Merge branch 'linus' into x86/cleanups
[linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 #include "trace.h"
20
21 /*
22  * A fast way to enable or disable all ring buffers is to
23  * call tracing_on or tracing_off. Turning off the ring buffers
24  * prevents all ring buffers from being recorded to.
25  * Turning this switch on, makes it OK to write to the
26  * ring buffer, if the ring buffer is enabled itself.
27  *
28  * There's three layers that must be on in order to write
29  * to the ring buffer.
30  *
31  * 1) This global flag must be set.
32  * 2) The ring buffer must be enabled for recording.
33  * 3) The per cpu buffer must be enabled for recording.
34  *
35  * In case of an anomaly, this global flag has a bit set that
36  * will permantly disable all ring buffers.
37  */
38
39 /*
40  * Global flag to disable all recording to ring buffers
41  *  This has two bits: ON, DISABLED
42  *
43  *  ON   DISABLED
44  * ---- ----------
45  *   0      0        : ring buffers are off
46  *   1      0        : ring buffers are on
47  *   X      1        : ring buffers are permanently disabled
48  */
49
50 enum {
51         RB_BUFFERS_ON_BIT       = 0,
52         RB_BUFFERS_DISABLED_BIT = 1,
53 };
54
55 enum {
56         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
57         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
58 };
59
60 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
61
62 /**
63  * tracing_on - enable all tracing buffers
64  *
65  * This function enables all tracing buffers that may have been
66  * disabled with tracing_off.
67  */
68 void tracing_on(void)
69 {
70         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
71 }
72 EXPORT_SYMBOL_GPL(tracing_on);
73
74 /**
75  * tracing_off - turn off all tracing buffers
76  *
77  * This function stops all tracing buffers from recording data.
78  * It does not disable any overhead the tracers themselves may
79  * be causing. This function simply causes all recording to
80  * the ring buffers to fail.
81  */
82 void tracing_off(void)
83 {
84         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
85 }
86 EXPORT_SYMBOL_GPL(tracing_off);
87
88 /**
89  * tracing_off_permanent - permanently disable ring buffers
90  *
91  * This function, once called, will disable all ring buffers
92  * permanenty.
93  */
94 void tracing_off_permanent(void)
95 {
96         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
97 }
98
99 #include "trace.h"
100
101 /* Up this if you want to test the TIME_EXTENTS and normalization */
102 #define DEBUG_SHIFT 0
103
104 /* FIXME!!! */
105 u64 ring_buffer_time_stamp(int cpu)
106 {
107         u64 time;
108
109         preempt_disable_notrace();
110         /* shift to debug/test normalization and TIME_EXTENTS */
111         time = sched_clock() << DEBUG_SHIFT;
112         preempt_enable_no_resched_notrace();
113
114         return time;
115 }
116 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
117
118 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
119 {
120         /* Just stupid testing the normalize function and deltas */
121         *ts >>= DEBUG_SHIFT;
122 }
123 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
124
125 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
126 #define RB_ALIGNMENT_SHIFT      2
127 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
128 #define RB_MAX_SMALL_DATA       28
129
130 enum {
131         RB_LEN_TIME_EXTEND = 8,
132         RB_LEN_TIME_STAMP = 16,
133 };
134
135 /* inline for ring buffer fast paths */
136 static inline unsigned
137 rb_event_length(struct ring_buffer_event *event)
138 {
139         unsigned length;
140
141         switch (event->type) {
142         case RINGBUF_TYPE_PADDING:
143                 /* undefined */
144                 return -1;
145
146         case RINGBUF_TYPE_TIME_EXTEND:
147                 return RB_LEN_TIME_EXTEND;
148
149         case RINGBUF_TYPE_TIME_STAMP:
150                 return RB_LEN_TIME_STAMP;
151
152         case RINGBUF_TYPE_DATA:
153                 if (event->len)
154                         length = event->len << RB_ALIGNMENT_SHIFT;
155                 else
156                         length = event->array[0];
157                 return length + RB_EVNT_HDR_SIZE;
158         default:
159                 BUG();
160         }
161         /* not hit */
162         return 0;
163 }
164
165 /**
166  * ring_buffer_event_length - return the length of the event
167  * @event: the event to get the length of
168  */
169 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
170 {
171         unsigned length = rb_event_length(event);
172         if (event->type != RINGBUF_TYPE_DATA)
173                 return length;
174         length -= RB_EVNT_HDR_SIZE;
175         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
176                 length -= sizeof(event->array[0]);
177         return length;
178 }
179 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
180
181 /* inline for ring buffer fast paths */
182 static inline void *
183 rb_event_data(struct ring_buffer_event *event)
184 {
185         BUG_ON(event->type != RINGBUF_TYPE_DATA);
186         /* If length is in len field, then array[0] has the data */
187         if (event->len)
188                 return (void *)&event->array[0];
189         /* Otherwise length is in array[0] and array[1] has the data */
190         return (void *)&event->array[1];
191 }
192
193 /**
194  * ring_buffer_event_data - return the data of the event
195  * @event: the event to get the data from
196  */
197 void *ring_buffer_event_data(struct ring_buffer_event *event)
198 {
199         return rb_event_data(event);
200 }
201 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
202
203 #define for_each_buffer_cpu(buffer, cpu)                \
204         for_each_cpu(cpu, buffer->cpumask)
205
206 #define TS_SHIFT        27
207 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
208 #define TS_DELTA_TEST   (~TS_MASK)
209
210 struct buffer_data_page {
211         u64              time_stamp;    /* page time stamp */
212         local_t          commit;        /* write commited index */
213         unsigned char    data[];        /* data of buffer page */
214 };
215
216 struct buffer_page {
217         local_t          write;         /* index for next write */
218         unsigned         read;          /* index for next read */
219         struct list_head list;          /* list of free pages */
220         struct buffer_data_page *page;  /* Actual data page */
221 };
222
223 static void rb_init_page(struct buffer_data_page *bpage)
224 {
225         local_set(&bpage->commit, 0);
226 }
227
228 /*
229  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
230  * this issue out.
231  */
232 static inline void free_buffer_page(struct buffer_page *bpage)
233 {
234         if (bpage->page)
235                 free_page((unsigned long)bpage->page);
236         kfree(bpage);
237 }
238
239 /*
240  * We need to fit the time_stamp delta into 27 bits.
241  */
242 static inline int test_time_stamp(u64 delta)
243 {
244         if (delta & TS_DELTA_TEST)
245                 return 1;
246         return 0;
247 }
248
249 #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
250
251 /*
252  * head_page == tail_page && head == tail then buffer is empty.
253  */
254 struct ring_buffer_per_cpu {
255         int                             cpu;
256         struct ring_buffer              *buffer;
257         spinlock_t                      reader_lock; /* serialize readers */
258         raw_spinlock_t                  lock;
259         struct lock_class_key           lock_key;
260         struct list_head                pages;
261         struct buffer_page              *head_page;     /* read from head */
262         struct buffer_page              *tail_page;     /* write to tail */
263         struct buffer_page              *commit_page;   /* commited pages */
264         struct buffer_page              *reader_page;
265         unsigned long                   overrun;
266         unsigned long                   entries;
267         u64                             write_stamp;
268         u64                             read_stamp;
269         atomic_t                        record_disabled;
270 };
271
272 struct ring_buffer {
273         unsigned                        pages;
274         unsigned                        flags;
275         int                             cpus;
276         cpumask_var_t                   cpumask;
277         atomic_t                        record_disabled;
278
279         struct mutex                    mutex;
280
281         struct ring_buffer_per_cpu      **buffers;
282 };
283
284 struct ring_buffer_iter {
285         struct ring_buffer_per_cpu      *cpu_buffer;
286         unsigned long                   head;
287         struct buffer_page              *head_page;
288         u64                             read_stamp;
289 };
290
291 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
292 #define RB_WARN_ON(buffer, cond)                                \
293         ({                                                      \
294                 int _____ret = unlikely(cond);                  \
295                 if (_____ret) {                                 \
296                         atomic_inc(&buffer->record_disabled);   \
297                         WARN_ON(1);                             \
298                 }                                               \
299                 _____ret;                                       \
300         })
301
302 /**
303  * check_pages - integrity check of buffer pages
304  * @cpu_buffer: CPU buffer with pages to test
305  *
306  * As a safty measure we check to make sure the data pages have not
307  * been corrupted.
