Merge branch 'for-ingo' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/ftrace_irq.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/module.h>
13 #include <linux/percpu.h>
14 #include <linux/mutex.h>
15 #include <linux/sched.h>        /* used for sched_clock() (for now) */
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/fs.h>
20
21 #include "trace.h"
22
23 /*
24  * A fast way to enable or disable all ring buffers is to
25  * call tracing_on or tracing_off. Turning off the ring buffers
26  * prevents all ring buffers from being recorded to.
27  * Turning this switch on, makes it OK to write to the
28  * ring buffer, if the ring buffer is enabled itself.
29  *
30  * There's three layers that must be on in order to write
31  * to the ring buffer.
32  *
33  * 1) This global flag must be set.
34  * 2) The ring buffer must be enabled for recording.
35  * 3) The per cpu buffer must be enabled for recording.
36  *
37  * In case of an anomaly, this global flag has a bit set that
38  * will permantly disable all ring buffers.
39  */
40
41 /*
42  * Global flag to disable all recording to ring buffers
43  *  This has two bits: ON, DISABLED
44  *
45  *  ON   DISABLED
46  * ---- ----------
47  *   0      0        : ring buffers are off
48  *   1      0        : ring buffers are on
49  *   X      1        : ring buffers are permanently disabled
50  */
51
52 enum {
53         RB_BUFFERS_ON_BIT       = 0,
54         RB_BUFFERS_DISABLED_BIT = 1,
55 };
56
57 enum {
58         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
59         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
60 };
61
62 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
63
64 /**
65  * tracing_on - enable all tracing buffers
66  *
67  * This function enables all tracing buffers that may have been
68  * disabled with tracing_off.
69  */
70 void tracing_on(void)
71 {
72         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
73 }
74 EXPORT_SYMBOL_GPL(tracing_on);
75
76 /**
77  * tracing_off - turn off all tracing buffers
78  *
79  * This function stops all tracing buffers from recording data.
80  * It does not disable any overhead the tracers themselves may
81  * be causing. This function simply causes all recording to
82  * the ring buffers to fail.
83  */
84 void tracing_off(void)
85 {
86         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
87 }
88 EXPORT_SYMBOL_GPL(tracing_off);
89
90 /**
91  * tracing_off_permanent - permanently disable ring buffers
92  *
93  * This function, once called, will disable all ring buffers
94  * permanently.
95  */
96 void tracing_off_permanent(void)
97 {
98         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
99 }
100
101 /**
102  * tracing_is_on - show state of ring buffers enabled
103  */
104 int tracing_is_on(void)
105 {
106         return ring_buffer_flags == RB_BUFFERS_ON;
107 }
108 EXPORT_SYMBOL_GPL(tracing_is_on);
109
110 #include "trace.h"
111
112 /* Up this if you want to test the TIME_EXTENTS and normalization */
113 #define DEBUG_SHIFT 0
114
115 /* FIXME!!! */
116 u64 ring_buffer_time_stamp(int cpu)
117 {
118         u64 time;
119
120         preempt_disable_notrace();
121         /* shift to debug/test normalization and TIME_EXTENTS */
122         time = sched_clock() << DEBUG_SHIFT;
123         preempt_enable_no_resched_notrace();
124
125         return time;
126 }
127 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
128
129 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
130 {
131         /* Just stupid testing the normalize function and deltas */
132         *ts >>= DEBUG_SHIFT;
133 }
134 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
135
136 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
137 #define RB_ALIGNMENT            4U
138 #define RB_MAX_SMALL_DATA       28
139
140 enum {
141         RB_LEN_TIME_EXTEND = 8,
142         RB_LEN_TIME_STAMP = 16,
143 };
144
145 /* inline for ring buffer fast paths */
146 static unsigned
147 rb_event_length(struct ring_buffer_event *event)
148 {
149         unsigned length;
150
151         switch (event->type) {
152         case RINGBUF_TYPE_PADDING:
153                 /* undefined */
154                 return -1;
155
156         case RINGBUF_TYPE_TIME_EXTEND:
157                 return RB_LEN_TIME_EXTEND;
158
159         case RINGBUF_TYPE_TIME_STAMP:
160                 return RB_LEN_TIME_STAMP;
161
162         case RINGBUF_TYPE_DATA:
163                 if (event->len)
164                         length = event->len * RB_ALIGNMENT;
165                 else
166                         length = event->array[0];
167                 return length + RB_EVNT_HDR_SIZE;
168         default:
169                 BUG();
170         }
171         /* not hit */
172         return 0;
173 }
174
175 /**
176  * ring_buffer_event_length - return the length of the event
177  * @event: the event to get the length of
178  */
179 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
180 {
181         unsigned length = rb_event_length(event);
182         if (event->type != RINGBUF_TYPE_DATA)
183                 return length;
184         length -= RB_EVNT_HDR_SIZE;
185         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
186                 length -= sizeof(event->array[0]);
187         return length;
188 }
189 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
190
191 /* inline for ring buffer fast paths */
192 static void *
193 rb_event_data(struct ring_buffer_event *event)
194 {
195         BUG_ON(event->type != RINGBUF_TYPE_DATA);
196         /* If length is in len field, then array[0] has the data */
197         if (event->len)
198                 return (void *)&event->array[0];
199         /* Otherwise length is in array[0] and array[1] has the data */
200         return (void *)&event->array[1];
201 }
202
203 /**
204  * ring_buffer_event_data - return the data of the event
205  * @event: the event to get the data from
206  */
207 void *ring_buffer_event_data(struct ring_buffer_event *event)
208 {
209         return rb_event_data(event);
210 }
211 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
212
213 #define for_each_buffer_cpu(buffer, cpu)                \
214         for_each_cpu(cpu, buffer->cpumask)
215
216 #define TS_SHIFT        27
217 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
218 #define TS_DELTA_TEST   (~TS_MASK)
219
220 struct buffer_data_page {
221         u64              time_stamp;    /* page time stamp */
222         local_t          commit;        /* write committed index */
223         unsigned char    data[];        /* data of buffer page */
224 };
225
226 struct buffer_page {
227         local_t          write;         /* index for next write */
228         unsigned         read;          /* index for next read */
229         struct list_head list;          /* list of free pages */
230         struct buffer_data_page *page;  /* Actual data page */
231 };
232
233 static void rb_init_page(struct buffer_data_page *bpage)
234 {
235         local_set(&bpage->commit, 0);
236 }
237
238 /*
239  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
240  * this issue out.
241  */
242 static void free_buffer_page(struct buffer_page *bpage)
243 {
244         free_page((unsigned long)bpage->page);
245         kfree(bpage);
246 }
247
248 /*
249  * We need to fit the time_stamp delta into 27 bits.
250  */
251 static inline int test_time_stamp(u64 delta)
252 {
253         if (delta & TS_DELTA_TEST)
254                 return 1;
255         return 0;
256 }
257
258 #define BUF_PAGE_SIZE (PAGE_SIZE - offsetof(struct buffer_data_page, data))
259
260 /*
261  * head_page == tail_page && head == tail then buffer is empty.
262  */
263 struct ring_buffer_per_cpu {
264         int                             cpu;
265         struct ring_buffer              *buffer;
266         spinlock_t                      reader_lock; /* serialize readers */
267         raw_spinlock_t                  lock;
268         struct lock_class_key           lock_key;
269         struct list_head                pages;
270         struct buffer_page              *head_page;     /* read from head */
271         struct buffer_page              *tail_page;     /* write to tail */
272         struct buffer_page              *commit_page;   /* committed pages */
273         struct buffer_page              *reader_page;
274         unsigned long                   overrun;
275         unsigned long                   entries;
276         u64                             write_stamp;
277         u64                             read_stamp;
278         atomic_t                        record_disabled;
279 };
280
281 struct ring_buffer {
282         unsigned                        pages;
283         unsigned                        flags;
284         int                             cpus;
285         atomic_t                        record_disabled;
286         cpumask_var_t                   cpumask;
287
288         struct mutex                    mutex;
289
290         struct ring_buffer_per_cpu      **buffers;
291 };
292
293 struct ring_buffer_iter {
294         struct ring_buffer_per_cpu      *cpu_buffer;
295         unsigned long                   head;
296         struct buffer_page              *head_page;
297         u64                             read_stamp;
298 };
299
300 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
301 #define RB_WARN_ON(buffer, cond)                                \
302         ({                                                      \
303                 int _____ret = unlikely(cond);                  \
304                 if (_____ret) {                                 \
305                         atomic_inc(&buffer->record_disabled);   \
306                         WARN_ON(1);                             \
307                 }                                               \
308                 _____ret;                                       \
309         })
310
311 /**
312  * check_pages - integrity check of buffer pages
313  * @cpu_buffer: CPU buffer with pages to test
314  *
315  * As a safety measure we check to make sure the data pages have not
316  * been corrupted.
