   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
226   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
227   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
229   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
231   {0,               0,  0,    0,0,                          1,"",            1,""}
232  },
233  {
234   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
235   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
236   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
237   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
238   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
239   {CALG_AES,      128,128,  128,0,                    4,"AES",     35,"Advanced Encryption Standard (AES)"},
240   {CALG_AES_128,  128,128,  128,0,                    8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
241   {CALG_AES_192,  192,192,  192,0,                    8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
242   {CALG_AES_256,  256,256,  256,0,                    8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
243   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
244   {CALG_SHA_256,  256,256,  256,CRYPT_FLAG_SIGNING,   6,"SHA-256", 30,"Secure Hash Algorithm (SHA-256)"},
245   {CALG_SHA_384,  384,384,  384,CRYPT_FLAG_SIGNING,   6,"SHA-384", 30,"Secure Hash Algorithm (SHA-284)"},
246   {CALG_SHA_512,  512,512,  512,CRYPT_FLAG_SIGNING,   6,"SHA-512", 30,"Secure Hash Algorithm (SHA-512)"},
247   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
248   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
249   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
250   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
251   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
252   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
253   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
254   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
255   {0,               0,  0,    0,0,                    1,"",         1,""}
256  }
257 };
258
259 /******************************************************************************
260  * API forward declarations
261  */
262 BOOL WINAPI 
263 RSAENH_CPGetKeyParam(
264     HCRYPTPROV hProv, 
265     HCRYPTKEY hKey, 
266     DWORD dwParam, 
267     BYTE *pbData, 
268     DWORD *pdwDataLen, 
269     DWORD dwFlags
270 );
271
272 BOOL WINAPI 
273 RSAENH_CPEncrypt(
274     HCRYPTPROV hProv, 
275     HCRYPTKEY hKey, 
276     HCRYPTHASH hHash, 
277     BOOL Final, 
278     DWORD dwFlags, 
279     BYTE *pbData,
280     DWORD *pdwDataLen, 
281     DWORD dwBufLen
282 );
283
284 BOOL WINAPI 
285 RSAENH_CPCreateHash(
286     HCRYPTPROV hProv, 
287     ALG_ID Algid, 
288     HCRYPTKEY hKey, 
289     DWORD dwFlags, 
290     HCRYPTHASH *phHash
291 );
292
293 BOOL WINAPI 
294 RSAENH_CPSetHashParam(
295     HCRYPTPROV hProv, 
296     HCRYPTHASH hHash, 
297     DWORD dwParam, 
298     BYTE *pbData, DWORD dwFlags
299 );
300
301 BOOL WINAPI 
302 RSAENH_CPGetHashParam(
303     HCRYPTPROV hProv, 
304     HCRYPTHASH hHash, 
305     DWORD dwParam, 
306     BYTE *pbData, 
307     DWORD *pdwDataLen, 
308     DWORD dwFlags
309 );
310
311 BOOL WINAPI 
312 RSAENH_CPDestroyHash(
313     HCRYPTPROV hProv, 
314     HCRYPTHASH hHash
315 );
316
317 static BOOL crypt_export_key(
318     CRYPTKEY *pCryptKey,
319     HCRYPTKEY hPubKey, 
320     DWORD dwBlobType, 
321     DWORD dwFlags, 
322     BOOL force,
323     BYTE *pbData, 
324     DWORD *pdwDataLen
325 );
326
327 static BOOL import_key(
328     HCRYPTPROV hProv, 
329     CONST BYTE *pbData, 
330     DWORD dwDataLen, 
331     HCRYPTKEY hPubKey, 
332     DWORD dwFlags, 
333     BOOL fStoreKey,
334     HCRYPTKEY *phKey
335 );
336
337 BOOL WINAPI 
338 RSAENH_CPHashData(
339     HCRYPTPROV hProv, 
340     HCRYPTHASH hHash, 
341     CONST BYTE *pbData, 
342     DWORD dwDataLen, 
343     DWORD dwFlags
344 );
345
346 /******************************************************************************
347  * CSP's handle table (used by all acquired key containers)
348  */
349 static struct handle_table handle_table;
350
351 /******************************************************************************
352  * DllMain (RSAENH.@)
353  *
354  * Initializes and destroys the handle table for the CSP's handles.
355  */
356 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
357 {
358     switch (fdwReason)
359     {
360         case DLL_PROCESS_ATTACH:
361             DisableThreadLibraryCalls(hInstance);
362             init_handle_table(&handle_table);
363             break;
364
365         case DLL_PROCESS_DETACH:
366             destroy_handle_table(&handle_table);
367             break;
368     }
369     return 1;
370 }
371
372 /******************************************************************************
373  * copy_param [Internal]
374  *
375  * Helper function that supports the standard WINAPI protocol for querying data
376  * of dynamic size.
377  *
378  * PARAMS
379  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
380  *                      May be NUL if the required buffer size is to be queried only.
381  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
382  *                      Out: Size of parameter pbParam
383  *  pbParam       [I]   Parameter value.
384  *  dwParamSize   [I]   Size of pbParam
385  *
386  * RETURN
387  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
388  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
389  */
390 static inline BOOL copy_param(
391     BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize) 
392 {
393     if (pbBuffer) 
394     {
395         if (dwParamSize > *pdwBufferSize) 
396         {
397             SetLastError(ERROR_MORE_DATA);
398             *pdwBufferSize = dwParamSize;
399             return FALSE;
400         }
401         memcpy(pbBuffer, pbParam, dwParamSize);
402     }
403     *pdwBufferSize = dwParamSize;
404     return TRUE;
405 }
406
407 /******************************************************************************
408  * get_algid_info [Internal]
409  *
410  * Query CSP capabilities for a given crypto algorithm.
411  * 
412  * PARAMS
413  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
414  *  algid [I] Identifier of the crypto algorithm about which information is requested.
415  *
416  * RETURNS
417  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
418  *  Failure: NULL (algid not supported)
419  */
420 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
421     const PROV_ENUMALGS_EX *iterator;
422     KEYCONTAINER *pKeyContainer;
423
424     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
425         SetLastError(NTE_BAD_UID);
426         return NULL;
427     }
428
429     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
430         if (iterator->aiAlgid == algid) return iterator;
431     }
432
433     SetLastError(NTE_BAD_ALGID);
434     return NULL;
435 }
436
437 /******************************************************************************
438  * copy_data_blob [Internal] 
439  *
440  * deeply copies a DATA_BLOB
441  *
442  * PARAMS
443  *  dst [O] That's where the blob will be copied to
444  *  src [I] Source blob
445  *
446  * RETURNS
447  *  Success: TRUE
448  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
449  *
450  * NOTES
451  *  Use free_data_blob to release resources occupied by copy_data_blob.
452  */
453 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
454     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
455     if (!dst->pbData) {
456         SetLastError(NTE_NO_MEMORY);
457         return FALSE;
458     }    
459     dst->cbData = src->cbData;
460     memcpy(dst->pbData, src->pbData, src->cbData);
461     return TRUE;
462 }
463
464 /******************************************************************************
465  * concat_data_blobs [Internal]
466  *
467  * Concatenates two blobs
468  *
469  * PARAMS
470  *  dst  [O] The new blob will be copied here
471  *  src1 [I] Prefix blob
472  *  src2 [I] Appendix blob
473  *
474  * RETURNS
475  *  Success: TRUE
476  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
477  *
478  * NOTES
479  *  Release resources occupied by concat_data_blobs with free_data_blobs
480  */
481 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1, 
482                                      CONST PCRYPT_DATA_BLOB src2) 
483 {
484     dst->cbData = src1->cbData + src2->cbData;
485     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
486     if (!dst->pbData) {
487         SetLastError(NTE_NO_MEMORY);
488         return FALSE;
489     }
490     memcpy(dst->pbData, src1->pbData, src1->cbData);
491     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
492     return TRUE;
493 }
494
495 /******************************************************************************
496  * free_data_blob [Internal]
497  *
498  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
499  * 
500  * PARAMS
501  *  pBlob [I] Heap space occupied by pBlob->pbData is released
502  */
503 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
504     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
505 }
506
507 /******************************************************************************
508  * init_data_blob [Internal]
509  */
510 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
511     pBlob->pbData = NULL;
512     pBlob->cbData = 0;
513 }
514
515 /******************************************************************************
516  * free_hmac_info [Internal]
517  *
518  * Deeply free an HMAC_INFO struct.
519  *
520  * PARAMS
521  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
522  *
523  * NOTES
524  *  See Internet RFC 2104 for details on the HMAC algorithm.
525  */
526 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
527     if (!hmac_info) return;
528     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
529     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
530     HeapFree(GetProcessHeap(), 0, hmac_info);
531 }
532
533 /******************************************************************************
534  * copy_hmac_info [Internal]
535  *
536  * Deeply copy an HMAC_INFO struct
537  *
538  * PARAMS
539  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
540  *  src [I] Pointer to the HMAC_INFO struct to be copied.
541  *
542  * RETURNS
543  *  Success: TRUE
544  *  Failure: FALSE
545  *
546  * NOTES
547  *  See Internet RFC 2104 for details on the HMAC algorithm.
548  */
549 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
550     if (!src) return FALSE;
551     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
552     if (!*dst) return FALSE;
553     **dst = *src;
554     (*dst)->pbInnerString = NULL;
555     (*dst)->pbOuterString = NULL;
556     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
557     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
558     if (!(*dst)->pbInnerString) {
559         free_hmac_info(*dst);
560         return FALSE;
561     }
562     if (src->cbInnerString) 
563         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
564     else 
565         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
566     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
567     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
568     if (!(*dst)->pbOuterString) {
569         free_hmac_info(*dst);
570         return FALSE;
571     }
572     if (src->cbOuterString) 
573         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
574     else 
575         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
576     return TRUE;
577 }
578
579 /******************************************************************************
580  * destroy_hash [Internal]
581  *
582  * Destructor for hash objects
583  *
584  * PARAMS
585  *  pCryptHash [I] Pointer to the hash object to be destroyed. 
586  *                 Will be invalid after function returns!
587  */
588 static void destroy_hash(OBJECTHDR *pObject)
589 {
590     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
591         
592     free_hmac_info(pCryptHash->pHMACInfo);
593     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
594     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
595     HeapFree(GetProcessHeap(), 0, pCryptHash);
596 }
597
598 /******************************************************************************
599  * init_hash [Internal]
600  *
601  * Initialize (or reset) a hash object
602  *
603  * PARAMS
604  *  pCryptHash    [I] The hash object to be initialized.
605  */
606 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
607     DWORD dwLen;
608         
609     switch (pCryptHash->aiAlgid) 
610     {
611         case CALG_HMAC:
612             if (pCryptHash->pHMACInfo) { 
613                 const PROV_ENUMALGS_EX *pAlgInfo;
614                 
615                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
616                 if (!pAlgInfo) return FALSE;
617                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
618                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
619                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
620                                  pCryptHash->pHMACInfo->pbInnerString, 
621                                  pCryptHash->pHMACInfo->cbInnerString);
622             }
623             return TRUE;
624             
625         case CALG_MAC:
626             dwLen = sizeof(DWORD);
627             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, 
628                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
629             pCryptHash->dwHashSize >>= 3;
630             return TRUE;
631
632         default:
633             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
634     }
635 }
636
637 /******************************************************************************
638  * update_hash [Internal]
639  *
640  * Hashes the given data and updates the hash object's state accordingly
641  *
642  * PARAMS
643  *  pCryptHash [I] Hash object to be updated.
644  *  pbData     [I] Pointer to data stream to be hashed.
645  *  dwDataLen  [I] Length of data stream.
646  */
647 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
648     BYTE *pbTemp;
649
650     switch (pCryptHash->aiAlgid)
651     {
652         case CALG_HMAC:
653             if (pCryptHash->pHMACInfo) 
654                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
655                                  pbData, dwDataLen);
656             break;
657
658         case CALG_MAC:
659             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
660             if (!pbTemp) return;
661             memcpy(pbTemp, pbData, dwDataLen);
662             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
663                              pbTemp, &dwDataLen, dwDataLen);
664             HeapFree(GetProcessHeap(), 0, pbTemp);
665             break;
666
667         default:
668             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
669     }
670 }
671
672 /******************************************************************************
673  * finalize_hash [Internal]
674  *
675  * Finalizes the hash, after all data has been hashed with update_hash.
676  * No additional data can be hashed afterwards until the hash gets initialized again.
677  *
678  * PARAMS
679  *  pCryptHash [I] Hash object to be finalized.
680  */
681 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
682     DWORD dwDataLen;
683         
684     switch (pCryptHash->aiAlgid)
685     {
686         case CALG_HMAC:
687             if (pCryptHash->pHMACInfo) {
688                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
689
690                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
691                                    pCryptHash->abHashValue);
692                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
693                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
694                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
695                                  pCryptHash->pHMACInfo->pbOuterString, 
696                                  pCryptHash->pHMACInfo->cbOuterString);
697                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
698                                  abHashValue, pCryptHash->dwHashSize);
699                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
700                                    pCryptHash->abHashValue);
701             } 
702             break;
703
704         case CALG_MAC:
705             dwDataLen = 0;
706             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
707                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
708             break;
709
710         default:
711             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
712     }
713 }
714
715 /******************************************************************************
716  * destroy_key [Internal]
717  *
718  * Destructor for key objects
719  *
720  * PARAMS
721  *  pCryptKey [I] Pointer to the key object to be destroyed. 
722  *                Will be invalid after function returns!
723  */
724 static void destroy_key(OBJECTHDR *pObject)
725 {
726     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
727         
728     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
729     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
730     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
731     HeapFree(GetProcessHeap(), 0, pCryptKey);
732 }
733
734 /******************************************************************************
735  * setup_key [Internal]
736  *
737  * Initialize (or reset) a key object
738  *
739  * PARAMS
740  *  pCryptKey    [I] The key object to be initialized.
741  */
742 static inline void setup_key(CRYPTKEY *pCryptKey) {
743     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
744     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
745     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, 
746                    pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
747                    pCryptKey->abKeyValue);
748 }
749
750 /******************************************************************************
751  * new_key [Internal]
752  *
753  * Creates a new key object without assigning the actual binary key value. 
754  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
755  *
756  * PARAMS
757  *  hProv      [I] Handle to the provider to which the created key will belong.
758  *  aiAlgid    [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
759  *  dwFlags    [I] Upper 16 bits give the key length.
760  *                 Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
761  *                 CRYPT_NO_SALT
762  *  ppCryptKey [O] Pointer to the created key
763  *
764  * RETURNS
765  *  Success: Handle to the created key.
