2 * Copyright 2007 David Adam
3 * Copyright 2007 Vijay Kiran Kamuju
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 #define NONAMELESSUNION
33 /* Create a RGB color from its components */
34 D3DCOLOR WINAPI D3DRMCreateColorRGB(D3DVALUE red, D3DVALUE green, D3DVALUE blue)
36 return (D3DRMCreateColorRGBA(red, green, blue, 255.0));
38 /* Create a RGBA color from its components */
39 D3DCOLOR WINAPI D3DRMCreateColorRGBA(D3DVALUE red, D3DVALUE green, D3DVALUE blue, D3DVALUE alpha)
41 int Red, Green, Blue, Alpha;
43 Green=floor(green*255);
45 Alpha=floor(alpha*255);
48 if (green < 0) Green=0;
49 if (green > 1) Green=255;
51 if (blue > 1) Blue=255;
52 if (alpha < 0) Alpha=0;
53 if (alpha > 1) Alpha=255;
54 return (RGBA_MAKE(Red, Green, Blue, Alpha));
57 /* Determine the alpha part of a color */
58 D3DVALUE WINAPI D3DRMColorGetAlpha(D3DCOLOR color)
60 return (RGBA_GETALPHA(color)/255.0);
63 /* Determine the blue part of a color */
64 D3DVALUE WINAPI D3DRMColorGetBlue(D3DCOLOR color)
66 return (RGBA_GETBLUE(color)/255.0);
69 /* Determine the green part of a color */
70 D3DVALUE WINAPI D3DRMColorGetGreen(D3DCOLOR color)
72 return (RGBA_GETGREEN(color)/255.0);
75 /* Determine the red part of a color */
76 D3DVALUE WINAPI D3DRMColorGetRed(D3DCOLOR color)
78 return (RGBA_GETRED(color)/255.0);
81 /* Product of 2 quaternions */
82 LPD3DRMQUATERNION WINAPI D3DRMQuaternionMultiply(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b)
84 D3DVECTOR cross_product;
85 D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v);
86 q->s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v);
87 q->v.u1.x = a->s * b->v.u1.x + b->s * a->v.u1.x + cross_product.u1.x;
88 q->v.u2.y = a->s * b->v.u2.y + b->s * a->v.u2.y + cross_product.u2.y;
89 q->v.u3.z = a->s * b->v.u3.z + b->s * a->v.u3.z + cross_product.u3.z;
93 /* Matrix for the Rotation that a unit quaternion represents */
94 void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, LPD3DRMQUATERNION q)
101 m[0][0] = 1.0-2.0*(y*y+z*z);
102 m[1][1] = 1.0-2.0*(x*x+z*z);
103 m[2][2] = 1.0-2.0*(x*x+y*y);
104 m[1][0] = 2.0*(x*y+z*w);
105 m[0][1] = 2.0*(x*y-z*w);
106 m[2][0] = 2.0*(x*z-y*w);
107 m[0][2] = 2.0*(x*z+y*w);
108 m[2][1] = 2.0*(y*z+x*w);
109 m[1][2] = 2.0*(y*z-x*w);
119 /* Return a unit quaternion that represents a rotation of an angle around an axis */
120 LPD3DRMQUATERNION WINAPI D3DRMQuaternionFromRotation(LPD3DRMQUATERNION q, LPD3DVECTOR v, D3DVALUE theta)
122 q->s = cos(theta/2.0);
123 D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0));
127 /* Interpolation between two quaternions */
128 LPD3DRMQUATERNION WINAPI D3DRMQuaternionSlerp(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b, D3DVALUE alpha)
130 D3DVALUE epsilon=1.0;