317  */
318 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
319 {
320         struct list_head *head = &cpu_buffer->pages;
321         struct buffer_page *bpage, *tmp;
322
323         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
324                 return -1;
325         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
326                 return -1;
327
328         list_for_each_entry_safe(bpage, tmp, head, list) {
329                 if (RB_WARN_ON(cpu_buffer,
330                                bpage->list.next->prev != &bpage->list))
331                         return -1;
332                 if (RB_WARN_ON(cpu_buffer,
333                                bpage->list.prev->next != &bpage->list))
334                         return -1;
335         }
336
337         return 0;
338 }
339
340 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
341                              unsigned nr_pages)
342 {
343         struct list_head *head = &cpu_buffer->pages;
344         struct buffer_page *bpage, *tmp;
345         unsigned long addr;
346         LIST_HEAD(pages);
347         unsigned i;
348
349         for (i = 0; i < nr_pages; i++) {
350                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
351                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
352                 if (!bpage)
353                         goto free_pages;
354                 list_add(&bpage->list, &pages);
355
356                 addr = __get_free_page(GFP_KERNEL);
357                 if (!addr)
358                         goto free_pages;
359                 bpage->page = (void *)addr;
360                 rb_init_page(bpage->page);
361         }
362
363         list_splice(&pages, head);
364
365         rb_check_pages(cpu_buffer);
366
367         return 0;
368
369  free_pages:
370         list_for_each_entry_safe(bpage, tmp, &pages, list) {
371                 list_del_init(&bpage->list);
372                 free_buffer_page(bpage);
373         }
374         return -ENOMEM;
375 }
376
377 static struct ring_buffer_per_cpu *
378 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
379 {
380         struct ring_buffer_per_cpu *cpu_buffer;
381         struct buffer_page *bpage;
382         unsigned long addr;
383         int ret;
384
385         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
386                                   GFP_KERNEL, cpu_to_node(cpu));
387         if (!cpu_buffer)
388                 return NULL;
389
390         cpu_buffer->cpu = cpu;
391         cpu_buffer->buffer = buffer;
392         spin_lock_init(&cpu_buffer->reader_lock);
393         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
394         INIT_LIST_HEAD(&cpu_buffer->pages);
395
396         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
397                             GFP_KERNEL, cpu_to_node(cpu));
398         if (!bpage)
399                 goto fail_free_buffer;
400
401         cpu_buffer->reader_page = bpage;
402         addr = __get_free_page(GFP_KERNEL);
403         if (!addr)
404                 goto fail_free_reader;
405         bpage->page = (void *)addr;
406         rb_init_page(bpage->page);
407
408         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
409
410         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
411         if (ret < 0)
412                 goto fail_free_reader;
413
414         cpu_buffer->head_page
415                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
416         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
417
418         return cpu_buffer;
419
420  fail_free_reader:
421         free_buffer_page(cpu_buffer->reader_page);
422
423  fail_free_buffer:
424         kfree(cpu_buffer);
425         return NULL;
426 }
427
428 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
429 {
430         struct list_head *head = &cpu_buffer->pages;
431         struct buffer_page *bpage, *tmp;
432
433         list_del_init(&cpu_buffer->reader_page->list);
434         free_buffer_page(cpu_buffer->reader_page);
435
436         list_for_each_entry_safe(bpage, tmp, head, list) {
437                 list_del_init(&bpage->list);
438                 free_buffer_page(bpage);
439         }
440         kfree(cpu_buffer);
441 }
442
443 /*
444  * Causes compile errors if the struct buffer_page gets bigger
445  * than the struct page.
446  */
447 extern int ring_buffer_page_too_big(void);
448
449 /**
450  * ring_buffer_alloc - allocate a new ring_buffer
451  * @size: the size in bytes per cpu that is needed.
452  * @flags: attributes to set for the ring buffer.
453  *
454  * Currently the only flag that is available is the RB_FL_OVERWRITE
455  * flag. This flag means that the buffer will overwrite old data
456  * when the buffer wraps. If this flag is not set, the buffer will
457  * drop data when the tail hits the head.
458  */
459 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
460 {
461         struct ring_buffer *buffer;
462         int bsize;
463         int cpu;
464
465         /* Paranoid! Optimizes out when all is well */
466         if (sizeof(struct buffer_page) > sizeof(struct page))
467                 ring_buffer_page_too_big();
468
469
470         /* keep it in its own cache line */
471         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
472                          GFP_KERNEL);
473         if (!buffer)
474                 return NULL;
475
476         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
477                 goto fail_free_buffer;
478
479         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
480         buffer->flags = flags;
481
482         /* need at least two pages */
483         if (buffer->pages == 1)
484                 buffer->pages++;
485
486         cpumask_copy(buffer->cpumask, cpu_possible_mask);
487         buffer->cpus = nr_cpu_ids;
488
489         bsize = sizeof(void *) * nr_cpu_ids;
490         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
491                                   GFP_KERNEL);
492         if (!buffer->buffers)
493                 goto fail_free_cpumask;
494
495         for_each_buffer_cpu(buffer, cpu) {
496                 buffer->buffers[cpu] =
497                         rb_allocate_cpu_buffer(buffer, cpu);
498                 if (!buffer->buffers[cpu])
499                         goto fail_free_buffers;
500         }
501
502         mutex_init(&buffer->mutex);
503
504         return buffer;
505
506  fail_free_buffers:
507         for_each_buffer_cpu(buffer, cpu) {
508                 if (buffer->buffers[cpu])
509                         rb_free_cpu_buffer(buffer->buffers[cpu]);
510         }
511         kfree(buffer->buffers);
512
513  fail_free_cpumask:
514         free_cpumask_var(buffer->cpumask);
515
516  fail_free_buffer:
517         kfree(buffer);
518         return NULL;
519 }
520 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
521
522 /**
523  * ring_buffer_free - free a ring buffer.
524  * @buffer: the buffer to free.
525  */
526 void
527 ring_buffer_free(struct ring_buffer *buffer)
528 {
529         int cpu;
530
531         for_each_buffer_cpu(buffer, cpu)
532                 rb_free_cpu_buffer(buffer->buffers[cpu]);
533
534         free_cpumask_var(buffer->cpumask);
535
536         kfree(buffer);
537 }
538 EXPORT_SYMBOL_GPL(ring_buffer_free);
539
540 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
541
542 static void
543 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
544 {
545         struct buffer_page *bpage;
546         struct list_head *p;
547         unsigned i;
548
549         atomic_inc(&cpu_buffer->record_disabled);
550         synchronize_sched();
551
552         for (i = 0; i < nr_pages; i++) {
553                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
554                         return;
555                 p = cpu_buffer->pages.next;
556                 bpage = list_entry(p, struct buffer_page, list);
557                 list_del_init(&bpage->list);
558                 free_buffer_page(bpage);
559         }
560         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
561                 return;
562
563         rb_reset_cpu(cpu_buffer);
564
565         rb_check_pages(cpu_buffer);
566
567         atomic_dec(&cpu_buffer->record_disabled);
568
569 }
570
571 static void
572 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
573                 struct list_head *pages, unsigned nr_pages)
574 {
575         struct buffer_page *bpage;
576         struct list_head *p;
577         unsigned i;
578
579         atomic_inc(&cpu_buffer->record_disabled);
580         synchronize_sched();
581
582         for (i = 0; i < nr_pages; i++) {
583                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
584                         return;
585                 p = pages->next;
586                 bpage = list_entry(p, struct buffer_page, list);
587                 list_del_init(&bpage->list);
588                 list_add_tail(&bpage->list, &cpu_buffer->pages);
589         }
590         rb_reset_cpu(cpu_buffer);
591
592         rb_check_pages(cpu_buffer);
593
594         atomic_dec(&cpu_buffer->record_disabled);
595 }
596
597 /**
598  * ring_buffer_resize - resize the ring buffer
599  * @buffer: the buffer to resize.
600  * @size: the new size.
601  *
602  * The tracer is responsible for making sure that the buffer is
603  * not being used while changing the size.
604  * Note: We may be able to change the above requirement by using
605  *  RCU synchronizations.
606  *
607  * Minimum size is 2 * BUF_PAGE_SIZE.
608  *
609  * Returns -1 on failure.