766  *  Failure: INVALID_HANDLE_VALUE
767  */
768 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
769 {
770     HCRYPTKEY hCryptKey;
771     CRYPTKEY *pCryptKey;
772     DWORD dwKeyLen = HIWORD(dwFlags);
773     const PROV_ENUMALGS_EX *peaAlgidInfo;
774
775     *ppCryptKey = NULL;
776     
777     /* 
778      * Retrieve the CSP's capabilities for the given ALG_ID value
779      */
780     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
781     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
782
783     TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
784           dwKeyLen);
785     /*
786      * Assume the default key length, if none is specified explicitly
787      */
788     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
789     
790     /*
791      * Check if the requested key length is supported by the current CSP.
792      * Adjust key length's for DES algorithms.
793      */
794     switch (aiAlgid) {
795         case CALG_DES:
796             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
797                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
798             }
799             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
800                 SetLastError(NTE_BAD_FLAGS);
801                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
802             }
803             break;
804
805         case CALG_3DES_112:
806             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
807                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
808             }
809             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
810                 SetLastError(NTE_BAD_FLAGS);
811                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
812             }
813             break;
814
815         case CALG_3DES:
816             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
817                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
818             }
819             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
820                 SetLastError(NTE_BAD_FLAGS);
821                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
822             }
823             break;
824         
825         default:
826             if (dwKeyLen % 8 || 
827                 dwKeyLen > peaAlgidInfo->dwMaxLen || 
828                 dwKeyLen < peaAlgidInfo->dwMinLen) 
829             {
830                 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
831                       peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
832                 SetLastError(NTE_BAD_DATA);
833                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
834             }
835     }
836
837     hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
838                            destroy_key, (OBJECTHDR**)&pCryptKey);
839     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
840     {
841         pCryptKey->aiAlgid = aiAlgid;
842         pCryptKey->hProv = hProv;
843         pCryptKey->dwModeBits = 0;
844         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | 
845                                    CRYPT_MAC;
846         if (dwFlags & CRYPT_EXPORTABLE)
847             pCryptKey->dwPermissions |= CRYPT_EXPORT;
848         pCryptKey->dwKeyLen = dwKeyLen >> 3;
849         pCryptKey->dwEffectiveKeyLen = 0;
850         if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) 
851             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
852         else
853             pCryptKey->dwSaltLen = 0;
854         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
855         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
856         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
857         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
858             
859         switch(aiAlgid)
860         {
861             case CALG_PCT1_MASTER:
862             case CALG_SSL2_MASTER:
863             case CALG_SSL3_MASTER:
864             case CALG_TLS1_MASTER:
865             case CALG_RC4:
866                 pCryptKey->dwBlockLen = 0;
867                 pCryptKey->dwMode = 0;
868                 break;
869
870             case CALG_RC2:
871             case CALG_DES:
872             case CALG_3DES_112:
873             case CALG_3DES:
874                 pCryptKey->dwBlockLen = 8;
875                 pCryptKey->dwMode = CRYPT_MODE_CBC;
876                 break;
877
878             case CALG_AES:
879             case CALG_AES_128:
880             case CALG_AES_192:
881             case CALG_AES_256:
882                 pCryptKey->dwBlockLen = 16;
883                 pCryptKey->dwMode = CRYPT_MODE_ECB;
884                 break;
885
886             case CALG_RSA_KEYX:
887             case CALG_RSA_SIGN:
888                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
889                 pCryptKey->dwMode = 0;
890                 break;
891         }
892
893         *ppCryptKey = pCryptKey;
894     }
895
896     return hCryptKey;
897 }
898
899 /******************************************************************************
900  * map_key_spec_to_key_pair_name [Internal]
901  *
902  * Returns the name of the registry value associated with a key spec.
903  *
904  * PARAMS
905  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
906  *
907  * RETURNS
908  *  Success: Name of registry value.
909  *  Failure: NULL
910  */
911 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
912 {
913     LPCSTR szValueName;
914
915     switch (dwKeySpec)
916     {
917     case AT_KEYEXCHANGE:
918         szValueName = "KeyExchangeKeyPair";
919         break;
920     case AT_SIGNATURE:
921         szValueName = "SignatureKeyPair";
922         break;
923     default:
924         WARN("invalid key spec %d\n", dwKeySpec);
925         szValueName = NULL;
926     }
927     return szValueName;
928 }
929
930 /******************************************************************************
931  * store_key_pair [Internal]
932  *
933  * Stores a key pair to the registry
934  * 
935  * PARAMS
936  *  hCryptKey     [I] Handle to the key to be stored
937  *  hKey          [I] Registry key where the key pair is to be stored
938  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
939  *  dwFlags       [I] Flags for protecting the key
940  */
941 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
942 {
943     LPCSTR szValueName;
944     DATA_BLOB blobIn, blobOut;
945     CRYPTKEY *pKey;
946     DWORD dwLen;
947     BYTE *pbKey;
948
949     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
950         return;
951     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
952                       (OBJECTHDR**)&pKey))
953     {
954         if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
955         {
956             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
957             if (pbKey)
958             {
959                 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
960                     &dwLen))
961                 {
962                     blobIn.pbData = pbKey;
963                     blobIn.cbData = dwLen;
964
965                     if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
966                         dwFlags, &blobOut))
967                     {
968                         RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
969                                        blobOut.pbData, blobOut.cbData);
970                         LocalFree(blobOut.pbData);
971                     }
972                 }
973                 HeapFree(GetProcessHeap(), 0, pbKey);
974             }
975         }
976     }
977 }
978
979 /******************************************************************************
980  * map_key_spec_to_permissions_name [Internal]
981  *
982  * Returns the name of the registry value associated with the permissions for
983  * a key spec.
984  *
985  * PARAMS
986  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
987  *
988  * RETURNS
989  *  Success: Name of registry value.
990  *  Failure: NULL
991  */
992 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
993 {
994     LPCSTR szValueName;
995
996     switch (dwKeySpec)
997     {
998     case AT_KEYEXCHANGE:
999         szValueName = "KeyExchangePermissions";
1000         break;
1001     case AT_SIGNATURE:
1002         szValueName = "SignaturePermissions";
1003         break;
1004     default:
1005         WARN("invalid key spec %d\n", dwKeySpec);
1006         szValueName = NULL;
1007     }
1008     return szValueName;
1009 }
1010
1011 /******************************************************************************
1012  * store_key_permissions [Internal]
1013  *
1014  * Stores a key's permissions to the registry
1015  *
1016  * PARAMS
1017  *  hCryptKey     [I] Handle to the key whose permissions are to be stored
1018  *  hKey          [I] Registry key where the key permissions are to be stored
1019  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1020  */
1021 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1022 {
1023     LPCSTR szValueName;
1024     CRYPTKEY *pKey;
1025
1026     if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1027         return;
1028     if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1029                       (OBJECTHDR**)&pKey))
1030         RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1031                        (BYTE *)&pKey->dwPermissions,
1032                        sizeof(pKey->dwPermissions));
1033 }
1034
1035 /******************************************************************************
1036  * create_container_key [Internal]
1037  *
1038  * Creates the registry key for a key container's persistent storage.
1039  * 
1040  * PARAMS
1041  *  pKeyContainer [I] Pointer to the key container
1042  *  sam           [I] Desired registry access
1043  *  phKey         [O] Returned key
1044  */
1045 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1046 {
1047     CHAR szRSABase[MAX_PATH];
1048     HKEY hRootKey;
1049
1050     sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1051
1052     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1053         hRootKey = HKEY_LOCAL_MACHINE;
1054     else
1055         hRootKey = HKEY_CURRENT_USER;
1056
1057     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1058     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1059     return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1060                            REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1061                            == ERROR_SUCCESS;
1062 }
1063
1064 /******************************************************************************
1065  * open_container_key [Internal]
1066  *
1067  * Opens a key container's persistent storage for reading.
1068  *
1069  * PARAMS
1070  *  pszContainerName [I] Name of the container to be opened.  May be the empty
1071  *                       string if the parent key of all containers is to be
1072  *                       opened.
1073  *  dwFlags          [I] Flags indicating which keyset to be opened.
1074  *  phKey            [O] Returned key
1075  */
1076 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, HKEY *phKey)
1077 {
1078     CHAR szRSABase[MAX_PATH];
1079     HKEY hRootKey;
1080
1081     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1082
1083     if (dwFlags & CRYPT_MACHINE_KEYSET)
1084         hRootKey = HKEY_LOCAL_MACHINE;
1085     else
1086         hRootKey = HKEY_CURRENT_USER;
1087
1088     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1089     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1090     return RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, phKey) ==
1091                          ERROR_SUCCESS;
1092 }
1093
1094 /******************************************************************************
1095  * delete_container_key [Internal]
1096  *
1097  * Deletes a key container's persistent storage.
1098  *
1099  * PARAMS
1100  *  pszContainerName [I] Name of the container to be opened.
1101  *  dwFlags          [I] Flags indicating which keyset to be opened.
1102  */
1103 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1104 {
1105     CHAR szRegKey[MAX_PATH];
1106
1107     if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1108         SetLastError(NTE_BAD_KEYSET_PARAM);
1109         return FALSE;
1110     } else {
1111         HKEY hRootKey;
1112         if (dwFlags & CRYPT_MACHINE_KEYSET)
1113             hRootKey = HKEY_LOCAL_MACHINE;
1114         else
1115             hRootKey = HKEY_CURRENT_USER;
1116         if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1117             SetLastError(ERROR_SUCCESS);
1118             return TRUE;
1119         } else {
1120             SetLastError(NTE_BAD_KEYSET);
1121             return FALSE;
1122         }
1123     }
1124 }
1125
1126 /******************************************************************************
1127  * store_key_container_keys [Internal]
1128  *
1129  * Stores key container's keys in a persistent location.
1130  *
1131  * PARAMS
1132  *  pKeyContainer [I] Pointer to the key container whose keys are to be saved
1133  */
1134 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1135 {
1136     HKEY hKey;
1137     DWORD dwFlags;
1138
1139     /* On WinXP, persistent keys are stored in a file located at:
1140      * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1141      */
1142
1143     if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1144         dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1145     else
1146         dwFlags = 0;
1147
1148     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1149     {
1150         store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1151                        AT_KEYEXCHANGE, dwFlags);
1152         store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1153                        AT_SIGNATURE, dwFlags);
1154         RegCloseKey(hKey);
1155     }
1156 }
1157
1158 /******************************************************************************
1159  * store_key_container_permissions [Internal]
1160  *
1161  * Stores key container's key permissions in a persistent location.
1162  *
1163  * PARAMS
1164  *  pKeyContainer [I] Pointer to the key container whose key permissions are to
1165  *                    be saved
1166  */
1167 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1168 {
1169     HKEY hKey;
1170
1171     if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1172     {
1173         store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1174                        AT_KEYEXCHANGE);
1175         store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1176                        AT_SIGNATURE);
1177         RegCloseKey(hKey);
1178     }
1179 }
1180
1181 /******************************************************************************
1182  * release_key_container_keys [Internal]
1183  *
1184  * Releases key container's keys.
1185  *
1186  * PARAMS
1187  *  pKeyContainer [I] Pointer to the key container whose keys are to be released.
1188  */
1189 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1190 {
1191     release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1192                    RSAENH_MAGIC_KEY);
1193     release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1194                    RSAENH_MAGIC_KEY);
1195 }
1196
1197 /******************************************************************************
1198  * destroy_key_container [Internal]
1199  *
1200  * Destructor for key containers.
1201  *
1202  * PARAMS
1203  *  pObjectHdr [I] Pointer to the key container to be destroyed.
1204  */
1205 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1206 {
1207     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1208
1209     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1210     {
1211         store_key_container_keys(pKeyContainer);
1212         store_key_container_permissions(pKeyContainer);
1213         release_key_container_keys(pKeyContainer);
1214     }
1215     else
1216         release_key_container_keys(pKeyContainer);
1217     HeapFree( GetProcessHeap(), 0, pKeyContainer );
1218 }
1219
1220 /******************************************************************************
1221  * new_key_container [Internal]
1222  *
1223  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) 
1224  * of the CSP is determined via the pVTable->pszProvName string.
1225  *
1226  * PARAMS
1227  *  pszContainerName [I] Name of the key container.
1228  *  pVTable          [I] Callback functions and context info provided by the OS
1229  *
1230  * RETURNS
1231  *  Success: Handle to the new key container.
1232  *  Failure: INVALID_HANDLE_VALUE
1233  */
1234 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1235 {
1236     KEYCONTAINER *pKeyContainer;
1237     HCRYPTPROV hKeyContainer;
1238
1239     hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1240                                destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1241     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1242     {
1243         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1244         pKeyContainer->dwFlags = dwFlags;
1245         pKeyContainer->dwEnumAlgsCtr = 0;
1246         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1247         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1248         if (pVTable && pVTable->pszProvName) {
1249             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1250             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1251                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1252             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1253                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1254             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { 
1255                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1256             } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A)) {
1257                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1258             } else {
1259                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1260             }
1261         }
1262
1263         /* The new key container has to be inserted into the CSP immediately 
1264          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1265         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1266             HKEY hKey;
1267
1268             if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1269                 RegCloseKey(hKey);
1270         }
1271     }
1272
1273     return hKeyContainer;
1274 }
1275
1276 /******************************************************************************
1277  * read_key_value [Internal]
1278  *
1279  * Reads a key pair value from the registry
1280  *
1281  * PARAMS
1282  *  hKeyContainer [I] Crypt provider to use to import the key
1283  *  hKey          [I] Registry key from which to read the key pair
1284  *  dwKeySpec     [I] AT_KEYEXCHANGE or AT_SIGNATURE
1285  *  dwFlags       [I] Flags for unprotecting the key
1286  *  phCryptKey    [O] Returned key
1287  */
1288 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1289 {
1290     LPCSTR szValueName;
1291     DWORD dwValueType, dwLen;
1292     BYTE *pbKey;
1293     DATA_BLOB blobIn, blobOut;
1294     BOOL ret = FALSE;
1295
1296     if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1297         return FALSE;
1298     if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1299         ERROR_SUCCESS)
1300     {
1301         pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1302         if (pbKey)
1303         {
1304             if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1305                 ERROR_SUCCESS)
1306             {
1307                 blobIn.pbData = pbKey;
1308                 blobIn.cbData = dwLen;
1309
1310                 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1311                     dwFlags, &blobOut))
1312                 {
1313                     ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1314                                      FALSE, phCryptKey);
1315                     LocalFree(blobOut.pbData);
1316                 }
1317             }
1318             HeapFree(GetProcessHeap(), 0, pbKey);
1319         }
1320     }
1321     if (ret)
1322     {
1323         CRYPTKEY *pKey;
1324
1325         if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1326                           (OBJECTHDR**)&pKey))
1327         {
1328             if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1329             {
1330                 dwLen = sizeof(pKey->dwPermissions);
1331                 RegQueryValueExA(hKey, szValueName, 0, NULL,
1332                                  (BYTE *)&pKey->dwPermissions, &dwLen);
1333             }
1334         }
1335     }
1336     return ret;
1337 }
1338
1339 /******************************************************************************
1340  * read_key_container [Internal]
1341  *
1342  * Tries to read the persistent state of the key container (mainly the signature
1343  * and key exchange private keys) given by pszContainerName.
