oleaut32: Fixes for function variant:VarIdiv.
[wine] / dlls / rsaenh / rsaenh.c
1 /*
2  * dlls/rsaenh/rsaenh.c
3  * RSAENH - RSA encryption for Wine
4  *
5  * Copyright 2002 TransGaming Technologies (David Hammerton)
6  * Copyright 2004 Mike McCormack for CodeWeavers
7  * Copyright 2004, 2005 Michael Jung
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public 
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22  */
23
24 #include "config.h"
25 #include "wine/port.h"
26 #include "wine/library.h"
27 #include "wine/debug.h"
28
29 #include <stdarg.h>
30 #include <stdio.h>
31
32 #include "windef.h"
33 #include "winbase.h"
34 #include "winreg.h"
35 #include "wincrypt.h"
36 #include "lmcons.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44  * CRYPTHASH - hash objects
45  */
46 #define RSAENH_MAGIC_HASH           0x85938417u
47 #define RSAENH_MAX_HASH_SIZE        104
48 #define RSAENH_HASHSTATE_IDLE       0
49 #define RSAENH_HASHSTATE_HASHING    1
50 #define RSAENH_HASHSTATE_FINISHED   2
51 typedef struct _RSAENH_TLS1PRF_PARAMS
52 {
53     CRYPT_DATA_BLOB blobLabel;
54     CRYPT_DATA_BLOB blobSeed;
55 } RSAENH_TLS1PRF_PARAMS;
56
57 typedef struct tagCRYPTHASH
58 {
59     OBJECTHDR    header;
60     ALG_ID       aiAlgid;
61     HCRYPTKEY    hKey;
62     HCRYPTPROV   hProv;
63     DWORD        dwHashSize;
64     DWORD        dwState;
65     HASH_CONTEXT context;
66     BYTE         abHashValue[RSAENH_MAX_HASH_SIZE];
67     PHMAC_INFO   pHMACInfo;
68     RSAENH_TLS1PRF_PARAMS tpPRFParams;
69 } CRYPTHASH;
70
71 /******************************************************************************
72  * CRYPTKEY - key objects
73  */
74 #define RSAENH_MAGIC_KEY           0x73620457u
75 #define RSAENH_MAX_KEY_SIZE        48
76 #define RSAENH_MAX_BLOCK_SIZE      24
77 #define RSAENH_KEYSTATE_IDLE       0
78 #define RSAENH_KEYSTATE_ENCRYPTING 1
79 #define RSAENH_KEYSTATE_DECRYPTING 2
80 #define RSAENH_KEYSTATE_MASTERKEY  3
81 typedef struct _RSAENH_SCHANNEL_INFO 
82 {
83     SCHANNEL_ALG saEncAlg;
84     SCHANNEL_ALG saMACAlg;
85     CRYPT_DATA_BLOB blobClientRandom;
86     CRYPT_DATA_BLOB blobServerRandom;
87 } RSAENH_SCHANNEL_INFO;
88
89 typedef struct tagCRYPTKEY
90 {
91     OBJECTHDR   header;
92     ALG_ID      aiAlgid;
93     HCRYPTPROV  hProv;
94     DWORD       dwMode;
95     DWORD       dwModeBits;
96     DWORD       dwPermissions;
97     DWORD       dwKeyLen;
98     DWORD       dwSaltLen;
99     DWORD       dwBlockLen;
100     DWORD       dwState;
101     KEY_CONTEXT context;    
102     BYTE        abKeyValue[RSAENH_MAX_KEY_SIZE];
103     BYTE        abInitVector[RSAENH_MAX_BLOCK_SIZE];
104     BYTE        abChainVector[RSAENH_MAX_BLOCK_SIZE];
105     RSAENH_SCHANNEL_INFO siSChannelInfo;
106 } CRYPTKEY;
107
108 /******************************************************************************
109  * KEYCONTAINER - key containers
110  */
111 #define RSAENH_PERSONALITY_BASE        0u
112 #define RSAENH_PERSONALITY_STRONG      1u
113 #define RSAENH_PERSONALITY_ENHANCED    2u
114 #define RSAENH_PERSONALITY_SCHANNEL    3u
115
116 #define RSAENH_MAGIC_CONTAINER         0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119     OBJECTHDR    header;
120     DWORD        dwFlags;
121     DWORD        dwPersonality;
122     DWORD        dwEnumAlgsCtr;
123     DWORD        dwEnumContainersCtr;
124     CHAR         szName[MAX_PATH];
125     CHAR         szProvName[MAX_PATH];
126     HCRYPTKEY    hKeyExchangeKeyPair;
127     HCRYPTKEY    hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131  * Some magic constants
132  */
133 #define RSAENH_ENCRYPT                    1
134 #define RSAENH_DECRYPT                    0    
135 #define RSAENH_HMAC_DEF_IPAD_CHAR      0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR      0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN          64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN      56
139 #define RSAENH_DES_STORAGE_KEYLEN        64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN   128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN    168
143 #define RSAENH_3DES_STORAGE_KEYLEN      192
144 #define RSAENH_MAGIC_RSA2        0x32415352
145 #define RSAENH_MAGIC_RSA1        0x31415352
146 #define RSAENH_PKC_BLOCKTYPE           0x02
147 #define RSAENH_SSL3_VERSION_MAJOR         3
148 #define RSAENH_SSL3_VERSION_MINOR         0
149 #define RSAENH_TLS1_VERSION_MAJOR         3
150 #define RSAENH_TLS1_VERSION_MINOR         1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155  * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156  */
157 #define RSAENH_MAX_ENUMALGS 20
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 PROV_ENUMALGS_EX aProvEnumAlgsEx[4][RSAENH_MAX_ENUMALGS+1] =
160 {
161  {
162   {CALG_RC2,       40, 40,   56,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
163   {CALG_RC4,       40, 40,   56,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
164   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
165   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
166   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
167   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
168   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
169   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
171   {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172   {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
174   {0,               0,  0,    0,0,                    1,"",         1,""}
175  },
176  {
177   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
178   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
179   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
180   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
181   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
182   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
183   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
184   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
185   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
186   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
188   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
191   {0,               0,  0,    0,0,                    1,"",         1,""}
192  },
193  {
194   {CALG_RC2,      128, 40,  128,0,                    4,"RC2",     24,"RSA Data Security's RC2"},
195   {CALG_RC4,      128, 40,  128,0,                    4,"RC4",     24,"RSA Data Security's RC4"},
196   {CALG_DES,       56, 56,   56,0,                    4,"DES",     31,"Data Encryption Standard (DES)"},
197   {CALG_3DES_112, 112,112,  112,0,                   13,"3DES TWO KEY",19,"Two Key Triple DES"},
198   {CALG_3DES,     168,168,  168,0,                    5,"3DES",    21,"Three Key Triple DES"},
199   {CALG_SHA,      160,160,  160,CRYPT_FLAG_SIGNING,   6,"SHA-1",   30,"Secure Hash Algorithm (SHA-1)"},
200   {CALG_MD2,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD2",     23,"Message Digest 2 (MD2)"},
201   {CALG_MD4,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD4",     23,"Message Digest 4 (MD4)"},
202   {CALG_MD5,      128,128,  128,CRYPT_FLAG_SIGNING,   4,"MD5",     23,"Message Digest 5 (MD5)"},
203   {CALG_SSL3_SHAMD5,288,288,288,0,                   12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204   {CALG_MAC,        0,  0,    0,0,                    4,"MAC",     28,"Message Authentication Code"},
205   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207   {CALG_HMAC,       0,  0,    0,0,                    5,"HMAC",    18,"Hugo's MAC (HMAC)"},
208   {0,               0,  0,    0,0,                    1,"",         1,""}
209  },
210  {
211   {CALG_RC2,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2",        24,"RSA Data Security's RC2"},
212   {CALG_RC4,      128, 40,  128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4",        24,"RSA Data Security's RC4"},
213   {CALG_DES,       56, 56,   56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES",        31,"Data Encryption Standard (DES)"},
214   {CALG_3DES_112, 112,112,  112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215   {CALG_3DES,     168,168,  168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES",       21,"Three Key Triple DES"},
216   {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217   {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218   {CALG_SSL3_SHAMD5,288,288,288,0,                         12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219   {CALG_MAC,        0,  0,    0,0,                          4,"MAC",        28,"Message Authentication Code"},
220   {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221   {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222   {CALG_HMAC,       0,  0,    0,0,                          5,"HMAC",       18,"Hugo's MAC (HMAC)"},
223   {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1,           12,"PCT1 MASTER",12,"PCT1 Master"},
224   {CALG_SSL2_MASTER,40,40,  192,CRYPT_FLAG_SSL2,           12,"SSL2 MASTER",12,"SSL2 Master"},
225   {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3,           12,"SSL3 MASTER",12,"SSL3 Master"},
226   {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1,           12,"TLS1 MASTER",12,"TLS1 Master"},
227   {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0,                     16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228   {CALG_SCHANNEL_MAC_KEY,0,0,-1,0,                         12,"SCH MAC KEY",17,"SChannel MAC Key"},
229   {CALG_SCHANNEL_ENC_KEY,0,0,-1,0,                         12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230   {CALG_TLS1PRF,    0,  0,   -1,0,                          9,"TLS1 PRF",   28,"TLS1 Pseudo Random Function"},
231   {0,               0,  0,    0,0,                          1,"",            1,""}
232  }
233 };
234
235 /******************************************************************************
236  * API forward declarations
237  */
238 BOOL WINAPI 
239 RSAENH_CPGetKeyParam(
240     HCRYPTPROV hProv, 
241     HCRYPTKEY hKey, 
242     DWORD dwParam, 
243     BYTE *pbData, 
244     DWORD *pdwDataLen, 
245     DWORD dwFlags
246 );
247
248 BOOL WINAPI 
249 RSAENH_CPEncrypt(
250     HCRYPTPROV hProv, 
251     HCRYPTKEY hKey, 
252     HCRYPTHASH hHash, 
253     BOOL Final, 
254     DWORD dwFlags, 
255     BYTE *pbData,
256     DWORD *pdwDataLen, 
257     DWORD dwBufLen
258 );
259
260 BOOL WINAPI 
261 RSAENH_CPCreateHash(
262     HCRYPTPROV hProv, 
263     ALG_ID Algid, 
264     HCRYPTKEY hKey, 
265     DWORD dwFlags, 
266     HCRYPTHASH *phHash
267 );
268
269 BOOL WINAPI 
270 RSAENH_CPSetHashParam(
271     HCRYPTPROV hProv, 
272     HCRYPTHASH hHash, 
273     DWORD dwParam, 
274     BYTE *pbData, DWORD dwFlags
275 );
276
277 BOOL WINAPI 
278 RSAENH_CPGetHashParam(
279     HCRYPTPROV hProv, 
280     HCRYPTHASH hHash, 
281     DWORD dwParam, 
282     BYTE *pbData, 
283     DWORD *pdwDataLen, 
284     DWORD dwFlags
285 );
286
287 BOOL WINAPI 
288 RSAENH_CPDestroyHash(
289     HCRYPTPROV hProv, 
290     HCRYPTHASH hHash
291 );
292
293 BOOL WINAPI 
294 RSAENH_CPExportKey(
295     HCRYPTPROV hProv, 
296     HCRYPTKEY hKey, 
297     HCRYPTKEY hPubKey, 
298     DWORD dwBlobType, 
299     DWORD dwFlags, 
300     BYTE *pbData, 
301     DWORD *pdwDataLen
302 );
303
304 BOOL WINAPI 
305 RSAENH_CPImportKey(
306     HCRYPTPROV hProv, 
307     CONST BYTE *pbData, 
308     DWORD dwDataLen, 
309     HCRYPTKEY hPubKey, 
310     DWORD dwFlags, 
311     HCRYPTKEY *phKey
312 );
313
314 BOOL WINAPI 
315 RSAENH_CPHashData(
316     HCRYPTPROV hProv, 
317     HCRYPTHASH hHash, 
318     CONST BYTE *pbData, 
319     DWORD dwDataLen, 
320     DWORD dwFlags
321 );
322
323 /******************************************************************************
324  * CSP's handle table (used by all acquired key containers)
325  */
326 static HANDLETABLE handle_table;
327
328 /******************************************************************************
329  * DllMain (RSAENH.@)
330  *
331  * Initializes and destroys the handle table for the CSP's handles.
332  */
333 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
334 {
335     switch (fdwReason)
336     {
337         case DLL_PROCESS_ATTACH:
338             DisableThreadLibraryCalls(hInstance);
339             init_handle_table(&handle_table);
340             break;
341
342         case DLL_PROCESS_DETACH:
343             destroy_handle_table(&handle_table);
344             break;
345     }
346     return 1;
347 }
348
349 /******************************************************************************
350  * copy_param [Internal]
351  *
352  * Helper function that supports the standard WINAPI protocol for querying data
353  * of dynamic size.
354  *
355  * PARAMS
356  *  pbBuffer      [O]   Buffer where the queried parameter is copied to, if it is large enough.
357  *                      May be NUL if the required buffer size is to be queried only.
358  *  pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
359  *                      Out: Size of parameter pbParam
360  *  pbParam       [I]   Parameter value.
361  *  dwParamSize   [I]   Size of pbParam
362  *
363  * RETURN
364  *  Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
365  *  Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
366  */
367 static inline BOOL copy_param(
368     BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize) 
369 {
370     if (pbBuffer) 
371     {
372         if (dwParamSize > *pdwBufferSize) 
373         {
374             SetLastError(ERROR_MORE_DATA);
375             *pdwBufferSize = dwParamSize;
376             return FALSE;
377         }
378         memcpy(pbBuffer, pbParam, dwParamSize);
379     }
380     *pdwBufferSize = dwParamSize;
381     return TRUE;
382 }
383
384 /******************************************************************************
385  * get_algid_info [Internal]
386  *
387  * Query CSP capabilities for a given crypto algorithm.
388  * 
389  * PARAMS
390  *  hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
391  *  algid [I] Identifier of the crypto algorithm about which information is requested.
392  *
393  * RETURNS
394  *  Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
395  *  Failure: NULL (algid not supported)
396  */
397 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
398     PROV_ENUMALGS_EX *iterator;
399     KEYCONTAINER *pKeyContainer;
400
401     if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
402         SetLastError(NTE_BAD_UID);
403         return NULL;
404     }
405
406     for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
407         if (iterator->aiAlgid == algid) return iterator;
408     }
409
410     SetLastError(NTE_BAD_ALGID);
411     return NULL;
412 }
413
414 /******************************************************************************
415  * copy_data_blob [Internal] 
416  *
417  * deeply copies a DATA_BLOB
418  *
419  * PARAMS
420  *  dst [O] That's where the blob will be copied to
421  *  src [I] Source blob
422  *
423  * RETURNS
424  *  Success: TRUE
425  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY
426  *
427  * NOTES
428  *  Use free_data_blob to release resources occupied by copy_data_blob.
