2 // If you want non-latin layouts implicitly include the en_US layout
3 // uncomment lines below
4 //! $nonlatin = am ara ben bd bg bt by cs deva ge gh gr guj guru il \
5 // in ir iku jp kan kh kr la lao lk mk mm mn mv mal ori pk \
6 // ru scc sy syr tel th tj tam ua uz
9 ! $pcmodels = pc101 pc102 pc104 pc105
11 // Microsoft models (using MS geometry)
12 ! $msmodels = microsoft microsoftpro microsoftprousb microsoftprose
14 // PC geometries - they have special geometry but symbols are mostly pc105
15 ! $pcgeometries = abnt2 latitude jp106 kr106
17 // Layouts that provide further specializations for the OLPC
18 ! $olpclayouts = ara br es kz ru th tr us
20 ! $macbooks = macbook78 macbook79
21 ! $maclaptop = ibook powerbook macbook78 macbook79
22 ! $macs = macintosh macintosh_old ibook powerbook macbook78 macbook79
24 ! $macvendorlayouts = ch de dk es fi fr gb is it latam nl no pt se us
27 ! $qwertz = al cz de hr hu ro si sk
29 ! $inetkbds = a4techKB21 a4techKBS8 a4_rfkb23 \
30 acer_c300 acer_ferrari4k acer_laptop \
32 apple armada asus_laptop azonaRF2300 \
34 btc5113rf btc5126t btc9000 btc9000a btc9001ah btc5090 btc9019u \
35 cherryblue cherrybluea cherryblueb cherrycyboard \
36 chicony chicony0108 chicony9885 \
37 compaqeak8 compaqik7 compaqik13 compaqik18 \
39 dell dellm65 inspiron precision_m dellusbmm dtk2000 \
40 emachines ennyah_dkb1008 evdev \
41 genius geniuscomfy geniuscomfy2 geniuskb19e \
42 gyration honeywell_euroboard \
43 hp2501 hp2505 hp5xx hp500fa hp5181 hp5185 \
44 hpi6 hpxe3gc hpxe3gf hpxe4xxx hpxt1000 hpzt11xx \
45 ipaq inspiron intel latitude \
46 logiaccess logicd logicda logicink \
47 logiex110 logiclx300 \
48 logiinkse logiinkseusb logiitc logiik itouch logiultrax \
50 microsoftinet microsoftpro microsoftprousb microsoftprooem microsoftprose \
51 microsoftoffice microsoftmult \
52 mx1998 mx2500 mx2750 \
56 rapidaccess rapidaccess2 rapidaccess2a thinkpad \
57 samsung4500 samsung4510 \
58 scorpius silvercrest \
59 sk1300 sk2500 sk6200 sk7100 sp_inet \
61 toshiba_s3000 trust trustda \
64 // all layouts with 3rd and 4th groups
65 ! $threelevellayouts = al az \