308  */
309 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
310 {
311         struct list_head *head = &cpu_buffer->pages;
312         struct buffer_page *bpage, *tmp;
313
314         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
315                 return -1;
316         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
317                 return -1;
318
319         list_for_each_entry_safe(bpage, tmp, head, list) {
320                 if (RB_WARN_ON(cpu_buffer,
321                                bpage->list.next->prev != &bpage->list))
322                         return -1;
323                 if (RB_WARN_ON(cpu_buffer,
324                                bpage->list.prev->next != &bpage->list))
325                         return -1;
326         }
327
328         return 0;
329 }
330
331 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
332                              unsigned nr_pages)
333 {
334         struct list_head *head = &cpu_buffer->pages;
335         struct buffer_page *bpage, *tmp;
336         unsigned long addr;
337         LIST_HEAD(pages);
338         unsigned i;
339
340         for (i = 0; i < nr_pages; i++) {
341                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
342                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
343                 if (!bpage)
344                         goto free_pages;
345                 list_add(&bpage->list, &pages);
346
347                 addr = __get_free_page(GFP_KERNEL);
348                 if (!addr)
349                         goto free_pages;
350                 bpage->page = (void *)addr;
351                 rb_init_page(bpage->page);
352         }
353
354         list_splice(&pages, head);
355
356         rb_check_pages(cpu_buffer);
357
358         return 0;
359
360  free_pages:
361         list_for_each_entry_safe(bpage, tmp, &pages, list) {
362                 list_del_init(&bpage->list);
363                 free_buffer_page(bpage);
364         }
365         return -ENOMEM;
366 }
367
368 static struct ring_buffer_per_cpu *
369 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
370 {
371         struct ring_buffer_per_cpu *cpu_buffer;
372         struct buffer_page *bpage;
373         unsigned long addr;
374         int ret;
375
376         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
377                                   GFP_KERNEL, cpu_to_node(cpu));
378         if (!cpu_buffer)
379                 return NULL;
380
381         cpu_buffer->cpu = cpu;
382         cpu_buffer->buffer = buffer;
383         spin_lock_init(&cpu_buffer->reader_lock);
384         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
385         INIT_LIST_HEAD(&cpu_buffer->pages);
386
387         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
388                             GFP_KERNEL, cpu_to_node(cpu));
389         if (!bpage)
390                 goto fail_free_buffer;
391
392         cpu_buffer->reader_page = bpage;
393         addr = __get_free_page(GFP_KERNEL);
394         if (!addr)
395                 goto fail_free_reader;
396         bpage->page = (void *)addr;
397         rb_init_page(bpage->page);
398
399         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
400
401         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
402         if (ret < 0)
403                 goto fail_free_reader;
404
405         cpu_buffer->head_page
406                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
407         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
408
409         return cpu_buffer;
410
411  fail_free_reader:
412         free_buffer_page(cpu_buffer->reader_page);
413
414  fail_free_buffer:
415         kfree(cpu_buffer);
416         return NULL;
417 }
418
419 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
420 {
421         struct list_head *head = &cpu_buffer->pages;
422         struct buffer_page *bpage, *tmp;
423
424         list_del_init(&cpu_buffer->reader_page->list);
425         free_buffer_page(cpu_buffer->reader_page);
426
427         list_for_each_entry_safe(bpage, tmp, head, list) {
428                 list_del_init(&bpage->list);
429                 free_buffer_page(bpage);
430         }
431         kfree(cpu_buffer);
432 }
433
434 /*
435  * Causes compile errors if the struct buffer_page gets bigger
436  * than the struct page.
437  */
438 extern int ring_buffer_page_too_big(void);
439
440 /**
441  * ring_buffer_alloc - allocate a new ring_buffer
442  * @size: the size in bytes per cpu that is needed.
443  * @flags: attributes to set for the ring buffer.
444  *
445  * Currently the only flag that is available is the RB_FL_OVERWRITE
446  * flag. This flag means that the buffer will overwrite old data
447  * when the buffer wraps. If this flag is not set, the buffer will
448  * drop data when the tail hits the head.
449  */
450 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
451 {
452         struct ring_buffer *buffer;
453         int bsize;
454         int cpu;
455
456         /* Paranoid! Optimizes out when all is well */
457         if (sizeof(struct buffer_page) > sizeof(struct page))
458                 ring_buffer_page_too_big();
459
460
461         /* keep it in its own cache line */
462         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
463                          GFP_KERNEL);
464         if (!buffer)
465                 return NULL;
466
467         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
468                 goto fail_free_buffer;
469
470         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
471         buffer->flags = flags;
472
473         /* need at least two pages */
474         if (buffer->pages == 1)
475                 buffer->pages++;
476
477         cpumask_copy(buffer->cpumask, cpu_possible_mask);
478         buffer->cpus = nr_cpu_ids;
479
480         bsize = sizeof(void *) * nr_cpu_ids;
481         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
482                                   GFP_KERNEL);
483         if (!buffer->buffers)
484                 goto fail_free_cpumask;
485
486         for_each_buffer_cpu(buffer, cpu) {
487                 buffer->buffers[cpu] =
488                         rb_allocate_cpu_buffer(buffer, cpu);
489                 if (!buffer->buffers[cpu])
490                         goto fail_free_buffers;
491         }
492
493         mutex_init(&buffer->mutex);
494
495         return buffer;
496
497  fail_free_buffers:
498         for_each_buffer_cpu(buffer, cpu) {
499                 if (buffer->buffers[cpu])
500                         rb_free_cpu_buffer(buffer->buffers[cpu]);
501         }
502         kfree(buffer->buffers);
503
504  fail_free_cpumask:
505         free_cpumask_var(buffer->cpumask);
506
507  fail_free_buffer:
508         kfree(buffer);
509         return NULL;
510 }
511 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
512
513 /**
514  * ring_buffer_free - free a ring buffer.
515  * @buffer: the buffer to free.
516  */
517 void
518 ring_buffer_free(struct ring_buffer *buffer)
519 {
520         int cpu;
521
522         for_each_buffer_cpu(buffer, cpu)
523                 rb_free_cpu_buffer(buffer->buffers[cpu]);
524
525         free_cpumask_var(buffer->cpumask);
526
527         kfree(buffer);
528 }
529 EXPORT_SYMBOL_GPL(ring_buffer_free);
530
531 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
532
533 static void
534 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
535 {
536         struct buffer_page *bpage;
537         struct list_head *p;
538         unsigned i;
539
540         atomic_inc(&cpu_buffer->record_disabled);
541         synchronize_sched();
542
543         for (i = 0; i < nr_pages; i++) {
544                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
545                         return;
546                 p = cpu_buffer->pages.next;
547                 bpage = list_entry(p, struct buffer_page, list);
548                 list_del_init(&bpage->list);
549                 free_buffer_page(bpage);
550         }
551         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
552                 return;
553
554         rb_reset_cpu(cpu_buffer);
555
556         rb_check_pages(cpu_buffer);
557
558         atomic_dec(&cpu_buffer->record_disabled);
559
560 }
561
562 static void
563 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
564                 struct list_head *pages, unsigned nr_pages)
565 {
566         struct buffer_page *bpage;
567         struct list_head *p;
568         unsigned i;
569
570         atomic_inc(&cpu_buffer->record_disabled);
571         synchronize_sched();
572
573         for (i = 0; i < nr_pages; i++) {
574                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
575                         return;
576                 p = pages->next;
577                 bpage = list_entry(p, struct buffer_page, list);
578                 list_del_init(&bpage->list);
579                 list_add_tail(&bpage->list, &cpu_buffer->pages);
580         }
581         rb_reset_cpu(cpu_buffer);
582
583         rb_check_pages(cpu_buffer);
584
585         atomic_dec(&cpu_buffer->record_disabled);
586 }
587
588 /**
589  * ring_buffer_resize - resize the ring buffer
590  * @buffer: the buffer to resize.
591  * @size: the new size.
592  *
593  * The tracer is responsible for making sure that the buffer is
594  * not being used while changing the size.
595  * Note: We may be able to change the above requirement by using
596  *  RCU synchronizations.
597  *
598  * Minimum size is 2 * BUF_PAGE_SIZE.
599  *
600  * Returns -1 on failure.
