1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * We use function pointers here as there is no import library for NTDLL on
27 #include "wine/test.h"
32 /* Function ptrs for ntdll calls */
33 static HMODULE hntdll = 0;
34 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
35 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
36 static ULONG (WINAPI *pRtlUniform)(PULONG);
37 static ULONG (WINAPI *pRtlRandom)(PULONG);
38 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
39 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
42 static void InitFunctionPtrs(void)
44 hntdll = LoadLibraryA("ntdll.dll");
45 ok(hntdll != 0, "LoadLibrary failed");
47 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
48 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
49 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
50 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
51 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
52 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
57 static void test_RtlCompareMemoryUlong(void)
66 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
67 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %lu, expected 0\n", a, result);
68 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
69 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %lu, expected 0\n", a, result);
70 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
71 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %lu, expected 4\n", a, result);
72 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
73 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %lu, expected 4\n", a, result);
74 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
75 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %lu, expected 4\n", a, result);
76 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
77 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %lu, expected 4\n", a, result);
78 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
79 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %lu, expected 4\n", a, result);
80 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
81 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %lu, expected 0\n", a, result);
82 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
83 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %lu, expected 0\n", a, result);
84 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
85 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %lu, expected 0\n", a, result);
88 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
89 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %lu, expected 0\n", a, result);
90 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
91 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %lu, expected 4\n", a, result);
92 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
93 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %lu, expected 4\n", a, result);
94 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
95 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %lu, expected 4\n", a, result);
96 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
97 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %lu, expected 8\n", a, result);
98 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
99 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %lu, expected 8\n", a, result);
103 static void test_RtlUlonglongByteSwap(void)
107 result = pRtlUlonglongByteSwap(0x7654321087654321);
108 ok(0x2143658710325476 == result,
109 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%llx, expected 0x2143658710325476",
114 static void test_RtlUniform(void)
123 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
124 * algorithm. This algorithm is:
126 * seed = (seed * const_1 + const_2) % const_3;
128 * According to the documentation the random number is distributed over
129 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
131 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
133 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
134 * algorithm can be expressed without division as:
136 * seed = (seed * const_1 + const_2) & MAXLONG;
138 * To find out const_2 we just call RtlUniform with seed set to 0:
141 expected = 0x7fffffc3;
142 result = pRtlUniform(&seed);
143 ok(result == expected,
144 "RtlUniform(&seed (seed == 0)) returns %lx, expected %lx",
147 * The algorithm is now:
149 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
151 * To find out const_1 we can use:
153 * const_1 = RtlUniform(1) - 0x7fffffc3;
155 * If that does not work a search loop can try all possible values of
156 * const_1 and compare to the result to RtlUniform(1).
157 * This way we find out that const_1 is 0xffffffed.
159 * For seed = 1 the const_2 is 0x7fffffc4:
162 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
163 result = pRtlUniform(&seed);
164 ok(result == expected,
165 "RtlUniform(&seed (seed == 1)) returns %lx, expected %lx",
168 * For seed = 2 the const_2 is 0x7fffffc3:
171 expected = seed * 0xffffffed + 0x7fffffc3;
172 result = pRtlUniform(&seed);
173 ok(result == expected,
174 "RtlUniform(&seed (seed == 2)) returns %lx, expected %lx",
177 * More tests show that if seed is odd the result must be incremented by 1:
180 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
181 result = pRtlUniform(&seed);
182 ok(result == expected,
183 "RtlUniform(&seed (seed == 2)) returns %lx, expected %lx",
187 expected = seed * 0xffffffed + 0x7fffffc3;
188 result = pRtlUniform(&seed);
189 ok(result == expected,
190 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %lx, expected %lx",
194 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
195 result = pRtlUniform(&seed);
196 ok(result == expected,
197 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %lx, expected %lx",
200 * When seed is 0x6bca1ac there is an exception:
203 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
204 result = pRtlUniform(&seed);
205 ok(result == expected,
206 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %lx, expected %lx",
209 * Note that up to here const_3 is not used
210 * (the highest bit of the result is not set).