429  */
430 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
431     dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
432     if (!dst->pbData) {
433         SetLastError(NTE_NO_MEMORY);
434         return FALSE;
435     }    
436     dst->cbData = src->cbData;
437     memcpy(dst->pbData, src->pbData, src->cbData);
438     return TRUE;
439 }
440
441 /******************************************************************************
442  * concat_data_blobs [Internal]
443  *
444  * Concatenates two blobs
445  *
446  * PARAMS
447  *  dst  [O] The new blob will be copied here
448  *  src1 [I] Prefix blob
449  *  src2 [I] Appendix blob
450  *
451  * RETURNS
452  *  Success: TRUE
453  *  Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
454  *
455  * NOTES
456  *  Release resources occupied by concat_data_blobs with free_data_blobs
457  */
458 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1, 
459                                      CONST PCRYPT_DATA_BLOB src2) 
460 {
461     dst->cbData = src1->cbData + src2->cbData;
462     dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
463     if (!dst->pbData) {
464         SetLastError(NTE_NO_MEMORY);
465         return FALSE;
466     }
467     memcpy(dst->pbData, src1->pbData, src1->cbData);
468     memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
469     return TRUE;
470 }
471
472 /******************************************************************************
473  * free_data_blob [Internal]
474  *
475  * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
476  * 
477  * PARAMS
478  *  pBlob [I] Heap space occupied by pBlob->pbData is released
479  */
480 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
481     HeapFree(GetProcessHeap(), 0, pBlob->pbData);
482 }
483
484 /******************************************************************************
485  * init_data_blob [Internal]
486  */
487 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
488     pBlob->pbData = NULL;
489     pBlob->cbData = 0;
490 }
491
492 /******************************************************************************
493  * free_hmac_info [Internal]
494  *
495  * Deeply free an HMAC_INFO struct.
496  *
497  * PARAMS
498  *  hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
499  *
500  * NOTES
501  *  See Internet RFC 2104 for details on the HMAC algorithm.
502  */
503 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
504     if (!hmac_info) return;
505     HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
506     HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
507     HeapFree(GetProcessHeap(), 0, hmac_info);
508 }
509
510 /******************************************************************************
511  * copy_hmac_info [Internal]
512  *
513  * Deeply copy an HMAC_INFO struct
514  *
515  * PARAMS
516  *  dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
517  *  src [I] Pointer to the HMAC_INFO struct to be copied.
518  *
519  * RETURNS
520  *  Success: TRUE
521  *  Failure: FALSE
522  *
523  * NOTES
524  *  See Internet RFC 2104 for details on the HMAC algorithm.
525  */
526 static BOOL copy_hmac_info(PHMAC_INFO *dst, PHMAC_INFO src) {
527     if (!src) return FALSE;
528     *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
529     if (!*dst) return FALSE;
530     memcpy(*dst, src, sizeof(HMAC_INFO));
531     (*dst)->pbInnerString = NULL;
532     (*dst)->pbOuterString = NULL;
533     if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
534     (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
535     if (!(*dst)->pbInnerString) {
536         free_hmac_info(*dst);
537         return FALSE;
538     }
539     if (src->cbInnerString) 
540         memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
541     else 
542         memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
543     if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
544     (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
545     if (!(*dst)->pbOuterString) {
546         free_hmac_info(*dst);
547         return FALSE;
548     }
549     if (src->cbOuterString) 
550         memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
551     else 
552         memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
553     return TRUE;
554 }
555
556 /******************************************************************************
557  * destroy_hash [Internal]
558  *
559  * Destructor for hash objects
560  *
561  * PARAMS
562  *  pCryptHash [I] Pointer to the hash object to be destroyed. 
563  *                 Will be invalid after function returns!
564  */
565 static void destroy_hash(OBJECTHDR *pObject)
566 {
567     CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
568         
569     free_hmac_info(pCryptHash->pHMACInfo);
570     free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
571     free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
572     HeapFree(GetProcessHeap(), 0, pCryptHash);
573 }
574
575 /******************************************************************************
576  * init_hash [Internal]
577  *
578  * Initialize (or reset) a hash object
579  *
580  * PARAMS
581  *  pCryptHash    [I] The hash object to be initialized.
582  */
583 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
584     DWORD dwLen;
585         
586     switch (pCryptHash->aiAlgid) 
587     {
588         case CALG_HMAC:
589             if (pCryptHash->pHMACInfo) { 
590                 const PROV_ENUMALGS_EX *pAlgInfo;
591                 
592                 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
593                 if (!pAlgInfo) return FALSE;
594                 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
595                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
596                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
597                                  pCryptHash->pHMACInfo->pbInnerString, 
598                                  pCryptHash->pHMACInfo->cbInnerString);
599             }
600             return TRUE;
601             
602         case CALG_MAC:
603             dwLen = sizeof(DWORD);
604             RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, 
605                                  (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
606             pCryptHash->dwHashSize >>= 3;
607             return TRUE;
608
609         default:
610             return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
611     }
612 }
613
614 /******************************************************************************
615  * update_hash [Internal]
616  *
617  * Hashes the given data and updates the hash object's state accordingly
618  *
619  * PARAMS
620  *  pCryptHash [I] Hash object to be updated.
621  *  pbData     [I] Pointer to data stream to be hashed.
622  *  dwDataLen  [I] Length of data stream.
623  */
624 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
625     BYTE *pbTemp;
626
627     switch (pCryptHash->aiAlgid)
628     {
629         case CALG_HMAC:
630             if (pCryptHash->pHMACInfo) 
631                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
632                                  pbData, dwDataLen);
633             break;
634
635         case CALG_MAC:
636             pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
637             if (!pbTemp) return;
638             memcpy(pbTemp, pbData, dwDataLen);
639             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, (HCRYPTHASH)NULL, FALSE, 0, 
640                              pbTemp, &dwDataLen, dwDataLen);
641             HeapFree(GetProcessHeap(), 0, pbTemp);
642             break;
643
644         default:
645             update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
646     }
647 }
648
649 /******************************************************************************
650  * finalize_hash [Internal]
651  *
652  * Finalizes the hash, after all data has been hashed with update_hash.
653  * No additional data can be hashed afterwards until the hash gets initialized again.
654  *
655  * PARAMS
656  *  pCryptHash [I] Hash object to be finalized.
657  */
658 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
659     DWORD dwDataLen;
660         
661     switch (pCryptHash->aiAlgid)
662     {
663         case CALG_HMAC:
664             if (pCryptHash->pHMACInfo) {
665                 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
666
667                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context, 
668                                    pCryptHash->abHashValue);
669                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
670                 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
671                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
672                                  pCryptHash->pHMACInfo->pbOuterString, 
673                                  pCryptHash->pHMACInfo->cbOuterString);
674                 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
675                                  abHashValue, pCryptHash->dwHashSize);
676                 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
677                                    pCryptHash->abHashValue);
678             } 
679             break;
680
681         case CALG_MAC:
682             dwDataLen = 0;
683             RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, (HCRYPTHASH)NULL, TRUE, 0, 
684                              pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
685             break;
686
687         default:
688             finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
689     }
690 }
691
692 /******************************************************************************
693  * destroy_key [Internal]
694  *
695  * Destructor for key objects
696  *
697  * PARAMS
698  *  pCryptKey [I] Pointer to the key object to be destroyed. 
699  *                Will be invalid after function returns!
700  */
701 static void destroy_key(OBJECTHDR *pObject)
702 {
703     CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
704         
705     free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
706     free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
707     free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
708     HeapFree(GetProcessHeap(), 0, pCryptKey);
709 }
710
711 /******************************************************************************
712  * setup_key [Internal]
713  *
714  * Initialize (or reset) a key object
715  *
716  * PARAMS
717  *  pCryptKey    [I] The key object to be initialized.
718  */
719 static inline void setup_key(CRYPTKEY *pCryptKey) {
720     pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
721     memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
722     setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, 
723                    pCryptKey->dwSaltLen, pCryptKey->abKeyValue);
724 }
725
726 /******************************************************************************
727  * new_key [Internal]
728  *
729  * Creates a new key object without assigning the actual binary key value. 
730  * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
731  *
732  * PARAMS
733  *  hProv      [I] Handle to the provider to which the created key will belong.
734  *  aiAlgid    [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
735  *  dwFlags    [I] Upper 16 bits give the key length.
736  *                 Lower 16 bits: CRYPT_CREATE_SALT, CRYPT_NO_SALT
737  *  ppCryptKey [O] Pointer to the created key
738  *
739  * RETURNS
740  *  Success: Handle to the created key.
741  *  Failure: INVALID_HANDLE_VALUE
742  */
743 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
744 {
745     HCRYPTKEY hCryptKey;
746     CRYPTKEY *pCryptKey;
747     DWORD dwKeyLen = HIWORD(dwFlags);
748     const PROV_ENUMALGS_EX *peaAlgidInfo;
749
750     *ppCryptKey = NULL;
751     
752     /* 
753      * Retrieve the CSP's capabilities for the given ALG_ID value
754      */
755     peaAlgidInfo = get_algid_info(hProv, aiAlgid);
756     if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
757
758     /*
759      * Assume the default key length, if none is specified explicitly
760      */
761     if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
762     
763     /*
764      * Check if the requested key length is supported by the current CSP.
765      * Adjust key length's for DES algorithms.
766      */
767     switch (aiAlgid) {
768         case CALG_DES:
769             if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
770                 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
771             }
772             if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
773                 SetLastError(NTE_BAD_FLAGS);
774                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
775             }
776             break;
777
778         case CALG_3DES_112:
779             if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
780                 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
781             }
782             if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
783                 SetLastError(NTE_BAD_FLAGS);
784                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
785             }
786             break;
787
788         case CALG_3DES:
789             if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
790                 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
791             }
792             if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
793                 SetLastError(NTE_BAD_FLAGS);
794                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
795             }
796             break;
797         
798         default:
799             if (dwKeyLen % 8 || 
800                 dwKeyLen > peaAlgidInfo->dwMaxLen || 
801                 dwKeyLen < peaAlgidInfo->dwMinLen) 
802             {
803                 SetLastError(NTE_BAD_FLAGS);
804                 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
805             }
806     }
807
808     hCryptKey = (HCRYPTKEY)new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, 
809                                       destroy_key, (OBJECTHDR**)&pCryptKey);
810     if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
811     {
812         pCryptKey->aiAlgid = aiAlgid;
813         pCryptKey->hProv = hProv;
814         pCryptKey->dwModeBits = 0;
815         pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | 
816                                    CRYPT_MAC;
817         pCryptKey->dwKeyLen = dwKeyLen >> 3;
818         if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) 
819             pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
820         else
821             pCryptKey->dwSaltLen = 0;
822         memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
823         memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
824         init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
825         init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
826             
827         switch(aiAlgid)
828         {
829             case CALG_PCT1_MASTER:
830             case CALG_SSL2_MASTER:
831             case CALG_SSL3_MASTER:
832             case CALG_TLS1_MASTER:
833             case CALG_RC4:
834                 pCryptKey->dwBlockLen = 0;
835                 pCryptKey->dwMode = 0;
836                 break;
837
838             case CALG_RC2:
839             case CALG_DES:
840             case CALG_3DES_112:
841             case CALG_3DES:
842                 pCryptKey->dwBlockLen = 8;
843                 pCryptKey->dwMode = CRYPT_MODE_CBC;
844                 break;
845
846             case CALG_RSA_KEYX:
847             case CALG_RSA_SIGN:
848                 pCryptKey->dwBlockLen = dwKeyLen >> 3;
849                 pCryptKey->dwMode = 0;
850                 break;
851         }
852
853         *ppCryptKey = pCryptKey;
854     }
855
856     return hCryptKey;
857 }
858
859 /******************************************************************************
860  * destroy_key_container [Internal]
861  *
862  * Destructor for key containers.
863  * 
864  * PARAMS
865  *  pObjectHdr [I] Pointer to the key container to be destroyed.
866  */
867 static void destroy_key_container(OBJECTHDR *pObjectHdr)
868 {
869     KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
870     DATA_BLOB blobIn, blobOut;
871     CRYPTKEY *pKey;
872     CHAR szRSABase[MAX_PATH];
873     HKEY hKey, hRootKey;
874     DWORD dwLen;
875     BYTE *pbKey;
876
877     if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT)) {
878         /* On WinXP, persistent keys are stored in a file located at: 
879          * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string 
880          */
881         sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
882
883         if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) {
884             hRootKey = HKEY_LOCAL_MACHINE;
885         } else {
886             hRootKey = HKEY_CURRENT_USER;
887         }
888         
889         /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
890         /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
891         if (RegCreateKeyExA(hRootKey, szRSABase, 0, NULL, REG_OPTION_NON_VOLATILE, 
892                             KEY_WRITE, NULL, &hKey, NULL) == ERROR_SUCCESS)
893         {
894             if (lookup_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
895                               (OBJECTHDR**)&pKey))
896             {
897                 if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hKeyExchangeKeyPair, 0, 
898                                        PRIVATEKEYBLOB, 0, 0, &dwLen)) 
899                 {
900                     pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
901                     if (pbKey) 
902                     {
903                         if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hKeyExchangeKeyPair, 0,
904                                                PRIVATEKEYBLOB, 0, pbKey, &dwLen))
905                         {
906                             blobIn.pbData = pbKey;
907                             blobIn.cbData = dwLen;
908                                     
909                             if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, 
910                                  (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) ? 
911                                    CRYPTPROTECT_LOCAL_MACHINE : 0, 
912                                  &blobOut)) 
913                             {
914                                 RegSetValueExA(hKey, "KeyExchangeKeyPair", 0, REG_BINARY,
915                                                blobOut.pbData, blobOut.cbData);
916                                 HeapFree(GetProcessHeap(), 0, blobOut.pbData);
917                             }
918                         }
919                         HeapFree(GetProcessHeap(), 0, pbKey);
920                     }
921                 }
922                 release_handle(&handle_table, (unsigned int)pKeyContainer->hKeyExchangeKeyPair, 
923                                RSAENH_MAGIC_KEY);
924             }
925
926             if (lookup_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
927                               (OBJECTHDR**)&pKey))
928             {
929                 if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hSignatureKeyPair, 0, 
930                                        PRIVATEKEYBLOB, 0, 0, &dwLen)) 
931                 {
932                     pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
933                     if (pbKey) 
934                     {
935                         if (RSAENH_CPExportKey(pKey->hProv, pKeyContainer->hSignatureKeyPair, 0, 
936                                                PRIVATEKEYBLOB, 0, pbKey, &dwLen))
937                         {
938                             blobIn.pbData = pbKey;
939                             blobIn.cbData = dwLen;
940                                     
941                             if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, 
942                                  (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) ? 