601  */
602 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
603 {
604         struct ring_buffer_per_cpu *cpu_buffer;
605         unsigned nr_pages, rm_pages, new_pages;
606         struct buffer_page *bpage, *tmp;
607         unsigned long buffer_size;
608         unsigned long addr;
609         LIST_HEAD(pages);
610         int i, cpu;
611
612         /*
613          * Always succeed at resizing a non-existent buffer:
614          */
615         if (!buffer)
616                 return size;
617
618         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
619         size *= BUF_PAGE_SIZE;
620         buffer_size = buffer->pages * BUF_PAGE_SIZE;
621
622         /* we need a minimum of two pages */
623         if (size < BUF_PAGE_SIZE * 2)
624                 size = BUF_PAGE_SIZE * 2;
625
626         if (size == buffer_size)
627                 return size;
628
629         mutex_lock(&buffer->mutex);
630
631         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
632
633         if (size < buffer_size) {
634
635                 /* easy case, just free pages */
636                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
637                         mutex_unlock(&buffer->mutex);
638                         return -1;
639                 }
640
641                 rm_pages = buffer->pages - nr_pages;
642
643                 for_each_buffer_cpu(buffer, cpu) {
644                         cpu_buffer = buffer->buffers[cpu];
645                         rb_remove_pages(cpu_buffer, rm_pages);
646                 }
647                 goto out;
648         }
649
650         /*
651          * This is a bit more difficult. We only want to add pages
652          * when we can allocate enough for all CPUs. We do this
653          * by allocating all the pages and storing them on a local
654          * link list. If we succeed in our allocation, then we
655          * add these pages to the cpu_buffers. Otherwise we just free
656          * them all and return -ENOMEM;
657          */
658         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
659                 mutex_unlock(&buffer->mutex);
660                 return -1;
661         }
662
663         new_pages = nr_pages - buffer->pages;
664
665         for_each_buffer_cpu(buffer, cpu) {
666                 for (i = 0; i < new_pages; i++) {
667                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
668                                                   cache_line_size()),
669                                             GFP_KERNEL, cpu_to_node(cpu));
670                         if (!bpage)
671                                 goto free_pages;
672                         list_add(&bpage->list, &pages);
673                         addr = __get_free_page(GFP_KERNEL);
674                         if (!addr)
675                                 goto free_pages;
676                         bpage->page = (void *)addr;
677                         rb_init_page(bpage->page);
678                 }
679         }
680
681         for_each_buffer_cpu(buffer, cpu) {
682                 cpu_buffer = buffer->buffers[cpu];
683                 rb_insert_pages(cpu_buffer, &pages, new_pages);
684         }
685
686         if (RB_WARN_ON(buffer, !list_empty(&pages))) {
687                 mutex_unlock(&buffer->mutex);
688                 return -1;
689         }
690
691  out:
692         buffer->pages = nr_pages;
693         mutex_unlock(&buffer->mutex);
694
695         return size;
696
697  free_pages:
698         list_for_each_entry_safe(bpage, tmp, &pages, list) {
699                 list_del_init(&bpage->list);
700                 free_buffer_page(bpage);
701         }
702         mutex_unlock(&buffer->mutex);
703         return -ENOMEM;
704 }
705 EXPORT_SYMBOL_GPL(ring_buffer_resize);
706
707 static inline int rb_null_event(struct ring_buffer_event *event)
708 {
709         return event->type == RINGBUF_TYPE_PADDING;
710 }
711
712 static inline void *
713 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
714 {
715         return bpage->data + index;
716 }
717
718 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
719 {
720         return bpage->page->data + index;
721 }
722
723 static inline struct ring_buffer_event *
724 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
725 {
726         return __rb_page_index(cpu_buffer->reader_page,
727                                cpu_buffer->reader_page->read);
728 }
729
730 static inline struct ring_buffer_event *
731 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
732 {
733         return __rb_page_index(cpu_buffer->head_page,
734                                cpu_buffer->head_page->read);
735 }
736
737 static inline struct ring_buffer_event *
738 rb_iter_head_event(struct ring_buffer_iter *iter)
739 {
740         return __rb_page_index(iter->head_page, iter->head);
741 }
742
743 static inline unsigned rb_page_write(struct buffer_page *bpage)
744 {
745         return local_read(&bpage->write);
746 }
747
748 static inline unsigned rb_page_commit(struct buffer_page *bpage)
749 {
750         return local_read(&bpage->page->commit);
751 }
752
753 /* Size is determined by what has been commited */
754 static inline unsigned rb_page_size(struct buffer_page *bpage)
755 {
756         return rb_page_commit(bpage);
757 }
758
759 static inline unsigned
760 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
761 {
762         return rb_page_commit(cpu_buffer->commit_page);
763 }
764
765 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
766 {
767         return rb_page_commit(cpu_buffer->head_page);
768 }
769
770 /*
771  * When the tail hits the head and the buffer is in overwrite mode,
772  * the head jumps to the next page and all content on the previous
773  * page is discarded. But before doing so, we update the overrun
774  * variable of the buffer.
775  */
776 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
777 {
778         struct ring_buffer_event *event;
779         unsigned long head;
780
781         for (head = 0; head < rb_head_size(cpu_buffer);
782              head += rb_event_length(event)) {
783
784                 event = __rb_page_index(cpu_buffer->head_page, head);
785                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
786                         return;
787                 /* Only count data entries */
788                 if (event->type != RINGBUF_TYPE_DATA)
789                         continue;
790                 cpu_buffer->overrun++;
791                 cpu_buffer->entries--;
792         }
793 }
794
795 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
796                                struct buffer_page **bpage)
797 {
798         struct list_head *p = (*bpage)->list.next;
799
800         if (p == &cpu_buffer->pages)
801                 p = p->next;
802
803         *bpage = list_entry(p, struct buffer_page, list);
804 }
805
806 static inline unsigned
807 rb_event_index(struct ring_buffer_event *event)
808 {
809         unsigned long addr = (unsigned long)event;
810
811         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
812 }
813
814 static inline int
815 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
816              struct ring_buffer_event *event)
817 {
818         unsigned long addr = (unsigned long)event;
819         unsigned long index;
820
821         index = rb_event_index(event);
822         addr &= PAGE_MASK;
823
824         return cpu_buffer->commit_page->page == (void *)addr &&
825                 rb_commit_index(cpu_buffer) == index;
826 }
827
828 static inline void
829 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
830                     struct ring_buffer_event *event)
831 {
832         unsigned long addr = (unsigned long)event;
833         unsigned long index;
834
835         index = rb_event_index(event);
836         addr &= PAGE_MASK;
837
838         while (cpu_buffer->commit_page->page != (void *)addr) {
839                 if (RB_WARN_ON(cpu_buffer,
840                           cpu_buffer->commit_page == cpu_buffer->tail_page))
841                         return;
842                 cpu_buffer->commit_page->page->commit =
843                         cpu_buffer->commit_page->write;
844                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
845                 cpu_buffer->write_stamp =
846                         cpu_buffer->commit_page->page->time_stamp;
847         }
848
849         /* Now set the commit to the event's index */
850         local_set(&cpu_buffer->commit_page->page->commit, index);
851 }
852
853 static inline void
854 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
855 {
856         /*
857          * We only race with interrupts and NMIs on this CPU.
858          * If we own the commit event, then we can commit
859          * all others that interrupted us, since the interruptions
860          * are in stack format (they finish before they come
861          * back to us). This allows us to do a simple loop to
862          * assign the commit to the tail.
863          */
864  again:
865         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
866                 cpu_buffer->commit_page->page->commit =
867                         cpu_buffer->commit_page->write;
868                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
869                 cpu_buffer->write_stamp =
870                         cpu_buffer->commit_page->page->time_stamp;
871                 /* add barrier to keep gcc from optimizing too much */
872                 barrier();
873         }
874         while (rb_commit_index(cpu_buffer) !=
875                rb_page_write(cpu_buffer->commit_page)) {
876                 cpu_buffer->commit_page->page->commit =
877                         cpu_buffer->commit_page->write;
878                 barrier();
879         }
880
881         /* again, keep gcc from optimizing */
882         barrier();
883
884         /*
885          * If an interrupt came in just after the first while loop
886          * and pushed the tail page forward, we will be left with
887          * a dangling commit that will never go forward.
888          */
889         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
890                 goto again;
891 }
892
893 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
894 {
895         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
896         cpu_buffer->reader_page->read = 0;
897 }
898
899 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
900 {
901         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
902
903         /*
904          * The iterator could be on the reader page (it starts there).
905          * But the head could have moved, since the reader was
906          * found. Check for this case and assign the iterator
907          * to the head page instead of next.
908          */
909         if (iter->head_page == cpu_buffer->reader_page)
910                 iter->head_page = cpu_buffer->head_page;
911         else
912                 rb_inc_page(cpu_buffer, &iter->head_page);
913
914         iter->read_stamp = iter->head_page->page->time_stamp;
915         iter->head = 0;
916 }
917
918 /**
919  * ring_buffer_update_event - update event type and data
920  * @event: the even to update
921  * @type: the type of event
922  * @length: the size of the event field in the ring buffer
923  *
924  * Update the type and data fields of the event. The length
925  * is the actual size that is written to the ring buffer,
926  * and with this, we can determine what to place into the
927  * data field.
928  */
929 static inline void
930 rb_update_event(struct ring_buffer_event *event,
931                          unsigned type, unsigned length)
932 {
933         event->type = type;
934
935         switch (type) {
936
937         case RINGBUF_TYPE_PADDING:
938                 break;
939
940         case RINGBUF_TYPE_TIME_EXTEND:
941                 event->len =
942                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
943                         >> RB_ALIGNMENT_SHIFT;
944                 break;
945
946         case RINGBUF_TYPE_TIME_STAMP:
947                 event->len =
948                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
949                         >> RB_ALIGNMENT_SHIFT;
950                 break;
951
952         case RINGBUF_TYPE_DATA:
953                 length -= RB_EVNT_HDR_SIZE;
954                 if (length > RB_MAX_SMALL_DATA) {
955                         event->len = 0;
956                         event->array[0] = length;
957                 } else
958                         event->len =
959                                 (length + (RB_ALIGNMENT-1))
960                                 >> RB_ALIGNMENT_SHIFT;
961                 break;
962         default:
963                 BUG();
964         }
965 }
966
967 static inline unsigned rb_calculate_event_length(unsigned length)
968 {
969         struct ring_buffer_event event; /* Used only for sizeof array */
970
971         /* zero length can cause confusions */
972         if (!length)
973                 length = 1;
974
975         if (length > RB_MAX_SMALL_DATA)
976                 length += sizeof(event.array[0]);
977
978         length += RB_EVNT_HDR_SIZE;
979         length = ALIGN(length, RB_ALIGNMENT);
980
981         return length;
982 }
983
984 static struct ring_buffer_event *
985 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
986                   unsigned type, unsigned long length, u64 *ts)
987 {
988         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
989         unsigned long tail, write;
990         struct ring_buffer *buffer = cpu_buffer->buffer;
991         struct ring_buffer_event *event;
992         unsigned long flags;
993
994         commit_page = cpu_buffer->commit_page;
995         /* we just need to protect against interrupts */
996         barrier();
997         tail_page = cpu_buffer->tail_page;
998         write = local_add_return(length, &tail_page->write);
999         tail = write - length;
1000
1001         /* See if we shot pass the end of this buffer page */
1002         if (write > BUF_PAGE_SIZE) {
1003                 struct buffer_page *next_page = tail_page;
1004
1005                 local_irq_save(flags);
1006                 __raw_spin_lock(&cpu_buffer->lock);
1007
1008                 rb_inc_page(cpu_buffer, &next_page);
1009
1010                 head_page = cpu_buffer->head_page;
1011                 reader_page = cpu_buffer->reader_page;
1012
1013                 /* we grabbed the lock before incrementing */
1014                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1015                         goto out_unlock;
1016
1017                 /*
1018                  * If for some reason, we had an interrupt storm that made
1019                  * it all the way around the buffer, bail, and warn
1020                  * about it.