1344  *
1345  * PARAMS
1346  *  pszContainerName [I] Name of the key container to read from the registry
1347  *  pVTable          [I] Pointer to context data provided by the operating system
1348  *
1349  * RETURNS
1350  *  Success: Handle to the key container read from the registry
1351  *  Failure: INVALID_HANDLE_VALUE
1352  */
1353 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1354 {
1355     HKEY hKey;
1356     KEYCONTAINER *pKeyContainer;
1357     HCRYPTPROV hKeyContainer;
1358     HCRYPTKEY hCryptKey;
1359
1360     if (!open_container_key(pszContainerName, dwFlags, &hKey))
1361     {
1362         SetLastError(NTE_BAD_KEYSET);
1363         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1364     }
1365
1366     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1367     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1368     {
1369         DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1370             CRYPTPROTECT_LOCAL_MACHINE : 0;
1371
1372         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, 
1373                            (OBJECTHDR**)&pKeyContainer))
1374             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1375     
1376         /* read_key_value calls import_key, which calls import_private_key,
1377          * which implicitly installs the key value into the appropriate key
1378          * container key.  Thus the ref count is incremented twice, once for
1379          * the output key value, and once for the implicit install, and needs
1380          * to be decremented to balance the two.
1381          */
1382         if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1383             dwProtectFlags, &hCryptKey))
1384             release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1385         if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1386             dwProtectFlags, &hCryptKey))
1387             release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1388     }
1389
1390     return hKeyContainer;
1391 }
1392
1393 /******************************************************************************
1394  * build_hash_signature [Internal]
1395  *
1396  * Builds a padded version of a hash to match the length of the RSA key modulus.
1397  *
1398  * PARAMS
1399  *  pbSignature [O] The padded hash object is stored here.
1400  *  dwLen       [I] Length of the pbSignature buffer.
1401  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1402  *  abHashValue [I] The value of the hash object.
1403  *  dwHashLen   [I] Length of the hash value.
1404  *  dwFlags     [I] Selection of padding algorithm.
1405  *
1406  * RETURNS
1407  *  Success: TRUE
1408  *  Failure: FALSE (NTE_BAD_ALGID)
1409  */
1410 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, 
1411                                  CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) 
1412 {
1413     /* These prefixes are meant to be concatenated with hash values of the
1414      * respective kind to form a PKCS #7 DigestInfo. */
1415     static const struct tagOIDDescriptor {
1416         ALG_ID aiAlgid;
1417         DWORD dwLen;
1418         CONST BYTE abOID[19];
1419     } aOIDDescriptor[] = {
1420         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1421                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1422         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 
1423                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1424         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1425                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1426         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 
1427                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1428         { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1429                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1430                               0x05, 0x00, 0x04, 0x20 } },
1431         { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1432                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1433                               0x05, 0x00, 0x04, 0x30 } },
1434         { CALG_SHA_384, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1435                               0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1436                               0x05, 0x00, 0x04, 0x40 } },
1437         { CALG_SSL3_SHAMD5, 0, { 0 } },
1438         { 0,        0,  { 0 } }
1439     };
1440     DWORD dwIdxOID, i, j;
1441
1442     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1443         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1444     }
1445     
1446     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1447         SetLastError(NTE_BAD_ALGID);
1448         return FALSE;
1449     }
1450
1451     /* Build the padded signature */
1452     if (dwFlags & CRYPT_X931_FORMAT) {
1453         pbSignature[0] = 0x6b;
1454         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1455             pbSignature[i] = 0xbb;
1456         }
1457         pbSignature[i++] = 0xba;
1458         for (j=0; j < dwHashLen; j++, i++) {
1459             pbSignature[i] = abHashValue[j];
1460         }
1461         pbSignature[i++] = 0x33;
1462         pbSignature[i++] = 0xcc;
1463     } else {
1464         pbSignature[0] = 0x00;
1465         pbSignature[1] = 0x01;
1466         if (dwFlags & CRYPT_NOHASHOID) {
1467             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1468                 pbSignature[i] = 0xff;
1469             }
1470             pbSignature[i++] = 0x00;
1471         } else {
1472             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1473                 pbSignature[i] = 0xff;
1474             }
1475             pbSignature[i++] = 0x00;
1476             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1477                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1478             }
1479         }
1480         for (j=0; j < dwHashLen; j++) {
1481             pbSignature[i++] = abHashValue[j];
1482         }
1483     }
1484     
1485     return TRUE;
1486 }
1487
1488 /******************************************************************************
1489  * tls1_p [Internal]
1490  *
1491  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1492  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1493  * The pseudo random stream generated by this function is exclusive or'ed with
1494  * the data in pbBuffer.
1495  *
1496  * PARAMS
1497  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1498  *  pblobSeed   [I]   Seed value
1499  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1500  *  dwBufferLen [I]   Number of pseudo random bytes desired
1501  *
1502  * RETURNS
1503  *  Success: TRUE
1504  *  Failure: FALSE
1505  */
1506 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1507 {
1508     CRYPTHASH *pHMAC;
1509     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1510     DWORD i = 0;
1511
1512     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1513         SetLastError(NTE_BAD_HASH);
1514         return FALSE;
1515     }
1516     
1517     /* compute A_1 = HMAC(seed) */
1518     init_hash(pHMAC);
1519     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1520     finalize_hash(pHMAC);
1521     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1522
1523     do {
1524         /* compute HMAC(A_i + seed) */
1525         init_hash(pHMAC);
1526         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1527         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1528         finalize_hash(pHMAC);
1529
1530         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1531         do {
1532             if (i >= dwBufferLen) break;
1533             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1534             i++;
1535         } while (i % pHMAC->dwHashSize);
1536
1537         /* compute A_{i+1} = HMAC(A_i) */
1538         init_hash(pHMAC);
1539         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1540         finalize_hash(pHMAC);
1541         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1542     } while (i < dwBufferLen);
1543
1544     return TRUE;
1545 }
1546
1547 /******************************************************************************
1548  * tls1_prf [Internal]
1549  *
1550  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1551  *
1552  * PARAMS
1553  *  hProv       [I] Key container used to compute the pseudo random stream
1554  *  hSecret     [I] Key that holds the (pre-)master secret
1555  *  pblobLabel  [I] Descriptive label
1556  *  pblobSeed   [I] Seed value
1557  *  pbBuffer    [O] Pseudo random numbers will be stored here
1558  *  dwBufferLen [I] Number of pseudo random bytes desired
1559  *
1560  * RETURNS
1561  *  Success: TRUE
1562  *  Failure: FALSE
1563  */ 
1564 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1565                      CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1566 {
1567     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1568     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1569     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1570     CRYPTKEY *pHalfSecret, *pSecret;
1571     DWORD dwHalfSecretLen;
1572     BOOL result = FALSE;
1573     CRYPT_DATA_BLOB blobLabelSeed;
1574
1575     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1576           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1577
1578     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1579         SetLastError(NTE_FAIL);
1580         return FALSE;
1581     }
1582
1583     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1584     
1585     /* concatenation of the label and the seed */
1586     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1587    
1588     /* zero out the buffer, since two random streams will be xor'ed into it. */
1589     memset(pbBuffer, 0, dwBufferLen);
1590    
1591     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1592      * the biggest range of valid key lengths. */
1593     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1594     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1595
1596     /* Derive an HMAC_MD5 hash and call the helper function. */
1597     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1598     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1599     hmacInfo.HashAlgid = CALG_MD5;
1600     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1601     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1602
1603     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1604     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1605     hmacInfo.HashAlgid = CALG_SHA;
1606     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1607     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1608     
1609     result = TRUE;
1610 exit:
1611     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1612     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1613     free_data_blob(&blobLabelSeed);
1614     return result;
1615 }
1616
1617 /******************************************************************************
1618  * pad_data [Internal]
1619  *
1620  * Helper function for data padding according to PKCS1 #2
1621  *
1622  * PARAMS
1623  *  abData      [I] The data to be padded
1624  *  dwDataLen   [I] Length of the data 
1625  *  abBuffer    [O] Padded data will be stored here
1626  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1627  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1628  *
1629  * RETURN
1630  *  Success: TRUE
1631  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1632  */
1633 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, 
1634                      DWORD dwFlags)
1635 {
1636     DWORD i;
1637     
1638     /* Ensure there is enough space for PKCS1 #2 padding */
1639     if (dwDataLen > dwBufferLen-11) {
1640         SetLastError(NTE_BAD_LEN);
1641         return FALSE;
1642     }
1643
1644     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);            
1645     
1646     abBuffer[0] = 0x00;
1647     abBuffer[1] = RSAENH_PKC_BLOCKTYPE; 
1648     for (i=2; i < dwBufferLen - dwDataLen - 1; i++) 
1649         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1650     if (dwFlags & CRYPT_SSL2_FALLBACK) 
1651         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) 
1652             abBuffer[i] = 0x03;
1653     abBuffer[i] = 0x00;
1654     
1655     return TRUE; 
1656 }
1657
1658 /******************************************************************************
1659  * unpad_data [Internal]
1660  *
1661  * Remove the PKCS1 padding from RSA decrypted data
1662  *
1663  * PARAMS
1664  *  abData      [I]   The padded data
1665  *  dwDataLen   [I]   Length of the padded data
1666  *  abBuffer    [O]   Data without padding will be stored here
1667  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1668  *  dwFlags     [I]   Currently none defined
1669  *
1670  * RETURNS
1671  *  Success: TRUE
1672  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1673  */
1674 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, 
1675                        DWORD dwFlags)
1676 {
1677     DWORD i;
1678     
1679     for (i=2; i<dwDataLen; i++)
1680         if (!abData[i])
1681             break;
1682
1683     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1684         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1685     {
1686         SetLastError(NTE_BAD_DATA);
1687         return FALSE;
1688     }
1689
1690     *dwBufferLen = dwDataLen - i - 1;
1691     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1692     return TRUE;
1693 }
1694
1695 /******************************************************************************
1696  * CPAcquireContext (RSAENH.@)
1697  *
1698  * Acquire a handle to the key container specified by pszContainer
1699  *
1700  * PARAMS
1701  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1702  *  pszContainer [I] Name of the desired key container. See Notes
1703  *  dwFlags      [I] Flags. See Notes.
1704  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1705  * 
1706  * RETURNS
1707  *  Success: TRUE
1708  *  Failure: FALSE
1709  *
1710  * NOTES
1711  *  If pszContainer is NULL or points to a zero length string the user's login 
1712  *  name will be used as the key container name.
1713  *
1714  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1715  *  If a keyset with the given name already exists, the function fails and sets
1716  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1717  *  key container does not exist, function fails and sets last error to 
1718  *  NTE_BAD_KEYSET.
1719  */                         
1720 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1721                    DWORD dwFlags, PVTableProvStruc pVTable)
1722 {
1723     CHAR szKeyContainerName[MAX_PATH];
1724
1725     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1726           debugstr_a(pszContainer), dwFlags, pVTable);
1727
1728     if (pszContainer && *pszContainer)
1729     {
1730         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1731     } 
1732     else
1733     {
1734         DWORD dwLen = sizeof(szKeyContainerName);
1735         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1736     }
1737
1738     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) 
1739     {
1740         case 0:
1741             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1742             break;
1743
1744         case CRYPT_DELETEKEYSET:
1745             return delete_container_key(szKeyContainerName, dwFlags);
1746
1747         case CRYPT_NEWKEYSET:
1748             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1749             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) 
1750             {
1751                 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1752                 TRACE("Can't create new keyset, already exists\n");
1753                 SetLastError(NTE_EXISTS);
1754                 return FALSE;
1755             }
1756             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1757             break;
1758
1759         case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1760         case CRYPT_VERIFYCONTEXT:
1761             if (pszContainer && *pszContainer) {
1762                 TRACE("pszContainer should be empty\n");
1763                 SetLastError(NTE_BAD_FLAGS);
1764                 return FALSE;
1765             }
1766             *phProv = new_key_container("", dwFlags, pVTable);
1767             break;
1768             
1769         default:
1770             *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1771             SetLastError(NTE_BAD_FLAGS);
1772             return FALSE;
1773     }
1774                 
1775     if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1776         SetLastError(ERROR_SUCCESS);
1777         return TRUE;
1778     } else {
1779         return FALSE;
1780     }
1781 }
1782
1783 /******************************************************************************
1784  * CPCreateHash (RSAENH.@)
1785  *
1786  * CPCreateHash creates and initalizes a new hash object.
1787  *
1788  * PARAMS
1789  *  hProv   [I] Handle to the key container to which the new hash will belong.
1790  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1791  *  hKey    [I] Handle to a session key applied for keyed hashes.
1792  *  dwFlags [I] Currently no flags defined. Must be zero.
1793  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1794  *
1795  * RETURNS
1796  *  Success: TRUE
1797  *  Failure: FALSE
1798  *
1799  * NOTES
1800  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1801  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1802  */
1803 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, 
1804                                 HCRYPTHASH *phHash)
1805 {
1806     CRYPTKEY *pCryptKey;
1807     CRYPTHASH *pCryptHash;
1808     const PROV_ENUMALGS_EX *peaAlgidInfo;
1809         
1810     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1811           dwFlags, phHash);
1812
1813     peaAlgidInfo = get_algid_info(hProv, Algid);
1814     if (!peaAlgidInfo) return FALSE;
1815
1816     if (dwFlags)
1817     {
1818         SetLastError(NTE_BAD_FLAGS);
1819         return FALSE;
1820     }
1821
1822     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || 
1823         Algid == CALG_TLS1PRF) 
1824     {
1825         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1826             SetLastError(NTE_BAD_KEY);
1827             return FALSE;
1828         }
1829
1830         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1831             SetLastError(NTE_BAD_KEY);
1832             return FALSE;
1833         }
1834
1835         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && 
1836             (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) 
1837         {
1838             SetLastError(NTE_BAD_KEY);
1839             return FALSE;
1840         }
1841
1842         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1843             SetLastError(NTE_BAD_KEY_STATE);
1844             return FALSE;
1845         }
1846     }
1847
1848     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1849                          destroy_hash, (OBJECTHDR**)&pCryptHash);
1850     if (!pCryptHash) return FALSE;
1851
1852     pCryptHash->aiAlgid = Algid;
1853     pCryptHash->hKey = hKey;
1854     pCryptHash->hProv = hProv;
1855     pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1856     pCryptHash->pHMACInfo = NULL;
1857     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1858     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1859     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1860
1861     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1862         static const char keyex[] = "key expansion";
1863         BYTE key_expansion[sizeof keyex];
1864         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1865
1866         memcpy( key_expansion, keyex, sizeof keyex );
1867         
1868         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1869             static const char msec[] = "master secret";
1870             BYTE master_secret[sizeof msec];
1871             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1872             BYTE abKeyValue[48];
1873
1874             memcpy( master_secret, msec, sizeof msec );
1875     
1876             /* See RFC 2246, chapter 8.1 */
1877             if (!concat_data_blobs(&blobRandom, 
1878                                    &pCryptKey->siSChannelInfo.blobClientRandom, 
1879                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1880             {
1881                 return FALSE;
1882             }
1883             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1884             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; 
1885             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1886             free_data_blob(&blobRandom);
1887         }
1888
1889         /* See RFC 2246, chapter 6.3 */
1890         if (!concat_data_blobs(&blobRandom, 
1891                                   &pCryptKey->siSChannelInfo.blobServerRandom, 
1892                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1893         {
1894             return FALSE;
1895         }
1896         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, 
1897                  RSAENH_MAX_HASH_SIZE);
1898         free_data_blob(&blobRandom);
1899     }
1900
1901     return init_hash(pCryptHash);
1902 }
1903
1904 /******************************************************************************
1905  * CPDestroyHash (RSAENH.@)
1906  * 
1907  * Releases the handle to a hash object. The object is destroyed if it's reference
1908  * count reaches zero.