610  */
611 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
612 {
613         struct ring_buffer_per_cpu *cpu_buffer;
614         unsigned nr_pages, rm_pages, new_pages;
615         struct buffer_page *bpage, *tmp;
616         unsigned long buffer_size;
617         unsigned long addr;
618         LIST_HEAD(pages);
619         int i, cpu;
620
621         /*
622          * Always succeed at resizing a non-existent buffer:
623          */
624         if (!buffer)
625                 return size;
626
627         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
628         size *= BUF_PAGE_SIZE;
629         buffer_size = buffer->pages * BUF_PAGE_SIZE;
630
631         /* we need a minimum of two pages */
632         if (size < BUF_PAGE_SIZE * 2)
633                 size = BUF_PAGE_SIZE * 2;
634
635         if (size == buffer_size)
636                 return size;
637
638         mutex_lock(&buffer->mutex);
639
640         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
641
642         if (size < buffer_size) {
643
644                 /* easy case, just free pages */
645                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
646                         mutex_unlock(&buffer->mutex);
647                         return -1;
648                 }
649
650                 rm_pages = buffer->pages - nr_pages;
651
652                 for_each_buffer_cpu(buffer, cpu) {
653                         cpu_buffer = buffer->buffers[cpu];
654                         rb_remove_pages(cpu_buffer, rm_pages);
655                 }
656                 goto out;
657         }
658
659         /*
660          * This is a bit more difficult. We only want to add pages
661          * when we can allocate enough for all CPUs. We do this
662          * by allocating all the pages and storing them on a local
663          * link list. If we succeed in our allocation, then we
664          * add these pages to the cpu_buffers. Otherwise we just free
665          * them all and return -ENOMEM;
666          */
667         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
668                 mutex_unlock(&buffer->mutex);
669                 return -1;
670         }
671
672         new_pages = nr_pages - buffer->pages;
673
674         for_each_buffer_cpu(buffer, cpu) {
675                 for (i = 0; i < new_pages; i++) {
676                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
677                                                   cache_line_size()),
678                                             GFP_KERNEL, cpu_to_node(cpu));
679                         if (!bpage)
680                                 goto free_pages;
681                         list_add(&bpage->list, &pages);
682                         addr = __get_free_page(GFP_KERNEL);
683                         if (!addr)
684                                 goto free_pages;
685                         bpage->page = (void *)addr;
686                         rb_init_page(bpage->page);
687                 }
688         }
689
690         for_each_buffer_cpu(buffer, cpu) {
691                 cpu_buffer = buffer->buffers[cpu];
692                 rb_insert_pages(cpu_buffer, &pages, new_pages);
693         }
694
695         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
696                 mutex_unlock(&buffer->mutex);
697                 return -1;
698         }
699
700  out:
701         buffer->pages = nr_pages;
702         mutex_unlock(&buffer->mutex);
703
704         return size;
705
706  free_pages:
707         list_for_each_entry_safe(bpage, tmp, &pages, list) {
708                 list_del_init(&bpage->list);
709                 free_buffer_page(bpage);
710         }
711         mutex_unlock(&buffer->mutex);
712         return -ENOMEM;
713 }
714 EXPORT_SYMBOL_GPL(ring_buffer_resize);
715
716 static inline int rb_null_event(struct ring_buffer_event *event)
717 {
718         return event->type == RINGBUF_TYPE_PADDING;
719 }
720
721 static inline void *
722 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
723 {
724         return bpage->data + index;
725 }
726
727 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
728 {
729         return bpage->page->data + index;
730 }
731
732 static inline struct ring_buffer_event *
733 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
734 {
735         return __rb_page_index(cpu_buffer->reader_page,
736                                cpu_buffer->reader_page->read);
737 }
738
739 static inline struct ring_buffer_event *
740 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
741 {
742         return __rb_page_index(cpu_buffer->head_page,
743                                cpu_buffer->head_page->read);
744 }
745
746 static inline struct ring_buffer_event *
747 rb_iter_head_event(struct ring_buffer_iter *iter)
748 {
749         return __rb_page_index(iter->head_page, iter->head);
750 }
751
752 static inline unsigned rb_page_write(struct buffer_page *bpage)
753 {
754         return local_read(&bpage->write);
755 }
756
757 static inline unsigned rb_page_commit(struct buffer_page *bpage)
758 {
759         return local_read(&bpage->page->commit);
760 }
761
762 /* Size is determined by what has been commited */
763 static inline unsigned rb_page_size(struct buffer_page *bpage)
764 {
765         return rb_page_commit(bpage);
766 }
767
768 static inline unsigned
769 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
770 {
771         return rb_page_commit(cpu_buffer->commit_page);
772 }
773
774 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
775 {
776         return rb_page_commit(cpu_buffer->head_page);
777 }
778
779 /*
780  * When the tail hits the head and the buffer is in overwrite mode,
781  * the head jumps to the next page and all content on the previous
782  * page is discarded. But before doing so, we update the overrun
783  * variable of the buffer.
784  */
785 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
786 {
787         struct ring_buffer_event *event;
788         unsigned long head;
789
790         for (head = 0; head < rb_head_size(cpu_buffer);
791              head += rb_event_length(event)) {
792
793                 event = __rb_page_index(cpu_buffer->head_page, head);
794                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
795                         return;
796                 /* Only count data entries */
797                 if (event->type != RINGBUF_TYPE_DATA)
798                         continue;
799                 cpu_buffer->overrun++;
800                 cpu_buffer->entries--;
801         }
802 }
803
804 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
805                                struct buffer_page **bpage)
806 {
807         struct list_head *p = (*bpage)->list.next;
808
809         if (p == &cpu_buffer->pages)
810                 p = p->next;
811
812         *bpage = list_entry(p, struct buffer_page, list);
813 }
814
815 static inline unsigned
816 rb_event_index(struct ring_buffer_event *event)
817 {
818         unsigned long addr = (unsigned long)event;
819
820         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
821 }
822
823 static int
824 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
825              struct ring_buffer_event *event)
826 {
827         unsigned long addr = (unsigned long)event;
828         unsigned long index;
829
830         index = rb_event_index(event);
831         addr &= PAGE_MASK;
832
833         return cpu_buffer->commit_page->page == (void *)addr &&
834                 rb_commit_index(cpu_buffer) == index;
835 }
836
837 static void
838 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
839                     struct ring_buffer_event *event)
840 {
841         unsigned long addr = (unsigned long)event;
842         unsigned long index;
843
844         index = rb_event_index(event);
845         addr &= PAGE_MASK;
846
847         while (cpu_buffer->commit_page->page != (void *)addr) {
848                 if (RB_WARN_ON(cpu_buffer,
849                           cpu_buffer->commit_page == cpu_buffer->tail_page))
850                         return;
851                 cpu_buffer->commit_page->page->commit =
852                         cpu_buffer->commit_page->write;
853                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
854                 cpu_buffer->write_stamp =
855                         cpu_buffer->commit_page->page->time_stamp;
856         }
857
858         /* Now set the commit to the event's index */
859         local_set(&cpu_buffer->commit_page->page->commit, index);
860 }
861
862 static void
863 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
864 {
865         /*
866          * We only race with interrupts and NMIs on this CPU.
867          * If we own the commit event, then we can commit
868          * all others that interrupted us, since the interruptions
869          * are in stack format (they finish before they come
870          * back to us). This allows us to do a simple loop to
871          * assign the commit to the tail.
872          */
873  again:
874         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
875                 cpu_buffer->commit_page->page->commit =
876                         cpu_buffer->commit_page->write;
877                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
878                 cpu_buffer->write_stamp =
879                         cpu_buffer->commit_page->page->time_stamp;
880                 /* add barrier to keep gcc from optimizing too much */
881                 barrier();
882         }
883         while (rb_commit_index(cpu_buffer) !=
884                rb_page_write(cpu_buffer->commit_page)) {
885                 cpu_buffer->commit_page->page->commit =
886                         cpu_buffer->commit_page->write;
887                 barrier();
888         }
889
890         /* again, keep gcc from optimizing */
891         barrier();
892
893         /*
894          * If an interrupt came in just after the first while loop
895          * and pushed the tail page forward, we will be left with
896          * a dangling commit that will never go forward.
897          */
898         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
899                 goto again;
900 }
901
902 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
903 {
904         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
905         cpu_buffer->reader_page->read = 0;
906 }
907
908 static void rb_inc_iter(struct ring_buffer_iter *iter)
909 {
910         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
911
912         /*
913          * The iterator could be on the reader page (it starts there).
914          * But the head could have moved, since the reader was
915          * found. Check for this case and assign the iterator
916          * to the head page instead of next.
917          */
918         if (iter->head_page == cpu_buffer->reader_page)
919                 iter->head_page = cpu_buffer->head_page;
920         else
921                 rb_inc_page(cpu_buffer, &iter->head_page);
922
923         iter->read_stamp = iter->head_page->page->time_stamp;
924         iter->head = 0;
925 }
926
927 /**
928  * ring_buffer_update_event - update event type and data
929  * @event: the even to update
930  * @type: the type of event
931  * @length: the size of the event field in the ring buffer
932  *
933  * Update the type and data fields of the event. The length
934  * is the actual size that is written to the ring buffer,
935  * and with this, we can determine what to place into the
936  * data field.
937  */
938 static void
939 rb_update_event(struct ring_buffer_event *event,
940                          unsigned type, unsigned length)
941 {
942         event->type = type;
943
944         switch (type) {
945
946         case RINGBUF_TYPE_PADDING:
947                 break;
948
949         case RINGBUF_TYPE_TIME_EXTEND:
950                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
951                 break;
952
953         case RINGBUF_TYPE_TIME_STAMP:
954                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
955                 break;
956
957         case RINGBUF_TYPE_DATA:
958                 length -= RB_EVNT_HDR_SIZE;
959                 if (length > RB_MAX_SMALL_DATA) {
960                         event->len = 0;
961                         event->array[0] = length;
962                 } else
963                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
964                 break;
965         default:
966                 BUG();
967         }
968 }
969
970 static unsigned rb_calculate_event_length(unsigned length)
971 {
972         struct ring_buffer_event event; /* Used only for sizeof array */
973
974         /* zero length can cause confusions */
975         if (!length)
976                 length = 1;
977
978         if (length > RB_MAX_SMALL_DATA)
979                 length += sizeof(event.array[0]);
980
981         length += RB_EVNT_HDR_SIZE;
982         length = ALIGN(length, RB_ALIGNMENT);
983
984         return length;
985 }
986
987 static struct ring_buffer_event *
988 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
989                   unsigned type, unsigned long length, u64 *ts)
990 {
991         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
992         unsigned long tail, write;
993         struct ring_buffer *buffer = cpu_buffer->buffer;
994         struct ring_buffer_event *event;
995         unsigned long flags;
996         bool lock_taken = false;
997
998         commit_page = cpu_buffer->commit_page;
999         /* we just need to protect against interrupts */
1000         barrier();
1001         tail_page = cpu_buffer->tail_page;
1002         write = local_add_return(length, &tail_page->write);
1003         tail = write - length;
1004
1005         /* See if we shot pass the end of this buffer page */
1006         if (write > BUF_PAGE_SIZE) {
1007                 struct buffer_page *next_page = tail_page;
1008
1009                 local_irq_save(flags);
1010                 /*
1011                  * Since the write to the buffer is still not
1012                  * fully lockless, we must be careful with NMIs.