1021                  */
1022                 if (unlikely(next_page == commit_page)) {
1023                         WARN_ON_ONCE(1);
1024                         goto out_unlock;
1025                 }
1026
1027                 if (next_page == head_page) {
1028                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
1029                                 /* reset write */
1030                                 if (tail <= BUF_PAGE_SIZE)
1031                                         local_set(&tail_page->write, tail);
1032                                 goto out_unlock;
1033                         }
1034
1035                         /* tail_page has not moved yet? */
1036                         if (tail_page == cpu_buffer->tail_page) {
1037                                 /* count overflows */
1038                                 rb_update_overflow(cpu_buffer);
1039
1040                                 rb_inc_page(cpu_buffer, &head_page);
1041                                 cpu_buffer->head_page = head_page;
1042                                 cpu_buffer->head_page->read = 0;
1043                         }
1044                 }
1045
1046                 /*
1047                  * If the tail page is still the same as what we think
1048                  * it is, then it is up to us to update the tail
1049                  * pointer.
1050                  */
1051                 if (tail_page == cpu_buffer->tail_page) {
1052                         local_set(&next_page->write, 0);
1053                         local_set(&next_page->page->commit, 0);
1054                         cpu_buffer->tail_page = next_page;
1055
1056                         /* reread the time stamp */
1057                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1058                         cpu_buffer->tail_page->page->time_stamp = *ts;
1059                 }
1060
1061                 /*
1062                  * The actual tail page has moved forward.
1063                  */
1064                 if (tail < BUF_PAGE_SIZE) {
1065                         /* Mark the rest of the page with padding */
1066                         event = __rb_page_index(tail_page, tail);
1067                         event->type = RINGBUF_TYPE_PADDING;
1068                 }
1069
1070                 if (tail <= BUF_PAGE_SIZE)
1071                         /* Set the write back to the previous setting */
1072                         local_set(&tail_page->write, tail);
1073
1074                 /*
1075                  * If this was a commit entry that failed,
1076                  * increment that too
1077                  */
1078                 if (tail_page == cpu_buffer->commit_page &&
1079                     tail == rb_commit_index(cpu_buffer)) {
1080                         rb_set_commit_to_write(cpu_buffer);
1081                 }
1082
1083                 __raw_spin_unlock(&cpu_buffer->lock);
1084                 local_irq_restore(flags);
1085
1086                 /* fail and let the caller try again */
1087                 return ERR_PTR(-EAGAIN);
1088         }
1089
1090         /* We reserved something on the buffer */
1091
1092         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1093                 return NULL;
1094
1095         event = __rb_page_index(tail_page, tail);
1096         rb_update_event(event, type, length);
1097
1098         /*
1099          * If this is a commit and the tail is zero, then update
1100          * this page's time stamp.
1101          */
1102         if (!tail && rb_is_commit(cpu_buffer, event))
1103                 cpu_buffer->commit_page->page->time_stamp = *ts;
1104
1105         return event;
1106
1107  out_unlock:
1108         __raw_spin_unlock(&cpu_buffer->lock);
1109         local_irq_restore(flags);
1110         return NULL;
1111 }
1112
1113 static int
1114 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1115                   u64 *ts, u64 *delta)
1116 {
1117         struct ring_buffer_event *event;
1118         static int once;
1119         int ret;
1120
1121         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1122                 printk(KERN_WARNING "Delta way too big! %llu"
1123                        " ts=%llu write stamp = %llu\n",
1124                        (unsigned long long)*delta,
1125                        (unsigned long long)*ts,
1126                        (unsigned long long)cpu_buffer->write_stamp);
1127                 WARN_ON(1);
1128         }
1129
1130         /*
1131          * The delta is too big, we to add a
1132          * new timestamp.
1133          */
1134         event = __rb_reserve_next(cpu_buffer,
1135                                   RINGBUF_TYPE_TIME_EXTEND,
1136                                   RB_LEN_TIME_EXTEND,
1137                                   ts);
1138         if (!event)
1139                 return -EBUSY;
1140
1141         if (PTR_ERR(event) == -EAGAIN)
1142                 return -EAGAIN;
1143
1144         /* Only a commited time event can update the write stamp */
1145         if (rb_is_commit(cpu_buffer, event)) {
1146                 /*
1147                  * If this is the first on the page, then we need to
1148                  * update the page itself, and just put in a zero.
1149                  */
1150                 if (rb_event_index(event)) {
1151                         event->time_delta = *delta & TS_MASK;
1152                         event->array[0] = *delta >> TS_SHIFT;
1153                 } else {
1154                         cpu_buffer->commit_page->page->time_stamp = *ts;
1155                         event->time_delta = 0;
1156                         event->array[0] = 0;
1157                 }
1158                 cpu_buffer->write_stamp = *ts;
1159                 /* let the caller know this was the commit */
1160                 ret = 1;
1161         } else {
1162                 /* Darn, this is just wasted space */
1163                 event->time_delta = 0;
1164                 event->array[0] = 0;
1165                 ret = 0;
1166         }
1167
1168         *delta = 0;
1169
1170         return ret;
1171 }
1172
1173 static struct ring_buffer_event *
1174 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1175                       unsigned type, unsigned long length)
1176 {
1177         struct ring_buffer_event *event;
1178         u64 ts, delta;
1179         int commit = 0;
1180         int nr_loops = 0;
1181
1182  again:
1183         /*
1184          * We allow for interrupts to reenter here and do a trace.
1185          * If one does, it will cause this original code to loop
1186          * back here. Even with heavy interrupts happening, this
1187          * should only happen a few times in a row. If this happens
1188          * 1000 times in a row, there must be either an interrupt
1189          * storm or we have something buggy.
1190          * Bail!
1191          */
1192         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1193                 return NULL;
1194
1195         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1196
1197         /*
1198          * Only the first commit can update the timestamp.
1199          * Yes there is a race here. If an interrupt comes in
1200          * just after the conditional and it traces too, then it
1201          * will also check the deltas. More than one timestamp may
1202          * also be made. But only the entry that did the actual
1203          * commit will be something other than zero.
1204          */
1205         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1206             rb_page_write(cpu_buffer->tail_page) ==
1207             rb_commit_index(cpu_buffer)) {
1208
1209                 delta = ts - cpu_buffer->write_stamp;
1210
1211                 /* make sure this delta is calculated here */
1212                 barrier();
1213
1214                 /* Did the write stamp get updated already? */
1215                 if (unlikely(ts < cpu_buffer->write_stamp))
1216                         delta = 0;
1217
1218                 if (test_time_stamp(delta)) {
1219
1220                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1221
1222                         if (commit == -EBUSY)
1223                                 return NULL;
1224
1225                         if (commit == -EAGAIN)
1226                                 goto again;
1227
1228                         RB_WARN_ON(cpu_buffer, commit < 0);
1229                 }
1230         } else
1231                 /* Non commits have zero deltas */
1232                 delta = 0;
1233
1234         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1235         if (PTR_ERR(event) == -EAGAIN)
1236                 goto again;
1237
1238         if (!event) {
1239                 if (unlikely(commit))
1240                         /*
1241                          * Ouch! We needed a timestamp and it was commited. But
1242                          * we didn't get our event reserved.
1243                          */
1244                         rb_set_commit_to_write(cpu_buffer);
1245                 return NULL;
1246         }
1247
1248         /*
1249          * If the timestamp was commited, make the commit our entry
1250          * now so that we will update it when needed.
1251          */
1252         if (commit)
1253                 rb_set_commit_event(cpu_buffer, event);
1254         else if (!rb_is_commit(cpu_buffer, event))
1255                 delta = 0;
1256
1257         event->time_delta = delta;
1258
1259         return event;
1260 }
1261
1262 static DEFINE_PER_CPU(int, rb_need_resched);
1263
1264 /**
1265  * ring_buffer_lock_reserve - reserve a part of the buffer
1266  * @buffer: the ring buffer to reserve from
1267  * @length: the length of the data to reserve (excluding event header)
1268  * @flags: a pointer to save the interrupt flags
1269  *
1270  * Returns a reseverd event on the ring buffer to copy directly to.
1271  * The user of this interface will need to get the body to write into
1272  * and can use the ring_buffer_event_data() interface.
1273  *
1274  * The length is the length of the data needed, not the event length
1275  * which also includes the event header.
1276  *
1277  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1278  * If NULL is returned, then nothing has been allocated or locked.
