2 * Copyright 2007 David Adam
3 * Copyright 2007 Vijay Kiran Kamuju
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 #define NONAMELESSUNION
33 #include "wine/debug.h"
35 WINE_DEFAULT_DEBUG_CHANNEL(d3drm);
37 /* Product of 2 quaternions */
38 LPD3DRMQUATERNION WINAPI D3DRMQuaternionMultiply(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b)
40 D3DVECTOR cross_product;
41 D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v);
42 q->s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v);
43 q->v.u1.x = a->s * b->v.u1.x + b->s * a->v.u1.x + cross_product.u1.x;
44 q->v.u2.y = a->s * b->v.u2.y + b->s * a->v.u2.y + cross_product.u2.y;
45 q->v.u3.z = a->s * b->v.u3.z + b->s * a->v.u3.z + cross_product.u3.z;
49 /* Matrix for the Rotation that a unit quaternion represents */
50 void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, LPD3DRMQUATERNION q)
57 m[0][0] = 1.0-2.0*(y*y+z*z);
58 m[1][1] = 1.0-2.0*(x*x+z*z);
59 m[2][2] = 1.0-2.0*(x*x+y*y);
60 m[1][0] = 2.0*(x*y+z*w);
61 m[0][1] = 2.0*(x*y-z*w);
62 m[2][0] = 2.0*(x*z-y*w);
63 m[0][2] = 2.0*(x*z+y*w);
64 m[2][1] = 2.0*(y*z+x*w);
65 m[1][2] = 2.0*(y*z-x*w);
75 /* Return a unit quaternion that represents a rotation of an angle around an axis */
76 LPD3DRMQUATERNION WINAPI D3DRMQuaternionFromRotation(LPD3DRMQUATERNION q, LPD3DVECTOR v, D3DVALUE theta)
78 q->s = cos(theta/2.0);
79 D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0));
83 /* Interpolation between two quaternions */
84 LPD3DRMQUATERNION WINAPI D3DRMQuaternionSlerp(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b, D3DVALUE alpha)
88 if (a->s * b->s + D3DRMVectorDotProduct(&a->v, &b->v) < 0.0) epsilon = -1.0;
89 q->s = (1.0 - alpha) * a->s + epsilon * alpha * b->s;
90 D3DRMVectorAdd(&q->v, D3DRMVectorScale(&sca1, &a->v, 1.0 - alpha),
91 D3DRMVectorScale(&sca2, &b->v, epsilon * alpha));
96 LPD3DVECTOR WINAPI D3DRMVectorAdd(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
98 d->u1.x=s1->u1.x + s2->u1.x;
99 d->u2.y=s1->u2.y + s2->u2.y;
100 d->u3.z=s1->u3.z + s2->u3.z;
104 /* Subtract Two Vectors */
105 LPD3DVECTOR WINAPI D3DRMVectorSubtract(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
107 d->u1.x=s1->u1.x - s2->u1.x;
108 d->u2.y=s1->u2.y - s2->u2.y;
109 d->u3.z=s1->u3.z - s2->u3.z;
113 /* Cross Product of Two Vectors */
114 LPD3DVECTOR WINAPI D3DRMVectorCrossProduct(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
116 d->u1.x=s1->u2.y * s2->u3.z - s1->u3.z * s2->u2.y;
117 d->u2.y=s1->u3.z * s2->u1.x - s1->u1.x * s2->u3.z;
118 d->u3.z=s1->u1.x * s2->u2.y - s1->u2.y * s2->u1.x;
122 /* Dot Product of Two vectors */
123 D3DVALUE WINAPI D3DRMVectorDotProduct(LPD3DVECTOR s1, LPD3DVECTOR s2)
125 D3DVALUE dot_product;
126 dot_product=s1->u1.x * s2->u1.x + s1->u2.y * s2->u2.y + s1->u3.z * s2->u3.z;
130 /* Norm of a vector */
131 D3DVALUE WINAPI D3DRMVectorModulus(LPD3DVECTOR v)
134 result=sqrt(v->u1.x * v->u1.x + v->u2.y * v->u2.y + v->u3.z * v->u3.z);
138 /* Normalize a vector. Returns (1,0,0) if INPUT is the NULL vector. */
139 LPD3DVECTOR WINAPI D3DRMVectorNormalize(LPD3DVECTOR u)
141 D3DVALUE modulus = D3DRMVectorModulus(u);
144 D3DRMVectorScale(u,u,1.0/modulus);
155 /* Returns a random unit vector */
156 LPD3DVECTOR WINAPI D3DRMVectorRandom(LPD3DVECTOR d)
161 D3DRMVectorNormalize(d);
165 /* Reflection of a vector on a surface */
166 LPD3DVECTOR WINAPI D3DRMVectorReflect(LPD3DVECTOR r, LPD3DVECTOR ray, LPD3DVECTOR norm)
169 D3DRMVectorSubtract(r, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray);
173 /* Rotation of a vector */
174 LPD3DVECTOR WINAPI D3DRMVectorRotate(LPD3DVECTOR r, LPD3DVECTOR v, LPD3DVECTOR axis, D3DVALUE theta)
176 D3DRMQUATERNION quaternion,quaternion1, quaternion2, quaternion3, resultq;
179 quaternion1.s = cos(theta*.5);
180 quaternion2.s = cos(theta*.5);
181 NORM = *D3DRMVectorNormalize(axis);
182 D3DRMVectorScale(&quaternion1.v, &NORM, sin(theta * .5));
183 D3DRMVectorScale(&quaternion2.v, &NORM, -sin(theta * .5));
186 D3DRMQuaternionMultiply(&quaternion, &quaternion1, &quaternion3);
187 D3DRMQuaternionMultiply(&resultq, &quaternion, &quaternion2);
188 *r = *D3DRMVectorNormalize(&resultq.v);
193 LPD3DVECTOR WINAPI D3DRMVectorScale(LPD3DVECTOR d, LPD3DVECTOR s, D3DVALUE factor)
195 d->u1.x=factor * s->u1.x;
196 d->u2.y=factor * s->u2.y;
197 d->u3.z=factor * s->u3.z;