943                                    CRYPTPROTECT_LOCAL_MACHINE : 0, 
944                                  &blobOut)) 
945                             {
946                                 RegSetValueExA(hKey, "SignatureKeyPair", 0, REG_BINARY, 
947                                                blobOut.pbData, blobOut.cbData);
948                                 HeapFree(GetProcessHeap(), 0, blobOut.pbData);
949                             }
950                         }
951                         HeapFree(GetProcessHeap(), 0, pbKey);
952                     }
953                 }
954                 release_handle(&handle_table, (unsigned int)pKeyContainer->hSignatureKeyPair, 
955                                RSAENH_MAGIC_KEY);
956             }
957         
958             RegCloseKey(hKey);
959         }
960     }
961     
962     HeapFree( GetProcessHeap(), 0, pKeyContainer );
963 }
964
965 /******************************************************************************
966  * new_key_container [Internal]
967  *
968  * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) 
969  * of the CSP is determined via the pVTable->pszProvName string.
970  *
971  * PARAMS
972  *  pszContainerName [I] Name of the key container.
973  *  pVTable          [I] Callback functions and context info provided by the OS
974  *
975  * RETURNS
976  *  Success: Handle to the new key container.
977  *  Failure: INVALID_HANDLE_VALUE
978  */
979 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, PVTableProvStruc pVTable)
980 {
981     KEYCONTAINER *pKeyContainer;
982     HCRYPTPROV hKeyContainer;
983
984     hKeyContainer = (HCRYPTPROV)new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
985                                            destroy_key_container, (OBJECTHDR**)&pKeyContainer);
986     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
987     {
988         lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
989         pKeyContainer->dwFlags = dwFlags;
990         pKeyContainer->dwEnumAlgsCtr = 0;
991         pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
992         pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
993         if (pVTable && pVTable->pszProvName) {
994             lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
995             if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
996                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
997             } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
998                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
999             } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { 
1000                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1001             } else {
1002                 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1003             }
1004         }
1005
1006         /* The new key container has to be inserted into the CSP immediately 
1007          * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1008         if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1009             CHAR szRSABase[MAX_PATH];
1010             HKEY hRootKey, hKey;
1011
1012             sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1013
1014             if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) {
1015                 hRootKey = HKEY_LOCAL_MACHINE;
1016             } else {
1017                 hRootKey = HKEY_CURRENT_USER;
1018             }
1019
1020             /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1021             /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1022             RegCreateKeyA(hRootKey, szRSABase, &hKey);
1023             RegCloseKey(hKey);
1024         }
1025     }
1026
1027     return hKeyContainer;
1028 }
1029
1030 /******************************************************************************
1031  * read_key_container [Internal]
1032  *
1033  * Tries to read the persistent state of the key container (mainly the signature
1034  * and key exchange private keys) given by pszContainerName.
1035  *
1036  * PARAMS
1037  *  pszContainerName [I] Name of the key container to read from the registry
1038  *  pVTable          [I] Pointer to context data provided by the operating system
1039  *
1040  * RETURNS
1041  *  Success: Handle to the key container read from the registry
1042  *  Failure: INVALID_HANDLE_VALUE
1043  */
1044 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, PVTableProvStruc pVTable)
1045 {
1046     CHAR szRSABase[MAX_PATH];
1047     BYTE *pbKey;
1048     HKEY hKey, hRootKey;
1049     DWORD dwValueType, dwLen;
1050     KEYCONTAINER *pKeyContainer;
1051     HCRYPTPROV hKeyContainer;
1052     DATA_BLOB blobIn, blobOut;
1053     
1054     sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1055
1056     if (dwFlags & CRYPT_MACHINE_KEYSET) {
1057         hRootKey = HKEY_LOCAL_MACHINE;
1058     } else {
1059         hRootKey = HKEY_CURRENT_USER;
1060     }
1061
1062     /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1063     /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1064     if (RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, &hKey) != ERROR_SUCCESS)
1065     {
1066         SetLastError(NTE_BAD_KEYSET);
1067         return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1068     }
1069
1070     hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1071     if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1072     {
1073         if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, 
1074                            (OBJECTHDR**)&pKeyContainer))
1075             return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1076     
1077         if (RegQueryValueExA(hKey, "KeyExchangeKeyPair", 0, &dwValueType, NULL, &dwLen) == 
1078             ERROR_SUCCESS) 
1079         {
1080             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1081             if (pbKey) 
1082             {
1083                 if (RegQueryValueExA(hKey, "KeyExchangeKeyPair", 0, &dwValueType, pbKey, &dwLen) ==
1084                     ERROR_SUCCESS)
1085                 {
1086                     blobIn.pbData = pbKey;
1087                     blobIn.cbData = dwLen;
1088
1089                     if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, 
1090                          (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0, &blobOut))
1091                     {
1092                         RSAENH_CPImportKey(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1093                                            &pKeyContainer->hKeyExchangeKeyPair);
1094                         HeapFree(GetProcessHeap(), 0, blobOut.pbData);
1095                     }
1096                 }
1097                 HeapFree(GetProcessHeap(), 0, pbKey);
1098             }
1099         }
1100
1101         if (RegQueryValueExA(hKey, "SignatureKeyPair", 0, &dwValueType, NULL, &dwLen) == 
1102             ERROR_SUCCESS) 
1103         {
1104             pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1105             if (pbKey) 
1106             {
1107                 if (RegQueryValueExA(hKey, "SignatureKeyPair", 0, &dwValueType, pbKey, &dwLen) == 
1108                     ERROR_SUCCESS)
1109                 {
1110                     blobIn.pbData = pbKey;
1111                     blobIn.cbData = dwLen;
1112
1113                     if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, 
1114                          (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0, &blobOut))
1115                     {
1116                         RSAENH_CPImportKey(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1117                                            &pKeyContainer->hSignatureKeyPair);
1118                         HeapFree(GetProcessHeap(), 0, blobOut.pbData);
1119                     }
1120                 }
1121                 HeapFree(GetProcessHeap(), 0, pbKey);
1122             }
1123         }
1124     }
1125
1126     return hKeyContainer;
1127 }
1128
1129 /******************************************************************************
1130  * build_hash_signature [Internal]
1131  *
1132  * Builds a padded version of a hash to match the length of the RSA key modulus.
1133  *
1134  * PARAMS
1135  *  pbSignature [O] The padded hash object is stored here.
1136  *  dwLen       [I] Length of the pbSignature buffer.
1137  *  aiAlgid     [I] Algorithm identifier of the hash to be padded.
1138  *  abHashValue [I] The value of the hash object.
1139  *  dwHashLen   [I] Length of the hash value.
1140  *  dwFlags     [I] Selection of padding algorithm.
1141  *
1142  * RETURNS
1143  *  Success: TRUE
1144  *  Failure: FALSE (NTE_BAD_ALGID)
1145  */
1146 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, 
1147                                  CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) 
1148 {
1149     /* These prefixes are meant to be concatenated with hash values of the
1150      * respective kind to form a PKCS #7 DigestInfo. */
1151     static const struct tagOIDDescriptor {
1152         ALG_ID aiAlgid;
1153         DWORD dwLen;
1154         CONST BYTE abOID[18];
1155     } aOIDDescriptor[5] = {
1156         { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1157                           0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1158         { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 
1159                           0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1160         { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1161                           0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1162         { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 
1163                           0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1164         { 0,        0,  {} }
1165     };
1166     DWORD dwIdxOID, i, j;
1167
1168     for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1169         if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1170     }
1171     
1172     if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1173         SetLastError(NTE_BAD_ALGID);
1174         return FALSE;
1175     }
1176
1177     /* Build the padded signature */
1178     if (dwFlags & CRYPT_X931_FORMAT) {
1179         pbSignature[0] = 0x6b;
1180         for (i=1; i < dwLen - dwHashLen - 3; i++) {
1181             pbSignature[i] = 0xbb;
1182         }
1183         pbSignature[i++] = 0xba;
1184         for (j=0; j < dwHashLen; j++, i++) {
1185             pbSignature[i] = abHashValue[j];
1186         }
1187         pbSignature[i++] = 0x33;
1188         pbSignature[i++] = 0xcc;
1189     } else {
1190         pbSignature[0] = 0x00;
1191         pbSignature[1] = 0x01;
1192         if (dwFlags & CRYPT_NOHASHOID) {
1193             for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1194                 pbSignature[i] = 0xff;
1195             }
1196             pbSignature[i++] = 0x00;
1197         } else {
1198             for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1199                 pbSignature[i] = 0xff;
1200             }
1201             pbSignature[i++] = 0x00;
1202             for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1203                 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1204             }
1205         }
1206         for (j=0; j < dwHashLen; j++) {
1207             pbSignature[i++] = abHashValue[j];
1208         }
1209     }
1210     
1211     return TRUE;
1212 }
1213
1214 /******************************************************************************
1215  * tls1_p [Internal]
1216  *
1217  * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1218  * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1219  * The pseudo random stream generated by this function is exclusive or'ed with
1220  * the data in pbBuffer.
1221  *
1222  * PARAMS
1223  *  hHMAC       [I]   HMAC object, which will be used in pseudo random generation
1224  *  pblobSeed   [I]   Seed value
1225  *  pbBuffer    [I/O] Pseudo random stream will be xor'ed to the provided data
1226  *  dwBufferLen [I]   Number of pseudo random bytes desired
1227  *
1228  * RETURNS
1229  *  Success: TRUE
1230  *  Failure: FALSE
1231  */
1232 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1233 {
1234     CRYPTHASH *pHMAC;
1235     BYTE abAi[RSAENH_MAX_HASH_SIZE];
1236     DWORD i = 0;
1237
1238     if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1239         SetLastError(NTE_BAD_HASH);
1240         return FALSE;
1241     }
1242     
1243     /* compute A_1 = HMAC(seed) */
1244     init_hash(pHMAC);
1245     update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1246     finalize_hash(pHMAC);
1247     memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1248
1249     do {
1250         /* compute HMAC(A_i + seed) */
1251         init_hash(pHMAC);
1252         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1253         update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1254         finalize_hash(pHMAC);
1255
1256         /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1257         do {
1258             if (i >= dwBufferLen) break;
1259             pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1260             i++;
1261         } while (i % pHMAC->dwHashSize);
1262
1263         /* compute A_{i+1} = HMAC(A_i) */
1264         init_hash(pHMAC);
1265         update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1266         finalize_hash(pHMAC);
1267         memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1268     } while (i < dwBufferLen);
1269
1270     return TRUE;
1271 }
1272
1273 /******************************************************************************
1274  * tls1_prf [Internal]
1275  *
1276  * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1277  *
1278  * PARAMS
1279  *  hProv       [I] Key container used to compute the pseudo random stream
1280  *  hSecret     [I] Key that holds the (pre-)master secret
1281  *  pblobLabel  [I] Descriptive label
1282  *  pblobSeed   [I] Seed value
1283  *  pbBuffer    [O] Pseudo random numbers will be stored here
1284  *  dwBufferLen [I] Number of pseudo random bytes desired
1285  *
1286  * RETURNS
1287  *  Success: TRUE
1288  *  Failure: FALSE
1289  */ 
1290 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1291                      CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1292 {
1293     HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1294     HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1295     HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1296     CRYPTKEY *pHalfSecret, *pSecret;
1297     DWORD dwHalfSecretLen;
1298     BOOL result = FALSE;
1299     CRYPT_DATA_BLOB blobLabelSeed;
1300
1301     TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%ld)\n",
1302           hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1303
1304     if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1305         SetLastError(NTE_FAIL);
1306         return FALSE;
1307     }
1308
1309     dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1310     
1311     /* concatenation of the label and the seed */
1312     if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1313    
1314     /* zero out the buffer, since two random streams will be xor'ed into it. */
1315     memset(pbBuffer, 0, dwBufferLen);
1316    
1317     /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1318      * the biggest range of valid key lengths. */
1319     hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1320     if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1321
1322     /* Derive an HMAC_MD5 hash and call the helper function. */
1323     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1324     if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1325     hmacInfo.HashAlgid = CALG_MD5;
1326     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1327     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1328
1329     /* Reconfigure to HMAC_SHA hash and call helper function again. */
1330     memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1331     hmacInfo.HashAlgid = CALG_SHA;
1332     if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1333     if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1334     
1335     result = TRUE;
1336 exit:
1337     release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1338     if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1339     free_data_blob(&blobLabelSeed);
1340     return result;
1341 }
1342
1343 /******************************************************************************
1344  * pad_data [Internal]
1345  *
1346  * Helper function for data padding according to PKCS1 #2
1347  *
1348  * PARAMS
1349  *  abData      [I] The data to be padded
1350  *  dwDataLen   [I] Length of the data 
1351  *  abBuffer    [O] Padded data will be stored here
1352  *  dwBufferLen [I] Length of the buffer (also length of padded data)
1353  *  dwFlags     [I] Padding format (CRYPT_SSL2_FALLBACK)
1354  *
1355  * RETURN
1356  *  Success: TRUE
1357  *  Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1358  */
1359 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, 
1360                      DWORD dwFlags)
1361 {
1362     DWORD i;
1363     
1364     /* Ensure there is enough space for PKCS1 #2 padding */
1365     if (dwDataLen > dwBufferLen-11) {
1366         SetLastError(NTE_BAD_LEN);
1367         return FALSE;
1368     }
1369
1370     memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);            
1371     
1372     abBuffer[0] = 0x00;
1373     abBuffer[1] = RSAENH_PKC_BLOCKTYPE; 
1374     for (i=2; i < dwBufferLen - dwDataLen - 1; i++) 
1375         do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1376     if (dwFlags & CRYPT_SSL2_FALLBACK) 
1377         for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) 
1378             abBuffer[i] = 0x03;
1379     abBuffer[i] = 0x00;
1380     
1381     return TRUE; 
1382 }
1383
1384 /******************************************************************************
1385  * unpad_data [Internal]
1386  *
1387  * Remove the PKCS1 padding from RSA decrypted data
1388  *
1389  * PARAMS
1390  *  abData      [I]   The padded data
1391  *  dwDataLen   [I]   Length of the padded data
1392  *  abBuffer    [O]   Data without padding will be stored here
1393  *  dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1394  *  dwFlags     [I]   Currently none defined
1395  *
1396  * RETURNS
1397  *  Success: TRUE
1398  *  Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1399  */
1400 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, 
1401                        DWORD dwFlags)
1402 {
1403     DWORD i;
1404     
1405     for (i=2; i<dwDataLen; i++)
1406         if (!abData[i])
1407             break;
1408
1409     if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1410         (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1411     {
1412         SetLastError(NTE_BAD_DATA);
1413         return FALSE;
1414     }
1415
1416     *dwBufferLen = dwDataLen - i - 1;
1417     memmove(abBuffer, abData + i + 1, *dwBufferLen);
1418     return TRUE;
1419 }
1420
1421 /******************************************************************************
1422  * CPAcquireContext (RSAENH.@)
1423  *
1424  * Acquire a handle to the key container specified by pszContainer
1425  *
1426  * PARAMS
1427  *  phProv       [O] Pointer to the location the acquired handle will be written to.