1279  */
1280 struct ring_buffer_event *
1281 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1282                          unsigned long length,
1283                          unsigned long *flags)
1284 {
1285         struct ring_buffer_per_cpu *cpu_buffer;
1286         struct ring_buffer_event *event;
1287         int cpu, resched;
1288
1289         if (ring_buffer_flags != RB_BUFFERS_ON)
1290                 return NULL;
1291
1292         if (atomic_read(&buffer->record_disabled))
1293                 return NULL;
1294
1295         /* If we are tracing schedule, we don't want to recurse */
1296         resched = ftrace_preempt_disable();
1297
1298         cpu = raw_smp_processor_id();
1299
1300         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1301                 goto out;
1302
1303         cpu_buffer = buffer->buffers[cpu];
1304
1305         if (atomic_read(&cpu_buffer->record_disabled))
1306                 goto out;
1307
1308         length = rb_calculate_event_length(length);
1309         if (length > BUF_PAGE_SIZE)
1310                 goto out;
1311
1312         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1313         if (!event)
1314                 goto out;
1315
1316         /*
1317          * Need to store resched state on this cpu.
1318          * Only the first needs to.
1319          */
1320
1321         if (preempt_count() == 1)
1322                 per_cpu(rb_need_resched, cpu) = resched;
1323
1324         return event;
1325
1326  out:
1327         ftrace_preempt_enable(resched);
1328         return NULL;
1329 }
1330 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1331
1332 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1333                       struct ring_buffer_event *event)
1334 {
1335         cpu_buffer->entries++;
1336
1337         /* Only process further if we own the commit */
1338         if (!rb_is_commit(cpu_buffer, event))
1339                 return;
1340
1341         cpu_buffer->write_stamp += event->time_delta;
1342
1343         rb_set_commit_to_write(cpu_buffer);
1344 }
1345
1346 /**
1347  * ring_buffer_unlock_commit - commit a reserved
1348  * @buffer: The buffer to commit to
1349  * @event: The event pointer to commit.
1350  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1351  *
1352  * This commits the data to the ring buffer, and releases any locks held.
1353  *
1354  * Must be paired with ring_buffer_lock_reserve.
1355  */
1356 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1357                               struct ring_buffer_event *event,
1358                               unsigned long flags)
1359 {
1360         struct ring_buffer_per_cpu *cpu_buffer;
1361         int cpu = raw_smp_processor_id();
1362
1363         cpu_buffer = buffer->buffers[cpu];
1364
1365         rb_commit(cpu_buffer, event);
1366
1367         /*
1368          * Only the last preempt count needs to restore preemption.
1369          */
1370         if (preempt_count() == 1)
1371                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1372         else
1373                 preempt_enable_no_resched_notrace();
1374
1375         return 0;
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1378
1379 /**
1380  * ring_buffer_write - write data to the buffer without reserving
1381  * @buffer: The ring buffer to write to.
1382  * @length: The length of the data being written (excluding the event header)
1383  * @data: The data to write to the buffer.
1384  *
1385  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1386  * one function. If you already have the data to write to the buffer, it
1387  * may be easier to simply call this function.
1388  *
1389  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1390  * and not the length of the event which would hold the header.
1391  */
1392 int ring_buffer_write(struct ring_buffer *buffer,
1393                         unsigned long length,
1394                         void *data)
1395 {
1396         struct ring_buffer_per_cpu *cpu_buffer;
1397         struct ring_buffer_event *event;
1398         unsigned long event_length;
1399         void *body;
1400         int ret = -EBUSY;
1401         int cpu, resched;
1402
1403         if (ring_buffer_flags != RB_BUFFERS_ON)
1404                 return -EBUSY;
1405
1406         if (atomic_read(&buffer->record_disabled))
1407                 return -EBUSY;
1408
1409         resched = ftrace_preempt_disable();
1410
1411         cpu = raw_smp_processor_id();
1412
1413         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1414                 goto out;
1415
1416         cpu_buffer = buffer->buffers[cpu];
1417
1418         if (atomic_read(&cpu_buffer->record_disabled))
1419                 goto out;
1420
1421         event_length = rb_calculate_event_length(length);
1422         event = rb_reserve_next_event(cpu_buffer,
1423                                       RINGBUF_TYPE_DATA, event_length);
1424         if (!event)
1425                 goto out;
1426
1427         body = rb_event_data(event);
1428
1429         memcpy(body, data, length);
1430
1431         rb_commit(cpu_buffer, event);
1432
1433         ret = 0;
1434  out:
1435         ftrace_preempt_enable(resched);
1436
1437         return ret;
1438 }
1439 EXPORT_SYMBOL_GPL(ring_buffer_write);
1440
1441 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1442 {
1443         struct buffer_page *reader = cpu_buffer->reader_page;
1444         struct buffer_page *head = cpu_buffer->head_page;
1445         struct buffer_page *commit = cpu_buffer->commit_page;
1446
1447         return reader->read == rb_page_commit(reader) &&
1448                 (commit == reader ||
1449                  (commit == head &&
1450                   head->read == rb_page_commit(commit)));
1451 }
1452
1453 /**
1454  * ring_buffer_record_disable - stop all writes into the buffer
1455  * @buffer: The ring buffer to stop writes to.
1456  *
1457  * This prevents all writes to the buffer. Any attempt to write
1458  * to the buffer after this will fail and return NULL.
1459  *
1460  * The caller should call synchronize_sched() after this.
1461  */
1462 void ring_buffer_record_disable(struct ring_buffer *buffer)
1463 {
1464         atomic_inc(&buffer->record_disabled);
1465 }
1466 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1467
1468 /**
1469  * ring_buffer_record_enable - enable writes to the buffer
1470  * @buffer: The ring buffer to enable writes
1471  *
1472  * Note, multiple disables will need the same number of enables
1473  * to truely enable the writing (much like preempt_disable).
1474  */
1475 void ring_buffer_record_enable(struct ring_buffer *buffer)
1476 {
1477         atomic_dec(&buffer->record_disabled);
1478 }
1479 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1480
1481 /**
1482  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1483  * @buffer: The ring buffer to stop writes to.
1484  * @cpu: The CPU buffer to stop
1485  *
1486  * This prevents all writes to the buffer. Any attempt to write
1487  * to the buffer after this will fail and return NULL.
1488  *
1489  * The caller should call synchronize_sched() after this.
1490  */
1491 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1492 {
1493         struct ring_buffer_per_cpu *cpu_buffer;
1494
1495         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1496                 return;
1497
1498         cpu_buffer = buffer->buffers[cpu];
1499         atomic_inc(&cpu_buffer->record_disabled);
1500 }
1501 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1502
1503 /**
1504  * ring_buffer_record_enable_cpu - enable writes to the buffer
1505  * @buffer: The ring buffer to enable writes
1506  * @cpu: The CPU to enable.
1507  *
1508  * Note, multiple disables will need the same number of enables
1509  * to truely enable the writing (much like preempt_disable).
1510  */
1511 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1512 {
1513         struct ring_buffer_per_cpu *cpu_buffer;
1514
1515         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1516                 return;
1517
1518         cpu_buffer = buffer->buffers[cpu];
1519         atomic_dec(&cpu_buffer->record_disabled);
1520 }
1521 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1522
1523 /**
1524  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1525  * @buffer: The ring buffer
1526  * @cpu: The per CPU buffer to get the entries from.
1527  */
1528 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1529 {
1530         struct ring_buffer_per_cpu *cpu_buffer;
1531
1532         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1533                 return 0;
1534
1535         cpu_buffer = buffer->buffers[cpu];
1536         return cpu_buffer->entries;
1537 }
1538 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1539
1540 /**
1541  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1542  * @buffer: The ring buffer
1543  * @cpu: The per CPU buffer to get the number of overruns from
1544  */
1545 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1546 {
1547         struct ring_buffer_per_cpu *cpu_buffer;
1548
1549         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1550                 return 0;
1551
1552         cpu_buffer = buffer->buffers[cpu];
1553         return cpu_buffer->overrun;
1554 }
1555 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1556
1557 /**
1558  * ring_buffer_entries - get the number of entries in a buffer
1559  * @buffer: The ring buffer
1560  *
1561  * Returns the total number of entries in the ring buffer
1562  * (all CPU entries)
1563  */
1564 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1565 {
1566         struct ring_buffer_per_cpu *cpu_buffer;
1567         unsigned long entries = 0;
1568         int cpu;
1569
1570         /* if you care about this being correct, lock the buffer */
1571         for_each_buffer_cpu(buffer, cpu) {
1572                 cpu_buffer = buffer->buffers[cpu];
1573                 entries += cpu_buffer->entries;
1574         }
1575
1576         return entries;
1577 }
1578 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1579
1580 /**
1581  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1582  * @buffer: The ring buffer
1583  *
1584  * Returns the total number of overruns in the ring buffer
1585  * (all CPU entries)
1586  */
1587 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1588 {
1589         struct ring_buffer_per_cpu *cpu_buffer;
1590         unsigned long overruns = 0;
1591         int cpu;
1592
1593         /* if you care about this being correct, lock the buffer */
1594         for_each_buffer_cpu(buffer, cpu) {
1595                 cpu_buffer = buffer->buffers[cpu];
1596                 overruns += cpu_buffer->overrun;
1597         }
1598
1599         return overruns;
1600 }
1601 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1602
1603 static void rb_iter_reset(struct ring_buffer_iter *iter)
1604 {
1605         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1606
1607         /* Iterator usage is expected to have record disabled */
1608         if (list_empty(&cpu_buffer->reader_page->list)) {
1609                 iter->head_page = cpu_buffer->head_page;
1610                 iter->head = cpu_buffer->head_page->read;
1611         } else {
1612                 iter->head_page = cpu_buffer->reader_page;
1613                 iter->head = cpu_buffer->reader_page->read;
1614         }
1615         if (iter->head)
1616                 iter->read_stamp = cpu_buffer->read_stamp;
1617         else
1618                 iter->read_stamp = iter->head_page->page->time_stamp;
1619 }
1620
1621 /**
1622  * ring_buffer_iter_reset - reset an iterator
1623  * @iter: The iterator to reset
1624  *
1625  * Resets the iterator, so that it will start from the beginning
1626  * again.