1909  *
1910  * PARAMS
1911  *  hProv [I] Handle to the key container to which the hash object belongs.
1912  *  hHash [I] Handle to the hash object to be released.
1913  *
1914  * RETURNS
1915  *  Success: TRUE
1916  *  Failure: FALSE 
1917  */
1918 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1919 {
1920     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1921      
1922     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1923     {
1924         SetLastError(NTE_BAD_UID);
1925         return FALSE;
1926     }
1927         
1928     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) 
1929     {
1930         SetLastError(NTE_BAD_HASH);
1931         return FALSE;
1932     }
1933     
1934     return TRUE;
1935 }
1936
1937 /******************************************************************************
1938  * CPDestroyKey (RSAENH.@)
1939  *
1940  * Releases the handle to a key object. The object is destroyed if it's reference
1941  * count reaches zero.
1942  *
1943  * PARAMS
1944  *  hProv [I] Handle to the key container to which the key object belongs.
1945  *  hKey  [I] Handle to the key object to be released.
1946  *
1947  * RETURNS
1948  *  Success: TRUE
1949  *  Failure: FALSE
1950  */
1951 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1952 {
1953     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1954         
1955     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1956     {
1957         SetLastError(NTE_BAD_UID);
1958         return FALSE;
1959     }
1960         
1961     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) 
1962     {
1963         SetLastError(NTE_BAD_KEY);
1964         return FALSE;
1965     }
1966     
1967     return TRUE;
1968 }
1969
1970 /******************************************************************************
1971  * CPDuplicateHash (RSAENH.@)
1972  *
1973  * Clones a hash object including it's current state.
1974  *
1975  * PARAMS
1976  *  hUID        [I] Handle to the key container the hash belongs to.
1977  *  hHash       [I] Handle to the hash object to be cloned.
1978  *  pdwReserved [I] Reserved. Must be NULL.
1979  *  dwFlags     [I] No flags are currently defined. Must be 0.
1980  *  phHash      [O] Handle to the cloned hash object.
1981  *
1982  * RETURNS
1983  *  Success: TRUE.
1984  *  Failure: FALSE.
1985  */
1986 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, 
1987                                    DWORD dwFlags, HCRYPTHASH *phHash)
1988 {
1989     CRYPTHASH *pSrcHash, *pDestHash;
1990     
1991     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
1992            pdwReserved, dwFlags, phHash);
1993
1994     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1995     {
1996         SetLastError(NTE_BAD_UID);
1997         return FALSE;
1998     }
1999
2000     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
2001     {
2002         SetLastError(NTE_BAD_HASH);
2003         return FALSE;
2004     }
2005
2006     if (!phHash || pdwReserved || dwFlags) 
2007     {
2008         SetLastError(ERROR_INVALID_PARAMETER);
2009         return FALSE;
2010     }
2011
2012     *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2013                          destroy_hash, (OBJECTHDR**)&pDestHash);
2014     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2015     {
2016         *pDestHash = *pSrcHash;
2017         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2018         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2019         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2020         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2021     }
2022
2023     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2024 }
2025
2026 /******************************************************************************
2027  * CPDuplicateKey (RSAENH.@)
2028  *
2029  * Clones a key object including it's current state.
2030  *
2031  * PARAMS
2032  *  hUID        [I] Handle to the key container the hash belongs to.
2033  *  hKey        [I] Handle to the key object to be cloned.
2034  *  pdwReserved [I] Reserved. Must be NULL.
2035  *  dwFlags     [I] No flags are currently defined. Must be 0.
2036  *  phHash      [O] Handle to the cloned key object.
2037  *
2038  * RETURNS
2039  *  Success: TRUE.
2040  *  Failure: FALSE.
2041  */
2042 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, 
2043                                   DWORD dwFlags, HCRYPTKEY *phKey)
2044 {
2045     CRYPTKEY *pSrcKey, *pDestKey;
2046     
2047     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2048           pdwReserved, dwFlags, phKey);
2049
2050     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2051     {
2052         SetLastError(NTE_BAD_UID);
2053         return FALSE;
2054     }
2055
2056     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2057     {
2058         SetLastError(NTE_BAD_KEY);
2059         return FALSE;
2060     }
2061
2062     if (!phKey || pdwReserved || dwFlags) 
2063     {
2064         SetLastError(ERROR_INVALID_PARAMETER);
2065         return FALSE;
2066     }
2067
2068     *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2069                         (OBJECTHDR**)&pDestKey);
2070     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2071     {
2072         *pDestKey = *pSrcKey;
2073         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2074                        &pSrcKey->siSChannelInfo.blobServerRandom);
2075         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, 
2076                        &pSrcKey->siSChannelInfo.blobClientRandom);
2077         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2078         return TRUE;
2079     }
2080     else
2081     {
2082         return FALSE;
2083     }
2084 }
2085
2086 /******************************************************************************
2087  * CPEncrypt (RSAENH.@)
2088  *
2089  * Encrypt data.
2090  *
2091  * PARAMS
2092  *  hProv      [I]   The key container hKey and hHash belong to.
2093  *  hKey       [I]   The key used to encrypt the data.
2094  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2095  *  Final      [I]   Indicates if this is the last block of data to encrypt.
2096  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2097  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. 
2098  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2099  *  dwBufLen   [I]   Size of the buffer at pbData.
2100  *
2101  * RETURNS
2102  *  Success: TRUE.
2103  *  Failure: FALSE.
2104  *
2105  * NOTES
2106  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2107  *  This is useful for message signatures.
2108  *
2109  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2110  */
2111 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2112                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2113 {
2114     CRYPTKEY *pCryptKey;
2115     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2116     DWORD dwEncryptedLen, i, j, k;
2117         
2118     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2119           "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2120           dwBufLen);
2121     
2122     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2123     {
2124         SetLastError(NTE_BAD_UID);
2125         return FALSE;
2126     }
2127
2128     if (dwFlags)
2129     {
2130         SetLastError(NTE_BAD_FLAGS);
2131         return FALSE;
2132     }
2133
2134     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2135     {
2136         SetLastError(NTE_BAD_KEY);
2137         return FALSE;
2138     }
2139
2140     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2141         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2142
2143     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) 
2144     {
2145         SetLastError(NTE_BAD_DATA);
2146         return FALSE;
2147     }
2148
2149     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2150         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2151     }
2152     
2153     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2154         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2155             SetLastError(NTE_BAD_DATA);
2156             return FALSE;
2157         }
2158
2159         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2160
2161         if (pbData == NULL) {
2162             *pdwDataLen = dwEncryptedLen;
2163             return TRUE;
2164         }
2165         else if (dwEncryptedLen > dwBufLen) {
2166             *pdwDataLen = dwEncryptedLen;
2167             SetLastError(ERROR_MORE_DATA);
2168             return FALSE;
2169         }
2170
2171         /* Pad final block with length bytes */
2172         for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2173         *pdwDataLen = dwEncryptedLen;
2174
2175         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2176             switch (pCryptKey->dwMode) {
2177                 case CRYPT_MODE_ECB:
2178                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2179                                        RSAENH_ENCRYPT);
2180                     break;
2181                 
2182                 case CRYPT_MODE_CBC:
2183                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2184                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2185                                        RSAENH_ENCRYPT);
2186                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2187                     break;
2188
2189                 case CRYPT_MODE_CFB:
2190                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2191                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2192                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2193                         out[j] = in[j] ^ o[0];
2194                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2195                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2196                         pCryptKey->abChainVector[k] = out[j];
2197                     }
2198                     break;
2199                     
2200                 default:
2201                     SetLastError(NTE_BAD_ALGID);
2202                     return FALSE;
2203             }
2204             memcpy(in, out, pCryptKey->dwBlockLen); 
2205         }
2206     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2207         if (pbData == NULL) {
2208             *pdwDataLen = dwBufLen;
2209             return TRUE;
2210         }
2211         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2212     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2213         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2214             SetLastError(NTE_BAD_KEY);
2215             return FALSE;
2216         }
2217         if (!pbData) {
2218             *pdwDataLen = pCryptKey->dwBlockLen;
2219             return TRUE;
2220         }
2221         if (dwBufLen < pCryptKey->dwBlockLen) {
2222             SetLastError(ERROR_MORE_DATA);
2223             return FALSE;
2224         }
2225         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2226         encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2227         *pdwDataLen = pCryptKey->dwBlockLen;
2228         Final = TRUE;
2229     } else {
2230         SetLastError(NTE_BAD_TYPE);
2231         return FALSE;
2232     }
2233
2234     if (Final) setup_key(pCryptKey);
2235
2236     return TRUE;
2237 }
2238
2239 /******************************************************************************
2240  * CPDecrypt (RSAENH.@)
2241  *
2242  * Decrypt data.
2243  *
2244  * PARAMS
2245  *  hProv      [I]   The key container hKey and hHash belong to.
2246  *  hKey       [I]   The key used to decrypt the data.
2247  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
2248  *  Final      [I]   Indicates if this is the last block of data to decrypt.
2249  *  dwFlags    [I]   Currently no flags defined. Must be zero.
2250  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. 
2251  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2252  *
2253  * RETURNS
2254  *  Success: TRUE.
2255  *  Failure: FALSE.
2256  *
2257  * NOTES
2258  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
2259  *  This is useful for message signatures.
2260  *
2261  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
2262  */
2263 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2264                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2265 {
2266     CRYPTKEY *pCryptKey;
2267     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2268     DWORD i, j, k;
2269     DWORD dwMax;
2270
2271     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2272           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2273     
2274     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2275     {
2276         SetLastError(NTE_BAD_UID);
2277         return FALSE;
2278     }
2279
2280     if (dwFlags)
2281     {
2282         SetLastError(NTE_BAD_FLAGS);
2283         return FALSE;
2284     }
2285
2286     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2287     {
2288         SetLastError(NTE_BAD_KEY);
2289         return FALSE;
2290     }
2291
2292     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2293         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2294
2295     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2296     {
2297         SetLastError(NTE_BAD_DATA);
2298         return FALSE;
2299     }
2300
2301     dwMax=*pdwDataLen;
2302
2303     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2304         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2305             switch (pCryptKey->dwMode) {
2306                 case CRYPT_MODE_ECB:
2307                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2308                                        RSAENH_DECRYPT);
2309                     break;
2310                 
2311                 case CRYPT_MODE_CBC:
2312                     encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, 
2313                                        RSAENH_DECRYPT);
2314                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2315                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2316                     break;
2317
2318                 case CRYPT_MODE_CFB:
2319                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2320                         encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, 
2321                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2322                         out[j] = in[j] ^ o[0];
2323                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2324                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2325                         pCryptKey->abChainVector[k] = in[j];
2326                     }
2327                     break;
2328                     
2329                 default:
2330                     SetLastError(NTE_BAD_ALGID);
2331                     return FALSE;
2332             }
2333             memcpy(in, out, pCryptKey->dwBlockLen);
2334         }
2335         if (Final) {
2336             if (pbData[*pdwDataLen-1] &&
2337              pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2338              pbData[*pdwDataLen-1] <= *pdwDataLen) {
2339                 BOOL padOkay = TRUE;
2340
2341                 /* check that every bad byte has the same value */
2342                 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2343                     if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2344                         padOkay = FALSE;
2345                 if (padOkay)
2346                     *pdwDataLen -= pbData[*pdwDataLen-1];
2347                 else {
2348                     SetLastError(NTE_BAD_DATA);
2349                     return FALSE;
2350                 }
2351             }
2352             else {
2353                 SetLastError(NTE_BAD_DATA);
2354                 return FALSE;
2355             }
2356         }
2357
2358     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2359         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2360     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2361         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2362             SetLastError(NTE_BAD_KEY);
2363             return FALSE;
2364         }
2365         encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2366         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2367         Final = TRUE;
2368     } else {
2369         SetLastError(NTE_BAD_TYPE);
2370         return FALSE;
2371     } 
2372     
2373     if (Final) setup_key(pCryptKey);
2374
2375     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2376         if (*pdwDataLen>dwMax ||
2377             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2378     }
2379     
2380     return TRUE;
2381 }
2382
2383 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2384     DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2385 {
2386     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2387     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2388     DWORD dwDataLen;
2389
2390     if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2391         SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2392         return FALSE;
2393     }
2394
2395     dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2396     if (pbData) {
2397         if (*pdwDataLen < dwDataLen) {
2398             SetLastError(ERROR_MORE_DATA);
2399             *pdwDataLen = dwDataLen;
2400             return FALSE;
2401         }
2402
2403         pBlobHeader->bType = SIMPLEBLOB;
2404         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2405         pBlobHeader->reserved = 0;
2406         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2407
2408         *pAlgid = pPubKey->aiAlgid;
2409
2410         if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2411                       pPubKey->dwBlockLen, dwFlags))
2412         {
2413             return FALSE;
2414         }
2415
2416         encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2417                            (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2418     }
2419     *pdwDataLen = dwDataLen;
2420     return TRUE;
2421 }
2422
2423 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2424     DWORD *pdwDataLen)
2425 {
2426     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2427     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2428     DWORD dwDataLen;
2429
2430     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2431         SetLastError(NTE_BAD_KEY);
2432         return FALSE;
2433     }
2434
2435     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2436     if (pbData) {
2437         if (*pdwDataLen < dwDataLen) {
2438             SetLastError(ERROR_MORE_DATA);
2439             *pdwDataLen = dwDataLen;
2440             return FALSE;
2441         }
2442
2443         pBlobHeader->bType = PUBLICKEYBLOB;
2444         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2445         pBlobHeader->reserved = 0;
2446         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2447
2448         pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2449         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2450
2451         export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2452                                pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2453     }
2454     *pdwDataLen = dwDataLen;
2455     return TRUE;
2456 }
2457
2458 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2459     BYTE *pbData, DWORD *pdwDataLen)
2460 {
2461     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2462     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2463     DWORD dwDataLen;
2464
2465     if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2466         SetLastError(NTE_BAD_KEY);
2467         return FALSE;
2468     }
2469     if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2470     {
2471         SetLastError(NTE_BAD_KEY_STATE);
2472         return FALSE;
2473     }
2474
2475     dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2476                 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2477     if (pbData) {
2478         if (*pdwDataLen < dwDataLen) {
2479             SetLastError(ERROR_MORE_DATA);
2480             *pdwDataLen = dwDataLen;
2481             return FALSE;
2482         }
2483
2484         pBlobHeader->bType = PRIVATEKEYBLOB;
2485         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2486         pBlobHeader->reserved = 0;
2487         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2488
2489         pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2490         pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2491
2492         export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2493                                 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2494     }
2495     *pdwDataLen = dwDataLen;
2496     return TRUE;
2497 }
2498
2499 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2500     DWORD *pdwDataLen)
2501 {
2502     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2503     DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2504     BYTE *pbKey = (BYTE*)(pKeyLen+1);
2505     DWORD dwDataLen;
2506
2507     dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2508     if (pbData) {
2509         if (*pdwDataLen < dwDataLen) {
2510             SetLastError(ERROR_MORE_DATA);
2511             *pdwDataLen = dwDataLen;
2512             return FALSE;
2513         }
2514
2515         pBlobHeader->bType = PLAINTEXTKEYBLOB;
2516         pBlobHeader->bVersion = CUR_BLOB_VERSION;
2517         pBlobHeader->reserved = 0;
2518         pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2519
2520         *pKeyLen = pCryptKey->dwKeyLen;
2521         memcpy(pbKey, &pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2522     }
2523     *pdwDataLen = dwDataLen;
2524     return TRUE;
2525 }
2526 /******************************************************************************
2527  * crypt_export_key [Internal]
2528  *
2529  * Export a key into a binary large object (BLOB).  Called by CPExportKey and
2530  * by store_key_pair.