1013                  * The locks in the writers are taken when a write
1014                  * crosses to a new page. The locks protect against
1015                  * races with the readers (this will soon be fixed
1016                  * with a lockless solution).
1017                  *
1018                  * Because we can not protect against NMIs, and we
1019                  * want to keep traces reentrant, we need to manage
1020                  * what happens when we are in an NMI.
1021                  *
1022                  * NMIs can happen after we take the lock.
1023                  * If we are in an NMI, only take the lock
1024                  * if it is not already taken. Otherwise
1025                  * simply fail.
1026                  */
1027                 if (unlikely(in_nmi())) {
1028                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1029                                 goto out_reset;
1030                 } else
1031                         __raw_spin_lock(&cpu_buffer->lock);
1032
1033                 lock_taken = true;
1034
1035                 rb_inc_page(cpu_buffer, &next_page);
1036
1037                 head_page = cpu_buffer->head_page;
1038                 reader_page = cpu_buffer->reader_page;
1039
1040                 /* we grabbed the lock before incrementing */
1041                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1042                         goto out_reset;
1043
1044                 /*
1045                  * If for some reason, we had an interrupt storm that made
1046                  * it all the way around the buffer, bail, and warn
1047                  * about it.
1048                  */
1049                 if (unlikely(next_page == commit_page)) {
1050                         WARN_ON_ONCE(1);
1051                         goto out_reset;
1052                 }
1053
1054                 if (next_page == head_page) {
1055                         if (!(buffer->flags & RB_FL_OVERWRITE))
1056                                 goto out_reset;
1057
1058                         /* tail_page has not moved yet? */
1059                         if (tail_page == cpu_buffer->tail_page) {
1060                                 /* count overflows */
1061                                 rb_update_overflow(cpu_buffer);
1062
1063                                 rb_inc_page(cpu_buffer, &head_page);
1064                                 cpu_buffer->head_page = head_page;
1065                                 cpu_buffer->head_page->read = 0;
1066                         }
1067                 }
1068
1069                 /*
1070                  * If the tail page is still the same as what we think
1071                  * it is, then it is up to us to update the tail
1072                  * pointer.
1073                  */
1074                 if (tail_page == cpu_buffer->tail_page) {
1075                         local_set(&next_page->write, 0);
1076                         local_set(&next_page->page->commit, 0);
1077                         cpu_buffer->tail_page = next_page;
1078
1079                         /* reread the time stamp */
1080                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1081                         cpu_buffer->tail_page->page->time_stamp = *ts;
1082                 }
1083
1084                 /*
1085                  * The actual tail page has moved forward.
1086                  */
1087                 if (tail < BUF_PAGE_SIZE) {
1088                         /* Mark the rest of the page with padding */
1089                         event = __rb_page_index(tail_page, tail);
1090                         event->type = RINGBUF_TYPE_PADDING;
1091                 }
1092
1093                 if (tail <= BUF_PAGE_SIZE)
1094                         /* Set the write back to the previous setting */
1095                         local_set(&tail_page->write, tail);
1096
1097                 /*
1098                  * If this was a commit entry that failed,
1099                  * increment that too
1100                  */
1101                 if (tail_page == cpu_buffer->commit_page &&
1102                     tail == rb_commit_index(cpu_buffer)) {
1103                         rb_set_commit_to_write(cpu_buffer);
1104                 }
1105
1106                 __raw_spin_unlock(&cpu_buffer->lock);
1107                 local_irq_restore(flags);
1108
1109                 /* fail and let the caller try again */
1110                 return ERR_PTR(-EAGAIN);
1111         }
1112
1113         /* We reserved something on the buffer */
1114
1115         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1116                 return NULL;
1117
1118         event = __rb_page_index(tail_page, tail);
1119         rb_update_event(event, type, length);
1120
1121         /*
1122          * If this is a commit and the tail is zero, then update
1123          * this page's time stamp.
1124          */
1125         if (!tail && rb_is_commit(cpu_buffer, event))
1126                 cpu_buffer->commit_page->page->time_stamp = *ts;
1127
1128         return event;
1129
1130  out_reset:
1131         /* reset write */
1132         if (tail <= BUF_PAGE_SIZE)
1133                 local_set(&tail_page->write, tail);
1134
1135         if (likely(lock_taken))
1136                 __raw_spin_unlock(&cpu_buffer->lock);
1137         local_irq_restore(flags);
1138         return NULL;
1139 }
1140
1141 static int
1142 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1143                   u64 *ts, u64 *delta)
1144 {
1145         struct ring_buffer_event *event;
1146         static int once;
1147         int ret;
1148
1149         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1150                 printk(KERN_WARNING "Delta way too big! %llu"
1151                        " ts=%llu write stamp = %llu\n",
1152                        (unsigned long long)*delta,
1153                        (unsigned long long)*ts,
1154                        (unsigned long long)cpu_buffer->write_stamp);
1155                 WARN_ON(1);
1156         }
1157
1158         /*
1159          * The delta is too big, we to add a
1160          * new timestamp.
1161          */
1162         event = __rb_reserve_next(cpu_buffer,
1163                                   RINGBUF_TYPE_TIME_EXTEND,
1164                                   RB_LEN_TIME_EXTEND,
1165                                   ts);
1166         if (!event)
1167                 return -EBUSY;
1168
1169         if (PTR_ERR(event) == -EAGAIN)
1170                 return -EAGAIN;
1171
1172         /* Only a commited time event can update the write stamp */
1173         if (rb_is_commit(cpu_buffer, event)) {
1174                 /*
1175                  * If this is the first on the page, then we need to
1176                  * update the page itself, and just put in a zero.
1177                  */
1178                 if (rb_event_index(event)) {
1179                         event->time_delta = *delta & TS_MASK;
1180                         event->array[0] = *delta >> TS_SHIFT;
1181                 } else {
1182                         cpu_buffer->commit_page->page->time_stamp = *ts;
1183                         event->time_delta = 0;
1184                         event->array[0] = 0;
1185                 }
1186                 cpu_buffer->write_stamp = *ts;
1187                 /* let the caller know this was the commit */
1188                 ret = 1;
1189         } else {
1190                 /* Darn, this is just wasted space */
1191                 event->time_delta = 0;
1192                 event->array[0] = 0;
1193                 ret = 0;
1194         }
1195
1196         *delta = 0;
1197
1198         return ret;
1199 }
1200
1201 static struct ring_buffer_event *
1202 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1203                       unsigned type, unsigned long length)
1204 {
1205         struct ring_buffer_event *event;
1206         u64 ts, delta;
1207         int commit = 0;
1208         int nr_loops = 0;
1209
1210  again:
1211         /*
1212          * We allow for interrupts to reenter here and do a trace.
1213          * If one does, it will cause this original code to loop
1214          * back here. Even with heavy interrupts happening, this
1215          * should only happen a few times in a row. If this happens
1216          * 1000 times in a row, there must be either an interrupt
1217          * storm or we have something buggy.
1218          * Bail!
1219          */
1220         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1221                 return NULL;
1222
1223         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1224
1225         /*
1226          * Only the first commit can update the timestamp.
1227          * Yes there is a race here. If an interrupt comes in
1228          * just after the conditional and it traces too, then it
1229          * will also check the deltas. More than one timestamp may
1230          * also be made. But only the entry that did the actual
1231          * commit will be something other than zero.
1232          */
1233         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1234             rb_page_write(cpu_buffer->tail_page) ==
1235             rb_commit_index(cpu_buffer)) {
1236
1237                 delta = ts - cpu_buffer->write_stamp;
1238
1239                 /* make sure this delta is calculated here */
1240                 barrier();
1241
1242                 /* Did the write stamp get updated already? */
1243                 if (unlikely(ts < cpu_buffer->write_stamp))
1244                         delta = 0;
1245
1246                 if (test_time_stamp(delta)) {
1247
1248                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1249
1250                         if (commit == -EBUSY)
1251                                 return NULL;
1252
1253                         if (commit == -EAGAIN)
1254                                 goto again;
1255
1256                         RB_WARN_ON(cpu_buffer, commit < 0);
1257                 }
1258         } else
1259                 /* Non commits have zero deltas */
1260                 delta = 0;
1261
1262         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1263         if (PTR_ERR(event) == -EAGAIN)
1264                 goto again;
1265
1266         if (!event) {
1267                 if (unlikely(commit))
1268                         /*
1269                          * Ouch! We needed a timestamp and it was commited. But
1270                          * we didn't get our event reserved.
1271                          */
1272                         rb_set_commit_to_write(cpu_buffer);
1273                 return NULL;
1274         }
1275
1276         /*
1277          * If the timestamp was commited, make the commit our entry
1278          * now so that we will update it when needed.
1279          */
1280         if (commit)
1281                 rb_set_commit_event(cpu_buffer, event);
1282         else if (!rb_is_commit(cpu_buffer, event))
1283                 delta = 0;
1284
1285         event->time_delta = delta;
1286
1287         return event;
1288 }
1289
1290 static DEFINE_PER_CPU(int, rb_need_resched);
1291
1292 /**
1293  * ring_buffer_lock_reserve - reserve a part of the buffer
1294  * @buffer: the ring buffer to reserve from
1295  * @length: the length of the data to reserve (excluding event header)
1296  *
1297  * Returns a reseverd event on the ring buffer to copy directly to.
1298  * The user of this interface will need to get the body to write into
1299  * and can use the ring_buffer_event_data() interface.