1428  *  pszContainer [I] Name of the desired key container. See Notes
1429  *  dwFlags      [I] Flags. See Notes.
1430  *  pVTable      [I] Pointer to a PVTableProvStruct containing callbacks.
1431  * 
1432  * RETURNS
1433  *  Success: TRUE
1434  *  Failure: FALSE
1435  *
1436  * NOTES
1437  *  If pszContainer is NULL or points to a zero length string the user's login 
1438  *  name will be used as the key container name.
1439  *
1440  *  If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1441  *  If a keyset with the given name already exists, the function fails and sets
1442  *  last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1443  *  key container does not exist, function fails and sets last error to 
1444  *  NTE_BAD_KEYSET.
1445  */                         
1446 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1447                    DWORD dwFlags, PVTableProvStruc pVTable)
1448 {
1449     CHAR szKeyContainerName[MAX_PATH];
1450     CHAR szRegKey[MAX_PATH];
1451
1452     TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08lx, pVTable=%p)\n", phProv, 
1453           debugstr_a(pszContainer), dwFlags, pVTable);
1454
1455     if (pszContainer && *pszContainer)
1456     {
1457         lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1458     } 
1459     else
1460     {
1461         DWORD dwLen = sizeof(szKeyContainerName);
1462         if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1463     }
1464
1465     switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) 
1466     {
1467         case 0:
1468             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1469             break;
1470
1471         case CRYPT_DELETEKEYSET:
1472             if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, szKeyContainerName) >= MAX_PATH) {
1473                 SetLastError(NTE_BAD_KEYSET_PARAM);
1474                 return FALSE;
1475             } else {
1476                 if (!RegDeleteKeyA(HKEY_CURRENT_USER, szRegKey)) {
1477                     SetLastError(ERROR_SUCCESS);
1478                     return TRUE;
1479                 } else {
1480                     SetLastError(NTE_BAD_KEYSET);
1481                     return FALSE;
1482                 }
1483             }
1484             break;
1485
1486         case CRYPT_NEWKEYSET:
1487             *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1488             if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) 
1489             {
1490                 release_handle(&handle_table, (unsigned int)*phProv, RSAENH_MAGIC_CONTAINER);
1491                 SetLastError(NTE_EXISTS);
1492                 return FALSE;
1493             }
1494             *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1495             break;
1496
1497         case CRYPT_VERIFYCONTEXT:
1498             if (pszContainer) {
1499                 SetLastError(NTE_BAD_FLAGS);
1500                 return FALSE;
1501             }
1502             *phProv = new_key_container("", dwFlags, pVTable);
1503             break;
1504             
1505         default:
1506             *phProv = (unsigned int)INVALID_HANDLE_VALUE;
1507             SetLastError(NTE_BAD_FLAGS);
1508             return FALSE;
1509     }
1510                 
1511     if (*phProv != (unsigned int)INVALID_HANDLE_VALUE) {
1512         SetLastError(ERROR_SUCCESS);
1513         return TRUE;
1514     } else {
1515         return FALSE;
1516     }
1517 }
1518
1519 /******************************************************************************
1520  * CPCreateHash (RSAENH.@)
1521  *
1522  * CPCreateHash creates and initalizes a new hash object.
1523  *
1524  * PARAMS
1525  *  hProv   [I] Handle to the key container to which the new hash will belong.
1526  *  Algid   [I] Identifies the hash algorithm, which will be used for the hash.
1527  *  hKey    [I] Handle to a session key applied for keyed hashes.
1528  *  dwFlags [I] Currently no flags defined. Must be zero.
1529  *  phHash  [O] Points to the location where a handle to the new hash will be stored.
1530  *
1531  * RETURNS
1532  *  Success: TRUE
1533  *  Failure: FALSE
1534  *
1535  * NOTES
1536  *  hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1537  *  If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1538  */
1539 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, 
1540                                 HCRYPTHASH *phHash)
1541 {
1542     CRYPTKEY *pCryptKey;
1543     CRYPTHASH *pCryptHash;
1544     const PROV_ENUMALGS_EX *peaAlgidInfo;
1545         
1546     TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08lx, phHash=%p)\n", hProv, Algid, hKey, 
1547           dwFlags, phHash);
1548
1549     peaAlgidInfo = get_algid_info(hProv, Algid);
1550     if (!peaAlgidInfo) return FALSE;
1551
1552     if (dwFlags)
1553     {
1554         SetLastError(NTE_BAD_FLAGS);
1555         return FALSE;
1556     }
1557
1558     if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || 
1559         Algid == CALG_TLS1PRF) 
1560     {
1561         if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1562             SetLastError(NTE_BAD_KEY);
1563             return FALSE;
1564         }
1565
1566         if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1567             SetLastError(NTE_BAD_KEY);
1568             return FALSE;
1569         }
1570
1571         if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && 
1572             (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) 
1573         {
1574             SetLastError(NTE_BAD_KEY);
1575             return FALSE;
1576         }
1577
1578         if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1579             SetLastError(NTE_BAD_KEY_STATE);
1580             return FALSE;
1581         }
1582     }
1583
1584     *phHash = (HCRYPTHASH)new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1585                                      destroy_hash, (OBJECTHDR**)&pCryptHash);
1586     if (!pCryptHash) return FALSE;
1587     
1588     pCryptHash->aiAlgid = Algid;
1589     pCryptHash->hKey = hKey;
1590     pCryptHash->hProv = hProv;
1591     pCryptHash->dwState = RSAENH_HASHSTATE_IDLE;
1592     pCryptHash->pHMACInfo = (PHMAC_INFO)NULL;
1593     pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1594     init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1595     init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1596
1597     if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1598         static const char keyex[] = "key expansion";
1599         BYTE key_expansion[sizeof keyex];
1600         CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1601
1602         memcpy( key_expansion, keyex, sizeof keyex );
1603         
1604         if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1605             static const char msec[] = "master secret";
1606             BYTE master_secret[sizeof msec];
1607             CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1608             BYTE abKeyValue[48];
1609
1610             memcpy( master_secret, msec, sizeof msec );
1611     
1612             /* See RFC 2246, chapter 8.1 */
1613             if (!concat_data_blobs(&blobRandom, 
1614                                    &pCryptKey->siSChannelInfo.blobClientRandom, 
1615                                    &pCryptKey->siSChannelInfo.blobServerRandom))
1616             {
1617                 return FALSE;
1618             }
1619             tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1620             pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; 
1621             memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1622             free_data_blob(&blobRandom);
1623         }
1624
1625         /* See RFC 2246, chapter 6.3 */
1626         if (!concat_data_blobs(&blobRandom, 
1627                                   &pCryptKey->siSChannelInfo.blobServerRandom, 
1628                                   &pCryptKey->siSChannelInfo.blobClientRandom))
1629         {
1630             return FALSE;
1631         }
1632         tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, 
1633                  RSAENH_MAX_HASH_SIZE);
1634         free_data_blob(&blobRandom);
1635     }
1636
1637     return init_hash(pCryptHash);
1638 }
1639
1640 /******************************************************************************
1641  * CPDestroyHash (RSAENH.@)
1642  * 
1643  * Releases the handle to a hash object. The object is destroyed if it's reference
1644  * count reaches zero.
1645  *
1646  * PARAMS
1647  *  hProv [I] Handle to the key container to which the hash object belongs.
1648  *  hHash [I] Handle to the hash object to be released.
1649  *
1650  * RETURNS
1651  *  Success: TRUE
1652  *  Failure: FALSE 
1653  */
1654 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1655 {
1656     TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1657      
1658     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1659     {
1660         SetLastError(NTE_BAD_UID);
1661         return FALSE;
1662     }
1663         
1664     if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) 
1665     {
1666         SetLastError(NTE_BAD_HASH);
1667         return FALSE;
1668     }
1669     
1670     return TRUE;
1671 }
1672
1673 /******************************************************************************
1674  * CPDestroyKey (RSAENH.@)
1675  *
1676  * Releases the handle to a key object. The object is destroyed if it's reference
1677  * count reaches zero.
1678  *
1679  * PARAMS
1680  *  hProv [I] Handle to the key container to which the key object belongs.
1681  *  hKey  [I] Handle to the key object to be released.
1682  *
1683  * RETURNS
1684  *  Success: TRUE
1685  *  Failure: FALSE
1686  */
1687 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1688 {
1689     TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1690         
1691     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1692     {
1693         SetLastError(NTE_BAD_UID);
1694         return FALSE;
1695     }
1696         
1697     if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) 
1698     {
1699         SetLastError(NTE_BAD_KEY);
1700         return FALSE;
1701     }
1702     
1703     return TRUE;
1704 }
1705
1706 /******************************************************************************
1707  * CPDuplicateHash (RSAENH.@)
1708  *
1709  * Clones a hash object including it's current state.
1710  *
1711  * PARAMS
1712  *  hUID        [I] Handle to the key container the hash belongs to.
1713  *  hHash       [I] Handle to the hash object to be cloned.
1714  *  pdwReserved [I] Reserved. Must be NULL.
1715  *  dwFlags     [I] No flags are currently defined. Must be 0.
1716  *  phHash      [O] Handle to the cloned hash object.
1717  *
1718  * RETURNS
1719  *  Success: TRUE.
1720  *  Failure: FALSE.
1721  */
1722 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, 
1723                                    DWORD dwFlags, HCRYPTHASH *phHash)
1724 {
1725     CRYPTHASH *pSrcHash, *pDestHash;
1726     
1727     TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08lx, phHash=%p)\n", hUID, hHash, 
1728            pdwReserved, dwFlags, phHash);
1729
1730     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1731     {
1732         SetLastError(NTE_BAD_UID);
1733         return FALSE;
1734     }
1735
1736     if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
1737     {
1738         SetLastError(NTE_BAD_HASH);
1739         return FALSE;
1740     }
1741
1742     if (!phHash || pdwReserved || dwFlags) 
1743     {
1744         SetLastError(ERROR_INVALID_PARAMETER);
1745         return FALSE;
1746     }
1747
1748     *phHash = (HCRYPTHASH)new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, 
1749                                      destroy_hash, (OBJECTHDR**)&pDestHash);
1750     if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
1751     {
1752         memcpy(pDestHash, pSrcHash, sizeof(CRYPTHASH));
1753         duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
1754         copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
1755         copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
1756         copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
1757     }
1758
1759     return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
1760 }
1761
1762 /******************************************************************************
1763  * CPDuplicateKey (RSAENH.@)
1764  *
1765  * Clones a key object including it's current state.
1766  *
1767  * PARAMS
1768  *  hUID        [I] Handle to the key container the hash belongs to.
1769  *  hKey        [I] Handle to the key object to be cloned.
1770  *  pdwReserved [I] Reserved. Must be NULL.
1771  *  dwFlags     [I] No flags are currently defined. Must be 0.
1772  *  phHash      [O] Handle to the cloned key object.
1773  *
1774  * RETURNS
1775  *  Success: TRUE.
1776  *  Failure: FALSE.
1777  */
1778 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, 
1779                                   DWORD dwFlags, HCRYPTKEY *phKey)
1780 {
1781     CRYPTKEY *pSrcKey, *pDestKey;
1782     
1783     TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08lx, phKey=%p)\n", hUID, hKey, 
1784           pdwReserved, dwFlags, phKey);
1785
1786     if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1787     {
1788         SetLastError(NTE_BAD_UID);
1789         return FALSE;
1790     }
1791
1792     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
1793     {
1794         SetLastError(NTE_BAD_KEY);
1795         return FALSE;
1796     }
1797
1798     if (!phKey || pdwReserved || dwFlags) 
1799     {
1800         SetLastError(ERROR_INVALID_PARAMETER);
1801         return FALSE;
1802     }
1803
1804     *phKey = (HCRYPTKEY)new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key, 
1805                                    (OBJECTHDR**)&pDestKey);
1806     if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
1807     {
1808         memcpy(pDestKey, pSrcKey, sizeof(CRYPTKEY));
1809         copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
1810                        &pSrcKey->siSChannelInfo.blobServerRandom);
1811         copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, 
1812                        &pSrcKey->siSChannelInfo.blobClientRandom);
1813         duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
1814         return TRUE;
1815     }
1816     else
1817     {
1818         return FALSE;
1819     }
1820 }
1821
1822 /******************************************************************************
1823  * CPEncrypt (RSAENH.@)
1824  *
1825  * Encrypt data.
1826  *
1827  * PARAMS
1828  *  hProv      [I]   The key container hKey and hHash belong to.
1829  *  hKey       [I]   The key used to encrypt the data.
1830  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
1831  *  Final      [I]   Indicates if this is the last block of data to encrypt.
1832  *  dwFlags    [I]   Currently no flags defined. Must be zero.
1833  *  pbData     [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. 
1834  *  pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
1835  *  dwBufLen   [I]   Size of the buffer at pbData.
1836  *
1837  * RETURNS
1838  *  Success: TRUE.
1839  *  Failure: FALSE.
1840  *
1841  * NOTES
1842  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
1843  *  This is useful for message signatures.