1627  */
1628 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1629 {
1630         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1631         unsigned long flags;
1632
1633         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1634         rb_iter_reset(iter);
1635         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1636 }
1637 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1638
1639 /**
1640  * ring_buffer_iter_empty - check if an iterator has no more to read
1641  * @iter: The iterator to check
1642  */
1643 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1644 {
1645         struct ring_buffer_per_cpu *cpu_buffer;
1646
1647         cpu_buffer = iter->cpu_buffer;
1648
1649         return iter->head_page == cpu_buffer->commit_page &&
1650                 iter->head == rb_commit_index(cpu_buffer);
1651 }
1652 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1653
1654 static void
1655 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1656                      struct ring_buffer_event *event)
1657 {
1658         u64 delta;
1659
1660         switch (event->type) {
1661         case RINGBUF_TYPE_PADDING:
1662                 return;
1663
1664         case RINGBUF_TYPE_TIME_EXTEND:
1665                 delta = event->array[0];
1666                 delta <<= TS_SHIFT;
1667                 delta += event->time_delta;
1668                 cpu_buffer->read_stamp += delta;
1669                 return;
1670
1671         case RINGBUF_TYPE_TIME_STAMP:
1672                 /* FIXME: not implemented */
1673                 return;
1674
1675         case RINGBUF_TYPE_DATA:
1676                 cpu_buffer->read_stamp += event->time_delta;
1677                 return;
1678
1679         default:
1680                 BUG();
1681         }
1682         return;
1683 }
1684
1685 static void
1686 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1687                           struct ring_buffer_event *event)
1688 {
1689         u64 delta;
1690
1691         switch (event->type) {
1692         case RINGBUF_TYPE_PADDING:
1693                 return;
1694
1695         case RINGBUF_TYPE_TIME_EXTEND:
1696                 delta = event->array[0];
1697                 delta <<= TS_SHIFT;
1698                 delta += event->time_delta;
1699                 iter->read_stamp += delta;
1700                 return;
1701
1702         case RINGBUF_TYPE_TIME_STAMP:
1703                 /* FIXME: not implemented */
1704                 return;
1705
1706         case RINGBUF_TYPE_DATA:
1707                 iter->read_stamp += event->time_delta;
1708                 return;
1709
1710         default:
1711                 BUG();
1712         }
1713         return;
1714 }
1715
1716 static struct buffer_page *
1717 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1718 {
1719         struct buffer_page *reader = NULL;
1720         unsigned long flags;
1721         int nr_loops = 0;
1722
1723         local_irq_save(flags);
1724         __raw_spin_lock(&cpu_buffer->lock);
1725
1726  again:
1727         /*
1728          * This should normally only loop twice. But because the
1729          * start of the reader inserts an empty page, it causes
1730          * a case where we will loop three times. There should be no
1731          * reason to loop four times (that I know of).
1732          */
1733         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1734                 reader = NULL;
1735                 goto out;
1736         }
1737
1738         reader = cpu_buffer->reader_page;
1739
1740         /* If there's more to read, return this page */
1741         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1742                 goto out;
1743
1744         /* Never should we have an index greater than the size */
1745         if (RB_WARN_ON(cpu_buffer,
1746                        cpu_buffer->reader_page->read > rb_page_size(reader)))
1747                 goto out;
1748
1749         /* check if we caught up to the tail */
1750         reader = NULL;
1751         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1752                 goto out;
1753
1754         /*
1755          * Splice the empty reader page into the list around the head.
1756          * Reset the reader page to size zero.
1757          */
1758
1759         reader = cpu_buffer->head_page;
1760         cpu_buffer->reader_page->list.next = reader->list.next;
1761         cpu_buffer->reader_page->list.prev = reader->list.prev;
1762
1763         local_set(&cpu_buffer->reader_page->write, 0);
1764         local_set(&cpu_buffer->reader_page->page->commit, 0);
1765
1766         /* Make the reader page now replace the head */
1767         reader->list.prev->next = &cpu_buffer->reader_page->list;
1768         reader->list.next->prev = &cpu_buffer->reader_page->list;
1769
1770         /*
1771          * If the tail is on the reader, then we must set the head
1772          * to the inserted page, otherwise we set it one before.
1773          */
1774         cpu_buffer->head_page = cpu_buffer->reader_page;
1775
1776         if (cpu_buffer->commit_page != reader)
1777                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1778
1779         /* Finally update the reader page to the new head */
1780         cpu_buffer->reader_page = reader;
1781         rb_reset_reader_page(cpu_buffer);
1782
1783         goto again;
1784
1785  out:
1786         __raw_spin_unlock(&cpu_buffer->lock);
1787         local_irq_restore(flags);
1788
1789         return reader;
1790 }
1791
1792 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1793 {
1794         struct ring_buffer_event *event;
1795         struct buffer_page *reader;
1796         unsigned length;
1797
1798         reader = rb_get_reader_page(cpu_buffer);
1799
1800         /* This function should not be called when buffer is empty */
1801         if (RB_WARN_ON(cpu_buffer, !reader))
1802                 return;
1803
1804         event = rb_reader_event(cpu_buffer);
1805
1806         if (event->type == RINGBUF_TYPE_DATA)
1807                 cpu_buffer->entries--;
1808
1809         rb_update_read_stamp(cpu_buffer, event);
1810
1811         length = rb_event_length(event);
1812         cpu_buffer->reader_page->read += length;
1813 }
1814
1815 static void rb_advance_iter(struct ring_buffer_iter *iter)
1816 {
1817         struct ring_buffer *buffer;
1818         struct ring_buffer_per_cpu *cpu_buffer;
1819         struct ring_buffer_event *event;
1820         unsigned length;
1821
1822         cpu_buffer = iter->cpu_buffer;
1823         buffer = cpu_buffer->buffer;
1824
1825         /*
1826          * Check if we are at the end of the buffer.
1827          */
1828         if (iter->head >= rb_page_size(iter->head_page)) {
1829                 if (RB_WARN_ON(buffer,
1830                                iter->head_page == cpu_buffer->commit_page))
1831                         return;
1832                 rb_inc_iter(iter);
1833                 return;
1834         }
1835
1836         event = rb_iter_head_event(iter);
1837
1838         length = rb_event_length(event);
1839
1840         /*
1841          * This should not be called to advance the header if we are
1842          * at the tail of the buffer.
1843          */
1844         if (RB_WARN_ON(cpu_buffer,
1845                        (iter->head_page == cpu_buffer->commit_page) &&
1846                        (iter->head + length > rb_commit_index(cpu_buffer))))
1847                 return;
1848
1849         rb_update_iter_read_stamp(iter, event);
1850
1851         iter->head += length;
1852
1853         /* check for end of page padding */
1854         if ((iter->head >= rb_page_size(iter->head_page)) &&
1855             (iter->head_page != cpu_buffer->commit_page))
1856                 rb_advance_iter(iter);
1857 }
1858
1859 static struct ring_buffer_event *
1860 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1861 {
1862         struct ring_buffer_per_cpu *cpu_buffer;
1863         struct ring_buffer_event *event;
1864         struct buffer_page *reader;
1865         int nr_loops = 0;
1866
1867         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1868                 return NULL;
1869
1870         cpu_buffer = buffer->buffers[cpu];
1871
1872  again:
1873         /*
1874          * We repeat when a timestamp is encountered. It is possible
1875          * to get multiple timestamps from an interrupt entering just
1876          * as one timestamp is about to be written. The max times
1877          * that this can happen is the number of nested interrupts we
1878          * can have.  Nesting 10 deep of interrupts is clearly
1879          * an anomaly.