2531  *
2532  * PARAMS
2533  *  pCryptKey  [I]   Key to be exported.
2534  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2535  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2536  *  dwFlags    [I]   Currently none defined.
2537  *  force      [I]   If TRUE, the key is written no matter what the key's
2538  *                   permissions are.  Otherwise the key's permissions are
2539  *                   checked before exporting.
2540  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2541  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2542  *
2543  * RETURNS
2544  *  Success: TRUE.
2545  *  Failure: FALSE.
2546  */
2547 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2548                              DWORD dwBlobType, DWORD dwFlags, BOOL force,
2549                              BYTE *pbData, DWORD *pdwDataLen)
2550 {
2551     CRYPTKEY *pPubKey;
2552     
2553     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2554         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2555             SetLastError(NTE_BAD_KEY);
2556             return FALSE;
2557         }
2558     }
2559     
2560     switch ((BYTE)dwBlobType)
2561     {
2562         case SIMPLEBLOB:
2563             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2564                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2565                 return FALSE;
2566             }
2567             return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2568                                        pdwDataLen);
2569             
2570         case PUBLICKEYBLOB:
2571             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2572                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2573                 return FALSE;
2574             }
2575
2576             return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2577
2578         case PRIVATEKEYBLOB:
2579             return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2580
2581         case PLAINTEXTKEYBLOB:
2582             return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2583             
2584         default:
2585             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2586             return FALSE;
2587     }
2588 }
2589
2590 /******************************************************************************
2591  * CPExportKey (RSAENH.@)
2592  *
2593  * Export a key into a binary large object (BLOB).
2594  *
2595  * PARAMS
2596  *  hProv      [I]   Key container from which a key is to be exported.
2597  *  hKey       [I]   Key to be exported.
2598  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2599  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2600  *  dwFlags    [I]   Currently none defined.
2601  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2602  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2603  *
2604  * RETURNS
2605  *  Success: TRUE.
2606  *  Failure: FALSE.
2607  */
2608 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2609                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2610 {
2611     CRYPTKEY *pCryptKey;
2612
2613     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2614           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2615
2616     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2617     {
2618         SetLastError(NTE_BAD_UID);
2619         return FALSE;
2620     }
2621
2622     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2623     {
2624         SetLastError(NTE_BAD_KEY);
2625         return FALSE;
2626     }
2627
2628     return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2629         pbData, pdwDataLen);
2630 }
2631
2632 /******************************************************************************
2633  * release_and_install_key [Internal]
2634  *
2635  * Release an existing key, if present, and replaces it with a new one.
2636  *
2637  * PARAMS
2638  *  hProv     [I] Key container into which the key is to be imported.
2639  *  src       [I] Key which will replace *dest
2640  *  dest      [I] Points to key to be released and replaced with src
2641  *  fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2642  */
2643 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2644                                     HCRYPTKEY *dest, DWORD fStoreKey)
2645 {
2646     RSAENH_CPDestroyKey(hProv, *dest);
2647     copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2648     if (fStoreKey)
2649     {
2650         KEYCONTAINER *pKeyContainer;
2651
2652         if (lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2653                           (OBJECTHDR**)&pKeyContainer))
2654         {
2655             store_key_container_keys(pKeyContainer);
2656             store_key_container_permissions(pKeyContainer);
2657         }
2658     }
2659 }
2660
2661 /******************************************************************************
2662  * import_private_key [Internal]
2663  *
2664  * Import a BLOB'ed private key into a key container.
2665  *
2666  * PARAMS
2667  *  hProv     [I] Key container into which the private key is to be imported.
2668  *  pbData    [I] Pointer to a buffer which holds the private key BLOB.
2669  *  dwDataLen [I] Length of data in buffer at pbData.
2670  *  dwFlags   [I] One of:
2671  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2672  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2673  *  phKey     [O] Handle to the imported key.
2674  *
2675  *
2676  * NOTES
2677  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2678  *  it's a PRIVATEKEYBLOB.
2679  *
2680  * RETURNS
2681  *  Success: TRUE.
2682  *  Failure: FALSE.
2683  */
2684 static BOOL import_private_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2685                                DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2686 {
2687     KEYCONTAINER *pKeyContainer;
2688     CRYPTKEY *pCryptKey;
2689     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2690     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2691     BOOL ret;
2692
2693     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2694                        (OBJECTHDR**)&pKeyContainer))
2695     {
2696         SetLastError(NTE_BAD_UID);
2697         return FALSE;
2698     }
2699
2700     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2701         (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2702         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2703             (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2704     {
2705         SetLastError(NTE_BAD_DATA);
2706         return FALSE;
2707     }
2708
2709     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2710     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2711     setup_key(pCryptKey);
2712     ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2713                                    pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2714     if (ret) {
2715         if (dwFlags & CRYPT_EXPORTABLE)
2716             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2717         switch (pBlobHeader->aiKeyAlg)
2718         {
2719         case AT_SIGNATURE:
2720         case CALG_RSA_SIGN:
2721             TRACE("installing signing key\n");
2722             release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2723                                     fStoreKey);
2724             break;
2725         case AT_KEYEXCHANGE:
2726         case CALG_RSA_KEYX:
2727             TRACE("installing key exchange key\n");
2728             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2729                                     fStoreKey);
2730             break;
2731         }
2732     }
2733     return ret;
2734 }
2735
2736 /******************************************************************************
2737  * import_public_key [Internal]
2738  *
2739  * Import a BLOB'ed public key into a key container.
2740  *
2741  * PARAMS
2742  *  hProv     [I] Key container into which the public key is to be imported.
2743  *  pbData    [I] Pointer to a buffer which holds the public key BLOB.
2744  *  dwDataLen [I] Length of data in buffer at pbData.
2745  *  dwFlags   [I] One of:
2746  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2747  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2748  *  phKey     [O] Handle to the imported key.
2749  *
2750  *
2751  * NOTES
2752  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2753  *  it's a PUBLICKEYBLOB.
2754  *
2755  * RETURNS
2756  *  Success: TRUE.
2757  *  Failure: FALSE.
2758  */
2759 static BOOL import_public_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2760                               DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2761 {
2762     KEYCONTAINER *pKeyContainer;
2763     CRYPTKEY *pCryptKey;
2764     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2765     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2766     ALG_ID algID;
2767     BOOL ret;
2768
2769     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2770                        (OBJECTHDR**)&pKeyContainer))
2771     {
2772         SetLastError(NTE_BAD_UID);
2773         return FALSE;
2774     }
2775
2776     if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2777         (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2778         (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2779     {
2780         SetLastError(NTE_BAD_DATA);
2781         return FALSE;
2782     }
2783
2784     /* Since this is a public key blob, only the public key is
2785      * available, so only signature verification is possible.
2786      */
2787     algID = pBlobHeader->aiKeyAlg;
2788     *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2789     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2790     setup_key(pCryptKey);
2791     ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2792                                   pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2793     if (ret) {
2794         if (dwFlags & CRYPT_EXPORTABLE)
2795             pCryptKey->dwPermissions |= CRYPT_EXPORT;
2796         switch (pBlobHeader->aiKeyAlg)
2797         {
2798         case AT_KEYEXCHANGE:
2799         case CALG_RSA_KEYX:
2800             TRACE("installing public key\n");
2801             release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2802                                     fStoreKey);
2803             break;
2804         }
2805     }
2806     return ret;
2807 }
2808
2809 /******************************************************************************
2810  * import_symmetric_key [Internal]
2811  *
2812  * Import a BLOB'ed symmetric key into a key container.
2813  *
2814  * PARAMS
2815  *  hProv     [I] Key container into which the symmetric key is to be imported.
2816  *  pbData    [I] Pointer to a buffer which holds the symmetric key BLOB.
2817  *  dwDataLen [I] Length of data in buffer at pbData.
2818  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2819  *  dwFlags   [I] One of:
2820  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2821  *  phKey     [O] Handle to the imported key.
2822  *
2823  *
2824  * NOTES
2825  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2826  *  it's a SIMPLEBLOB.
2827  *
2828  * RETURNS
2829  *  Success: TRUE.
2830  *  Failure: FALSE.
2831  */
2832 static BOOL import_symmetric_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2833                                  DWORD dwDataLen, HCRYPTKEY hPubKey,
2834                                  DWORD dwFlags, HCRYPTKEY *phKey)
2835 {
2836     CRYPTKEY *pCryptKey, *pPubKey;
2837     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2838     CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2839     CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2840     BYTE *pbDecrypted;
2841     DWORD dwKeyLen;
2842
2843     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2844         pPubKey->aiAlgid != CALG_RSA_KEYX)
2845     {
2846         SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2847         return FALSE;
2848     }
2849
2850     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2851     {
2852         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2853         return FALSE;
2854     }
2855
2856     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2857     if (!pbDecrypted) return FALSE;
2858     encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2859                        RSAENH_DECRYPT);
2860
2861     dwKeyLen = RSAENH_MAX_KEY_SIZE;
2862     if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2863         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2864         return FALSE;
2865     }
2866
2867     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2868     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2869     {
2870         HeapFree(GetProcessHeap(), 0, pbDecrypted);
2871         return FALSE;
2872     }
2873     memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2874     HeapFree(GetProcessHeap(), 0, pbDecrypted);
2875     setup_key(pCryptKey);
2876     if (dwFlags & CRYPT_EXPORTABLE)
2877         pCryptKey->dwPermissions |= CRYPT_EXPORT;
2878     return TRUE;
2879 }
2880
2881 /******************************************************************************
2882  * import_plaintext_key [Internal]
2883  *
2884  * Import a plaintext key into a key container.
2885  *
2886  * PARAMS
2887  *  hProv     [I] Key container into which the symmetric key is to be imported.
2888  *  pbData    [I] Pointer to a buffer which holds the plaintext key BLOB.
2889  *  dwDataLen [I] Length of data in buffer at pbData.
2890  *  dwFlags   [I] One of:
2891  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2892  *  phKey     [O] Handle to the imported key.
2893  *
2894  *
2895  * NOTES
2896  *  Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2897  *  it's a PLAINTEXTKEYBLOB.
2898  *
2899  * RETURNS
2900  *  Success: TRUE.
2901  *  Failure: FALSE.
2902  */
2903 static BOOL import_plaintext_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2904                                  DWORD dwDataLen, DWORD dwFlags,
2905                                  HCRYPTKEY *phKey)
2906 {
2907     CRYPTKEY *pCryptKey;
2908     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2909     CONST DWORD *pKeyLen = (CONST DWORD *)(pBlobHeader + 1);
2910     CONST BYTE *pbKeyStream = (CONST BYTE*)(pKeyLen + 1);
2911
2912     if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2913     {
2914         SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2915         return FALSE;
2916     }
2917
2918     *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
2919     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2920         return FALSE;
2921     memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
2922     setup_key(pCryptKey);
2923     if (dwFlags & CRYPT_EXPORTABLE)
2924         pCryptKey->dwPermissions |= CRYPT_EXPORT;
2925     return TRUE;
2926 }
2927
2928 /******************************************************************************
2929  * import_key [Internal]
2930  *
2931  * Import a BLOB'ed key into a key container, optionally storing the key's
2932  * value to the registry.
2933  *
2934  * PARAMS
2935  *  hProv     [I] Key container into which the key is to be imported.
2936  *  pbData    [I] Pointer to a buffer which holds the BLOB.
2937  *  dwDataLen [I] Length of data in buffer at pbData.
2938  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2939  *  dwFlags   [I] One of:
2940  *                CRYPT_EXPORTABLE: the imported key is marked exportable
2941  *  fStoreKey [I] If TRUE, the imported key is stored to the registry.
2942  *  phKey     [O] Handle to the imported key.
2943  *
2944  * RETURNS
2945  *  Success: TRUE.
2946  *  Failure: FALSE.
2947  */
2948 static BOOL import_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2949                        HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey,
2950                        HCRYPTKEY *phKey)
2951 {
2952     KEYCONTAINER *pKeyContainer;
2953     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2954
2955     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2956                        (OBJECTHDR**)&pKeyContainer)) 
2957     {
2958         SetLastError(NTE_BAD_UID);
2959         return FALSE;
2960     }
2961
2962     if (dwDataLen < sizeof(BLOBHEADER) || 
2963         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2964         pBlobHeader->reserved != 0) 
2965     {
2966         TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
2967               pBlobHeader->reserved);
2968         SetLastError(NTE_BAD_DATA);
2969         return FALSE;
2970     }
2971
2972     /* If this is a verify-only context, the key is not persisted regardless of
2973      * fStoreKey's original value.
2974      */
2975     fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
2976     TRACE("blob type: %x\n", pBlobHeader->bType);
2977     switch (pBlobHeader->bType)
2978     {
2979         case PRIVATEKEYBLOB:    
2980             return import_private_key(hProv, pbData, dwDataLen, dwFlags,
2981                                       fStoreKey, phKey);
2982                 
2983         case PUBLICKEYBLOB:
2984             return import_public_key(hProv, pbData, dwDataLen, dwFlags,
2985                                      fStoreKey, phKey);
2986                 
2987         case SIMPLEBLOB:
2988             return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
2989                                         dwFlags, phKey);
2990
2991         case PLAINTEXTKEYBLOB:
2992             return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
2993                                         phKey);
2994
2995         default:
2996             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2997             return FALSE;
2998     }
2999 }
3000
3001 /******************************************************************************
3002  * CPImportKey (RSAENH.@)
3003  *
3004  * Import a BLOB'ed key into a key container.