1844  *
1845  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
1846  */
1847 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
1848                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
1849 {
1850     CRYPTKEY *pCryptKey;
1851     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
1852     DWORD dwEncryptedLen, i, j, k;
1853         
1854     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08lx, pbData=%p, "
1855           "pdwDataLen=%p, dwBufLen=%ld)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
1856           dwBufLen);
1857     
1858     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1859     {
1860         SetLastError(NTE_BAD_UID);
1861         return FALSE;
1862     }
1863
1864     if (dwFlags)
1865     {
1866         SetLastError(NTE_BAD_FLAGS);
1867         return FALSE;
1868     }
1869
1870     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
1871     {
1872         SetLastError(NTE_BAD_KEY);
1873         return FALSE;
1874     }
1875
1876     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
1877         pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
1878
1879     if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) 
1880     {
1881         SetLastError(NTE_BAD_DATA);
1882         return FALSE;
1883     }
1884
1885     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
1886         if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
1887     }
1888     
1889     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
1890         if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
1891             SetLastError(NTE_BAD_DATA);
1892             return FALSE;
1893         }
1894
1895         dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
1896
1897         if (pbData == NULL) {
1898             *pdwDataLen = dwEncryptedLen;
1899             return TRUE;
1900         }
1901
1902         for (i=*pdwDataLen; i<dwEncryptedLen && i<dwBufLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
1903         *pdwDataLen = dwEncryptedLen; 
1904
1905         if (*pdwDataLen > dwBufLen) 
1906         {
1907             SetLastError(ERROR_MORE_DATA);
1908             return FALSE;
1909         }
1910     
1911         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
1912             switch (pCryptKey->dwMode) {
1913                 case CRYPT_MODE_ECB:
1914                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
1915                                        RSAENH_ENCRYPT);
1916                     break;
1917                 
1918                 case CRYPT_MODE_CBC:
1919                     for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
1920                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
1921                                        RSAENH_ENCRYPT);
1922                     memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
1923                     break;
1924
1925                 case CRYPT_MODE_CFB:
1926                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
1927                         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, 
1928                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
1929                         out[j] = in[j] ^ o[0];
1930                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
1931                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
1932                         pCryptKey->abChainVector[k] = out[j];
1933                     }
1934                     break;
1935                     
1936                 default:
1937                     SetLastError(NTE_BAD_ALGID);
1938                     return FALSE;
1939             }
1940             memcpy(in, out, pCryptKey->dwBlockLen); 
1941         }
1942     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
1943         if (pbData == NULL) {
1944             *pdwDataLen = dwBufLen;
1945             return TRUE;
1946         }
1947         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
1948     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
1949         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
1950             SetLastError(NTE_BAD_KEY);
1951             return FALSE;
1952         }
1953         if (!pbData) {
1954             *pdwDataLen = pCryptKey->dwBlockLen;
1955             return TRUE;
1956         }
1957         if (dwBufLen < pCryptKey->dwBlockLen) {
1958             SetLastError(ERROR_MORE_DATA);
1959             return FALSE;
1960         }
1961         if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
1962         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
1963         *pdwDataLen = pCryptKey->dwBlockLen;
1964         Final = TRUE;
1965     } else {
1966         SetLastError(NTE_BAD_TYPE);
1967         return FALSE;
1968     }
1969
1970     if (Final) setup_key(pCryptKey);
1971
1972     return TRUE;
1973 }
1974
1975 /******************************************************************************
1976  * CPDecrypt (RSAENH.@)
1977  *
1978  * Decrypt data.
1979  *
1980  * PARAMS
1981  *  hProv      [I]   The key container hKey and hHash belong to.
1982  *  hKey       [I]   The key used to decrypt the data.
1983  *  hHash      [I]   An optional hash object for parallel hashing. See notes.
1984  *  Final      [I]   Indicates if this is the last block of data to decrypt.
1985  *  dwFlags    [I]   Currently no flags defined. Must be zero.
1986  *  pbData     [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. 
1987  *  pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
1988  *
1989  * RETURNS
1990  *  Success: TRUE.
1991  *  Failure: FALSE.
1992  *
1993  * NOTES
1994  *  If a hash object handle is provided in hHash, it will be updated with the plaintext. 
1995  *  This is useful for message signatures.
1996  *
1997  *  This function uses the standard WINAPI protocol for querying data of dynamic length. 
1998  */
1999 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, 
2000                              DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2001 {
2002     CRYPTKEY *pCryptKey;
2003     BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2004     DWORD i, j, k;
2005     DWORD dwMax;
2006
2007     TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08lx, pbData=%p, "
2008           "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2009     
2010     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2011     {
2012         SetLastError(NTE_BAD_UID);
2013         return FALSE;
2014     }
2015
2016     if (dwFlags)
2017     {
2018         SetLastError(NTE_BAD_FLAGS);
2019         return FALSE;
2020     }
2021
2022     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2023     {
2024         SetLastError(NTE_BAD_KEY);
2025         return FALSE;
2026     }
2027
2028     if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) 
2029         pCryptKey->dwState = RSAENH_KEYSTATE_DECRYPTING;
2030
2031     if (pCryptKey->dwState != RSAENH_KEYSTATE_DECRYPTING)
2032     {
2033         SetLastError(NTE_BAD_DATA);
2034         return FALSE;
2035     }
2036
2037     dwMax=*pdwDataLen;
2038
2039     if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2040         for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2041             switch (pCryptKey->dwMode) {
2042                 case CRYPT_MODE_ECB:
2043                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
2044                                        RSAENH_DECRYPT);
2045                     break;
2046                 
2047                 case CRYPT_MODE_CBC:
2048                     encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, in, out, 
2049                                        RSAENH_DECRYPT);
2050                     for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2051                     memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2052                     break;
2053
2054                 case CRYPT_MODE_CFB:
2055                     for (j=0; j<pCryptKey->dwBlockLen; j++) {
2056                         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, 
2057                                            pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2058                         out[j] = in[j] ^ o[0];
2059                         for (k=0; k<pCryptKey->dwBlockLen-1; k++) 
2060                             pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2061                         pCryptKey->abChainVector[k] = in[j];
2062                     }
2063                     break;
2064                     
2065                 default:
2066                     SetLastError(NTE_BAD_ALGID);
2067                     return FALSE;
2068             }
2069             memcpy(in, out, pCryptKey->dwBlockLen);
2070         }
2071         if (Final) *pdwDataLen -= pbData[*pdwDataLen-1]; 
2072
2073     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2074         encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2075     } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2076         if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2077             SetLastError(NTE_BAD_KEY);
2078             return FALSE;
2079         }
2080         encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2081         if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2082         Final = TRUE;
2083     } else {
2084         SetLastError(NTE_BAD_TYPE);
2085         return FALSE;
2086     } 
2087     
2088     if (Final) setup_key(pCryptKey);
2089
2090     if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2091         if (*pdwDataLen>dwMax ||
2092             !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2093     }
2094     
2095     return TRUE;
2096 }
2097
2098 /******************************************************************************
2099  * CPExportKey (RSAENH.@)
2100  *
2101  * Export a key into a binary large object (BLOB).
2102  *
2103  * PARAMS
2104  *  hProv      [I]   Key container from which a key is to be exported.
2105  *  hKey       [I]   Key to be exported.
2106  *  hPubKey    [I]   Key used to encrypt sensitive BLOB data.
2107  *  dwBlobType [I]   SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2108  *  dwFlags    [I]   Currently none defined.
2109  *  pbData     [O]   Pointer to a buffer where the BLOB will be written to.
2110  *  pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2111  *
2112  * RETURNS
2113  *  Success: TRUE.
2114  *  Failure: FALSE.
2115  */
2116 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey, 
2117                                DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2118 {
2119     CRYPTKEY *pCryptKey, *pPubKey;
2120     BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2121     RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2122     ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2123     DWORD dwDataLen;
2124     
2125     TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08lx, dwFlags=%08lx, pbData=%p,"
2126           "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2127     
2128     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2129     {
2130         SetLastError(NTE_BAD_UID);
2131         return FALSE;
2132     }
2133
2134     if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2135     {
2136         SetLastError(NTE_BAD_KEY);
2137         return FALSE;
2138     }
2139
2140     if (dwFlags & CRYPT_SSL2_FALLBACK) {
2141         if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2142             SetLastError(NTE_BAD_KEY);
2143             return FALSE;
2144         }
2145     }
2146     
2147     switch ((BYTE)dwBlobType)
2148     {
2149         case SIMPLEBLOB:
2150             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2151                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2152                 return FALSE;
2153             }
2154
2155             if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2156                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2157                 return FALSE;
2158             }
2159
2160             dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2161             if (pbData) {
2162                 if (*pdwDataLen < dwDataLen) {
2163                     SetLastError(ERROR_MORE_DATA);
2164                     *pdwDataLen = dwDataLen;
2165                     return FALSE;
2166                 }
2167
2168                 pBlobHeader->bType = SIMPLEBLOB;
2169                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2170                 pBlobHeader->reserved = 0;
2171                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2172
2173                 *pAlgid = pPubKey->aiAlgid;
2174        
2175                 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1), 
2176                               pPubKey->dwBlockLen, dwFlags))
2177                 {
2178                     return FALSE;
2179                 }
2180                 
2181                 encrypt_block_impl(pPubKey->aiAlgid, &pPubKey->context, (BYTE*)(pAlgid+1), 
2182                                    (BYTE*)(pAlgid+1), RSAENH_ENCRYPT); 
2183             }
2184             *pdwDataLen = dwDataLen;
2185             return TRUE;
2186             
2187         case PUBLICKEYBLOB:
2188             if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2189                 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2190                 return FALSE;
2191             }
2192
2193             if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2194                 SetLastError(NTE_BAD_KEY);
2195                 return FALSE;
2196             }
2197
2198             dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2199             if (pbData) {
2200                 if (*pdwDataLen < dwDataLen) {
2201                     SetLastError(ERROR_MORE_DATA);
2202                     *pdwDataLen = dwDataLen;
2203                     return FALSE;
2204                 }
2205
2206                 pBlobHeader->bType = PUBLICKEYBLOB;
2207                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2208                 pBlobHeader->reserved = 0;
2209                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2210                 if (pBlobHeader->aiKeyAlg == CALG_RSA_SIGN)
2211                     pBlobHeader->aiKeyAlg = CALG_RSA_KEYX;
2212
2213                 pRSAPubKey->magic = RSAENH_MAGIC_RSA1; 
2214                 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2215         
2216                 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2217                                        pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2218             }
2219             *pdwDataLen = dwDataLen;
2220             return TRUE;
2221
2222         case PRIVATEKEYBLOB:
2223             if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2224                 SetLastError(NTE_BAD_KEY);
2225                 return FALSE;
2226             }
2227     
2228             dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 
2229                         2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2230             if (pbData) {
2231                 if (*pdwDataLen < dwDataLen) {
2232                     SetLastError(ERROR_MORE_DATA);
2233                     *pdwDataLen = dwDataLen;
2234                     return FALSE;
2235                 }
2236                 
2237                 pBlobHeader->bType = PRIVATEKEYBLOB;
2238                 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2239                 pBlobHeader->reserved = 0;
2240                 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2241
2242                 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2243                 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2244                 
2245                 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2246                                         pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2247             }
2248             *pdwDataLen = dwDataLen;
2249             return TRUE;
2250             
2251         default:
2252             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2253             return FALSE;
2254     }
2255 }
2256
2257 /******************************************************************************
2258  * CPImportKey (RSAENH.@)
2259  *
2260  * Import a BLOB'ed key into a key container.
2261  *
2262  * PARAMS
2263  *  hProv     [I] Key container into which the key is to be imported.
2264  *  pbData    [I] Pointer to a buffer which holds the BLOB.
2265  *  dwDataLen [I] Length of data in buffer at pbData.
2266  *  hPubKey   [I] Key used to decrypt sensitive BLOB data.
2267  *  dwFlags   [I] Currently none defined.
2268  *  phKey     [O] Handle to the imported key.
2269  *
2270  * RETURNS
2271  *  Success: TRUE.
2272  *  Failure: FALSE.
2273  */
2274 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen, 
2275                                HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
2276 {
2277     KEYCONTAINER *pKeyContainer;
2278     CRYPTKEY *pCryptKey, *pPubKey;
2279     CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2280     CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2281     CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2282     CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2283     ALG_ID algID;
2284     BYTE *pbDecrypted;
2285     DWORD dwKeyLen;
2286     BOOL ret;
2287
2288     TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%ld, hPubKey=%08lx, dwFlags=%08lx, phKey=%p)\n", 
2289         hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
2290     
2291     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
2292                        (OBJECTHDR**)&pKeyContainer)) 
2293     {
2294         SetLastError(NTE_BAD_UID);
2295         return FALSE;
2296     }
2297
2298     if (dwDataLen < sizeof(BLOBHEADER) || 
2299         pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2300         pBlobHeader->reserved != 0) 
2301     {
2302         SetLastError(NTE_BAD_DATA);
2303         return FALSE;
2304     }
2305
2306     switch (pBlobHeader->bType)
2307     {
2308         case PRIVATEKEYBLOB:    
2309             if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || 
2310                 (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2311                 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 
2312                     (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)))) 
2313             {
2314                 SetLastError(NTE_BAD_DATA);
2315                 return FALSE;
2316             }
2317     
2318             *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2319             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2320             setup_key(pCryptKey);
2321             ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2322                                            pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2323             if (ret) {
2324                 switch (pBlobHeader->aiKeyAlg)
2325                 {
2326                 case AT_SIGNATURE:
2327                 case CALG_RSA_SIGN:
2328                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
2329                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2330                             (unsigned int*)&pKeyContainer->hSignatureKeyPair);
2331                     break;
2332                 case AT_KEYEXCHANGE:
2333                 case CALG_RSA_KEYX:
2334                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2335                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2336                                 (unsigned int*)&pKeyContainer->hKeyExchangeKeyPair);
2337                     break;
2338                 }
2339             }
2340             return ret;
2341                 
2342         case PUBLICKEYBLOB:
2343             if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || 
2344                 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2345                 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3))) 
2346             {
2347                 SetLastError(NTE_BAD_DATA);
2348                 return FALSE;
2349             }
2350     
2351             /* Since this is a public key blob, only the public key is
2352              * available, so only signature verification is possible.