1300  *
1301  * The length is the length of the data needed, not the event length
1302  * which also includes the event header.
1303  *
1304  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1305  * If NULL is returned, then nothing has been allocated or locked.
1306  */
1307 struct ring_buffer_event *
1308 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1309 {
1310         struct ring_buffer_per_cpu *cpu_buffer;
1311         struct ring_buffer_event *event;
1312         int cpu, resched;
1313
1314         if (ring_buffer_flags != RB_BUFFERS_ON)
1315                 return NULL;
1316
1317         if (atomic_read(&buffer->record_disabled))
1318                 return NULL;
1319
1320         /* If we are tracing schedule, we don't want to recurse */
1321         resched = ftrace_preempt_disable();
1322
1323         cpu = raw_smp_processor_id();
1324
1325         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1326                 goto out;
1327
1328         cpu_buffer = buffer->buffers[cpu];
1329
1330         if (atomic_read(&cpu_buffer->record_disabled))
1331                 goto out;
1332
1333         length = rb_calculate_event_length(length);
1334         if (length > BUF_PAGE_SIZE)
1335                 goto out;
1336
1337         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1338         if (!event)
1339                 goto out;
1340
1341         /*
1342          * Need to store resched state on this cpu.
1343          * Only the first needs to.
1344          */
1345
1346         if (preempt_count() == 1)
1347                 per_cpu(rb_need_resched, cpu) = resched;
1348
1349         return event;
1350
1351  out:
1352         ftrace_preempt_enable(resched);
1353         return NULL;
1354 }
1355 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1356
1357 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1358                       struct ring_buffer_event *event)
1359 {
1360         cpu_buffer->entries++;
1361
1362         /* Only process further if we own the commit */
1363         if (!rb_is_commit(cpu_buffer, event))
1364                 return;
1365
1366         cpu_buffer->write_stamp += event->time_delta;
1367
1368         rb_set_commit_to_write(cpu_buffer);
1369 }
1370
1371 /**
1372  * ring_buffer_unlock_commit - commit a reserved
1373  * @buffer: The buffer to commit to
1374  * @event: The event pointer to commit.
1375  *
1376  * This commits the data to the ring buffer, and releases any locks held.
1377  *
1378  * Must be paired with ring_buffer_lock_reserve.
1379  */
1380 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1381                               struct ring_buffer_event *event)
1382 {
1383         struct ring_buffer_per_cpu *cpu_buffer;
1384         int cpu = raw_smp_processor_id();
1385
1386         cpu_buffer = buffer->buffers[cpu];
1387
1388         rb_commit(cpu_buffer, event);
1389
1390         /*
1391          * Only the last preempt count needs to restore preemption.
1392          */
1393         if (preempt_count() == 1)
1394                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1395         else
1396                 preempt_enable_no_resched_notrace();
1397
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1401
1402 /**
1403  * ring_buffer_write - write data to the buffer without reserving
1404  * @buffer: The ring buffer to write to.
1405  * @length: The length of the data being written (excluding the event header)
1406  * @data: The data to write to the buffer.
1407  *
1408  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1409  * one function. If you already have the data to write to the buffer, it
1410  * may be easier to simply call this function.
1411  *
1412  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1413  * and not the length of the event which would hold the header.
1414  */
1415 int ring_buffer_write(struct ring_buffer *buffer,
1416                         unsigned long length,
1417                         void *data)
1418 {
1419         struct ring_buffer_per_cpu *cpu_buffer;
1420         struct ring_buffer_event *event;
1421         unsigned long event_length;
1422         void *body;
1423         int ret = -EBUSY;
1424         int cpu, resched;
1425
1426         if (ring_buffer_flags != RB_BUFFERS_ON)
1427                 return -EBUSY;
1428
1429         if (atomic_read(&buffer->record_disabled))
1430                 return -EBUSY;
1431
1432         resched = ftrace_preempt_disable();
1433
1434         cpu = raw_smp_processor_id();
1435
1436         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1437                 goto out;
1438
1439         cpu_buffer = buffer->buffers[cpu];
1440
1441         if (atomic_read(&cpu_buffer->record_disabled))
1442                 goto out;
1443
1444         event_length = rb_calculate_event_length(length);
1445         event = rb_reserve_next_event(cpu_buffer,
1446                                       RINGBUF_TYPE_DATA, event_length);
1447         if (!event)
1448                 goto out;
1449
1450         body = rb_event_data(event);
1451
1452         memcpy(body, data, length);
1453
1454         rb_commit(cpu_buffer, event);
1455
1456         ret = 0;
1457  out:
1458         ftrace_preempt_enable(resched);
1459
1460         return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(ring_buffer_write);
1463
1464 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1465 {
1466         struct buffer_page *reader = cpu_buffer->reader_page;
1467         struct buffer_page *head = cpu_buffer->head_page;
1468         struct buffer_page *commit = cpu_buffer->commit_page;
1469
1470         return reader->read == rb_page_commit(reader) &&
1471                 (commit == reader ||
1472                  (commit == head &&
1473                   head->read == rb_page_commit(commit)));
1474 }
1475
1476 /**
1477  * ring_buffer_record_disable - stop all writes into the buffer
1478  * @buffer: The ring buffer to stop writes to.
1479  *
1480  * This prevents all writes to the buffer. Any attempt to write
1481  * to the buffer after this will fail and return NULL.
1482  *
1483  * The caller should call synchronize_sched() after this.
1484  */
1485 void ring_buffer_record_disable(struct ring_buffer *buffer)
1486 {
1487         atomic_inc(&buffer->record_disabled);
1488 }
1489 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1490
1491 /**
1492  * ring_buffer_record_enable - enable writes to the buffer
1493  * @buffer: The ring buffer to enable writes
1494  *
1495  * Note, multiple disables will need the same number of enables
1496  * to truely enable the writing (much like preempt_disable).
1497  */
1498 void ring_buffer_record_enable(struct ring_buffer *buffer)
1499 {
1500         atomic_dec(&buffer->record_disabled);
1501 }
1502 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1503
1504 /**
1505  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1506  * @buffer: The ring buffer to stop writes to.
1507  * @cpu: The CPU buffer to stop
1508  *
1509  * This prevents all writes to the buffer. Any attempt to write
1510  * to the buffer after this will fail and return NULL.
1511  *
1512  * The caller should call synchronize_sched() after this.
1513  */
1514 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1515 {
1516         struct ring_buffer_per_cpu *cpu_buffer;
1517
1518         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1519                 return;
1520
1521         cpu_buffer = buffer->buffers[cpu];
1522         atomic_inc(&cpu_buffer->record_disabled);
1523 }
1524 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1525
1526 /**
1527  * ring_buffer_record_enable_cpu - enable writes to the buffer
1528  * @buffer: The ring buffer to enable writes
1529  * @cpu: The CPU to enable.
1530  *
1531  * Note, multiple disables will need the same number of enables
1532  * to truely enable the writing (much like preempt_disable).
1533  */
1534 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1535 {
1536         struct ring_buffer_per_cpu *cpu_buffer;
1537
1538         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1539                 return;
1540
1541         cpu_buffer = buffer->buffers[cpu];
1542         atomic_dec(&cpu_buffer->record_disabled);
1543 }
1544 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1545
1546 /**
1547  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1548  * @buffer: The ring buffer
1549  * @cpu: The per CPU buffer to get the entries from.
1550  */
1551 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1552 {
1553         struct ring_buffer_per_cpu *cpu_buffer;
1554
1555         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1556                 return 0;
1557
1558         cpu_buffer = buffer->buffers[cpu];
1559         return cpu_buffer->entries;
1560 }
1561 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1562
1563 /**
1564  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1565  * @buffer: The ring buffer
1566  * @cpu: The per CPU buffer to get the number of overruns from
1567  */
1568 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1569 {
1570         struct ring_buffer_per_cpu *cpu_buffer;
1571
1572         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1573                 return 0;
1574
1575         cpu_buffer = buffer->buffers[cpu];
1576         return cpu_buffer->overrun;
1577 }
1578 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1579
1580 /**
1581  * ring_buffer_entries - get the number of entries in a buffer
1582  * @buffer: The ring buffer
1583  *
1584  * Returns the total number of entries in the ring buffer
1585  * (all CPU entries)
1586  */
1587 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1588 {
1589         struct ring_buffer_per_cpu *cpu_buffer;
1590         unsigned long entries = 0;
1591         int cpu;
1592
1593         /* if you care about this being correct, lock the buffer */
1594         for_each_buffer_cpu(buffer, cpu) {
1595                 cpu_buffer = buffer->buffers[cpu];
1596                 entries += cpu_buffer->entries;
1597         }
1598
1599         return entries;
1600 }
1601 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1602
1603 /**
1604  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1605  * @buffer: The ring buffer
1606  *
1607  * Returns the total number of overruns in the ring buffer
1608  * (all CPU entries)
1609  */
1610 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1611 {
1612         struct ring_buffer_per_cpu *cpu_buffer;
1613         unsigned long overruns = 0;
1614         int cpu;
1615
1616         /* if you care about this being correct, lock the buffer */
1617         for_each_buffer_cpu(buffer, cpu) {
1618                 cpu_buffer = buffer->buffers[cpu];
1619                 overruns += cpu_buffer->overrun;
1620         }
1621
1622         return overruns;
1623 }
1624 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1625
1626 static void rb_iter_reset(struct ring_buffer_iter *iter)
1627 {
1628         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1629
1630         /* Iterator usage is expected to have record disabled */
1631         if (list_empty(&cpu_buffer->reader_page->list)) {
1632                 iter->head_page = cpu_buffer->head_page;
1633                 iter->head = cpu_buffer->head_page->read;
1634         } else {
1635                 iter->head_page = cpu_buffer->reader_page;
1636                 iter->head = cpu_buffer->reader_page->read;
1637         }
1638         if (iter->head)
1639                 iter->read_stamp = cpu_buffer->read_stamp;
1640         else
1641                 iter->read_stamp = iter->head_page->page->time_stamp;
1642 }
1643
1644 /**
1645  * ring_buffer_iter_reset - reset an iterator
1646  * @iter: The iterator to reset
1647  *
1648  * Resets the iterator, so that it will start from the beginning
1649  * again.