212 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
215 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
216 result = pRtlUniform(&seed);
217 ok(result == expected,
218 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %lx, expected %lx",
222 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
223 result = pRtlUniform(&seed);
224 ok(result == expected,
225 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %lx, expected %lx",
228 * There are several ranges where for odd or even seed the result must be
229 * incremented by 1. You can see this ranges in the following test.
231 * For a full test use one of the following loop heads:
233 * for (num = 0; num <= 0xffffffff; num++) {
238 * for (num = 0; num <= 0xffffffff; num++) {
242 for (num = 0; num <= 100000; num++) {
244 expected = seed * 0xffffffed + 0x7fffffc3;
245 if (seed < 0x6bca1ac) {
246 expected = expected + (seed & 1);
247 } else if (seed == 0x6bca1ac) {
248 expected = (expected + 2) & MAXLONG;
249 } else if (seed < 0xd79435c) {
250 expected = (expected + (~seed & 1)) & MAXLONG;
251 } else if (seed < 0x1435e50b) {
252 expected = expected + (seed & 1);
253 } else if (seed < 0x1af286ba) {
254 expected = (expected + (~seed & 1)) & MAXLONG;
255 } else if (seed < 0x21af2869) {
256 expected = expected + (seed & 1);
257 } else if (seed < 0x286bca18) {
258 expected = (expected + (~seed & 1)) & MAXLONG;
259 } else if (seed < 0x2f286bc7) {
260 expected = expected + (seed & 1);
261 } else if (seed < 0x35e50d77) {
262 expected = (expected + (~seed & 1)) & MAXLONG;
263 } else if (seed < 0x3ca1af26) {
264 expected = expected + (seed & 1);
265 } else if (seed < 0x435e50d5) {
266 expected = (expected + (~seed & 1)) & MAXLONG;
267 } else if (seed < 0x4a1af284) {
268 expected = expected + (seed & 1);
269 } else if (seed < 0x50d79433) {
270 expected = (expected + (~seed & 1)) & MAXLONG;
271 } else if (seed < 0x579435e2) {
272 expected = expected + (seed & 1);
273 } else if (seed < 0x5e50d792) {
274 expected = (expected + (~seed & 1)) & MAXLONG;
275 } else if (seed < 0x650d7941) {
276 expected = expected + (seed & 1);
277 } else if (seed < 0x6bca1af0) {
278 expected = (expected + (~seed & 1)) & MAXLONG;
279 } else if (seed < 0x7286bc9f) {
280 expected = expected + (seed & 1);
281 } else if (seed < 0x79435e4e) {
282 expected = (expected + (~seed & 1)) & MAXLONG;
283 } else if (seed < 0x7ffffffd) {
284 expected = expected + (seed & 1);
285 } else if (seed < 0x86bca1ac) {
286 expected = (expected + (~seed & 1)) & MAXLONG;
287 } else if (seed == 0x86bca1ac) {
288 expected = (expected + 1) & MAXLONG;
289 } else if (seed < 0x8d79435c) {
290 expected = expected + (seed & 1);
291 } else if (seed < 0x9435e50b) {
292 expected = (expected + (~seed & 1)) & MAXLONG;
293 } else if (seed < 0x9af286ba) {
294 expected = expected + (seed & 1);
295 } else if (seed < 0xa1af2869) {
296 expected = (expected + (~seed & 1)) & MAXLONG;
297 } else if (seed < 0xa86bca18) {
298 expected = expected + (seed & 1);
299 } else if (seed < 0xaf286bc7) {
300 expected = (expected + (~seed & 1)) & MAXLONG;
301 } else if (seed == 0xaf286bc7) {
302 expected = (expected + 2) & MAXLONG;
303 } else if (seed < 0xb5e50d77) {