2353              */
2354             algID = pBlobHeader->aiKeyAlg;
2355             if (algID == CALG_RSA_KEYX)
2356                 algID = CALG_RSA_SIGN;
2357             *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); 
2358             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; 
2359             setup_key(pCryptKey);
2360             ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context, 
2361                                           pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2362             if (ret) {
2363                 switch (pBlobHeader->aiKeyAlg)
2364                 {
2365                 case AT_KEYEXCHANGE:
2366                 case CALG_RSA_KEYX:
2367                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2368                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2369                                 (unsigned int*)&pKeyContainer->hKeyExchangeKeyPair);
2370                     break;
2371                 }
2372             }
2373             return ret;
2374                 
2375         case SIMPLEBLOB:
2376             if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2377                 pPubKey->aiAlgid != CALG_RSA_KEYX) 
2378             {
2379                 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2380                 return FALSE;
2381             }
2382
2383             if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen) 
2384             {
2385                 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2386                 return FALSE;
2387             }
2388
2389             pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2390             if (!pbDecrypted) return FALSE;
2391             encrypt_block_impl(pPubKey->aiAlgid, &pPubKey->context, pbKeyStream, pbDecrypted, 
2392                                RSAENH_DECRYPT);
2393
2394             dwKeyLen = RSAENH_MAX_KEY_SIZE;
2395             if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2396                 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2397                 return FALSE;
2398             }
2399             
2400             *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2401             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2402             {
2403                 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2404                 return FALSE;
2405             }
2406             memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2407             HeapFree(GetProcessHeap(), 0, pbDecrypted);
2408             setup_key(pCryptKey);
2409             return TRUE;
2410
2411         default:
2412             SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2413             return FALSE;
2414     }
2415 }
2416
2417 /******************************************************************************
2418  * CPGenKey (RSAENH.@)
2419  *
2420  * Generate a key in the key container
2421  *
2422  * PARAMS
2423  *  hProv   [I] Key container for which a key is to be generated.
2424  *  Algid   [I] Crypto algorithm identifier for the key to be generated.
2425  *  dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
2426  *  phKey   [O] Handle to the generated key.
2427  *
2428  * RETURNS
2429  *  Success: TRUE.
2430  *  Failure: FALSE.
2431  *
2432  * FIXME
2433  *  Flags currently not considered.
2434  *
2435  * NOTES
2436  *  Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
2437  *  and AT_SIGNATURE values.
2438  */
2439 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
2440 {
2441     KEYCONTAINER *pKeyContainer;
2442     CRYPTKEY *pCryptKey;
2443
2444     TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08lx, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
2445
2446     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
2447                        (OBJECTHDR**)&pKeyContainer)) 
2448     {
2449         /* MSDN: hProv not containing valid context handle */
2450         SetLastError(NTE_BAD_UID);
2451         return FALSE;
2452     }
2453     
2454     switch (Algid)
2455     {
2456         case AT_SIGNATURE:
2457         case CALG_RSA_SIGN:
2458             *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
2459             if (pCryptKey) { 
2460                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2461                 setup_key(pCryptKey);
2462                 if (Algid == AT_SIGNATURE) {
2463                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
2464                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2465                                 (unsigned int*)&pKeyContainer->hSignatureKeyPair);
2466                 }
2467             }
2468             break;
2469
2470         case AT_KEYEXCHANGE:
2471         case CALG_RSA_KEYX:
2472             *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
2473             if (pCryptKey) { 
2474                 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2475                 setup_key(pCryptKey);
2476                 if (Algid == AT_KEYEXCHANGE) {
2477                     RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2478                     copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2479                                 (unsigned int*)&pKeyContainer->hKeyExchangeKeyPair);
2480                 }
2481             }
2482             break;
2483             
2484         case CALG_RC2:
2485         case CALG_RC4:
2486         case CALG_DES:
2487         case CALG_3DES_112:
2488         case CALG_3DES:
2489         case CALG_PCT1_MASTER:
2490         case CALG_SSL2_MASTER:
2491         case CALG_SSL3_MASTER:
2492         case CALG_TLS1_MASTER:
2493             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
2494             if (pCryptKey) {
2495                 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
2496                 switch (Algid) {
2497                     case CALG_SSL3_MASTER:
2498                         pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
2499                         pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
2500                         break;
2501
2502                     case CALG_TLS1_MASTER:
2503                         pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
2504                         pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
2505                         break;
2506                 }
2507                 setup_key(pCryptKey);
2508             }
2509             break;
2510             
2511         default:
2512             /* MSDN: Algorithm not supported specified by Algid */
2513             SetLastError(NTE_BAD_ALGID);
2514             return FALSE;
2515     }
2516             
2517     return *phKey != (unsigned int)INVALID_HANDLE_VALUE;
2518 }
2519
2520 /******************************************************************************
2521  * CPGenRandom (RSAENH.@)
2522  *
2523  * Generate a random byte stream.
2524  *
2525  * PARAMS
2526  *  hProv    [I] Key container that is used to generate random bytes.
2527  *  dwLen    [I] Specifies the number of requested random data bytes.
2528  *  pbBuffer [O] Random bytes will be stored here.
2529  *
2530  * RETURNS
2531  *  Success: TRUE
2532  *  Failure: FALSE
2533  */
2534 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
2535 {
2536     TRACE("(hProv=%08lx, dwLen=%ld, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
2537     
2538     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
2539     {
2540         /* MSDN: hProv not containing valid context handle */
2541         SetLastError(NTE_BAD_UID);
2542         return FALSE;
2543     }
2544
2545     return gen_rand_impl(pbBuffer, dwLen);
2546 }
2547
2548 /******************************************************************************
2549  * CPGetHashParam (RSAENH.@)
2550  *
2551  * Query parameters of an hash object.
2552  *
2553  * PARAMS
2554  *  hProv      [I]   The kea container, which the hash belongs to.
2555  *  hHash      [I]   The hash object that is to be queried.
2556  *  dwParam    [I]   Specifies the parameter that is to be queried.
2557  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2558  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2559  *  dwFlags    [I]   None currently defined.
2560  *
2561  * RETURNS
2562  *  Success: TRUE
2563  *  Failure: FALSE
2564  *
2565  * NOTES
2566  *  Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be 
2567  *  finalized if HP_HASHVALUE is queried.
2568  */
2569 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, 
2570                                   DWORD *pdwDataLen, DWORD dwFlags) 
2571 {
2572     CRYPTHASH *pCryptHash;
2573         
2574     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08lx, pbData=%p, pdwDataLen=%p, dwFlags=%08lx)\n", 
2575         hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
2576     
2577     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
2578     {
2579         SetLastError(NTE_BAD_UID);
2580         return FALSE;
2581     }
2582
2583     if (dwFlags)
2584     {
2585         SetLastError(NTE_BAD_FLAGS);
2586         return FALSE;
2587     }
2588     
2589     if (!lookup_handle(&handle_table, (unsigned int)hHash, RSAENH_MAGIC_HASH, 
2590                        (OBJECTHDR**)&pCryptHash))
2591     {
2592         SetLastError(NTE_BAD_HASH);
2593         return FALSE;
2594     }
2595
2596     if (!pdwDataLen)
2597     {
2598         SetLastError(ERROR_INVALID_PARAMETER);
2599         return FALSE;
2600     }
2601     
2602     switch (dwParam)
2603     {
2604         case HP_ALGID:
2605             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid, 
2606                               sizeof(ALG_ID));
2607
2608         case HP_HASHSIZE:
2609             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize, 
2610                               sizeof(DWORD));
2611
2612         case HP_HASHVAL:
2613             if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
2614                 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
2615                                 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
2616             }
2617
2618             if ( pbData == NULL ) {
2619                 *pdwDataLen = pCryptHash->dwHashSize;
2620                 return TRUE;
2621             }
2622
2623             if (pCryptHash->dwState == RSAENH_HASHSTATE_IDLE) {
2624                 SetLastError(NTE_BAD_HASH_STATE);
2625                 return FALSE;
2626             }
2627             
2628             if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
2629             {
2630                 finalize_hash(pCryptHash);
2631                 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
2632             }
2633             
2634             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pCryptHash->abHashValue, 
2635                               pCryptHash->dwHashSize);
2636
2637         default:
2638             SetLastError(NTE_BAD_TYPE);
2639             return FALSE;
2640     }
2641 }
2642
2643 /******************************************************************************
2644  * CPSetKeyParam (RSAENH.@)
2645  *
2646  * Set a parameter of a key object
2647  *
2648  * PARAMS
2649  *  hProv   [I] The key container to which the key belongs.
2650  *  hKey    [I] The key for which a parameter is to be set.
2651  *  dwParam [I] Parameter type. See Notes.
2652  *  pbData  [I] Pointer to the parameter value.
2653  *  dwFlags [I] Currently none defined.
2654  *
2655  * RETURNS
2656  *  Success: TRUE.
2657  *  Failure: FALSE.
2658  *
2659  * NOTES:
2660  *  Defined dwParam types are:
2661  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
2662  *   - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
2663  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
2664  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
2665  *   - KP_IV: Initialization vector
2666  */
2667 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
2668                                  DWORD dwFlags)
2669 {
2670     CRYPTKEY *pCryptKey;
2671
2672     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n", hProv, hKey, 
2673           dwParam, pbData, dwFlags);
2674
2675     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER))
2676     {
2677         SetLastError(NTE_BAD_UID);
2678         return FALSE;
2679     }
2680
2681     if (dwFlags) {
2682         SetLastError(NTE_BAD_FLAGS);
2683         return FALSE;
2684     }
2685     
2686     if (!lookup_handle(&handle_table, (unsigned int)hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2687     {
2688         SetLastError(NTE_BAD_KEY);
2689         return FALSE;
2690     }
2691     
2692     switch (dwParam) {
2693         case KP_MODE:
2694             pCryptKey->dwMode = *(DWORD*)pbData;
2695             return TRUE;
2696
2697         case KP_MODE_BITS:
2698             pCryptKey->dwModeBits = *(DWORD*)pbData;
2699             return TRUE;
2700
2701         case KP_PERMISSIONS:
2702             pCryptKey->dwPermissions = *(DWORD*)pbData;
2703             return TRUE;
2704
2705         case KP_IV:
2706             memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
2707             return TRUE;
2708
2709         case KP_SCHANNEL_ALG:
2710             switch (((PSCHANNEL_ALG)pbData)->dwUse) {
2711                 case SCHANNEL_ENC_KEY:
2712                     memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
2713                     break;
2714
2715                 case SCHANNEL_MAC_KEY:
2716                     memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
2717                     break;
2718
2719                 default:
2720                     SetLastError(NTE_FAIL); /* FIXME: error code */
2721                     return FALSE;
2722             }
2723             return TRUE;
2724
2725         case KP_CLIENT_RANDOM:
2726             return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
2727             
2728         case KP_SERVER_RANDOM:
2729             return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
2730
2731         default:
2732             SetLastError(NTE_BAD_TYPE);
2733             return FALSE;
2734     }
2735 }
2736
2737 /******************************************************************************
2738  * CPGetKeyParam (RSAENH.@)
2739  *
2740  * Query a key parameter.
2741  *
2742  * PARAMS
2743  *  hProv      [I]   The key container, which the key belongs to.
2744  *  hHash      [I]   The key object that is to be queried.
2745  *  dwParam    [I]   Specifies the parameter that is to be queried.
2746  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2747  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2748  *  dwFlags    [I]   None currently defined.
2749  *
2750  * RETURNS
2751  *  Success: TRUE
2752  *  Failure: FALSE
2753  *
2754  * NOTES
2755  *  Defined dwParam types are:
2756  *   - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
2757  *   - KP_MODE_BITS: Shift width for cipher feedback mode. 
2758  *                   (Currently ignored by MS CSP's - always eight)
2759  *   - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, 
2760  *                     CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
2761  *   - KP_IV: Initialization vector.
2762  *   - KP_KEYLEN: Bitwidth of the key.
2763  *   - KP_BLOCKLEN: Size of a block cipher block.
2764  *   - KP_SALT: Salt value.
2765  */
2766 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, 
2767                                  DWORD *pdwDataLen, DWORD dwFlags)
2768 {
2769     CRYPTKEY *pCryptKey;
2770     DWORD dwBitLen;
2771         
2772     TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08lx, pbData=%p, pdwDataLen=%p dwFlags=%08lx)\n", 
2773           hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
2774
2775     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
2776     {
2777         SetLastError(NTE_BAD_UID);
2778         return FALSE;
2779     }
2780
2781     if (dwFlags) {
2782         SetLastError(NTE_BAD_FLAGS);
2783         return FALSE;
2784     }
2785
2786     if (!lookup_handle(&handle_table, (unsigned int)hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2787     {
2788         SetLastError(NTE_BAD_KEY);
2789         return FALSE;
2790     }
2791
2792     switch (dwParam) 
2793     {
2794         case KP_IV:
2795             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pCryptKey->abInitVector, 
2796                               pCryptKey->dwBlockLen);
2797         
2798         case KP_SALT:
2799             return copy_param(pbData, pdwDataLen, 
2800                     (CONST BYTE*)&pCryptKey->abKeyValue[pCryptKey->dwKeyLen], pCryptKey->dwSaltLen);
2801         
2802         case KP_KEYLEN:
2803             dwBitLen = pCryptKey->dwKeyLen << 3;
2804             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwBitLen, sizeof(DWORD));
2805         
2806         case KP_BLOCKLEN:
2807             dwBitLen = pCryptKey->dwBlockLen << 3;
2808             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwBitLen, sizeof(DWORD));
2809     
2810         case KP_MODE:
2811             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
2812
2813         case KP_MODE_BITS:
2814             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits, 
2815                               sizeof(DWORD));
2816     
2817         case KP_PERMISSIONS:
2818             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions, 
2819                               sizeof(DWORD));
2820
2821         case KP_ALGID:
2822             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
2823             
2824         default:
2825             SetLastError(NTE_BAD_TYPE);
2826             return FALSE;
2827     }
2828 }
2829                         
2830 /******************************************************************************
2831  * CPGetProvParam (RSAENH.@)
2832  *
2833  * Query a CSP parameter.
2834  *
2835  * PARAMS
2836  *  hProv      [I]   The key container that is to be queried.
2837  *  dwParam    [I]   Specifies the parameter that is to be queried.
2838  *  pbData     [I]   Pointer to the buffer where the parameter value will be stored.
2839  *  pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
2840  *  dwFlags    [I]   CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
2841  *
2842  * RETURNS
2843  *  Success: TRUE
2844  *  Failure: FALSE
2845  * NOTES:
2846  *  Defined dwParam types:
2847  *   - PP_CONTAINER: Name of the key container.
2848  *   - PP_NAME: Name of the cryptographic service provider.
2849  *   - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
2850  *   - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
2851  *   - PP_ENUMALGS{_EX}: Query provider capabilities.
2852  */
2853 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, 
2854                                   DWORD *pdwDataLen, DWORD dwFlags)
2855 {
2856     KEYCONTAINER *pKeyContainer;
2857     PROV_ENUMALGS provEnumalgs;
2858     DWORD dwTemp;
2859     CHAR szRSABase[MAX_PATH];
2860     HKEY hKey, hRootKey;
2861    
2862     /* This is for dwParam 41, which does not seem to be documented
2863      * on MSDN. IE6 SP1 asks for it in the 'About' dialog, however.