1880          */
1881         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1882                 return NULL;
1883
1884         reader = rb_get_reader_page(cpu_buffer);
1885         if (!reader)
1886                 return NULL;
1887
1888         event = rb_reader_event(cpu_buffer);
1889
1890         switch (event->type) {
1891         case RINGBUF_TYPE_PADDING:
1892                 RB_WARN_ON(cpu_buffer, 1);
1893                 rb_advance_reader(cpu_buffer);
1894                 return NULL;
1895
1896         case RINGBUF_TYPE_TIME_EXTEND:
1897                 /* Internal data, OK to advance */
1898                 rb_advance_reader(cpu_buffer);
1899                 goto again;
1900
1901         case RINGBUF_TYPE_TIME_STAMP:
1902                 /* FIXME: not implemented */
1903                 rb_advance_reader(cpu_buffer);
1904                 goto again;
1905
1906         case RINGBUF_TYPE_DATA:
1907                 if (ts) {
1908                         *ts = cpu_buffer->read_stamp + event->time_delta;
1909                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1910                 }
1911                 return event;
1912
1913         default:
1914                 BUG();
1915         }
1916
1917         return NULL;
1918 }
1919 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1920
1921 static struct ring_buffer_event *
1922 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1923 {
1924         struct ring_buffer *buffer;
1925         struct ring_buffer_per_cpu *cpu_buffer;
1926         struct ring_buffer_event *event;
1927         int nr_loops = 0;
1928
1929         if (ring_buffer_iter_empty(iter))
1930                 return NULL;
1931
1932         cpu_buffer = iter->cpu_buffer;
1933         buffer = cpu_buffer->buffer;
1934
1935  again:
1936         /*
1937          * We repeat when a timestamp is encountered. It is possible
1938          * to get multiple timestamps from an interrupt entering just
1939          * as one timestamp is about to be written. The max times
1940          * that this can happen is the number of nested interrupts we
1941          * can have. Nesting 10 deep of interrupts is clearly
1942          * an anomaly.
1943          */
1944         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1945                 return NULL;
1946
1947         if (rb_per_cpu_empty(cpu_buffer))
1948                 return NULL;
1949
1950         event = rb_iter_head_event(iter);
1951
1952         switch (event->type) {
1953         case RINGBUF_TYPE_PADDING:
1954                 rb_inc_iter(iter);
1955                 goto again;
1956
1957         case RINGBUF_TYPE_TIME_EXTEND:
1958                 /* Internal data, OK to advance */
1959                 rb_advance_iter(iter);
1960                 goto again;
1961
1962         case RINGBUF_TYPE_TIME_STAMP:
1963                 /* FIXME: not implemented */
1964                 rb_advance_iter(iter);
1965                 goto again;
1966
1967         case RINGBUF_TYPE_DATA:
1968                 if (ts) {
1969                         *ts = iter->read_stamp + event->time_delta;
1970                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1971                 }
1972                 return event;
1973
1974         default:
1975                 BUG();
1976         }
1977
1978         return NULL;
1979 }
1980 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
1981
1982 /**
1983  * ring_buffer_peek - peek at the next event to be read
1984  * @buffer: The ring buffer to read
1985  * @cpu: The cpu to peak at
1986  * @ts: The timestamp counter of this event.
1987  *
1988  * This will return the event that will be read next, but does
1989  * not consume the data.
1990  */
1991 struct ring_buffer_event *
1992 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1993 {
1994         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1995         struct ring_buffer_event *event;
1996         unsigned long flags;
1997
1998         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1999         event = rb_buffer_peek(buffer, cpu, ts);
2000         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2001
2002         return event;
2003 }
2004
2005 /**
2006  * ring_buffer_iter_peek - peek at the next event to be read
2007  * @iter: The ring buffer iterator
2008  * @ts: The timestamp counter of this event.
2009  *
2010  * This will return the event that will be read next, but does
2011  * not increment the iterator.
2012  */
2013 struct ring_buffer_event *
2014 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2015 {
2016         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2017         struct ring_buffer_event *event;
2018         unsigned long flags;
2019
2020         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2021         event = rb_iter_peek(iter, ts);
2022         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2023
2024         return event;
2025 }
2026
2027 /**
2028  * ring_buffer_consume - return an event and consume it
2029  * @buffer: The ring buffer to get the next event from
2030  *
2031  * Returns the next event in the ring buffer, and that event is consumed.
2032  * Meaning, that sequential reads will keep returning a different event,
2033  * and eventually empty the ring buffer if the producer is slower.
2034  */
2035 struct ring_buffer_event *
2036 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2037 {
2038         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2039         struct ring_buffer_event *event;
2040         unsigned long flags;
2041
2042         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2043                 return NULL;
2044
2045         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2046
2047         event = rb_buffer_peek(buffer, cpu, ts);
2048         if (!event)
2049                 goto out;
2050
2051         rb_advance_reader(cpu_buffer);
2052
2053  out:
2054         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2055
2056         return event;
2057 }
2058 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2059
2060 /**
2061  * ring_buffer_read_start - start a non consuming read of the buffer
2062  * @buffer: The ring buffer to read from
2063  * @cpu: The cpu buffer to iterate over
2064  *
2065  * This starts up an iteration through the buffer. It also disables
2066  * the recording to the buffer until the reading is finished.
2067  * This prevents the reading from being corrupted. This is not
2068  * a consuming read, so a producer is not expected.
2069  *
2070  * Must be paired with ring_buffer_finish.
2071  */
2072 struct ring_buffer_iter *
2073 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2074 {
2075         struct ring_buffer_per_cpu *cpu_buffer;
2076         struct ring_buffer_iter *iter;
2077         unsigned long flags;
2078
2079         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2080                 return NULL;
2081
2082         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2083         if (!iter)
2084                 return NULL;
2085
2086         cpu_buffer = buffer->buffers[cpu];
2087
2088         iter->cpu_buffer = cpu_buffer;
2089
2090         atomic_inc(&cpu_buffer->record_disabled);
2091         synchronize_sched();
2092
2093         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2094         __raw_spin_lock(&cpu_buffer->lock);
2095         rb_iter_reset(iter);
2096         __raw_spin_unlock(&cpu_buffer->lock);
2097         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2098
2099         return iter;
2100 }
2101 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2102
2103 /**
2104  * ring_buffer_finish - finish reading the iterator of the buffer
2105  * @iter: The iterator retrieved by ring_buffer_start
2106  *
2107  * This re-enables the recording to the buffer, and frees the
2108  * iterator.
2109  */
2110 void
2111 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2112 {
2113         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2114
2115         atomic_dec(&cpu_buffer->record_disabled);
2116         kfree(iter);
2117 }
2118 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2119
2120 /**
2121  * ring_buffer_read - read the next item in the ring buffer by the iterator
2122  * @iter: The ring buffer iterator
2123  * @ts: The time stamp of the event read.
2124  *
2125  * This reads the next event in the ring buffer and increments the iterator.
2126  */
2127 struct ring_buffer_event *
2128 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2129 {
2130         struct ring_buffer_event *event;
2131         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2132         unsigned long flags;
2133
2134         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2135         event = rb_iter_peek(iter, ts);
2136         if (!event)
2137                 goto out;
2138
2139         rb_advance_iter(iter);
2140  out:
2141         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2142
2143         return event;
2144 }
2145 EXPORT_SYMBOL_GPL(ring_buffer_read);
2146
2147 /**
2148  * ring_buffer_size - return the size of the ring buffer (in bytes)
2149  * @buffer: The ring buffer.
2150  */
2151 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2152 {
2153         return BUF_PAGE_SIZE * buffer->pages;
2154 }
2155 EXPORT_SYMBOL_GPL(ring_buffer_size);
2156
2157 static void
2158 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2159 {
2160         cpu_buffer->head_page
2161                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2162         local_set(&cpu_buffer->head_page->write, 0);
2163         local_set(&cpu_buffer->head_page->page->commit, 0);
2164
2165         cpu_buffer->head_page->read = 0;
2166
2167         cpu_buffer->tail_page = cpu_buffer->head_page;
2168         cpu_buffer->commit_page = cpu_buffer->head_page;
2169
2170         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2171         local_set(&cpu_buffer->reader_page->write, 0);
2172         local_set(&cpu_buffer->reader_page->page->commit, 0);
2173         cpu_buffer->reader_page->read = 0;
2174
2175         cpu_buffer->overrun = 0;
2176         cpu_buffer->entries = 0;
2177 }
2178
2179 /**
2180  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2181  * @buffer: The ring buffer to reset a per cpu buffer of
2182  * @cpu: The CPU buffer to be reset
2183  */
2184 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2185 {
2186         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2187         unsigned long flags;
2188
2189         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2190                 return;
2191
2192         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2193
2194         __raw_spin_lock(&cpu_buffer->lock);
2195
2196         rb_reset_cpu(cpu_buffer);
2197
2198         __raw_spin_unlock(&cpu_buffer->lock);
2199
2200         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2201 }
2202 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2203
2204 /**
2205  * ring_buffer_reset - reset a ring buffer
2206  * @buffer: The ring buffer to reset all cpu buffers
2207  */
2208 void ring_buffer_reset(struct ring_buffer *buffer)
2209 {
2210         int cpu;
2211
2212         for_each_buffer_cpu(buffer, cpu)
2213                 ring_buffer_reset_cpu(buffer, cpu);
2214 }
2215 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2216
2217 /**
2218  * rind_buffer_empty - is the ring buffer empty?