1650  */
1651 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1652 {
1653         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1654         unsigned long flags;
1655
1656         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1657         rb_iter_reset(iter);
1658         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1659 }
1660 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1661
1662 /**
1663  * ring_buffer_iter_empty - check if an iterator has no more to read
1664  * @iter: The iterator to check
1665  */
1666 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1667 {
1668         struct ring_buffer_per_cpu *cpu_buffer;
1669
1670         cpu_buffer = iter->cpu_buffer;
1671
1672         return iter->head_page == cpu_buffer->commit_page &&
1673                 iter->head == rb_commit_index(cpu_buffer);
1674 }
1675 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1676
1677 static void
1678 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1679                      struct ring_buffer_event *event)
1680 {
1681         u64 delta;
1682
1683         switch (event->type) {
1684         case RINGBUF_TYPE_PADDING:
1685                 return;
1686
1687         case RINGBUF_TYPE_TIME_EXTEND:
1688                 delta = event->array[0];
1689                 delta <<= TS_SHIFT;
1690                 delta += event->time_delta;
1691                 cpu_buffer->read_stamp += delta;
1692                 return;
1693
1694         case RINGBUF_TYPE_TIME_STAMP:
1695                 /* FIXME: not implemented */
1696                 return;
1697
1698         case RINGBUF_TYPE_DATA:
1699                 cpu_buffer->read_stamp += event->time_delta;
1700                 return;
1701
1702         default:
1703                 BUG();
1704         }
1705         return;
1706 }
1707
1708 static void
1709 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1710                           struct ring_buffer_event *event)
1711 {
1712         u64 delta;
1713
1714         switch (event->type) {
1715         case RINGBUF_TYPE_PADDING:
1716                 return;
1717
1718         case RINGBUF_TYPE_TIME_EXTEND:
1719                 delta = event->array[0];
1720                 delta <<= TS_SHIFT;
1721                 delta += event->time_delta;
1722                 iter->read_stamp += delta;
1723                 return;
1724
1725         case RINGBUF_TYPE_TIME_STAMP:
1726                 /* FIXME: not implemented */
1727                 return;
1728
1729         case RINGBUF_TYPE_DATA:
1730                 iter->read_stamp += event->time_delta;
1731                 return;
1732
1733         default:
1734                 BUG();
1735         }
1736         return;
1737 }
1738
1739 static struct buffer_page *
1740 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1741 {
1742         struct buffer_page *reader = NULL;
1743         unsigned long flags;
1744         int nr_loops = 0;
1745
1746         local_irq_save(flags);
1747         __raw_spin_lock(&cpu_buffer->lock);
1748
1749  again:
1750         /*
1751          * This should normally only loop twice. But because the
1752          * start of the reader inserts an empty page, it causes
1753          * a case where we will loop three times. There should be no
1754          * reason to loop four times (that I know of).
1755          */
1756         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1757                 reader = NULL;
1758                 goto out;
1759         }
1760
1761         reader = cpu_buffer->reader_page;
1762
1763         /* If there's more to read, return this page */
1764         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1765                 goto out;
1766
1767         /* Never should we have an index greater than the size */
1768         if (RB_WARN_ON(cpu_buffer,
1769                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1770                 goto out;
1771
1772         /* check if we caught up to the tail */
1773         reader = NULL;
1774         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1775                 goto out;
1776
1777         /*
1778          * Splice the empty reader page into the list around the head.
1779          * Reset the reader page to size zero.
1780          */
1781
1782         reader = cpu_buffer->head_page;
1783         cpu_buffer->reader_page->list.next = reader->list.next;
1784         cpu_buffer->reader_page->list.prev = reader->list.prev;
1785
1786         local_set(&cpu_buffer->reader_page->write, 0);
1787         local_set(&cpu_buffer->reader_page->page->commit, 0);
1788
1789         /* Make the reader page now replace the head */
1790         reader->list.prev->next = &cpu_buffer->reader_page->list;
1791         reader->list.next->prev = &cpu_buffer->reader_page->list;
1792
1793         /*
1794          * If the tail is on the reader, then we must set the head
1795          * to the inserted page, otherwise we set it one before.
1796          */
1797         cpu_buffer->head_page = cpu_buffer->reader_page;
1798
1799         if (cpu_buffer->commit_page != reader)
1800                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1801
1802         /* Finally update the reader page to the new head */
1803         cpu_buffer->reader_page = reader;
1804         rb_reset_reader_page(cpu_buffer);
1805
1806         goto again;
1807
1808  out:
1809         __raw_spin_unlock(&cpu_buffer->lock);
1810         local_irq_restore(flags);
1811
1812         return reader;
1813 }
1814
1815 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1816 {
1817         struct ring_buffer_event *event;
1818         struct buffer_page *reader;
1819         unsigned length;
1820
1821         reader = rb_get_reader_page(cpu_buffer);
1822
1823         /* This function should not be called when buffer is empty */
1824         if (RB_WARN_ON(cpu_buffer, !reader))
1825                 return;
1826
1827         event = rb_reader_event(cpu_buffer);
1828
1829         if (event->type == RINGBUF_TYPE_DATA)
1830                 cpu_buffer->entries--;
1831
1832         rb_update_read_stamp(cpu_buffer, event);
1833
1834         length = rb_event_length(event);
1835         cpu_buffer->reader_page->read += length;
1836 }
1837
1838 static void rb_advance_iter(struct ring_buffer_iter *iter)
1839 {
1840         struct ring_buffer *buffer;
1841         struct ring_buffer_per_cpu *cpu_buffer;
1842         struct ring_buffer_event *event;
1843         unsigned length;
1844
1845         cpu_buffer = iter->cpu_buffer;
1846         buffer = cpu_buffer->buffer;
1847
1848         /*
1849          * Check if we are at the end of the buffer.
1850          */
1851         if (iter->head >= rb_page_size(iter->head_page)) {
1852                 if (RB_WARN_ON(buffer,
1853                                iter->head_page == cpu_buffer->commit_page))
1854                         return;
1855                 rb_inc_iter(iter);
1856                 return;
1857         }
1858
1859         event = rb_iter_head_event(iter);
1860
1861         length = rb_event_length(event);
1862
1863         /*
1864          * This should not be called to advance the header if we are
1865          * at the tail of the buffer.
1866          */
1867         if (RB_WARN_ON(cpu_buffer,
1868                        (iter->head_page == cpu_buffer->commit_page) &&
1869                        (iter->head + length > rb_commit_index(cpu_buffer))))
1870                 return;
1871
1872         rb_update_iter_read_stamp(iter, event);
1873
1874         iter->head += length;
1875
1876         /* check for end of page padding */
1877         if ((iter->head >= rb_page_size(iter->head_page)) &&
1878             (iter->head_page != cpu_buffer->commit_page))
1879                 rb_advance_iter(iter);
1880 }
1881
1882 static struct ring_buffer_event *
1883 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1884 {
1885         struct ring_buffer_per_cpu *cpu_buffer;
1886         struct ring_buffer_event *event;
1887         struct buffer_page *reader;
1888         int nr_loops = 0;
1889
1890         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1891                 return NULL;
1892
1893         cpu_buffer = buffer->buffers[cpu];
1894
1895  again:
1896         /*
1897          * We repeat when a timestamp is encountered. It is possible
1898          * to get multiple timestamps from an interrupt entering just
1899          * as one timestamp is about to be written. The max times
1900          * that this can happen is the number of nested interrupts we
1901          * can have.  Nesting 10 deep of interrupts is clearly
1902          * an anomaly.
1903          */
1904         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1905                 return NULL;
1906
1907         reader = rb_get_reader_page(cpu_buffer);
1908         if (!reader)
1909                 return NULL;
1910
1911         event = rb_reader_event(cpu_buffer);
1912
1913         switch (event->type) {
1914         case RINGBUF_TYPE_PADDING:
1915                 RB_WARN_ON(cpu_buffer, 1);
1916                 rb_advance_reader(cpu_buffer);
1917                 return NULL;
1918
1919         case RINGBUF_TYPE_TIME_EXTEND:
1920                 /* Internal data, OK to advance */
1921                 rb_advance_reader(cpu_buffer);
1922                 goto again;
1923
1924         case RINGBUF_TYPE_TIME_STAMP:
1925                 /* FIXME: not implemented */
1926                 rb_advance_reader(cpu_buffer);
1927                 goto again;
1928
1929         case RINGBUF_TYPE_DATA:
1930                 if (ts) {
1931                         *ts = cpu_buffer->read_stamp + event->time_delta;
1932                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1933                 }
1934                 return event;
1935
1936         default:
1937                 BUG();
1938         }
1939
1940         return NULL;
1941 }
1942 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1943
1944 static struct ring_buffer_event *
1945 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1946 {
1947         struct ring_buffer *buffer;
1948         struct ring_buffer_per_cpu *cpu_buffer;
1949         struct ring_buffer_event *event;
1950         int nr_loops = 0;
1951
1952         if (ring_buffer_iter_empty(iter))
1953                 return NULL;
1954
1955         cpu_buffer = iter->cpu_buffer;
1956         buffer = cpu_buffer->buffer;
1957
1958  again:
1959         /*
1960          * We repeat when a timestamp is encountered. It is possible
1961          * to get multiple timestamps from an interrupt entering just
1962          * as one timestamp is about to be written. The max times
1963          * that this can happen is the number of nested interrupts we
1964          * can have. Nesting 10 deep of interrupts is clearly
1965          * an anomaly.