2864      * Returning this BLOB seems to satisfy IE. The marked 0x00 seem 
2865      * to be 'don't care's. If you know anything more specific about
2866      * provider parameter 41, please report to wine-devel@winehq.org */
2867     static CONST BYTE abWTF[96] = { 
2868         0xb0, 0x25,     0x63,     0x86, 0x9c, 0xab,     0xb6,     0x37, 
2869         0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 
2870         0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 
2871         0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 
2872         0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 
2873         0x12, 0x1e,     0xd4,     0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 
2874         0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 
2875         0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 
2876         0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 
2877         0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 
2878         0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 
2879         0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca 
2880     };
2881
2882     TRACE("(hProv=%08lx, dwParam=%08lx, pbData=%p, pdwDataLen=%p, dwFlags=%08lx)\n", 
2883            hProv, dwParam, pbData, pdwDataLen, dwFlags);
2884
2885     if (!pdwDataLen) {
2886         SetLastError(ERROR_INVALID_PARAMETER);
2887         return FALSE;
2888     }
2889     
2890     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
2891                        (OBJECTHDR**)&pKeyContainer)) 
2892     {
2893         /* MSDN: hProv not containing valid context handle */
2894         SetLastError(NTE_BAD_UID);
2895         return FALSE;
2896     }
2897
2898     switch (dwParam) 
2899     {
2900         case PP_CONTAINER:
2901             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName, 
2902                               strlen(pKeyContainer->szName)+1);
2903
2904         case PP_NAME:
2905             return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName, 
2906                               strlen(pKeyContainer->szProvName)+1);
2907
2908         case PP_SIG_KEYSIZE_INC:
2909         case PP_KEYX_KEYSIZE_INC:
2910             dwTemp = 8;
2911             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2912
2913         case PP_IMPTYPE:
2914             dwTemp = CRYPT_IMPL_SOFTWARE;
2915             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2916
2917         case PP_VERSION:
2918             dwTemp = 0x00000200;
2919             return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
2920             
2921         case PP_ENUMCONTAINERS:
2922             if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
2923
2924             if (!pbData) {
2925                 *pdwDataLen = (DWORD)MAX_PATH + 1;
2926                 return TRUE;
2927             }
2928  
2929             sprintf(szRSABase, RSAENH_REGKEY, "");
2930
2931             if (dwFlags & CRYPT_MACHINE_KEYSET) {
2932                 hRootKey = HKEY_LOCAL_MACHINE;
2933             } else {
2934                 hRootKey = HKEY_CURRENT_USER;
2935             }
2936
2937             if (RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, &hKey) != ERROR_SUCCESS)
2938             {
2939                 SetLastError(ERROR_NO_MORE_ITEMS);
2940                 return FALSE;
2941             }
2942
2943             dwTemp = *pdwDataLen;
2944             switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
2945                     NULL, NULL, NULL, NULL))
2946             {
2947                 case ERROR_MORE_DATA:
2948                     *pdwDataLen = (DWORD)MAX_PATH + 1;
2949  
2950                 case ERROR_SUCCESS:
2951                     pKeyContainer->dwEnumContainersCtr++;
2952                     RegCloseKey(hKey);
2953                     return TRUE;
2954
2955                 case ERROR_NO_MORE_ITEMS:
2956                 default:
2957                     SetLastError(ERROR_NO_MORE_ITEMS);
2958                     RegCloseKey(hKey);
2959                     return FALSE;
2960             }
2961  
2962         case PP_ENUMALGS:
2963         case PP_ENUMALGS_EX:
2964             if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
2965                  (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
2966                    [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && 
2967                 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
2968             {
2969                 SetLastError(ERROR_NO_MORE_ITEMS);
2970                 return FALSE;
2971             }
2972
2973             if (dwParam == PP_ENUMALGS) {    
2974                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) 
2975                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
2976                         0 : pKeyContainer->dwEnumAlgsCtr+1;
2977             
2978                 provEnumalgs.aiAlgid = aProvEnumAlgsEx
2979                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
2980                 provEnumalgs.dwBitLen = aProvEnumAlgsEx
2981                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
2982                 provEnumalgs.dwNameLen = aProvEnumAlgsEx
2983                     [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
2984                 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
2985                        [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 
2986                        20*sizeof(CHAR));
2987             
2988                 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs, 
2989                                   sizeof(PROV_ENUMALGS));
2990             } else {
2991                 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) 
2992                     pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 
2993                         0 : pKeyContainer->dwEnumAlgsCtr+1;
2994             
2995                 return copy_param(pbData, pdwDataLen, 
2996                                   (CONST BYTE*)&aProvEnumAlgsEx
2997                                       [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], 
2998                                   sizeof(PROV_ENUMALGS_EX));
2999             }
3000
3001         case 41: /* Undocumented. Asked for by IE About dialog */
3002             return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3003
3004         default:
3005             /* MSDN: Unknown parameter number in dwParam */
3006             SetLastError(NTE_BAD_TYPE);
3007             return FALSE;
3008     }
3009 }
3010
3011 /******************************************************************************
3012  * CPDeriveKey (RSAENH.@)
3013  *
3014  * Derives a key from a hash value.
3015  *
3016  * PARAMS
3017  *  hProv     [I] Key container for which a key is to be generated.
3018  *  Algid     [I] Crypto algorithm identifier for the key to be generated.
3019  *  hBaseData [I] Hash from whose value the key will be derived.
3020  *  dwFlags   [I] See Notes.
3021  *  phKey     [O] The generated key.
3022  *
3023  * RETURNS
3024  *  Success: TRUE
3025  *  Failure: FALSE
3026  *
3027  * NOTES
3028  *  Defined flags:
3029  *   - CRYPT_EXPORTABLE: Key can be exported.
3030  *   - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3031  *   - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3032  */
3033 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, 
3034                                DWORD dwFlags, HCRYPTKEY *phKey)
3035 {
3036     CRYPTKEY *pCryptKey, *pMasterKey;
3037     CRYPTHASH *pCryptHash;
3038     BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3039     DWORD dwLen;
3040     
3041     TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08lx phKey=%p)\n", hProv, Algid, 
3042            hBaseData, dwFlags, phKey);
3043     
3044     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER))
3045     {
3046         SetLastError(NTE_BAD_UID);
3047         return FALSE;
3048     }
3049
3050     if (!lookup_handle(&handle_table, (unsigned int)hBaseData, RSAENH_MAGIC_HASH, 
3051                        (OBJECTHDR**)&pCryptHash))
3052     {
3053         SetLastError(NTE_BAD_HASH);
3054         return FALSE;
3055     }
3056
3057     if (!phKey)
3058     {
3059         SetLastError(ERROR_INVALID_PARAMETER);
3060         return FALSE;
3061     }
3062
3063     switch (GET_ALG_CLASS(Algid))
3064     {
3065         case ALG_CLASS_DATA_ENCRYPT:
3066             *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3067             if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3068
3069             /* 
3070              * We derive the key material from the hash.
3071              * If the hash value is not large enough for the claimed key, we have to construct
3072              * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3073              */
3074             dwLen = RSAENH_MAX_HASH_SIZE;
3075             RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3076     
3077             if (dwLen < pCryptKey->dwKeyLen) {
3078                 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3079                 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3080                 DWORD i;
3081
3082                 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3083             
3084                 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3085                     pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3086                     pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3087                 }
3088                 
3089                 init_hash(pCryptHash);
3090                 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3091                 finalize_hash(pCryptHash);
3092                 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3093
3094                 init_hash(pCryptHash);
3095                 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3096                 finalize_hash(pCryptHash);
3097                 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, 
3098                        pCryptHash->dwHashSize);
3099
3100                 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3101             }
3102     
3103             memcpy(pCryptKey->abKeyValue, abHashValue, 
3104                    RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3105             break;
3106
3107         case ALG_CLASS_MSG_ENCRYPT:
3108             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3109                                (OBJECTHDR**)&pMasterKey)) 
3110             {
3111                 SetLastError(NTE_FAIL); /* FIXME error code */
3112                 return FALSE;
3113             }
3114                 
3115             switch (Algid) 
3116             {
3117                 /* See RFC 2246, chapter 6.3 Key calculation */
3118                 case CALG_SCHANNEL_ENC_KEY:
3119                     *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, 
3120                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3121                                      &pCryptKey);
3122                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3123                     memcpy(pCryptKey->abKeyValue, 
3124                            pCryptHash->abHashValue + (
3125                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3126                                ((dwFlags & CRYPT_SERVER) ? 
3127                                    (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3128                            pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3129                     memcpy(pCryptKey->abInitVector,
3130                            pCryptHash->abHashValue + (
3131                                2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3132                                2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3133                                ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3134                            pCryptKey->dwBlockLen);
3135                     break;
3136                     
3137                 case CALG_SCHANNEL_MAC_KEY:
3138                     *phKey = new_key(hProv, Algid, 
3139                                      MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3140                                      &pCryptKey);
3141                     if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3142                     memcpy(pCryptKey->abKeyValue,
3143                            pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? 
3144                                pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3145                            pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3146                     break;
3147                     
3148                 default:
3149                     SetLastError(NTE_BAD_ALGID);
3150                     return FALSE;
3151             }
3152             break;
3153
3154         default:
3155             SetLastError(NTE_BAD_ALGID);
3156             return FALSE;
3157     }
3158
3159     setup_key(pCryptKey);
3160     return TRUE;    
3161 }
3162
3163 /******************************************************************************
3164  * CPGetUserKey (RSAENH.@)
3165  *
3166  * Returns a handle to the user's private key-exchange- or signature-key.
3167  *
3168  * PARAMS
3169  *  hProv     [I] The key container from which a user key is requested.
3170  *  dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3171  *  phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3172  *
3173  * RETURNS
3174  *  Success: TRUE.
3175  *  Failure: FALSE.
3176  *
3177  * NOTE
3178  *  A newly created key container does not contain private user key. Create them with CPGenKey.
3179  */
3180 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3181 {
3182     KEYCONTAINER *pKeyContainer;
3183
3184     TRACE("(hProv=%08lx, dwKeySpec=%08lx, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
3185     
3186     if (!lookup_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER, 
3187                        (OBJECTHDR**)&pKeyContainer)) 
3188     {
3189         /* MSDN: hProv not containing valid context handle */
3190         SetLastError(NTE_BAD_UID);
3191         return FALSE;
3192     }
3193
3194     switch (dwKeySpec)
3195     {
3196         case AT_KEYEXCHANGE:
3197             copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, 
3198                         (unsigned int*)phUserKey);
3199             break;
3200
3201         case AT_SIGNATURE:
3202             copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, 
3203                         (unsigned int*)phUserKey);
3204             break;
3205
3206         default:
3207             *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3208     }
3209
3210     if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3211     {
3212         /* MSDN: dwKeySpec parameter specifies nonexistent key */
3213         SetLastError(NTE_NO_KEY);
3214         return FALSE;
3215     }
3216
3217     return TRUE;
3218 }
3219
3220 /******************************************************************************
3221  * CPHashData (RSAENH.@)
3222  *
3223  * Updates a hash object with the given data.
3224  *
3225  * PARAMS
3226  *  hProv     [I] Key container to which the hash object belongs.
3227  *  hHash     [I] Hash object which is to be updated.
3228  *  pbData    [I] Pointer to data with which the hash object is to be updated.
3229  *  dwDataLen [I] Length of the data.
3230  *  dwFlags   [I] Currently none defined.
3231  *
3232  * RETURNS
3233  *  Success: TRUE.
3234  *  Failure: FALSE.
3235  *
3236  * NOTES
3237  *  The actual hash value is queried with CPGetHashParam, which will finalize 
3238  *  the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
3239  */
3240 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData, 
3241                               DWORD dwDataLen, DWORD dwFlags)
3242 {
3243     CRYPTHASH *pCryptHash;
3244         
3245     TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%ld, dwFlags=%08lx)\n", 
3246           hProv, hHash, pbData, dwDataLen, dwFlags);
3247
3248     if (dwFlags)
3249     {
3250         SetLastError(NTE_BAD_FLAGS);
3251         return FALSE;
3252     }
3253
3254     if (!lookup_handle(&handle_table, (unsigned int)hHash, RSAENH_MAGIC_HASH, 
3255                        (OBJECTHDR**)&pCryptHash))
3256     {
3257         SetLastError(NTE_BAD_HASH);
3258         return FALSE;
3259     }
3260
3261     if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
3262     {
3263         SetLastError(NTE_BAD_ALGID);
3264         return FALSE;
3265     }
3266     
3267     if (pCryptHash->dwState == RSAENH_HASHSTATE_IDLE)
3268         pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
3269     
3270     if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
3271     {
3272         SetLastError(NTE_BAD_HASH_STATE);
3273         return FALSE;
3274     }
3275
3276     update_hash(pCryptHash, pbData, dwDataLen);
3277     return TRUE;
3278 }
3279
3280 /******************************************************************************
3281  * CPHashSessionKey (RSAENH.@)
3282  *
3283  * Updates a hash object with the binary representation of a symmetric key.
3284  *
3285  * PARAMS
3286  *  hProv     [I] Key container to which the hash object belongs.
3287  *  hHash     [I] Hash object which is to be updated.
3288  *  hKey      [I] The symmetric key, whose binary value will be added to the hash.
3289  *  dwFlags   [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
3290  *
3291  * RETURNS
3292  *  Success: TRUE.
3293  *  Failure: FALSE.
3294  */
3295 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, 
3296                                     DWORD dwFlags)
3297 {
3298     BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
3299     CRYPTKEY *pKey;
3300     DWORD i;
3301
3302     TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08lx)\n", hProv, hHash, hKey, dwFlags);
3303
3304     if (!lookup_handle(&handle_table, (unsigned int)hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
3305         (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) 
3306     {
3307         SetLastError(NTE_BAD_KEY);
3308         return FALSE;
3309     }
3310
3311     if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
3312         SetLastError(NTE_BAD_FLAGS);
3313         return FALSE;
3314     }
3315
3316     memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
3317     if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
3318         for (i=0; i<pKey->dwKeyLen/2; i++) {
3319             bTemp = abKeyValue[i];
3320             abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
3321             abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
3322         }
3323     }
3324
3325     return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
3326 }
3327
3328 /******************************************************************************
3329  * CPReleaseContext (RSAENH.@)
3330  *
3331  * Release a key container.
3332  *
3333  * PARAMS
3334  *  hProv   [I] Key container to be released.
3335  *  dwFlags [I] Currently none defined.