2219  * @buffer: The ring buffer to test
2220  */
2221 int ring_buffer_empty(struct ring_buffer *buffer)
2222 {
2223         struct ring_buffer_per_cpu *cpu_buffer;
2224         int cpu;
2225
2226         /* yes this is racy, but if you don't like the race, lock the buffer */
2227         for_each_buffer_cpu(buffer, cpu) {
2228                 cpu_buffer = buffer->buffers[cpu];
2229                 if (!rb_per_cpu_empty(cpu_buffer))
2230                         return 0;
2231         }
2232         return 1;
2233 }
2234 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2235
2236 /**
2237  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2238  * @buffer: The ring buffer
2239  * @cpu: The CPU buffer to test
2240  */
2241 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2242 {
2243         struct ring_buffer_per_cpu *cpu_buffer;
2244
2245         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2246                 return 1;
2247
2248         cpu_buffer = buffer->buffers[cpu];
2249         return rb_per_cpu_empty(cpu_buffer);
2250 }
2251 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2252
2253 /**
2254  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2255  * @buffer_a: One buffer to swap with
2256  * @buffer_b: The other buffer to swap with
2257  *
2258  * This function is useful for tracers that want to take a "snapshot"
2259  * of a CPU buffer and has another back up buffer lying around.
2260  * it is expected that the tracer handles the cpu buffer not being
2261  * used at the moment.
2262  */
2263 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2264                          struct ring_buffer *buffer_b, int cpu)
2265 {
2266         struct ring_buffer_per_cpu *cpu_buffer_a;
2267         struct ring_buffer_per_cpu *cpu_buffer_b;
2268
2269         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2270             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2271                 return -EINVAL;
2272
2273         /* At least make sure the two buffers are somewhat the same */
2274         if (buffer_a->pages != buffer_b->pages)
2275                 return -EINVAL;
2276
2277         cpu_buffer_a = buffer_a->buffers[cpu];
2278         cpu_buffer_b = buffer_b->buffers[cpu];
2279
2280         /*
2281          * We can't do a synchronize_sched here because this
2282          * function can be called in atomic context.
2283          * Normally this will be called from the same CPU as cpu.
2284          * If not it's up to the caller to protect this.
2285          */
2286         atomic_inc(&cpu_buffer_a->record_disabled);
2287         atomic_inc(&cpu_buffer_b->record_disabled);
2288
2289         buffer_a->buffers[cpu] = cpu_buffer_b;
2290         buffer_b->buffers[cpu] = cpu_buffer_a;
2291
2292         cpu_buffer_b->buffer = buffer_a;
2293         cpu_buffer_a->buffer = buffer_b;
2294
2295         atomic_dec(&cpu_buffer_a->record_disabled);
2296         atomic_dec(&cpu_buffer_b->record_disabled);
2297
2298         return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2301
2302 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2303                               struct buffer_data_page *bpage)
2304 {
2305         struct ring_buffer_event *event;
2306         unsigned long head;
2307
2308         __raw_spin_lock(&cpu_buffer->lock);
2309         for (head = 0; head < local_read(&bpage->commit);
2310              head += rb_event_length(event)) {
2311
2312                 event = __rb_data_page_index(bpage, head);
2313                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2314                         return;
2315                 /* Only count data entries */
2316                 if (event->type != RINGBUF_TYPE_DATA)
2317                         continue;
2318                 cpu_buffer->entries--;
2319         }
2320         __raw_spin_unlock(&cpu_buffer->lock);
2321 }
2322
2323 /**
2324  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2325  * @buffer: the buffer to allocate for.
2326  *
2327  * This function is used in conjunction with ring_buffer_read_page.
2328  * When reading a full page from the ring buffer, these functions
2329  * can be used to speed up the process. The calling function should
2330  * allocate a few pages first with this function. Then when it
2331  * needs to get pages from the ring buffer, it passes the result
2332  * of this function into ring_buffer_read_page, which will swap
2333  * the page that was allocated, with the read page of the buffer.
2334  *
2335  * Returns:
2336  *  The page allocated, or NULL on error.
2337  */
2338 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2339 {
2340         unsigned long addr;
2341         struct buffer_data_page *bpage;
2342
2343         addr = __get_free_page(GFP_KERNEL);
2344         if (!addr)
2345                 return NULL;
2346
2347         bpage = (void *)addr;
2348
2349         return bpage;
2350 }
2351
2352 /**
2353  * ring_buffer_free_read_page - free an allocated read page
2354  * @buffer: the buffer the page was allocate for
2355  * @data: the page to free
2356  *
2357  * Free a page allocated from ring_buffer_alloc_read_page.
2358  */
2359 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2360 {
2361         free_page((unsigned long)data);
2362 }
2363
2364 /**
2365  * ring_buffer_read_page - extract a page from the ring buffer
2366  * @buffer: buffer to extract from
2367  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2368  * @cpu: the cpu of the buffer to extract
2369  * @full: should the extraction only happen when the page is full.
2370  *
2371  * This function will pull out a page from the ring buffer and consume it.
2372  * @data_page must be the address of the variable that was returned
2373  * from ring_buffer_alloc_read_page. This is because the page might be used
2374  * to swap with a page in the ring buffer.
2375  *
2376  * for example:
2377  *      rpage = ring_buffer_alloc_page(buffer);
2378  *      if (!rpage)
2379  *              return error;
2380  *      ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2381  *      if (ret)
2382  *              process_page(rpage);
2383  *
2384  * When @full is set, the function will not return true unless
2385  * the writer is off the reader page.
2386  *
2387  * Note: it is up to the calling functions to handle sleeps and wakeups.
2388  *  The ring buffer can be used anywhere in the kernel and can not
2389  *  blindly call wake_up. The layer that uses the ring buffer must be
2390  *  responsible for that.
2391  *
2392  * Returns:
2393  *  1 if data has been transferred
2394  *  0 if no data has been transferred.
2395  */
2396 int ring_buffer_read_page(struct ring_buffer *buffer,
2397                             void **data_page, int cpu, int full)
2398 {
2399         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2400         struct ring_buffer_event *event;
2401         struct buffer_data_page *bpage;
2402         unsigned long flags;
2403         int ret = 0;
2404
2405         if (!data_page)
2406                 return 0;
2407
2408         bpage = *data_page;
2409         if (!bpage)
2410                 return 0;
2411
2412         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2413
2414         /*
2415          * rb_buffer_peek will get the next ring buffer if
2416          * the current reader page is empty.
2417          */
2418         event = rb_buffer_peek(buffer, cpu, NULL);
2419         if (!event)
2420                 goto out;
2421
2422         /* check for data */
2423         if (!local_read(&cpu_buffer->reader_page->page->commit))
2424                 goto out;
2425         /*
2426          * If the writer is already off of the read page, then simply
2427          * switch the read page with the given page. Otherwise
2428          * we need to copy the data from the reader to the writer.
2429          */
2430         if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2431                 unsigned int read = cpu_buffer->reader_page->read;
2432
2433                 if (full)
2434                         goto out;
2435                 /* The writer is still on the reader page, we must copy */
2436                 bpage = cpu_buffer->reader_page->page;
2437                 memcpy(bpage->data,
2438                        cpu_buffer->reader_page->page->data + read,
2439                        local_read(&bpage->commit) - read);
2440
2441                 /* consume what was read */
2442                 cpu_buffer->reader_page += read;
2443
2444         } else {
2445                 /* swap the pages */
2446                 rb_init_page(bpage);
2447                 bpage = cpu_buffer->reader_page->page;
2448                 cpu_buffer->reader_page->page = *data_page;
2449                 cpu_buffer->reader_page->read = 0;
2450                 *data_page = bpage;
2451         }
2452         ret = 1;
2453
2454         /* update the entry counter */
2455         rb_remove_entries(cpu_buffer, bpage);
2456  out:
2457         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2458
2459         return ret;
2460 }
2461
2462 static ssize_t
2463 rb_simple_read(struct file *filp, char __user *ubuf,
2464                size_t cnt, loff_t *ppos)
2465 {
2466         long *p = filp->private_data;
2467         char buf[64];
2468         int r;
2469
2470         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2471                 r = sprintf(buf, "permanently disabled\n");
2472         else
2473                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2474
2475         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2476 }
2477
2478 static ssize_t
2479 rb_simple_write(struct file *filp, const char __user *ubuf,
2480                 size_t cnt, loff_t *ppos)
2481 {
2482         long *p = filp->private_data;
2483         char buf[64];
2484         long val;
2485         int ret;
2486
2487         if (cnt >= sizeof(buf))
2488                 return -EINVAL;
2489
2490         if (copy_from_user(&buf, ubuf, cnt))
2491                 return -EFAULT;
2492
2493         buf[cnt] = 0;
2494
2495         ret = strict_strtoul(buf, 10, &val);
2496         if (ret < 0)
2497                 return ret;
2498
2499         if (val)
2500                 set_bit(RB_BUFFERS_ON_BIT, p);
2501         else
2502                 clear_bit(RB_BUFFERS_ON_BIT, p);
2503
2504         (*ppos)++;
2505
2506         return cnt;
2507 }
2508
2509 static struct file_operations rb_simple_fops = {
2510         .open           = tracing_open_generic,
2511         .read           = rb_simple_read,
2512         .write          = rb_simple_write,
2513 };
2514
2515
2516 static __init int rb_init_debugfs(void)
2517 {
2518         struct dentry *d_tracer;
2519         struct dentry *entry;
2520
2521         d_tracer = tracing_init_dentry();
2522
2523         entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2524                                     &ring_buffer_flags, &rb_simple_fops);
2525         if (!entry)
2526                 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2527
2528         return 0;
2529 }
2530
2531 fs_initcall(rb_init_debugfs);