1966          */
1967         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1968                 return NULL;
1969
1970         if (rb_per_cpu_empty(cpu_buffer))
1971                 return NULL;
1972
1973         event = rb_iter_head_event(iter);
1974
1975         switch (event->type) {
1976         case RINGBUF_TYPE_PADDING:
1977                 rb_inc_iter(iter);
1978                 goto again;
1979
1980         case RINGBUF_TYPE_TIME_EXTEND:
1981                 /* Internal data, OK to advance */
1982                 rb_advance_iter(iter);
1983                 goto again;
1984
1985         case RINGBUF_TYPE_TIME_STAMP:
1986                 /* FIXME: not implemented */
1987                 rb_advance_iter(iter);
1988                 goto again;
1989
1990         case RINGBUF_TYPE_DATA:
1991                 if (ts) {
1992                         *ts = iter->read_stamp + event->time_delta;
1993                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1994                 }
1995                 return event;
1996
1997         default:
1998                 BUG();
1999         }
2000
2001         return NULL;
2002 }
2003 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2004
2005 /**
2006  * ring_buffer_peek - peek at the next event to be read
2007  * @buffer: The ring buffer to read
2008  * @cpu: The cpu to peak at
2009  * @ts: The timestamp counter of this event.
2010  *
2011  * This will return the event that will be read next, but does
2012  * not consume the data.
2013  */
2014 struct ring_buffer_event *
2015 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2016 {
2017         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2018         struct ring_buffer_event *event;
2019         unsigned long flags;
2020
2021         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2022         event = rb_buffer_peek(buffer, cpu, ts);
2023         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2024
2025         return event;
2026 }
2027
2028 /**
2029  * ring_buffer_iter_peek - peek at the next event to be read
2030  * @iter: The ring buffer iterator
2031  * @ts: The timestamp counter of this event.
2032  *
2033  * This will return the event that will be read next, but does
2034  * not increment the iterator.
2035  */
2036 struct ring_buffer_event *
2037 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2038 {
2039         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2040         struct ring_buffer_event *event;
2041         unsigned long flags;
2042
2043         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2044         event = rb_iter_peek(iter, ts);
2045         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2046
2047         return event;
2048 }
2049
2050 /**
2051  * ring_buffer_consume - return an event and consume it
2052  * @buffer: The ring buffer to get the next event from
2053  *
2054  * Returns the next event in the ring buffer, and that event is consumed.
2055  * Meaning, that sequential reads will keep returning a different event,
2056  * and eventually empty the ring buffer if the producer is slower.
2057  */
2058 struct ring_buffer_event *
2059 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2060 {
2061         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2062         struct ring_buffer_event *event;
2063         unsigned long flags;
2064
2065         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2066                 return NULL;
2067
2068         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2069
2070         event = rb_buffer_peek(buffer, cpu, ts);
2071         if (!event)
2072                 goto out;
2073
2074         rb_advance_reader(cpu_buffer);
2075
2076  out:
2077         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2078
2079         return event;
2080 }
2081 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2082
2083 /**
2084  * ring_buffer_read_start - start a non consuming read of the buffer
2085  * @buffer: The ring buffer to read from
2086  * @cpu: The cpu buffer to iterate over
2087  *
2088  * This starts up an iteration through the buffer. It also disables
2089  * the recording to the buffer until the reading is finished.
2090  * This prevents the reading from being corrupted. This is not
2091  * a consuming read, so a producer is not expected.
2092  *
2093  * Must be paired with ring_buffer_finish.
2094  */
2095 struct ring_buffer_iter *
2096 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2097 {
2098         struct ring_buffer_per_cpu *cpu_buffer;
2099         struct ring_buffer_iter *iter;
2100         unsigned long flags;
2101
2102         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2103                 return NULL;
2104
2105         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2106         if (!iter)
2107                 return NULL;
2108
2109         cpu_buffer = buffer->buffers[cpu];
2110
2111         iter->cpu_buffer = cpu_buffer;
2112
2113         atomic_inc(&cpu_buffer->record_disabled);
2114         synchronize_sched();
2115
2116         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2117         __raw_spin_lock(&cpu_buffer->lock);
2118         rb_iter_reset(iter);
2119         __raw_spin_unlock(&cpu_buffer->lock);
2120         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2121
2122         return iter;
2123 }
2124 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2125
2126 /**
2127  * ring_buffer_finish - finish reading the iterator of the buffer
2128  * @iter: The iterator retrieved by ring_buffer_start
2129  *
2130  * This re-enables the recording to the buffer, and frees the
2131  * iterator.
2132  */
2133 void
2134 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2135 {
2136         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2137
2138         atomic_dec(&cpu_buffer->record_disabled);
2139         kfree(iter);
2140 }
2141 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2142
2143 /**
2144  * ring_buffer_read - read the next item in the ring buffer by the iterator
2145  * @iter: The ring buffer iterator
2146  * @ts: The time stamp of the event read.
2147  *
2148  * This reads the next event in the ring buffer and increments the iterator.
2149  */
2150 struct ring_buffer_event *
2151 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2152 {
2153         struct ring_buffer_event *event;
2154         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2155         unsigned long flags;
2156
2157         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2158         event = rb_iter_peek(iter, ts);
2159         if (!event)
2160                 goto out;
2161
2162         rb_advance_iter(iter);
2163  out:
2164         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2165
2166         return event;
2167 }
2168 EXPORT_SYMBOL_GPL(ring_buffer_read);
2169
2170 /**
2171  * ring_buffer_size - return the size of the ring buffer (in bytes)
2172  * @buffer: The ring buffer.
2173  */
2174 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2175 {
2176         return BUF_PAGE_SIZE * buffer->pages;
2177 }
2178 EXPORT_SYMBOL_GPL(ring_buffer_size);
2179
2180 static void
2181 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2182 {
2183         cpu_buffer->head_page
2184                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2185         local_set(&cpu_buffer->head_page->write, 0);
2186         local_set(&cpu_buffer->head_page->page->commit, 0);
2187
2188         cpu_buffer->head_page->read = 0;
2189
2190         cpu_buffer->tail_page = cpu_buffer->head_page;
2191         cpu_buffer->commit_page = cpu_buffer->head_page;
2192
2193         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2194         local_set(&cpu_buffer->reader_page->write, 0);
2195         local_set(&cpu_buffer->reader_page->page->commit, 0);
2196         cpu_buffer->reader_page->read = 0;
2197
2198         cpu_buffer->overrun = 0;
2199         cpu_buffer->entries = 0;
2200
2201         cpu_buffer->write_stamp = 0;
2202         cpu_buffer->read_stamp = 0;
2203 }
2204
2205 /**
2206  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2207  * @buffer: The ring buffer to reset a per cpu buffer of
2208  * @cpu: The CPU buffer to be reset
2209  */
2210 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2211 {
2212         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2213         unsigned long flags;
2214
2215         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2216                 return;
2217
2218         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2219
2220         __raw_spin_lock(&cpu_buffer->lock);
2221
2222         rb_reset_cpu(cpu_buffer);
2223
2224         __raw_spin_unlock(&cpu_buffer->lock);
2225
2226         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2227 }
2228 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2229
2230 /**
2231  * ring_buffer_reset - reset a ring buffer
2232  * @buffer: The ring buffer to reset all cpu buffers
2233  */
2234 void ring_buffer_reset(struct ring_buffer *buffer)
2235 {
2236         int cpu;
2237
2238         for_each_buffer_cpu(buffer, cpu)
2239                 ring_buffer_reset_cpu(buffer, cpu);
2240 }
2241 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2242
2243 /**
2244  * rind_buffer_empty - is the ring buffer empty?
2245  * @buffer: The ring buffer to test
2246  */
2247 int ring_buffer_empty(struct ring_buffer *buffer)
2248 {
2249         struct ring_buffer_per_cpu *cpu_buffer;
2250         int cpu;
2251
2252         /* yes this is racy, but if you don't like the race, lock the buffer */
2253         for_each_buffer_cpu(buffer, cpu) {
2254                 cpu_buffer = buffer->buffers[cpu];
2255                 if (!rb_per_cpu_empty(cpu_buffer))
2256                         return 0;
2257         }
2258         return 1;
2259 }
2260 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2261
2262 /**
2263  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2264  * @buffer: The ring buffer
2265  * @cpu: The CPU buffer to test
2266  */
2267 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2268 {
2269         struct ring_buffer_per_cpu *cpu_buffer;
2270
2271         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2272                 return 1;
2273
2274         cpu_buffer = buffer->buffers[cpu];
2275         return rb_per_cpu_empty(cpu_buffer);
2276 }
2277 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2278
2279 /**
2280  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2281  * @buffer_a: One buffer to swap with
2282  * @buffer_b: The other buffer to swap with
2283  *
2284  * This function is useful for tracers that want to take a "snapshot"
2285  * of a CPU buffer and has another back up buffer lying around.