304 expected = expected + (seed & 1);
305 } else if (seed < 0xbca1af26) {
306 expected = (expected + (~seed & 1)) & MAXLONG;
307 } else if (seed < 0xc35e50d5) {
308 expected = expected + (seed & 1);
309 } else if (seed < 0xca1af284) {
310 expected = (expected + (~seed & 1)) & MAXLONG;
311 } else if (seed < 0xd0d79433) {
312 expected = expected + (seed & 1);
313 } else if (seed < 0xd79435e2) {
314 expected = (expected + (~seed & 1)) & MAXLONG;
315 } else if (seed < 0xde50d792) {
316 expected = expected + (seed & 1);
317 } else if (seed < 0xe50d7941) {
318 expected = (expected + (~seed & 1)) & MAXLONG;
319 } else if (seed < 0xebca1af0) {
320 expected = expected + (seed & 1);
321 } else if (seed < 0xf286bc9f) {
322 expected = (expected + (~seed & 1)) & MAXLONG;
323 } else if (seed < 0xf9435e4e) {
324 expected = expected + (seed & 1);
325 } else if (seed < 0xfffffffd) {
326 expected = (expected + (~seed & 1)) & MAXLONG;
328 expected = expected + (seed & 1);
331 result = pRtlUniform(&seed);
332 ok(result == expected,
333 "test: %llu RtlUniform(&seed (seed == %lx)) returns %lx, expected %lx",
334 num, seed_bak, result, expected);
336 "test: %llu RtlUniform(&seed (seed == %lx)) sets seed to %lx, expected %lx",
337 num, seed_bak, seed, expected);
340 * Further investigation shows: In the different regions the highest bit
341 * is set or cleared when even or odd seeds need an increment by 1.
342 * This leads to a simplified algorithm:
344 * seed = seed * 0xffffffed + 0x7fffffc3;
345 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
346 * seed = (seed + 2) & MAXLONG;
347 * } else if (seed == 0x7fffffff) {
349 * } else if ((seed & 0x80000000) == 0) {
350 * seed = seed + (~seed & 1);
352 * seed = (seed + (seed & 1)) & MAXLONG;
355 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
357 * Now comes the funny part:
358 * It took me one weekend, to find the complicated algorithm and one day more,
359 * to find the simplified algorithm. Several weeks later I found out: The value
360 * MAXLONG (=0x7fffffff) is never returned, neighter with the native function
361 * nor with the simplified algorithm. In reality the native function and our
362 * function return a random number distributed over [0..MAXLONG-1]. Note
363 * that this is different to what native documentation states [0..MAXLONG].
364 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
366 * seed = (seed * const_1 + const_2) % MAXLONG;
368 * Further investigations show that the real algorithm is:
370 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
372 * This is checked with the test below:
375 for (num = 0; num <= 100000; num++) {
376 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
378 result = pRtlUniform(&seed);
379 ok(result == expected,
380 "test: %llu RtlUniform(&seed (seed == %lx)) returns %lx, expected %lx",
381 num, seed_bak, result, expected);
383 "test: %llu RtlUniform(&seed (seed == %lx)) sets seed to %lx, expected %lx",
384 num, seed_bak, seed, expected);
387 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
388 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
389 * that there is more than one cycle of generated randon numbers ...