3005  *
3006  * PARAMS
3007  *  hProv     [I] Key container into which the key is to be imported.
3008  *  pbData    [I] Pointer to a buffer which holds the BLOB.
3009  *  dwDataLen [I] Length of data in buffer at pbData.
3010  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
3011  *  dwFlags   [I] One of:
3012  *                CRYPT_EXPORTABLE: the imported key is marked exportable
3013  *  phKey     [O] Handle to the imported key.
3014  *
3015  * RETURNS
3016  *  Success: TRUE.
3017  *  Failure: FALSE.
3018  */
3019 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
3020                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3021 {
3022     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3023         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3024
3025     if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3026     {
3027         FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3028         SetLastError(NTE_BAD_FLAGS);
3029         return FALSE;
3030     }
3031     return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3032 }
3033
3034 /******************************************************************************
3035  * CPGenKey (RSAENH.@)
3036  *
3037  * Generate a key in the key container
3038  *
3039  * PARAMS
3040  *  hProv   [I] Key container for which a key is to be generated.
3041  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
3042  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3043  *  phKey   [O] Handle to the generated key.
3044  *
3045  * RETURNS
3046  *  Success: TRUE.
3047  *  Failure: FALSE.
3048  *
3049  * FIXME
3050  *  Flags currently not considered.
3051  *
3052  * NOTES
3053  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3054  *  and AT_SIGNATURE values.
3055  */
3056 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3057 {
3058     KEYCONTAINER *pKeyContainer;
3059     CRYPTKEY *pCryptKey;
3060
3061     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3062
3063     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3064                        (OBJECTHDR**)&pKeyContainer)) 
3065     {
3066         /* MSDN: hProv not containing valid context handle */
3067         SetLastError(NTE_BAD_UID);
3068         return FALSE;
3069     }
3070     
3071     switch (Algid)
3072     {
3073         case AT_SIGNATURE:
3074         case CALG_RSA_SIGN:
3075             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3076             if (pCryptKey) { 
3077                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3078                 setup_key(pCryptKey);
3079                 release_and_install_key(hProv, *phKey,
3080                                         &pKeyContainer->hSignatureKeyPair,
3081                                         FALSE);
3082             }
3083             break;
3084
3085         case AT_KEYEXCHANGE:
3086         case CALG_RSA_KEYX:
3087             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3088             if (pCryptKey) { 
3089                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3090                 setup_key(pCryptKey);
3091                 release_and_install_key(hProv, *phKey,
3092                                         &pKeyContainer->hKeyExchangeKeyPair,
3093                                         FALSE);
3094             }
3095             break;
3096             
3097         case CALG_RC2:
3098         case CALG_RC4:
3099         case CALG_DES:
3100         case CALG_3DES_112:
3101         case CALG_3DES:
3102         case CALG_AES:
3103         case CALG_AES_128:
3104         case CALG_AES_192:
3105         case CALG_AES_256:
3106         case CALG_PCT1_MASTER:
3107         case CALG_SSL2_MASTER:
3108         case CALG_SSL3_MASTER:
3109         case CALG_TLS1_MASTER:
3110             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3111             if (pCryptKey) {
3112                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3113                 switch (Algid) {
3114                     case CALG_SSL3_MASTER:
3115                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3116                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3117                         break;
3118
3119                     case CALG_TLS1_MASTER:
3120                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3121                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3122                         break;
3123                 }
3124                 setup_key(pCryptKey);
3125             }
3126             break;
3127             
3128         default:
3129             /* MSDN: Algorithm not supported specified by Algid */
3130             SetLastError(NTE_BAD_ALGID);
3131             return FALSE;
3132     }
3133             
3134     return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3135 }
3136
3137 /******************************************************************************
3138  * CPGenRandom (RSAENH.@)
3139  *
3140  * Generate a random byte stream.
3141  *
3142  * PARAMS
3143  *  hProv    [I] Key container that is used to generate random bytes.
3144  *  dwLen    [I] Specifies the number of requested random data bytes.
3145  *  pbBuffer [O] Random bytes will be stored here.
3146  *
3147  * RETURNS
3148  *  Success: TRUE
3149  *  Failure: FALSE
3150  */
3151 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3152 {
3153     TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3154     
3155     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3156     {
3157         /* MSDN: hProv not containing valid context handle */
3158         SetLastError(NTE_BAD_UID);
3159         return FALSE;
3160     }
3161
3162     return gen_rand_impl(pbBuffer, dwLen);
3163 }
3164
3165 /******************************************************************************
3166  * CPGetHashParam (RSAENH.@)
3167  *
3168  * Query parameters of an hash object.
3169  *
3170  * PARAMS
3171  *  hProv      [I]   The kea container, which the hash belongs to.
3172  *  hHash      [I]   The hash object that is to be queried.
3173  *  dwParam    [I]   Specifies the parameter that is to be queried.
3174  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3175  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3176  *  dwFlags    [I]   None currently defined.
3177  *
3178  * RETURNS
3179  *  Success: TRUE
3180  *  Failure: FALSE
3181  *
3182  * NOTES
3183  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be 
3184  *  finalized if HP_HASHVALUE is queried.
3185  */
3186 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, 
3187                                   DWORD *pdwDataLen, DWORD dwFlags) 
3188 {
3189     CRYPTHASH *pCryptHash;
3190         
3191     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3192         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3193     
3194     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3195     {
3196         SetLastError(NTE_BAD_UID);
3197         return FALSE;
3198     }
3199
3200     if (dwFlags)
3201     {
3202         SetLastError(NTE_BAD_FLAGS);
3203         return FALSE;
3204     }
3205     
3206     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3207                        (OBJECTHDR**)&pCryptHash))
3208     {
3209         SetLastError(NTE_BAD_HASH);
3210         return FALSE;
3211     }
3212
3213     if (!pdwDataLen)
3214     {
3215         SetLastError(ERROR_INVALID_PARAMETER);
3216         return FALSE;
3217     }
3218     
3219     switch (dwParam)
3220     {
3221         case HP_ALGID:
3222             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid, 
3223                               sizeof(ALG_ID));
3224
3225         case HP_HASHSIZE:
3226             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize, 
3227                               sizeof(DWORD));
3228
3229         case HP_HASHVAL:
3230             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3231                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3232                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3233             }
3234
3235             if ( pbData == NULL ) {
3236                 *pdwDataLen = pCryptHash->dwHashSize;
3237                 return TRUE;
3238             }
3239
3240             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
3241             {
3242                 finalize_hash(pCryptHash);
3243                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3244             }
3245
3246             return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3247                               pCryptHash->dwHashSize);
3248
3249         default:
3250             SetLastError(NTE_BAD_TYPE);
3251             return FALSE;
3252     }
3253 }
3254
3255 /******************************************************************************
3256  * CPSetKeyParam (RSAENH.@)
3257  *
3258  * Set a parameter of a key object
3259  *
3260  * PARAMS
3261  *  hProv   [I] The key container to which the key belongs.
3262  *  hKey    [I] The key for which a parameter is to be set.
3263  *  dwParam [I] Parameter type. See Notes.
3264  *  pbData  [I] Pointer to the parameter value.
3265  *  dwFlags [I] Currently none defined.
3266  *
3267  * RETURNS
3268  *  Success: TRUE.
3269  *  Failure: FALSE.
3270  *
3271  * NOTES:
3272  *  Defined dwParam types are:
3273  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3274  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3275  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
3276  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3277  *   - KP_IV: Initialization vector
3278  */
3279 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
3280                                  DWORD dwFlags)
3281 {
3282     CRYPTKEY *pCryptKey;
3283
3284     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
3285           dwParam, pbData, dwFlags);
3286
3287     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3288     {
3289         SetLastError(NTE_BAD_UID);
3290         return FALSE;
3291     }
3292
3293     if (dwFlags) {
3294         SetLastError(NTE_BAD_FLAGS);
3295         return FALSE;
3296     }
3297     
3298     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3299     {
3300         SetLastError(NTE_BAD_KEY);
3301         return FALSE;
3302     }
3303     
3304     switch (dwParam) {
3305         case KP_PADDING:
3306             /* The MS providers only support PKCS5_PADDING */
3307             if (*(DWORD *)pbData != PKCS5_PADDING) {
3308                 SetLastError(NTE_BAD_DATA);
3309                 return FALSE;
3310             }
3311             return TRUE;
3312
3313         case KP_MODE:
3314             pCryptKey->dwMode = *(DWORD*)pbData;
3315             return TRUE;
3316
3317         case KP_MODE_BITS:
3318             pCryptKey->dwModeBits = *(DWORD*)pbData;
3319             return TRUE;
3320
3321         case KP_PERMISSIONS:
3322         {
3323             DWORD perms = *(DWORD *)pbData;
3324
3325             if ((perms & CRYPT_EXPORT) &&
3326                 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3327             {
3328                 SetLastError(NTE_BAD_DATA);
3329                 return FALSE;
3330             }
3331             else if (!(perms & CRYPT_EXPORT) &&
3332                 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3333             {
3334                 /* Clearing the export permission appears to be ignored,
3335                  * see tests.
3336                  */
3337                 perms |= CRYPT_EXPORT;
3338             }
3339             pCryptKey->dwPermissions = perms;
3340             return TRUE;
3341         }
3342
3343         case KP_IV:
3344             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3345             setup_key(pCryptKey);
3346             return TRUE;
3347
3348         case KP_SALT:
3349             switch (pCryptKey->aiAlgid) {
3350                 case CALG_RC2:
3351                 case CALG_RC4:
3352                     if (!pbData)
3353                     {
3354                         SetLastError(ERROR_INVALID_PARAMETER);
3355                         return FALSE;
3356                     }
3357                     /* MSDN: the base provider always sets eleven bytes of
3358                      * salt value.
3359                      */
3360                     memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
3361                            pbData, 11);
3362                     pCryptKey->dwSaltLen = 11;
3363                     setup_key(pCryptKey);
3364                     /* Strange but true: salt length reset to 0 after setting
3365                      * it via KP_SALT.
3366                      */
3367                     pCryptKey->dwSaltLen = 0;
3368                     break;
3369                 default:
3370                     SetLastError(NTE_BAD_KEY);
3371                     return FALSE;
3372             }
3373             return TRUE;
3374
3375         case KP_SALT_EX:
3376         {
3377             CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3378
3379             /* salt length can't be greater than 184 bits = 24 bytes */
3380             if (blob->cbData > 24)
3381             {
3382                 SetLastError(NTE_BAD_DATA);
3383                 return FALSE;
3384             }
3385             memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3386                    blob->cbData);
3387             pCryptKey->dwSaltLen = blob->cbData;
3388             setup_key(pCryptKey);
3389             return TRUE;
3390         }
3391
3392         case KP_EFFECTIVE_KEYLEN:
3393             switch (pCryptKey->aiAlgid) {
3394                 case CALG_RC2:
3395                     if (!pbData)
3396                     {
3397                         SetLastError(ERROR_INVALID_PARAMETER);
3398                         return FALSE;
3399                     }
3400                     else if (!*(DWORD *)pbData || *(DWORD *)pbData > 1024)
3401                     {
3402                         SetLastError(NTE_BAD_DATA);
3403                         return FALSE;
3404                     }
3405                     else
3406                     {
3407                         pCryptKey->dwEffectiveKeyLen = *(DWORD *)pbData;
3408                         setup_key(pCryptKey);
3409                     }
3410                     break;
3411                 default:
3412                     SetLastError(NTE_BAD_TYPE);
3413                     return FALSE;
3414             }
3415             return TRUE;
3416
3417         case KP_SCHANNEL_ALG:
3418             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3419                 case SCHANNEL_ENC_KEY:
3420                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3421                     break;
3422
3423                 case SCHANNEL_MAC_KEY:
3424                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3425                     break;
3426
3427                 default:
3428                     SetLastError(NTE_FAIL); /* FIXME: error code */
3429                     return FALSE;
3430             }
3431             return TRUE;
3432
3433         case KP_CLIENT_RANDOM:
3434             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3435             
3436         case KP_SERVER_RANDOM:
3437             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3438
3439         default:
3440             SetLastError(NTE_BAD_TYPE);
3441             return FALSE;
3442     }
3443 }
3444
3445 /******************************************************************************
3446  * CPGetKeyParam (RSAENH.@)
3447  *
3448  * Query a key parameter.
3449  *
3450  * PARAMS
3451  *  hProv      [I]   The key container, which the key belongs to.
3452  *  hHash      [I]   The key object that is to be queried.
3453  *  dwParam    [I]   Specifies the parameter that is to be queried.
3454  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3455  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3456  *  dwFlags    [I]   None currently defined.
3457  *
3458  * RETURNS
3459  *  Success: TRUE
3460  *  Failure: FALSE
3461  *
3462  * NOTES
3463  *  Defined dwParam types are:
3464  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3465  *   - KP_MODE_BITS: Shift width for cipher feedback mode. 
3466  *                   (Currently ignored by MS CSP's - always eight)
3467  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
3468  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3469  *   - KP_IV: Initialization vector.
3470  *   - KP_KEYLEN: Bitwidth of the key.
3471  *   - KP_BLOCKLEN: Size of a block cipher block.
3472  *   - KP_SALT: Salt value.
3473  */
3474 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
3475                                  DWORD *pdwDataLen, DWORD dwFlags)
3476 {
3477     CRYPTKEY *pCryptKey;
3478     DWORD dwValue;
3479         
3480     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
3481           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
3482
3483     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3484     {
3485         SetLastError(NTE_BAD_UID);
3486         return FALSE;
3487     }
3488
3489     if (dwFlags) {
3490         SetLastError(NTE_BAD_FLAGS);
3491         return FALSE;
3492     }
3493
3494     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3495     {
3496         SetLastError(NTE_BAD_KEY);
3497         return FALSE;
3498     }
3499
3500     switch (dwParam) 
3501     {
3502         case KP_IV:
3503             return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
3504                               pCryptKey->dwBlockLen);
3505         
3506         case KP_SALT:
3507             switch (pCryptKey->aiAlgid) {
3508                 case CALG_RC2:
3509                 case CALG_RC4:
3510                     return copy_param(pbData, pdwDataLen,
3511                             &pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
3512                             pCryptKey->dwSaltLen);
3513                 default:
3514                     SetLastError(NTE_BAD_KEY);
3515                     return FALSE;
3516             }
3517
3518         case KP_PADDING:
3519             dwValue = PKCS5_PADDING;
3520             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3521
3522         case KP_KEYLEN:
3523             dwValue = pCryptKey->dwKeyLen << 3;
3524             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3525         
3526         case KP_EFFECTIVE_KEYLEN:
3527             if (pCryptKey->dwEffectiveKeyLen)
3528                 dwValue = pCryptKey->dwEffectiveKeyLen;
3529             else
3530                 dwValue = pCryptKey->dwKeyLen << 3;
3531             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3532
3533         case KP_BLOCKLEN:
3534             dwValue = pCryptKey->dwBlockLen << 3;
3535             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3536     
3537         case KP_MODE:
3538             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
3539
3540         case KP_MODE_BITS:
3541             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits, 
3542                               sizeof(DWORD));
3543     
3544         case KP_PERMISSIONS:
3545             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions, 
3546                               sizeof(DWORD));
3547
3548         case KP_ALGID:
3549             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
3550             
3551         default:
3552             SetLastError(NTE_BAD_TYPE);
3553             return FALSE;
3554     }
3555 }
3556                         
3557 /******************************************************************************
3558  * CPGetProvParam (RSAENH.@)
3559  *
3560  * Query a CSP parameter.