3336  *
3337  * RETURNS
3338  *  Success: TRUE
3339  *  Failure: FALSE
3340  */
3341 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
3342 {
3343     TRACE("(hProv=%08lx, dwFlags=%08lx)\n", hProv, dwFlags);
3344
3345     if (!release_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER)) 
3346     {
3347         /* MSDN: hProv not containing valid context handle */
3348         SetLastError(NTE_BAD_UID);
3349         return FALSE;
3350     }
3351
3352     if (dwFlags) {
3353         SetLastError(NTE_BAD_FLAGS);
3354         return FALSE;
3355     }
3356     
3357     return TRUE;
3358 }
3359
3360 /******************************************************************************
3361  * CPSetHashParam (RSAENH.@)
3362  * 
3363  * Set a parameter of a hash object
3364  *
3365  * PARAMS
3366  *  hProv   [I] The key container to which the key belongs.
3367  *  hHash   [I] The hash object for which a parameter is to be set.
3368  *  dwParam [I] Parameter type. See Notes.
3369  *  pbData  [I] Pointer to the parameter value.
3370  *  dwFlags [I] Currently none defined.
3371  *
3372  * RETURNS
3373  *  Success: TRUE.
3374  *  Failure: FALSE.
3375  *
3376  * NOTES
3377  *  Currently only the HP_HMAC_INFO dwParam type is defined. 
3378  *  The HMAC_INFO struct will be deep copied into the hash object.
3379  *  See Internet RFC 2104 for details on the HMAC algorithm.
3380  */
3381 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, 
3382                                   BYTE *pbData, DWORD dwFlags)
3383 {
3384     CRYPTHASH *pCryptHash;
3385     CRYPTKEY *pCryptKey;
3386     int i;
3387
3388     TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n", 
3389            hProv, hHash, dwParam, pbData, dwFlags);
3390
3391     if (!is_valid_handle(&handle_table, (unsigned int)hProv, RSAENH_MAGIC_CONTAINER))
3392     {
3393         SetLastError(NTE_BAD_UID);
3394         return FALSE;
3395     }
3396
3397     if (dwFlags) {
3398         SetLastError(NTE_BAD_FLAGS);
3399         return FALSE;
3400     }
3401     
3402     if (!lookup_handle(&handle_table, (unsigned int)hHash, RSAENH_MAGIC_HASH, 
3403                        (OBJECTHDR**)&pCryptHash))
3404     {
3405         SetLastError(NTE_BAD_HASH);
3406         return FALSE;
3407     }
3408     
3409     switch (dwParam) {
3410         case HP_HMAC_INFO:
3411             free_hmac_info(pCryptHash->pHMACInfo);
3412             if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
3413
3414             if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, 
3415                                (OBJECTHDR**)&pCryptKey)) 
3416             {
3417                 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
3418                 return FALSE;
3419             }
3420
3421             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
3422                 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
3423             }
3424             for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
3425                 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
3426             }
3427             
3428             init_hash(pCryptHash);
3429             return TRUE;
3430
3431         case HP_HASHVAL:
3432             memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
3433             pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3434             return TRUE;
3435            
3436         case HP_TLS1PRF_SEED:
3437             return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
3438
3439         case HP_TLS1PRF_LABEL:
3440             return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
3441             
3442         default:
3443             SetLastError(NTE_BAD_TYPE);
3444             return FALSE;
3445     }
3446 }
3447
3448 /******************************************************************************
3449  * CPSetProvParam (RSAENH.@)
3450  */
3451 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
3452 {
3453     FIXME("(stub)\n");
3454     return FALSE;
3455 }
3456
3457 /******************************************************************************
3458  * CPSignHash (RSAENH.@)
3459  *
3460  * Sign a hash object
3461  *
3462  * PARAMS
3463  *  hProv        [I]   The key container, to which the hash object belongs.
3464  *  hHash        [I]   The hash object to be signed.
3465  *  dwKeySpec    [I]   AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
3466  *  sDescription [I]   Should be NULL for security reasons. 
3467  *  dwFlags      [I]   0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
3468  *  pbSignature  [O]   Buffer, to which the signature will be stored. May be NULL to query SigLen.
3469  *  pdwSigLen    [I/O] Size of the buffer (in), Length of the signature (out)
3470  *
3471  * RETURNS
3472  *  Success: TRUE
3473  *  Failure: FALSE
3474  */
3475 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, 
3476                               LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, 
3477                               DWORD *pdwSigLen)
3478 {
3479     HCRYPTKEY hCryptKey;
3480     CRYPTKEY *pCryptKey;
3481     DWORD dwHashLen;
3482     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
3483     ALG_ID aiAlgid;
3484
3485     TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08lx, sDescription=%s, dwFlags=%08lx, "
3486         "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
3487         dwFlags, pbSignature, pdwSigLen);
3488
3489     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
3490         SetLastError(NTE_BAD_FLAGS);
3491         return FALSE;
3492     }
3493     
3494     if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
3495             
3496     if (!lookup_handle(&handle_table, (unsigned int)hCryptKey, RSAENH_MAGIC_KEY, 
3497                        (OBJECTHDR**)&pCryptKey))
3498     {
3499         SetLastError(NTE_NO_KEY);
3500         return FALSE;
3501     }
3502
3503     if (!pbSignature) {
3504         *pdwSigLen = pCryptKey->dwKeyLen;
3505         return TRUE;
3506     }
3507     if (pCryptKey->dwKeyLen > *pdwSigLen)
3508     {
3509         SetLastError(ERROR_MORE_DATA);
3510         *pdwSigLen = pCryptKey->dwKeyLen;
3511         return FALSE;
3512     }
3513     *pdwSigLen = pCryptKey->dwKeyLen;
3514
3515     if (sDescription) {
3516         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
3517                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
3518         {
3519             return FALSE;
3520         }
3521     }
3522     
3523     dwHashLen = sizeof(DWORD);
3524     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
3525     
3526     dwHashLen = RSAENH_MAX_HASH_SIZE;
3527     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
3528  
3529
3530     if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
3531         return FALSE;
3532     }
3533
3534     return encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
3535 }
3536
3537 /******************************************************************************
3538  * CPVerifySignature (RSAENH.@)
3539  *
3540  * Verify the signature of a hash object.
3541  * 
3542  * PARAMS
3543  *  hProv        [I] The key container, to which the hash belongs.
3544  *  hHash        [I] The hash for which the signature is verified.
3545  *  pbSignature  [I] The binary signature.
3546  *  dwSigLen     [I] Length of the signature BLOB.
3547  *  hPubKey      [I] Public key used to verify the signature.
3548  *  sDescription [I] Should be NULL for security reasons.
3549  *  dwFlags      [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
3550  *
3551  * RETURNS
3552  *  Success: TRUE  (Signature is valid)
3553  *  Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
3554  */
3555 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature, 
3556                                      DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, 
3557                                      DWORD dwFlags)
3558 {
3559     BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
3560     CRYPTKEY *pCryptKey;
3561     DWORD dwHashLen;
3562     ALG_ID aiAlgid;
3563     BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
3564     BOOL res = FALSE;
3565
3566     TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%ld, hPubKey=%08lx, sDescription=%s, "
3567           "dwFlags=%08lx)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
3568           dwFlags);
3569         
3570     if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
3571         SetLastError(NTE_BAD_FLAGS);
3572         return FALSE;
3573     }
3574     
3575     if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3576     {
3577         SetLastError(NTE_BAD_UID);
3578         return FALSE;
3579     }
3580  
3581     if (!lookup_handle(&handle_table, (unsigned int)hPubKey, RSAENH_MAGIC_KEY, 
3582                        (OBJECTHDR**)&pCryptKey))
3583     {
3584         SetLastError(NTE_BAD_KEY);
3585         return FALSE;
3586     }
3587
3588     if (sDescription) {
3589         if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription, 
3590                                 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
3591         {
3592             return FALSE;
3593         }
3594     }
3595     
3596     dwHashLen = sizeof(DWORD);
3597     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
3598     
3599     dwHashLen = RSAENH_MAX_HASH_SIZE;
3600     if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
3601
3602     pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
3603     if (!pbConstructed) {
3604         SetLastError(NTE_NO_MEMORY);
3605         goto cleanup;
3606     }
3607
3608     pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
3609     if (!pbDecrypted) {
3610         SetLastError(NTE_NO_MEMORY);
3611         goto cleanup;
3612     }
3613
3614     if (!encrypt_block_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbSignature, pbDecrypted, 
3615                             RSAENH_DECRYPT)) 
3616     {
3617         goto cleanup;
3618     }
3619
3620     if (!build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
3621         goto cleanup;
3622     }
3623
3624     if (memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
3625         SetLastError(NTE_BAD_SIGNATURE);
3626         goto cleanup;
3627     }
3628     
3629     res = TRUE;
3630 cleanup:
3631     HeapFree(GetProcessHeap(), 0, pbConstructed);
3632     HeapFree(GetProcessHeap(), 0, pbDecrypted);
3633     return res;
3634 }
3635
3636 static const WCHAR szProviderKeys[4][97] = {
3637     {   'S','o','f','t','w','a','r','e','\\',
3638         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3639         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3640         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
3641         'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3642         'o','v','i','d','e','r',' ','v','1','.','0',0 },
3643     {   'S','o','f','t','w','a','r','e','\\',
3644         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3645         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3646         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
3647         'E','n','h','a','n','c','e','d',
3648         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3649         'o','v','i','d','e','r',' ','v','1','.','0',0 },
3650     {   'S','o','f','t','w','a','r','e','\\',
3651         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3652         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3653         'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
3654         ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
3655         'o','v','i','d','e','r',0 },
3656     {   'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
3657         'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
3658         'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
3659         'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
3660         'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 }
3661 };
3662 static const WCHAR szDefaultKeys[2][65] = {
3663     {   'S','o','f','t','w','a','r','e','\\',
3664         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3665         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3666         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
3667     {   'S','o','f','t','w','a','r','e','\\',
3668         'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
3669         'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
3670         'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 }
3671 };
3672
3673
3674 /******************************************************************************
3675  * DllRegisterServer (RSAENH.@)
3676  *
3677  * Dll self registration. 
3678  *
3679  * PARAMS
3680  *
3681  * RETURNS
3682  *  Success: S_OK.
3683  *    Failure: != S_OK
3684  * 
3685  * NOTES
3686  *  Registers the following keys:
3687  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3688  *       Microsoft Base Cryptographic Provider v1.0
3689  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3690  *       Microsoft Enhanced Cryptographic Provider
3691  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
3692  *       Microsoft Strong Cryptographpic Provider
3693  *   - HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001
3694  */
3695 HRESULT WINAPI DllRegisterServer(void)
3696 {
3697     HKEY key;
3698     DWORD dp;
3699     long apiRet;
3700     int i;
3701
3702     for (i=0; i<4; i++) {
3703         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szProviderKeys[i], 0, NULL,
3704             REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
3705
3706         if (apiRet == ERROR_SUCCESS)
3707         {
3708             if (dp == REG_CREATED_NEW_KEY)
3709             {
3710                 static const WCHAR szImagePath[] = { 'I','m','a','g','e',' ','P','a','t','h',0 };
3711                 static const WCHAR szRSABase[] = { 'r','s','a','e','n','h','.','d','l','l',0 };
3712                 static const WCHAR szType[] = { 'T','y','p','e',0 };
3713                 static const WCHAR szSignature[] = { 'S','i','g','n','a','t','u','r','e',0 };
3714                 DWORD type = (i == 3) ? PROV_RSA_SCHANNEL : PROV_RSA_FULL;
3715                 DWORD sign = 0xdeadbeef;
3716                 RegSetValueExW(key, szImagePath, 0, REG_SZ, (LPBYTE)szRSABase, 
3717                                (lstrlenW(szRSABase) + 1) * sizeof(WCHAR));
3718                 RegSetValueExW(key, szType, 0, REG_DWORD, (LPBYTE)&type, sizeof(type));
3719                 RegSetValueExW(key, szSignature, 0, REG_BINARY, (LPBYTE)&sign, sizeof(sign));
3720             }
3721             RegCloseKey(key);
3722         }
3723     }
3724     
3725     for (i=0; i<2; i++) {
3726         apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szDefaultKeys[i], 0, NULL, 
3727                                  REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
3728         if (apiRet == ERROR_SUCCESS)
3729         {
3730             if (dp == REG_CREATED_NEW_KEY)
3731             {
3732                 static const WCHAR szName[] = { 'N','a','m','e',0 };
3733                 static const WCHAR szRSAName[2][46] = {
3734                   { 'M','i','c','r','o','s','o','f','t',' ', 'B','a','s','e',' ',
3735                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ', 
3736                     'P','r','o','v','i','d','e','r',' ','v','1','.','0',0 },
3737                   { 'M','i','c','r','o','s','o','f','t',' ','R','S','A',' ',
3738                     'S','C','h','a','n','n','e','l',' ',
3739                     'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
3740                     'P','r','o','v','i','d','e','r',0 } };
3741                 static const WCHAR szTypeName[] = { 'T','y','p','e','N','a','m','e',0 };
3742                 static const WCHAR szRSATypeName[2][38] = { 
3743                   { 'R','S','A',' ','F','u','l','l',' ',
3744                        '(','S','i','g','n','a','t','u','r','e',' ','a','n','d',' ',
3745                     'K','e','y',' ','E','x','c','h','a','n','g','e',')',0 },
3746                   { 'R','S','A',' ','S','C','h','a','n','n','e','l',0 } };
3747
3748                 RegSetValueExW(key, szName, 0, REG_SZ, 
3749                                 (LPBYTE)szRSAName[i], lstrlenW(szRSAName[i])*sizeof(WCHAR)+sizeof(WCHAR));
3750                 RegSetValueExW(key, szTypeName, 0, REG_SZ, 
3751                                 (LPBYTE)szRSATypeName[i], lstrlenW(szRSATypeName[i])*sizeof(WCHAR)+sizeof(WCHAR));
3752             }
3753         }
3754         RegCloseKey(key);
3755     }
3756     
3757     return HRESULT_FROM_WIN32(apiRet);
3758 }
3759
3760 /******************************************************************************
3761  * DllUnregisterServer (RSAENH.@)
3762  *
3763  * Dll self unregistration. 
3764  *
3765  * PARAMS
3766  *
3767  * RETURNS
3768  *  Success: S_OK
3769  *
3770  * NOTES
3771  *  For the relevant keys see DllRegisterServer.
3772  */
3773 HRESULT WINAPI DllUnregisterServer(void)
3774 {
3775     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[0]);
3776     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[1]);
3777     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[2]);
3778     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[3]);
3779     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[0]);
3780     RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[1]);
3781     return S_OK;
3782 }