394 ULONG WINAPI my_RtlRandom(PULONG seed)
396 static ULONG saved_value[128] =
397 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
398 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
399 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
400 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
401 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
402 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
403 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
404 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
405 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
406 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
407 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
408 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
409 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
410 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
411 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
412 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
417 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
418 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
420 result = saved_value[pos];
421 saved_value[pos] = rand;
426 static void test_RtlRandom(void)
433 ULONG result_expected;
436 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
437 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
438 * the documentation of the RtlUniform function. This algorithm is:
440 * seed = (seed * const_1 + const_2) % const_3;
442 * According to the RtlUniform documentation the random number is
443 * distributed over [0..MAXLONG], but in reality it is distributed
444 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
447 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
451 * seed = (seed * const_1 + const_2) % MAXLONG;
453 * To find out const_2 we just call RtlRandom with seed set to 0:
456 result_expected = 0x320a1743;
457 seed_expected =0x44b;
458 result = pRtlRandom(&seed);
459 ok(result == result_expected,
460 "pRtlRandom(&seed (seed == 0)) returns %lx, expected %lx",
461 result, result_expected);
462 ok(seed == seed_expected,
463 "pRtlRandom(&seed (seed == 0)) sets seed to %lx, expected %lx",
464 seed, seed_expected);
466 * Seed is not equal to result as with RtlUniform. To see more we
467 * call RtlRandom aggain with seed set to 0:
470 result_expected = 0x7fffffc3;
471 seed_expected =0x44b;
472 result = pRtlRandom(&seed);
473 ok(result == result_expected,
474 "RtlRandom(&seed (seed == 0)) returns %lx, expected %lx",
475 result, result_expected);
476 ok(seed == seed_expected,
477 "RtlRandom(&seed (seed == 0)) sets seed to %lx, expected %lx",
478 seed, seed_expected);
480 * Seed is set to the same value as before but the result is different.
481 * To see more we call RtlRandom aggain with seed set to 0:
484 result_expected = 0x7fffffc3;
485 seed_expected =0x44b;
486 result = pRtlRandom(&seed);
487 ok(result == result_expected,
488 "RtlRandom(&seed (seed == 0)) returns %lx, expected %lx",
489 result, result_expected);
490 ok(seed == seed_expected,
491 "RtlRandom(&seed (seed == 0)) sets seed to %lx, expected %lx",
492 seed, seed_expected);
494 * Seed is aggain set to the same value as before. This time we also
495 * have the same result as before. Interestingly the value of the
496 * result is 0x7fffffc3 which is the same value used in RtlUniform
497 * as const_2. If we do
500 * result = RtlUniform(&seed);
502 * we get the same result (0x7fffffc3) as with
507 * result = RtlRandom(&seed);
509 * And there is another interesting thing. If we do
515 * seed is set to the value 0x44b which ist the same value that
520 * assigns to seed. Putting this two findings together leads to
521 * the concluson that RtlRandom saves the value in some variable,
522 * like in the following algorithm:
524 * result = saved_value;
525 * saved_value = RtlUniform(&seed);
529 * Now we do further tests with seed set to 1:
532 result_expected = 0x7a50bbc6;
533 seed_expected =0x5a1;
534 result = pRtlRandom(&seed);
535 ok(result == result_expected,
536 "RtlRandom(&seed (seed == 1)) returns %lx, expected %lx",
537 result, result_expected);
538 ok(seed == seed_expected,
539 "RtlRandom(&seed (seed == 1)) sets seed to %lx, expected %lx",
540 seed, seed_expected);
542 * If there is just one saved_value the result now would be
543 * 0x7fffffc3. From this test we can see that there is more than
544 * one saved_value, like with this algorithm:
546 * result = saved_value[pos];
547 * saved_value[pos] = RtlUniform(&seed);
551 * But how the value of pos is determined? The calls to RtlUniform
552 * create a sequence of random numbers. Every second random number
553 * is put into the saved_value array and is used in some later call
554 * of RtlRandom as result. The only reasonable source to determine
555 * pos are the random numbers generated by RtlUniform which are not
556 * put into the saved_value array. This are the values of seed
557 * between the two calls of RtlUniform as in this altorithm:
559 * rand = RtlUniform(&seed);
561 * pos = position(seed);
562 * result = saved_value[pos];
563 * saved_value[pos] = rand;
566 * What remains to determine is: The size of the saved_value array,
567 * the initial values of the saved_value array and the function
568 * position(seed). This tests are not shown here.