2286  * it is expected that the tracer handles the cpu buffer not being
2287  * used at the moment.
2288  */
2289 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2290                          struct ring_buffer *buffer_b, int cpu)
2291 {
2292         struct ring_buffer_per_cpu *cpu_buffer_a;
2293         struct ring_buffer_per_cpu *cpu_buffer_b;
2294
2295         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2296             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2297                 return -EINVAL;
2298
2299         /* At least make sure the two buffers are somewhat the same */
2300         if (buffer_a->pages != buffer_b->pages)
2301                 return -EINVAL;
2302
2303         if (ring_buffer_flags != RB_BUFFERS_ON)
2304                 return -EAGAIN;
2305
2306         if (atomic_read(&buffer_a->record_disabled))
2307                 return -EAGAIN;
2308
2309         if (atomic_read(&buffer_b->record_disabled))
2310                 return -EAGAIN;
2311
2312         cpu_buffer_a = buffer_a->buffers[cpu];
2313         cpu_buffer_b = buffer_b->buffers[cpu];
2314
2315         if (atomic_read(&cpu_buffer_a->record_disabled))
2316                 return -EAGAIN;
2317
2318         if (atomic_read(&cpu_buffer_b->record_disabled))
2319                 return -EAGAIN;
2320
2321         /*
2322          * We can't do a synchronize_sched here because this
2323          * function can be called in atomic context.
2324          * Normally this will be called from the same CPU as cpu.
2325          * If not it's up to the caller to protect this.
2326          */
2327         atomic_inc(&cpu_buffer_a->record_disabled);
2328         atomic_inc(&cpu_buffer_b->record_disabled);
2329
2330         buffer_a->buffers[cpu] = cpu_buffer_b;
2331         buffer_b->buffers[cpu] = cpu_buffer_a;
2332
2333         cpu_buffer_b->buffer = buffer_a;
2334         cpu_buffer_a->buffer = buffer_b;
2335
2336         atomic_dec(&cpu_buffer_a->record_disabled);
2337         atomic_dec(&cpu_buffer_b->record_disabled);
2338
2339         return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2342
2343 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2344                               struct buffer_data_page *bpage,
2345                               unsigned int offset)
2346 {
2347         struct ring_buffer_event *event;
2348         unsigned long head;
2349
2350         __raw_spin_lock(&cpu_buffer->lock);
2351         for (head = offset; head < local_read(&bpage->commit);
2352              head += rb_event_length(event)) {
2353
2354                 event = __rb_data_page_index(bpage, head);
2355                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2356                         return;
2357                 /* Only count data entries */
2358                 if (event->type != RINGBUF_TYPE_DATA)
2359                         continue;
2360                 cpu_buffer->entries--;
2361         }
2362         __raw_spin_unlock(&cpu_buffer->lock);
2363 }
2364
2365 /**
2366  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2367  * @buffer: the buffer to allocate for.
2368  *
2369  * This function is used in conjunction with ring_buffer_read_page.
2370  * When reading a full page from the ring buffer, these functions
2371  * can be used to speed up the process. The calling function should
2372  * allocate a few pages first with this function. Then when it
2373  * needs to get pages from the ring buffer, it passes the result
2374  * of this function into ring_buffer_read_page, which will swap
2375  * the page that was allocated, with the read page of the buffer.
2376  *
2377  * Returns:
2378  *  The page allocated, or NULL on error.
2379  */
2380 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2381 {
2382         unsigned long addr;
2383         struct buffer_data_page *bpage;
2384
2385         addr = __get_free_page(GFP_KERNEL);
2386         if (!addr)
2387                 return NULL;
2388
2389         bpage = (void *)addr;
2390
2391         return bpage;
2392 }
2393
2394 /**
2395  * ring_buffer_free_read_page - free an allocated read page
2396  * @buffer: the buffer the page was allocate for
2397  * @data: the page to free
2398  *
2399  * Free a page allocated from ring_buffer_alloc_read_page.
2400  */
2401 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2402 {
2403         free_page((unsigned long)data);
2404 }
2405
2406 /**
2407  * ring_buffer_read_page - extract a page from the ring buffer
2408  * @buffer: buffer to extract from
2409  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2410  * @cpu: the cpu of the buffer to extract
2411  * @full: should the extraction only happen when the page is full.
2412  *
2413  * This function will pull out a page from the ring buffer and consume it.
2414  * @data_page must be the address of the variable that was returned
2415  * from ring_buffer_alloc_read_page. This is because the page might be used
2416  * to swap with a page in the ring buffer.
2417  *
2418  * for example:
2419  *      rpage = ring_buffer_alloc_read_page(buffer);
2420  *      if (!rpage)
2421  *              return error;
2422  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2423  *      if (ret >= 0)
2424  *              process_page(rpage, ret);
2425  *
2426  * When @full is set, the function will not return true unless
2427  * the writer is off the reader page.
2428  *
2429  * Note: it is up to the calling functions to handle sleeps and wakeups.
2430  *  The ring buffer can be used anywhere in the kernel and can not
2431  *  blindly call wake_up. The layer that uses the ring buffer must be
2432  *  responsible for that.
2433  *
2434  * Returns:
2435  *  >=0 if data has been transferred, returns the offset of consumed data.
2436  *  <0 if no data has been transferred.
2437  */
2438 int ring_buffer_read_page(struct ring_buffer *buffer,
2439                             void **data_page, int cpu, int full)
2440 {
2441         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2442         struct ring_buffer_event *event;
2443         struct buffer_data_page *bpage;
2444         unsigned long flags;
2445         unsigned int read;
2446         int ret = -1;
2447
2448         if (!data_page)
2449                 return 0;
2450
2451         bpage = *data_page;
2452         if (!bpage)
2453                 return 0;
2454
2455         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2456
2457         /*
2458          * rb_buffer_peek will get the next ring buffer if
2459          * the current reader page is empty.
2460          */
2461         event = rb_buffer_peek(buffer, cpu, NULL);
2462         if (!event)
2463                 goto out;
2464
2465         /* check for data */
2466         if (!local_read(&cpu_buffer->reader_page->page->commit))
2467                 goto out;
2468
2469         read = cpu_buffer->reader_page->read;
2470         /*
2471          * If the writer is already off of the read page, then simply
2472          * switch the read page with the given page. Otherwise
2473          * we need to copy the data from the reader to the writer.
2474          */
2475         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2476                 unsigned int commit = rb_page_commit(cpu_buffer->reader_page);
2477                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2478
2479                 if (full)
2480                         goto out;
2481                 /* The writer is still on the reader page, we must copy */
2482                 memcpy(bpage->data + read, rpage->data + read, commit - read);
2483
2484                 /* consume what was read */
2485                 cpu_buffer->reader_page->read = commit;
2486
2487                 /* update bpage */
2488                 local_set(&bpage->commit, commit);
2489                 if (!read)
2490                         bpage->time_stamp = rpage->time_stamp;
2491         } else {
2492                 /* swap the pages */
2493                 rb_init_page(bpage);
2494                 bpage = cpu_buffer->reader_page->page;
2495                 cpu_buffer->reader_page->page = *data_page;
2496                 cpu_buffer->reader_page->read = 0;
2497                 *data_page = bpage;
2498         }
2499         ret = read;
2500
2501         /* update the entry counter */
2502         rb_remove_entries(cpu_buffer, bpage, read);
2503  out:
2504         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2505
2506         return ret;
2507 }
2508
2509 static ssize_t
2510 rb_simple_read(struct file *filp, char __user *ubuf,
2511                size_t cnt, loff_t *ppos)
2512 {
2513         unsigned long *p = filp->private_data;
2514         char buf[64];
2515         int r;
2516
2517         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2518                 r = sprintf(buf, "permanently disabled\n");
2519         else
2520                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2521
2522         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2523 }
2524
2525 static ssize_t
2526 rb_simple_write(struct file *filp, const char __user *ubuf,
2527                 size_t cnt, loff_t *ppos)
2528 {
2529         unsigned long *p = filp->private_data;
2530         char buf[64];
2531         unsigned long val;
2532         int ret;
2533
2534         if (cnt >= sizeof(buf))
2535                 return -EINVAL;
2536
2537         if (copy_from_user(&buf, ubuf, cnt))
2538                 return -EFAULT;
2539
2540         buf[cnt] = 0;
2541
2542         ret = strict_strtoul(buf, 10, &val);
2543         if (ret < 0)
2544                 return ret;
2545
2546         if (val)
2547                 set_bit(RB_BUFFERS_ON_BIT, p);
2548         else
2549                 clear_bit(RB_BUFFERS_ON_BIT, p);
2550
2551         (*ppos)++;
2552
2553         return cnt;
2554 }
2555
2556 static struct file_operations rb_simple_fops = {
2557         .open           = tracing_open_generic,
2558         .read           = rb_simple_read,
2559         .write          = rb_simple_write,
2560 };
2561
2562
2563 static __init int rb_init_debugfs(void)
2564 {
2565         struct dentry *d_tracer;
2566         struct dentry *entry;
2567
2568         d_tracer = tracing_init_dentry();
2569
2570         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2571                                     &ring_buffer_flags, &rb_simple_fops);
2572         if (!entry)
2573                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2574
2575         return 0;
2576 }
2577
2578 fs_initcall(rb_init_debugfs);