132 if (a->s * b->s + D3DRMVectorDotProduct(&a->v, &b->v) < 0.0) epsilon = -1.0;
133 q->s = (1.0 - alpha) * a->s + epsilon * alpha * b->s;
134 D3DRMVectorAdd(&q->v, D3DRMVectorScale(&sca1, &a->v, 1.0 - alpha),
135 D3DRMVectorScale(&sca2, &b->v, epsilon * alpha));
139 /* Add Two Vectors */
140 LPD3DVECTOR WINAPI D3DRMVectorAdd(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
142 d->u1.x=s1->u1.x + s2->u1.x;
143 d->u2.y=s1->u2.y + s2->u2.y;
144 d->u3.z=s1->u3.z + s2->u3.z;
148 /* Subtract Two Vectors */
149 LPD3DVECTOR WINAPI D3DRMVectorSubtract(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
151 d->u1.x=s1->u1.x - s2->u1.x;
152 d->u2.y=s1->u2.y - s2->u2.y;
153 d->u3.z=s1->u3.z - s2->u3.z;
157 /* Cross Product of Two Vectors */
158 LPD3DVECTOR WINAPI D3DRMVectorCrossProduct(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
160 d->u1.x=s1->u2.y * s2->u3.z - s1->u3.z * s2->u2.y;
161 d->u2.y=s1->u3.z * s2->u1.x - s1->u1.x * s2->u3.z;
162 d->u3.z=s1->u1.x * s2->u2.y - s1->u2.y * s2->u1.x;
166 /* Dot Product of Two vectors */
167 D3DVALUE WINAPI D3DRMVectorDotProduct(LPD3DVECTOR s1, LPD3DVECTOR s2)
169 D3DVALUE dot_product;
170 dot_product=s1->u1.x * s2->u1.x + s1->u2.y * s2->u2.y + s1->u3.z * s2->u3.z;
174 /* Norm of a vector */
175 D3DVALUE WINAPI D3DRMVectorModulus(LPD3DVECTOR v)
178 result=sqrt(v->u1.x * v->u1.x + v->u2.y * v->u2.y + v->u3.z * v->u3.z);
182 /* Normalize a vector. Returns (1,0,0) if INPUT is the NULL vector. */
183 LPD3DVECTOR WINAPI D3DRMVectorNormalize(LPD3DVECTOR u)
185 D3DVALUE modulus = D3DRMVectorModulus(u);
188 D3DRMVectorScale(u,u,1.0/modulus);
199 /* Returns a random unit vector */
200 LPD3DVECTOR WINAPI D3DRMVectorRandom(LPD3DVECTOR d)
205 D3DRMVectorNormalize(d);
209 /* Reflection of a vector on a surface */
210 LPD3DVECTOR WINAPI D3DRMVectorReflect(LPD3DVECTOR r, LPD3DVECTOR ray, LPD3DVECTOR norm)
213 D3DRMVectorSubtract(r, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray);
217 /* Rotation of a vector */
218 LPD3DVECTOR WINAPI D3DRMVectorRotate(LPD3DVECTOR r, LPD3DVECTOR v, LPD3DVECTOR axis, D3DVALUE theta)
220 D3DRMQUATERNION quaternion,quaternion1, quaternion2, quaternion3, resultq;
223 quaternion1.s = cos(theta*.5);
224 quaternion2.s = cos(theta*.5);
225 NORM = *D3DRMVectorNormalize(axis);
226 D3DRMVectorScale(&quaternion1.v, &NORM, sin(theta * .5));
227 D3DRMVectorScale(&quaternion2.v, &NORM, -sin(theta * .5));
230 D3DRMQuaternionMultiply(&quaternion, &quaternion1, &quaternion3);
231 D3DRMQuaternionMultiply(&resultq, &quaternion, &quaternion2);
232 *r = *D3DRMVectorNormalize(&resultq.v);
237 LPD3DVECTOR WINAPI D3DRMVectorScale(LPD3DVECTOR d, LPD3DVECTOR s, D3DVALUE factor)
239 d->u1.x=factor * s->u1.x;
240 d->u2.y=factor * s->u2.y;
241 d->u3.z=factor * s->u3.z;