569 * The result of this tests ist: The size of the saved_value array
570 * is 128, the initial values can be seen in the my_RtlRandom
571 * function and the position(seed) function is (seed & 0x7f).
573 * For a full test of RtlRandom use one of the following loop heads:
575 * for (num = 0; num <= 0xffffffff; num++) {
580 * for (num = 0; num <= 0xffffffff; num++) {
584 for (num = 0; num <= 100000; num++) {
586 seed_expected = seed;
587 result_expected = my_RtlRandom(&seed_expected);
588 /* The following corrections are necessary because the */
589 /* previous tests changed the saved_value array */
591 result_expected = 0x7fffffc3;
592 } else if (num == 81) {
593 result_expected = 0x7fffffb1;
595 result = pRtlRandom(&seed);
596 ok(result == result_expected,
597 "test: %llu RtlUniform(&seed (seed == %lx)) returns %lx, expected %lx",
598 num, seed_bak, result, result_expected);
599 ok(seed == seed_expected,
600 "test: %llu RtlUniform(&seed (seed == %lx)) sets seed to %lx, expected %lx",
601 num, seed_bak, seed, seed_expected);
607 ACCESS_MASK GrantedAccess;
608 ACCESS_MASK DesiredAccess;
612 static const all_accesses_t all_accesses[] = {
613 {0xFEDCBA76, 0xFEDCBA76, 1},
614 {0x00000000, 0xFEDCBA76, 0},
615 {0xFEDCBA76, 0x00000000, 1},
616 {0x00000000, 0x00000000, 1},
617 {0xFEDCBA76, 0xFEDCBA70, 1},
618 {0xFEDCBA70, 0xFEDCBA76, 0},
619 {0xFEDCBA76, 0xFEDC8A76, 1},
620 {0xFEDC8A76, 0xFEDCBA76, 0},
621 {0xFEDCBA76, 0xC8C4B242, 1},
622 {0xC8C4B242, 0xFEDCBA76, 0},
624 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
627 static void test_RtlAreAllAccessesGranted(void)
632 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
633 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
634 all_accesses[test_num].DesiredAccess);
635 ok(all_accesses[test_num].result == result,
636 "(test %d): RtlAreAllAccessesGranted(%08lx, %08lx) returns %d, expected %d",
637 test_num, all_accesses[test_num].GrantedAccess,
638 all_accesses[test_num].DesiredAccess,
639 result, all_accesses[test_num].result);
645 ACCESS_MASK GrantedAccess;
646 ACCESS_MASK DesiredAccess;
650 static const any_accesses_t any_accesses[] = {
651 {0xFEDCBA76, 0xFEDCBA76, 1},
652 {0x00000000, 0xFEDCBA76, 0},
653 {0xFEDCBA76, 0x00000000, 0},
654 {0x00000000, 0x00000000, 0},
655 {0xFEDCBA76, 0x01234589, 0},
656 {0x00040000, 0xFEDCBA76, 1},
657 {0x00040000, 0xFED8BA76, 0},
658 {0xFEDCBA76, 0x00040000, 1},
659 {0xFED8BA76, 0x00040000, 0},
661 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
664 static void test_RtlAreAnyAccessesGranted(void)
669 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
670 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
671 any_accesses[test_num].DesiredAccess);
672 ok(any_accesses[test_num].result == result,
673 "(test %d): RtlAreAnyAccessesGranted(%08lx, %08lx) returns %d, expected %d",
674 test_num, any_accesses[test_num].GrantedAccess,
675 any_accesses[test_num].DesiredAccess,
676 result, any_accesses[test_num].result);
685 test_RtlCompareMemoryUlong();
686 if (pRtlUlonglongByteSwap) {
687 test_RtlUlonglongByteSwap();
691 test_RtlAreAllAccessesGranted();
692 test_RtlAreAnyAccessesGranted();