3561  *
3562  * PARAMS
3563  *  hProv      [I]   The key container that is to be queried.
3564  *  dwParam    [I]   Specifies the parameter that is to be queried.
3565  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
3566  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3567  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
3568  *
3569  * RETURNS
3570  *  Success: TRUE
3571  *  Failure: FALSE
3572  * NOTES:
3573  *  Defined dwParam types:
3574  *   - PP_CONTAINER: Name of the key container.
3575  *   - PP_NAME: Name of the cryptographic service provider.
3576  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
3577  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
3578  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
3579  */
3580 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, 
3581                                   DWORD *pdwDataLen, DWORD dwFlags)
3582 {
3583     KEYCONTAINER *pKeyContainer;
3584     PROV_ENUMALGS provEnumalgs;
3585     DWORD dwTemp;
3586     HKEY hKey;
3587    
3588     /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
3589      * IE6 SP1 asks for it in the 'About' dialog.
3590      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem 
3591      * to be 'don't care's. If you know anything more specific about
3592      * this provider parameter, please report to wine-devel@winehq.org */
3593     static CONST BYTE abWTF[96] = { 
3594         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37, 
3595         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 
3596         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 
3597         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 
3598         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 
3599         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 
3600         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 
3601         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 
3602         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 
3603         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 
3604         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 
3605         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca 
3606     };
3607
3608     TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3609            hProv, dwParam, pbData, pdwDataLen, dwFlags);
3610
3611     if (!pdwDataLen) {
3612         SetLastError(ERROR_INVALID_PARAMETER);
3613         return FALSE;
3614     }
3615     
3616     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3617                        (OBJECTHDR**)&pKeyContainer)) 
3618     {
3619         /* MSDN: hProv not containing valid context handle */
3620         SetLastError(NTE_BAD_UID);
3621         return FALSE;
3622     }
3623
3624     switch (dwParam) 
3625     {
3626         case PP_CONTAINER:
3627         case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
3628             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName, 
3629                               strlen(pKeyContainer->szName)+1);
3630
3631         case PP_NAME:
3632             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName, 
3633                               strlen(pKeyContainer->szProvName)+1);
3634
3635         case PP_PROVTYPE:
3636             dwTemp = PROV_RSA_FULL;
3637             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3638
3639         case PP_KEYSPEC:
3640             dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
3641             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3642
3643         case PP_KEYSET_TYPE:
3644             dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
3645             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3646
3647         case PP_KEYSTORAGE:
3648             dwTemp = CRYPT_SEC_DESCR;
3649             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3650
3651         case PP_SIG_KEYSIZE_INC:
3652         case PP_KEYX_KEYSIZE_INC:
3653             dwTemp = 8;
3654             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3655
3656         case PP_IMPTYPE:
3657             dwTemp = CRYPT_IMPL_SOFTWARE;
3658             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3659
3660         case PP_VERSION:
3661             dwTemp = 0x00000200;
3662             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3663             
3664         case PP_ENUMCONTAINERS:
3665             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
3666
3667             if (!pbData) {
3668                 *pdwDataLen = (DWORD)MAX_PATH + 1;
3669                 return TRUE;
3670             }
3671  
3672             if (!open_container_key("", dwFlags, &hKey))
3673             {
3674                 SetLastError(ERROR_NO_MORE_ITEMS);
3675                 return FALSE;
3676             }
3677
3678             dwTemp = *pdwDataLen;
3679             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
3680                     NULL, NULL, NULL, NULL))
3681             {
3682                 case ERROR_MORE_DATA:
3683                     *pdwDataLen = (DWORD)MAX_PATH + 1;
3684  
3685                 case ERROR_SUCCESS:
3686                     pKeyContainer->dwEnumContainersCtr++;
3687                     RegCloseKey(hKey);
3688                     return TRUE;
3689
3690                 case ERROR_NO_MORE_ITEMS:
3691                 default:
3692                     SetLastError(ERROR_NO_MORE_ITEMS);
3693                     RegCloseKey(hKey);
3694                     return FALSE;
3695             }
3696  
3697         case PP_ENUMALGS:
3698         case PP_ENUMALGS_EX:
3699             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
3700                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
3701                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && 
3702                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
3703             {
3704                 SetLastError(ERROR_NO_MORE_ITEMS);
3705                 return FALSE;
3706             }
3707
3708             if (dwParam == PP_ENUMALGS) {    
3709                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) 
3710                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3711                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3712             
3713                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3714                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3715                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3716                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3717                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3718                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3719                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3720                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 
3721                        20*sizeof(CHAR));
3722             
3723                 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs, 
3724                                   sizeof(PROV_ENUMALGS));
3725             } else {
3726                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) 
3727                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
3728                         0 : pKeyContainer->dwEnumAlgsCtr+1;
3729             
3730                 return copy_param(pbData, pdwDataLen, 
3731                                   (CONST BYTE*)&aProvEnumAlgsEx
3732                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], 
3733                                   sizeof(PROV_ENUMALGS_EX));
3734             }
3735
3736         case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
3737             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3738
3739         default:
3740             /* MSDN: Unknown parameter number in dwParam */
3741             SetLastError(NTE_BAD_TYPE);
3742             return FALSE;
3743     }
3744 }
3745
3746 /******************************************************************************
3747  * CPDeriveKey (RSAENH.@)
3748  *
3749  * Derives a key from a hash value.
3750  *
3751  * PARAMS
3752  *  hProv     [I] Key container for which a key is to be generated.
3753  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
3754  *  hBaseData [I] Hash from whose value the key will be derived.
3755  *  dwFlags   [I] See Notes.
3756  *  phKey     [O] The generated key.
3757  *
3758  * RETURNS
3759  *  Success: TRUE
3760  *  Failure: FALSE
3761  *
3762  * NOTES
3763  *  Defined flags:
3764  *   - CRYPT_EXPORTABLE: Key can be exported.
3765  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3766  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3767  */
3768 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, 
3769                                DWORD dwFlags, HCRYPTKEY *phKey)
3770 {
3771     CRYPTKEY *pCryptKey, *pMasterKey;
3772     CRYPTHASH *pCryptHash;
3773     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3774     DWORD dwLen;
3775     
3776     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3777            hBaseData, dwFlags, phKey);
3778     
3779     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3780     {
3781         SetLastError(NTE_BAD_UID);
3782         return FALSE;
3783     }
3784
3785     if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3786                        (OBJECTHDR**)&pCryptHash))
3787     {
3788         SetLastError(NTE_BAD_HASH);
3789         return FALSE;
3790     }
3791
3792     if (!phKey)
3793     {
3794         SetLastError(ERROR_INVALID_PARAMETER);
3795         return FALSE;
3796     }
3797
3798     switch (GET_ALG_CLASS(Algid))
3799     {
3800         case ALG_CLASS_DATA_ENCRYPT:
3801             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3802             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3803
3804             /* 
3805              * We derive the key material from the hash.
3806              * If the hash value is not large enough for the claimed key, we have to construct
3807              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3808              */
3809             dwLen = RSAENH_MAX_HASH_SIZE;
3810             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3811     
3812             if (dwLen < pCryptKey->dwKeyLen) {
3813                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3814                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3815                 DWORD i;
3816
3817                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3818             
3819                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3820                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3821                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3822                 }
3823                 
3824                 init_hash(pCryptHash);
3825                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3826                 finalize_hash(pCryptHash);
3827                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3828
3829                 init_hash(pCryptHash);
3830                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3831                 finalize_hash(pCryptHash);
3832                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, 
3833                        pCryptHash->dwHashSize);
3834
3835                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3836             }
3837     
3838             memcpy(pCryptKey->abKeyValue, abHashValue, 
3839                    RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3840             break;
3841
3842         case ALG_CLASS_MSG_ENCRYPT:
3843             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3844                                (OBJECTHDR**)&pMasterKey)) 
3845             {
3846                 SetLastError(NTE_FAIL); /* FIXME error code */
3847                 return FALSE;
3848             }
3849                 
3850             switch (Algid) 
3851             {
3852                 /* See RFC 2246, chapter 6.3 Key calculation */
3853                 case CALG_SCHANNEL_ENC_KEY:
3854                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, 
3855                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3856                                      &pCryptKey);
3857                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3858                     memcpy(pCryptKey->abKeyValue, 
3859                            pCryptHash->abHashValue + (
3860                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3861                                ((dwFlags & CRYPT_SERVER) ? 
3862                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3863                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3864                     memcpy(pCryptKey->abInitVector,
3865                            pCryptHash->abHashValue + (
3866                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3867                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3868                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3869                            pCryptKey->dwBlockLen);
3870                     break;
3871                     
3872                 case CALG_SCHANNEL_MAC_KEY:
3873                     *phKey = new_key(hProv, Algid, 
3874                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3875                                      &pCryptKey);
3876                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3877                     memcpy(pCryptKey->abKeyValue,
3878                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? 
3879                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3880                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3881                     break;
3882                     
3883                 default:
3884                     SetLastError(NTE_BAD_ALGID);
3885                     return FALSE;
3886             }
3887             break;
3888
3889         default:
3890             SetLastError(NTE_BAD_ALGID);
3891             return FALSE;
3892     }
3893
3894     setup_key(pCryptKey);
3895     return TRUE;    
3896 }
3897
3898 /******************************************************************************
3899  * CPGetUserKey (RSAENH.@)
3900  *
3901  * Returns a handle to the user's private key-exchange- or signature-key.
3902  *
3903  * PARAMS
3904  *  hProv     [I] The key container from which a user key is requested.
3905  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3906  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3907  *
3908  * RETURNS
3909  *  Success: TRUE.
3910  *  Failure: FALSE.
3911  *
3912  * NOTE
3913  *  A newly created key container does not contain private user key. Create them with CPGenKey.
3914  */
3915 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3916 {
3917     KEYCONTAINER *pKeyContainer;
3918
3919     TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
3920     
3921     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3922                        (OBJECTHDR**)&pKeyContainer)) 
3923     {
3924         /* MSDN: hProv not containing valid context handle */
3925         SetLastError(NTE_BAD_UID);
3926         return FALSE;
3927     }
3928
3929     switch (dwKeySpec)
3930     {
3931         case AT_KEYEXCHANGE:
3932             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
3933                         phUserKey);
3934             break;
3935
3936         case AT_SIGNATURE:
3937             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
3938                         phUserKey);
3939             break;
3940
3941         default:
3942             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3943     }
3944
3945     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3946     {
3947         /* MSDN: dwKeySpec parameter specifies nonexistent key */
3948         SetLastError(NTE_NO_KEY);
3949         return FALSE;
3950     }
3951
3952     return TRUE;
3953 }
3954
3955 /******************************************************************************
3956  * CPHashData (RSAENH.@)
3957  *
3958  * Updates a hash object with the given data.
3959  *
3960  * PARAMS
3961  *  hProv     [I] Key container to which the hash object belongs.
3962  *  hHash     [I] Hash object which is to be updated.
3963  *  pbData    [I] Pointer to data with which the hash object is to be updated.
3964  *  dwDataLen [I] Length of the data.
3965  *  dwFlags   [I] Currently none defined.
3966  *
3967  * RETURNS
3968  *  Success: TRUE.
3969  *  Failure: FALSE.
3970  *
3971  * NOTES
3972  *  The actual hash value is queried with CPGetHashParam, which will finalize 
3973  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
3974  */
3975 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData, 
3976                               DWORD dwDataLen, DWORD dwFlags)
3977 {
3978     CRYPTHASH *pCryptHash;
3979         
3980     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
3981           hProv, hHash, pbData, dwDataLen, dwFlags);
3982
3983     if (dwFlags)
3984     {
3985         SetLastError(NTE_BAD_FLAGS);
3986         return FALSE;
3987     }
3988
3989     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3990                        (OBJECTHDR**)&pCryptHash))
3991     {
3992         SetLastError(NTE_BAD_HASH);
3993         return FALSE;
3994     }
3995
3996     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
3997     {
3998         SetLastError(NTE_BAD_ALGID);
3999         return FALSE;
4000     }
4001     
4002     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
4003     {
4004         SetLastError(NTE_BAD_HASH_STATE);
4005         return FALSE;
4006     }
4007
4008     update_hash(pCryptHash, pbData, dwDataLen);
4009     return TRUE;
4010 }
4011
4012 /******************************************************************************
4013  * CPHashSessionKey (RSAENH.@)
4014  *
4015  * Updates a hash object with the binary representation of a symmetric key.
4016  *
4017  * PARAMS
4018  *  hProv     [I] Key container to which the hash object belongs.
4019  *  hHash     [I] Hash object which is to be updated.
4020  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
4021  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
4022  *
4023  * RETURNS
4024  *  Success: TRUE.
4025  *  Failure: FALSE.
4026  */
4027 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, 
4028                                     DWORD dwFlags)
4029 {
4030     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
4031     CRYPTKEY *pKey;
4032     DWORD i;
4033
4034     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
4035
4036     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
4037         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) 
4038     {
4039         SetLastError(NTE_BAD_KEY);
4040         return FALSE;
4041     }
4042
4043     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
4044         SetLastError(NTE_BAD_FLAGS);
4045         return FALSE;
4046     }
4047
4048     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
4049     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
4050         for (i=0; i<pKey->dwKeyLen/2; i++) {
4051             bTemp = abKeyValue[i];
4052             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
4053             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
4054         }
4055     }
4056
4057     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
4058 }
4059
4060 /******************************************************************************
4061  * CPReleaseContext (RSAENH.@)
4062  *
4063  * Release a key container.
4064  *
4065  * PARAMS
4066  *  hProv   [I] Key container to be released.
4067  *  dwFlags [I] Currently none defined.
4068  *
4069  * RETURNS
4070  *  Success: TRUE
4071  *  Failure: FALSE
4072  */
4073 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
4074 {
4075     TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
4076
4077     if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4078     {
4079         /* MSDN: hProv not containing valid context handle */
4080         SetLastError(NTE_BAD_UID);
4081         return FALSE;
4082     }
4083
4084     if (dwFlags) {
4085         SetLastError(NTE_BAD_FLAGS);
4086         return FALSE;
4087     }
4088     
4089     return TRUE;
4090 }
4091
4092 /******************************************************************************
4093  * CPSetHashParam (RSAENH.@)
4094  * 
4095  * Set a parameter of a hash object
4096  *
4097  * PARAMS
4098  *  hProv   [I] The key container to which the key belongs.
4099  *  hHash   [I] The hash object for which a parameter is to be set.
4100  *  dwParam [I] Parameter type. See Notes.
4101  *  pbData  [I] Pointer to the parameter value.
4102  *  dwFlags [I] Currently none defined.
4103  *
4104  * RETURNS
4105  *  Success: TRUE.
4106  *  Failure: FALSE.
4107  *
4108  * NOTES
4109  *  Currently only the HP_HMAC_INFO dwParam type is defined. 
4110  *  The HMAC_INFO struct will be deep copied into the hash object.
4111  *  See Internet RFC 2104 for details on the HMAC algorithm.
4112  */
4113 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, 
4114                                   BYTE *pbData, DWORD dwFlags)
4115 {
4116     CRYPTHASH *pCryptHash;
4117     CRYPTKEY *pCryptKey;
4118     DWORD i;
4119
4120     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
4121            hProv, hHash, dwParam, pbData, dwFlags);
4122
4123     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4124     {
4125         SetLastError(NTE_BAD_UID);
4126         return FALSE;
4127     }
4128
4129     if (dwFlags) {
4130         SetLastError(NTE_BAD_FLAGS);
4131         return FALSE;
4132     }
4133     
4134     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4135                        (OBJECTHDR**)&pCryptHash))
4136     {
4137         SetLastError(NTE_BAD_HASH);
4138         return FALSE;
4139     }
4140     
4141     switch (dwParam) {
4142         case HP_HMAC_INFO:
4143             free_hmac_info(pCryptHash->pHMACInfo);
4144             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4145
4146             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, 
4147                                (OBJECTHDR**)&pCryptKey)) 
4148             {
4149                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4150                 return FALSE;
4151             }
4152
4153             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4154                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4155             }
4156             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4157                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4158             }
4159             
4160             init_hash(pCryptHash);
4161             return TRUE;
4162
4163         case HP_HASHVAL:
4164             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4165             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4166             return TRUE;
4167            
4168         case HP_TLS1PRF_SEED:
4169             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4170
4171         case HP_TLS1PRF_LABEL:
4172             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4173             
4174         default:
4175             SetLastError(NTE_BAD_TYPE);
4176             return FALSE;
4177     }
4178 }
4179
4180 /******************************************************************************
4181  * CPSetProvParam (RSAENH.@)
4182  */
4183 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4184 {
4185     FIXME("(stub)\n");
4186     return FALSE;
4187 }
4188
4189 /******************************************************************************
4190  * CPSignHash (RSAENH.@)
4191  *
4192  * Sign a hash object
4193  *
4194  * PARAMS
4195  *  hProv        [I]   The key container, to which the hash object belongs.
4196  *  hHash        [I]   The hash object to be signed.
4197  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4198  *  sDescription [I]   Should be NULL for security reasons. 
4199  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4200  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
4201  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
4202  *
4203  * RETURNS
4204  *  Success: TRUE
4205  *  Failure: FALSE
4206  */
4207 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, 
4208                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, 
4209                               DWORD *pdwSigLen)
4210 {
4211     HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4212     CRYPTKEY *pCryptKey;
4213     DWORD dwHashLen;
4214     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4215     ALG_ID aiAlgid;
4216     BOOL ret = FALSE;
4217
4218     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
4219         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4220         dwFlags, pbSignature, pdwSigLen);
4221
4222     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4223         SetLastError(NTE_BAD_FLAGS);
4224         return FALSE;
4225     }
4226     
4227     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4228             
4229     if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4230                        (OBJECTHDR**)&pCryptKey))
4231     {
4232         SetLastError(NTE_NO_KEY);
4233         goto out;
4234     }
4235
4236     if (!pbSignature) {
4237         *pdwSigLen = pCryptKey->dwKeyLen;
4238         ret = TRUE;
4239         goto out;
4240     }
4241     if (pCryptKey->dwKeyLen > *pdwSigLen)
4242     {
4243         SetLastError(ERROR_MORE_DATA);
4244         *pdwSigLen = pCryptKey->dwKeyLen;
4245         goto out;
4246     }
4247     *pdwSigLen = pCryptKey->dwKeyLen;
4248
4249     if (sDescription) {
4250         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
4251                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4252         {
4253             goto out;
4254         }
4255     }
4256     
4257     dwHashLen = sizeof(DWORD);
4258     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
4259     
4260     dwHashLen = RSAENH_MAX_HASH_SIZE;
4261     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
4262  
4263
4264     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4265         goto out;
4266     }
4267
4268     ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4269 out:
4270     RSAENH_CPDestroyKey(hProv, hCryptKey);
4271     return ret;
4272 }
4273
4274 /******************************************************************************
4275  * CPVerifySignature (RSAENH.@)
4276  *
4277  * Verify the signature of a hash object.
4278  * 
4279  * PARAMS
4280  *  hProv        [I] The key container, to which the hash belongs.
4281  *  hHash        [I] The hash for which the signature is verified.
4282  *  pbSignature  [I] The binary signature.
4283  *  dwSigLen     [I] Length of the signature BLOB.
4284  *  hPubKey      [I] Public key used to verify the signature.
4285  *  sDescription [I] Should be NULL for security reasons.
4286  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4287  *
4288  * RETURNS
4289  *  Success: TRUE  (Signature is valid)
4290  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4291  */
4292 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature, 
4293                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, 
4294                                      DWORD dwFlags)
4295 {
4296     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4297     CRYPTKEY *pCryptKey;
4298     DWORD dwHashLen;
4299     ALG_ID aiAlgid;
4300     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4301     BOOL res = FALSE;
4302
4303     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
4304           "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4305           dwFlags);
4306         
4307     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4308         SetLastError(NTE_BAD_FLAGS);
4309         return FALSE;
4310     }
4311     
4312     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4313     {
4314         SetLastError(NTE_BAD_UID);
4315         return FALSE;
4316     }
4317  
4318     if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4319                        (OBJECTHDR**)&pCryptKey))
4320     {
4321         SetLastError(NTE_BAD_KEY);
4322         return FALSE;
4323     }
4324
4325     /* in Microsoft implementation, the signature length is checked before
4326      * the signature pointer.
4327      */
4328     if (dwSigLen != pCryptKey->dwKeyLen)
4329     {
4330         SetLastError(NTE_BAD_SIGNATURE);
4331         return FALSE;
4332     }
4333
4334     if (!hHash || !pbSignature)
4335     {
4336         SetLastError(ERROR_INVALID_PARAMETER);
4337         return FALSE;
4338     }
4339
4340     if (sDescription) {
4341         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
4342                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4343         {
4344             return FALSE;
4345         }
4346     }
4347     
4348     dwHashLen = sizeof(DWORD);
4349     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4350     
4351     dwHashLen = RSAENH_MAX_HASH_SIZE;
4352     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4353
4354     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4355     if (!pbConstructed) {
4356         SetLastError(NTE_NO_MEMORY);
4357         goto cleanup;
4358     }
4359
4360     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4361     if (!pbDecrypted) {
4362         SetLastError(NTE_NO_MEMORY);
4363         goto cleanup;
4364     }
4365
4366     if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted, 
4367                             RSAENH_DECRYPT)) 
4368     {
4369         goto cleanup;
4370     }
4371
4372     if (!build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4373         goto cleanup;
4374     }
4375
4376     if (memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4377         SetLastError(NTE_BAD_SIGNATURE);
4378         goto cleanup;
4379     }
4380     
4381     res = TRUE;
4382 cleanup:
4383     HeapFree(GetProcessHeap(), 0, pbConstructed);
4384     HeapFree(GetProcessHeap(), 0, pbDecrypted);
4385     return res;
4386 }
4387
4388 static const WCHAR szProviderKeys[6][116] = {
4389     {   'S','o','f','t','w','a','r','e','\\',
4390         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4391         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4392         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
4393         'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4394         'o','v','i','d','e','r',' ','v','1','.','0',0 },
4395     {   'S','o','f','t','w','a','r','e','\\',
4396         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4397         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4398         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4399         'E','n','h','a','n','c','e','d',
4400         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4401         'o','v','i','d','e','r',' ','v','1','.','0',0 },
4402     {   'S','o','f','t','w','a','r','e','\\',
4403         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4404         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4405         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
4406         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4407         'o','v','i','d','e','r',0 },
4408     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4409         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4410         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4411         'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
4412         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4413     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4414         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4415         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4416         'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4417         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4418     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4419         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4420         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4421         'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4422         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',
4423         ' ','(','P','r','o','t','o','t','y','p','e',')',0 }
4424 };
4425 static const WCHAR szDefaultKeys[3][65] = {
4426     {   'S','o','f','t','w','a','r','e','\\',
4427         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4428         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4429         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
4430     {   'S','o','f','t','w','a','r','e','\\',
4431         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4432         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4433         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 },
4434     {   'S','o','f','t','w','a','r','e','\\',
4435         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4436         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4437         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','2','4',0 }
4438 };
4439
4440
4441 /******************************************************************************
4442  * DllRegisterServer (RSAENH.@)
4443  *
4444  * Dll self registration. 
4445  *
4446  * PARAMS
4447  *
4448  * RETURNS
4449  *  Success: S_OK.
4450  *    Failure: != S_OK
4451  * 
4452  * NOTES
4453  *  Registers the following keys:
4454  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4455  *       Microsoft Base Cryptographic Provider v1.0
4456  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4457  *       Microsoft Enhanced Cryptographic Provider
4458  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4459  *       Microsoft Strong Cryptographpic Provider
4460  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001
4461  */
4462 HRESULT WINAPI DllRegisterServer(void)
4463 {
4464     HKEY key;
4465     DWORD dp;
4466     long apiRet;
4467     int i;
4468
4469     for (i=0; i<6; i++) {
4470         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szProviderKeys[i], 0, NULL,
4471             REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
4472
4473         if (apiRet == ERROR_SUCCESS)
4474         {
4475             if (dp == REG_CREATED_NEW_KEY)
4476             {
4477                 static const WCHAR szImagePath[] = { 'I','m','a','g','e',' ','P','a','t','h',0 };
4478                 static const WCHAR szRSABase[] = { 'r','s','a','e','n','h','.','d','l','l',0 };
4479                 static const WCHAR szType[] = { 'T','y','p','e',0 };
4480                 static const WCHAR szSignature[] = { 'S','i','g','n','a','t','u','r','e',0 };
4481                 DWORD type, sign;
4482
4483                 switch(i)
4484                 {
4485                     case 3:
4486                         type=PROV_RSA_SCHANNEL;
4487                         break;
4488                     case 4:
4489                     case 5:
4490                         type=PROV_RSA_AES;
4491                         break;
4492                     default:
4493                         type=PROV_RSA_FULL;
4494                         break;
4495                 }
4496                 sign = 0xdeadbeef;
4497                 RegSetValueExW(key, szImagePath, 0, REG_SZ, (const BYTE *)szRSABase,
4498                                (lstrlenW(szRSABase) + 1) * sizeof(WCHAR));
4499                 RegSetValueExW(key, szType, 0, REG_DWORD, (LPBYTE)&type, sizeof(type));
4500                 RegSetValueExW(key, szSignature, 0, REG_BINARY, (LPBYTE)&sign, sizeof(sign));
4501             }
4502             RegCloseKey(key);
4503         }
4504     }
4505     
4506     for (i=0; i<3; i++) {
4507         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szDefaultKeys[i], 0, NULL,
4508                                  REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
4509         if (apiRet == ERROR_SUCCESS)
4510         {
4511             if (dp == REG_CREATED_NEW_KEY)
4512             {
4513                 static const WCHAR szName[] = { 'N','a','m','e',0 };
4514                 static const WCHAR szRSAName[3][54] = {
4515                   { 'M','i','c','r','o','s','o','f','t',' ',
4516                     'E','n','h','a','n','c','e','d',' ',
4517                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ', 
4518                     'P','r','o','v','i','d','e','r',' ','v','1','.','0',0 },
4519                   { 'M','i','c','r','o','s','o','f','t',' ','R','S','A',' ',
4520                     'S','C','h','a','n','n','e','l',' ',
4521                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4522                     'P','r','o','v','i','d','e','r',0 },
4523                   { 'M','i','c','r','o','s','o','f','t',' ','E','n','h','a','n','c','e','d',' ',
4524                     'R','S','A',' ','a','n','d',' ','A','E','S',' ',
4525                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4526                     'P','r','o','v','i','d','e','r',0 } };
4527                 static const WCHAR szTypeName[] = { 'T','y','p','e','N','a','m','e',0 };
4528                 static const WCHAR szRSATypeName[3][38] = {
4529                   { 'R','S','A',' ','F','u','l','l',' ',
4530                        '(','S','i','g','n','a','t','u','r','e',' ','a','n','d',' ',
4531                     'K','e','y',' ','E','x','c','h','a','n','g','e',')',0 },
4532                   { 'R','S','A',' ','S','C','h','a','n','n','e','l',0 },
4533                   { 'R','S','A',' ','F','u','l','l',' ','a','n','d',' ','A','E','S',0 } };
4534
4535                 RegSetValueExW(key, szName, 0, REG_SZ,
4536                                 (const BYTE *)szRSAName[i], lstrlenW(szRSAName[i])*sizeof(WCHAR)+sizeof(WCHAR));
4537                 RegSetValueExW(key, szTypeName, 0, REG_SZ, 
4538                                 (const BYTE *)szRSATypeName[i], lstrlenW(szRSATypeName[i])*sizeof(WCHAR)+sizeof(WCHAR));
4539             }
4540         }
4541         RegCloseKey(key);
4542     }
4543     
4544     return HRESULT_FROM_WIN32(apiRet);
4545 }
4546
4547 /******************************************************************************
4548  * DllUnregisterServer (RSAENH.@)
4549  *
4550  * Dll self unregistration. 
4551  *
4552  * PARAMS
4553  *
4554  * RETURNS
4555  *  Success: S_OK
4556  *
4557  * NOTES
4558  *  For the relevant keys see DllRegisterServer.
4559  */
4560 HRESULT WINAPI DllUnregisterServer(void)
4561 {
4562     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[0]);
4563     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[1]);
4564     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[2]);
4565     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[3]);
4566     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[4]);
4567     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[5]);
4568     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[0]);
4569     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[1]);
4570     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[2]);
4571     return S_OK;
4572 }